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BAR CODES OF PERSISTENT COHOMOLOGY
AND

ARRHENIUS LAW FOR p-FORMS

par D. LE PEUTREC, F. NIER & C. VITERBO

Abstract. — The present work shows that counting or computing the small eigenvalues
of the Witten Laplacian in the semi-classical limit can be done without assuming
that the potential is a Morse function as the authors did in their previous article.
In connection with persistent cohomology, we prove that the rescaled logarithms of
these small eigenvalues are asymptotically determined by the lengths of the bar code
of the potential function. In particular, this proves that these quantities are stable in
the uniform convergence topology of the space of continuous functions. Additionally,
our analysis provides a general method for computing the subexponential corrections
in a large number of cases.

Résumé. (Codes-barres de la cohomologie persistante et loi d’Arrhenius pour les
p-formes) — Le présent travail montre que le comptage ou le calcul des petites
valeurs propres du Laplacien de Witten en limite semi-classique peuvent être réalisés
sans supposer que le potentiel est une fonction de Morse, comme l’avaient fait les
auteurs dans leur article précédent. En relation avec la cohomologie persistante,
nous montrons que les logarithmes normalisés de ces petites valeurs propres sont
déterminés par le code barre de la fonction potentiel. En particulier cela démontre
que ces quantités sont stables dans la topologie de la convergence uniforme de l’espace
des fonctions continues. De plus, notre analyse fournit une méthode générale de calcul
des facteurs correcteurs sous-exponentiels dans un grand nombre de cas.
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CHAPTER 1

INTRODUCTION

1.1. Motivations

Since its discovery in the late nineteenth century, Arrhenius law (see [3]) is one of
the most robust laws of chemistry or physics. Actually, its range of applications has
increased over decades and is now also commonly used in biology or social sciences
as an empirical law whose parameters be can figured out rather easily, even when the
microscopic or individual mechanisms are not well understood. Its early interpreta-
tions were done within the thermodynamical or statistical physics framework. They
are now formulated in the modern and general language of stochastic processes, more
specifically of the Brownian motion of a particle evolving in a gradient field. At low
temperature h > 0 in some dimensionless scaling, the lifetime τα,h of the state α is
exponentially large with

(1) log τα,h ∼
ℓα
h
,

where ℓα is the energy variation between a local minimum and the lowest saddle
point that we need to cross in order to reach a state of lower energy. Practically
and as an illustration of the robustness of Arrhenius law, it is neither necessary to
know the energy landscape nor the configuration space: in the end only the ℓα’s
are important and they are determined experimentally, e.g., in chemistry kinetics. A
general justification of (1) was proposed by Freidlin and Wentzell in [91, 92] relying
on large deviation arguments (see also [38] and [6] for a wider overview).

In an energy landscape described by the function 2f : M → R, those life-
times are generically the inverses of eigenvalues of the operator −h∆ + 2∇f · ∇
in L2(M, e−

2f
h dx), where e−

2f
h dx is the associated invariant measure (it exists e.g.,

when M is a compact Riemannian manifold without boundary). After a conjugation
by e

f
h and a multiplication by h (corresponding to a change of time scale), it becomes

the operator

∆
(0)
f,h = −h2∆ + |∇f(x)|2 − h(∆f)(x) = d∗f,hdf,h acting in L2(M,dx),

where df,h = e−
f
h (hd)e

f
h is the Witten differential and d∗f,h its adjoint. This operator

acts on general differential forms as the Witten Laplacian, a deformation of the Hodge
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2 CHAPTER 1. INTRODUCTION

Laplacian:

∆f,h = (df,h + d∗f,h)
2 =

dimM⊕
p=0

∆
(p)
f,h,

where the direct sum separates the degrees. When f is a Morse function, Witten in [95]
(see also [27]) proved that as h goes to zero, the eigenvalues of ∆f,h are divided into
two groups, given in our scaling as one bounded from below by Cfh for some Cf > 0,
and one being of the order o(h). The small (here o(h)) eigenvalues of ∆

(p)
f,h correspond

to critical points of index p: this is intuitively to be expected, since the eigenfunctions
should concentrate in the region where |∇f | is small, that is near the critical points
of f . This argument provided an analytical proof of Morse inequalities, in the line of
several results relating topological quantities and spectral analysis, one of the earliest
being the Atiyah-Patodi-Singer proof of the index theorem (see [4]).

In [55], Helffer and Sjöstrand gave a rigorous proof of Witten’s claims and proved
that those small eigenvalues were actually exponentially small, without specifying
their size. This was later extended to Morse-Bott functions by Bismut and Helffer-
Sjöstrand (see [10] and [56]). After this, many applications of Witten Laplacians
or more general Witten deformations were used to study various global topological
invariants of manifolds or fiber bundles by counting the small eigenvalues of such
operators (see e.g., [11, 98, 20]).

When f is a Morse function, the Arrhenius law in degree 0 says that the o(h)

eigenvalues of ∆
(0)
f,h satisfy

(2) log λ
(0)
α,h ∼ −2

f(yα)− f(xα)

h
as h→ 0+,

where xα is a local minimum and yα is an associated saddle point. Already around
1935, Eyring and Kramers (see [37, 65]), motivated by the theory of the activated
complex in chemistry, proposed a more accurate version which reads here

(3) λ
(0)
α,h ∼

h

π
Cαe

−2
f(yα)−f(xα)

h as h→ 0+,

where the constant Cα depends on the Hessians at the non degenerate critical
points xα and yα, xα is a local minimum (here a critical point of index 0), and yα a
saddle point (here a critical point of index 1).

The first mathematical proof of the Eyring-Kramers formula was performed in
degree 0 in [13, 14] by using potential theoretic and capacity arguments, and in [50]
by improving Helffer-Sjöstrand’s semiclassical analysis for ∆

(0)
f,h (see also e.g., the

prior works [60, 80] for results less precise than (3) but more precise than (2)). These
results were proved under the assumption that f is a Morse function with simple
local minima and simple saddle points (a Morse function has simple critical values
or critical points if every critical value is the image of a single critical point), and
with distinct lengths : the real numbers ℓα = 2(f(yα) − f(xα)) are all distinct. The
pairing between local minima xα and saddle points yα (critical points with index 1)
was done by extending the intuitive picture of basins of attraction, more precisely

ASTÉRISQUE 450



1.1. MOTIVATIONS 3

by considering the connected components of sublevel sets of f . Note that this differs
from the instantonic picture, associated with curves which are intersections of stable
and unstable manifolds of −∇f , which is in some sense local and would lead to a
complicated analysis of cancelations while computing precisely the λ(0)

α,h’s. This pairing
relies on global topological considerations which are robust with respect to the C0

perturbations of the energy profile 2f . By making use of the min-max principle, it is
actually not difficult to start from the analysis done in [50] for Morse functions and
to recover (2) and the results of [91, 92, 60, 80] in cases where the local minima are
degenerate.

The situation is completely different for general differential forms of degree p. In
[74], we proved an Eyring-Kramers law (and therefore an Arrhenius law) by assuming
again that the function f was a generic Morse function with simple critical values and
such that the difference between critical values were all distinct. Here the problem is
to understand which critical values f(xα) and f(yα) are paired in order to compute
the exponential factors. This pairing is obtained topologically by using a refinement
of Barannikov’s presentation of Morse theory. This can be restated in modern terms
with the bar code of f , denoted Bf = ([a∗α, b

∗+1
α [)α∈A∗ , associated with the Morse

function f on M , with the notation a
(p)
α = f(xα) and b

(p+1)
α = f(yα), where the

critical point xα has index p and yα has index p+ 1. Later, it was noticed in [90, 85]
that those bar codes were nothing but the bar codes of persistent homology, developed
since the beginning of the 21st century (see [35] for a historical review). An important
feature of the Barannikov complex, and hence of persistent homology, is the stability
result which says in the latter framework

dbot(Bf ,Bg) ≤ ∥f − g∥C0 ,

where the bottleneck distance dbot estimates the variations of the lengths of the bars.
But the bar code of a function is defined for any continuous function, except that

the bars may now be infinitely many, with the property that for any ε0 > 0, only
finitely many are greater than ε0. It is then natural to state the following conjecture.

Main Conjecture. — Consider a C∞ (or even Lipschitz) function f on a compact
manifold M with bar code Bf . We denote by A(p)(ℓ) the set of bars in Bf of the
type [a

(p)
α , b

(p+1)
α [ with b

(p+1)
α − a(p)

α > ℓ, and A
(p−1)
c (ℓ) the set of bars in Bf of the

type [a
(p−1)
α , b

(p)
α [ with b(p+1)

α −a(p)
α > ℓ and b(p)α < +∞. Then, there exists ε0 > 0 such

that, for every ε ∈]0, ε0], ∆
(p)
f,h admits ♯

(
A(p)(ℓ)∪A(p−1)

c (ℓ)
)

eigenvalues λ(p)
α,h smaller

than e−2 ℓ+εh (with multiplicity), where α ∈ A(p)(ℓ)∪A(p−1)
c (ℓ). They can moreover be

labeled such that

∀α ∈ A(p)(ℓ) ∪A(p−1)
c (ℓ), log λ

(p)
α,h ∼ −2

b
(p+1)
α − a(p)

α

h
as h→ 0+.

The goal of this paper is to prove this conjecture under the assumption that f has
a finite number of critical values.
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4 CHAPTER 1. INTRODUCTION

Note that we do not assume in the Main Conjecture (as well as in our theorems)
that f is Morse. One important consequence of the Main Conjecture (and hence of
our main theorems) is that the decay rate of the eigenvalues is continuous in f for
the C0 topology. This is not the case for subexponential factors, since they usually
depend on the eigenvalues of the Hessian of f at the critical points.

In the case p = 0 of functions, the Eyring-Kramers law (3) has been extended in
the form λ

(0)
α,h ∼ Cα(f)hνα(f)e−2

f(yα)−f(xα)
h when f is not a Morse function or when

f is a Morse function with multiple critical values (i.e., the preimage of a critical
value may contain several critical points), the latter appearing in practical situations
with natural symmetries. We refer for example to [8, 7, 79, 33, 72, 73], whence it
appears that the exponent να(f), or the constant Cα(f) in the subexponential factor,
may be discontinuous when a general function f is approximated by a sequence of
generic Morse functions. On the other hand, it will follow from our results that the
ℓα = 2(f(yα)− f(xα)) are stable. Understanding how the eigenvalues λα,h(f) or the
lifetimes τα,h(f) depend on f is also important for applications to the acceleration of
stochastic algorithms (see [77, 32, 33, 72, 73] and references therein). This leads to the

Main Question. — Is there a way to analyze how the subexponential factor of Eyring-
Kramers law for p-forms varies when f is changed ? In particular, does it explain the
observed discontinuities ?

Again, the answer is yes. Our presentation of Arrhenius law for p-forms provides a
very general result. The method actually completely separates the determination of
the exponential scales e−

ℓα
h , related with global algebraic topological objects, from

the determination of the subexponential factors, which rely on some local analysis.
Many applications with various discontinuous effects will be presented at the end of
this text. Actually, the discontinuities w.r.t. the energy landscape f of the leading
term for the subexponential factor Cα(f)hνα(f) are easily understood on the simple
example of the Laplace integrals

I(δ, h) =
∫
R e

−
x4/4−δx2/2+1R+(δ)δ2/4

h dx,

which satisfy I(δ, h)
h→0∼ Cδh

1/2 when δ ̸= 0,

and I(δ, h)
h→0∼ Ch1/4 when δ = 0.

1.2. General assumptions and notations

The manifold M . — The Riemannian manifold (M, g) is assumed compact without
boundary with dimRM = d and non necessarily oriented. Some non compact manifold
will be considered in Subsection 8.2. In the non-orientable case, the Hodge star opera-
tor, ⋆, sends ΛT ∗M =

⊕d
p=0 ΛpT ∗M to ΛT ∗M ⊗M orM , where orM is the orientation

(line) bundle, which is of course locally trivial. When N ⊂M is a regular hypersurface
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1.2. GENERAL ASSUMPTIONS AND NOTATIONS 5

admitting a global unit normal (or conormal) vector the orientation twist orN is the
restriction of orM .

In local coordinates the metric will be written g = gij(x)dx
idxj with g−1 = gij(x) ∂

∂xi
∂
∂xj

and the musical isomorphisms ♯ : T ∗M → TM and ♭ : TM → T ∗M are given by

(ωidx
i)♯ = gijωj

∂

∂xi
and (Xi ∂

∂xi
)♭ = gijX

jdxi.

The differential d acts on C∞(M ; ΛT ∗M ⊗M C) or D′(M ; ΛT ∗M ⊗M C) and
augments the degree of forms by 1. The codifferential d∗ = (−1)deg ⋆−1 d⋆ acts
on C∞(M ; ΛT ∗M ⊗M C) and D′(M ; ΛT ∗M ⊗M C) and decreases the degree by 1.
In the sequel and unless otherwise specified, we always consider complex valued
differential forms and the tensorization by C will be omitted in the notation. The
duality bracket ⟨ , ⟩ between D′(M ; ΛpT ∗M ⊗ orM ) and C∞(M ; Λd−pT ∗M) (where
D′ and C∞ can be interchanged) is assumed C-antilinear on the left-hand side and
C-linear on the right-hand side. Stokes’s formula then implies that d∗ is the formal
adjoint of d according to

0 =

∫
M

d(ω ∧ ⋆η) =

∫
M

dω ∧ (⋆η) + (−1)degωω ∧ d(⋆η) = ⟨dω, η⟩ − ⟨ω, d∗η⟩

for ω, η ∈ C∞(M ; Λp−1T ∗M).

Functional spaces. — The L2-norm of sections of ΛT ∗M is the one given by the
metric g and we recall ∫

M

⟨ω, η⟩ΛT∗qM dvolg(q) =

∫
M

ω ∧ ⋆η.

We use the notation W s,p for the Sobolev space with s derivatives in Lp. In particular,
W s,2 corresponds to the standard Hilbertian Sobolev spaces while W 1,∞ will be used
for the set of Lipschitz functions. For an open domain Ω ⊂M and for s ∈ R, the no-
tation W s,2(Ω; ΛT ∗M) denotes the set of restrictions to Ω of W s,2-sections in M , and
when there is no ambiguity or necessity, we shall use the short version W s,2(Ω). The
same definition holds for C∞(Ω; ΛT ∗M). We recall that when Ω is a regular domain,
that is when ∂Ω is a C∞ hypersurface,W s,2(Ω; ΛT ∗M) coincides withW s,2(Ω; ΛT ∗M)

by interpolation and duality from the special cases of s ∈ N (see e.g., [21]). In
such a case, the trace theorem holds from W s,2(Ω; ΛT ∗M) to W s−1/2,2(Ω; ΛT ∗∂Ω)

for s > 1
2 . The local regularity theory is not affected when sections of ΛT ∗M ⊗ orM

and ΛT ∗M ⊗ or∂Ω are considered and we shall use the short notation W s,2(Ω) or
W s,2(∂Ω) indifferently for sections of the trivial and orientation line bundles, unless
we need to distinguish the global behavior. Other functional spaces will be introduced
later in our analysis.

Witten differential and Witten Laplacian. — The Witten differential and the Witten
Laplacian are deformations of the differential d and the Hodge Laplacian dd∗ + d∗d

associated with a real valued function f and a positive parameter h > 0 in the
asymptotics h→ 0.
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6 CHAPTER 1. INTRODUCTION

Definition 1.1. — Let f be a real valued function on M . For a ∈ R = R∪{−∞,+∞},
we use the notations

fa = {x ∈M,f(x) < a} , f≤a = {x ∈M,f(x) ≤ a} ,
fa = {x ∈M,f(x) > a} , f≥a = {x ∈M,f(x) ≥ a} ,

with all the combinations like f ba = {x ∈M, a < f(x) < b}.

Although weaker regularity assumptions for the function f will be discussed later, the
following simple hypothesis will be convenient for us.

Hypothesis 1.2. — The function f on (M, g) is assumed to be Lipschitz with a finite
number Nf of values c1, . . . , cNf such that:

— f ∈ C∞(M \ f−1(
{
c1, . . . , cNf

}
);R)

— ∀x ∈M \ f−1(
{
c1, . . . , cNf

}
), |∇f(x)| ≠ 0.

When f ∈ C∞(M ;R), the above assumption simply says that f has a finite num-
ber ≤ Nf of critical values. For a Lipschitz function, we count also “fake” critical
values allowing singularities of f at those values. We nevertheless call c1, . . . , cNf the
“critical values” of f and use the notation

Mreg = {x ∈ (M \ suppsing f),∇f(x) ̸= 0} ⊂M \ f−1(
{
c1, . . . , cNf

}
) ,

where suppsing f denotes the singular support of f , the closed set out of which f is
C∞. When M is a real analytic manifold, Hypothesis 1.2 may be replaced by the
following simpler natural assumption.

Hypothesis 1.3. — On the real analytic compact Riemannian manifold M , f is a
Lipschitz subanalytic function.

Actually, the proof of the main result, Theorem 6.3, will hold under Hypothesis 1.2
or under some milder assumptions which are more technical and will appear as conse-
quences of Hypothesis 1.3 in Subsection 8.3. We also refer to Subsection 8.3 for more
material on Lipschitz subanalytic functions.
Under Hypothesis 1.2 or more generally for a Lipschitz function f and for h > 0, the
differential operators df,h, d∗f,h and ∆f,h are defined by:

df,h = e−
f
h (hd)e

f
h = hd+ df∧, df,h ◦ df,h = 0,(4)

d∗f,h = e
f
h (hd∗)e−

f
h = hd∗ + i∇f , d∗f,h ◦ d∗f,h = 0,(5)

∆f,h = (df,h + d∗f,h)
2 = d∗f,hdf,h + df,h ◦ d∗f,h(6)

= h2∆0,1 + |∇f(x)|2 + h(L∇f + L∗∇f ).

The above identities make sense when considering df,h and d∗f,h as operators
from W 1,2(M) to L2(M) or from L2(M) to W−1,2(M), and for the compositions of
two of them and for ∆f,h, as operators from W 1,2(M) to W−1,2(M). We shall be
more precise on requirements for domains once we add the boundary conditions.
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1.2. GENERAL ASSUMPTIONS AND NOTATIONS 7

Convention for closed operators and quadratic forms. — We shall consider various
closed realizations in L2 spaces of the above differential operators df,h, d∗f,h, and ∆f,h,
which will be denoted df,•,h, d∗f,•,h, and ∆f,•,h, where the subscript • will specify the
realization. When A is a closed operator in a Hilbert space (resp. when Q is a closed
quadratic form), writing Au (resp. Q(u) or Q(u, v) for the associated sesquilinear
form) means that u belongs to the domain of A (resp. u or u, v belong to the domain
of Q). For example df,•,hω = α ∈ L2 means in particular ω ∈ D(df,•,h), possibly
imposing boundary conditions.

Comparing exponential scales
Definition 1.4. — For two functions F,G : ]0, h0[→ C, one says

— F (h) = Õ(G(h)) if:

∀ε > 0,∃hε, Cε > 0,∀h ∈ ]0, hε[, |F (h)| ≤ Cε|G(h)|e εh ;

— F (h) = õ(G(h)) if:

∃ε, hε, Cε > 0,∀h ∈ ]0, hε[, |F (h)| ≤ Cε|G(h)|e− ε
h ;

— F (h)
log∼ G(h) if:

|F (h)| = Õ(|G(h)|) and |G(h)| = Õ(|F (h)|).
When |F |, |G| > 0, the above three conditions can be written respectively

lim sup
h→0

h log

(
|F (h)|
|G(h)|

)
≤ 0,

lim sup
h→0

h log

(
|F (h)|
|G(h)|

)
< 0

lim
h→0

h log

(
|F (h)|
|G(h)|

)
= 0.

In the two first definitions, the constant Cε can be fixed to 1 by changing hε (and ε

in the second definition).
When F : X × ]0, h[ → C, the statements “F (x, h) = Õ(G(h)) (or F (x, h) =

õ(G(h))) (locally) uniformly” are used when the above definitions make sense for the
corresponding suprema supx F (x, h).

Bar code. — Although a more precise definition and construction will be recalled
especially in Appendix B, we can start with a short definition.

Definition 1.5. — Under Hypothesis 1.2, a (persistence cohomology) bar code asso-
ciated with f is a finite family B = ([aα, bα[)α∈A with −∞ < aα < bα ≤ +∞,
aα ∈

{
c1, . . . , cNf

}
, bα ∈

{
c2, . . . , cNf ,+∞

}
, with the following properties:

— it is graded according to A =
⊔d
p=0A

(p), [aα, bα[= [a
(p)
α , b

(p+1)
α [ when α ∈ A(p);

— for any pair a, b, a < b, a, b ̸∈
{
c1, . . . , cNf

}
, there exists a basis of the relative

homology vector space Hp(f b, fa) indexed by the bars of degree p with a unique
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8 CHAPTER 1. INTRODUCTION

endpoint lying in ]a, b[. In particular, the relative Betti number is given by:

βp(f b, fa) = dimHp(f b, fa) = ♯
{
α ∈ A(p), ♯

{
a(p)
α , b(p+1)

α

}
∩ ]a, b[ = 1

}
.

For a general Lipschitz function, such a finite bar code is well defined under the
following assumption (see Subsection 8.3.1 and Appendix B).

Hypothesis 1.6. — The function f : M → R is a Lipschitz function and there exists a
finite number of values c1 < c2 < · · · < cNf such that for any a ∈ R \

{
c1, . . . , cNf

}
,

the following property holds along f−1({a}):
For any x0 ∈ f−1({a}), there exists a neighborhood Ux0

of x0 in M , a local coor-
dinate system x = (x1, x′) ∈ R× Rd−1, and a constant Cx0 such that

∀x = (x1, x′), y = (y1, x′) ∈ Ux0
,

1

Cx0

|x1 − y1| ≤ |f(x1, x′)− f(y1, x′)|.

This notion of bar code, and especially the identification of two bar codes, after
possibly adding empty intervals, is better understood after associating with a bar code
BA = ([aα, bα[)α∈A the constructible sheaf

⊕
α∈AK[aα,bα[ of K-vector spaces, on R.

Then, a persistence bar code associated with a function f satisfying Hypothesis 1.2
is essentially unique and then denoted B(f).

After possibly adding empty bars such that aα = bα or cβ = dβ , two different bar
codes BA = ([aα, bα[)α∈A and BB = ([cβ , dβ [)β∈B can be assumed with the same
cardinality, ♯A = ♯B. The bottleneck distance is then defined by

dbot(BA,BB) = inf
j:A

bij→B
max
α∈A

max(|aα − cj(α)|, |bα − dj(α)|),

with the convention |(+∞)− (+∞)| = 0.
The stability theorem for persistent (co)homology (see e.g., [23, 64]) says that for

two functions f1, f2 which satisfy Hypothesis 1.2 or Hypothesis 1.6,

dbot(B(f2),B(f1)) ≤ ∥f2 − f1∥C0 .

1.3. Simple results

The method presented in this text leads to several results and can actually be
extended to other cases. Essentially, we show that the usual generic assumption that
the function f is a Morse function can be replaced by a very general one, after replacing
the algebraic topological information in terms of Morse indices by the one given by the
persistent cohomology bar code associated with f . The following simple statements
illustrate what can be obtained.

Theorem 1.7. — Assume that f satisfies Hypothesis 1.2 and let ∆f,M,h be the self-
adjoint Witten Laplacian defined with D(∆f,M,h) =

{
ω ∈W 1,2(M),∆f,hω ∈ L2(M)

}
and ∆f,M,hω = ∆f,hω according to (6), and ∆f,M,h =

⊕⊥
0≤p≤d ∆

(p)
f,M,h. Let B(f) be

a persistent cohomology bar code associated with f . Then, there is a bijection between
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1.3. SIMPLE RESULTS 9

A(p) ⊔
{
α ∈ A(p−1), b

(p)
α ̸= +∞

}
and the õ(1) eigenvalues counted with multiplicities

of ∆
(p)
f,M,h. Precisely, there exists ε0 > 0 small enough such that for all ε ∈ ]0, ε0[,

there exists hε > 0 such that the Õ(e−
ε
h )-eigenvalues of ∆

(p)
f,h counted with multiplicity

for h ∈ ]0, hε[ are given by λ(p)
α (h), α ∈ A(p) or (α ∈ A(p−1) and b(p)α ̸= +∞), with

either b(p+1)
α = +∞, and then λ(p)

α (h) = 0,

or b∗+1
α < +∞, and then lim

h→0
−h log λ(p)

α (h) = 2(b∗+1
α − a∗α),

with ∗ meaning (p) or (p − 1) depending on the case. Obviously, the multiplicity of
the 0-eigenvalue of ∆

(p)
f,M,h, the dimension of its kernel, equals the pth Betti number

of M , ♯
{
α ∈ A(p), b

(p+1)
α = +∞

}
= β(p)(M), and does not depend on the function f .

To summarize the situation, the logarithms of the exponentially small eigenvalues
of ∆

(p)
f,M,h are given by the lengths of the bars b∗+1

α − a∗α, ∗ = (p) or (p− 1), of which
one endpoint in R is of degree p, the eigenvalues associated with infinite lengths
being identically 0 for h small enough. A direct application of the stability results of
persistent cohomology then gives the variations of the exponentially small spectrum
when the function f is perturbed.

Corollary 1.8. — Assume that f satisfies Hypothesis 1.2, let B(f) = ([aα, bα[)α∈A,
aα < bα, A =

⊔
0≤p≤dA

(p), be a persistent bar code associated with f , and set
ℓmin = min {bα − aα, α ∈ A}. For any other function g which satisfy Hypothesis 1.2
with ∥g − f∥C0 < ℓmin

4 , the Õ(e−
ℓmin
h ) eigenvalues of ∆

(p)
g,M,h can be labeled with mul-

tiplicities
λα(g, h), α ∈ A(p) or α ∈ A(p−1), b(p)α ̸= +∞,

with

λα(g, h) = 0 if b(p+1)
α = +∞

or 2(bα − aα) + 4∥g − f∥C0 ≥ lim
h→0
−h log(λα(g, h)) ≥ 2(bα − aα)− 4∥g − f∥C0 > ℓmin.

One rapidly realizes that we make no normal form assumption for f near the “crit-
ical values” c1, . . . , cNf of f . Even if we work with C∞ functions, any closed set K
of M can be the global minimum of f ∈ C∞(M) by taking a non negative C∞ function
vanishing only on K after Whitney’s extension theorem. Having a finite number of
critical values restricts the possible sets K which still make a very large class. Hence,
no algebraic behavior with respect to h of the leading terms of the subexponential
factors can be expected as it is the case when f is assumed to be a Morse function.
Theorem 1.7 simply says that exponentially small eigenvalues and their exponential
scales are given by the algebraic topology without specifying a possible subexpo-
nential factor. Among other results, we will obtain similar things for ∆f,f−1([a,b]),h,
−∞ ≤ a < b ≤ +∞, a, b ̸∈

{
c1, . . . , cNf

}
, when considering the proper boundary con-

ditions on f−1({a}) (Dirichlet type) and f−1({b}) (Neumann type). Actually, this
leads us to the presentation of our strategy which passes through local problems
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10 CHAPTER 1. INTRODUCTION

on R = f(M) and a recurrence argument on the number N of “critical values” lying
in [a, b].

1.4. Strategy and outline of the book

Proving a result like Theorem 1.7, even in this simplified form, is a rather long
process which is clearly split into various steps.

— A general presentation of bar codes in persistent (co)homology as well as proper-
ties of Hodge Laplacians on weakly regular domains are recalled in Appendix B
and in Appendix A.

— In Chapter 2, we set up the functional analysis framework, the relevant bound-
ary conditions for Witten Laplacians, the corresponding integration by parts
formulas, as well as weighted integration techniques à la Agmon, in order to
obtain exponential decay estimates. We especially consider self-adjoint realiza-
tions of Witten Laplacians ∆f,h in the domain f−1([a, b]) when a < b are not
critical values, always with Dirichlet boundary conditions along f−1({a}), the
lowest level set, and Neumann boundary conditions along f−1({b}), the high-
est level set. Those self-adjoint realizations will be denoted by ∆f,f−1([a,b],h),
and possibly ∆

(p)
f,f−1([a,b]),h when specifying the degree. Remember the intuitive

picture for functions: Dirichlet (resp. Neumann) boundary conditions are asso-
ciated with a potential −∞ (resp. +∞). Such boundary conditions are actually
the natural ones in order to avoid boundary layer phenomena along the bound-
aries in the spectral analysis. For further applications, this analysis is done in
a weak regularity framework, and the long series of works by Mitrea et al. were
instrumental in setting up the proper framework. The end of this section gath-
ers repeatedly used technical lemmas, deduced from the exponential decay and
weighted resolvent estimates for boundary Witten Laplacians.

— Once the geometrical issues in the weak regularity case are solved, the rest
of the analysis becomes essentially one dimensional on R ⊃ f(M), as sug-
gested by the bar code structure. The first step consists in understanding
what happens when there is a single critical value in the energy interval [a, b],
[a, b] ∩

{
c1, . . . , cNf

}
= {c̃1}. In this specific case, the bar code of f has no bar

included in a compact subset of ]a, b[. Accordingly, ∆f,f−1([a,b]),h should not
have any non zero exponentially small eigenvalue. This is the main result of
Chapter 3.2, formulated in Proposition 3.2, which states that all the õ(1)-eigen-
values of ∆

(p)
f,f−1([a,b])h are equal to 0. After preliminary notations related with

variations of the min-max principle, the core of the proof is done in Subsec-
tion 3.2, and follows in some sense Carleman’s general scheme for uniqueness
results of PDE, along the energy interval [a, b] ⊂ R. Resolvent estimates and
other corollaries are listed afterwards. Chapter 2 and Proposition 3.2 provide
in particular the number of õ(1)-eigenvalues of ∆

(p)
f,f−1([a,b]),h counted with
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1.4. STRATEGY AND OUTLINE OF THE BOOK 11

multiplicities in this setting: it equals the relative Betti number

β(f b, fa;R) = dim ker(∆
(p)
0,f−1([a,b]),1) = dim ker(∆

(p)
f,f−1([a,b]),h).

— Only in Chapter 4 really starts the relationship between the bar code Bf of f
and the spectral properties of ∆f,f−1([a,b]),h. It contains an enumeration of the
non zero õ(1)-eigenvalues of ∆f,f−1([a,b]),h in terms of bars compactly embedded
in ]a, b[, while the dimension dim ker(∆

(p)
f,f−1([a,b]),h) = β(p)(f b, fa;R) is also

expressed in terms of Bf . This section ends with Proposition 4.5 which proves
the rough lower bound e−2 b−ah for the non zero õ(1)-eigenvalues of ∆f,f−1([a,b]),h

(see Proposition 4.5).
— An important step elucidated in [50], and used in many forthcoming articles,

consisted in the trivial observation that the eigenvalues of ∆f,f−1([a,b]),h, re-
stricted to some spectral compact segment, are the square of the singular values
of the restricted differential df,f−1([a,b]),h. Singular values are much more flexi-
ble spectral quantities than eigenvalues. One of their advantage is that, in many
situations, the approximation errors appear as relative ones for all the singu-
lar values, a property which is not fulfilled by eigenvalues. We gather several
functional analysis preliminary results in Chapter 5, which elaborates in a func-
tional abstract setting how various matricial error estimates propagate nicely to
singular values estimates.

— The core of the proof of Theorem 1.7 is done in Chapter 6. It is a rather so-
phisticated proof by induction on the number N of critical values contained in
the energy interval [a, b],

{
c1, . . . , cNf

}
∩ [a, b] = {c̃1, . . . , c̃N}. This recurrence is

initiated by Chapter 3.2 for the case N = 1. Although it contains several steps,
the induction from N to N +1 mimics in some way the proof of Mayer-Vietoris’
Theorem. The main result of this section is Theorem 6.3, which can be consid-
ered as the central result of this text, while Proposition 3.2 proves the simplest
non trivial particular case. This induction contains many intermediate results,
which lead in particular in Chapter 7 to Theorems 7.1 and 7.8, which generalize
respectively Theorem 1.7 and Corollary 1.8 to the boundary Witten Laplacian
∆f,f−1([a,b]),h.

— Chapter 8 is devoted to various generalizations of Theorem 6.3 and of its spec-
tral corollaries. The first one concerns results for some domains which are not
bounded by level sets, e.g., for (non necessarily) small deformations Nt and Nn
of the level sets f−1({a}) and f−1({b}) for which the conditions ∂nf |Nt < 0

and ∂nf |Nn > 0 are still valid, and for which all the conclusions of Theorem 6.3
and of its corollaries hold true. The second generalization is about noncom-
pact manifolds like Rd, for which the results still hold provided we make some
assumptions on M and f at infinity. The most technical one concerns the ex-
tension to a general subanalytic Lipschitz function on a real analytic manifold
(see Hypothesis 1.3). Even when f is a subanalytic real Lipschitz function, it is
possible to define self-adjoint realizations ∆f,f−1([a,b]),h, critical values and finite
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bar codes, but there is an extra difficulty to establish Agmon’s type estimates
to accurately control the exponential decay estimates. This problem is solved in
Subsections 8.3.2 and 8.3.3 by modeling a collection of solutions to Hamilton-
Jacobi equations associated with some natural stratification of the subanalytic
graph of f in M × R.

— Finally, Chapter 9 answers precisely our Main Question in various explicit cases.
We return to our results of [74], where Morse functions with simple critical
values (one critical point for every critical value) were considered. It was too
rapidly conjectured in [74] that some topological constant κ2 appearing in the
subexponential factor was equal to 1. It is true in the case of oriented surfaces
(see [70]), but examples are now provided with a constant κ2 equal to any n2,
n ∈ N∗, the first example with κ2 = 4 arising in the case of a Morse function
on RP 2. Additionally, in the case of Morse functions with multiple critical values,
the constant κ has to be replaced by an “incidence matrix,” κ, related with
the bar code. Various examples, including non Morse functions, show that the
accurate computation of the prefactors now results from two well separated
analyses: one for the global topology of the sublevel sets relying on the bar
code, and one for the local asymptotic expansions of Laplace integrals.
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CHAPTER 2

BOUNDARY WITTEN LAPLACIANS

In this section we specify the domain of various operators involved in our analy-
sis and review the basic exponential decay estimates. The general assumptions and
notations have been set in Subsection 1.2 and in particular the function f satisfies
Hypothesis 1.2 or Hypothesis 1.6. We shall give the definition of Dirichlet and Neu-
mann boundary conditions for Witten Laplacians on strongly Lipschitz domains Ω.
Most of the time in the sequel, these domains will be level set domains Ω = f−1([a, b])

with a, b ̸∈
{
c1, . . . , cNf

}
. The required Agmon’s type or exponential decay estimates

will be proved under Hypothesis 1.2. We are unable to prove these estimates in the
general setting of Hypothesis 1.6 but we will prove them for subanalytic Lipschitz
functions (see Subsection 8.3).

2.1. Tangential and normal traces

2.1.1. Smooth case

Definition 2.1. — Let N ⊂M is a C∞-hypersurface of M , n a unit normal vector and
n♭ the associated covector, defined locally. When ω ∈ W s,2(M ; ΛT ∗M), s > 1

2 , the
tangential and normal traces denoted tNω and nNω are defined by

tNω = in(n
♭ ∧ ω)|N and nN = n♭ ∧ (inω)|N .

Before we extend this definition to more singular forms, let us make explicit this
definition in coordinate systems (see e.g., [86]):

— When n is a normalized normal vector to N , any vector field in X = TNM can
be decomposed into X = XT ⊕Xnn. The traces tNω and nNω are then equal
to

tNω(X1, . . . , Xp) = ω|N (X1,T , . . . , Xp,T ) and nNω = ω|N − tNω.

— With local coordinates (x1, . . . , xd) = (x′, xd) ∈ Rd in a neighborhood
UMx0

in M of x0 ∈ N , such that N ∩ UMx0
=
{

(x′, xd) ∈ URd
0 , xd = 0

}
,

g =
∑
ij<d gi,j(x

′, xd)dxidxj + (dxd)2, n = ∂
∂xd

and n♭ = dxd, and when

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



14 CHAPTER 2. BOUNDARY WITTEN LAPLACIANS

a differential form is written

ω =
∑

♯I′=p, d ̸∈I′
ωI′(x

′, xd)dxI
′
+

∑
♯J′=p−1, d ̸∈J′

ωJ′(x
′, xd)dxJ

′
∧ dxd,

with dxI = dxi1 ∧ · · · ∧ dxi♯I , i1 < · · · < i♯I , I = {i1, . . . , i♯I} ,
the tangential and normal traces are given by

tNω =
∑

♯I′=p, d ̸∈I′
ωI′(x

′, 0)dxI
′

and nf=sω =
∑

♯J′=p−1, d ̸∈J′
ωJ′(x

′, 0)dxJ
′
∧ dxd.

— From those formulas one gets at once ⋆tN = nN⋆, where ⋆ denotes the Hodge ⋆
operator on (M, g). The possible orientation twist orM is locally trivial so that
the orientability of M is not required.

— When restricted to the tangent space to N , tNω coincides with j∗Nω where
jN : N → M is the natural imbedding. Therefore tNd = dtN and therefore
nNd

∗ = d∗nN . Note also that tN and nN commute with multiplications by
functions.

2.1.2. Lipschitz domains. — The typical case which will be considered is when
N = ∂Ω is the boundary of a Lipschitz domain of M (strongly Lipschitz according to
the terminology of [43]). This means that Ω is locally the hypograph of a Lipschitz
function in a proper coordinate system. For the notations, Ω is an open domain in M
and its closed version is Ω = Ω⊔N with N = ∂Ω. Precisely we consider the following
situation.

Hypothesis 2.2. — The domain Ω = Ω ⊔ N ⊂ M is a Lipschitz domain with
N = Nt ⊔Nn made of two disjoint closed hypersurfaces.

When Ω is a regular domain, with C∞ boundaries Nt and Nn, the unit normal vector
field n to N = ∂Ω is globally defined so that the hypersurface measure dσ, the
orientation twist orN and the Hodge ⋆ operation on N = ∂Ω are deduced from dVolg
and orM and the Hodge ⋆ on M . In the general case when the domain Ω has only the
assumed Lipschitz regularity, the same things hold except that the normal vector is
defined dσ-almost everywhere along Nt ⊔Nn, dσ being the Hd−1-Hausdorff measure.

For two forms u, v ∈W 1,2(Ω,ΛT ∗M), the Green formula yields

⟨du, v⟩L2(Ω) − ⟨u, d∗v⟩L2(Ω) =

∫
Ω

d(u ∧ ⋆v) =

∫
N

tN (u ∧ ⋆v)

=

∫
N

⟨u, inv⟩ΛT∗σMdσ =

∫
N

⟨tNu, inv⟩ΛT∗σMdσ,(7)

=

∫
N

⟨n♭ ∧ u, v⟩ΛT∗σMdσ =

∫
N

⟨n♭ ∧ u,nNv⟩ΛT∗σMdσ(8)
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while the decomposition N = Nt ⊔Nn into two disjoint closed hypersurfaces clearly
implies

(tNtu = 0)⇔
(
supp n♭ ∧ u ⊂ Nn

)
and (nNnv = 0)⇔ (supp inv ⊂ Nt) .

Moreover according to [62], when ω ∈ L2(Ω; ΛT ∗M) and dω ∈ L2(Ω; ΛT ∗M), the
above Green formulas provide the duality needed to define n♭ ∧ ω|N ∈W

− 1
2 ,2(N ; ΛT ∗M)

by

(9) ∀g ∈W 1
2 ,2(N), ⟨n♭ ∧ ω, g⟩

W− 1
2
,2(N),W

1
2
,2(N)

= ⟨dω, G⟩L2(Ω) − ⟨ω, d∗G⟩L2(Ω),

where G is any form in W 1,2(Ω; ΛT ∗M) such that G|N = g ∈W 1
2 ,2(N ; ΛT ∗M). Simi-

larly, when ω and d∗ω belong to L2(Ω; ΛT ∗M), one can define inω|N ∈W
− 1

2 ,2(N ; ΛT ∗M)

by

(10) ∀g ∈W 1
2 ,2(N), ⟨inω, g⟩

W− 1
2
,2(N),W

1
2
,2(N)

= ⟨ω, dG⟩L2(Ω) − ⟨d∗ω, G⟩L2(Ω).

In particular, when O is an open subset of N and when the trace n♭ ∧ ω|O defined
in the sense of (9) (resp. of (10)) belongs to L2(O; ΛT ∗M), the tangential (resp.
normal) trace tOω (resp. nOω) is well defined on O by the standard formula from
Definition 2.1:

tOω = in(n
♭ ∧ ω)|O

(
resp. nO = n♭ ∧ (inω)|O

)
.

We may thus make sense of the boundary condition tNtω = 0 (resp. nNnω = 0),
which is equivalent to supp n♭ ∧ ω|N ⊂ Nn (resp. supp inω|N ⊂ Nt), for any
ω ∈ L2(Ω; ΛT ∗M) such that dω ∈ L2(Ω; ΛT ∗M) (resp. d∗ω ∈ L2(Ω; ΛT ∗M)).
According to [62, Proposition 3.1], C∞0 (Ω∪Nn; ΛT ∗M) (resp. C∞0 (Ω∪Nt; ΛT ∗M)) is
dense in

T =
{
ω ∈ L2(Ω; ΛT ∗M), dω ∈ L2(Ω; ΛT ∗M), tNtω = 0

}
(11) (

resp. in N =
{
ω ∈ L2(Ω; ΛT ∗M), d∗ω ∈ L2(Ω; ΛT ∗M),nNnω = 0

} )
(12)

endowed with the norm ∥ω∥L2(Ω) + ∥dω∥L2(Ω) (resp. ∥ω∥L2(Ω) + ∥d∗ω∥L2(Ω)). The-
orem 3.4 of [62] also says that when u, v ∈ L2(Ω) with du ∈ L2(Ω; Λp+1T ∗M),
d∗v ∈ L2(Ω; ΛpT ∗M), and

supp inv ⊂ Γ or supp (n♭ ∧ u) ⊂ Γ

with Γ = Nt or Γ = Nn, the following Green formulas

(13)
⟨du, v⟩L2(Ω) − ⟨u, d∗v⟩L2(Ω) =

∫
Γ

⟨n♭ ∧ u, n♭ ∧ (inv)⟩T∗σΩdσ

=

∫
Γ

⟨in(n♭ ∧ u), inv⟩T∗σΩdσ

make sense with a r.h.s. interpreted in general in a weak form specified in [62, Propo-
sition 3.3]. Notice that under Hypothesis 2.2, the geometric assumptions concerned
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16 CHAPTER 2. BOUNDARY WITTEN LAPLACIANS

with Γ in [62] are trivially satisfied without any locally mixed boundary conditions.
Additionally, when inv and n♭ ∧ u belong to L2(Γ), the r.h.s. of (13) are standard
integrals along the boundary.

Definition 2.3. — Let Ω be a Lipschitz domain of M with Ω = Ω ⊔N , N = Nt ⊔Nn
like above, and let T ,N be the spaces defined in (11)(12).

The space

W (Ω; ΛT ∗M) =
{
ω ∈ L2(Ω; ΛT ∗M); dω ∈ L2(Ω; ΛT ∗M); d∗ω ∈ L2(Ω; ΛT ∗M)

}
is endowed with its natural Hilbert space norm given by

(14) ∥ω∥2W (Ω) := ∥ω∥2L2(Ω) + ∥dω∥2L2(Ω) + ∥d∗ω∥2L2(Ω).

The closed subspace T ∩N of W (Ω; ΛT ∗M) will be denoted W∂(Ω; ΛT ∗M) and the
restriction of the W (Ω; ΛT ∗M)-norm ∥ ∥W∂(Ω).

Remark 2.4. — i) By interior elliptic regularity, note that

W∂(Ω; ΛT ∗M) ⊂W (Ω; ΛT ∗M) ⊂W 1,2
loc (Ω; ΛT ∗M)

with continuous embeddings. However it is known that W (Ω; ΛT ∗M), and even
W∂(Ω; ΛT ∗M) if we add boundary conditions, differs from W 1,2(Ω; ΛT ∗M) for
a general Lipschitz domain (see e.g., [88, 81]). An easy counter example is u =

r
π
θ0
−1 cos( πθ0 θ)dr − r

π
θ0
−1 sin( πθ0 θ)dθ in the sector 0 < θ < θ0 of R2 near r = 0.

It satisfies nu = 0, du = 0 and d∗u ∈ L2 near r = 0 while u ̸∈ W 1,2 near r = 0

when θ0 > π.
ii) The space W (Ω; ΛT ∗M) and its subspace W∂(Ω; ΛT ∗M) are Lipschitz-module:

for any φ ∈ W 1,∞(Ω;R) and ω ∈ W (Ω; ΛT ∗M), φω belongs to W (Ω; ΛT ∗M)

and the mapping ω ∈ W (Ω; ΛT ∗M) 7→ φω ∈ W (Ω; ΛT ∗M) is contin-
uous. Moreover, for any bounded sequence (φn)n∈N of W 1,∞(Ω;R) such
that φn → φ a.e. and dφn → dφ a.e., the convergence φnω → φω holds for the
W (Ω; ΛT ∗M)-norm for every ω ∈W (Ω; ΛT ∗M).

iii) In our case it is proven in [81] and it is extended in [62] that W∂(Ω; ΛT ∗M) is
embedded in W 1/2,2(ΛT ∗M). Again the exponent 1

2 cannot be improved for a
general strongly Lipschitz domain Ω.

iv) For a different approach on regularity issues for Lipschitz domains and relying
on a generalization of Bogovskĭı and Poincaré type integrals, we refer to [25, 82]
and [83].

Proposition 2.5. — Let W∂(Ω; ΛT ∗M) be the space of Definition 2.3.
Every ω ∈ W∂(Ω; ΛT ∗M) belongs to W

1
2 ,2(Ω; ΛT ∗M) and has, in the sense of

(9) and (10), tangential and normal traces tNω and nNω which actually belong
to L2(N ; ΛT ∗M). Moreover, there exists C > 0 such that

∀ω ∈W∂(Ω; ΛT ∗M), ∥ω∥2
W

1
2
,2(Ω)

+ ∥ω|N∥
2
L2(N) ≤ C∥ω∥2W∂(Ω),

where ω|N := tNω + nNω ∈ L2(N ; ΛT ∗M) is the total trace of ω.
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2.2. WITTEN’S DEFORMATION 17

Finally, in the case where Ω is a smooth domain, Gaffney’s inequality holds:

W∂(Ω; ΛT ∗M) =
{
ω ∈W 1,2(Ω; ΛT ∗M), tNtω = 0, nNnω = 0

}
and there exists C ≥ 1 such that

∀ω ∈W∂(Ω; ΛT ∗M), C−1∥ω∥2W 1,2(Ω) ≤ ∥ω∥W∂(Ω) ≤ C∥ω∥2W 1,2(Ω).

Proof. — The first part of the statement is an immediate consequence of the analysis
led in [62] (see e.g., Theorem 1.1 there), but our setting is actually simpler since no
locally mixed boundary conditions appear.

For Gaffney’s inequality when the domain Ω is smooth, consider first

ω ∈W ′(Ω; ΛT ∗M) :=
{
u ∈W 1,2(Ω; ΛT ∗M), tNtu = 0, nNnu = 0

}
and a function χ ∈ C∞0 (Ω ∪Nt; [0, 1]) such that χ ≡ 1 in a neighborhood of Nt, and
decompose ω as ω = χω + (1 − χ)ω = ω1 + ω2. For any differential operator L of
order ≤ 1, note then the relation ∥Lωj∥L2 ≤ Cχ,L,j∥ω∥L2 + ∥Lω∥L2 , j = 1, 2. Now,
ω1 = χω ∈W 1,2(Ω; ΛT ∗M) satisfies t∂Ωω1 = 0 and ω2 = (1−χ)ω ∈W 1,2(Ω; ΛT ∗M)

satisfies n∂Ωω2 = 0. Gaffney’s inequality for Dirichlet boundary conditions then says

∥ω1∥2W 1,2 ≤ C1

[
∥ω1∥2L2 + ∥dω1∥2L2 + ∥d∗ω1∥2L2

]
for some C1 independent of ω1, while Gaffney’s inequality for Neumann boundary
conditions says

∥ω2∥2W 1,2 ≤ C2

[
∥ω2∥2L2 + ∥dω2∥2L2 + ∥d∗ω2∥2L2

]
for some C2 independent of ω2 (these two different boundary conditions have been
treated separately in [86]). Adding the above two inequalities then leads to

∀ω ∈W ′(Ω; ΛT ∗M), ∥ω∥2W 1,2 ≤ C
[
∥ω∥2L2 + ∥dω∥2L2 + ∥d∗ω∥2L2

]
.

In order to prove Proposition 2.5, it suffices to show that W ′(Ω; ΛT ∗M) equals
W∂(Ω; ΛT ∗M). We can forget the boundary conditions. With a regular boundary,
a simple local reflexion after identifying the domain with a half space, leads to the
problem on Rd with a Lipschitz riemannian metric, asking if a compactly supported
form in ω ∈ L2

comp(Rd) such dω ∈ L2(Rd) and d∗ω ∈ L2(Rd) belongs to H1
comp(Rd).

It is a straightforward application of Lax-Milgram’s theorem.

2.2. Witten’s deformation

The function f is assumed to be a Lipschitz function and the domain Ω satisfies
Hypothesis 2.2. Improved regularity results are stated when f and Ω are more regular.

Definition 2.6. — Assume f ∈ W 1,∞(M ;R), h > 0, and Hypothesis 2.2 for
Ω = Ω ⊔N = Ω ⊔Nt ⊔Nn. The operators df,Ω,h and d∗

f,Ω,h
are defined by

D(df,Ω,h) :=
{
ω ∈ L2(Ω; ΛT ∗M), df,hω ∈ L2(Ω; ΛT ∗M), tNtω = 0

}
= T

and D(d∗
f,Ω,h

) :=
{
ω ∈ L2(Ω; ΛT ∗M), d∗f,hω ∈ L2(Ω; ΛT ∗M),nNnω = 0

}
= N ,
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18 CHAPTER 2. BOUNDARY WITTEN LAPLACIANS

where T and N are the spaces defined in (11) and (12), and we recall that

df,h = e−
f
h (hd)e

f
h = hd+ df ∧ and d∗f,h = e

f
h (hd∗)e−

f
h = hd∗ + i∇f

according to (4) and (5).

A particular case that we will study extensively is when Ω = f−1([a, b]), Nt = f−1({a}),
Nn = f−1({b}), and a < b do not belong to

{
c1, . . . , cNf

}
under Hypothesis 1.2 (in

this case Ω = f ba according to Definition 1.1). With such an f -dependent domain, it
will be useful to consider d0,f−1([a,b]),h and df,f−1([a,b]),h.

Proposition 2.7. — In the framework of Definition 2.6, the operator df,Ω,h (resp.
d∗
f,Ω,h

) is densely defined, closed, and Ran df,Ω,h ⊂ ker df,Ω,h (resp.
Ran d∗

f,Ω,h
⊂ ker d∗

f,Ω,h
). Its adjoint is d∗

f,Ω,h
(resp. df,Ω,h).

The subspace C∞0 (Ω ∪Nn; ΛT ∗M) (resp. C∞0 (Ω∪Nt; ΛT ∗M)) is dense in D(df,Ω,h)

(resp. D(d∗
f,Ω,h

)). Finally, the identity

D(df,Ω,h) ∩D(d∗
f,Ω,h

) = W∂(Ω; ΛT ∗M),

holds true when W∂(Ω; ΛT ∗M) is the space of Definition 2.3.

Proof. — The operators df,Ω,h and d∗
f,Ω,h

having respective domains T and N , with
T ∩N = W∂(Ω; ΛT ∗M) by Definition 2.3, they are clearly densely defined, and
they are bounded perturbations of hd0,Ω,1 and hd∗

0,Ω,1
owing to df,h = hd+ df∧ and

d∗f,h = hd0,Ω,1 + i∇f . The operators d0,Ω,1 and d∗
0,Ω,1

are moreover closed with the
density properties, according to the presentation around (9)–(12).

As bounded perturbations, the adjoint of df,Ω,h equals d∗
f,Ω,h

because the adjoint
of d0,Ω,1 is d∗

0,Ω,1
while the adjoint of the bounded perturbation df∧ is i∇f . Actually

ω belongs to the domain of the adjoint of d0,Ω,1 iff

∃C > 0, ∀u ∈ C∞0 (Ω ∪Nn; ΛT ∗M), |⟨du, ω⟩| ≤ C∥u∥L2 .

Taking any u ∈ C∞0 (Ω; ΛT ∗M) implies d∗ω ∈ L2(Ω; ΛT ∗M) and therefore inω|N is
well defined in W−1/2,2(N ; ΛT ∗M). Using afterwards Green’s Formula (10) with a
general u ∈ C∞0 (Ω∪Nn; ΛT ∗M) leads to inω|Nn = 0. Thus the domain of the adjoint
of d0,Ω,1 is included in D(d∗

0,Ω,1
), which is enough to conclude.

It remains to check Ran df,Ω,h ⊂ ker df,Ω,h and Ran d∗
f,Ω,h

⊂ ker d∗
f,Ω,h

.

The identities (4) and (5) already say that df,hdf,Ω,hω = 0 in D
′
(Ω,ΛT ∗M)

(resp. d∗f,hd
∗
f,Ω,h

ω = 0) when ω ∈ D(df,Ω,h) (resp. ω ∈ D(d∗
f,Ω,h

)). We can con-
clude that df,Ω,hω ∈ ker df,Ω,h (resp. d∗

f,Ω,h
ω ∈ ker d∗

f,Ω,h
) if tNtdf,hω = 0 (resp.

nNnd
∗
f,hω = 0) or more precisely, with the weak formulation of the trace defined

in (9) (resp. in (10)), if supp n♭ ∧ (df,hω)|N ⊂ Nn (resp. supp in(d
∗
f,h)ω|N ⊂ Nt).

For ω ∈ C∞0 (Ω∪Nn; ΛT ∗M) (resp. ω ∈ C∞0 (Ω∪Nt; ΛT ∗M)) the weakly defined trace
n♭ ∧ (df,hω)|Nt (resp. in(d

∗
f,hω)|Nn) obviously vanishes because Nt ∩ supp df,hω = ∅

(resp. Nn ∩ supp d∗f,hω = ∅). By the density of C∞0 (Ω ∪ Nn; ΛT
∗M) (resp.
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2.2. WITTEN’S DEFORMATION 19

C∞(Ω ∪Nt; ΛT ∗M)) in D(df,Ω,h) (resp. D(d∗
f,Ω,h

)), we deduce

∀ω ∈ D(df,Ω,h), n♭ ∧ (df,Ω,hω)|Nt = 0 in W−1/2,2(Nt)(
resp. ∀ω ∈ D(d∗

f,Ω,h
), ind

∗
f,Ω,h

ω|Nn = 0 in W−1/2,2(Nn)
)
.

This ends the proof.

We now apply results of the abstract Hodge theory reviewed in Appendix A to our
specific framework.

Proposition 2.8. — Assume Hypothesis 2.2 for Ω = Ω⊔Nt⊔Nn, f ∈W 1,∞(Ω;R) and
let W∂(Ω; ΛT ∗M) be the space of Definition 2.3.

1. The operator df,Ω,h + d∗
f,Ω,h

with domain

D(df,Ω,h) ∩D(d∗
f,Ω,h

) = W∂(Ω; ΛT ∗M)

is self-adjoint and has a compact resolvent.
2. The operator ∆f,Ω,h := df,Ω,hd

∗
f,Ω,h

+ d∗
f,Ω,h

df,Ω,h with domain

D(∆f,Ω,h) = {u ∈ D(df,Ω,h)∩D(d∗
f,Ω,h

) s.t. df,hu ∈ D(d∗
f,Ω,h

) and d∗f,hu ∈ D(df,Ω,h)}

is a self-adjoint operator with a compact resolvent. It is the Friedrichs extension
associated with the (closed) quadratic form Qf,Ω,h(ω) = ∥df,hω∥2L2 + ∥d∗f,hω∥2L2

with domain D(df,Ω,h) ∩D(d∗
f,Ω,h

).
3. The ranges of df,Ω,h and d∗

f,Ω,h
are closed and the following Hodge decomposi-

tions hold in L2:

L2(Ω; ΛT ∗M) = Ran(df,Ω,h)
⊥
⊕ ker(∆f,Ω,h)︸ ︷︷ ︸

ker(df,Ω,h)

ker (d∗
f,Ω,h

)︷ ︸︸ ︷
⊥
⊕ Ran(d∗

f,Ω,h
)

4. For any z ∈ C \ σ(∆f,Ω,h), one has for any compactly supported and bounded
measurable function χ on R and for any ω ∈ D(d), where d = df,Ω,h or
d = d∗

f,Ω,h
,

d(z −∆f,Ω,h)
−1ω = (z −∆f,Ω,h)

−1dω and d ◦ χ(∆f,Ω,h)ω = χ(∆f,Ω,h) ◦ dω.

5. When Ω is smooth and f ∈ C 2(Ω;R), the domain of ∆f,Ω,h equals

D(∆f,Ω,h) =

{
ω ∈W 2,2(Ω; ΛT ∗M),

tNtω = 0, nNnω = 0,

tNtd
∗
f,hω = 0, nNndf,hω = 0

}
.

Proof. — The identification of D(df,Ω,h) ∩D(d∗
f,Ω,h

) is done in Proposition 2.7. The
statements 1), 2), 3) are then straightforward applications of Proposition A.1 in Ap-
pendix A. The first identity of the statement 4) is an application of the general relation
(154) in Appendix A. The second identity then comes from the functional calculus
for self-adjoint operators.
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20 CHAPTER 2. BOUNDARY WITTEN LAPLACIANS

Finally, for 5), it suffices to notice that ∆f,h = −h2∆0,1+|∇f |2+h(L∇f+L∗∇f ) and
that df is C 1 on ∂Ω so that ∆f,Ω,h is a regular lower order perturbation of h2∆0,Ω,1,
within the theory of elliptic boundary value problems (boundary conditions also have
a regular lower order correction), when f ∈ C 2(Ω;R). But the elliptic analysis made
in [86, 81] (see also [74] for the combination of Dirichlet on Nt and Neumann on Nn
boundary conditions) ensures that the domain of ∆0,Ω,1 = dd∗ + d∗d is

D(∆0,Ω,1) =

{
ω ∈W 2,2(Ω; ΛT ∗M),

tNtω = 0, nNnω = 0,

tNtd
∗ω = 0, nNndω = 0

}
.

Remark 2.9. — Let us complete the statements of Propositions 2.7 and 2.8 with some
remarks when f satisfies Hypothesis 1.2 or Hypothesis 1.6.

— The domain D(df,Ω,h) does not contain any other regularity assumption
than ω ∈ L2(Ω), df,hω ∈ L2(Ω), and does not contain any condition on Nn.
In particular, when a′ ≤ a < b do not belong to

{
c1, . . . , cNf

}
according to

Hypothesis 1.2, the domain f ba (resp. f ba′) equals f−1([a, b]) (resp. f−1([a′, b]))
and satisfies Hypothesis 2.2 with Nt = f−1({a}) (resp. Nt = f−1({a′})) and
Nn = f−1({b}). This a consequence of implicit functions theorem which is
the classical C 1-version under Hypothesis 1.2 and still holds in a Lipschitz
version under the more general Hypothesis 1.6 (see Subsection 8.3.1). The
density of C∞0 (f ba ∪ f−1({b}); ΛT ∗M) in D(df,f−1([a,b]),h) provides the following
extension result:

(15)
∀ω ∈ D(df,f−1([a,b]),h), ω̃ ∈ D(df,f−1([a′,b]),h), where ω̃|fba

= ω and ω̃|fa
a′
≡ 0.

— Hodge decomposition in Proposition 2.8-3) says that

ker(∆f,Ω,h) ≃ ker(df,Ω,h)/Ran(df,Ω,h) ≃ ker(d0,Ω,1)/Ran(d0,Ω,1).

From the usual Hodge theory on the manifold with boundary Ω, the dimension
of ker(∆

(p)

f,Ω,h
) is thus the relative Betti number dimHp(Ω, Nt) and is indepen-

dent of h > 0. In particular, when Ω = f ba and a < b are not in
{
c1, . . . , cNf

}
, it

is
dim ker(∆f,f−1([a,b]),h) = dimHp(f b, fa) =: β(p)(f b, fa).

If moreover [c, d] ⊂ [a, b] and ([a, b] \ ]c, d[) ∩
{
c1, . . . , cNf

}
= ∅, then for every

a′ ∈ [a, c] and b′ ∈ [d, b], the dimensions dimHp(f b, fa) and dimHp(f b
′
, fa

′
)

are equal and then

(16) dim ker(∆f,f−1([a,b]),h) = dim ker(∆f,f−1([a′,b′]),h).

— When s ≥ 0, the commutation of df,Ω,h with 1[0,s](∆f,Ω,h) ensures that the
restricted differential δ[0,s] = 1[0,s](∆f,Ω,h)df,Ω,h defines a finite dimensional
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complex with Betti numbers dimHp(Ω, Nt):

(17) 0 // F (0)
[0,s] · · ·F

(p−1)
[0,s]

δ
(p−1)

[0,s] //oo F
(p)
[0,s]

δ
(p)

[0,s] //

δ
(p−1)∗
[0,s]

oo F
(p+1)
[0,s] · · ·F

(d)
[0,s]

//

δ
(p)∗
[0,s]

oo 0oo

where F
(p)
[0,s] = Ran1[0,s](∆

(p)

f,Ω,h
). This will be studied more carefully when

Ω = f ba, with the notations F[0,s],[a,b],h and δ[0,s],[a,b],h in order to handle var-
ious intervals [a, b].

2.3. Agmon’s type estimates

We review a series of exponential decay estimates which are adapted from [34, 54],
and [74] for Witten Laplacians with boundary conditions. Those are standard when
the function f satisfy Hypothesis 1.2 but only a part of them can be proved when
f is a general Lipschitz function which satisfies Hypothesis 1.6.

2.3.1. Weighted integration by parts formulas. — We present here weighted integra-
tion by parts formulas with low regularity assumptions. These formulas will be used
in the sequel, after optimizing the weights, in order to prove different exponential
decay estimates. Under Hypothesis 1.2, the regular case, this will lead to the usual
Agmon estimates presented in the next section. A variation of these arguments will
be developed in Chapter 8.3 under Hypothesis 1.3 (subanalytic case) and will require
the low regularity results listed below.

Lemma 2.10. — Assume Hypothesis 2.2 for Ω = Ω⊔Nt⊔Nn. Let f, φ ∈W 1,∞(M ;R),
∆f,Ω,h be the self-adjoint operator defined in Proposition 2.8, and

∑J
j=1 χ

2
j = 1 be a

smooth partition of unity in Ω. For any ω ∈ D(Qf,Ω,h) = W∂(Ω; ΛT ∗M) (see (14)
and the lines below), with the notation

ω̃ = e
φ
h ω,

the following identities hold true:

Re Qf,Ω,h(ω, e
2φ
h ω) = ∥df,Ω,hω̃∥

2 + ∥d∗
f,Ω,h

ω̃∥2 − ⟨ω̃, |∇φ|2ω̃⟩,(18)

and Re Qf,Ω,h(ω, e
2φ
h ω) =

J∑
j=1

Re Qf,Ω,h(χjω, e
2φ
h χjω)− h2

J∑
j=1

∥|∇χj |ω̃∥2.(19)

Moreover, when in addition f ∈ C 2(M), the identity (18) writes also

Re Qf,Ω,h(ω, e
2φ
h ω) = h2∥dω̃∥2L2 + h2∥d∗ω̃∥2L2

+ ⟨ω̃, (|∇f |2 − |∇φ|2 + hL∇f + hL∗∇f )ω̃⟩

+ h

(∫
Nn

−
∫
Nt

)
⟨ω̃, ω̃⟩ΛT∗σΩ

(
∂f

∂n

)
(σ) dσ.(20)
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Lastly, when f ∈W 1,∞(M ;R) and φ ∈ C 2(M), the above quantity can be written

Re Qf,Ω,h(ω, e
2φ
h ω) = Qf−φ,Ω,h(ω̃, ω̃) + ⟨ω̃, (2∇f.∇φ− 2|∇φ|2 + hL∇φ + hL∗∇φ)ω̃⟩

+ h

(∫
Nn

−
∫
Nt

)
⟨ω̃, ω̃⟩ΛT∗σΩ

(
∂φ

∂n

)
(σ) dσ.(21)

Proof. — We recall that according to Remark 2.4, W∂(Ω; ΛT ∗M) is a Lipschitz-
module. For the first statement (18), simply write

Re Qf,Ω,h(ω, e
2φ
h ω) = Re Qf,Ω,h(e

−φ
h ω̃, e

φ
h ω̃)

= Re ⟨(df,h − dφ∧)ω̃, (df,h + dφ∧)ω̃⟩
+ Re ⟨(d∗f,h + i∇φ)ω̃, (d∗f,h − i∇φ)ω̃⟩

= ∥df,hω̃∥2 + ∥d∗f,hω̃∥2 − ⟨dφ ∧ ω̃, dφ ∧ ω̃⟩ − ⟨i∇φω̃, i∇φω̃⟩
= ∥df,hω̃∥2 + ∥d∗f,hω̃∥2 − ⟨ω̃, (i∇φ(dφ∧) + (dφ∧)i∇φ)︸ ︷︷ ︸

=|∇φ|2

ω̃⟩.

