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BAR CODES OF PERSISTENT COHOMOLOGY
AND
ARRHENIUS LAW FOR p-FORMS

par D. LE PEUTREC, F. NIER & C. VITERBO

Abstract. — The present work shows that counting or computing the small eigenvalues
of the Witten Laplacian in the semi-classical limit can be done without assuming
that the potential is a Morse function as the authors did in their previous article.
In connection with persistent cohomology, we prove that the rescaled logarithms of
these small eigenvalues are asymptotically determined by the lengths of the bar code
of the potential function. In particular, this proves that these quantities are stable in
the uniform convergence topology of the space of continuous functions. Additionally,
our analysis provides a general method for computing the subexponential corrections
in a large number of cases.

Résumé. (Codes-barres de la cohomologie persistante et loi d’Arrhenius pour les
p-formes) — Le présent travail montre que le comptage ou le calcul des petites
valeurs propres du Laplacien de Witten en limite semi-classique peuvent étre réalisés
sans supposer que le potentiel est une fonction de Morse, comme ’avaient fait les
auteurs dans leur article précédent. En relation avec la cohomologie persistante,
nous montrons que les logarithmes normalisés de ces petites valeurs propres sont
déterminés par le code barre de la fonction potentiel. En particulier cela démontre
que ces quantités sont stables dans la topologie de la convergence uniforme de 1’espace
des fonctions continues. De plus, notre analyse fournit une méthode générale de calcul
des facteurs correcteurs sous-exponentiels dans un grand nombre de cas.

© Astérisque 450, SMF 2024
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CHAPTER 1

INTRODUCTION

1.1. Motivations

Since its discovery in the late nineteenth century, Arrhenius law (see [3]) is one of
the most robust laws of chemistry or physics. Actually, its range of applications has
increased over decades and is now also commonly used in biology or social sciences
as an empirical law whose parameters be can figured out rather easily, even when the
microscopic or individual mechanisms are not well understood. Its early interpreta-
tions were done within the thermodynamical or statistical physics framework. They
are now formulated in the modern and general language of stochastic processes, more
specifically of the Brownian motion of a particle evolving in a gradient field. At low
temperature h > 0 in some dimensionless scaling, the lifetime 7, j of the state « is
exponentially large with
1) log T ~ 2
where ¢, is the energy variation between a local minimum and the lowest saddle
point that we need to cross in order to reach a state of lower energy. Practically
and as an illustration of the robustness of Arrhenius law, it is neither necessary to
know the energy landscape nor the configuration space: in the end only the ¢,’s
are important and they are determined experimentally, e.g., in chemistry kinetics. A
general justification of (1) was proposed by Freidlin and Wentzell in [91, 92] relying
on large deviation arguments (see also [38] and [6] for a wider overview).

In an energy landscape described by the function 2f : M — R, those life-
times are generically the inverses of eigenvalues of the operator —hA + 2V f -V
in L2(M, e~ dz), where e~ dz is the associated invariant measure (it exists e.g.,
when M is a compact Riemannian manifold without boundary). After a conjugation
by e* and a multiplication by h (corresponding to a change of time scale), it becomes
the operator

AP) = 1A+ |Vf(2)]? = h(Af)(x) = d} dpp  acting in L*(M, dx),
where df, = e (hd)e£ is the Witten differential and d7 ) its adjoint. This operator
acts on general differential forms as the Witten Laplacian, a deformation of the Hodge
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2 CHAPTER 1. INTRODUCTION

Laplacian:
dim M

App=(dpn+djp)? = @ A%,
p=0

where the direct sum separates the degrees. When f is a Morse function, Witten in [95]
(see also [27]) proved that as h goes to zero, the eigenvalues of Ay ) are divided into
two groups, given in our scaling as one bounded from below by C¢h for some Cf > 0,
and one being of the order o(h). The small (here o(h)) eigenvalues of Agfj ,)l correspond
to critical points of index p: this is intuitively to be expected, since the eigenfunctions
should concentrate in the region where |V f| is small, that is near the critical points
of f. This argument provided an analytical proof of Morse inequalities, in the line of
several results relating topological quantities and spectral analysis, one of the earliest
being the Atiyah-Patodi-Singer proof of the index theorem (see [4]).

In [55], Helffer and Sjostrand gave a rigorous proof of Witten’s claims and proved
that those small eigenvalues were actually exponentially small, without specifying
their size. This was later extended to Morse-Bott functions by Bismut and Helffer-
Sjostrand (see [10] and [56]). After this, many applications of Witten Laplacians
or more general Witten deformations were used to study various global topological
invariants of manifolds or fiber bundles by counting the small eigenvalues of such
operators (see e.g., [11, 98, 20]).

When f is a Morse function, the Arrhenius law in degree 0 says that the o(h)

eigenvalues of ASCO,)l satisfy

f(Wa) — f(za)

h
where z, is a local minimum and ¥, is an associated saddle point. Already around
1935, Eyring and Kramers (see [37, 65]), motivated by the theory of the activated
complex in chemistry, proposed a more accurate version which reads here

(2) log )\gjw)h ~ =2 as h — 0T,

_pfla)=f(za)

h
(3) A0~ ZChe as h — 0%,
? m

where the constant C, depends on the Hessians at the non degenerate critical
points z, and y,, T, is a local minimum (here a critical point of index 0), and y, a
saddle point (here a critical point of index 1).

The first mathematical proof of the Eyring-Kramers formula was performed in
degree 0 in [13, 14] by using potential theoretic and capacity arguments, and in [50]
by improving Helffer-Sjostrand’s semiclassical analysis for A;?,)l (see also e.g., the
prior works [60, 80] for results less precise than (3) but more precise than (2)). These
results were proved under the assumption that f is a Morse function with simple
local minima and simple saddle points (a Morse function has simple critical values
or critical points if every critical value is the image of a single critical point), and
with distinct lengths : the real numbers ¢, = 2(f(ya) — f(z4)) are all distinct. The
pairing between local minima z, and saddle points y, (critical points with index 1)
was done by extending the intuitive picture of basins of attraction, more precisely
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1.1. MOTIVATIONS 3

by considering the connected components of sublevel sets of f. Note that this differs
from the instantonic picture, associated with curves which are intersections of stable
and unstable manifolds of —V f, which is in some sense local and would lead to a
complicated analysis of cancelations while computing precisely the )‘510,)}1 ’s. This pairing
relies on global topological considerations which are robust with respect to the C°
perturbations of the energy profile 2f. By making use of the min-max principle, it is
actually not difficult to start from the analysis done in [50] for Morse functions and
to recover (2) and the results of [91, 92, 60, 80| in cases where the local minima are
degenerate.

The situation is completely different for general differential forms of degree p. In
[74], we proved an Eyring-Kramers law (and therefore an Arrhenius law) by assuming
again that the function f was a generic Morse function with simple critical values and
such that the difference between critical values were all distinct. Here the problem is
to understand which critical values f(z,) and f(y,) are paired in order to compute
the exponential factors. This pairing is obtained topologically by using a refinement
of Barannikov’s presentation of Morse theory. This can be restated in modern terms
with the bar code of f, denoted By = ([a}, b5 [)aca+, associated with the Morse
function f on M, with the notation a?) = f(z,) and b = f(ya), where the
critical point z, has index p and y, has index p + 1. Later, it was noticed in [90, 85]
that those bar codes were nothing but the bar codes of persistent homology, developed
since the beginning of the 21st century (see [35] for a historical review). An important
feature of the Barannikov complex, and hence of persistent homology, is the stability
result which says in the latter framework

dvot(BfsBg) < |I.f — glleos

where the bottleneck distance dy,.; estimates the variations of the lengths of the bars.

But the bar code of a function is defined for any continuous function, except that
the bars may now be infinitely many, with the property that for any 9 > 0, only
finitely many are greater than ey. It is then natural to state the following conjecture.

Main Conjecture. — Consider a C® (or even Lipschitz) function f on a compact
manifold M with bar code Bf. We denote by AP)(0) the set of bars in By of the
type [a&p),b,(fﬂ)[ with b&pﬂ) - agp) > {4, and A&p_l)(ﬁ) the set of bars in By of the
type [aé{"”,b&p)[ with b2 —a® > 0 and bP < 0. Then, there exists eg > 0 such
that, for every e €]0, &¢], A(f{’% admits §(AP (£) U Aﬁp‘l)(e)) eigenvalues )\((f’)h smaller
than e=2%* (with multiplicity), where o € A®)(£) U Aﬁp_l)(é). They can moreover be
labeled such that

Bt _ o)

Vae AP (£) u AP~V (p), log)\g)h ~ —2% as h — 0F.

The goal of this paper is to prove this conjecture under the assumption that f has
a finite number of critical values.

SOCIETE MATHEMATIQUE DE FRANCE 2024



4 CHAPTER 1. INTRODUCTION

Note that we do not assume in the Main Conjecture (as well as in our theorems)
that f is Morse. One important consequence of the Main Conjecture (and hence of
our main theorems) is that the decay rate of the eigenvalues is continuous in f for
the C° topology. This is not the case for subexponential factors, since they usually
depend on the eigenvalues of the Hessian of f at the critical points.

In the case p = 0 of functions, the Eyring-Kramers law (3) has been extended in
the form )\((lo’)h ~ Cy (f)h”“(f)e”% when f is not a Morse function or when
f is a Morse function with multiple critical values (i.e., the preimage of a critical
value may contain several critical points), the latter appearing in practical situations
with natural symmetries. We refer for example to [8, 7, 79, 33, 72, 73], whence it
appears that the exponent v, (f), or the constant C,(f) in the subexponential factor,
may be discontinuous when a general function f is approximated by a sequence of
generic Morse functions. On the other hand, it will follow from our results that the
2o = 2(f(ya) — f(za)) are stable. Understanding how the eigenvalues A, 5 (f) or the
lifetimes 7, (f) depend on f is also important for applications to the acceleration of
stochastic algorithms (see [77, 32, 33, 72, 73] and references therein). This leads to the

Main Question. — Is there a way to analyze how the subexponential factor of Eyring-
Kramers law for p-forms varies when f is changed ? In particular, does it explain the
observed discontinuities ?

Again, the answer is yes. Our presentation of Arrhenius law for p-forms provides a
very general result. The method actually completely separates the determination of
the exponential scales e_iTa, related with global algebraic topological objects, from
the determination of the subexponential factors, which rely on some local analysis.
Many applications with various discontinuous effects will be presented at the end of
this text. Actually, the discontinuities w.r.t. the energy landscape f of the leading
term for the subexponential factor Cy (f)h*~() are easily understood on the simple
example of the Laplace integrals

2t /4-822 /241, (8)5%/4
R

I(6,h) = fR e~ x,
which satisfy 1(0,h) 20 Csnl/? when § # 0,
and 1(6,h) "=° Cnl/4 when & = 0.
1.2. General assumptions and notations
The manifold M. — The Riemannian manifold (M, g) is assumed compact without

boundary with dimg M = d and non necessarily oriented. Some non compact manifold
will be considered in Subsection 8.2. In the non-orientable case, the Hodge star opera-
tor, x, sends AT*M = @zzo APT*M to AT*M ® s orpy, where oryy is the orientation
(line) bundle, which is of course locally trivial. When N C M is a regular hypersurface
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1.2. GENERAL ASSUMPTIONS AND NOTATIONS 5

admitting a global unit normal (or conormal) vector the orientation twist ory is the
restriction of orjy.

In local coordinates the metric will be written g = g;;(z)da’da? with g1 = ¢ (2) 2 52
and the musical isomorphisms # : T*M — TM and * : TM — T*M are given by
, 0
gyl
The differential d acts on C®°(M;AT*M ®n C) or J(M;AT*M ®p C) and
augments the degree of forms by 1. The codifferential d* = (—1)9® x~! dx acts
on C®(M;AT*M ®)p; C) and I (M; AT*M ®js C) and decreases the degree by 1.
In the sequel and unless otherwise specified, we always consider complex valued
differential forms and the tensorization by C will be omitted in the notation. The
duality bracket { , ) between & (M;APT*M ® orps) and C°(M; A?~PT*M) (where
) and C*™ can be interchanged) is assumed C-antilinear on the left-hand side and
C-linear on the right-hand side. Stokes’s formula then implies that d* is the formal
adjoint of d according to

0= /M d(w A *n) = /M dw A (%n) + (=1)98“G A d(xn) = (dw, n) — (w, d*n)

for w,n € C°(M; AP~1T*M).

, 9 o
(Widwl)ﬁ:g”wj% and (X > = gi; XPdzt.

Functional spaces. — The L%-norm of sections of AT*M is the one given by the
metric g and we recall

/<w, MAT; M dvolg(q)z/ WA *).
M M

We use the notation W# P for the Sobolev space with s derivatives in L. In particular,
W$:2 corresponds to the standard Hilbertian Sobolev spaces while W1 will be used
for the set of Lipschitz functions. For an open domain 2 C M and for s € R, the no-
tation W*2(Q; AT* M) denotes the set of restrictions to Q of W*2-sections in M, and
when there is no ambiguity or necessity, we shall use the short version W*2(Q). The
same definition holds for C°°(2; AT*M). We recall that when Q is a regular domain,
that is when 0 is a C> hypersurface, W*2(Q; AT* M) coincides with W2 (Q; AT* M)
by interpolation and duality from the special cases of s € N (see e.g., [21]). In
such a case, the trace theorem holds from W#2(Q; AT*M) to W*~=1/2:2(Q; AT*0R)
for s > % The local regularity theory is not affected when sections of AT*M ® or s
and AT*M ® orpq are considered and we shall use the short notation W*2(Q) or
W#2(8Q) indifferently for sections of the trivial and orientation line bundles, unless
we need to distinguish the global behavior. Other functional spaces will be introduced
later in our analysis.

Witten differential and Witten Laplacian. — The Witten differential and the Witten
Laplacian are deformations of the differential d and the Hodge Laplacian dd* + d*d
associated with a real valued function f and a positive parameter h > 0 in the
asymptotics h — 0.

SOCIETE MATHEMATIQUE DE FRANCE 2024



6 CHAPTER 1. INTRODUCTION

Definition 1.1. — Let f be a real valued function on M. For a € R = RU{—o00, 400},
we use the notations

f”={$€M,f($)<a}a f=={z e M, f(z) <a},
fo={z e M, f(z)>a}, foa={z€M f(z)=a},
with all the combinations like f = {x € M, a < f(z) < b}.

Although weaker regularity assumptions for the function f will be discussed later, the
following simple hypothesis will be convenient for us.

Hypothesis 1.2. — The function f on (M,g) is assumed to be Lipschitz with a finite

number Ny of values ci,...,cn, such that:

ffEGO"M\f ({c1,..-en, )i R)
— Ve e M\ f*{c1,...,en, ), V(@) #0.

When f € C°°(M;R), the above assumption simply says that f has a finite num-
ber < Ny of critical values. For a Lipschitz function, we count also “fake” critical
values allowing singularities of f at those values. We nevertheless call ¢q,...,cn, the
“critical values” of f and use the notation

Mreg = {33 € (M\SuppSing f)vvf(x) 7& O} cM \ f_l({cla o 70Nf}) )
where suppsing f denotes the singular support of f, the closed set out of which f is

C>®. When M is a real analytic manifold, Hypothesis 1.2 may be replaced by the
following simpler natural assumption.

Hypothesis 1.3. — On the real analytic compact Riemannian manifold M, f is a
Lipschitz subanalytic function.

Actually, the proof of the main result, Theorem 6.3, will hold under Hypothesis 1.2
or under some milder assumptions which are more technical and will appear as conse-
quences of Hypothesis 1.3 in Subsection 8.3. We also refer to Subsection 8.3 for more
material on Lipschitz subanalytic functions.

Under Hypothesis 1.2 or more generally for a Lipschitz function f and for h > 0, the
differential operators dy,, d} , and Ay are defined by:

(4) dpp = e (hd)et = hd +dfA, dgpodsy =0,
(5) &, = ek (hd*)e F
(6) Apn=(dn+d5 ) =d}pdpn+dspodsy,

= D01 + |V f(@)]* + W(Zvs +255).
The above identities make sense when considering dy, and d}, as operators
from W12(M) to L2(M) or from L%(M) to W~12(M), and for the compositions of

two of them and for Ay, as operators from W12(M) to W~12(M). We shall be
more precise on requirements for domains once we add the boundary conditions.

:hd*—i—ivf, d;,hOd;,h =0,

ASTERISQUE 450



1.2. GENERAL ASSUMPTIONS AND NOTATIONS 7

Convention for closed operators and quadratic forms. — We shall consider various
closed realizations in L? spaces of the above differential operators dy , d}, no and Ay,
which will be denoted dy,e 5, d} , 5, and At o h, where the subscript e will specify the
realization. When A is a closed operator in a Hilbert space (resp. when @ is a closed
quadratic form), writing Au (resp. Q(u) or Q(u,v) for the associated sesquilinear
form) means that u belongs to the domain of A (resp. u or u, v belong to the domain
of Q). For example djepw = a € L? means in particular w € D(df, ), possibly
imposing boundary conditions.

Comparing exponential scales
Definition 1.4. — For two functions F,G : 10, ho| — C, one says
— F(h) = O(G(h)) if:
Ve > 0,3k, Ce > 0,Vh €]0,h.], |F(h)| < Cc|G(h)let;
— F(h) = 6(G(h)) if:
Je, he,C. > 0,Yh €10, ke[, |F(h)| < C.|G(h)|e"*;

— F(h) ~ G(h) if:
[E(h)| = O(G(h)]) and |G(h)] = O(|F(h)]).
When |F|,|G| > 0, the above three conditions can be written respectively
: |F (h)|>
lim sup h lo < <0,
NI D]
: |F (h)|>
lim sup A lo < <0
AN E]
. [E'(h)]
lim Al ——= ] =0.
O (|G<h>|
In the two first definitions, the constant C. can be fized to 1 by changing h. (and e
in the second definition).
When F : X x ]0,h] — C, the statements “F(z,h) = O(G(h)) (or F(z,h) =
6(G(h))) (locally) uniformly” are used when the above definitions make sense for the
corresponding suprema sup, F(x,h).

Bar code. — Although a more precise definition and construction will be recalled
especially in Appendix B, we can start with a short definition.

Definition 1.5. — Under Hypothesis 1.2, a (persistence cohomology) bar code asso-
ciated with f is a finite family B = ([aa,bal)aca with —00 < aq < by < 00,
aq € {cl, ... ,cNf}, ba € {02, .. ,cNf,—l—oo}, with the following properties:
— it 1is graded according to A = |_|z=O AP Jay, by[= [a&p), b((fﬂ)[ when o € A®);
— for any pair a,b, a < b, a,b & {cl, . ,cNf}, there exists a basis of the relative
homology vector space HP(f°, f®) indexed by the bars of degree p with a unique
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8 CHAPTER 1. INTRODUCTION

endpoint lying in ]a, b[. In particular, the relative Betti number is given by:
G7(f°, 1) = dim HP (%, 1) =t {a € AP, 1 {a®,bT+D} N]a,b[ = 1}

For a general Lipschitz function, such a finite bar code is well defined under the
following assumption (see Subsection 8.3.1 and Appendix B).

Hypothesis 1.6. — The function f: M — R is a Lipschitz function and there exists a
finite number of values c1 < ¢ < --- < cn, such that for any a € R\ {cl, ... ,cNf},
the following property holds along f~*({a}):

For any zo € f~*({a}), there exists a neighborhood Uy, of o in M, a local coor-
dinate system z = (z1,2') € R x R471, and a constant C,, such that

Vo = (a',2"),y = (y',2") € Us,, ot =y < |f(a!,2') = f(y", )]

1
Cy,o

This notion of bar code, and especially the identification of two bar codes, after
possibly adding empty intervals, is better understood after associating with a bar code
Ba = ([@asbal)aca the constructible sheaf @ . 4 K, b.[ of K-vector spaces, on R.
Then, a persistence bar code associated with a function f satisfying Hypothesis 1.2
is essentially unique and then denoted B(f).

After possibly adding empty bars such that a, = b or cg = dg, two different bar
codes Ba = ([aa,bal)aeca and Br = ([cp,ds[) s can be assumed with the same
cardinality, §4 = §B. The bottleneck distance is then defined by

dbot(Ba,Br) = inf max max(|aq — Cj(a)|7 |bo — dj(a)|)7
jAZip @€A
with the convention |(4+00) — (4+00)| = 0.

The stability theorem for persistent (co)homology (see e.g., [23, 64]) says that for

two functions fi, fo which satisfy Hypothesis 1.2 or Hypothesis 1.6,

dbot (B(f2),B(f1)) < ||.f2 — filleo-

1.3. Simple results

The method presented in this text leads to several results and can actually be
extended to other cases. Essentially, we show that the usual generic assumption that
the function f is a Morse function can be replaced by a very general one, after replacing
the algebraic topological information in terms of Morse indices by the one given by the
persistent cohomology bar code associated with f. The following simple statements
illustrate what can be obtained.

Theorem 1.7. — Assume that f satisfies Hypothesis 1.2 and let Ay arp be the self-
adjoint Witten Laplacian defined with D(Ay arp) = {w € WH2(M), Ay pw € L2(M)}

and Ag ppw = Af pw according to (6), and Afarp = @é‘spgd A;pj)\/[’h. Let B(f) be
a persistent cohomology bar code associated with f. Then, there is a bijection between
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AP {a e Alp=1), b&p) # +oo} and the 6(1) eigenvalues counted with multiplicities
of Agfjj)mh. Precisely, there exists eg > 0 small enough such that for all ¢ € ]0,¢0],
there exists he > 0 such that the O(e_%)-eigem)alues of Agle counted with multiplicity
for h €0, h.| are given by A&p)(h), ac AP or (a € AP~ and P # 400), with
either bPTY = 400, and then AP (h) =0,
or b < 400, and then ;lzli% —hlog AP (h) = 2(b5+! — a),

with * meaning (p) or (p — 1) depending on the case. Obviously, the multiplicity of
the 0-eigenvalue of A;pj)w n» the dimension of its kernel, equals the pt" Betti number

of M, ﬂ{a € A(p),b,(f—’_l) = +oo} = B®) (M), and does not depend on the function f.

To summarize the situation, the logarithms of the exponentially small eigenvalues
of A}Z”J)\/l’h are given by the lengths of the bars b:*! — a%, * = (p) or (p — 1), of which
one endpoint in R is of degree p, the eigenvalues associated with infinite lengths
being identically 0 for h small enough. A direct application of the stability results of
persistent cohomology then gives the variations of the exponentially small spectrum
when the function f is perturbed.

Corollary 1.8. — Assume that f satisfies Hypothesis 1.2, let B(f) = ([aa,bal)gea
o < by, A = l—'OSde A®)  be a persistent bar code associated with f, and set

lmin = min {b, — an,a € A}. For any other function g which satisfy Hypothesis 1.2

with |g — flleo < e"jl‘“, the O(e‘em%) eigenvalues of A;’?I)M,h can be labeled with mul-

tiplicities

Aa(g:h), a€ AP or ae APV pP) £ 4o
with
Aalgh) =0 if bPFY = +oo
or 2(ba — aq) +4llg = flleo > lim ~hlog(Aa(g,h) > 2(ba = aa) = 4llg = fllev > Lin-

One rapidly realizes that we make no normal form assumption for f near the “crit-
ical values” c1,...,cn, of f. Even if we work with C*> functions, any closed set K
of M can be the global minimum of f € C>°(M) by taking a non negative C*° function
vanishing only on K after Whitney’s extension theorem. Having a finite number of
critical values restricts the possible sets K which still make a very large class. Hence,
no algebraic behavior with respect to h of the leading terms of the subexponential
factors can be expected as it is the case when f is assumed to be a Morse function.
Theorem 1.7 simply says that exponentially small eigenvalues and their exponential
scales are given by the algebraic topology without specifying a possible subexpo-
nential factor. Among other results, we will obtain similar things for A ¢-1((4,8)),hs
—0o<a<b< +00,a,b¢ {cl, -o 5 CNy }, when considering the proper boundary con-
ditions on f~!({a}) (Dirichlet type) and f~'({b}) (Neumann type). Actually, this
leads us to the presentation of our strategy which passes through local problems
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on R = f(M) and a recurrence argument on the number N of “critical values” lying
in [a, b].

1.4. Strategy and outline of the book

Proving a result like Theorem 1.7, even in this simplified form, is a rather long
process which is clearly split into various steps.

— A general presentation of bar codes in persistent (co)homology as well as proper-
ties of Hodge Laplacians on weakly regular domains are recalled in Appendix B
and in Appendix A.

— In Chapter 2, we set up the functional analysis framework, the relevant bound-
ary conditions for Witten Laplacians, the corresponding integration by parts
formulas, as well as weighted integration techniques & la Agmon, in order to
obtain exponential decay estimates. We especially consider self-adjoint realiza-
tions of Witten Laplacians Ay, in the domain f~*([a,b]) when a < b are not
critical values, always with Dirichlet boundary conditions along f~!({a}), the
lowest level set, and Neumann boundary conditions along f~!({b}), the high-
est level set. Those self-adjoint realizations will be denoted by A £.f=1([a,b],h)
and possibly A;{' },1 ([a,b]).h when specifying the degree. Remember the intuitive
picture for functions: Dirichlet (resp. Neumann) boundary conditions are asso-
ciated with a potential —oco (resp. +00). Such boundary conditions are actually
the natural ones in order to avoid boundary layer phenomena along the bound-
aries in the spectral analysis. For further applications, this analysis is done in
a weak regularity framework, and the long series of works by Mitrea et al. were
instrumental in setting up the proper framework. The end of this section gath-
ers repeatedly used technical lemmas, deduced from the exponential decay and
weighted resolvent estimates for boundary Witten Laplacians.

— Once the geometrical issues in the weak regularity case are solved, the rest
of the analysis becomes essentially one dimensional on R O f(M), as sug-
gested by the bar code structure. The first step consists in understanding
what happens when there is a single critical value in the energy interval [a, b],
[a,b] N {c1, ..., cNf} = {¢}. In this specific case, the bar code of f has no bar
included in a compact subset of Ja,b[. Accordingly, A¢ ¢-1(jq)),» should not
have any non zero exponentially small eigenvalue. This is the main result of
Chapter 3.2, formulated in Proposition 3.2, which states that all the 6(1)-eigen-
values of A;’? ;,1([%})}) , are equal to 0. After preliminary notations related with
variations of the min-max principle, the core of the proof is done in Subsec-
tion 3.2, and follows in some sense Carleman’s general scheme for uniqueness
results of PDE, along the energy interval [a,b] C R. Resolvent estimates and
other corollaries are listed afterwards. Chapter 2 and Proposition 3.2 provide
in particular the number of 6(1)-eigenvalues of Agfj },1([a’b])’h counted with
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1.4. STRATEGY AND OUTLINE OF THE BOOK 11

multiplicities in this setting: it equals the relative Betti number

B(f°, fR) = dimker(Aff}_l([wDJ) - dimker(Agf}_l([me’h).

Only in Chapter 4 really starts the relationship between the bar code B of f
and the spectral properties of Ay ¢-1((q,p)),n- It contains an enumeration of the
non zero 6(1)-eigenvalues of A¢ ¢-1([q,)),» in terms of bars compactly embedded
in ]a,b[, while the dimension dimker(A;{’;fl([a’b])’h) = B@) (Y, f*;R) is also
expressed in terms of (3y. This section ends with Proposition 4.5 which proves
the rough lower bound e~2"%* for the non zero o(1)-eigenvalues of Ay r—1((q,0)),h
(see Proposition 4.5).

An important step elucidated in [50], and used in many forthcoming articles,
consisted in the trivial observation that the eigenvalues of Ay r-1((4.4)),n, Te-
stricted to some spectral compact segment, are the square of the singular values
of the restricted differential df -1 ((q,p)),n- Singular values are much more flexi-
ble spectral quantities than eigenvalues. One of their advantage is that, in many
situations, the approximation errors appear as relative ones for all the singu-
lar values, a property which is not fulfilled by eigenvalues. We gather several
functional analysis preliminary results in Chapter 5, which elaborates in a func-
tional abstract setting how various matricial error estimates propagate nicely to
singular values estimates.

The core of the proof of Theorem 1.7 is done in Chapter 6. It is a rather so-
phisticated proof by induction on the number N of critical values contained in
the energy interval [a, b], {c;l7 NI } N[a,b] = {é,...,én}. This recurrence is
initiated by Chapter 3.2 for the case N = 1. Although it contains several steps,
the induction from N to N + 1 mimics in some way the proof of Mayer-Vietoris’
Theorem. The main result of this section is Theorem 6.3, which can be consid-
ered as the central result of this text, while Proposition 3.2 proves the simplest
non trivial particular case. This induction contains many intermediate results,
which lead in particular in Chapter 7 to Theorems 7.1 and 7.8, which generalize
respectively Theorem 1.7 and Corollary 1.8 to the boundary Witten Laplacian
A, f=1 (o) -

Chapter 8 is devoted to various generalizations of Theorem 6.3 and of its spec-
tral corollaries. The first one concerns results for some domains which are not
bounded by level sets, e.g., for (non necessarily) small deformations Ny and N,
of the level sets f~1({a}) and f~1({b}) for which the conditions Onfly <0
and O, f v > 0 are still valid, and for which all the conclusions of Theorem 6.3
and of its corollaries hold true. The second generalization is about noncom-
pact manifolds like R?, for which the results still hold provided we make some
assumptions on M and f at infinity. The most technical one concerns the ex-
tension to a general subanalytic Lipschitz function on a real analytic manifold
(see Hypothesis 1.3). Even when f is a subanalytic real Lipschitz function, it is
possible to define self-adjoint realizations Ay r-1((q,5)),1, critical values and finite
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bar codes, but there is an extra difficulty to establish Agmon’s type estimates
to accurately control the exponential decay estimates. This problem is solved in
Subsections 8.3.2 and 8.3.3 by modeling a collection of solutions to Hamilton-
Jacobi equations associated with some natural stratification of the subanalytic
graph of f in M x R.

— Finally, Chapter 9 answers precisely our Main Question in various explicit cases.
We return to our results of [74], where Morse functions with simple critical
values (one critical point for every critical value) were considered. It was too
rapidly conjectured in [74] that some topological constant x? appearing in the
subexponential factor was equal to 1. It is true in the case of oriented surfaces
(see [70]), but examples are now provided with a constant 2 equal to any n?,
n € N*, the first example with k2 = 4 arising in the case of a Morse function
on RP2. Additionally, in the case of Morse functions with multiple critical values,
the constant x has to be replaced by an “incidence matrix,” k, related with
the bar code. Various examples, including non Morse functions, show that the
accurate computation of the prefactors now results from two well separated
analyses: one for the global topology of the sublevel sets relying on the bar
code, and one for the local asymptotic expansions of Laplace integrals.
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CHAPTER 2

BOUNDARY WITTEN LAPLACIANS

In this section we specify the domain of various operators involved in our analy-
sis and review the basic exponential decay estimates. The general assumptions and
notations have been set in Subsection 1.2 and in particular the function f satisfies
Hypothesis 1.2 or Hypothesis 1.6. We shall give the definition of Dirichlet and Neu-
mann boundary conditions for Witten Laplacians on strongly Lipschitz domains Q.
Most of the time in the sequel, these domains will be level set domains Q = f~*([a, b])
with a,b & {cl, -, CNy } The required Agmon’s type or exponential decay estimates
will be proved under Hypothesis 1.2. We are unable to prove these estimates in the
general setting of Hypothesis 1.6 but we will prove them for subanalytic Lipschitz

functions (see Subsection 8.3).

2.1. Tangential and normal traces

2.1.1. Smooth case

Definition 2.1. — Let N C M is a C*°-hypersurface of M, n a unit normal vector and
n® the associated covector, defined locally. When w € W*2(M;AT*M), s > %, the
tangential and normal traces denoted tyw and nyw are defined by

tyw = in(n /\w)|N and ny =n" A (inw)|N
Before we extend this definition to more singular forms, let us make explicit this
definition in coordinate systems (see e.g., [86]):

— When n is a normalized normal vector to IV, any vector field in X = Ty M can
be decomposed into X = X7 & X,,n. The traces t yw and nyw are then equal

to
th(Xl,...,Xp)=w|N(X1’T,...,Xp’T) and an=w|N—th.
— With local coordinates (z!,...,2¢) = (2/,z%9) € R? in a neighborhood
UM in M of zp € N, such that N n UM = {(x',xd)eU§d,xd=0},
g = Eij<dgi7j(x',xd)d:ridxj + (dz?)?, n = % and n° = dz?, and when
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14 CHAPTER 2. BOUNDARY WITTEN LAPLACIANS

a differential form is written
w= Z wy (', z%)da” + Z wy (2, 2% dz” A da?,
gI'=p, dg1’ tJ'=p—1, dgJ’
with  do! =da™ A Ada™, iy <o <idgr, T ={iy,..., 0},
the tangential and normal traces are given by

tyw = Z wr(z',0)dz”  and ny_w= Z wy (z',0)dz”’ A dz?.

$I'=p, dgT’ §J'=p—1, dgJ’

— From those formulas one gets at once xt y = ny*, where x denotes the Hodge
operator on (M, g). The possible orientation twist orys is locally trivial so that
the orientability of M is not required.

— When restricted to the tangent space to N, tyw coincides with jyw where
jn : N — M is the natural imbedding. Therefore tyd = dty and therefore
nyd* = d*ny. Note also that ty and ny commute with multiplications by
functions.

2.1.2. Lipschitz domains. — The typical case which will be considered is when
N = 99 is the boundary of a Lipschitz domain of M (strongly Lipschitz according to
the terminology of [43]). This means that € is locally the hypograph of a Lipschitz
function in a proper coordinate system. For the notations, €2 is an open domain in M
and its closed version is Q = QU N with N = 9. Precisely we consider the following
situation.

Hypothesis 2.2. — The domain @ = QU N C M is a Lipschitz domain with
N = Ny U N,, made of two disjoint closed hypersurfaces.

When Q is a regular domain, with (> boundaries N; and N,,, the unit normal vector

field n to N = 09 is globally defined so that the hypersurface measure do, the

orientation twist ory and the Hodge * operation on N = 0f2 are deduced from dVol,

and orj; and the Hodge x on M. In the general case when the domain 2 has only the

assumed Lipschitz regularity, the same things hold except that the normal vector is

defined do-almost everywhere along N, LI N,,, do being the $#?~!-Hausdorff measure.
For two forms u,v € WH2(Q, AT* M), the Green formula yields

(du,v) 200y — (u,d"v) 20y = / d(u A *v) = / tn (T A *v)
Q N

(7 z/ <u,inv>AT;Mda:/ (tNu, ipv)aT: mdo,
N N

(8) :/ <nb/\u,v)AT;Mda:/(nb/\u,an>AT;Mda
N N
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2.1. TANGENTIAL AND NORMAL TRACES 15

while the decomposition N = N; U N,, into two disjoint closed hypersurfaces clearly
implies
(ty,u=0) & (supp n’ AuC Nn>
and (ny,v=0)< (supp i,v C V).
Moreover according to [62], when w € L?(;AT*M) and dw € L%*(Q;AT*M), the

above Green formulas provide the duality needed to define n’ A w|y € W—22(N; AT* M)
by

1
(9) Vg € WEA(N), (0" Aw, 0) sy b

where G is any form in W'2(Q; AT*M) such that G|, =g € W22(N; AT*M). Simi-
larly, when w and d*w belong to L?(€2; AT* M), one can define iw|, € W—22(N; AT*M)
by

(10) Vg e W22(N),

= (dw, G>L2(Q) - (w, d*G>L2(Q),

(inw, 9>W_%,2(N)7W%,2(N) = (w, dG)2(q) — (d*w, G)L2(q)-

In particular, when O is an open subset of N and when the trace n’ A wl, defined
in the sense of (9) (resp. of (10)) belongs to L?(O;AT*M), the tangential (resp.
normal) trace tow (resp. npow) is well defined on O by the standard formula from
Definition 2.1:

tow = in(n® A w)|, (resp. no= n’ A (inw)], )-
We may thus make sense of the boundary condition ty,w = 0 (resp. ny,w = 0),
which is equivalent to supp n’ A wly C N,, (resp. supp inw|N C N;), for any
w € L?(Q; AT* M) such that dw € L?(Q; AT*M) (resp. d*w € L?(; AT*M)).
According to [62, Proposition 3.1], (§°(Q U Np; AT* M) (resp. (§°(Q U Ny; AT*M)) is
dense in
(11) T ={we L*(Q{AT*M),dw € L*(Q; AT* M), ty,w =0}
(12) (resp.in oV = {w e LA (U AT*M),d*w € L*(%AT*M),ny,w =0} )
endowed with the norm [|w|z2(q) + ||dw| r2() (resp. ||w|lr2() + [[d*w| L2(q)). The-
orem 3.4 of [62] also says that when u,v € L?(Q) with du € L%(Q;APTIT*M),
d*v € L*(Q; APT*M), and

supp i, CT or supp (n° Au)CT

with I' = N; or I' = N,,, the following Green formulas

(du,v) 20y — (u,d"v) L2(q) = /(nb A u,nb A (in'l))>T;Qd0'
(13) p

= /(in(nb Au),inv)rrqdo
r

make sense with a r.h.s. interpreted in general in a weak form specified in [62, Propo-
sition 3.3]. Notice that under Hypothesis 2.2, the geometric assumptions concerned
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with T' in [62] are trivially satisfied without any locally mixed boundary conditions.
Additionally, when i,v and n’ A u belong to L?(T), the r.h.s. of (13) are standard
integrals along the boundary.

Definition 2.3. — Let Q be a Lipschitz domain of M with Q = QUN, N = N,UN,,
like above, and let I, o)V be the spaces defined in (11)(12).
The space

W(GAT*M) = {w € L*(Q;AT*M);dw € L*(Q; AT*M); d*w € L*(Q; AT*M)}
is endowed with its natural Hilbert space norm given by
(14) Wl = lwlizq)+ ldwlZzq) + ld* w7z (o)

The closed subspace & NN of W (i AT* M) will be denoted Wa(Q2; AT*M) and the
restriction of the W (S AT*M)-norm || |lw,(q)-

Remark 2.4. — i) By interior elliptic regularity, note that
Wa(Q; AT*M) € W (i AT*M) € WE2(Q; AT* M)

loc
with continuous embeddings. However it is known that W (Q; AT*M), and even
Wa(Q; AT* M) if we add boundary conditions, differs from W12(Q; AT* M) for
a general Lipschitz domain (see e.g., [88, 81]). An easy counter example is u =
roo ! cos(g-0)dr — roe ! sin(g-60)d6 in the sector 0 < 6 < 6 of R? near r = 0.
It satisfies nu = 0, du = 0 and d*u € L? near » = 0 while v € W12 near r = 0
when 6y > .

ii) The space W(Q; AT*M) and its subspace Wy(Q; AT*M) are Lipschitz-module:
for any p € WH*(Q;R) and w € W(Q; AT*M), pw belongs to W (Q; AT* M)
and the mapping w € W(Q;AT*M) — pw € W(Q;AT*M) is contin-
uous. Moreover, for any bounded sequence (¢n)nen of W1°(£;R) such
that ¢, — ¢ a.e. and dp,, — dy a.e., the convergence p,w — @w holds for the
W (Q; AT* M )-norm for every w € W(Q; AT*M).

iii) In our case it is proven in [81] and it is extended in [62] that W5 (Q; AT*M) is
embedded in W'/22(AT*M). Again the exponent % cannot be improved for a
general strongly Lipschitz domain €.

iv) For a different approach on regularity issues for Lipschitz domains and relying
on a generalization of Bogovskil and Poincaré type integrals, we refer to [25, 82]
and [83].

Proposition 2.5. — Let Wy(Q2; AT* M) be the space of Definition 2.3.

Every w € Wy(Q2 AT*M) belongs to W%’Q(Q;AT*M) and has, in the sense of
(9) and (10), tangential and normal traces tyw and nyw which actually belong
to L?>(N; AT*M). Moreover, there exists C > 0 such that

Vw € Wo(BAT™ M), lwl} 1o o + W)y lZ2r) < Cllwlliv, (@)

where w| = tyw+nyw e L2(N; AT*M) is the total trace of w.
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Finally, in the case where Q is a smooth domain, Gaffney’s inequality holds:
Wo(UAT*M) = {w € WH (4 AT*M), ty,w =0, ny,w =0}
and there exists C > 1 such that
Vw € Wo(AT* M),  CHwlfnzg < lwlwy) < Clwlliia):

Proof. — The first part of the statement is an immediate consequence of the analysis
led in [62] (see e.g., Theorem 1.1 there), but our setting is actually simpler since no
locally mixed boundary conditions appear.

For Gaffney’s inequality when the domain Q is smooth, consider first

we W (QAT*M) = {ue W"(QAT*M), ty,u=0,ny,u=0}

and a function x € (§°(Q U Ny; [0,1]) such that x = 1 in a neighborhood of N, and
decompose w as w = xw + (1 — x)w = wy + we. For any differential operator L of
order < 1, note then the relation ||Lwj||r2 < Cy 1 jllw|lz2 + | Lw| L2, § = 1,2. Now,
w = xw € WH2(Q; AT* M) satisfies tgow; = 0 and we = (1 — x)w € WH2(Q; AT* M)
satisfies ngows = 0. Gaffney’s inequality for Dirichlet boundary conditions then says
lwrllfpse < Cr [llwnllZe + ldwilZe + [ld*wr]|7:]
for some C; independent of w;, while Gaffney’s inequality for Neumann boundary
conditions says
lwzllFr2 < Co [llwallZe + lldwel|Ze + [ld*wl|72]
for some C5 independent of ws (these two different boundary conditions have been
treated separately in [86]). Adding the above two inequalities then leads to
Yw € W/( QAT M), [wllise < C[IwllZe + lldwlZz + d"w]Z:] -

In order to prove Proposition 2.5, it suffices to show that W’'(Q; AT*M) equals
Ws(Q; AT*M). We can forget the boundary conditions. With a regular boundary,
a simple local reflexion after identifying the domain with a half space, leads to the
problem on R? with a Lipschitz riemannian metric, asking if a compactly supported
form in w € LZ,,,,(R?) such dw € L?*(R?) and d*w € L?(R%) belongs to H},,,(R?).
It is a straightforward application of Lax-Milgram’s theorem. O

2.2. Witten’s deformation

The function f is assumed to be a Lipschitz function and the domain Q satisfies
Hypothesis 2.2. Improved regularity results are stated when f and €2 are more regular.

Qeﬁnition 2.6. — Assume f € WL°(M;R), h > 0, and Hypothesis 2.2 for

Q=QUN =QU N;UN,. The operators df,ﬁ,h and d;ﬁ L are defined by
D(d;g,) = {we L*(QGAT*M), dfpw € L* (AT M), tyw =0} =&

and D(d}g,) = {we L2 AT*M), d} jw € L*(Q;AT* M), ny,w =0} =/,
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where & and o)V are the spaces defined in (11) and (12), and we recall that
dpp = e F(hd)et =hd+df A and d5, = e¥ (hd*)e™F = hd* + iy,
according to (4) and (5).

A particular case that we will study extensively is when Q = f=1([a,b]), N; = f~1({a}),
N, = f71({b}), and a < b do not belong to {ci,...,cn, } under Hypothesis 1.2 (in
this case 2 = fb according to Definition 1.1). With such an f-dependent domain, it
will be useful to consider dg f-1((q,5]),n and df -1 ((a,b]),h-

Proposition 2.7. — In the framework of Definition 2.6, the operator dran (resp.

d’}ﬂh) is densely defined, closed, and Ran d;g, C kerd;q, (resp.

Ran d; an C ker d;,ﬁ,h)' Its adjoint is d;,ﬁ,h (resp. d;qp,)-
The subSPace G (U Ny; AT*M) (resp. C°(QUN,; AT*M)) is dense in D(d; g ,,)
(resp. D(d* = ,)). Finally, the identity
D(d;q,) N D(d}g,) = Wa(; AT M),

holds true when Wy(2; AT*M) is the space of Definition 2.3.

1.8,

Proof. — The operators d o and d* o having respective domains & and ¢V, with

T NN = Ws(Q; AT*M) by Definition 2.3, they are clearly densely defined, and
they are bounded perturbations of hd, g ; and hd; 5 owing to dfp = hd + df A and

df n = hd0 a1t ivs. The operators dO a.1 and do g, are moreover closed with the

density properties, according to the presentation around (9)-(12).
As bounded perturbations, the adjoint of d Fan equals d* because the adjoint
of d0 ORI d* 001 while the adjoint of the bounded perturbatlon df A is iys. Actually

)

w belongs to the domain of the adjoint of d; g , iff

AC >0, Vu e P (QU N AT* M), |{du, w)| < Cllul|Le2.
Taking any u € (§°(Q; AT*M) implies d*w € L?(Q; AT*M) and therefore ihw, is
well defined in W~1/22(N; AT*M). Using afterwards Green’s Formula (10) with a
general u € (§°(QU N,,; AT* M) leads to 1nw| = 0. Thus the domain of the adjoint

of d; g, is included in D(d("; a, ,); which is enough to conclude.

It remains to check Ran deh C kerdfﬂh and Ran deh C kerdfﬂh

The identities (4) and (5) already say that dfnd;q,w = 0 in D (Q,AT*M)
(resp. d} d}ﬂhw =0) when w € D(d;g,) (resp. w € D(d}ﬂh)). We can con-
clude that dygpw € kerd; g, (resp. dfﬂhw € kerd;ﬂh) if ty,dfpw = 0 (resp.
ny,d; w = 0) or more precisely, with the weak formulation of the trace defined
in (9) (resp. in (10)), if supp n” A (df)hw)|N C N, (resp. supp in(d}yh)w|N C Ny).
For w € (§°(QU N,; AT*M) (resp. w € C5°(2U Ny; AT*M)) the weakly defined trace
n’ A (df’hw)|Nt (resp. in(d*f"hw)|Nn) obviously vanishes because N; N supp dfpw = 0

(resp. N, N supp dj,w = 0). By the density of (§°(Q U Ny;AT*M) (resp.
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C>(QU Ny AT*M)) in D(d; g ) (resp. D(d;,ﬁ,h))’ we deduce

Yw € D(d;gp), n A (dranwlly, =0 in W2

(resp. VweD(d}g,), indjg,w|, =0 n W /2(N,)).

This ends the proof. O

‘We now apply results of the abstract Hodge theory reviewed in Appendix A to our
specific framework.

Proposition 2.8. — Assume Hypothesis 2.2 for @ = QUN;UN,,, f € WH*(;R) and
let Wo(Q2; AT*M) be the space of Definition 2.3.

1. The operator df,ﬁ,h + d* with domain

£,k
D(d;g,) N D(dg,) = Wa(Q AT* M)

1.9,k
is self-adjoint and has a compact resolvent.

2. The operator Af,ﬁ,h = df,ﬁ,hd;,ﬁ,h + d;,ﬁ’hdf,ﬁ,h with domain

D(A;g,) ={ue€ D(d;q,)ND( ;,ﬁ,h) s.t.dppu € D(d;,ﬁ,h) and dj u € D(d; g ,)}

is a self-adjoint operator with a compact resolvent. It is the Friedrichs extension
associated with the (closed) quadratic form Qg (W) = ldspwl32 + ||d}5’ho.)||%2

with domain D(d; g ;) N D(d;ﬁh)'
3. The ranges of df@h and d;ﬁh are closed and the following Hodge decomposi-

tions hold in L2:

ker (d;,ﬁ,h)

1 L
L*(@;AT"M) = Ran(d; 5 ) & ker(A 5 ) & Ran(d} 5 )

ker(df,ﬁ,h)

4. For any z € C\ U(Af@h), one has for any compactly supported and bounded

measurable function x on R and for any w € D(d), where d = dran O
d= d;,ﬁ,h’
d(z — Af@h)_lw =(z— Af@h)_ldw and dox(A;g)w=x(A;g,)0dw.

5. When § is smooth and f € C*>(Q;R), the domain of A g equals

tNtw:0, Ianw:O, }

D(A ., = =< weE W2’2 Q,AT*M )
( f,ﬂ,h) { ( ) tNtd;,hw = 03 nNndfahw = 0

Proof. — The identification of D(d; g ;) N D(d;,ﬁ,h) is done in Proposition 2.7. The
statements 1), 2), 3) are then straightforward applications of Proposition A.1 in Ap-
pendix A. The first identity of the statement 4) is an application of the general relation
(154) in Appendix A. The second identity then comes from the functional calculus

for self-adjoint operators.
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Finally, for 5), it suffices to notice that A, = —h*Ag 1 +|V fI*+h(Zy s+ ) and
that df is C! on 09 so that A 70,5 18 a regular lower order perturbation of hZAoﬂl,
within the theory of elliptic boundary value problems (boundary conditions also have
a regular lower order correction), when f € C?(2;R). But the elliptic analysis made
in [86, 81] (see also [74] for the combination of Dirichlet on N; and Neumann on N,
boundary conditions) ensures that the domain of Agg,=dd" +d*dis

t =0 =0
D(Ayg,) = {we W22(QAT*M), M5 PNETE A O
e ty,d'w =0, ny,dv=0
Remark 2.9. — Let us complete the statements of Propositions 2.7 and 2.8 with some

remarks when f satisfies Hypothesis 1.2 or Hypothesis 1.6.

— The domain D(dﬁﬁ,h) does not contain any other regularity assumption

than w € L?(Q), dfpw € L*(Q), and does not contain any condition on N,,.
In particular, when o’ < a < b do not belong to {cl,...,cNf} according to
Hypothesis 1.2, the domain f? (resp. f2) equals f~'([a,b]) (vesp. f~1([a’,b]))
and satisfies Hypothesis 2.2 with N; = f~1({a}) (resp. N; = f~1({a’})) and
N, = f~1({b}). This a consequence of implicit functions theorem which is
the classical C'-version under Hypothesis 1.2 and still holds in a Lipschitz
version under the more general Hypothesis 1.6 (see Subsection 8.3.1). The
density of C§°(f2U f=1({b}); AT*M) in D(dg t-1((a,5]),n) Provides the following
extension result:

(15)

Vw € D(dy s-1(jap)),n), @ € D(dg g-1(jarp]),n); Where &J|f2 =w and (:J|fal =0.

— Hodge decomposition in Proposition 2.8-3) says that
ker(Af@h) ~ ker(dfyﬁ’h)/Ran(df’ﬁh) ~ ker(d07571)/Ran(dO7§71).
From the usual Hodge theory on the manifold with boundary €, the dimension
of ker(A;p )ﬁ ,) is thus the relative Betti number dim H? (€, Ny) and is indepen-

dent of h > 0. In particular, when Q = f? and a < b are not in {cl, ceey cNf}, it
is

dim ker(Ag, p-1(ja,p)),) = dim HP(f°, f¢) =: P (f°, f*).
If moreover [c,d] C [a,b] and ([a,b] \ ]¢,d[) N {c1,...,cn, } = 0, then for every
@ €la,c] and b’ € [d,b], the dimensions dim H?(f?, f%) and dim H?(f%', o)
are equal and then
(16) dim ker(Af’f—l([awb]),h) = dim ker(Af’f—l([a/)b/])’h).

— When s > 0, the commutation of d; g With 1[0,5](Af’§,h) ensures that the
restricted differential dpp ) = 1j9,4(A ia h)dfﬁ ,, defines a finite dimensional
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complex with Betti numbers dim H? (€2, Ny):

(p—1) 5(1))
(0) (p—1) "[0:8] (p) O] L(p+l) (d)
A7) 0 —="Fjg - Fjpq —— Flo . Floys) -+ Flo, =—=0
[0,s] [0,s]

where F[(p )] = Ranljg 4 (A;p a, ,)- This will be studied more carefully when
b

o, With the notations Flg ) a,5,n @nd d[g 4] [q,5),n in order to handle var-
ious intervals [a, b].

2.3. Agmon’s type estimates

We review a series of exponential decay estimates which are adapted from [34, 54|,
and [74] for Witten Laplacians with boundary conditions. Those are standard when
the function f satisfy Hypothesis 1.2 but only a part of them can be proved when
f is a general Lipschitz function which satisfies Hypothesis 1.6.

