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University of Hawai‘i at Mānoa, Department of Mathematics, 2565 McCarthy Mall,
Honolulu, HI 96822-2273, USA
erik@math.hawaii.edu

Rufus Willett
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DYNAMICAL COMPLEXITY
AND

CONTROLLED OPERATOR K-THEORY

by

E. GUENTNER, R. WILLETT & G. YU

Abstract. — In this paper, we introduce a property of topological dynamical systems
that we call finite dynamical complexity. For systems with this property, one can
in principle compute the K-theory of the associated crossed product C∗-algebra by
splitting it up into simpler pieces and using the methods of controlled K-theory. The
main part of the paper illustrates this idea by giving a new proof of the Baum-Connes
conjecture for actions with finite dynamical complexity.

We have tried to keep the paper as self-contained as possible: we hope the main part
will be accessible to someone with the equivalent of a first course in operatorK-theory.
In particular, we do not assume prior knowledge of controlled K-theory, and use a new
and concrete model for the Baum-Connes conjecture with coefficients that requires
no bivariant K-theory to set up.

Résumé. (Complexité dynamique et K-théorie contrôlée). — Nous introduisons une
nouvelle propriété des systèmes dynamiques topologiques, que nous appelons com-
plexité dynamique finie. Les produits-croisés de C∗-algèbres associés aux systèmes
dynamiques ayant cette propriété peuvent être décomposés en parties plus simples,
ce qui permet de calculer leurs groupes de K-théorie, via des méthodes de K-théorie
contrôlée.

Dans cet article, nous illustrons cette idée en donnant une nouvelle preuve de la
conjecture de Baum-Connes pour les actions de complexité dynamique finie. Nous
avons essayé de rendre l’article aussi indépendant du reste de la littérature que pos-
sible, afin qu’il reste accessible pour quelqu’un n’ayant suivi qu’un premier cours de
K-théorie opératorielle. En particulier, nous ne supposons aucune connaissance préa-
lable de la K-théorie contrôlée, et nous utilisons un nouveau modèle concret pour la
conjecture de Baum-Connes à coefficients qui n’utilise pas la K-théorie bivariante de
Kasparov.

© Astérisque 451, SMF 2024
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CHAPTER 1

INTRODUCTION

Throughout this paper, the symbol ‘Γ

⟲

X’ will mean that Γ is a countable discrete
group, X is a compact Hausdorff space, and Γ acts on X by homeomorphisms. We
will abbreviate this information by saying that ‘Γ

⟲

X is an action’.
Our work here is based around a new property for actions, which we call finite dy-

namical complexity. This is partly inspired by the geometric notion of finite decompo-
sition complexity, introduced by the first and third authors together with Tessera [8],
and by the notion of dynamic asymptotic dimension, which was introduced by the
current authors in earlier work [10].

The precise definition of finite dynamical complexity requires groupoid language
to state; rather than get into details here, we just give an idea and refer the reader
to Definition 3.14 (see also Definition A.4) for the precise version. Roughly, then, we
say an action Γ

⟲
X decomposes over some collection C of ‘dynamical systems’ (more

precisely, étale groupoids) if it can be ‘locally cut into two pieces’, each of which is
in C . The action Γ

⟲

X has finite dynamical complexity if it is contained in the smallest
class C that is: closed under decompositions; and contains all dynamical systems that
are ‘essentially finite’ (more precisely, have compact closure inside the ambient étale
groupoid).

This definition allows the K-theory groups K∗(C(X) ⋊r Γ) to be computed, at
least in principle: the idea is that one can often compute the K-theory of essen-
tially finite pieces using classical (‘commutative’) techniques from algebraic topology
and the theory of type I C∗-algebras, then use generalized (‘controlled’ [19]) Mayer-
Vietoris arguments to reassemble this into the K-theory of the whole crossed prod-
uct C(X) ⋊r Γ. Strikingly, the C∗-algebras C(X)⋊r Γ to which these methods apply
are often simple; thus one has no hope of applying classical Mayer-Vietoris techniques,
as these require the presence of non-trivial ideals. This strategy works particularly
well when one is trying to show vanishing of certain K-theory groups.