For (19), we start from (18) after noticing that χjω̃ ∈ W∂(Ω; ΛT ∗M) when
ω ∈W∂(Ω; ΛT ∗M). We compute

∥df,hχjω̃∥2 + ∥d∗f,hχjω̃∥2 = ∥χjdf,hω̃∥2 + ∥χjd∗f,hω̃∥2

+ 2Re ⟨χjdf,hω̃, (hdχj∧)ω̃⟩ − 2Re ⟨χjd∗f,hω̃, hi∇χj ω̃⟩
+ h2

[
⟨dχj ∧ ω̃, dχj ∧ ω̃⟩+ ⟨i∇χj ω̃, i∇χj ω̃⟩

]
= ∥χjdf,hω̃∥2 + ∥χjd∗f,hω̃∥2

+ Re ⟨df,hω̃, (hdχ2
j∧)ω̃⟩ − Re ⟨d∗f,hω̃, hi∇χ2

j
ω̃⟩

+ h2⟨ω̃, (i∇χj (dχj∧) + (dχj∧)i∇χj )︸ ︷︷ ︸
=|∇χj |2

ω̃⟩.

Summing w.r.t j ∈ {1, . . . , J} leads to

Qf,Ω,h(ω, e
2φ
h ω)−

J∑
j=1

Qf,Ω,h(χjω, e
2φ
h χjω) = −h2

J∑
j=1

∥|∇χj |ω̃∥2.

Let us now assume that f ∈ C 2(M). According to (18), the identity

Re Qf,Ω,h(ω, e
2φ
h ω) = Qf,Ω,h(ω̃, ω̃)− ⟨ω̃, |∇φ|2ω̃⟩

holds true and it suffices to prove the Formula (20) when φ = 0. To this end, one first
writes for ω ∈ D

(
Qf,Ω,h

)
,

∥df,hω∥2L2 +
∥∥d∗f,hω∥∥2

L2 = h2 ∥dω∥2L2 + h2 ∥d∗ω∥2L2 + ∥df ∧ ω∥2L2

+ ∥i∇fω∥2L2 + h
(
⟨df ∧ ω, dω⟩L2 + ⟨dω, df ∧ ω⟩

+ ⟨d∗ω, i∇fω⟩L2 + ⟨i∇fω, d∗ω⟩
)

= h2 ∥dω∥2L2 + h2 ∥d∗ω∥2L2 + ∥|∇f |ω∥2L2
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+ h⟨ω, (L∇f + L∗∇f )ω⟩L2 + h(⟨df ∧ ω, dω⟩L2

− ⟨d∗(df ∧ ω), ω⟩L2 − ⟨di∇fω, ω⟩L2 + ⟨i∇fω, d∗ω⟩L2),

where the last equality holds thanks to the relations (df∧)∗ = i∇f ,

L∇f = d ◦ i∇f + i∇f ◦ d and L∗∇f = (df∧) ◦ d∗ + d∗ ◦ (df∧).

The relation (20) follows using in addition the generalized Green Formula (13) which
gives here, since ω ∈ D

(
Qf,Ω,h

)
and hence admits a total trace on N , and df ∧ ω,

i∇fω ∈ {v ∈ L2, dv ∈ L2, d∗v ∈ L2}:

⟨df ∧ ω, dω⟩L2 − ⟨d∗(df ∧ ω), ω⟩L2 =

∫
Nn

⟨n♭ ∧ ω, n♭ ∧ in(df ∧ ω)⟩T∗σΩdσ

=

∫
Nn

⟨ω, in(n♭ ∧ in(df ∧ ω))⟩T∗σΩdσ

=

∫
Nn

⟨ω, in(df ∧ ω)⟩T∗σΩdσ

=

∫
Nn

(∂nf ⟨ω, ω⟩T∗σΩ − ⟨ω, df ∧ inω︸︷︷︸
=0

⟩T∗σΩ)dσ

=

∫
Nn

∂nf ⟨ω, ω⟩T∗σΩdσ

as well as

⟨i∇fω, d∗ω⟩L2 − ⟨di∇fω, ω⟩L2 = −
∫
Nt

⟨n♭ ∧ i∇fω, n
♭ ∧ inω⟩T∗σΩ

= −
∫
Nt

∂nf ⟨ω, ω⟩T∗σΩdσdσ.

Lastly, let us prove the relation (21). By direct expansion with f and φ Lipschitz
continuous and

df−φ,h = df,h − (dφ∧) = hd+ (df∧)− (dφ∧) and d∗f−φ,h = d∗f,h − i∇φ = hd∗ + i∇f − i∇φ,

we obtain

Qf−φ,Ω,h(ω̃, ω̃) = Qf,Ω,h(ω̃, ω̃)

− 2Re
(
⟨df ∧ ω̃, dφ ∧ ω̃⟩+ ⟨i∇f ω̃, i∇φω̃⟩

)
− 2hRe

(
⟨dω̃, dφ ∧ ω̃⟩+ ⟨d∗ω̃, i∇φω̃⟩

)
+ ∥dφ ∧ ω̃∥2 + ∥i∇φω̃∥2 .

By adding this relation for the pairs (f, φ) and (0,−φ), we obtain

Qf−φ,Ω,h(ω̃, ω̃) +Qφ,Ω,h(ω̃, ω̃) = Qf,Ω,h(ω̃, ω̃) +Q0,Ω,h(ω̃, ω̃)

− 2 Re
(
⟨df ∧ ω̃, dφ ∧ ω̃⟩+ ⟨i∇f ω̃, i∇φω̃⟩

)︸ ︷︷ ︸
=⟨ω̃,(∇f ·∇φ)ω̃⟩
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+ 0

+ 2 ∥|∇φ|ω̃∥2 .

Finally, using the relation (18) gives

Re Qf,Ω,h(ω, e
2φ
h ω) = Qf,Ω,h(ω̃, ω̃)− ∥|∇φ|ω̃∥2

= Qf−φ,Ω,h(ω̃, ω̃) + 2⟨ω̃, (∇f · ∇φ− |∇φ|2)ω̃⟩

+Qφ,Ω,h(ω̃, ω̃)−Q0,Ω,h(ω̃, ω̃)− ∥|∇φ|ω̃∥2 .

When in addition φ ∈ C 2(M), using (18) and (20) with f = φ leads to the relation (21).

Remark 2.11. — Alternatively, one could first prove the relation (21) for f, φ ∈ C 2(M),
and then approximate a general f ∈ W 1,∞(M) by a sequence in C 2(M) as in Re-
mark 2.4.

2.3.2. Exponential decay estimates. — Under Hypothesis 1.2, these estimates rely on
the integration by parts Formula (20) of Lemma 2.10. They will be replaced by a new
hypothesis for more general Lipschitz function f , which will be ultimately verified
when f is Lipschitz subanalytic in Subsection 8.3.

Definition 2.12. — Assume Hypothesis 1.2 for f and remember

Mreg = {x ∈ (M \ suppsing f),∇f(x) ̸= 0} ⊂M \ f−1(
{
c1, . . . , cNf

}
).

The Agmon distance dAg on M associated with f ∈ C∞(M) is the geodesic pseudodis-
tance associated with the degenerate metric 1Mreg

|∇f |2g, namely

dAg(x, y) = inf
γ ∈ C1([0, 1];M),

γ(0) = x, γ(1) = y

∫ 1

0

1Mreg(γ(t))|∇f(γ(t))||γ′(t)| dt.

Because f ∈W 1,∞(M)∩C∞(Mreg), we know dAg(x, y) ≤ ∥∇f∥L∞dg(x, y) where dg is
the geodesic distance and dAg is a Lipschitz function of (x, y) ∈ M ×M . Moreover
when x, y belong to the same connected component of M \ f−1(

{
c1, . . . , cNf

}
) any

C 1 curve γ staying in this connected component satisfies∫ 1

0

|∇f(γ(t))||γ′| dt ≥ |
∫ 1

0

∇f(γ(t)).γ′(t) dt| = |f(y)− f(x)|.

For a general γ ∈ C 1([0, 1];M) such that γ(0) = x and γ(1) = y, {f(γ(t)), t ∈ [0, 1]} is
a compact interval. Therefore, bounding from below the integral

∫ 1

0
. . . dt by a sum of

integrals on intervals ]tk, t
′
k[, where f(γ(t)) ̸∈

{
c1, . . . , cNf ,max(f ◦ γ),min(f ◦ γ)

}
,

leads to∫ 1

0

1Mreg
(γ(t)) |∇f(γ(t))| |γ′(t)| dt ≥ max

t∈[0,1]
f(γ(t))− min

t∈[0,1]
f(γ(t)) ≥ |f(y)− f(x)|.
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We obtain

(22) ∀x, y ∈M, ∥∇f∥L∞dg(x, y) ≥ dAg(x, y) ≥ |f(y)− f(x)|.
When f is a C∞ Morse function, more details about the more general broken geodesic
curves, which do not hold anymore with our general assumption and which we do not
need, are given in [55].

Proposition 2.13. — Assume Hypotheses 1.2 for f and 2.2 for Ω = Ω ⊔Nt ⊔Nn with

(23) ∂Ω = Nt ⊔Nn ⊂Mreg,
∂f

∂n |Nt
< 0,

∂f

∂n |Nn
> 0.

Let ∆f,Ω,h be the self-adjoint operator defined in Proposition 2.8 and let U denote the
compact subset of Ω, U = (M \Mreg)∩Ω. All families (λh)h>0 in C, (rh)h>0 in L2(Ω)

and (ωh)h>0 in D(∆f,Ω,h) ⊂W∂(Ω; ΛT ∗M) such that

(∆f,Ω,h − λh)ωh = rh, supp rh ⊂ K, lim
h→0

λh = 0,

where K is a fixed compact subset of Ω, satisfy the estimate (see (14) and the lines
below)

∥e
dAg(·,U∪K)

h ωh∥W∂(Ω) = Õ(1)× (∥rh∥L2(Ω) + tU∥ωh∥L2(Ω)),

where tU = 1 if U ̸= ∅ and tU = 0 if U = ∅.

Proof. — For ε ∈ ]0, 1[, one introduces Kε =
{
y ∈ Ω, dAg(y, U ∪K) ≤ ε

}
and

χ1 = χ1,ε, χ2 = χ2,ε ∈ C∞(Ω, [0, 1]) such that χ1 ≡ 0 when U = ∅ and χ1 = 1 near
U else, supp χ1 ⊂ Kε ∩ Ω, and χ2

1 + χ2
2 ≡ 1.

Let us also introduce φε : x 7→ (1 − ε)dAg(x,Kε) ∈ W 1,∞(Ω), so that φε satisfies
|∇φε| ≤ (1− ε)|∇f | almost everywhere in Ω. Setting ω̃h := e

φε
h ωh and applying (19)

with φε = 0 on Kε, supp χ1, supp rh ⊂ Kε, we obtain

⟨rh, ωh⟩L2 +λh∥ω̃h∥2L2 = Re Qf,Ω,h(ωh, e
2φεh ωh)

≥ Re Qf,Ω,h(χ2ωh, χ2e
2φεh ωh)+Qf,Ω,h(χ1ωh, χ1ωh)−cεh2∥ω̃h∥2L2 .

Then, applying (20) of Lemma 2.10 with a C 2-extension to M of f |supp χ2
, with

|∇f |2 ≥ Cε and |L∗∇f + L∇f | ≤ C̃ε on supp χ2 and the sign condition (23) leads to

∥ωh∥L2∥rh∥L2 ≥ Qf,Ω,h(χ1ωh, χ1ωh) + h2
(
∥dχ2ω̃h∥2L2 + ∥d∗χ2ω̃h∥2L2

)
+ (Cε−C̃εh− λh − cεh2)∥χ2ω̃h∥2L2 − tU (λh + cεh

2)∥χ1ωh∥2L2

≥ Qf,Ω,h(χ1ωh, χ1ωh) + C ′ε h
2∥χ2ω̃h∥2W − tU∥ωh∥2L2 ,(24)

where we recall from Definition 2.3 that ∥ω∥W = ∥ω∥L2 + ∥dω∥L2 + ∥d∗ω∥L2 .
Since Qf,Ω,h(χ1ωh, χ1ωh) ≥ 0 and ∥ωh∥L2 ≤ C∥rh∥L2 + tU∥ωh∥L2 (this is obvious

when U ̸= ∅ and apply (20) of Lemma 2.10 with φ = 0 else), we obtain the estimate

(25) ∥χ2ω̃h∥W∂(Ω) ≤
C ′′ε
h

(
∥rh∥L2 + tU∥ωh∥L2

)
.

This ends the proof when U = ∅.
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When U ̸= ∅, the relations (24) and

Qf,Ω,h(χ1ωh, χ1ωh) = ∥(hd+ df∧)χ1ωh∥2L2 + ∥(hd∗ + i∇f )χ1ωh∥2L2

≥ h2

2
(∥dχ1ωh∥2L2 + ∥d∗χ1ωh∥2L2)− C∥χ1ωh∥2L2

lead, since φε = 0 on supp χ1, to

(26) ∥χ1ω̃h∥W∂(Ω) ≤
C ′

h

(
∥rh∥L2 + ∥ωh∥L2

)
.

The statement of Proposition 2.13 then follows from (25) and (26), by using again
the IMS localization Formula (19) with now φ = f = 0 but ω replaced by ω̃.

Following [54, 34] we extend the definition of Õ to the kernels of bounded operators
from L2 to W , which appears to be more natural than W 1,2 in our setting (see indeed
Definition 2.3 and Proposition 2.5). For more flexibility, boundary conditions do not
appear in the following definition and the full space W (Ω; ΛT ∗M) of Definition 2.3 is
used.

Definition 2.14. — Let the domain Ω satisfy Hypothesis 2.2. Let the operator Ah act
continuously from L2(Ω; ΛT ∗M) to W (Ω; ΛT ∗M) and let Φ ∈ C 0(Ω × Ω;R). We say
that the kernel Ah(x, y) of Ah is Õ(e−

Φ(x,y)
h ) if, for all x0, y0 ∈ Ω and ε > 0, there

exist neighborhoods Uε, Vε in M of y0 and x0 and constants hε such that

∀h ∈ ]0, hε[, ∀χ ∈ C∞0 (Vε), ∃Cχ,ε > 0, ∀u ∈ L2(Ω) s.t. supp u ⊂ Uε,

∥χAhu∥W (Ω) ≤ Cχ,εe−
Φ(x0,y0)−ε

h ∥u∥L2 .

For a finite family
(
Φk
)
k∈{1,...,K} in C 0(Ω × Ω;R), the kernel Ah(x, y) of Ah is said

to be Õ(
∑K
k=1 e

−Φk(x,y)

h ) when it is Õ(e−
min1≤k≤K Φk(x,y)

h ).

When Ah(x, y) = Õ(e−
Φ(x,y)
h ) and Bh(x, y) = Õ(e−

Ψ(x,y)
h ) and Dh is a differential

operator of order ≤ 1 which vanishes in a fixed (independent of h) neighborhood
of ∂Ω (remember W (Ω; ΛT ∗M) ⊂ W 1,2

loc (Ω; ΛT ∗M)), with ∥Dh∥L(W 1,2;L2) = Õ(1),

then (AhDhBh)(x, y) = Õ(e−
Θ(x,y)
h ) with Θ(x, y) = minz∈Ω Φ(x, z) + Ψ(z, y).

If Ah(x, y) = Õ(e−
Φ(x,y)
h ) and ψ ∈ C 0(Ω), φ ∈W 1,∞(Ω) satisfy φ(x) ≤ Φ(x, y)−ψ(y)

for all y ∈ Ω, then supu∈L2(Ω)
∥e
φ
h Ahu∥W1,2

∥e
ψ
h u∥L2

= Õ(1).

An easy application concerns the case when the gradient of f does not vanish
in Ω ⊂Mreg, under Hypothesis 1.2.

Proposition 2.15. — Assume Hypotheses 1.2 for f , and 2.2 for Ω = Ω⊔Nt ⊔Nn with
now

(27) Ω ⊂Mreg,
∂f

∂n |Nt
< 0,

∂f

∂n |Nn
> 0,
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where we recall that f ∈ C∞(Mreg) has a non vanishing gradient. The self-adjoint
operator ∆f,Ω,h defined in Proposition 2.8 is bounded from below by cΩ,f,h1

> 0.
when h ∈ ]0, h1[ with h1 > 0 small enough. If limh→0 ρ(h) = 0+, then the resolvent
(∆f,Ω,h − z)−1, |z| ≤ ρ(h), well defined for h ∈ ]0, h0[, h0 > 0 small enough, satisfies

(∆f,Ω,h − z)
−1(x, y) = Õ(e−

dAg(x,y)

h ) ≤ Õ(e−
|f(x)−f(y)|

h ),

according to Definition 2.14 and uniformly with respect to z, |z| ≤ ρ(h).

Proof. — The lower bound and the definition of the resolvent is deduced from (20)
in Lemma 2.10 applied with φ ≡ 0, |∇f(x)| ≥ c > 0 for all x ∈ Ω and where the
condition (27) ensures the positivity of the boundary terms. The estimate of the kernel
is then a straightforward consequence of Proposition 2.13 with here U = ∅.

We cannot prove Proposition 2.13 and Proposition 2.15 for a general Lipschitz
function even under Hypothesis 1.6. We replace it by an assumption which is proved
to be fulfilled by subanalytic Lipschitz functions in Subsection 8.3

Hypothesis 2.16. — For a Lipschitz function which satisfy Hypothesis 1.6 with the
“critical values” c1 < · · · < cNf , we assume that Proposition 2.13 and Proposi-
tion 2.15 hold true after replacing Mreg by M \ f−1

({
c1, . . . , cNf

})
, dAg(x, y) by

the pseudodistance |f(x)− f(y)|, and by restricting to the case Ω = f−1([a, b]), a < b,
a, b ̸∈

{
c1, . . . , cNf

}
.

2.3.3. Adjusting boundary conditions. — Another consequence of Agmon estimates
is the following lemma which will be used to correct boundary conditions and to
extend solutions to df,hω = 0 to a wider domain with suitably small errors. Un-
der Hypothesis 1.2, it is stated in the more general framework of Proposition 2.15
with Ω ⊂ Mreg, although it will be applied essentially when Ω = f−1([a, b]) with
[a, b] ∩

{
c1, . . . , cNf

}
= ∅. For a more general Lipschitz function we work directly in

the framework of Hypothesis 2.16.

Lemma 2.17. — Assume Hypotheses 1.2 for f and 2.2 for Ω = Ω ⊔ Nt ⊔ Nn with
Ω ⊂Mreg and the sign conditions ∂f

∂n |Nt < 0, ∂f∂n |Nn > 0. Consider the operator ∆f,Ω,h

of Proposition 2.8. There exists c > 0 and h0 > 0 determined by f and Ω and for
any pair of cut-off functions χ, χ̃ ∈ C∞(Ω; [0, 1]) which satisfies dχ, dχ̃ ∈ C∞0 (Ω), with
χ̃ ≡ 1 in a neighborhood of supp dχ, a constant Cχ,χ′ > 0 such that the following
holds.

When ω ∈W (Ω; ΛT ∗M), the forms

η1 = d∗
f,Ω,h

(∆f,Ω,h)
−1((hdχ) ∧ ω) and η2 = df,Ω,h(∆f,Ω,h)

−1(hi∇χω)

both belong to
D(∆f,Ω,h) ⊂W∂(Ω; ΛT ∗M) ⊂W (Ω; ΛT ∗M)
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and satisfy the following inequality with convention dAg(supp dχ̃, supp dχ) = +∞
when χ̃ is the constant function 1:

∥η1∥L2 ≤ 1√
c
∥(hdχ) ∧ ω∥L2 and

∥η2∥L2 ≤ 1√
c
∥(hi∇χ)ω∥L2 ,

∥df,h(χω − χ̃η1)∥L2 ≤ 1√
c
∥(hdχ) ∧ df,hω∥L2 + ∥χdf,hω∥L2

+ Õ(e−
dAg(supp dχ̃,supp dχ)

h )∥(hdχ) ∧ ω∥L2 ,

∥d∗f,h(χ̃η1)∥L2 ≤ Õ(e−
dAg(supp dχ̃,supp dχ)

h )∥(hdχ) ∧ ω∥L2 ,

∥d∗f,h(χω − χ̃η2)∥L2 ≤ 1√
c
∥hi∇χd∗f,hω∥L2 + ∥χd∗f,hω∥L2

+ Õ(e−
dAg(supp dχ̃,supp dχ)

h )∥hi∇χω∥L2 ,

∥df,h(χ̃η2)∥L2 ≤ Õ(e−
dAg(supp dχ̃,supp dχ)

h )∥hi∇χω∥L2 , ∥df,h(χω − χ̃(η1 + η2))∥L2

+

∥d∗f,h(χω − χ̃(η1 + η2))∥L2

 ≤ Cχ,χ̃ [∥df,hω∥L2 + ∥d∗f,hω∥L2

]
+ Õ(e−

dAg(supp dχ̃,supp dχ)

h )∥ω∥L2(supp dχ).

When f is a Lipschitz function which satisfies Hypothesis 1.6 and Hypothesis 2.16 the
results are the same when Ω = f−1([a, b]), cn < a < b < cn+1, and dAg(K,K

′) is
replaced by infx∈K,y∈K′ |f(x)− f(y)|.

Remark 2.18. — Note that ω is not assumed to belong to the domain of df,Ω,h,
d∗
f,Ω,h

or ∆f,Ω,h (no boundary conditions) and the same holds in general for χω.
Accordingly, we used the notations df,h and d∗f,h for the differential operators. In
some applications χ will be chosen such that χω and therefore χω− χ̃(η1 +η2) belong
to one of these domains. Example given, if χω ∈ D(∆f,Ω,h), the last inequality then
provides a good estimate of Qf,Ω,h(χω− χ̃(η1 +η2)) when supp χ and supp χ̃ are well
chosen.

Proof. — Prop. 2.15 under Hypothesis 1.2, or Hypothesis 2.16 with Ω = f−1([a, b])

in the more general case, ensures ∆f,Ω,h ≥ c > 0 for h ∈ ]0, h0[. When
∆f,Ωhu = v ∈ L2(Ω), it implies first ∥u∥ ≤ 1

c∥v∥. We apply (18) with φ = 0:

∥df,Ω,hu∥
2 + ∥d∗

f,Ω,h
u∥2 = Re ⟨u, ∆f,Ω,hu⟩ ≤ ∥u∥∥v∥ ≤

1

c
∥v∥2.

This proves the two first inequalities for ∥η1∥L2 and ∥η2∥L2 .
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Moreover, the equality

df,h(χω) = χ(df,hω) + (hdχ) ∧ ω
implies

(28) 0 = df,h[χ(df,hω)] + df,h [(hdχ) ∧ ω] = (hdχ) ∧ (df,hω) + df,h [(hdχ) ∧ ω] .

Our assumptions ensure (hdχ) ∧ ω ∈ D(df,Ω,h) and η1 ∈ D(∆f,Ω,h) ⊂ D(df,Ω,h).
By using ∆f,Ω,h = df,Ω,hd

∗
f,Ω,h

+ d∗
f,Ω,h

df,Ω,h and the commutation relation stated in
Proposition 2.8-4), compute:

df,Ω,hη1 = df,Ω,hd
∗
f,Ω,h

(∆f,Ω,h)
−1(hdχ ∧ ω)

= (hdχ) ∧ ω − d∗
f,Ω,h

df,Ω,h(∆f,Ω,h)
−1((hdχ) ∧ ω)

= (hdχ) ∧ ω − d∗
f,Ω,h

(∆f,Ω,h)
−1(df,Ω,h[(hdχ) ∧ ω])

(28)
= (hdχ) ∧ ω + d∗

f,Ω,h
(∆f,Ω,h)

−1((hdχ) ∧ df,hω).

With df,h(χ̃η1) = χ̃(df,hη1) + (hdχ̃) ∧ η1 and χ̃dχ ≡ dχ, this implies:

df,h(χ̃η1) = (hdχ) ∧ ω + χ̃d∗
f,Ω,h

(∆f,Ω,h)
−1((hdχ) ∧ df,hω)

+ (hdχ̃) ∧ d∗
f,Ω,h

(∆f,Ω,h)
−1((hdχ) ∧ ω).

We have proved

df,h(χω − χ̃η1) = χ(df,hω)− χ̃d∗
f,Ω,h

(∆f,Ω,h)
−1((hdχ) ∧ df,hω)︸ ︷︷ ︸
(I)

− (hdχ̃) ∧ d∗
f,Ω,h

(∆f,Ω,h)
−1((hdχ) ∧ ω)︸ ︷︷ ︸

(II)

.

Since ∥d∗
f,Ω,h

(∆f,Ω,h)
−1∥ ≤ 1√

c
for h small enough, it follows

∥(I)∥L2 ≤ 1√
c
∥(hdχ) ∧ df,hω∥L2 .

For the last term, Proposition 2.15 under Hypothesis 1.2 says

∥(II)∥L2 = Õ(e−
dAg(supp dχ̃,supp dχ)

h )∥(hdχ) ∧ ω∥L2 ,

while Hypothesis 2.16 with Ω = f−1([a, b]) in the more general case gives

∥(II)∥L2 = Õ(e−
minx∈supp dχ̃,y∈supp dχ |f(x)−f(y)|

h )∥(hdχ) ∧ ω∥L2 ,

Meanwhile the identities d∗f,h(χ̃η1) = χ̃d∗f,hη1 + hi∇χ̃η1 and d∗f,hη1 = 0 lead to

d∗f,h(χ̃η1) = hi∇χ̃η1 = hi∇χ̃d
∗
f,Ω,h

(∆f,Ω,h)
−1((hdχ) ∧ ω).

which yields the fourth inequality.
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Working with η2 is completely symmetric by exchanging the role of df,h and d∗f,h,
after starting with

d∗f,h(χω) = χ(d∗f,hω) + hi∇fω

and 0 = d∗f,h(d
∗
f,hχω) = hi∇χ(d

∗
f,hω) + d∗f,h

[
hi∇χd

∗
f,hω

]
.

The last inequality is obtained by summation.

2.3.4. Resolvent estimates. — From this paragraph and until the end of Chapter 6, the
analysis becomes essentially one dimensional along R ⊃ f(M). Accordingly we now
work specifically with Ω = f−1([a, b]),Nt = f−1(a),Nn = f−1(b), a, b ̸∈

{
c1, . . . , cNf

}
or possibly Ω =

⊔N
n=1 f

−1([an, bn]), an, bn ̸∈
{
c1, . . . , cNf

}
, under Hypothesis 1.2

for f , or by assuming Hypothesis 1.6 and Hypothesis 2.16 for a more general Lipschitz
function f .

Also the upper bounds Õ(e−
dAg(K,K′)

h ) in Proposition 2.13, Proposition 2.15 and

Lemma 2.17 are replaced by their weaker form Õ(e−
inf
x∈K,y∈K′ |f(x)−f(y)|

h ) which is the
one given in Hypothesis 2.16.

We present here resolvent kernel estimates when [a, b] contains one or a fixed num-
ber N of “critical values” of f . It assumes some spectral localization, in (29) and (31),
which is not yet proved. It will be done in the next sections with increasing complexity
and precision: first for N = 1 in Chapter 3 and then for a general N in Chapter 4,
followed by the accurate version for N ≥ 1 in Chapter 6. It is also presented in a more
general form where actually the N critical values may be replaced by N clusters of
critical values for further applications.

Let us first consider the case when [a, b] contains one cluster of “critical values”.

Proposition 2.19. — Assume Hypothesis 1.2, or more generally Hypothesis 1.6 and
Hypothesis 2.16, for f and let a < c < b and ε0 ∈ ]0,min(b− c, c− a)[ be such that

[a, b] ∩
{
c1, . . . , cNf

}
⊂ ]c− ε0

16
, c+

ε0
16

[.

Assume also that ∆f,f−1([a,b]),h, the self-adjoint operator in f−1([a, b]) ⊂M given in
Proposition 2.8 with Nt = {f = a} and Nn = {f = b} satisfies:

(29) ∃h0 > 0, ∀h ∈ ]0, h0[, σ(∆f,f−1([a,b]),h) ∩ [0, e−
ε0
h ] ⊂ [0, e−

4ε0
h ].

Then the estimate

(∆f,f−1([a,b]),h − z)−1(x, y) = Õ(e−
|f(x)−f(y)|

h +
3ε0
h )

holds, according to Definition 2.14, uniformly with respect to z, |z| = e−
2ε0
h .

Proof. — We prove Proposition 2.19 by adapting the analysis made in [34, pp. 57–58].
Let us consider the self-adjoint realizations ∆f,f−1([a,c− ε0

16 ]),h and ∆f,f−1([c+
ε0
16 ,b]),h

for
which Proposition 2.15 says
(30)
(∆f,f−1([a,c− ε0

16 ]),h − z)−1(x, y) and (∆f,f−1([c+
ε0
16 ,b]),h

− z)−1(x, y) are Õ(e−
|f(x)−f(y)|

h ),
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a
+

c+ 3ε0
16

+

c− 3ε0
16

+
c
+

c− ε0
16

+

c+ ε0
16

+
c− ε0

8

+
c+ ε0

8

+
b
+

θ̂

θ θ+θ−

θ̂− θ̂+

Figure 1. Positions of the cut-off functions, θ−, θ, θ+, θ̂−, θ̂, θ̂+ .

uniformly with respect to z ∈ C, |z| = e−2
ε0
h . Let moreover θ and θ̂ be two cut-off func-

tions such that θ ∈ C∞0 (f−1(]c− ε0
8 , c+

ε0
8 [); [0, 1]), θ ≡ 1 around f−1([c− ε0

16 , c+ ε0
16 ]),

and θ̂ ∈ C∞0 (f−1(]c− 3ε0
16 , c+ 3ε0

16 [); [0, 1]), θ̂ ≡ 1 around f−1([c− ε0
8 , c+ ε0

8 ]). Let us
also define θ−, θ̂− ∈ C∞(f−1(]−∞, c[); [0, 1]) and θ+, θ̂+ ∈ C∞(f−1(]c,+∞[); [0, 1])

such that
θ− + θ + θ+ = 1 and θ̂− + θ̂ + θ̂+ = 1.

The support conditions imply the following resolvent identity:

(∆f,f−1([a,b]),h − z)−1 = (∆f,f−1([a,b]),h − z)−1θ̂ + θ−(∆f,f−1([a,c− ε0
16 ]),h − z)−1θ̂−

− (∆f,f−1([a,b]),h − z)−1θ̂[∆f,h, θ−](∆f,f−1([a,c− ε0
16 ]),h − z)−1θ̂−

+ θ+(∆f,f−1([c+
ε0
16 ,b]),h

− z)−1θ̂+

− (∆f,f−1([a,b]),h − z)−1θ̂[∆f,h, θ+](∆f,f−1([c+
ε0
16 ,b]),h

− z)−1θ̂+.

Since moreover ∥(∆f,f−1([a,b]),h − z)−1∥L(L2,L2) ≤ 2e2
ε0
h for |z| = e−

2ε0
h , because

the hypothesis ensures distC(z, σ(∆f,f−1([a,b]),h)) ≤ e−
2ε0
h

2 for h > 0 small enough,
applying Proposition 2.13 to

(∆f,f−1([a,b]),h − z)ωh = rh = θ̂r̂h

with supp θ̂ ⊂ f−1(]c− 3 ε016 , c+ 3 ε016 [) first yields

[(∆f,f−1([a,b]),h − z)−1θ̂](x, y) = Õ(e−
|f(x)−c|−3ε0/16

h +2
ε0
h )

and then

[(∆f,f−1([a,b]),h − z)−1θ̂](x, y) = Õ(e−
|f(x)−c|−3ε0/16

h +2
ε0
h ) Õ(e−

|f(y)−c|−3ε0/16
h )

= Õ(e−
|f(x)−f(y)|

h +3
ε0
h ).

By using (30), ∥[∆f,h, θ±]∥L(W 1,2;L2) = Õ(1), [∆f,h, θ±] vanishing in a neighborhood
of f−1({a, b}), and the latter estimate for all the left factors concerned in the above
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resolvent identity, we obtain

(∆f,f−1([a,b]),h − z)−1(x, y) = Õ(e−
|f(x)−f(y)|

h +
3ε0
h ) + Õ(e−

|f(x)−f(y)|
h )

= Õ(e−
|f(x)−f(y)|

h +
3ε0
h ).

Proposition 2.20. — Assume Hypothesis 1.2, or more generally Hypothesis 1.6 and
Hypothesis 2.16 for f . Let a < b belong to R\

{
c1, . . . , cNf

}
and let Ω = f−1([a, b]) with

Nt = f−1({a}), Nn = f−1({b}). Assume there exist a = c̃0 < c̃1 < · · · < c̃N < c̃N+1 = b

and ε0 ∈ ]0,
min1≤n≤N+1(c̃n−c̃n−1)

16 [ such that

]a, b[ ∩
{
c1, . . . , cNf

}
⊂

N⊔
n=1

]c̃n −
ε0
16
, c̃n +

ε0
16

[.

The operator ∆f,f−1([a,b]),h is the self-adjoint realization of the Witten Laplacian given
in Proposition 2.8 and accordingly ∆n = ∆f,f−1([c̃n−1+(1−δn,1)ε0,c̃n+1−(1−δn,N )ε0]),h is
defined for 1 ≤ n ≤ N where δm,n is the Kronecker symbol. We assume

(31) ∀n ∈ {1, . . . , N} , σ(∆n) ∩ [0, e−
ε0
h ] ⊂ [0, e−

4ε0
h ].

Then every z ∈ C such that |z| = e−
2ε0
h belongs to the resolvent set of ∆f,f−1([a,b]),h

provided that h ∈ ]0, h0[ with h0 > 0 small enough. Moreover, there exists a
constant N0 ∈ N∗, determined by b− a and min2≤n≤N c̃n − c̃n−1, such that

(∆f,f−1([a,b]),h − z)−1(x, y) = Õ(e−
|f(x)−f(y)|

h +3N0
ε0
h )

holds, according to Definition 2.14 uniformly with respect to z, |z| = e−
2ε0
h .

Proof. — We prove Proposition 2.20 by adapting the analysis made in [34, pp. 58–
59]. Call η0 = min2≤n≤N

c̃n−c̃n−1

2 and take ε0 ∈]0,min1≤n≤N+1
c̃n−c̃n−1

16 [, ε0 ≤ η0
8 as

stated.
For n ∈ {1, . . . , N}, let us introduce θn ∈ C∞0 (f−1(]c̃n − ε0

8 , c̃n + ε0
8 [); [0, 1]) such

that θn ≡ 1 in a neighborhood of f−1([c̃n − ε0
16 , c̃n + ε0

16 ]), and

χn :=
(
1−

∑
m ̸=n

θm
)
|f−1([c̃n−1,c̃n+1])

=
(
1− θn−1 − θn+1

)
|f−1([c̃n−1,c̃n+1])

.

Here, we use the convention θ−1 = θN+1 = 0. We also need another partition of unity
1 =

∑N
n=1 χ̃n, 0 ≤ χ̃n ≤ 1, such that

χ̃n ≡ 1 on f−1([c̃n − η0/2, c̃n + η0/2]) for 1 ≤ n ≤ N,
χ̃n ∈ C∞0 (f−1(]c̃n−1 + η0/2, c̃n+1 − η0/2[)) for 2 ≤ n ≤ N − 1

and χ̃1 ≡ 0 on f−1([c̃2 − η0/2, b]) χ̃N ≡ 0 on f−1([a, c̃N−1 + η0/2]).

Note in particular that our conditions, ε0 ≤ η0
8 and supp θn ⊂ f−1([c̃n− ε0

8 , c̃n+ ε0
8 ]),

ensure χn ≡ 1 on supp χ̃n.
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We now set for every z ∈ C, |z| = e−2
ε0
h :

(32) R0(z) :=

N∑
n=1

χn(∆n − z)−1χ̃n,

where we recall ∆n = ∆f,f−1([c̃n−1+(1−δn,1)ε0,c̃n+1−δN,nε0]),h. Because the boundary
conditions are satisfied, a simple computation shows

(33) (∆f,f−1([a,b]),h − z)R0 = I −K,
with

(34) K =

N∑
n=1

∑
m∈{n−1,n+1}

[∆f,h, θm]|f−1([c̃n−1,c̃n+1])
(∆n − z)−1χ̃n.

Moreover Proposition 2.19 applied to every ∆n and (34) combined with the support
conditions of θm, χ̃n imply

∥K∥L(L2,L2) = Õ(e−
C
h+

3ε0
h ),

where
C := min

n∈{1,...,N}
m∈{n−1,n+1}

(
min

y∈supp χ̃n
x∈supp θm

|f(x)− f(y)|
)
≥ η0

2
− ε0

8
,

and ε0 ≤ η0
8 , yields

∥K∥L(L2;L2) = Õ(e−
η0/2−25ε0/8

h ) = Õ(e−
7η0
64h ).

For h > 0 small enough, I − K : L2 → L2 in then invertible and the resolvent set
of ∆f,f−1([a,b]),h contains

{
z ∈ C, |z| = e−

2ε0
h

}
.

Let us now consider the exponential decay estimate. Write first

(35) (∆f,f−1([a,b]),h − z)−1 = R0(z)
∑
ℓ∈N

Kℓ = R0(z)

N0−1∑
ℓ=0

Kℓ +R0(z)KN0 ,

and choose N0 ∈ N∗ such that N0 × 7η0
64 ≥ (b− a) and

(36)

∥KN0
∥L(L2,L2) = ∥

∑
ℓ≥N0

Kℓ∥L(L2,L2) = Õ(e−
b−a
h ) = Õ(e−

max
x,y∈f−1([a,b])

|f(x)−f(y)|

h ).

By referring again to Proposition 2.19 and from the Definition (32) or R0(z), we know:

(37) R0(z)(x, y) = Õ(e−
|f(x)−f(y)|

h +3
ε0
h ).

The relation (37) together with (36) implies that

(38) (R0 ◦KN0
)(x, y) = Õ(e−

minz∈M |f(x)−f(z)|+b−a
h +3

ε0
h ) = Õ(e−

|f(x)−f(y)|
h +3

ε0
h ).

Moreover, the relation (37) together with

K(x, y) = Õ(e−
|f(x)−f(y)|

h +3
ε0
h ),
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which follows as well from Proposition 2.19, implies that for every ℓ ∈ N, one has:

(39) (R0(z) ◦Kℓ)(x, y) = Õ(e−
|f(x)−f(y)|

h +3(ℓ+1)
ε0
h ).

One finally deduces from (35) and from (38), (39) that the estimate

(∆f,f−1([a,b]),h − z)−1(x, y) = Õ(e−
|f(x)−f(y)|

h +3N0
ε0
h ),

holds uniformly with respect to z ∈ C, |z| = e−2
ε0
h . This concludes the proof of

Proposition 2.20.
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CHAPTER 3

LOCAL PROBLEMS

In this section we shall use Agmon type estimates to study carefully the case when
there is a unique “critical value” of f in ]a, b[, −∞ ≤ a < b ≤ +∞.

Hypothesis 3.1. — The function f is assumed to satisfy Hypothesis 1.2, or Hypothe-
sis 1.6 and Hypothesis 2.16, and the values a, b, −∞ ≤ a < b ≤ +∞, are chosen such
that

[a, b] ∩
{
c1, . . . , cNf

}
= ]a, b[ ∩

{
c1, . . . , cNf

}
= {c̃1} .

The domain is Ω = f−1([a, b]), with Nt = f−1({a}) and Nn = f−1({b}), and the
operator ∆f,f−1([a,b]),h is the one defined in Proposition 2.8.

With this assumption all the exponential decay estimates of Chapter 2.3 can be
used with the pseudodistance |f(x)−f(y)|. The main result of this section says that, in
this framework, the only possible exponentially small eigenvalue of ∆f,f−1([a,b]),h is 0.

Proposition 3.2. — Under Hypothesis 3.1, the spectrum of the operator ∆f,f−1([a,b]),h

satisfies

∀ε > 0,∃hε > 0,∀h ∈ ]0, hε[, σ(∆f,f−1([a,b]),h) ∩ [0, e−
ε
h ] ⊂ {0} .

Proposition 3.2 will be proved in several steps. Consequences e.g., for resolvent
estimates will be given afterwards.

3.1. Useful quantities and notations

Let us first recall the following notion of distance between (spectral) subspaces
which is convenient for spectral analysis (see e.g., [34, pp. 59–61]).

Definition 3.3. — For E,F two closed subspaces of a Hilbert space H , the non sym-
metric distance d⃗(E,F ) is defined as

d⃗(E,F ) = sup
x∈E,∥x∥=1

dH (x, F ) = ∥ΠE −ΠFΠE∥ = ∥ΠE −ΠEΠF ∥,

where ΠE ,ΠF are the orthogonal projection on E,F .

This distance satisfies:

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



36 CHAPTER 3. LOCAL PROBLEMS

— d⃗(E,F ) = 0 iff E ⊂ F ;
— d⃗(E,G) ≤ d⃗(E,F ) + d⃗(F,G);
— d⃗(E,F ) < 1 if and only if ΠF |E : E → F is one-to-one with a continuous

left-inverse, and ΠE |F : F → E is onto in this case;

—
(
d⃗(E,F ) < 1 and d⃗(F,E) < 1

)
if and only if ΠF |E : E → F and ΠE

∣∣
F

: F → E

are bijections with continuous inverses. In this case, the equality d⃗(E,F ) =

d⃗(F,E) holds true;
— if we know a priori dimE = dimF < +∞ then

(d⃗(E,F )) < 1)⇔
(
d⃗(E,F ) < 1 and d⃗(F,E) < 1

)
⇔ (d⃗(F,E) < 1).

We will use a variation of the min-max principle associated with the quantities
γ(α, [a, b], h) and Γ(α, [a, b], h) defined below. Remember that Q(p)

f,f−1([a,b]),h is the
quadratic form associated with ∆f,f−1([a,b]),h (see the second item of Proposition 2.8).

Definition 3.4. — For p ∈ {0, . . . , d}, s ≥ 0, let F (p)
[0,s],[a,b],h denote the range of

the spectral projection 1[0,s](∆
(p)
f,f−1([a,b]),h), with in particular F

(p)
{0},f−1([a,b]),h =

ker(∆
(p)
f,f−1([a,b]),h).

For α > 0, the quantities γ(p)(α, [a, b], h) and Γ(p)(α, [a, b], h) are defined by

γ(p)(α, [a, b], h) = d⃗(F
(p)

[0,e−
α
h ],[a,b],h

, F
(p)
{0},[a,b],h) = d⃗(F

(p)

[0,e−
α
h ],[a,b],h

, ker(∆
(p)
f,f−1([a,b]),h))

= sup
ωh∈F (p)

[0,e
−α
h ],[a,b],h

\{0}

distL2(ωh, ker ∆
(p)
f,f−1([a,b]),h)

∥ωh∥L2

,(40)

Γ(p)(α, [a, b], h) = sup
∥ωh∥L2=1 : Q

(p)

f,f−1([a,b]),h
(ωh)≤e−

α
h

distL2(ωh, ker(∆
(p)
f,f−1([a,b]),h)).

(41)

Those quantities satisfy simple properties:

— The quantities γ(p)(α, [a, b], h) and Γ(p)(α, [a, b], h) are decreasing w.r.t α and,
since

F
(p)

[0,e−
α
h ],[a,b],h

⊂ {ω ∈ D(Qf,f−1([a,b]),h) s.t. Q(p)
f,f−1([a,b]),h(ωh) ≤ e

−α
h },

they satisfy
0 ≤ γ(p)(α, [a, b], h) ≤ Γ(p)(α, [a, b], h).

It says in particular:(
lim
h→0

Γ(p)(α, [a, b], h) = 0

)
⇒
(

lim
h→0

γ(p)(α, [a, b], h) = 0

)
.

— Since ∆f,f−1([a,b]),h is self-adjoint, the spectral theorem implies:

γ(p)(α, [a, b], h) = 0 iff σ(∆
(p)
f,f−1([a,b]),h) ∩ [0, e−

α
h ] ⊂ {0}
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and
γ(p)(α, [a, b], h) = 1 else.

In particular, it provides the expression

γ(p)(α, [a, b], h) = sup

∥ωh∥=1 :

{
∆

(p)

f,f−1([a,b]),h
ωh=λhωh

λh≤e−
α
h

distL2(ωh, ker ∆
(p)
f,f−1([a,b]),h)

and the convergence limh→0 γ
(p)(α, [a, b], h) = 0 means precisely that:

(42) ∃hα > 0,∀h ∈ ]0, hα[, σ(∆
(p)
f,f−1([a,b],h)) ∩ [0, e−

α
h ] ⊂ {0} .

— The spectral theorem also implies

Γ(p)(α, [a, b], h) = 1 iff σ(∆
(p)
f,f−1([a,b],h))∩]0, e−

α
h ] ̸= ∅

and

(43)
(
Γ(p)(α, [a, b], h)

)2 ∈ [0,
e−

α
h

min
(
σ(∆

(p)
f,f−1([a,b],h)) \ {0}

) ] ⊂ [0, 1[ else.

Actually, σ(∆
(p)
f,f−1([a,b],h)) ∩ ]0, e−

α
h ] ̸= ∅ implies

Γ(p)(α, [a, b], h) ≥ γ(p)(α, [a, b], h) ≥ 1

and obviously Γ(p)(α, [a, b], h) = 1.
Reciprocally when σ(∆f,f−1([a,b]),h)∩]0, e−

α
h ] = ∅ and for any ωh which satis-

fies the inequality Q(p)
f,f−1([a,b]),h(ωh) ≤ e

−α
h ∥ωh∥2L2 , the spectral decomposition

ωh = 1{0}(∆
(p)
f,f−1([a,b]),h)ωh + 1

[min(σ(∆
(p)

f,f−1([a,b],h)
)\{0} ),+∞[

(∆
(p)
f,f−1([a,b]),h)ωh

leads to

dist2L2(ωh, ker(∆
(p)
f,f−1([a,b]),h)) = ∥1

[min(σ(∆
(p)

f,f−1([a,b],h)
)\{0} ),+∞[

(∆
(p)
f,f−1([a,b]),h)ωh∥

2
L2

≤ e−
α
h

min
(
σ(∆

(p)
f,f−1([a,b],h)) \ {0}

)∥ωh∥2L2 .

— We deduce from (42) and (43) that(
lim
h→0

γ(p)(α′, [a, b], h) = 0

)
⇒
(
∀α > α′,Γ(p)(α, [a, b], h) ≤ e−

α−α′
2h −→

h→0
0

)
.

Up to an arbitrary small change of the positive parameter α, working with γ(p)

or Γ(p) is then essentially equivalent.

3.2. Exponentially small eigenvalues are zero

This section is devoted to the proof of Proposition 3.2. First of all, we can assume
c̃1 = 0 if f is replaced by f − c̃1. The proof will be done in three steps connected by
the remarks on γ(p) and Γ(p) from the previous subsection.
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Figure 2. Positions in the interval [−ε, ε] .
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χ

Figure 3. Cut-off function χ in [−ε, ε] .

Step 1. — Assume [a, b] = [−ε, ε] with ε > 0 (and c̃1 = 0). We prove here that

∀α′ = 2ε+ c > 2ε, lim
h→0

γ(p)(α′, [−ε, ε], h) = 0,

where, owing to the monotonicity of γ(p)(α, [−ε, ε], h) w.r.t α, we can focus on
c ∈ ]0, ε[.

According to (42), it amounts to show there exists hc > 0 such that(
λh ∈ σ(∆

(p)
f,f−1([a,b],h)) ∩ [0, e−

2ε+c
h ]
)
⇒ (∀h ∈ ]0, hc[, λh = 0) .

Take then ωh ∈ D(∆
(p)
f,f−1([−ε,ε]),h) satisfying

∥ωh∥L2 = 1 and ∆
(p)
f,f−1([−ε,ε]),hωh = λhωh with 0 ≤ λh ≤ e−

2ε+c
h

(the result is obvious for the h’s for which the existence of ωh fails). The exponen-
tial decay estimates of Proposition 2.13 (or Hypothesis 2.16 for a general Lipschitz
function) applied with Nt = f−1({−ε}) and Nn = f−1({ε}), K = ∅, U = f−1({0}),
dAg(x, U) ≥ |f(x)|, and rh = 0 writes:

(44)
∫
f−1([−ε,ε])

e
2|f(x)|
h |ωh(x)|2 dx ≤ ∥e

|f|
h ωh∥2W (f(−1)([−ε,ε])) = Õ(1).

Hence the mass of the probability measure with density |ωh|2(x) concentrates on
U = f−1({0}) as h→ 0. We deduce the a priori estimate

∀δ ∈ ]0, ε[,∃hδ > 0,∀h ∈ ]0, hδ[, ∥e
f
h 1fε−δ(x)ωh∥L2 ≥ e−

δ
h

2
.

Once the parameter c ∈ ]0, ε[ is fixed, introduce s1 = c
4 and s2 ∈ ( c4 ,

c
2 ) and take

χ ∈ C∞(M ; [0, 1]) such that χ ≡ 0 near f−s2 which contains a neighborhood of f− c
2

and χ ≡ 1 near f−s1 = f− c
4
.

Since
d(χe

f
hωh) = χd(e

f
hωh) + dχ ∧ (e

f
hωh),
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we deduce

(45) ∥d(χe
f
hωh)∥2L2 ≤ 2∥χd(e

f
hωh)∥2L2 + 2∥dχ ∧ (e

f
hωh)∥2L2 .

The estimate

Qf,f−1([−ε,ε]),h(ωh) = ∥e−
f
h (hd)e

f
hωh∥2L2 + ∥e

f
h (hd∗)e−

f
hωh∥2L2 ≤ e−

2ε+c
h

with f ≤ ε then implies that the first term in the r.h.s. of (45) is of order Õ(e−
c
h ).

Meanwhile supp (dχ) ⊂ f− c
4 and the exponential decay estimate (44) imply that the

second term in the r.h.s. of (45) is of order Õ(e−2 2c
4h ). Adding the boundary conditions

nf=εωh = 0 and nf=εdf,hωh = 0, i.e., nf=ε(e
f
hωh) = 0 and nf=εd(e

f
hωh) = 0, we

have thus proved that
χe

f
hωh ∈ D(∆0,f−1([−s2,ε]),1),

∥d0,f−1([−s2,ε]),1(χe
f
hω)∥2L2 = Õ(e−

c
h ),

limh→0 h log ∥χe
f
hωh∥L2 = 0.

Set uh = χe
f
h ωh

∥χe
f
h ωh∥L2

so that ∥uh∥L2 = 1, uh ∈ D(∆0,f−1([−s2,ε]),1) and ∥duh∥2L2 =

Õ(e−
c
h ).

By using the Hodge decomposition (see Proposition 2.8) and

σ(∆0,f−1([−s2,ε]),1) \ {0} ⊂ [µ1,+∞) ⊂ R+∗,

with µ1 fixed by ε > 0 and s2 > 0, we obtain the decomposition of uh:

uh = Πker d0,f−1([−s2,ε]),1
uh + d∗0,f−1([−s2,ε]),1u2,h,

where d∗0,f−1([−s2,ε]),1u2,h in
(
ker ∆0,f−1([−s2,ε]),1)

⊥ = Ran 1{[µ1,+∞)}(∆
(p)
0,f−1([−s2,ε]),1).

Writing shortly d = d0,f−1([−s2,ε]),1 and d∗ = d∗0,f−1([−s2,ε]),1, it follows that

Õ(e−
c
h ) = ∥duh∥2L2 = ∥dd∗u2,h∥2L2 = Q

(p)
0,f−1([−s2,ε]),1(d

∗u2,h) ≥ µ1∥d∗u2,h∥2L2 .

We deduce distL2(uh, ker d0,f−1([−s2,ε]),1) = Õ(e−
c
2h ) and then the existence of a

form ηh ∈ ker(d0,f−1([−s2,ε]),1) such that

∥χe
f
hωh − ηh∥L2(f−1([−s2,ε]) = Õ(e−

c
2h ).

By the first item of Remark 2.9, the extension η̃h of ηh by 0 in f−s2−ε belongs
to ker(d0,f−1([−ε,ε]),1) with supp η̃h ⊂ fε−s2 and ∥χe

f
hωh − η̃h∥L2 = Õ(e−

c
2h ).

After multiplying by e−
f
h = O(e

s2
h ) in fε−s2 , we obtain{

∥χωh − e−
f
h η̃∥L2 = Õ(e−

c
2h+

s2
h ), c

2 > s2,

e−
f
h η̃h ∈ ker(df,f−1([−ε,ε]),h).

We conclude with ∥χωh − ωh∥L2 = Õ(e−
c
4h ) (since supp (1− χ) ⊂ f−s1 = f−

c
4 ) that

dist(ωh, ker(df,f−1([−ε,ε]),h)) = O(e−
c′
h ) for some c′ > 0.
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The duality consists in replacing f by −f (which does not change [−ε, ε]), the differen-
tial form ωh ∈W (f−1(]−ε, ε[); ΛpT ∗M) by ⋆ωh ∈W (f−1(]−ε, ε[); Λd−pT ∗M⊗orM )

where the orientation twist does not change the analysis, t by n (and conversely), ⋆
and ⋆−1, and df,h by d∗−f,h (and conversely). This leads to

dist(⋆ωh, ker(d−f,f−1([−ε,ε]),h)) = dist(ωh, ker(d∗f,f−1([−ε,ε]),h)) = O(e−
c′
h ).

Assume by contradiction that λh ̸= 0.
Since ωh = λ−1

h ∆
(p)
f,f−1([−ε,ε]),hωh ∈

(
ker ∆

(p)
f,f−1([−ε,ε]),h

)⊥, the Hodge decomposi-
tion (see Proposition 2.8) leads to the orthogonal decomposition

ωh = Πker df,f−1([−ε,ε]),h
ωh + Πker d∗

f,f−1([−ε,ε]),h
ωh.

The squared norm 1 = ∥ωh∥2 thus equals

dist2L2(ωh, ker(df,f−1([−ε,ε]),h)) + dist2L2(ωh, ker(d∗f,f−1([−ε,ε]),h)) = Õ(e−
c′
h ),

which is impossible for 0 < h < hε, hε > 0 small enough.
It follows that σ(∆

(p)
f,f−1([a,b],h))∩[0, e−

2ε+c
h ] ⊂ {0} for h small enough, which implies

limh→0 γ
(p)(α′, [−ε, ε], h) = 0 according to the comments following Definition 3.4.

Step 2. — From Step 1, we know limh→0 γ
(p)(α′, [−ε, ε], h) = 0 for any α′ > 2ε and

the comparison of the quantities γ(p) and Γ(p) in the previous subsection leads to

∀α > 2ε, lim
h→0

Γ(p)(α, [−ε, ε], h) = 0.

Working with Γ(p) brings the flexibility to use some restriction argument from f ba
to fε−ε, which of course does not send eigenvectors onto eigenvectors.

Step 3. — For the general case a < 0 = c̃1 < b, we now prove

∀α > 0, σ(∆
(p)
f,f−1([a,b],h)) ∩ [0, e−

α
h ] ⊂ {0},

where, by monotonicity w.r.t α, it is sufficient to consider α ≤ min(−a, b). Let us then
assume that ωh satisfies ∆

(p)
f,f−1([a,b]),hωh = λhωh with ∥ωh∥L2 = 1 and 0 ≤ λh ≤ e−

α
h .

Take ε ∈ ]0, α4 [ and consider fε−ε ⊂ f ba. We know that

∥df,hωh∥2L2(fε−ε)
+ ∥d∗f,hωh∥2L2(fε−ε)

≤ ∥df,f−1([a,b]),hωh∥2L2(fba)
+ ∥d∗f,f−1([a,b]),hωh∥

2
L2(fba)

≤ e−α
h ,

although ωh|fε−ε
a priori does not belong neither to D(∆

(p)
f,f−1([−ε,ε]),h) nor

to D(Q
(p)
f,f−1([−ε,ε],h)).

We now use Lemma 2.17 in the two subsets f−1([−ε,−δ]) and f−1([δ, ε]) for
some δ ∈ ]0, ε4 [ which will be fixed later.

Consider Ω = f−1([−ε,−δ]) (the other case is symmetric) and take the cut-
off χ−, χ̃− ∈ C∞(f−1[−ε,−δ]; [0, 1]) with supp χ− ⊂ f−1(−]ε + δ,−δ]), χ− ≡ 1

in f−1([−ε+ 2δ,−δ]), and supp χ̃− ⊂ f−1([−ε,−δ[), χ̃− ≡ 1 in f−1([−ε,−2δ]).
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Figure 4. Positions in the interval [a, b] .
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Figure 5. Cut-off functions χ− and χ̃− in [−ε, 0] ⊂ [a, b] .

The form η1,− and η2,− in D(∆f,f−1([−ε,−δ]),h) are defined by

η1,− = d∗f,[−ε,−δ],h(∆f,f−1([−ε,−δ]),h)
−1((hdχ−) ∧ ωh)

η2,− = df,[−ε,−δ],h(∆f,f−1([−ε,−δ]),h)
−1(hi∇χ−ωh).

Lemma 2.17 combined with dAg(x, y) ≥ |f(x)− f(y)| implies

∥df,h(χ−ωh − χ̃−(η1,− + η2,−)∥L2(f−δ−ε ) + ∥d∗f,h(χ−ωh − χ̃−(η1,− + η2,−)∥L2(f−δ−ε )

≤ Õ(e−
ε−4δ
h )∥ωh∥L2(f−ε+2δ

−ε+δ ) + Cχ−

[
∥df,hωh∥L2(f−δ−ε ) + ∥d∗f,hωh∥L2(f−δ−ε )

]
.

Because ∆f,f−1([a,b],h)ωh = λhωh with ∥ωh∥L2 = 1, the Agmon estimate of Propo-
sition 2.13 (or Hypothesis 2.16 for a general Lipschitz function), applied with
Nt = f−1({a}) and Nn = f−1({b}), K = ∅, U = f−1({0}), dAg(x, U) ≥ |f(x)|, and
rh = 0 implies

(46) ∥ωh∥L2(f−ε+2δ
−ε+δ ) = Õ(e−

ε−2δ
h ),

while we know

∥df,hωh∥2L2(f−δ−ε )
+ ∥d∗f,hωh∥2L2(f−δ−ε )

≤ ∥df,hωh∥2L2(fba)
+ ∥d∗f,hωh∥2L2(fba)

≤ e−α
h .

With α
4 > ε > 4δ, we have thus

(47)
∥df,h(χ−ωh − χ̃−(η1,− + η2,−)∥L2(f−δ−ε ) + ∥d∗f,h(χ−ωh − χ̃−(η1,− + η2,−)∥L2(f−δ−ε ) = Õ(e−

2ε−6δ
h ).

A symmetric construction provides two cut-off functions χ+, χ̃+ ∈ C∞(f−1([δ, ε]))

such that

supp χ+ ⊂ f−1([δ, ε− δ[) and χ+ ≡ 1 in f−1([δ, ε− 2δ]),

supp χ̃+ ⊂ f−1(]δ, ε]) and χ̃+ ≡ 1 in f−1([2δ, ε]),
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+
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+
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Figure 6. Cut-off function χ in [−ε, ε]

and then two forms η1,+, η2,+ ∈ D(∆f,f−1([δ,ε]),h) such that
(48)
∥df,h(χ+ωh − χ̃+(η1,+ + η2,+)∥L2(fεδ ) + ∥d∗f,h(χ+ωh − χ̃+(η1,+ + η2,+)∥L2(fεδ ) = Õ(e−

2ε−6δ
h ).

Take now χ ∈ C∞0 (f−1(]−ε+ δ, ε− δ[; [0, 1]) which equals 1 in f−1([−ε+ 2δ, ε− 2δ])

and coincides with χ− (resp. χ+) in f−ε+2δ
−ε+δ (resp. in fε−δε−2δ) and set

vh = χωh − χ̃−(η1,− + η2,−)− χ̃+(η1,+ + η2,+).

This form is close to ωh|fε−ε
. In fact, write

vh − ωh|fε−ε
= (χ− 1)ωh|fε−ε

− χ̃−(η1,− + η2,−)− χ̃+(η1,+ + η2,+),

where, according to Lemma 2.17 and to the exponential decay estimate (46) (and its
symmetric version on [ε− 2δ, ε− δ]),

∥χ̃±ηi,±∥L2 = O(∥ωh∥supp dχ±) = Õ(e−
ε−2δ
h ) for i ∈ {1, 2}

and
∥(χ− 1)ωh∥L2(fε−ε)

= Õ(e−
ε−2δ
h ),

which implies
∥vh − ωh∥L2(fε−ε)

= Õ(e−
ε−2δ
h ).

The form vh also satisfies, for d = df,h or d = d∗f,h,

dvh = [d(χ−ωh − χ̃−(η1,− + η2,−))]|f−δ−ε
+ [dωh]|fδ−δ

+ [d(χ+ωh − χ̃+(η1,+ + η2,+)]|fεδ
.

Then, since vh belongs to D(∆f,f−1([−ε,ε],h)) by construction, it satisfies, by (47) and
(48),

∥df,f−1([−ε,ε])hvh∥2 + ∥d∗f,f−1([−ε,ε]),hvh∥
2 = Õ(e−

4ε−12δ
h ).

We finally take δ = ε
12 for which the r.h.s. of the above relation is Õ(e−

3ε
h ), with

3ε > 2ε. By Step 2, this implies

lim
h→0

distL2(vh, ker(∆f,f−1([−ε,ε]),h))

∥vh∥L2

= 0.
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But the Agmon estimates of Proposition 2.13 or Hypothesis 2.16 also imply

∥ωh∥L2(fε−ε)
= 1 + Õ(e−

ε
h ) and then ∥vh∥L2(fε−ε)

= 1 + Õ(e−
ε−2δ
h ).

Denoting by F ⊂ L2(f ba) the subspace ker(∆
(p)
f,f−1([−ε,ε]),h) extended by 0 in f−εa ⊔ f bε ,

it then follows from the preceding analysis that

lim
h→0

distL2(ωh, F ) = 0.

Since dimF is finite and does not depend on h > 0 (see the second item in Re-
mark 2.9), there exists hα > 0 such that for every h ∈ ]0, hα[,

dimF
(p)

[0,e−
α
h ],[a,b],h

≤ dimF = dimker(∆
(p)
f,f−1([−ε,ε],h)) = dim ker(∆

(p)
f,f−1([a,b]),h),

where the last equality follows from [−ε, ε] ⊂ [a, b] and [a, b]∩
{
c1, . . . , cNf

}
= {c̃1 = 0}

(see (16)). This implies that σ(∆
(p)
f,f−1([a,b],h))∩ [0, e−

α
h ] ⊂ {0} for h ∈ ]0, hα[ and this

ends the proof.

3.3. Consequences

We still work under Hypothesis 3.1: f admits a unique “critical value” c̃1 ∈ [a, b],
a < c̃1 < b. With the information of Proposition 3.2, the resolvent estimates of Sub-
section 2.3.1 lead easily to similar estimates for spectrally defined operators. Finally
we deduce other properties which will be used in the induction process in terms of
the number N of “critical values”.

3.3.1. Estimates for spectral operators. — For a Borel set I ⊂ R we introduce the
notation:

(49) ΠI,[a,b],h = 1I(∆f,f−1([a,b]),h).

Proposition 3.5. — Under Hypothesis 3.1 the spectral projection on the kernel
Π{0},[a,b],h satisfies

Π{0},[a,b],h(x, y) = Õ(e−
|f(x)−f(y)|

h )

according to Definition 2.14.

Proof. — It suffices to use the formula

Π{0},[a,b],h =
1

2iπ

∫
γh

(z −∆f,f−1[a,b],h)
−1 dz

for the suitable contour γh such that 1 = Õ(dist(γh, σ(∆f,f−1([a,b]),h))), and then to
apply Proposition 2.19 with ε0 > 0 arbitrarily small. Such a contour is chosen as
follows. For n ∈ N, Proposition 3.2 says

∃hn > 0,∀h ∈ ]0, hn[, σ(∆f,f−1([a,b]),h) ∩ [0, e−
1

2(n+1)h ] = {0} ,
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and the condition hn+1 < hn can be added. Take simply γh =
{
z ∈ C, |z| = e−

1
(n+1)h

}
for h ∈ [hn+1, hn[.

The final result of this paragraph extends the exponential decay estimates of Propo-
sition 2.13 (or Hypothesis 2.16), when f admits a single singular value c̃1, under
orthogonality conditions. It will be referred to as the “orthogonality lemma”.