2.3.1. Weighted integration by parts formulas. — We present here weighted integra-
tion by parts formulas with low regularity assumptions. These formulas will be used
in the sequel, after optimizing the weights, in order to prove different exponential
decay estimates. Under Hypothesis 1.2, the regular case, this will lead to the usual
Agmon estimates presented in the next section. A variation of these arguments will
be developed in Chapter 8.3 under Hypothesis 1.3 (subanalytic case) and will require
the low regularity results listed below.

Lemma 2.10. — Assume Hypothesis 2.2 for Q = QUN;UN,,. Let f,p € WH°(M;R),
Af,ﬁ,h be the self-adjoint opeﬁztor defined in Proposition 2.8, and ijl X? =1 bea
smooth partition of unity in 1. For any w € D(Q;q,) = Wao(S AT*M) (see (14)
and the lines below), with the notation

L
h

w=ecrw,
the following identities hold true:
(18) Re Qg (w, 7 w) = |ld; 5,5]% + I 5 @17 = (@, [Vel*@),
J J
2 2 ~
(19) and Re Qug,(w, e w) =3 Re Qpg,(xyw: e xjw) —h* Y [[[Vx;lo)*.
j=1 j=1

Moreover, when in addition f € C*(M), the identity (18) writes also
Re Qg ,(w, e w) = h2[dd||2. + h2|ld*o| 2
+(@, (VP = [V + hilv s + hilg o)

(20) +h</ /N> D)aT:0 <8n> (0) do
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Lastly, when f € W1 (M;R) and ¢ € C?>(M), the above quantity can be written
Re Qgp(w, e w) =Q_,5,(@ &)+ (@, QVL.Ve —2|Ve|* + hy, + hZs,)i)

(21) +h </ /N> DY ATs0 (g‘;) (o) do.

Proof. — We recall that according to Remark 2.4, W5 (Q; AT*M) is a Lipschitz-
module. For the first statement (18), simply write
Re Qg 1w, eszw) = Re Qfﬁ’h(e*%cb, eh @)
= Re ((ds,n — dpN)@, (dsn + dpN)@)
+Re ((d} , +ivy)®, (d} ), — ivy)D)
= ldsp@)? + ld7 h31° = (dp A @, dp A D) = (ived, iveo)
= lldsn@l® + 1} p@I* = (@, (ive(deA) + (deh)ivy) @).
~IVl?

For (19), we start from (18) after noticing that x;0 € Wpy(2;AT*M) when
w € Wy(Q; AT*M). We compute

ldg.nx; @l + lld wx; @l = Ixsdsn@ll* + Ix;d n@]?
+ 2Re (x;dsn@, (hdx;N)0) — 2Re (x;d} ,@, hivy,®)
+ h? [(dx; A @, dxj A®) + (ivy, @, ivy,@)]
= Ixjdsn@ll* + lIx;d7,, 2|
+ Re (df @, (hdxj )@) — Re (d} ,@, hlvx2w>
+ 1@, (ivy, (dA) + (dx;\)ivy,) @)

-~
=|Vx;|?

Summing w.r.t j € {1,...,J} leads to
2 J 2 J
2P 2P ~
Qranlw, emw)— ZQf,ﬁ,h(XjWa e x;w) = —h? Z VX111
j=1 j=1
Let us now assume that f € C?(M). According to (18), the identity
20 - - - -
Re Qf,ﬁ,h(wy erw)= Qf,ﬁ’h(wa @) — (@, |V<p|2w)
holds true and it suffices to prove the Formula (20) when ¢ = 0. To this end, one first
writes for w € D (Qf,ﬁ,h>v

ldgpwll%a + |5 0| 2s = B2 ldwl 3 + b2 [ d*w]3a + ldf Aw]e
+ livswl2, + h({df Aw,dw)rz + (dw, df A w)
+ (d*w,ivsw) 2 + <ivfw,d*w>)
= |ldw|[72 + B* |d w72 + [V £ )7
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+ h(w, Dy + L p)w)pe + h({df Aw,dw) 2
—(d"(df Nw),w) 2 — (divjw,w) 2 + (iviw,d*w)2),
where the last equality holds thanks to the relations (dfA)* = ivy,
Iy =doivs+ivsod and Zg; = (dfA)od" +d" o (dfA).
The relation (20) follows using in addition the generalized Green Formula (13) which

gives here, since w € D (Qfﬁh) and hence admits a total trace on N, and df A w,
ivjw e {ve L% dve L? dve L*}:

(df Aw,dw)r2 — (d*(df Aw),w)2 = /N (0" Aw,n’ Ay (df Aw))rsqdo

n

_ / (@, in(n® A (df Aw)))1s0do

n

= [ @ ildf ne)r;ado
N,

n

= /N (Onf {w,w)T20 — <W,df/\&,¢<_)/>T;Q)d0'

" =0
:/ Onf <W7W>T;Qd0
Np,
as well as

<ivfw,d*w>L2 - (divfw,w>L2 = —/ (nl’ A ivfw,nb A inw>T;Q
Ny

=— Onf {w,w)T:qdodo.
Ny

Lastly, let us prove the relation (21). By direct expansion with f and ¢ Lipschitz
continuous and

df,%h = df’h — (d(p/\) =hd + (df/\) - (d(p/\) and d;—go,h = d;,h — ivv = hd* + ivf — iv(p,
we obtain
Qf—cp,ﬁ,h(ajv‘:j) = Qf,ﬁ,h(a)v‘:))
—2Re ((df A©,dp A®) + (ivs@,ivew))
— 2hRe ((d@,dp A D) + (d*©, ivew))
+ [l A& + [live]|” -
By adding this relation for the pairs (f,¢) and (0, —¢), we obtain

Qf—w,ﬁ,h(aj?w) + Q(p,ﬁ,h(‘:)’ @) = Qf,ﬁ,h(‘ba @) + Qo,ﬁ,h(wvfzj)
—2Re ({(df A@D,dp AD) + (iv @, ived))

=(@0,(Vf-Vp)o)
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+0
+2[[Vela]*.
Finally, using the relation (18) gives
Re Qp (@€ w) = Qu5(@:,8) — [ Vela]”
— Qs (@:®) + 2@, (Vf - Voo — [Vl2)a)
+ Qo (@, @) = Qo (@, @) — IVelo]”

When in addition ¢ € C?(M), using (18) and (20) with f = ¢ leads to the relation (21).
O

Remark 2.11. — Alternatively, one could first prove the relation (21) for £, € C?(M),
and then approximate a general f € Wh>°(M) by a sequence in C?(M) as in Re-
mark 2.4.

2.3.2. Exponential decay estimates. — Under Hypothesis 1.2, these estimates rely on
the integration by parts Formula (20) of Lemma 2.10. They will be replaced by a new
hypothesis for more general Lipschitz function f, which will be ultimately verified
when f is Lipschitz subanalytic in Subsection 8.3.

Definition 2.12. — Assume Hypothesis 1.2 for f and remember

Mo = {2 € (M \ suppsing f), Vf(z) # 0} € M\ f~'({e1,..-,en, })-
The Agmon distance dag on M associated with f € C*°(M) is the geodesic pseudodis-
tance associated with the degenerate metric ereg|Vf|zg, namely

dag(z,y) = in /0 Vg, (Y)Y LYY (1) dt.

v € €' ([0, 1]; M),
y(0) =z,v(1) =y

Because f € W1 (M)NC™ (Myeg), we know dag(z,y) < ||V f||L~dy(z,y) where dg is
the geodesic distance and d4, is a Lipschitz function of (x,y) € M x M. Moreover
when z,y belong to the same connected component of M \ f‘l({cl, o5 CNy }) any
C! curve «y staying in this connected component satisfies

/IVf ||v|dt>|/Vf () () dt] = |f(v) — f()].

For a general v € C*([0, 1]; M) such that y(0) = x and (1) = y, {f(v(¢)),t € [0,1]} is
a compact interval. Therefore, bounding from below the integral fol ...dt by a sum of

integrals on intervals ty,t}[, where f(y(t)) € {ci,..., cny > max(f o), min(f o M}
leads to
1
/ Lty (YO IVF (Y@ 1Y/ ()] dt > max f(v(¢)) — min f(v(t) = |f(y) — f(@)I.
0 te[0,1] t€[0,1]
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We obtain
(22) Vo,y € M, ||V fllredy(z,y) > dag(z,y) > |f(y) — f(=)].

When f is a C*° Morse function, more details about the more general broken geodesic
curves, which do not hold anymore with our general assumption and which we do not
need, are given in [55].

Proposition 2.13. — Assume Hypotheses 1.2 for f and 2.2 for Q = QU N, U N,, with
of of
%h\u <9 %|Nn >
Let Af,ﬁ,h be the self-adjoint operator defined in Proposition 2.8 and let U denote the
compact subset of Q, U = (M \ Myeg) NQ. All families (A\p)n>o0 in C, (Th)n>o in L?(Q)
and (wp)n>o in D(A;q ;) C Wo (2 AT M) such that

(23) 0 = Ny UN, C Mg, 0.

(Argn— An)wn =r1h, supp 7y C K, lim A =0,

where K is a fizred compact subset of Q, satisfy the estimate (see (14) and the lines
below)

dag (- UUK) -
le™ " whllwy@ = OQ) X (Irallz2@) + tullwnllLz @),

where ty =1 4f U # 0 and ty =0 if U = 0.

Proof. — For ¢ € ]0,1[, one introduces K. = {y€ Q,da,(y,UUK) <e} and
X1 = X1 X2 = X2.e € C®(Q,[0,1]) such that x; =0 when U = @ and x; = 1 near
U else, supp x1 C K. NQ, and x3 +x3 = 1.

Let us also introduce ¢, : z +— (1 — &)day(z, K.) € WH*(£), so that ¢. satisfies
V.| < (1 —¢€)|Vf| almost everywhere in Q. Setting &y, := e wy, and applying (19)
with . = 0 on K., supp x1,supp 7, C K., we obtain

(rhswh) 2+ Anl|@nll72 = Re Q5 5 (wh, €% wp)
> Re Q; 5, (xawn, x2€” 7 wn) +Q s 5, xawn, X1wn) —ceh?[|@n 72

Then, applying (20) of Lemma 2.10 with a C?-extension to M of f|Supp o with

2

IVFI? > Cc and |73 + Zyy| < C. on supp x2 and the sign condition (23) leads to
lwrllczllralle > Qg p(xawn, xawn) + B ([ldx2@n 72 + [|d*X20n]72)
+ (Ce=Ceh = A — cch®)l[x2@nll72 — tu (A + cch®)lIxawnl|
(24) > Q.n(X1wh, Xawn) + CL || x2@nlliy — tullwnll7:,

where we recall from Definition 2.3 that ||w||w = ||w|2 + ||[dw||L2 + ||d*w||L2.
Since Qg ,(X1wh, x1wr) > 0 and |lwp||rz < C|lrallpe + tullws ||z (this is obvious
when U # 0 and apply (20) of Lemma 2.10 with ¢ = 0 else), we obtain the estimate

"

. C?
(25) [x2@n llw, (@) < T(Hrh”m + tullwnllzz)-
This ends the proof when U = 0.
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When U # 0, the relations (24) and
Qs a.n(xawn, xawn) = [[(hd + df A)xawn |72 + [|(Rd* + ivs)xawnl|7

h? )
> 7(||dxlwh”%2 + ld*x1wnll72) — Cllxawn ||z

lead, since ¢, = 0 on supp X1, to
/

. C
(26) IXa@nllwo o) < 2= (Irallze + lwallz2)-

The statement of Proposition 2.13 then follows from (25) and (26), by using again
the IMS localization Formula (19) with now ¢ = f = 0 but w replaced by @. O

Following [54, 34] we extend the definition of O to the kernels of bounded operators
from L? to W, which appears to be more natural than W2 in our setting (see indeed
Definition 2.3 and Proposition 2.5). For more flexibility, boundary conditions do not
appear in the following definition and the full space W (2; AT* M) of Definition 2.3 is
used.

Definition 2.14. — Let the domain Q satisfy Hypothesis 2.2. Let the operator Ay act
continuously from L%(Q; AT*M) to W (Q; AT*M) and let ® € C°(Q x O R). We say
_2(z,y)

that the kernel Ap(z,y) of Ay is O(e=— 7)) if, for all zo,yo € Q and € > 0, there
exist neighborhoods U., V. in M of yo and o and constants h. such that

Vh €10, he[, Vx € G°(Ve), 3Cy.c > 0, Yu € L*(Q) s.t. supp u C Us,

_2(=z0.y0) ¢

IxAnullw @) < Cx.ce” 7 |lull 2.
y in C°(Q x Q;R), the kernel Ay (z,y) of Ap is said

ming << g P (@)
D

For a finite family (@k)ke{l K
to be O(Zszl e q)k(;’y)) when it is O(e~

@(z,y) Y(z,y)

When Ay (z,y) = O(e™~ %) and Bj(z,y) = O(e~~ =) and Dy, is a differential
operator of order < 1 which vanishes in a fixed (independent of h) neighborhood
of 8Q (remember W (Q; AT*M) C W2 (Q AT*M)), with || Dy llgaw,02y = O(1),
then (A DpBp)(z,y) = O(e‘e(zyy)) with ©(z,y) = min, g ®(z, 2) + ¥(2,y).

2(z,y)

If Ay(z,y) =O(e=" 7 ) and ¢ € C°(Q), p € Wh°(Q) satisfy o(x) < ®(z,y) — ¥ (y)
for all y € Q, then sup,c2(q) lle® Anullwr2 — G(1).

D
lle ull 2
An easy application concerns the case when the gradient of f does not vanish

in Q C M;eg, under Hypothesis 1.2.

Proposition 2.15. — Assume Hypotheses 1.2 for f, and 2.2 for Q = QU N, U N,, with
now

5 of 0. 9f

(27) Q C Mg, %b\u <0, %|Nn > 0,
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where we recall that f € C°°(Myeg) has a non vanishing gradient. The self-adjoint
operator Af,ﬁ,h defined in Proposition 2.8 is bounded from below by cq ¢pn, > 0.
when h € )0, hy[ with by > 0 small enough. If limy_o p(h) = 0T, then the resolvent
(Argn— 2)71, 2| < p(h), well defined for h €10, ho[, ho > 0 small enough, satisfies

dag(®y) ~ \f(z);f(y)\)
)

(Af,ﬁ,h - Z)_l(l’vy) = 0(6_ )< O(e
according to Definition 2.14 and uniformly with respect to z, |z| < p(h).

Proof. — The lower bound and the definition of the resolvent is deduced from (20)
in Lemma 2.10 applied with ¢ = 0, |[Vf(z)] > ¢ > 0 for all z € Q and where the
condition (27) ensures the positivity of the boundary terms. The estimate of the kernel
is then a straightforward consequence of Proposition 2.13 with here U = (. O

We cannot prove Proposition 2.13 and Proposition 2.15 for a general Lipschitz
function even under Hypothesis 1.6. We replace it by an assumption which is proved
to be fulfilled by subanalytic Lipschitz functions in Subsection 8.3

Hypothesis 2.16. — For a Lipschitz function which satisfy Hypothesis 1.6 with the
“critical values” ¢; < --- < cn,, we assume that Proposition 2.13 and Proposi-
tion 2.15 hold true after replacing Myeg by M \ f~! ({cl,...,cNf}), dag(z,y) by
the pseudodistance |f(x) — f(y)|, and by restricting to the case Q = f~1([a,b]), a < b,
a,b¢ {cl,...,cNf}.

2.3.3. Adjusting boundary conditions. — Another consequence of Agmon estimates
is the following lemma which will be used to correct boundary conditions and to
extend solutions to dfpw = 0 to a wider domain with suitably small errors. Un-
der Hypothesis 1.2, it is stated in the more general framework of Proposition 2.15
with @ C M,eg, although it will be applied essentially when Q = f~!([a,b]) with
[a, b] N {cl, e, cNf} = (). For a more general Lipschitz function we work directly in
the framework of Hypothesis 2.16.

Lemma 2.17. — Assume Hypotheses 1.2 for f and 2.2 for Q = QU N, U N,, with

Qc M.ce and the sign conditions %b\h <0, %|Nn > 0. Consider the operator Af,ﬁ,h

of Proposition 2.8. There exists ¢ > 0 and hg > 0 determined by f and Q and for
any pair of cut-off functions x,x € C*(Q;[0,1]) which satisfies dx,dx € C§°(Q), with
X = 1 in a neighborhood of supp dx, a constant Cy ,» > 0 such that the following
holds.

When w € W(Q; AT*M), the forms

m = d;ﬁ’h(Af,ﬁ,h)il((th) Aw) and ny = df,ﬁ7h(Af,ﬁ,h)71(hiVXw)

both belong to
D(A;g,) C Wa(Q; AT* M) C W(; AT* M)
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and satisfy the following inequality with convention daq(supp dx,supp dx) = 400
when X 1is the constant function 1:
1

||771||L2§\[ (hdx) Aw|[L>  and

I
C

1 .
172l 2 < %Il(hlw)wllm

3 1
ldsn(xw—Xm)lre < %ll(hdx) Ndypwlpe + [Ixdsrw|l L2

~ dpg(supp dX,supp dx)
- R

+ O(e

" N ~  _dag(supp dx,supp dx)
ld% n(Xn)lle < O(e g

)II(hdx) A wl|L2,
)I(hdx) A wl|L2,

. 1.,
51 (xw — Xm2)llz> < —=llhivydf pwllzz + lIxdy pwliz2
Ve

~  _dag(supp dxX,supp dx)

+O(e

)Ihivywl|L2,
~ ~ _dAg(SUDp dX,supp dx) .
llds,n(Xm2)ll2 < O(e g )Ihivxwl|L2,
lldgnOxw = X(m1 + m2)) |2
+ < Oxx lldgnwlizz + |ld} pwllz2]
% 5 (xw — X(m + m2)) 2

dAg(supp dX,supp dx)

+O(e” g Mwll 22 (supp dx)-
When f is a Lipschitz function which satisfies Hypothesis 1.6 and Hypothesis 2.16 the
results are the same when Q = f~1([a,b]), ¢ < a < b < cpy1, and da,(K,K') is
replaced by infock yer | f(z) — F(y)l-

Remark 2.18. — Note that w is not assumed to belong to the domain of dfﬁh’
d;ﬁ h OF A P (no boundary conditions) and the same holds in general for yw.

Accordingly, we used the notations dy and d}, for the differential operators. In
some applications x will be chosen such that yw and therefore xyw — X(11 +72) belong
to one of these domains. Example given, if xw € D(A 4, »), the last inequality then
provides a good estimate of Qfﬁ n(xw —X(m +n2)) when supp x and supp X are well
chosen.

Proof. — Prop. 2.15 under Hypothesis 1.2, or Hypothesis 2.16 with Q = f~1([a, b])
in the more general case, ensures A;5, > ¢ > 0 for h € 10, ho[. When

Argru=vEe L?(9), it implies first [|u| < L|v||. We apply (18) with ¢ = 0:
. 1
ldy g null® + 1 g ,ul” = Re (u, Ay g pu) < Jlullllo]] < = [lolf*.

This proves the two first inequalities for ||n1]/z2 and ||n2]| 2.
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Moreover, the equality
dgn(xw) = x(dgnw) + (hdx) A w
implies
(28) 0 =dyn[x(dsnw)] + dpn [(hdx) Aw] = (hdx) A (dfnw) + dgn [(hdx) Aw].
Our assumptions ensure (hdx) Aw € D(d;q,) and m € D(A;q,) C D(d;g,)-

By using Af,ﬁ,h = df,ﬁ,hd;,ﬁ,h + d;ﬂhdf,ﬁ,h and the commutation relation stated in

Proposition 2.8-4), compute:
% -1
drgnm =dsgndyg,(Bran)” (hdx Aw)

= (hdx) Nw — d} 5, dp 55, (A ran) (hdx) Aw)

= (hdx) Nw = g (A 5,) " (dy g [(hdx) A w))

(28) (hdx) A w + d;,ﬁ,h(Af,ﬁ,h)il((th) Adfpw).

With df n(xn1) = X(dg,nm) + (hdX) Am and Xdx = dy, this implies:
dgn(Xm) = (hdx) Aw + id;’ﬁ’h(Af,ﬁ,h)_l((th) Adgpw)
+ (hdx) A d;’ﬁyh(Afﬂh)_l((hdx) Aw).
We have proved

dfn(xw —Xm) = x(dfnw) — )‘Zd;’ﬁ,h(Af,ﬁJm)_l((th) Adypw)

(I)
— (hdR) A 5 (B 5,) " (hdx) Aw).

1.2,k
(IT)
Since ||d}’§’h(Af,§’h)_1|| < ﬁ for h small enough, it follows
1
(D)2 < %Il(hdx) ANdgnw| 2.
For the last term, Proposition 2.15 under Hypothesis 1.2 says
~, _ dag(supp dX.supp dx)
[(I)]|z2 = O(e )I(hdx) Awl|zz,

while Hypothesis 2.16 with Q = f~1([a, b]) in the more general case gives

ming csupp dg,yesupp dx | (@) —fW)l

I(IT)]| > = O(e~ g )I(hdx) Awl| L2,
Meanwhile the identities d} , (Xm) = Xd} ,m + hivgm and d} ,m = 0 lead to
05Gm) = B = hivsds g, (A )~ (hdx) A ).
which yields the fourth inequality.
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Working with 7, is completely symmetric by exchanging the role of dy and d7 ,
after starting with

djp(xw) = x(dj ) + hiv jw
and 0= d} ,,(d} ,xw) = hiv, (d} w) + d} ;, [hivyd] o] .

The last inequality is obtained by summation. ]

2.3.4. Resolvent estimates. — From this paragraph and until the end of Chapter 6, the
analysis becomes essentially one dimensional along R D f(M). Accordingly we now
work specifically with Q = f~1([a, b]), Ny = f~%(a), N, = f~1(b),a,b & {cl, e cNf}
or possibly Q = [_]521 FYan,bn])s @n,bn & {cl, .o+, CNy }, under Hypothesis 1.2
for f, or by assuming Hypothesis 1.6 and Hypothesis 2.16 for a more general Lipschitz

function f.
~ dag(K.K") . .
Also the upper bounds O(e~ 2 ) in Proposition 2.13, Proposition 2.15 and
L e uerr @ —F@) o
Lemma 2.17 are replaced by their weaker form O(e~ E— ) which is the

one given in Hypothesis 2.16.

We present here resolvent kernel estimates when [a, b] contains one or a fixed num-
ber N of “critical values” of f. It assumes some spectral localization, in (29) and (31),
which is not yet proved. It will be done in the next sections with increasing complexity
and precision: first for V = 1 in Chapter 3 and then for a general N in Chapter 4,
followed by the accurate version for N > 1 in Chapter 6. It is also presented in a more
general form where actually the N critical values may be replaced by N clusters of
critical values for further applications.

Let us first consider the case when [a,b] contains one cluster of “critical values”.

Proposition 2.19. — Assume Hypothesis 1.2, or more generally Hypothesis 1.6 and
Hypothesis 2.16, for f and let a < ¢ < b and €¢ € |0, min(b — ¢,c — a)[ be such that
€0 €0
16°¢ T 16l
Assume also that Ay r-1((ap)),n, the self-adjoint operator in f~Y([a,b]) C M given in
Proposition 2.8 with Ny = {f = a} and N, = {f = b} satisfies:

[a,b]ﬂ{cl,...,cNf} Cle

<0 4eq

(29) Jho > 0, Yh € ]O,hg[, O'(Af’f—l([a’b])’h) N [0,677] C [0,67 h ]
Then the estimate
(Af p=1(apn — 2)  (@,y) = O(e )
2eq

holds, according to Definition 2.14, uniformly with respect to z, |z| = e~ & .

[f@)=f)l 4 3
— et 300

Proof. — We prove Proposition 2.19 by adapting the analysis made in [34, pp. 57-58].
Let us consider the self-adjoint realizations Ay (-1 (1, .20}y, and Ay o1 1oy 20 4 5 for
which Proposition 2.15 says

(30)
_ _ s, i@ =fW)]
(Afvffl([awc_%g])’h—z) Y(z,y) and (Afyffl([ﬁ%b])’h—z) Yz,y) are Ofe 0

),
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FIGURE 1. Positions of the cut-off functions, 6_,6,6, é,,é, é+ .

uniformly with respect to z € C, |z| = e~27% . Let moreover 6 and 6 be two cut-off func-

tionsAsuch that 6 € C’go(ffl(]c—%),c—f—%[)i[o, 1]), 0 = 1 around f~'([c — 53, c+ 52]),
and 6 € Cg°(f~*(Je — 222, ¢+ 222();[0,1]), 6 = 1 around f~'([c — %, c + <2]). Let us

)
also define 6_,06_ € C®(f~1(]—o0,¢]);[0,1]) and 64,6, € C=(f~1(c, +o0]); [0,1])
such that R o
0_+60+6,=1 and 6_+60+6, =1.

The support conditions imply the following resolvent identity:

(At r(aphn = 2) = Aprr(aphn = 2) 7 0+0-(Af po1(aezapyn —2) 0=

— (Af f-1(lap)),h — 2) 0[Af 0_J(Af r1(fac—0p)n — 2) 710
04 (Af por(er o yn — 2) 04

— (Aﬁf’l([ﬂqb]),h — Z)_lé[Af)h, 9+](Af,f_1([c+ b]),h Z)_19+.

o
16
. e 2¢9
Since moreover |[(Ay r-1((ap))n — 2) lzr2,r2) < 2€*7 for 2| = e” 7, because
_220
€

the hypothesis ensures distc(z,0(Af f-1(jap)),n)) < zh for h > 0 small enough,
applying Proposition 2.13 to

(Af f-1((ap))h — 2)wh = 11 = O,
with supp 6 C f~1(Je — 378, c+ 358]) first yields
_ O(e_ \f(m)fc\h—SEQ/lﬁ_"_zihQ)

[(Af -1 ((ampn — 2) 0 (2, y)

and then
N |f(z)—cl—3e0/16 | o &
h 0 2 }?

(A f-1(ap)n — 2) " 0)(z,y) = O(e
Ole

_ 1f(w)—c|=3eq/16
h

)O(e

[f(z)— f(y)l
_%_&_3%0).

By using (30), [|[[Afn, 0+]llzwr2;02) = O(1), [Af n,0+] vanishing in a neighborhood
of f=*({a,b}), and the latter estimate for all the left factors concerned in the above
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resolvent identity, we obtain

_f@—f@l | Seo [f (=)= F ()|
h h h

O(e”
O(e”

(Af p-1(appn — 2) 7z, y) )+ O(e” )

[f(@) = f)l 4 3
LI 350

Proposition 2.20. — Assume Hypothesis 1.2, or more generally Hypothesis 1.6 and
Hypothesis 2.16f07’f Let a < b belong to R\{cl, .. cNf} and let Q = f~Y([a, b]) with

“1({a}), F7H({b}). Assume there exista =Gy <& < -+ <&y <ént1=0b
and gg €10, mm1<"<NYé(C"76" 1)[ such that
N
la,b[ N {cl,...,cNf} C |_|]6n — ig,] + 16[
n=1

The operator Ag r—1((a,p)),n 18 the self-adjoint realization of the Witten Laplacian given
in Proposition 2.8 and accordingly Ay, = Ay r-1((6,_1+(1=8,.1)e0:éns1—(1—6n.x)e0])sh 1S
defined for 1 <n < N where 0y, s the Kronecker symbol. We assume

420 ]

Then every z € C such that |z| = e 50 belongs to the resolvent set of Ay r—1((ap)),h
provided that h € ]0,ho] with hg > 0 small enough. Moreover, there exists a
constant Nog € N*, determined by b — a and mins<,<n €, — Cp—1, Such that

(31) vne{l,...,N}, o(A,)N[0,e"*]cC[0,e”

_ ~ 1 f=)—-fWl €0
(Af-1(apn — 2) (@) = O(e o TANoGh

holds, according to Definition 2.14 uniformly with respect to z, |z| = e~ &

Proof. — We prove Prop031t10n 2.20 by adapting the analysis made in [34, pp. 58—

_C"‘l and take g9 €]0, minj<p<n41 - CG"‘ [, eo < & as

59]. Call no = ming<p<py -
stated.

For n € {1,...,N}, let us introduce 8, € C’O (f~
that 6, =1 in a nelghborhood of f71([én — 58,6 +
— O

O DTS PR

m#n

H(en —
2]), and

- 0n+1)

n + 220); [0, 1]) such

FRTCRE N
Here, we use the convention #_; = 651 = 0. We also need another partition of unity
1= %n 0<% <1, such that
Xn=1on f7H([En —10/2,En +1m0/2]) for1<n <N,
n € G (F (18n-1 4+ 10/2,Ens1 —M0/2[)) for2<n< N -1
and X1 =0on f'([E2 —n0/2,b]) X =0on f~([a,én—1+n0/2)).

Note in particular that our conditions, g9 < " and supp 6, C f~!([én — %2, + 2]),
ensure X, = 1 on supp Xn-
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g0
We now set for every z € C, |z| = e™ 2% :

N
(32) RO(Z) = Z Xn(An - Z)_linv

where we recall A,, = Af,f*([En_1+(1—6n,1)50,6n+1—5N,nso]),h- Because the boundary
conditions are satisfied, a simple computation shows

(33) (Af p-1(jab).n — 2)Ro =1 — K,
with
N
_ o -lg
(34) K= > Bl oy @n =2 %n.

n=lme{n—1,n+1}

Moreover Proposition 2.19 applied to every A,, and (34) combined with the support
conditions of 6,,, X, imply

~, _C
K 2,02y = Oe™ " T77),
where il €
C = i i - 2 70 - 707
Wiy (i, W@ =10 =5 -3

me{n—1,n+1} <Esupp On,
and g¢ < 7707 yields
K 2.2=06_W2_75550/8 :OQ_ZML%'
2(L2;L2)
For h > 0 small enough, I — K : L? — L? in then invertible and the resolvent set

of Aff 1([a,b]),h contains {z €C, |z = 6_2;0

Let us now consider the exponential decay estimate. Write first

No—1

(35) (Aff 1([ab])h—z —RO ZKe O(Z) Z Ke+R0(Z)KNO,
LeN £=0
and choose Ny € N* such that Ny x 7"0 > (b—a) and
(36)
. . Lomax, a1 (g @)= F W)
KN llzeiny = |3 Klllge e = O(e™ ) = Oe™ =5
£>No

By referring again to Proposition 2.19 and from the Definition (32) or Ry(z), we know:

(37) Ro(2)(z,y) = O(e™ )-
The relation (37) together with (36) implies that

Lf (=)= f)l

5, _mingen [f@)—f(2)+b—a e ~ W) F @) e
(38)  (Roo Ky)(@,y) = O™ PR = O TR,
Moreover, the relation (37) together with

K(o,y) = é(e_\f(r);f(y)l_,'_?)%o)’
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which follows as well from Proposition 2.19, implies that for every £ € N, one has:
(39) (Ro(2) 0 K*)(x,y) = Ofe™ "7 +3(0+D5E),
One finally deduces from (35) and from (38), (39) that the estimate

_ < @t «
(A p=1(appn — %)z, y) = O(e o FSNoT),

holds uniformly with respect to z € C,|z| = e~2% . This concludes the proof of
Proposition 2.20. O
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CHAPTER 3

LOCAL PROBLEMS

In this section we shall use Agmon type estimates to study carefully the case when
there is a unique “critical value” of f in Ja,b[, —00 < a < b < 4o00.

Hypothesis 3.1. — The function f is assumed to satisfy Hypothesis 1.2, or Hypothe-
sts 1.6 and Hypothesis 2.16, and the values a,b, —00 < a < b < 400, are chosen such
that

la,b] N {c1,...,en, } =la,b[N{ct,...,en, } ={E}.
The domain is Q = f~([a,b]), with Ny = f~1({a}) and N, = f~1({b}), and the
operator Ay r-1((q,4)),1n 18 the one defined in Proposition 2.8.

With this assumption all the exponential decay estimates of Chapter 2.3 can be
used with the pseudodistance | f(z)— f(y)|. The main result of this section says that, in
this framework, the only possible exponentially small eigenvalue of A ¢-1([4.)),n 18 0.

Proposition 3.2. — Under Hypothesis 3.1, the spectrum of the operator Ay ¢-1((q.5)),h
satisfies
Ve > 0,3he > 0,Vh €0, he[,0(Af f-1((appn) N[0, ] C {0}.

Proposition 3.2 will be proved in several steps. Consequences e.g., for resolvent
estimates will be given afterwards.

3.1. Useful quantities and notations

Let us first recall the following notion of distance between (spectral) subspaces
which is convenient for spectral analysis (see e.g., [34, pp. 59-61]).

Definition 3.3. — For E, F two closed subspaces of a Hilbert space ¢/, the non sym-

-

metric distance d(E, F) is defined as

d(E,F)= sup dg(z,F) =g —Tplg| = |Tp - Tgllg|,
2€E,|z|=1

where llg,Ilg are the orthogonal projection on E,F.

This distance satisfies:
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— d(E,F)=0iff E C F;
T _KE’G) < CZ'(EUF‘) +J(F7G);
— d(E,F) < 1 if and only if llp|, + B — F is one-to-one with a continuous

left-inverse, and HE|F : ' — F is onto in this case;

— (d(B,F) <1and d(F,E) <1)ifand only if llp| _: E — F and Ilp|, : F — E
are bijections with continuous inverses. In this case, the equality d(E,F) =
d(F, E) holds true;

— if we know a priori dim F = dim F' < +oo then

d(B,F) <1) & (J(E,F) <1 and d(F,E)< 1) o (d(F,E) < 1).

We will use a variation of the min-max principle associated w1th the quantities
(e, [a,b],h) and T'(a,[a,b],h) defined below. Remember that fo L([ab)),n 1S the
quadratic form associated with Ay r—1([4,5]),n (see the second item of Proposition 2.8).

Definition 3.4. — For p € {0,...,d}, s > 0, let [(0 i] (b, denote the range of
the spectral projection 1[0’S](A§c} L([a,b]), h) with in particular {(0})’f L([a,b]),h

()

ker(A 71 fa,),0)-

For o > 0, the quantities yP)(«, [a,b],h) and T®)(a, [a,b],h) are defined by

() - (p) (p) (p) (p)
¥P (e, [a,b],h) = d( e L fabln’ F{O} [a,b], n) = d(F[ ’e—%]’[a’b],}ﬂker(Af,ffl([a,b]),h))

dist 2 (wp, ker AP wbh.h)
(40) _ sup ff ! ([a,d]),h 7
wheF(:D) o \{0} ||(")h||L2
[0,e” h],[a,b],h

(41)
I'®(q, [a,b],h) = sup dista (wn, ker(AT) 4 ) 4)):

lonll2=1 : Q) (wn)<e™

£,8 =1 ([a,b),h

Those quantities satisfy simple properties:

— The quantities v (a, [a,b], h) and T'®)(a, [a,b], k) are decreasing w.r.t o and,

since
F® (») -2
ooty ann © 1@ € D@prr(amn) st QF o qaun(wn) €7,

they satisfy
0 < vP(a,[a,b],h) < T'P(a,]a,b],h).

It says in particular:

(lim r'®)(a,[a,b],h) = 0) = (,{1357@)(04, [a,b],h) = 0) .

h—0

— Since Ay r-1([q,5]),n is self-adjoint, the spectral theorem implies:

Y (o fa, 0], k) =0 iff o(AP), () N[0, e7F] C {0}
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and
'y(p) (o, [a,b],h) =1 else.
In particular, it provides the expression
,7(1)) (O‘a [aa b]a h) = sup dlSt}Lz (wh, ker A

A® =\
lwnll=1 : { I N
An<e &

f f ' ([a,b]), n

and the convergence lim_,¢ 7(")(@, [a,b], h) = 0 means precisely that:
(42) Fho > 0,%h €10, hal, o (AP} 1, 4y ) N[0,e7 7] C {0}

— The spectral theorem also implies

e

F(p)(oz, [a,b],h) =1 iff U(A;z,)))‘*l([a,b],h))n]o’e_ﬁ] £ 0

and

e

43)  (T®(q,[a,b],h))* € |0, ] C[0,1] else.
( ) min (o(AL ] 10.) \ {0})

Actually, U(A(f],)}—l([a,b],h)> N]0,e~#] # 0 implies
L@ (a, [a,8], h) > 1% (a, [a,B], h) > 1

and obviously T'?)(a, [a, b], h) = 1.
Reciprocally when J(Af F-1([a,p),x)N]0,e” %] = 0 and for any wy, which satis-

>R

fies the inequality Qf 1 (ab]), (W) < e 7 |wp]/2,, the spectral decomposition

_ (p) (p)
wh = Loy (A7 1 ([ap), )R+ 1[mm(U(A;p;_l([ayb]yh))\{o}),+oo[(Afyf_1([avb]):h)wh
leads to
diSt%z (wh,ker(A%},l([a’b])’h)) = ” mm(a(A(P) N\{0}), +oo[(A 1([a,b]),h )Wh“%2

L ([a,b],h)
< cr
" min (0(AY} g 4.) \ {0}
— We deduce from (42) and (43) that
(}llirr%)fy(p)(a', [a,b],h) = 0) = (Va > o ,T®)(a, [a,b],h) < e N 0) .

h—0

llwnl|Z-

Up to an arbitrary small change of the positive parameter o, working with ~(?)
or T'?) is then essentially equivalent.

3.2. Exponentially small eigenvalues are zero

This section is devoted to the proof of Proposition 3.2. First of all, we can assume
¢1 = 0if f is replaced by f — &;. The proof will be done in three steps connected by
the remarks on 4 and I'®) from the previous subsection.
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FIGURE 2. Positions in the interval [—e¢, €] .
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FIGURE 3. Cut-off function x in [—¢,¢].

Step 1. — Assume [a,b] = [—¢, €] with € > 0 (and & = 0). We prove here that
Yo/ = 2e 4 ¢ > 2¢, }llin%)’y(p)(a’, [—e,¢e],h) =0,

where, owing to the monotonicity of v (a,[—¢,€],h) w.rt a, we can focus on
c€10,el.
According to (42), it amounts to show there exists h. > 0 such that

2e+c

(Ah € (AP i) N[0, ]) = (Vhe]0,he], M =0).

Take then wy, € D(A;{)}*l([—e,s]),h) satisfying

2e+c

lwnllzz =1 and Aﬁf;,l([_e"s])’hwh = Apwp with 0< A\, <e™ R

(the result is obvious for the h’s for which the existence of wy, fails). The exponen-
tial decay estimates of Proposition 2.13 (or Hypothesis 2.16 for a general Lipschitz
function) applied with Ny = f~1({—¢}) and N,, = f~1({e}), K = 0, U = f~1({0}),
dag(z,U) > |f(z)], and r, = 0 writes:

21f(=)| Ll ~
) /fl([s 2" lwn(@)I* de < lle ™ whllfy s (e, = OQ)-

Hence the mass of the probability measure with density |w;|?(x) concentrates on
U = f~1({0}) as h — 0. We deduce the a priori estimate

o

Vs €10,e[, ks > 0,Yh € 10, s, et 1y, (z)wnlr2 > 62

Once the parameter ¢ € ]0,¢[ is fixed, introduce s; = § and s € (%, 5) and take
x € C®(M;[0,1]) such that xy = 0 near f—*2 which contains a neighborhood of f~2
and x =1 near f_;, = E

Since

d(xe%wh) = xd(egwh) +dx A (e%wh),
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we deduce
K 5 i
(45) ld(xerwn)lZ2 < 2llxd(e™wn)ll72 + 2lldx A (€7 wh) |7

The estimate
_ 2e+c

_t 7 L e _f
Qfp-1(j—e,e))h(wn) = lle” 7 (hd)erwp||F2 + |le? (hd*)e™ Fwp||7. < e *

with f < e then implies that the first term in the r.h.s. of (45) is of order O(e™#).
Meanwhile supp (dx) C f~7 and the exponential decay estimate (44) imply that the
second term in the r.h.s. of (45) is of order 0(6_2%2 ). Adding the boundary conditions

ny_.wp, = 0 and ny_.dypwp, = 0, ie, nfzs(e%wh) =0 and nfzsd(e%wh) =0, we
have thus proved that
’
xerwn € D(Bo,p1([-s.e]).1);
f N/ o — <
ldo, s~ (1—sz.ep 1 (xeT W) |72 = O(e™7),

limp_,¢ hlog ||Xe£wh||Lz =0.

b
h
Set uy = —Xe'wn

O(e™ 7).
By using the Hodge decomposition (see Proposition 2.8) and

(Do f-1([—sae)y1) \ {0} C [u1, +00) C R,
with p; fixed by € > 0 and s > 0, we obtain the decomposition of wp:

so that [lupllz2 = 1, un € D(Ag p-1([—ss,ep),1) and ||dupl|F. =

lIxer wnll2

_ %
up = ier do f=1((—ag.epya Wb T Ao, =1 ([—s2,]),1 U2,

where dj .y, ) tan i (ker Ag g ((Cap.ey)t = RN L, oo} (AT )1 (Laycpya)-
Writing shortly d = dg s-1(|—s,.¢]),1 and d* = d*g f-1([=s,,e]),1, it follows that

O(e™%) = ldunllZs = ldd" uz |22 = Qj-s (s, 1) (d"u2) > pirl|d w22

We deduce distzz(un,kerdy s-1([—s,,6),1) = O(e ) and then the existence of a
form 7, € ker(do,ff1([_52’€])’1) such that
i ~,o e
Ixerwn = mull2(s-1(1=ss.e) = O(e™ 7).
By the first item of Remark 2.9, the extension 7, of n, by 0 in f~ 2 belongs
. L i _ ~ e
to ker(do, j—1(|—c.ep),1) With supp 7 C f2, and [|[xerwn — fnllz = O(e™2r).
After multiplying by e~ % = O(e ™) in f2s,, We obtain
Ixwn — e~ #ijl| 2 = O(e™ 5+ 7), £ > s,
_i
e Wil € ker(dy, f-1((—c,q]),n)-

We conclude with ||xwp — wp||z2 = O(e~ %) (since supp (1 —x) C f~51 = f~1) that

dist (wn, ker(dg p-1((—c.e]),n)) = O(e_CT:) for some ¢’ > 0.
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The duality consists in replacing f by —f (which does not change [—¢, €]), the differen-
tial form wy, € W(f~1(]—¢,¢[); APT*M) by %wy, € W(f (] —¢,¢[); A"PT*M ®oryy)
where the orientation twist does not change the analysis, t by n (and conversely), *
and 1, and dy p, by d” ; , (and conversely). This leads to

dist(xwn, ker(d_y,f-1((—c,e)y,p)) = dist(wn, ker(d} y1(_. ) ) = Oe™ 7).
Assume by contradiction that Ap # 0.

Since wp = A, lAff L([—e,e]),nWh € (kerA L([—ese]), h) , the Hodge decomposi-
tion (see Proposition 2.8) leads to the orthogonal decomposition
h=Teerd; ;o1 0o @+ Mkeray o whe

The squared norm 1 = ||wy||? thus equals

:r\“\

dist? (wp, ker(dy, f-1(j—e,e)),n)) + dist? (wp, ker(d} ;-1(j—eepyn)) = O(e™7),

which is impossible for 0 < h < h,, h. > 0 small enough.

€+c
It follows that o/(AY}_, (1 )00, €

limy, o v (a/, [—¢, €], h) = 0 according to the comments following Definition 3.4.

| C {0} for h small enough, which implies

Step 2. — From Step 1, we know lim,_o v (o/,[—¢,€],h) = 0 for any o’ > 2¢ and
the comparison of the quantities 4 and I'® in the previous subsection leads to

Ya > 2¢, }llin}) r® (o, [—¢,¢],h) = 0.

Working with T'®) brings the flexibility to use some restriction argument from fe
to f£., which of course does not send eigenvectors onto eigenvectors.

Step 3. — For the general case a < 0 = &; < b, we now prove

Va > 0, U(Aff gl ny) N [0,e~ %] c {0},

where, by monotonicity w.r.t «, it is sufficient to consider a < min(—a,b). Let us then
assume that wy satisfies A;p} L([ab]) h9h = Apwp, with |lwp ||z = 1and 0 < A, < e 5.
Take ¢ € ]0, 4[ and consider f2, C f2. We know that

||df7hwh||L2(ij) + ||df,hwh||L2 ey S g p=1((a,e), hwh||Lz(fb + [|dF 41 ab]),hwh||%2(f3)
<eh

)

although wh|f5 a priori does not belong neither to D(A(fp}—l([—ea}) ,) nor

10 D(QF -1 (e e )

We now use Lemma 2.17 in the two subsets f~1([—e,—d]) and f~1([5,¢]) for
some ¢ € |0, [ which will be fixed later.

Consider Q = f~1([—e,—6]) (the other case is symmetric) and take the cut-
off x_,%— € C>®(f[—e,—6];[0,1]) with supp x— C f~1(=]e +6,-4]), x- =1
in f~1([—e + 26, -4]), and supp x— C f~([~&,=d]), Xx— =1 in f~1([—e,—26)).
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FIGURE 5. Cut-off functions x_ and X in [—¢,0] C [a,b].

The form 7;,_ and 72— in D(Ay y-1(j—c,—6]),n) are defined by
M= =dy e _gn(Ap-1(1—c,—a),n) " ((hdx—) Awn)
Mo, = Ay e g n(Dp g1 (e me)n) " (Rivx_wn)-
Lemma 2.17 combined with da4(z,y) > |f(z) — f(y)| implies

1ds.n(X—wn = X~ (m,~ + 12, ) 2p-23) + ldjp(X=wn = X= (01— + 02,2 ) [l L2 (42
~ e—44

< O(e™ ™ )llwnllpap-ep2s) + Cx- [”df:hwh||L2(f:§)+Hd;vhwhHLz(f:f) ’

Because Aj ¢-1([q,5),n)Wh = Anwp With [|wp|[z2 = 1, the Agmon estimate of Propo-
sition 2.13 (or Hypothesis 2.16 for a general Lipschitz function), applied with
Ny = f~'({a}) and N,y = f~1({0}), K = 0, U = f~'({0}), dag(=,U) > |f(2)], and

rp, = 0 implies
=, _e=28
(46) ||Wh||l,2(f:;jrr§5) =0(e" 7 ),
while we know
||df,hwh||iz(f:g) + ||d;,hwh||§12(f:g) < ||df,hwh||%2(f};) + ||d;,hwh||i2(fg) < e i

With ¢ > e > 44, we have thus
(47)

g1 (x-wh = X=(,~ + 112,-) | g2 -5 + 1} (x-0n = X (1= + 12,22 -5 = Ol

_ 2e—69

).

A symmetric construction provides two cut-off functions x4, x4+ € C®(f~([6,€]))
such that

supp x+ C £~ (16, = 4) and x4 =1 in f7([d,e - 24)),
supp X+ C (19, €]) and Y+ =1 in f7'([26,€]),
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X- X X+

L 1 . L .
T T

—e+6 -4 0 ) )

FIGURE 6. Cut-off function yx in [—¢,¢]

and then two forms 71, 1,72 + € D(Af r-1([s,]),n) Such that
(48)
- - - ~ , _2e—68
ldgn(X+wn = X4 (1,4 + 24 L2y + Id7n (Xt wn — X (Mt + m2,4)22(75) = O(e™ 7).
Take now x € C§°(f~1(]—e + &, — 6[;[0,1]) which equals 1 in f~1([—e + 25, — 24])

and coincides with x_ (resp. x+) in f__sf(;z‘S (resp. in ff__z‘sé) and set

vp = XWh — X=(M,— +M2,—) = X+ (M1,4+ +12,4)-

This form is close to wh|f5 . In fact, write

Uh = Whl,. = (x — 1)Wh|fi = X=(m,— +m2,-) = X+ (M4 + 12,4),

where, according to Lemma 2.17 and to the exponential decay estimate (46) (and its
symmetric version on [ — 2d,& — §]),

e—29

) forie {1,2}

1%2mi£llz2 = Clllwnllsupp ax.) = Ole”

and
e—26

[(x = DwallL2se ) = Oe™ ),
which implies
e—24

on = wallLase ) = Oe™ 7).
The form vy, also satisfies, for d = df 5 or d = d;)h,

dvp, = [d(x—wn — X-(m,— +12,-))]| s + [dwh]|f§5 + [d(x+wn = X+ (M4 + n2,4)]

- 5
Then, since vj, belongs to D(Ay s-1(j—¢c],5)) by construction, it satisfies, by (47) and
(48),
2 " 2 ~ _ 4e—125
ds 11 (e cpnonll” + 147 p-1(—ccpy nvrll” = Oe™ 7).

We finally take § = {5 for which the r.h.s. of the above relation is O(e™ %), with
3e > 2e. By Step 2, this implies

lim disth(vh,ker(Af,ffl([,s’E])’h))

h—0 ||7}h ”Lz

=0.
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But the Agmon estimates of Proposition 2.13 or Hypothesis 2.16 also imply

28

oy

Denoting by F' C L%(f?) the subspace ker(A;p}_l([_a o ,) extended by 0 in f; <L £,

it then follows from the preceding analysis that

”wh”LQ(fiE) =1+ 0(67%) and then ”Uh”Lz(fiE) =1+ (N)(ef

%Ln%) distp2(wp, F) = 0.

Since dim F is finite and does not depend on h > 0 (see the second item in Re-
mark 2.9), there exists h, > 0 such that for every h € ]0, hy],

dim F[E)Ij)e*%],[a,b],h < dim F' = dim ker(AE}j}_l([_E’E],h)) = dim ker(ASf?J)t_l([a’b])’h),
where the last equality follows from [—¢,&] C [a,b] and [a,b]N{c1,...,cn, } = {é1 = 0}
(see (16)). This implies that U(A;’j},l([aﬁ]wh)) N[0,e~#%] C {0} for h € ]0, ho[ and this
ends the proof.

3.3. Consequences

We still work under Hypothesis 3.1: f admits a unique “critical value” é; € [a,b],
a < ¢; < b. With the information of Proposition 3.2, the resolvent estimates of Sub-
section 2.3.1 lead easily to similar estimates for spectrally defined operators. Finally
we deduce other properties which will be used in the induction process in terms of
the number N of “critical values”.

3.3.1. Estimates for spectral operators. — For a Borel set I C R we introduce the
notation:

(49) 7 fap),h = 1r(Af, =1 (0] .0)-

Proposition 3.5. — Under Hypothesis 3.1 the spectral projection on the kernel

{0} [a,b],n Satisfies
_@®=f@)l
e R

50y, [a,5,0 (2, ) = o( )

according to Definition 2.14.

Proof. — Tt suffices to use the formula
1
Moy fablh = 5 | (2= App-rpapn) " dz
. 2im /.,

for the suitable contour 7y such that 1 = O(dist(vn,0(Af, f-1([a,]),n))), and then to
apply Proposition 2.19 with ¢y > 0 arbitrarily small. Such a contour is chosen as
follows. For n € N, Proposition 3.2 says

Jh, > 0,Vh € ]O, hn[, U(Af,f_l([a,b]),h) n [0’ e‘ﬁ] = {0}7
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and the condition h,1 < h, can be added. Take simply ~; = {z eC,lzl=e" G }
for h € [hpy1, hnl. O

The final result of this paragraph extends the exponential decay estimates of Propo-
sition 2.13 (or Hypothesis 2.16), when f admits a single singular value ¢;, under
orthogonality conditions. It will be referred to as the “orthogonality lemma”.