To illustrate this strategy for computing K-theory, the main part of this paper
applies the idea above to the Baum-Connes conjecture for an action Γ

⟲

X with finite
dynamical complexity. This conjecture (a special case of the Baum-Connes conjecture

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



2 CHAPTER 1. INTRODUCTION

for Γ with coefficients [4]) posits that a particular assembly map

(1.1) µ : KKtop
∗ (Γ, C(X)) → K∗(C(X) ⋊r Γ)

is an isomorphism; here the domain is a topologically defined group associated to the
action, and the codomain is the operator K-theory of the reduced crossed product
C∗-algebra C(X)⋊rΓ, an analytically defined object. The existence of such an isomor-
phism relating two quite different aspects of the action has important consequences
for both: for example, it has consequences for Novikov-type conjectures associated
to Γ, and implies the existence of various tools to better understand the K-theory of
the crossed product.

The main part of the paper proves the following result, which is inspired in part by
the third author’s work [38] on the coarse Baum-Connes conjecture for spaces with
finite asymptotic dimension, the first and third authors’ work with Tessera on the
bounded Borel conjecture for spaces with finite decomposition complexity [8], and
the work of all three authors on dynamic asymptotic dimension [10].

Theorem 1.1. — Let Γ

⟲

X be an action with finite dynamical complexity, where X is
a second countable compact space. Then the Baum-Connes conjecture holds for Γ with
coefficients in C(X).

Our proof of Theorem 1.1 starts by replacing the problem of proving that µ as in
line (1.1) above is an isomorphism with the problem of showing that the K-theory of
a certain obstruction C∗-algebra A(Γ

⟲

X) vanishes. For this obstruction C∗-algebra
one can apply the strategy for computing K-theory outlined above, and show that it
is indeed zero.

The hypotheses of Theorem 1.1 cover many interesting actions: we refer the reader
to our companion paper [10], particularly the introduction, for a discussion of the case
of finite dynamic asymptotic dimension. We suspect that finite dynamic dimension
implies finite dynamical complexity, but did not seriously pursue that problem.

Relating the above to the literature, we should note that Theorem 1.1 is implied
by earlier work: indeed, it follows from work of Tu [31] on the Baum-Connes conjec-
ture for amenable groupoids and the fact (Theorem A.3 below) that finite dynamical
complexity of a groupoid implies amenability. Some of the key tools in Tu’s proof are
the Dirac-dual-Dirac method of Kasparov [16], the work of Higson and Kasparov on
the Baum-Connes conjecture for a-T-menable groups [11], and Le Gall’s groupoid-
equivariant bivariant K-theory [18]. As already hinted at above, our proof is quite
different: it gives a direct way of understanding the group K∗(C(X) ⋊r Γ) that uses
much less machinery.

Our motivations for giving a new proof of Theorem 1.1 are fourfold. First, we want
to illustrate the controlled methods for computing K-theory as already mentioned
above. Second, we want to make the Baum-Connes theory more direct so that it might
be adapted to computations of K-theory for much more general classes of C∗-algebras
with an eye on the Künneth theorem and UCT problem as pursued in [20, 34] and [36]
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CHAPTER 1. INTRODUCTION 3

respectively. Third, we want to make techniques from the Baum-Connes theory more
algebraic, so as to highlight and strengthen interactions with the Farrell-Jones theory
in algebraic topology [2, 3]. Fourth, the proof is fairly self-contained: we have tried
to make it accessible to a reader who has understood an introduction to C∗-algebra
K-theory at the level of [27] or [32].

On this fourth point, we hope that the paper can be read without prior knowledge of
Baum-Connes theory, groupoids, controlled K-theory, or even crossed product C∗-al-
gebras. This makes the proof more elementary than most existing proofs of special
cases of the Baum-Connes conjecture. In order to do this, we introduce a direct geo-
metric / combinatorial reformulation of the Baum-Connes conjecture; we show that
it agrees with the traditional one using Kasparov’s KK-theory [4] in an appendix.
Using these elementary methods also has the advantage that Theorem 1.1 remains
true (correctly interpreted) if one drops the second countability assumption on X.

To conclude this introduction, we should note that this paper only just starts the
study of finite dynamical complexity and its relation to other properties. We ask
several open questions in A.14 through A.19 below: some of these might be difficult,
but we suspect some are quite accessible.