Because ∆f,f−1([a,b]),h has a discrete spectrum, the operator

∆f,f−1([a,b]),h|ker(∆f,f−1([a,b]),h)⊥
: ker(∆f,f−1([a,b]),h)

⊥ → ker(∆f,f−1([a,b]),h)
⊥,

is invertible. We now define (∆⊥
f,f−1([a,b]),h)

−1 by extension by 0 on ker(∆f,f−1([a,b]),h):

(50) (∆⊥
f,f−1([a,b]),h)

−1 = 0︸︷︷︸
ker(∆f,f−1([a,b]),h)

⊥⊕
(∆f,f−1([a,b]),h|ker(∆f,f−1([a,b]),h)⊥

)−1︸ ︷︷ ︸
ker(∆f,f−1([a,b]),h)⊥

Thus, the equality ωh = (∆⊥
f,f−1([a,b],h))

−1rh simply means that ωh is the unique
solution in ker(∆f,f−1([a,b]),h)

⊥ ∩D(∆f,f−1([a,b]),h) to

∆f,f−1([a,b],h)ωh = (1−Π{0},[a,b],h)rh.

Lemma 3.6. — Under Hypothesis 3.1, the operator defined by (50) satisfies

(∆⊥
f,f−1([a,b]),h)

−1(x, y) = Õ(e−
|f(x)−f(y)|

h )

in the sense of Definition 2.14.

Proof. — With A = ∆f,f−1([a,b]),h and Π{0},[a,b],h = 1{0}(A) write simply
ωh = (∆⊥

f,f−1([a,b]),h)
−1rh as

ωh = (1−Π{0},[a,b],h)ωh = − 1

2iπ

∫
γh

A

z(z −A)
ωh dz

= − 1

2iπ

∫
γh

1

z(z −A)
(1−Π{0},[a,b],h)rh dz,

where γh is the contour introduced in the proof of Proposition 3.5. To conclude, it then
suffices to combine the resolvent estimates of Proposition 2.19 with ε0 > 0 arbitrarily
small, as used in the proof of Proposition 3.5, and the result of Proposition 3.5.

3.3.2. Changing the interval [a, b]. — For further applications, it is useful to specify
the effect of changing b in f ba. Rough estimates after a change of a and b are followed
by more accurate estimates after a change of b only.

Remember that we work under Hypothesis 3.1 which contains Hypothesis 1.2 or
for a more general Lipschitz function Hypothesis 1.6 and Hypothesis 2.16.

ASTÉRISQUE 450



3.3. CONSEQUENCES 45

Proposition 3.7. — Assume Hypothesis 3.1 and a < a′ < c̃1 < b′ < b. The kernels
F{0},[α,β],h = ker(∆f,f−1([α,β]),h) = Ran Π{0},[α,β],h, α ∈ {a, a′}, β ∈ {b, b′} satisfy

d⃗(F{0},[a′,b′],h, F{0},[a,b],h) = d⃗(F{0},[a,b],h, F{0},[a′,b′],h) = Õ(e−
min{b′−c̃1,c̃1−a′}

h ),

where the second inclusion of F{0},[a′,b′],h ⊂ L2(f b
′

a′ ) ⊂ L2(f ba) is implemented by the
extension by 0 on fa

′

a ∪ f bb′ .

Proof. — We already know that dimF
(p)
{0},[a,b],h = dimF

(p)
{0},[a′,b′],h = β(p)(f b, fa) for

p ∈ {0, . . . , d}. From the remarks following Definition 3.3, it then suffices to prove

d⃗(F{0},[a,b],h, F{0},[a′,b′],h) = Õ(e−
min{b′−c̃1,c̃1−a′}

h ).

For a normalized vector ψ ∈ F{0},[a,b],h the exponential decay estimate of Proposi-
tion 2.13 (or Hypothesis 2.16 for a more general Lipschitz function f) with rh = 0

and λh = 0 says
∥e

|f(x)−c̃1|
h ψ∥W (fba)

= Õ(1).

For any ε > 0 small enough, take χ ∈ C∞0 (f b
′−ε
a′+ε ; [0, 1]) such that χ ≡ 1 in a neighbor-

hood of f−1([a′ + 2ε, b′ − 2ε]). The form χψ then belongs to D(∆f,f−1([a′,b′]),h) with
df,hψ = (hdχ) ∧ ψ, d∗f,hψ = −hi∇χψ, and therefore

⟨χψ, ∆f,f−1([a′,b′]),h(χψ)⟩ = ∥df,h(χψ)∥2L2 + ∥d∗f,h(χψ)∥2L2

= Õ(e−2
min{c̃1−a′,b′−c̃1}−2ε

h )

and ∥ψ − χψ∥2L2 = Õ(e−2
min{c̃1−a′,b′−c̃1}−2ε

h ).

Because 0 is the only exponentially small eigenvalue of ∆f,f−1([a′,b′]),h, this implies

distL2(χψ, F{0},[a′,b′],h) = Õ(e−
min{c̃1−a′,b′−c̃1}−2ε

h ).

If F = F{0},[a′,b′],h is considered as a subspace of L2(f ba) after extension by 0 on fa
′

a ∪
f bb′ , the orthogonal projection ΠF : L2(f ba)→ F is given by ΠFu = Π{0},[a′,b′],h(u|fb′

a′
)

again extended by 0 on fa
′

a ∪ f bb′ .
From ∥Π{0},[a′,b′],h∥ ≤ 1 and the exponential decay estimates for ψ, we deduce, by

setting E = F{0},[a,b],h,

∥(ΠE −ΠFΠE)ψ∥ = ∥ψ −Π{0},[a′,b′],h(ψ|fb′
a′

)∥L2(fba)

≤ ∥ψ − χψ∥L2(fba)
+ ∥χψ −Π{0},[a′,b′],h(χψ)∥L2(fb

′
a′ )

+ ∥χψ − ψ|fb′
a′
∥L2(fb

′
a′ )

≤ Õ(e−
min(c̃1−a

′,b′−c̃1)−2ε
h ).

Since this holds for all ψ ∈ E, ∥ψ∥ = 1, this proves d⃗(E,F ) = Õ(e−
min(c̃1−a

′,b′−c̃1)−2ε
h ),

and we conclude by taking ε > 0 arbitrarily small.
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The above result implies that the mapping Ah : F{0},[a,b],h → F{0},[a′,b′],h ⊂ L2(f ba)

defined by Ahψ = Π{0},[a′,b′],h(ψ|fb′
a′

)) satisfies

∥A∗hAh − 1∥L(F{0},[a,b],h) = Õ(e−
min{c̃1−a′,b′−c̃1}

h )

and then

∥A∗hAh − 1∥L(F{0},[a,b],h) + ∥AhA∗h − 1∥L(F{0},[a′,b′],h) = Õ(e−
min{c̃1−a′,b′−c̃1}

h ).

A more accurate version can be given when a = a′. Actually Õ(e−
min{c̃1−a′,b′−c̃1}

h ) is
easily replaced by Õ(e−

b′−c̃1
h ) but additionally a small change of Ah allows to improve

the estimates in f c̃1a .

Proposition 3.8. — Keep the same assumptions and conventions as in Proposition 3.7
with now a = a′. There exists a linear mapping Ah : F{0},[a,b],h → F{0},[a,b′],h such
that

∥e
b′−f(x)+b′−c̃1

h [ψ −Ahψ]∥
W (f

c̃1
a )

= Õ(1)∥ψ∥L2

holds for all ψ ∈ F{0},[a,b],h and

(51) ∥A∗hAh − 1∥L(F{0},[a,b],h) + ∥AhA∗h − 1∥L(F{0},[a′,b′],h) = Õ(e−
b′−c̃1
h ).

Proof. — The proof is modeled on Lemma 2.17.
Let ε ∈ ]0, b

′−c̃1
4 [, and let χ, χ̃ ∈ C∞(f−1([a, b′]); [0, 1]) satisfy

χ ≡ 1 in f b
′−2ε
a , χ ≡ 0 in f b

′

b′−ε,

χ̃ ≡ 0 in f c̃1+εa , χ̃ ≡ 1 in f b
′

c̃1+2ε.

A form ψ ∈ F{0},[a,b],h = ker(∆f,f−1([a,b]),h), ∥ψ∥L2 = 1, satisfies df,hψ = 0 and
d∗f,hψ = 0 in f b

′

a but does not have to belong to D(∆f,f−1([a,b′]),h). We introduce

ψ̃ε = χψ − χ̃(η1 + η2),

where

η1 = d∗f,f−1([c̃1+ε,b′],h)
(∆f,f−1([c̃1+ε,b′],h))

−1(hdχ ∧ ψ)

= (∆f,f−1([c̃1+ε,b′],h))
−1[d∗f,h(hdχ ∧ ψ)]

and

η2 = −df,f−1([c̃1+ε,b′],h)(∆f,f−1([c̃1+ε,b′],h)
−1(hi∇χψ)

= −(∆f,f−1([c̃1+ε,b′],h)
−1[df,h(hi∇χψ)].

Note that the last equality in each of the two above relations follows from the in-
tertwining relations of Proposition 2.8-4). This implies in particular that η1, η2 both
belong to the domain D(∆f,f−1([c̃1+ε],b′),h) and hence satisfy the boundary conditions
at {f = b′}. Since moreover ψ ∈ D(∆f,f−1([a,b]),h) satisfies the boundary conditions
at {f = a}, ψ̃ε then belongs to D(∆f,f−1([a,b′],h)).
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Besides, the exponential decay estimates on ψ given by Proposition 2.13 (or Hy-
pothesis 2.16) imply

∥ψ∥W (fb
′
b′−2ε

) = Õ(e−
b′−c̃1−2ε

h )

and therefore

∥d∗f,h(hdχ ∧ ψ)∥L2 = Õ(e−
b′−c̃1−2ε

h ), ∥df,h(hi∇χψ)∥L2 = Õ(e−
b′−c̃1−2ε

h ).

The exponential decay estimates stated in Proposition 2.15 (or Hypothesis 2.16) then
imply

∥e
b′−f(x)+b′−c̃1−4ε

h η1∥W (fb
′
c̃1+ε)

+ ∥e
b′−f(x)+b′−c̃1−4ε

h η2∥W (fb
′
c̃1+ε)

= Õ(1).

Set ωh = ψ̃ε −Π{0},[a,b′],hψ̃ε ∈ D(∆f,f−1([a,b′]),h) ∩ ker(∆f,f−1([a,b′]),h)
⊥ and compute

df,f−1([a,b′]),hωh = df,f−1([a,b′]),hψ̃ε
df,hψ=0

= −hdχ̃ ∧ (η1 + η2)

d∗f,f−1([a,b′]),hωh = d∗f,f−1([a,b′]),hψ̃ε
d∗f,hψ=0

= hi∇χ̃(η1 + η2)

∆f,f−1([a,b′]),hωh = rh = (1−Π{0},[a,b′],h)rh

∥e
b′−f(x)+b′−c̃1−4ε

h rh∥L2(fb′a ) = Õ(1).

The “orthogonality lemma” (Lemma 3.6) with ωh = ψ̃ε −Π{0},[a,b′],hψ̃ε yields

∥e
b′−f(x)+b′−c̃1−4ε

h [ψ̃ε −Π{0},[a,b′],hψ̃ε]∥W (fb′a ) = Õ(1).

By defining Aεhψ := Π{0},[a,b′],hψ̃ε ∈ F{0},[a,b′],h ⊂ L2(f ba), it then follows from the
latter relation and from the relation ψ ≡ ψ̃ε in f c̃1+εa that

∥e
b′−f(x)+b′−c̃1

h [ψ −Aεhψ]∥
W (f

c̃1
a )

= Õ(e
4ε
h )

and

∥ψ −Aεhψ∥L2(fba)
≤ ∥ψ − ψ̃ε∥L2(fba)

+ ∥ψ̃ε −Aεhψ∥L2(fb′a )

≤ ∥(1− χ)ψ∥L2(fb′a ) + ∥χ̃(η1 + η2)∥L2(fb′a )

+ ∥ψ∥L2(fb
b′ )

+ ∥ψ̃ε −Aεhψ∥L2(fb′a )

= Õ(e−
b′−c̃1−4ε

h ).

In order to conclude, it thus just remains to choose ε depending on h ∈ ]0, h0[ in a
proper way. To do so, note that when ε = 1

n+1 with n ∈ N large enough to ensure
ε ∈ ]0, b

′−c̃1
4 [, there exists hn > 0 such that for every h ∈ ]0, hn[,

∥e
b′−f(x)+b′−c̃1

h [ψ −Aεhψ]∥
W (f

c̃1
a )
≤ e

5
(n+1)h and ∥ψ −Aεhψ∥L2(fba)

≤ e
5

(n+1)h e−
b′−c̃1
h .

The sequence (hn)n∈N can be chosen decreasing and it then suffices to define

Ah := A
1

n+1

h when h ∈ [hn+1, hn[.
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3.3.3. Interactions of solutions to df,hω = 0 with local spectral problems. — We con-
clude this section with a result which will be used in the construction and anal-
ysis of global quasimodes (see Chapter 6). It provides information about solutions
to df,hω = 0 in f c̃1 , in particular how the exponential decay can be combined with
local spectral information.

Proposition 3.9. — Assume Hypothesis 3.1 and a0 ≤ a < c̃1 < b′ < b. Let δ(h) > 0 sat-
isfy limh→0 δ(h) = 0 and let the family (ωh)h∈]0,h0[ satisfy ωh ∈ W (f

c̃1−δ(h)
a ; ΛT ∗M)

and df,hωh = 0 in f
c̃1−δ(h)
a0 with

∥e
f(x)−a0

h ωh∥W (f
c̃1−δ(h)
a )

= Õ(1).

Take any cut-off function χ ∈ C∞0 (f−1([a, c̃1[); [0, 1]) such that χ ≡ 1 in a neighborhood
of {f = a} and assume that h > 0 is small enough so that supp χ ⊂ [a, c̃1 − δ(h)[.

i) The form Π{0},[a,b],h[df,h(χωh)] = Π{0},[a,b],h[(hdχ)∧ωh] does not depend on the
choice of the cut-off function χ.

ii) If Π{0},[a,b],h[df,h(χωh)] = 0, then there exists a family of similar cut-off func-
tions χh such that ω̃h = χhωh−d∗f,f−1[a,b],h(∆

⊥
f,f−1[a,b],h)

−1[(hdχh)∧ωh)], where,
in the r.h.s., χh in the first term is extended by 1 and the second term is extended
by 0 in faa0

, satisfies

ω̃h ≡ ωh in faa0
,

df,hω̃h = 0 in f ba0
,

and ∥e
f(x)−a0

h ω̃h∥W (fba)
= Õ(1).

iii) If Ah : F{0},[a,b],h → F{0},[a,b′],h is the operator introduced in Proposition 3.8,
then for any ψ ∈ F{0},[a,b],h, the quantity ⟨df,h(χωh), ψ−Ahψ⟩ does not depend
on the choice of χ and

∀ψ ∈ F{0},[a,b],h, ⟨df,h(χωh), ψ −Ahψ⟩ = Õ(e−
b′−a0+b′−c̃1

h )∥ψ∥L2 .

Proof. — i) Let χ1, χ2 be two cut-off functions like χ in our assumptions. Then
χ1ωh − χ2ωh belongs to D(df,f−1[a,b],h) and

df,f−1[a,b],h(χ1ωh − χ2ωh) = df,h(χ1ωh)− df,h(χ2ωh).

We simply conclude with the commutation

Π{0},[a,b],hdf,f−1([a,b]),h = df,f−1([a,b]),hΠ{0},[a,b],h = 0.

ii) When Π{0},[a,b],h[df,h(χωh)] = 0, i) ensures that the latter relation is also satisfied
if we replace χ by χε with χε ≡ 1 in fa

′−ε
a and χε = 0 in f c̃1a′+ε for a′ = a+c̃1

2 and some
ε ∈ ]0, c̃1−a2 [. The a priori estimates on ωh and supp (hdχε)∧ωh ⊂ f−1([a′−ε, a′+ε])

imply
∥((hdχε) ∧ ωh∥L2(fba)

= Õ(e−
a′−a0−ε

h ).
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The orthogonality lemma, Lemma 3.6, then implies that

ηε = d∗f,f−1([a,b]),h(∆
⊥
f,f−1([a,b],h))

−1[(hdχε) ∧ ωh]

(is well defined and) satisfies

∥e
|f(x)−a′|−ε

h ηε∥L2(fba)
= Õ(e−

a′−a0−ε
h ).

Since moreover df,h(χεωh) = (hdχε) ∧ ωh = (1 − Π{0},[a,b],h)[(hdχε ∧ ωh)] belongs
to D(df,f−1([a,b],h)), we can write

df,f−1([a,b]),hηε = ∆f,f−1([a,b]),h(∆
⊥
f,f−1([a,b]),h)

−1((hdχε) ∧ ωh) = (hdχε) ∧ ωh.
Using in addition d∗f,f−1([a,b]),hηε = 0, we deduce

∥e
|f(x)−a′|−ε

h ηε∥W (fba)
= Õ(e−

a′−a0−ε
h ).

If ηε denotes the extension by 0 in faa0
of ηε ∈ D(df,f−1([a,b],h)), it still belongs

to D(df,f−1([a0,b]),h) and solves df,hηε = (hdχε)∧ωh in faa0
∪f ba. We have thus proved

that ω̃ε := χεωh − ηε satisfies

df,hω̃ε = 0 in f ba0
and ∥e

f(x)−a0
h ω̃ε∥W (fba)

= Õ(e
2ε
h ).

We then end the proof by choosing conveniently ε depending on h ∈ ]0, h0[ as we did
at the end of the proof of Proposition 3.8: when ε = 1

n+1 , take hn > 0 such that

∀h ∈ ]0, hn[, ∥e
f(x)−a0

h ω̃ε∥W (fba)
≤ e

3
(n+1)h

with (hn)n∈N decreasing, and choose χh := χ 1
n+1

when h ∈ [hn+1, hn[.
iii) Since

⟨df,h(χωh), ψ −Ahψ⟩ = ⟨Π{0},[a,b],h[df,h(χωh)], ψ⟩ − ⟨Π{0},[a,b′],h[df,h(χωh)], Ahψ⟩
does not depend on χ, we may take the preceding χ = χε. Owing to Proposition 3.8,
we deduce

|⟨df,h(χεωh), ψ −Ahψ⟩| ≤ ∥(hdχε) ∧ ωh∥L2(fa
′+ε

a′−ε )
∥ψ −Ahψ∥L2(fa

′+ε
a′−ε )

= Õ(e−
a′−a0−ε

h )× Õ(e−
b′−a′−ε+b′−c̃1

h ) ∥ψ∥L2 .

Since this holds for every ε > 0 small enough, this yields the result.
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CHAPTER 4

ROUGH ESTIMATES FOR SEVERAL “CRITICAL VALUES”

In this section, we give first estimates for the exponentially small eigenvalues
of ∆f,f−1([a,b],h). We work under the following assumption which, like Hypothesis 3.1
in Chapter 3, gathers Hypothesis 1.2 or (Hypothesis 1.6 and Hypothesis 2.16), and
specify some notations.

Hypothesis 4.1. — The function f satisfies Hypothesis 1.2, or more generally Hypoth-
esis 1.6 and Hypothesis 2.16, and we choose ηf such that

0 < ηf <
1

2
min

1<n≤Nf
|cn − cn−1|.

In addition, a, b, −∞ ≤ a < b ≤ +∞, are not “critical values” of f : a, b ̸∈
{
c1, . . . , cNf

}
.

4.1. Bar code associated with f

We refer to Appendix B for details and simply recall the useful notations. We
already mentionned in Subsection 1.2 that Hypothesis 1.6 implies Hypothesis B.1 in
the beginning of Appendix B (this is actually proved in Subsection 8.3).

Under the assumption that M is compact and f has a finite number of “critical
values” c1 < · · · < cNf , there is a bar code B = B(f) = ([aα, bα[)α∈A where A is
finite, −∞ < aα < bα ≤ +∞, aα ∈

{
c1, . . . , cNf

}
, bα ∈

{
c2, . . . , cNf ,+∞

}
. The

set A is graded according to A =
⊔dimM
p=0 A(p) so that, for α ∈ A(p), the grading of

endpoints of the corresponding bar is given by [aα, bα[ = [a
(p)
α , b

(p+1)
α [. It contains

all the information about the relative cohomology groups H(f b, fa;R) when a < b,
a, b ̸∈

{
c1, . . . , cNf

}
.

More precisely here is the situation when a < b are not “critical values”. We forget
the bars with no end point in ]a, b[, and among the remaining ones we distinguish the
ones with two endpoints in ]a, b[:

A∗(a, b) =
{
α ∈ A∗, [a∗α, b

∗+1
α [∩]a, b[ ̸∈ {∅, ]a, b[}

}
,(52)

A∗c(a, b) =
{
α ∈ A∗(a, b), a < a∗α < b∗+1

α < b
}
,(53)

α ∈ A∗(a, b)⇔ a < a∗α < b or a < b∗+1
α < b.
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killed in ]a, b[

(p−1)

(p)

(p−1)

(p)

(p−1)

(p)

(p−1)

Z (p)

X (p) Y (p+1)

X (p−1) Y (p)

X (p) Y (p+1)

X (p−1) Y (p)

Z (p)

Z (p−1)

c̃N+1

+
a
+

b
+

c̃1
+

c̃2
+

c̃N
+

•

•
•

•
•

•
•

Figure 7. X∗ = X∗(a, b) (lower) , Y ∗ = Y ∗(a, b) (upper) , Z∗ = Z∗(a, b) (lonely)

We now partition the endpoints of the bars, multiple value being distinguished by the
index α ∈ A∗(a, b), according to

X∗(a, b) = {(α, a∗α), α ∈ A∗c(a, b)}(54)

Y ∗(a, b) =
{
(α, b∗α), α ∈ A∗−1

c (a, b)
}

(55)

Z∗(a, b) = {(α, a∗α), α ∈ A∗(a, b) \A∗c(a, b), a < aα < b}(56)

⊔
{
(α, b∗α), α ∈ A∗−1(a, b) \A∗−1

c (a, b), a < b∗α < b
}
,

J ∗(a, b) = X∗(a, b) ⊔ Y ∗(a, b) ⊔ Z∗(a, b).(57)

Those definitions are illustrated in Figure 7: the degrees of the bars and of the corre-
sponding endpoints are indicated. The bars in A∗c(a, b) are the ones with two endpoints
in ]a, b[ and the critical values lying in ]a, b[ are relabeled c̃1 < · · · < c̃N .

Then the relative Betti number are given by

(58) β(p)(f b, fa) = dimHp(f b, fa;R) = dimF{0},[a,b],h = ♯Z (p)(a, b),

which counts the number of degree p endpoints of the bar code lying lonely in ]a, b[.
The rest of this section shows that there are exactly ♯J (p)(a, b) exponentially small

eigenvalues of ∆
(p)
f,f−1([a,b]),h, and provides a priori estimates on the size of the non

zero ones.

4.2. Counting exponentially small eigenvalues

Proposition 4.2. — Under Hypothesis 4.1 and with the notations of Subsection 4.1,
the exponentially small eigenvalues of ∆f,f−1([a,b]),h are counted according to:

dim ker(∆
(p)
f,f−1([a,b],h)) = ♯Z (p)(a, b)(59)

dimF
(p)
[0,õ(1)],[a,b],h = ♯J (p)(a, b) = ♯X (p)(a, b) + ♯Y (p)(a, b) + ♯Z (p)(a, b),(60)
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where the second quality holds for h ∈ ]0, hε[ when õ(1) is replaced by e−2
ηf−2ε

h for
ε ∈ ]0,

ηf
2 [.

Note that the right-hand side of (60) is nothing but the total number of degree p
endpoints of the bar code lying in ]a, b[. This counting also says that the õ(1) eigen-
values of ∆

(p)
f,f−1([a,b]),h are actually Õ(e−

2ηf
h ).

Proof. — Equality (59), which was already stated in Subsection 4.1, is proved in
Appendix B. Equality (60) relies on exponential decay estimates and on the result in
the case

{
c1, . . . , cNf

}
∩ [a, b] = {c̃1} ⊂ ]a, b[ stated in Proposition 3.2.

The “critical values” of f lying in ]a, b[ are relabeled as a < c̃1 < · · · < c̃N < b

according to

]a, b[ ∩
{
c1, . . . , cNf

}
= [a, b] ∩

{
c1, . . . , cNf

}
= {c̃1, . . . , c̃N} .

Consider the disjoint union Ω:

Ω =
⊔N

j=1
f−1([c̃j − ηf , c̃j + ηf ] ∩ [a, b])

for which the associated boundary Witten Laplacian is

(61) ∆f,Ω,h =

N⊕
j=1

∆f,f−1([a,b]∩[c̃j−ηf ,c̃j+ηf ]),h.

By Proposition 3.2, we know that the õ(1) eigenvalues of ∆f,Ω,h are equal to 0. For
ε ∈ ]0, ηf/2[, take χ ∈ C∞(Ω; [0, 1]) such that χ(x) = 1 if min1≤j≤N |f(x)−c̃j | ≤ ηf−ε
and χ(x) = 0 if min1≤j≤N |f(x)− c̃j | ≥ ηf − ϵ/2. For any ω ∈ ker(∆

(p)

f,Ω,h
), ∥ω∥L2 = 1,

Proposition 2.13 (or Hypothesis 2.16) gives

df,h(χω) = (hdχ) ∧ ω = Õ(e−
ηf−ε
h ) and d∗f,h(χω) = hi∇χω = Õ(e−

ηf−ε
h ).

Meanwhile our choice of χ ensures χω ∈ D(∆
(p)
f,f−1([a,b]),h) with now

(62) ∥df,f−1([a,b]),h(χω)∥2L2 + ∥d∗f,f−1([a,b]),h(χω)∥2L2 ≤ Õ(e−2
ηf−ε
h ).

Since ∥χω − ω∥L2 = Õ(e−
ηf−ε
h ), the spectral decomposition of ∆

(p)
f,f−1([a,b]),h ensures

d⃗(ker(∆
(p)

f,Ω,h
), F

(p)

[0,e−2
ηf−2ε

h ],[a,b],h

) = Õ(e−
ε
h )

and then (see indeed the lines following Definition 3.3)

(63) dim(ker(∆
(p)

f,Ω,h
)) ≤ dimF

(p)

[0,e−2
ηf−2ε

h ],[a,b],h

,

for h ∈ ]0, hε[ with hε > 0 small enough.
Reciprocally, when ω ∈ F (p)

[0,e−
ε
h ],[a,b],h

, the exponential decay estimates of Proposi-

tion 2.13 (or Hypothesis 2.16) lead again to

(hdχ) ∧ ω = Õ(e−
ηf−ε
h ) and hi∇χω = Õ(e−

ηf−ε
h )
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and then to
∥df,h(χω)∥2L2 + ∥d∗f,h(χω)∥2L2 ≤ Õ(e−

ε
h )

with now χω ∈ D(∆
(p)

f,Ω,h
). Again, with ∥χω − ω∥L2 = Õ(e−

ηf−ε
h ), the spectral de-

composition of ∆
(p)

f,Ω,h
, with 1

[0,e−
ε
2h ]

(∆
(p)

f,Ω,h
) = 1{0}(∆

(p)

f,Ω,h
), leads to

d⃗(F
[0,e−

ε
h ],[a,b],h

, ker(∆
(p)

f,Ω,h
)) = Õ(e−

ε
4h )

and then to

dimF
(p)

[0,e−
ε
h ],[a,b],h

≤ dim ker ∆
(p)

f,Ω,h
≤ dimF

(p)

[0,e−2
ηf−2ε

h ],[a,b],h

,

for h ∈ ]0, hε[, hε > 0 small enough, where the last inequality follows from (63).
In particular, we deduce that for every ε > 0 small enough:

F
(p)

[0,e−
ε
h ],[a,b],h

= F
(p)

[0,e−2
ηf−2ε

h ],[a,b],h

(64)

and dimF
(p)

[0,e−2
ηf−2ε

h ],[a,b],h

= dimker∆
(p)

f,Ω,h
.

We conclude with

dim ker ∆
(p)

f,Ω,h
=

N∑
j=1

β(p)(fmin(b,c̃j+ηf ), fmax(a,c̃j−ηf ))

=

N∑
j=1

♯Z (p)(max(a, c̃j − ηf ),min(b, c̃j + ηf )) = ♯J (p)(a, b),

the total number of degree p endpoints of the bar code lying in ]a, b[.

We have also proved the following result.

Proposition 4.3. — In the framework of Proposition 4.2 and when ∆f,Ω,h is the oper-
ator defined in (61), the following inequality holds:

d⃗(F
(p)
[0,õ(1)],h, ker(∆

(p)

f,Ω,h
)) + d⃗(ker(∆

(p)

f,Ω,h
), F

(p)
[0,õ(1)],h) = Õ(e−

ηf
h ).

Proof. — By (64) we know that for ε > 0 small enough

d⃗(ker(∆
(p)

f,Ω,h
), F

(p)

[0,e−
ε
h ],h

) = d⃗(ker(∆
(p)

f,Ω,h
), F

(p)

[0,e−
2ηf−2ε

h ],h

),

while we are in cases with d⃗(A,B) = d⃗(B,A) < 1 by the result of Proposition 4.2.
From (62) we deduce

d⃗(ker(∆
(p)

f,Ω,h
), F

(p)

[0,e−
ε
h ],h

) = Õ(e−
ηf−3ε/2

h ),

which yields the result.

The result of Proposition 4.2 can be translated in terms of singular values
of df,f−1([a,b]),h. Remember that df,f−1([a,b]),h and d∗f,f−1([a,b]),h are endomorphisms
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of F[0,C],[a,b],h such that

∆f,f−1([a,b]),h|F[0,C],[a,b],h

= δ[0,C],[a,b],hδ
∗
[0,C],[a,b],h + δ∗[0,C],[a,b],hδ[0,C],[a,b],h

with δ[0,C],[a,b],h = df,f−1([a,b]),h|F[0,C],[a,b],h

.

Proposition 4.4. — Under Hypothesis 4.1 and with the notations of Subsection 4.1, the
number of õ(1) non zero singular values of δ[0,õ(1)],[a,b],h = df,f−1([a,b]),h|F[0,õ(1)],[a,b],h

is

♯A∗c(a, b) for h > 0 small enough. More precisely “h > 0 small enough” means
h ∈ ]0, hε[ for some hε > 0 when õ(1) is replaced by e−

ε
h , ε ∈ ]0,

ηf
2 [.

Proof. — Eigenvalues and singular values are counted with multiplicities. The non
zero singular values of δ = δ

[0,e−
ε
h ],[a,b],h

are the square roots of the non zero eigenval-
ues of δ∗δ and coincide with the non zero singular values of δ δ∗, i.e., the square roots
of the non zero eigenvalues of δ δ∗. By Hodge decomposition, the number of non zero
eigenvalues of ∆f,f−1([a,b]),h|F

[0,e
− ε
h ],[a,b],h

= δ δ∗+ δ∗δ is twice the number of non zero

singular values of δ. For h ∈ ]0, hε[, Proposition 4.2 gives

dimF
[0,e−

ε
h ],[a,b],h

= ♯X∗(a, b) + ♯Y ∗(a, b) + ♯Z∗(a, b)

= 2♯A∗c(a, b) + dim(ker(∆f,f−1([a,b]),h)),

which ends the proof.

4.3. Rough exponential estimates

The upper bound on the õ(1) eigenvalues of ∆f,f−1([a,b]),h contained in Proposi-
tion 4.2 can be completed by a rough lower bound for the non zero ones.

Proposition 4.5. — Assume Hypothesis 4.1 and denote a < c̃1 < · · · < c̃N < b the

“critical values” of f in ]a, b[. There exist r(h) > 0 satisfying e−2
max{b−c̃1,c̃N−a}

h =

Õ(r(h)) and R(h) = Õ(e−2
ηf
h ) such that the õ(1) non zero eigenvalues λ(h)

of ∆f,f−1([a,b]),h all belong to [r(h), R(h)] for h ∈ ]0, h0[, h0 > 0 small enough.

Proof. — The upper bound R(h) = Õ(e−2
ηf
h ) is given by Proposition 4.2.

For the lower bound, it suffices to check that if λ(h) ∈ σ(∆f,f−1([a,b]),h) satisfies

λ(h) ≤ e−2
max{b−c̃1,c̃N−a}+c

h for some fixed c ∈]0,min {c̃1 − a, b− c̃N} [, then there
exists hc > 0 such that λ(h) = 0 for all h ∈ ]0, hc[. The proof follows the same
arguments as those of Step 1 in Subsection 3.2.

Let us proceed by contradiction and assume that there exists a decreasing
sequence (hn)n∈N tending to 0 such that, for every n ∈ N, ∆f,f−1([a,b]),hn ad-

mits an eigenvalue λ(hn) in the interval ]0, e−2
max{b−c̃1,c̃N−a}+c

hn ]. Let then, for
every n ∈ N, ωn ∈ D(∆f,f−1([a,b]),hn) satisfy ∥ωn∥L2 = 1 and ∆f,f−1([a,b]),hnωn =
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c1
+

c1 − c
2

+
c1 − c

4

+
a
+

cN
+

b
+

χ

Figure 8. The cut-off χ in the interval [a, b] .

λ(hn)ωn. From the Agmon estimates of Proposition 2.13 (or Hypothesis 2.16) with
U ⊂ f−1({c̃1, . . . , c̃N}), we know that

∀δ > 0,∃hδ > 0,∀hn ∈ ]0, hδ[, ∥e
f−c̃1
hn ωn∥L2 (fbc̃1−δ

) ≥
e−

δ
hn

2

while ∥df,hnωn∥2L2(fbc̃1−δ
) + ∥d∗f,hnωn∥

2
L2(fbc̃1−δ

) ≤ e
− 2(b−c̃1)+c

hn .

By setting ω̃n = e
f−c̃1
hn χωn, with χ ∈ C∞(f−1([a, b]); [0, 1]), χ ≡ 1 in f bc̃1− c

4
and χ ≡ 0

in f c̃1−c
′

a with c′ ∈ ( c4 ,
c
2 ), we get, for every n ∈ N,
ω̃n ∈ D(∆0,f−1([c̃1−c′,b]),1),

∥d0,f−1([c̃1−c′,b]),1ω̃n∥2L2 = Õ(e−
c
hn )

lim infn→+∞ hn log ∥ω̃n∥L2 ≥ 0.

Besides, the Agmon estimates of Proposition 2.13 (or Hypothesis 2.16) with
U ⊂ f−1({c̃1, . . . , c̃N}) also imply

lim sup
n→+∞

hn log ∥ω̃n∥L2 ≤ c̃N − c̃1.

Hence, by extracting, we can assume that there exists ℓ ∈ [0, 2(c̃N − c̃1)] such that

lim
n→+∞

hn log ∥ω̃n∥L2 =
ℓ

2
.

The normalized form un = ω̃n
∥ω̃n∥L2

thus belongs to D(∆0,f−1([c̃1−c′,b]),1) and

∥dun∥2L2 = Õ(e−
c+ℓ
hn ). By Hodge decomposition (see Step 1 in Subsection 3.2

for details), this implies that ηn belongs to ker(d0,f−1([c̃1−c′,b]),1) and

∥un − ηn∥L2(fb
c̃1−c′

) = Õ(e−
c+ℓ
2hn ).

Moreover, extending ηn by 0 in f c̃1−c
′

a gives ηn ∈ D(d0,f−1([a,b]),1) and therefore

e−
f−c̃1
hn ηn ∈ ker(df,f−1([a,b]),hn) with

∥χωn − ∥ω̃n∥L2e−
f−c̃1
hn ηn∥L2(fba)

= Õ(e−
c/2−c′
hn ).
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With ∥ωn − χωn∥L2 = Õ(e−
c

4hn ) and c′′ = min {c/2− c′, c/4}, we deduce

distL2(ωh, ker(df,f−1([a,b]),hn)) = Õ(e−
c′′
hn ) →

h→0
0.

By duality, starting from ∥d∗f,hωhn∥2L2 ≤ e−
2(c̃N−a)+c

hn and extracting again, we also
get

lim
h→0

distL2(ωhn , ker(d∗f,f−1([a,b],hn))) = 0

and Hodge decomposition implies λ(hn) = 0 for n large enough (see indeed the end
of Step 1 in Subsection 3.2), which leads to a contradiction and achieves the proof of
Proposition 4.5.

Remark 4.6. — The lower bound for the non zero eigenvalues is not optimal at this
level. Actually, generalizing Step 3 of Subsection 3.2 requires the propagation of ex-
ponential decay through “critical values,” which is not true in general. This will be
refined into e−2

c̃N−c̃1
h = Õ(r(h)) at the end, when global quasimodes for df,f−1([a,b],h)

will have been constructed by induction on N . Like e.g., in [50, 52, 69, 74], we follow
the strategy which consists in studying carefully the singular values of df,f−1([a,b]),h,
which brings more flexibility than studying the tricky problem of interacting wells
for ∆f,f−1([a,b]),h in the spirit of [54, 53].

Proposition 4.7. — Assume Hypothesis 4.1, let a < c̃1 < · · · < c̃N < b be the “critical
values” of f in ]a, b[ and let R(h) be the function of h ∈ ]0, h0[ given by Proposition 4.5
such that σ(∆f,f−1([a,b]),h) ∩ [0, õ(1)] ⊂ [0, R(h)]. The projection Π[0,R(h)],[a,b],h =

1[0,R(h)](∆f,f−1([a,b]),h) satisfies

Π[0,R(h)],[a,b],h = Õ(e−
|f(x)−f(y)|

h )

in the sense of Definition 2.14.

Proof. — By Proposition 4.5, we know that R(h) = Õ(e−
2ηf
h ). Set c̃0 = a and

c̃N+1 = b and take any ε0 ∈ ]0,
ηf
8 [, where ηf is defined in Hypothesis 4.1. Here

the first assumption of Proposition 2.20 is obviously satisfied:

]a, b[ ∩
{
c1, . . . , cNf

}
= {c̃1, . . . , c̃N} ⊂

N⊔
n=1

]c̃n −
ε0
16
, c̃n +

ε0
16

[.

For ∆n = ∆f,f−1([c̃n−1+(1−δn,1)ε0,c̃n+1−(1−δn,N )ε0]), n ∈ {1, . . . , N}, we know moreover
that

σ(∆n) ∩ [0, e−
ε0
h ] ⊂ {0} ⊂ [0, e−

4ε0
h ],

owing to Proposition 3.2 because we are in the case

[c̃n−1 + (1− δn,1)ε0, c̃n+1 − (1− δn,N )ε0] ∩
{
c1, . . . , cNf

}
= {c̃n} .

Then Proposition 2.20 says: for some N ∈ N∗,

(∆f,f−1([a,b]),h − z)−1(x, y) = Õ(e−
|f(x)−f(y)|

h +
3Nε0
h )
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uniformly w.r.t z, |z| = e−
2ε0
h . But our choice of ε0, ε0 > 0 and 4ε0 ≤ ηf

2 , and

σ(∆f,f−1([a,b]),h) ∩ [0, e−
ε0
h ] ⊂ [0, R(h)] ⊂ [0, e−

ηf
h ] ⊂ [0, e−

4ε0
h ]

for h ∈ ]0, h0[, h0 small enough, imply

Π[0,R(h)],[a,b],h =
1

2iπ

∫
|z|=e−

2ε0
h

(z −∆f,f−1([a,b]),h)
−1 dz.

This proves
Π[0,R(h)],[a,b],h(x, y) = Õ(e−

|f(x)−f(y)|
h +

3Nε0
h ),

and we conclude by choosing ε0 > 0 arbitrarily small.
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CHAPTER 5

SINGULAR VALUES

Singular values of compact operators are much more flexible than eigenvalues be-
cause they allow to work with two different orthonormal bases instead of one. Ky Fan
inequalities recalled below provide uniform multiplicative errors for all the singular
values after perturbing the orthonormal bases or moving the initial and final spaces.
We recall those facts in a convenient way and complete those results by some refined
analysis of additive error terms. This is a better rewriting of techniques already used
e.g., in [50, 52, 69, 74].

The singular values of a compact operator B : E 7→ F , E and F Hilbert spaces,
are the square roots of the eigenvalues of B∗B (and BB∗) and they are labeled
in the decreasing order µ1(B) = ∥B∥ ≥ · · · ≥ µℓ(B) ≥ µℓ+1(B) ≥ · · · with
limℓ→∞ µℓ(B) = 0 after possibly completing the sequence by a sequence of 0’s. They
satisfy µℓ(B) = µℓ(B

∗). With this order, the min-max principle becomes a max-min
principle applied to B∗B and gives:

(65) µℓ(B) = min
dimV=ℓ−1

max
u∈V ⊥\{0}

∥Bu∥
∥u∥

.

Note also that the definition also provides the existence of two Hilbert bases (φj)j∈J ,
J ⊃ J1 = {ℓ ∈ N \ {0}, µℓ(B) > 0}, of E, and (ψk)k∈K of F , and a one-to-one map-
ping j ∈ J1 → k(j) ∈ K such that

Bφℓ = µℓ(B)ψk(ℓ) and then µℓ(B) = ∥Bφℓ∥ = ⟨ψk(ℓ), Bφℓ⟩ if ℓ ∈ J1

Bφj = 0 if j ∈ J \ J1.

When E,F,G are three Hilbert spaces and A : E → F , B : F → F , and C : F → G,
the singular values of B also satisfy

∀ℓ ∈ N \ {0}, µℓ(CBA) ≤ ∥C∥µℓ(B)∥A∥.
In order to handle accumulated multiplicative errors, it is convenient to use the func-
tion

(66) τ :

∞⊔
n=1

[0, 1[
n → ]0,+∞[, τ(ε1, . . . , εn) =

n∏
k=1

1 + εk
1− εk

.
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In particular we have the implications i) ⇒ ii) ⇒ iii) for

i) max(∥CC∗ − IdG∥, ∥C∗C − IdF ∥) ≤ ε1 < 1

and max(∥AA∗ − IdF ∥, ∥A∗A− IdE∥) ≤ ε2 < 1;

ii) max(∥C∥, ∥C−1∥) ≤ τ(ε1)1/2, max(∥A∥, ∥A−1∥) ≤ τ(ε2)1/2;
iii) ∀j ∈ N \ {0} , τ(ε1, ε2)−1/2µj(B) ≤ µj(CBA) ≤ τ(ε1, ε2)1/2µj(B).

The first implication is a consequence of the following operator inequalities

(1−ε ≤ |A|2 = A∗A ≤ 1+ε)⇒
(
τ(ε)−1/2 ≤ (1− ε)1/2 ≤ |A| ≤ (1 + ε)1/2 ≤ τ(ε)1/2

)
.

Definition 5.1. — Let H ,H ′ be two Hilbert spaces and let ε ∈ [0, 1[.
An operator A : H →H ′ will be said ε-unitary if it satisfies the condition

max(∥A∗A− IdH∥, ∥AA∗ − IdH ′∥) ≤ ε,
used in i) just above.

A family of vectors (vj)j∈J is an ε-orthonormal basis of H if

— it is total in H , Span(vj , j ∈ J ) = H ,
— ∥(⟨vj , vk⟩)j,k∈J − Idℓ2(J )∥L(ℓ2(J )) ≤ ε.

Two closed subspaces H1,H2 of H provide an ε-orthogonal decomposition of H if
H = H1 ⊕H2 and ∥ΠH1

ΠH2
∥ ≤ ε.

Before we review applications to singular values, notice the following properties.

Lemma 5.2. — Let H , H ′ be Hilbert spaces and let ε ∈ [0, 1[.

a) For an operator A : H → H ′, the condition ∥A∗A − IdH∥ ≤ ε is satisfied iff
|A| : H →H is ε-unitary and iff IdH : (H , ⟨ , ⟩)→ (H , ⟨ , |A|2 ⟩) is ε-unitary.

b) An operator A : H →H ′ is ε-unitary iff

∥A∗A− IdH∥ ≤ ε and Ran A = H ′.

c) A family (vj)j∈J is an ε-orthonormal basis of H ′ iff the linear map
A : ℓ2(J )→H ′ given by A((aj)j∈J ) =

∑
j∈J ajvj is ε-unitary.

d) If the decomposition H ′ = H1 ⊕ H2 is ε-orthogonal and (φj′)j′∈J ′ and
(φj′′)j′′∈J ′′ are orthonormal bases of H1 and H2 respectively, then (φj)j∈J ′∪J ′′

is an ε-orthonormal basis of H ′. Additionally, the identity map induces an
ε-unitary map from H ′ = H1⊕⊥H2 to H ′ = H1 ⊕H2, where the first space is
endowed with the scalar product ⟨, ⟩H1⊕⊥H2

making (φj)j∈J ′∪J ′′ orthonormal,
i.e., defined by

∀u1, v1 ∈ H1, ∀u2, v2 ∈ H2, ⟨u1 + u2, v1 + v2⟩H1⊕⊥H2
:= ⟨u1, v1⟩+ ⟨u2, v2⟩.

Proof. — a) The first statement is a consequence of |A|∗ = |A| and |A|2 = A∗A. The
second one is deduced from Id∗ = |A|2 when the identity operator maps H with the
scalar product ⟨u, v⟩ to itself with the scalar product ⟨u, |A|2v⟩.
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b) It suffices to notice that the condition ∥A∗A− IdH∥ ≤ ε implies

∀u ∈H ,
√

1− ε∥u∥ ≤ ∥Au∥ ≤
√

1 + ε∥u∥.
Thus A is one-to-one with a closed range which has to be H ′ by the second assumption
and A, A∗, and AA∗ are invertible. Hence the spectrum of AA∗ coincides with the
spectrum of A∗A by A∗(AA∗ − λIdH ′) = (A∗A − λIdH )A∗ for λ ∈ C. The spectral
theorem yields ∥AA∗ − IdH ′∥ ≤ ε.

c) is a particular case of b) if we notice that ∥A∗A− IdH∥ = ∥(⟨vj , vk⟩)j,k∈J − Idℓ2(J )∥
with H = ℓ2(J ), while the condition Ran A = H ′ becomes equivalent to the totality
of the family (vj)j∈J .

d) The family (φj)j∈J ′∪J ′′ is clearly total in H ′ and, defining the map A : H →H ′

with H = ℓ2(J ) as in c), we get

A∗A− Idℓ2(J ) =

(
0 B

B∗ 0

)
with B = (⟨φk, φj⟩)j∈J ′′,k∈J ′ .

To prove that (φj)j∈J ′∪J ′′ is an ε-orthonormal basis of H ′, it is then enough to prove
that ∥B∥L(ℓ2(J ′′),ℓ2(J ′)) ≤ ε, which follows from the observation that B is unitarily
equivalent to ΠH1 |H2

: H2 →H1.
For the last statement, it suffices to note that the mapping

u ∈
(

H1⊕⊥H2, ⟨, ⟩H1⊕⊥H2

)
7−→ (⟨φj , u⟩H1⊕⊥H2

)j∈J ′∪J ′′ ∈ ℓ2(J ′ ∪ J ′′)

is unitary and to apply c).

Below are consequences of those notions on singular values.

Proposition 5.3. — Let E,F,G be three closed subspaces of a Hilbert space H and
assume d⃗(E,F )+ d⃗(F,E) = ε1 < 1 and d⃗(F,G)+ d⃗(G,F ) = ε2 < 1. Let B : F → F be
a bounded operator and let ΠF ,ΠG be the orthogonal projections on F and G. The
operator B̃ = ΠGBΠF |E : E → G is compact iff B is compact and in this case:

∀ℓ ∈ N \ {0} , τ(ε21, ε
2
2)
−1/2 µℓ(B̃) ≤ µℓ(B) ≤ µℓ(B̃) τ(ε21, ε

2
2)

1/2.

Proof. — Call AFE = ΠFΠE + (1−ΠF )(1−ΠE), with 1 = IdH , and compute

A∗FEAFE − 1 = ΠEΠF + ΠFΠE −ΠE −ΠF .

We deduce that for all u ∈H ,

⟨u, (A∗FEAFE − 1)u⟩ = 2Re ⟨ΠEu, ΠFu⟩ − ∥ΠEu∥2 − ∥ΠFu∥2

= −∥(ΠE −ΠF )u∥2

≥ −2∥(ΠE −ΠF )ΠEu∥2 − 2∥(ΠE −ΠF )(1−ΠE)u∥2

≥ −2∥(ΠE −ΠFΠE)u∥2 − 2∥(ΠF −ΠFΠE)u∥2

≥ −2
(
d⃗(E,F )2 + d⃗(F,E)2

)
∥u∥2.
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Since 0 ≤ ε1 < 1, we know that d⃗(E,F ) = d⃗(F,E) = ε1
2 (see indeed the lines following

Definition 3.3) and we have thus proved the operator inequalities

0 ≤ (IdH −A∗FEAFE) ≤ ε21IdH .

Owing to the spectral theorem, it follows

∥A∗FEAFE − IdH∥ ≤ ε21,
and by symmetry, since A∗FE = AEF , we also get ∥AFEA∗FE − Id∥ ≤ ε21. The opera-
tor AFE is thus ε21-unitary, and similarly AGF is ε22-unitary.

Finally, B̃ = ΠGBΠF |E : E → G is nothing but the nonzero diagonal block of

AGF BAFE : H = E
⊥
⊕ E⊥ −→ H = G

⊥
⊕G⊥.

It is thus compact if and only if B is compact. Moreover, up to some additional
irrelevant zeros, the singular values of B̃ are the ones of AGFBAFE and the result
follows from the general statement i) ⇒ iii) above.

Proposition 5.4. — Let E,F be two Hilbert spaces, B : E → F be a bounded operator
and let ε1, ε2 ∈ ]0, 1[.

a) When (φj)j∈J is an ε1-orthonormal basis in E and (ψk)k∈K is an ε2-orthonor-
mal in basis F , let B̃ : ℓ2(J )→ ℓ2(K ) be defined by B̃δj =

∑
k∈K ⟨ψk, Bφj⟩δk.

Then B̃ is compact iff B is compact, and in this case their singular values satisfy

(67) ∀ℓ ∈ N \ {0} , τ(ε1, ε2)
−1/2µℓ(B̃) ≤ µℓ(B) ≤ µℓ(B̃)τ(ε1, ε2)

1/2.

b) Assume that E = E′ ⊕E′′ is an ε1-orthogonal decomposition and F = F ′ ⊕ F ′′
is an ε2-orthogonal decomposition such that BE′ ⊂ F ′ and BE′′ ⊂ F ′′, then the

relation (67) holds with B̃ = ΠF ′B|E′
⊥
⊕ΠF ′′B|E′′ : E′

⊥
⊕ E′′ → F ′

⊥
⊕ F ′′.

c) Assume that B is compact and that E = E′ ⊕E′′ is an ε1-orthogonal decompo-
sition, and set F ′ = BE′, F ′′ = (F ′)⊥. Assume moreover that

ν = inf
( {

µℓ(B|E′), ℓ ∈ N \ {0}
}
∩ ]0,+∞[

)
≥

∥B|E′′∥

(1− ε1)
1
2 ε2

.

Then, the operator B̃ = B|E′
⊥
⊕ΠF ′′B|E′′ : E′

⊥
⊕ E′′ → F ′

⊥
⊕ F ′′ satisfies

∀ℓ ∈ N \ {0} , τ(ε1, ε2)
−1µℓ(B̃) ≤ µℓ(B) ≤ µℓ(B̃)τ(ε1, ε2).

Proof. — a) This item simply follows from the general statement i) ⇒ iii) above and
from the relation B̃ = Ψ∗FBΦE , where ΦE : ℓ2(J ) → E and ΨF : ℓ2(K ) → F are
defined by ΦE((uj)j∈J ) =

∑
j∈J ujφj and ΨF ((vk)k∈K ) =

∑
k∈K vkψk, and are thus

respectively ε1-and ε2-unitary according to item c) in Lemma 5.2.
b) Let (φj)j∈J ′ and (φj)j∈J ′′ be two Hilbert bases of E′ and E′′, so that

(φj)j∈J ′∪J ′′ is an ε1-orthonormal basis of E according to item d) in Lemma 5.2.
An ε2-orthonormal basis (ψk)k∈K ′∪K ′′ of F is constructed in a similar way. It also

follows from item d) in Lemma 5.2 that the identity IdE : E = E′
⊥
⊕ E′′ → E = E′′′
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is ε1-unitary and, similarly, IdF is ε2-unitary. We conclude by applying the general
statement i) ⇒ iii) above to the relation B̃ = Id∗F B IdE .

c) If ∥B|E′′∥ = 0 there is nothing to do. Actually this is a particular case of b) with
BE′′ = {0} ⊂ F ′′, ε2 = 0 and of course τ1/2 ≤ τ . If ∥B|E′′∥ > 0, then there exists
ℓ1 ∈ N \ {0} such that ν = µℓ1(B|E′) and rank(B|E′) = ℓ1. In particular, we can find
two Hilbert bases (φj)j∈J ′ of E′ and (ψk)k∈K of F such that J ′ ∩K ⊃ {1, . . . , ℓ1}
and

∀j ∈ {1, . . . , ℓ1} , Bφj = µj(B|E′)ψj .
Set F ′ = Span(ψj , , j ∈ {1, . . . , ℓ1}) = RanB|E′ and F ′′ = (F ′)⊥, and introduce the
map R : E → E defined by

R|E′ = 0, ∀u ∈ E′′, Ru =

ℓ1∑
j=1

⟨ψj , Bu⟩
µj(B|E′)

φj .

The norm of R is not greater than ε2 since for every u = u′ + u′′ ∈ E = E′ ⊕ E′′,

∥Ru∥2 = ∥Ru′′∥2 =

ℓ1∑
j=1

|⟨ψj , Bu′′⟩|2

µ2
j (B|E′)

≤
∥B|E′′∥

2

µ2
ℓ1

(B|E′)
∥u′′∥2 ≤ (1− ε1)ε22∥u′′∥2 ≤ ε22∥u∥2,

where the last inequality follows from the last statement of Lemma 5.2. We deduce

∥IdE −R∥ ≤ 1 + ε2 ≤ τ(ε2),
∥(IdE −R)−1∥ ≤ (1− ε2)−1 ≤ τ(ε2),

and for every ℓ ∈ N \ {0}, using the above general statement ii) ⇒ iii),

τ(ε2)
−1µℓ(B(IdE −R)) ≤ µℓ(B) ≤ µℓ(B(IdE −R))τ(ε2).

Moreover, the operator B1 = B(1 − R) clearly sends E′ into F ′, and also sends E′′

into F ′′ = (F ′)⊥ according to

∀u ∈ E′′, BRu =

ℓ1∑
j=1

⟨ψj , Bu⟩ψj = ΠF ′Bu.

Since in addition E′ ⊕ E′′ is a ε1-orthogonal decomposition of E and F = F ′
⊥
⊕ F ′′,

a direct application of b) (with ε2 = 0) says that the singular values of B1 : E → F

and B̃1 = ΠF ′B1|E′
⊥
⊕ΠF ′′B1|E′′ are related by

∀ℓ ∈ N \ {0} , τ(ε1)
−1/2µℓ(B̃1) ≤ µℓ(B1) ≤ µℓ(B̃1)τ(ε1)

1/2.

We conclude with

ΠF ′B1|E′ = ΠF ′ [B|E′ −BR|E′︸︷︷︸
=0

] = B|E′ ;

ΠF ′′B1|E′′ = ΠF ′′B|E′′ −ΠF ′′BR|E′′︸ ︷︷ ︸
=0

= ΠF ′′B|E′′ .
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Remark 5.5. — 1) In the sequel, Propositions 5.3 and 5.4 will be used and com-
bined with spaces Eh, Fh, Gh, E′h, E′′h, F ′h, F ′′h, operators Bh, B̃h, and bases
(φhj )j∈J and (ψhk )k∈K which depend on a small parameter h > 0 and such that
the hypotheses are satisfied with

lim
h→0

ε1(h) = lim
h→0

ε2(h) = 0.

More generally, note that when N parameters ε1(h), . . . , εN (h) are involved and
satisfy 0 ≤ εn(h) ≤ ϱ(h) for n ∈ {1, . . . , N} with limh→0 ϱ(h) = 0, then for
any α ≥ 0, the estimate

τ(ε1(h), . . . , εN (h))α = 1 +O(ϱ(h))

holds uniformly in the sense that there exist hα,N,ϱ, Cα,N > 0 independent
of ε1, . . . , εN such that

∀h ∈]0, hϱ,N,α[, τ(ε1(h), . . . , εN (h))α − 1 ≤ CN,α ϱ(h).

Several applications of the previous results in this setting will lead to estimates
of the type

∀ℓ ∈ N \ {0} , µℓ(B
h) = µℓ(B̃

h)
(
1 +O(ϱ(h))

)
.

2) A case is especially easy to handle: when Eh, Fh, Gh are finite dimensional with
dimension bounded by a common number nF . In this case, one can use any
norm ∥ ∥n2

F
on MnF ,nF (C) in order to check the O

(
ε1,2(h)

)
-orthonormality of

the bases. The constants in the O(ϱ(h))-estimates are then fixed when nF , the
norm ∥ ∥n2

F
and possibly the above N ∈ N and α ≥ 0 are fixed.

Additionally, we recall that in this case, d⃗(Eh, Fh) = d⃗(Fh, Eh) < 1 is equiv-
alent to d⃗(Eh, Fh) < 1 and dimEh = dimFh.

The following lemma will be useful in the sequel.

Lemma 5.6. — Let Bh : D(Bh) → H , D(Bh) ⊂ H , be a closed unbounded operator
and assume that the closed subspaces Eh, Fh, Gh and the operator Bh satisfy

— Eh ⊂ D(Bh);
— the restriction Bh|Eh is a left multiple of ΠFhB

h|Eh with the commutative dia-
gram:

Eh
Bh //

Π
Fh
Bh|

Eh
""

H

Fh;

Ch

OO

— the distance between Fh and Gh satisfies[
d⃗(Fh, Gh) + d⃗(Gh, Fh)

]
∥Ch∥ = O(ϱ(h)) with lim

h→0
ϱ(h) = 0.
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Then ΠGhB
h|Eh = (IdH +O(ϱ(h)))ΠFhB

h|Eh and the restriction Bh|Eh is also a left
multiple of ΠGhB

h|Eh with the commutative diagram:

Eh
Bh //

Π
Gh
Bh ""

H

Gh;

C̃h

OO

with C̃h = Ch(IdH +O(ϱ(h))). The roles of Fh and Gh are therefore symmetric.

Proof. — Note first that the relation Bh|Eh = ChΠFhB
h|Eh implies

∥Bh|Eh∥ ≤ ∥C
h∥∥ΠFh∥∥Bh|Eh∥

and then ∥Ch∥ ≥ 1 (except when Bh|Eh = 0, in which case the statement of
Lemma 5.6 is trivial). Consider now the difference in L (Eh; H ):

ΠGhB
h|Eh −ΠGhΠFhB

h|Eh = (ΠGh −ΠGhΠFh)C
hΠFhB

h|Eh .

By introducing the operator

CGhFh = ΠGhΠFh + (1−ΠGh)(1−ΠFh) = IdH +O(
ϱ(h)2

∥Ch∥2
) = IdH +O(ϱ(h)2)

like in the proof of Proposition 5.3, we obtain

ΠGhB
h|Eh =

[
CGhFh + (ΠGh −ΠGhΠFh)C

h
]
ΠFhB

h|Eh = [IdH +O(ϱ(h))]ΠFhB
h|Eh .

We get ΠFhB
h|Eh = [IdH +O(ϱ(h))]−1ΠGhB

h|Eh and we take C̃h = Ch[IdH +O(ϱ(h))]−1.

We now consider additive error terms which arise in our applications.

Proposition 5.7. — Let Bh1 , Bh2 : Eh → Fh be two compact operators parametrized
by h > 0, like possibly the Hilbert spaces Eh, Fh. Fix ℓ0 ∈ N \ {0} and let ϱ(h) > 0

satisfy limh→0 ϱ(h) = 0.

a) When ∥Bh2 − Bh1 ∥ = O(ϱ(h)) max
(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
)
, the singular values are

related by

∀ℓ ∈ {1, . . . , ℓ0} , µℓ(B
h
2 ) = µℓ(B

h
1 )
(
1 +O(ϱ(h))

)
.

b) The two following statements are equivalent:

min
(
µℓ0+1(B

h
1 ), µℓ0+1(B

h
2 )
)

+ ∥Bh2 −Bh1 ∥ = O
(
ϱ(h) max

(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
))

and max
(
µℓ0+1(B

h
1 ), µℓ0+1(B

h
2 )
)

+ ∥Bh2 −Bh1 ∥ = O
(
ϱ(h) min

(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
))
.

Proof. — The two results are simple consequences of the max-min principle.
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a) Assume ∥Bh2 − Bh1 ∥ ≤ εµℓ0(B
h
1 ) with ε < 1. For ℓ ∈ {1, . . . , ℓ0} and V ⊂ Eh,

dimV = ℓ− 1, we write

∀u ∈ V ⊥, ∥Bh1u∥ − εµℓ0(Bh1 )∥u∥ ≤ ∥Bh2u∥ ≤ ∥Bh1u∥+ εµℓ0(B
h
1 )∥u∥

and then, using µℓ0(Bh1 ) ≤ µℓ(Bh1 ),

∀u ∈ V ⊥, ∥Bh2u∥
∥u∥

≤ max
v∈V ⊥\{0}

∥Bh1 v∥
∥v∥

+ εµℓ(B
h
1 )

∥Bh1u∥
∥u∥

− εµℓ(Bh1 ) ≤ max
v∈V ⊥\{0}

∥Bh2 v∥
∥v∥

.

Therefore, for every ℓ ∈ {1, . . . , ℓ0}, we deduce

max
u∈V ⊥\{0}

∥Bh1u∥
∥u∥

− εµℓ(Bh1 ) ≤ max
u∈V ⊥\{0}

∥Bh2u∥
∥u∥

≤ max
u∈V ⊥\{0}

∥Bh1u∥
∥u∥

+ εµℓ(B
h
1 )

for any subspace V such that dimV = ℓ−1. Continuing by taking the minimum w.r.t
V finally leads to

∀ℓ ∈ {1, . . . , ℓ0} , µℓ(B
h
1 )(1− ε) ≤ µℓ(B

h
2 ) ≤ (1 + ε)µℓ(B

h
1 ).

The h-dependent assumption and the symmetry Bh1 ↔ Bh2 in the above proof yield
the result.

b) First, since min ≤ max, the second condition obviously implies the first one.
Moreover, the first condition implies ∥Bh2 − Bh1 ∥ = O

(
ϱ(h) max

(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
))

and we deduce from a) max
(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
)

= O
(
min

(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
)
. We

have then to show that the second condition is implied by

(68) min
(
µℓ0+1(B

h
1 ), µℓ0+1(B

h
2 )
)

+ ∥Bh2 −Bh1 ∥ = O
(
ϱ(h) min

(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
))
.

But assuming this and reasoning as in the proof of a) with V ⊂ Eh, dimV = ℓ0, and
using now ∥Bh2 −Bh1 ∥ = O

(
ϱ(h)µℓ0(B

h
1 )
)
, leads to

max
u∈V ⊥\{0}

∥Bh2u∥
∥u∥

= max
u∈V ⊥\{0}

∥Bh1u∥
∥u∥

+O
(
ϱ(h)µℓ0(B

h
1 )
)

and then, by taking the minimum w.r.t V , to

µℓ0+1(B
h
2 ) = µℓ0+1(B

h
1 ) +O

(
ϱ(h)µℓ0(B

h
1 )
)
.

It follows that

max
(
µℓ0+1(B

h
1 ), µℓ0+1(B

h
2 )
)

= min
(
µℓ0+1(B

h
1 ), µℓ0+1(B

h
2 )
)

+O
(
ϱ(h)µℓ0(B

h
1 )
)
.

Then, since µℓ0(Bh1 ) = O
(
min

(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
)
, (68) leads to

max
(
µℓ0+1(B

h
1 ), µℓ0+1(B

h
2 )
)

+ ∥Bh2 −Bh1 ∥ = O
(
ϱ(h) min

(
µℓ0(B

h
1 ), µℓ0(B

h
2 )
))
,

which concludes the proof.

The final result of this section combines multiplicative and additive error estimates.
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Proposition 5.8. — Let (Bh, D(Bh)) be a densely defined closed operator in H .
Let Eh, Fh, and Gh be finite dimensional subspaces of H and let ϱ(h) > 0 satisfy
limh→0 ϱ(h) = 0. Assume that both Eh and Fh are contained in D(Bh) and that the
space Eh admits the ϱ(h)-orthogonal decomposition Eh = E′

h ⊕ E′′h, such that:

1. ΠFhB
h = BhΠFh on D(Bh);

2. ΠFhB
hΠFh has a fixed finite rank ℓ0 ∈ N;

3. Bh|E′h is a left multiple of ΠFhB
hΠFh |E′h = ΠFhB

h|E′h with the commutative
diagram:

E′
h Bh //

Π
Fh
BhΠ

Fh ""

H

Fh

Ch

OO

4. with the convention µ0(A) = +∞ for any compact operator A and when ℓh1
denotes the rank of ΠGhB

h|E′h , the following inequalities are satisfied:

d⃗(Eh, Fh) + d⃗(Fh, Eh) + ∥Ch∥
(
d⃗(Fh, Gh) + d⃗(Gh, Fh)

)
= O(ϱ(h)),(69)

∥Bh|E′′h∥

[
1

µℓh1 (ΠGhBh|E′h)
+
∥Ch∥(d⃗(Fh, Gh) + d⃗(Gh, Fh))

max(µℓ0(ΠGhBh|Eh), µℓ0(B
h|Fh))

]
= O(ϱ(h)).(70)

Then, the ℓ0 first singular values of ΠFhB
hΠFh and ΠGhB

hΠEh satisfy

(71) ∀ℓ ∈ {1, . . . , ℓ0} , µℓ(ΠGhB
hΠEh)︸ ︷︷ ︸

=µℓ(ΠGhB
h|
Eh

)

= µℓ(ΠFhB
hΠFh)︸ ︷︷ ︸

=µℓ(Bh|
Fh

)

(
1 +O(ϱ(h))

)
.