Because A -1([q,4)),n has a discrete spectrum, the operator

. 1 1
A g1 (b)) b ler s ker(Ag p=1(fa,o)),n) " = ker(Ag p-1(a5),0) "

FoF = ab),n)
is invertible. We now define (Aj;,f,l([a’b])’h)_l by extension by 0 on ker(Ay ¢-1([q,5)),n):

1

1 -1 _ —1
(50) (A j-1(appn) = S @ (Bt =1t Alier(a, .y o ™)
ker(Ay 1—1(fa,00),n)

€1
ker(As -1 ((a,5)),n)

Thus, the equality w;, = (Ajgf,l([a 0 h))_lrh simply means that wy, is the unique
solution in ker(Afhf—l([a’b]),h)l ND(Af s-1([a,p]),n) tO

At p=1(ap),nywh = (1 = {0} [a,6],0)Th-

Lemma 3.6. — Under Hypothesis 3.1, the operator defined by (50) satisfies

(Aﬁf—l([a,b]),h)_l(ﬂl,y) =O(e )
in the sense of Definition 2.14.

_ @ =fW)l
h

Proof. — With A = Af’f—l([a’b]),h and H{O},[a,b],h = 1{0}(A) write simply
= (Af o (o) T 8S

1 A
wp=(1- H{o},[a,b],h)wh = —%/ mwh dz
Yh

1 1
=5 -l "Hoe dz,
247 /% 2(z — A)( {0},[a,b],n)Th 2

where -y, is the contour introduced in the proof of Proposition 3.5. To conclude, it then
suffices to combine the resolvent estimates of Proposition 2.19 with ¢y > 0 arbitrarily
small, as used in the proof of Proposition 3.5, and the result of Proposition 3.5. [

3.3.2. Changing the interval [a,b]. — For further applications, it is useful to specify
the effect of changing b in f°. Rough estimates after a change of a and b are followed
by more accurate estimates after a change of b only.

Remember that we work under Hypothesis 3.1 which contains Hypothesis 1.2 or
for a more general Lipschitz function Hypothesis 1.6 and Hypothesis 2.16.
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Proposition 3.7. — Assume Hypothesis 3.1 and a < a’ < & < b < b. The kernels
F{O},[a,[o’],h = ker(Af’fA([a’ﬂ]),h) = Ran H{O},[a,ﬁ],h; o € {a, a’}, ,6 S {b, b/} satisfy
- - ~  min{b'—& .5, -a’}
d(Fyoy, (0,010 F{0},[a,51,0) = A(F (0}, [a,b],h> F{0},[ar,b1,0) = Oe g )s
where the second inclusion of Fioy (ap),n C Lz(ffl’:) C L2(fb) is implemented by the
extension by 0 on f;‘l ufh.

Proof. — We already know that dlmF{g; o = dim F{o} @ bh = = BW)(fP, f) for
p € {0,...,d}. From the remarks following Definition 3.3, it then suffices to prove

- ~  min{b'—& ,5;-a’}

d(Fyo},[a,b],n> Froy [ pr),n) = Ofe " )-
For a normalized vector ¥ € Fyoy} [a,0,n the exponential decay estimate of Proposi-
tion 2.13 (or Hypothesis 2.16 for a more general Lipschitz function f) with r, = 0

and A\, = 0 says
U@=al

le” 7 ¢||W(f by = 0(1)‘
For any € > 0 small enough, take x € (§°( 2;;; [0,1]) such that x =1 in a neighbor-

hood of f~'([a’ + 2¢,b" — 2¢]). The form xv then belongs to D(A¢ ¢-1(jar p),n) With
dfnp = (hdx) N9, d} ¥ = —hivyt), and therefore

(X, Ag g1 v n (X)) = lldgn(X) 172 + 145 1 (x¥)[|72

~ _omin{& —a/ b/ -5 }-2¢
=0(e?

and ||t — x9||2. = O(e?

Because 0 is the only exponentially small eigenvalue of Ay r-1([4/,p1]),n, this implies

min{él —a',b/761}725
h

~ min{&y —a’, b’ —&1 }—2¢

distzz (x¥, Froy,ja,p17,n) = O(e™
If F = F(o},[a’ b, is considered as a subspace of L2(f?) after extension by 0 on fgl U
?,, the orthogonal projection Il : L2(fb) — F is given by lpu = oy, 1ar,b, h(“lfb;)

again extended by 0 on fg U fb,.
From ||TI{oy [ar,5,n]] < 1 and the exponential decay estimates for v, we deduce, by
setting E = F{O},[a,bLha
1AL = Lplp)pll = 14 = Moy far 01,0 (] o)l 2(s2)
< ¥ = x®llea ) + X% = ioy faro1,0 (X 2o
+ ||X¢ - ¢|f}:; ”L?(fZ;)

< O(e_ min(3;—a },Lb —&1)—2¢ )
Since this holds for all ¢ € E, ||¢|| = 1, this proves d(E, F) = O(e_w),
and we conclude by taking € > 0 arbitrarily small. O
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The above result implies that the mapping Ay, : Fioy,(a,5),n — Fo},[a’ 6,0 C L2(f%)
defined by Ape = H{o},[a',b'],h(¢|fb/)) satisfies
x ~, _min{&—a’b &1}
[ARAL = Uz (e oy = Ole g
and then

* * =, _min{&—al b 61}
A5 AR = Ulz(Fioy o) T 1ARAR = Llz(r g, (00 = Ole g ).
min{ é —a',b'—é
s 1}) is
easily replaced by O(e‘ 5 ) but additionally a small change of Aj, allows to improve
the estimates in f.

A more accurate version can be given when a = a’. Actually O(e™

Proposition 3.8. — Keep the same assumptions and conventions as in Proposition 3.7
with now a = a'. There exists a linear mapping Ay, : Fioy,jap),n — Foy,[ap,n such
that

b —f(z)+b =&

e = Al ger, = Ol o
holds for all ¢ € Fyoy,[a,p),n and

b -2

(51) 145 An = Ulz(rgoy 0w + 1ARAR = Ulzrg, oy = O™ 7).

Proof. — The proof is modeled on Lemma 2.17.
Let e €10, 252, and let x, ¥ € C=°(f~*([a,b')); [0, 1]) satisty

XElln fg_267 XEOIH fli)’,—a‘:

X=0in f2%, x=1in f2 ..
A form ¢ € F{O},[a,b],h = keI’(Af7ff1([a7b]),h), ||1/)||Lz = 1, satisfies dfr9 = 0 and
d} ¥ =01in ffl" but does not have to belong to D(Af ¢-1([4,57),n)- We introduce

Pe =X — X(m + n2),

where
M =d5 -1 (e e p ) (D1 (@tepn) (Rdx A1)

= (Af p-1(etentn) [dn(hdx A )]
and

M2 = —dp1 (e +erln) (Bp s (errern) " (Pivxd)
= —(Afp1(er e pn)” [dpn(hivyy)].
Note that the last equality in each of the two above relations follows from the in-
tertwining relations of Proposition 2.8-4). This implies in particular that 11,72 both
belong to the domain D(Af ¢-1((z,+¢],4'),n) and hence satisfy the boundary conditions
at {f =b'}. ~Since moreover 1) € D(Aj ¢-1([q,)),n) Satisfies the boundary conditions
at {f = a}, 9. then belongs to D(Ay r-1((a,p'],h))-
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Besides, the exponential decay estimates on 1 given by Proposition 2.13 (or Hy-
pothesis 2.16) imply

b’ —&1 —2¢

¥l 5o y = O(e™ 7 )

b —2¢
and therefore

gy b/ —&y —2¢

~ b/ —&; —2¢ ~
[d} n(hdx AP)|[2 = O(e™ ),  [ldgn(hivy)llre = O(e™ )-
The exponential decay estimates stated in Proposition 2.15 (or Hypothesis 2.16) then
imply

b/ —f(x)+b =&y —4e b —f(x)+b’ —&) —4e
h

771||w(fgi+e) + ”6 R 772||W(fb’ )= O(l)

lle Y
Set wy, = ’J)E - H{O},[a,b'],}ﬂz)s S D(Af,ffl([a,b’]),h) n keI‘(Aﬁff1([a,b/]%h)L and compute

~ dspp=0 .
df p-1((ap)h@h = dp g1 (apnnte = —hdf A (m+n2)

* * 7 d;,hwz() .
dF p-1(ap)h@h = df o1y n®e = hivg(m +12)

A =1 ((ab),pwh = Th = (L= oy [a,b1,n)Th

b’ —f(x)+b' —&1 —4e
B

le

The “orthogonality lemma” (Lemma 3.6) with w;, = e — H{O},[a,b’],h'(/;a yields

le [9= = Moy w1 n¥ellw o) = O(1).
By defining Af ¢ = H{0}7[a7b/]7h1;6 € Fio},jap,n C L2(f?), it then follows from the

a
latter relation and from the relation 1 = 1. in f&17¢ that

7"h||L2(fab’) = O(l)

b/ — f(z) b/ —&1 —4e
R

b —f(z)+b —&

le 7 — A5l gy = O(e™)

and
1 — ARliLzcrey < b — ellzzcpey + lltbe — ZT/JHLZ(fé")
SN =¥l pagpery + 11X+ n2) L2 pery
+ ||¢||L2(f5,) + [[Ye = ARl L2y
~ b/ —a1 —4e
=0(e” " » ).
In order to conclude, it thus just remains to choose € depending on h € |0, hy[ in a
proper way. To do so, note that when ¢ = %_H with n € N large enough to ensure

;)
b'—¢q

€ €0, =52, there exists h,, > 0 such that for every h € |0, hy|,

b’ &

[ — A5l jory < €TF0% and [l — AGllagyy < eTEOR T T

b —f(z)+b —&y
[T—

The sequence (h,)nen can be chosen decreasing and it then suffices to define
1
Ap = A" when h € [hyni1, hyl. O
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3.3.3. Interactions of solutions to ds ,w = 0 with local spectral problems. — We con-
clude this section with a result which will be used in the construction and anal-
ysis of global quasimodes (see Chapter 6). It provides information about solutions
to dfpw = 0 in f, in particular how the exponential decay can be combined with
local spectral information.

Proposition 3.9. — Assume Hypothesis 3.1 and ag < a < & < b < b. Let §(h) > 0 sat-
isfy limp, o 0(h) = 0 and let the family (wh)nejo,ne| Satisfy wh € W(f,fl*é(h); AT*M)
and dgpwp =0 in fCl S0 ith,
f(@)—ag ~
le™ " whlly jor-semy = O(L).
Take any cut-off function x € C§°(f~*([a, &1[); [0,1]) such that x = 1 in a neighborhood
of {f = a} and assume that h > 0 is small enough so that supp x C [a,é — 6(h)][.

i) The form Ity (a,8),1 A, (Xwn)] = {0} [a,b),n[(RdX) Awn] does not depend on the
choice of the cut—oﬁ function x.

i) If oy, (0,8, [dg,n(xwn)] = O, then there exists a family of similar cut-off func-
tions xp, such that @p, = thh_d?,f—l[a,b],h(A}:f—l[a,b],h)_l[(hdxh)/\wh)]’ where,
in the r.h.s., xp in the first term is extended by 1 and the second term is extended
by 0 in satisfies

a07

Wp =wp  In ao,

dppn =0 in f2,

f@)—ag ~
and e 7 @nllw sy = O(1).

iii) If An : Flo},[a,p),n — FY0},[a,b),n i the operator introduced in Proposition 3.8,
then for any v € Fioy,(a,5),h, the quantity (dfn(xwh), ¥ — Any) does not depend
on the choice of x and

~ b —ag+b'-c
Vi € Froyjaplne (df.n(xwn), ¥ — Aptp) = O(e  O)9llze
Proof. — 1) Let x1,x2 be two cut-off functions like x in our assumptions. Then

X1wh — Xowp belongs to D(df’f—l[a’b]’h) and
d,p-1[a,p),n(X1Wh — Xown) = df,n(xawh) — dg,n(X2wh).

We simply conclude with the commutation

1L{0},la,61,n4 5,71 (fa.8]) b = df,5=1([a,b)),p1L{0} [a,6),n = O-
ii) When TIo} ja,6),1[df,n(Xwn)] = 0, i) ensures that the latter relation is also satisfied
if we replace x by x. with x. =1in fa“,_6 and x. = 0 in ff}+a for o’ = ‘”‘Cl and some
€ €10, <52[. The a priori estimates on wy, and supp (hdx.) Awp C f~ ([a —¢,d +el)
imply

alfagfs )

[((hdxe) Awnllp2cpey = Oe™ *
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The orthogonality lemma, Lemma 3.6, then implies that

Ne = d;,f—l([a,b]),h(Aff—l([a,b],h))_l[(tha) A wh]

(is well defined and) satisfies
lf(z)—a’|—¢ ~, _a'—ag=e
le™ 7 mellzz(pey = O(e R
Since moreover dy n(xewn) = (hdxe) Awn = (1 — Il{o} a,p),1) [(hdXe A wh)] belongs
to D(df,ffl([a,b],h))a we can write

df.p-1((ab))hTe = Df 110k (AF -1 (qap).n)~ ((hdxe) Awn) = (hdxe) A wp.
Using in addition d},f—l([a,b]),hns = 0, we deduce
Li@)—a’l-c ~ _al—ag-
e 7 mellwzy = O™ 7).
If . denotes the extension by 0 in f¢ of n. € D(df ¢-1(ap),n)), it still belongs
to D(dy, -1 ([ag,]),n) @nd solves dy pne = (hdx.) Awp in f& U f2. We have thus proved
that @, := xewp — 1. satisfies

~ . J@)zag _ A, 2
dfpoe =0 in ffl’o and e 0w6||W(f3)=O(eh).

We then end the proof by choosing conveniently ¢ depending on h € ]0, hg[ as we did

at the end of the proof of Proposition 3.8: when ¢ = n%rl, take h, > 0 such that

(z)—ag
Vhe]0, hal, lle™ 7 e llw s < eTEOR

with (hp)nen decreasing, and choose xy, := X1 when h € [hyt1, hnl
iii) Since
(dg,n(xwn), ¥ — Aptp) = (o}, [a,6),n[d g0 (xwn)]s ¥) — (o ja,p1,0ld g0 (Xwn)]s An)

does not depend on x, we may take the preceding x = x.. Owing to Proposition 3.8,
we deduce

|<df,h(XEwh)7 ¢ - Ah¢>| < ||(thE) A wh||L2(f'1,’jE)”¢ - Ahqﬁ”[ﬂ(fﬂ/’jé)

a’—ag—c¢ '—a'—e4b/ -5
)

~ ~ b
=0(e™ ") x0(e” 91l 22
Since this holds for every € > 0 small enough, this yields the result. O
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CHAPTER 4

ROUGH ESTIMATES FOR SEVERAL “CRITICAL VALUES”

In this section, we give first estimates for the exponentially small eigenvalues
of Ay ¢-1(ja,p),n)- We work under the following assumption which, like Hypothesis 3.1
in Chapter 3, gathers Hypothesis 1.2 or (Hypothesis 1.6 and Hypothesis 2.16), and
specify some notations.

Hypothesis 4.1. — The function f satisfies Hypothesis 1.2, or more generally Hypoth-
esis 1.6 and Hypothesis 2.16, and we choose 1y such that

1
0< < — min |¢, — Cp—1l-
s 21<n§Nf|” n-1|

In addition, a,b, —oo < a < b < +o00, are not “critical values” of f: a,b & {01, .. .,cNf}.

4.1. Bar code associated with f

We refer to Appendix B for details and simply recall the useful notations. We
already mentionned in Subsection 1.2 that Hypothesis 1.6 implies Hypothesis B.1 in
the beginning of Appendix B (this is actually proved in Subsection 8.3).

Under the assumption that M is compact and f has a finite number of “critical
values” ¢; < --- < cn;, there is a bar code B = B(f) = ([@a;bal)aca Where A is
finite, —00 < aq < by < 400, aq € {cl,...,cNf}, bo € {02,...,cNf,+oo}. The
ﬁi:":)M A®) so that, for a € A®), the grading of
[a((f), bgﬂrl)[

set A is graded according to A = | |

endpoints of the corresponding bar is given by [aq,bo[ = . It contains
all the information about the relative cohomology groups H(f?, f*;R) when a < b,
a,b¢ {cl,...,cNf}.

More precisely here is the situation when a < b are not “critical values”. We forget
the bars with no end point in ]a, b[, and among the remaining ones we distinguish the
ones with two endpoints in |a, b[:

(52) A*(a,b) = {a € A%, [a%, b5 [N]a,b] & {0,]a,b[}},
(53) Al(a,b) = {a € A*(a,b), a<al <bt' <b},

a€ A*(a,b) & a<al, <bora<bi™<b.
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killed in ]a, b]

@ - — — .
%(pfl) .—(p_l) mamnn
@) = y(erl)
P
z(p) o) .
g1 — y(p)
(p) (p+1)
o ) Y
go—1) y(P)
r— %(p)
a ¢ Co CN CN+1 b

FIGURE 7. {* = &*(a,b) (lower), ¥* = Y*(a,b) (upper) , Z* = Z*(a,b) (lonely)

We now partition the endpoints of the bars, multiple value being distinguished by the
index a € A*(a,b), according to

(54) X*(a,b) = {(a,ar),a € A%(a,b)}
(55) Y*(a,b) = {(a, b)), € A2 (a,b)}
(56) Z*(a,b) = {(a,al),a € A*(a,b) \ A(a,b),a < aq < b}
U {(a, b)), € A* *(a,b) \ AX " (a,b),a < b}, < b},
(57) &*(a,b) = X*(a,b) UY*(a,b) UZ*(a,b).

Those definitions are illustrated in Figure 7: the degrees of the bars and of the corre-
sponding endpoints are indicated. The bars in A% (a, b) are the ones with two endpoints
in ]a, b and the critical values lying in |a, b[ are relabeled é&; < --- < én.

Then the relative Betti number are given by

(58) BP(fP, f) = dim HP(f°, f%R) = dim Foy (05,5 = 12" (a,b),

which counts the number of degree p endpoints of the bar code lying lonely in ]a, b[.
The rest of this section shows that there are exactly #5/ ) (a, b) exponentially small

eigenvalues of A;p J)c,l([a o). and provides a priori estimates on the size of the non
ZE€ro ones.

4.2. Counting exponentially small eigenvalues

Proposition 4.2. — Under Hypothesis 4.1 and with the notations of Subsection 4.1,
the exponentially small eigenvalues of Ag -1 ((a,p)),n are counted according to:

(59) dim ker(A;p}_l([avah)) = #Z2® (a,b)
(60) dim F[o 3(D),[ab],h = ﬂg ( ) ﬁgc(p) (a, b) + ﬁy(p)(a’ b) + ﬁz(p) (a, b),
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4.2. COUNTING EXPONENTIALLY SMALL EIGENVALUES 53

where the second quality holds for h € 0, he[ when 6(1) is replaced by 25 for
e€]0, .

Note that the right-hand side of (60) is nothing but the total number of degree p
endpoints of the bar code lying in ]a, b[. This counting also says that the 6(1) eigen-

~ 2n
values of A;’j},l([mb]%h are actually O(e*Tf).

Proof. — Equality (59), which was already stated in Subsection 4.1, is proved in
Appendix B. Equality (60) relies on exponential decay estimates and on the result in
the case {c1,...,cn, } Na,b] = {é} C |a, b] stated in Proposition 3.2.

The “critical values” of f lying in ]a,b[ are relabeled as a < & < --- < ¢y < b
according to

]a,b[ﬂ{cl,...,cNf} = [a,b]ﬂ{cl,...,cNf}:{61,...,6N}.

Consider the disjoint union Q:

Q= Ullf_l([éj —ny,& + 05l Na,b])

for which the associated boundary Witten Laplacian is

N
(61) Af,ﬁ,h = @ Af,f*I([avb]ﬂ[éj—nfiﬂrnf]),h'

j=1
By Proposition 3.2, we know that the 6(1) eigenvalues of A 70,5 are equal to 0. For
e €]0,n7/2], take x € C°°(9;[0,1]) such that x(z) = 1 if mini<j<n |f(z)—¢;| < ny—e
and x(z) = 0 if mini<;<n |f(z) —&;| > ny —€/2. For any w € ker(A;p)ﬁ W) lwlle =1,
Proposition 2.13 (or Hypothesis 2.16) gives

dsn(xw) = (hdx) ANw = O(e_ nfhig) and d}’h(xw) = hiyyw = O(e_nfTig).

Meanwhile our choice of x ensures xw € D(A(fp ;_1([(1 o)),n) With now

nf—¢e

(62) s, 51 (tap)y.n X172 + 145 -1 0y 0 (X 172 < O(e™>7 7).

Since || xw — wl|z> = O(e~ = ), the spectral decomposition of A;p},l([a b)), ETSUTES

d_'ker A(PL ,F(p) _2e = O e_%
( ( f,ﬂ,h) [076_2Ufh2 ]7[a’b]7h) ( )

and then (see indeed the lines following Definition 3.3)

; (p) : ()
(63) dlm(ker(Af,ﬁh)) <dimF

for h €]0, he[ with h. > 0 small enough.
(p)

[0,e” % ],[a,b],h’
tion 2.13 (or Hypothesis 2.16) lead again to

Reciprocally, when w € F the exponential decay estimates of Proposi-

~ ne—e ng—e

(hdx) Nw = O(e_fT) and hiy,w=0(e” "7 )
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54 CHAPTER 4. ROUGH ESTIMATES FOR SEVERAL “CRITICAL VALUES”

and then to )
ldyn(xw)lZe + lld7 5 (xw)lI72 < O(e™ )

with now yw € D(A(p) ). Again, with ||Xw — w2 = O(e’$), the spectral de-

£,
composition of A(p) Gn with Lo e- ](Af Q h) = 1{0}(A;pﬂ ,)» leads to
d(F[O’e,%]’[a’b]’h,ker(A;ps)l ) =0(e )
and then to
. (») (p) : (p)
dlmF[Oe h][ab]h_dlmkerA ’Q’hgdlmF 0y -2

[0,e72 1,[a,b], h
for h €0, ke[, he > 0 small enough, where the last inequality follows from (63).

In particular, we deduce that for every € > 0 small enough:

(») _ g
(64) E i ann = F[0 e

],la,b],h

and  dim F®) ng—2e —dlmkerA;pzzh

We conclude with

=z

dim ker A;”) _ Z ﬁ(P)(fmin(b’éj‘f‘Tlf)’ fmaX(aﬁéj—nf))
Q,h =

N
= > tZ" (max(a, & — ns), min(b, & + ny)) = t5® (a,b),

<.
Il
—

the total number of degree p endpoints of the bar code lying in ]a, b]. O
We have also proved the following result.

Proposition 4.3. — In the framework of Proposition 4.2 and when Af,ﬁ,h is the oper-
ator defined in (61), the following inequality holds:

7 1 (p) (») () Aot
d(F[OIja(l)],mker(Aijﬁ,h)) + d(ker(Af 5, h) F[opo Ol p) =0(e 7).
Proof. — By (64) we know that for € > 0 small enough
(p) (P) _ (p) (p)
(ker(AfQ W) F[0767%]7h) = ( (AfQ W) F[ oo Con- 25} h),

- -

while we are in cases with d(A4, B) = d(B, A) < 1 by the result of Proposition 4.2.
From (62) we deduce
®) y p® (e— Ll
d(ker(Af Q h) [0, —%],h) O( )’

which yields the result. O

The result of Proposition 4.2 can be translated in terms of singular values
of df t-1([a,p)),n- Remember that dy r-1((q,p)),n and d}i F=1(lap]),h BT€ endomorphisms
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4.3. ROUGH EXPONENTIAL ESTIMATES 55

of Fio,c1,[a,b),n Such that

Af,f*([a,b]),hlp[oﬁc]’[a,b W 010,01 [a.61.h90,C1,[a,t],h + 0[0,01,[a,81,n000.C1.a.b].h

],
with 0.0 abh = dr =@t bl o
Proposition 4.4. — Under Hypothesis 4.1 and with the notations of Subsection 4.1, the

number of 6(1) non zero singular values of 0[9,5(1)],[a,b],h = df7f71([a7b]))h|F[0 L 18

gA%(a,b) for h > 0 small enough. More precisely “h > 0 small enough” means
h €10, he[ for some he > 0 when 6(1) is replaced by e, e €10, L]

Proof. — Eigenvalues and singular values are counted with multiplicities. The non
zero singular values of § = 6[076_%]’[%“7 , are the square roots of the non zero eigenval-
ues of §*§ and coincide with the non zero singular values of § §, i.e., the square roots
of the non zero eigenvalues of § §*. By Hodge decomposition, the number of non zero

eigenvalues of Af,f—l([a7b])7h|F =§0% +4%6 is twice the number of non zero
[0,e” R ],[a,b],h

singular values of §. For h € ]0, h.[, Proposition 4.2 gives
dim F[o,e—%],[a,b],h = 4X*(a,b) + {Y* (a,b) + $Z (a,b)
= 2447 (a,b) + dim(ker(A r-1((a,0)),n)),
which ends the proof. U

4.3. Rough exponential estimates

The upper bound on the (1) eigenvalues of Ay r-1((4,4)),n contained in Proposi-
tion 4.2 can be completed by a rough lower bound for the non zero ones.

Proposition 4.5. — Assume Hypothesis 4.1 and denote a < é; < --- < éy < b the
max{b—&1,6N —a
“critical values” of f in ]a,b[. There exist r(h) > 0 satisfying e_Qw =

O(r(h)) and R(h) = O(e_Qan) such that the 6(1) non zero eigenvalues A(h)
of Ag g-1(jap)),n all belong to [r(h), R(h)] for h €]0, ho[, ho > 0 small enough.

Proof. — The upper bound R(h) = O(e‘fo) is given by Proposition 4.2.
For the lower bound, it suffices to check that if A(h) € o(Ay s-1((q,)),n) satisfies

A(h) < 6_2M for some fixed ¢ €]0,min{¢; —a,b— éx}[, then there
exists h. > 0 such that A(h) = 0 for all A € |0, h.[. The proof follows the same
arguments as those of Step 1 in Subsection 3.2.

Let us proceed by contradiction and assume that there exists a decreasing
sequence (hn)nen tending to O such that, for every n € N, Ay r-1((45)),h, ad-

max{b—&1,6y—a}+c
mits an eigenvalue A(h,) in the interval ]0,e”? o ]. Let then, for

every n € N, wp, € D(Af 5-1(jap)),h,) satisfy |lwnllz2 = 1 and Af p-1¢(a,0)),hWn =
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— ¢ _ ¢ C C
5 C1 7 1 N b

a c1

FIGURE 8. The cut-off x in the interval [a, b] .

A(hp)wy. From the Agmon estimates of Proposition 2.13 (or Hypothesis 2.16) with
Uc f*({é,...,én}), we know that

f=a
V§ > 0,3hs > 0,Yh,, €]0,hs[, | #n w””’“z(fgl,(;) > 5

. 9 9 _2(b—&1)+c
Whlle ||dfvhnw"||L2(f§176) + Hd?,hnw"”LZ(fé’l,Q S e hn

f—-&

By setting @, = e Fn Ywp, with x € C°(f~([a,b]);[0,1]), x =1 in fé’r% and y =0

in f1=¢ with ¢ € (£,%), we get, for every n € N,

On € D(Ao 51 (2 —e b)) ,1);

Ido.s-+(iz1 e’ 4y 1@nll72 = O(e™ )

liminf,, 4o hy log ||On || L2 > 0.
Besides, the Agmon estimates of Proposition 2.13 (or Hypothesis 2.16) with
Uc f'({é,...,én}) also imply

lim sup h, log ||&n |2 < én — ¢1.

n—-+4oo
Hence, by extracting, we can assume that there exists £ € [0,2(¢y — ;)] such that

lim_hy, log [|@nl|z2 = -
lim hylog f|@nllze = 3

The normalized form wuw, = =“>— thus belongs to D(Ag,5-1([g,—c' p)),1) and

”‘*’n”[)
dun|?. = O(e_%f). By Hodge decomposition (see Step 1 in Subsection 3.2
for details), this implies that 7, belongs to ker(dg, f-1([z,—c p)),1) and
~ c+4

l|n — 77n||L2(f§1_c,) = O(e™ ).

Moreover, extending 7, by 0 in fflfcl gives 0, € D(do,¢-1(ja)),1) and therefore
_f-a

e hnomyE ker(dﬂf—l([a,b])’hn) with

5 =& ~  _c/2-¢
”Xwn - ||wn||L26 hn nnHL?(ff;) = O(e hn )
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With [|w, — xwn |2 = O(e” ) and ¢’ = min {¢/2 — ¢, ¢/4}, we deduce

diste ((U}“ker(df7f—1([a7b])7hn)) = O(eiiin) h:>0 0.

2(én—a)tec
By duality, starting from ||d;,hwhn||2L2 < e~ " and extracting again, we also

get
1113}) distr2 (wn,,, ker(d} p-1((4.0),n,))) =0

and Hodge decomposition implies A(h,) = 0 for n large enough (see indeed the end
of Step 1 in Subsection 3.2), which leads to a contradiction and achieves the proof of
Proposition 4.5. O

Remark 4.6. — The lower bound for the non zero eigenvalues is not optimal at this
level. Actually, generalizing Step 3 of Subsection 3.2 requires the propagation of ex-
ponential decay through “critical values,” which is not true in general. This will be
refined into e~ 2%+ = O(r(h)) at the end, when global quasimodes for dy r-1(lab],h)
will have been constructed by induction on N. Like e.g., in [50, 52, 69, 74], we follow
the strategy which consists in studying carefully the singular values of d¢ -1 ((a,5)),1>
which brings more flexibility than studying the tricky problem of interacting wells

for Ag -1(ja,p)),n in the spirit of [54, 53].

Proposition 4.7. — Assume Hypothesis 4.1, let a < é1 < --+ < &y < b be the “critical
values” of f in|a,b[ and let R(h) be the function of h € |0, ho[ given by Proposition 4.5
such that o(Ay r-1(jap)),n) N [0,0(1)] C [0,R(h)]. The projection g gy, jabl,h =
1[0,R(h)](Af,ffl([a,b]),h) satz'sﬁes

U@l
e h

Mo, r(h)],[a,b1h = O( )

in the sense of Definition 2.14.

~ 2n
Proof. — By Proposition 4.5, we know that R(h) = O(e*Tf). Set ¢y = a and
én+1 = b and take any g9 € |0, %f[, where 7y is defined in Hypothesis 4.1. Here
the first assumption of Proposition 2.20 is obviously satisfied:

N
~ ~ ~ Eo . €0
la,b[ N {cl,...,cNf} ={é,...,en} C |T|1]Cn - E,Cn + E[
For Ay, = Ag t1(2,_14+(1=6n1)e0,8ns1—(1—6n.n)e0])s ™ € {15+ -+, N}, we know moreover

that .
a(An)N[0,e" 7] C {0} C [0,e7 ],
owing to Proposition 3.2 because we are in the case
[5n—1 + (1 —_ 6n,1)50,6n+1 — (1 —_ 6n,N)€O] n {Cl, e 7CNf} = {En} .
Then Proposition 2.20 says: for some N € N*,

[f(@)—f(y)| 4 3Ne
_%_’_TO

(Af =1 (jap))n — %) (z,y) = O(e )

SOCIETE MATHEMATIQUE DE FRANCE 2024



58 CHAPTER 4. ROUGH ESTIMATES FOR SEVERAL “CRITICAL VALUES”

2¢9 ns

uniformly w.r.t z, |z| = e~ * . But our choice of ¢, €9 > 0 and 4¢¢ < &, and

n 4eq

a(Af 1 (apyn) N [0,e” %] C [0, R(R)] C [0, 7] C [0,e” 7]
for h €]0, ho[, ho small enough, imply
1

2im

260 (Z — Af,ffl([a,b]),h)_l dz.

|zl=e” R

Mo, r(R)],[a,b],h =

This proves
_f@-f@)l , 3Neg
h + h

(o, r(h)],(ab,0 (25 y) = O(e )s

and we conclude by choosing €y > 0 arbitrarily small.
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CHAPTER 5

SINGULAR VALUES

Singular values of compact operators are much more flexible than eigenvalues be-
cause they allow to work with two different orthonormal bases instead of one. Ky Fan
inequalities recalled below provide uniform multiplicative errors for all the singular
values after perturbing the orthonormal bases or moving the initial and final spaces.
We recall those facts in a convenient way and complete those results by some refined
analysis of additive error terms. This is a better rewriting of techniques already used
e.g., in [50, 52, 69, 74].

The singular values of a compact operator B : £ — F, E and F Hilbert spaces,
are the square roots of the eigenvalues of B*B (and BB*) and they are labeled
in the decreasing order pi(B) = ||B| = -+ > we(B) > wer1(B) > --- with
limy_, oo ue(B) = 0 after possibly completing the sequence by a sequence of 0’s. They
satisfy wue(B) = pe(B*). With this order, the min-max principle becomes a max-min
principle applied to B*B and gives:

min a | Bul .

dim V=¢(-1ueV\{0} [ull

(65) ne(B) =

Note also that the definition also provides the existence of two Hilbert bases (¢;);eg,
¢/ D ch ={€ e N\ {0},u(B) > 0}, of E, and () ke of F', and a one-to-one map-
ping j € ¢4 — k(j) € < such that
By = pe(B)rey and then pe(B) = ||Beoel| = (¢re), Bee)  ifL €A
Bp;=0 ifjed\ch.
When E, F,G are three Hilbert spacesand A: E —- F, B: F —- F,and C : F — G,
the singular values of B also satisfy
Ve e N\{0}, wu(CBA) < |Cllue(B)[All-

In order to handle accumulated multiplicative errors, it is convenient to use the func-
tion
n

1+e
[0,1[" — 10, +0co[, T(e1,...,6n) = H k.
1 il

[z

(66) T:

n
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In particular we have the implications i) = ii) = iii) for
i) max(||CC* — Idg||, ||C*C —Idp||) <e1 < 1
and max(||AA* —Idp|,||A*A —1dg|) <ex < 1
i) max(|C[,[CTH) < ()2, max(A], A7) < T(e2)'?
i) Vj € N\{0},7(e1,e2)"/?1;(B) < p;(CBA) < 7(e1,2)"*pj(B).
The first implication is a consequence of the following operator inequalities

(1—e < JAP = A*A < 14¢) = (T(s)—W <(1-e)?2<|A<(1+e)?< 7(5)1/2) .

Definition 5.1. — Let ¢#,H' be two Hilbert spaces and let € € [0, 1].
An operator A : SH — S/ will be said e-unitary if it satisfies the condition

max(||A*A — Idgl|, |AA™ —Idgy||) <e,

used in 1) just above.
A family of vectors (v;) ey s an e-orthonormal basis of ¢/ if

— it is total in &K, W =Sk,

— (s, vi))jkeg — 1de2 @) llze2 )y < &
Two closed subspaces Sy, 6/ of SH provide an e-orthogonal decomposition of S/ if
H =2 @S and |g,Ilg,| <e.

Before we review applications to singular values, notice the following properties.

Lemma 5.2. — Let &/, S/’ be Hilbert spaces and let € € [0, 1].

a) For an operator A : ¢i — W', the condition |A*A — Idg|| < e is satisfied iff
|Al : # — SH is e-unitary and iff Idg, = (K, (, ) — (K, { ,|A]*)) is e-unitary.

b) An operator A : S — SH' is e-unitary iff

|[A*A—1dg|| <e and Ran A= V.

c) A family (vj)jeg is an e-orthonormal basis of /' iff the linear map
A: () — H given by A((a))jeg) = 2 jeg ajv; is e-unitary.

d) If the decomposition /' = &b & Sy is e-orthogonal and (pj)jcsy and
(@jr)jregr are orthonormal bases of ¢/ and SHy respectively, then (¢;)jegugr
is an e-orthonormal basis of SH'. Additionally, the identity map induces an
e-unitary map from ' = Fh®&+Fo to H = h ® SHa, where the first space is
endowed with the scalar product (,)g, a9, making (p;)egug» orthonormal,

i.e., defined by
Vui,vi € S, Yug,va € o, (ur+uz, vi +V2)gerg, = (U1, v1)+ (uz, va).

Proof. — a) The first statement is a consequence of |A|* = |A| and |A|?> = A*A. The
second one is deduced from Id* = |A|?> when the identity operator maps $/ with the
scalar product (u,v) to itself with the scalar product (u, |A|?v).
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b) It suffices to notice that the condition ||A*A —Idg|| < € implies
Yu € h, V1-—celul <|Aul| < V1+e|ul.

Thus A is one-to-one with a closed range which has to be ¢/’ by the second assumption
and A, A*, and AA* are invertible. Hence the spectrum of AA* coincides with the
spectrum of A*A by A*(AA* — Mdgy) = (A*A — Mdg)A* for A € C. The spectral
theorem yields ||[AA* — Idgy| <e.

c) is a particular case of b) if we notice that ||A*A — Idgl| = [|((v;, v));keg — Idez ()l
with $# = ¢2(&/), while the condition Ran A = §#' becomes equivalent to the totality
of the family (vj);eg.

d) The family (¢;);egrug~ is clearly total in ¢/’ and, defining the map A : ¢# — &/
with §# = €%(§/) as in c), we get

0

B .
B 0) with B = ((¢k, ©;j))jeg keg -

A*A — Idgz(g) = <

To prove that (¢;) ey ug~ is an e-orthonormal basis of ¢/, it is then enough to prove
that ||Bllze2(g7),e2(97)) < €, which follows from the observation that B is unitarily
equivalent to IIg, | @ o —
For the last statement, it suffices to note that the mapping
u € (Fa® T ( dneran) — (Pi» Woneran)icgugr € (T VT")
is unitary and to apply c). O

Below are consequences of those notions on singular values.

Proposition 5.3. — Let E,F,G be three closed subspaces of a Hilbert space ¢/ and

- - - -

assume d(E, F)+d(F,E) =¢1 <1 and d(F,G)+d(G,F) =¢e3 < 1. Let B: F — F be
a bounded~ operator and let IIp,I1g be the orthogonal projections on F and G. The
operator B = HgBHF|E : E — G is compact iff B is compact and in this case:

vee N\ {0}, 7(c7,63) " ?u(B) < me(B) < pe(B)7(e},€3)"/>.
Proof. — Call Apg =Ipllg + (1 —IIp)(1 —IIg), with 1 = Idg, and compute
AbpApp — 1 =Tgllp + Opllp — g — p.
We deduce that for all u € &,
(u, (AppAre — 1)u) = 2Re (py, Hru) — [Mpul® - [Tru?
= — (g — Ir)ul®

> —2||(Ig — Op)gu|® - 2|(Ig — Op)(1 - Og)ul?
> —2||(IIg — Opllg)ul® — 2||(IF — Dpllgp)u|?
> —2(d(E, F)* + d(F, E)?)||ul|”.
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- -

Since 0 < &1 < 1, we know that d(E, F) = d(F, E) = % (see indeed the lines following
Definition 3.3) and we have thus proved the operator inequalities
0 < (Idg — AypArg) < eildg.
Owing to the spectral theorem, it follows
|A5g Ars — dg| < 22,
and by symmetry, since Ay r = Agr, we also get ||Apg A%y — Id|| < 2. The opera-

tor Apg is thus e2-unitary, and similarly Agp is e3-unitary.
Finally, B = Il BII Flg* E — @ is nothing but the nonzero diagonal block of

Lol AL
Acr BArg :SH=E®E~ — H=GdG.
It is thus compact if and only if B is compact. Moreover, up to some additional

irrelevant zeros, the singular values of B are the ones of AgrBApg and the result
follows from the general statement i) = iii) above. O

Proposition 5.4. — Let E, F be two Hilbert spaces, B : E — F be a bounded operator
and let e1,e2 €]0,1].

a) When (¢;) ey is an e1-orthonormal basis in E and (r)ge g is an ez-orthonor-
mal in basis F, let B : £2(§) — (*(F) be defined by B6; = 3, ¢ (tbx, Bo;)dk.
Then B is compact iff B is compact, and in this case their singular values satisfy

(67) VeeN\{0}, 7(e1,62) " ?ue(B) < pe(B) < pe(B)r(en,€2)"/2.

b) Assume that E = E' ® E" is an e1-orthogonal decomposition and F = F' & F”

is an e9-orthogonal decomposition such that BE' C F' and BE"” C F", then the
. i L 1
relation (67) holds with B = HF/B|E' D HF”B'E// E'®oE'" > F oF".

c) Assume that B is compact and that E = E' @ E" is an e1-orthogonal decompo-

sition, and set F' = BE', F"" = (F')*. Assume moreover that

I1B| .l

v = inf( {W(B|E,),€ e N\{O}} n]o,+oo[) > oS

. i I 1
Then, the operator B = B|_, ®llp/B|_, E' @ E'" — F' ®© F" satisfies
VEe N\ {0}, T(e1,e2) ' pe(B) < pe(B) < pe(B)7(e1, €2).

Proof. — a) This item simply follows from the general statement i) = iii) above and
from the relation B = U%B® g, where &g : £2(§J) — E and Uf : 2(F) — F are
defined by @£ ((u))jeg) = X ey uiv; and Yr((Vk)resw) = Dpegp Vk¥k, and are thus
respectively €1-and e5-unitary according to item ¢) in Lemma 5.2.

b) Let (¢;)jegr and (¢;)jeg be two Hilbert bases of E’ and E”, so that
(©j)jegrugr is an e1-orthonormal basis of E according to item d) in Lemma 5.2.
An es-orthonormal basis (Yx)regug of F is constructed in a similar way. It also

1
follows from item d) in Lemma 5.2 that the identity Idg : E = B’ @ E — E = E'"
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is g1-unitary and, similarly, Idg is €z-unitary. We conclude by applying the general
statement i) = iii) above to the relation B = Idy Bldg.

c) If ||B|E” || = 0 there is nothing to do. Actually this is a particular case of b) with
BE" = {0} C F”, €5 = 0 and of course 7/2 < 7. If ||B|E”|| > 0, then there exists
¢, € N\ {0} such that v = p, (B| ) and rank(B| ) = {1. In particular, we can find
two Hilbert bases (¢;);jegs of E' and (¢)re of F such that ¢/’ N O {1,...,41}
and

Viedl,....,ti}, Byj = p;(B|,,)v;.
Set F' = Span(v;,,j € {1,...,41}) = RanB| , and F"” = (F')*, and introduce the
map R : E — FE defined by
2

i, Bu)
R =0, VYu€E", Ru= Lgo-.
& gﬂj(B|E,) !
The norm of R is not greater than e, since for every u = v’ +u” € E=E' & E”,

I2% 2 2

CBun? B

|Rul? =[R2 = 30 100 BT DPleel e (1 e )? < 2,
j=1

B3 (B|,)  ~ wg (Bl

where the last inequality follows from the last statement of Lemma 5.2. We deduce
”IdE - RH <1l4e < 7'(82)7
[(I1de — R)™Y < (1 —e2)™! < 7(ea),
and for every £ € N\ {0}, using the above general statement ii) = iii),
7(e2) " pe(B(ldp — R)) < pe(B) < pe(B(ldp — R))7(e2).
Moreover, the operator B; = B(1 — R) clearly sends E’ into F”’, and also sends E”
into F” = (F')* according to
£y
Yu€ E", BRu=) (;, Bu)p; = Ilp Bu.

j=1
1
Since in addition E' @ E" is a &;-orthogonal decomposition of E and F = F' @ F”,
a direct application of b) (with €5 = 0) says that the singular values of By : E — F
. i
and B; = HF/B1|E, ® HF”BI|E,, are related by
VL e N\ {0}, 7(e1) 2pe(B1) < pe(B1) < pe(Br)7(er)™>.
We conclude with
W Bi|g, = Ur|B|g, — BR|,]= B|g;
——

=0
HF”Bl|E,, = HF"B|E,, — HF”BR|E,, = HF”B|E,,- O
—_——

=0
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Remark 5.5. — 1) In the sequel, Propositions 5.3 and 5.4 will be used and com-

bined with spaces E", Fh G" E'" E"h F'" F"h operators B", B", and bases
(¢")jeg and (') xew which depend on a small parameter A > 0 and such that
the hypotheses are satisfied with
llbii% e1(h) = }lllil}) ea(h) = 0.
More generally, note that when N parameters €1(h), ...,en(h) are involved and
satisfy 0 < e,(h) < o(h) for n € {1,...,N} with limj_, o(h) = 0, then for
any a > 0, the estimate
7(e1(h),...,en(h))* =14 O(e(h))
holds uniformly in the sense that there exist ho 0, Co,nv > 0 independent
of £1,...,en such that
Vh E]O, hQ,Nﬂ[, T(&l(h), . ,EN(h))a -1 < CN,a Q(h)

Several applications of the previous results in this setting will lead to estimates
of the type

Ve N\{0},  ue(B") = ue(B")(1+ O(e(h))).

A case is especially easy to handle: when E", F'*, G" are finite dimensional with
dimension bounded by a common number ng. In this case, one can use any
norm || ||,z on ¢My,n.(C) in order to check the O(e1,2(h))-orthonormality of
the bases. The constants in the O(g(h))-estimates are then fixed when ng, the
norm || ||,z and possibly the above N € N and o > 0 are fixed.

Additionally, we recall that in this case, d(E", F*) = d(F", E") < 1 is equiv-
alent to d(E", F") < 1 and dim E" = dim F".

The following lemma will be useful in the sequel.

Lemma 5.6. — Let B" : D(B") — &/, D(B") C &/, be a closed unbounded operator
and assume that the closed subspaces EM, F* G" and the operator B" satisfy

— E" c D(B");

— the restriction B"

is a left multiple of L pn B" with the commutative dia-

| g |

gram:

h
Eh L>(%

h
Upn B |Eh

Fh.

)

— the distance between F" and G" satisfies

(4", G") + d(G", F")| [C*]| = Oe(h)  with  lim o(k) =0,
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Then thBh|Eh = (Idgy +O(o(h)))Izn Bh|Eh and the restriction B"| s also a left

multiple of I on B with the commutative diagram:
p G | gn g

| g

Eh L SH
~h
N
Gh.
with C* = C"(1dg; + O(o(h))). The roles of F* and G" are therefore symmetric.

Proof. — Note first that the relation Bh|Eh = CMlpnB"
| < ICH NI [[11B"
and then [|[C"|| > 1 (except when Bh|Eh = 0, in which case the statement of
Lemma 5.6 is trivial). Consider now the difference in Z(E"; $/):

HGhBh|Eh — HGhHFhBh|Eh = (Ilgn — HenIlpn)CMITpn B

| implies

|B" e

|gn
By introducing the operator

h 2
CGhFh = thHFh + (1 - HGh)(l - HFh) = Idc% + O(ligc(’h)”z) = Id(,% + O(Q(h)2)

like in the proof of Proposition 5.3, we obtain

HGhBh|Eh = [CGhFh + (th — thﬂph) Ch] HFhBhlEh = [Id(% + O(Q(h))]HFhBh|Eh

= [ldg; + O(o(h))]"'TIgn B"| ., and we take Ch = CMldg, + O(o(h))] .
O

We get HFhBh|Eh

We now consider additive error terms which arise in our applications.

Proposition 5.7. — Let B B} : E* — F" be two compact operators parametrized
by h > 0, like possibly the Hilbert spaces E" F". Fiz £y € N\ {0} and let o(h) > 0
satisfy limp, 0 o(h) = 0.

a) When |By — B}|| = O(o(h)) max (pe, (BY), e, (BY)), the singular values are
related by

Vee{1,.... 4o}, me(BY) = p(By) (14 O(e(h))).

b) The two following statements are equivalent:
min (siey 1 (B, ey 41 (BS)) + 1 BY = BY|| = O (o(h) max (sey (BY), s (BY)) )

and max (:ufoJrl(B{l)ﬂ .ufoJrl(Bg)) + ”Bg - B?” = O(Q(h) min (/’I’ZO (B?)vulo (Bg)))

Proof. — The two results are simple consequences of the max-min principle.
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a) Assume ||B} — B!|| < ey, (Bh) with e < 1. For £ € {1,...,4y} and V C E",
dimV = /¢ — 1, we write

Vue V*, |Blull — epe, (BY)|[ull < [|Biull < || Brull + epe, (BY)llull
and then, using g, (B?) < pe(BY),

B B
‘v’uGVJ‘, | B ull < max I 11}”4—8;;4(3{‘)
[ull  — veviv{or vl
Bhy Bho
|| By ull —epg(BM) < || By ||
[Jull vevir{oy vl
Therefore, for every £ € {1,...,4y}, we deduce
By Bl By
o IBEL g o 1B IBLul | o
uevi\{oy |lull wevi\{o} |ull T wevinio} |lull

for any subspace V such that dim V' = ¢ — 1. Continuing by taking the minimum w.r.t
V finally leads to

Vee{l,... b}, me(B)(1—c) < p(BY) < (1+e)ue(Bh).

The h-dependent assumption and the symmetry B} < B in the above proof yield
the result.
b) First, since min < max, the second condition obviously implies the first one.

Moreover, the first condition implies | B — B}|| = O(g(h) max (g, (BY), pe, (Bg)))
and we deduce from a) max (pe, (BY), e, (B%)) = O(min (pe, (BY), ey (BS)). We
have then to show that the second condition is implied by
(68) min (saeg41(BL), peg41(BY)) + B — BL|l = O (o(h) min (g (BY), ey (BY)) ).
But assuming this and reasoning as in the proof of a) with V C E", dim V' = ¢, and
using now || B} — BY|| = O(o(h)pe, (BY)), leads to
Bt |Bul
wevi\{o} lull  wevivioy ull

+ O(Q(h)ﬂ‘@o (Bjill))
and then, by taking the minimum w.r.t V, to

tieg11(BY) = pieg11(BY) + O(0(h) ey (BY)).
It follows that

max (M@0+1(B{L)7 M@0+1(B§L)) = min (M€o+1(B{L)v /1'80+1(Bg)) + O(Q(h)ﬂfo (B:{L))
Then, since g, (BY) = O(min (pe, (BY), e, (BY)), (68) leads to

max (g 41(BL), e +1(BS)) + 1B = BL|l = O(o(h) min (ue, (BY). ey (BY)) ),

which concludes the proof. U

The final result of this section combines multiplicative and additive error estimates.
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Proposition 5.8. — Let (B", D(B")) be a densely defined closed operator in S/.
Let E*, F* and G" be finite dimensional subspaces of $# and let o(h) > 0 satisfy
limj,_¢ o(h) = 0. Assume that both E" and F" are contained in D(B") and that the
space EM admits the o(h)-orthogonal decomposition E" = E"™ & E"", such that:

1. Izn B" = BMIpn on D(B");
2. HpnBMIpn has a fized finite rank £y € N;

3. Bh|E1h is a left multiple of HFhBhHFh|E/h = HFhBh|Elh with the commutative
diagram:
Bt B
O,,B "5
Fh

4. with the convention po(A) = +oo for any compact operator A and when £}
denotes the rank of thBh|E,h, the following inequalities are satisfied:

(69) d(E", F") + d(F", B") + |C* | (d(F",G") + d(G", F")) = O(e(h)),
b 1 |CHIF, G*) + A6 F*) ] _
T 1B ol |y B0 ™ e, W B ), e (87,00 |~ O

Then, the £y first singular values of pn BM I pn and Mg B g satisfy
(71) Vee{l,.... b}, pe(UgnB"gn) = pe(lpn B"pn) (14 O(o(h))).

=pegn B ) =pe(B| )

Moreover, the £y + 1-th singular value of Hgn BMI g satisfies

N[0+1(HGhBhHEh) . /~1'€0+1(HGhBh|Eh) h—0 M€0+1(HG’LBh|Eh)
Heo (HGhBhHEh) MZO(HGhBh|Eh) Keg (Bh|Fh)

(72) = O(e(h))-

Proof. — Since the statement is trivial when £y = 0, we assume here that o > 1.
The assumptions 1. and 3. then imply ||C"|| > 1 because

1B"| ., I < ICH NITTea [ B,

| gm
(except when Bh|E,h = 0, in which case one chooses C" = IIn so that ||C"| = 1).
Therefore, the first estimate (69) of 4. implies dim E* = dim F* = dim G* < oo as
well as d(E", F") = d(F", E") and d(F",G") = d(G", F").

About dimensions, the assumptions 1. and 3. also imply

rank(Ilpn B"| ) = rank(B"| ) = £} < fo.