Outline of the paper. — Section 2 builds a concrete model for the Baum-Connes as-
sembly map for an action Γ

⟲
X based on the localization algebras used by the third

author to give a model for the coarse Baum-Connes assembly map [37]. Section 3
introduces some language from groupoid theory that will be useful in carrying out
various decompositions, and which is crucial for the definition of finite dynamical com-
plexity given at the end of that section. Section 4 gives a self-contained description of
the controlled K-theory groups we will need for the proof, following work of the third
author [38], and of Oyono-Oyono in collaboration with the third author [19]. Section 5
lays out the strategy for proving Theorem 1.1, which is based roughly on the proof
of the coarse Baum-Connes conjecture for spaces with finite asymptotic dimension
of the third author [38], and the work of the first and third authors with Tessera [8]
on the stable Borel conjecture; in particular, it reduces the proof to two technical
propositions. These technical propositions are established in Sections 6 and 7. There
are two appendices, which require a bit more background of the reader. Appendix A
relates our finite dynamical complexity to finite decomposition complexity in the sense
of [8], and to topological amenability [1] as well as asking some questions; this requires
some background in the general theory of étale groupoids. Appendix B identifies our
model for the Baum-Connes assembly map with one of the standard models using
KK-theory; as such, it requires some background in equivariant KK-theory. The ap-
pendices are included to connect what we have done here to preexisting theory, and
are certainly not needed to understand the rest of the paper.

Acknowledgments. — The authors would like to thank the University of Hawai‘i at
Mānoa, the Shanghai Center for Mathematical Sciences, and Texas A&M University
for their hospitality during some of the work on this project. We would also like
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to thank Yeong Chyuan Chung, Clément Dell’Aiera, Hao Guo, Yuhei Suzuki, and
Santiago Vega for some helpful comments on earlier versions. We are particularly
grateful to Suzuki and Vega who (independently) spotted the same fairly serious
mistake in an earlier version of this manuscript. This mistake, and the fact that the
current version seems more natural and general, were our motivations for switching
the focus of the paper from dynamic asymptotic dimension (as was the case in earlier
drafts) to finite dynamical complexity.

During the writing of this paper, the first author was partially supported by
the Simons Foundation (#245398 and #586754). The second author was par-
tially supported by the US NSF (DMS-1401126, DMS-1564281, DMS-1901522, and
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1362772, DMS-1564281, DMS-1700021, DMS-2000082, and DMS-2247313), the
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CHAPTER 2

ASSEMBLY MAPS

Throughout this section, Γ

⟲

X is an action in our usual sense: Γ is a countable
discrete group, X is a compact Hausdorff topological space, and Γ acts on X by
homeomorphisms. Our goal in this section is to develop a concrete and elementary
model for the Baum-Connes assembly map for Γ with coefficients in C(X). The con-
struction is modeled on the localization algebra approach to the coarse Baum-Connes
conjecture of the third author [37].

We will assume throughout that Γ is equipped with a proper length function and
the associated right invariant metric as in the next definition.

Definition 2.1. — A (proper) length function on a group Γ is a function | · | : Γ → N
that satisfies the following conditions:

(i) |g| = 0 if and only if g = e (where e is the identity element of Γ);
(ii) |gh| ≤ |g|+ |h|;
(iii) |g−1| = |g|;
(iv) for any r ≥ 0, {g ∈ Γ | |g| ≤ r} is finite.

Associated to such a length function is a metric defined by d(g, h) := |gh−1|.

Note that the right action of the group on itself preserves the metric associated to
a length function, and that if the length function is proper, then for any r ≥ 0 there
is a uniform bound on the cardinality of all r-balls. Examples of length functions
and associated metrics are provided by word metrics associated to finite generating
sets, when such exist. Length functions always exist on a countable group, whether
or not it is finitely generated, and the metrics they define are unique up to ‘coarse’
(large-scale) equivalence: see for example [33, Proposition 2.3.3]. Our use of a length
function will only depend on the coarse equivalence class, and therefore fixing one
makes no real difference.