Moreover, the ℓ0 + 1-th singular value of ΠGhB
hΠEh satisfies

(72)
µℓ0+1(ΠGhB

hΠEh)

µℓ0(ΠGhBhΠEh)
=
µℓ0+1(ΠGhB

h|Eh)
µℓ0(ΠGhBh|Eh)

h→0∼
µℓ0+1(ΠGhB

h|Eh)
µℓ0(B

h|Fh)
= O(ϱ(h)).

Proof. — Since the statement is trivial when ℓ0 = 0, we assume here that ℓ0 ≥ 1.
The assumptions 1. and 3. then imply ∥Ch∥ ≥ 1 because

∥Bh|E′h∥ ≤ ∥C
h∥∥ΠFh∥∥Bh|E′h∥

(except when Bh|E′h = 0, in which case one chooses Ch = ΠFh so that ∥Ch∥ = 1).
Therefore, the first estimate (69) of 4. implies dimEh = dimFh = dimGh < ∞ as
well as d⃗(Eh, Fh) = d⃗(Fh, Eh) and d⃗(Fh, Gh) = d⃗(Gh, Fh).

About dimensions, the assumptions 1. and 3. also imply

rank(ΠFhB
h|E′h) = rank(Bh|E′h) = ℓh1 ≤ ℓ0.

This rank ℓh1 , which is not assumed to be independent of h, will be proved to be equal
to rank(ΠGhB|E′h).
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Multiplicative estimates. — By replacing Eh by E′h in Lemma 5.6, we get

ΠGhB
h|E′h = [IdH +O(ϱ(h))]ΠFhB

h|E′h
and therefore

(73) ∀ℓ ∈
{
1, . . . ,dimE′h

}
, µℓ(ΠGhB

h|E′h) = µℓ(ΠFhB
hΠFh |E′h)

(
1 +O(ϱ(h))

)
.

In particular,

rank(ΠGhB
h|E′h) = rank(ΠFhB

h|E′h) = ℓh1 = rank(Bh|E′h).

An accurate information about the orthogonal projections on F ′h := RanΠFhB
h|E′h

and on G′h := RanΠGhB
h|E′h is achieved as follows. There exist two orthonormal

systems (φhj )1≤j≤ℓh1 in E′h and (ψhj )1≤j≤ℓh1 in F ′h ⊂ Fh such that

∀j ∈
{
1, . . . , ℓh1

}
, ΠFhB

hφhj = µhjψ
h
j , where µhj = µj(ΠFhB

h|E′h) > 0.

By computing

ψhj −
1

µhj
ΠGhB

hφhj =
1

µhj

[
ΠFhB

hφhj −ΠGhB
hφhj

]
=

1

µhj
(ΠFh −ΠGh)(C

hΠFhB
hΠFhφ

h
j )

= (ΠFh −ΠFhΠGh)C
hψhj + (ΠFhΠGh −ΠGh)C

hψhj ,

we obtain the estimates:

∀j ∈
{
1, . . . , ℓh1

}
, ∥ψhj −

1

µhj
ΠGhB

hφhj ∥ ≤ ∥Ch∥
(
d⃗(Fh, Gh)+ d⃗(Gh, Fh)

)
= O(ϱ(h))︸ ︷︷ ︸

(69)

.

Since moreover we have that rank ΠGhB
h|E′h = dimG′h = ℓh1 ≤ ℓ0, it follows that(

1
µhj

ΠGhB
hφhj

)
1≤j≤ℓh1

is an O
(
∥Ch∥

(
d⃗(Fh, Gh) + d⃗(Gh, Fh)

))
-orthonormal basis

of G′h (see Definition 5.1) and then that

∥ΠF ′h −ΠG′h∥ = O
(
∥Ch∥

(
d⃗(Fh, Gh) + d⃗(Gh, Fh)

))
= O(ϱ(h)).

By calling F ′′h the orthogonal of F ′h in Fh and G′′h the orthogonal of G′h in Gh, the
equality

ΠF ′′h −ΠG′′h = (1−ΠF ′h)ΠFh − (1−ΠG′h)ΠGh

= (1−ΠF ′h)(ΠFh −ΠGhΠFh)− (ΠF ′h −ΠG′h)ΠGhΠFh

− (1−ΠG′h)(ΠGh −ΠGhΠFh)

now implies (using also ∥Ch∥ ≥ 1)

(74) ∥ΠF ′′h −ΠG′′h∥ = O
(
∥Ch∥

(
d⃗(Fh, Gh) + d⃗(Gh, Fh)

))
= O(ϱ(h)).

The separation between the ℓh1 first singular values and the smaller ones is obtained
by applying Proposition 5.4-c) to B = ΠFhB

h|Eh : Eh → Fh and to B = ΠGhB
h|Eh :
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Eh → Gh with: the ϱ(h)-orthogonal decomposition Eh = E′h ⊕ E′′h,
µℓh1 (ΠFhB

h|E′h) = µℓh1 (ΠGhB
h|E′h)

(
1 +O(ϱ(h))

)
,

and
∥ΠFhB

h|E′′h∥
µℓh1 (ΠFhBh|E′h)

+
∥ΠGhB

h|E′′h∥
µℓh1 (ΠGhBh|E′h)

≤ C
∥Bh|E′′h∥

µℓh1 (ΠGhBh|E′h)
=︸︷︷︸

(70)

O(ϱ(h)).

This implies that the singular values of ΠFhB
h|Eh and of ΠGhB

h|Eh satisfy

∀ℓ ∈
{
1, . . . , ℓh1

}
, µℓ(ΠFhB

h|Eh) = µℓ(ΠFhB
h|E′h)

(
1 +O(ϱ(h))

)
,(75)

µℓ(ΠGhB
h|Eh) = µℓ(ΠGhB

h|E′h)
(
1 +O(ϱ(h))

)
,(76)

and, for every k ≥ 1,

µℓh1+k(ΠFhB
h|Eh) = µk(ΠF ′′hB

h|E′′h)
(
1 +O(ϱ(h))

)
= O

(
µℓh1 (ΠFhB

h|Eh)ϱ(h)
)
,

(77)

µℓh1+k(ΠGhB
h|Eh) = µk(ΠG′′hB

h|E′′h)
(
1 +O(ϱ(h))

)
= O

(
µℓh1 (ΠGhB

h|Eh)ϱ(h)
)
.

(78)

Besides, using d⃗(Eh, Fh) + d⃗(Fh, Eh) = O(ϱ(h)) and the commutation ΠFhB
h|Eh =

ΠFhB
hΠFh |Eh , a direct application of Proposition 5.3 with B = ΠFhB

h|Fh : Fh → Fh

and B̃ = ΠFhB
hΠFh |Eh = ΠFhB

h|Eh : Eh → Fh leads to:

(79) ∀ℓ ∈ N \ {0} , µℓ(ΠFhB
h|Fh) = µℓ(ΠFhB

h|Eh)
(
1 +O(ϱ(h)2)

)
.

Additive estimates: When ℓ0 = ℓh1 , the statement of Proposition 5.8 follows from the
Equations (73) and (75)–(79) and, when ℓ0 > ℓh1 , these equations reduce the problem
to the comparison of the singular values µk, 1 ≤ k ≤ ℓ0 − ℓh1 , of the two operators

ΠG′′hB
h|E′′h and ΠF ′′hB

h|E′′h .

By (74) and (70), we know that

∥Bh|E′′h∥∥ΠG′′h −ΠF ′′h∥
max(µℓ0−ℓh1 (ΠG′′hBh|E′′h), µℓ0−ℓh1 (ΠF ′′hBh|E′′h))

= O(ϱ(h)).

The first Result (71) is thus an application of Proposition 5.7-a) with

Bh1 = ΠF ′′hB
h|E′′h and Bh2 = ΠG′′hB

h|E′′h
while replacing ℓ0 by ℓ0 − ℓh1 .

Lastly, the definition of ℓ0 in 2. implies

min(µℓ0−ℓh1+1(ΠG′′hB
h|E′′h), µℓ0−ℓh1+1(ΠF ′′hB

h|E′′h)) = µℓ0−ℓh1+1(ΠF ′′hB
h|E′′h) = 0.

The remaining statement (72) is then given by Proposition 5.7-b).
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CHAPTER 6

ACCURATE ANALYSIS WITH N “CRITICAL VALUES”

This section is the core and the most technical part of our analysis. It combines:
i) the exponential decay estimates of eigenvectors solving ∆f,f−1([a,b]),hωh = λhωh,

λh
h→0→ 0, and all the properties of solutions to df,hωh = 0 stated in Chapters 2 and 3;
ii) the information on local problems, that is when ♯([a, b] ∩

{
c1, . . . , cNf

}
) = 1,

from Chapter 3;
iii) the rough estimates when ♯([a, b] ∩

{
c1, . . . , cNf

}
) = N of Chapter 4. Finally,

the recurrence analysis with respect to N is modeled on linear algebra lemmas about
singular values given in Chapter 5. In the first paragraph, we review and complete
previous useful notations before stating a general result which leads easily to Theo-
rem 1.7, variations of which will be given afterwards. It is about the construction
of global quasimodes for ∆f,f−1([a,b]),h, and more precisely of a suitable basis of
widely extended solutions to df,hωh = 0, which, contrarily to the eigenfunctions
of ∆f,f−1([a,b]),h, provide a high flexibility when changing the geometrical domain,
in particular the values a, b. After specifying the framework in the first paragraph,
we check in Subsection 6.2 the first step of the recursive construction of such global
quasimodes and we present the strategy of our iterative method, developed in the
other paragraphs.

6.1. Assumptions, notations and main result

We assume Hypothesis 4.1 which is: The function f has a finite number of “crit-
ical values,” c1 < · · · < cNf , according to Hypothesis 1.2 or Hypothesis 1.6, while
Hypothesis 2.16 is assumed for a general Lipschitz function f , and we choose

(80) ηf ∈ ]0,
1

2
min

1<n≤Nf
|cn − cn−1|[.

Moreover, the values a, b, −∞ ≤ a < b ≤ +∞, are not “critical values” of f .
Like in Chapters 3 and 4, we use the the space W (f ba; ΛT

∗M) of Definition 2.3.
We recall that it coincides with W 1,2(f ba; ΛT

∗M) under Hypothesis 1.2, while we
only know W (f ba; ΛT

∗M) ⊂ W 1,2
loc (f ba; ΛT

∗M) in general (when a, b ̸∈
{
c1, . . . , cNf

}
).

According to this remark, when E =
⊔K
k=1]ak, bk[, ak, bk ̸∈

{
c1, . . . , cNf

}
, the
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space W (f−1(E); ΛT ∗M) is nothing but the direct sum
⊕K

k=1W (f bkak ; ΛT
∗M), which

is included in W 1,2
loc (f−1(E); ΛT ∗M).

The set of “critical values” lying in [a, b] are relabeled according to

[a, b] ∩
{
c1, . . . , cNf

}
= {c̃1, . . . , c̃N} , a < c̃1 < · · · < c̃N < b.

The bar code associated with f is still denoted by B = B(f) = ([aα, bα[)α∈A. We
keep the notation A∗(a, b), A∗c(a, b) given in (52),(53), while the endpoints of the bars
with a non trivial intersection with ]a, b[ are partitionned into

J ∗(a, b) = X∗(a, b) ⊔ Y ∗(a, b) ⊔ Z∗(a, b),

where the definition of those sets are given in (54),(55),(56), and (57). Remember that
an element j ∈ J (p)(a, b) is a pair j = (α, c̃) with α ∈ A∗(a, b) and c̃ ∈ {c̃1, . . . , c̃N},
c̃ = x

(p)
α , y(p)

α , or z(p)
α , depending on wether:

— j ∈ X (p)(a, b), which means α ∈ A(p)
c (a, b) and c̃ = x

(p)
α ,

— j ∈ Y (p)(a, b), which means α ∈ A(p−1)
c (a, b) and c̃ = y

(p)
α ,

— or j ∈ Z (p)(a, b), which means α ∈ A∗(a, b) \A∗c(a, b) and c̃ = z
(p)
α .

Below are figures which summarize the three different cases.

α(p)

x
(p)
α y

(p+1)
α

a
+

b
+

c̃m

+
c̃n

+

•

Figure 9. A bar [x
(p)
α , y

(p+1)
α [ = [c̃m, c̃n[, α(p) ∈ A

(p)
c (a, b).

There are two extreme points j = (α(p), c̃m) ∈ X (p)(a, b) and j′ = (α(p), c̃n) ∈ Y (p+1)(a, b).

α(p)

α(p+1)

a
+

b
+

c̃ = z
(p)
α

+

•

Figure 10. An extreme point j = (α, c̃) ∈ Z (p)(a, b) .
After restriction to [a, b], this represents the two possible equivalent ways of having
j = (α∗, z

(p)
α ) ∈ Z (p)(a, b).

We recall that

δ
(p)

[0,e−ε/h],[a,b],h
= 1[0,e−ε/h](∆

(p+1)
f,f−1([a,b]),h)d

(p)
f,f−1([a,b]),h1[0,e−ε/h](∆

(p)
f,f−1([a,b]),h)

and F
(p)

[0,e−ε/h],[a,b],h
= Ran 1[0,e−ε/h](∆

(p)
f,f−1([a,b]),h)
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do not depend on ε ∈ ]0, ε0[, provided that hε > 0 (h ∈ ]0, hε[) is chosen small enough
when ε is fixed. We then use the notation

(81) δ
(p)
[0,õ(1)],[a,b],h = δ

(p)

[0,e−ε/h],[a,b],h
and F

(p)
[0,õ(1)],[a,b],h = F

(p)

[0,e−ε/h],[a,b],h

without mentioning ε > 0.
The exponent (p) is forgotten when the direct sum w.r.t p ∈ {0, . . . ,dimM} is

considered.
The distance between vector spaces d⃗(E,F ) is the one defined in Subsection 3.1

(see Definition 3.3) and used in Chapter 5. We also recall that for ε > 0, an
Õ(e−

ε
h )-orthonormal family of vectors (φhℓ )1≤ℓ≤L in a Hilbert space H is a family

such that |⟨φhℓ , φhℓ′⟩ − δℓ,ℓ′ | = Õ(e−
ε
h ) according to Definition 5.1.

With the family J ∗(a, b) of endpoints of bars with a non trivial intersection with
]a, b[, we will associate an õ(1)-orthonormal family of solutions to df,hωh = 0 in the
proper range.

Definition 6.1. — Under Hypothesis 4.1 and for δ1 ∈]0,
ηf
8 ], let

(82) Sδ1 := {c̃n − δ1, c̃n + δ1, 1 ≤ n ≤ N} .

A family (φ∗,hj )j∈J ∗(a,b), φ
∗,h
j = φ

(p),h
j when j ∈ J (p)(a, b), is called a δ1-family of

quasimodes if there exists γ : ]0, h0[→ ]0,+∞[ with limh→0 γ(h) = 0 such that:

— (φ
(p),h
j )j∈J (p)(a,b) is a linearly independent family of D(d

(p)
f,f−1([a,b]),h) for all

p ∈ {0, . . . , d};
— by setting j = (α, c̃) and Ihj = [x

(p)
α − δ1, y(p+1)

α − γ(h)] = [c̃− δ1, y(p+1)
α − γ(h)]

when j ∈ X (p)(a, b), and Ihj = [c̃− δ1, b] when j ∈ Y (p)(a, b) ∪ Z (p)(a, b) :

supp φ
(p),h
j ⊂ f−1

(
(Ihj + [0, γ(h)/2]) ∩ [a, b]

)
,(83)

∥e
|f−c̃|
h φ

(p),h
j ∥W (f−1([a,b])\Sδ1 ) = Õ(1),(84)

df,hφ
(p),h
j ≡ 0 in f−1(Ihj ∩ [a, b]) and then in f−1([a, c̃− δ1] ∪ (Ihj ∩ [a, b])).(85)

For such a family of quasimodes, we will use the notation:

V(p),h = Span(φ
(p),h
j , j ∈ J (p)(a, b)), Vh =

d⊕
p=0

V(p),h.

The idea is that the quasimode associated with the endpoint j = (α, c̃) ∈ J ∗(a, b) is
supported in [c̃−δ1, b], decays exponentially away from c̃, and solves df,hφ

∗,h
j = 0 in a

region essentially covered by the bar indexed by α. Global quasimodes for df,h are con-
structed by climbing along the values of f . The reason why W -estimates, namely with
norms ∥ ∥W (Ω) given by (14) in the Definition 2.3, fail in a neighborhood of f−1(Sδ1)

will appear in the construction of such a family (see in particular Remark 6.11 about
the values c̃n + δ1).

The following definition specifies how such quasimodes are truncated around the
upper endpoints y(p+1)

α when j = (α, x
(p)
α ) ∈ X (p)(a, b). This truncation operator
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preserves the spaces W (f−1(I)) for I ⊂ [a, b] and D(df,f−1([a,b]),h) with its boundary
conditions.

Definition 6.2. — In the framework of Definition 6.1 and for δ2 ∈]0,
ηf
8 ], let

(86) χc̃n,δ2(x) = χ

(
f(x)− c̃n

δ2

)
for n ∈ {2, . . . , N} and a fixed χ ∈ C∞(R; [0, 1]) such that χ ≡ 1 on ]−∞,−2] and
supp χ ⊂ ]−∞,−1[.

The operator Tδ2 is defined on Vh by

(87) Tδ2φ
(p),h
j =

{
χ
y
(p+1)
α ,δ2

φ
(p),h
j if j = (α, x

(p)
α ) ∈ X (p)(a, b)

φ
(p),h
j if j ∈ Y (p)(a, b) ∪ Z (p)(a, b).

The notation log∼ of Definition 1.4 will be extensively used in this section.

Theorem 6.3. — Assume Hypothesis 4.1 with ηf given by (80).

a) For any p ∈ {0, . . . ,dimM}, the õ(1) non zero singular values of d(p)
f,f−1([a,b]),h,

that is the non zero singular values of δ(p)[0,õ(1)],[a,b],h, can be labeled by the family(
µhj
)
j∈X (p)(a,b)

(with possible multiplicities) with

µhj
log∼ e−

y
(p+1)
α −x(p)α

h , j = (α, x(p)
α ) ∈ X (p)(a, b).

b) For any δ1 ∈]0,
ηf
8 ], there exists a δ1-family (φ∗,hj )j∈J ∗(a,b) of quasimodes in the

sense of Definition 6.1 which is Õ(e−
δ1
h )-orthonormal in L2(f ba).

The vector space Vh spanned by those quasimodes satisfies:

∀p ∈ {0, . . . ,dimM}, d⃗(V(p),h, F
(p)
[0,õ(1)],[a,b],h) + d⃗(F

(p)
[0,õ(1)],[a,b],h,V

(p),h) = Õ(e−
δ1
h ).

c) If Tδ2 is the truncation operator of Definition 6.2 for δ2 ∈]0,
ηf
8 ], then

the map d
(p)
f,f−1([a,b]),hTδ2 : V(p),h → L2(f−1([a, b])) is a left multiple

of δ(p)[0,õ(1)],[a,b],hTδ2 with the commutative diagram:

(88) V(p),h
d
(p)

f,f−1([a,b]),h
Tδ2
//

δ
(p)
[0,õ(1)],[a,b],h︸ ︷︷ ︸

(81)

Tδ2
**

L2(f−1([a, b]))

F
(p+1)
[0,õ(1)],[a,b],h,

Ch

OO

with ∥Ch∥ = Õ(e
2δ2
h ).

The proof will be done in several steps, by induction on the number of “criti-
cal values” N . Because the graduation w.r.t p ∈ {0, . . . ,dimM} is associated with
an obvious orthogonal decomposition of F[0,õ(1)],[a,b],h and δ[0,õ(1)],[a,b],h, and clear
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partitions of the sets of indices for bars and endpoints, A∗(a, b) =
⊔d
p=0A

(p)(a, b),
J ∗(a, b) =

⊔d
p=0 J (p)(a, b), etc., we can treat globally F[0,õ(1)],[a,b],h and δ[0,õ(1),[a,b],h

and forget the degree p.

6.2. Initialisation and outline of the recurrence

The result holds true for N = 1: According to Proposition 3.2, we know
that J ∗(a, b) = Z∗(a, b) and that the õ(1)-eigenvalues of ∆f,f−1([a,b]),h, and therefore
the õ(1)-singular values of δ[0,õ(1)],[a,b],h, all vanish. This proves a). To prove b), it
suffices to take an orthonormal basis (φhj )j∈J ∗(a,b) of ker(∆f,f−1([max(a,c̃1−δ1),b]),h), ex-
tended by 0 on f c̃1−δ1a when a < c̃1−δ1. Note that in the latter case, the extended fam-
ily (φhj )j∈J ∗(a,b) is still included inD(df,f−1([a,b]),h), and actually in ker(df,f−1([a,b]),h).
The exponential decay estimate (84) comes from the exponential decay estimates on
the φhj ∈ ker(∆f,f−1[max(a,c̃1−δ1),b],h) given by Proposition 2.13 or Hypothesis 2.16
applied with Ω = f−1([max(a, c̃1 − δ1), b]), rh = 0, λh = 0, U = f−1({c̃1}) and
dAg(x, y) ≥ |f(x)− f(y)|. The distance between Vh and F[0,õ(1)],[a,b],h is also deduced
from the exponential decay estimates on the φhj ∈ ker(∆f,f−1([max(a,c̃1−δ1),b]),h) as we
did in the proofs of Propositions 4.2 and 4.3. The statement c) is obvious in this case
because

Tδ2 = IdVh ,

df,f−1([a,b]),h|Vh = 0,

and δ[0,õ(1)],[a,b],h|Vh = Π[0,õ(1)],[a,b],hdf,f−1([a,b]),h|Vh = 0.

Strategy of the proof by induction:

1. Already while checking the initial step N = 1 or when proving e.g., Proposi-
tion 3.2 in Subsection 3.2, it was convenient to work with different values of a
and b. From this point of view, the construction of δ1-quasimodes in the sense of
Definition 6.1, which are some specific solutions to df,hωh = 0, is more flexible
than working with spectral eigenvectors of ∆f,f−1([a,b]),h. Note that even though
the extension by 0 in fa of φ ∈ ker(df,f−1([a,b]),h) does not belong to W (f ba′)

for a′ < a, it belongs to ker(df,f−1([a′,b]),h). This provides a way to extend the
quasimodes in the area of the lower values of f . The extension to f b

′

a with b < b′

will be done with a repeated use of Proposition 3.9. Note for example that if there
is no “critical value” in [b, b′], a solution to df,f−1([a,b]),hφh = 0, which satisfies
some exponential decay estimates of the type ∥e

f(x)
h φh∥W (fba)

≤ Õ(Ch), can be
“extended” to a solution to df,f−1([a,b′]),hφ̃h = 0, with the same decay estimates
in W (f b

′

a \f−1({b−δ}) for some δ > 0 small enough. To prove this, it suffices to
consider b as an artificial new “critical value” c̃ and to apply Proposition 3.9-i)
with a0, a, c̃1, b there replaced by a, b− δ, c̃ = b, b′. Note that with this extension
procedure, φ̃h fails in general to belong to W in a neighborhood of f−1({b− δ})
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(see (84) in this connection). If there is a “critical value” c̃n ∈ ]b, b′[, then one
has to study more carefully the orthogonality condition of Proposition 3.9-ii).

2. Now Theorem 6.3 will be assumed to be true in the case of N “critical val-
ues” in [a, b], we can deduce several consequences. The aforementionned flexi-
bility of a family of quasimodes in Vh, as compared to a family of eigenvectors
for the initial space F[0,õ(1)],[a,b],h , can be completed by replacing the arrival
space F[0,õ(1)],[a,b],h in the diagram (88) by a more flexible approximation. More-
over, the Õ(e−

δ1
h )-orthogonality of the δ1-family of quasimodes can be preserved

while ensuring true orthogonality properties on the images df,hTδ2φhj . This will
be done in Subsection 6.3. The corresponding results will be used in the rest of
the proof and for other constructions later.

3. Let us now explain how we pass from the case of N critical values c̃1 < · · · < c̃N
to the case of N + 1 critical values c̃1 < · · · < c̃N+1 in [a, b]. To do so, in-
troduce a2 ∈ ]c̃1, c̃2[ and b1 ∈ ]c̃N , c̃N+1[, set a1 = a, b2 = b, and apply the
result valid for N “critical values” to a1 = a < c̃1 < · · · < c̃N < b1 and
to a2 < c̃2 < · · · < c̃N+1 < b2 = b. From the δ1-families of quasimodes for the
intervals [a1, b1] and [a2, b2], we can extract a partial δ1-family of quasimodes
for [a, b] which satisfies the required properties for all bars of length strictly
smaller than c̃N+1− c̃1. This construction, and all the information coming from
step N in the intervals [a1, b1] and [a2, b2], is collected in Subsection 6.4. After
this, in Subsection 6.5, the construction of δ1-quasimodes associated with bars
j = (α, xα) ∈ X∗(a, b) with xα = c̃1 and yα = c̃N+1 must be specified. This leads
to the definition of “intermediate δ1-family of quasimodes” (see Definition 6.12)
which, comparatively to Definition 6.1, does not yet elucidate the interaction
with the local spectral problems around the “critical value” c̃N+1. This strategy
is summarized in Figure 11 below. It is related to Mayer-Vietoris type argu-
ments in algebraic topology, but handling and propagating all the estimates on
exponentially small quantities requires some care. From this point of view, the
inspiration is also taken from the standard techniques for handling exponential
decay estimates, and several up and down inductions on n ∈ {1, . . . , N + 1} are
used.
Once the latter “intermediate δ1-family of quasimodes” is constructed, it is
used in order to prove Theorem 6.3-a) in Subsection 6.6. Like in the proof
of Proposition 3.2 for N = 1, we have to play with different values of a, b such
that a < c̃1 < · · · < c̃N+1 < b. Using Proposition 4.5, we deduce firstly a lower
bound r(h)

log∼ e−
c̃N+1−c̃1+max(δ1,δ3)

h when a = c̃1 − δ1 and b = c̃N+1 + δ3, and
translate it in the various variations of the operator δ[0,õ(1)],[a,b],hTδ2 that we
have introduced. Secondly, we study the effect of changing a and b while keep-
ing N +1 “critical values” in [a, b] as it was done in Subsection 3.3.2 for the case
of one “critical value” in [a, b]. Thirdly, and only after proving Theorem 6.3-a),
we can construct in Subsection 6.7 the δ1-family of quasimodes (φhj )j∈J ∗(a,b)
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??

c̃N+1

+
a = a1

+
b = b2

+
c̃1

+
c̃2

+
c̃N

+
b1

+
a2

+

•

••

•
•

••
•

••

Figure 11. Positions of the bars while the interval [a, b] is covered by [a1, b1] ∪ [a2, b2].

at step N + 1, and check all the conditions stated in the items b) and c) of
Theorem 6.3.

We will use the recurrence hypothesis at step N first in the interval ]a2, b2[ and then
in the interval ]a1, b1[, where the corresponding proper bars (not equal to ]ai, bi[) are
collected in dashed rectangles. Quasimodes in ]a2, b2[ are extended by 0 in fa2

a , while
the extension of quasimodes in ]a1, b1[ to f bb1 requires more care.

6.3. Consequences of Theorem 6.3 at step N

We assume in this section that Theorem 6.3 holds true at step N . We re-
fer in particular to the Definition 6.1 of δ1-quasimodes (φhj )j∈J ∗(a,b) and of
Vh = Span(φhj )j∈J ∗(a,b), and to the Definition 6.2 of the truncation
Tδ2 : Vh → D(df,f−1([a,b]),h), for δ1, δ2 ∈ ]0,

ηf
8 ].

While keeping the initial space Vh for df,f−1([a,b]),hTδ2 , we replace the arrival
space F[0,õ(1)],[a,b],h, and therefore the left-multiplying projection Π[0,õ(1)],[a,b],h, by
a more flexible space Gh and a projection ΠGh . In view of Lemma 5.6 and of the
general analysis of singular values led in Chapter 5, consider

(89) Gh = ker(∆f,Ω,h) and Fh = F[0,õ(1)],[a,b],h,

where ∆f,Ω,h is the operator introduced in (61) with

(90) Ω =
⊔N

n=1
f−1([c̃n − ηf , c̃n + ηf ] ∩ [a, b]).
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We recall that according to Proposition 4.3,

d⃗(Gh, Fh) + d⃗(Fh, Gh) = Õ(e−
ηf
h )

and dimGh = dimFh.

The interest of the space Gh is that it is defined in terms of local spectral problems,
actually kernels of local Witten Laplacians, around the “critical values” c̃1, . . . , c̃N .

Proposition 6.4. — Assume that Theorem 6.3 holds true at step N and let Gh be
defined by (89). The operator

ΠGhdf,f−1([a,b]),hTδ2 = ΠGhdf,hTδ2 : Vh → L2(Ω) ⊂ L2(f ba)

does not depend on δ2 ∈]0,
ηf
8 ] for h > 0 small enough. Namely, for two different

choices δ2, δ′2 ∈ ]0,
ηf
8 ], there exists hδ2,δ′2 > 0 such that the equality ΠGhdf,hTδ2 =

ΠGhdf,hTδ′2 holds for all h ∈ ]0, hδ2,δ′2 [.
Its singular values satisfy:

(91)
∀ℓ ∈ {1, . . . ,dimFh}, µℓ(ΠGhdf,f−1([a,b]),hTδ2 |Vh) = µℓ(δ[0,õ(1)],[a,b],h)(1+Õ(e−

δ1
h )).

Its kernel equals

(92) ker(ΠGhdf,hTδ2) = Span(φhj , j ∈ Y ∗(a, b) ∪ Z∗(a, b)).

In particular, when the non zero singular values of δ[0,õ(1)],[a,b],h are labeled

as (µhj )j∈X∗(a,b) with µhj
log∼ e−

yα−xα
h for j = (α, xα), the same result holds for

the δ2-independent operator ΠGhdf,hTδ2 .

Proof. — The Definition 6.1 of (φhj )j∈J ∗(a,b) and the Definition 6.2 of Tδ2 give

df,hTδ2φ
h
j = df,hφ

h
j = 0 if j ∈ Y ∗(a, b) ∪ Z∗(a, b),

and

df,hTδ2φ
h
j = 0 in f−1([a, yα − 2δ2]) ∪ f−1([yα − δ2, b]) if j = (α, xα) ∈ X∗(a, b).

We deduce firstly

ker(ΠGhdf,hTδ2) ⊃ Span(φhj , j ∈ Y ∗(a, b) ∪ Z∗(a, b)).

In the case j = (α, xα) ∈ X∗(a, b), the equality ΠGhdf,hTδ2 = ΠGhdf,hTδ′2 for h > 0

small enough is secondly a direct consequence of Proposition 3.9-i) applied around
the “critical value” yα, owing to supp df,hTδ2φ

h
j ⊂ f−1(]yα − ηf , yα[) and to

ΠGhdf,hTδ2φ
h
j = Π{0},[yα−ηf ,yα+ηf ]∩[a,b],hdf,hTδ2φ

h
j .

The Result (91) on singular values implies dim ker(ΠGhdf,hTδ2) = ♯Y ∗(a, b)∪Z∗(a, b)

and yields the equality (92). Let us now prove (91).
Consider the initial vector space Eh = Tδ2Vh = Span(Tδ2φ

h
j , j ∈ J ∗(a, b)) and the

mapping Bh = df,f−1([a,b]),h : Eh → L2(Ω) ⊂ L2(f ba). The distance to Vh is estimated
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by

(93) d⃗(Eh,Vh) + d⃗(Vh, Eh) = Õ(e−
ηf
h ) ≤ Õ(e−

δ1
h ).

With the factorization (88) stated in Theorem 6.3-c) and d⃗(Gh, Fh) + d⃗(Fh, Gh) =

Õ(e−
ηf
h ) with 2δ2 <

ηf
2 < ηf , we are exactly in the framework of Lemma 5.6 with

ϱ(h) = Õ(e
2δ2−ηf

h ). Therefore, df,f−1([a,b]),h|Eh is a left multiple of ΠGhdf,f−1([a,b]),h|Eh
with the commutative diagram

(94) Eh
Bh //

Π
Gh
Bh ##

L2(f ba)

Gh,

C̃h

OO

while C̃h = Ch(IdL2(fba)
+ Õ(e

2δ2−ηf
h )), and

ΠGhdf,f−1([a,b]),h|Eh = (IdL2(fba)
+ Õ(e

2δ2−ηf
h )) ΠFhdf,f−1([a,b],h)|Eh︸ ︷︷ ︸

=δ[0,õ(1)],[a,b],hΠ
Fh |

Eh

.

Using additionally Proposition 5.3 and the relation d⃗(Eh, Fh)+ d⃗(Fh, Eh) = Õ(e−
δ1
h )

arising from Theorem 6.3-b) and (93), this leads to

∀ℓ ∈ {1, . . . ,dimFh}, µℓ(ΠGhdf,f−1([a,b]),h|Eh) = µℓ(δ[0,õ(1)],[a,b],h)(1 + r(h)),

where r(h) = max(Õ(e
2δ2−ηf

h ), Õ(e−
2δ1
h )) ≤ Õ(e−

δ1
h ). The comparison (91)

for ΠGhdf,hTδ2 |Vh is then a consequence of

(95) ∥T ∗δ2Tδ2 − IdVh∥+ ∥Tδ2T ∗δ2 − IdEh∥ = Õ(e−
ηf
h ) = Õ(e−

δ1
h ).

Below are details about a useful block decomposition of the operator ΠGhdf,hTδ2 :

Vh → L2(Ω). Of course, there is the orthogonal block decomposition with respect to
the degre p according to ΠGhd

(p)
f,hTδ2 : V(p),h → L2(Ω; Λp+1T ∗M). But we consider

here a block decomposition according to the length of the bars, which correspond to
clusters of singular values. Again, we forget the degree p here. We need some notations.
Let

Xn(a, b) = {j = (α, xα) ∈ X∗(a, b), yα = c̃n} , 2 ≤ n ≤ N,(96)

Xm,n(a, b) = {j = (α, xα) ∈ Xn(a, b), xα = c̃m} , 1 ≤ m < n ≤ N,(97)

and consider the following Õ(e−
δ1
h )-orthogonal decompositions:

Vh
m,n = Span(φhj , j ∈ Xm,n(a, b)) for 1 ≤ m < n ≤ N,(98)

Vh
n =

n−1⊕
m=1

Vh
m,n = Span(φhj , j ∈ Xn(a, b)) for 2 < n ≤ N,(99)
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Vh
+ =

N⊕
n=2

Vh
n,(100)

Vh
0 = Span(φhj , j ∈ Y ∗(a, b) ∪ Z∗(a, b)) = ker(ΠGhdf,hTδ2 |Vh),(101)

Vh = Vh
+ ⊕Vh

0 ,(102)

with ΠGhdf,hTδ2Vh
n ⊂ ker(∆f,f−1([c̃n−ηf ,c̃n+ηf ]∩[a,b]),h),

while Gh =
⊥
⊕n∈{1,...,N} ker(∆f,f−1([c̃n−ηf ,c̃n+ηf ]∩[a,b]),h)︸ ︷︷ ︸

=:Ghn

.(103)

Proposition 6.5. — Under the assumptions of Proposition 6.4 and with the notations
(98)–(103), the operator ΠGhdf,hTδ2 |Vhm,n

: Vh
m,n → Ghn is, for 1 ≤ m < n ≤ N , one

to one, and, when dim Vh
m,n ̸= 0, its singular values all satisfy µh log∼ e−

c̃n−c̃m
h .

Moreover, the non zero singular values of ΠGhdf,hTδ2 : Vh → L2(Ω) (resp.
of ΠGhn

df,hTδ2 |Vhn
: Vh

n → L2(Ω), where n ∈ {2, . . . , N} is fixed) are obtained by col-
lecting all those non zero singular values for 1 ≤ m < n ≤ N (resp. for 1 ≤ m < n),
with an Õ(e−

δ1
h ) relative error.

Proof. — For every 1 ≤ m < n ≤ N such that Xm,n(a, b) ̸= ∅, the composition of the
exponential decay estimates on the φhj given in (84), j ∈ Xm,n(a, b), and on the ele-
ments of any orthonormal basis (ψhk )1≤k≤Kn of Ghn = ker(∆f,f−1([c̃n−ηf ,c̃n+ηf ]∩[a,b]),h)

leads to

(104) ∀u ∈ Vh
m,n, ∥ΠGhdf,hTδ2u∥ = Õ(e−

c̃n−c̃m
h )∥u∥.

Let us now prove by reductio ad absurdum that for all 1 ≤ m < n ≤ N such that
Xm,n(a, b) ̸= ∅,

∀u ∈ Vh
m,n, ∥u∥ = Õ(e

c̃n−c̃m
h )∥ΠGhdf,hTδ2u∥.

Let us then assume that there exist ε1 > 0, 1 ≤ m0 < n0 ≤ N , a strictly decreasing
sequence (hk)k∈N converging to 0 and, for every k ∈ N, uhk ∈ Vhk

m0,n0
\ {0} such that

(105) ∥ΠGhk df,f−1([a,b]),hkTδ2uhk∥ ≤ e
− c̃n0

−c̃m0
+ε1

hk ∥uhk∥.
Without restriction, we choose the pair (m0, n0) among the pairs for which (105)
holds such that λ0 := c̃n0

− c̃m0
is minimal. Set

ℓ := ♯
{

(m,n) ∈ {1, . . . , N}2 ,m < n,Xm,n(a, b) ̸= ∅ and c̃n − c̃m ≤ λ0

}
.

Theorem 6.3-a) says that the ℓ-th singular value of δ[0,õ(1)],[a,b],h and therefore, with
(91), the ℓ-th singular value of ΠGhdf,f−1[a,b],hTδ2 |Vh satisfy

lim
h→0
−h logµℓ(ΠGhdf,f−1([a,b]),hTδ2 |Vh) = lim

h→0
−h logµℓ(δ[0,õ(1)],[a,b],h) = λ0.
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By using in addition the Õ(e−
δ1
h )-orthogonal decomposition

Vh = Vh
+ ⊕Vh

0 with Vh
0 = ker(ΠGhdf,f−1([a,b]),hTδ2 |Vh),

applying Proposition 5.4-b) gives

lim
h→0
−h logµℓ(ΠGhdf,f−1([a,b]),hTδ2 |Vh+

) = lim
h→0
−h logµℓ(δ[0,õ(1)],[a,b],h) = λ0.

Because Vh
+ is finite dimensional, dim Vh

+ = ♯X∗(a, b), the max-min principle implies

µℓ(ΠGhdf,hTδ2 |Vh+
) = min

dimW=♯X∗(a,b)−ℓ+1
max

v∈W\{0}

∥ΠGhdf,hTδ2v∥
∥v∥

.

We obtain a contradiction by considering

W =

( ⊕
c̃n−c̃m>λ0

Vhk
m,n

)
⊕ Cuhk .

This ends the proof of the first statement.
By applying again Proposition 5.4-b) with now B = ΠGhdf,hTδ2 acting on Vh

+, the
singular values of ΠGhdf,hTδ2 |Vh+

are obtained, modulo some Õ(e−
δ1
h ) relative error,

by collecting all the singular values of ΠGhn
df,hTδ2 |Vhn

, n ∈ {2, . . . , N}. Actually,

Ghn ⊥ Ghn′ and Vh
n and Vh

n′ are Õ(e−
δ1
h )-orthogonal for n ̸= n′. This re-

duces the problem to the computation of the singular values of ΠGhn
df,hTδ2 |Vhn

.
For n ∈ {2, . . . , N}, we solve it by reverse induction on m ∈ {1, . . . , n− 1} by
considering

⊕
m≤m′<n Vh

m′,n. Simply apply Proposition 5.4-c) with

E′
h

=
⊕

m≤m′<n

Vh
m,n, µdimE′h(ΠGhn

df,hTδ2 |E′h)
log∼ e−

c̃n−c̃m
h ,

E′′
h

= Vh
m−1,n, ∥ΠGhn

df,hTδ2 |E′′h∥

= Õ(e−
c̃n−c̃m−1

h ) ≤ Õ(e−
c̃n−c̃m+2ηf

h ) ≤ Õ(e−
c̃n−c̃m+δ1

h ),

by starting from the first case when dimE′
h ̸= 0. This implies that the non zero sin-

gular values of ΠGhn
df,hTδ2 :

⊕
m−1≤m′<n Vh

m′,n are obtained, modulo some Õ(e−
δ1
h )

relative error, by collecting the non zero singular values of ΠGhn
df,hTδ2 |Vh

m′,n
for

m− 1 ≤ m′ < n. This ends the proof of the second statement.

Proposition 6.6. — Assume that Theorem 6.3 holds true at step N and let Gh be
defined by (89). There exists a basis (ϕhj )j∈J ∗(a,b) of Vh such that the ϕhj ’s satisfy the
same properties as the φhj ’s, that is the ones of Definition 6.1 and of Theorem 6.3, as
well as the additional following one:

Ψh
j ⊥ Ψh

j′ for j ̸= j′,(106)

where Ψh
j = ΠGhdf,hTδ2ϕ

h
j .(107)
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In particular, according to Proposition 6.5, the singular values of

ΠGhdf,hTδ2 : Vh → L2(Ω)

are given by the numbers ∥Ψh
j ∥L2(1 + Õ(e−

δ1
h )), j ∈ J ∗(a, b), where ∥Ψh

j ∥L2
log∼ e−

yα−xα
h

when j = (α, xα) ∈ X∗(a, b).

Proof. — We keep ϕhj = φhj if j ∈ Y ∗(a, b)∪Z∗(a, b). Because Ghn ⊥ Ghn′ for n ̸= n′ and
ΠGhdf,hTδ2Vh

n ⊂ Ghn for 2 ≤ n ≤ N , it suffices to construct the family (ϕhj )j∈Xn(a,b) for

any n ∈ {2, . . . , N}. Take some fixed n ∈ {2, . . . , N}. While keeping the Õ(e−
δ1
h )-or-

thogonal decomposition
Vh
n =

⊕
1≤m<n

Vh
m,n,

the first result of Proposition 6.5 says that, for a fixed pair (m,n), the Õ(e−
δ1
h )-or-

thonormal basis (φhj )j∈Xm,n(a,b) can be replaced by an orthonormal one (φ̃hj )j∈Xm,n(a,b)

such that

ΠGhn
df,hTδ2 φ̃

h
j ⊥ ΠGhn

df,hTδ2 φ̃
h
j′ for j ̸= j′, j, j′ ∈ Xm,n(a, b)

and ∥ΠGhn
df,hTδ2 φ̃

h
j ∥

log∼ e−
c̃n−c̃m

h for j ∈ Xm,n(a, b).

Because the change of basis Phm,n ∈ L (Vh
m,n) given by φ̃hj = Phm,nφ

h
j satisfies

∥(Phm,n)∗Phm,n − IdhVm,n∥ = Õ(e−
δ1
h ),

the new family (φ̃hj )j∈Xm,n(a,b) keeps all the properties of the initial one (φhj )j∈Xm,n(a,b).
In Theorem 6.3 at step N , nothing is changed when the φhj , j ∈ Xm,n(a, b), are
replaced by the φ̃hj , j ∈ Xm,n(a, b), and this can be done for all pairs (m,n) and with
any initial guess of the family (φhj )j∈J ∗(a,b).

Thus, it suffices to construct the family (ϕhj )j∈Xn(a,b) such that (106) and (107)
hold when j ∈ Xm1,n(a, b), j′ ∈ Xm2,n(a, b), m1 ̸= m2. Like at the end of the previous
proof, we do it by reverse induction on m ∈ {1, . . . , n− 1}.

— For m = n− 1, simply take ϕhj = φ̃hj and set

Wh
n−1,n = Span(ϕhj , h ∈ Xn−1,n(a, b)) = Vh

n−1,n.

— Assume that the ϕhj ’s have been constructed for j ∈ Xm′,n(a, b), for all
m′ ∈ {m, . . . , n− 1}, with Wh

m′,n = Span(ϕhj , j ∈ Xm′,n(a, b)) and the equality

of the Õ(e−
δ1
h )-orthogonal decompositions⊕

m≤m′<n

Wh
m′,n =

⊕
m≤m′<n

Vh
m′,n.

Set, for j ∈ Xm−1,n(a, b),

φ̂hj = φhj −
∑

j′∈
⊔
m≤m′<nXm′,n(a,b)

⟨Ψh
j′ ,ΠGhn

df,hTδ2φ
h
j ⟩

∥Ψh
j′∥2

ϕhj′ ,
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and define
Wh
m−1,n := Span(φ̂hj , j ∈ Xm−1,n(a, b)).

We have clearly

ΠGhn
df,hTδ2 φ̂

h
j ⊥ Span(Ψh

j′ , j
′ ∈ Xm′,n(a, b),m ≤ m′ < n)

and ⊕
m−1≤m′<n

Vh
m′,n = Wh

m−1,n ⊕

 ⊕
m≤m′<n

Vh
m′,n

 .

All the properties of Theorem 6.3 at step N are verified for the δ1-family of
quasimodes given by the φ̂hj , j ∈ Xm−1,n(a, b), and the ϕhj , j ∈ Xm′,n(a, b). The
estimates on φ̂hj , j ∈ Xm−1,n(a, b), are consequences of:

Ψh
j′ = ΠGhn

df,hϕ
h
j′ ∈ ker(∆f,f−1([c̃n−ηf ,c̃n+ηf ]∩[a,b]),h)

for j′ ∈
⊔
m≤m′<nXm′,n(a, b), where ∥Ψh

j′∥L2
log∼ e−

c̃n−c̃m′
h when j′ ∈ Xm′,n(a, b)

and
⟨Ψh

j′ ,ΠGhn
df,hTδ2φ

h
j ⟩

∥Ψh
j′∥2

= Õ(e
c̃n−c̃m′

h )× Õ(e−
c̃n−c̃m−1

h ) = Õ(e−
c̃
m′−c̃m−1

h ),

∥e
|f−c̃

m′ |
h ϕhj′∥W (f−1([a,b])\Sδ1 ) = Õ(1), c̃m′ − c̃m−1 ≥ 2ηf ≥ δ1.

Hence, the vectors φ̂hj , j ∈ Xm−1,n(a, b), satisfy

∥e
|f−c̃m−1|

h φ̂hj ∥W (f−1([a,b])\Sδ1 ) = Õ(1).

Note in particular that the total space Vh is not changed, so the statement of
Theorem 6.3-b) and the factorization in Theorem 6.3-c) are obviously true.

Once we have the Õ(e−
δ1
h )-orthogonal decomposition

Vh
+ =

 ⊕
m−1≤m′<n

Wh
m′,n

⊕
 ⊕

1≤m′<m−2

Vh
m′,n

 ,

we just apply our first argument with Vh
m−1,n now replaced by Wh

m−1,n, which
permits to replace the Õ(e−

δ1
h )-orthonormal basis (φ̂hj )j∈Xm−1,n(a,b) of Wh

m−1,n

by an orthonormal basis (φ̃hj )j∈Xm−1,n(a,b) such that

ΠGhn
df,hTδ2 φ̃

h
j ⊥ ΠGhn

df,hTδ2 φ̃
h
j′ for j ̸= j′, j, j′ ∈ Xm−1,n(a, b).

We finally define ϕhj = φ̃hj for j ∈ Xm−1,n(a, b).

6.4. N → N + 1: Collecting the information from step N

We assume that Theorem 6.3 holds at step N , i.e., when ♯([a, b] ∩
{
c1, . . . , cNf

}
) = N ,

and we consider the case

[a, b] ∩
{
c1, . . . , cNf

}
= {c̃1, . . . , c̃N+1} .
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Define
a1 = a, b1 = c̃N + ηf and a2 = c̃2 − ηf , b2 = b.

We can use Theorem 6.3 and its consequences given in Subsection 6.3 for

[a1, b1]∩
{
c1, . . . , cNf

}
= {c̃1, . . . , c̃N} and [a2, b2]∩

{
c1, . . . , cNf

}
= {c̃2, . . . , c̃N+1} .

Let us start with the interval [a2, b2]. Consider ∆f,Ω2,h
and let Gh2 and Fh2 be defined

like Gh and Fh in (90) and (89) while replacing (a, b) by (a2, b2), with

Gh2 =

⊥⊕
2≤n≤N+1

Gh2,n =
⊕

2≤n≤N+1

ker(∆f,f−1([c̃n−ηf ,c̃n+ηf ]∩[a,b]),h).

For this interval [a2, b2], the family of quasimodes (ϕh2,j)j∈J ∗(a2,b2) is given by Propo-
sition 6.6 with the orthogonality condition (106),(107), and we set

Wh
m,n(a2, b2) = Span(ϕh2,j , j ∈ Xm,n(a2, b2)), 2 ≤ m < n ≤ N + 1.

For the interval [a1, b1], we use similar notations ∆f,Ω1,h
, Gh1 , Fh1 with now

Gh1 =

⊥⊕
1≤n≤N

Gh1,n =
⊕

1≤n≤N

ker(∆f,f−1([c̃n−ηf ,c̃n+ηf ]∩[a,b]),h).

We start with a family of quasimodes

(108) (φh0,j)j∈J ∗(a1,b1)

given by Theorem 6.3 and merge this family with (ϕh2,j)j∈J ∗(a2,b2)∩J ∗(a1,b1), after
considering the restrictions ϕ2,j |f−1([a2,b1])

extended by 0 in fa2
a1=a, according to the

following procedure:

φh1,j = ϕh2,j if j ∈ (α, c̃) ∈ J ∗(a1, b1), c̃ ≥ c̃2,

φh1,j = φh0,j if j ∈ (α, c̃1) ∈ Z∗(a1, b1),

φh1,j = φh0,j −
∑

j′∈X∗(a2,b2)∩X∗(a1,b1)

⟨Ψh
2,j′ ,ΠGh2

df,hTδ2φ
h
0,j⟩

∥Ψh
2,j′∥2

ϕh2,j′ if j = (α, c̃1) ∈ X∗(a1, b1),

with Ψh
2,j′ = ΠGh2

df,hTδ2ϕ
h
2,j′ = ΠGh1

df,hTδ2φ
h
1,j′ for j′ ∈ X∗(a2, b2) ∩ X∗(a1, b1),

where we recall that j = (α, c̃) ∈ X∗(a2, b2) ∩X∗(a1, b1) means c̃2 ≤ xα < yα ≤ c̃N .

Remark 6.7. — Assume that γ1(h), (φ
h
1,j)j∈J ∗(a1,b1) and γ2(h), (φ

h
2,j)j∈J ∗(a2,b2) are

given by Theorem 6.3 and Definition 6.1 at step N , respectively in [a1, b1] and
in [a2, b2]. Let us then define γ(h) := max(γ1(h), γ2(h)) and, for i ∈ {1, 2},

φ̃hi,j :=

{
φhi,j when j ∈ Y ∗(ai, bi) ∪ Z∗(ai, bi),

χ
y
(p+1)
α ,γ(h)

φhi,j when j = (α, x
(p)
α ) ∈ X (p)(ai, bi), p ∈ {0, . . . , N − 1},

where χ
y
(p+1)
α ,γ(h)

is defined by (86) in Definition 6.2. Then, the families (φ̃h1,j)j∈J ∗(a1,b1)

and (φ̃h2,j)j∈J ∗(a2,b2) both satisfy the properties of Theorem 6.3 and Definition 6.1,
respectively in [a1, b1] and in [a2, b2], but now with the same γ(h). Hence, we will
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assume here that the properties of the families (ϕh2,j)j∈J ∗(a2,b2) and (φh0,j)j∈J ∗(a1,b1)

are satisfied with the same γ(h).

The spaces generated by those quasimodes are denoted by

Vh(a1, b1) = Span(φh1,j , j ∈ J ∗(a1, b1)) and Vh(a2, b2) = Span(ϕh2,j , j ∈ J ∗(a2, b2)),

and the same rule applies for Vh
m,n, Vh

n, 1 ≤ m < n ≤ N + 1, Vh
+, Vh

0 defined in
(98)–(101), while writing Wh

m,n(a2, b2) instead of Vh
m,n(a2, b2) refers to the additional

orthogonality property of Proposition 6.6.

Proposition 6.8. — The family (φh1,j)j∈J ∗(a1,b1) satisfies all the properties of Theo-
rem 6.3 at step N . Moreover, the family (ϕ1,j)j∈J ∗(a1,b1) deduced from (φh1,j)j∈J ∗(a1,b1)

in Proposition 6.6 can be constructed such that

∀j ∈ X∗(a1, b1) ∩X∗(a2, b2), ϕh1,j = ϕh2,j .

Proof. — By construction (and Remark 6.7), the family (φh1,j)j∈J ∗(a1,b1) is a

Õ(e−
δ1
h )-orthonormal δ1-family of quasimodes, and Gh1,n = Gh2,n for 2 ≤ n ≤ N and

d⃗(Span(φh0,j , j ∈ J ∗(a1, b1)), F
h
1 ) + d⃗(Fh1 ,Span(φh0,j , j ∈ J ∗(a1, b1)) = Õ(e−

δ1
h ),

d⃗(Vh(a2, b2), F
h
2 ) + d⃗(Fh2 ,V

h(a2, b2)) = Õ(e−
δ1
h ),

d⃗(Fh1 , G
h
1 ) + d⃗(Gh1 , F

h
1 ) = Õ(e−

ηf
h ) ≤ Õ(e−

δ1
h ),

and d⃗(Fh2 , G
h
2 ) + d⃗(Gh2 , F

h
2 ) = Õ(e−

ηf
h ) ≤ Õ(e−

δ1
h )

ensure the validity of the last statement of b) in Theorem 6.3, that is

d⃗(Vh(a1, b1), F
h
1 ) + d⃗(Fh1 ,V

h(a1, b1)) = Õ(e−
δ1
h ).

The exponential decay estimates on the φh1,j , j = (α, c̃1) ∈ X∗(a1, b1), are actually
obtained like in the proof of Proposition 6.6 by noticing that

∀j ∈ X1,n(a1, b1), φh1,j = φh0,j −
∑

j′∈
⊔

2≤m′<n≤NXm′,n(a2,b2)

⟨Ψh
2,j′ ,ΠGh2,n

df,hTδ2φ
h
0,j⟩

∥Ψh
2,j′∥2

ϕh2,j′ ,

where Gh1,n = Gh2,n for 3 ≤ n ≤ N and

Ψ2,j′ = ΠGh2,n
df,hTδ2ϕ

h
2,j′ = ΠGh1,n

df,hTδ2φ
h
1,j′ for j′ ∈ Xm′,n(a1, b1), 2 ≤ m′ < n ≤ N.

We still have to check the factorization of Theorem 6.3-c), namely

df,f−1([a1,b1])hTδ2 |Vh(a1,b1)
= ChΠFh1

df,f−1([a1,b1]),hTδ2 |Vh(a1,b1)
with ∥Ch∥ = Õ(e

2δ2
h ).

We will do it by first considering the operator ΠGh1
df,hTδ2 .

From the properties of the φh1,j , j ∈ J ∗(a1, b1), we already know that (see indeed
(104))

∥ΠGh1
df,hTδ2 |Vhm,n(a1,b1)

∥ = Õ(e−
c̃n−c̃m

h ) and Vh
0 (a1, b1) ⊂ ker(df,hTδ2).
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We now check that ΠGh1
df,hTδ2 |Vhm,n(a1,b1)

is one to one and that its singular values,

which thus do not vanish, all satisfy µh
log∼ e−

c̃n−c̃m
h for every 1 ≤ m < n ≤ N such

that Xm,n(a1, b1) ̸= ∅:

— Since the vectors Ψh
2,j = ΠGh1

df,hTδ2ϕ
h
2,j = ΠGh2

df,hTδ2ϕ
h
2,j are, according to

Proposition 6.6 applied in [a2, b2], mutually orthogonal with ∥Ψh
2,j∥

log∼ e−
c̃n−c̃m

h

when j ∈ Xm,n(a1, b1), 2 ≤ m < n ≤ N , the result holds for m ≥ 2.
— Case m = 1: as in the proof of Proposition 6.5, assume by reductio ad absurdum

that there exist 2 ≤ n ≤ N , a strictly decreasing sequence (hk)k∈N converging
to 0 and, for every k ∈ N, uhk ∈ Vhk

1,n(a1, b1) \ {0} such that

∥Π
G
hk
1

df,hkTδ2uhk∥ = õ(e
− c̃n−c̃1

hk )∥uhk∥,

and let n0 ∈ {2, . . . , N} be the smallest n such that the above holds. Consider
then

E′′hk = (Cuhk)⊕Vhk
0 (a1, b1)⊕

 ⊕
c̃n−c̃m>c̃n0

−c̃1

Vhk
m,n(a1, b1)

 ,

so that

dim Vhk(a1, b1)− dim(E′′hk) = ♯

(⊔
c̃n−c̃m≤c̃n0

−c̃1
Xm,n(a1, b1)

)
− 1 =: ℓ0 − 1.

Owing to the exponential decay estimates on the quasimodes, we obtain

(109) ∥df,hkTδ2 |E′′hk ∥ = Õ(e
− c̃n0

−c̃1−2δ2
hk )

and (see (104))

∥Π
G
hk
1

df,hkTδ2 |E′′hk ∥ = õ(e
− c̃n0−c̃1

hk ).

Since moreover ∥ΠFh1
−ΠFh1

ΠGh1
∥ = Õ(e−

ηf
h ), we deduce ∥Π

F
hk
1

df,hkTδ2 |E′′hk ∥ =

õ(e
− c̃n0

−c̃1
hk ) and then, applying the max-min principle as in the proof of Propo-

sition 6.5 with here W = E′′hk ,

µℓ0(ΠF
hk
1

df,hkTδ2 |Vhk (a1,b1)
) = õ(e

− c̃n0
−c̃1
hk ).

Hence, since Tδ2 is Õ(e−
δ1
h )-unitary (see (95)) and

d⃗(Fh1 , Tδ2Vh(a1, b1)) + d⃗(Tδ2Vh(a1, b1), F
h
1 ) = Õ(e−

δ1
h )

(see (93)), it follows from Proposition 5.3 that

µℓ0(Π[0,õ(1)],[a1,b1],hkdf,f−1([a1,b1]),hk) = õ(e
− c̃n0−c̃1

hk )

with ℓ0 = ♯
(⊔

c̃n−c̃m≤c̃n0
−c̃1Xm,n(a1, b1)

)
, in contradiction with Theo-

rem 6.3-a) in [a1, b1].
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Because the spaces Vh
m,n(a1, b1) have mutually orthogonal images by ΠGh1

df,hTδ2 , i.e.,

ΠGh1
df,hTδ2Vh

m1,n1
(a1, b1) ⊥ ΠGh1

df,hTδ2Vh
m2,n2

(a1, b1) for (m1, n1) ̸= (m2, n2),

we can conclude like at the end of the proof of Proposition 6.6 that there exists a
basis (ϕh1,j)j∈J ∗(a1,b1) such that (106) and (107) hold, and in which nothing needs to
be changed when j ∈ X∗(a2, b2).

It follows from the above analysis that ΠGh1
df,hTδ2 |Vh+(a1,b1)

is one to one, and

the factorization df,hTδ2 = C̃hΠGh1
df,hTδ2 is then satisfied with C̃h : Gh1 → L2(f b1a1

)

defined by C̃h = 0 on the orthogonal complement of ΠGh1
df,hTδ2

(
Vh

+(a1, b1)
)

in Gh1
and

∀j ∈ X∗(a1, b1), C̃hΨh
1,j = df,hTδ2ϕ

h
1,j .

Moreover, the relation ∥C̃h∥ = Õ(e
2δ2
h ) follows from the orthogonality of the family

(Ψh
1,j)j∈X∗(a1,b1) and from ∥Ψh

1,j∥
log∼ e

yα−xα
h and ∥df,hTδ2ϕh1,j∥ = Õ(e−

yα−xα−2δ2
h )

for j = (α, c̃) ∈ X∗(a1, b1) (see (109)).
Finally, applying the symmetric version of Lemma 5.6, that is exchanging Fh and

Gh, yields the factorization df,hTδ2 = ChΠFh1
df,hTδ2 : Vh(a1, b1)→ L2(f b1a1

) stated in
Theorem 6.3-c).

We have now spaces Wh
m,n(a1, b1), 1 ≤ m < n ≤ N , and Wh

m,n(a2, b2),
2 ≤ m < n ≤ N + 1, such that

Wh
m,n(a1, b1) = Wh

m,n(a2, b2) when 2 ≤ m < n ≤ N.

We now work in the interval [a, b] and we consider ∆f,Ω,h, G
h, and Fh according to

(90) and (89), after replacing N by N +1 and {c̃1, . . . , c̃N} by {c̃1, . . . , c̃N+1}. We set

Wh
m,n(a, b) =


Wh
m,n(a2, b2) = Span(ϕh2,j , j ∈ Xm,n(a2, b2))

for 2 ≤ m < n ≤ N + 1,

Wh
1,n(a1, b1) = Span(ϕh1,j , j ∈ X1,n(a1, b1))

for 1 = m < n ≤ N,

(110)

V′h
0 (a, b) = Span(ϕh2,j , j ∈ Y ∗(a2, b2) ∪ Z∗(a2, b2)),(111)

and V′h(a, b) = (
⊕

0<n−m≤N−1

Wh
m,n(a, b))︸ ︷︷ ︸

V′h+

⊕V′h
0 .(112)

Accordingly, we introduce

J ∗′
+ (a, b) = X∗(a2, b2) ⊔ (

⊔
2<n≤N

X1,n(a1, b1)) =
⊔

0<n−m≤N−1
Xm,n(a, b),(113)

J ∗′
0 (a, b) = Y ∗(a2, b2) ⊔ Z∗(a2, b2) and J ∗′(a, b) = J ∗′

+ (a, b) ⊔ J ∗′
0 (a, b),(114)
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φhj = ϕhj =


ϕh2,j if j = (α, c̃) ∈ J ∗′

+ (a, b), c̃2 ≤ c̃,
ϕh2,j if j ∈ J ∗′

0 (a, b),

ϕh1,j if j = (α, c̃1) ∈ J ∗′
+ (a, b).

(115)

In the perspective of applying Proposition 5.8, we now consider the space
E′h = Tδ2V′h.

Proposition 6.9. — With the notation (112), consider E′h = Tδ2V′h(a, b),
E′h0 = Tδ2V′h

0 (a, b), and let Gh be defined by (89) with N replaced by N + 1.
The operator ΠGhdf,f−1([a,b])h|E′h satisfies

rank (ΠGhdf,h|E′h) = ♯J ′
+(a, b) =: ℓ1

and ker(ΠGhdf,f−1([a,b])h|E′h) = E′h0 ,

and its non zero singular values can be written (µhj )j∈J ∗′+ (a,b) with

µhj
log∼ e−

yα−xα
h for every j = (α, xα) ∈ J ∗′

+ (a, b).

In particular, its ℓ1-th singular value satisfies

e−
max(c̃N+1−c̃2,c̃N−c̃1)

h = Õ
(
µℓ1(ΠGhdf,f−1([a,b]),h|E′h)

)
.

Moreover, the operator df,f−1([a,b]),h|E′h is a left multiple of ΠGhdf,f−1([a,b]),h|E′h :

E′h
df,f−1([a,b]),h //

Π
Gh
df,f−1([a,b]),h

**

L2(f−1([a, b]))

Gh,

C̃h

OO

where the diagram is commutative and ∥C̃h∥ = Õ(e
2δ2
h ).

Finally, the same results hold when Gh is replaced by Fh = F[0,õ(1)],[a,b],h.

Proof. — The basis (ϕhj )j∈J ∗′(a,b) of V′h(a, b) defined in (115) (note that the inclusion
J ∗′(a, b) ⊂ J ∗(a, b) is strict in general) has been constructed so that it is a partial
δ1-family of quasimodes in the sense of Definition 6.1, with the additional orthogo-
nality property (106),(107). Moreover, we know that (see indeed Proposition 6.6)

∥Ψh
j ∥ = ∥ΠGhdf,f−1([a,b]),hTδ2ϕ

h
j ∥L2

log∼ e−
yα−xα

h(116)

when j = (α, xα) ∈ J ∗′
+ (a, b), and

Ψh
j = ΠGhdf,hTδ2ϕ

h
j = 0 when j ∈ J ∗′

0 (a, b).(117)

Again, with (see (95))

∥Tδ2T ∗δ2 − IdE′h∥+ ∥T ∗δ2Tδ2 − IdVh∥ = Õ(e−
ηf
h ),

this proves the results about the rank, the kernel, and the singular values
of ΠGhdf,f−1([a,b]),h|E′h .
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Moreover, reasoning with the orthogonality of the family (Ψh
j )j∈J ∗′(a,b) and (116),

(117), like at the end of the proof of Proposition 6.8, leads to the factorization

C̃hΠGhdf,f−1([a,b]),hTδ2 |V′h(a,b)
= df,f−1([a,b]),hTδ2 |V′h(a,b)

with ∥C̃h∥ = Õ(e
2δ2
h ). We conclude with the invertibility of Tδ2 : V′h(a, b)→ E′h.