This rank E’f, which is not assumed to be independent of A, will be proved to be equal
to rank(thB|E,h).
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Multiplicative estimates. — By replacing E"* by E’* in Lemma 5.6, we get
HGhB’L|E,h = [ldg + O(g(h))]HFhBh|Elh

and therefore

(73) Vee{l,...,dimE"}, pe(UgnB"| ) = pe(pn B" g, ) (1+ O(o(h)))-

In particular,

rank(IIg» B" = rank(IIp» B" = (" = rank(B"
G 1

lgm | on |E/h)'
An accurate information about the orthogonal projections on F'* := RanIIzn Bh|E/h
and on G’ := Ran HG;LBh|E,h is achieved as follows. There exist two orthonormal

systems (‘P?)gjge? in B’ and (w;})lsjge’; in F'* C F" such that

vie{l,....0}}, HpnB"ol =pbyl ,  where ugzuj(HFhBh|E,h)>0.

7

By computing

:—"_‘

1
?ﬁ? - 7Hah3hs0? =

p 7 [ pn Bl — TIgn B!
J

<

(pn — Mgn) (CMILpn B* L pn )

RS

= (Hpn — Mprllgn)CMYl + (Mpallgn — Hgn)Cyl,

we obtain the estimates:

. 1 7 7
Vi€ {4}, Y- e B e} < |[CHI(d(F", G") +d(G", F")) = Oo(h)) .
Ky ———
(69)
Since moreover we have that rank Il Bh|Elh = dim G’'* = % < 4y, it follows that
(%HGhBhsp’?) is an O<||Ch||(J(Fh,Gh) + J(Gh,Fh))>—orthonormal basis
Hj T 1<ji<en
of G'* (see Definition 5.1) and then that
I — T = O(ICH | (d(F", G*) + d(G", F*))) = O(o(h)).
By calling F”’" the orthogonal of F'* in F* and G”" the orthogonal of G’ in G", the
equality
— (1 —Hgn)(Mgr — Mgrllgn)
now implies (using also ||C"|| > 1)

(14) I —Tgn| = O(IC* | (d(F", G") + d(G", F*)) ) = O(o(k)).

The separation between the £? first singular values and the smaller ones is obtained

by applying Proposition 5.4-c) to B = I zn B" : E" — F" and to B = Il B®

| g g
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E" — G" with: the go(h)-orthogonal decomposition E* = E'* ¢ E"'",
pey Mpn B ) = g (Mgn B ) (1+ O(o(h))),
ITLpn B, | Mg B"| . I - |B"

el ogam.

and <
ter (I pn Bh|E,h) gl (thBh|E,h) per (Lgn B" |th) 70)
This implies that the singular values of IIpn Bh|Eh and of ITgn Bh|Eh satisfy
(75)  Vee{l,.... 00}, pw(UpB"|,,) = pmepB" ) (1+ O(e(h))),
(76) pe(MgnB"| ) = pe(Mgn B, ) (1 + O(e(h)),
and, for every k > 1,
(77)

N€’11+k(HFhBh|E;L) = Mk(HF"hBh|E,,h)(1 +0(o(h))) = O(Nz'; (HFhBh|Eh)Q(h))7
(78)

oy o (Mg B ) = pi(Mgmn BY| ) (14 O(e(h))) = O (g (T B, )o(h).
Besides, using d(E", F") + d(F", E") = O(g(h)) and the commutation HFhBh|Eh
I pn BMIpn |gns @ direct application of Proposition 5.3 with B = IIpn Bh|Fh . Fh — Fh
and B = Upn BMIpn|,, = e B, : E" — F leads to:

(79)  VEEN\{0}, we(TpmB"|,,) = pe(lpmB",,)(1+O0(e(h))).

Additive estimates: When £y = £%, the statement of Proposition 5.8 follows from the
Equations (73) and (75)—(79) and, when £y, > £, these equations reduce the problem
to the comparison of the singular values uy, 1 < k < £y — £7, of the two operators

h h
HG//hB |E”h and HF//hB |E”h'

By (74) and (70), we know that
1B ., Mg — Mg |
max (fg, _gn (Hgrm Bh|E,,h)7 trgg—gn (L prrn Bh|E,,h))
The first Result (71) is thus an application of Proposition 5.7-a) with
Bt =NlpmB",, and By =IgnB"|_,

= O(e(h)).

while replacing £y by £y — £%.
Lastly, the definition of ¢y in 2. implies

. h h h
min (g, _gn 1 (Hgim B |E,,h)7ueofe’;+1(HF~hB |E~h)) = pgy—pr 1 (lLpn B |E”h) =0.

The remaining statement (72) is then given by Proposition 5.7-b). O
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CHAPTER 6

ACCURATE ANALYSIS WITH N “CRITICAL VALUES”

This section is the core and the most technical part of our analysis. It combines:
i) the exponential decay estimates of eigenvectors solving A ¢-1((q,5)),nWh = AnWh,

An h=0 0, and all the properties of solutions to d¢ pwp, = 0 stated in Chapters 2 and 3;

ii) the information on local problems, that is when f#([a,b] N {c1,...,cn, }) = 1,
from Chapter 3;

iii) the rough estimates when f#([a, b] N {cl, R cNf}) = N of Chapter 4. Finally,
the recurrence analysis with respect to N is modeled on linear algebra lemmas about
singular values given in Chapter 5. In the first paragraph, we review and complete
previous useful notations before stating a general result which leads easily to Theo-
rem 1.7, variations of which will be given afterwards. It is about the construction
of global quasimodes for Aj ¢-1((q,4)),n, and more precisely of a suitable basis of
widely extended solutions to dfjwp = 0, which, contrarily to the eigenfunctions
of A ¢-1((a,b)),n, Provide a high flexibility when changing the geometrical domain,
in particular the values a,b. After specifying the framework in the first paragraph,
we check in Subsection 6.2 the first step of the recursive construction of such global
quasimodes and we present the strategy of our iterative method, developed in the
other paragraphs.

6.1. Assumptions, notations and main result

We assume Hypothesis 4.1 which is: The function f has a finite number of “crit-
ical values,” ¢; < --- < ¢, according to Hypothesis 1.2 or Hypothesis 1.6, while
Hypothesis 2.16 is assumed for a general Lipschitz function f, and we choose

(80) €10,% min_ | I
ng 9 1<ISISan Cn — Cp—1]|[-

Moreover, the values a,b, —0o < a < b < +00, are not “critical values” of f.

Like in Chapters 3 and 4, we use the the space W (f2; AT*M) of Definition 2.3.
We recall that it coincides with W12(f2 AT*M) under Hypothesis 1.2, while we
only know W (f2; AT*M) C W52 (f2; AT* M) in general (when a,b ¢ {e1,.. . en, }).
According to this remark, when FE = uszl]ak,bk[, ag,br & {cl,...,cNf}, the
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space W (f~1(E); AT* M) is nothing but the direct sum @1, W (fbe; AT* M), which
is included in W.22(f~1(E); AT* M).
The set of “critical values” lying in [a, b] are relabeled according to

[a,b]ﬂ{cl,...,cNf}:{61,...,61\7}, a<é <---<Cy<b.

The bar code associated with f is still denoted by 8 = B(f) = ([@a, ba[)aca. We
keep the notation A*(a,b), A%(a,b) given in (52),(53), while the endpoints of the bars
with a non trivial intersection with ]a, b are partitionned into

/" (a,b) = X" (a,b) UY*(a,b) UZ"(a,b),
where the definition of those sets are given in (54),(55),(56), and (57). Remember that

an element j € &/ (a,b) is a pair j = (a, &) with o € A*(a,b) and é € {é1,...,én},

c= x&”’, y&p), or zéf’), depending on wether:

— j € XP)(a,b), which means o € Aﬁp)(a, b) and ¢ = zd,
— j € YP)(a,b), which means a € Agp_l)(a, b) and ¢ = y®,
— or j € ZP)(a,b), which means a € A*(a,b) \ A*(a,b) and é = 2P

Below are figures which summarize the three different cases.

a®
&p) . y&pﬂ)

a Cm Cn b
FIGURE 9. A bar [z, yF ™[ = [6m, En], ) € AP (a,b).
There are two extreme points j = (¢, é,) € X?(a,b) and j' = (P, &,) € YPTV(a,b).

a1

a®

a &= Z&P) b

FIGURE 10. An extreme point j = (a, &) € Z"(a,b).
After restriction to [a,b], this represents the two possible equivalent ways of having
i=(a",z) € 27 (a,b).

We recall that

(p) _ (p+1) () (p)
5[o,e*€/h1,[a,b],h = Lo,e=e/n) (Af,f—l([mb]),h)df,f—l([a7b]),h1[0:€‘5/h](Af,f‘l([a,b]),h)

= Ran 1[0’6—5/h](A( )

() 2
and F, £ (b)) h)

[0,e=</"],[a,b],h
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do not depend on ¢ € ]0, gg[, provided that he > 0 (h € 0, h¢[) is chosen small enough
when ¢ is fixed. We then use the notation

(») p) (p) (»)
8D S s asin = o ermimin ML FGhyasin = Foeern) fasn

without mentioning € > 0.

The exponent ) is forgotten when the direct sum w.r.t p € {0,...,dim M} is
considered.

The distance between vector spaces cf(E, F) is the one defined in Subsection 3.1
(see Definition 3.3) and used in Chapter 5. We also recall that for ¢ > 0, an
O(e~ 7 )-orthonormal family of vectors (¢M)1<e<r in a Hilbert space & is a family
such that (¢}, @h) — 60| = O(e™#) according to Definition 5.1.

With the family ¢/*(a,b) of endpoints of bars with a non trivial intersection with
la, b], we will associate an 6(1)-orthonormal family of solutions to dy pwp = 0 in the
proper range.

Definition 6.1. — Under Hypothesis 4.1 and for §, €]0, %f], let
(82) Ss, i={én — 01,6p + 01, 1<n<N}.

A family (@;’h)jeg*(a,b); <p;’ = <p§p)’ when j € JP)(a,b), is called a §;-family of
quasimodes if there exists v : |0, ho[ — ]0, +00[ with limp_,oy(h) = 0 such that:

(‘PEP)’ )ieg® (ap) 18 a linearly independent family of D(dff L([a,8]) n) for all

peE {07"'ad}7
— by setting j = (a,0) and I = [z — 61,y —y(0)] = [~ 81,y — 5 (R)]
when j € P (a,b), and Ih [é — 01,b] when § € YP)(a,b) UZP)(a,b) :

(83) supp @P" < f7H((IF +[0,7(R)/2)) N a,b])
)

h A
(84) |le (-p) W (=1 ((a.b)\85,) = O1),

(85) dy, hgo(p)’ =0 in f_l(I;L Nla,b]) and then in f~*([a,é— 6] U (Ijh N a,b])).

For such a family of quasimodes, we will use the notation:

VP = Span(”",j € P (a,0)), V' = PUVP.

The idea is that the quasimode associated with the endpoint j = («, ¢) € &/*(a, b) is
supported in [¢— 41, b], decays exponentially away from ¢, and solves d f,hgo;’h =0ina
region essentially covered by the bar indexed by a.. Global quasimodes for dy,j, are con-
structed by climbing along the values of f. The reason why W-estimates, namely with
norms || [lw(q) given by (14) in the Definition 2.3, fail in a neighborhood of f~*(Sj,)
will appear in the construction of such a family (see in particular Remark 6.11 about
the values &, + d1).

The following definition specifies how such quasimodes are truncated around the
upper endpoints y(er ) when i = (o, a:(p)) € &®)(a,b). This truncation operator
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preserves the spaces W (f~'(I)) for I C [a,b] and D(dj t-1([q,p)),n) With its boundary
conditions.

Definition 6.2. — In the framework of Definition 6.1 and for 5 €0, %f], let
f z)— 671
(56) e @) = x (15
2
forn € {2,...,N} and a fized x € C*(R;[0,1]) such that x = 1 on |—o0,—2] and
supp x C ]—oo, —1].
The operator Ts, is defined on V" by

61 Tperh = { Xema " = (ead) e X0 (0,

2T pPH" if 7 € Y® (a,b) UZP (a,b).

The notation % of Definition 1.4 will be extensively used in this section.

Theorem 6.3. — Assume Hypothesis 4.1 with ny given by (80).
a) For any p € {0,...,dim M}, the 6(1) non zero singular values of d(fp;_l([a W),k
that is the non zero singular values of 5[(5)6(1)] [a,b],h7 COT be labeled by the family
(u?)jewm(a ) (with possible multiplicities) with

gD _ (P

,u;-‘ P R , J= (a,m((f)) € Sé(p)(a,b).
b) For any 6, €]0, %f], there exists a 61-family (%;’h)jeg*(a,b) of quasimodes in the

sense of Definition 6.1 which is O(e_%)-orthonormal in L2(f2).
The vector space V" spanned by those quasimodes satisfies:

. 7 () (P BY — Af—
Vp € {0,...,dim M}, d VP EPL ) n) + A 5w n V) = 0 ™).

c) If Ts, is the truncation operator of Definition 6.2 for 6o E]O,%f , then
the map d(fp}_l([ab]) WIs, o+ V@ —  L2(f7([a,b]) s a left multiple

of 5[%’)6(1)] (a,b] wLs, with the commutative diagram:

(p)
da®  Tss

1.5~ (la,0)), _
(88) YE" L2(f~*([a,b]))
Ch
(p) T
P0aia s T e
(81) [075(1)]7[‘151)]’}7‘7

255

with ||C*|| = O(e™ 7).

The proof will be done in several steps, by induction on the number of “criti-
cal values” N. Because the graduation w.r.t p € {0,...,dim M} is associated with
an obvious orthogonal decomposition of Fig 5(1)},(a,5),n @0d 0[0,5(1)],[a,b],n> and clear
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partitions of the sets of indices for bars and endpoints, A*(a,b) = |_|;f:0 AP (a,b),

/*(a,b) = |_|§:0 T ®)(a,b), etc., we can treat globally Fio,5(1)),a,b),h and 6[0,5(1),[a,b],h
and forget the degree p.

6.2. Initialisation and outline of the recurrence

The result holds true for N = 1: According to Proposition 3.2, we know
that ¢/*(a,b) = Z*(a,b) and that the 6(1)-eigenvalues of A r-1((q,p)),n, and therefore
the 6(1)-singular values of djg 5(1)},[a,b],h> all vanish. This proves a). To prove b), it
suffices to take an orthonormal basis (‘P?)je&* (a,b) OF KeT(A ¢ r -1 ([(max(a,é1—61),b]),h)> €X-
tended by 0 on f&17%1 when a < & —d;. Note that in the latter case, the extended fam-
ily (@?)jeg*(a,b) is still included in D(dy -1 (ja,p)),n), and actually in ker(dy -1 ([a,5)),n)-
The exponential decay estimate (84) comes from the exponential decay estimates on
the 90;7” € ker(Af, f—1[max(a,e1—51),5),1) given by Proposition 2.13 or Hypothesis 2.16
applied with Q = f~!([max(a,é — 61),b]), 7» = 0, A, = 0, U = f~1({é;}) and
dag(z,y) > |f(z) — f(y)|. The distance between V" and Fl0,5(1)],[a,b],h 18 also deduced
from the exponential decay estimates on the 50;7‘ S ker(A‘ﬁf—l([max(a,gl_51)7b]),h) as we
did in the proofs of Propositions 4.2 and 4.3. The statement c) is obvious in this case
because

Ty, = Idgp,

df,7-1 (@b lgn = 05
and  dj0,5(1)],a.bl.h|gn = [0,6(1)].a,bl.h s, £~ ([ab]) gy = O-
Strategy of the proof by induction:

1. Already while checking the initial step N = 1 or when proving e.g., Proposi-
tion 3.2 in Subsection 3.2, it was convenient to work with different values of a
and b. From this point of view, the construction of §;-quasimodes in the sense of
Definition 6.1, which are some specific solutions to dy nwp = 0, is more flexible
than working with spectral eigenvectors of A -1 ((4,5)),n- Note that even though
the extension by 0 in f* of ¢ € ker(dy, t-1([4,5]),n) does not belong to W(fb)
for a’ < a, it belongs to ker(dy, t-1([a,5)),n)- This provides a way to extend the
quasimodes in the area of the lower values of f. The extension to ff;/ with b < b/
will be done with a repeated use of Proposition 3.9. Note for example that if there
is no “critical value” in [b, '], a solution to d¢ -1 ([a,p)),non = 0, which satisfies
some exponential decay estimates of the type ||e$<ph||w(f2) < O(Cy), can be
“extended” to a solution to d¢ ¢-1([q,p']),nPr = 0, with the same decay estimates
in W (2 \ f~*({b—6}) for some § > 0 small enough. To prove this, it suffices to
consider b as an artificial new “critical value” ¢ and to apply Proposition 3.9-i)
with ag, a, ¢1, b there replaced by a,b—6,¢ = b,b’. Note that with this extension
procedure, @y, fails in general to belong to W in a neighborhood of f=({b—¢})
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(see (84) in this connection). If there is a “critical value” é, € ]b,V'[, then one
has to study more carefully the orthogonality condition of Proposition 3.9-ii).

. Now Theorem 6.3 will be assumed to be true in the case of N “critical val-

ues” in [a, b], we can deduce several consequences. The aforementionned flexi-
bility of a family of quasimodes in 9", as compared to a family of eigenvectors
for the initial space Fo 5(1)),(a,5],» > c@n be completed by replacing the arrival
space Fo 5(1)],[a,5],h i the diagram (88) by a more flexible approximation. More-

over, the O~(e_éT1 )-orthogonality of the §;-family of quasimodes can be preserved
while ensuring true orthogonality properties on the images dy ;Ts, 30;?. This will
be done in Subsection 6.3. The corresponding results will be used in the rest of
the proof and for other constructions later.

. Let us now explain how we pass from the case of N critical values ¢; < -+ < éx

to the case of N + 1 critical values ¢ < -+ < én41 in [a,b]. To do so, in-
troduce ag € ]¢1,¢[ and by € |én,En+1], s€t a1 = a, by = b, and apply the
result valid for N “critical values” to a1 = a < ¢ < -+ < éy < by and
to ag < &3 < -+ < én41 < by = b. From the §;-families of quasimodes for the
intervals [a1,b1] and [as2,bs], we can extract a partial §;-family of quasimodes
for [a,b] which satisfies the required properties for all bars of length strictly
smaller than éy41 — ¢é;. This construction, and all the information coming from
step N in the intervals [a1, ;] and [az, bs], is collected in Subsection 6.4. After
this, in Subsection 6.5, the construction of d;-quasimodes associated with bars
j=(a,z4) € X*(a,b) with z, = é and y, = ¢y+1 must be specified. This leads
to the definition of “intermediate ¢;-family of quasimodes” (see Definition 6.12)
which, comparatively to Definition 6.1, does not yet elucidate the interaction
with the local spectral problems around the “critical value” ¢y 1. This strategy
is summarized in Figure 11 below. It is related to Mayer-Vietoris type argu-
ments in algebraic topology, but handling and propagating all the estimates on
exponentially small quantities requires some care. From this point of view, the
inspiration is also taken from the standard techniques for handling exponential
decay estimates, and several up and down inductions on n € {1,..., N + 1} are
used.

Once the latter “intermediate d;-family of quasimodes” is constructed, it is
used in order to prove Theorem 6.3-a) in Subsection 6.6. Like in the proof
of Proposition 3.2 for N = 1, we have to play with different values of a, b such
that a < é; < -+ < éy41 < b. Using Proposition 4.5, we deduce firstly a lower

log _ EN4t1—G1+max(s1,83) B B
bound r(h) ~ e n when a = é& — 61 and b = éy11 + d3, and

translate it in the various variations of the operator djg s5(1)},[a,6),n 15, that we
have introduced. Secondly, we study the effect of changing a and b while keep-
ing N + 1 “critical values” in [a, b] as it was done in Subsection 3.3.2 for the case
of one “critical value” in [a, b]. Thirdly, and only after proving Theorem 6.3-a),
we can construct in Subsection 6.7 the §;-family of quasimodes (@?)jeé]*(a,b)
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FicURE 11. Positions of the bars while the interval [a, b] is covered by [a1, b1] U [az, b2].

at step N + 1, and check all the conditions stated in the items b) and c) of
Theorem 6.3.

We will use the recurrence hypothesis at step N first in the interval Jag, ba[ and then
in the interval |a1,b1[, where the corresponding proper bars (not equal to |a;,b;[) are
collected in dashed rectangles. Quasimodes in |aq, bs| are extended by 0 in f22, while
the extension of quasimodes in |ay,b1[ to ffl requires more care.

6.3. Consequences of Theorem 6.3 at step N

We assume in this section that Theorem 6.3 holds true at step N. We re-
fer in particular to the Definition 6.1 of d;-quasimodes (@?)jeg*(a,b) and of
Ph = Span(w?)jeg*(a,b), and to the Definition 6.2 of the truncation
T52 : @h — D(df,ffl([a,b]),h)a for 51,(52 S ]0, %]

While keeping the initial space U" for dy r-1(la,p)),n L5, We replace the arrival
space Fig 5(1)],[a,b],h» and therefore the left-multiplying projection Iljo 5(1)),(a,5],n> DY
a more flexible space G and a projection IIgn. In view of Lemma 5.6 and of the
general analysis of singular values led in Chapter 5, consider

(89) Gh = ker(Afﬁ,h) and Fh = F[0,5(1)17[07b]7h’

where A, g, is the operator introduced in (61) with

(90) A= £ — g+ gl 0 a,B]).
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We recall that according to Proposition 4.3,
7 b ok 7 mh Ak Y
d(G", F")+d(F",G") =0O(e” ™)
and dim G" = dim F".

The interest of the space G" is that it is defined in terms of local spectral problems,
actually kernels of local Witten Laplacians, around the “critical values” é;,...,¢n.

Proposition 6.4. — Assume that Theorem 6.3 holds true at step N and let G* be
defined by (89). The operator

Hgndy g1 (jap)),nTs, = MandnTs, - V" — L*(Q) C L*(f2)

does not depend on §s €]0, %f] for h > 0 small enough. Namely, for two different
choices 02,65 € 0, %f], there exists hs, s, > 0 such that the equality lgndy nTs, =
Hgndy 1 Ts, holds for all h €10, hs, 5.

Its singular values satisfy:
o1) 5
vee {l1,...,dim Fh}, ‘LL[(HGhdf’f—l([a’b])’hT(SQ |cyh) = /Lg((S[O,a(l)],[mb],h)(l+O(€_Tl)).

Its kernel equals

(92) ker(Ilgrnds pTs,) = Span(go;”,j € Y*(a,b) UZ*(a,b)).
In particular, when the mnon zero singular values of 00 5(1)),a,b),n ar€ labeled
as () jeg (ap) with pl % e = (a,z4), the same result holds for

the d2-independent operator Hgndy pnTs,.

Proof. — The Definition 6.1 of (@?)jeg*(a,b) and the Definition 6.2 of T, give
dynTs, 0l = dpnel =0 if j € Y*(a,b) UZ"(a,b),
and
dpnTs, 0t =0 in f71([a,ya — 202]) U f ' ([ya — 02,0]) if j = (a,24) € X*(a,b).
We deduce firstly
ker(Ilgrnds 1 T5,) D Span(go?,j € Y*(a,b) UZ*(a,b)).

In the case j = (o, zo) € 7 (a,b), the equality Hgnds nTs5, = Hgnds Ty, for h >0
small enough is secondly a direct consequence of Proposition 3.9-i) applied around
the “critical value” y,, owing to supp df ,Ts, 30;»‘ C f71(0Y%a — nf, ya[) and to

TendynTs, 0} = 0y, fya—ns yatnsInlasndrnTs, ¢}

The Result (91) on singular values implies dim ker(Ilgrds , T5,) = $%*(a, b) UZ*(a,b)
and yields the equality (92). Let us now prove (91).

Consider the initial vector space E"* = Tj5, V" = Span(T5, go?,j € ¢/*(a,b)) and the
mapping B" = dj ;-1 (a5, : B" — L*(Q) C L*(f?). The distance to V" is estimated
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by

(93) d(E", V") + d@", EM) = O(e~ ) < O(e™ 7).

With the factorization (88) stated in Theorem 6.3-c) and d(G", F) + d(F",G") =
O(e_%f) with 26, < %f < nyf, we are exactly in the framework of Lemma 5.6 with

~ Sg—m
o(h) = O(e2 e ). Therefore, df’f—l([a’b]))hIEh is a left multiple of HGhdf’f—l([a)b])’h|Eh

with the commutative diagram

(94) B Er(gn
HGhB Téh
Gh,

289 —m

while C" = C’h(Isz(fg) +0(e = . )), and

262 —ng

andg,f-1(fa,bl) b g = (drz(rry +Ole™ 7 ) Tpndy f-1(a,b),1)| i -

=610,6(0)1 (b1, L pn |

N - ~ 51

Using additionally Proposition 5.3 and the relation d(E", F?)4-d(F", E") = O(e™ )
arising from Theorem 6.3-b) and (93), this leads to

vee{l,...,dimF"},  pe(Mgndy, p-1((ap),n| ga) = £(000,6010) a,01,0) (1 + 7(R)),

~ 289 — ~ 2 ~
where r(h) = max(O(e%nf),O(e_%)) < O(e_sTl). The comparison (91)
for Hgrdys T, lopn is then a consequence of
41

(95) T3, Ts, — e || + | T, T3, — Tdpn || = Oe™ ) = Oe™ 7). L

Below are details about a useful block decomposition of the operator grdy T, :
PP — L2(2). Of course, there is the orthogonal block decomposition with respect to
the degre p according to thdgfj,)LT(;Q : YWPhh 5 L2(Q; APTIT*M). But we consider
here a block decomposition according to the length of the bars, which correspond to

clusters of singular values. Again, we forget the degree p here. We need some notations.
Let

(96) Hn(a,b) ={j =
(97) Scm,n(a’b) = {.7 =

Q,IQ)E%*(G;,I)), yazén}a QSHSNa
a,Zo) € An(a,b), xo, =Cn}, 1<m<n<N,

and consider the following 0(6*7)—orthogonal decompositions:

(98) (’Z),}im = Span(go?, J € Xmnla,d)) for 1<m<n<N,
n—1

(99) Vh = @ Vb, . = Span(e}, j € Hn(a,b)) for 2<n<N,
m=1
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N
(100) Vi =DV,
n=2
(101) Vi = Span(e!, j € Y (a,b) UZ"(a,b)) = ker(Tgndy 1T, ),
(102) P =V @ VL,

Wlth thdf,hT(;ZGUZ C ker(Af,f_l([En—77f75n+77f]ﬂ[a,b]),h)7

A €L
(103) while G" = Dne(1,...,N} ker(Af,f“([5n—?7f,5n+7]f]ﬁ[a,b]),h) .

=:Gh

Proposition 6.5. — Under the assumptions of Proposition 6.4 and with the notations

(98)—(103), the operator HGhdfth52|GUh : GUZML — Gl is, for 1 <m <n < N, one

1
to one, and, when dim GZ)fnn # 0, its singular values all satisfy u" e

én;am

Moreover, the non zero singular values of gndspTs, @ V" — L2() (resp.
of UgndysnTs,|,, : Yh — L2(Q), where n € {2,...,N} is fired) are obtained by col-
lecting all those ‘non. zero singular values for 1 <m < n < N (resp. for 1 <m < n),

~ 8
with an O(e~%) relative error.

Proof. — For every 1 < m < n < N such that i, »(a,b) # 0, the composition of the
exponential decay estimates on the go? given in (84), j € in.n(a,b), and on the ele-
ments of any orthonormal basis (’lpz};)lskgKn of G = ker(Af’f_l([én_nf,5n+nf]m[a7b])7h)
leads to

(104) Yu € Ut

m,n?

én—¢Em

ITgnd s nTs,ull = O(e™ 7 ) |Jull.
Let us now prove by reductio ad absurdum that for all 1 < m < n < N such that

Him,n(a,b) # 0,

lull = O(e™ =) | gnd g nTs,ul.-
Let us then assume that there exist €1 > 0, 1 < mg < ng < N, a strictly decreasing
sequence (hx)ken converging to 0 and, for every k € N, up,, € Ut .\ {0} such that

mo,Nno

Yu € D!

m,n?’

_fng—Cfmpter
(105) IMgredy, r=r(fap) he Tosun | < € T lung |-
Without restriction, we choose the pair (mg,n¢) among the pairs for which (105)
holds such that A\g := é,, — ém, is minimal. Set

é:zﬁ{(m,n) e{l,...,N}¥’,m < n,¥mn(a,b) #0and &, — &, < )\0}.

Theorem 6.3-a) says that the (-th singular value of d(9 5(1)],a,5),» @nd therefore, with

(91), the ¢-th singular value of lgndy f-1(4.5),1T5, o satisfy

fllli% —h log ,U,g(HGh df,f—l([a,b]),hTéz |°7)h) = flzlil}) —h IOg Hi(é[o,a(l)],[a,b],h) = /\O-
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By using in addition the O(e_%)—orthogonal decomposition
V"=V o5 with Uy =ker(lgndy, -1 (a5)),n L5 )
applying Proposition 5.4-b) gives
Lim —hlog pue(gndy, -1 (a0 T52 |ovi) = lim —hlog p1e(dp0,5(1)),fa.0),n) = Ao-

Because GZ)ﬁ is finite dimensional, dim GZ)f‘F = $l*(a,b), the max-min principle implies

. [TgrdynTs,0|
Ogrds T, = —_— =
He(Mgndsn 62'%’1) dimW=ﬂgCllI(1a,b)—€+1veW\{O} [lv]]

We obtain a contradiction by considering

W= < @fm> @ Cup, -
Cn—Cm>Ao

This ends the proof of the first statement.
By applying again Proposition 5.4-b) with now B = Ilgndy,,T5, acting on V", the
are obtained, modulo some O(e’%) relative error,

n € {2,...,N}. Actually,

singular values of Ilgnds nTs, logn
i

by collecting all the singular values of Ilgn df,hT52| on?
Gh 1 G! and V! and V!, are O(e_%)—orthogonal for n # n'. This re-

duces the problem to the computation of the singular values of HGﬁdfth62|oyh,'

For n € {2,...,N}, we solve it by reverse induction on m € {1,...,n—1} by
considering P 6?)7’;,7”. Simply apply Proposition 5.4-c) with

m<m’/<n

/h h log _Sn—2Cm
E = @ GZ)m,nv UdimE’h(HGﬁdf7hT52|E,h) ~ e oy

m<m’<n

h h
E" = GZ)mfl,nv ||HGﬁdf7hT52|Euh”

En—Cm_1 én—Cm+2n¢

=0~ * )<O(e”

én—Em+96y

)<O(e™ ),

by starting from the first case when dim E’ h 2 0. This implies that the non zero sin-

~ 5
gular values of HgndysnTs, : @, 1 <prcn Vi, are obtained, modulo some O(e=7)
relative error, by collecting the non zero singular values of HGdeth52|oUh for
m — 1 < m/ < n. This ends the proof of the second statement. T oo

Proposition 6.6. — Assume that Theorem 6.3 holds true at step N and let G" be
defined by (89). There exists a basis (¢?)je(§7*(a,b) of V" such that the ¢;‘ ’s satisfy the
same properties as the cp? ’s, that is the ones of Definition 6.1 and of Theorem 6.3, as
well as the additional following one:

(106) Uk Ll forj # 5,
(107) where \I’? =grdysTs, ¢?~
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In particular, according to Proposition 6.5, the singular values of

HGhdf,hTég : GZ)h — LQ(Q)

_Ya—ZTo
h

are given by the numbers || Uh{| 1> (1 + 0(6_671)), j € J*(a,b), where [ ¥} L e
when j = (o, zq) € X*(a,b).

Proof. — We keep ¢§” = go? if j € Y*(a,b)UZ*(a,b). Because GI! L G, for n # n’ and
Hgndsp Ts, VU € G for 2 < n < N, it suffices to construct the family (¢?)je%(a7b) for
any n € {2,...,N}. Take some fixed n € {2,..., N}. While keeping the O(e_éTl)—or—
thogonal decomposition

GUZ = @ q}fn,nv

1<m<n

the first result of Proposition 6.5 says that, for a fixed pair (m,n), the O(e_%)—or—
thonormal basis (cp?)jeg(ﬁm,n(a’b) can be replaced by an orthonormal one (@?)jescm,n(a,b)
such that

gndynTs, @) L MandsnTs, @l for j# 5, 4,5 € Xmn(a,b)

én—Cm

~ log _ .
and ||HG¢Ldf,hT52g0§L|| e for j € dm,n(a,b).

Because the change of basis P} € Z(VL, ) given by (,27;-’ = Pﬁl’ngo? satisfies
* h ~, 81
||(P7}:L,n) P#L,n - IdGZ)m,n “ = O(e h )a

the new family (‘ﬁ?)je@'&,ﬂ,n(a,b) keeps all the properties of the initial one (@?)je@cm,n(a,b)-
In Theorem 6.3 at step N, nothing is changed when the @?, Jj € Hmn(a,b), are
replaced by the gé?, J € Xim.n(a,b), and this can be done for all pairs (m,n) and with
any initial guess of the family (¢);cg-(a,p)-

Thus, it suffices to construct the family (¢7);cg; (o) such that (106) and (107)
hold when j € din, .n(a,b), 7’ € Hiny.n(a,b), m1 # ma. Like at the end of the previous
proof, we do it by reverse induction on m € {1,...,n — 1}.

— For m = n — 1, simply take qﬁ? = cﬁ? and set
‘Mﬁ_l’n = Span(qﬁ?, h e dpn-1n(a,b)) = @Z—l,n'
— Assume that the (ﬁ?’s have been constructed for j € X n(a,b), for all
m’ € {m,...,n — 1}, with GZz)fn,’n = Span( ?,j € dm' n(a,b)) and the equality
of the O(e*%)—orthogonal decompositions

@ %7};7,' no @ GZ)ZL’ n’

m<m’<n m<m’<n
Set, for j € Hm—1,n(a,b),

Uh Tands pn Ts, ")

N < jrritarlfnds;Py) g

Lo Z [ wh |2 3
J

3" €U <ms <nlim n (a;b)
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and define
W1, = Span(¢}, j € Lin—1,n(a,b))-
We have clearly
HGde,hT(sz@? 1 Span(\ll;}’aj/ € gc’rn/,n(aa b)vm < m' < n)

and

@ (?)r}:z’,n = %Zl—l,n D @ 62)7}77’1',n
m—1<m’<n m<m/<n
All the properties of Theorem 6.3 at step N are verified for the é;-family of
quasimodes given by the 95;?, J € Am—1,n(a,b), and the ?, J € Am' n(a,b). The
estimates on (,27?, J € Am—1,n(a,b), are consequences of:

U5, = dpngsr € ker(Af, 11 (6, —ny enn/lnla.bl),n)
for j' € </ <nm n(a,b), where ||\I/§‘,||Lz R e~ when 7" € i n(a,b)
and

<\I’}7’/,thdf7hT5 goh> ~  fn—Cp ~  _fn—=Cm_1 ~  _Cpr—C%m-_1
L) O x O ) = 0 A,
J

i ~

le™ = 6 lw (s (abhss,) = O(L),  Emr = Emy > 205 2 61

Hence, the vectors @?, J € Am—1,n(a,b), satisfy

[ f—Cm—1l h ~

le™ 7 &M lwir1(tabn\ss,) = O)-

Note in particular that the total space V" is not changed, so the statement of
Theorem 6.3-b) and the factorization in Theorem 6.3-c) are obviously true.
~ 5
Once we have the O(e~ 7 )-orthogonal decomposition

@ GZZ)Zz’,n D @ van’,n ’

m—1<m’<n 1<m’'<m-—2

Vi

we just apply our first argument with 6?)2171,,1 now replaced by GZz)fnfl’n, which
permits to replace the O(e_%)—orthonormal basis (9})jedn_1.n(asp) Of Wit 1

by an orthonormal basis (#});eg,,_, .. (a,b) Such that
HendpnTs,8) L MgndspnTs, @ for j # 5, §, 5’ € Hm—1.n(a,b).
We finally define d)? = 4,5;-‘ for j € Xm—1,n(a,b). O

6.4. N — N + 1: Collecting the information from step NV

We assume that Theorem 6.3 holds at step N, i.e., when #([a,b] N {cl, e cNf}) =N,
and we consider the case

[a,b]ﬂ{cl,...,cNf} ={é,...,eN41}-
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Define

ar=a, bi=¢n+ns and ay =37 —nf, by =0b.
We can use Theorem 6.3 and its consequences given in Subsection 6.3 for
[al,bl]ﬁ{cl, .. ,cNf} ={é,...,ény} and [ag,bg]ﬂ{cl, .. ,cNf} ={é,...,CN+1}-
Let us start with the interval [az, bo]. Consider A, g , and let G% and F} be defined
like G* and F" in (90) and (89) while replacing (a,b) by (az,b2), with

1
Gg = @ Glin = @ ker(Af,f_l([En*’I’If,én+77f]ﬂ[a,b])yh)‘
2<n<N+1 2<n<N+1

For this interval [ag, bo], the family of quasimodes (¢g,j)je§*(a2,b2) is given by Propo-
sition 6.6 with the orthogonality condition (106),(107), and we set

W, . (az,by) = Span(gbg,j,j € Amn(az,b2)), 2<m<n<N+1

m,n

For the interval [a1, b1], we use similar notations A5 . G", F}' with now

1
Gi= P Gl.= P ker(Ays-1(e,—nscntnslniab)h)-

1<n<N 1<n<N

We start with a family of quasimodes

(108) (Sog,j)jee?*(al,bl)

given by Theorem 6.3 and merge this family with (ﬁbg,j)je&*(az,b2)ﬂc7*(a1,b1)a after

considering the restrictions ¢2’j|f*1 (a extended by 0 in f22__, according to the
2

ai=a’

,b1])
following procedure:

ohi=oh. ifje (e, €T (ar,by), ¢ 6,
Sa}f,j = @'&,j if j € (o, ¢1) € Z"(a1,b1),
ho_ o h (W5 5 MandynTs, 05, ;)
Pi=vli— 2 E
J'€X* (az,b2)Nk* (a1,b1) 2,5

with \Ilg"j, = Hngf,hT52¢gwj, = HGibdf,thzgo’f)j, for j' € X*(az,b2) N X*(a1,b1),
where we recall that j = («, ¢) € *(ag, b2) NX*(a1,b1) means ¢ < 4 < Yo < EN.

oh i i j = (o, &) € X" (a1, by),

Remark 6.7. — Assume that ~;(h), (‘P}f,j)jeg]*(al,bl) and o (h), (¢g,j)jeg*(az,b2) are
given by Theorem 6.3 and Definition 6.1 at step N, respectively in [aq,b;] and
in [ag, b2]. Let us then define y(h) := max(y1(h),v2(h)) and, for i € {1, 2},

el when j € ¥Y*(a;, b;) UZ*(ai, bi),
b gplh’j when j = (a,x&p)) € P (a,b:), p € {0,...,N — 1},

Xy (h)
where X+ (h) is defined by (86) in Definition 6.2. Then, the families (@?,j)jeg*(al,bl)

and (Sag,j)jeg]*(@,bz) both satisfy the properties of Theorem 6.3 and Definition 6.1,
respectively in [a1,b1] and in [ag, bs], but now with the same ~(h). Hence, we will
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assume here that the properties of the families (¢4 ;)jeg(as,b,) a0d (94 ;)je* (ar,b1)
are satisfied with the same ~y(h).

The spaces generated by those quasimodes are denoted by
V"(a1,b1) = Span(p} ;,j € I (a1,b1)) and V"(as,bs) = Span(¢y ;, 5 € T*(as,b2)),
and the same rule applies for V" o Pr,1<m<n<N+1, U, Uy defined in

(98)—(101), while writing GZUfmn(am by) instead of V), . (az, by) refers to the additional
orthogonality property of Proposition 6.6.

Proposition 6.8. — The family (‘P}f,j)jee?*(al,bl) satisfies all the properties of Theo-
rem 6.3 at step N. Moreover, the family (¢1,5)je g (a1,b:) deduced from (@?’j)jegj*(al’bl)
in Proposition 6.6 can be constructed such that

Vj € X*(ar,b1) N (az,b2), 1, = .

Proof. — By construction (and Remark 6.7), the family (@?,j)jegj*(al,bl) is a
O(e_%)—orthonormal d1-family of quasimodes, and Gh = Gh for 2 <n < N and

d(Span(¢5, ;.4 € I (ar,b1)), FI') + d(F}', Span(¢g ;. j € I (ar,b1)) =
(V" (a,bs), Fy) + d(Fy', V" (a2,b2)) =
d(Ff,G7) +d(GY, FY) =

Fy) =

e SO(e‘T),
and  d(Fl,Gt) +d(Gh, Fl) = O(e= ) < O(e~ )

ensure the validity of the last statement of b) in Theorem 6.3, that is
AV (a1,b1), Fl) + d(F}', V" (ar, b)) = Oe™ 7).

The exponential decay estimates on the go}f,j, Jj = (a,¢1) € X*(a1,b1), are actually
obtained like in the proof of Proposition 6.6 by noticing that

(035 ey drnTs,eh;)
s 112 29

Vi € Xinl(ar,b1), 90}11,;' = ‘Pg,j - Z

j/€|—|2$m,’<n§N‘Scm’,n(azﬂlm)
where G?’n = Gg"n for 3<n < N and
Yoy = HGQndf»hT%‘lsg,j’ = HG{‘ndf,hTMP}f,j/ for j' € Hm' n(a1,b1), 2<m' <n < N.

We still have to check the factorization of Theorem 6.3-c), namely
h . h ~, 20y
df.t=1(ar nDh Lo lgpn 4, 4y = C rpds =1 (ar o) Thafon g, 5,y With [CT] = O(e™).
We will do it by first considering the operator HG? dnTs,-
From the properties of the ga’f’j, j € ¢/*(a1,b1), we already know that (see indeed

(104))
Mgrdg,nTs,

—Zm

O(e_énh ) and  UP(ay,by) C ker(dsnTs,).

|@%,n(a17b1) =
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We now check that HG;f dsinTs, is one to one and that its singular values,

|Gybn,n(a17b1)
En—8m

1
which thus do not vanish, all satisfy up & e F ™ for every 1 < m < n < N such

that p%m’n(al,bl) 7é @Z

— Since the vectors W ; = HgndynTs,05 ; = HgrdysnTs,0% ; are, according to

lo, én—Cm
& R

Proposition 6.6 applied in [as, b2], mutually orthogonal with ||\I/§J| ~ e~
when j € i n(a1,b1), 2 < m < n < N, the result holds for m > 2.

— Case m = 1: as in the proof of Proposition 6.5, assume by reductio ad absurdum
that there exist 2 < n < N, a strictly decreasing sequence (hy)ren converging
to 0 and, for every k € N, up, € 62){“;1 (a1,b1) \ {0} such that

—&1

" ) unlls

L g,y T un, || = (e

and let ng € {2,..., N} be the smallest n such that the above holds. Consider

then
E"M = (Cuhk) & OZ)gk (a1,b1) ® @ OZ)Zk,n(al’bl) )
En—Em>Eny—C1
so that
dim V™ (ay,b1) — dim(E""*) = ¢ (|_|~ e scm,n(al,bl)> —1=:4y—1.
Cn—CmXCng—C1

Owing to the exponential decay estimates on the quasimodes, we obtain
Eng —&1—283

(109) ||df7hkT52|E//hk || = é(e_ " )
and (see (104))

_éng—@1

||HG’1’”k dfyhkT62|E//hk || = 6(6 " )

. ~, 0
Since moreover [|IIpn —IIpnIlgn|| = O(e™ %), we deduce ||HF1hk dg,niTss | on, I =
-
ole” i ) and then, applying the max-min principle as in the proof of Propo-
sition 6.5 with here W = E'""*»,
_Eng—?1

y=o(e " ).

e (HFlhk dfn,Ts, |0Uhk (a1,b1)

Hence, since Ty, is O(e*%)—unitary (see (95)) and
- - ~ N
d(FY', T5, V" (a1,b1)) + d(T5, V" (a1, b1), Ff) = O(e™ *)
(see (93)), it follows from Proposition 5.3 that

5 _5n0*51
1o (Mo,5(1)) far b1) hre B, =1 (far ba)) ki) = 0(€ 75 )
with £y = ﬁ(Uen—emgeno—algcm,n(al’bl))’ in contradiction with Theo-

rem 6.3-a) in [a1, b1].
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Because the spaces ‘Y)f,m(al, b1) have mutually orthogonal images by HgrdsnTs,, ie.,

HG?dﬁhT,hGZ)h (al, bl) 1 HGiLdfth(;QOUh (al,b1) fOI‘ (ml,nl) 7é (mg,’ng),

we can conclude like at the end of the proof of Proposition 6.6 that there exists a
basis (¢ ;)jes+ (ay,by) Such that (106) and (107) hold, and in which nothing needs to
be changed when j € X*(az, bs).

It follows from the above analysis that HendynTs,| is one to one, and

Yt (ay,b1)
the factorization dy 715, = C'hHG?df)thz is then satisfied with C* : G} — L2(fo)
defined by C"* = 0 on the orthogonal complement of HgndgnTs, (U (a1,b1)) in GY
and
Vi€ X*(ar,b1), CMUY, =dspTs,e% ;.

Moreover, the relation |C"|| = O(e%) follows from the orthogonality of the family

h h 10g Ya—ZTa h ~ _ Ya—Ta—263
(\I/l,j)jec%*(al,bl) and from H\Ijl,j” ~ e h and ||df,hT52¢1,j|| = O(e h )
for j = (o, €) € X*(a1,b1) (see (109)).

Finally, applying the symmetric version of Lemma, 5.6, that is exchanging F" and
G", yields the factorization dy T, = ChHFlh dspTs, : V™(a1,b1) — L2(fl) stated in
Theorem 6.3-c). O

We have now spaces Gldﬁl,n(al,bl), 1 <m < n < N, and %ﬁl’n(ag,bg),
2<m<n< N +1, such that

%zl,n(ala bl) = %h

m

,n(az,bg) when 2<m<n<N.

We now work in the interval [a,b] and we consider A PO G", and F* according to

(90) and (89), after replacing N by N +1 and {¢1,...,¢én} by {¢1,-..,Cn+1}. We set

Wh, ,(az,b2) = Span(¢h ;,j € Himn(az,bs))
for2<m<n<N+1,

%{lm(ahbl) = Span(gb?,jaj € dn,n(a,br))
forl=m<n<N,

(111) Vit (a,b) = Span(qﬁ’ij,j € Y*(ag,ba) UZ*(az,bs)),

(112) and V"a,b)=( & W ,(ab) U

0<n—m<N-—-1

(110) WUk (a,b) =

oz)r

Accordingly, we introduce
*/ _ * —
(113) &'(a,0) = (az,b) U (L, am(arb) =] _ o manlad),

(114) & (a,b) = Y*(az,b2) UZ" (az,b2) and & (a,b) =&}/ (a,b) Uk (a,b),
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¢h; ifj=(a,é) €} (a,b),é <C,
(115) ¢} =) =4 @b, ifj e (ab),
¢t; ifj=(a,&) € I (a,b).
In the perspective of applying Proposition 5.8, we now consider the space

E/h — T52 GUIh .

Proposition 6.9. — With the notation (112), consider E™™ = T5,9'"(a,b),
Elr = T5, Vi (a,b), and let G" be defined by (89) with N replaced by N + 1.
The operator HGhdf,ffl([a,b])h|E,h satisfies
rank (HGhdfvh|E/h) = ﬁc?_{_(a, b) =:/{
and ker(HGhdf’f—l([a’b])h|E/h) = E(l]h,
and its non zero singular values can be written (M?)je&;’(a,b) with

hlog _ya Tq

pi o~ z for every j = (o, zo) € &' (a,b).

In particular, its £1-th singular value satisfies

_ max(én41—82,88 —81)

. W =0 (uel (HGhdf,ffl([%b])ﬂE/h)> )
Moreover, the operator dy, g1 ((a,b)),h|, S 0 left multiple of Hanrdy, g1 (fa,b)),0] gon

g, f=1([a,b]),h _
E" L2(f~([a, b))
Ch,
Ugndy, p=1((a,b0),n T
G",
where the diagram is commutative and ||C"|| = (e w ).

Finally, the same results hold when G" is replaced by F" = Fo,5(1)],[a,b],h-

Proof. — The basis (¢;‘l)j€$*’(a,b) of V'"(a,b) defined in (115) (note that the inclusion
¢/*(a,b) C ¢/*(a,b) is strict in general) has been constructed so that it is a partial
01-family of quasimodes in the sense of Definition 6.1, with the additional orthogo-
nality property (106),(107). Moreover, we know that (see indeed Proposition 6.6)

(116) O3 = [Tgndy, -1 ((a,e)),n T, 0} || 2 R g v
when j = (o, z4) € ¢/{'(a,b), and
(117) U" =TgndsnTs,0) =0 when j € &5'(a,b).

Again, with (see (95))
* * I~y _ﬂ
175, T5, = Idgm || + | T5,Ts5, — Idgn || = O(e™ ™),

this proves the results about the rank, the kernel, and the singular values
of HGhdff l(ab)h|E/h
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Moreover, reasoning with the orthogonality of the family (\I/;L) jeg* (a,p) and (116),
(117), like at the end of the proof of Proposition 6.8, leads to the factorization

~h
C*grdyg, -1 (ja,0]),n 15, | =dy5-1(la,p]),h 5|

V't (a,b) Yk (a,b)

with ||C"|| = O(e%) We conclude with the invertibility of Ts, : V" (a,b) — E'*.
Finally, replacing G* by F" simply relies on Lemma 5.6 used as we did around (94).
O

6.5. N — N + 1: Handling the bars containing [¢;, ¢y 1]

We continue in the framework of the previous paragraph with
[a, b] N {01,...,cNf} ={¢,...,eN+1}
and
ay=a, by=¢v+np, ax=0C—ny, by=0b
We use the partition
" (a,b) = J"(a,b) UT"(a,b),
where ¢/*'(a, b) is defined in (114) and

(118) g*,/(a’b) = {.7 = (a751) € 56*(@» b)vyoz = EN+1} U {J = (a761) € %*(aab)}
={j=(x¢é) € Z (a1,b1)} = J"(a1,b1) \ (" (a1,b1) N T (a, D).

If we remember that (a,¢) € Z*(a,b) can be represented by the bar [¢,b[, the
set ¢&/*"'(a,b) actually collects the lower endpoints (which are multiple copies of ¢;)
of bars containing [¢1, én+1[. Thus, the partition of ¢/*(a,b) and the identifications
of &/*"(a,b) are clear. In the preceding section, we started with a §;-family of quasi-
modes (¢ ;)jcg* (a1,b:) iD the interval [ay, b1] = [a,En +1y] (see (108)), and only used
for the construction of E’" in Proposition 6.9, among the corresponding j € &/*(a1,b1),
the indexes j € &*(a1,b1) N ¢&/*(a,b) (see (115)). We now use the vectors <p’017j
for j € /*(a,b).

Proposition 6.10. — The wvectors wg’j, Jj € ¢&*(a,b), introduced in (108), where
by =N + ¢, can be “extended” to f~'([a,bs]) into vectors ga? € D(dyg, 51 (ja,bs]),h)

such that cpﬁ = go’(},j|f§N+51 and such that all the properties of Definition 6.1

fonth

hold on the interval [a, b] = [a1, ba] with I]’»‘ = [61—061,én+1—7"(h)], limp 0" (k) = 0.

Proof. — For j € &/*"(a,b), j has the form j = (a,é) € Z*(a1,b1) and the
vector gag, ; then satisfies the support condition (83) (that is more precisely
supp @f ; C f~([é1 — 01,b1] N a1, b1])), the exponential decay estimate (84) with a, b
replaced by a; = a,b; = éx+ny, and «p&j € ker(dy, £ -1(jay,b)),n)- For any v € ]0,77/2],
we consider the domain [éx +d1,En41 — 7] and we consider éy + 7 as a new artificial
“critical value,” for which we know

ker(Af p-1((an+61,en11—]).n) = 10}
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We then apply Proposition 3.9-ii) with ag,a,é;,b there replaced here by ¢4,
N + 61, €N + nf,En+1 — v and wy replaced by @8’3-. This provides us a new
@jn € D(df f-1([a,6n11—~]),n) Which satisfies (83)-(85), now on [a,én41 — 7] with
I]h = [61 — 01,En41 — 7]. With the cut-off xz,,,  defined like in Definition 6.2, set

h -
" = Xen117@in € D(dg, -1 ((a,ba)),n)-

It does satisfy, on the interval [a, b2], the conditions (83)—(85) with IJ}? and y(h) there
replaced by [a,én41 — 27] and 27.