Definition 2.2. — Let s ≥ 0. The Rips complex of Γ at scale s, denoted Ps(Γ), is the
simplicial complex with vertex set Γ, and where a finite subset E of Γ spans a simplex
if and only if

(2.1) d(g, h) ≤ s for all g, h ∈ E.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



6 CHAPTER 2. ASSEMBLY MAPS

Points z ∈ Ps(Γ) can be written as formal linear combinations

z =
∑
g∈Γ

tgg,

where each tg is in [0, 1] and
∑

g∈Γ tg = 1. We equip the space Ps(Γ) with the ℓ1-metric

d
(∑

g∈Γ

tgg,
∑
g∈Γ

sgg
)

=
∑
g∈Γ

|tg − sg|.

The barycentric coordinates on Ps(Γ) are the continuous functions (tg :Ps(Γ)→ [0, 1])g∈Γ

indexed by g ∈ Γ that are uniquely determined by the condition

z =
∑
g∈Γ

tg(z)g

for all z ∈ Ps(Γ).

Using the fact that balls of radius s in Γ are (uniformly) finite, it is straightforward
to check that Ps(Γ) is finite dimensional and locally compact. Note also that the right
translation action of Γ on itself extends to a right action of Γ on Ps(Γ) by (isometric)
simplicial automorphisms.

We now want to build Hilbert spaces and C∗-algebras connected to both the large
scale geometry of Γ (called ‘Roe algebras’) and the topological structure of Ps(Γ)

(called ‘localization algebras’).

Definition 2.3. — For each s ≥ 0, define

Zs :=

{∑
g∈Γ

tgg ∈ Ps(Γ)
∣∣∣ tg ∈ Q for all g ∈ Γ

}
.

Note that Zs is Γ-invariant, so the Γ-action on Ps(Γ) induces a (right) action on
each Zs.

Let ℓ2(Zs) denote the Hilbert space of square-summable functions on Zs. Let ℓ2(X)

denote the Hilbert space of square-summable functions on X. Fix also a separable
infinite dimensional Hilbert space H, and define

Hs := ℓ2(Zs)⊗ ℓ2(X)⊗H ⊗ ℓ2(Γ).

Equip Hs with the unitary Γ action defined for g ∈ Γ by

ug : δz ⊗ δx ⊗ η ⊗ δh 7→ δzg−1 ⊗ δgx ⊗ η ⊗ δgh,

where z ∈ Zs, x ∈ X, η ∈ H and h ∈ Γ. When convenient, we will use the canonical
identification

(2.2) Hs = ℓ2(Zs ×X,H ⊗ ℓ2(Γ))

of Hs with the Hilbert space of square-summable functions from Zs×X to H⊗ℓ2(Γ).
Note that if s0 ≤ s then Ps0

(Γ) identifies equivariantly and isometrically with a
subcomplex of Ps(Γ), and moreover Zs0

⊆ Zs. Hence there are canonical equivariant
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CHAPTER 2. ASSEMBLY MAPS 7

isometric inclusions

(2.3) Hs0 ⊆ Hs,

which we will use many times below.
Write now KΓ for the compact operators on H ⊗ ℓ2(Γ) equipped with the Γ ac-

tion by ∗-automorphisms that is induced by the tensor product of the trivial ac-
tion on H and the (left) regular representation on ℓ2(Γ). Equip the C∗-algebra
C(X,KΓ) = C(X) ⊗ KΓ of continuous functions from X to KΓ with the diago-
nal action of Γ induced by the actions on C(X) and KΓ. Note that the canonical
faithful representation of C(X,KΓ) on ℓ2(X)⊗H ⊗ ℓ2(Γ) is covariant for the unitary
representation defined by tensoring the canonical permutation action on ℓ2(X), the
trivial representation on H, and the regular representation on ℓ2(Γ).

Definition 2.4. — Let T be a bounded operator on Hs. We may think of T as
a Zs × Zs-indexed matrix T = (Ty,z), where each entry is a bounded operator on
ℓ2(X)⊗H ⊗ ℓ2(Γ). We will be interested in the following properties of such T :

(i) T is Γ-invariant if ugTu
∗
g = T for all g ∈ Γ.

(ii) The Rips-propagation of T is the number

r = sup{dPs(Γ)(y, z) | Ty,z ̸= 0}.
(iii) The Γ-propagation of T is the supremum (possibly infinite) of the set

{dΓ(g, h) | Ty,z ̸= 0 for some y, z ∈ Zs with tg(y) ̸= 0, th(z) ̸= 0},
where tg, th : Ps(Γ) → [0, 1] are the barycentric coordinates associated to g and
h as in Definition 2.2 above.