Finally, replacing Gh by Fh simply relies on Lemma 5.6 used as we did around (94).

6.5. N → N + 1: Handling the bars containing [c̃1, c̃N+1[

We continue in the framework of the previous paragraph with

[a, b] ∩
{
c1, . . . , cNf

}
= {c̃1, . . . , c̃N+1}

and
a1 = a, b1 = c̃N + ηf , a2 = c̃2 − ηf , b2 = b.

We use the partition
J ∗(a, b) = J ∗′(a, b) ⊔ J ∗′′(a, b),

where J ∗′(a, b) is defined in (114) and

J ∗′′(a, b) = {j = (α, c̃1) ∈ X∗(a, b), yα = c̃N+1} ⊔ {j = (α, c̃1) ∈ Z∗(a, b)}(118)

= {j = (α, c̃1) ∈ Z∗(a1, b1)} = J ∗(a1, b1) \ (J ∗(a1, b1) ∩ J ∗′(a, b)).

If we remember that (α, c̃) ∈ Z∗(a, b) can be represented by the bar [c̃, b[, the
set J ∗′′(a, b) actually collects the lower endpoints (which are multiple copies of c̃1)
of bars containing [c̃1, c̃N+1[. Thus, the partition of J ∗(a, b) and the identifications
of J ∗′′(a, b) are clear. In the preceding section, we started with a δ1-family of quasi-
modes (φh0,j)j∈J ∗(a1,b1) in the interval [a1, b1] = [a, c̃N +ηf ] (see (108)), and only used
for the construction of E′h in Proposition 6.9, among the corresponding j ∈ J ∗(a1, b1),
the indexes j ∈ J ∗(a1, b1) ∩ J ∗′(a, b) (see (115)). We now use the vectors φh0,j
for j ∈ J ∗′′(a, b).

Proposition 6.10. — The vectors φh0,j, j ∈ J ∗′′(a, b), introduced in (108), where
b1 = c̃N + ηf , can be “extended” to f−1([a, b2]) into vectors φhj ∈ D(df,f−1([a,b2]),h)

such that φhj |f c̃N+δ1
a

= φh0,j |f c̃N+δ1
a

and such that all the properties of Definition 6.1

hold on the interval [a, b] = [a1, b2] with Ihj = [c̃1−δ1, c̃N+1−γ′′(h)], limh→0 γ
′′(h) = 0.

Proof. — For j ∈ J ∗′′(a, b), j has the form j = (α, c̃1) ∈ Z∗(a1, b1) and the
vector φh0,j then satisfies the support condition (83) (that is more precisely
supp φh0,j ⊂ f−1([c̃1 − δ1, b1] ∩ [a1, b1])), the exponential decay estimate (84) with a, b
replaced by a1 = a, b1 = c̃N+ηf , and φh0,j ∈ ker(df,f−1([a1,b1]),h). For any γ ∈ ]0, ηf/2[,
we consider the domain [c̃N +δ1, c̃N+1−γ] and we consider c̃N +ηf as a new artificial
“critical value,” for which we know

ker(∆f,f−1([c̃N+δ1,c̃N+1−γ]),h) = {0} .
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We then apply Proposition 3.9-ii) with a0, a, c̃1, b there replaced here by c̃1,
c̃N + δ1, c̃N + ηf , c̃N+1 − γ and ωh replaced by φh0,j . This provides us a new
ω̃j,h ∈ D(df,f−1([a,c̃N+1−γ]),h) which satisfies (83)–(85), now on [a, c̃N+1 − γ] with
Ihj = [c̃1 − δ1, c̃N+1 − γ]. With the cut-off χc̃N+1,γ defined like in Definition 6.2, set

φγ,hj = χcN+1,γω̃j,h ∈ D(df,f−1([a,b2]),h).

It does satisfy, on the interval [a, b2], the conditions (83)–(85) with Ihj and γ(h) there
replaced by [a, c̃N+1 − 2γ] and 2γ.

For n ∈ N, take γ = 1
n+1 . The estimate Bh = Õ(Ah) implies Bh ≤ e

1
(n+1)hAh

for h ∈ ]0, hn[, and (hn)n∈N can be chosen to be strictly decreasing. We then adjust
γ′′(h) = 2γ = 2

n+1 for h ∈ [hn+1, hn[ as we did at the end of the proof of Proposi-
tion 3.8. This ends the proof.

Remark 6.11. — In the construction of Proposition 3.9-ii), we used the extension by 0,
here on f c̃N+δ1

a , of

d∗f,f−1([c̃N+δ1,c̃N+1−γ]),h(∆f,f−1([c̃N+δ1,c̃N+1−γ]),h)
−1(hdχh ∧ φh0,j).

Because of this, the point c̃N + δ1 must be included in the set Sδ1 introduced in
Definition 6.1.

When the family (φhj )j∈J ′′(a,b) is given by Proposition 6.10, the operator Tδ2 is
defined on Span(φhj , j ∈ J ∗′′(a, b)) by

∀j ∈ J ∗′′(a, b), Tδ2φ
h
j = χc̃N+1,δ2φ

h
j ,

like in Definition 6.2 when j ∈ X∗(a, b). Moreover, following the procedure of Re-
mark 6.7, we can assume without loss of generality that γ′′(h), given by Proposi-
tion 6.10, equals γ(h), considered in Chapter 6.4 (see Remark 6.7). Now, the orthog-
onalization process of Proposition 6.6 can be continued by setting
(119)

∀j ∈ J ∗′′(a, b), φ̂hj = φhj −
∑

j′∈
⊔

2≤m′≤NXm′,N+1(a,b)

⟨Ψh
2,j′ ,ΠGh2,N+1

df,hTδ2φ
h
j ⟩

∥Ψh
2,j′∥2

ϕh2,j′ ,

where ϕh2,j′ = ϕhj′ (see (115)) and ΠGh2,N+1
= ΠGhN+1

. Moreover, without know-
ing the singular values of ΠGhN+1

df,hTδ2 |Span(φ̂hj ,j∈J ∗′′(a,b))
, we can replace the basis

(φ̂hj )j∈J′′(a,b) by an orthonormal basis (ϕhj )j∈J ∗′′(a,b) such that ΠGhN+1
df,hTδ2ϕ

h
j = Ψh

j ,
with Ψh

j ⊥ Ψh
j′ when j ̸= j′, j, j′ ∈ J ∗′′(a, b), without changing its characteristic prop-

erties.
The construction of the new quasimode basis at step N + 1 is almost achieved, ex-

cept that the family (φhj )j∈J ∗(a,b) is not exactly a δ1-family of quasimodes in the
sense of Definition 6.1. In fact, we have not distinguished the endpoints of bars
j ∈ X1,N+1(a, b) from the endpoints j = (α, c̃1) ∈ Z∗(a, b) in (118). For this reason,
we prefer to introduce a different notation.
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Definition 6.12. — The family (φ̃hj )j∈J ∗(a,b), where we keep the notation φhj = φ̃hj
for j ∈ J ∗′(a, b), is called an intermediate δ1-family of quasimodes if the following
conditions are satisfied:

1. It is Õ(e−
δ1
h )-orthonormal like in Theorem 6.3 and all the properties

of δ1-quasimodes in Definition 6.1 are verified, with the only difference that
Ihj = [c̃1 − δ1, c̃N+1 − γ(h)] for all j ∈ J ∗′′(a, b).

For such a family, we set Ṽh(a, b) = Span(φ̃hj , j ∈ J ∗(a, b)), and the operator
Tδ2 : Ṽh(a, b)→ D(df,f−1([a,b]),h) keeps the same definition Tδ2 φ̃hj = Tδ2φ

h
j as in

Definition 6.2 for j ∈ J ∗′(a, b), while

Tδ2 φ̃
h
j = χc̃N+1,δ2 φ̃

h
j for j ∈ J ∗′′(a, b).

2. The space Ṽh(a, b) is Õ(e−
δ1
h )-close to Fh = F[0,õ(1)],[a,b],h:

d⃗(Ṽh(a, b), F[0,õ(1)],[a,b],h) + d⃗(F[0,õ(1)],[a,b],h, Ṽ
h(a, b)) = Õ(e−

δ1
h ).

3. When V′h(a, b) = Span(φhj , j ∈ J ∗′(a, b)), V′h
0 (a, b) = Span(φhj , j ∈ J ∗′

0 (a, b)),
V′h

+ (a, b) = Span(φhj , j ∈ J ∗′
+ (a, b)), all the properties of Proposition 6.9 hold

true.

If Gh is defined like in (89), we use the notation (ϕ̃hj )j∈J ∗(a,b) and ϕhj = ϕ̃hj for
j ∈ J ∗′(a, b) when the following additional orthogonality property holds:

Ψ̃h
j ⊥ Ψ̃h

j′ for j ̸= j′(120)

with Ψ̃h
j = ΠGhdf,hTδ2 ϕ̃

h
j .(121)

When 1 ≤ m < n ≤ N + 1 and c̃n − c̃m < c̃N+1 − c̃1, the corresponding spaces will be
denoted

Vh
m,n(a, b) = Span(φhj , j ∈ Xm,n(a, b)), Wh

m,n(a, b) = Span(ϕhj , j ∈ Xm,n(a, b)),

while

Ṽh
1,N+1(a, b) = Span(φ̃hj , j ∈ J ∗′′(a, b)), W̃h

1,N+1(a, b) = Span(ϕ̃hj , j ∈ J ∗′′(a, b)).

Our construction, and especially Proposition 6.10, provides such a family
(φ̃hj )j∈J ∗(a,b). More precisely, according to (119) and the lines below, and since
Ghn ⊥ Ghn′ for 1 ≤ n < n′ ≤ N + 1, our construction actually provides a family
(ϕ̃hj )j∈J ∗(a,b), that is satisfying in addition (120) and (121). Note that, like in
Proposition 6.4, the operator

ΠGhdf,hTδ2 : Vh(a, b)→ L2(f ba)

does not depend on δ2 ∈ ]0, ηf [.
In the remaining steps, we will consider various values of a and b and the above

properties, especially the ones involving Gh and

GhN+1 = ker(∆f,f−1([c̃N+1−ηf ,min(b,c̃N+1+ηf )]),h),
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which depend on b. More precisely, an intermediate δ1-family of quasimodes in the
sense of Definition 6.12, and constructed for the pair a < b, will have to be conveniently
adapted for another pair a′ < b′ so that it satisfies Definition 6.12 for this new pair.

6.6. Lower bound for non zero singular values at step N + 1

This paragraph will end with the proof of Theorem 6.3-a) at step N + 1. We are
in the case

(122)
{
c1, . . . , cNf

}
∩ [a, b] =

{
c1, . . . , cNf

}
∩ ]a, b[ = {c̃1, . . . , c̃N+1} .

The notations J ∗′
+ (a, b), J ∗′

0 (a, b), J ∗′(a, b), and J ∗′′(a, b) are the ones introduced in
(113), (114), and (118), and the spaces Vh

m,n(a, b), Wh
m,n(a, b), c̃n − c̃m < c̃N+1 − c̃1,

Ṽh
1,N+1(a, b), W̃h

1,N+1(a, b), V′h
0 (a, b), V′h

+ (a, b), V′h(a, b), are the ones of Defini-
tion 6.12. We set

ℓ0 := ♯X∗(a, b) = ♯A∗c(a, b) = rank δ[0,õ(1)],[a,b],h,

where the last equality was proved in Proposition 4.4 and ♯A∗c(a, b) = ♯X∗(a, b) since
the number of bars α such that in a < xα < yα < b equals the number of their lower
endpoints.

Meanwhile, we set

ℓ1 := ℓ0 − ♯X1,N+1(a, b) = ♯ {j = (α, xα) ∈ X∗(a, b), yα − xα < c̃N+1 − c̃1}

= dim V′h
+ (a, b).

Proposition 6.13. — Consider the case c̃1 − δ1 ≤ a < c̃1, c̃N+1 < b ≤ c̃N+1 + δ3, and
assume δ1, δ2, δ3 ∈]0,

ηf
8 ]. Let Gh be given by (89), define V′h(a, b), Ṽh

1,N+1(a, b), and
Tδ2 like in Definition 6.12, and consider

Eh := Tδ2Ṽh(a, b) = Tδ2 [V
′h(a, b)⊕ Ṽh

1,N+1(a, b)].

Then, the ℓ0-th singular value of ΠGhdf,h|Eh is bounded from below by

e−
c̃N+1−c̃1+max(δ1,δ3)

h ≤ e−
max(b−c̃1,c̃N+1−a)

h = Õ(µℓ0(ΠGhdf,h|Eh)).

Proof. — With our choice c̃1−δ1 ≤ a < c̃1 and c̃N+1 < b ≤ c̃N+1+δ3, Proposition 4.5
says

(123) e−
c̃N+1−c̃1+max(δ1,δ3)

h ≤ e−
max(b−c̃1,c̃N+1−a)

h = Õ
(
µℓ0(δ[0,õ(1)],[a,b],h)

)
,

with δ[0,õ(1)],[a,b],h = ΠFhdf,f−1([a,b]),h|Fh , where we recall Fh = F[0,õ(1)],[a,b],h.
Write

E′h = Tδ2V′h(a, b) and E′′h = Tδ2Ṽh
1,N+1(a, b).

The assumed exponential decay and the definition of Tδ2 in Definition 6.12 yield

d⃗(Eh, Ṽh(a, b)) + d⃗(Ṽh(a, b), Eh) = Õ(e−
ηf
h ) ≤ Õ(e−

δ1
h )
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and therefore
d⃗(Fh, Eh) + d⃗(Eh, Fh) = Õ(e−

δ1
h ).

Moreover, the decomposition Eh = E′h ⊕ E′′h is Õ(e−
δ1
h )-orthogonal and we know

that

Eh ⊂ D(df,f−1([a,b],h)), df,f−1([a,b]),h|Eh = df,h|Eh

and d⃗(Fh, Gh) + d⃗(Gh, Fh) = Õ(e−
ηf
h ).

In addition, Proposition 6.9, whose properties are ensured by the condition 3 of Def-
inition 6.12, provides the factorization

df,f−1([a,b],h)|E′h = ChΠFhdf,f−1([a,b]),h|E′h with ∥Ch∥ = Õ(e
2δ2
h )

and then ∥Ch∥
[
d⃗(Fh, Gh) + d⃗(Gh, Fh)

]
= Õ(e

2δ2−ηf
h ) ≤ Õ(e−

δ1
h ).

So, Hypotheses 1,2,3, and the inequality (69) of Hypothesis 4 in Proposition 5.8
are satisfied with Bh = df,f−1([a,b]),h and ϱ(h) = Õ(e−

δ1
h ) when δ1, δ2, δ3 ∈ ]0,

ηf
8 ].

Moreover, we know from Proposition 6.9 that

rank(ΠGhdf,f−1([a,b]),h|E′h) = ℓ1 = dim V′h
+ (a, b) = ♯J ∗′

+ (a, b)

and e−
max(c̃N−c̃1,c̃N+1−c̃2)

h = Õ(µℓ1(ΠGhdf,f−1([a,b],h)|E′h),

with max(c̃N − c̃1, c̃N+1− c̃2) ≤ c̃N+1− c̃1− 2ηf . With Bh = df,f−1([a,b]),h, the upper

bound ∥df,f−1([a,b],h)|E′′h∥ = Õ(e−
c̃N+1−c̃1−2δ2

h ) (see (109)), and (123), the inequality
(70) of Hypothesis 4 is deduced from

∥Bh|E′′h∥

[
1

µℓ1(ΠGhBh|E′h)
+
∥Ch∥(d⃗(Fh, Gh) + d⃗(Gh, Fh))

max(µℓ0(ΠGhBh|Eh), µℓ0(B
h|Fh))

]

= Õ(e−
c̃N+1−c̃1−2δ2

h )×
[
Õ(e

c̃N+1−c̃1−2ηf
h ) +

Õ(e
2δ2−ηf

h )

µℓ0(B
h|Fh)︸ ︷︷ ︸

see (123)

]

= Õ(e−
ηf
h ) + Õ(e

4δ2+max(δ1,δ3)−ηf
h ) = Õ(e−

δ1
h ),

if δ1, δ2, δ3 ∈]0,
ηf
8 ].

The first result of Proposition 5.8 then implies

∀ℓ ∈ {1, . . . , ℓ0} , µℓ(ΠGhdf,f−1([a,b]),h|Eh) = µℓ(δ[0,õ(1)],[a,b],h)(1 + Õ(e−δ1/h)),

which yields in particular (see (123))

e−
max(b−c̃1,c̃N+1−a)

h = Õ(µℓ0(ΠGhdf,f−1([a,b]),h|Eh)).

In the spirit of the proof of Proposition 3.2, and in particular of Step 3 in Sub-
section 3.2, we transfer our estimates from [c̃1 − δ1, c̃N+1 + δ3] to a generally wider
interval [a, b].
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Proposition 6.14. — Assume δ1, δ2 ∈ ]0,
ηf
8 ], let a, b satisfy (122), and let Gh be de-

fined by (89). There exists an intermediate δ1-family of quasimodes in the sense of
Definition 6.12 such that

e−
c̃N+1−c̃1+δ1

h = Õ(µℓ0(ΠGhdf,h|Eh)) with ℓ0 = ♯X∗(a, b),

holds true by defining Eh = Tδ2Ṽh(a, b) = Tδ2 Span(φ̃hj , j ∈ J ∗(a, b)).

Proof. — Let δ1, δ2 ∈]0,
ηf
8 ]. When c̃1 − δ1 ≤ a < c̃1 and c̃N+1 < b ≤ c̃N+1 + δ1,

the statement of Proposition 6.14 is an immediate consequence of Proposition 6.13.
Moreover, when a < c̃1 − δ1 and c̃N+1 < b ≤ c̃N+1 + δ1, the statement of Proposi-
tion 6.14 simply follows after extending the quasimodes by 0 on fa

′

a . We thus focus
on the case b > c̃N+1 + δ1. Let then δ3 ∈]δ1,

ηf
8 ] be such that b′ := c̃N+1 + δ3 < b and

set a′ := max(c̃1 − δ1, a).
We start from an intermediate δ1-family of quasimodes (ϕ̃hj )j∈J ∗(a′,b′), for the in-

terval [a′, b′], with the orthogonality property (120),(121). When a < c̃1 − δ1 = a′,
these quasimodes are extended by 0 on fa

′

a . We will use the spaces

Eh(a′, b′) = Tδ2V′h
0 (a′, b′)⊕

( ⊕
1≤n−m≤N−1

Tδ2Wh
m,n(a

′, b′)

)
︸ ︷︷ ︸

E′h(a′,b′)

⊕Tδ2W̃h
1,N+1(a

′, b′)︸ ︷︷ ︸
E′′h(a′,b′)

and, for (ā, b̄) = (a′, b′) or (ā, b̄) = (a, b),

Gh(ā, b̄) =

⊥⊕
1≤n≤N+1

ker(∆f,f−1([c̃n−ηf ,c̃n+ηf ]∩[ā,b̄],h)︸ ︷︷ ︸
Ghn(ā,b̄)

.

According to (104) and to Propositions 6.9 and 6.13, we know that

Tδ2V′h
0 (a′, b′) ⊂ ker(ΠGh(a′,b′)df,h|Eh(a′,b′)

),

∥ΠGh(a′,b′)df,h|E′′h(a′,b′)
∥ = Õ(e−

c̃N+1−c̃1
h ),

and e−
c̃N+1−c̃1+max(δ1,δ3)

h = Õ(µℓ0(ΠGh(a′,b′)df,h|Eh(a′,b′)
)).

Comparing the singular values of ΠGh(a′,b′)df,hTδ2 |Vh(a′,b′)
and of ΠGh(a′,b′)df,h|Eh(a′,b′)

is straightforward owing to

∥Tδ2T ∗δ2 − IdEh(a′,b′)∥+ ∥T ∗δ2Tδ2 − IdVh(a′,b′)∥ = Õ(e−
ηf
h ).

Meanwhile, the spaces ΠGh(a′,b′)df,h(Tδ2Wh
m,n(a

′, b′)) are mutually orthogonal
and orthogonal to ΠGh(a′,b′)df,h(Tδ2W̃1,N+1(a

′, b′)), thanks to the orthogonal-
ity property (120),(121). Owing to Proposition 5.4-b), the non zero singular
values of ΠGh(a′,b′)df,h|Eh(a′,b′)

are then obtained by collecting the ones of
ΠGhn(a′,b′)df,h|Tδ2Wh

m,n(a′,b′)
, 1 ≤ n−m ≤ N−1, and of ΠGhN+1(a

′,b′)df,h|Tδ2W̃h
1,N+1(a

′,b′)
.
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Moreover, since the family (ϕ̃hj )j∈J ∗′(a′,b′) satisfies Definition 6.12, and thus the
statement of Proposition 6.9, the singular values of ΠGhn(a′,b′)df,hTδ2 |Wh

m,n(a′,b′)
satisfy

µh
log∼ e−

c̃n−c̃m
h when n−m < N − 1 (see indeed (116)), while we know that the ones

of ΠGhN+1(a
′,b′)df,hTδ2 |W̃h

1,N+1(a
′,b′)

satisfy, for ℓ ≤ ♯X1,N+1(a
′, b′) = ♯X1,N+1(a, b),

e−
c̃N+1−c̃1+max(δ1,δ3)

h = Õ(µℓ(ΠGhN+1
df,hTδ2 |W̃h

1,N+1(a
′,b′)

)) = Õ(e−
c̃N+1−c̃1

h ).

Let us now construct the family (φ̃hj )j∈J ∗(a,b) for the interval [a, b].

— For the j = (α, c̃N+1) ∈ J ∗′
0 (a, b), we take an orthonormal basis

(φ̃hj )j=(α,c̃N+1)∈J ∗′0 (a,b) of ker(∆f,f−1([c̃N+1−δ1,b]),h) (extended by 0 on f c̃N+1−δ1
a ).

— For j = (α, c̃) ∈ J ∗′
0 (a, b) with c̃ < c̃N+1, we “extend” the quasimode ϕ̃hj as a so-

lution to df,hφ̃hj = 0 in [a, b], as we did in Proposition 6.10 by referring to Propo-
sition 3.9-ii), with the new artificial “critical value” b′ = c̃N+1 + δ3 > c̃N+1 + δ1,
in the interval [c̃N+1 + δ1, b].

— For j ∈ Xm,n(a, b) with 1 ≤ m < n ≤ N , we simply keep φ̃hj = ϕ̃hj .
— For the j = (α, xα) ∈ X∗(a, b) such that yα = c̃N+1 and the j = (α, c̃1) ∈ Z∗(a, b),

the construction is detailed below after comparing, for m0 ∈ {1, . . . , N}, the two
maps

ΠGhN+1(a
′,b′)df,hTδ2 |V hm0,N+1

and
ΠGhN+1(a,b)

df,hTδ2 |V hm0,N+1

= ΠGhN+1(a
′,b)df,hTδ2 |V hm0,N+1

,

with

V hm0,N+1 =

( ⊕
max{2,m0}≤m<N+1

Wh
m,N+1(a

′, b′)

)
⊕W̃h

1,N+1(a
′, b′)︸ ︷︷ ︸

if m0=1

.

We recall that

dim Wh
m,N+1(a

′, b′) = ♯Xm,N+1(ā, b̄) when 2 ≤ m < N + 1

and dim W̃h
1,N+1(a

′, b′) = ♯X1,N+1(ā, b̄) ⊔ ♯
{
j = (α, c̃1) ∈ Z∗(ā, b̄)

}
,

where (ā, b̄) = (a′, b′) or (ā, b̄) = (a, b), and we set, for m0 ∈ {1, . . . , N},

Jm0,N+1 =

(⊔
m0≤m<N+1

Xm,N+1(a, b)

)
⊔{j = (α, c̃1) ∈ Z∗(a, b)}︸ ︷︷ ︸

if m0=1

.

Since the Ψ̃h
j = ΠGhN+1(a

′,b′)df,hTδ2 ϕ̃
h
j , j ∈ Jm0,N+1, are mutually orthogonal and

owing to the information on the singular values, there exists an orthonormal basis
(ψk)1≤k≤dimGhN+1(a

′,b′) of GhN+1(a
′, b′) such that the matrix

Mh =
(
⟨ψk, ΠGhN+1(a

′,b′)df,hTδ2 ϕ̃
h
j ⟩
)

1≤k≤dimGhN+1(a
′,b′), j∈Jm0,N+1
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=
(
⟨ψk, df,hTδ2 ϕ̃hj ⟩

)
1≤k≤dimGhN+1(a

′,b′), j∈Jm0,N+1

has the following block diagonal structure:

— When m0 > 1:

Mh =

(
Dh

0

)
, Dh = diag(λhj , j ∈ Jm0,N+1),

where λhj
log∼ e−

c̃N+1−xα
h for j = (α, xα) ∈ Jm0,N+1.

— When m0 = 1:

Mh =

(
Dh 0

0 Rh

)
, Dh = diag(λhj , j = (α, xα) ∈ J1,N+1, xα ≥ c̃2),

where λhj
log∼ e−

c̃N+1−xα
h for j = (α, xα) ∈ J1,N+1, xα ≥ c̃2, and

(124) ∥Rh∥ = Õ(e−
c̃N+1−c̃1

h ),

while, for ℓ′0 = ♯
(
J1,N+1 ∩ X∗(a, b)

)
, the ℓ′0-th singular value is bounded from

below by
e−

c̃N+1−c̃1+max(δ1,δ3)

h = Õ(µℓ′0(M
h)).

Proposition 3.9-iii) provides an isomorphism Ah : GhN+1(a, b) → GhN+1(a
′, b′) =

GhN+1(a, b
′) such that∥∥∥A∗hAh − IdGhN+1(a,b)

∥∥∥+ ∥AhA∗h − IdGhN+1(a
′,b′)∥ = Õ(e−

δ3
h )

∀j = (α, c̃) ∈ Jm0,N+1,∀ψ ∈ GhN+1(a, b),

⟨df,hTδ2ϕhj , ψ −Ahψ⟩ = Õ(e−
c̃N+1−c̃+2δ3

h )∥ψ∥.(125)

By using the Õ(e−
δ1
h )-orthonormal basis (ϕ̃hj )j∈Jm0,N+1

of V hm0,N+1 and the

Õ(e−
δ3
h )-orthonormal basis (A−1

h ψhk )1≤k≤dimGhN+1(a,b)
of GhN+1(a, b), the singular

values of the matrix

M ′h =
(
⟨A−1

h ψhk , df,hTδ2ϕ
h
j ⟩
)
1≤k≤dimGhN+1(a,b), j∈Jm0,N+1

coincide modulo a Õ(e−
min(δ1,δ3)

h )-relative error with the ones of ΠGh(a,b)df,hTδ2 |V hm0,N+1

according to Proposition 5.4-a). With the above inequality (125), the j-th columns
of M ′h and of Mh, for j = (α, xα) ∈ Jm0,N+1, xα ≥ c̃2, differ by a Õ(λhj × e−

2δ3
h ).

When m0 = 1 and j = (α, c̃1) ∈ J1,N+1, the j-th columns of M ′h and of Mh differ by

a Õ(e−
c̃N+1−c̃1+2δ3

h ) error. Hence, we can write

M ′h = (Id + Õ(e−
2δ3
h ))Mh +Õ(e−

c̃N+1−c̃1+2δ3
h )︸ ︷︷ ︸

if m0=1

.
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When m0 > 1, the singular values of M ′h coincide with the ones of

M ′′h := (Id + Õ(e−
2δ3
h ))Mh

with a Õ(e−
2δ3
h )-relative error.

When m0 = 1, the ℓ′0-th singular value of M ′′h := (Id + Õ(e−
2δ3
h ))Mh satisfies

e−
c̃N+1−c̃1+max(δ1,δ3)

h = Õ(µℓ′0(M
′′h)).

Hence, we get
M ′h = M ′′h + Õ(e−

2δ3−max(δ1,δ3)
h µℓ′0(M

′′h)).

Since δ1 < δ3, Proposition 5.7 implies:

∀ℓ ∈ {1, . . . , ℓ′0} , µℓ(M
′h) = µℓ(M

′′h)(1 + Õ(e−
δ1
h )).

We have thus proved that for all m0 ∈ {1, . . . , N}:

∀ℓ ∈ {1, . . . ,min(♯Jm0,N+1, ℓ
′
0)} ,

µℓ(ΠGhN+1(a,b)
df,hTδ2 |V hm0,N+1

) = µℓ(ΠGhN+1(a
′,b′)df,hTδ2 |V hm0,N+1

)(1 + Õ(e−
δ1
h )).

In particular, since

∀δ3 ∈]δ1,min(
ηf
8
, b− c̃N+1)[, e−

c̃N+1−c̃1+δ3
h = Õ(µℓ′0(ΠGhN+1(a,b)

df,hTδ2 |V h1,N+1

)),

and the right-hand side in the latter equality does not depend on δ3, we get

(126) e−
c̃N+1−c̃1+δ1

h = Õ(µℓ′0(ΠGhN+1(a,b)
df,hTδ2 |V h1,N+1

)).

We now finish the presentation of our quasimodes (φ̃hj )j∈J1,N+1
. Like in the proof

of Proposition 6.6, we construct by reverse induction from m0 = N to m0 = 1,
starting from the family (ϕ̃hj )j∈J1,N+1

, a basis (φ̃hj )j∈Jm0,N+1
of V hm0,N+1 and

an orthonormal basis of GhN+1(a, b), independent of m0, such that the matrix
of ΠGhN+1(a,b)

df,hTδ2 |V hm0,N+1

in these bases is diagonal (add possibly lines or columns

of zeros to make it square). Since this process preserves the flag (V hm0,N+1)1≤m0<N+1,
the support condition and the exponential decay estimates are valid for this new
basis of V h1,N+1. The Õ(e−

δ1
h )-orthonormality of the full new family (φ̃hj )j∈J ∗(a,b)

and the Õ(e−
δ1
h )-proximity to F[0,õ(1)],[a,b],h hold true, especially with our choice

for j = (α, c̃N+1) ∈ Z∗(a, b). This proves the conditions 1 and 2 of Definition 6.12.
For the third condition, we notice that the spaces V′h

+ (a, b) and V′h
+ (a′, b′) are equal,

like the spaces Ghn(a, b) and Ghn(a
′, b′) when 2 ≤ n ≤ N , while Tδ2 is not changed.

Moreover, in the case n = N + 1, the above orthogonalization process until V h2,N+1

and the asymptotics of the singular values of ΠGhN+1(a,b)
df,hTδ2 |V h2,N+1

finish the

verification of the properties stated in Proposition 6.9 for E′h = Tδ2V′h(a, b) with
Gh = Gh(a, b).
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Finally, it then follows from (124) and (126) that

µℓ0(ΠGh(a,b)df,h|Tδ2Vh(a,b)=Eh
) = Õ(e−

c̃N+1−c̃1
h )(127)

and e−
c̃N+1−c̃1+δ1

h = Õ(µℓ0(ΠGhN+1(a,b)
df,h|Tδ2Vh(a,b)=Eh

)).

Remark 6.15. — Although we used the notation (φ̃hj )j∈J ∗(a,b), notice that we obtain
at the end of the proof an intermediate δ1-family of quasimodes (ϕ̃hj )j∈J ∗(a,b) which
satisfies the orthogonality property (120),(121) in the interval [a, b]. It was actually
more important in the proof to put the stress on this property for the initial family
given for the interval [a′, b′] = [c̃1 − δ1, c̃N+1 + δ3]. However, the orthogonalization
process can always be carried out afterwards.

Proof of Theorem 6.3-a). — Let a, b satisfy (122) and take δ1, δ2 ∈]0,
ηf
8 ]. We recon-

sider the proof of Proposition 6.13 for the pair (a, b) with the new lower bound of
Proposition 6.14:

e−
c̃N+1−c̃1+δ1

h = Õ(µℓ0(ΠGhdf,h|Eh)) with ℓ0 = ♯X∗(a, b).

We then set Eh = E′h ⊕ E′′h,

E′h = Tδ2V′h(a, b), E′′h = Tδ2Ṽh
1,N+1(a, b),

where V′h(a, b) and Ṽh
1,N+1(a, b) are associated with the intermediate δ1-family of

quasimodes (φ̃hj )j∈J ∗(a,b) provided by Proposition 6.14. In particular, the verification
of the inequality (70) in Proposition 5.8 now becomes:

∥Bh|E′′h∥

[
1

µℓ1(ΠGhBh|E′h)
+
∥Ch∥(d⃗(Fh, Gh) + d⃗(Gh, Fh))

max(µℓ0(ΠGhBh|Eh), µℓ0(B
h|Fh))

]

= Õ(e−
c̃N+1−c̃1−2δ2

h )×
[
Õ(e

c̃N+1−c̃1−2ηf
h ) + Õ(e

2δ2−ηf
h )× Õ(e

c̃N+1−c̃1+δ1
h )

]
= Õ(e−

ηf
h ) + Õ(e

4δ2+δ1−ηf
h ) = Õ(e−

δ1
h ),

with δ1, δ2 ≤ ηf
8 .

The conclusion of Proposition 5.8 is then

∀ℓ ∈ {1, . . . , ℓ0} , µℓ(δ[0,õ(1)],[a,b],h) = µℓ(ΠGhdf,f−1([a,b]),h|Eh)(1 + Õ(e−
δ1
h )),

and µℓ0+1(ΠGhdf,f−1([a,b]),h|Eh) = Õ(e−
δ1
h )µℓ0(δ[0,õ(1)],[a,b],h).

In particular, we obtain

e−
c̃N+1−c̃1+δ1

h = Õ(µℓ0(δ[0,õ(1)],[a,b],h))

and therefore, since the right-hand side of the latter equality does not depend on δ1,

e−
c̃N+1−c̃1

h = Õ(µℓ0(δ[0,õ(1)],[a,b],h)).
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Using in addition (127) (together with Proposition 6.9) leads to the statement of
Theorem 6.3-a) at step N + 1.

We also proved

(128) µℓ0+1(ΠGhdf,f−1([a,b]),h|Eh) = Õ(e−
δ1
h )µℓ0(δ[0,õ(1)],[a,b],h) = Õ(e−

c̃N+1−c̃1+δ1
h ).

Moreover, according to the comments made around (119), one can choose the interme-
diate δ1-family (ϕ̃hj )j∈J ∗(a,b) such that the orthogonality property (120),(121) holds,
and then such that

(129) ∥Ψ̃h
j ∥

log∼ e−
yα−xα

h for every j = (α, xα) ∈ X∗(a, b).

6.7. Construction of the family (φhj )j∈J ∗(a,b) at step N + 1

We now end the proof of Theorem 6.3 at step N+1 by finishing the construction of
the δ1-family of quasimodes (φhj )j∈J ∗(a,b). The statements b) and c) in Theorem 6.3
will be easily checked at the end.

Let a, b satisfy (122), let Gh be defined by (89), and let δ1, δ2 ∈]0,
ηf
8 ]. We start

with an intermediate δ1-family of quasimodes for the interval [a, b] which satisfies the
orthogonality condition (120),(121) and the estimates (128) and (129).

We first work in the interval [a′, b] with a′ = max(a, c̃1 − δ1). Note that, since
the quasimodes are all supported in [a′, b] and Ghn(a, b) = Ghn(a

′, b) for every
2 ≤ n ≤ N + 1, the family (ϕ̃hj )j∈J ∗(a,b)=J ∗(a′,b) is still, for the interval [a′, b], an
intermediate δ1-family of quasimodes which satisfies the orthogonality condition
(120),(121) and the estimates (128) and (129).

The quasimodes (φhj )j∈J ∗(a′,b) are not changed, i.e.,

φhj = ϕ̃hj ,

when

j ∈ J ∗′
0 (a′, b) = Y ∗(a′, b) ⊔ {j = (α, c̃) ∈ Z∗(a′, b), c̃ > c̃1}

or j ∈ X∗(a′, b) =
⊔

1≤m<n≤N+1
Xm,n(a

′, b).

We must now construct the remaining quasimodes φhj , j = (α, c̃1) ∈ Z∗(a′, b), in order
to ensure

φhj ∈ ker(df,f−1([a′,b]),h) for every j = (α, c̃1) ∈ Z∗(a′, b),

while we only know for the moment that, for those j, (128) implies

∥Ψ̃h
j ∥ = ∥ΠGhdf,hTδ2 ϕ̃

h
j ∥ = Õ(e−

c̃N+1−c̃1+δ1
h ).

We recall that those quasimodes ϕ̃hj , j = (α, c̃1) ∈ Z∗(a′, b), were until now considered
in the space W̃h

1,N+1(a
′, b), together with the quasimodes ϕ̃hj , j ∈ X1,N+1(a

′, b). Let
us also recall that the rank of δ[0,õ(1)][a′,b],h satisfies (see Proposition 4.4):

(130) rank δ[0,õ(1)],[a′,b],h = ℓ0 = ♯X∗(a′, b).
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Proposition 6.16. — For j = (α, c̃1) ∈ Z∗(a′, b), where a′ = max(a, c̃1 − δ1), there
exists (αhj,j′)j′∈X∗(a′,b) such that

ϕ̃hj −
∑

j′∈X∗(a′,b)

αhj,j′

∥Ψ̃h
j′∥

ϕ̃hj′

belongs to ker(δ[0,õ(1)],[a′,b],hTδ2) with, for every j′ ∈ X∗(a′, b),

αhj,j′ = Õ(e−
c̃N+1−c̃1+δ1

h ).

Proof. — For every j′ ∈ X∗(a′, b), we set

ψhj′ :=
Ψ̃h
j′

∥Ψ̃h
j′∥

,

so that, when j′ = (α, xα) ∈ X∗(a′, b),

ΠGhdf,hTδ2 ϕ̃
h
j′ = ∥Ψ̃h

j′∥ψhj′ , ∥Ψ̃h
j′∥

log∼ e−
yα−xα

h

and (ψhj′)j′∈X∗(a′,b) is an orthonormal system in Gh.
By writing, for j′ ∈ X∗(a′, b),

δ[0,õ(1)],[a′,b],hTδ2 ϕ̃
h
j′ = ΠFhdf,hTδ2 ϕ̃

h
j′

= ΠGhdf,hTδ2 ϕ̃
h
j′ − (ΠGh −ΠFhΠGh)df,hTδ2 ϕ̃

h
j′

+ (ΠFh −ΠFhΠGh)df,hTδ2 ϕ̃
h
j′(131)

with Fh = F[0,õ(1)],[a′,b],h, d⃗(Fh, Gh) + d⃗(Gh, Fh) = Õ(e−
ηf
h ), and (see (109))

∥df,hTδ2 ϕ̃hj′∥ = ∥Ψ̃h
j′∥Õ(e

2δ2
h ),

we deduce from (131) that the family made of the

θhj′ =
δ[0,õ(1)],[a′,b],hTδ2 ϕ̃

h
j′

∥Ψ̃h
j′∥

, j′ ∈ X∗(a′, b),

defines an Õ(e−
δ1
h )-orthornormal system of Rh := Ran δ[0,õ(1)],[a′,b],h. Owing to (130),

the family (θhj′)j′∈X∗(a′,b) is thus an Õ(e−
δ1
h )-orthonormal basis of Rh. Denoting now

by (θ̂hj′)j′∈X∗(a′,b) the dual basis of (θhj′)j′∈X∗(a′,b) in Rh, that is the unique family
satisfying

∀ j′1, j′2 ∈ X∗(a′, b), θ̂hj′1 ∈ Rh and ⟨θ̂j′1 , θj′2⟩ = δj′1,j′2 ,

the family (θ̂hj′)j′∈X∗(a′,b) is also an Õ(e−
δ1
h )-orthonormal basis of Rh and the orthog-

onal projection on Rh is given by

∀u ∈ Fh, ΠRhu =
∑

j′∈X∗(a′,b)

⟨θ̂hj′ , u⟩θj′ =
∑

j′∈X∗(a′,b)

⟨θ̂hj′ , u⟩
∥Ψ̃h

j′∥
δ[0,õ(1)],[a′,b],hTδ2 ϕ̃

h
j′ .
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For j = (α, c̃1) ∈ Z∗(a′, b), the same decomposition as (131) with now ∥Ψ̃h
j ∥ =

Õ(e−
c̃N+1−c̃1+δ1

h ) and ∥df,hTδ2 ϕ̃hj ∥ = Õ(e−
c̃N+1−c̃1−2δ2

h ) leads to

∥δ[0,õ(1)],[a′,b],hTδ2 ϕ̃hj ∥ = Õ(e−
c̃N+1−c̃1+δ1

h ).

The statement of Proposition 6.16 follows easily by taking, for every
j = (α, c̃1) ∈ Z∗(a′, b) and j′ ∈ X∗(a′, b),

αhj,j′ = ⟨θ̂hj′ , δ[0,õ(1)],[a′,b],hTδ2 ϕ̃hj ⟩.

The following statement finishes the proof of Theorem 6.3.

Proposition 6.17. — Assume that a, b satisfy (122), let δ1, δ2 ∈]0,
ηf
8 ], and set

a′ = max(a, c̃1 − δ1). The family (φhj )j∈J ∗(a,b) defined by

φhj = ϕ̃hj when j ∈ X∗(a, b) ⊔ Y ∗(a, b) ⊔ {(α, c̃) ∈ Z∗(a, b), c̃ > c̃1}
and

φhj = 1fb
a′
×Π[0,õ(1)],[a′,b],hTδ2

(
ϕ̃hj −

∑
j′∈X∗(a,b)

αhj,j′

∥Ψ̃h
j′∥

ϕ̃hj′
)

when j = (α, c̃1) ∈ Z∗(a, b),

where the coefficients αhj,j′ are given by Proposition 6.16, fulfills all the conditions of
Theorem 6.3 at step N + 1.

Proof. — We use here the notations a′ = max(a, c̃1 − δ1) and, in order to avoid
confusions,

W̃h(a, b) = Span(ϕ̃hj , j ∈ J ∗(a, b))

and W̃h
+(a, b) = Span(ϕ̃hj , j ∈ X∗(a, b)),

where (ϕ̃hj )j∈J ∗(a,b) is the intermediate δ1-family of quasimodes we started with.

From the estimates αhj,j′ = Õ(e−
c̃N+1−c̃1+δ1

h ) (see Proposition 6.16) and

∥Ψ̃h
j′∥

log∼ e−
yα−xα

h for j = (α, c̃1) ∈ Z∗(a, b) and j′ = (α, xα) ∈ X∗(a, b), we
deduce that

∀ j = (α, c̃1) ∈ Z∗(a, b),
∥∥∥ ∑
j′∈X∗(a,b)

αhj,j′

∥Ψ̃h
j′∥

ϕ̃hj′
∥∥∥
L2

= Õ(e−
δ1
h ).

Since in addition d⃗(F[0,õ(1)],[a′,b],h, W̃
h(a, b)) + d⃗(W̃h(a, b), F[0,õ(1)],[a′,b],h) = Õ(e−

δ1
h ),

it follows that

∥φhj − ϕ̃hj ∥ = Õ(e−
δ1
h ) for j = (α, c̃1) ∈ Z∗(a, b),

and the family (φhj )j∈J ∗(a,b) is thus Õ(e−
δ1
h )-orthonormal. Moreover, the exponential

decay estimates on the ϕ̃hj′ , j
′ ∈ X∗(a, b), lead to

∀ j = (α, c̃1) ∈ Z∗(a, b),
∥∥∥e |f−c̃1|h

( ∑
j′∈X∗(a,b)

αhj,j′

∥Ψ̃h
j′∥

ϕ̃hj′
)∥∥∥

W (f−1([a′,b]\Sδ1 )
= Õ(e−

δ1
h ).
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This implies, together with Proposition 4.7, the required exponential decay estimates
on the φhj , j = (α, c̃1) ∈ Z∗(a, b). Besides, Proposition 6.16 gives

df,hΠ[0,õ(1)],[a′,b],hTδ2

(
ϕ̃hj −

∑
j′∈X∗(a,b)

αhj,j′

∥Ψ̃h
j′∥

ϕ̃hj

)

= δ[0,õ(1)],[a′,b],hTδ2

(
ϕ̃hj −

∑
j′∈X∗(a,b)

αhj,j′

∥Ψ̃h
j′∥

ϕ̃hj

)
= 0.

All those properties are preserved after extending those quasimodes by 0 on fa
′

a when
a < a′. Therefore, the family (φhj )j∈J ∗(a,b) satisfies all the conditions of Definition 6.1

and is thus a Õ(e−
δ1
h )-orthonormal δ1-family of quasimodes. Since in addition

d⃗(F[0,õ(1)],[a′,b],h, F[0,õ(1)],[a,b],h) + d⃗(F[0,õ(1)],[a,b],h, F[0,õ(1)],[a′,b],h) = Õ(e−
δ1
h ),

the statement b) of Theorem 6.3 is also satisfied.
It only remains to check the factorization stated in Theorem 6.3-c). Since

df,hTδ2φ
h
j = df,hφ

h
j = 0 for every j ̸∈ X∗(a, b),

it suffices to prove the existence of Ch such that the diagram

Vh
+(a, b) = W̃h

+(a, b)
df,f−1([a,b]),hTδ2 //

Π[0,õ(1)],[a,b],hdf,hTδ2 ,,

L2(f−1([a, b]))

F[0,õ(1)],[a,b],h

Ch
OO

is commutative with ∥Ch∥ = Õ(e
2δ2
h ).

Since ΠGhdf,hTδ2 ϕ̃
h
j = Ψ̃h

j with ∥Ψ̃h
j ∥

log∼ e−
yα−xα

h when j = (α, xα) ∈ X∗(a, b)

with the orthogonality property (120),(121), reasoning as at the ends of the proofs of
Propositions 6.8 and 6.9, we obtain the commutative diagram

Vh
+(a, b) = W̃h

+(a, b)
df,f−1([a,b]),hTδ2 //

Π
Gh
df,hTδ2 ,,

L2(f−1([a, b]))

Gh
C̃h
OO

with ∥C̃h∥ = Õ(e
2δ2
h ). We conclude by applying Lemma 5.6 with Bh = df,f−1([a,b]),hTδ2 ,

Fh = F[0,õ(1)],[a,b],h, and

d⃗(Fh, Gh) + d⃗(Gh, Fh) = Õ(e−
ηf
h ).
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CHAPTER 7

COROLLARIES OF THEOREM 6.3

The statement or Theorem 6.3 is much more flexible than its illustrative statement,
Theorem 1.7, given in the introduction. Actually, even its proof, and especially the
intermediate propositions of Subsection 6.3, have easily derived consequences which
are listed here. Subsection 7.1 reviews consequences on the eigenvalues and eigenvec-
tors of the Witten Laplacian ∆f,f−1([a,b]),h when f is fixed. Subsection 7.3 studies
how the logarithms of the singular values of df,f−1([a,b]),h vary when f is changed.
It contains a generalization of Corollary 1.8. Remember that Theorem 6.3 is proved
under Hypothesis 4.1 which gathers Hypothesis 1.2 or (Hypothesis 1.6 and Hypoth-
esis 2.16) for a more general Lipschitz function f . Hypothesis 1.2 or Hypothesis 1.6
ensure that f has finitely many “critical values” c1 < · · · < cNf .

When a, b ̸∈
{
c1, . . . , cNf

}
, ∆f,f−1([a,b]),h is the self-adjoint Witten Laplacian in f ba,

with Dirichlet boundary conditions on f−1({a}) and Neumann boundary conditions
on f−1({b}), according to Chapter 2.

Finally, the bar code associated with f , under Hypothesis 1.2 or Hypothesis 1.6
(see Subsection 8.3.1), is B(f) = ([aα, bα[)α∈A, defined in Subsection 4.1 and in
Appendix B. The restricted bar code B(f ; a, b), and the set of endpoints J ∗(a, b),
X∗(a, b), Y ∗(a, b), Z∗(a, b), all graded according to the degree p ∈ {0, . . . , d}, are the
ones introduced in Subsection 4.1.

7.1. Spectral results

The first result generalizes Theorem 1.7.

Theorem 7.1. — Assume Hypothesis 1.2 or (Hypothesis 1.6 and Hypothesis 2.16)
for a more general Lipschitz function f . Let a, b ̸∈

{
c1, . . . , cNf

}
with a < b and

let ∆f,f−1([a,b]),h =
⊕d

p=0 ∆
(p)
f,f−1([a,b]),h be defined like in Proposition 2.8 with

Nt = f−1({a}) and Nn = f−1({b}).
The number of õ(1)-eigenvalues of ∆

(p)
f,f−1([a,b]),h equals ♯J (p)(a, b), while

dim ker(∆
(p)
f,f−1([a,b]),h) = β(p)(f b, fa) = ♯Z (p)(a, b).
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Moreover, the non zero õ(1)-eigenvalues of ∆
(p)
f,f−1([a,b]),h counted with multiplicity can

be labeled λ(p)
α (h), α ∈ A(p)

c (a, b) ⊔A(p−1)
c (a, b), with

λ(p)
α (h)

log∼ e−2
y∗+1
α −x∗α

h , α ∈ A(p)
c (a, b) ⊔A(p−1)

c (a, b).

With the usual supersymmetric argument which was already recalled in Proposi-
tion 4.4, it is a straightforward consequence of Theorem 6.3-a).

The above result can be completed by some information on the eigenvectors.
We start with the link between the singular values of δ[0,õ(1)],[a,b],h, the truncated
version of df,f−1([a,b]),1 introduced in (81), and their approximation via the intro-
duction of a basis made of quasimodes, and the spectral elements of the opera-
tor δ∗[0,õ(1)],[a,b],hδ[0,õ(1)],[a,b],h. The spectral elements of

Π[0,õ(1)],[a,b],h∆f,f−1([a,b]),h = δ∗[0,õ(1)],[a,b],hδ[0,õ(1)],[a,b],h + δ[0,õ(1)],[a,b],hδ
∗
[0,õ(1)],[a,b],h

will be described afterwards by referring to Hodge decomposition and to duality.

Proposition 7.2. — Keep the same assumptions as in Theorem 7.1 and define
ηf > 0 like in Hypothesis 4.1. Let δ(p)[0,õ(1)],[a,b],h denote the restriction of df,f−1([a,b]),h

to F (p)
[0,õ(1)],[a,b],h, δ

(p)
[0,õ(1)],[a,b],h : F

(p)
[0,õ(1)],[a,b],h → F

(p+1)
[0,õ(1)],[a,b],h, according to (81), and

set

L(p) =
{
b(p+1)
α − a(p)

α , α ∈ A(p)
c (a, b)

}
,

δf = min(
ηf
8
,
|ℓ− ℓ′|

8
, ℓ ̸= ℓ′ ∈ L(p)) > 0.

Take the δ1-family of quasimodes (φhj )j∈J ∗(a,b) given by Theorem 6.3 with δ1 =
ηf
8

(and with any δ2 ∈ ]0,
ηf
8 ]) and define, for ℓ ∈ L(p),

U
(p),h
ℓ := Span

(
φhj , j = (α, x(p)

α ) ∈ X (p)(a, b), y(p+1)
α − x(p)

α = ℓ
)
,

and
U

(p),h
+∞ := Span(φhj , j ∈ Y (p)(a, b) ⊔ Z (p)(a, b)).

Then, for every ℓ ∈ L(p) ⊔ {+∞} and p ∈ {0, . . . , d}, the distance between U
(p),h
ℓ and

F
(p),h
ℓ is estimated by

d⃗(U
(p),h
ℓ , F

(p),h
ℓ ) + d⃗(F

(p),h
ℓ ,U

(p),h
ℓ ) = Õ(e−

δf
h ),

where F
(p),h
ℓ ⊂ F

(p)
[0,õ(1)],[a,b],h ⊂ L2(f ba; Λ

pT ∗M) is the spectral subspace of

δ
(p),∗
[0,õ(1)],[a,b],hδ

(p)
[0,õ(1)],[a,b],h for the spectral range [e−2

ℓ+δf
h , e−2

ℓ−δf
h ].

Proof. — With our choice δ1 =
ηf
8 , the basis (φhj )j∈J (p)(a,b) is a Õ(e−

ηf
8h )-orthonor-

mal family such that, according to Theorem 6.3-b) and to the definition of Tδ2 (see
Definition 6.2),

(132) ∀j ∈ J (p)(a, b), ∥Π[0,õ(1)],[a,b],hTδ2φ
h
j − φhj ∥ = Õ(e−

ηf
8h ).
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For j ∈ Y (p)(a, b) ⊔ Z (p)(a, b), the equality

δ[0,õ(1)],[a,b],hΠ[0,õ(1)],[a,b],hTδ2φ
h
j = Π[0,õ(1)],[a,b],hdf,hφ

h
j = 0

then implies that (Π[0,õ(1)],[a,b],hTδ2φ
h
j )j∈Y (p)(a,b)⊔Z (p)(a,b) is a Õ(e−

ηf
8h )-orthonormal

basis of
ker(δ

(p)
[0,õ(1)],[a,b],h) = F

(p),h
+∞ .

This leads to the result for ℓ = +∞ and initializes the decreasing induction with
respect to ℓ.

Assume now that for all ℓ > ℓ0 in L(p), we have proved

d⃗(U
(p),h
ℓ , F

(p),h
ℓ ) + d⃗(F

(p),h
ℓ ,U

(p),h
ℓ ) = Õ(e−

δf
h ).

Let us check that it is still true for ℓ = ℓ0. Like in Subsection 6.3, we introduce Gh

defined by (89),(90), Ghn = ker(∆f,f−1([c̃n−ηf ,c̃n+ηf ]∩[a,b]),h) defined in (103), and the
spaces Vh

m,n defined in (98) by

V(p),h
m,n = Span(φhj , j ∈ X (p)

m,n(a, b)).

In particular, we have
U

(p),h
ℓ0

=
⊕

c̃n−c̃m=ℓ0

V(p),h
m,n ,

while ΠGh,(p+1)d
(p)
f,hTδ2(V

(p),h
m,n ) ⊂ G

h,(p+1)
n with G

h,(p+1)
n ⊥ G

h,(p+1)
n′ for n ̸= n′. From

Proposition 6.4, we know that the mapping ΠGh,(p+1)d
(p)
f,hTδ2 : U

(p),h
ℓ0

→ Gh,(p+1) does
not depend on δ2 ∈]0,

ηf
8 ], while Proposition 6.5 and Proposition 5.4-b) ensure that it

is one to one with (only non zero) singular values all satisfying µh
log∼ e−

ℓ0
h . Moreover,

following the analysis made in the proof of Proposition 6.4, the factorization (94)
holds with here Eh = Tδ2U

(p),h
ℓ0

, Bh = d
(p)
f,f−1([a,b]),h, and ∥C̃h∥ = Õ(e

2δ2
h ). Hence,

using Lemma 5.6 with the relation

d⃗(Gh,(p+1), F
(p+1)
[0,õ(1)],[a,b],h) + d⃗(F

(p+1)
[0,õ(1)],[a,b],h, G

h,(p+1)) = Õ(e−
ηf
h )

leads to

ΠGh,(p+1)d
(p)
f,f−1([a,b]),h|Eh = (IdL2(fba)

+ Õ(e
2δ2−ηf

h )) Π[0,õ(1)],[a,b],hd
(p)
f,f−1([a,b],h)|Eh︸ ︷︷ ︸

=δ
(p)

[0,õ(1)],[a,b],h|Eh

.

Thus, since Tδ2 : U
(p),h
ℓ0

→ Eh is Õ(e−
ηf
h )-unitary, the operator δ

(p)
[0,õ(1)],[a,b],h :

Tδ2U
(p),h
ℓ0

→ F
(p+1)
[0,õ(1)],[a,b],h is, as ΠGh,(p+1)d

(p)
f,hTδ2 : U

(p),h
ℓ0

→ Gh,(p+1), one to one

with singular values all logarithmically equivalent to e−
ℓ0
h .

In particular, for all j = (α, x
(p)
α ) ∈ X (p)(a, b) such that y(p+1)

α −x(p)
α = ℓ0, we must

have
∥δ(p)[0,õ(1)],[a,b],hΠ[0,õ(1)],[a,b],hTδ2φ

h
j ∥

log∼ e−
ℓ0
h .
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From the previous estimates, the new family of vectors (uhj ) defined by

uhj = (1−
∑
ℓ>ℓ0

Π
F

(p),h
ℓ

)Π[0,õ(1)],[a,b],hTδ2φ
h
j

and indexed by j = (α, x
(p)
α ) ∈ X (p)(a, b), y(p+1)

α − x(p)
α = ℓ0 satisfies

⟨uhj , δ
∗,(p)
[0,õ(1)],[a,b],hδ

(p)
[0,õ(1)],[a,b],hu

h
j ⟩

log∼ e−2
ℓ0
h ,(133)

uhj ⊥ Ran 1
[0,e−2

ℓ0+δf
h [

(δ
∗,(p)
[0,õ(1)],[a,b],hδ

(p)
[0,õ(1)],[a,b],h),(134)

and ∥uhj − φhj ∥ = Õ(e−
δf
h ).(135)

Note that (133) and (134) follow easily from the definition of the family (uhj ), while

(135), which also implies the Õ(e−
δf
h )-orthonormality of the family (uhj ), follows

from (132) together with the estimate, for ℓ > ℓ0 and j = (α, x
(p)
α ) ∈ X (p)(a, b),

y
(p+1)
α − x(p)

α = ℓ0,

Π
F

(p),h
ℓ

φhj =
(
Π
F

(p),h
ℓ

−Π
F

(p),h
ℓ

Π
U

(p),h
ℓ

)
φhj + Π

F
(p),h
ℓ

Π
U

(p),h
ℓ

φhj

= Õ(e−
δf
h ) + Õ(e−

ηf
8h ) ≤ Õ(e−

δf
h ),

where the last line follows from the induction hypothesis and from the Õ(e−
ηf
8h )-or-

thonormality of the family (φhj )j∈J (p)(a,b). The relations (133) and (135) imply that
the vector

vhj = 1
[0,e−2

ℓ0−δf
h ]

(δ
∗,(p)
[0,õ(1)],[a,b],hδ

(p)
[0,õ(1)],[a,b],h)u

h
j

satisfies
∥vhj − uhj ∥ = Õ(e−

δf
h ) and thus ∥vhj − φhj ∥ = Õ(e−

δf
h ),

while (134) yields
vhj ∈ F

(p),h
ℓ0

.

Hence, we have proved d⃗(U (p),h
ℓ0

, F
(p),h
ℓ0

) = Õ(e−
δf
h ) and thus, using

dim U
(p),h
ℓ0

= ♯
{
j = (α, x(p)

α ) ∈ X (p)(a, b), y(p+1)
α − x(p)

α = ℓ0

}
= dimF

(p),h
ℓ0

,

implies d⃗(F (p),h
ℓ0

,U
(p),h
ℓ0

)+ d⃗(U
(p),h
ℓ0

, F
(p),h
ℓ0

) = Õ(e−
δf
h ). This ends the proof of Propo-

sition 7.2.

Now quasimodes have been constructed for df,f−1([a,b]),h, the dual version can be
given. Remember that

d∗f,h = (−1)deg ⋆−1 e
f
h (hd)e−

f
h ⋆

and the construction of δ1-quasimodes for d∗f,f−1([a,b],h) is equivalent to the construc-
tion of δ1-quasimodes for d−f,(−f)−1([−b,−a]),h, where the fiber bundle ΛT ∗M is re-
placed by ΛT ∗M ⊗ orM . Accordingly, the degree p is changed into d − p, the order
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of critical values is reversed and, in the interval [a, b], the role of lower and upper
endpoints in the sets X∗(a, b) and Y ∗(a, b) are interchanged.

Definition 7.3. — Under Hypothesis 4.1 and with δ1 ∈ ]0,
ηf
8 ], a dual δ1-family of

quasimodes denoted by
(
φ̂∗,hj

)
j∈J ∗(a,b)

is defined like the family
(
φ∗,hj

)
j∈J ∗(a,b)

in

Definition 6.1, with degree recalled here in the superscript ∗,h, after replacing:

— df,f−1([a,b]),h by d∗f,f−1([a,b]),h,

— Ihj = [x
(p)
α − δ1, y(p+1)

α − γ(h)] when j = (α, x
(p)
α ) ∈ X (p)(a, b) by

Îhj = [x(p−1)
α + γ(h), y(p)

α + δ1] when j = (α, y(p)
α ) ∈ Y (p)(a, b),

— and Ihj = [c̃− δ1, b] when j = (α, c̃) ∈ Y (p)(a, b) ⊔ Z (p)(a, b) by

Îhj = [a, c̃+ δ1] when j = (α, c̃) ∈ X (p)(a, b) ⊔ Z (p)(a, b).

Finally, the truncation operator Tδ2 introduced for δ2 ∈ ]0,
ηf
8 ] in Definition 6.2 has

to be replaced by T̂δ2 defined by

T̂δ2 φ̂
(p),h
j =

 ̂χ
x
(p−1)
α ,δ2

φ̂
(p),h
j if j = (α, y

(p)
α ) ∈ Y (p)(a, b)

φ̂
(p),h
j if j ∈ X (p)(a, b) ∪ Z (p)(a, b),

where χ̂c̃,δ2(x) = χ̂

(
f(x)− c̃

δ2

)
,

for a fixed χ̂ ∈ C∞(R; [0, 1]) such that χ̂ ≡ 1 on [2,+∞[ and supp χ̂ ⊂ ]1,+∞[.

Theorem 7.4. — Like in Theorem 7.1, assume Hypothesis 1.2 or (Hypothesis 1.6
and Hypothesis 2.16) for a more general f , which is equivalent to Hypothe-
sis 4.1 when the definition of ηf > 0 is added. Let a, b ̸∈

{
c1, . . . , cNf

}
and

let ∆f,f−1([a,b]),h =
⊕d

p=0 ∆
(p)
f,f−1([a,b]),h be defined like in Proposition 2.8 with

Nt = f−1({a}) and Nn = f−1({b}). We set, like in Proposition 7.2,

L(p) =
{
b(p+1)
α − a(p)

α , α ∈ A(p)
c (a, b)

}
and δf = min(

ηf
8
,
|ℓ− ℓ′|

8
, ℓ ̸= ℓ′ ∈ L(p)) > 0.

The δ1-family of quasimodes (φ∗,hj )j∈J ∗(a,b) is given by Theorem 6.3 with δ1 =
ηf
8 ,

and its dual version (φ̂∗,hj )j∈J ∗(a,b) by Definition 7.3. For ℓ ∈ L(p), we define lastly

U
(p),h

ℓ := U
(p),h
ℓ ⊕ Û

(p),h
ℓ ,

where U
(p),h
ℓ = Span

(
φhj , j = (α, x(p)

α ) ∈ X (p)(a, b), y(p+1)
α − x(p)

α = ℓ
)

and Û
(p),h
ℓ = Span

(
φ̂hj , j = (α, y(p)

α ) ∈ Y (p)(a, b), y(p)
α − x(p−1)

α = ℓ
)
.
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Then, for every ℓ ∈ L(p), the space U
(p),h

ℓ is close to F (p)

[e−2
ℓ+δf
h ,e2

ℓ−δf
h ],[a,b],h

according

to

d⃗

(
U

(p),h

ℓ , F
(p)

[e−2
ℓ+δf
h ,e2

ℓ−δf
h ],[a,b],h

)
+ d⃗

(
F

(p)

[e−2
ℓ+δf
h ,e2

ℓ−δf
h ],[a,b],h

,U
(p),h

ℓ

)
= Õ(e−

δf
h ).

Proof. — Let us first recall the relation

∆
(p)
f,f−1([a,b]),hΠ

(p)
[0,õ(1)],[a,b],h = δ

(p−1)

[0, ˜o(1)],[a,b],h
δ
(p−1),∗
[0,õ(1)],[a,b],h︸ ︷︷ ︸

A

+ δ
(p),∗
[0,õ(1)],[a,b],hδ

(p)
[0,õ(1)],[a,b],h︸ ︷︷ ︸

B

,

where A and B are self-adjoint and satisfy AB = BA = 0. We deduce from this
observation and from the Hodge decomposition that, for λh ̸= 0, λh = õ(1),

ker(∆f,f−1([a,b]),h − λh) = ker(A− λh)
⊥
⊕ ker(B − λh).

Moreover Proposition 7.2 says

d⃗(U
(p),h
ℓ , F

(p),h
ℓ ) + d⃗(F

(p),h
ℓ ,U

(p),h
ℓ ) = Õ(e−

δf
h ),

where

F
(p),h
ℓ =

⊥⊕
e−2

ℓ+δf
h ≤λh≤e−2

ℓ−δf
h

ker(B − λh).

The proximity of Û
(p),h
ℓ to

⊥⊕
e−2

ℓ+δf
h ≤λh≤e−2

ℓ−δf
h

ker(A−λh) is the dual version.

Remark 7.5. — The last result about the eigenvectors of ∆f,f−1([a,b]),h arouses several
comments.

— When there is a single bar α ∈ A(p)
c (a, b) with length ℓ, then ∆

(p)
f,f−1([a,b]),h (resp.