For n € N, take v = %ﬂ The estimate B;, = O(Ah) implies By, < eﬁAh
for h €10, hy[, and (hy)nen can be chosen to be strictly decreasing. We then adjust
v'(h) =2y = %H for h € [Apt1,hn| as we did at the end of the proof of Proposi-

tion 3.8. This ends the proof. O

Remark 6.11. — In the construction of Proposition 3.9-ii), we used the extension by 0,
here on fonv+o of

* — h
f,f’l([5N+51,5N+1*’Y]),h(Af,f’l([5N+51,5N+1—'y]),h) l(thh A 500,]‘)-

Because of this, the point éx + 6; must be included in the set Ss, introduced in
Definition 6.1.

When the family (@?)jegu(a’b) is given by Proposition 6.10, the operator T}, is
defined on Span(g@?,j € ¢/*(a,b)) by

Vje (37*/1(0'7 b)’ T52(p;‘l = X5N+1,52<p?7
like in Definition 6.2 when j € X*(a,b). Moreover, following the procedure of Re-
mark 6.7, we can assume without loss of generality that v/(h), given by Proposi-
tion 6.10, equals (h), considered in Chapter 6.4 (see Remark 6.7). Now, the orthog-
onalization process of Proposition 6.6 can be continued by setting
(119)

(O35 ey o drnTo,05)

. " ~h _ ,_h h
Vjied"(ab), ¢f=¢f— Z T2 2.7
jlel—|2§m’§N°%m/,N+l(a‘1b) 2,
where ¢>’g,j, = QS;-L, (see (115)) and HG?,NH = gy . Moreover, without know-

ing the singular values of HG;ILv +1d INYEN we can replace the basis

|span(@? i€ (a5))’
(@?)jew(a,b) by an orthonormal basis (gb?)jeg*u(a,b) such that HG;’\,]+1df7hT62 QS;-L = \I/;?,
with \Il;’ 1 \Il;?, when j # j§', j,7' € &/*"(a,b), without changing its characteristic prop-
erties.

The construction of the new quasimode basis at step NV 4 1 is almost achieved, ex-
cept that the family (‘P?)jeg*(a,b) is not exactly a d;-family of quasimodes in the
sense of Definition 6.1. In fact, we have not distinguished the endpoints of bars
Jj € da,n+1(a,b) from the endpoints j = (a,¢1) € Z*(a,b) in (118). For this reason,
we prefer to introduce a different notation.
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Definition 6.12. — The family (@?)jeg*(a,b); where we keep the notation ga? = 95;?

for j € ¢/*(a,b), is called an intermediate 01-family of quasimodes if the following
conditions are satisfied:

1. It is O(e_%)-orthonormal like in Theorem 6.3 and all the properties
of d1-quasimodes in Definition 6.1 are verified, with the only difference that
Il =& — 8y, én41 — y(h)] for all j € & (a,b).

For such a family, we set 6NUh(a, b) = Span(gﬁ?,j € ¢/*(a,b)), and the operator
Ts, : Gf)h(a, b) — D(dyg, t-1(jap)),n) keeps the same definition Ty, 4,5? =Ts, ga? as in
Definition 6.2 for j € ¢/*(a,b), while

T52g5? = X5N+1,52¢;L for j € & (a,b).

2. The space °7~)h(a, b) is O(e_%)-close to Fh = Flo,5(1)],[a.b],h"

- ~

- ~ ~ S5
d(V"(a,b), Flo 501, (a5,0) + A(Flo.61)],fab),n0 V' (a, b)) = O(e™ 7).

3. When 9" (a,b) = Span(g?,§ € T*(a,b)), Ve(a,b) = Span(eh, j € Tg'(a,b),
D} (a,b) = Span(el,j € &;'(a,b)), all the properties of Proposition 6.9 hold
true.

If G* is defined like in (89), we use the notation (&?)jeé]*(a,b) and qﬁ? = QZ;L for
j € &/ (a,b) when the following additional orthogonality property holds:

(120) Uh L forj#

(121) with \i/;]' = HGhdfthfszg)?'

When 1 <m <n<N+1 and ¢, — &, < CNnt+1 — C1, the corresponding spaces will be
denoted

VP . (a,b) = Span(¢?,j € Xmn(a,b), Wk . (a,b) = Span(¢”, j € X n(a,b)),

while
@{L,N—i-l(av b) = Span(@?uj € (’7*1/(0” b))7 @?,N—ﬁ-l(aa b) = Span(&?uj € (’7*1/(@’ b))

Our construction, and especially Proposition 6.10, provides such a family
(@?)jeg*(a,by More precisely, according to (119) and the lines below, and since
Gh L Gh for 1 < n < n' < N + 1, our construction actually provides a family
(q;;‘)jeg*(a’b), that is satisfying in addition (120) and (121). Note that, like in
Proposition 6.4, the operator

OgndsnTs, : V" (a,b) — L2(f2)

does not depend on d; € ]0, ny|.
In the remaining steps, we will consider various values of a and b and the above
properties, especially the ones involving G* and

h
Ghy1 = ker(Af,f‘l([5N+1—nfvmin(bvézvﬂ-i-ﬂf)]),h)’
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which depend on b. More precisely, an intermediate §;-family of quasimodes in the
sense of Definition 6.12, and constructed for the pair a < b, will have to be conveniently
adapted for another pair a’ < b’ so that it satisfies Definition 6.12 for this new pair.

6.6. Lower bound for non zero singular values at step NV + 1

This paragraph will end with the proof of Theorem 6.3-a) at step N + 1. We are
in the case
(122) {Cl,. .. ,CNf} N [a,b] = {Cl,. . ,CNf} ﬂ]a,b[ = {51,.. .,EN+1}.
The notations ¢/}’ (a, b), &' (a,b), &/*'(a,b), and ¢/*(a,b) are the ones introduced in
(113), (114), and (118), and the spaces Gi)ﬁm(a,b), Glf)ﬁun(a, b), &, — ém < En41 — €1,
@?’Nﬂ(a, b), GZNH{‘,NH(a, b), Vi (a,b), Vl(a,b), V"(a,b), are the ones of Defini-
tion 6.12. We set

o := §X" (a,b) = §A%(a,b) = rank d(9 5(1)],(a,b],h

where the last equality was proved in Proposition 4.4 and §A%(a,b) = §X*(a,b) since
the number of bars a such that in a < z, < y, < b equals the number of their lower
endpoints.

Meanwhile, we set

b =Ly~ ny1(a,b) = §{j = (2, za) € A7(a,]), Yo — Ta < Eny1—C1}
= dim YV} (a, b).

Proposition 6.13. — Consider the case ¢1 —d1 < a < €1, ¢ny1 < b < Eny1 + 03, and

assume 81,082,063 €]0, X]. Let G" be given by (89), define V™ (a,b), 62)?7N+1(a, b), and
Ts, like in Definition 6.12, and consider

E" := T5,V"(a,b) = T5,[V"(a,b) ® V} 11 (a,b)].
Then, the £y-th singular value of HGhdf’hlEh s bounded from below by

_EN+1761+max(61,63) max(b—¢1,6n41—a)
h

<e” g = O(pueo (Mgndy p| ,))-

Proof. — With our choice é; —6; < a < & and ény1 < b < én41+93, Proposition 4.5
says

EN41—¢1+max(81,83) max(b—&1,&N41—0a)
- h h

(123) e <e" =0 (ueo (5[0,5(1)],[a,b],h)) )
with 6[0,5(1)],[a,b],h = Hthﬁf_l([a,b]),hIFh’ where we recall F"* = F[O,E)(l)],[a,b],h‘
Write ~
E™ = T5,9"(a,b) and E""=T5,V} v 1(a,b).
The assumed exponential decay and the definition of T, in Definition 6.12 yield

d(B", V" (a,)) + (D" (a,5), ") = Oe™#) < O™ #)
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and therefore

=

d(F",E") + d(E", F") = O(e™ 7).
Moreover, the decomposition E? = E* @ E"" is é(e_%)—orthogonal and we know
that

h
E" C D(ds,p-1(japl,n)>  Ag, 11 (ab) | gn = D] g
and d(F",G") + d(G", F*) = O(e~ 7).
In addition, Proposition 6.9, whose properties are ensured by the condition 3 of Def-

inition 6.12, provides the factorization

285

dy j-1(ablm)| o = C"Mpndy -1 (ap) h| o With  [[C*] = O(e™)

2862 —ny

and then [|C| [J(Fh,ah) + J’(Gh,ph)] =07ty <O ).

So, Hypotheses 1,2,3, and the inequality (69) of Hypothesis 4 in Proposition 5.8
are satisfied with B? = df 5-1(ap)),n and o(h) = 0(6_671) when 41,092,035 € 0, %f]
Moreover, we know from Proposition 6.9 that

rank(thdf’fﬂ([a’b])’h|E’h) =/ = dim@f(a, b) = ﬁg:/(a, b)

_ max(én—21,8N41—82)

and e 2 = O(Nél (HGh'dfyf*I([a’b]’h) |th)’

with max(énx — €1,En 41 — €2) < Eny1 — €1 — 2n5. With By, = dy r-1((a,5)),n, the upper
bound ||df,f‘1([a7b]7h)|E/m =O(e ) (see (109)), and (123), the inequality
(70) of Hypothesis 4 is deduced from
B 1 [ (", 6" + A, ™)
Bt ey (Mg B )+ max(pe, (Mgn BY| ), pie (B"| )

_ aNy1—81-202
R

~  26y-my

_ O(ei E1\r+1*h51*252) y O(e EN+1‘:1_2"f O(e hh )
MZO(B |Fh)
~————

see (123)
- n _ 46y+max(1,63)—n - s
=0( ") +0( = )=0("™),

if 61, 02, 05 €]0, %f]
The first result of Proposition 5.8 then implies

Vel b}, meandy -1 (anl)n] ) = £e(00.501),a1) (1 + Oe™M)),
which yields in particular (see (123))

_ max(b—31,8n41—a) ~
e g = O(peo (Mgndy, 11 ((a b)) b ga )- O
In the spirit of the proof of Proposition 3.2, and in particular of Step 3 in Sub-
section 3.2, we transfer our estimates from [¢; — d1,én41 + 03] to a generally wider
interval [a, b].
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Proposition 6.14. — Assume §1,02 € )0, %f], let a,b satisfy (122), and let G be de-
fined by (89). There exists an intermediate 01-family of quasimodes in the sense of
Definition 6.12 such that

_6N+1;51+51

= O(:ufo (HGhdf’h|Eh)) with £y = ﬁ%* (a‘a b)7
holds true by defining E" = Ts, V" (a,b) = Ty, Span(gﬁ?, j €¢/*(a,b)).

PTOOf. — Let 51,52 E]O, %] When é; — 41 < a < ¢ and EN+1 <b< EN+1 + 61,
the statement of Proposition 6.14 is an immediate consequence of Proposition 6.13.
Moreover, when a < ¢, — 61 and éy4+1 < b < €n41 + 01, the statement of Proposi-
tion 6.14 simply follows after extending the quasimodes by 0 on fg'. We thus focus
on the case b > én41 + 1. Let then 05 €]d1, %f] be such that b’ := éy1 + 03 < b and
set @/ := max(¢; — 01, a).

We start from an intermediate §;-family of quasimodes (q@?)jeg*(a%/), for the in-
terval [a/,b'], with the orthogonality property (120),(121). When a < & — 6; = o/,
these quasimodes are extended by 0 on fgl. We will use the spaces

E" (ala b,) = T5262)(/)h(a,7 bl) ® ( @ T52%ﬁz,n(alv bl)) D Tﬁzczbe—H(a/’ b/)

1<n—m<N-1

E”h(a’,b/)

E’h(a’,b’)

and, for (a,b) = (a’,b') or (a,b) = (a,b),

1
h/= 1 _ _
G"(a,b) = @ ker(Ay 1-1((a, —ny antns]nab),h) -
1<n<N+1

G (a,b)
According to (104) and to Propositions 6.9 and 6.13, we know that

h
T52GU(/) (a/7b/) C ker(HGh(a/vb/)df’h|Eh(a/’b/))’
~  _eNy1—%
TG @7.5) B1h] gn g | = O™ ),
_ENt1—E1tmax(81,93)

and e h = ON(;U'ZO (HGh(a',b/)dfyhlEh(a/7b/)))'

Comparing the singular values of th(alwb/)df’hTM ) and of HGh(a/,b’)df,h|Eh(a

OZ)h(a’,b’ /,b/)

is straightforward owing to
* * A _nf
1T5,T5, — Idgn(ar ol + 1 T5, Ts, — Idapn a5y [l = O(e™ ).
Meanwhile, the spaces Ilgn(q pydsn(T5,WE ,(a’,V')) are mutually orthogonal
and orthogonal to th(a/,b/)df,h(Tgﬂ;)l)NH(a',b')), thanks to the orthogonal-
ity property (120),(121). Owing to Proposition 5.4-b), the non zero singular

values of HGh'(“':b')df’HEh(a' yy are then obtained by collecting the ones of

)
Haz(a/’b/)d‘f’h|T52°72)¢n’n(a',b')7 1 S n—m S .Z\]—].7 and of HG}ItJ+1(al’b/)df’h|T52@

g (a0
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Moreover, since the family (&?)jeg*’(a’,b’) satisfies Definition 6.12, and thus the

statement of Proposition 6.9, the singular values of IIgn o/ p/)df,nTs, |GZA),*;L,n(a’,b') satisfy
pn 8 e whenn—m < N —1 (see indeed (116)), while we know that the ones

of HG%H(a’yb’)df’hT‘M satisty, for £ < #0 n11(a’,b') = 40 n11(a,b),

GM?,N{»I(Q,’Z)I)

EN41—¢1+max(dy,83)

e g = O(pe(Mgn  dynTs,|

~ _&tNy1—&
h

) = Ofe )-

waN+1(alvb/)

Let us now construct the family (@?)je *(a,p) for the interval [a, b].

— For the j = (o,én41) € &f'(a,b), we take an orthonormal basis

(@?)j:(a,éNH)eézy’(a,b) of ker(Ayg -1 ([an1—01,8]),n) (extended by 0 on f§N+1_61).

— For j = (a,¢) € ¢fy'(a,b) with & < én1, we “extend” the quasimode QZ;’ as a so-
lution to df,hgbg' = 0 in [a, b], as we did in Proposition 6.10 by referring to Propo-
sition 3.9-ii), with the new artificial “critical value” b’ = ény1 + 03 > Cn41 + 01,
in the interval [én41 + 91, b].

— For j € Hpmn(a,b) with 1 <m <n < N, we simply keep @;? = qu;‘

— For the j = (a, z,) € *(a,b) such that y, = ¢y11 and the j = (o, 1) € Z*(a,b),
the construction is detailed below after comparing, for mo € {1,..., N}, the two
maps

HG a’,b/)df,hT52

h
Nl |V7}7110,N+1

and
HGh

N+1

(a,)dr,nTs, =1Tgr (050 Ts

lyn
VmO,N

v o

N+1
with

V= B Whaal) Wy @),
max{2,mo}<m<N+1 .
1II mo=
We recall that
dim W), noq1(a, V) = §Hn,n+1(a,0) when2<m < N +1
and  dim W v, (d,b) = 490, N+1(@,b) U {j = (a,&) € Z*(a,b)},

where (@, b) = (a’,b') or (@,b) = (a,b), and we set, for mg € {1,..., N},

Jm07N+1 = <|_|m0§m<N+lgcm7N+1(av b)) U {.7 = (04,51) € Z*(a” b)} .

if mo:l

Since the \i/? = HG%H(alvbl)dﬁhT(szé?, J € Jmg,N+1, are mutually orthogonal and
owing to the information on the singular values, there exists an orthonormal basis
(Yr)1<k<dim Glyyy (b)) of G 1(a’,V') such that the matrix

Mh — (<'lpk, HG’IL\,+1(a/,b’)df,hT52¢;?>>

1<k<dim G 1 (a/,b'), GE€Tmg, N 41
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= (W, 47 To,)))

1<k<dim G}, (a’,b"), €T mg,N+1

has the following block diagonal structure:

— When mg > 1:

h Dh h . ho .
M" = NE D" = diag(A}, j € Jmo,N+1),

where /\? % - e for j = (o, o) € Jmg,N+1-
— When mg = 1:
M" = proo D" = diag(\", j = J >é
= 0 Rh ) - lag( 0 J= (OK,CL'Q) € 1,N+1,Za = 02)5
where /\? P e~ 6N+rlwixa for j = (o, %) € J1,N+1, Ta > C2, and
(124) IR =O(e= %),
while, for £y = #(J1,y+1 N &*(a,b)), the £j-th singular value is bounded from

below by
_ eN41—@81+max(81,53)

e~ PETEEEEE _ G (g (M),

Proposition 3.9-iii) provides an isomorphism A, : G%.,(a,b) — Gk ,(d/,b) =
G% . 1(a,b') such that
* * s, %3
”AhAh - Idc?m(a,b)H + [ An A}~ Tdgy, = O™ F)
Vi = (a,&) € Jmg,n+1, Y0 € Gy 1 (a,b),
(125) (d.n 5,07, ¥ — Anp) = O(e”

By wusing the O(e_%)—orthonormal basis (&?)

EN41—E+283
R

I

h
jEJmo,N+1 Of Vmo,N+1 aund the

O(e_%)—orthonormal basis (A;lw,’;)lgkgdim Gl y1 (a,d) of G%,,(a,b), the singular
values of the matrix

M = (<A;1¢,’;,df,hT(;qu;w)lgkgdimy}V

+1(a7b)) jEJmO,N+1

_ min(8;,63)
h

coincide modulo a é(e )-relative error with the ones of Ilgn (g 4\ ds 1T,

|vh
mg,N+1
according to Proposition 5.4-a). With the above inequality (125), the j-th columns
~ s
of M'" and of M", for j = (a,74) € Jmg.N+1, Ta > o, differ by a O()\? X e_sz).

When mo =1 and j = («, é1) € J1,n+1, the j-th columns of M'™ and of M" differ by
~ EN41—€1+263 .
a O(e” R ) error. Hence, we can write

EN41—C1+283
R

~ 253 ~
M = 1d+O(e”® ))M" +0(e”

~
if m0:1
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When mg > 1, the singular values of M'* coincide with the ones of
M"™ = (1d + O(e~ 7)) M"

with a 0(6_%)—relative error.
When mg = 1, the £;-th singular value of M"" := (Id + O(e~ %)) M" satisfies

&N 41— +max(s1,83)
RS A i

e = Oy (M"™)).

Hence, we get
253 —max(81,63)
h

M/h _ M//h + O(e
Since §; < d3, Proposition 5.7 implies:
VEe {1, 0, pe(M™) = p(M™)(1+ O™ 7).
We have thus proved that for all mg € {1,...,N}:

Ve e {1,...,min(#Jme N+1,40)}

pey (M™)).

~ 51

) = mean (@ drnTs |, )1 +0(e ™).
mq

,N+1

NZ(HG’]Q_H(a,b)df,hTéz |Vr}ﬁ0

,N+1
In particular, since
_eN41—¢1+63

Vs e]al,min(%f,b—e]m)[, e T = Oy (Tgn

N+1

(a,b)df,hT52 |V1}fN+1 ))7

and the right-hand side in the latter equality does not depend on d3, we get

_ENg1—G1ta -
(126) h = O(pg, (HG'IL\,+1(a,b)df,hT52 |V1’TN+1))'
We now finish the presentation of our quasimodes ((ﬁ?)je Jin4+1- Like in the proof
of Proposition 6.6, we construct by reverse induction from mg = N to mg = 1,
starting from the family (&?)jeJLNH, a basis (@?)jeJmOYNJrl of thU’NH and
an orthonormal basis of G, 4+1(a,b), independent of mg, such that the matrix

of HG;ILVH(a’b)df,hT(gz |y in these bases is diagonal (add possibly lines or columns
mg,N+1
of zeros to make it square). Since this process preserves the flag (VrilLo,N+1)1Sm0<N+1’
the support condition and the exponential decay estimates are valid for this new
~ s
basis of V{"y ;. The O(e~ 7 )-orthonormality of the full new family (@) e+ (ap)

and the O(e_%l)-proximity to Flo,5(1)},[a,b],» hold true, especially with our choice
for j = (a,én+1) € Z*(a,b). This proves the conditions 1 and 2 of Definition 6.12.
For the third condition, we notice that the spaces V/(a,b) and UV (a’, V') are equal,
like the spaces G (a,b) and G"(a’,b') when 2 < n < N, while T}, is not changed.
Moreover, in the case n = N + 1, the above orthogonalization process until V{fN 11

and the asymptotics of the singular values of Ilgn (4 5)dfnTs,],,, finish the
N1 ’ VoiN+1

verification of the properties stated in Proposition 6.9 for E'* = Tg;GZ)’h(a,b) with
G" = G"(a,b).
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Finally, it then follows from (124) and (126) that
EN+}1 —&

(127) oo Mm@y drh|g, on(qpympn) = Ol€”

_SN41—¢1+61

and e R = O (e, (M n

N+1(a’b)df’h|T52GZ)h(a,b):Eh))' O

Remark 6.15. — Although we used the notation (@?)jeé]*(a,b)v notice that we obtain

at the end of the proof an intermediate §;-family of quasimodes (é;)jeg*(a,b) which
satisfies the orthogonality property (120),(121) in the interval [a,b]. It was actually
more important in the proof to put the stress on this property for the initial family
given for the interval [a/,b'] = [¢1 — 01,én+1 + I3]. However, the orthogonalization
process can always be carried out afterwards.

Proof of Theorem 6.3-a). — Let a,b satisfy (122) and take 41,2 €]0, %f] We recon-
sider the proof of Proposition 6.13 for the pair (a,b) with the new lower bound of
Proposition 6.14:

_éN41-¢C1+9d1

e D = é(/xeo(ﬂghdf’HEh)) with ¢y = ﬂgc*(a, b).
We then set E" = E'" @ E'"",
E™ =T5,V"(a,b), E"™ =T5, V% y,1(a,b),
where 9" (a,b) and GNUf ~N+1(a,b) are associated with the intermediate 6;-family of

quasimodes (95?) j€g*(a,p) Provided by Proposition 6.14. In particular, the verification
of the inequality (70) in Proposition 5.8 now becomes:

| 1 |CHI(dLF™, G") + d(G", F™))
e ey (g B ) max(ue, (T B ), 1ty (B )

_eN41—81—2% ~  EN41—¢1—2nf ~ 28—y - 6N+161+51:|
I —

=0~ 7 )x |0 ® )+0( 7 )xO(e

IB"

F)+0(E ) =0 ),
with 51,(52 S %
The conclusion of Proposition 5.8 is then

~ 51

Vee{l,.... b},  pe(dp0,601)) la.01,0) = He(Mgnds, p=1((a,0),h ) (1 + O(e™ ),

~ 13
and  pugg41 (Handy, p-1(fab)) n| ) = O(e™ ™ ) ey (810,5(1)1,faspl,h)-

In particular, we obtain

_eNt1—é1td1

e " = Oty (90,51, fa.b1.1))
and therefore, since the right-hand side of the latter equality does not depend on §1,

_eN41—%

e = O(puey (80,501, fasbl k)
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Using in addition (127) (together with Proposition 6.9) leads to the statement of
Theorem 6.3-a) at step N + 1. O

We also proved
_tNg1—€1+01
h

~ 51 ~
(128) pueo41(Mgndy p=1((a,b)),n] gn) = O(€™ 7 )heo (810,5(1)),[a,1,0) = Ole )

Moreover, according to the comments made around (119), one can choose the interme-

diate d;-family (¢?)je§]*(a,b) such that the orthogonality property (120),(121) holds,
and then such that

(129) [B2) ' e "5 for every j = (a,z4) € X" (a,b).

6.7. Construction of the family (@7) jeT*(a,p) at step N + 1

We now end the proof of Theorem 6.3 at step N+ 1 by finishing the construction of
the d;-family of quasimodes (go?‘) jeg*(a,p)- The statements b) and c) in Theorem 6.3
will be easily checked at the end.

Let a,b satisfy (122), let G" be defined by (89), and let 61,d, €]0, %f] We start
with an intermediate d;-family of quasimodes for the interval [a, b] which satisfies the
orthogonality condition (120),(121) and the estimates (128) and (129).

We first work in the interval [a’,b] with ' = max(a,é; — d1). Note that, since
the quasimodes are all supported in [a¢/,b] and Gl(a,b) = G!(a’,b) for every
2<n <N +1, the family (¢?)jeo7*(a,b)=g*(a/,b) is still, for the interval [a/,}], an
intermediate d;-family of quasimodes which satisfies the orthogonality condition
(120),(121) and the estimates (128) and (129).

The quasimodes (@?)jeg]*(a/,b) are not changed, i.e.,

h_ Th
ij - Y5>
when
je&h’(@,b) =Y (d,b)u{j=(a,) e Z"(d,b),> ¢}
. [ ! _ ’
or jed*(a,b)= |—|1gm<n§N+1(%n’n(a ,b).
We must now construct the remaining quasimodes @?, j=(a,¢1) € Z*(a’,b), in order
to ensure
go? e ker(dg p-1(jarp)),n) for every j = (o, &) € Z*(a',b),
while we only know for the moment that, for those j, (128) implies

EN41—G1t+681

[0 = |Hgnds 1 Ts, 8" = O(e™— = ).

We recall that those quasimodes qgél, j=(a,¢1) € Z*(a’,b), were until now considered
in the space 6Z;){”J\,H(a’,b), together with the quasimodes (73?7 Jj € Jda,n+1(a’,b). Let
us also recall that the rank of djg 5(1)jja’,5],n Satisfies (see Proposition 4.4):

(130) rank 5[0,6(1)],[a’,b],h = lo = X" (d/, b).
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Proposition 6.16. — For j = (a,¢1) € Z*(a’,b), where ' = max(a,é — 1), there
exists (0 ;1) jreg=(arp) Such that

“h 0‘?] ih
G- 2 e

3 € (a’,b)

belongs to ker(djo,5(1)},[a’,5),nT5,) with, for every j' € A*(a’,b),
~  _tNy1—€1+8
h

ah 51 :O(e

Y

Proof. — For every j' € X*(a’,b), we set

h
d)h/ = \Ilj/ )
I =
[gal

so that, when j' = (o, z,) € *(a’,b),

lo _ya*ch
g h

MandpnTs, 8l = W 0lh, [0k 2

and (1/; ))j7€%+ (o’ ) 1S an orthonormal system in G™.
By writing, for j' € &0*(d/,b),

910,6(1)],[a’ b, hT62¢ o= Ilpndy, hT52¢
= Mgndy Ty, 8" — (Mgn — TpnTlgn)ds 1 Ts, 0%
(131) + (pn — HFhHGh)df,hT52($?/
with F* = Fig 5(1)] /51,0 AF", GM) + d(G", F?) = O(e= "), and (see (109))
Th Th (1A (022
ldnTs, 05 1| = [1¥5[|O(e ™)
we deduce from (131) that the family made of the

S b T5dl .
9?[ — [0,6(1)] [@h] 27 , ]/ c Sc (a',b),
% |l

defines an O(e _5*1) orthornormal system of R” := Ran 310,5(1)],[a’,b],h- OWing to (130),
the family (0 ))j7 e (ar,b) 1S thus an O(e” * »)-orthonormal basis of R". Denoting now

by (9 ))j e (a2 ) the dual basis of (9 ))jre%+ (ar,p) in R", that is the unique family

satlsfymg
Viji,ds € X*(a',b), 6 € Ry and (05, 055) = 851 55,

the family (0 1) e%+(a’,b) 18 also an O(e™ * " )-orthonormal basis of R" and the orthog-
onal projection on R" is given by

Yu € Fh, Iznu = Z <9A;}/,U>0j/ = Z

j'€X* (a’,b) j' e (a’,b)

<0'7u>

“h
010,6(1)],[a’ 6], L5, P -
II‘IJ” I 2
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6.7. CONSTRUCTION OF THE FAMILY (¢");cg%(a,sy AT STEP N +1 101

For j = (a,¢1) € Z*(a’,b), the same decomposition as (131) with now ||\TI§L|| =
O(e”

EN+1—¢1

) and [[dg T, @] = O(e~ "5 7) leads to

EN41—C1+81
R

EN41—E1+81

I610,501)1, 0 0 n Do @ Il = Oe™ 7).
The statement of Proposition 6.16 follows easily by taking, for every
j=(a,¢1) € Z*(a’,b) and j' € &*(d’,b),

o 5= (0%, 80,51 far 01, n T52 8- O
The following statement finishes the proof of Theorem 6.3.

Proposition 6.17. — Assume that a,b satisfy (122), let 61,62 €]0, %f], and set
a’ = max(a,¢; — 01). The family (‘P?)jeg*(a,b) defined by

Q=g when j € I (a,b) LY (a,b) U {(,8) € Z(a,b), > &)

and

(p? = 1f2, x Io,5(1)],ja,5],2 T 62 (gsjl — Z ||\Ij}f ” h) when j = (a,¢1) € Z*(a,b),
j'€X* (a,b)

where the coefficients aJ ;o are given by Proposition 6.16, fulfills all the conditions of
Theorem 6.3 at step N + 1.

Proof. — We use here the notations ¢’ = max(a,é — 1) and, in order to avoid
confusions,
W"(a,b) = Span(¢?, j € J*(a,b))
and G&Ji(a, b) = Span( ~§”,j € X*(a,b)),
where (q;h)je J*(a,b) 18 the intermediate J;-family of quasimodes we started with.

~, _EtNg1—C1+8;
From the estimates of, = O(e Z

33"
||\Ilh ||~ for j = (a,¢1) € Z*(a,b) and j' = (a,z,) € H*(a,b), we
deduce that

h
Vi=(aa)eZ @b, | 3 \Ij’,j an
sesmian 151

) (see Proposition 6.16) and

lo, Ya—ZTa
g - R

—O(e™ ).

-

- s
Since in addition (F[0,5(1)],[a/7b]7h,GZz)h(a, b)) + d(GZz)h(a, b), Flo,5(1)),]a’,b],n) = O(e™ %),
it follows that

< =, % . ~ x
e} — &3l = O(e™™) for j = (a,&1) € Z(asb),
and the family (@?) jeg*(a,b) is thus O(e_%)—orthonormal. Moreover, the exponential
decay estimates on the q?)é?,, j' € X*(a,b), lead to

o1

h).

h
|f—é1l oy s~ ~
Vj=(a,¢1) € Z*(a,b), He m ( E I qS’-@)H =0(e”
aezed jreiam IEHI7 7MW 0= e 0\Ss,) (
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102 CHAPTER 6. ACCURATE ANALYSIS WITH N “CRITICAL VALUES”

This implies, together with Proposition 4.7, the required exponential decay estimates
on the cp;?, j = (a,¢1) € Z*(a,b). Besides, Proposition 6.16 gives

h
Th Q5" Th
df,hH[O’ﬁ(l)],[a’,b],hT(Sg <¢J - Z ||\i‘l7; || ¢J)
'€ (ab) 175

h
“h CY'"/ ~h
= 6[0,6(1)],[a/,b],hT52 (¢J - Z ||\i‘/]}f || ()bj) = 0
'€ (ab) 17

All those properties are preserved after extending those quasimodes by 0 on fgl when
a < a'. Therefore, the family (cp?) jeg*(a,p) satisfies all the conditions of Definition 6.1

and is thus a O(e’%)—orthonormal 01-family of quasimodes. Since in addition

- - ~ 51

d(Flo,5(1)1,a,b),h> F10,6(1)],[a,6,0) + A(Flo,5(1)],[a,6],h> Flo,6(1)),[a7,01,0) = Oe™ ™),
the statement b) of Theorem 6.3 is also satisfied.
It only remains to check the factorization stated in Theorem 6.3-c). Since

dnTs, ¢} = dpnel =0 for every j & X*(a,b),
it suffices to prove the existence of C” such that the diagram

~ A p=1(la,b),n To2

V" (a,b) = W" (a,b) L*(f~'([a, b))

oh
I0,5(1)],[a,b],ndf,n Ts, T

Flo,5(1)),[a,b],k

. . . h A 2682
is commutative with ||C"|| = O(e™= ).

Since Mgndy,Ts, " = Uh with || Th|| R =5 When j = (o, 7a) € X (a,b)
with the orthogonality property (120),(121), reasoning as at the ends of the proofs of
Propositions 6.8 and 6.9, we obtain the commutative diagram

~ Ay p=1(la,b)),n 152

@_’i(a, b) = ‘Mi(a, b)

with ||C*| = O(e%) We conclude by applying Lemma 5.6 with B" = d ¢-1((4.47),2T5,
F* = Flo,5(1)),[a.b],h» and

nf

d(F",G") + d(G", F") = O(e™ 7). O
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CHAPTER 7

COROLLARIES OF THEOREM 6.3

The statement or Theorem 6.3 is much more flexible than its illustrative statement,
Theorem 1.7, given in the introduction. Actually, even its proof, and especially the
intermediate propositions of Subsection 6.3, have easily derived consequences which
are listed here. Subsection 7.1 reviews consequences on the eigenvalues and eigenvec-
tors of the Witten Laplacian Ay t-1((q,4)),,» When f is fixed. Subsection 7.3 studies
how the logarithms of the singular values of df ¢-1([4,)),, Vary when f is changed.
It contains a generalization of Corollary 1.8. Remember that Theorem 6.3 is proved
under Hypothesis 4.1 which gathers Hypothesis 1.2 or (Hypothesis 1.6 and Hypoth-
esis 2.16) for a more general Lipschitz function f. Hypothesis 1.2 or Hypothesis 1.6
ensure that f has finitely many “critical values” ¢; < --- < cn,.

When a,b ¢ {cl, -+ +5CNy }, Aj -1(a,p)),n is the self-adjoint Witten Laplacian in re,
with Dirichlet boundary conditions on f~1({a}) and Neumann boundary conditions
on f~1({b}), according to Chapter 2.

Finally, the bar code associated with f, under Hypothesis 1.2 or Hypothesis 1.6
(see Subsection 8.3.1), is B(f) = ([aa;bal)aca, defined in Subsection 4.1 and in
Appendix B. The restricted bar code 3(f;a,b), and the set of endpoints &/*(a,b),
X*(a,b), Y*(a,b), Z*(a,b), all graded according to the degree p € {0,...,d}, are the
ones introduced in Subsection 4.1.

7.1. Spectral results

The first result generalizes Theorem 1.7.

Theorem 7.1. — Assume Hypothesis 1.2 or (Hypothesis 1.6 and Hypothesis 2.16)

for a more general Lipschitz function f. Let a,b & {cl,...,cNf} with a < b and
let Ay p-1(ap))n = EBi:o A(fzj},l([a’b}),h be defined like in Proposition 2.8 with

Ny = f~'({a}) and N,, = f~'({b}).
The number of 6(1)-eigenvalues of Agcp}_l([a W)k equals 7P (a,b), while

dim keI‘(ij},l([a’b])’h) = ﬂ(p)(fb7 fa) = ﬁz(p) ((l, b)
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104 CHAPTER 7. COROLLARIES OF THEOREM 6.3

Moreover, the non zero 6(1)-eigenvalues of A;p}_l([a W),k counted with multiplicity can

be labeled A\ (R), o € AP (a,b) U APV (a,b), with

vitloan

AP (h) %8 25 o e AP (a,b) U AP (a, b).

With the usual supersymmetric argument which was already recalled in Proposi-
tion 4.4, it is a straightforward consequence of Theorem 6.3-a).

The above result can be completed by some information on the eigenvectors.
We start with the link between the singular values of (o 5(1)),(a,5],n, the truncated
version of dy t-1([q,p)),1 introduced in (81), and their approximation via the intro-
duction of a basis made of quasimodes, and the spectral elements of the opera-
tor 5[*0,5(1)],[a,b],h5[0,5(1)],[a,b],h’ The spectral elements of

io,601)),la,6,n A 1 £ (fab).h = 910,6(1)),fa,51,1910,6(1)][a,bl ke + 010,6(1)],a,61,8910,5(1)] a,b],
will be described afterwards by referring to Hodge decomposition and to duality.

Proposition 7.2. — Keep the same assumptions as in Theorem 7.1 and define
nf > 0 like in Hypothesis 4.1. Let 5[(5)6(1)] (a,b],h denote the restriction of dy r-1(ab)),n

(p) (p) . (P) (p+1) ;
totF[o,au)],[a,b],hf Ottt * Foowliatln = Flos)lablne occording to (81), and
se

L(p) — {bgtp+1) — agp)’ o € Agp) (CL, b)} )

_onp €1
(5 = —_
= min( 5 8
Take the §1-family of quasimodes (@?)jeg*(a,b) giwen by Theorem 6.3 with §; = —nsf

(and with any §y €10, %)) and define, for € € L®),

U™ = Span (¢}, j = (0,00)) € AW (a,b), ¥ 2l = 1),

L4 0 eL®) > 0.

and

%i”ggh := Span(¢”, j € Y¥)(a,b) UZP) (a,b)).
Then, for every £ € L) L1 {+o0o} and p € {0,...,d}, the distance between Glée(p)’h and
Fz(p s estimated by

. . - s
d(%[(?),h,FE(P)ah) + d(FZ(p)’h,%e(p)’h) _ O(e_Tf),

where Fe(p)’h C F[(O’jzi(l)],[a,b],h C  L2(f% APT*M) is the spectral subspace of
[+5f

—2
R e

5(12),* (p)

Lt
10.5()] fa.81.1910,5(1) [a 21 foT the spectral range [e T

Proof. — With our choice d; = %, the basis (@?)jeg(m(a,b) is a O(e‘g*ffl)—orthonor—
mal family such that, according to Theorem 6.3-b) and to the definition of Ts, (see
Definition 6.2),

. ~
(132) Vi e TP (a,b), M50y, ab,nTs. 07 — @l = O(e™ ).
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7.1. SPECTRAL RESULTS 105

For j € Y (a,b) UZ® (a,b), the equality
810,5(1)],[a,81,h L0,5(1) a0, T2 9 = Tj0,5(1)),fa,p),nls,n P} =0

. . . ~o _0f
then implies that (H[O,é(l)],[a,b],hTéz@?)jey@(a,b)uz(?)(a,b) is a O(e™ sr )-orthonormal
basis of ( )
p),h
ker((5[0 (UL labln) = :
This leads to the result for £ = 400 and 1n1t1ahzes the decreasing induction with
respect to /.

Assume now that for all £ > ¢, in L"), we have proved
- ~ s
dUP" FPMY) 4 dEP P = Oe 7).
Let us check that it is still true for £ = ¢,. Like in Subsection 6.3, we introduce G"

defined by (89),(90), G* = ker(Af f-1((,—ny,én+nsln[ab)),n) defined in (103), and the
spaces V), ,, defined in (98) by
VI = Span(p}, j € T, (a,0)).
In particular, we have
U= O v,
En—Em=Lo

while ITgn, (p+1)d T52 (Gyﬁ,f)nh) c Gp®tY with GRETY | Gh @) for n # n/. From
Proposition 6.4, we know that the mapping IIqs, (p+1>d§f 25, %(p) h_ g0+ does
not depend on d; €]0, —] while Proposition 6.5 and Proposition 5 4-b) ensure that it
is one to one with (only non zero) singular values all satisfying py, s e . Moreover,
following the analysis made in the proof of Proposition 6.4, the factorization (94)

holds with here E" = T5,%"", By = d¥}_, ( yy »» and [|C*]| = O(e*#). Hence,
using Lemma 5.6 with the relation
hy(p+1) (p+1) 77 (p+1) hy(pH1)\ _ Ay o—
A&, G, ) AFG ) o G0 = O™ )
leads to
252 nf

®) ()
Mmooy b1 (a )l gn = (dza(ny + Ole ) 0,510,114 £ (a,61,m) | g -

_s5(P)
=000,5(1)1,a,b], h|Eh

Thus, since T, : %éf)’h — EM is O( -5t )-unitary, the operator 5P

[00 1)],[a,b],h
T52%Z(f)’h — F[(Ozjall))],[a,b],h is, as Ign, (p+1>d§c 2 Ts, GM(p) h L agh (P+1) | one to one

with singular values all logarithmically equivalent to e ZTO
In particular, for all j = («, x((lp)) &P (a, b) such that y(p+1) x(p) = {y, we must
have ,
_to

(p) h) log
”5[55(1)]7[a’b]7hH[0,6(1)],[a,b],hT52‘Pj | ~e ™.
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106 CHAPTER 7. COROLLARIES OF THEOREM 6.3

From the previous estimates, the new family of vectors (u?) defined by
h h
uf = (1= > Mpw ) o1y a6 L5 7
>4

and indexed by j = (a, x&p)) € P (a,b), y P _ 2 P) = ¢, satisfies

,(p) ) hy log _of
(133) (uf, 5, 5(1)] [a,b], h5[o S e ht) Y€

,(p) (p)
(134) uj L Ran 1[0767 totsy (5[0 o106, 2000 (1) bl h)

5
(135) and lult — ) = O(e™ 7).
Note that (133) and (134) follow easﬂy from the definition of the family (u; hy, while

(135), which also implies the O(e~ ) orthonormality of the family (u ) follows

from (132) together with the estimate, for £ > ¢y and j = (a, w&p)) € Sé(p)(a,b),
SO 0

ho_ _ h h
Hpwney = (HFép)"‘ HFép),hH%(m,h)wj + e nIlgm.n@;

);

where the last line follows from the induction hypothesis and from the O(e_g%)—or—
thonormality of the family (¢);cgt (a5)- The relations (133) and (135) imply that
the vector

7f
h

— O F) +O(e ) < O(e

”;'L = 1[076_2204;L (5[6(5()1)] [a,b], h5[o )0(1)] [a,b], B )Uj
satisfies s s
lof —ulll = O(e™7) and thus |[|vf — " = O(e™7),
while (134) yields
v;’ € Fz(f)’h.

— ~ 8
Hence, we have proved d(%e(f)’h, Fe(:)’h) = O(e‘Tf) and thus, using
dim U =4 {j = (,20) € Sé‘p)(a,b),y&p“) — ) = by} = dim FP"

implies J’(Fe(f)’h,%éf)’h) + cf(%e(f)’h, Fe(f)’h) O(e~ ) This ends the proof of Propo-
sition 7.2. O

Now quasimodes have been constructed for d¢ t-1([4,4)),n, the dual version can be
given. Remember that

&5 = (~1)%8 %1 e (hd)e hx
and the construction of §;-quasimodes for d; F-1([a b)) is equivalent to the construc-

tion of d;-quasimodes for d_g _f)-1([—p,—a]),n, Where the fiber bundle AT*M is re-
placed by AT*M ® ory;. Accordingly, the degree p is changed into d — p, the order
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7.1. SPECTRAL RESULTS 107

of critical values is reversed and, in the interval [a,b], the role of lower and upper
endpoints in the sets 0*(a,b) and Y*(a,b) are interchanged.

Definition 7.3. — Under Hypothesis 4.1 and with 6; € ]0, %f], a dual 61-family of
is defined like the family (go’;’h

—

quasimodes denoted by (w;’h> ) mn
jeg*(a,b) JE€T*(a,b)

Definition 6.1, with degree recalled here in the superscript ", after replacing:
— df,p1(fa,p)),n bY d} F=1([a,b]),h?
— I =2 = 61,y — y(h)] when j = (o, 2¥) € HP)(a,b) by
1P = [z 4 4(h),yP +61] when j = (a,yP) € Y¥)(a,b),
— and Il" = [¢ — 61,b] when j = (a,¢) € Y®P) (a,b) U ZP)(a,b) by
" =la,6+061] when j=(a,& € dP (a,b)UZ" (a,b).

Finally, the truncation operator Ty, introduced for 6o € 0, —] in Definition 6.2 has
to be replaced by T52 defined by

—

oo _ | x = () € Y0 e,)
27j -
o if j € (P (a,b) UL (a,b),
where Xz.5,(T) =X (f(ﬂf(s)—c> ’
2

for a fized X € C*(R;[0,1]) such that X =1 on [2,+0o0[ and supp X C ]1,+o0].

Theorem 7.4. — Like in Theorem 7.1, assume Hypothesis 1.2 or (Hypothesis 1.6
and Hypothesis 2.16) for a more general f, which is equivalent to Hypothe-
sis 4.1 when the definition of ng > 0 is added. Let a,b & {cl,...,cNf} and
let Aff L([ab]),h = Qap 0 ff*l([a,b]),h be defined like in Proposition 2.8 with
N = f~'({a}) and N, ~1({b}). We set, like in Proposition 7.2,

L(p) _ {b&]’-i—l) _ agp),oz c Agp)(a,b)}

and §; = min(%f, |€—8€’| LA 0 e L®) > 0.
The 61-family of quasimodes ( ; )ieg*(a,p) 15 given by Theorem 6.3 with 6, = Sf
and its dual version (go/;?l)jeg*(a vy by Definition 7.3. For £ € L®) | we define lastly
%ﬁv:%mh qh

where %Z(p)’h = Span (apj, j=(a,zP) € LP (a,b), y@T) — 2P = E)

and TP = Span (T, 1= (0.4) € YP(anb), o) — a0 =)
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Then, for every £ € L) the space @EP)JL is close to FP) evo; e—sy according
e &R ],[a,b],h

to

7 [ 55(P):h > (p),h ~ %
dlw”" F® Jhsr s +d(FP ., ., U = 0.

[e™2 &2 1,la,b],h [e™2 " L2 R ] [a,b],h
Proof. — Let us first recall the relation
(p) (p) _ s(p-1) (p—1),* (p),* (p
A b1 (0t w0501 farbl b = O o,y 0051 b1k F 010, 8(1) (a1 1010.6(1) a1

A B
where A and B are self-adjoint and satisfy AB = BA = 0. We deduce from this
observation and from the Hodge decomposition that, for A\, # 0, A\, = o(1),

L
ker(Afvf—1([a7b])7h - >\h) = ker(A - )\h) 2] ker(B - )\h)

Moreover Proposition 7.2 says

- - ~ s

d(%Z(P),h7F£(P),h) + d(FZ(P),h’%e(P),h) _ O(e_Tf),
where

(p);h T
FZP AL — @S*Z%S)\hgefyihéf ker(B — )\h)
~ 1
The proximity of %ép)’h to @ exs; ¢—s; ker(A — Ap) is the dual version. O
e 2 R <Ap<e *TR

Remark 7.5. — The last result about the eigenvectors of Ay r-1([, )y, arouses several
comments.

— When there is a single bar o € AP (a,b) with length ¢, then Af F1(a b))k (resp.

. . . . 1
Agcp ;'13 (?a W), ,) has one eigenvector associated with the elgenvalue An 2 e F

localized around f_l(a;gp)) (resp. f~ ( (pH))) and O(e~ ) close to the corre-

sponding quasimode <p;.p)’ (resp. <p(p+1) "y with j = (a, x&”)) € AP (a,b) (resp.
. 1
J = (yd™) € Y#ti(a,b)).

— Once we have approximated the eigenvectors associated with the non zero eigen-
values by the quasimodes 90? or <ph, one can recover an approximate description
of ker(Ay, t-1((a,p)),n) bY con31der1ng a basis of Span(gaJ ,Jj € Y*(a,b) UZ*(a,b))

whose elements are O(e™ ) orthogonal to all the gaj,, i € Y*(a,b).

— Actually, the description of the eigenvectors with a O (e~ 67) error in the L?-norm
is much less precise than what we were able to do with the quasimodes wj’h,
with a wide range control of the exponential decay estimates. We also know from
the proof of Theorem 6.3, and this is again illustrated in the proof of Proposi-
tion 7.2, that working with the family of quasimodes («p;”) j€J*(a,p) 18 much more
flexible and informative than working with the eigenvectors of Ay t-1((q,0)),n-
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Note specifically, in the proof of Proposition 7.2, the use of the orthogonality
Gh 1L GZ, for n # n’ in the separation of the different exponential scales associ-
ated with the different lengths of bars. This really relies on the fact that G" is
made of kernels of separated local problems. Such an exact property is com-
pletely lost if we use instead the full spectral space Fig 5(1)],a,b],h
— From the modeling interpretation, it is interesting to note that the quasimodes
(‘P?)je I*(a,p) CAITY the same heuristic as the true eigenvectors for small times
although they do not belong to D(Ay t-1((q,5)),n). For simplicity, assume that
there is a single bar o € Agp)(a, b) with length £.
Then ¢}, j = (a,z,) € JP) (a,b), satisfies
et mmglh — e gh| = || (e Ars et — =) (g — )|

~ _5f
< 2|} — unll = O(e™ ),

. . . . . . log _o¢
where uy, is the unitary eigenvector associated with the eigenvalue A\, ~ e 2%.

. —tA, _ .
In particular, e "= 1.f 1<[a)b1)'h<p? ~e “‘hgo;‘ makes sense for times longer than

. 1
the lifetime i 2% €27 of the metastable state up as h — 0.

7.2. Quasi-isomorphisms

Before the present text was published, Xiaonan Ma asked whether there is an
explicit quasi-isomorphism between the bar-code and the restricted Witten complex.
A direct answer comes from

(p) (p) 1)
ke]f(‘s[o 5(1)],[a,b], )/Ran(‘S[O 0(1)] [a,b], B~ ker(do 1([a,b]), 1)/Ran(d T F=1([a,b]),1 1)

~ H® ((K&*(a,b)7 dg);R),

where (K‘g*(“*b), dg) is the trivialized version of persistent cohomology given in Ap-
pendix B.2 by dgz}, = y:™! for (a,z}) € X*(a,b), dgyl, = 0 for (o, y) € Y*(a,b)
and d gz} = 0 for (o, 2%) € Z*(a,b).

Actually a more explicit version of the quasi-isomorphism can be given by using
the projected quasi-modes constructed for Proposition 7.2 and Theorem 7.4. Such a
result corresponds to the statements of [98]-Section 6 elaborated from [55] and which
are important in the application of Witten type techniques in the exploration of more
subtle topological invariants (see [11] and [98]).

Before giving a more accurate description of this quasi-isomorphism, lgt\ us notice
that the family of quasimodes (¢?);cg«(qp) Of Definition 6.1 (resp. (S"?)jec‘/*(a,b)
of Deﬁnition 7.3) is transformed into another one with the same properties by

any (e~ )-unitary transform

* A _67}”
L" e Z(VM), I(Z")* L = Td||g@my = Ble™ ™),
V" = Span(¢}, j € " (a,b)), LEM" = LM o € UUP™),
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where V" = Span(¢!, j = (a,¢) € TP (a,b)),
and L®)" = Lh|@(,,),h e V)™

where U)" = Span(¢?,j = (e, 2 = ¢) € XP)(a,0)),yT ™ — 2P = 0).
The above properties are easily adapted to the family (@?)jeg*(a,b) for a

~ s

O(e*Tf)—unitary map L by replacing Gpipe) " by

VI = Span(pl, j = (e, 3P = ¢) € YP(a,b)), yP — 2P~ = ).