(iv) T is X-locally compact if for all y, z ∈ Zs, the operator Ty,z is in the C∗-subal-
gebra C(X,KΓ) of the bounded operators on ℓ2(X)⊗H ⊗ ℓ2(Γ), and moreover
if for any compact subset K of Ps(Γ), the set

{(y, z) ∈ K ×K | Ty,z ̸= 0}
is finite.

Remark 2.5. — (This remark relates the definition above to earlier ones in the liter-
ature, and can be safely ignored by readers who do not know the earlier material).
Traditionally in this area (see for example [37]) one defines a suitable length metric on
each Rips complex Ps(Γ), and uses only the propagation defined relative to this met-
ric. We have ‘decoupled’ the notion of propagation into the Γ-propagation (relevant
only for large-scale structure) and the Rips-propagation (relevant only for small scale
structure). The reason for doing this is that in the traditional approach the metric
depends on the Rips parameter s, and it is convenient for us to have metrics that do
not vary in this way.

Definition 2.6. — Let C[Γ

⟲

X; s] denote the collection of all Γ-invariant, X-locally
compact operators on Hs, with finite Γ-propagation. It is straightforward to check
that C[Γ

⟲

X; s] is a ∗-algebra of bounded operators.
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8 CHAPTER 2. ASSEMBLY MAPS

Let C∗(Γ

⟲

X; s) denote the closure of C[Γ

⟲

X; s] with respect to the operator
norm. The C∗-algebra C∗(Γ

⟲

X; s) is called the Roe algebra of Γ

⟲

X at scale s.

We will always consider C[Γ

⟲

X; s] and C∗(Γ

⟲

X; s) as concretely represented
onHs, and equipped with the corresponding operator norm. Elements of C∗(Γ

⟲

X; s)

can be thought of as matrices (Ty,z)y,z∈Zs with entries continuous equivariant func-
tions Ty,z : X → KΓ in a way that is compatible with the ∗-algebra structure; we will
frequently use this description below.

Remark 2.7. — The Roe algebras C∗(Γ

⟲

X; s) are all isomorphic to the stabilization
of the reduced crossed product C∗-algebra C(X) ⋊r Γ. We do not need this remark
in the main body of the paper, but include it now as it may help orient some readers.
See Appendix B for a proof.

Note that the Rips-propagation is not relevant to the definition of the Roe algebras;
it is, however, used in a crucial way in the next definition.

Definition 2.8. — Let CL[Γ
⟲

X; s] denote the ∗-algebra of all bounded, uniformly
continuous functions

a : [0,∞) → C[Γ

⟲

X; s]

such that the Γ-propagation of a(t) is uniformly finite as t varies, and so that the
Rips-propagation of a(t) tends to zero as t tends to infinity.

Let C∗L(Γ
⟲

X; s) denote the completion of CL[Γ

⟲

X; s] for the norm

∥a∥ := sup
t∈[0,∞)

∥a(t)∥C∗(Γ

⟲

X;s).

The C∗-algebra C∗L(Γ

⟲

X; s) is called the localization algebra of Γ

⟲

X at scale s.

Note that an element a of C∗L(Γ

⟲

X; s) comes from a unique bounded, uniformly
continuous functions

a : [0,∞) → C∗(Γ

⟲

X; s)

(satisfying some additional properties). We will think of CL[Γ

⟲

X; s] and C∗L(Γ

⟲

X; s)

as concretely represented on the Hilbert space L2[0,∞)⊗Hs in the obvious way.
Finally in this section, we come to the definition of the assembly map. First, let

(2.4) ϵ0 : K∗(C
∗
L(Γ

⟲

X; s)) → K∗(C
∗(Γ

⟲

X; s))

denote the evaluation-at-zero ∗-homomorphism a 7→ a(0). Assume that s0 ≤ s. Then
the isometric equivariant inclusion Hs0

⊆ Hs from line (2.3) above induces isometric
inclusions

C∗(Γ

⟲

X; s0) ⊆ C∗(Γ

⟲

X; s)

and

C∗L(Γ

⟲

X; s0) ⊆ C∗L(Γ

⟲

X; s)
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CHAPTER 2. ASSEMBLY MAPS 9

of C∗-algebras, and thus we get directed systems (C∗(Γ

⟲

X; s)
)
s≥0

and
(
C∗L(Γ

⟲

X; s)
)
s≥0

of C∗-algebra inclusions. Moreover the evaluation-at-zero maps from line (2.4) are
clearly compatible with these inclusions, whence we may make the following definition.