∆
(p+1),h
f,f−1([a,b]),h) has one eigenvector associated with the eigenvalue λh

log∼ e−
2ℓ
h

localized around f−1(x
(p)
α ) (resp. f−1(y

(p+1)
α )) and Õ(e−

δf
h )-close to the corre-

sponding quasimode φ(p),h
j (resp. ̂

φ
(p+1),h
j ) with j = (α, x

(p)
α ) ∈ X (p)(a, b) (resp.

j = (α, y
(p+1)
α ) ∈ Y (p+1)(a, b)).

— Once we have approximated the eigenvectors associated with the non zero eigen-
values by the quasimodes φhj or φ̂hj , one can recover an approximate description
of ker(∆f,f−1([a,b]),h) by considering a basis of Span(φhj , j ∈ Y ∗(a, b) ⊔ Z∗(a, b))

whose elements are Õ(e−
δ1
h )-orthogonal to all the φ̂hj′ , j

′ ∈ Y ∗(a, b).

— Actually, the description of the eigenvectors with a Õ(e−
δf
h ) error in the L2-norm

is much less precise than what we were able to do with the quasimodes φ∗,hj ,
with a wide range control of the exponential decay estimates. We also know from
the proof of Theorem 6.3, and this is again illustrated in the proof of Proposi-
tion 7.2, that working with the family of quasimodes (φhj )j∈J ∗(a,b) is much more
flexible and informative than working with the eigenvectors of ∆f,f−1([a,b]),h.
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Note specifically, in the proof of Proposition 7.2, the use of the orthogonality
Ghn ⊥ Ghn′ for n ̸= n′ in the separation of the different exponential scales associ-
ated with the different lengths of bars. This really relies on the fact that Gh is
made of kernels of separated local problems. Such an exact property is com-
pletely lost if we use instead the full spectral space F[0,õ(1)],[a,b],h.

— From the modeling interpretation, it is interesting to note that the quasimodes
(φhj )j∈J ∗(a,b) carry the same heuristic as the true eigenvectors for small times
although they do not belong to D(∆f,f−1([a,b]),h). For simplicity, assume that
there is a single bar α ∈ A(p)

c (a, b) with length ℓ.
Then φhj , j = (α, xα) ∈ X (p)(a, b), satisfies

∥e−t∆f,f−1([a,b],h)φhj − e−tλhφhj ∥ = ∥(e−t∆f,f−1([a,b],h) − e−tλh)(φhj − uh)∥

≤ 2∥φhj − uh∥ = Õ(e−
δf
h ),

where uh is the unitary eigenvector associated with the eigenvalue λh
log∼ e−2 ℓh .

In particular, e−t∆f,f−1([a,b]),hφhj ∼ e−tλhφhj makes sense for times longer than

the lifetime 1
λh

log∼ e2
ℓ
h of the metastable state uh as h→ 0.

7.2. Quasi-isomorphisms

Before the present text was published, Xiaonan Ma asked whether there is an
explicit quasi-isomorphism between the bar-code and the restricted Witten complex.
A direct answer comes from

ker(δ
(p)
[0,õ(1)],[a,b],h)/Ran(δ

(p−1)
[0,õ(1)],[a,b],h) ∼ ker(d

(p)
0,f−1([a,b]),1)/Ran(d

(p−1)
0,f−1([a,b]),1)

∼ H(p)((KJ ∗(a,b),dB);R),

where (KJ ∗(a,b),dB) is the trivialized version of persistent cohomology given in Ap-
pendix B.2 by dBx

∗
α = y∗+1

α for (α, x∗α) ∈ X∗(a, b), dBy
∗
α = 0 for (α, y∗α) ∈ Y ∗(a, b)

and dBz
∗
α = 0 for (α, z∗α) ∈ Z∗(a, b).

Actually a more explicit version of the quasi-isomorphism can be given by using
the projected quasi-modes constructed for Proposition 7.2 and Theorem 7.4. Such a
result corresponds to the statements of [98]-Section 6 elaborated from [55] and which
are important in the application of Witten type techniques in the exploration of more
subtle topological invariants (see [11] and [98]).

Before giving a more accurate description of this quasi-isomorphism, let us notice
that the family of quasimodes (φhj )j∈J ∗(a,b) of Definition 6.1 (resp. (φ̂hj )j∈J ∗(a,b)

of Definition 7.3) is transformed into another one with the same properties by
any Õ(e−

δf
h )-unitary transform

Lh ∈ L (Vh), ∥(Lh)∗Lh − Id∥L(Vh) = Õ(e−
δf
h ),

Vh = Span(φhj , j ∈ J ∗(a, b)), L(p),h
c = Lh|V(p),h

c

∈ L (V(p),h
c ),
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where V
(p),h
c = Span(φhj , j = (α, c) ∈ J (p)(a, b)),

and L
(p),h
c,ℓ = Lh|V(p),h

c,ℓ

∈ L (V
(p),h
c,ℓ )

where V
(p),h
c,ℓ = Span(φhj , j = (α, x

(p)
α = c) ∈ X (p)(a, b)), y

(p+1)
α − x(p)

α = ℓ).

The above properties are easily adapted to the family (φ̂hj )j∈J ∗(a,b) for a

Õ(e−
δf
h )-unitary map L̂h by replacing V

(p),h
c,ℓ by

V̂
(p),h
c,ℓ = Span(φ̂hj , j = (α, y(p)

α = c) ∈ Y (p)(a, b)), y(p)
α − x(p−1)

α = ℓ).

As in Proposition 7.2, let F (p),h
ℓ ⊂ F

(p)
[0,õ(1)],[a,b],h ⊂ L2(f ba; Λ

pT ∗M) be the spec-

tral subspace of δ(p),∗[0,õ(1)],[a,b],hδ
(p)
[0,õ(1)],[a,b],h for the spectral range [e−2

ℓ+δf
h , e−2

ℓ−δf
h ].

Accordingly, and this was used in the proof of Theorem 7.4,

F̂
(p),h
ℓ ⊂ F (p)

[0,õ(1)],[a,b],h ⊂ L
2(f ba; Λ

pT ∗M)

is the spectral subspace of δ
(p−1)
[0,õ(1)],[a,b],hδ

(p−1),∗
[0,õ(1)],[a,b],h for the spectral range

[e−2
ℓ+δf
h , e−2

ℓ−δf
h ].

Proposition 7.6. — Let us work in the framework of Proposition 7.2 and Theorem 7.4
with the above additional notations and let us set C =

{
c1, . . . , cNf

}
. The family of

quasimodes (Lhφhj )j∈X∗(a,b) and (L̂hφ̂hj )j∈Y∗(a,b) can be chosen such that the basis
(vhj )j∈J ∗(a,b) of F[0,õ(1)],[a,b],h given by

— vhj = π
F

(p),h
ℓ

Lhφhj ∈ Ran (δ
(p),∗
[0,õ(1)],[a,b],h) ⊂ ker(δ

(p−1),∗
[0,õ(1),[a,b],h])

for φhj ∈
⊕

c∈C V
(p),h
c,ℓ when j = (α, x

(p)
α ) ∈ X (p)(a, b) and y(p+1)

α − x(p)
α = ℓ,

— vhj = π
F̂

(p),h
ℓ

L̂hφ̂hj ∈ Ran (δ
(p−1)
[0,õ(1)],[a,b],h) ⊂ ker(δ

(p)
[0,õ(1)],[a,b],h)

for φ̂hj ∈
⊕

c∈C V̂
(p),h
c,ℓ when j = (α, y

(p)
α ) ∈ Y (p)(a, b) and y(p)

α − x(p−1)
α = ℓ,

— vhj ∈ ker(∆f,f−1([a,b]),h) ⊂ ker(δ[0,õ(1)],[a,b],h)∩ ker(δ∗[0,õ(1)],[a,b],h) for j ∈ Z∗(a, b)

with

dist(vhj ,Span[φhj , j ∈ Y ∗(a, b) ∪ Z∗(a, b)])

+ dist(vhj ,Span[φ̂hj , j ∈ X∗(a, b) ∪ Z∗(a, b)]) = Õ(e−
δf
h ),

satisfies

∀p ∈ {0, . . . , d} ,∀j = (α, x(p)
α ) ∈ X (p)(a, b), δ

(p)
[0,õ(1)],[a,b],hv

h
j = µhj v

h

(α,y
(p+1)
α )

+Rhj ,

with µhj
log∼ e−

ℓα
h , ℓα = y

(p+1)
α − x(p)

α , y
(p+1)
α = dBx

(p)
α , and Rhj ∈

̂
F

(p+1),h
ℓα

being a

subset of Ran (δ
(p)
[0,õ(1)],[a,b],h), ∥R

h
j ∥ = Õ(e−

ℓα+δf /2

h ).
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In particular the map from J ∗(a, b) to F[0,õ(1)],[a,b],h given by j 7→ vhj de-
fines a quasi-isomorphism from (RJ ∗(a,b),dB) to the restricted Witten complex
(F[0,õ(1)],[a,b],h, δ[0,õ(1)],[a,b],h).

Proof. — For a given ℓ > 0 the family (Lhφ
h
j )j∈X (p)(a,b),y

(p+1)
α −x(p)

α =ℓ
(respectively

the family (L̂hφ̂hj )j∈Y (p+1)(a,b),y
(p+1)
α −x(p)

α =ℓ
) is a Õ(e−

δf
h )-orthonormal basis of U

(p),h
ℓ

(resp. of Û
(p+1),h
ℓ ). The result of Theorem 7.4 tells us that (vhj )

j∈X (p)(a,b),y
(p+1)
α −x(p)

α =ℓ

(resp. (vhj )
j∈Y (p+1)(a,b),y

(p+1)
α −x(p)

α =ℓ
) is a Õ(e−

δf
h )-orthonormal basis of F (p),h

ℓ (respec-

tively of ̂
F

(p+1),h
ℓ ).

Owing to the supersymmetric property, we know that δ[0,õ(1)],[a,b],h is an isomor-

phism from F
(p),h
ℓ to ̂

F
(p+1),h
ℓ with singular values all satisfying µ log∼ e−

ℓ
h according

to Theorem 7.1.
When j = (α, x

(p)
α ) ∈ X (p)(a, b) and j′ = (β, y

(p+1)
β ) ∈ Y (p+1)(a, b) with

y
(p+1)
β − x(p)

α ̸= ℓ, let us estimate

⟨vhj′ , δ[0,õ(1)],[a,b],hvhj ⟩ = ⟨π ̂
F

(p+1),h
ℓ

L̂hφ̂hj′ , δ[0,õ(1)],[a,b],hπF (p),h
ℓ

Lhφhj ⟩

= ⟨π ̂
F

(p+1),h
ℓ

L̂hφ̂hj′ , df,f−1([a,b]),h(L
hφhj ⟩)⟩

= ⟨vhj′ − (L̂hφ̂hj′), df,f−1([a,b]),h(L
hφhj )⟩

+ ⟨(L̂hφ̂hj′), df,f−1([a,b]),h(L
hφhj )⟩.

The first term is estimated by

∥vhj′ − L̂hφ̂hj′∥∥df,f−1[a,b],h(L
hφhj )∥ = Õ(e−

δf
h )Õ(e−

ℓ−2δ2
h ) = Õ(e−

ℓ+δf /2

h ),

by choosing δ2 ≤ δf
4 .

When y(p+1)
β −x(p)

α ̸= ℓ, the localisation of L̂hφhj′ around y(p+1)
β and the construction

of the global quasimode Lhφhj implies that the second term is Õ(e−
ℓ+δf
h ).

The matrix Mv = (⟨vhj′ , δ[0,õ(1)],[a,b],hvhj ⟩)j,j′ indexed by j = (α, x
(p)
α ) ∈ X (p)(a, b)

with y
(p+1)
α − x(p)

α = ℓ and j′ = (β, y
(p+1)
β ) ∈ Y (p+1)(a, b) with y

(p+1)
β − x(p)

β = ℓ is a
block matrix in the decomposition

F
(p),h
ℓ =

⊕
c∈C

π
F

(p),h
ℓ

V
(p),h
c,ℓ ,

̂
F

(p+1),h
ℓ =

⊕
c∈C

π
F̂

(p),h
ℓ

V̂
(p+1),h
c,ℓ

with square blocks along a diagonal corresponding to y(p+1)
β −x(p)

α = ℓ and other blocks

with norm estimated by Õ(e−
ℓ+δf /2

h ). It implies that the singular values ofMv coincide
with the singular values of all the square diagonal blocks. The linear maps Lh|V(p),h

c,ℓ

and L̂h| ̂
V

(p+1),h
c,ℓ

are chosen in order to make these blocks diagonal.
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This is done for every ℓ ∈
{
ℓα = y

(p+1)
α − x(p)

α , (α, x
(p)
α ) ∈ X (p)(a, b)

}
and for ev-

ery p ∈ {0, . . . , d− 1} separately because we know

F
(p),h
ℓ ⊥ F (p′),h

ℓ′ and ̂
F

(p+1),h
ℓ ⊥ ̂

F
(p′+1),h
ℓ′

when (p, ℓ) ̸= (p′, ℓ′).
Finally the basis (vhj )j∈X∗(a,b)∪Y∗(a,b) is an Õ(e−

δf
h )-orthonormal basis of

F]0,õ(1)],[a,b],h which can be completed by a basis (vhj )j∈Z∗(a,b) of ker(∆f,f−1([a,b]),h).

Because ∥vhj0 − (Lhφhj0)∥ = Õ(e−
δf
h ) for j0 ∈ X∗(a, b), we deduce by working with

the orthogonal complements that the distance between vhj , j ∈ Z∗(a, b), and the

vector space Span(φhj′ , j
′ ∈ Y ∗(a, b) ∪ Z∗(a, b)) is Õ(e−

δf
h ). The same can be done

with (L̂hφ̂hj )j∈Y∗(a,b).

Remark 7.7. — The construction of the basis (vhj )j∈J ∗(a,b) is not very explicit because
of the possible multiplicities which require the introduction of the h-dependent linear
maps Lh and L̂h. A much simpler situation occurs when we know a priori that for
every critical value c ∈ C , H∗(f c+ε, f c−ε) is one-dimensional and that all the lengths
ℓα = y

(p+1)
α − x(p)

α , or more simply c′ − c, c, c′ ∈ C , c ̸= c′, are distinct. This is exactly
the assumption which was made in [74] for a generic Morse function. Note however
that the quasi-isomorphism of [98] is also constructed in a generic case requiring the
Thom-Smale transversality condition. The not so simple statement of Proposition 7.6
shows that it makes sense within our general assumptions and within the stability
theorem discussed below.

7.3. Stability theorem

The following stability theorem, of which a simple version, Corollary 1.8, was given
in the introduction, is a direct consequence of Theorem 7.1 and of the topolgoical
stability result

dbot(B(f),B(g)) ≤ ∥f − g∥C0

recalled in Appendix B.3.

Theorem 7.8. — In the framework of Theorem 7.1, namely Hypothesis 1.2, or (Hy-
pothesis 1.6 and Hypothesis 2.16) for a more general Lipschitz function f , and
a, b ̸∈ {c1, . . . , cNf }, set

ℓmin := min
(
{yα − xα, α ∈ A∗c(a, b)} ∪ {|cn − b|, |cn − a|, 1 ≤ n ≤ Nf}

)
,

where A∗c(a, b) = A∗c(f ; a, b) is the set defined in (53) for the function f , that is
indexing the bars of f with two endpoints in ]a, b[.
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Let moreover g be any other function satisfying Hypothesis 1.2, or (Hypothesis 1.6
and Hypothesis 2.16), as well as

∥g − f∥C0 <
ℓmin

4
,

and such that a, b do not belong to the set {c′1, . . . , c′Ng} made of its “critical values”.

Then, the Õ(e−
ℓmin
h ) non zero eigenvalues of ∆

(p)
g,g−1([a,b]),h can be labeled

λ(p)
α (g;h), α ∈ A(p)

c (a, b) ⊔A(p−1)
c (a, b),

with, for every α ∈ A(p)
c (a, b) ⊔A(p−1)

c (a, b),

ℓmin < 2(y∗+1
α − x∗α)− 4∥g − f∥C0 ≤ lim

h→0
−h log(λ(p)

α (g, h)) ≤ 2(y∗+1
α − x∗α) + 4∥g − f∥C0 .

Meanwhile, for f = f or f = g, the dimension dim ker(∆
(p)
f ,f−1([a,b]),h) equals

β(p)(f b, fa), and thus

dim ker(∆
(p)
f,f−1([a,b]),h) = ker(∆

(p)
g,g−1([a,b]),h) if and only if β(p)(f b, fa) = β(p)(gb, ga).

Proof. — After possibly adding empty bars, the bar codes associated with f and g

can be written B(f) = ([aα, bα[)α∈A and B(g) = ([cα, dα[)α∈A, where

max {|aα − cα|, |dα − bα|, α ∈ A, bα < +∞} ≤ dbot(B(g),B(f)) ≤ ∥g − f∥C0 <
ℓmin

4
.

The definition

ℓmin := min({yα − xα, α ∈ A∗c(f ; a, b)} ∪ {|cn − a|, |cn − b|, 1 ≤ n ≤ Nf})

implies that the number of bars α ∈ A∗c(g; a, b) such that yα − xα > ℓmin

2 , for the
function g, is in bijection with the whole set of bars A∗c(f ; a, b) for the function f ,
which is made by assumption of bars not smaller than ℓmin. The other potential bars
of A∗c(g; a, b) have a length strictly smaller than ℓmin

2 .
Moreover, for α ∈ A∗c(a, b), the expression of limh→0−h log λ

(p)
α (h) given in

Theorem 7.1, respectively applied with g and f , provides the inequalities for the
Õ(e−

2(ℓmin/2)

h ) non zero eigenvalues of ∆g,g−1([a,b]),h.
Finally, the last statement of Theorem 7.8 is a direct consequence of the comments

made in the second item of Remark 2.9.
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CHAPTER 8

GENERALIZATIONS

Our proofs are definitely done under Hypothesis 1.2, while, for a more general Lip-
schitz function f , consequences of Hypothesis 1.6 have not yet been checked and the
exponential decay estimates of Propositions 2.13 and 2.15 have simply been replaced
by assumptions.

This framework was chosen in order to put the stress on the essentially one-
dimensional analysis on R ⊃ f(M). Once this is well understood, it is rather easy
to adapt the analysis and the results in order to consider more general domains, man-
ifolds, or Lipschitz functions f . The first generalizations will be presented for the sake
of simplicity in the framework of Hypothesis 1.2.

Additionally, we will check that Hypothesis 1.6 and Hypothesis 2.16 hold true under
the simple assumption that f is a subanalytic Lipschitz function (see Hypothesis 1.3),
which describes, in some sense, a wider class of functions than Hypothesis 1.2 in a
real analytic geometry.

8.1. More general domains

It is not difficult to adapt all the analysis to some simple cases when the geometrical
domain Ω differs from f−1([a, b]) by tamed deformations of ∂Ω.

Proposition 8.1. — Let (M, g) be a compact Riemannian manifold and let f satisfy
Hypothesis 1.2. If there exist m0, n0 ∈ {1, . . . , Nf} such that m0 < n0 and the bound-
ary of the domain Ω = Ω ⊔Nt ⊔Nn satisfies

f(Nt) ⊂ ]cm0
, cm0+1[, f(Nn) ⊂ ]cn0

, cn0+1[,

and
∂f

∂n |Nt
< 0,

∂f

∂n |Nn
> 0.

then all the results or Theorem 6.3 hold true with c̃1 = cm0+1, c̃N = cn0
when ηf is

chosen in the interval

0 < ηf <
1

2
min

1<n≤Nf
cn − cn−1,

and ηf < min
x∈Nt

(cm0+1 − f(x)), ηf < min
x∈Nn

(f(x)− cn0
).
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Proof. — All the proof of Theorem 6.3 relies on the construction of the δ1-family of
quasimodes (φhj )j∈J ∗(a,b) when Ω = f−1([a, b]). We fix a = cm0+1 − ηf = c̃1 − ηf and
b = cn0

+ ηf = c̃N + ηf . Because the gradient lines provide a homotopy between the
pairs (Ω, Nt) and (f−1([a, b]), f−1 {a}), the bar code for f in Ω relatively to Nt can
be identified with B(f ; [a, b]). Now, the quasimodes (φhj )j∈J ∗(a,b) are extended by 0

in fa ∩ Ω and, when j ∈ Y ∗(a, b) ∪ Z∗(a, b), they are “extended” in fb ∩ Ω as

χφhj − d∗f,f−1([cn0
+δ1,+∞[∩Ω),h

(∆f,f−1([cn0
+δ1,+∞[∩Ω),h)

−1(hdχ ∧ φhj ),

like in Proposition 3.9-ii), with δ1 ∈]0,
ηf
8 ], χ ∈ C∞(M ; [0, 1]), χ ≡ 1 in f b−ηf/2,

χ ≡ 0 in fb−ηf/4, and where Dirichlet (resp. Neumann) boundary conditions are put
on f−1({cn0 + δ1}) (resp. on Nn), for the domain f−1([cn0 + δ1,+∞[∩Ω)

Remark 8.2. — Another interesting case is when the Neumann boundary conditions
on N = Nn, where ∂f

∂n > 0, are replaced by Dirichlet boundary conditions. Then,
generalized critical values corresponding to critical values of f |N appear following
what is known for a Morse function f (see e.g., [20, 52, 69, 77, 67]). As a topologi-
cal tool, bar codes make sense for boundary manifolds. But the analysis has to be
reconsidered from the beginning, especially by introducing mixed Dirichlet-Neumann
problems along the upper boundary of Ω ∩ f≤t. We do not develop this point here
(see however [32] where such conditions are considered).

8.2. More general manifolds

The following generalization aims at including the particular case when M = Rd is
not compact and the gradient of f does not vanish outside a compact set. More
specifically, we assume

Hypothesis 8.3. — Let (M, g) be a connected complete Riemannian manifold and as-
sume f ∈ C∞(M ;R) for the sake of simplicity.

We suppose that there exist −∞ < a0 < b0 < +∞ and κ > 0 such that

— K0 = f−1([a0, b0]) is compact,
— for all x ∈M \K0, |∇f(x)|2 ≥ κ+κ

∣∣∣L∗∇f + L∇f

∣∣∣ (x),
— f has a finite number of critical values c1, . . . , cNf in [a0, b0] which belong

to ]a0, b0[.

Under this assumption, the definition of the bar code B(f) = ([a∗α, b
∗+1
α [)α∈A is

essentially the same as in the compact case, except that bars with a∗α = −∞ and
b∗+1
α ∈ R are possible, according to the topology of f t as t → −∞. In such a case,
b∗+1
α ∈ Z∗+1(a, b) for all a, b ∈ [−∞,+∞] \

{
c1, . . . , cNf

}
such that a < b∗+1

α < b.
The domain f−1([a, b]) ⊂ M is actually f−1([a, b] ∩ ]−∞,+∞[) when a = −∞ or

b = +∞. Accordingly, ∆f,f−1([a,b]),h, df,f−1([a,b]),h, and d∗f,f−1([a,b]),h do not include
boundary conditions on the infinite end in the definition of their domains.
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Proposition 8.4. — Under Hypothesis 8.3, all the results of Theorem 6.3 still hold.

Proof. — The lower bound |∇f |2 ≥ κ implies

lim
x∈f−1([b0,+∞[)

x→∞

f(x) = +∞ and lim
x∈f−1(]−∞,a0])

x→∞

f(x) = −∞,

Actually for f(x) ≥ b0 a descending gradient line will reach f−1({b0}) in finite time t0
with

f(x)− b0 = −
∫ t0

0

γ̇(t).∇f(γ(t)) dt =

∫ t0

0

|γ̇(t)||∇f(γ(t))| dt

≥
√
κd(x, f−1({b0})) ≥

√
κd(x,K0),

while the completeness of M implies limx→∞ d(x,K0) = +∞. Therefore for any
a, b ∈ R \ {c1, . . . , cN}, a < b, f−1([a, b]) is a compact smooth domain of M . The el-
liptic regularity then tells us that the operator ∆f,f−1([a,b],h) is essentially self-adjoint
on the subspace of C∞0 (f−1([a, b]); ΛT ∗M) defined with the boundary conditions, of
Dirichlet type on f−1({a}) and of Neumann type on f−1({b}).

Let us adapt the proof of Simader’s (see [87] or [40, 96] for related approaches) for
the essential self-adjointness of ∆f,h on C∞0 (M ; ΛT ∗M). The equality of the maxi-
mal and minimal extensions of the symmetric operator ∆f,h|C∞0 (M ;ΛT∗M)

amounts to
checking that

u ∈ L2(M ; ΛT ∗M) and (1 + ∆f,h)u = 0 in D′(M ; ΛT ∗M)

implies u = 0. The local elliptic regularity implies that u ∈ C∞(M ; ΛT ∗M). A varia-
tion of the integration by parts (20) gives

0 = Re ⟨χ2u, (1 + ∆f,h)u⟩ = ∥χu∥2 + h2∥dχu∥2L2 + h2∥d∗χu∥2L2

+ ⟨χu, |∇f |2 + h(L∇f + L∗∇f )χu⟩ − h2⟨u, |∇χ|2u⟩
≥ ∥χu∥2 − h2⟨u, |∇χ|2u⟩.

for any compactly supported Lipschitz function χ. Because the manifold M is
complete, it can be applied with the compactly supported Lipschitz function
χk(x) = θ(d(x,K0)

k+1 ), k ∈ N and θ ∈ C∞0 (R; [0, 1]), θ ≡ 1 in a neighborhood of 0 :

∥χku∥2L2 ≤ h2

∫
M

|∇χk|2|u|2

and taking the limit as k →∞ yields u = 0.
The same method proves that ∆f,f−1(]−∞,b]),h (resp ∆f,f−1([a,+∞[,h) is essentially

self-adjoint on the subspace C∞0 (f−1(]∞, b]); ΛT ∗M)) (resp. C∞0 (f−1([a,+∞[; ΛT ∗M)))
restricted with Neumann (resp. Dirichlet) type boundary conditions on f−1({b})
(resp. f−1({a}) ) when a, b ∈ R \ {c1, . . . , cN}.

The lower bound |∇f |2(x) ≥ κ + κ|L∇f + L∗∇f |(x) for x ∈ M \ K0 implies that
the tensor |∇f |2(x) − h(L∇f + L∗∇f )(x) is uniformly bounded from below by κ > 0

for h < κ and therefore that the essential spectrum of ∆f,h (resp. ∆f,f−1([a,+∞)) or
∆f,f−1((−∞,b]),h) with a, b ∈ R \ {c1, . . . , cN}) is contained in [κ,+∞).
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The final ingredient is the Agmon estimate of Proposition 2.13 with Ω = M ,
Ω = f−1([a,+∞[) or Ω = f−1(] −∞, b]), a, b ∈ R \ {c1, . . . , cN}. Here the compact
subset U is f−1({c0, . . . , cN})∩Ω and for any fixed compact subset K of Ω we consider
ωh ∈ D(∆f,Ω,h) such that

(∆f,Ω,h − λh)ωh = rh, supp rh ⊂ K, lim
h→0

λh = 0.

The result is now: for all ε > 0 there exist hε > 0 and Cε > 0 such that

∥e
(1−ε)dAg(x,U∪K)

h ωh∥W∂(Ω)
≤ Cε

h
(∥rh∥+ tU∥ωh∥) ,

for all h ∈ (0, hε), where tU = 1 if U ̸= ∅ and tU = 0 when U = ∅. Restricted to any
fixed compact set of Ω the above estimate is the same as the one of Proposition 2.13.
This result suffices to prove the proximity between the eigenvalues of ∆f,Ω,h and
of ∆f,Ω∩f−1([a′,b′]),h with a′, b′ ∈ R \ {c1, . . . , cN} for −a′ and b′ large enough and
therefore allows to replace a = −∞ by a′ > −∞ or b = +∞ by b′ < +∞ in all the
intermediate estimates with an arbitrarily large accuracy.

The proof is the same as in Proposition 2.13 with two modifications:

— For a given h > 0, the integration by parts formulas of Lemma 2.10 are firstly
written for compactly supported forms. Secondly ωh ∈ D(∆f,Ω,h) are approxi-
mated by elements of D(∆f,Ω,h) ∩ C∞0 (Ω; ΛT ∗M) in order to get before (24)

∥ωh∥L2∥rh∥L2 ≥ Qf,Ω,h(χ1ωh, χ1ωh) + h2(∥dχ2ω̃h∥2 + ∥d∗χ2ω̃h∥)

+ ⟨χ2ω̃h, [|∇f |2 − |∇φε|2 + h(L∇f + L∗∇f )− λh]χ2ω̃h⟩ − cεh2∥ω̃h∥2.
— We use the lower bounds

|∇f |2(x)− |∇φε|2(x) + h(L∇f + L∗∇f )(x) ≥ (1− (1− ε)2)|∇f |2(x)− h|L∇f + L∗∇f |(x)
≥ (1− (1− ε)2)κ

when h < (1− (1− ε)2)κ and x ∈ Ω \K0 and

|∇f |2(x)− |∇φε|2(x) + h(L∇f + L∗∇f )(x) ≥ CK0,ε − C̃K0,εh

when x ∈ K0 ∩ supp χ2.

Remark 8.5. — The lower bound |∇f |2(x) ≥ κ+ κ|L∇f + L∗∇f |(x) for x ∈M \K0 is
a very strong condition which involves the behavior of f and of the curvature of the
riemannian metric as x → ∞. It is used not only for the localization of the essential
spectrum of ∆f,h in [κ,+∞) but also, via Agmon estimates, to approximate the
spectral elements of ∆f,h by the ones of ∆f,f−1([a′,b′],h) as a′ → −∞ and b′ → +∞.
From this point of view, the assumption |∇f |2(x) ≥ κ (as stated in the first version
of this text) is not sufficient. Already in the case of functions, it meets the vast
litterature about the global analysis of harmonic functions on an open Riemannian
manifold (see e.g., [22, 17, 18, 24, 97]) and the escape rate of Brownian motion on a
complete Riemannian manifold (see e.g., [45, 44, 61]).
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Let us make this more explicit with a simple example. Consider on R2 the potential
f(r) = r2

2 and a C∞ metric g = dr2 + ψ(r)2dθ2, with ψ(r) > 0 for r > 0 and

ψ(r) = Or→0+(r). The volume is ψ(r)drdθ and the solution to df,hu = 0, u = Ce−
r2

2h ,
belongs to L2(R2, dvolg) if and only if

∫ +∞
0

ψ(r)e−
r2

h dr < +∞. This is not true if
ψ(r) ∼r→∞ er

4

although the riemannian manifold (R2, g) is complete and |∇f |2 =

r2 ≥ 1 for r ≥ 1.
Let us look now at the stronger condition |∇f |2 ≥ κ+κ|L∇f + L∗∇f |. In the simple

scalar case it means
r2 ≥ κ+ κ

|∂r(rψ)|
ψ

which implies ∂r(rψ(r))
rψ(r) ≤ r

κ and ψ(r) ≤ Ce
r2

2κ for r ≥ r0 > 0. With this assumption

e−
f
h actually belongs to L2(Rd, dvolg) for h > 0 small enough and there is no problem

for the approximation by e−
f
hχ( r

k+1 ).
When Rd is endowed with the euclidean metric, the condition

|∇f |2 ≥ κ+ κ|L∇f + L∗∇f |

says essentially that the Hessian of f is estimated by 1
κ |∇f |

2. In [51] many examples
where discussed where e−

f
h ∈ L2(Rd) can be approximated by local spectral problems

while lim supx→∞
|Hessf(x)|
|∇f(x)|2 = +∞.

As a conclusion here, our hypotheses are very strong and we do not know for the
moment how they could be relaxed in order to ensure the validity of Theorem 6.3.

8.3. More general Lipschitz functions

We consider more accurately the situation of a general Lipschitz function f , while
the analysis was presented under conjectural assumption. As a first step we recall
in Subsection 8.3.1 how Hypothesis 1.6 implies Hypothesis B.1 of Appendix B and
therefore provides a finite bar code Bf .

Once this is clarified we prove that Hypothesis 1.6 and Hypothesis 2.16 are sat-
isfied when f is a subanalytic Lipschitz function, after the suitable specification of
the “critical values,” c1 < · · · < cNf . It relies on the stratification of the subanalytic
graph of f , of which the properties are recalled in Subsection 8.3.2. A variation of
Agmon distance will also be constructed after solving the Hamilton-Jacobi equation
|∇′φ| = |∇′f |, where ∇′ concerns only tangential partial derivatives in some tubular
neighborhoods of every stratum. From this point of view, the analysis of this Lip-
schitz subanalytic case, via a stratification technique, takes some inspiration from
[41]. Finally in Subsubsection 8.3.3, Hypothesis 2.16 is checked to hold true, via some
partition of unity adapted with the stratification.
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8.3.1. Hypothesis 1.6 and consequences. — The manifold M is assumed to be com-
pact without boundary although it could be extended to more general cases like in
Subsection 8.2.

Let us first define the critical values of a Lipschitz function f or more exactly, its
contrary.

Definition 8.6. — When f : M → R is a Lipschitz function a value a is not a critical
value if for any x0 ∈ f−1({a}) there exists a neighborhood Ux0

of x0 and a local
coordinate system x = (x1, x′) ∈ R× Rd−1 and a constant Cx0

> 0 such that

(136) ∀x = (x1, x′), y = (y1, x′) ∈ Ux0
,

1

Cx0

|x1 − y1| ≤ |f(x1, x′)− f(y1, x′)|.

A critical value a ∈ f(M) ⊂ R is a point where the above property fails.

Since the function f is continuous, the local condition condition (136) can be
replaced by

∀x = (x1, x′), y = (y1, x′) ∈ Ux0
,

1

Cx0

(x1 − y1) ≤ f(x1, x′)− f(y1, x′) when x1 > y1.

Hypothesis 1.6 simply says that the Lipschitz function f has a finite number of critical
values. But the set

{
c1, . . . , cNf

}
of Hypothesis 1.6 may be strictly larger that the set

of critical values as defined above, and this a reason why the values c1, . . . , cNf were
called “critical values”. Actually this flexibility is especially usefull when we consider
subanalytic Lipschitz functions below.

The above definition ensures that the implicit functions theorem in the Lipschitz
case can be applied locally around x ∈ f−1({a, b}) with the following straightforward
consequences for the domain f ba when a, b are not “critical values”:

i) f ba is a strongly Lipschitz domain of M according to the terminology of [43],
meaning that it is locally the hypograph of a Lipschitz function in the proper
coordinate system.

ii) f ba = f−1([a, b]).
iii) When a = −∞, f b with c < b < c′ and no critical values in ]c, c′[, is homotopic

to Ω a C∞ domain with ∂Ω ⊂ f c′c .

The last statement can be checked by using finitely many local homotopies in coordi-
nate systems, but one could also use the global construction of a smooth transverse
vector field as proposed in [93]-Theorem 1.12-vi).

The above three properties were used in our analysis. In particular the finiteness
of Nf and iii) appear in Hypothesis B.1 which allows the introduction of a finite bar
code Bf . The properties i) and ii) are used in the definition of ∆f,f−1([a,b]),h according
to Proposition 2.8

Critical points and values can actually be defined in a coordinate free way, in
terms of the standard notion in non smooth analysis of Clarke’s generalized gradient
and Clarke’s critical points: In Rd or locally in a coordinate system in M , a Lipschitz
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function admits a differential df(x) almost every where by Rademacher’s theorem and
the domain Dom(df) is the set of x where df(x) exists. Clarke’s generalized gradient
at x then equals the closed convex set

∂◦f(x) = co
{
ζ ∈ Rd,∃(xn)n∈N ∈ Dom(df)N, lim

n→∞
xn = x and lim

n→∞
df(xn) = ζ

}
,

where co denotes the convex hull. A Clarke critical point x is a point where 0 ⊂ ∂◦f(x)

and a Clarke critical value of f is a value a where f−1({a}) contains a critical points.
In the case of subanalytic Lipschitz functions which will be considered more specificaly
in the other paragraphs, this definition actually coincides with the wavefront naturally
introduced in [30]. Staying at the local level the local condition (136) for x0 ∈ f−1 {a},
actually means that for all x ∈ Dom(df) ∩ Ux0

, df(x) lies in the intersection of some
closed salient (ζ ̸= 0 and −ζ cannot both belong to it) convex cone Cx0 with a
shell Sx0

=
{
ζ ∈ Rd, r < |ζ| ≤ R

}
, 0 < r < R < +∞. This writing is equivalent to

the fact that for all x ∈ f−1({a}), Clarke’s generalized gradient is included in the
intersection of a salient convex cone and a closed shell. This property is independent
of the coordinate system and of the metric if we replace the differential df by the
gradient ∇f .

Even in the subanalytic setting, those critical values (according to Definition 8.6 or
Clarke) may overestimate what the intuition and even the final result would retain.
Warga’s example carefully analyzed in [28],

f(x1, x2) =
∣∣|x1|+ x2

∣∣+ 1

2
x1,

with the level curves in the picture below, satisfies the above consequences i), ii) and
iii) for any value b ∈ R although 0 is a critical value of f . Note also that 0 will be a
critical value of non well chosen regularizations of f and we refer to [28] for a thorough
discussion of this point.

x
1

x
2

Figure 12. Level curves of Warga’s function f(x1, x2) =
∣∣|x1|+ x2

∣∣ + 1
2
x1
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Actually in the subanalytic setting an even larger, but still finite, set of val-
ues

{
c1, . . . , cNf

}
will be introduced in order to verify the second assumption, Hy-

pothesis 2.16, used in our analysis.

8.3.2. Stratification of Lipschitz subanalytic functions. — According to [12] a Lipschitz
subanalytic function has a finite number of critical values and Hypothesis 1.6 holds
true. We also recalled in the previous paragraph that Clarke’s gradient coincides with
the wavefront set of subanalytic Lipschitz functions introduced in [30]. However such
a notion of gradient or wavefront above a point x ∈ M , is a wide closed convex set
which contains all the convex combinations of limits of neighboring gradients without
discriminating the information which can be deduced from the stratified structure. We
specify the corresponding constructions when f is a real subanalytic Lipschitz function
on a real analytic compact Riemannian manifold M according to Hypothesis 1.3.

Let us first remind the basic notions about subanalytic sets and functions. We refer
the reader to the founding articles [47, 58] and to [78, 9] for a panoramic or historical
presentation. A part but not all of the material, presented or recalled here, may be
found in [30] for the specific case of subanalytic Lipschitz functions.

Review of subanalytic notions and results
— In the real analytic category, the class of subanalytic sets is the one which con-

tains the semianalytic sets, characterized by real analytic equations or inequali-
ties, and which is stable by finite set operations (finite union, finite intersection
and complement) and by proper real analytic projections. The name “subana-
lytic” was introduced by Hironaka and Hardt used the name “analytic shadow”
in [47] although they finally happened to describe the same class (see [78]).

— Any subanalytic set E of a real analytic manifold X admits a stratification, that
is a locally finite partition in real analytic connected submanifold of X called
strata E = ⊔S∈SS such that S ∩ S′ ̸= ∅, S ̸= S′, implies S ⊂ ∂S′ (in this
framework ∂S′ = S′ \ S′) with dimS < dimS′, or equivalently because S is a
partition, S ∩ ∂S′ ̸= ∅, S ̸= S′ implies S ⊂ ∂S′ with dimS < dimS′.

Such a stratification can always be refined in order to satisfy Whitney’s local
condition B which reads in Rn or in a coordinate system:(

(xn)n∈N ∈ (S′)N, lim
n→∞

xn = x ∈ S ⊂ S′
)
⇒ (TxS ⊂ lim

n→∞
TxnS

′).

When C is a locally finite family of subanalytic sets, the stratification S can also
be chosen in order to be compatible with C , which means that for all S ∈ S and
C ∈ C , either S ∩ C = ∅ or S ⊂ C.

— A subanalytic function X → Y is a function of which the graph is a subanalytic
set of X × Y .

— When f : X → Y is a real analytic mapping, a stratification of f is made of two
stratifications S of X and F of Y such that

∀S ∈ S , f(S) ∈ F , rank (f |S) = dim f(S).
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— Corollary 4.4 of [47] assumes that f : X → Y is real analytic and C and D are
two locally finite families of subanalytic sets of X and Y and Ω is a subanalytic
open set such that f |Ω is proper. It then says that there exists a stratification
(S ,F ) of f |Ω which is compatible with C and D.

— Famous Hironaka’s desinguralisation theorem says that any compact subanalytic
set is the image of a compact real analytic manifold with same dimension by a
real analytic mapping. We will not use it specifically.

When f : M → R is a Lipschitz subanalytic function we consider the two pro-
jections p1 : M × R → M and p2 : M × R → R. From Hardt’s result we
know that there is a stratification of p2 : M × R → R which is compatible with
C = graph (f) ⊔ (M × R \ graph (f)) and D = R. From this we deduce that there is
a stratification S̃ of graph (f) and a finite number of points

{
c1, . . . , cNf

}
∈ R such

that all S̃ ∈ S̃ satisfies
— either p2 is constantly equal to some cn along S̃;
— or there exists n such that p2(S̃) = ]cn, cn+1[ and rank (p2|S̃) = 1.

Definition 8.7. — For such a stratification of graph (f), strata corresponding to the
first case will be called horizontal strata.

Because f is a Lipschitz function the projection p1 : M × R → M makes a
diffeomorphism from S̃ to S = p1(S̃) which is a submanifold of M . The family
S =

{
p1(S̃), S̃ ∈ S̃

}
is now a stratification of M . When S̃ is a horizontal stratum,

then f |S is constant along S = p1(S̃). On the contrary when S̃ is not horizontal
f |S is a real analytic function with no critical point on S = p1(S̃).

Whitney’s condition B also has a nice interpretation. It simply says in a local
coordinate system (which allows the local identification of TyM with Rd around any
point x ∈M)(

(xn)n∈N ∈ (S′)N, lim
n→∞

xn = x
)

⇒
(
∀T ∈ TxS⊂ TxM ∼ Rd, lim

n→∞
(d(f |S′)xn [T ] = d(f |S)x[T ]

)
.

With the Riemannian structure it can be expressed in terms of gradients. More ex-
actly for any relatively compact open subset ωS of the stratum S, and for ε ∈ ]0, εωS [,
εωS > 0 small enough, the exponential map exp(x, t) = expx(t) ∈M for (x, t) ∈ TM is
a diffeomorphism from {(x, t) ∈ NωS , |t| < ε}, where NωS is the normal fiber bundle
over ωS , to its range TωS ,ε ⊂ {x ∈M,d(x, ωS) < ε}, that we call a tubular neigh-
borhood of ωS . We refer the reader to [76] where tubular neighborhoods of closed
submanifolds are introduced in this way and [66] for further details and generaliza-
tions with more general pseudo Riemannian structures. Another presentation using
the embedding of M in some RNM is given in [59]. Such a tubular neighborhood
TωS ,ε ⊂ M is an open subset of the fiber bundle πS : NωS → ωS and is endowed
with the metric g defined on M . Therefore the tangent bundle TxTωS ,ε = TxM
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x•

πS(x)
+

∇S′f(x)

ΠS∇S′f(x)

THx TωS ,ε

TVx TωS ,ε

ωS ⊂ S

TωS ,ε

Figure 13. Picture of the projections πS and ΠS when x ∈ TωS ,ε ∩ S′.

for x ∈ TωS ,ε, has an orthonomormal decomposition TxM = TVx M ⊕⊥ THx M where
TVx M = ker(dπS) ∼ NπS(x)ωS . For x ∈ TωS ,ε and t ∈ TxM = TxTωS ,ε we define
ΠSt as the horizontal component of t in this decomposition. For x ∈ TωS ,ε, the func-
tion fS(x) = f(πSx) is a real analytic function of x ∈ TωS ,ε. Because f is a regular
function along a stratum S′ ∈ S its gradient along S′ (with the metric induced by g)
is denoted ∇S′f . With those notations the previous property can be written(

(xn)n∈N ∈ (S′ ∩ TωS ,ε)
N, lim
n→∞

xn = x ∈ ωS
)

⇒
(

lim
n→∞

|ΠS∇S′f(xn)−∇fS(xn)| = 0
)
.

Let us summarize our notations:
— ωS is a relatively compact open set of the stratum S.
— TωS ,ε is a tubular neighborhood of ωS diffeomorphic to {(x, t) ∈ NωS , |t| < ε}.

It will be convenient to extend the notation to ε = 0 with the large inequality
and ωS = S, namely TS,0 = S, which makes sense as S = lim supε→0 TωS,ε,ε
where ωS,ε relatively compact in S is well chosen when ε > 0 is small.

— When S′ is a stratum ∇S′f is the gradient of f along S′ and for x ∈ S′ ∩ TωS ,ε,
ΠS∇S′f(x) is the horizontal component of ∇S′f(x) in the orthogonal decom-
position TxM = TVx TωS ,ε ⊕⊥ THx TωS ,ε.

— Finally in TωS ,ε, which is diffeomorphic to a subset of NωS , one defines the regu-
lar function fS(x) = f(πSx) where πS is the natural projection πS : NωS → ωS .

With the compactness of ωS in S, Whitney’s condition B actually implies the
following uniform convergence result.

Lemma 8.8. — Fix the relatively compact open set ωS of the stratum S and let TωS ,ε
denote the tubular neighborhood defined for ε > 0 small enough. Then the quantities

max
S′∈S

sup
x∈TωS,ε∩S′

|ΠS∇S′f(x)−∇fS(x)|
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and
sup

x∈TωS,ε

|∇fS(x)−∇fS(πSx)|,

tend to 0 as ε→ 0+.

Proof. — Ad absurdum if there is a sequence (xn)n∈N such that

|ΠS∇S′f(xn)−∇fS(xn)| ≥ η > 0,

while xn ∈ TωS , 1n ∩ S
′, then by the compactness of ωS and the finiteness of S ,

we can assume that S′ is fixed and that limn→∞ xn = x ∈ ωS . The lower
bound |ΠS∇S′f(xn) − ∇fS(xn)| ≥ η > 0 while limn→∞ |∇fS(xn) − ∇fS(x)| = 0,
∇fS(x) = ∇Sf(x), then contradicts Whitney’s condition B.

Finally the last convergence is a consequence of the uniform continuity of ∇fS
which can be defined on a compact neighborhood of TωS ,ε for ε ∈ ]0, εS [, εS > 0 small
enough.

Proposition 8.9. — When f is a Lipschitz subanalytic function on M , Hypothesis 1.6
is satified with c1, . . . , cNf ∈ R being the values associated with horizontal strata in
the stratification of graph(f) ⊂M × R described above.

Proof. — Let x0 ∈M \f−1(
{
c1, . . . , cNf

}
). It belongs to a stratum S ∈ S and we can

find a relatively compact open set ωS ⊂ S such that x0 ∈ ωS ⊂ S. The function fS is
a real analytic-function defined in the tubular open TωS ,ε for ε ∈ ]0, εx0

[ with εx0
> 0

small enough. For y ∈ TωS ,ε ∩ S′, with S′ ∈ S , dimS′ = d, we write

∇fS(y).∇f(y) = |ΠS∇f(y)|2 − (∇fS(y)−ΠS∇f(y)) .∇f(y)

and∣∣∇fS(y).∇f(y)− |∇fS(x0)|2
∣∣ ≤ ∣∣|ΠS∇f(y)|2 − |∇fS(x0)|2

∣∣+Mf |ΠS∇f(y)−∇fS(y)| .
We know that |∇fS(x0)| > 0 because S cannot be an horizontal stratum. By
Lemma 8.8, ε ∈ ]0, εx0 [ can be chosen such that the right-hand side is smaller
than 1

2 |∇fS(x0)|2 for all S′ ∈ S , such that dimS′ = d and x0 ∈ S ∩ S′. We have
found a tubular neighborhood Ux0

of x0 and a coordinate system (x1, . . . , xd) around
x0 by taking x1 = fS(x) such that

∀S′ ∈ S ,dimS′ = d, ∀x ∈ Ux0
∩ S′, ∂x1

f(x) ≥ 1

Cx0

.

This neighborhood Ux0
can then be reduced to

Ux0
=
{
x = (x1, x′) = (x1, x2, . . . , xd), |x1 − x1

0| < δ, |x′| < δ
}

for some δ > 0. The set E = Ux0
\ (
⋃

dimS′=d S
′ ∩ Ux0

) has measure 0 and ∇f(x) is
well defined for all x ∈ Ux0

\ E. By Fubini’s theorem the set of x′, |x′| < δ, such
that

{
(x1, x′), |x1 − x1

0| < δ
}
∩ E has a non zero one dimensional measure, has
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Lebesgue’s measure 0 and we can write for almost all x′, |x′| < δ

∀x1, y1 ∈ ]x1
0− δ, x1

0 + δ[, f(x1, x′)−f(y1, x′) =

∫ 1

0

(x1−y1)∂x1f(x1 + t(y1−x1)) dt

where the integrand is well defined for almost every t ∈ [0, 1] and bounded from below
by 1

Cx0
(x1 − y1) when x1 > y1. The continuity of f then implies

∀(x1, x′), (y1, x′) ∈ Ux0 ,
1

Cx0

|x1 − y1| ≤ |f(x1, x′)− f(y1, x′)|.

We will use open coverings of f−1([a, b]) when [a, b]∩
{
c1, . . . , cNf

}
= ∅, made of

tubes TωS ,εS with εωS > 0. They will be constructed by induction on the dimensions
of the strata. They will be associated with a family of parameters (ε1, . . . , εd), with
εωS = εdimS . In the induction process we authorize εdimS = 0 for m < dimS ≤ d, in
which case ωS = S for every stratum S of dimension dimS > m.

Definition 8.10. — Let a < b belong to R and set S[a,b] =
{
S ∈ S , S ∩ f−1([a, b]) ̸= ∅

}
.

A tubular covering of f−1([a, b]) contains two data, a family (ε0, ε1, . . . , εd) ∈ [0,+∞[d+1

and for every S ∈ S[a,b], a subset ωS of S which is either open and relatively compact
in S if εdimS > 0 or equal to S if εdimS = 0 such that for all m ≤ d

f−1([a, b]) ∩
(
∪S∈S[a,b],dimS≤mS

)
⊂ ∪S∈S[a,b],dimS≤mTωS ,εdimS

,(137)

TωS1
,εm′ ∩ TωS2

,εm′ = ∅ if S1 ̸= S2, dimS1 = dimS2 = m′ ≤ m.(138)

Such a tubular covering is said ε-adapted for ε ∈]0, 1], if for any S, S′ ∈ S[a,b],

sup
x∈TωS,εdimS

∩S′
|ΠS∇S′f(x)−∇fS(x)| ≤ ε,(139)

and

sup
x∈TωS,εdimS

|∇fS(x)−∇fS(πSx)| ≤ ε.(140)

Such a covering is clearly an open covering when all the εi’s are positive.
We will sumarize those situations by speaking of a (possibly “an ε-adapted”)

(possibly “open”) tubular covering (TωS ,,εS )S∈S[a,b]
associated with the parame-

ters (ε0, . . . , εd).

A trivial example is given by (ε0, ε1, . . . , εd) = (0, . . . , 0) and ωS = S for all
S ∈ S[a,b]. When S[a,b] contains no stratum of dimension m, any value εm ≥ 0 can
be used in the above definitions. When all the parameters εm, 0 ≤ m ≤ d, are
positive, this provides an open covering of f−1([a, b]). Note that when εm = 0 and
ωS = S for dimS = m, the condition x ∈ TωS ,εm ∩ S′ actually implies x ∈ S = S′

so that the condition (139) is void for strata S of dimension m. As a consequence, if
(TωS ,εdimS

)S∈S[a,b]
is a (resp. an ε-adapted) tubular covering of f−1([a, b]) associated

with the parameters (ε0, . . . , εd), then for any m replacing εm′ by 0 for m′ > m, ωS
by S if dimS > m, εm by ε′m ∈]0, εm] and leaving the other data, ωS for dimS ≤ m,
ε0, . . . , εm−1, unchanged give another (resp. ε-adapted) tubular covering.
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Figure 14. A schematic example of an open covering: The stratification is on the left-hand
side made of two triangles, the edges and the vertices; the open tubular covering with positive
values for ε0, ε1, ε2 is on the right-hand side. The outside of the two triangles is forgotten or
one can compactify by identifying opposite external edges.

The following proposition implements the induction which leads to the construction
of families of ε-adapted open tubular coverings of f−1([a, b]), especially when [a, b]

contains no “critical value”.

Proposition 8.11. — Assume first [a, b]∩
{
c1, . . . , cNf

}
= ∅ where c1, . . . , cNf are values

of f associated with horizontal strata. Then S[a,b] contains no 0-dimensional stratum
and there exists a (resp. an ε-adapted) tubular covering associated with (ε0, 0, . . . , 0)

for any ε0 > 0.
Assume that there exists a (resp. an ε-adapted) tubular covering associated with

the parameters (ε0, . . . , εm−1, 0, . . . , 0) for 1 ≤ m ≤ d with ε0 > 0, . . . , εm−1 > 0,
then there exists ε0m > 0 and for any S ∈ S[a,b], dimS = m, a subset ωS ⊂ S open
and relatively compact S such that for all εm ∈]0, ε0m], the family (TωS ,εdimS

)S∈S[a,b]

associated with (ε0, . . . , εm, 0, . . . , 0) and ωS unchanged if dimS ≤ m− 1, is another
(resp. ε-adapted) tubular covering of f−1([a, b]).

Proof. — Because S[a,b] contains no stratum of dimension 0 a tubular covering is
given by ωS = S where all S ∈ S[a,b] satisfy dimS ≥ 1 and any value of ε0 > 0 makes
sense.

Additionally every S ∈ S[a,b] of dimension 1 satisfies ∇Sf(x) ̸= 0 for every
x ∈ S ∩ f−1([a, b]) and hence f−1([a, b])∩ S is a compact subset of S. We can choose
ωS open and relatively compact in S such that ωS ∩ f−1([a, b]) is a neighborhood
in S of S ∩ f−1([a, b]). This is done for every S ∈ S[a,b] such that dimS = 1.
We can then choose ε1 > 0 such that ε1 < 1

2dg(ωS1
, ωS2

) for any S1, S2 ∈ S[a,b],
dimS1 = dimS2 = 1, in order to ensure TωS1

,ε1 ∩ TωS2
,ε1 = ∅ for S1 ̸= S2.

Assume now that the result holds for a given m, 1 ≤ m ≤ d. For dimS ≤ m, the
set TωS ,εdimS

is an open set and
⋃
S∈S[a,b],dimS≤m TωS ,εdimS

is an of K[a,b],m =

f−1([a, b]) ∩ (
⋃
S∈S[a,b],dimS≤m S). Consider the compact subset K[a,b],m+1 =

f−1([a, b]) ∩ (
⋃
S∈S[a,b],dimS=m+1 S).
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It is a a compact set and so is K[a,b],m+1 \ (∪S∈S[a,b],dimS≤mTωS ,εdimS
) which by

the definition of the stratification S can be decomposed into ∪S∈S[a,b],dimS=m+1KS

where KS is a compact subset of S. We choose for ωS , S ∈ S[a,b], dimS = m + 1,
a relatively compact neighborhood of KS and then fix εm+1 > 0 small enough such
that TωS1

,εm+1 ∩ TωS2
,εm+1 = ∅ for any S1, S2 ∈ S[a,b], dimS1 = dimS2 = m+ 1 like

in the case m+ 1 = 1.
Following this induction and by assuming that (TωS ,S)S∈S[a,b]

is an ε-adapted tubu-
lar covering associated with (ε0, . . . , εm, 0, . . . , 0), ε0, . . . , εm > 0, ε0m+1 > 0 can be
chosen such that

sup
x∈T

ωS,ε
0
m+1

∩S′
|ΠS∇S′f(x)−∇fS(x)| ≤ ε

and

sup
x∈T

ωS,ε
0
m+1

|∇fS(x)−∇fS(πSx)| ≤ ε,

for all S ∈ S[a,b], dimS = m+1, and all S′ ∈ S[a,b]. This still holds if ε0m+1 is replaced
by any εm+1 ∈]0, ε0m+1], without changing the ωS , and this ends the proof.

Definition 8.12. — Assume [a, b] ∩
{
c1, . . . , cNf

}
= ∅ and let (TωS ,εdimS

)S∈S[a,b]
be

a tubular covering associated with the parameters (ε0, ε1, . . . , εd) ∈ [0,+∞[d+1. The
functions F̃(ε0,...,εd) and F(ε0,...,εd) are defined on f−1([a, b]) by

F̃(ε0,...,εd)(x) = min
x∈TωS,εdimS

∩S′
|ΠS∇S′f(x)|,(141)

F(ε0,...,εd)(x) = min
x∈TωS,εdimS

|∇fS(x)|,(142)

where the minima are taken over S, S′ ∈ S[a,b].
On f−1([a, b])× f−1([a, b]) the functions G̃(ε0,...,εd) and G(ε0,...,εd) are given by

G(ε0,...,εd)(x, y) = inf
γ∈C1([0,1];f−1([a,b]))

γ(0)=x
γ(1)=y

∫ 1

0

F(ε0,...,εd)(γ(t))|γ
′(t)| dt(143)

with the same definition for G̃(ε0,...,εd).

Before proving some results about those functions let us list some simple properties:

— Because S[a,b] is a finite collections of mesurable sets, the functions F̃(ε0,...,εd)

and F(ε0,εd) are measurable and the functions G̃(ε0,...,εd) and G(ε0,...,εd) are well
defined.

— When ε1 = · · · = εd = 0, the functions F̃(0,...,0) and F(0,...,0) are equal to

F̃(0,...,0)(x) = F(0,...,0)(x) =
∑
x∈S

1S(x)|∇Sf(x)|,
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which is a lower semicontinuous function on f−1([a, b]) due to Whitney’s condi-
tion B and |ΠS∇S′f(x)| ≤ |∇S′f(x)| for x ∈ S′ close enough to S ⊂ ∂S′.

— Because f is a Lipschitz function, the function F̃(ε0,...,εd) and F(ε0,...,εd) are
uniformly bounded by Mf = 1 + ∥∇f∥L∞ when ε ≤ 1 because of

|ΠS∇S′f(x)| ≤ |∇S′f(x)| ≤ ∥f∥W 1,∞

and (139). Therefore the functions G̃(ε0,...,εd) and Gε0,...,εd) are Mf -Lipschitz
pseudodistances on f−1([a, b])× f−1([a, b]).

— When (TωS ,εdimS
)S∈S[a,b]

is an ε-adapted tubular covering of f−1([a, b]), then∑
x∈f−1([a,b])

∣∣∣F̃(ε0,...,εd)(x)− F(ε0,...,εd)(x)
∣∣∣ ≤ ε

and hence

sup
(x,y)∈f−1([a,b])

∣∣∣G̃(ε0,...,εd)(x, y)−G(ε0,...,εd)(x, y)
∣∣∣ ≤ ε× diam(f−1([a, b])),

where diam is the diameter for the metric g.
— Let (TωS ,εdimS

)S∈S[a,b]
be a tubular covering of f−1([a, b]) associated with the

parameters (ε0, . . . , εm, 0, . . . , 0) with ε0, . . . , εm > 0, 1 ≤ m ≤ d. For any
ε′m ∈]0, εm], one gets another tubular covering of f−1([a, b]) while keeping all the
other data unchanged and for ε′m = 0 simply change ωS into S when dimS = m.
Then the functions H(ε0,...,ε′m,0,...,0)

, with H = F̃ , F, G̃,G, are well defined for
any ε′m ∈ [0, εm] and they are decreasing with respect to ε′m, i.e., increase as ε′m
decays.

Lemma 8.13. — In the framework of Definition 8.12, the function F0,...,0(x) =

F̃(0,...,0)(x) is lower semi-continuous bounded by Mf = 1+∥∇f∥L∞ and bounded from
below by a positive constant ma,b,f > 0. The function G̃(0,...,0)(x, y) = G(0,...,0)(x, y) is
a pseudodistance (fullfilling the symmetry and the triangular inequality) which satisfies

∀x, y ∈ f−1([a, b]), |f(x)− f(y)| ≤ G(0,...,0)(x, y) ≤Mfdg(x, y),

where dg is the geodesic distance between x and y in the metric g.

Proof. — We already noticed that F(0,...,0) = F̃(0,...,0) is a lower semicontinuous func-
tion, bounded by ∥∇f∥L∞ . Since f−1([a, b]) contains no horizontal stratum

F(0,...,0)(x) =
∑

S∈S[a,b]

1S(x)|∇Sf(x)|

does not vanish. The achieved minimum ma,b,f on the compact set f−1([a, b])

must be positive. With the estimate F(0,...,0)(x) ≤ Mf for all x ∈ f−1([a, b]),
the fact that G(0,...,0)(x, y) defines a pseudodistance with the upper bound
G(0,...,0)(x, y) ≤Mfdg(x, y) is standard. For the lower bound because M -valued
real analytic functions are dense in C 1([0, 1];M), the function G(0,...,0) can be defined
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as

G(0,...,0)(x, y) = inf
γ∈Cω([0,1];f−1([a,b]))

γ(0)=x
γ(1)=y

∫ 1

0

F(0,...,0)(γ(t))|γ′(t)| dt.

Let γ : [0, 1]→ f−1([a, b]) ⊂M be a real analytic function such that

G(0,...,0)(x, y) + η ≥
∫ 1

0

F(0,...,0)(γ(t))|γ′(t)| dt ≥ G(0,...,0)(x, y).

By using the recalled Hardt’s result in [47] about the stratification of real analytic
mapping, now applied to γ from [0, 1] with the trivial stratification to M with the
stratification S , there exists a stratification of [0, 1], that is a finite partition into
open intervals and points [0, 1] =

⊔
I∈I I such that for any I ∈ I there exists SI ∈ S

such that γ(I) ⊂ SI . Hence there exist N ∈ N, 0 = t0 < t1 < · · · < tN = 1 and for
any 1 ≤ n ≤ N a stratum Sn ∈ S[a,b] such that γ(]tn−1, tn[) ⊂ Sn. We deduce∫ 1

0

F(0,...,0)(γ(t))|γ′(t)| dt =

N∑
n=1

∫ tn

tn−1

|∇Snf(γ(t))||γ′(t)| dt

≥
N∑
n=1

|f(γ(tn))− f(γ(tn−1))| ≥ |f(x)− f(y)|.

We have proved for all η > 0 the lower bound

G(0,...,0)(x, y) + η ≥ |f(x)− f(y)|,
which ends the proof.

Proposition 8.14. — Assume that [a, b] ∩
{
c1, . . . , cNf

}
= ∅. For any ε ∈ ]0, 1[ there

exist parameters (ε0, . . . , εd) ∈ ]0,+∞[
d+1 and an ε-adapted open tubular cover-

ing (TωS ,εdimS
)S∈S[a,b]

associated with the parameters (ε0, . . . , εd), such that the func-
tion G(ε0,...,εd) defined in Definition 8.12 satisfies the uniform estimates:

(144) ∀x, y ∈ f−1([a, b]), |f(x)− f(y)| − ε ≤ G(ε0,...,εd)(x, y) ≤Mfdg(x, y)

where Mf = 1 + ∥∇f∥L∞ and dg is the geodesic distance on (M, g).
For any ε′ ∈ ]0, 1[, this tubular covering can be chosen, after taking ε > 0 small

enough, such that

(145) ∀S ∈ S[a,b],∇f(x).∇fS(x)− (1− ε′)|∇fS(x)|2 for a.e. x ∈ TωS ,εdimS
,

and
(146)
∀S, S′ ∈ S[a,b],∀x ∈ TωS ,εdimS

∩ S′, |∇fS(x)| ≥ mf,a,b

2
, |ΠS∇S′f(x)| ≥ mf,a,b

2
,

where mf,a,b > 0 was introduced in Lemma 8.13.
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Proof. — The diameter diam(f−1([a, b])) for the geodesic distance on (M, g) is de-
noted by

∆a,b,f = diam(f−1([a, b])).

The proof is made by induction on m, where m is the maximal number such
that ε0, . . . , εm > 0, while playing with the two functions G̃(ε0,...,εm,0,...,0) and
G(ε0,...,εm,0,...,0).

More precisely we will prove that for 0 ≤ m ≤ d, there exists (ε0, . . . , εm) ∈ ]0,+∞[
m+1

and an ε
d(2∆a,b,f+1) -adapted tubular covering (TωS ,εdimS

)S∈S ([a,b]) associated with the
parameters (ε0, . . . , εm, 0, . . . , 0) such that

|f(x)− f(y)| − mε

d
≤ G(ε0,...,εm,0,...,0)(x, y).

Notice that “ ε
d(2∆a,b,f+1) -adapted” is stronger than “ε-adapted”.

The statement is clearly true for m = 0 because our assumption says that
S[a,b] contains no 0-dimensional stratum and G(ε0,0,...,0) = G̃(ε0,0,...,0) does not
depend on ε0 ∈ [0,+∞[, while the lower bound G(0,...,0)(x, y) ≥ |f(x) − f(y)| was
proved in Lemma 8.13. Note additionally that the tubular covering (TωS ,εdimS

)S∈S[a,b]
,

TωS ,0 = S for S ∈ S[a,b] is an ε
d(2∆a,b,f+1) -adapted tubular covering of f−1([a, b]).