As in Proposition 7.2, let Fz(p)’ F®)

0,60 [ablh L%(f5 APT*M) be the spec-

tral subspace of 5~ 5 for the spectral range [e_QHhéf e_2$]
P [0,6(1)],[a.b],h°[0,6(1)],[a,b],h p & ’ :

Accordingly, and this was used in the proof of Theorem 7.4,

(p)h (p) b. X
F,* CF[Oo(l)][ab]hCL(f APT*M)
is the spectral subspace of 5[0 6(1))] (a,] h5[(g 5(11))’]*[a ok for the spectral range
v, s, ,6(1)],[a,0],R7[0,5(1)]; [a,b],
[e=27 " e 277 ].
Proposition 7.6. — Let us work in the framework of Proposition 7.2 and Theorem 7.4

with the above additional notations and let us set C = {cl, cNf} The family of
quasimodes (L" v; )Jegx*(a’b) and (L ©; )yey*(a ) can be chosen such that the basis
(v})ieg=(ab) of Flo,601)) a6l given by

(p),* 1),*
— v;-l = WFép),th(P? € Ran (6[(1)],6(1)],[a,b],h) C ker(d[é’o(l) (a,b], h])

for 4,0? € @ceacpﬁp}h when j = (a :C(p)) € X (a,b) and y(p+1) _ 2P = e,

h
— v = F hL ‘PJ € Ran (‘5[0 0(1)] [a,b], n) C ker(d[o 5(1)],[a,b], n)

for <pj € GBCGQGUEPZ) " when Jj=(a,y P)) e y(p)(a b) and y(p) (p 1 "y

_ Uj‘ti ker(Aj s-1([a,5]),n) C ker(dj0,5(1)],[a,b],n) ﬂker(é[om(l)]’[a’b]’h) for j € Z*(a,b)
w1t

dist(v;-‘, Span[go;-‘,j € Y*(a,b) UZ*(a,b)])
- ~ 5
+ dist (v, Span[p”, j € I*(a,b) UZ*(a,b)]) = O™ ),
satisfies

vp € {07 cee d} ,\V/] = (Ol, mz(xp)) € 56(17) ((L, b)7 5[((?,)6(1)],[11,b],hvj} = M?U?a,y&p‘*'l)) + R;l’

with plt '~ RE e g, = Yt _ @) D) dﬁxﬁf’), and R} € Fg(fﬂ)’h being a
La+og/2

subset of Ran (4 )( Dl [abl,h)> IR} = O(e=7 ).
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In particular the map from &*(a,b) to Flos1)),[ap),h given by j v;-l de-
fines a quasi-isomorphism from (R‘?*(“’b),dﬁ) to the restricted Witten complex

(Flo,5(1)],[a,b],h> 010,5(1)],[a,b],h) -

Proof. — For a given £ > 0 the family (tha;?) L _, (respectively

FEL®) (ab),yPT —

PN ~ s
the family (tho;?)jey(pH)(G b) y<p+1>_w<p)=e) is a O(e‘Tf)—orthonormal basis of GUe(p),h

(resp. of @Z@H)’h). The result of Theorem 7.4 tells us that (v?)jegc(p)(a b)) _a®) g

~ s
(resp. (vj-‘)jey(pﬂ)(a b) y(p+1)_x(p>=£) is a O(e*%)—orthonormal basis of Fz(p)’h (respec-

tively of Fz(pﬂ)’h).
Owing to the supersymmetric property, we know that (9 5(1)],(a,5],» 1S an isomor-

phism from Fé(p P to Fz(p TR Gith singular values all satisfying u 8 o~ F according
to Theorem 7.1.
When j = (a,2%)) € dP(a,b) and j' = (B,yF"") € YP+D(a,b) with

yg)“) — ZL’((lp) # {, let us estimate

h h Thih h h
(V57 010,6(1)],[a,b],h Y5 ) = (WFz@T),thw?u 6[0,6(1)],[a,b],h7rpl(1’)vhL ©3)
= (7 G LM g p=1(aa)n(L"05))
£

= (U?/ — (Lhh), df,ffl([a,b]),h(LhSD?»

+ (L"), dy, -1 ((a,b)),n (L))
The first term is estimated by

e+6p/2
- h

lojs = L% Nldy, p-1(a,61,n (L] )| = Oe™ 7 )O(e™ 7 ) = Ofe ),

. 5
by choosing 0, < .

When y,(ep 1) —x&p ) = £, the localisation of ﬁgp} around yép *1 and the construction
+o5
).

~ £
of the global quasimode tho? implies that the second term is O(e™ ="
The matrix M, = ((v;?,, 610,5(1)],[a,b],n V1 ));,5 indexed by j = (a,m&p)) € ¥ (a,b)
with y™ — 2% = ¢ and j/ = (B,yg)“)) € Y+ (a,b) with ygpﬂ) - xg’) =/isa

block matrix in the decomposition

(®)h _ ()h e+ Dh _ (p+1)h
" = @Vl Fy —@”@%,é

cel cel
with square blocks along a diagonal corresponding to y/(gp +1) —xﬁf’ ) = ¢ and other blocks

~ 046,/2
with norm estimated by O(e~ 3 ). It implies that the singular values of M, coincide
with the singular values of all the square diagonal blocks. The linear maps Lh| o®):h
c,l

and Lh|5p<7+1\> , are chosen in order to make these blocks diagonal.
c,b
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This is done for every £ € {Ea = y((ypﬂ) - x&p), (a,x&p)) e @ (a,b)} and for ev-
ery p € {0,...,d — 1} separately because we know

FPh L FPO? and FPHOR L RO

when (p,£) # (p/,2).
~ 5

Finally the basis (U?)jesc*(a,b)uy*(a,b) is an O(e‘Tf)—orthonormal basis of

Fio,5(1)],/a,b),» Which can be completed by a basis (U;'I)jeZ*(a,b) of ker(Aj f—1([a,b)),n)-
P s
Because [vf — (L"¢} )| = O(e=7) for jo € &*(a,b), we deduce by working with
the orthogonal complements that the distance between 11;7”, j € Z*(a,b), and the
- 8

vector space Span(¢},,j’ € Y*(a,b) U Z*(a,b)) is G(e=). The same can be done

with (Lh(p;l)Jeog/* (a,b)- O
Remark 7.7. — The construction of the basis (v;’) jeg*(a,b) is not very explicit because

of the possible /n\lultiplicities which require the introduction of the h-dependent linear
maps L" and L?. A much simpler situation occurs when we know a priori that for
every critical value ¢ € C, H*(f¢*¢, f¢~¢) is one-dimensional and that all the lengths
by = yﬁf’“’ — x&p), or more simply ¢’ — ¢, ¢,c’ € C, ¢ # ¢, are distinct. This is exactly
the assumption which was made in [74] for a generic Morse function. Note however
that the quasi-isomorphism of [98] is also constructed in a generic case requiring the
Thom-Smale transversality condition. The not so simple statement of Proposition 7.6
shows that it makes sense within our general assumptions and within the stability
theorem discussed below.

7.3. Stability theorem

The following stability theorem, of which a simple version, Corollary 1.8, was given
in the introduction, is a direct consequence of Theorem 7.1 and of the topolgoical
stability result

duot (B(f),B(9)) < If — glieo
recalled in Appendix B.3.

Theorem 7.8. — In the framework of Theorem 7.1, namely Hypothesis 1.2, or (Hy-
pothesis 1.6 and Hypothesis 2.16) for a more general Lipschitz function f, and

a,bg {c1,...,cn,}, set
b = i ({ya — 2a, @ € 430, D)} Ulen — b, len —al, 1 < n < Ny} ),

where A%(a,b) = AX(f;a,b) is the set defined in (53) for the function f, that is
indezing the bars of f with two endpoints in |a,b|.
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Let moreover g be any other function satisfying Hypothesis 1.2, or (Hypothesis 1.6
and Hypothesis 2.16), as well as

emin

lg = Fllee < ==
and such that a,b do not belong to the set {c}, ... ,c’Ng} made of its “critical values”.
Then, the O(e‘lm%) non zero eigenvalues of A;’,’;_l([a’b]),h can be labeled
AP (gih), o€ AP (a,b) U AP (a,b),
with, for every a € AP (a,b) U Agpil)(a, b),
boin < 22" = 25) —4llg — fllo < Jim —hlog\P (g 1) < 205" — %) +4llg = fleo-
Meanwhile, for £ = f or f = g, the dimension dim ker(Ag’f),l([%b]),h) equals
BP)(£2£), and thus
dimker(A;’j},l([awbDyh) = ker(A;’)’;,l([G)bD’h) if and only if ﬂ(p)(fb,f“) = ﬂ(p) (gb,g“).
Proof. — After possibly adding empty bars, the bar codes associated with f and g
can be written B(f) = ([aa, ba|)aca and B(g) = ([ca, da|)aca, Where
ma {[ac — cal,lda bl 0 € A, bo < +00} < diee(B(9), BU) < llg — fllen < 2.
The definition
bmin := min({Yyo — Ta, @ € AL(f;0,0)} U{|cn —al, |cn —b],1 < n < Ny})

implies that the number of bars a € A%(g;a,b) such that y, — o > e’“f, for the
function g, is in bijection with the whole set of bars AX(f;a,b) for the function f,
which is made by assumption of bars not smaller than £,,;,. The other potential bars
of A%(g;a,b) have a length strictly smaller than lan

Moreover, for @ € AX(a,b), the expression of limy_,g —hlog)\&p)(h) given in
Theorem 7.1, respectively applied with g and f, provides the inequalities for the
é(e‘w) non zero eigenvalues of Ay ;-1 ((q.5)),n-

Finally, the last statement of Theorem 7.8 is a direct consequence of the comments

made in the second item of Remark 2.9. O
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CHAPTER 8

GENERALIZATIONS

Our proofs are definitely done under Hypothesis 1.2, while, for a more general Lip-
schitz function f, consequences of Hypothesis 1.6 have not yet been checked and the
exponential decay estimates of Propositions 2.13 and 2.15 have simply been replaced
by assumptions.

This framework was chosen in order to put the stress on the essentially one-
dimensional analysis on R D f(M). Once this is well understood, it is rather easy
to adapt the analysis and the results in order to consider more general domains, man-
ifolds, or Lipschitz functions f. The first generalizations will be presented for the sake
of simplicity in the framework of Hypothesis 1.2.

Additionally, we will check that Hypothesis 1.6 and Hypothesis 2.16 hold true under
the simple assumption that f is a subanalytic Lipschitz function (see Hypothesis 1.3),
which describes, in some sense, a wider class of functions than Hypothesis 1.2 in a
real analytic geometry.

8.1. More general domains

It is not difficult to adapt all the analysis to some simple cases when the geometrical
domain Q differs from f~1([a,b]) by tamed deformations of 9.

Proposition 8.1. — Let (M, g) be a compact Riemannian manifold and let f satisfy
Hypothesis 1.2. If there exist mg,ng € {1,..., Ny} such that mg < ng and the bound-
ary of the domain Q = QU N, U N,, satisfies

f(Nt) C ]Cmo,cmoJrl[y f(Nn) C ]an cno+1[7
of of
and %|Nt <0, %'Nn > 0.

then all the results or Theorem 6.3 hold true with ¢, = cmo4+1, CN = Cp, when 7y is
chosen in the interval

1
0< < — min ¢, — Cp—
nf 2 1<n<n, v ML

and ny < ;reliNnt(cmoﬂ = f(z)), ns< xfg%(f(ﬂf) — Cny)-
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Proof. — All the proof of Theorem 6.3 relies on the construction of the ¢;-family of
quasimodes (@?)jeg*(a,b) when Q = f~1([a,b]). We fix a = ¢;ng+1 — 1 = ¢1 — 1y and
b = cn, + Ny = Cn + ny. Because the gradient lines provide a homotopy between the
pairs (2, N;) and (f~%([a,b]), f~! {a}), the bar code for f in § relatively to N; can
be identified with B(f; [a,b]). Now, the quasimodes (@?)jeg*(a,b) are extended by 0
in f4NQ and, when j € ¥*(a,b) UZ*(a,b), they are “extended” in f, N (2 as

ho_ g ! ;
XP5 = A7 f o1 (o 45140010 2 (B (eng 1 ool ) (AX A #5),

like in Proposition 3.9-ii), with §; €]0 7F] x € C®(M;[0,1]), x = 1 in fo="1s/2
X =01in f,_y, /4, and where Dirichlet (resp. Neumann) boundary conditions are put
on f~1({cp, +01}) (resp. on N,,), for the domain f~1([cp, + 01, +00[NQ) O

Remark 8.2. — Another interesting case is when the Neumann boundary conditions
on N = N,, where % > 0, are replaced by Dirichlet boundary conditions. Then,
generalized critical values corresponding to critical values of f |y appear following
what is known for a Morse function f (see e.g., [20, 52, 69, 77, 67]). As a topologi-
cal tool, bar codes make sense for boundary manifolds. But the analysis has to be
reconsidered from the beginning, especially by introducing mixed Dirichlet-Neumann
problems along the upper boundary of QN f<*. We do not develop this point here
(see however [32] where such conditions are considered).

8.2. More general manifolds

The following generalization aims at including the particular case when M = R? is
not compact and the gradient of f does not vanish outside a compact set. More
specifically, we assume

Hpypothesis 8.3. — Let (M, g) be a connected complete Riemannian manifold and as-
sume f € C°(M;R) for the sake of simplicity.
We suppose that there exist —oo < ag < by < +00 and k > 0 such that

7 KO = f_l([a’OabO]) is Compa0t7

— for allz € M\ Ky, |Vf(2)|?> > k+k ‘%f +$vf’ (2),

— [ has a finite number of critical values ci,...,cN, in [ag, bo] which belong

to ]ag, bo[

Under this assumption, the definition of the bar code B(f) = ([a%,b " )aca is
essentially the same as in the compact case, except that bars with a}, = —oco and
bitl € R are possible, according to the topology of f* as t — —oo. In such a case,
bitl € Z**1(a,b) for all a,b € [—00, +00] {cl, ...,cN, } such that a < b3 <b.

The domain f~!([a,b]) C M is actually f~!([a,b] N]—o00,+00[) when a = —o0 or
b = +o00. Accordingly, Ay ¢-1((a,)),h» Df,f-1([a,]),h> a0d d;,f—l([a,b]),h do not include
boundary conditions on the infinite end in the definition of their domains.
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Proposition 8.4. — Under Hypothesis 8.3, all the results of Theorem 6.3 still hold.
Proof. — The lower bound |V f|?> > & implies

7llim f(z) =400 and ﬂlim f(x) = —c0,
s g oo s 100l

Actually for f(z) > by a descending gradient line will reach f~!({bg}) in finite time ¢,
with

f(@) — by = — / C4(0).V F(y(8)) dt = / KOOIV dt
0 0
> Vd(z, - ({bo}) > vFd(z, Ko),

while the completeness of M implies lim,_, o d(z, Ky) = 400. Therefore for any
a,be R\ {ci1,...,en}, a < b, f~1([a,b]) is a compact smooth domain of M. The el-
liptic regularity then tells us that the operator A ¢—1([4,) n) is essentially self-adjoint
on the subspace of C§°(f~*([a, b]); AT* M) defined with the boundary conditions, of
Dirichlet type on f~1({a}) and of Neumann type on f~1({b}).

Let us adapt the proof of Simader’s (see [87] or [40, 96] for related approaches) for
the essential self-adjointness of Afj on C5°(M;AT*M). The equality of the maxi-
mal and minimal extensions of the symmetric operator Ay h amounts to

Plgee (M;AT* M)
checking that
u€ L*(M;AT*M) and (14 Ajp)u=0in Q' (M;AT*M)
implies u = 0. The local elliptic regularity implies that v € C>°(M; AT*M). A varia-
tion of the integration by parts (20) gives
0=Re (x®u, (1+ Agp)u) = xull® + h?||dxul|72 + h?||d*xull7
+ (s [V + by + 25 p)xu) — B, [Vx )
> [Ixull® = h*(u, |[Vx[*u).
for any compactly supported Lipschitz function x. Because the manifold M is
complete, it can be applied with the compactly supported Lipschitz function
Xk(x) = 9(‘1(:’7?), k € Nand 6 € (§°(R;[0,1]), # = 1 in a neighborhood of 0:
el < 12 [ 190 Plu?
M

and taking the limit as kK — oo yields u = 0.

The same method proves that Ay r—1(1—oob]),n (r€SP A -1 ([a,+00[,n) 1S essentially
self-adjoint on the subspace C5°(f~*(Joo, b]); AT*M)) (resp. G§°(f~*([a, +ool; AT* M)))
restricted with Neumann (resp. Dirichlet) type boundary conditions on f~1({b})
(resp. f~1({a})) when a,b € R\ {c1,...,cen}-

The lower bound |V f[*(z) > & + k|Zvs + L&, |(x) for © € M\ Ko implies that
the tensor |V f|*(z) — h(Zvy + Z&;)(x) is uniformly bounded from below by x > 0
for h < k and therefore that the essential spectrum of Ay (resp. Ay r-1(ja,400)) OF
Af p-1((—o0p]),n) With a,b € R\ {c1,...,cn}) is contained in [, 4+-00).
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The final ingredient is the Agmon estimate of Proposition 2.13 with Q = M,
Q = f1([a,+0o0]) or Q = f71(] — 00,b]), a,b € R\ {c1,...,cn}. Here the compact
subset U is f~1({co, . ..,cn})NQ and for any fixed compact subset K of {2 we consider
wp € D(A; g ) such that

(Afﬁh—)\h)wh:rh, supp v, C K, }llir%)\h:O.

The result is now: for all € > 0 there exist h. > 0 and C. > 0 such that
(1-e)d g, (x,UUK)

C
lle h u-)h”Wa(n) -

< & (rall + tollwnl)

for all h € (0,h.), where ty =1 if U # 0 and ty = 0 when U = . Restricted to any
fixed compact set of Q the above estimate is the same as the one of Proposition 2.13.
This result suffices to prove the proximity between the eigenvalues of A ra.n and
of Argns-1(jarp))n With @',b" € R\ {c1,...,en} for —a’ and b’ large enough and
therefore allows to replace a = —oo by @’ > —o00 or b = 400 by ' < +0c0 in all the
intermediate estimates with an arbitrarily large accuracy.

The proof is the same as in Proposition 2.13 with two modifications:

— For a given h > 0, the integration by parts formulas of Lemma 2.10 are firstly
written for compactly supported forms. Secondly w;, € D(A 7a ») are approxi-

mated by elements of D(A ;g ;) N(§° (Q; AT*M) in order to get before (24)

lonllzllrallze > @ ;g0 (x1wn, x1wn) + h2(ldxa@nl® + |d* xa@nll)
+ (Xaton, IV = Vel + Wi + L) — Anlxadn) — e-h2[@nl.

— We use the lower bounds
IV (2) = [V * (@) + h(@vs + Lo p)(z) > (1= (1 —e)?)|VfI(2) — hidvs + Lo l(2)
>(1-(1- s)z)n
when h < (1 — (1 —¢)?)s and = € Q\ Ky and

IVf2(@) = [Vee* (@) + h(Zvs + L s) () > Crye — Cro ch
when z € Ky Nsupp xa. O

Remark 8.5. — The lower bound |V f|*(z) > k + k|Zvy + L& 4|(x) for x € M\ Ky is
a very strong condition which involves the behavior of f and of the curvature of the
riemannian metric as x — oo. It is used not only for the localization of the essential
spectrum of Ay in [k,+00) but also, via Agmon estimates, to approximate the
spectral elements of Ay, by the ones of Ay t-1((q/,47,n) a8 @' — —00 and b’ — +oo0.
From this point of view, the assumption |V f|?(z) > k (as stated in the first version
of this text) is not sufficient. Already in the case of functions, it meets the vast
litterature about the global analysis of harmonic functions on an open Riemannian
manifold (see e.g., [22, 17, 18, 24, 97]) and the escape rate of Brownian motion on a
complete Riemannian manifold (see e.g., [45, 44, 61]).
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Let us make this more explicit with a simple example. Consider on R? the potential
2
f(r) = % and a C>® metric g = dr? + (r)?df?, with ¢(r) > 0 for r > 0 and

Y(r) = O,_o+(r). The volume is ¢(r)drdf and the solution to dypru =0, u = Ce_g,
belongs to L?(R?, dvol,) if and only if f0+°° 1/1(7")6_% dr < +oo. This is not true if
P(r) ~p—oo € although the riemannian manifold (R2,g) is complete and |V f|? =
r2 > 1 for r > 1.

Let us look now at the stronger condition |V |2 > £+ k|Zv +Z |- In the simple
scalar case it means

Or ()]
r? >k + 57| r
- (
2
which implies %ﬁ’g)) < Zand ¢(r) < Cez= for r > rg > 0. With this assumption

ek actually belongs to L?(R¢, dvol,) for h > 0 small enough and there is no problem
for the approximation by e_£x(kﬁ).
When R? is endowed with the euclidean metric, the condition

VI > 5+ 6lde s + L5l
says essentially that the Hessian of f is estimated by %|V f|%. In [51] many examples

where discussed where e~ % € L?(R%) can be approximated by local spectral problems
- H

while lim sup,,_, ., % = +o00.
As a conclusion here, our hypotheses are very strong and we do not know for the

moment how they could be relaxed in order to ensure the validity of Theorem 6.3.

8.3. More general Lipschitz functions

We consider more accurately the situation of a general Lipschitz function f, while
the analysis was presented under conjectural assumption. As a first step we recall
in Subsection 8.3.1 how Hypothesis 1.6 implies Hypothesis B.1 of Appendix B and
therefore provides a finite bar code 3.

Once this is clarified we prove that Hypothesis 1.6 and Hypothesis 2.16 are sat-
isfied when f is a subanalytic Lipschitz function, after the suitable specification of
the “critical values,” ¢; < -+ < CNy- It relies on the stratification of the subanalytic
graph of f, of which the properties are recalled in Subsection 8.3.2. A variation of
Agmon distance will also be constructed after solving the Hamilton-Jacobi equation
|[V'¢| = |V’ f|, where V' concerns only tangential partial derivatives in some tubular
neighborhoods of every stratum. From this point of view, the analysis of this Lip-
schitz subanalytic case, via a stratification technique, takes some inspiration from
[41]. Finally in Subsubsection 8.3.3, Hypothesis 2.16 is checked to hold true, via some
partition of unity adapted with the stratification.
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8.3.1. Hypothesis 1.6 and consequences. — The manifold M is assumed to be com-
pact without boundary although it could be extended to more general cases like in
Subsection 8.2.

Let us first define the critical values of a Lipschitz function f or more exactly, its
contrary.

Definition 8.6. — When f: M — R is a Lipschitz function a value a is not a critical
value if for any o € f~1({a}) there exists a neighborhood U,, of xo and a local
coordinate system x = (r',2') € R x R and a constant C,, > 0 such that

]‘ /
et =g < 1@ ) - e,

A critical value a € f(M) C R is a point where the above property fails.

(136) Vo = (xlaxl)ay = (ylvx,) € Uﬁo’

Since the function f is continuous, the local condition condition (136) can be
replaced by
1
VJI:(l?l,il,‘/),y:(yl,l‘l)EUxo, Ci(xl_yl)Sf(xlvw/)_f(ylvxl) when 1:1 >y1'
Zo
Hypothesis 1.6 simply says that the Lipschitz function f has a finite number of critical
values. But the set {cl, e ,cNf} of Hypothesis 1.6 may be strictly larger that the set
of critical values as defined above, and this a reason why the values c1,...,cn, were
called “critical values”. Actually this flexibility is especially usefull when we consider
subanalytic Lipschitz functions below.

The above definition ensures that the implicit functions theorem in the Lipschitz
case can be applied locally around = € f~!({a,b}) with the following straightforward
consequences for the domain ffl’ when a, b are not “critical values”:

i) f° is a strongly Lipschitz domain of M according to the terminology of [43],
meaning that it is locally the hypograph of a Lipschitz function in the proper
coordinate system.

ii) fg = f_l([a’b])'

iii) When a = —oo, f with ¢ < b < ¢’ and no critical values in |, ¢[, is homotopic
to Q a (> domain with 8Q c f¢'.

The last statement can be checked by using finitely many local homotopies in coordi-
nate systems, but one could also use the global construction of a smooth transverse
vector field as proposed in [93]-Theorem 1.12-vi).

The above three properties were used in our analysis. In particular the finiteness
of Ny and iii) appear in Hypothesis B.1 which allows the introduction of a finite bar
code (By. The properties i) and ii) are used in the definition of A f-1((q4]),5 according
to Proposition 2.8

Critical points and values can actually be defined in a coordinate free way, in
terms of the standard notion in non smooth analysis of Clarke’s generalized gradient
and Clarke’s critical points: In R? or locally in a coordinate system in M, a Lipschitz
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function admits a differential df (z) almost every where by Rademacher’s theorem and
the domain Dom(df) is the set of  where df (z) exists. Clarke’s generalized gradient
at x then equals the closed convex set

0°f(x) = co {¢ € R, 3(wn)nen € Dom(df)", lim z, =z and  lim df(wn) =C},

where co denotes the convex hull. A Clarke critical point z is a point where 0 C 9° f(z)
and a Clarke critical value of f is a value a where f~!({a}) contains a critical points.
In the case of subanalytic Lipschitz functions which will be considered more specificaly
in the other paragraphs, this definition actually coincides with the wavefront naturally
introduced in [30]. Staying at the local level the local condition (136) for zo € f=1 {a},
actually means that for all z € Dom(df) N U,,, df () lies in the intersection of some
closed salient (¢ # 0 and —( cannot both belong to it) convex cone (,, with a
shell S;, = {¢ € R4 r <|¢|<R},0<r < R < +oo. This writing is equivalent to
the fact that for all z € f=1({a}), Clarke’s generalized gradient is included in the
intersection of a salient convex cone and a closed shell. This property is independent
of the coordinate system and of the metric if we replace the differential df by the
gradient V f.

Even in the subanalytic setting, those critical values (according to Definition 8.6 or
Clarke) may overestimate what the intuition and even the final result would retain.
Warga’s example carefully analyzed in [28],

flzt, 2% = ||ac1| —|—ZL’2| + %xl,
with the level curves in the picture below, satisfies the above consequences i), ii) and
iii) for any value b € R although 0 is a critical value of f. Note also that 0 will be a
critical value of non well chosen regularizations of f and we refer to [28] for a thorough
discussion of this point.

— \

7

FIGURE 12. Level curves of Warga’s function f(z',z?) = ‘|x1| + :62} + 1zt
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Actually in the subanalytic setting an even larger, but still finite, set of val-
ues {cl, .oy CN f} will be introduced in order to verify the second assumption, Hy-
pothesis 2.16, used in our analysis.

8.3.2. Stratification of Lipschitz subanalytic functions. — According to [12] a Lipschitz
subanalytic function has a finite number of critical values and Hypothesis 1.6 holds
true. We also recalled in the previous paragraph that Clarke’s gradient coincides with
the wavefront set of subanalytic Lipschitz functions introduced in [30]. However such
a notion of gradient or wavefront above a point z € M, is a wide closed convex set
which contains all the convex combinations of limits of neighboring gradients without
discriminating the information which can be deduced from the stratified structure. We
specify the corresponding constructions when f is a real subanalytic Lipschitz function
on a real analytic compact Riemannian manifold M according to Hypothesis 1.3.

Let us first remind the basic notions about subanalytic sets and functions. We refer
the reader to the founding articles [47, 58] and to [78, 9] for a panoramic or historical
presentation. A part but not all of the material, presented or recalled here, may be
found in [30] for the specific case of subanalytic Lipschitz functions.

Review of subanalytic notions and results

— In the real analytic category, the class of subanalytic sets is the one which con-
tains the semianalytic sets, characterized by real analytic equations or inequali-
ties, and which is stable by finite set operations (finite union, finite intersection
and complement) and by proper real analytic projections. The name “subana-
lytic” was introduced by Hironaka and Hardt used the name “analytic shadow”
in [47] although they finally happened to describe the same class (see [78]).

— Any subanalytic set E of a real analytic manifold X admits a stratification, that
is a locally finite partition in real analytic connected submanifold of X called
strata E = UgegS such that SN S # 0, S # S, implies S C 95’ (in this
framework 95’ = S’ \ S') with dim S < dim S’, or equivalently because & is a
partition, SN &S’ # 0, S # S’ implies S C 85’ with dim S < dim $’.

Such a stratification can always be refined in order to satisfy Whitney’s local
condition B which reads in R™ or in a coordinate system:

((l"n)neN € (S/)N, lim z,=2€ S C ?) = (T,S C lim T, 5.

When C is a locally finite family of subanalytic sets, the stratification & can also
be chosen in order to be compatible with C, which means that for all S € § and
C €C, either SNC=0or ScC.

— A subanalytic function X — Y is a function of which the graph is a subanalytic
set of X x Y.

— When f: X — Y is areal analytic mapping, a stratification of f is made of two
stratifications § of X and &f of Y such that

VS ed, f(S) e, rank (f| ) = dim f(S5).
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— Corollary 4.4 of [47] assumes that f : X — Y is real analytic and C and ) are
two locally finite families of subanalytic sets of X and Y and (2 is a subanalytic
open set such that f s is proper. It then says that there exists a stratification
(&,0F) of f|,, which is compatible with C and 2.

— Famous Hironaka’s desinguralisation theorem says that any compact subanalytic
set is the image of a compact real analytic manifold with same dimension by a
real analytic mapping. We will not use it specifically.

When f : M — R is a Lipschitz subanalytic function we consider the two pro-
jections p; : M xR — M and p; : M x R — R. From Hardt’s result we
know that there is a stratification of ps : M x R — R which is compatible with
C = graph (f) U (M x R\ graph (f)) and ) = R. From this we deduce that there is

a stratification & of graph (f) and a finite number of points {cl, RN cNf} € R such
that all S € (S’ satisfies

— either py is constantly equal to some ¢, along S ;

— or there exists n such that p2(S) = ]en, nt1] and rank (p2|§) =1

Definition 8.7. — For such a stratification of graph (f), strata corresponding to the
first case will be called horizontal strata.

Because f is a Lipsclgitz function the projection p1 : M xR — M makes a
diffeomorphism from S to S = p;(S) which is a submanifold of M. The family

o = {pl(é'), Se S} is now a stratification of M. When S is a horizontal stratum,

then f s is constant along S = pl(S). On the contrary when S is not horizontal
f s is a real analytic function with no critical point on S = p; (5’ ).

Whitney’s condition B also has a nice interpretation. It simply says in a local
coordinate system (which allows the local identification of T, M with R? around any
point z € M)

((xn)neN € (S/)Nv lim z, = -73)

= (VT € T.SC TuM ~ RY, Tim (d(f|,)e, [T] = d(f| )2 [T]) -

With the Riemannian structure it can be expressed in terms of gradients. More ex-
actly for any relatively compact open subset wg of the stratum S, and for € € |0, &, ],
€ws > 0small enough, the exponential map exp(z,t) = exp,(t) € M for (z,t) € TM is
a diffeomorphism from {(z,t) € Nwg, |t| < €}, where N, is the normal fiber bundle
over wg, to its range .5 C {z € M,d(z,ws) < £}, that we call a tubular neigh-
borhood of wg. We refer the reader to [76] where tubular neighborhoods of closed
submanifolds are introduced in this way and [66] for further details and generaliza-
tions with more general pseudo Riemannian structures. Another presentation using
the embedding of M in some RY™ is given in [59]. Such a tubular neighborhood
%S,E C M is an open subset of the fiber bundle g : Nwg — wg and is endowed
with the metric g defined on M. Therefore the tangent bundle ng;sﬁ =T.,M
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Ty Tos e

F1GURE 13. Picture of the projections s and IIs when x € %S,E ns'.

for x € &4, has an orthonomormal decomposition T, M = TY M &+ T2 M where
Ty M = ker(drg) ~ Nypyws. For ¢ € g and t € T,M = T,J,, . we define
IIst as the horizontal component of ¢ in this decomposition. For z € &, ., the func-
tion fs(z) = f(wsz) is a real analytic function of z € &, .. Because f is a regular
function along a stratum S’ € & its gradient along S’ (with the metric induced by g)
is denoted Vg f. With those notations the previous property can be written

((azn)neN e (S'n %S,E)N, lim z, =z € wg)

= (lim sV f(zn) = Vis(ea) =0).
Let us summarize our notations:

— wg is a relatively compact open set of the stratum S.

— &g .c is a tubular neighborhood of wg diffeomorphic to {(z,t) € Nwg, [t| < }.
It will be convenient to extend the notation to € = 0 with the large inequality
and wg = S, namely Jso = S, which makes sense as S = limsup, o Js. e
where wg . relatively compact in S is well chosen when ¢ > 0 is small.

— When S’ is a stratum Vg f is the gradient of f along S’ and for z € S' N Y, e,
IIsVs f(x) is the horizontal component of Vg f(x) in the orthogonal decom-
position T,M =T g e ®F THG s .

— Finally in g, , which is diffeomorphic to a subset of Nwg, one defines the regu-
lar function fs(z) = f(mwsx) where 7g is the natural projection 7g : Nwg — wg.

With the compactness of wg in S, Whitney’s condition B actually implies the

following uniform convergence result.

Lemma 8.8. — Fix the relatively compact open set ws of the stratum S and let %S,E
denote the tubular neighborhood defined for € > 0 small enough. Then the quantities

max sup |HgVs f(z)— Vfs(z)]
S'ed EG%S,EOS’
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and
sup |V fs(x) = Vfs(msz)|,
$E%s,5
tend to 0 as € — 0.
Proof. — Ad absurdum if there is a sequence (z,)nen such that

|HSVS’f(xn) - va(xn” >n>0,

while z,, € 5;57% N S’, then by the compactness of wg and the finiteness of ¢,
we can assume that S’ is fixed and that lim, ,.ocxn, = = € wg. The lower
bound |IsVg f(zn) — Vfs(zn)| > n > 0 while lim,,_,o |V fs(zn) — Vfs(z)| = 0,
Vfs(z) = Vgf(z), then contradicts Whitney’s condition B.

Finally the last convergence is a consequence of the uniform continuity of V fg
which can be defined on a compact neighborhood of &, . for € € ]0,£5], €5 > 0 small

enough. O

Proposition 8.9. — When f is a Lipschitz subanalytic function on M, Hypothesis 1.6
is satified with c1,...,cn, € R being the values associated with horizontal strata in
the stratification of graph(f) C M x R described above.

Proof. — Let zg € M\ f~*({c1,...,cn;, }). It belongs to a stratum S € § and we can
find a relatively compact open set wg C S such that g € wg C S. The function fg is
a real analytic-function defined in the tubular open &, . for € € ]0,e,,[ with e,, > 0
small enough. For y € &, NS’, with S’ € §, dim S’ = d, we write

Vis(y).VIy) = MsV ) — (Vis(y) —TsVIy)) . Vi)

and

Vi) VI(y) = [V s(@o)l?| < [IMsV ) 1V £s(wo)*| + My [HsVF(y) = Vis(y)l.
We know that |V fs(zg)] > 0 because S cannot be an horizontal stratum. By
Lemma 8.8, ¢ € ]0,e4,[ can be chosen such that the right-hand side is smaller
than %|st(a;0)|2 for all S” € &, such that dim S’ = d and 2o € SN S’. We have
found a tubular neighborhood Uy, of zo and a coordinate system (z!,...,z%) around
x¢ by taking x! = fg(z) such that

1

VS €S, dimS' = d, Yz € Us, NS, 00 fla) 2 5

This neighborhood U, can then be reduced to
Upy = {z = (2',2') = (z',2%,...,2%), 2! — 2}| < 6, 2’| < &}

for some 6 > 0. The set E = Uy, \ (Ugim s7—q S’ N Uz,) has measure 0 and V f(x) is
well defined for all z € U, \ E. By Fubini’s theorem the set of z’, |2'| < §, such
that {(z!,2’),|z' —z}| <6} N E has a non zero one dimensional measure, has
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Lebesgue’s measure 0 and we can write for almost all z’, |2/| < §

1
Va'l,y' € Jag— 8,2 +4], f(fvl,w')—f(yl,l")=/0 (&' =)0 fa' +t(y" —2')) dt

where the integrand is well defined for almost every ¢ € [0, 1] and bounded from below
by 5—(z' —y') when z' > y'. The continuity of f then implies
z0
1
V(xlaxl)a(ylaxl)EUzoa 07|x1_y1| < |f(£L'1,CL'/)_f(y1,£L'/)|. [
zo
We will use open coverings of f~([a,b]) when [a,b]N {c1,...,cn,} = 0, made of
tubes Jg es With €,,4 > 0. They will be constructed by induction on the dimensions
of the strata. They will be associated with a family of parameters (e1,...,€q4), with
€ws = Edim 5- 10 the induction process we authorize €qims = 0 for m < dim S < d, in
which case wg = S for every stratum S of dimension dim .S > m.

Definition 8.10. — Leta < b belong to R and set Sja 5 = {S € S, SN f1([a,b]) # 0}.
A tubular covering of f~*([a,b]) contains two data, a family (o, €1, ...,€q4) € [0, +o00[?F!
and for every S € Sla,p), @ subset ws of S which is either open and relatively compact

n S if €dims > 0 or equal to S if €qim s = 0 such that for all m < d

(137) fﬁl([a,b]) N (USQ(S[a,b],dimSSmS) - USE(S[a’b],dimsgm%575dixns’
(138) Tosyeps Vwsyery =0 if S1# Sz, dimS; = dim Sy =m' <m.
Such a tubular covering is said e-adapted for € €]0,1], if for any S, 5" € a4,
(139) sup MsVs f(z) = Vfs(z)| <e,

EE%S,adim SﬂS

and

(140) sup  |Vfs(z) — Vfs(msz)| <e.
TE€Tws e dim
Such a covering is clearly an open covering when all the €;’s are positive.
We will sumarize those situations by speaking of a (possibly “an e-adapted”)
(possibly “open”) tubular covering (Jus, es) SeSay associated with the parame-
ters (g0,---,€4)-

A trivial example is given by (eg,€1,...,€4) = (0,...,0) and wg = S for all
S € Oa,p)- When [, contains no stratum of dimension m, any value €,, > 0 can
be used in the above definitions. When all the parameters ¢,,, 0 < m < d, are
positive, this provides an open covering of f~1([a,b]). Note that when ¢, = 0 and
wg = S for dim S = m, the condition z € I, ., NS’ actually implies z € S = 5’
so that the condition (139) is void for strata S of dimension m. As a consequence, if
(T aims)SESa 15 @ (resp. an e-adapted) tubular covering of f~Y(la, b]) associated
with the parameters (go,...,q), then for any m replacing €,,,» by 0 for m’ > m, wg
by S if dim S > m, &,, by £}, €]0,&,,] and leaving the other data, wg for dim S < m,
€0,---5Em—1, unchanged give another (resp. e-adapted) tubular covering.
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FIGURE 14. A schematic example of an open covering: The stratification is on the left-hand
side made of two triangles, the edges and the vertices; the open tubular covering with positive
values for g, €1, €2 is on the right-hand side. The outside of the two triangles is forgotten or
one can compactify by identifying opposite external edges.

The following proposition implements the induction which leads to the construction
of families of e-adapted open tubular coverings of f~!([a,b]), especially when [a, b]
contains no “critical value”.

Proposition 8.11. — Assume first [a, b]ﬂ{cl, ... ,cNf} = 0 wherecy, ..., cn, are values
of f associated with horizontal strata. Then S, contains no 0-dimensional stratum
and there exists a (resp. an e-adapted) tubular covering associated with (g¢,0,...,0)
for any g9 > 0.

Assume that there exists a (resp. an e-adapted) tubular covering associated with
the parameters (o, ...,6m-1,0,...,0) for 1 < m < d witheg > 0,...,6pm_1 > 0,
then there exists €, > 0 and for any S € Aap; AimS = m, a subset wg C S open
and relatively compact S such that for all €., €]0,%], the family (%S,EdimS)SE(S[a,b]
associated with (g, ...,Em,0,...,0) and wg unchanged if dim S < m — 1, is another
(resp. e-adapted) tubular covering of f~1([a,b]).

Proof. — Because [, contains no stratum of dimension 0 a tubular covering is
given by wg = S where all S € 4, satisfy dim S > 1 and any value of £ > 0 makes
sense.

Additionally every S € (4, of dimension 1 satisfies Vgf(z) # 0 for every
z € SN f~1([a,b]) and hence f~!([a,b]) N S is a compact subset of S. We can choose
wg open and relatively compact in S such that wg N f~!([a,b]) is a neighborhood
in S of SN f~*([a,b]). This is done for every S € $jo such that dimS = 1.
We can then choose €1 > 0 such that 1 < %dQ(TSl, ws,) for any S1,52 € Sap)s
dim S; = dim Sy = 1, in order to ensure %sl e N %52’51 = () for S; # S,.

Assume now that the result holds for a given m, 1 < m < d. For dim S < m, the
set Jos.eam s iS an open set and USeéla,b],dimsgm%s,Edims is an of Kigpm =

fla, b)) N (USeé[a,b],dimsng)’ Consider the compact subset Ki,pmt1 =
f (e, b)) N (Usecsla,b],dim Semt15)-
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It is a a compact set and 50 is K4 p),m+1 \ (Usesi, ,,dim S<m&ws cams) Which by
the definition of the stratification & can be decomposed into Uses(y. o) dim s=m+1Ks
where K5 is a compact subset of S. We choose for wg, S € Jjg,p), dimS = m + 1,
a relatively compact neighborhood of Kg and then fix €,,11 > 0 small enough such
that s, emin N Tos, emsr = 0 for any 1,82 € Sja ), dim Sy = dim Sy = m + 1 like
in the case m+ 1 = 1.

Following this induction and by assuming that (%S,S)Seé’[a}b] is an e-adapted tubu-
lar covering associated with (eg,...,&m,0,...,0), €0y...,&m > 0, E%H > 0 can be
chosen such that

sup MsVs f(z) = Vis(z)| <e

TE,, 4,0 +1ﬁSl
and
sup |Vfs(z) — Vfs(msz)| <e,
we% &0
S € m41
for all S € §q,p), dim S = m+1, and all 8" € & 5. This still holds if EEnH is replaced
by any &,,+1 €]0,€2, 4], without changing the wg, and this ends the proof. O

Definition 8.12. — Assume [a,b] N {c1,...,cn;} = 0 and let (Fos e s)Sesay e
a tubular covering associated with the parameters (gg,€1,...,€4) € [0,+00[*+1. The
functions F. . .,y and F., . ., are defined on f~1([a,b]) by

€d)
(141) Fley. en(@) = min sV f(z)],
SOyt €T 2 qim s NS’
(142) Fleo,..ca)(@) = min |V fs(z)],

T€Jwg e dim s

where the minima are taken over S,S" € Sq -
On f~([a,b]) x f~%([a,b]) the functions G(EO,...,sd) and Gc,,....c,) are given by

1
W) G = it RGO @)
v(0)==
Y(1)=y

with the same definition for é(ao,.‘.,ed)'

Before proving some results about those functions let us list some simple properties:

— Because d[4,p) is a finite collections of mesurable sets, the functions F(EO

,,,,, €d)
and F., ., are measurable and the functions G, ..., and G(.,,. . ., are well
defined.

— When ¢; = --- = g4 = 0, the functions F(O ,0) and F{g, . o) are equal to
Fo,...0)(x) = Fo,..0)(z Z 15(z)|Vsf(z)],
zeS
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which is a lower semicontinuous function on f~!([a,b]) due to Whitney’s condi-
tion B and [IIgVg f(z)| < |Vg f(z)| for z € S close enough to S C 95".

— Because f is a Lipschitz function, the function F(Eo,_”’ed) and Fi., . ., are
uniformly bounded by My =1+ ||V ||z~ when ¢ < 1 because of

sV f(@)] < Vs f(2)] < | fllyre
and (139). Therefore the functions (?(507__75[1) and G, . ., are M;-Lipschitz

pseudodistances on f~([a,b]) x f~1([a,b]).
— When (s egim s )Seda.y 15 an e-adapted tubular covering of f~*([a,d]), then

Z ‘F(Eo’--w&d)(m) - F(€0,~~~,€d)($)) <e
z€f~*([a,b])
and hence
sup ‘é(€o7»--,sd)(mvy) - G(507»--75d)($’y)‘ <ex diam(f_l([a’b]))v
(z,y)ef~1([a,0])
where diam is the diameter for the metric g.

— Let (T caims)Sesiay P @ tubular covering of f~'([a,b]) associated with the
parameters (eg,...,&m,0,...,0) with £,...,&;, > 0, 1 < m < d. For any
gl €]0,em], one gets another tubular covering of f~*([a, b]) while keeping all the
other data unchanged and for €/, = 0 simply change wg into S when dim S = m.
Then the functions H, . . 0. 0), with H = F,F,G, G, are well defined for
any e, € [0,&,,] and they are decreasing with respect to &/, i.e., increase as e/,
decays.

Lemma 8.13. — In the framework of Definition 8.12, the function Fy . o(z) =
F(o,...,o) (x) is lower semi-continuous bounded by My = 14|V f||L~ and bounded from
below by a positive constant mqp 5 > 0. The function é’(o,...,o) (z,y) = Go,...0)(x,y) is
a pseudodistance (fullfilling the symmetry and the triangular inequality) which satisfies

‘v’x,y € f_l([aab])a |f(1") - f(y)| < G(O,.‘.,O)(x7y) < Mfdg(xay),

where dg is the geodesic distance between x and y in the metric g.

Proof. — We already noticed that Fo, .. o) = F(o,...,o) is a lower semicontinuous func-
tion, bounded by ||V f||z. Since f~!([a,b]) contains no horizontal stratum

Fo, 0@ = Y 1s(@)|Vsf(@)]
SES[a,b)
does not vanish. The achieved minimum m,; s on the compact set f~!([a,b])
must be positive. With the estimate Fio.. o)(z) < My for all z € f~'([a,b]),
the fact that G, o)(z,y) defines a pseudodistance with the upper bound
Goo,....0)(x,y) < Msdy(z,y) is standard. For the lower bound because M-valued
real analytic functions are dense in C!([0, 1]; M), the function G(o,...,0) can be defined
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as

1
Gootwn =t [ R oGOR ] d.
y€C~([0,1); £~ ([a,])) Jo
7(0)==
y(1)=y

Let v:[0,1] — f~!([a,b]) C M be a real analytic function such that

1
Go,..0(z,y) +n1> / Flo,...0)(v(®)Y' ()] dt > Go,...0)(,y)-
0

By using the recalled Hardt’s result in [47] about the stratification of real analytic
mapping, now applied to v from [0,1] with the trivial stratification to M with the
stratification &, there exists a stratification of [0, 1], that is a finite partition into
open intervals and points [0, 1] = | |;. s I such that for any I € .7 there exists S; € §
such that y(I) C S;. Hence there exist N € N, 0 =ty < ¢t; < --- < ty = 1 and for
any 1 <n < N a stratum S, € $[q, such that y(Jtn_1,tn[) C Sn. We deduce

1 N tn
/0 Fo,...0(v@®)Y @) dt = Z/ Vs, f(y @)Y ()] dt

tn—1

N
> 1 (1(ta) = F(V(ta-))] 2 If (@) = (W)l

We have proved for all n > 0 the lower bound

Go,...00(xy) +n > [f(x) — fF(Y)l,
which ends the proof. O

Proposition 8.14. — Assume that [a,b] N {c1,...,cn, } = 0. For any e € ]0,1] there
exist parameters (eg,...,€4) € ]0, —i—oo[d's_1 and an e-adapted open tubular cover-
ng (%S7EdimS)SE(S[a » associated with the parameters (€0,.--,€4), such that the func-

tion G(c,,....cq) defined in Definition 8.12 satisfies the uniform estimates:

(144)  vVa,y e fH(a b)), f(2) = f@)l — € < Ceg,..c0)(@y) < Mpdy(2,y)

where My =1+ ||V f|lL= and dy is the geodesic distance on (M, g).
For any €' € 10,1], this tubular covering can be chosen, after taking e > 0 small
enough, such that

(145) VS € S, VI (2).Vis(z) — (1 —&)|Vs(@)]> for ae. T € Tugeamss
and
(146)

m m
V8,5 € §jaw), V2 € Tus ams NS, [Vs(a)l 2 =522, sV f(2)] 2 =522,

where my qp > 0 was introduced in Lemma 8.13.
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Proof. — The diameter diam(f~!([a,b])) for the geodesic distance on (M, g) is de-
noted by
Aqp,y = diam(f~"([a,b])).

The proof is made by induction on m, where m is the maximal number such
that eg,...,&,m > 0, while playing with the two functions é(so,...,sm,o,...,o) and
G(z—:o,...,sm,O,...,O)'

More precisely we will prove that for 0 < m < d, there exists (eg,...,emn) €]0,400]
and an gmx-=——7y-adapted tubular covering (Yos eaim s ) SES ([a,b]) @ssociated with the
parameters (gg,...,&m,0,...,0) such that

(@) = F@) = °F < Clegrron0.0)(@):

m+1

Notice that “m—adapted” is stronger than “c-adapted”.

The statement is clearly true for m = 0 because our assumption says that
Ola,p] contains no 0-dimensional stratum and G, 0,0 = é(so,O,...,O) does not
depend on ¢y € [0,+o00], while the lower bound G, ... o)(z,y) > |f(z) — f(y)| was
proved in Lemma 8.13. Note additionally that the tubular covering (Js cqims) SES(an)
Fws,o =8 for § € Sjq,) is an m—adap‘ced tubular covering of f~1([a,b]).

m—+1

Assume now that we have found (gg,...,em) € ]0,+00] and an

m-adapted tubular covering (Yo e s) SES. Such that

me

|f(£l,') - f(y)| - 7 < G(Eo,...,em,O,..A,O)(may)'

By Proposition 8.11 €%, > 0 can be chosen such that for any e,41 € ]0,€% ]

-adapted tubular covering (&, SESan) associated

; e
there exists an TG sreaims)

£+
with (€1,...,8m+1,0,...,0), with wg independent of £,,41 > 0.

For any e,41 € [0,67(311] we deduce

Sup |é(60,...,6m+1,0,‘.‘,0)(x7y) - G(Eo,...,sm_;.l,o,‘.‘,o)(x7y)' S d( X All,b7f'

3
e ) 28,5 +1)

Meanwhile we observed that é(eo,...,em,o,..‘,O) is the monotonous limit as ,,41 — 07
of Geg,.iemi1,0,.,0)
set f~1([a,b]) x f~1([a,b]). Dini’s convergence theorem then ensures that this conver-
gence is uniform and we can choose e, 41 € ]0,€%, ] such that

in the class of Lipschitz continuous functions on the compact

~ ~ €

sup | Geo,emin0,.,0) (@ Y) = Gleo,.oem,0,..,0)(E Y)| £ .
s A R A (& ) d(28qp,5 +1)
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Gathering all those inequalities yields

F@) = FW)] = == < Cegrom 0..0) (@)

~ g
<G — A
— (80)"'y577L707"'y0) (‘T’ y) + d(2Aa’b,f + 1) a,b,f
~ 13
< Glegpnemsn,0,..,0) (T, Y) + m(Aa,b,f +1)
g
< Glegyonemin0,.-,0) (@, Y) + m@Aa,b,f +1)

9
S G(EO,...,€m+1,0,‘..,O)(xvy) + E

This ends the recurrence. The lower bound in (144) is finally proved when m = d is
reached.
For (146) it suffices to write

IVfs(z) — Vfs(msz)| <, |V fs(rsz)| = Go,...0)(TsT) > M ap,
sV f(z) — Vfs(z)| <k,

and then to choose ¢ < ZLab,

Finally with S, 5’ € §j4), dim S’ = d, and & € Fg e, 5, We have
g’ g e'm>
Vi(@)sVi) - (1-5) sV f(z)|* = Bl sV f(z)]* > 8f’“*b,

while ||V f]| o < My and
sV f(z) - Vis(z)| <e.

By choosing & > 0 small enough we obtain for all S,5" € &[4}, dim S’ = d, and all
zes,
Vf(@).Vfs(x) — (1 =€)V fs(z)]* > 0. O

8.3.3. Agmon type estimate for Lipschitz subanalytic potential. — Proposition 8.9 says
that Hypothesis 1.6 is satisfied when f is a real analytic function on the compact Rie-
mannian real analytic manifold M (Hypothesis 1.3), where the values ¢; < --- < ¢y,
are the values associated with horizontal strata of f.

We now prove that Hypothesis 2.16 is a consequence of Hypothesis 1.3 so that
Theorem 6.3 and its consequences in Chapter 7 hold true under Hypothesis 1.3.