Definition 2.9. — The assembly map for Γ

⟲

X is the direct limit

ϵ0 : lim
s→∞

K∗(C
∗
L(Γ

⟲

X; s)) → lim
s→∞

K∗(C
∗(Γ

⟲

X; s))

of the evaluation-at-zero maps from line (2.4) above.

Remark 2.10. — This map identifies naturally with the Baum-Connes assembly map
for Γ with coefficients in C(X), whence the name. Analogously to Remark 2.7 above,
we do not need this fact in the main body of the paper, but include it now in case it
is helpful for some readers. See Appendix B for a proof.

Our main goal in this paper is to prove the following theorem.

Theorem 2.11. — Let Γ

⟲

X be an action with finite dynamical complexity. Then the
assembly map is an isomorphism.

Remark 2.12. — Thanks to the results of Appendix B, this is the same result as The-
orem 1.1 from the introduction, although without the assumption that X is second
countable. The only reason for including second countability of X in the statement of
Theorem 1.1 is to avoid technical complications that arise in the traditional statement
of the Baum-Connes conjecture with coefficients in a non-separable C∗-algebra. As-
suming separability would make no difference for the proof of Theorem 2.11, however,
so we omit the assumption here.

In order to prove this theorem, it is convenient to shift attention to an ‘obstruction
group’.

Definition 2.13. — Let C∗L,0(Γ

⟲

X; s) denote the C∗-subalgebra of C∗L(Γ

⟲

X; s)

consisting of functions a such that a(0) = 0. The C∗-algebra C∗L,0(Γ

⟲

X; s) is called
the obstruction algebra of Γ

⟲

X at scale s.

There is clearly a directed system
(
C∗L,0(Γ

⟲

X; s)
)
s≥0

of obstruction algebras. The
following straightforward lemma explains the terminology ‘obstruction algebra’: the
K-theory of these algebras obstructs isomorphism of the assembly map.

Lemma 2.14. — The assembly map of Definition 2.9 is an isomorphism if and only if

lim
s→∞

K∗(C
∗
L,0(Γ

⟲

X; s)) = 0.

Proof. — The short exact sequence

0 // C∗L,0(Γ

⟲

X; s) // C∗L(Γ

⟲

X; s) // C∗(Γ

⟲

X; s) // 0

gives rise to six term exact sequence in K-theory. The lemma follows from this, con-
tinuity of K-theory under direct limits, and the fact that a direct limit of an exact
sequence of abelian groups is exact.
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10 CHAPTER 2. ASSEMBLY MAPS

Thus in order to prove Theorem 2.11, it suffices to prove that the group in the
statement of Lemma 2.14 vanishes whenever Γ

⟲

X has finite dynamical complexity.
The proof of this occupies the next five sections. We spend the next two sections devel-
oping machinery: in Section 3 we introduce some convenient language from groupoid
theory, use this to define useful subalgebras of the obstruction algebras, and introduce
finite dynamical complexity; and in Section 4 we introduce controlled K-theory, which
gives us extra flexibility when performing K-theoretic computations.

Having built this machinery, Section 5 sketches out the strategy of the proof of
Theorem 2.11: the basic idea is to first use a homotopy invariance result to show that
the K-theory of the obstruction algebra associated to an ‘essentially finite’ dynamical
subsystem of Γ

⟲

X vanishes; and then to use a Mayer-Vietoris type argument to
show that the class of dynamical subsystems of Γ

⟲

X for which the K-theory of
the obstruction algebra vanishes is closed under decomposability. The proofs of the
homotopy invariance result, and of the Mayer-Vietoris type argument are somewhat
technical, and are carried out in Sections 6 and 7 respectively.
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CHAPTER 3

GROUPOIDS AND DECOMPOSITIONS

Our goal in this section is to show how ‘subgroupoids’ of the action Γ

⟲

X give rise
to C∗-subalgebras of the Roe algebras and localization algebras of Section 2. We try
to keep the exposition self-contained: in particular, we do not assume that the reader
has any background in the theory of locally compact groupoids or their C∗-algebras.