Assume now that we have found (ε0, . . . , εm) ∈ ]0,+∞[
m+1 and an

ε
d(2∆a,b,f+1) -adapted tubular covering (TωS ,εdimS

)S∈S[a,b]
such that

|f(x)− f(y)| − mε

d
≤ G(ε0,...,εm,0,...,0)(x, y).

By Proposition 8.11 ε0m+1 > 0 can be chosen such that for any εm+1 ∈ ]0, ε0m+1]

there exists an ε
d(2∆a,b,f+1) -adapted tubular covering (TωS ,εdimS

)S∈S[a,b]
associated

with (ε1, . . . , εm+1, 0, . . . , 0), with ωS independent of εm+1 > 0.
For any εm+1 ∈ [0, ε

(0)
m+1] we deduce

sup
x,y∈f−1([a,b])

|G̃(ε0,...,εm+1,0,...,0)(x, y)−G(ε0,...,εm+1,0,...,0)(x, y)| ≤
ε

d(2∆a,b,f + 1)
×∆a,b,f .

Meanwhile we observed that G̃(ε0,...,εm,0,...,0) is the monotonous limit as εm+1 → 0+

of G̃(ε0,...,εm+1,0,...,0), in the class of Lipschitz continuous functions on the compact
set f−1([a, b])×f−1([a, b]). Dini’s convergence theorem then ensures that this conver-
gence is uniform and we can choose εm+1 ∈ ]0, ε0m+1] such that

sup
x,y∈f−1([a,b])

|G̃(ε0,...,εm+1,0,...,0)(x, y)− G̃(ε0,...,εm,0,...,0)(x, y)| ≤
ε

d(2∆a,b,f + 1)
.
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Gathering all those inequalities yields

|f(x)− f(y)| − mε

d
≤ G(ε0,...,εm,0,...,0)(x, y)

≤ G̃(ε0,...,εm,0,...,0)(x, y) +
ε

d(2∆a,b,f + 1)
∆a,b,f

≤ G̃(ε0,...,εm+1,0,...,0)(x, y) +
ε

d(2∆a,b,f + 1)
(∆a,b,f + 1)

≤ G(ε0,...,εm+1,0,...,0)(x, y) +
ε

d(2∆a,b,f + 1)
(2∆a,b,f + 1)

≤ G(ε0,...,εm+1,0,...,0)(x, y) +
ε

d
.

This ends the recurrence. The lower bound in (144) is finally proved when m = d is
reached.

For (146) it suffices to write

|∇fS(x)−∇fS(πSx)| ≤ ε, |∇fS(πSx)| = G(0,...,0)(πSx) ≥ mf,a,b,

|ΠS∇S′f(x)−∇fS(x)| ≤ ε,

and then to choose ε ≤ mf,a,b
4 .

Finally with S, S′ ∈ S[a,b], dimS′ = d, and x ∈ TωS ,εdimS
, we have

∇f(x).ΠS∇f(x)− (1− ε′

2
) |ΠS∇f(x)|2 =

ε′

2
|ΠS∇f(x)|2 ≥

ε′m2
f,a,b

8
,

while ∥∇f∥L∞ ≤Mf and

|ΠS∇f(x)−∇fS(x)| ≤ ε.
By choosing ε > 0 small enough we obtain for all S, S′ ∈ S[a,b], dimS′ = d, and all
x ∈ S′,

∇f(x).∇fS(x)− (1− ε′)|∇fS(x)|2 ≥ 0.

8.3.3. Agmon type estimate for Lipschitz subanalytic potential. — Proposition 8.9 says
that Hypothesis 1.6 is satisfied when f is a real analytic function on the compact Rie-
mannian real analytic manifold M (Hypothesis 1.3), where the values c1 < · · · < cNf
are the values associated with horizontal strata of f .

We now prove that Hypothesis 2.16 is a consequence of Hypothesis 1.3 so that
Theorem 6.3 and its consequences in Chapter 7 hold true under Hypothesis 1.3.

Remember that Hypothesis 2.16 gathers the results of Proposition 2.13 and Propo-
sition 2.15 adapted to a general Lipschitz function f . We will first prove the analogous
of Proposition 2.15 in Proposition 8.15 and then deduce in Proposition 8.17 the anal-
ogous of Proposition 2.13.

Proposition 8.15. — Under Hypothesis 1.3 and when c1 < · · · < cNf are the values
associated with horizontal strata according to Proposition 8.9, choose a < b such
that [a, b] ∩

{
c1, . . . , cNf

}
= ∅.
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If limh→0 λh = 0, the resolvent kernel (∆f,f−1([a,b]),h − λh)−1(x, y) is well defined
and satisfies

(∆f,f−1([a,b]),h − λh)−1(x, y) = Õ(e−
|f(x)−f(y)|

h ),

according to Definition 2.14.

Proof. — This result relies on the stratification tools introduced in the previous para-
graph. It is proved in several steps, the first one being a localization in suitable open
subsets. Let us fix x0 ∈ f−1([a, b]) with f(x0) = t0 and we fix the neighborhood of x0

in f−1([a, b]) as
Vx0 = f−1([a, b]) ∩ f−1(]t0 − η; t0 + η)

where η > 0 is a small parameter to be fixed at the end of the analysis.
We want to prove that for any ε > 0, any h ∈ ]0, hε[, ∆f,f−1([a,b]),h−λh is invertible

and that for any rh ∈ L2(f ba) such that supp rh ⊂ Vx0 , ωh = (∆f,f−1([a,b]),h−λh)−1rh
satisfies

∥e
|f(x)−f(x0)|

h ωh∥W∂(fba)
= Õ(1)∥rh∥.

It will be convenient to call a = t1 and b = t2 especially when the arguments gather
the three levels tk, k = 0, 1, 2.

i) Open covering of f−1([a, b]): Because [a, b] ∩
{
c1, . . . , cNf

}
= ∅, for any

x ∈ f−1([a, b]) there exist a neighborhood Ux of x in M and a smooth function φx
on Ux and a constant Cx > 0 such that

∇f(y).∇φx(y) ≥
1

Cx
and |∇φx(y)| ≤ Cx for a.e. y ∈ Ux.

Take for φx(y) the coordinate function φx(y) = y1 given in Hypothesis 1.6 (see also
Proposition 8.9). By the compactness of f−1({t0, t1, t2}), there exists a finite family
(xi)i∈I and constant κ > 0 small enough such that

∇f.(κ∇φxi(y)) ≥ 2|κ∇φxi(x)|2 ≥ 2κ3 > 0 for a.e. y ∈ Uxi
and for all i ∈ I.

Once this open covering f−1({tk, k = 0, 1, 2}) ⊂
⋃
i∈I Uxi is fixed, we can choose

the parameter η > 0 such that

f−1
(
{tk, k = 0, 1, 2}+ ]−η

2
,
η

2
[
)
⊂
⋃
i∈I

Uxi .

Again when η > 0 is fixed and the stratification S[a,b] is introduced as in Subsec-
tion 8.3.2, Proposition 8.14 provides us an open covering

(TωS ,εdimS
)S∈S[a,b]

such that the associated functions, fS , S ∈ S[a,b], and G(ε0,...,εd) satisfy

∀x, y ∈ f−1([a, b]), |f(x)− f(y)| − η ≤ G(ε0,...,εd)(x, y) ≤Mfd(x, y),

∀S ∈ S[a,b],∇f(x).∇fS(x)− (1− η

2
)|∇fS(x)|2 ≤ 0 for a.e. x ∈ TωS ,εdimS

,

∀S ∈ S[a,b],∀x ∈ TωS ,εdimS
, |∇fS(x)| ≥ mf,a,b

2
.
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We now choose our open covering f−1([a, b]) ⊂
⋃
j∈J Ωj :

— J = S[a,b] ∪ I;
— when j = S ∈ S[a,b], Ωj =

{
x ∈ TωS ,εdimS

, |f(x)− tk| > η
4 , k = 0, 1, 2

}
and

φj = fS ;
— when j = i ∈ I, Ωj = Uxi ∩ f−1({tk, k = 0, 1, 2}+ ]−η2 ,

η
2 [), and φj = κφxi .

ii) Choice of a global function φ: Once the open covering f−1([a, b]) ⊂
⋃
j∈J Ωj is

fixed we choose

φ(x) = (1− η) inf
γ∈C1([0,1];f−1([a,b])

γ(0)=x0

γ(1)=x

∫ 1

0

1[a,b]\
⋃2
k=0]tk−η,tk+η[

(f(γ(t)))F(ε0,...,εd)(γ(t))|γ
′(t)| dt.

Because the integrand is 0 when f(γ(t)) ∈ ]tk− η, tk + η[ the integral
∫ 1

0
[. . .]dt can be

replaced by
∫ T1

T0
[. . .]dt where T0 = max {t ∈ [0, 1], , f(γ(t)) ∈ [t0 − η, t0 + η]} and

T1 = min {t ∈ [0, 1], f(γ(t)) ≥ f(b)− η} if f(x) > f(b)− η, b = t2,

T1 = min {t ∈ [0, 1], f(γ(t)) ≤ f(a) + η} if f(x) < f(a) + η, a = t1.

The comparison with G(ε0,...,εd)(x, x0) then gives

φ(x)

1− η
≥ G(ε0,...,εd)(x, x0)− 2η ≥ |f(x)− f(x0)| − 3η

and

(147) ∀x ∈ f−1([a, b]), φ(x) ≥ |f(x)− f(x0)| − (b− a+ 3)η.

The function φ is a Lipschitz function of which the gradient can be estimated almost
surely in any Ωj , j ∈ J . The triangle inequality for a pseudodistance implies for all
x, x′ ∈ f−1([a, b]) ∩ Ωj

|φ(x)− φ(x′)|
(1− η)

≤ inf
γ∈C1([0,1];f−1([a,b])

γ(0)=x
γ(1)=x′

∫ 1

0

1[a,b]\
⋃2
k=0]tk−η,tk+η[

(f(γ(t)))F(ε0,...,εd)(γ(t))|γ
′(t)| dt

≤ inf
γ∈C1([0,1];f−1([a,b]∩Ωj)

γ(0)=x
γ(1)=x′

∫ 1

0

|∇φj(γ(t))| (γ(t))|γ′(t)| dt.

We used that

1[a,b]\
⋃2
k=0]tk−η,tk+η[

(f(γ(t)))F(ε0,...,εd)(γ(t))|γ
′(t)|

is

— 0 and therefore bounded by |∇φj(γ(t))|
when γ(t) ∈ Ωj ⊂ f−1(

⋃2
k=0]tk − η, tk + η[) when j ∈ I;

— bounded by |∇fS(γ(t))| |γ′(t)|when γ(t) ∈ Ωj with j = S ∈ S[a,b].
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We deduce

(148) ∀j ∈ J, |∇φ(x)| ≤ (1− η)|∇φj(x)| for a.e. x ∈ Ωj .

iii) Partition of unity: Let
∑
j∈J χ

2
j ≡ 1 in a neighborhood of f−1([a, b]) be a parti-

tion of unity with χj ∈ C∞0 (Ωj ; [0, 1]) where f−1([a, b]) ⊂
⋃
j∈J Ωj is the open covering

introduced in i). Accordingly the function φ ∈W 1,∞(f−1[a, b]) is the one introduced
in ii). For any ω ∈W∂(f

b
a; ΛT

∗M), the relations (19) and (18) of Lemma 2.10 give

Re Qf,f−1([a,b]),h(ω, e
2φ
h ω) =

∑
j∈J

Re Qf,f−1([a,b]),h(χjω, e
2φ
h χjω)− h2∥|∇χj |ω̃∥2.

=
∑
j∈J

∥∥df,f−1([a,b]),hχjω̃
∥∥2

+
∥∥∥d∗f,f−1([a,b]),hχjω̃

∥∥∥2

− ⟨χjω̃, |∇φ|2χjω̃⟩ − h2∥|∇χj |ω̃∥2.

With (148) we deduce

Re Qf,f−1([a,b]),h(ω, e
2φ
h ω) =

∑
j∈J

∥∥df,f−1([a,b]),hχjω̃
∥∥2

+
∥∥∥d∗f,f−1([a,b]),hχjω̃

∥∥∥2

− (1− η)2⟨χjω̃, |∇φj |2χjω̃⟩ − h2∥|∇χj |ω̃∥2.

Now φj can be extended to a C∞ function away from a neighborhood of supp χj
without changing the expression and using (18) and (21) with

ωj = e−(1−η)
φj
h χjω̃ ∈W∂(f

b
a; ΛT

∗M)

and φ replaced by (1− η)φj , we obtain∥∥df,f−1([a,b]),hχjω̃
∥∥2

+
∥∥∥d∗f,f−1([a,b]),hχjω̃

∥∥∥2

− (1− η)2⟨χjω̃, |∇φj |2χjω̃⟩

= Qf−(1−η)φj ,f−1([a,b]),h(χjω̃, χjω̃)

+ (1− η)⟨(2∇f.∇φj − 2(1− η) |∇φj |2 + hL∇φj + hL∗∇φj )χjω̃, χjω̃⟩

+ h(1− η)
(∫

f=b

−
∫
f=a

)
⟨χjω̃, χjω̃⟩ΛT∗σM

(
∂φj
∂n

)
(σ) dσ.

Because all the φj are C∞ functions there exists C > 0 such that∣∣∣⟨(L∇φj + L∗∇φj )χjω̃, χjω̃)⟩
∣∣∣ ≤ C ∥χjω̃∥2 .

We have proved

Re Qf,f−1([a,b]),h(ω, e
2φ
h ω) =

∑
j∈J

Qf−(1−η)φj (χjω̃, χjω̃)

(149)

+ 2(1− η)⟨(∇f.∇φj − (1− η) |∇φj |2)χjω̃, χjω̃⟩(150)

+ h(1− η)
(∫

f=b

−
∫
f=a

)
⟨χjω̃, χjω̃⟩ΛT∗σM

(
∂φj
∂n

)
(σ) dσ(151)
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+Rh(ω̃),

where the constant Cη > 0 in

|Rh(ω̃)| ≤ Cηh∥ω̃∥2

depends on η > 0 via the construction of the open covering f−1([a, b]) ⊂
⋃
j∈J Ωj ,

the functions φj and the partition of unity
∑
j∈J χ

2
j ≡ 1.

iv) Local lower bounds: We give a lower bound for every individual j ∈ J for
the three terms (149)(150) and (151). The first one (149) is obviously non negative
according to

Qf−(1−η)φj (χjω̃, χjω̃) =
∥∥df−(1−η)φj (χjω̃)

∥∥2
+
∥∥∥d∗f−(1−η)φj (χjω̃)

∥∥∥2

≥ 0.

For the other terms we distinguish according to j ∈ I and j = S ∈ S[a,b].
• j ∈ I: In this case by recalling the choice φj = κφxj , we know

∇f.∇φj ≥ 2 |∇φj |2 ≥ κ2 > 0 for a.e. x ∈ Ωj .

This implies

2(1− η)
[
∇f.∇φj − (1− η) |∇φj |2

]
≥ 2(1− η) ∥∇φj∥2 ≥ (1− η)κ2 for a.e. x ∈ Ωj ,

where the positive constant (1− η)κ2 is uniform w.r.t j ∈ I.
Finally the condition ∇f.∇φj ≥ 0 makes sense almost surely along the bound-

ary f−1({a, b}) so that the integral terms (151) are non negative.
• j = S ∈ S[a,b] : Our choice of Ωj ⊂ {x ∈M, |f(x)− tk| > η, k = 0, 1, 2} implies

that the boundary terms (151) vanish. Finally our choice φj = fS in i) implies

∇f.∇φj − (1− η

2
) |∇φj |2 ≥ 0 for a.e. x ∈ Ωj ,

We deduce

2(1− η)
[
∇f.∇φj − (1− η) |∇φj |2

]
≤ 2(1− η)η

2
|∇φj |2 ≥ (1− η)

m2
f,a,b

4

almost every where in Ωj with the positive constant independent (1− η)m
2
f,a,b

4 inde-
pendent of j = S ∈ S[a,b].

v) Gathering all the lower bounds and conclusion:

We take νη = (1−η) min
{
κ2,

m2
f,a,b

4

}
and summing the previous lower bound w.r.t

j ∈ J leads to

Re Qf,f−1([a,b]),h(ω, e
2φ
h ω)− λh∥e

φ
h ω∥2 =≥ (νη − Cηh− λh)∥ω̃∥2 ≥

νη
2
∥ω̃∥2

by taking h ∈ ]0, hη[ for some small enough hη > 0.
Because ∆f,f−1([a,b]),h is self-adjoint the inequality

Re ⟨e
2φ
h ω, (∆f,f−1([a,b]),h) − λh)ω⟩ ≥

νη
2
∥2ω̃∥ ≥ cη,h∥ω∥2, ω̃ = e

φ
h ω,
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valid for all ω ∈ D(∆f,f−1([a,b]),h) for some cη,h > 0, implies that λh belongs to the
resolvent set of ∆f,f−1([a,b]),h.

When ωh solves (∆f,f−1([a,b]),h − λh)ωh = rh, the same inequality with φ ≡ 0

on supp rh ⊂ f−1(]t0 − η, t0 + η[), gives

∥rh∥∥ω̃h∥ ≥
νη
2
∥ω̃h∥2,

and ∥ω̃h∥ ≤ 2
νη
∥rh∥. By using again (18) we deduce

2

νη
∥rh∥2 ≥ ∥rh∥∥ω̃h∥ ≥ Re Qf,f−1([a,b]),h(ωh, e

2φ
h ωh)− λh∥ω̃h∥2

≥ ∥df,h)ω̃h∥2 + ∥d∗f,hω̃h∥2 − |∇φ|
2
ω̃h⟩ − λh∥ω̃h∥2.

And finally there exists a constant Mη > 0 such that
Mη

h2
∥rh∥2 ≥ ∥ω̃h∥2 + ∥dω̃h∥2 + ∥d∗ω̃h∥2 = ∥e

φ
h ωh∥W∂(fba,ΛT

∗M),

with φ(x) ≥ |f(x)− f(x0)| − (b− a+ 3)η.
We conclude by taking η > 0, on which all the construction depends, arbitrarily

small, the limit h→ 0 being taken for any fixed η > 0.

Remark 8.16. — In this proof, we did not use the global solution φ to the inequation
|∇φ|2 − |∇f |2 ≤ 0 provided in ii) because such a solution has no better regularity
than the Lipschitz one. Instead we really introduce the partition of unity in the
process of obtaining exponential decay estimates with all the functions φj which are
regular enough and allow to use the various integration tricks of Lemma 2.10, used in
particular in order to absorb the singularity of the term h(L∇f + L∗∇f ).

Proposition 8.17. — Under Hypothesis 1.3 and when c1 < · · · < cNf are the val-
ues associated with horizontal strata according to Proposition 8.9, choose a < b,
a, b ̸∈

{
c1, . . . , cNf

}
and call U the compact set f−1(

{
c1, . . . , cNf

}
∩[a, b]). All families

(λh)h>0 ∈ C, (rh)h>0 ∈ L2(f ba) and ωh ∈ D(∆f,f−1([a,b]),h) ⊂ W∂(f
b
a; ΛT

∗M) such
that

(∆f,f−1([a,b]),h − λh)ωh = rh, supp rh ⊂ K, lim
h→0

λh = 0,

where K is a fixed compact subset of f−1([a, b]), satisfy the estimate

∥e
miny∈U∪K |f(.)−f(y)|

h ωh∥W∂(fba)
= Õ(1)

[
∥rh∥L2(fba)

+ tU∥ωh∥L2(fba)

]
,

where tU = 1 if U ̸= ∅ and tU = 0 if U = ∅.

Proof. — The case when U = ∅ is contained in Proposition 8.15. Let us consider the
case when U ̸= ∅. First of all, the positivity of ∆f,f−1([a,b]),h implies

∥df,hωh∥2 + ∥d∗f,hωh∥2 + (C − Re λh)∥ωh∥2 = Re ⟨ωh, (∆f,f−1([a,b]),h + C − λh)ωh⟩
≤ ∥rh∥ ∥ωh∥+ C∥ωh∥2.
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By taking C > 2(1 + ∥f∥W 1,∞) we obtain

∥ωh∥W∂(fba)
= Õ(1)(∥rh∥L2(fba)

+ ∥ωh∥L2(fba)
)

which provides W 1,2 estimates of ωh in any compact subset of f ba = f−1(]a, b[).
For ε > 0 small enough, consider a cut-off function χε ∈ C∞(M ; [0, 1]) equal to 1

in Kε = f−1((
⋃Nf
k=1[ck − ε, ck + ε]) ∩ [a, b]) and to 0 in the complement of K2ε. The

form χεωh solves

(∆f,h − λh)((1− χε)ωh) = (1− χε)rh + Pχεωh,

where Pχε is a first order differential operator with coefficients supported in K2ε \Kε

and χεωh ∈
⊕Nf−1

k=1 ∆f,f−1([max(ck+ε,a),min(ck+1−ε,b)]),h. The resolvent estimate of
Proposition 8.15 applied to every ∆f,f−1(([max(ck+ε,a),min(ck+1−ε,b)]),h then implies

∥e
miny∈U∪K |f(.)−f(y)|

h ωh∥W∂(fba)
≤ Õ(e

10ε
h )
[
∥rh∥L2(fba)

+ ∥ωh∥
]
L2(fba)

,

and then we choose ε > 0 arbitrarily small before taking the limit h→ 0.
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CHAPTER 9

APPLICATIONS

The spectral version of the stability theorem, Corollary 1.8 in the Introduction or
Theorem 7.8 for a more general version, corresponds to what can be expected at the
level of Arrhenius law identifying the exponential scales. It is a straightforward con-
sequence of Theorem 6.3. But the construction of global quasimodes for Theorem 6.3
is actually much more informative. It allows to compute the subexponential factor,
a la Eyring-Kramers, in many situations which lead to different kind of asymptotic
behaviors. As it was discussed in the Introduction, no continuity with respect to f can
be expected in the asymptotic leading term. Nevertheless some robust integral formu-
lation allow to follow the effect of deformations of f on the spectral quantities and to
explain the emerging discontinuities. Contrary to Theorem 6.3 and its consequences
in Chapter 7, we do not have a satisfactory general formulation of this kind of refined
stability property and we prefer to make explicit various examples, corresponding to
interesting practical cases.

9.1. The generic Morse case

In this subsection, we recall the results of [74]. Although they were presented
in the oriented case, those results hold in the more general case of non necessar-
ily oriented compact Riemannian manifolds. The proofs are simply adapted by pay-
ing attention to the duality arguments, the Hodge ⋆ operator sending the sections
of ΛpT ∗M to sections of ΛpT ∗M ⊗ orM . The important assumption which was made
in [74] concerns the simplicity of the critical values of the Morse function f : the
latter function has distinct critical values, which allows in particular to identify crit-
ical points with critical values. In [74], the set U of critical points was partitioned
into lower UL =

⋃
p∈{0,...,d} U

(p)
L , upper UU =

⋃
p∈{0,...,d} U

(p)
U , and homological

UH =
⋃
p∈{0,...,d} U

(p)
H critical points. This partition actually coincides with the parti-

tion of bar endpoints J ∗ = X∗∪Y ∗∪Z∗ in this order. In [74], we defined a boundary
map ∂B : U

(p+1)
U → U

(p)
L and UL ∪ UH ⊂ ker ∂B. It is exactly the dual version of

the map dB of Appendix B.2 defined by dB : X (p) → Y (p+1) and Y ∗ ∪ Z∗ ⊂ kerdB.
Actually, in [74], we started with the homological point of view before we realized
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that working directly in terms of cohomology was more natural for this analysis. The
link with relative cohomology groups of sublevel sets of f , which is detailed at the end
of Appendix B.1, can be handled with elementary arguments under the assumptions
of [74] (Morse function with distinct critical values). Note that this generic Morse
situation is often used as a simple way to introduce persistent homology (see e.g.,
[35]). Although it is an obvious bijection under the assumption that the Morse func-
tion f has simple critical values, we use the notations, when it is necessary, xα, y

α
or

zα for the critical points associated with values xα = f(xα) ∈ X∗, yα = f(y
α
) ∈ Y ∗

and zα = f(zα) ∈ Z∗. As a comparison with the notations of Subsection 4.1, it is not
necessary nor useful to distinguish xα = (aα, α) ∈ R×A from the value aα = f(xα).

Finally note that the result of [74] can be recovered while combining Theorem 6.3
of the present text with the final computations of [74]-Section 4 which rely on local
WKB approximations valid locally for any Morse function f .

Here is the main result of [74] with the above modified notations.

Theorem 9.1. — Assume that f is a Morse function with simple critical values. For
any p ∈ {0, . . . , d}, there exists c > 0 such that for every h > 0 small enough, the
spectrum of ∆

(p)
f,M,h satisfies

σ(∆
(p)
f,M,h) ∩ [0, ch] = σ(∆

(p)
f,h) ∩ [0, e−

c
h ],

and the set consists in card(J (p)) eigenvalues counted with multiplicity. For ev-
ery h > 0 small enough, there exists moreover a bijection j : J (p) → σ(∆

(p)
f,M,h) ∩ [0, ch],

where the latter set is counted with multiplicity, such that:
1. For every zα in Z (p), the associated eigenvalue is

j(zα) = 0.

2. For every xα in X (p), xα being the lower endpoint of the bar [xα, yα[, and hence
yα = dBxα, there exists a homological constant κα ∈ Q∗ such that

j(xα) = κ2
α

h

π

|λ1(yα) · · ·λp+1(yα)|
|λ1(xα) · · ·λp(xα)|

|det Hess f(xα)|
1
2

|det Hess f(y
α
)|

1
2

e−2 yα−xαh

(
1 + O(h)

)
,

where, for any critical point s of f with index ℓ and critical value s = f(s),
λ1(s), . . . , λℓ(s) denote the negative eigenvalues of Hess f(s).

3. And yα in Y (p), yα being the upper endpoint of the bar [xα, yα[, and hence
yα = dBxα, there exists a homological constant κα ∈ Q∗ such that

j(yα) = κ2
α

h

π

|λ1(yα) · · ·λp(yα)|
|λ1(xα) · · ·λp−1(xα)|

|det Hess f(xα)|
1
2

|det Hess f(y
α
)|

1
2

e−2 yα−xαh

(
1 + O(h)

)
,

where, for any critical point s of f with index ℓ and critical value s = f(s),
λ1(s), . . . , λℓ(s) denote the negative eigenvalues of Hess f(s).

Remark 9.2. — 1. Theorem 9.1 is a refinement of Theorem 1.7 in this generic
Morse situation. It extends Eyring-Kramers asymptotic formulas known in the
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case p = 0. The boundary version in f−1([a, b]) corresponding to Theorem 7.1
is also found in [74, Theorem 4.5]. In both papers, the general strategy consists
in a recurrence with respect to the number of critical values, carried out by
increasing the interval [a, b]. The setting in [74], was simpler because: a) the
critical values were assumed to be simple while here they may be multiple or
very degenerate; b) the subexponential factors of exponentially small quantities
had explicit leading terms derived from the WKB approximations (this is not
possible here). (1) In this section, we will combine Theorem 6.3 with the local
computations of [74]-Section 4 to provide a more general approach.

2. In [74], thanks to the Morse assumption, we could compute the subexponential
factors using WKB and Laplace methods. On the other hand, the exponential
factors are given by global topological quantities: the lengths of the bar code.
In the present paper we manage to compute the logarithmic equivalents of the
small eigenvalues without any knowledge of the exponential factor.

3. The connection between the local computation around the lower endpoint xα
and the upper one yα = dBxα is implemented by an application of Stokes’s
formula. The boundary operator ∂ for chains induces a linear application
from Hp+1(f

yα+ε, fyα−ε) into Hp(f
xα+ε, fxα−ε). Under the generic Morse

assumption, these spaces are 1-dimensional with natural bases given by the
stable manifolds of ∇f . This actually provides the coefficients κα (see [74,
Proposition 2.12]). When the critical values correspond to multiple critical
points, such a construction has to be replaced by more general linear algebra
(see Subsection 9.3).

As shown in [50], the homological constants κ2
α equal 1 when p = 0, and also

when p = d and M is oriented by duality. In the case of oriented surfaces treated in
[70], a combination of these results together with simple duality and chain complex
arguments then implies that these constants equal 1 for any p ∈ {0, 1, 2}. Nevertheless,
contrary to this indication that it could be true in general, which was moreover our
intuition when we wrote [74], this is not the case as soon as d ≥ 3 and even when
d = 2 in the non-oriented case. The simplest example comes from Morse theory on
the projective plane. It is more generally related to the “open book picture” exhibited
on the front cover of [68].

To be more specific, we shall prove the following result.

Proposition 9.3. — Let X be a d-dimensional manifold.
1. If d = 1, 2, and X is orientable, then κ2

α = 1,
2. The coefficient κ2

α may be equal to 4 for some well chosen Morse functions
on RP 2 and on RP 3.

3. For d ≥ 3 and each integer n, there exists a manifold Xn of dimension d such
that κ2

α = n2.

1. A small confusion occurred in the construction of accurate global quasimodes in [74, Sec-
tion 4.2]: a version of Proposition 6.16 is missing and can be easily corrected.
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4. For d ≥ 4, for any integer n and any closed manifold X of dimension d, there
is a function fn on X such that κ2

α takes the value n2.

Proof. — The number κα is obtained as follows: consider the sphere S−(y
α
) in the

unit disk bundle of the descending manifold from y
α
, the stable manifold of ∇f . It

is homologous to a multiple, κα of the descending manifold from xα, W−(xα), with
dBxα = yα. But since the ascending manifold from xα, the unstable manifold of ∇f ,
W+(xα) has intersection +1 with W−(xα), the number κα is the intersection number
of S−(y

α
) and W+(xα). We work here under the generic Morse-Smale assumption

saying that all the stable and unstable manifolds are mutually transverse, which en-
sures the finiteness of κα, within the construction of the Thom-Smale complex (see
[68]). In homological terms, if we set xα = f(xα), yα = f(y

α
), and ε > 0 small enough,

we have the maps

H∗(f
yα+ε, fyα−ε)

∂��
H∗−1(f

xα+ε, fxα−ε) // H∗−1(f
yα−ε, fxα−ε)

��
H∗−1(f

yα+ε, fxα−ε).

Now since H∗(f
yα+ε, fyα−ε;Z) and H∗(f

xα+ε, fxα−ε;Z) are isomorphic to Z, the
R-vector spaces H∗(fyα+ε, fyα−ε) and H∗(f

xα+ε, fxα−ε) have canonical generators
(i.e., well defined up to a sign and not just up to a constant multiple).

But a generator on the left-hand side has its image zero in H∗(f
yα+ε, fxα−ε) by

assumption. Therefore this generator has an image in H∗−1(f
yα−ε, fxα−ε) that lies

in the image of ∂. It is thus equal to the image by ∂ of κα times a generator.
Now consider the Morse function on RP 2 obtained by perturbing the following

Morse-Bott function:
[x0, x1, x2] 7→ x2

2,

where [x0, x1, x2] is the class of (x0, x1, x2) ∈ S2 by the equivalence rela-
tion (x0, x1, x2) ≃ (−x0,−x1,−x2). This Morse-Bott function has a point of
index 2 at [0, 0, 1], and a circle of index 0 at [cos(θ), sin(θ), 0] for θ ∈ [0, π]. Perturbing
this circle yields a pair of critical points of index 0 and 1, and the Thom-Smale
complex is then

∂z = 2 · y, ∂y = 0, ∂x = 0

represented as
z

2

��
y

0

��
x.
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The Barannikov complex (on Q or R) is then

z

y

x

But necessarily κz = ±2, hence κ2
α = 4.

For RP 3, which is orientable, we have the similar function [x0, x1, x2, x3] 7→ x2
3

where x2
0+x2

1,+x
2
2+x2

3 = 1 and we identify (x0, x1, x2, x3) and (−x0,−x1,−x2,−x3).
We then have a maximum x3 = ±1 of index 3, and an RP 2 Morse-Bott critical
submanifold, which after perturbation yields a critical point of index 0, one of index 1

and one of index 2.
The Thom-Smale complex is then

t
0��
z

2��
y

0��
x

so again κz = ±2.
To obtain any squared integer, we can consider the lens space L(n, 1) quotient

of S3 = {(z0, z1) ∈ C2 | |z0|2 + |z1|2 = 1} by

(z0, z1) ≃ (ωz0, ωz1)

where ω is a primitive n-th root of unity. The function (z0, z1) 7→ |z0|2 has two critical
circles a minimum and a maximum. After perturbation we get

t

0

��
z

n

��
y

0

��
x

and then |κα| = n, since H1(L(n, 1),Z) = Z/nZ, H2(L(n, 1),Z) = 0.
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Now assume there is some function f on the manifold V with a given bar code Bf ,
and we embed V into a manifold X.

Consider the function gε(x) = d(x, V )2 + ερ(d(x, V )2)f(p(x)) where ρ is nonneg-
ative, equal to 1 near 0 and vanishes outside a neighborhood of 0. Then for ε > 0

small enough, the lower part of the bar code of gε coincides with the bar code of f .
As a result if there is a function with some κα = ±n on V , the same holds for X.
Consider the above function f on L(n, 1), and normalize it so that the critical points
are 0, 1/3, 2/3, 1. Consider the subset Λ(n, 1) = {x ∈ L(n, 1) | 1/4 ≤ f(x) ≤ 3/4}.
This is a Lens space with two punctures, hence embeds in R4 as a subset of a compact
hypesurface Σn,1: if Λ(n, 1) is contained in {x ∈ R4 | ψ(x) = 0} and extending ψ to
a proper function having 0 as a regular value, we set Σn,1 = ψ−1(0). Now we can
extend f to a function f̃ on Σn,1 and its bar code contains Bf . Applying the pre-
vious argument, we get a function close to d(x,Σn,1)2 containg Bf in its bar code.
Since near infinity, d(x,Σn,1)2 is close to |x|2, we get a function F on the ball, with
F ≤ c and F = c near the boundary with arbitrary κα. By embedding the ball in
any 4-manifold M , we get a function on M with κα = ±n. Again by embedding, this
works on any manifold of dimension ≥ 4.

More generally if for some prime p, the homology mod p has rank different from
the rational homology there must be a y such that p divides κα.

Remark 9.4. — 1. The converse does not hold, i.e., we may have κα ̸= ±1 while
the homology has the same rank for all fields. For example if we have a Morse
complex containing the following diagram

z

pyy
1

��

y
0

1

��

y
1

−pyy
x

the corresponding homology vanishes and the rational Barannikov complex is

z

y0

y1

x
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but mod p, we get

z

y0

y1

x

In both cases the homology vanishes. Note however that if we look
at the homology of sublevels, we can distinguish the two situations : if
a < f(x) < f(y1) < c < f(y0) the rank of the homology H∗(f c, fa) depends on
the coefficient field : for k = Q we get 0 while mod p, we get 2.

2. When several critical values coincide, the numbers κα are replaced by integral
matrices. For example if we have the following bar code

y0 y1 y2 y3

x0 x1 x2

x3

and if a < x3 < b < x2 < c < y2 < d, we have the map

H∗(f
yα+ε, fyα−ε) ≃ Z4

∂

��
H∗−1(f

xα+ε, fxα−ε) ≃ Z3 // H∗−1(f
yα−ε, fxα−ε)

��
H∗−1(f

yα+ε, fxα−ε) ≃ Z

hence we get a matrix κ ∈ M(4, 3,Z) such that κ ⊗ R is surjective. We can
then consider the singular values of κ, and we get three numbers κ1, κ2, κ3,
however these are not the homological constants that will yield the prefactor of
the eigenvalues, since we must first compose with diagonal matrices depending
on the Hessian at each critical point involved (see Proposition 9.10).
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9.2. Simple critical values for non Morse functions

We consider here cases where changing the function f from f1 to f2 leads to explicit
changes of the global quasimodes (φ

(p)
j )j∈J (p)(a,b) and provides accurate formulas, even

for the subexponential factor, already known when f1 is a generic Morse function. It
works especially well for functions, i.e., for p = 0, and although we are not consid-
ering Dirichlet boundary conditions at f−1({b}) in f ba, like it is done in the study of
quasi-stationary distributions, this sketches possible generalizations of the analyses
made in [77, 32, 33, 72, 73]. Note however that, though obtaining precise estimates on
the low spectrum of the corresponding Witten Laplacians with Dirichlet boundary
conditions is an important step in the studies made in [77, 32, 33, 72, 73], these works
actually focus on further issues such as the exit events or the concentration of the
associated quasi-stationary distributions. In particular, in [32] are considered rare exit
events, which are actually rather related with the low spectrum of appropriate Witten
Laplacians with mixed Dirichlet-Neumann boundary conditions. Simple cases when
p ̸= 0 will also be discussed afterwards.

9.2.1. Degenerate local minima. — We consider a reference function f1 which is a
generic Morse function like in Theorem 9.1 with a bar code Bf1 = ([a∗1,α, b

∗+1
1,α [)α∈A1

.
In particular in degree 0, there is one bar [a

(0)
1,0,+∞[= [x

(0)
1,0, y

(1)
1,0[ associated with the

global minimum a
(0)
1,0 and the sublevel set Ω

(0)
1,0 = M = f+∞

1 , and there are bars
[x

(0)
1,k, y

(1)
1,k[ ∈ A1,c, 1 ≤ k ≤ K0 where y(1)

1,k is the value of saddle point and x(0)
1,k is the

global minimum value of the newly created connected component Ω
(0)
1,k of f

y
(1)
1,k

1 , when

we pass from the sublevel set f
y
(1)+0
1,k

1 to f
y
(1)
1,k−0

1 .
We take ℓ(0)min < min

{
y
(1)
1,k − x

(0)
1,k, |x

(0)
1,k − x

(0)
1,k′ |, 0 ≤ k < k′ ≤ K0

}
and we assume

that the function f2 satisfies Hypothesis 1.2 and coincides with f1 except around the
local minima. The open set called

ω
(0)
k = Ω

(0)
1,k ∩ f

x
(0)
1,k+

ℓ0
2

1 ,

is a connected open neighborhood of x(0)
1,k for all k = 0, . . . ,K0. The two functions f1

and f2 are compared by:

i) f1 ≡ f2 in a neighborhood of M \ (
⊔K0

k=0 ω
(0)
k );

ii) ∥f1 − f2∥C0 ≤ ℓ0
4 .

Those two assumptions combined with the stability theorem

dbot(B(f),B(g)) ≤ ∥f − g∥C0

recalled in Appendix B.3, ensure that there are exactly K0 + 1 bars [x
(0)
2,k, y

(0)
2,k[

of degree 0 and length larger that ℓ0
2 , where the saddle points are not changed

y
(1)
2,k = y

(1)
1,k for 1 ≤ k ≤ K0. Additionally and especially because with our choice
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of ℓ0 < min
{
|x(0)

1,k − x
(0)
1,k′ |, k < k′

}
and ii), the associated connected component

remain unchanged as well Ω
(0)
2,k = Ω

(0)
1,k for 0 ≤ k ≤ K0. We drop the index j = 1, 2

for Ω
(0)
k and y(1)

k . Like in the previous subsection, we use the notation s for the point

Figure 15. The function f1 is represented by dashed lines
and the modification giving f2 by plain lines.

associated with the critical value s, when it is uniquely defined.

Proposition 9.5. — Under the above assumptions and in particular the comparison
i)ii) between f1 and f2, the õ(e−

ℓ0
h ) eigenvalues of ∆

(0)
f2,h

are given by

(152)
h|λ1(y

(1)
k )|

π
∣∣∣det Hess f1(y

(1)
k )
∣∣∣1/2

e−2
y
(1)
k
−x(0)

2,k
h

(πh)
−d/2 ∫

Ω
(0)
k

e−2
f2(x)−x(0)

2,k
h dx

× (1 + O(h))

as h→ 0 for all k = 0, 1, . . . ,K0 (it is exactly 0 for k = 0).

With this formula it then suffices to apply the Laplace method for the integral∫
Ω

(0)
k

e−2
f(x)−x(0)

2,k
h dx in order to exhibit various asymptotic behaviors as h → 0 of

the subexponential factor. We refer in particular to [2] for the case when f is a
multidimensional polynomial function.

Proof. — When we work with functions, we are actually in the simpler framework
of [50] for the generic Morse function f1. The problem consists in computing the
square modulus of the interaction ⟨ψ(1),h

k , df,hTδ2φ
(0),h
k ⟩ where ψ(1),h

k is a local WKB-
approximation of eigenvectors of ∆

(1)
f,h around the point y(1)

k while φ(0),h
1,k is a global

quasimode associated with the bar [x
(0)
1,k, y

(1)
k [, solving df,hφh1,k = 0 in Ω

(0)
k ∩fy

(1)
k −δ(h)

with limh→0 δ(h) = 0. The truncation Tδ2 is a smooth truncation around the level
y
(1)
k − δ2 with δ2 > 0 small. By Theorem 6.3 and Theorem 7.1 the same method holds

by replacing the global quasimodes φ(0),h
1,k by global quasimodes φ(0),h

2,k constructed
in Theorem 6.3. In details we refer more specifically to the consequences stated in
Subsection 6.3. Moreover we can focus on the bars of length larger that ℓ0

2 which are
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([x
(0)
2,k, y

(1)
k [)k=0,...,K0

. Since those quasimodes satisfy df2,hφ
(0),h
2,k = 0 in Ω

(0)
k ∩fy

(1)
k −δ(h)

they equal
√
Ck,he

−
f2(x)−x(0)

2,k
h where Ck,h is the normalization constant

Ck,h =
1∫

Ω
(0)
k ∩fy

(1)
k
−δ(h)

e−2
f2(x)−x(0)

2,k
h dx

=
1 + õ(1)∫

Ω
(0)
k

e−2
f2(x)−x(0)

2,k
h dx

which replaces
1∫

Ω
(0)
k

e−2
f1(x)−x(0)

1,k
h dx

= (πh)
−d/2 |det Hess f(x

(0)
1,k)|

1/2 × (1 + O(h)).

Finally it suffices to notice that up to the normalization constant and the change of
the length of the bar which brings another constant factor, the functions φ(0),h

1,k and

φ
(0),h
2,k coincide in the neigborhood of y(1)

k and the local computation of the interaction
is not changed.

The above formula shows a good stability when f1 is changed into f2 although
such a stability may not appear when we make an explicit asymptotic expansion of

the Laplace integral
∫
Ω

(0)
k

e−2
f(x)−x(0)

2,k
h dx. Here is an example in dimension 1, that is

for functions defined on S1 = R/(2πZ). The function f1 is assumed to have four non
degenerate critical points:

— at x(0)
1,1 = 0 with value x(0)

1,1 = 0 and second derivative 1;
— at x(0)

0,1 = π with value x(0)
0,1 = −1, the global minimum;

— at y(1)
1,1

= π
2 with value y(1)

1,1 = 1 and the second derivative equal to −λ1;

— at y(1)
0,1

= 3π
2 with value y(1)

0,1 = 2, the global maximum.

The modified function f2,δ parametrized by δ ∈ R, δ small, and consists in replacing
f1(x) = x2

2 +O(x3) in a small neighborhood [−ε, ε] of x(0)
1,1 = 0 by

f2,δ(x) =
x4 + 2δx2 + 1(−∞,0](δ)δ

2

4
,

while f2,δ ≡ f1 outside [−2ε, 2ε]. Formula (152) then says that the õ(e−
1
h ) non zero

eigenvalue of ∆
(0)
f2,δ,S1,h (for δ > 0 and ε > 0 small enough) equals

h
√
λ1e

− 2
h

π(πh)−1/2
∫
R e

−
x4+2δx2+1(−∞,0](δ)δ

2

2h dx

× (1 + O(h)).
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It is equivalent as h→ 0 to

h
√
λ1δe

− 2
h

π
when δ > 0

h5/4
√
λ1e

− 2
h

√
π
∫
R e

−u4

2 du
when δ = 0,

h
√
λ1|δ|e−

2
h

√
2π

when δ < 0.

So the apparent discontinuity in the exponent of h at δ = 0 is a simple consequence of
the discontinuity of the Laplace integral. Actually the stability of persistence homology
has a stronger spectral counterpart than what is stated in Theorem 7.8: It does not
concern only the exponential scales but also allows to study the deformations of the
asymptotic subexponential factors provided that a robust formula can be proved for
them. The rest of this section explores different cases for which we are able to prove
such formulas.

9.2.2. Variations. — In the previous paragraph we used a good enough knowledge of
the global quasimodes φ(0),h

2,k =
√
Ck,he

−
f2(.)−x2,k)

h in degree p = 0, in order to get the
explicit change in the asymptotic formulas when we pass from the Morse function f1
with simple critical values to the function f2 with degenerate local minima. Such an
analysis can be done in more general degree if we have explicit enough information
on the local forms of quasimodes the global ones φ(p),h

k and the local ones ψ(p+1),h
k .

By duality this is obviously true in dimension 1 and we start with this example. We
then consider other possible extensions.

9.2.2.1. The one dimensional case with degenerate critical values. — Consider a C∞

Morse function f1 on R such that |∂xf1| ≥ c for some positive constant c when
x ∈ R \ [−R,R] for R > 0 large enough. For −a = |a| and b = |b| large enough the
bar code Bf1(a, b) does not change when a, b are changed, except for the value of the
endpoints a, b, while for such a fixed pair (a, b) it can be viewed as a restricted bar
code Bf̃1(a, b) of a function f̃1 defined on S1. This solves the compactness problem in
order to fit with our general framework. It can be checked easily that in all such cases
the exponentially small eigenvalues of ∆

(p)

f1,f
−1
1 ([a,b]),h

are close to the ones of ∆
(p)
f1,R,h

for p = 0, 1 and even that the endpoints of the interval f−1
1 ([a, b]) can be moved as

long as they do not meet the critical point without changing the final approximate
spectral result (the same will be true for the function f2). So let us focus on f−1

1 ([a, b])

with −a = |a| and b = |b| large. The bar code is made of bars [x
(0)
k,1, y

(1)
k,1[, k = 1, . . . ,K

with an additional bar:

— [x
(0)
0,1, b[ if f1|f−1

1 ([a,b])
admits an interior global minimum at x(0)

0,1 = f(x
(0)
0,1),

x
(0)
0,1 ∈ f

−1
1 (]a, b[);
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Figure 16. Three different cases for f1 between the level a and b, from left-hand side to
right-hand side with an interior global minimum, an interior global maximum in the interior
and none of them. The bar code in [a, b] is represented beside the y-axis.

— or [a, y
(1)
0,1[ if f1|f−1

1 ([a,b])
admits an interior global maximum at y(1)

0,1 = f(y(0)
0,1

),

y(0)
0,1
∈ f−1

1 (]a, b[).

Only in the first case, the Witten Laplacian ∆
(0)

f1,f
−1
1 ([a,b])

has a non trivial kernel

Ce−
f1(.)−x(0)0,1

h . Only in the second case, the Witten Laplacian ∆
(1)

f1,f
−1
1 ([a,b]),h

has a

non trivial kernel Ce
f1(.)−y(1)0,1

h dx. The two cases are exclusive and a third one is when
the global minimum value of f1|f−1

1 ([a,b])
is a and the global maximum value is b.

Depending on the cases f1 admits 2K + 1 or 2K distinct critical values and their set
in [a, b] is denoted C .

In order to specify our modified function f2 we first choose

ℓ0 < min {|c− c′|, c ̸= c′, c, c′ ∈ C} .

The connected open set Ω
(0)
k,1 as the connected component of (f1)

y
(1)
k,1 which contains

x
(0)
k,1 for 1 ≤ k ≤ K, with Ω

(0)
0,1 = f−1

1 (]a, b[) if the global minimum x
(0)
0,1 ∈ f

−1
1 (]a, b[) ex-

ists. By duality one defines Ω
(1)
k,1 as the connected component of (f1)x(0)

k,1

for 1 ≤ k ≤ K,

with Ω
(1)
0,1 = f−1(]a, b[) if the global maximum y(1)

0,1
∈ f−1

1 (]a, b[) exists. Then the con-

nected open sets ω(0)
k and ω1

k are defined by

ω
(0)
k = Ω

(0)
k,1 ∩ (f1)

x
(0)
k,1+

ℓ0
4 , ω

(1)
k,1 = Ω

(1)
k,1 ∩ (f1)y1

k,1−
ℓ0
4
.

The function f2 satisfies Hypothesis 1.2 and
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Figure 17. The function f1 is represented by the dashed curve, the open sets ω
(p)
k are

materialized by the white rectangles along the x-axis and the modifications leading to f2 by
the plain curve.

— f1 ≡ f2 in a neighborhood of R \ (
⊔

0≤k≤K(ω
(0)
k ⊔ω

(1)
k )) where ω(0)

0 and ω(1)
0 are

replaced by the empty set when they are not defined;
— ∥f1 − f2∥ ≤ ℓ0

4 .

Note in particular f−1
1 ([a, b]) = f−1

2 ([a, b]).
Owing to the stability theorem

dbot(B(f),B(g)) ≤ ∥f − g∥C0

the bars [x
(0)
k,1, y

(1)
k,1[ are transformed into bars [x

(0)
k,2, y

(1)
k,2[ of length y

(1)
k,2 − x

(0)
k,2 >

ℓ0
2

while all the other bars have length smaller thant ℓ0
2 . After those assumptions the

spectral result take a nice simple form.

Proposition 9.6. — For the values a, b and the function f2 chosen like above, there are
K non zero õ(e−

ℓ0
h ) eigenvalues of ∆

(0) or (1)

f2,f
−1
2 ([a,b]),h

which are equal to

1 + õ(1)

(h−1
∫
ω

(1)
k

e2
f(x)
h dx)× (h−1

∫
ω

(0)
k

e−2
f(x)
h dx)

, k = 1, . . . ,K.

Proof. — By the usual supersymmetric arguments the non zero eigenvalues
of ∆

(0)

f2,f
−1
2 ([a,b]),h

and ∆
(1)

f2,f
−1
2 ([a,b]),h

are the same in dimension 1 and we thus

focus on ∆
(0)

f2,f
−1
2 ([a,b]),h

or more precisely on the non zero singular values of the
restricted differential. We follow the general method which consist in computing
the interaction scalar product ⟨ψ(1)

k , df,hTδ2φ
(0)
k ⟩ where ψ

(1)
k is a local quasimode
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for ∆f2,h in the neighborhood ω
(1)
k around y

(1)
k,1 while φ

(0)
k is a global quasimode

associated with the bar [x
(0)
2,k, y

(1)
2,k[ solving df,hφ

(0)
k = 0 in the connected component

which contains ω(0)
k of fy

(2)
k −δ(h), with limh→0 δ(h) = 0. We work directly with the

function f2 the global quasimode φ(0)
k equals

1 + õ(1)√∫
ω

(0)
k

e−2
f2(x)−x(0)

2,k
h dx

e−
f2(.)−x(0)

2,k
h in ω(0)

k .

By noticing that ∂nf2|∂ω(1)
k

= ∂nf1|∂ω(1)
k

< 0, and by using Dirichlet boundary condi-

tions on ∂ω(1)
k in degree p = 1, we find that ψ(1)

k can be chosen as

1 + õ(1)√∫
ω

(1)
k

e2
f2(x)−y(1)

2,k
h dx

e
f2(x)−y(1)

2,k
h dx in ω(1)

k .

A direct computation gives

⟨ψ(1)
k , df,hTδ2φ

(0)
k ⟩ = ± he−

y
(1)
2,k

−x(0)
2,k

h (1 + õ(1))√∫
ω

(1)
k

e2
f2(x)−y(1)

2,k
h dx×

√∫
ω

(0)
k

e−2
f2(x)−x(0)

2,k
h dx

,

where the factor e−
y
(1)
2,k

−x(0)
2,k

h can be simplified.

Remark 9.7. — Note that in this proof the result on the generic Morse function f1 is
not used. The function f1 was introduced in order to have a simple formulation of the
assumptions fulfilled by f2. The result actually comes from a direct computation when
we know well enough the local forms of the global (φ(0)

k ) and local (ψ(1)
k ) quasimodes.

We have explicit form in dimension 1 and the computation is straightforward. It is not
the same in the multidimensional case although Stokes’s formula allows to perform
the computation when local approximations of local and global quasimodes are well
known.

9.2.2.2. Piecewise affine functions. — In this paragraph we make more explicit the
one dimensional result when f is a continuous piecewise affine function and discuss the
possible extension to the multidimensional case. Let f be a piecewise affine function
on R such that:

— the derivative f ′ does not vanish when it is defined;
— there exists R > 0 such that the derivative f ′ is a constant on [R,+∞) and

on (−∞,−R];
— the values f(x) of the points x where f ′ is discontinuous are all distinct.

Such a function f can be written as a function f2 of the previous paragraph (sim-
ply regularize locally the discontinuous change of slopes in order to get the Morse
function f1).
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Figure 18. A piecewise affine potential in 1D with distinct and some fake critical values.

The extension of Proposition 9.6 to a = −∞ and b = +∞ says that the õ(1)-eigen-
values of ∆

(0)
f,R,h (and by duality of ∆

(1)
f,R,h) are given by

H[|f ′(y(1)
k

+ 0)|, f ′(y(1)
k
− 0)]H[f ′′(x

(0)
k + 0), |f ′(x(0)

k − 0)|]e−2
y
(1)
k
−x(0)

k
h (1 + õ(1)),

with k = 1, . . . ,K, where the finite length bars of Bf are [x
(0)
k , y

(1)
k [, k = 1, . . . ,K;

x
(0)
k is the local strict minimal value around the point x(0)

k ; y(1)
k is the local maximal

value around the point y(1)
k ; f ′(x+ 0) and f ′(x− 0) denote respectively the right and

left derivative and H[s, t] = 2st
s+t is the harmonic mean of s, t > 0.

The computation when f is constant on some intervals is also possible with a
subexponential factor behaving like h or h2, depending on the different cases (left to
the reader).

Now let f be a piecewise affine function defined on a finite triangulation
of Rd =

⊔
1≤i≤I Ti where Ti is a d-dimensional non degenerate simplex with

endpoints A0
i , . . . , A

d
i and where non finite simplices are roughly taken into account

by sending the first endpoint to infinity A0
i = ∞ (a more precise description is

not necessary here). We assume that limx→∞ f(x) = +∞. The function f is a
subanalytic function on Rd of which the restriction to any ball B(0, R) can be viewed
as the restriction to B(0, R) of a subanalytic function defined on Sd. This solves the
compactness problem or the questions about the topology at infinity (alternatively
we could work on the d-dimensional flat torus). The function f has a finite number of
horizontal strata according to the terminology of Definition 8.7, which contain all the
critical values and the possible endpoints of the bar code Bf . We may consider either
∆f,Rd,h or by approximation ∆f,f−1([a,b]),h with −a, b > 0 large enough. According
to our analysis in Subsection 8.3, in particular Proposition 8.9, Proposition 8.15 and
Proposition 8.17, the results of Theorem 6.3 hold in this case and we know that the
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exponentially small eigenvalues of ∆
(p)
f,f−1([a,b]),h satisfy

λ(p)
α (h)

log∼ e−2
y∗+1
α −x∗α

h ,

where α belongs to A(p)
c (a, b) ⊔A(p−1)

c (a, b).
The question is whether it is possible to give algebraic formulas for the accurate

asymptotic behavior as this is done easily in the one dimensional case. For such
a function f , the Witten Laplacian ∆f,h is a matricial Schrödinger operator with
a singular potential. Many things are known on scalar Schrödinger operators with
singular potentials (see e.g., [1, 16]), but little seems to be known for those Witten
Laplacians, and especially when we think about the algebraic topology subtleties.
We may also start directly, instead of Rd, on a Lipschitz manifold made of glued
simplexes, with a function f which has a constant gradient along every simplex. The
functional analysis of Hodge Laplacian on Lipschitz manifold has been considered in
[43, 81]. An accurate analysis of the low lying spectrum of such Witten Laplacians
would provide a large family of discrete and easily encoded models, from the point
of view of data and hopefully of results, which could be used as approximations of
complicated realistic situations. It would be interesting to compare with the approach
starting from purely discrete models on graphs as presented in [94].

9.2.2.3. Critical submanifolds. — This case is related with degenerate Witten Lapla-
cians studied in connection with Bott-Morse inequalities (see e.g., [10, 56]). We con-
sider here simple examples where we have a critical submanifold instead of a critical
point. We start with the mexican hat function f(r, θ) = r4

4 −
r2

2 + 1
4 in polar co-

ordinates (r, θ) in R2 with the euclidean metric dr2 + (rdθ)2, which admits a non
degenerate maximum at r = 0 with f(0R2) = 1

4 and a degenerate minimum at r = 1

with f(1, θ) = 0.
The bar code of the function f is made of the bar [0,+∞[ in degree 0 and the bar

[0, 1
4 [ in degree 1. We compute the non zero exponentially small eigenvalue of ∆

(p)
f,R2,h

with p = 1 or 2 by computing the interaction scalar product ⟨ψ(2)
1 , d

(1)
f,hTδ2φ

(1)
1 ⟩ where

φ1
1 is a global quasimode 1-form associated with the bar [0, 1

4 [ and ψ
(2)
1 is a local

quasimode 2-form around r = 0.
In this particular example we have explicit forms for φ(1)

1 and ψ(2)
1 :

— We take ν > 0 smaller than the truncation parameter δ2. Then a explicit nor-
malized element of ker(∆

(1)

f,f−1([−1, 14−ν]),h
) is given by

φ
(1)
1 =

1√∫
f

1
4
−ν e

−
r4
2
−r2+ 1

2
h r−2dr(rdθ)

e−
r4

4
− r

2

2
+ 1

4
h dθ.

— For the local quasimode ψ(2)
1 defined around r = 0, we can use either a WKB ap-

proximation, or by duality the exact normalized element of ker(∆
(2)

f,f−1([ 14−δ]),h
)
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(δ > 0 is small enough but bigger than 2δ2) given by equal to

ψ
(2)
1 =

1√∫
f 1

4
−δ
e
r4
2
−r2

h dr(rdθ)

e
r4

4
− r

2

2
h dr ∧ (rdθ).

The scalar product ⟨ψ(2)
1 , df,h(Tδ2φ

(1)
1 )⟩ is then equal to

1√∫
f 1

4
−δ
e
r4
2
−r2

h dr(rdθ)

√∫
f

1
4
−ν e

−
r4
2
−r2+ 1

2
h r−2dr(rdθ)

⟨dr ∧ (rdθ), hχ′δ2(r)dr ∧ dθ⟩e
− 1

4h ,

where
⟨dr ∧ (rdθ), hχ′δ2(r)dr ∧ dθ⟩ = ±h

∫
r=ϱ

rdθ

r
= ±2πh

does not depend on the value ϱ > 0 (This is an explicit illustration of Stokes’s formula
argument used in [74] when f is a Morse function).

Using the asymptotics of non degenerate Laplace integrals, the non zero exponen-
tially small of ∆

(p)
f,R2,h, for p = 1, 2 equals

1 +O(h)

πh
× 1 +O(h)

π(2πh)1/2
× (2πh)2e−

1
2h =

2
√

2h1/2 +O(h3/2)√
π

e−
1
2h .

The subexponential factor Cte ×
√

h
π differs from the asymptotic behavior Cte × h

π

obtained when f is a generic Morse function. Actually it is possible to study the
transition from the Morse generic case to this degenerate case by taking fδ(r, θ) =

f(r, θ)+δγ(r) cos(θ) where γ ∈ C∞(]0,+∞[; [0, 1]) equals 1 in a neigborhood of 1, and
δ ∈ R is chosen small enough. Let us illustrate this in a larger framework. Note that
the above formula is not changed if the metric dr2 + r2dθ2 is replaced by dr2 + dθ2

in a neighborhood of r = 1. This will make the forthcoming analysis simpler.
We consider a C∞ function f on the compact Riemannian manifold M with a finite

number of critical values, which are all non degenerate and simple except the critical
value fixed to be 0. We further assume:

— the critical set around the value 0 is a closed orientable submanifold M ′ of
dimension p;

— there is a tubular neighborhood of M ′ which is a product of two Riemannian

manifolds M ′×M ′′ with the metric g = g′
⊥
⊕g′′; a corresponding local coordinate

system is written x = (x′, x′′);
— in the tubular neighborhood M ′ ×M ′′ the function f is a function of x′′ ∈M ′′

and has a unique minimum f(x′′0) = 0;
— the bar code Bf contains a unique bar [0, y

(p+1)
1 [ of degree p with lower end-

point 0 and upper endpoint y(p+1)
1 < +∞; the eigenvalues of the Hessian at

the corresponding point y(p+1)
1

are denoted −λ1(y
(p+1)
1

), . . . ,−λp+1(y
(p+1)
1

) and
λp+2(y

(p+1)
1

), . . . , λd(y
(p+1)
1

);
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M'

M''

Figure 19. Case of a critical submanifold (plain line) and its perturbation (dashed line):
The above example is modeled on the mexican hat function r4

4
− r2

2
with the manifold

M ′ = S1 with the metric dθ2 and M ′′ ∼ R (around r = 1) with the metric dr2. The function
Φ(θ) = −1− cos(θ) is a negative Morse function with maximum value 0 when θ = π.

— a local unstable (for −∇f) closed cell around the non degenerate critical
point y(p+1)

1
is denoted e

(p+1)
1 and its boundary in M which is a p-dimensional

sphere is denoted by ∂e(p+1)
1 ;

— if ϕ is C∞ Morse function onM ′ with the maximal value 0 and χ ∈ C∞0 (M ′′; [0, 1])

is equal to 1 in a neighborhood of x′′0 and such that f(x′′) ≥ c > 0 on supp dχ,
the function fδ is defined as fδ = f + δχ(x′′)ϕ(x′);

— for the sake of simplicity we work in the energy interval [a, b] with a = −ε and
b = y

(p+1)
1 + ε where ε > 0 is fixed so that the critical values of f in [a, b] are

the ones contained in [0, y
(p+1)
1 ].

Proposition 9.8. — Under the above assumptions, the boundary of the unstable cell
∂e

(p+1)
1 is homologous to κM ′, for some constant κ and relatively to f−ε.
For δ ≥ 0 small enough, the bar code Bfδ(a, b) admits the unique bar [0, y

(p+1)
1 [ of

degree p and length y(p+1)
1 .

The corresponding eigenvalue of ∆
(p) or (p+1)

fδ,f
−1
δ ([a,b]),h

equals

h

π
×
|λ1(y

(p+1)
1

) · · ·λp+1(y
(p+1)
1

)|1/2

|λp+2(y
(p+1)
1 ) · · ·λd(y(p+1)

1 )|1/2
×

(πh)−p
(
κ
∫
M ′ e

2δϕ(x′)
h dx′

)2

(πh)−d/2
∫
M ′×M ′′ e

−2
f−δχ(x′′)ϕ(x′)

h dx
× e−

2y
(p+1)
1
h × (1 + O(h)).

Proof. — The first statement is due to the fact that the bar [0, y
(p+1)
1 [ of de-

gre p provides a non null linear application from the relative homology vector
space Hp+1(f

y
(p+1)
1 +ε; fy

(p+1)
1 −ε), of which e

(p+1)
1 is a representant, via the boundary
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map to Hp(f
ε; f−ε), of which the cycle M ′ is a representant. Therefore there exists

a constant κ such that ∂e(p+1)
1 − κM ′ is a boundary relatively to f−ε. In particular

if ω is a regular p-form in ker d0,f−1([−ε,+∞[),1 then

(153)
∫
∂e

(p+1)
1

ω = κ

∫
M ′

ω.

The fact that [0, y
(p+1)
1 [ remains the only bars of degree p and length y(p+1)

1 for δ > 0

small enough is a consequence of the stability theorem (note that for δ > 0, fδ is a
Morse function if x′′ 7→ f(x′′) has a non degenerate minimum at x′′0 ).

Let φ(p)
1 be a global quasimode and ψ

(p+1)
1 be a local quasimode associated with

the bar [0, y
(p+1)
1 [ and let us compute the scalar product

⟨ψ(p+1)
1 , dfδ,hTδ2φ

(p)
1 ⟩.

Because we have a non degenerate critical point at y(p+1)
1

, the computations of [74]-

Section 4.3, which rely on the WKB approximation for ψ(p+1)
1 around y(p+1)

1
and

dfδ,hφ
(p)
1 ≡ 0 in fy

(p+1)
1 −δ(h)
δ = fy

(p+1)
1 −δ(h), leads to

⟨ψ(p+1)
1 , dfδ,hTδ2φ

(p)
1 ⟩ = ±

(
h
π

)1/2 × |λ1(y
(p+1)

1
)···λp+1(y

(p+1)

1
)|1/4

|λp+2(y
(p+1)
1 )···λd(y(p+1)

1 )|1/4
× (πh)

d
4−

p
2

×
∫
∂e

(p+1)
1

e
fδ
h φ

(p)
1 × e−

y
(p+1)
1
h × (1 + O(h)).