Remember that Hypothesis 2.16 gathers the results of Proposition 2.13 and Propo-
sition 2.15 adapted to a general Lipschitz function f. We will first prove the analogous
of Proposition 2.15 in Proposition 8.15 and then deduce in Proposition 8.17 the anal-
ogous of Proposition 2.13.

Proposition 8.15. — Under Hypothesis 1.3 and when ¢; < --- < cn, are the values
associated with horizontal strata according to Proposition 8.9, choose a < b such
that [a,b] N {cl,...,cNf} = 0.
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If limp, .0 Ap, = 0, the resolvent kernel (Af r—1([a,5]),n — An) Yz, y) is well defined

and satisfies
~ _\f(w);f(y)l

(Af,5=1((ap)n = An) " (@,y) = O(e
according to Definition 2.14.

),

Proof. — This result relies on the stratification tools introduced in the previous para-
graph. It is proved in several steps, the first one being a localization in suitable open
subsets. Let us fix x9 € f~*([a, b]) with f(x¢) = to and we fix the neighborhood of
in f~1([a,b]) as

Vwo = 71 ([a,0)) 0 f~H (b0 — m5t0 + 1)
where n > 0 is a small parameter to be fixed at the end of the analysis.

We want to prove that for any € > 0, any h € |0, hc[, Ay r-1([q,5]),n — An is invertible
and that for any r, € L?(f?) such that supp 71, C Vs, wn = (AfF-1(la,]),h —An) "ty
satisfies If ()= f (20)] ~

le™ " whllwy sz = O)|lrall-
It will be convenient to call a = t; and b = t5 especially when the arguments gather
the three levels tx, £ = 0,1, 2.

i) Open covering of f~!([a,b]): Because [a,b] N {cl, .. ,cNf} = (), for any
z € f~!([a,b]) there exist a neighborhood U, of z in M and a smooth function ¢,
on U, and a constant C, > 0 such that

1
Vi(y).Ve(y) > ol and |V, (y)| < C, for a.e. y € U,.

x
Take for ¢, (y) the coordinate function ¢, (y) = y! given in Hypothesis 1.6 (see also
Proposition 8.9). By the compactness of f~1({to,t1,t2}), there exists a finite family
(z:)ier and constant k > 0 small enough such that

V. (kV s, (¥) > 2|6V, (2)|> > 23 >0 for ae. y € U,

and for all ¢ € I.
Once this open covering f~'({tx,k = 0,1,2}) C U, Uy, is fixed, we can choose
the parameter 1 > 0 such that

-1 _ nn
77 (tk=0.0,2 +1-3.21) < J U
i€l
Again when 7 > 0 is fixed and the stratification 4, is introduced as in Subsec-
tion 8.3.2, Proposition 8.14 provides us an open covering

(%SaedimS)SE(’s[a,b]
such that the associated functions, fs, S € §a,p), and G.,,... ,) satisfy

Va,y € 7 ([a,0]),  1f(2) = FW)| = 1 < Gieg,.e) (@, 9) < Myd(z,y),
VS € Sjaw, VI(@).Vis(@) = (1= DIVs@)P <O forae. @ € Togcuns:

m a
VS € a0 € Toscamss Vs(a)] = L2,
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We now choose our open covering f~*([a,b]) C ;¢ ©

— J =Sy UI;
— when j = S € Sy, 5 = {2 € Toscams |f(@) —te| > 2,k=0,1,2} and
Sojzfs;

— when j=iel, Q; =U,, N f ' ({te, k=0,1,2} + ]2, 2[), and ¢; = ke, .

ii) Choice of a global function ¢: Once the open covering f~'([a,b]) C U, Q; is
fixed we choose
1
)= (1- inf /1 _ t)))F, )]y (t)] dt.
e@==n) it G e OO) P GO 0)
’Y(O):ﬂﬂo
y(1)==
Because the integrand is 0 when f(v(t)) € |tx — 1, tx + 1| the integral fo .Jdt can be
replaced by fT .Jdt where Ty = max {t € [0,1],, f(7v(¢)) € [to — n,to + 1]} and

Ty = min{t € [0,1], f(7(t) > F() =} if f(x) > F(b) —m,b=ts,
Ty = min{t € [0,1], f(4(t) < f(a) +n} if f(2) < f(a) +ma=t1.

The comparison with G, ... .,)(,2o) then gives

2D > Gl l@rzn) = 212 |£(2) — flan)| -3
and
(147) vz € f7H([a,b]), (@) > |f(z) = fzo)| = (b—a+3)n.

The function ¢ is a Lipschitz function of which the gradient can be estimated almost
surely in any €2;, j € J. The triangle inequality for a pseudodistance implies for all
z, 2" € f~([a,b]) N Qy

|lp(2) — o(a’)] . /1 /
LA 4 i inf 1o, o 2 £)F, 1)y (t)] dt
) O o () Jo @IUalte ntwtnl (YO Fleo,..c (Y)Y (B)]
7(0)=x
y(1)=2'
1
. /
< inf / [V (v()| (v(1) 1Y (2)] dt.
Y€€ (10,1]:£~*([a,b]n92,) Jo
v(0)==
y(1)=2'

We used that
Laon\U2_Jte—mtntnl (F (V) Fleo,.ea) (Y)Y ()]
is
— 0 and therefore bounded by [V, (y(t))|

when ~(t) € Q; € F~(Ui_oltx — 1tk + 1) when j € I;
— bounded by |V fs(v(2))| 7' (t)|when v(t) € Q; with j = S € S[a,p)-
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We deduce
(148) Vied, |Ve(z)l<1—-n)|Ve;j(z)| forae e

iii) Partition of unity: Let > ; X; = 1 in a neighborhood of f~*([a, b]) be a parti-
tion of unity with x; € (5°(Qy; [0, 1]) where f~'([a,b]) C U, Q; is the open covering
introduced in i). Accordingly the function ¢ € W (f~![a,b]) is the one introduced
in ii). For any w € Wy (f%; AT* M), the relations (19) and (18) of Lemma 2.10 give

20 2¢ ~
Re Qf, 11 ((aph(@, €7 w) =Y Re Qf p-1 (a1 (5w, € x5w) — B2[||Vx;[@]1%.
JjeJ

2 " _ 112
= Z ||df,f*1([a,b}),hijH + de,ffl([a,b]),hijH
jeJ
= (6@, Vel x@) — W[V 1@)1%.
With (148) we deduce
20 -2 " ~ 12
Re Qf,f-(at)h (@, €7 w) = 3 [ldg s s mxs® || + de,f*([a,b]),hXjWH
jeJ
= (=)@, Ve, IPxi@) = B[ Vx; 1@l
Now ¢, can be extended to a C* function away from a neighborhood of supp x;
without changing the expression and using (18) and (21) with

wj = e_(l_")%xjdj € Wa(fb; AT* M)
and ¢ replaced by (1 —7)p;, we obtain
) N _112 - -
s, 5-1ao)nxi@]|” + de,f—lqa,b]),hXjWH — (1= (x;®, [Ve;1*x; @)
= Qf—(-n)ps.f (b)) ,n (X5 @5 Xj©)
+ (1= )2V .V, —2(1 = ) [Vo,|” + hlvg, + hTe,, ) x@5 X;P)

+h(1—n) </f=b - /=a> (Xj@, X;@) AT M (%‘fj) (o) do.

Because all the ¢; are C*° functions there exists C' > 0 such that

(o, + T, x5 x5@)| < Clxsall
We have proved

(149)
Re Q-1 ((a)n (@, €7 ) = > Qr(1-nyp, (0@, X;9)
JjeJ
(150) +2(1 = n){(VFVe; — (1 =) [V |)x;@, x;@)
(151) + h(1—n) (/ —/ > (X;@, Xj@)AT* <8%) (o) do
b Y J%Ws XgW/AT; M on

SOCIETE MATHEMATIQUE DE FRANCE 2024



136 CHAPTER 8. GENERALIZATIONS

+ Rh(&)7
where the constant C,, > 0 in
|Rn(@)] < Cyphl@|?

depends on 1 > 0 via the construction of the open covering f~!([a,b]) C UjeJ Q;,
the functions ¢; and the partition of unity > jed X? =1.

iv) Local lower bounds: We give a lower bound for every individual j € J for
the three terms (149)(150) and (151). The first one (149) is obviously non negative
according to

2
di_(1-n)p, (XJ‘@)H 2 0.

Qf*(lfn)sog' (@, X&) = ||dff(1*n)%- (Xj‘:’)||2 + ‘

For the other terms we distinguish according to j € I and j = S € Sjq,)-
e j € I: In this case by recalling the choice p; = ki, we know

ViVe; >2 |Vg0j|2 >k%>>0 forae. z€Q;.
This implies
21—1) [V£.Vg; = (1 =) [VeP| 220 =0) |Ves]* > (1 =) for ae. w €9,
where the positive constant (1 — n)x? is uniform w.r.t j € I.
Finally the condition Vf.V¢; > 0 makes sense almost surely along the bound-
ary f~'({a,b}) so that the integral terms (151) are non negative.

®j =258 € : Our choice of Q; C {z € M, |f(x) —tx| >n,k=0,1,2} implies
that the boundary terms (151) vanish. Finally our choice ¢; = fg in i) implies

ViVe; —(1- g) Vg >0 forae €y,

We deduce
2 n 2 m?v,a,b
20=n) [VIVe; = A=) [Ve|"| <201 =n)5 [Ves|” 2 (1 —n)— ==
2
almost every where in Q; with the positive constant independent (1 — n)% inde-

pendent of j = S € Sq,3)-

v) Gathering all the lower bounds and conclusion:
2
We take v, = (1—7) min {112, %} and summing the previous lower bound w.r.t
j € J leads to

20 @ ~ Vp i~
Re Qg r1((a) n(w, €7 w) = AnllePwl|* => (v = Cyh = M) |@]* = ||

by taking h € ]0, hy[ for some small enough h, > 0.
Because Ay ¢-1([q,5)),n 18 self-adjoint the inequality

2¢ 1% - ~
Re (7w, (Af p=1(apnm = An)w) = PGl > epnllof®, @ =erw,
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valid for all w € D(Ay, t-1((a,p)),n) for some ¢, > 0, implies that A; belongs to the
resolvent set of Ag -1 ((4,5]),1-

When wy, solves (Ajf ¢-1([ab)),n — An)wWh = Th, the same inequality with ¢ = 0
on supp 7, C f~'(Ito — n,to + 1), gives

~ Uni~
Irallll@n] > ZHl@n]?,

and ||@on] < 7277||rh|| By using again (18) we deduce

2 - 2¢ -
;IImII2 > [Irallll@nll > Re Qf, 41 fa,pp),n (wny € wn) = Anlln ]
n

> |ld s py@nl? + |45 4@nl1% — Vel @) — Anllon .
And finally there exists a constant M, > 0 such that
M,
h?
with ¢(z) > [f(z) = f(zo)| = (b—a+ 3)n.
We conclude by taking n > 0, on which all the construction depends, arbitrarily
small, the limit A — 0 being taken for any fixed n > 0. O

~ ~ ~ L
lrnll* > @l + lldan|® + lld*@nl* = lle® wallwy g2,am-ar),

Remark 8.16. — 1In this proof, we did not use the global solution ¢ to the inequation
|[Vp|?2 — |[Vf|?> < 0 provided in ii) because such a solution has no better regularity
than the Lipschitz one. Instead we really introduce the partition of unity in the
process of obtaining exponential decay estimates with all the functions ¢; which are
regular enough and allow to use the various integration tricks of Lemma 2.10, used in
particular in order to absorb the singularity of the term h(Zyv s + Zg ).

Proposition 8.17. — Under Hypothesis 1.3 and when ¢y < --- < cn; are the val-
ues associated with horizontal strata according to Proposition 8.9, choose a < b,
a,b¢ {cl, cee cNf} and call U the compact set f_l({cl, e cNf}ﬂ[a, b]). All families
()\h)h>0 e C, (Th)h>0 S L2(f2) and wy, € D(Af’ffl([a’b])’h) C Wa( fl’;AT*M) such
that

(Af r-1([ap))h — An)Wh =Th, supp rp C K, Lim Ap =0,

where K is a fived compact subset of f~1([a,b]), satisfy the estimate

ming cyyukr [FC)—FW)]
h

e whllwy(sey = OQ) [lIrnllza(sey + tullwnllza(sy]
wherety =1 if U#Q and ty =0 if U = 0.

Proof. — The case when U = () is contained in Proposition 8.15. Let us consider the
case when U # (). First of all, the positivity of Ay r-1((q)),, implies

I ds pwl® + 1|d% hwnl® + (C — Re Ap)l|lwnl|* = Re (wh, (Af, r-1((ap).n + C — An)wh)
< Il lwnll + Cllwn .
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By taking C > 2(1 + || f||w1.) we obtain

lwnllwy(rey = O)(Irnllparey + lwnllpz o))
which provides W2 estimates of wy, in any compact subset of f2 = f~1(]a, b]).

For € > 0 small enough, consider a cut-off function x. € C>®°(M;[0,1]) equal to 1
in K, = f‘l((Uszfl[c;C —é&,¢c; +¢€]) N[a,b]) and to 0 in the complement of Ks.. The
form x.wp solves

(Apn = An)((1 = xe)wn) = (1 = xe)Th + Py.wh,
where P, _ is a first order differential operator with coefficients supported in Ko, \ K.

Ng—1 .
and xewn € @)L Af f-1((max(ce-te,a),min(cesr—e,b)]),h- Lhe resolvent estimate of
Proposition 8.15 applied to every Ay -1 ((jmax(cy+¢,a),min(cpi1—e,b)]),n then implies

miny cyyuk IFO-FWI ~, 10e
le z wnllwacsty < O ™) [Irnllzacrsy + lwonll] g,
and then we choose ¢ > 0 arbitrarily small before taking the limit A — 0. O
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CHAPTER 9

APPLICATIONS

The spectral version of the stability theorem, Corollary 1.8 in the Introduction or
Theorem 7.8 for a more general version, corresponds to what can be expected at the
level of Arrhenius law identifying the exponential scales. It is a straightforward con-
sequence of Theorem 6.3. But the construction of global quasimodes for Theorem 6.3
is actually much more informative. It allows to compute the subexponential factor,
a la Eyring-Kramers, in many situations which lead to different kind of asymptotic
behaviors. As it was discussed in the Introduction, no continuity with respect to f can
be expected in the asymptotic leading term. Nevertheless some robust integral formu-
lation allow to follow the effect of deformations of f on the spectral quantities and to
explain the emerging discontinuities. Contrary to Theorem 6.3 and its consequences
in Chapter 7, we do not have a satisfactory general formulation of this kind of refined
stability property and we prefer to make explicit various examples, corresponding to
interesting practical cases.

9.1. The generic Morse case

In this subsection, we recall the results of [74]. Although they were presented
in the oriented case, those results hold in the more general case of non necessar-
ily oriented compact Riemannian manifolds. The proofs are simply adapted by pay-
ing attention to the duality arguments, the Hodge * operator sending the sections
of APT*M to sections of APT*M ® orys. The important assumption which was made
in [74] concerns the simplicity of the critical values of the Morse function f: the
latter function has distinct critical values, which allows in particular to identify crit-
ical points with critical values. In [74], the set U of critical points was partitioned

into lower 4, = UpE{O,‘..,d} %ﬁp)’ upper U = UpE{O,..‘,d} %”)7 and homological
Uy = Upe {0,....d} GUI({p ) critical points. This partition actually coincides with the parti-
tion of bar endpoints &* = X* UY* UZ* in this order. In [74], we defined a boundary
map dg : GM,(JPH) = UP and U, U Uy C ker dg. Tt is exactly the dual version of

the map d g of Appendix B.2 defined by d g : @ - y(P‘H) and Y*UZ* C kerdg.
Actually, in [74], we started with the homological point of view before we realized
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that working directly in terms of cohomology was more natural for this analysis. The
link with relative cohomology groups of sublevel sets of f, which is detailed at the end
of Appendix B.1, can be handled with elementary arguments under the assumptions
of [74] (Morse function with distinct critical values). Note that this generic Morse
situation is often used as a simple way to introduce persistent homology (see e.g.,
[35]). Although it is an obvious bijection under the assumption that the Morse func-
tion f has simple critical values, we use the notations, when it is necessary, z, y, or
2, for the critical points associated with values zo = f(z,) € X", yo = f(y,) € ¥*
and z, = f(z,) € Z*. As a comparison with the notations of Subsection 4.1, it is not
necessary nor useful to distinguish z, = (a4, @) € R x A from the value a, = f(z,)-

Finally note that the result of [74] can be recovered while combining Theorem 6.3
of the present text with the final computations of [74]-Section 4 which rely on local
WKB approximations valid locally for any Morse function f.

Here is the main result of [74] with the above modified notations.

Theorem 9.1. — Assume that f is a Morse function with simple critical values. For
any p € {0,...,d}, there exists ¢ > 0 such that for every h > 0 small enough, the
spectrum of A%M’h satisfies

)00 = o)),

and the set consists in ca,rd(e"7(p)) eigenvalues counted with multiplicity. For ev-

ery h > 0 small enough, there exists moreover a bijection j : J®) — O'(A;{);VI’}L) N [0, ch],
where the latter set is counted with multiplicity, such that:

1. For every zy in ZP), the associated eigenvalue is
j(zq) = 0.

2. For every zo in XP), x, being the lower endpoint of the bar [To, ya[, and hence
Yo = dgz,, there exists a homological constant ko € Q" such that

Q

T | A(Zy) - Ap(zy)] |detHessf(ga)|§

2 h Paly,) - Apra(y,) |det Hess f(z,)|

[ T

-2 Yo — T
h

(1+0(h)),

e

where, for any critical point s of f with index £ and critical value s = f(s),
A1(8), ..., Ae(8) denote the negative eigenvalues of Hess f(s).

3. And yo in YP), y, being the upper endpoint of the bar [T, ya|, and hence
Yo = dgTn, there exists a homological constant k., € Q* such that

s b ag,) M(u,)] [det Hess f(z,)
CmA(zg) o Ap-1(zy)| |det Hess f(y,)

e 2T (14 0(h)),

i(Ya) =K

D= =

|
|
where, for any critical point s of f with index £ and critical value s = f(s),
A1(8), ..., Ae(s) denote the negative eigenvalues of Hess f(s).

Remark 9.2. — 1. Theorem 9.1 is a refinement of Theorem 1.7 in this generic
Morse situation. It extends Eyring-Kramers asymptotic formulas known in the
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case p = 0. The boundary version in f~!([a,b]) corresponding to Theorem 7.1
is also found in [74, Theorem 4.5]. In both papers, the general strategy consists
in a recurrence with respect to the number of critical values, carried out by
increasing the interval [a,b]. The setting in [74], was simpler because: a) the
critical values were assumed to be simple while here they may be multiple or
very degenerate; b) the subexponential factors of exponentially small quantities
had explicit leading terms derived from the WKB approximations (this is not
possible here). M In this section, we will combine Theorem 6.3 with the local
computations of [74]-Section 4 to provide a more general approach.

. In [74], thanks to the Morse assumption, we could compute the subexponential

factors using WKB and Laplace methods. On the other hand, the exponential
factors are given by global topological quantities: the lengths of the bar code.
In the present paper we manage to compute the logarithmic equivalents of the
small eigenvalues without any knowledge of the exponential factor.

The connection between the local computation around the lower endpoint z,,
and the upper one y, = dgz, is implemented by an application of Stokes’s
formula. The boundary operator 0 for chains induces a linear application
from Hpyq(fYete, f¥==¢) into H,(f**¢, f®=~¢). Under the generic Morse
assumption, these spaces are 1-dimensional with natural bases given by the
stable manifolds of Vf. This actually provides the coefficients k. (see [74,
Proposition 2.12]). When the critical values correspond to multiple critical
points, such a construction has to be replaced by more general linear algebra
(see Subsection 9.3).

As shown in [50], the homological constants k2 equal 1 when p = 0, and also
when p = d and M is oriented by duality. In the case of oriented surfaces treated in
[70], a combination of these results together with simple duality and chain complex
arguments then implies that these constants equal 1 for any p € {0, 1, 2}. Nevertheless,
contrary to this indication that it could be true in general, which was moreover our
intuition when we wrote [74], this is not the case as soon as d > 3 and even when
d = 2 in the non-oriented case. The simplest example comes from Morse theory on
the projective plane. It is more generally related to the “open book picture” exhibited
on the front cover of [68].

To be more specific, we shall prove the following result.

Proposition 9.3. — Let X be a d-dimensional manifold.

1.
2.

Ifd =1,2, and X is orientable, then k% = 1,

The coefficient k% may be equal to 4 for some well chosen Morse functions
on RP? and on RP3.

For d > 3 and each integer n, there exists a manifold X,, of dimension d such
that k2 = n?.

1. A small confusion occurred in the construction of accurate global quasimodes in [74, Sec-
tion 4.2]: a version of Proposition 6.16 is missing and can be easily corrected.
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4. For d > 4, for any integer n and any closed manifold X of dimension d, there
is a function f, on X such that k2 takes the value n?.

Proof. — The number &, is obtained as follows: consider the sphere S— (ya) in the
unit disk bundle of the descending manifold from Y the stable manifold of Vf. It
is homologous to a multiple, %, of the descending manifold from z,, W~ (z,), with
d gz, = yo. But since the ascending manifold from z, the unstable manifold of V f,
W (z,) has intersection +1 with W~ (z,,), the number &, is the intersection number
of S7(y,) and W (z,). We work here under the generic Morse-Smale assumption
saying that all the stable and unstable manifolds are mutually transverse, which en-
sures the finiteness of k,, within the construction of the Thom-Smale complex (see
[68]). In homological terms, if we set zo = f(z,,), Yo = f(ya), and £ > 0 small enough,
we have the maps a

H, (fyete, fye—e)
o
Ho 1 (f*ete, fre=%) ——= H._1(f¥>7¢, f*7°)
b
H,_i(fvete, fo=me).

Now since H,(fYete f¥a=¢:7Z) and H,(f%*¢, f*»~¢;7Z) are isomorphic to Z, the
R-vector spaces H,(fY%»*¢ f¥%a=¢) and H,(f%>T¢, f*»~¢) have canonical generators
(i-e., well defined up to a sign and not just up to a constant multiple).

But a generator on the left-hand side has its image zero in H,(fYe1e f¥«=¢) by
assumption. Therefore this generator has an image in H,._1(f¥Y~~¢, f*>—¢) that lies
in the image of 0. It is thus equal to the image by 0 of k, times a generator.

Now consider the Morse function on RP? obtained by perturbing the following
Morse-Bott function:

[zo, 1, T2] — 3,
where [zg,71,72] is the class of (xg,71,72) € S? by the equivalence rela-
tion (zg,x1,22) =~ (—xo,—x1,—22). This Morse-Bott function has a point of
index 2 at [0,0, 1], and a circle of index 0 at [cos(6), sin(#), 0] for 6 € [0, 7]. Perturbing
this circle yields a pair of critical points of index 0 and 1, and the Thom-Smale
complex is then

represented as

o

\3(—\@%\2\2
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The Barannikov complex (on Q or R) is then

z

But necessarily x, = +2, hence k2 = 4.

For RP3, which is orientable, we have the similar function [z¢, 1,2, 23] — 3
where 22 + 2%, +2% + 2% = 1 and we identify (zg, 21, z2,x3) and (—zo, —21, —T2, —T3).
We then have a maximum z3 = +1 of index 3, and an RP? Morse-Bott critical
submanifold, which after perturbation yields a critical point of index 0, one of index 1
and one of index 2.

The Thom-Smale complex is then

t

¢0
z

¢2
Y
|0
Zz

so again Kk, = 2.
To obtain any squared integer, we can consider the lens space L(n,1) quotient
of §% = {(20,21) € C? | 20| + |21[* = 1} by
(ZO, Zl) = ((«UZO,CL)Z]_)
where w is a primitive n-th root of unity. The function (zg, z1) — |20|? has two critical
circles a minimum and a maximum. After perturbation we get

t

I3

Y

0

z

and then |ko| = n, since Hy(L(n,1),Z) = Z/nZ,Hy(L(n,1),Z) = 0.
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Now assume there is some function f on the manifold V' with a given bar code Ay,
and we embed V into a manifold X.

Consider the function g.(z) = d(z,V)? + ep(d(z, V)?) f(p(z)) where p is nonneg-
ative, equal to 1 near 0 and vanishes outside a neighborhood of 0. Then for ¢ > 0
small enough, the lower part of the bar code of g. coincides with the bar code of f.
As a result if there is a function with some ko, = +n on V, the same holds for X.
Consider the above function f on L(n, 1), and normalize it so that the critical points
are 0,1/3,2/3,1. Consider the subset A(n,1) = {& € L(n,1) | 1/4 < f(z) < 3/4}.
This is a Lens space with two punctures, hence embeds in R* as a subset of a compact
hypesurface ¥,, 1: if A(n,1) is contained in {z € R* | ¢(z) = 0} and extending 1 to
a proper function having 0 as a regular value, we set X, = ¥~!(0). Now we can
extend f to a function f on ¥, and its bar code contains J3;. Applying the pre-
vious argument, we get a function close to d(z, %, 1)? containg By in its bar code.
Since near infinity, d(z, ¥, 1)? is close to |z|?, we get a function F on the ball, with
F < c and F = c near the boundary with arbitrary k.. By embedding the ball in
any 4-manifold M, we get a function on M with k., = £n. Again by embedding, this
works on any manifold of dimension > 4. ]

More generally if for some prime p, the homology mod p has rank different from
the rational homology there must be a y such that p divides k.

Remark 9.4. — 1. The converse does not hold, i.e., we may have k, # £1 while
the homology has the same rank for all fields. For example if we have a Morse
complex containing the following diagram

z

v
Yo
\ )
-

the corresponding homology vanishes and the rational Barannikov complex is

z
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but mod p, we get

Yo

Y1

x

In both cases the homology vanishes. Note however that if we look
at the homology of sublevels, we can distinguish the two situations : if
a < f(z) < f(y1) < ¢ < f(yo) the rank of the homology H*(f¢, f*) depends on
the coefficient field : for k = Q we get 0 while mod p, we get 2.

. When several critical values coincide, the numbers x, are replaced by integral
matrices. For example if we have the following bar code

Yo Y1 Y2 Y3

Zo T T2

T3

and if a < 3 < b < 2 < ¢ < Y2 < d, we have the map
H,(fyaTte, fya=e) ~ 74

%

Hi 1 (f¥o75, f*79)

|

H,_y(foe4e, fra=5) 2 Z

H*,l(fx""’_a,fwa_a) ~ Z3

hence we get a matrix k € M(4,3,Z) such that x ® R is surjective. We can
then consider the singular values of x, and we get three numbers ki, Ko, K3,
however these are not the homological constants that will yield the prefactor of
the eigenvalues, since we must first compose with diagonal matrices depending
on the Hessian at each critical point involved (see Proposition 9.10).
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9.2. Simple critical values for non Morse functions

We consider here cases where changing the function f from f; to fo leads to explicit
changes of the global quasimodes (<p;p )) jeg® (a,p) and provides accurate formulas, even
for the subexponential factor, already known when f; is a generic Morse function. It
works especially well for functions, i.e., for p = 0, and although we are not consid-
ering Dirichlet boundary conditions at f~1({b}) in f, like it is done in the study of
quasi-stationary distributions, this sketches possible generahzatlons of the analyses
made in [77, 32, 33, 72, 73]. Note however that, though obtaining precise estimates on
the low spectrum of the corresponding Witten Laplacians with Dirichlet boundary
conditions is an important step in the studies made in [77, 32, 33, 72, 73], these works
actually focus on further issues such as the exit events or the concentration of the
associated quasi-stationary distributions. In particular, in [32] are considered rare exit
events, which are actually rather related with the low spectrum of appropriate Witten
Laplacians with mixed Dirichlet-Neumann boundary conditions. Simple cases when
p # 0 will also be discussed afterwards.

9.2.1. Degenerate local minima. — We consider a reference function f; which is a
generic Morse function like in Theorem 9.1 with a bar code B = (a7 4 b’{,‘gl Dace -

In particular in degree 0, there is one bar [ago()), +oo[= [xl 00 y§ 3[ associated with the

global minimum a(o) and the sublevel set Q(O) =M = f>~

(0),y(1) € MM, 1 <k < Ky where y i is the value of saddle pomt and z”) is the
T1 ko Y1,k 1 k

, and there are bars

global minimum value of the newly created connected component Q° 1k ) of fy1 . when
(1)+0 ) _
we pass from the sublevel set fy1 o oto fiMF

We take égm)n < min {yﬁi — azgol)c, ;lr:§0,)c §°,1/| 0<k<k < KO} and we assume
that the function f5 satisfies Hypothesis 1.2 and coincides with f; except around the
local minima. The open set called

ot

w,(co) ﬂ fi

is a connected open neighborhood of xl’k forall k =0,...,Ky. The two functions f;
and f, are compared by:

i) f1 = f2 in a neighborhood of M \ ( kK:"O w,(co));

i) [1fr = folleo < %-

Those two assumptions combined with the stability theorem
dbot (B(f),B(9)) < If — glieo
(0) (0)[

recalled in Appendix B.3, ensure that there are exactly Ky + 1 bars [ka,ka
of degree 0 and length larger that %0, where the saddle points are not changed

yél,z = ygllz for 1 < k < Kj. Additionally and especially because with our choice
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of £y < min {|:z:1 - ml k/| k< k’} and ii), the associated connected component

remain unchanged as well ng,i = ngl)c for 0 < k < Ky. We drop the index j = 1,2

for Q,(CO) and y, 1) Tike in the previous subsection, we use the notation s for the point

FI1GURE 15. The function f; is represented by dashed lines
and the modification giving f2 by plain lines.

associated with the critical value s, when it is uniquely defined.

Proposition 9.5. — Under the above assumptions and in particular the comparison
£,
i)ii) between f1 and fy, the 6(e~ 7 ) eigenvalues of A}Z)’h are given by
) _ (0
Y T2,k
h| A1 y(l) e 2w —
Palys 7l x (1+0(h))

(152)

f2(@) -2 Q)

NSy @il
m |det Hess f1(y; ") (wh) me) e m dx
k
ash — 0 for allk=0,1,..., Ky (it is exactly 0 for k=0).

With this formula it then suffices to apply the Laplace method for the integral

Fla)- m<2°,>€

me) e ? dx in order to exhibit various asymptotic behaviors as h — 0 of
the subexponential factor. We refer in particular to [2] for the case when f is a
multidimensional polynomial function.

Proof. — When we work with functions, we are actually in the simpler framework
of [50] for the generic Morse function f1 The problem consists in computing the
square modulus of the interaction <1/1k , Ay nTs, 05 (0, ) where w,(el)’h is a local WKB-

approximation of eigenvectors of A( 1, around the point y,(C ) while 4,0(0) is a global

quasimode associated with the bar [z 50,)6, y,(c )[ solving dy p' = 0 in Q,(GO) n fy§c '=5(h)
with limp_,06(h) = 0. The truncation Tj, is a smooth truncation around the level
(1) — o with d2 > 0 small. By Theorem 6.3 and Theorem 7.1 the same method holds

by replacing the global quasimodes <p(0) by global quasimodes <p(0) constructed
in Theorem 6.3. In details we refer more specifically to the consequences stated in
Subsection 6.3. Moreover we can focus on the bars of length larger that 5 which are
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([xéol)c, y,(cl) Dk=o0,... i, - Since those quasimodes satisfy de,hwg?,)c’h =0in Q,(co) ﬂfy;(cl)—‘s(h)

f2("[)7$(207])€

they equal /Cy ne” D where C}, , is the normalization constant
1 . 1+ 0(1)

fz(z)—z(Z?L f2<z)—w§‘f,l

f W e 2= dz me) e 2= dx
k
k

which replaces

1
(0)
f1(z)—=z
I Tk d
Q©® € h T
k

= (wh)”?|det Hess f(z{)["/2 x (1+0O(h)).

Finally it suffices to notice that up to the normalization constant and the change of

the length of the bar which brings another constant factor, the functions wgoi’h and

gogol)c’h coincide in the neigborhood of g,(cl) and the local computation of the interaction

is not changed. O

The above formula shows a good stability when f; is changed into fy although

such a stability may not appear when we make an explicit asymptotic expansion of
f@) -2 )
the Laplace integral fQ(O) e~2— " dz. Here is an example in dimension 1, that is
k

for functions defined on S* = R/(27Z). The function f; is assumed to have four non
degenerate critical points:

— at ggog = 0 with value xgoi = 0 and second derivative 1;

— at g((]?i = 7 with value sc(()?i = —1, the global minimum;

— at ggli = 7 with value yﬁ =1 and the second derivative equal to —Ay;
(1) — 3=

o1 =3 with value y(()ll) = 2, the global maximum.

—atg

The modified function f5 s parametrized by § € R, § small, and consists in replacing
filz) = %2 + O(2®) in a small neighborhood [—e, €] of ngi =0 by

2t 4+ 2622 + 1(_oo.01(6)62
fg,(;(.')}) _ I ( ,0]( ) 7

while fo 5 = f1 outside [—2¢, 2¢]. Formula (152) then says that the (e~ *) non zero

eigenvalue of Agg)a

Sth (for § > 0 and € > 0 small enough) equals

-2
h\/ /\16 h
a4 4260241 (_ o 0](6)82

m(mh)=1/2 [, e” 3k dx

x (14 0O(h)).
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It is equivalent as A — 0 to

_2

m when 6 > 0
T

W re hen 6 = 0
_— when 6 = 0,
ﬁfRE_% du
hy/A1]d]e 7
# when ¢ < 0.

Ver

So the apparent discontinuity in the exponent of A at § = 0 is a simple consequence of
the discontinuity of the Laplace integral. Actually the stability of persistence homology
has a stronger spectral counterpart than what is stated in Theorem 7.8: It does not
concern only the exponential scales but also allows to study the deformations of the
asymptotic subexponential factors provided that a robust formula can be proved for
them. The rest of this section explores different cases for which we are able to prove
such formulas.

9.2.2. Variations. — In the previous paragraph we used a good enough knowledge of
fo()—=g k)

the global quasimodes @(0) ok V/Crre~~ & indegree p =0, in order to get the
explicit change in the asymptotlc formulas when we pass from the Morse function f;
with simple critical values to the function f; with degenerate local minima. Such an
analysis can be done in more general degree if we have explicit enough information
on the local forms of quasimodes the global ones <,01,(C P)h and the local ones vy, (p+1),

By duality this is obviously true in dimension 1 and we start with this example. We

then consider other possible extensions.

9.2.2.1. The one dimensional case with degenerate critical values. — Consider a C*®
Morse function f; on R such that |0,f1] > ¢ for some positive constant ¢ when
z € R\ [-R,R] for R > 0 large enough. For —a = |a| and b = |b| large enough the
bar code By, (a,b) does not change when a, b are changed, except for the value of the
endpoints a, b, while for such a fixed pair (a,b) it can be viewed as a restricted bar
code By, (a,b) of a function f1 defined on Sy. This solves the compactness problem in
order to fit with our general framework. It can be checked easily that in all such cases

: : (») (p)
the exponentially small eigenvalues of A oot (o8l h are close to the ones of A FiR

for p = 0,1 and even that the endpoints of the interval f; *([a,b]) can be moved as
long as they do not meet the critical point without changing the final approximate
spectral result (the same will be true for the function f). So let us focus on f; *([a, b))

with —a = |a| and b = |b| large. The bar code is made of bars [x,goi, y,(cli[ k=1,...,.K
with an additional bar:

- [xo 1’b[ 1 o
wo ) € £ (Ja, b]);

(0) (:U(O))

admits an interior global minimum at z;; = 0.1
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F1GURE 16. Three different cases for fi; between the level a and b, from left-hand side to
right-hand side with an interior global minimum, an interior global maximum in the interior
and none of them. The bar code in [a, b] is represented beside the y-axis.

— or [a, y(()}l)[ if f1|f (] admits an interior global maximum at y&ll) =f (g(()(’)i),

v € fi ' (la, ).

Only in the first case, the Witten Laplacian A; ) () has a non trivial kernel
1
no-e o
Ce~ . Only in the second case, the Witten Laplacian Af N ((ab))h has a
f1()— y(()l{

non trivial kernel Ce 7 dz. The two cases are exclusive and a third one is when

the global minimum value of f1|f_1 (b)) is a and the global maximum value is b.
Depending on the cases f; admits 12K + 1 or 2K distinct critical values and their set

in [a,b] is denoted C.
In order to specify our modified function fs we first choose
by < min{|c—c|,c# ¢, €C}.

)
The connected open set Q(Oi as the connected component of ( fl)yk11 which contains
) for1 <k < K, with Q(()Oi = f7 *(Ja, b]) if the global minimum a: E frt(a, b)) ex-

1sts By duality one defines Q;c 1 as the connected component of ( fl) o forl1 <k <K,
Ty
with Q(()li = f~(]a, b]) if the global maximum 35)11 € fi *(Ja,b|) exists. Then the con-

nected open sets w,(eo) and w; are defined by

O
=0 0 (TR o) = el (), a-

The function f; satisfies Hypothesis 1.2 and
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FiGUurE 17. The function f; is represented by the dashed curve, the open sets w,(cp) are

materialized by the white rectangles along the z-axis and the modifications leading to f2 by
the plain curve.

— f1 = fo in a neighborhood of R\ (|_|O<k<K(w,(€O) U w,(cl))) where w(()o) and w(()l) are
replaced by the empty set when they are not defined;
— i = f2ll < .
Note in particular f;*([a,b]) = f5 ' ([a,b]).
Owing to the stability theorem

dnot(B(f);B(9)) < IIf = glleo

the bars [m,(cog,y,(cli are transformed into bars [:cl(coé,y,(:%[ of length y,(:; — x}(go; > %0

while all the other bars have length smaller thant %". After those assumptions the
spectral result take a nice simple form.

Proposition 9.6. — For the values a,b and the function fa chosen like above, there are
(0) or (1)
f2.f5 ([ab]),h

1+6(1)

£
K non zero 6(6_70) eigenvalues of A which are equal to

(1 L @5 de) x (h [ e P )

L‘-’I(cl) wl(co)
Proof. — By the usual supersymmetric arguments the non zero eigenvalues
of AV and AY are the same in dimension 1 and we thus

fa.f5 " ([a,b]),h f2. 5 ([a:0]),h
focus on A;O) 7 (fap]),n OF TOTE precisely on the non zero singular values of the
25J2 El I
restricted differential. We follow the general method which consist in computing

(0) 1)
k

the interaction scalar product <¢,(cl),df,hT52<pk ) where is a local quasimode
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for Ay, p in the neighborhood w(l around y whlle <p is a global quasimode

associated with the bar [xéo,l, yélli[ solving dy, h(p( )

which contains w( ) of fy< ) —(h)  with limy_q d(h) = 0. We work directly with the

function f; the global quasimode <p§:)) equals

= 0 in the connected component

1+6(1) 20—} ©)

e 2 in wy,
f2 (@) -2}
ot 2.k
f (0) € 2 dzr
Wi

By noticing that 9, f2| oM = On f1 lo,@ < 0, and by using Dirichlet boundary condi-
k k

tions on &u,(cl) in degree p = 1, we find that w,(cl) can be chosen as

1+6(1) efQ(I) yél)c 1)

dz inw;’.
fz(uv) yg ,)C
f (1) 6 & dx

A direct computation gives

( ) (0)

—x

k
he™ (1+ o(
W, dp Tl = 1) ,
(0)

T2~ WS L F20@)- 250)
[, m e dex\[ [ e~ B dx
;I)c’%

where the factor e~ 7 can be simplified. O

Remark 9.7. — Note that in this proof the result on the generic Morse function f; is
not used. The function f; was introduced in order to have a simple formulation of the
assumptions fulfilled by f5. The result actually comes from a direct computation when
we know well enough the local forms of the global (<p,(€0)) and local (1, (1 )) quasimodes.
We have explicit form in dimension 1 and the computation is straightforward. It is not
the same in the multidimensional case although Stokes’s formula allows to perform
the computation when local approximations of local and global quasimodes are well
known.

9.2.2.2. Piecewise affine functions. — In this paragraph we make more explicit the
one dimensional result when f is a continuous piecewise affine function and discuss the
possible extension to the multidimensional case. Let f be a piecewise affine function
on R such that:

— the derivative f’ does not vanish when it is defined;
— there exists R > 0 such that the derivative f’ is a constant on [R,+00) and
on (—oo, —RJ;
— the values f(z) of the points x where f’ is discontinuous are all distinct.
Such a function f can be written as a function f; of the previous paragraph (sim-
ply regularize locally the discontinuous change of slopes in order to get the Morse
function fy).
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FicURE 18. A piecewise affine potential in 1D with distinct and some fake critical values.

The extension of Proposition 9.6 to a = —oo and b = 400 says that the 6(1)-eigen-
values of Agc ]ﬁ , (and by duality of Al IR, h) are given by
(1) _,(0)

—x

H(f' D +0)l, £/ (52 — OJH[f" (2 +0), £/ — 0)lle=2" 7 (1+5(1)),

with £ = 1,..., K, where the finite length bars of J3; are [xgco),y,(cl)[, k=1,...,K;

(0) is the local strict minimal value around the point QECO); y,(cl) is the local maximal

()

"(x 4+ 0) and f'(z — 0) denote respectively the right and
left derivative and Hs,t] = sz—j_tt is the harmonic mean of s,t > 0.

The computation when f is constant on some intervals is also possible with a
subexponential factor behaving like h or h?, depending on the different cases (left to
the reader).

Now let f be a piecewise affine function defined on a finite triangulation

of R* = |—|1§i§ ;& where & is a d-dimensional non degenerate simplex with

Value around the point y,

endpoints A?, ..., A? and where non finite simplices are roughly taken into account
by sending the first endpoint to infinity A? = oo (a more precise description is
not necessary here). We assume that lim, .. f(z) = 4o00. The function f is a
subanalytic function on R? of which the restriction to any ball B(0, R) can be viewed
as the restriction to B(0, R) of a subanalytic function defined on S?. This solves the
compactness problem or the questions about the topology at infinity (alternatively
we could work on the d-dimensional flat torus). The function f has a finite number of
horizontal strata according to the terminology of Definition 8.7, which contain all the
critical values and the possible endpoints of the bar code (3. We may consider either
A gap or by approximation A ¢-1((q,5)),n With —a,b > 0 large enough. According
to our analysis in Subsection 8.3, in particular Proposition 8.9, Proposition 8.15 and
Proposition 8.17, the results of Theorem 6.3 hold in this case and we know that the

SOCIETE MATHEMATIQUE DE FRANCE 2024



154 CHAPTER 9. APPLICATIONS

exponentially small eigenvalues of A(fp ;_1([(1 o).k satisfy

+1_*

AR) () 128 2R

)

where o belongs to AP (a,b) U AP~V (a, b).

The question is whether it is possible to give algebraic formulas for the accurate
asymptotic behavior as this is done easily in the one dimensional case. For such
a function f, the Witten Laplacian Ay is a matricial Schrédinger operator with
a singular potential. Many things are known on scalar Schrédinger operators with
singular potentials (see e.g., [1, 16]), but little seems to be known for those Witten
Laplacians, and especially when we think about the algebraic topology subtleties.
We may also start directly, instead of R?, on a Lipschitz manifold made of glued
simplexes, with a function f which has a constant gradient along every simplex. The
functional analysis of Hodge Laplacian on Lipschitz manifold has been considered in
[43, 81]. An accurate analysis of the low lying spectrum of such Witten Laplacians
would provide a large family of discrete and easily encoded models, from the point
of view of data and hopefully of results, which could be used as approximations of
complicated realistic situations. It would be interesting to compare with the approach
starting from purely discrete models on graphs as presented in [94].

9.2.2.8. Critical submanifolds. — This case is related with degenerate Witten Lapla-
cians studied in connection with Bott-Morse inequalities (see e.g., [10, 56]). We con-
sider here simple examples where we have a critical submanifold instead of a critical
point. We start with the mexican hat function f(r,0) = % — § + i in polar co-
ordinates (r,0) in R? with the euclidean metric dr? + (rdf)?, which admits a non
degenerate maximum at r = 0 with f(Ogz) = i and a degenerate minimum at r =1
with f(1,0) = 0.

The bar code of the function f is made of the bar [0, +oo[ in degree 0 and the bar
[0, 1 in degree 1. We compute the non zero exponentially small eigenvalue of Agfj ]1){27 A

14
with p = 1 or 2 by computing the interaction scalar product (wiz), d;l,,)lT&gogl) )

o1 is a global quasimode 1-form associated with the bar [0, [ and 1/)§2) is a local

14
quasimode 2-form around r = 0.
In this particular example we have explicit forms for gogl) and ¢§2) :

— We take v > 0 smaller than the truncation parameter d. Then a explicit nor-

. (1) .
malized element of ker(Af,f—l([—l,i—u]),h) is given by

4 2

2
_ 4

e

+

B N)P
bl

dé.

1

1
4=
\/f 1 e~ r=2dr(rdf)

— For the local quasimode 1/;%2) defined around r = 0, we can use either a WKB ap-

proximation, or by duality the exact normalized element of ker(A;zj,fl (2 —-4]) h)
. -9,
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(6 > 0 is small enough but bigger than 2d2) given by equal to

rt_r

777
h

(N

dr A (rdf).

\/ffl_a et dr(rdf)

The scalar product (i, (2) df n(Ts, wgl))) is then equal to

\/ffl r W
rdo

where
(dr A (rd), hxs,(r)dr A df) = :I:h/ = +2mh
r=e

1

(dr A (rdf), hx, (r)dr A d@)e™ 77,

2 —er(rdﬂ)

does not depend on the value p > 0 (This is an explicit illustration of Stokes’s formula
argument used in [74] when f is a Morse function).
Using the asymptotics of non degenerate Laplace integrals, the non zero exponen-
tially small of A%&?,h’ for p = 1,2 equals
14+0(h) 1+0(h) _a 2V o)
X x (2mh)%e e
wh m(2mwh)1/2 VT
h

The subexponential factor Cte x \/g differs from the asymptotic behavior Cte x 2

g
s

obtained when f is a generic Morse function. Actually it is possible to study the
transition from the Morse generic case to this degenerate case by taking fs(r,0) =
f(r,0)+6v(r) cos(f) where v € C*°(]0, +oo[; [0, 1]) equals 1 in a neigborhood of 1, and
0 € R is chosen small enough. Let us illustrate this in a larger framework. Note that
the above formula is not changed if the metric dr? + r2d6? is replaced by dr? + df?
in a neighborhood of » = 1. This will make the forthcoming analysis simpler.

We consider a C*° function f on the compact Riemannian manifold M with a finite
number of critical values, which are all non degenerate and simple except the critical
value fixed to be 0. We further assume:

— the critical set around the value 0 is a closed orientable submanifold M’ of
dimension p;
— there is a tubular neighborhood of M’ which is a product of two Riemannian

L
manifolds M’ x M" with the metric g = ¢’ ®g”; a corresponding local coordinate
system is written z = (z/, 2");
— in the tubular neighborhood M’ x M" the function f is a function of 2/ € M"

and has a unique minimum f(z{) = 0;

— the bar code (Bf contains a unique bar [0, y(p+1)[

(p+1)

of degree p with lower end-

point 0 and upper endpoint y; < +o00; the eigenvalues of the Hessian at
the corresponding point y(P+!) are denoted — A1 (yP*V), ..., =X, 11 (y{P+V) and

>\p+z(y§p+1)) S Aaly (p+1))
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FIcURE 19. Case of a critical submanifold (plain line) and its perturbation (dashed line):
The above example is modeled on the mexican hat function ™t _ % With the manifold

1 2
M’ = S' with the metric d§*> and M" ~ R (around r = 1) with the metric dr®. The function
®(0) = —1 — cos(6) is a negative Morse function with maximum value 0 when 6 = .

— a local unstable (for —V f) closed cell around the non degenerate critical
point y{*™) is denoted et
sphere is denoted by aeip +1) ;

— if ¢ is C*° Morse function on M’ with the maximal value 0 and x € G§°(M"'; [0, 1])
is equal to 1 in a neighborhood of zj and such that f(z") > ¢ > 0 on supp dx,
the function fs is defined as f5 = f + dx(z”)p(z’);

and its boundary in M which is a p-dimensional

— for the sake of simplicity we work in the energy interval [a,b] with ¢ = —¢ and
b= y§p " 4 ¢ where € > 0 is fixed so that the critical values of f in [a,b] are

the ones contained in [0, yip +1)].

Proposition 9.8. — Under the above assumptions, the boundary of the unstable cell
ae§”+” is homologous to kM', for some constant k and relatively to f~¢.
For § > 0 small enough, the bar code By, (a,b) admits the unique bar [O,ygpﬂ)[ of

degree p and length y§p+1).

(p) or (p+1)

fod7 (labl) €910

The corresponding eigenvalue of A

_ 25¢(a’) 2
b)) (s e ) e
T X (p+1) (P+1)y11/2 X —d/2 _of=0x(z")o(e") xe X (1+0h).

p‘pﬁ(ﬂl ) )‘d(gl )| (ﬂ'h) fM/xM” € h dz

Proof. — The first statement is due to the fact that the bar [O,ygp +1)[ of de-
gre p provides a non null linear application from the relative homology vector

(p+1) (p+1) _ . 1) . .
space Hy,q1(f¥r 1% fh ¢), of which e§p+ )is a representant, via the boundary
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map to Hy,(f€; f~¢), of which the cycle M’ is a representant. Therefore there exists

a constant x such that ae§’” kM’ is a boundary relatively to f—¢. In particular

if w is a regular p-form in ker dy ¢-1([—c,400p),1 then

153 = .
(153) /6w H//w

The fact that [0, y%p +1)[ remains the only bars of degree p and length ygp D for § >0
small enough is a consequence of the stability theorem (note that for § > 0, fs is a
Morse function if z” — f(z') has a non degenerate minimum at zg ).

Let wgp ) be a global quasimode and ¢§p 1 be a local quasimode associated with
the bar [0, y§p +1)[ and let us compute the scalar product

1
@Y, dgy wTs, 0.

Because we have a non degenerate critical point at y§p+1), the computations of [74]-

Section 4.3, which rely on the WKB approximation for 1/15” D around ygp“) and
(p+1) _ p
dfa’hgogp) =0in f o) — fy5 +1)_5(h), leads to

A1 (D) A g (yPHD) T4
1 1
PApaz(@PTH) - Aa(y P |1/4

WD, gy T pl?) = £ (2)'77 x (eh) 18

T
(p+1)

X fpepen e 9 x e x (14 0(h)).

Because d(efT‘S(png)) =0in fy§p+1)_6(h) we may apply (153) with w = efTLs(png)
and the integral fae<p+1> can be replaced by nfM,. Thus it suffices to know gogp)

in a neighborhood of M’. A good approximation is given by a normalized element

()
Of ker(Afé,fgl([_E’s]’h)

p-form constructed by the separation of variables in M’ x M"

) which is exponentially close (in any Sobolev norm) to the

1 f=dx(@¢(2")
7€ e |det g’ (z')|Zday A - -+ A dazy.
_pf=ox@Ne) /
(fM,XM,, e D dac)
The final result follows by taking the square. ]

When f(z”) near zj € M" and ¢(z'), 2’ € M’', are Morse functions, the above
formula allows again to study the transition between the case when f is a Morse
function on M for § > 0 small and when 0 is a degenerate critical value with crit-
ical set M’ for § = 0. We get the following asymptotic behavior for the eigenvalue

(p) or (P+1) . . (P+1) ]
of Afa,fs_l([a,b]),h associated with the bar [0, y; [:

h y(p+1)

Cs—e 277 (1+0(h)) when 6 > 0,
™
h y§p+1)

Co—(mh)P/2e7277— (1 4+ 0(h)) when & = 0.
™
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In general degre p it is possible to have a good information on the local approx-

imations of the global quasimodes <p(p ) either when the critical value is x,(cp ) is non

degenerate via a WKB approximation of when we can use some separation of vari-
ables. Otherwise it is not clear that we could get a general robust integral formula

for the subexponential factor. Note also that we used the fact that y(p *1 s a non

degenerate critical value when we reduced the computation of <z/z§p +) , df nTs, 07 (p )>

to a integral along the explicit cycle ﬁegp b

(p+1) .