Throughout this section Γ

⟲

X is an action in our usual sense: Γ is a countable
discrete group and X is a compact space equipped with an action of a Γ by homeo-
morphisms. We also fix a (proper) length function on Γ and associated right-invariant
metric as in Definition 2.1.

Definition 3.1. — The transformation groupoid associated to Γ

⟲

X, denoted Γ⋉X,
is defined as follows. As a set, Γ ⋉X is equal to

{(gx, g, x) ∈ X × Γ×X | g ∈ Γ, x ∈ X}.
The set Γ ⋉X is equipped with the topology such that the (bijective) projection
Γ ⋉X → Γ×X onto the second and third factors is a homeomorphism.

The topological space Γ ⋉X is equipped with the following additional structure:

(i) A pair
(
(hy, h, y), (gx, g, x)

)
of elements of Γ⋉X is composable if y = gx. If the

pair is composable, their product is defined by

(hgx, h, gx)(gx, g, x) := (hgx, hg, x).

(ii) The inverse of an element (gx, g, x) of Γ ⋉X is defined by

(gx, g, x)−1 := (x, g−1, gx).

(iii) The units are the elements of the open and closed subspace

(Γ ⋉X)(0) := {(x, e, x) ∈ Γ ⋉X | x ∈ X}
of Γ ⋉X.

We can now discuss the algebra of supports of elements in the Roe algebra.
For this, recall from Definitions 2.4 and 2.6 that we can think of an operator T
in C∗(Γ

⟲

X; s) as a matrix (Ty,z)y,z∈Zs
indexed by Zs with entries continuous

functions Ty,z : X → KΓ.
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12 CHAPTER 3. GROUPOIDS AND DECOMPOSITIONS

Definition 3.2. — Let s ≥ 0, and let Ps(Γ) be the associated Rips complex with
barycentric coordinates tg : Ps(Γ) → [0, 1] as in Definition 2.2. Define the support
of z ∈ Ps(Γ) to be the finite subset

supp(z) := {g ∈ Γ | tg(z) ̸= 0}
of Γ. Define the support of T ∈ C∗(Γ ⟲ X; s) to be the subset

supp(T ) :=

{
(gx, gh−1, hx) there are y, z ∈ Zs with Ty,z(x) ̸= 0

∈ Γ ⋉X and g ∈ supp(y), h ∈ supp(z)

}
of Γ ⋉X.

Note that for T ∈ C[Γ

⟲

X; s], the Γ-propagation of T as in Definition 2.4 is equal
to the largest value of |k| such that (x, k, y) appears in supp(T ) for some x, y ∈ X.

Supports of operators behave well with respect to composition and adjoints; this is
the content of the next lemma. To state it, note that the groupoid operations on Γ⋉X
extend to subsets in natural ways: if A,B ⊆ Γ ⋉X then we define

A−1 := {a−1 | a ∈ A}
and

AB := {ab | a ∈ A, b ∈ B and (a, b) composable}.

Lemma 3.3. — Let S, T ∈ C∗(Γ ⟲ X; s). Then

supp(S∗) = supp(S)−1 and supp(ST ) ⊆ supp(S)supp(T ).

Proof. — As the adjoint of S has matrix entries (S∗)y,z = S∗z,y, the statement about
adjoints is clear. To see the statement about multiplication, say T, S ∈ C∗(Γ ⟲ X; s),
and (gx, gh−1, hx) is a point in the support of TS. Then there are y, z ∈ Zs such
that g ∈ supp(y), h ∈ supp(z), and (TS)y,z(x) ̸= 0. Hence there is w ∈ Zs with
Ty,w(x) ̸= 0, and Sw,z(x) ̸= 0. Say k is any point in supp(w), so we must have
that (gx, gk−1, kx) is in the support of T and (kx, kh−1, hx) is in the support of S.
As

(gx, gh−1, hx) = (gx, gk−1, kx)(kx, kh−1, hx),

this shows that the support of TS is contained in the product of the supports of T
and S.

The lemma implies that subspaces of Γ ⋉ X that are closed under the groupoid
operations will give rise to ∗-subalgebras of C[Γ

⟲

X; s]. The relevant algebraic notion
is that of a subgroupoid as in the next definition.