Because d(e
fδ
h φ

(p+1)
1 ) ≡ 0 in fy

(p+1)
1 −δ(h) we may apply (153) with ω = e

fδ
h φ

(p+1)
1

and the integral
∫
∂e

(p+1)
1

can be replaced by κ
∫
M ′ . Thus it suffices to know φ

(p)
1

in a neighborhood of M ′. A good approximation is given by a normalized element
of ker(∆

(p)

fδ,f
−1
δ ([−ε,ε],h)) which is exponentially close (in any Sobolev norm) to the

p-form constructed by the separation of variables in M ′ ×M ′′

1(∫
M ′×M ′′ e

−2
f−δχ(x′)ϕ(x′)

h dx
)1/2

e−
f−δχ(x′′)ϕ(x′)

h |det g′(x′)| 12 dx1 ∧ · · · ∧ dxp.

The final result follows by taking the square.

When f(x′′) near x′′0 ∈ M ′′ and ϕ(x′), x′ ∈ M ′, are Morse functions, the above
formula allows again to study the transition between the case when f is a Morse
function on M for δ > 0 small and when 0 is a degenerate critical value with crit-
ical set M ′ for δ = 0. We get the following asymptotic behavior for the eigenvalue
of ∆

(p) or (p+1)

fδ,f
−1
δ ([a,b]),h

associated with the bar [0, y
(p+1)
1 [:

Cδ
h

π
e−2

y
(p+1)
1
h (1 + O(h)) when δ > 0,

C0
h

π
(πh)−p/2e−2

y
(p+1)
1
h (1 + O(h)) when δ = 0.
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In general degre p it is possible to have a good information on the local approx-
imations of the global quasimodes φ(p)

k either when the critical value is x(p)
k is non

degenerate via a WKB approximation of when we can use some separation of vari-
ables. Otherwise it is not clear that we could get a general robust integral formula
for the subexponential factor. Note also that we used the fact that y(p+1)

k is a non
degenerate critical value when we reduced the computation of ⟨ψ(p+1)

1 , df,hTδ2φ
(p)
1 ⟩

to a integral along the explicit cycle ∂e(p+1)
1 . Again it is not clear that such a simple

argument can be used when y
(p+1)
k is a degenerate critical value without some other

specific assumptions.

9.3. More general Morse functions

We consider in this paragraph a Morse function f which may admit multiple critical
values. For the sake of simplicity, we work in the following situation:

— c < c′, c, c′ ∈
{
c1, . . . , cNf

}
are the only multiple critical values.

— All the critical points with critical value c (resp. c′), x(p)
k , 1 ≤ k ≤ K, (resp.

y
(p+1)
k′ , 1 ≤ k′ ≤ K ′) have the index p (resp. p+ 1).

— All the bars of Bf with the lower (resp. upper) endpoint c (resp. c′) have a length
larger or equal to c′− c. The numbers of such bars of length equal to c′− c (the
bar is a copy of [c, c′[), is denoted by K0 ≤ min(K,K ′).

— We will consider the energy interval [a, b] such that c (resp. c′) is the smallest
(resp. largest) critical value in [a, b].

— When x
(p)
k , k = 1, . . . ,K (resp. y(p+1)

k′ , k′ = 1, . . . ,K ′) denote the criti-
cal points for the value c (resp. c′) the function χ

(p)
k ∈ C∞(M ; [0, 1]) (resp.

χ
(p+1)
k ∈ C∞(M ; [0, 1])) is supported in a neighborhood and equals 1 in a smaller

neighborhood of x(p)
k (resp.y(p+1)

k′ ) for k = 1, . . . ,K (resp k′ = 1, . . . ,K ′).
Let t(p)k , k = 1, . . . ,K, (resp. t(p+1)

k′ , k′ = 1, . . . ,K ′) be real numbers. For δ ∈ R
small, we consider

fδ = f + δ

 K∑
k=1

t
(p)
k χ

(p)
k +

K′∑
k′=1

t
(p+1)
k′ χ

(p+1)
k′

 .
Because f is a Morse function we may find ε > 0 small enough such that the

homology vector space Hp(f
c+ε, f c−ε;R) (resp. Hp+1(f

c′+ε, fc
′−ε;R)) have a basis

made of the descending (unstable of −∇f) manifolds e(p)k , 1 ≤ k ≤ K (resp. e(p)k′ ,
1 ≤ k′ ≤ K ′) restricted to fc−ε (resp. fc′−ε). The boundary of e(p)k (resp e

(p+1)
k′ ) is a

p− 1-dimensional (resp. p-dimensional) sphere ∂e(p)k (resp. ∂e(p+1)
k′ ) lying in f−1({c−

ε}) (resp. in f−1({c′ − ε})).
On the Witten Laplacian side, ker(∆

(p)
f,f−1([c−ε,c+ε]),h) (resp. ker(∆

(p+1)
f,f−1([c′−ε,c′+ε],h)))

may be approximated with a Õ(e−
ε
h )-distance by

⊕⊥
1≤k≤K Cψ(p)

k (resp.
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⊕⊥
1≤k′≤K′ Cψ

(p+1)
k′ ), where ψ(p)

k (resp. ψ(p+1)
k′ ) is a normalized ground state of ∆

(p)
f,k

(resp. ∆
(p+1)
f,k′ ), the Witten Laplacian in degree p (resp. p + 1) with full Dirichlet

boundary conditions in B(x
(p)
k , R

√
ε) (resp. B(y

(p)
k′ , R

√
ε)) for R > 0 chosen large

enough. We refer to [48] and [55] and we recall that for the Witten Laplacian
associated with a Morse function f , the local Agmon distance to a critical point s, ϕ
solving |∇ϕ|2 = |∇f |2 and satisfying ϕ(x) ≥ |f(x) − f(s)|, behaves like the square
of the geodesic distance to s. Additionally, the L2 estimate between ψ

(p)
k (resp.

ψ
(p+1)
k′ ) and its projection onto ker ∆

(p)
f,f−1([c−ε,c+ε],h) (resp. ker ∆

(p+1)
f,f−1([c′−ε,c′+ε],h))

can be completed by a Õ(e−
ε
4h ) error estimate in any Sobolev norm on the open

set f c+
ε
2

c− ε
2
∩B(x

(p)
k , R2

√
ε) (resp. f c

′+ ε
2

c′− ε
2
∩B(y

(p+1)
k′ , R2

√
ε)).

We also have WKB-approximations for all the ψ(p)
k (resp. ψ(p+1)

k′ ) 1 ≤ k ≤ K (resp.
1 ≤ k′ ≤ K ′) in B(x

(p)
k , R2

√
ε) (resp. B(y

(p+1)
k′ , R2

√
ε)) which are valid in W s,2-norm.

By the construction of Theorem 6.3 there is a Õ(e−
ε
h )-orthonormal family of quasi-

modes φ(p)
k , 1 ≤ k ≤ p, which are approximated by the Π

ker(∆
(p)

f,f−1([c−ε,c+ε]),h
)
ψ

(p)
k

and therefore by ψ
(p)
k or their WKB-approximation and which solve df,hφ

(p)
k = 0

in f−1([c− ε, c′ − ε
2 ]), vanish in f c−ε and satisfy the exponential decay property.

At the level c′ the local quasimodes are Π
ker(∆

(p+1)

f,f−1([c′−ε,c′+ε]),h
)
ψ

(p+1)
k′ and are there-

fore close to ψ(p+1)
k′ .

For a generic choice of the coefficients t(p)k and t
(p+1)
k′ , the perturbation fδ is a

Morse function with simple critical values as soon as δ ∈ R is chosen small enough.
Moreover the stability theorem says that the bars with endpoints c and c′ are simply
modified by O(δ) variations of the endpoints while all the other bars are not changed
owing to our choice of fδ. We can even be more specific. The above parameter ε > 0, R
being fixed, ε small enough, we may take the cut-off function χ(p)

k , k = 1, . . . ,K, (resp.
χ

(p+1)
k′ , k′ = 1, . . . ,K ′) such that the equal 1 in B(x

(p)
k , 2R

√
ε) (resp B(y

(p+1)
k′ , 2R

√
ε)).

Finally δ > 0 is chosen small enough such that all the critical values of fδ close to c
(resp c′) are in [c − ε/2, c + ε/2] (resp. [c′ − ε/2, c′ + ε/2]). With this choice of fδ,
(e

(p)
k )k=1,...,K (resp. (e

(p+1)
k′ )k′=1,...,K′) defines a basis of Hp((fδ)

c+ε, (fδ)
c−ε;R) (resp.

Hp+1((fδ)
c′+ε; f c

′−ε
δ )). The quasimodes ψ(p)

k , ψ(p+1)
k′ , and their WKB-approximations

are not changed because we have just changed f by a constant in B(x
(p)
k , R

√
ε) (resp.

B(y
(p+1)
k+1 , R

√
ε)).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



160 CHAPTER 9. APPLICATIONS

Figure 20. A simple example in dimension 1 with K = 4, K0 = K′ = 3.

Figure 21. In dimension 2 we have represented 3 critical points with index 2 at the value c′

and 2 critical points with index 1 at the value c. The unstable (and stable manifold for the
index 1) of −∇f are considered in the level sets fc′+ε

c′−ε and fc+ε
c−ε . The homotopy with respect

to δ consists simply to move separately up or down, the disconnected parts of this picture.

Lemma 9.9. — In the above framework and for δ ∈ R small enough the bound-
ary map ∂ : Hp+1((fδ)

c′+ε, (fδ)
c′−ε;R)

can.∼
⊕K′

k′=1 Re
(p+1)
k′ induces a linear map

to Hp((fδ)
c+ε, (fδ)

c−ε;R)
can.∼

⊕K
k=1 Re

(p)
k of rank K0 which is written

∂ : e
(p+1)
k′ 7→

K∑
k=1

κk,k′e
(p)
k .

The matrix κ does not depend on δ.

Proof. — When δ = 0, the boundary map sends Hp+1(f
c′+ε, f c

′−ε,R) to
Hp(f

c′−ε, f c−ε;R) of which a dual basis (in cohomology) is indexed by the K0

bars [c, c′[, k = 1, . . . ,K0. It suffices to follow the bars to the lower endpoint to
define a linear map to Hp(f

c+ε, fc−ε;R). For a general δ small enough, fδ differs
from f only by a constant in each ball of radius R

√
ε around the critical points x(p)

k ,
y
(p+1)
k′ . Therefore, the gradient vector fields and the Morse models remain unchanged
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around these points. The homotopy becomes trivial by replacing locally the level
set f−1({c − ε}) (resp. f−1({c′ − ε})) by f−1

δ ({c − ε}) = f−1({c − ε − δt
(p)
k })

(resp. f−1
δ ({c′ − ε}) = f−1({c′ − ε − δt

(p+1)
k′ })). Hence, (e

(p)
k )k∈{1,...,K} (resp.

(e
(p+1)
k′ )k′∈{1,...,K′}) appears as a canonical basis of Hp((fδ)

c+ε, (fδ)
c−ε;R) (resp.

Hp+1((fδ)
c′+ε, (fδ)

c′−ε;R)) in which the matrix κ of the topological linear map
∂ : Hp+1((fδ)

c′+ε, (fδ)
c′−ε;R)→ Hp((fδ)

c+ε, (fδ)
c−ε;R) remains unchanged.

Proposition 9.10. — In the above framework with δ small enough, the singular val-
ues µh of d(p)

fδ,(fδ)−1([a,b]),h which satisfy limh→0−h logµh = c − c′ + O(δ) are equal
to (1 + O(h))× the non zero singular values of the K ×K ′ matrix(

h

π

)1/2

(D(p))−1κD(p+1)

where D(p) (resp. D(p+1)) is the diagonal matrix with entries

|λ1(x
(p)
k ) · · ·λp(x(p)

k )|1/4

|λp+1(x
(p)
k ) · · ·λd(x(p)

k )|1/4
e−

fδ(x
(p)
k

)

h , k = 1, . . . ,K,

resp.
|λ1(y

(p+1)
k′ ) · · ·λp+1(y

(p+1)
k′ )|1/4

|λp+2(y
(p+1)
k′ ) · · ·λd(y(p+1)

k′ )|1/4
e−

fδ(y
(p+1)

k′
)

h , k′ = 1, . . . ,K ′.

Proof. — Set x(p)
k,δ = fδ(x

(p)
k ) = c + δt

(p)
k and y

(p+1)
k′,δ = fδ(y

(p+1)
k′ ) = c′ + δt

(p+1)
k′ ,

for k = 1, . . . ,K and k′ = 1, . . . ,K ′. An orthonormal basis of ker(∆
(p+1)
fδ,fδ[c′−ε,c′+ε],h)

is well approximated by the local quasimodes ψ(p+1)
k′ which is the ground state of

the full Dirichlet realization of ∆
(p+1)
f,h in B(y

(p)
k′ , R

√
ε) which do not depend on δ.

The same holds for ker(∆
(p)
fδ,fδ([c−ε,c+ε],h)) with the notation ψ(p)

k , k = 1, . . . , p. Hence⊕⊥
k=1,...,K Cψ(p)

k provides a good approximation in the energy interval [c − ε, c + ε]

for fδ for the vector space of global quasimodes φ(p)
k,δ for fδ associated with the bars

[x
(p)
k,δ, y

(p+1)
k,δ [ for k = 1, . . . ,K0 and [x

(p)
k,δ, b[ for k = K0+1, . . . ,K. Let us chose the basis

(φ
(p)
k,δ)k=1,...,K as an orthonormal basis such that ∥φ(p)

k,δ −ψ
(p)
k ∥L2 = õ(1), while such a

õ(1) estimate also holds in any Sobolev norm in f
c+ ε

2

c− ε
2
∩ B(x

(p)
k,δ,

R
2

√
ε). Those global

quasimodes are assumed to solve dfδ,hφ
(p)
k,δ = 0 in f−1

δ ([a, c′ −Mδ]) for some M > 0

large enough and we assume Mδ ≪ δ2 ≪ ε. We now compute the interaction K ′×K
matrix ⟨ψ(p)

k′ , df,hχδ2(fδ)φ
(p)
k,δ⟩ where χδ2 smoothly vanishes in [c′ − δ2, b] and equals

1 in [a, c′ − 2δ2] for all k = 1, . . . ,K. Because df,hφ
(p)
k,δ = 0 in f−1

δ ([b, c′ −Mδ]), the

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



162 CHAPTER 9. APPLICATIONS

local computation around y(p+1)
k′ done in [74]-Section 4 are the same and they say:

⟨ψ(p+1)
k′ , df,hTδ2φ

(p)
k,δ⟩ = ±

(
h
π

)1/2 × |λ1(y
(p+1)

k′ )···λp+1(y
(p+1)

k′ )|1/4

|λp+2(y
(p+1)

k′ )···λd(y(p+1)

k′ )|1/4
× (πh)

d
4−

p
2

×
∫
∂e

(p+1)

k′
e
fδ
h φ

(p)
k,δ × e−

y
(p+1)

k′,δ
h × (1 + O(h)).

By Stokes’s formula applied with d[e
fδ
h φ

(p)
k,δ] = 0 in f−1

δ ([b, c′ −Mδ]) we obtain

⟨ψ(p+1)
k′ , df,hTδ2φ

(p)
k,δ⟩ = ±

(
h
π

)1/2 × |λ1(y
(p+1)

k′ )···λp+1(y
(p+1)

k′ )|1/4

|λp+2(y
(p+1)

k′ )···λd(y(p+1)

k′ )|1/4
× (πh)

d
4−

p
2

×
[∑K

j=1 κj,k′
∫
e
(p)
j
e
fδ
h φ

(p)
k,δ

]
× e−

y
(p+1)

k′,δ
h × (1 + O(h)).

By approximating φ(p)
k,δ by ψ(p)

k,δ and its WKB approximation in B(x
(p)
k , R2

√
ε) we have

(πh)
d
4−

p
2

∫
e
(p)
j

e
fδ
h φ

(p)
k,δ = (πh)

d
4−

p
2

∫
e
(p)
j

e
fδ
h ψ

(p)
k × (1 + õ(1))

= ±1
|λp+1(x

(p)
k ) · · ·λd(x(p)

k )|1/4

|λ1(x
(p)
k ) · · ·λp(x(p)

k )|1/4
e
x
(p)
k,δ
h × (1 + O(h)).

The error terms actually occur as matricial products on the left-hand side for the
approximation of ψ(p+1)

k′ and on the right-hand side for φ(p)
k,δ.

The interaction matrix ⟨(ψ(p+1)
k′ , dfδ,hχδ2φ

(p)
k,δ⟩)1≤k′≤K′,1≤k≤K is thus equal to

diag
(
± 1 + O(h)

)(h
π

)1/2

D(p+1)(tκ)(D(p))−1diag
(
± 1 + O(h)

)
.

Its singular values are thus equal up to a O(h)-relative error to the singular values of(
h

π

)1/2

D(p+1)(tκ)(D(p))−1

or equivalently of (
h

π

)1/2

(D(p))−1κD(p+1).

Remark 9.11. — The result of Propostion 9.10, in a specific case, shows that it is possi-
ble to get a matricial robust accurate formula for the exponentially small eigenvalues
of Witten Laplacians for general Morse potentials. This provides another stability
property valid for the first term asymptotics of the subexponential factor, which al-
lows to study the transition from the generic Morse case with simple critical values
to the general case. Note that here the power of h in this subexponential factor is
not changed, but discontinuities appear on the constants as it is shown in the next
simple examples. Actually we have considered a simple case where only one multiple
bar [c, c′[ has to be taken into account. A more general form would consist in follow-
ing the induction scheme of Theorem 6.3 and would lead to some complicated linear
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matricial structure for which we do not have an elegant presentation at the moment.
In the degree p = 0, L. Michel in [79] proposed an interpretration in terms of the
spectrum of a discrete Laplacian on a finite graph with vertices given by the local
minima and edges given by saddle points. This formulation is written for a fixed Morse
function with possible multiple local minima and saddle points, the perturbative issue
is not really clarified there. In our specific example, the discrete Laplacian proposed
by L. Michel is actually the square

h

π
(D(0))−1κD(1)D(1),∗κ∗(D(0))−1,∗.

It would be interesting to find such a general robust formulation, with several multiple
critical values, in degree p > 0.

Examples:

1. Consider a Morse function f on [s, t] such that minx∈[s,t] f(x) = f(s) = a,
maxx∈[s,t] f(x) = f(t) = b, with f ′(s) > 0 and f ′(t) > 0, with two local maxima
and two local minima s < y(1)

1
< x

(0)
1 < y(1)

2
< x

(0)
2 < t, f(y(1)

1
) = f(y(1)

2
) = c′

and f(x
(0)
1 ) = f(x

(0)
2 ) = c. For the perturbation of f we will consider the cases

when (t
(1)
1 , t

(1)
2 ) = (0, 0), (t

(0)
1 , t

(0)
2 ) ∈ {(0, 0), (0,−1), (−1, 0)}. The matrix κ

equals
(

1 −1
0 1

)
while the matrices D(0) and D(1) are given by

D(0) =

|λ1(x
(0)
1 )|−1/4e−

c+δt
(0)
1

h 0

0 |λ1(x
(0)
2 )|−1/4e−

c+δt
(0)
2

h

 =

(
α−1

1 0

0 α−1
2

)
e−

c
h ,

D(1) =

(
|λ1(y

(0)
1

)|1/4e− c′
h 0

0 |λ2(y
(0)
2

)|1/4e− c′
h

)
=

(
β1 0

0 β2

)
e−

c′
h .

The singular values of the matrix (D(0))−1κD(1) are the square roots of the
eigenvalues of the symmetric square matrix(

α2
1(β

2
1 + β2

2) −α1α2β
2
2

−α1α2β
2
2 α2

2β
2
2

)
e−2 c

′−c
h .

Those eigenvalues equal

[(α2
1(β

2
1 + β2

2) + α2
2β

2
2)]±

√
[α2

1(β
2
1 + β2

2)− α2
2β

2
2)]2 + 4α2

1α
2
2β

4
2

2
× e−2 c

′−c
h .

Depending on the three considered cases, we obtain:

t
(0)
1 = t

(0)
2 = 0: : The 2 exponentially small eigenvalues of ∆

(0) or (1)
f,[s,t],h have the

form Ck
h
π e
−2 c

′−c
h (1 + O(h)), k = 1, 2, where the constants C1 and C2

clearly depend on the four hessians at the critical points.
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Figure 22. The three considered cases: (t1, t2) = (0, 0) plain line; (t1, t2) = (−1, 0) move the
curve downward with (↓), (t1, t2) = (0,−1) move the curve downward with (↓ ↓).

t
(0)
1 = −1, t

(1)
2 = 0: : The 2 exponentially small eigenvalues of ∆

(0) or (1)
f,[s,t],h are

equal to:
h

π
|λ1(x

(0)
2 )|1/2|λ1(y

(1)
2

)|1/2e−2 c
′−c
h (1 + O(h))

h

π
|λ1(x

(0)
1 )|1/2|λ1(y

(1)
1

)|1/2e−2 c
′−c+δ
h (1 + O(h)).

In particular the smallest one depends on the hessians of fδ at the only
points x(0)

1 and y(1)
1

.

t
(0)
1 = 0, t

(0)
2 = −1: : The 2 exponentially small eigenvalues of ∆

(0) or (1)
f,[s,t],h are

equal to:

2
h

π
|λ1(x

(0)
1 )|1/2

|λ1(y
(1)
1

)|1/2 + |λ1(y
(1)
1

)|1/2

2
e−2 c

′−c
h (1 + O(h))

1

2

h

π
|λ1(x

(0)
2 )|1/2H(|λ1(y

(1)
1

)|1/2, |λ1(y
(1)
2

)|1/2)e−2 c
′−c+δ
h (1 + O(h)),

where H(u, v) = 2uv
u+v denotes the harmonic mean.

In this case the smallest eigenvalue depends on the Hessians of fδ at the
points x(0)

2 , y(1)
1

and y(1)
2

.

The general formula is again a robust formula which allows to follow the
dependence on the parameter δ of the asymptotic expressions although those at
the end are not continuous with respect to δ.

2. Consider in Rd a function f with a unique local minimum at x(0)
1 = 0 with

f(0) = c, such that limx→∞ f(x) = −∞ and surrounded by K ′ saddle points,
critical points with index 1, such that f(y

(1)
k′ ) = c′, while all the other crtical

values are larger than c′ with an index p ≥ 2. For the perturbation we will
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consider the two cases when t
(0)
1 = 0 and t

(1)
1 ∈ {0,−1}. The matrix κ is the

1 × K ′ matrix (1, 1, . . . , 1). Thus the smallest eigenvalue of ∆
(0)
fδ,(fδ)−1([a,b]),h,

which is the unique exponentially small eigenvalue, equals

h
π |det(Hessf(x

(0)
1 ))|1/2

∑K′

k′=1

|λ1(y
(1)

k′ )|1/2

|λ2(y
(1)

k′ )···λd(y(1)

k′ )|1/2
e−2 c

′−c
h (1 + O(h)) if δ = 0,

h
π |det(Hessf(x

(0)
1 ))|1/2 |λ1(y

(1)

1
)|1/2

|λ2(y
(1)
1 )···λd(y(1)

1 )|1/2
e−2 c

′−c−δ
h (1 + O(h)) if δ > 0.

Similar formulas are obtained for various configurations in [32, 33, 73, 71].

2 -10

1

2

Figure 23. An example with K = 6. Level curves at the level 1, 2,−10 are represented, the
local minimum is represented by ◦, the saddle points by ↔ and the global maxima by •.

3. A case with symmetries: Consider in R2 a Morse function f with a local max-
imum at y(2)

1
= 0, f(y(2)

1
) = c2 surounded by K saddle points at x(1)

k = y
(1)
k ,

k = 1, . . . ,K, f(x
(1)
k ) = c1, and K local minima at x(0)

k , k = 1, . . . ,K, f(x
(0)
k ) =

c0, c0 < c1 < c2. We also assume that limx→∞ f(x) = +∞ and that f has no
other critical points. When j ∈ {1, 2} or p ∈ {0, 1} are fixed λj(x

(p)
k ) = λ

(p)
j do

not depend on k = 1, . . . ,K. We study the eigenvalues of ∆
(p)
f,R2,h, p = 0, 1, 2

by restricting to the case c0 < a < c = c1 < c′ = c2 < b for p = 2 and to the
case a < c = c0 < c′ = c1 < b < c2 for p = 0. By supersymmetry, the non
zero eigenvalues of ∆

(1)
f,R2,h are obtained by gathering the ones of ∆

(0)
f,R2,h and

∆
(2)
f,R2,h.
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2 10

4

2

Figure 24. An example with K = 6. Level curves at the level 4, 2, 10 are represented, the
global minima are denoted by ◦, the saddle points by ↔ and the local maximum by •.

For p = 2, c0 < a < c = c1 < c′ = c2 < b: : The matrix κ equals the K × 1 ma-
trix

κ =


1
...
1

 .

The smallest eigenvalue of ∆
(2)
f,f−1([a,b]),h, which is the only exponentially

small one, then equals:

h

π
|det(Hessf(y(2)

1
))|1/2K |λ

(1)
2 |1/2

|λ(1)
1 |1/2

e−2
c2−c1
h (1 + O(h)).

For p = 0, a < c = c0 < c′ = c1 < b < c2: : The matrix κ is the K ×K matrix

κ =



1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . . . . . . . .
...

...
... 0

. . . −1

−1 0 · · · 0 1


of which the singular values equal |1−ωk|, k = 1, . . . ,K, where ωk = e2iπ

k
K

for k = 1, . . . ,K. Owing to

(D(0))−1κD(1) = |λ(0)
1 λ

(0)
2 |1/4

|λ(1)
1 |1/4

|λ(1)
2 |1/4

e−
c1−c0
h κ,
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we deduce that the K exponentially small eigenvalues of ∆
(0)
f,f−1([a,b]),h are

equal to

|λ(0)
1 λ

(0)
2 |1/2

|λ(1)
1 |1/2

|λ(1)
2 |1/2

|1− ωk|2e−2
c1−c0
h (1 + O(h)), k = 1, . . . ,K.

This case with p = 0 was considered by Michel in [79] for the Witten Laplacian
and by Hérau-Hitrik-Sjöstrand in [57] for the non-self-adjoint Kramers-Fokker-Planck
operator.
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CHAPTER 10

BROADENING THE SCOPE

Our work provides a general method for analyzing the exponentially small eigen-
values of Witten Laplacians with a general potential function. However, it does not
answer all the questions that arose along this analysis. Here is a short list of still open
questions and of connections with closely related fields.

a) General C∞ potential. — A general C∞-function on a compact manifold M may
have an infinite number of critical values and bars in its bar code. Nevertheless, for
any ε > 0, the set of bars of length larger than ε is finite. In order to realize this, take
a covering [min f,max f ] ⊂

⋃Nε
i=1[ai, ai+1], where the ai’s are not critical values and

such that 0 < ai+1 − ai ≤ ε for all i ∈ 1, . . . , N − 1. Any bar α(p) of degree p and
length larger than ε has at most two endpoints lying in different intervals [ai, ai+1]

and appearing as an element of Z (p)(ai, ai+1) for the possible lower endpoint and an
element of Z (p+1)(ai′ , ai′+1) for the possible upper endpoint with i ̸= i′. Therefore,
the set of bars of degree p and length larger than ε is bounded by

Nε−1∑
i=1

♯Z (p)(ai, ai+1) + ♯Z (p+1)(ai, ai+1)

=

Nε−1∑
i=1

β(p)(fai+1 , fai) + β(p+1)(fai+1 , fai) < +∞.

The conjecture stated in the introduction for a general C∞ function f has now the
following more precise version: For ε > 0, the õ(e−

2ε
h ) eigenvalues of ∆

(p)
f,M,h are given

by the λ(p)
α (h) such that α is of length larger than ε, α ∈ A(p) or (α ∈ A(p−1) and

b
(p)
α < +∞), and

lim
h→0
−h log(λα(h)) = 2(bα − aα).

Our proof, relying on a recurrence on the number of critical values by following their
increasing (and decreasing) order, is not adapted to the more general case with an
infinite number of critical values. One may think of a different type of induction:
Starting from our result for finitely many critical values, one may increase the number
of critical values by perturbing the function such that it creates small bars in a given
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interval [a, b], and then try to obtain spectral and resolvent estimates for the spectral
parameter λ ∈ [0, õ(e−

2ε
h )], which are uniform with respect to the additional small

bars.

b) What about C 0-potentials ?— The stability of bar codes makes sense in the C 0

topology while a finite bar code can be associated with a continuous function which
satisfies Hypothesis B.1. The relation between the exponentially small eigenvalues
of ∆f,h and the bar code of f suggests that the bottom of the spectrum of ∆f,h makes
sense only under Hypothesis B.1. Is there a natural self-adjoint operator “∆f,h” on M
when f is only continuous and for which Theorem 1.7 could be extended ?

c) Applications of the result on p-forms. — Over decades, the case of functions has
received a lot of attention with an easy interpretation in terms of Fokker-Planck equa-
tion associated with reversible processes at low temperature and within the modeling,
e.g., in chemistry as points the title of this text. Here is an attempt to interpret our
spectral results for p-forms. This deserves more precise studies and we hope that rele-
vant applications will be found. Within the stochastic approach, the Witten Laplacian
is better written as

Lf,h = e
f
h∆f,he

− f
h = h2∆0,1 + 2hL∇f = d0,hd

∗
2f,h + d∗2f,hd0,h,

considered in the L2-space associated with the invariant measure e−
2f
h dx,

L2(M, e−
2f
h dx; ΛT ∗M), and where ∆0,1 = dd∗ + d∗d is the usual Hodge Laplacian.

There are formulas to express the semigroups associated with Hodge and Witten
Laplacians, in terms of expectations values along brownian motion: e−tLf,hv = E(ξ∗t v)

for v ∈ C∞(M ; ΛT ∗M), where ξt is the flow associated with a stochastic differential
equation of the type dx = X(xt) ◦ dBt − 2∇f(xt)dt where B is an m-dimensional
brownian motion in Rm and X : M × Rm → TM is a submersion specified by the
metric on M (see in particular [36, Theorem 1.1.2, Formula 1.2.5, and Section 2.4]).
Due to the supesymmetric argument, eigenforms of ∆f,h (resp. Lf,h) can be assumed
to solve d∗f,hω = 0 (resp. d∗2f,hω̃ = 0 with ω̃ = e

f
hω), because when d∗f,hω ̸= 0 (resp.

d∗2f,hω) ̸= 0) then d∗f,hω (resp d∗2f,hω̃) is another eigenform of ∆f,h (resp. of Lf,h)
with degree decreased by 1 and associated with the same eigenvalue. Let ω̃ be such
an eigenform with d∗(e

2f
h ω̃) = 0 and Lf,hω̃h = λhω̃h. By assuming that ω̃ is a p-form

and after normalization, Ahe
2f
h ω̃ may be identified with a p-cycle via∫
M

η ∧ (⋆e
2f
h Ahω̃) =

∫
Cω̃,h

η,

where ∂Cω̃,h = 0 is a consequence of d∗(e
2f
h ω̃) = 0. It would be better to think of Cω̃,h

as a courant but let us forget the regularity issues. When f is a Morse function with

f(x1, . . . , xp, xp+1, . . . , xd) = −φ−(x1, . . . , xp) + φ+(xp+1, . . . , xd)

around a critical point of index p with critical value 0 which is a lower end-
point of a bar of degree p, the leading term of the WKB-approximation says
e

2f
h ω̃ = e−

2φ+(xp+1,...,xd)

h dx1 ∧ · · · ∧ dxp and Cω̃,h is assymptotically equal to some
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Figure 25. Metastability of cycles: The bars of degree 1 represented on the left-hand side,
with lengths ℓ1 < ℓ2, provide the lifetime e

2ℓ1
h (resp e

2ℓ2
h ) of the cycle C1 (resp. C2). After a

time larger than the lifetime, C1 is first deformed into C2 and C2 is then deformed into the
gray cycle which is rapidly retracted to the global minimum.

fixed cycle Cω̃,0 supported by the unstable manifold of −∇f . We may expect such a
behavior in general. The evolution ω̃h(t) = e−tLf,h ω̃h = e−tλh ω̃h says that this cycle
is not changed by the dynamics when t ≪ 1

λh
and disappears when t ≫ 1

λh
. The

reverse eigenvalue 1
λh

appear as the lifetime of the cycle Cω̃,h of which an asymptotic
form Cω̃,0 is expected when the normalization factor Ah is well chosen. Below is a
picture for the brownian dynamics of a 1-cycle, which shows the generalization of the
metastability picture that we expect.

d) General statement for subexponential factors. — Specifying the exponential scales
of the exponentially small eigenvalues of ∆

(p)
f,M,h associated with the lengths of the

bar code of f was done in Theorem 1.7 and Theorem 7.1, while the spectral ver-
sion of the stability was given in Corollary 1.8 and Theorem 7.8. Those results are
general statements which hold under simple general assumptions like Hypothesis 1.2
or Hypothesis 1.3. The situation is different when we want to specify the subexpo-
nential factors. In Chapter 9, the general construction was used in order to specify
the subexponential factors and to show that they were keeping some kind of stability
property, possibly within a finite dimensional matricial writing (see Proposition 9.10).
Although the method is clear and heavily relies on Theorem 6.3 and the use of Stokes’
theorem like in [74], we were not able to take into account all the possible configura-
tions in a uniform and satisfactory presentation. Although the stability of individual
subexponential factors cannot hold, a general robust statement or formula for the
determination of the subexponential factors would be valuable.
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e) Piecewise affine functions and discretization via triangulation. — In the one di-
mensional case, a schematic Witten Laplacian for which everything relies on simple
linear algebra is provided by a piecewise affine function f . Eigenforms of degree 0 or 1

are computed by matching exponentials at the discontinuities of the slope of f . It be-
comes a fully discrete model, in its coding and in the computation of the eigenforms.
The generalization of a piecewise affine function after a triangulation of Rd or Td (and
for further generalizations, one should consider a Lipschitz triangulated riemannian
manifold like in [43]) enters in our general assumption Hypothesis 1.3. Away from the
singularities of f , the Witten Laplacian is nothing but a scalar operator −∆ + V (x),
where V is a piecewise constant function, while the Hessian of f brings a measure
potential carried by the singularities of f . We are led to consider a specific self-adjoint
extension of −∆ + V (x) on C∞0 (Ωreg; ΛT

∗M), where Ωreg is the open domain where
f is differentiable with a locally constant gradient. Many things have been done on
the scalar Laplacian plus simple or double layer potentials, or more general interface
conditions (see [1, 16]). Here we work with Hodge-type Laplacians and discriminating
with respect to the degree will lead to different types of interface conditions and we
wonder whether cohomology brings additional restrictions along strata of codimen-
sion > 1. It would be interesting to see if such a finitely coded potential f leads to
a completely solvable linear algebra problem like in dimension 1. It could be an al-
ternative model problem as compared to the case of Morse functions, which could be
useful to understand some non trivial boundary or corner problems.

f) Infinite or large dimensional problems. — After specifying the geometrical prob-
lems, especially concerned with the domain issues for the differential, codifferential,
and Witten Laplacian, all the analysis is carried out along the real axis of values
of f , R ⊃ f(M). In this projective perspective, the dimension of M does not count
until the computation of the subexponential factors, which involves the asymptotics
of Laplace integrals. This raises the question of the validity of such an approach for
infinite dimensional – or large dimensional – problems, which have applications in sta-
tistical physics, and where the asymptotic behavior of the dimension is related with
the small parameter h→ 0+ (see e.g., [49, 31], or the recent [15] where the estimates
when h→ 0+ are even shown to be uniform in the dimension, and references therein).

g) Other boundary conditions for Witten Laplacians. — Our results include the
case of Witten Laplacians on bounded domains like f ba, provided that one consid-
ers Neumann boundary conditions on the upper boundary f−1({b}) and Dirichlet
boundary conditions on f−1({a}). In some applications like in the analysis of quasi-
stationary distributions, it is relevant to put Dirichlet boundary conditions every-
where on ∂Ω when the manifold M is replaced at the beginning by some regular do-
main (see [77, 32, 33, 72, 73]). The cohomology groups H∗(f b; fa) have to be replaced
byH∗(f b; fa∪∂Ω), but additional corner problems at the intersection ∂Ω∩f−1({a, b})
have to be analyzed carefully.
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h) Non reversible dynamics and spectral analysis of non self-adjoint related problems.
— The analysis of Witten Laplacians enters in the general scope of the semiclassi-
cal analysis of self-adjoint Schrödinger-type operators. Within the stochastic analysis,
several models, motivated by applications where a non reversible drift is considered,
lead to non self-adjoint operators for which a similar analysis can be carried out in the
case of functions, p = 0 (see e.g [71]). An interesting non self-adjoint (and non elliptic)
operator which has many connections with Witten Laplacian is Bismut’s hypoelliptic
Laplacian, which is defined in any degree 0 ≤ p ≤ 2d when we work on X = T ∗Q with
dimQ = d. The asymptotic behavior of exponentially small eigenvalues has been stud-
ied so far only when p = 0 and Q = Rd in [57], where Bismut’s hypoelliptic Laplacian
is nothing but the Kramers-Fokker-Planck operator of kinetic theory. For studying the
case of general p-forms on a manifold, a better understanding of boundary conditions
for Bismut’s hypoelliptic Laplacians (defined in [84]) is necessary. When f : Q→ R is
the potential, adapting the analysis of this text would lead to “Dirichlet boundary
conditions” on T ∗f−1({a})Q and “Neumann boundary conditions” on T ∗f−1({b})Q for the
hypoelliptic Laplacian acting in π−1(f ba), where π : T ∗Q→ Q is the fiber projection.
Additionally, the non self-adjoint nature of the problem requires different techniques
relying on complex deformations in order to handle the exponential decay of resolvents
and eigenfunctions.

i) Remarks about the subanalytic case. — In the subanalytic case and for at least
the second time (a previous time was in [41] for the analysis of Mourre estimates for
analytically fibered operators), the differentiation along regular strata has been used
in order to prove estimates. Instead of considering a non regular solution ϕ to the
Hamilton-Jacobi equation |∇f |2 = |∇ϕ|2, we constructed a finite family of regular
functions ϕk, k = 1, . . . ,K, |∇f |2 ≥ |∇ϕk|2, finally leading to a good enough expo-
nential decay estimate. We were not able to make a direct use of viscosity solutions,
which did not allow to absorb all the singular terms in Agmon’s type estimates. In a
different context, global subanalytic viscosity solutions to Hamilton-Jacobi with ana-
lytic coefficients (which is not the case here) were studied in [89]. Is there a better way
to introduce viscosity solutions in our problem ? In the other way, differentiating along
the regular strata could it be used for constructing subsolutions to Hamilton-Jacobi
type equations ?

j) Fukaya conjecture and multidimensional persistence. — Determining the homo-
topy type of a compact manifold M such that π1(M) = 0 and the A∞ structure on
harmonic forms induced by the pullback of the wedge product, can be attacked via
Witten’s deformation. This was proposed by Fukaya in [39] and more precisely studied
via WKB methods a la Helffer-Sjöstrand in [19]. It consists in considering several Wit-
ten’s deformations of the differential and the Hodge Laplacian, dfij ,h = e−

fij
h (hd)e

fij
h ,

associated with a sequence (f0, f1, . . . , fk) such that fij = fj − fi, 0 ≤ i < j ≤ k, are
Morse functions. Although it may not bring an additional topological information,
replacing Morse functions by more general C∞ functions means the understanding of
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the k(k+1)
2 -dimensional version of persistence diagrams, bars being replaced by mul-

tidimensional objects. The multidimensional version of persistence homology, partly
motivated by applications in statistical data analysis, is only emerging. We refer again
to [64] for a theoretical presentation of multidimensional persistence.

k) Comparison with the instantonic picture. — The instantonic picture makes sense
within Thom-Smale transversality condition, which ensures that any critical point of
index p+ 1 is related to some critical points of index p by a finite number of regular
integral curves of −∇f . This gives rise to the standard Thom-Smale complex struc-
ture. More recently, it has received an accurate analysis in terms of the analysis of
the dynamical system of −2∇f perturbed by a brownian motion in [29] by applying
Faure-Sjöstrand theory of weighted Sobolev spaces. We already mentioned that our
approach is orthogonal to the instantonic point of view: Instead of exploring the ge-
ometry of the potential landscape M ∋ x 7→ f(x) ∈ R, we considered globally the
sublevel sets fλ and their homological properties. We can parallel this with the com-
parison between Riemann’s and Lebesgue’s integration theory. This global approach
avoids considering possibly complicated cancelation phenomena in the general method
of tunnel effect computations described in [54, 53]. It is a question whether such a
global and topological approach makes sense for other spectral problems related with
dynamical systems.
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APPENDIX A

ABSTRACT HODGE THEORY

The abstract version of Hodge theory provides spectral results, like (154) or Corol-
lary A.2 below, which hold in general with weak regularity assumptions. For a proof,
we refer for example to [43, Section 2] (see in particular Propositions 2.3 and 2.4,
Corollary 2.5, and Theorem 2.8 there).

Proposition A.1. — Let (H, ∥ · ∥H) be a Hilbert space and let T : D(T ) ⊂ H → H be
a closed densely defined unbounded linear operator such that

RanT ⊂ kerT and D(T ) ∩D(T ∗) embeds compactly into H,

where D(T ) ∩D(T ∗) is equipped with the graph norm

∥u∥D(T )∩D(T∗) :=
√
∥u∥2H + ∥Tu∥2H + ∥T ∗u∥2H .

We then have the following properties:

i) The operator (T + T ∗, D(T ) ∩ D(T ∗)) is self-adjoint with a compact resolvent
and satisfies

ker(T + T ∗) = kerT ∩ kerT ∗.

In particular, the linear space D(T ) ∩ D(T ∗) is dense in H and T + T ∗ is a
self-adjoint Fredholm operator with index 0, that is more precisely

kerT ∩ kerT ∗ has finite dimension and Ran(T + T ∗) =
(
kerT ∩ kerT ∗

)⊥
.

ii) The operator ∆ := TT ∗ + T ∗T with domain

D(∆) := {u ∈ D(T ) ∩D(T ∗) s.t. Tu ∈ D(T ∗) and T ∗u ∈ D(T )}
is a nonnegative self-adjoint operator with kernel

ker ∆ = kerT ∩ kerT ∗ = ker(T + T ∗).

In particular, ∆ has a compact resolvent (since D(∆) with its graph norm embeds
continuously into D(T )∩D(T ∗)) and is the Friedrichs extension associated with
the closed nonnegative quadratic form Q on D(T ) ∩D(T ∗) defined by

Q(u, v) := ⟨Tu, Tv⟩H + ⟨T ∗u, T ∗v⟩H .
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Let us also note the following consequences of Proposition A.1 underlining the
supersymmetric structure of the operator ∆ defined there : when T is as in the
statement of Proposition A.1, the resolvent satisfies for every z ∈ C\σ(∆), u ∈ D(T ),
and u′ ∈ D(T ∗),

(154) (z −∆)−1 T u = T (z −∆)−1 u and (z −∆)−1 T ∗ u′ = T ∗ (z −∆)−1 u′.

Let us prove the first relation, the proof of the second one being similar. Let us then
consider u ∈ D(T ) and let us define v = (z − ∆)−1u for some z ∈ C \ σ(∆). Then
v ∈ D(∆) and (z −∆)v = u ∈ D(T ), which implies ∆v = T ∗Tv + TT ∗v ∈ D(T ) and
hence, since RanT ⊂ kerT , T ∗Tv ∈ D(T ). In particular, one has Tv ∈ D(TT ∗), and
hence Tv ∈ D(∆), and

(z −∆)Tv = zTv − TT ∗Tv = T (z −∆)v = Tu and then Tv = (z −∆)−1Tu,

that is precisely the first relation in (154).

An easy consequence of (154) is the following: for any eigenvalue λ of ∆ and
associated eigenvector u ∈ D(∆), we have Tu ∈ D(∆) and T ∗u ∈ D(∆), with

(155) T ∆u = ∆T u = λT u and T ∗∆u = ∆T ∗ u = λT ∗ u

Note that if in addition λ ̸= 0, one element among Tu, T ∗u is nonzero (since in this
case u /∈ ker ∆ = kerT ∩ kerT ∗).

Corollary A.2. — Assume the hypotheses of Proposition A.1 and define ∆ := TT ∗ + T ∗T

as there. The following orthogonal decompositions then hold:

H = RanT
⊥
⊕ RanT ∗

⊥
⊕ ker ∆

and, for T = T or T = T ∗, kerT = RanT
⊥
⊕ ker ∆.

In particular, the operators T and T ∗ have closed ranges and

kerT/RanT ≃ kerT ∗/RanT ∗ ≃ ker ∆.

Proof. — This result is the statement of [43, Proposition 2.9] and is an easy conse-
quence of Proposition A.1. First, since Ran(T + T ∗) =

(
kerT ∩ kerT ∗

)⊥
= (ker ∆)⊥

according to Proposition A.1, we deduce the inclusions (since T and T ∗ are closed),

RanT + RanT ∗ ⊃ (ker ∆)⊥ = RanT + RanT ∗ ⊃ RanT + RanT ∗.

The linear space RanT + RanT ∗ is then closed in H and, owing to T 2 = 0, this sum
is moreover orthogonal. The spaces RanT and RanT ∗ are consequently closed and

H = (ker ∆)⊥
⊥
⊕ ker ∆ = RanT

⊥
⊕ RanT ∗

⊥
⊕ ker ∆.

Furthermore, the inclusion kerT ⊃ RanT
⊥
⊕ ker ∆ is clear, owing again to T 2 = 0.

To prove the reverse inclusion, just notice that any v ∈ kerT writes as the sum
v = u0 + Tu1 + T ∗u2, where u0 ∈ ker ∆, u1 ∈ D(T ), and u2 ∈ D(T ∗). It follows
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that T ∗u2 ∈ D(T ) and TT ∗u2 = 0, which implies T ∗u2 = 0 (by taking the scalar

product with u2) and then v = u0 + Tu1 ∈ RanT
⊥
⊕ ker ∆.

Lastly, the relation kerT ∗ = RanT ∗
⊥
⊕ ker ∆ follows by applying the relation

kerT = RanT
⊥
⊕ ker ∆ with T replaced by T ∗, which satisfies RanT ∗ ⊂ kerT ∗ and

T ∗∗ = T .
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APPENDIX B

PERSISTENT COHOMOLOGY AND BAR CODES

B.1. A sheaf theoretic presentation

Let f be a C∞ function on the compact manifold M having finitely many critical
values (but we do not assume that f is a Morse function). We shall define its bar code
following the sheaf theoretic presentation of [64].

The following assumption on f which is weaker than Hypothesis 1.2 allows us to
use this construction in a low regularity setting. We keep the notation of Definition 1.1

f t = {x ∈M, f(x) < t} and f≤t = {x ∈M, f(x) ≤ t} .

Hypothesis B.1. — The function f : M → R is continuous and there exist finitely
many values min f = c1 < · · · < cNf = max f with the following property: For
any n ∈ {1, . . . , Nf − 1} and all a < b ∈ ]cn, cn+1[, f≤a is a deformation retract
of f≤b. The values c1, . . . , cNf are called “critical values” of f .

We shall need the following

Lemma B.2. — Assuming Hypothesis B.1, the space H∗(f b, fa) is finite dimensional.

Proof. — It is enough to prove that if t is in some ]cj , cj+1[, then H∗(f≤t) is finite
dimensional. The general case follows by applying the long exact sequence of the
pair (f≤b, f≤a). Now let ε be small enough, g a smooth function such that ∥g−f∥ ≤ ε.
Then the inclusions

f≤t ⊂ g≤t+ε ⊂ f≤t+2ε

hold true and for ε small enough,

f≤t−2ε ⊂ f≤t ⊂ f≤t+2ε

are homotopy equivalences. Notice that g being smooth and t+ε being a regular value
for generic ε, the cohomologies H∗(gt+ε) are finite dimensional, and we have maps

H∗(f≤t+2ε) −→ H∗(g≤t+ε) −→ H∗(f≤t)

but the composition of the above two arrows must be an isomorphism, and it factors
through a finite dimensional space, therefore H∗(f≤t) is finite dimensional and we
have a uniform bound for t in ]cj , cj+1[.
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By using the deformation along the gradient flow away from the “critical values”
c1, . . . , cNf , Hypothesis B.1 is obviously true when f satisfies Hypothesis 1.2. It is
also true for a general Lipschitz function satisfying Hypothesis 1.6 as mentioned in
Subsection 8.3.1. It implies that for any a, b ̸∈

{
c1, . . . , cNf

}
, a < b, the relative

homology groups (K-vector spaces)H∗(f≤b, f≤a;K) are finite dimensional and change
only when a or b passes a “critical value,” c1, . . . , cNf .

For the introduction of a persistent sheaf on R, we need to consider all the sublevel
sets, and only at the end, do we restrict our attention to the relative cohomology
groups H∗(f b, fa;K) with a < b, a, b ̸∈

{
c1, . . . , cNf

}
.

In order to use standard results of sheaf theory it is better to work with the closed
sublevel set f≤t for a general t ∈ R which may be a “critical value”.

For a field K, KM denotes the locally constant sheaf on M and we consider a c-soft
injective resolution

0 // KM // L 0 // L 1 // · · · ,
c-soft meaning that the restriction morphism between the spaces of sections
Γ(M ; L q) → Γ(K; L q) is surjective for any compact subset K ⊂ M and any q ∈ N.
A bounded c-soft resolution ending with LdimM → 0 exists because M is a compact
manifold.

Such a resolution can be obtained by introducing the canonical injective resolution
or the sheaf of K-valued Alexander-Spanier cochains on M . When K = R or C we
can use the de Rham resolution

0 // KM // C∞(M ;K)
d // C∞(M ; Λ1T ∗M)

d // · · · ,

showing that KM is quasi-isomorphic to the de Rham complex

0 // C∞(M ;K)
d // C∞(M ; Λ1T ∗M)

d // · · ·

and the homology groups of KM , denoted Hi(M ;K), are obtained by computing the
homology of the complex L•.

For any locally closed subset (i.e., the intersection of a closed and an open set) A,
LA is c-soft. When A and B are closed, A ⊂ B, the short exact sequence

0 // L•B\A
// L•B // L•A // 0

leads to the long exact sequence

· · · // H∗
c (B \A, L•) // H∗(B, L•) // H∗(A, L•) // H∗+1

c (B \A, L•) // · · ·

With our choice of L•, this says

(156) · · · // H∗
c (B \A,K) // H∗(B,K) // H∗(A,K) // H∗+1

c (B \A,K) // · · ·

when A is a closed subspace of M . We have just summarized Godement’s argu-
ments for Theorem 4.10.1 of [42] defining the long exact sequence associated to
a closed subset. For general values a < b in R, the relative cohomology groups
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H∗(f≤b, f≤a;K) can be understood in terms of the cohomology with compact support
in {x ∈M,a < f(x) ≤ b}. Under Hypothesis B.1, H∗(f≤a−ε

′
,K) ∼ H∗(f≤a−ε,K) for

any ε, ε′ > 0 small enough, the Mittag-Leffler condition (see [63]-chap I) is satisfied
and the cohomology groups of open sublevel sets are given by the projective limits
H∗(fa;K) = lim←−ε→0+

H∗(f≤a−ε;K) ∼ H∗(f≤a−ε0 ,K) for ε0 > 0 small enough.
Persistent cohomology is introduced in this way in [64] (we refer the reader to

[99, 35, 75] for other presentations) via the direct image functorRp∗, in the derived cat-
egory, applied to the locally constant sheaf KΓ+

f
on Γ+

f = {(x, t) ∈M × R, f(x) ≤ t}
where p : M ×R→ (R, γ) is given by p(x, t) = t. The notation (R, γ) means that R is
endowed with the non-Hausdorff γ-topology for which open (resp. closed) sets are
]−∞, t[ (resp. [t,+∞[), t ∈ R. Note that here we do not need to consider the val-
ues ±∞ because M is compact.

So we set P = Rp∗KΓ+
f
. For a γ-open set ]−∞, t[ the set of sections Γ(]−∞, t[; P)

is quasi-isomorphic to the de Rham complex

0 // C∞(f t;K)
d // C∞(f t; Λ1T ∗M)

d // · · · , when K = R or C,

while the stalk at t ∈ R, Pt = lim−→t′>t
Γ(]−∞, t′[; P) is quasi-isomorphic to the

de Rham complex of f≤t. With the γ-topology on R an example of a locally constant
sheaf is K[a,b[, −∞ < a < b ≤ +∞ with

Hom(K[a,b[;K[c,d[) =

{
K if a ≤ c < b ≤ d,
0 otherwise.

Under Hypothesis B.1, the cohomology H∗(f<t;K) is finite dimensional and locally
constant on R \

{
c1, . . . , cNf

}
. Therefore the sheaf P is an R-constructible sheaf

of K-vector spaces. By applying results of Crawley-Boevey in [26] (see also Guillermou
in [46, Part VIII]), Kashiwara and Schapira show in [64] that

P ∼
dimM⊕
p=0

⊕
α∈A(p)

K
[a

(p)
α ,b

(p+1)
α [

[p], −∞ < a(p)
α < b(p+1)

α ≤ +∞.

As pointed out in [64], and we refer the reader to this text for details, this equivalence
has to be understood as an equivalence of the objects in the bounded derived category.

Because the sheaf is locally constant in R \
{
c1, . . . , cNf

}
, the endpoints aα belong

to
{
c1, . . . , cNf

}
and the endpoints bα to

{
c2, . . . , cNf ,+∞

}
. The reason why we put

the exponent (p+1) for bα will become clear below. When we allow aα = bα the finite
cardinal of A can be augmented arbitrarily by adding [aα, bα[= ∅, K∅ = 0, with
bα = aα.

Remember that when F is a sheaf on the topological space X and Z is locally
closed, FZ is the sheaf on X characterized by{

FZ |Z = F |Z
FZ |X\Z = 0,
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and when Z is closed one has the exact sequence

0 // FX\Z // F // FZ // 0 .

Applied to X = (R, γ) and F = P ∼
⊕

α∈AK[aα,bα[ we obtain

P[t0,+∞[ ∼
⊕
α∈A,
t0<bα

K[max(aα,t0),bα[,

P]−∞,t0[ ∼
⊕
α∈A
bα≤t0

K[aα,bα[,

P[a,b[ ∼
⊕
α∈A

a<bα≤b

K[max(a,aα),bα[.

and the obvious graded analogous result holds. From the long exact sequence (156)
written

· · · // H(p−1)(f≤t) // H(p−1)(f≤a) // H(p)
c (f≤t \ f≤a)

��
H(p)(f≤t) // H(p)(f≤a) // · · ·

and because we are working with K-vector spaces we obtain

P(a)(p)|t
∼ ker[H(p)(f≤t;K)→ H(p)(f≤a;K)]⊕ coker[H(p−1)(f≤t;K)→ H(p−1)(f≤a;K)],

or
P(a)(p) ∼ ker(P

(p)
[a,+∞[ → P(p)

a )⊕ coker(P
(p−1)
[a,+∞[ → P(p−1)

a ).

Using P[a,+∞[ ∼
⊕

α∈A
a<bα

K[max(aα,a),bα[, we deduce

ker(P
(p)
[a,+∞[ → P(p)

a ) ∼
⊕

α∈A(p)

a<a(p)
α

K
[a

(p)
α ,b

(p+1)
α [

coker(P
(p−1)
[a,+∞[ → P(p−1)

a ) ∼
⊕

α∈A(p−1)

a(p−1)
α ≤a<b(p)α <+∞

K
[b

(p)
α ,+∞[

.

We obtain

H(p)
c (f≤b \ f≤a;K) ∼

 ⊕
α∈A(p)

a<a(p)
α ≤b<b(p+1)

α

K

⊕
 ⊕

α∈A(p−1)

a(p−1)
α ≤a<b(p)α ≤b

K

 .
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When a, b do not belong to
{
c1, . . . , cNf

}
, the inequalities in the sums can be replaced

by strict inequalities and

H(p)(f b, fa;K) ∼

 ⊕
α∈A(p)

a<a(p)
α <b<b(p+1)

α

K

⊕
 ⊕

α∈A(p−1)

a(p−1)
α <a<b(p)α <b

K

 .

B.2. Trivialized complex

We now establish the relationship with the bar codes used in [74] which was inspired
by Barannikov’s presentation of Morse theory in [5] (see also [75]). This is more
usually presented in terms of homology and the presentation in [74] was done under
the assumption that f is a Morse C∞(M ;R), M compact and distinct critical values.
With the definitions of [74], the equality ∂Bb = a holds true for two critical values a, b
if and only the map

H∗(f
b+ε, fa−ε) −→ H∗(f

b+ε, f b−ε)

vanishes, while
H∗(f

b+ε, fa+ε) −→ H∗(f
b+ε, f b−ε)

is non-zero. Remember that the above assumption implies dimH∗(f
b+ε, f b−ε) = 1 and

is concentrated in the degree equal to the index of the unique critical point associated
with b. In all the other cases we set ∂Bb = 0.

Barannikov’s complex under the above assumptions is simply given on the direct
sum

⊕
c∈C Kc =

⊕dimM
p=0 (

⊕
c∈C (p) Kc) by ∂Bb

(p+1) = a(p) under the above condition
and by ∂Bc = 0 otherwise. The set of the distinct critical values of f is denoted by C

and it is graded according to the index of the associated critical point.
Persistent cohomology is presented in the cohomological setting with H∗(fy, fx) =

H∗([x, y[,P), where P = Rp∗KΓ+
f

and by assumption

P =

dimM⊕
p=0

⊕
α∈A(p)

K
[a

(p)
α ,b

(p+1)
α [

[p], −∞ < a(p)
α < b(p+1)

α ≤ +∞,

so that

H∗([x, y[,P) =

dimM⊕
p=0

⊕
α∈A(p)

H∗([x, y[,K
[a

(p)
α ,b

(p+1)
α [

[p]), −∞ < a(p)
α < b(p+1)

α ≤ +∞.

So it is enough to consider the case of P = K
[a

(p)
α ,b

(p+1)
α [

[p] and then it is obvious by

duality that ∂Bb
(p+1)
α = a

(p)
α . We thus proved the following statement.

Proposition B.3. — If M is a compact manifold, f ∈ C∞(M ;R) is a Morse
function with disctinct critical values with the associated Barannikov complex
(
⊕dimM

p=0

⊕
c∈C (p) Kc, ∂B) and P = Rp∗KΓ+

f
, then for all x, y ∈ R \ C there is a
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duality between the K vector spaces

H∗(P) and H∗((
⊕
c∈C

Kc, ∂B);K).

The relative version says that H∗([x, y[,P) ∼ H∗(fy, fx;K) is the dual of
H∗((

⊕
c∈C∩]x,y[ Kc, ∂B);K) with the natural restriction of ∂B.

With the general framework of persistent cohomology described above, we are now
able to extend it under the general Hypothesis B.1 and we fix the corresponding
notations.

The bar code B(f) = ([aα, bα[)α∈A associated with f with aα < bα, aα ∈
{
c1, . . . , cNf

}
,

bα ∈
{
c2, . . . , cNf ,+∞

}
and graded according to B(p)(f) = ([a

(p)
α , b

(p+1)
α [)α∈A(p) is

the one introduced in the previous paragraph. We use the superscript ∗ when we do
not want to specify (p). When a < b are not “critical values” we write

A∗(a, b) =
{
α ∈ A∗, [a∗α, b

∗+1
α [∩]a, b[ ̸∈ {∅, ]a, b[}

}
,

A∗c(a, b) =
{
α ∈ A∗(a, b), a < a∗α < b∗+1

α < b
}
,

α ∈ A∗(a, b)⇔ a < a∗α < b or a < b∗+1
α < b,

In order to keep track of the possible multiplicities of the values aα and bα, we set

X∗(a, b) = {(α, a∗α), α ∈ A∗c(a, b)}
Y ∗(a, b) =

{
(α, b∗α), α ∈ A∗−1

c (a, b)
}

Z∗(a, b) = {(α, a∗α), α ∈ A∗(a, b) \A∗c(a, b), a < aα < b}
⊔
{
(α, b∗α), α ∈ A∗−1(a, b) \A∗−1

c (a, b), a < b∗α < b
}
,

J ∗(a, b) = X∗(a, b) ⊔ Y ∗(a, b) ⊔ Z∗(a, b).

We now consider the complex defined on

KJ (a,b) =

dimM⊕
p=0

KJ (p)(a,b) ∼ K2♯A∗c(a,b)+♯(A
∗(a,b)\A∗c(a,b))

with natural basis (x ∈ X∗(a, b), y ∈ Y ∗(a, b), z ∈ Z∗(a, b)) and with the differen-
tial dB defined by

dBx
(p) = y(p+1) if x(p) ∈ X (p)(a, b), y(p+1) ∈ Y (p+1)(a, b), p1(x) = α = p1(y),

dBy
(p) = 0 if y(p) ∈ Y (p)(a, b),

dBz
(p) = 0 if z(p) ∈ Z (p)(a, b).

By construction, when −∞ < a < b < +∞ are not “critical values” of f ,

Hp(KJ ∗(a,b),dB) =
⊕

z∈Z (p)(a,b)

Kz ∼
( ⊕

α∈A(p)

a<a(p)
α <b<b(p+1)

α

K
)
⊕
( ⊕

α∈A(p−1)

a(p−1)
α <a<b(p)α <b

K
)
,
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and the complex (KJ ∗(a,b),dB) computes all the relative cohomology groups
H∗(f b, fa;K).
The sets X∗(a, b), Y ∗(a, b), A∗c(a, b), play a role when we compute the positive expo-
nentially small eigenvalues of Witten Laplacians with Dirichlet boundary conditions
on f−1({a}) and Neumann boundary conditions on f−1({b}).

B.3. Stability theorem

The bar code associated with f is given by a family B(f) = ([aα, bα[)α∈A, now con-
taining possibly empty sets when aα = bα, with the equivalence ([aα, bα[)A ∼ ([cβ , dβ [)β∈B
if there is a bijection between j : {α ∈ A, aα < bα} → {β ∈ B, cβ < dβ} such
that cj(α) = aα and dj(α) = bα. Following [23] they can be represented as a family of
points ((aα, bα))α∈A in {(x, y) ∈ R× (R ∪ {+∞}), x ≤ y}, appearing with multiplic-
ities, and the bottleneck distance between two general bar codes BA = ([aα, bα[)α∈A
and BB = ([cβ , dβ [)β∈B , where A and B can be assumed with the same cardinal
when we authorize aα = bα, cβ = dβ , is given by

dbot(BA,BB) = inf
j:A

bij→B
max
α∈A

max(|aα − cj(α)|, |bα − dj(α)|),

with the convention |(+∞) − (+∞)| = 0. The stability theorem says that for two
different functions f, g on M which satisfy Hypothesis B.1, the bottleneck distance
between the bar codes B(f) and B(g) associated with f and g satisfies

dbot(B(f),B(g)) ≤ ∥f − g∥C0 .

It is proved in [64] by using the convolution of sheaves. In the one-dimensional case
and for ε ≥ 0 we have K[−ε,ε] ∗K[a,b[ = K[a−ε,b−ε[ (in terms of constructible functions
according to [86], simply use 1[a,b[ = 1[a,+∞]−1[b,+∞[ and 1[−ε,ε]∗1[a,+∞[ = 1[a−ε,+∞[)
and this convolution is nothing but a translation by −ε on the real axis. Two R-con-
structible sheaves on (R, γ), F,G are said ε-isomorphic, F ε∼ G, if there are mor-
phisms i : K[−ε,ε] ∗ F → G and j : K[−ε,ε] ∗ G → F such that natural mor-
phisms K[−2ε,2ε] ∗ F → F and K[−2ε,2ε] ∗G→ G are factored via

K[−2ε,2ε] ∗ F
K[−ε,ε]∗i→ K[−ε,ε] ∗G

j→ F

K[−2ε,2ε] ∗G
K[−ε,ε]∗j→ K[−ε,ε] ∗ F

i→ G.

The bottleneck distance is then equal to

dbot(F,G) = inf
{
ε ≥ 0, F

ε∼ G
}
,

and coincides with dbot(BA,BB) after writing F ∼
⊕

α∈AK[aα,bα[ and
G ∼

⊕
β∈B K[cβ ,dβ [.
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The present work shows that counting or computing the
small eigenvalues of the Witten Laplacian in the semi-classical
limit can be done without assuming that the potential is a Morse
function as the authors did in their previous article. In con-
nection with persistent cohomology, we prove that the rescaled
logarithms of these small eigenvalues are asymptotically deter-
mined by the lengths of the bar code of the potential function.
In particular, this proves that these quantities are stable in the
uniform convergence topology of the space of continuous func-
tions. Additionally, our analysis provides a general method for
computing the subexponential corrections in a large number of
cases.

Le présent travail montre que le comptage ou le calcul des
petites valeurs propres du Laplacien de Witten en limite semi-
classique peuvent être réalisés sans supposer que le potentiel est
une fonction de Morse, comme l’avaient fait les auteurs dans
leur article précédent. En relation avec la cohomologie persis-
tante, nous montrons que les logarithmes normalisés de ces pe-
tites valeurs propres sont déterminés par le code barre de la
fonction potentiel. En particulier cela démontre que ces quan-
tités sont stables dans la topologie de la convergence uniforme
de l’espace des fonctions continues. De plus, notre analyse four-
nit une méthode générale de calcul des facteurs correcteurs sous-
exponentiels dans un grand nombre de cas.
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