. Again it is not clear that such a simple

argument can be used when y;’ is a degenerate critical value without some other

specific assumptions.

9.3. More general Morse functions

We consider in this paragraph a Morse function f which may admit multiple critical
values. For the sake of simplicity, we work in the following situation:
—c<d,ed € {cl, e ,cNf} are the only multiple critical values.
— All the critical points with critical value ¢ (resp. ¢’), z (p ) 1<k <K, (resp.
g,(f,’ﬂ), 1 < k¥’ < K’) have the index p (resp. p + 1).
— All the bars of 3y with the lower (resp. upper) endpoint ¢ (resp. ¢’) have a length
larger or equal to ¢/ — c¢. The numbers of such bars of length equal to ¢’ — ¢ (the
bar is a copy of [¢,[), is denoted by Ky < min(K, K').
— We will consider the energy interval [a,b] such that ¢ (resp. ¢) is the smallest
(resp. largest) critical value in [a, b].
— When g,(gp), k = 1,...,K (resp. y,(c’,’ﬂ) k¥ = 1,...,K’) denote the criti-
cal points for the value ¢ (resp. ¢’) the function X,(Cp) € C>*(M;[0,1]) (resp.
X,(Cp ) ¢ C>(M;[0,1])) is supported in a neighborhood and equals 1 in a smaller
neighborhood of ng) (resp. y(’,’+1)) for k = 1,...,K (resp k' = 1,...,K').
Let t,(cp), k=1,...,K, (resp. t(pH) k' =1,...,K’) be real numbers. For § € R
small, we consider

fs=f+6 [i t,(cp)X,(cp) + i t}(czjﬂ)x;cfllﬂ)-l )
|_k=1 k=1 J

Because f is a Morse function we may find € > 0 small enough such that the
homology vector space H,(f°+, f¢=;R) (resp. Hpy1(f¢ 15, f€5;R)) have a basis
made of the descending (unstable of —V f) manifolds e(p )1 S k < K (resp. e,(f,)),
1 < k' < K') restricted to f._. (resp. fo—c). The boundary of e, (p) (resp eEf,ﬁ )) isa
p — 1-dimensional (resp. p-dimensional) sphere 8e§cp) (resp. 8e(p+l)) lying in f~1({c—
e}) (resp. in f1({c' —€})).

On the Witten Laplacian side, ker(Af])c L(e—e.cte]),n) (TESD. ker(Agcp;r (e e e my)
may be approximated with a O(e #)-distance by ealﬁkSK (Cz/lk (resp.
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@1<k,<K, Cq/)(p+1)), where w}gp) (resp. 1/1,(5“)) is a normalized ground state of A(f{),)c

(resp. A(fp ,j,l) ), the Witten Laplacian in degree p (resp. p + 1) with full Dirichlet

boundary conditions in B(g,(cp ),R\E ) (resp. B(yk,) R+/€)) for R > 0 chosen large
enough. We refer to [48] and [55] and we recall that for the Witten Laplacian
associated with a Morse function f, the local Agmon distance to a critical point s, ¢
solving |[V|? = |V f|? and satisfying ¢(z) > |f(x) — f(s)|, behaves like the square
of the geodesic distance to s. Additionally, the L? estimate between @b,(f ) (resp.

(p+1) (p+1)
poo) H(omeyote]ny (T€SP- Ker DGy o g )

can be completed by a O(e™ %) error estimate in any Sobolev norm on the open
set f77F N Bz, BE) (esp. fo1F N BuE, BVE).

We also have WKB-approximations for all the 1/1(17 ) (resp. w,(f,’ +1)) 1<k < K (resp.
1<k <K')in B(zgf), £\/¢e) (resp. B(y,(ffﬂ) £/¢)) which are valid in W*?2-norm.

By the construction of Theorem 6.3 there is a O(e # )-orthonormal family of quasi-
(p) w(p)

Y Pk
and therefore by 1/)(p ) or their WKB- approximation and which solve dy, hgogﬂ) =0
in f~Y([c —¢,c — £]), vanish in f°~¢ and satisfy the exponential decay property.

2
At the level ¢’ the local quasimodes are I1 ¢(p+1)

and its projection onto ker Agcp;_

modes ¢, ', 1 < k < p, which are approximated by the II

(p)
ke (A f.f 7 ([e—e,cte]),h

ke (A(p+1) ) and are there-
£ f~ (¢! —e,c!+€]),h

fore close to v (pF+1)

For a generic choice of the coefficients t;cp ) and t,(ffﬂ), the perturbation f5 is a
Morse function with simple critical values as soon as § € R is chosen small enough.
Moreover the stability theorem says that the bars with endpoints ¢ and ¢’ are simply
modified by 0(§) variations of the endpoints while all the other bars are not changed
owing to our choice of fs. We can even be more specific. The above parameter ¢ > 0, R
being fixed, ¢ small enough, we may take the cut-off function X,(Cp ), k=1,...,K, (resp.
X;(5+1), k' =1,..., K’) such that the equal 1 in B(g,(f), 2R+/2) (resp B(yk,H) 2R+/2)).
Finally § > 0 is chosen small enough such that all the critical values of fj5 close to ¢
(resp ¢’) are in [c — €/2,¢c+ ¢/2] (resp. [¢ — €/2,c + ¢/2]). With this choice of f5,

(e (p))k K (resp (e,(f-’_ ))k’zl,...,K’) defines a basis of H,((fs)°*¢, (f5)°7¢;R) (resp.
Hpa(( f(;) ¢ 5 °))- The quasimodes w,(cp ), ,(f ™1 and their WKB-approximations

are not changed because we have just changed f by a constant in B (x,(cp ), R\/e) (resp.

Byt RVE)).
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Y

FIcURE 20. A simple example in dimension 1 with K =4, Ko = K' = 3.

FIGURE 21. In dimension 2 we have represented 3 critical points with index 2 at the value ¢’
and 2 critical points with index 1 at the value c¢. The unstable (and stable manifold for the
index 1) of —V f are considered in the level sets f?, +: and f<7°. The homotopy with respect
to § consists simply to move separately up or down, the disconnected parts of this picture.

Lemma 9.9. — In the above framework and for § € R small enough the bound-
ary map & : Hyp1((£5)°F5, (f5)° 5 R) = EB,I:,ZI Re?f,’ﬂ) induces a linear map
to Hy((f5)°%<, (f5)°°5;R) X Pr_, Re(p) of rank Ko which is written

(p+1) — Z K, k,e(p).

The matriz k does not depend on 6.

Proof. — When 6§ = 0, the boundary map sends Hp+1(fcl+€,fc,_€,]R) to
H,(f~¢, f";R) of which a dual basis (in cohomology) is indexed by the Kj
bars [¢,d[, Kk = 1,...,Kq. It suffices to follow the bars to the lower endpoint to

define a linear map to H,(f", f~%;R). For a general § small enough, f; differs

from f only by a constant in each ball of radius R+/e around the critical points ac(p )

y,(f,’ ), Therefore, the gradient vector fields and the Morse models remain unchanged
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around these points. The homotopy becomes trivial by replacing locally the level
set 7} ({e — e}) (resp. f7'({¢ — s})) by fi'{e—eh) = f'{e— e -t}
(resp. f5'({¢ = e}) = f7'({¢ — e = dt)f™})). Hence, (¢} )reqs,...x} (vesp.
(e,(f,) ))k’e{l,A..,K’}) appears as a canonical basis of Hp((f5)°*e, (f5)° %;R) (resp.
H,1((fs)° "+t (f5)° % R)) in which the matrix x of the topological linear map

9: Hp+1((f6)cl+€a (f&)c,_é:;R) — H,((f5)°%, (f5)¢"%; R) remains unchanged. O

Proposition 9.10. — In the above framework with 6 small enough, the singular val-
ues py, of dgf;)(fé)_l([a b)), which satisfy lim,_o —hloguy, = ¢ — ¢ + 0(5) are equal
to (1 + O(h))x the non zero singular values of the K x K' matriz
B\ 12
() (D(p))_lnD(PH)
™
where D®) (resp. DPtY)) is the diagonal matriz with entries
|)\1(x(17)) . AP(QISD))P/AL - fé(i’(“p))
Mpir(al?) - daei?)/4
Ml ™) Aol T et

g — "k / /
resp. ) ) e 2 , E=1,...,K".
o2 () - Ayl )1/

, k=1,..., K,

Proof. — Set x = fs(z (p)) =c+ 5t§cp and y(pH) = fs (yEf,’H)) =c + ét,(f,’ﬂ),
fork=1,...,K and k' =1,...,K’. An orthonormal basis of ker(A}pﬁ}?[c,_s e n)
is well approximated by the local quasimodes w(p 1) Wwhich is the ground state of

the full Dirichlet realization of A(fp ,;H) in B (y,(f,)),R\/E) which do not depend on 4.
The same holds for ker(AEfZ)fé([kE cte] h)) with the notation 1&]8"), k=1,...,p. Hence
EB; 1. (Cw(p ) provides a good approximation in the energy interval [c — €, ¢ + €]
for fs for the vector space of global quasimodes <p(p ) for fs associated with the bars
[x,(f();, y,(cpgl)[for k=1,...,Kpand [m,(cp()s, bl for k = K0+1 , K. Let us chose the basis
((p ) .k as an orthonormal basis such that ||<,0]c 5— (p)||L2 = 6(1), while such a

(1) estimate also holds in any Sobolev norm in f. +2 n B(x,(cp ()5, B /€). Those global

quasimodes are assumed to solve dfé,hgo,(cp()s =01in f5 Y([a, ¢ — M$]) for some M > 0
large enough and we assume M§ < d2 < €. We now compute the interaction K’ x K
matrix (1/1,(5), dg nxs,( f(;)cp;i’ g) where x5, smoothly vanishes in [¢ — d3,b] and equals

1in [a,¢ —205] for all k = 1,..., K. Because dy s = 0 in f;'([b,¢ — MJ]), the
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local computation around yk,+ ) done in [74]-Section 4 are the same and they say:

x (mh)i~%

)1/2 X1 () A1 (024

(p+1) (p) h
<¢k€) ’df7hT5290kp6> + (; |)\p+2(y +1)) Ad (y(p+1))|1/4

s
X Jpeurn € ol x e X (L+0(R)).
By Stokes’s formula applied with d[e oy 35] =01in f; '([b,c’ — M§]) we obtain

b

x (rh)$~%

)1/2 y A ET) A (D)4
IAp +2(yk/+1)) ‘Ad (y“’+”>|1/4

(p+1)
!

X [Z]KIHJ k/f@) eh go(p)] ykﬁé X (14_0(}1))'

By approximating go(p ) by w,(f ) and its WKB approximation in B (:vfcp ). £ /) we have

GOt Iy (m)%—%/( e x (14 6(1)
ejp p

<¢;(5+1)7 df,hT52<P1(cp()s> + (&

_ g Pene z,”)): "Ad@’gp)ﬂmez%g x (1 + O(h))
(@) - A (@) |1/

The error terms actually occur as matricial products on the left-hand side for the
w}(5+ ) (p)

approximation of and on the right-hand side for ¢

The interaction matrix ((1/),(61,7+ ), dfa,hX52(p§g,¢)$>)1Sk’§K’,1§kSK is thus equal to
B /2
diag( £ 1+ 0(h)) () DY (te) (D)~ diag( + 1+ O(h)).
0

Its singular values are thus equal up to a O(h)-relative error to the singular values of

(h)l/z D(pH)(%)(p(p))—l

™

or equivalently of

B 172
() (DP)~Lep+D). 0
0
Remark 9.11. — The result of Propostion 9.10, in a specific case, shows that it is possi-

ble to get a matricial robust accurate formula for the exponentially small eigenvalues
of Witten Laplacians for general Morse potentials. This provides another stability
property valid for the first term asymptotics of the subexponential factor, which al-
lows to study the transition from the generic Morse case with simple critical values
to the general case. Note that here the power of h in this subexponential factor is
not changed, but discontinuities appear on the constants as it is shown in the next
simple examples. Actually we have considered a simple case where only one multiple
bar [, ¢'[ has to be taken into account. A more general form would consist in follow-
ing the induction scheme of Theorem 6.3 and would lead to some complicated linear
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matricial structure for which we do not have an elegant presentation at the moment.
In the degree p = 0, L. Michel in [79] proposed an interpretration in terms of the
spectrum of a discrete Laplacian on a finite graph with vertices given by the local
minima and edges given by saddle points. This formulation is written for a fixed Morse
function with possible multiple local minima and saddle points, the perturbative issue
is not really clarified there. In our specific example, the discrete Laplacian proposed
by L. Michel is actually the square

E(D(O))_lﬁ,D(l)D(l)’*H*(D(O))_l’*.
™

It would be interesting to find such a general robust formulation, with several multiple
critical values, in degree p > 0.

Examples:

1. Consider a Morse function f on [s,t] such that mingc[, 4 f(z) = f(s) = a,
maxgers,4 f(x) = f(t) = b, with f'(s) > 0 and f'(t) > 0, with two local maxima
and two local minima s < 351) < ggo) < ggl) < géo) < t, f(ggl)) = f(ggl)) =c
and f(ggo)) = f(g(zo)) = c. For the perturbation of f we will consider the cases
when (£, t") = (0,0), (¢{”,#”) € {(0,0),(0,-1),(~1,0)}. The matrix «
equals (} 5!) while the matrices D(¥) and D™ are given by

c+5t(0)
A ()| 4o = ! (“fl ’ > _
= e

DO —

ct5¢80)

0 Ai(as))| Ve

P _ |)\1(g§0))|1/4e_% 0 N\ B 0 s
0 A2 (yM)[H e~ " 0 B

The singular values of the matrix (D(®)~'xDM) are the square roots of the
eigenvalues of the symmetric square matrix

of(BF + 63) —ouaefs e—2°/;°
—aa233 o33
Those eigenvalues equal
(0353 + 83) + 0369)) + /0BT 1 F3) — BRI + 40703l e
5 .
Depending on the three considered cases, we obtain:

tgo) = th) = 0: : The 2 exponentially small eigenvalues of A;O[)sotr] Ell) have the

form C’k%e_QCI;c (1 4+ O(h)), k = 1,2, where the constants C; and Cs
clearly depend on the four hessians at the critical points.

SOCIETE MATHEMATIQUE DE FRANCE 2024



164 CHAPTER 9. APPLICATIONS

/ :

FIGURE 22. The three considered cases: (t1,t2) = (0,0) plain line; (¢1,t2) = (—1,0) move the
curve downward with (), (¢1,¢2) = (0, —1) move the curve downward with (| |).

A or (1

tgo) = —1,té1) = 0:: The 2 exponentially small eigenvalues of Fols:th

are
equal to:

h 0 _
@) M) e

o

(14 0(h))

c—cts

h -
@) )[BT (4 O).

In particular the smallest one depends on the hessians of fs at the only
points z\” and yih.

tgo) =0, téo) = —1:: The 2 exponentially small eigenvalues of A;O[)scf] 21) are
equal to:
h

A (VY2 (A (yD)[1/2 L
| 1(31 )| 2| 1(Q1 )| o257 (1+0(h))
clfc+5

1h _
5 - M@ H (A @O I @E)Y)e > T (1+0(h),

27\ (0)y1/2
Z )

where H(u,v) = fbfjj denotes the harmonic mean.

In this case the smallest eigenvalue depends on the Hessians of fs at the
points z{”, ' and yM.

The general formula is again a robust formula which allows to follow the
dependence on the parameter ¢ of the asymptotic expressions although those at
the end are not continuous with respect to §.

2. Consider in R? a function f with a unique local minimum at mgo) = 0 with
f(0) = ¢, such that lim,_,o f(z) = —oo and surrounded by K’ saddle points,
critical points with index 1, such that f (y,(cl,)) = ¢/, while all the other crtical
values are larger than ¢’ with an index p > 2. For the perturbation we will
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consider the two cases when tgo) = 0 and tgl) € {0, —1}. The matrix & is the

1 x K’ matrix (1, 1, ..., 1). Thus the smallest eigenvalue of A;g)(fs),l([a W)

which is the unique exponentially small eigenvalue, equals

h (0)yy(1/2 5K’ Ay )

| det(Hess (2 )["* Eoy WS WRANIE
(g2

2 (y(?)--Aa(yy)[1/2

Similar formulas are obtained for various configurations in [32, 33, 73, 71].

c—c
h

6_2

(1+0(h)) ifé=0,

b det(Hessf(ggO)))P/2 6_20,7%(1 +O(h)) if§ > 0.

FIGURE 23. An example with K = 6. Level curves at the level 1,2, —10 are represented, the
local minimum is represented by o, the saddle points by < and the global maxima by e.

3. A case with symmetries: Consider in R? a Morse function f with a local max-
imum at Q(f) =0, f(g?)) = ¢y surounded by K saddle points at ggﬂl) = gg),
k=1,....K, f(g,(cl)) = ¢1, and K local minima at Qéo), k=1,....K, f(g,(co)) =
co, Co < €1 < co. We also assume that lim,_,, f(z) = 400 and that f has no
other critical points. When j € {1,2} or p € {0,1} are fixed A, (ggf)) = )\EP) do
not depend on k = 1,..., K. We study the eigenvalues of A%{{z’h, p=20,1,2
by restricting to the case cg < a < c=rc; < =cy <bfor p=2 and to the
case a < ¢ =cg < ¢ = ¢ < b < cy for p= 0. By supersymmetry, the non

zero eigenvalues of Aﬁ{z , are obtained by gathering the ones of A;O]%@ p, and

(2)
Af,Rz e
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Fi1GURE 24. An example with K = 6. Level curves at the level 4,2,10 are represented, the
global minima are denoted by o, the saddle points by < and the local maximum by e.

Forp=2,cg<a<c=c; <c =cy <b:: The matrix sk equals the K x 1 ma-
trix

1

The smallest eigenvalue of AP

Ff-1([a b)) b0 which is the only exponentially

small one, then equals:

|>\ |12 —ge2ze

" det(Hess ()2 72 (1+0(h)).
Forp=0,a<c=cy<c =ci <b<cy:: The matrix x is the K x K matrix
1 -1 0 --- 0

0 1 -1
K=
0o . -1
-1 0 -~ 0 1
of which the singular values equal [1—-w*|, k = 1,..., K, where w* = e2im

for k=1,..., K. Owing to

(1)1/4
— 0 0 |)\ | _ci1—-co
(DOY=1xDM) = |)\§ ))\é )|1/4117 -
S

ASTERISQUE 450



9.3. MORE GENERAL MORSE FUNCTIONS 167

we deduce that the K exponentially small eigenvalues of A;O}_l (ja,b]),h BT€
equal to

Py

|)\(0)>\(0) |1/2
1 2 |)\§1)|1/2

11— ke 2?7 (1+0(h), k=1,..., K.
This case with p = 0 was considered by Michel in [79] for the Witten Laplacian

and by Hérau-Hitrik-Sjéstrand in [57] for the non-self-adjoint Kramers-Fokker-Planck
operator.
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CHAPTER 10

BROADENING THE SCOPE

Our work provides a general method for analyzing the exponentially small eigen-
values of Witten Laplacians with a general potential function. However, it does not
answer all the questions that arose along this analysis. Here is a short list of still open
questions and of connections with closely related fields.

a) General C*® potential. — A general C*°-function on a compact manifold M may
have an infinite number of critical values and bars in its bar code. Nevertheless, for
any € > 0, the set of bars of length larger than ¢ is finite. In order to realize this, take
a covering [min f, max f] C vajl [ai,a;+1], where the a;’s are not critical values and
such that 0 < a;4; —a; < e foralli € 1,...,N — 1. Any bar a® of degree p and
length larger than e has at most two endpoints lying in different intervals [a;, a;11]
and appearing as an element of Z(P)(a;, a;;1) for the possible lower endpoint and an
element of Z*1)(a;/, ay 1) for the possible upper endpoint with i # 3. Therefore,
the set of bars of degree p and length larger than ¢ is bounded by

N.—1

Z 12P) (ai, aiv1) + 4271V (a1, aigs)

i=1

N.—1
= 3 B (e, o) 4 APV (fo Fo) < 4o
i=1
The conjecture stated in the introduction for a general C*° function f has now the

following more precise version: For ¢ > 0, the 5(6_275) eigenvalues of AS}? ])\4 , are given

by the )\gp)(h) such that « is of length larger than e, o € A® or (o € A®~V) and
b((f) < 400), and
}llin}) —hlog(Aa(h)) = 2(ba — aa)-

Our proof, relying on a recurrence on the number of critical values by following their
increasing (and decreasing) order, is not adapted to the more general case with an
infinite number of critical values. One may think of a different type of induction:
Starting from our result for finitely many critical values, one may increase the number
of critical values by perturbing the function such that it creates small bars in a given
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interval [a, b], and then try to obtain spectral and resolvent estimates for the spectral
parameter A € [0,5(e~% )], which are uniform with respect to the additional small
bars.

b) What about C°-potentials ?— The stability of bar codes makes sense in the C°
topology while a finite bar code can be associated with a continuous function which
satisfies Hypothesis B.1. The relation between the exponentially small eigenvalues
of Ay, and the bar code of f suggests that the bottom of the spectrum of Ay ;, makes
sense only under Hypothesis B.1. Is there a natural self-adjoint operator “Ay ;” on M
when f is only continuous and for which Theorem 1.7 could be extended ?

¢) Applications of the result on p-forms. — Over decades, the case of functions has
received a lot of attention with an easy interpretation in terms of Fokker-Planck equa-
tion associated with reversible processes at low temperature and within the modeling,
e.g., in chemistry as points the title of this text. Here is an attempt to interpret our
spectral results for p-forms. This deserves more precise studies and we hope that rele-
vant applications will be found. Within the stochastic approach, the Witten Laplacian

is better written as

I
h

i —_ * %
Lyn =erDpne” " =h*Noy + 2hdy = dondsp, + dsz pdon,

considered in the L2%-space associated with the invariant measure e~ dzx,
L?(M, e dx; AT*M), and where Ag 1 = dd* + d*d is the usual Hodge Laplacian.
There are formulas to express the semigroups associated with Hodge and Witten
Laplacians, in terms of expectations values along brownian motion: e *%hy = E(&fv)
for v € C®(M; AT*M), where &; is the flow associated with a stochastic differential
equation of the type do = X (x:) o dB; — 2V f(x:)dt where B is an m-dimensional
brownian motion in R™ and X : M x R™ — TM is a submersion specified by the
metric on M (see in particular [36, Theorem 1.1.2, Formula 1.2.5, and Section 2.4]).
Due to the supesymmetric argument, eigenforms of Ay, (resp. Zy,;,) can be assumed
to solve d} ,w = 0 (resp. d3; 0 = 0 with @ = e£w), because when d} ,w # 0 (resp.
d3spw) # 0) then d} ,w (resp dj; @) is another eigenform of Ay (resp. of Zy )
with degree decreased by 1 and associated with the same eigenvalue. Let & be such
an eigenform with d* (e%&) = 0 and s p@p, = A\p@p. By assuming that @ is a p-form
and after normalization, Ahe%d) may be identified with a p-cycle via

/ nA (*e%Ath) :/ 7,
M Ca.n

where 0C;, j, = 0 is a consequence of d*(e%dj) = 0. It would be better to think of Cg, ,
as a courant but let us forget the regularity issues. When f is a Morse function with

flz1, . @py Tpy1, -, d) = —p—(T1, .-, Tp) + @4 (Tpt1,-- -, Tq)
around a critical point of index p with critical value 0 which is a lower end-
point of a bar of degree p, the leading term of the WKB-approximation says

2f _2e4(@pyysees zq)
h

erw = e dxy A -+ ANdzx, and Cgj is assymptotically equal to some
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FIGURE 25. Metastability of cycles: The bars of degree 1 represented on the left-hand side,

20 22
with lengths #1 < ¢3, provide the lifetime en (resp eT2) of the cycle Cy (resp. C2). After a
time larger than the lifetime, C; is first deformed into C3 and C5 is then deformed into the
gray cycle which is rapidly retracted to the global minimum.

fixed cycle Cg o supported by the unstable manifold of —V f. We may expect such a
behavior in general. The evolution @y, (t) = e tLrng, = et g, says that this cycle
is not changed by the dynamics when ¢t < )\1 and disappears when ¢t > . The
reverse eigenvalue ﬁ appear as the lifetime of the cycle Cj j, of which an asymptotlc
form Cg is expected when the normalization factor Aj is well chosen. Below is a
picture for the brownian dynamics of a 1-cycle, which shows the generalization of the
metastability picture that we expect.

d) General statement for subexponential factors. — Specifying the exponential scales
of the exponentially small eigenvalues of A(p ) Mh associated with the lengths of the
bar code of f was done in Theorem 1.7 and Theorem 7. 1, while the spectral ver-
sion of the stability was given in Corollary 1.8 and Theorem 7.8. Those results are
general statements which hold under simple general assumptions like Hypothesis 1.2
or Hypothesis 1.3. The situation is different when we want to specify the subexpo-
nential factors. In Chapter 9, the general construction was used in order to specify
the subexponential factors and to show that they were keeping some kind of stability
property, possibly within a finite dimensional matricial writing (see Proposition 9.10).
Although the method is clear and heavily relies on Theorem 6.3 and the use of Stokes’
theorem like in [74], we were not able to take into account all the possible configura-
tions in a uniform and satisfactory presentation. Although the stability of individual
subexponential factors cannot hold, a general robust statement or formula for the
determination of the subexponential factors would be valuable.
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e) Piecewise affine functions and discretization via triangulation. — In the one di-
mensional case, a schematic Witten Laplacian for which everything relies on simple
linear algebra is provided by a piecewise affine function f. Eigenforms of degree 0 or 1
are computed by matching exponentials at the discontinuities of the slope of f. It be-
comes a fully discrete model, in its coding and in the computation of the eigenforms.
The generalization of a piecewise affine function after a triangulation of R% or T? (and
for further generalizations, one should consider a Lipschitz triangulated riemannian
manifold like in [43]) enters in our general assumption Hypothesis 1.3. Away from the
singularities of f, the Witten Laplacian is nothing but a scalar operator —A + V(z),
where V' is a piecewise constant function, while the Hessian of f brings a measure
potential carried by the singularities of f. We are led to consider a specific self-adjoint
extension of —A + V(z) on (5°(Qreg; AT*M), where Qg is the open domain where
f is differentiable with a locally constant gradient. Many things have been done on
the scalar Laplacian plus simple or double layer potentials, or more general interface
conditions (see [1, 16]). Here we work with Hodge-type Laplacians and discriminating
with respect to the degree will lead to different types of interface conditions and we
wonder whether cohomology brings additional restrictions along strata of codimen-
sion > 1. It would be interesting to see if such a finitely coded potential f leads to
a completely solvable linear algebra problem like in dimension 1. It could be an al-
ternative model problem as compared to the case of Morse functions, which could be
useful to understand some non trivial boundary or corner problems.

f) Infinite or large dimensional problems. — After specifying the geometrical prob-
lems, especially concerned with the domain issues for the differential, codifferential,
and Witten Laplacian, all the analysis is carried out along the real axis of values
of f, R D f(M). In this projective perspective, the dimension of M does not count
until the computation of the subexponential factors, which involves the asymptotics
of Laplace integrals. This raises the question of the validity of such an approach for
infinite dimensional — or large dimensional — problems, which have applications in sta-
tistical physics, and where the asymptotic behavior of the dimension is related with
the small parameter h — 0% (see e.g., [49, 31], or the recent [15] where the estimates
when h — 07 are even shown to be uniform in the dimension, and references therein).

g) Other boundary conditions for Witten Laplacians. — Our results include the
case of Witten Laplacians on bounded domains like f°, provided that one consid-
ers Neumann boundary conditions on the upper boundary f~!({b}) and Dirichlet
boundary conditions on f~!({a}). In some applications like in the analysis of quasi-
stationary distributions, it is relevant to put Dirichlet boundary conditions every-
where on 92 when the manifold M is replaced at the beginning by some regular do-
main (see [77, 32, 33,72, 73]). The cohomology groups H*(f?; f*) have to be replaced
by H*(f?; f2U89), but additional corner problems at the intersection QN f~!({a, b})
have to be analyzed carefully.
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h) Non reversible dynamics and spectral analysis of non self-adjoint related problems.
— The analysis of Witten Laplacians enters in the general scope of the semiclassi-
cal analysis of self-adjoint Schrodinger-type operators. Within the stochastic analysis,
several models, motivated by applications where a non reversible drift is considered,
lead to non self-adjoint operators for which a similar analysis can be carried out in the
case of functions, p = 0 (see e.g [71]). An interesting non self-adjoint (and non elliptic)
operator which has many connections with Witten Laplacian is Bismut’s hypoelliptic
Laplacian, which is defined in any degree 0 < p < 2d when we work on ¥ = T*@Q with
dim @ = d. The asymptotic behavior of exponentially small eigenvalues has been stud-
ied so far only when p = 0 and Q = R? in [57], where Bismut’s hypoelliptic Laplacian
is nothing but the Kramers-Fokker-Planck operator of kinetic theory. For studying the
case of general p-forms on a manifold, a better understanding of boundary conditions
for Bismut’s hypoelliptic Laplacians (defined in [84]) is necessary. When f: Q — R is
the potential, adapting the analysis of this text would lead to “Dirichlet boundary
conditions” on T)’f_l( ( a})Q and “Neumann boundary conditions” on T}‘_l( {b})Q for the
hypoelliptic Laplacian acting in 771(f%), where 7 : T*Q — Q is the fiber projection.
Additionally, the non self-adjoint nature of the problem requires different techniques
relying on complex deformations in order to handle the exponential decay of resolvents
and eigenfunctions.

i) Remarks about the subanalytic case. — In the subanalytic case and for at least
the second time (a previous time was in [41] for the analysis of Mourre estimates for
analytically fibered operators), the differentiation along regular strata has been used
in order to prove estimates. Instead of considering a non regular solution ¢ to the
Hamilton-Jacobi equation |V f|? = |V¢|?, we constructed a finite family of regular
functions ¢y, k = 1,..., K, |[Vf|*> > |V¢y/|?, finally leading to a good enough expo-
nential decay estimate. We were not able to make a direct use of viscosity solutions,
which did not allow to absorb all the singular terms in Agmon’s type estimates. In a
different context, global subanalytic viscosity solutions to Hamilton-Jacobi with ana-
lytic coeflicients (which is not the case here) were studied in [89]. Is there a better way
to introduce viscosity solutions in our problem 7 In the other way, differentiating along
the regular strata could it be used for constructing subsolutions to Hamilton-Jacobi
type equations ?

j) Fukaya conjecture and multidimensional persistence. — Determining the homo-
topy type of a compact manifold M such that w1(M) = 0 and the A, structure on
harmonic forms induced by the pullback of the wedge product, can be attacked via
Witten’s deformation. This was proposed by Fukaya in [39] and more precisely studied
via WKB methods a la Helffer-Sjostrand in [19]. It consists in considering several Wit-
ten’s deformations of the differential and the Hodge Laplacian, dy,; » = e_f% (hd)e 3 ,
associated with a sequence (fo, f1,..., fx) such that f;; = f; — fi, 0 <i < j <k, are
Morse functions. Although it may not bring an additional topological information,
replacing Morse functions by more general C*° functions means the understanding of
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the %—dimensional version of persistence diagrams, bars being replaced by mul-
tidimensional objects. The multidimensional version of persistence homology, partly
motivated by applications in statistical data analysis, is only emerging. We refer again
to [64] for a theoretical presentation of multidimensional persistence.

k) Comparison with the instantonic picture. — The instantonic picture makes sense
within Thom-Smale transversality condition, which ensures that any critical point of
index p + 1 is related to some critical points of index p by a finite number of regular
integral curves of —V f. This gives rise to the standard Thom-Smale complex struc-
ture. More recently, it has received an accurate analysis in terms of the analysis of
the dynamical system of —2V f perturbed by a brownian motion in [29] by applying
Faure-Sjostrand theory of weighted Sobolev spaces. We already mentioned that our
approach is orthogonal to the instantonic point of view: Instead of exploring the ge-
ometry of the potential landscape M > z — f(z) € R, we considered globally the
sublevel sets f* and their homological properties. We can parallel this with the com-
parison between Riemann’s and Lebesgue’s integration theory. This global approach
avoids considering possibly complicated cancelation phenomena in the general method
of tunnel effect computations described in [54, 53|. It is a question whether such a
global and topological approach makes sense for other spectral problems related with
dynamical systems.
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APPENDIX A

ABSTRACT HODGE THEORY

The abstract version of Hodge theory provides spectral results, like (154) or Corol-
lary A.2 below, which hold in general with weak regularity assumptions. For a proof,
we refer for example to [43, Section 2| (see in particular Propositions 2.3 and 2.4,
Corollary 2.5, and Theorem 2.8 there).

Proposition A.1. — Let (H,|| - ||g) be a Hilbert space and let T : D(T) C H — H be
a closed densely defined unbounded linear operator such that

RanT C kerT and D(T)N D(T*) embeds compactly into H,
where D(T) N D(T*) is equipped with the graph norm

lullpmynnas = /lulld + ITullfy + [ T*ull.
We then have the following properties:
i) The operator (T + T*,D(T) N D(T*)) is self-adjoint with a compact resolvent

and satisfies
ker(T'+ T*) = ker T Nker T™.

In particular, the linear space D(T) N D(T*) is dense in H and T + T* is a
self-adjoint Fredholm operator with index 0, that is more precisely

ker T NkerT* has finite dimension and Ran(T + T*) = (ker T N ker T*)L.
ii) The operator A := TT* + T*T with domain
D(A) = {ue D(T)ND(T*) s.t. Tu € D(T*) and T*u € D(T)}
is a nonnegative self-adjoint operator with kernel
ker A = kerT'NkerT* = ker(T' + T™).

In particular, A has a compact resolvent (since D(A) with its graph norm embeds
continuously into D(T)ND(T*)) and is the Friedrichs extension associated with
the closed nonnegative quadratic form QQ on D(T) N D(T*) defined by

Q(u,v) = (Tu,Tv)g + (T"u, T*v)p.
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Let us also note the following consequences of Proposition A.1 underlining the
supersymmetric structure of the operator A defined there : when T is as in the
statement of Proposition A.1, the resolvent satisfies for every z € C\o(A), u € D(T),
and v’ € D(T%),

(154) (z—A)'Tu=T((z-A)" u and (z—A)'T* =T*(z—A)" 1.

Let us prove the first relation, the proof of the second one being similar. Let us then
consider u € D(T) and let us define v = (z — A)~'u for some z € C\ ¢(A). Then
v € D(A) and (2 — A)v = u € D(T), which implies Av = T*Tv + TT*v € D(T') and
hence, since RanT C ker T', T*Tv € D(T). In particular, one has Tv € D(TT*), and
hence Tv € D(A), and

(2= A)Tv=2Tv—TT*Tv =T(z— A)v=Tu and then Tov = (z—A) 'Tu,
that is precisely the first relation in (154).

An easy consequence of (154) is the following: for any eigenvalue A of A and
associated eigenvector u € D(A), we have Tu € D(A) and T*u € D(A), with

(155) TAu=ATu=ATu and T"Au=AT*u=AT"u

Note that if in addition A # 0, one element among Tu, T*u is nonzero (since in this
case u ¢ ker A = ker T Nker T™*).

Corollary A.2. — Assume the hypotheses of Proposition A.1 and define A :=TT* +T*T
as there. The following orthogonal decompositions then hold:

1 1
H = RanT & RanT* @ ker A

1
and, for T=T or T=T*, kerT = RanT @ ker A.
In particular, the operators T and T have closed ranges and

ker T/RanT ~ kerT*/RanT™* ~ ker A.

Proof. — This result is the statement of [43, Proposition 2.9] and is an easy conse-

quence of Proposition A.1. First, since Ran(T + T*) = (ker T Nker T*)J' = (ker A)*
according to Proposition A.1, we deduce the inclusions (since T' and T™* are closed),

RanT + RanT* O (ker A)* = RanT + RanT* O RanT + RanT™.

The linear space RanT + RanT™* is then closed in H and, owing to T2 = 0, this sum
is moreover orthogonal. The spaces RanT and RanT™ are consequently closed and

et L L
H = (ker A)~ @ ker A = RanT @ RanT™ @ ker A.

1
Furthermore, the inclusion ker 7 D RanT @ ker A is clear, owing again to T2 = 0.
To prove the reverse inclusion, just notice that any v € kerT writes as the sum
v = ug + Tuy + T*ug, where ug € ker A, uy € D(T), and uy € D(T*). It follows
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that T*uy € D(T) and TT*us = 0, which implies T*uy = 0 (by taking the scalar
1
product with us) and then v = ug + Tu; € RanT & ker A.

1
Lastly, the relation kerT* = RanT™* @& ker A follows by applying the relation

1
kerT'= RanT @ ker A with T replaced by 7™, which satisfies RanT* C ker T* and
T =T. O
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APPENDIX B

PERSISTENT COHOMOLOGY AND BAR CODES

B.1. A sheaf theoretic presentation

Let f be a C* function on the compact manifold M having finitely many critical
values (but we do not assume that f is a Morse function). We shall define its bar code
following the sheaf theoretic presentation of [64].

The following assumption on f which is weaker than Hypothesis 1.2 allows us to
use this construction in a low regularity setting. We keep the notation of Definition 1.1

fl={zeM, fx)<t} and fS'={zeM, flz)<t}.

Hypothesis B.1. — The function f : M — R is continuous and there exist finitely

many values min f = ¢; < -+ < cn; = max f with the following property: For
anyn € {1,...,N;—1} and all a < b € Jcp,cnt1], fS* is a deformation retract
of f<b. The values cy, ... ,CN, are called “critical values” of f.

We shall need the following
Lemma B.2. — Assuming Hypothesis B.1, the space H*(f°, %) is finite dimensional.

Proof. — It is enough to prove that if ¢ is in some ]c;, c;j41[, then H*(f<?) is finite
dimensional. The general case follows by applying the long exact sequence of the
pair (f=°, f<). Now let £ be small enough, g a smooth function such that ||g— f|| < e.

Then the inclusions
fgt C ggt—i-a C f§t+2e

hold true and for £ small enough,
fgt—25 C fgt c fSt+28
are homotopy equivalences. Notice that g being smooth and ¢+ ¢ being a regular value
for generic ¢, the cohomologies H*(g**¢) are finite dimensional, and we have maps
H*(f=7%) — H*(g5"*%) — H*(f=)
but the composition of the above two arrows must be an isomorphism, and it factors

through a finite dimensional space, therefore H*(f<!) is finite dimensional and we
have a uniform bound for ¢ in J¢j, ¢jq1]. O
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By using the deformation along the gradient flow away from the “critical values”
c1,..-,cN,, Hypothesis B.1 is obviously true when f satisfies Hypothesis 1.2. Tt is
also true for a general Lipschitz function satisfying Hypothesis 1.6 as mentioned in
Subsection 8.3.1. It implies that for any a,b & {cl,...,cNf}, a < b, the relative
homology groups (K-vector spaces) H*(f<b, <% K) are finite dimensional and change
only when a or b passes a “critical value,” c1,...,cn;,.

For the introduction of a persistent sheaf on R, we need to consider all the sublevel
sets, and only at the end, do we restrict our attention to the relative cohomology
groups H*(f°, f*;K) with a < b, a,b & {cl,...,cNf}.

In order to use standard results of sheaf theory it is better to work with the closed
sublevel set f<t for a general ¢t € R which may be a “critical value”.

For a field K, Kj; denotes the locally constant sheaf on M and we consider a c-soft
injective resolution

0 K 70 71

c-soft meaning that the restriction morphism between the spaces of sections
I(M;Z7) — T'(K;29) is surjective for any compact subset K C M and any q € N.
A bounded c-soft resolution ending with Z4™M — ( exists because M is a compact
manifold.

Such a resolution can be obtained by introducing the canonical injective resolution
or the sheaf of K-valued Alexander-Spanier cochains on M. When K = R or C we
can use the de Rham resolution

0—— Ky —= C°(M;K) —%= 0o (M; AL T* M) —2~ . ..
showing that Kj, is quasi-isomorphic to the de Rham complex
0 —= C®°(M;K) —2= o (M; A'T* M) —% ...

and the homology groups of Ky, denoted H¢(M;K), are obtained by computing the
homology of the complex Z°.

For any locally closed subset (i.e., the intersection of a closed and an open set) A,
Za is c-soft. When A and B are closed, A C B, the short exact sequence

0——Z34 s, 78 0

leads to the long exact sequence

-~—=H*(B\ A,Z2°) = H*(B,Z°) — H*(A,2*) = H}TY(B\ A,Z°*) — - --
With our choice of Z°, this says
(156) ---— H*(B\ A,K) = H*(B,K) — H*(A,K) = H:*1(B\ A,K) — - --

when A is a closed subspace of M. We have just summarized Godement’s argu-
ments for Theorem 4.10.1 of [42] defining the long exact sequence associated to
a closed subset. For general values a < b in R, the relative cohomology groups
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H*(f=°, f<%,KK) can be understood in terms of the cohomology with compact support
in {x € M,a < f(z) < b}. Under Hypothesis B.1, H*(f<*~¢' | K) ~ H*(f<* ¢, K) for
any €, > 0 small enough, the Mittag-Leffler condition (see [63]-chap I) is satisfied
and the cohomology groups of open sublevel sets are given by the projective limits
H*(f%K)=lm__ . H*(f<2%;K) ~ H*(f<*¢0 K) for gy > 0 small enough.
Persistent cohomology is introduced in this way in [64] (we refer the reader to
[99, 35, 75] for other presentations) via the direct image functor Rp,, in the derived cat-
egory, applied to the locally constant sheaf KF? on F}' ={(z,t) e M xR, f(z) <t}

where p: M xR — (R, ) is given by p(z,t) = t. The notation (R, ) means that R is
endowed with the non-Hausdorff y-topology for which open (resp. closed) sets are
]—00,t[ (resp. [t,+o0[), t € R. Note that here we do not need to consider the val-
ues +oo because M is compact.

So we set P = Rp*KF;r. For a y-open set |—o0, t[ the set of sections I'(]—oo0, t[; JP)
is quasi-isomorphic to the de Rham complex

Oécw(ft;K)*d>0°°(ft;A1T*M)*d>-~-, when K =R or C,

while the stalk at t € R, &, = lii>nt/>t11(]—oo,t'[; ) is quasi-isomorphic to the

de Rham complex of f<t. With the y-topology on R an example of a locally constant
sheaf is K, p[, —00 < a < b < 400 with

K ifa<e<b<d,

Hom(K[%b[;K[c’d[) B { 0 otherwise

Under Hypothesis B.1, the cohomology H*(f<*;K) is finite dimensional and locally
constant on R\ {cl,...,cNf}. Therefore the sheaf 2 is an R-constructible sheaf
of K-vector spaces. By applying results of Crawley-Boevey in [26] (see also Guillermou
in [46, Part VIII]), Kashiwara and Schapira show in [64] that

dim M
P~ @ @ K[am b<p+1>[[p], —o0 < a&p) < b&pﬂ) < +o0.
p=0 acA

As pointed out in [64], and we refer the reader to this text for details, this equivalence
has to be understood as an equivalence of the objects in the bounded derived category.

Because the sheaf is locally constant in R\ {cl, ., CNy }, the endpoints a, belong
to {cl, .. .,cNf} and the endpoints b, to {02, . ,cNf,—}-oo}. The reason why we put
the exponent (+1) for b, will become clear below. When we allow a,, = b, the finite
cardinal of A can be augmented arbitrarily by adding [aq,bs[= 0, Ky = 0, with
by = ag.

Remember that when F' is a sheaf on the topological space X and Z is locally
closed, F'7 is the sheaf on X characterized by

{ Fz|,=F|,
FZ|X\z=0’
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and when Z is closed one has the exact sequence

OHFx\Z F FZ 0.

Applied to X = (R,v) and F = P ~ P, 4 Ka, 5,| We obtain
Plto,rool ~ KD Kimax(aato) baly

a€A,
to<ba

—ooto] ™ @ Kiaw,bals

acA
ba<to

Pas(~ D Kimax(a.an) bal-
a€A
a<ba<b

and the obvious graded analogous result holds. From the long exact sequence (156)
written

= HTD(fS) = HOD(F50) = HP (£ f59)

|

HO)(£5) — HO)(15°) —

and because we are working with K-vector spaces we obtain

Uc()(a)(p)|t
~ ker[H(”)(fft;]K) N H(p)(fﬁa;K)] ® coker[H(p_l)(fSt;]K) N 15[(17—1)(]09;]1@]7

or

P(a)® ~ ker(v@(p) — PP @ coker((@(” G
USiIlg @[a,+oo[ ~ @aeA K[max(aa,a),ba[a we deduce
a<bg

ker(@[(f,lroo[ — PP ~ EB Ko s

acA®
a<alP

(p—1) -1
coker(PP LD — PPY) ~ F Ky 4 oo
acAP—1)
aP~Y <a<bP <+oo

We obtain

HP/(F=0\ 54 K) ~ @ kl|eo P K

acA® acAP—D
a<aP) <b<bP+D alP~H<a<bP <b
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When a, b do not belong to {cl, -+ +5CNy }, the inequalities in the sums can be replaced
by strict inequalities and

H®)(fb, £ K) ~ b x|e b «k
acA® acAP—1)
a<a{P) <b<p@P+ PV <a<b® <b

B.2. Trivialized complex

We now establish the relationship with the bar codes used in [74] which was inspired
by Barannikov’s presentation of Morse theory in [5] (see also [75]). This is more
usually presented in terms of homology and the presentation in [74] was done under
the assumption that f is a Morse C°°(M;R), M compact and distinct critical values.
With the definitions of [74], the equality b = a holds true for two critical values a,b
if and only the map

H*(fb+€,fa76) _ H*(fb+5’fbfs)
vanishes, while

H, (fb“rE’ fa+s) — H, (fb+£’ fbfs)
is non-zero. Remember that the above assumption implies dim H, (f**¢, f>=¢) = 1 and
is concentrated in the degree equal to the index of the unique critical point associated
with b. In all the other cases we set dgb = 0.

Barannikov’s complex under the above assumptions is simply given on the direct
sum P ., Ke = @zij}M(@cEa(p) Kc) by 9gbP+1) = a(P) under the above condition
and by dgc = 0 otherwise. The set of the distinct critical values of f is denoted by C
and it is graded according to the index of the associated critical point.

Persistent cohomology is presented in the cohomological setting with H*(fY, f*) =
H*([z,y[,P), where P = R;(L,F]KF;cr and by assumption

dim M
P = K, @ po+vlp]s —o00 < aP) < pPHY) < 4o,
[aa ybo [ e [e%
p=0 acA®)
so that
dim M
H([z,9[,P) = @ @D H (o yl Ky o), —o0 <o <P+ < +o0.
p=0 qeAl)

So it is enough to consider the case of P = K[a@) b(p+1)[[p] and then it is obvious by

duality that aBbES’ +1) _ a&p ). We thus proved the following statement.

Proposition B.3. — If M is a compact manifold, f € C®(M;R) is a Morse
function with disctinct critical values with the associated Barannikov complex
(@dlmM @cemp) Ke,dg) and P = RP*KF;’ then for all x,y € R\ C there is a

p=0
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duality between the K vector spaces

H*(P) and H.((DKe,dg);K).

cel

The relative version says that H*([z,y[,P) ~ H*(fY,f*;K) is the dual of
H*((@Cecm]z’y[Kc, 03); K) with the natural restriction of 0.

With the general framework of persistent cohomology described above, we are now
able to extend it under the general Hypothesis B.1 and we fix the corresponding
notations.

The bar code B(f) = ([@a;bal)aca associated with f with aq < by, aq € {cl, ..,cNf},

by € {02, .. cNf,+oo} and graded according to 3® (f) = ([ad (p) b(p+1)[)aEA(P) is
the one introduced in the previous paragraph. We use the superscript * when we do
not want to specify (p). When a < b are not “critical values” we write

A*(a,b) = {a € A*, [ak, b5 [N]a, b] & {‘Z),]a,b[}},
Al(a,b) = {a € A*(a,b), a<al <bit' <b},
a€ A*(a,b) a<a’, <bora<bi<b,
In order to keep track of the possible multiplicities of the values a, and b, we set
& (a,b) = {(,a2), @ € A%(a, b))}
Y*(a,b) = {(a, b)), € 437 (a,b)}
Z*(a,b) = {(a,a)),a € A*(a,b) \ A%(a,b),a < ay < b}
U{(a, b)), € A* (a,b) \ AX 7 (a,b),a < b, < b},
&/ *(a,b) = X*(a,b) UY*(a,b) UZ"(a,b).
We now consider the complex defined on

dim M
J(ab) _ @ KT (@:b) , AL (a.b)+H(A" (a,b)\AZ (a,D))

with natural basis (z € 56 (a,b),y € Y*(a,b),z € Z*(a,b)) and with the differen-
tial d g defined by

dﬁw(p) =yt if 2@ ¢ FP) (a,b), yPTY YP+D (0, b), p1 (z) = a = p1(y),
dﬁy(p) =0 if y® e y(p)(m b),
dgz® =0 if 2 ¢ Z®)(a,b).

By construction, when —oo < @ < b < 400 are not “critical values” of f,

Y i N

2€Z®) (a,b) acA® acAP—1)
a<alP) <p<p@+H a?™V<a<b® <b
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and the complex (K(’] “(a:d) g @) computes all the relative cohomology groups
H*(f, £ K).

The sets X*(a,b), Y¥*(a,b), A%(a,b), play a role when we compute the positive expo-
nentially small eigenvalues of Witten Laplacians with Dirichlet boundary conditions
on f~!({a}) and Neumann boundary conditions on f~1({b}).

B.3. Stability theorem

The bar code associated with f is given by a family JB(f) = ([@a, ba[)aca, now con-
taining possibly empty sets when a, = by, with the equivalence ([aq,ba[)a ~ ([cg,ds])seB
if there is a bijection between j : {a € A,aq < by} — {8 € B,cg <dg} such
that cj(a) = aq and dj(4) = bo. Following [23] they can be represented as a family of
points ((aa,ba))aca in {(z,y) € R x (RU{+00}), = < y}, appearing with multiplic-
ities, and the bottleneck distance between two general bar codes B4 = ([@a),ba[)aca
and Bp = ([cs,dpl)pen, where A and B can be assumed with the same cardinal
when we authorize a, = b, cg = dg, is given by

dbot(Ba,Bp) = inf maicmax(|aa = Cj(a) | [ba = dj()l),

j:Ab—lgB ac

with the convention |(+00) — (+00)| = 0. The stability theorem says that for two

different functions f,g on M which satisfy Hypothesis B.1, the bottleneck distance
between the bar codes B(f) and B(g) associated with f and g satisfies

dbot (B(f),B(9)) < |If = glleo-

It is proved in [64] by using the convolution of sheaves. In the one-dimensional case
and for ¢ > 0 we have K|_. . * K 5| = K[g—¢,p—] (in terms of constructible functions
according to [86], simply use 1[a,b[ = 1[a,+oo] _]-[b,—i-oo[ and 1[_675] *1[a,+oo[ = ]-[a—e,—i-oo[)
and this convolution is nothing but a translation by —e on the real axis. Two R-con-
structible sheaves on (R,v), F,G are said e-isomorphic, F ~ G, if there are mor-
phisms 7 : K. * F — G and j : K_. * G — F such that natural mor-
phisms K[_g. o) ¥ F' — F and K[_5, o) * G — G are factored via

Ki—cepx J
K[—25,26] xF = K[—e,a] *G = F

Ki—c,e1*J i
Kioge2e G = " K g*xF = G.

The bottleneck distance is then equal to
dbor(F, G) = inf {e > 0,F £ G},
and coincides with dpot(cBa,c8p) after writing F ~ @, 4K, . and
G~ ®ﬁEB Kies.dsl-
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