Definition 3.4. — Let Γ ⋉ X be the transformation groupoid associated to the ac-
tion Γ

⟲

X. A subgroupoid of Γ⋉X is a subset G of Γ⋉X closed under the operations
in the following sense:

(i) If (hgx, h, gx) and (gx, g, x) are in G, then so is the composition (hgx, hg, x).
(ii) If (gx, g, x) is in G, then so is its inverse (x, g−1, gx).
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CHAPTER 3. GROUPOIDS AND DECOMPOSITIONS 13

(iii) If (gx, g, x) is in G, then so are the units (x, e, x) and (gx, e, gx).
A subgroupoid is equipped with the subspace topology inherited from Γ ⋉X.

The following lemma is now almost clear.

Lemma 3.5. — Let G be an open subgroupoid of Γ ⋉ X. Define C[G; s] to be the
subspace of C[Γ

⟲

X; s] consisting of all operators T with support contained in a
compact subset of G. Then C[G; s] is a ∗-subalgebra of C[Γ

⟲
X; s].

Proof. — Lemma 3.3 gives most of this: the only remaining point to check is that
a product of two relatively compact subsets (1) of G is relatively compact, which we
leave it to the reader (or see for example [10, Lemma 5.2] for a more general statement
and proof).

Using this lemma, the following definitions make sense.

Definition 3.6. — Let G be an open subgroupoid of Γ ⋉ X. Let CL[G; s] denote
the ∗-subalgebra of CL[Γ

⟲

X; s] (see Definition 2.8 above) consisting of all a such
that

⋃
t supp(a(t)) has compact closure inside G. Let CL,0[G; s] denote the ideal

of CL[G; s] consisting of functions such that a(0) = 0.
Let C∗(G; s), C∗L(G; s), and C∗L,0(G; s) denote the closures of C[G; s], CL[G; s], and

CL,0[G; s] inside C∗(Γ
⟲

X; s), C∗L(Γ

⟲

X; s), and C∗L,0(Γ

⟲

X; s) respectively.

Note that operators of finite Γ-propagation always have support contained in some
compact subset of Γ ⋉ X. Hence if G = Γ ⋉ X then C∗(G; s) is just C∗(Γ

⟲

X; s),
and similarly for the localization and obstruction algebras.

Remark 3.7. — (This remark may be safely ignored by readers who do not have any
background in groupoids and the associated C∗-algebras.) Analogously to Remark 2.7,
for any open subgroupoid G of Γ ⋉X, the C∗-algebra C∗(G; s) is Morita equivalent
to the reduced groupoid C∗-algebra C∗r (G); this makes sense, as an open subgroupoid
of Γ⋉X is étale so has a canonical Haar system given by counting measures. We only
include this remark as it might help to orient some readers; we will not use it in any
way, or prove it.

Our next goal in this section is to construct filtrations on these C∗-algebras in
the sense of the definition below, and discuss how they interact with the subalgebras
coming from groupoids above.

Definition 3.8. — A filtration on a C∗-algebra A is a collection of self-adjoint sub-
spaces (Ar)r≥0 of A indexed by the non-negative real numbers that satisfies the fol-
lowing properties:

(i) if r1 ≤ r2, then Ar1
⊆ Ar2

;
(ii) for all r1, r2, we have Ar1

·Ar2
⊆ Ar1+r2

;
(iii) the union

⋃
r≥0Ar is dense in A.

1. Recall that a subset of a topological space is relatively compact if its closure is compact.
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14 CHAPTER 3. GROUPOIDS AND DECOMPOSITIONS

As the case of the obstruction C∗-algebras will be particularly important for us,
we introduce some shorthand notation for that case.

Definition 3.9. — For an open subgroupoid G of Γ ⋉X and s ≥ 0, define As(G) to
be the C∗-algebra C∗L,0(G; s). For each r ∈ [0,∞), define

As(G)r := {a ∈ CL,0[G; s] | a(t) has Γ-propagation at most r for all t},
and define As(G)∞ := CL,0[G; s]. In the special case that G = Γ⋉X, we omit it from
the notation and just write As and As

r.

When convenient, we will consider all these C∗-algebras as faithfully represented on
the Hilbert space

L2([0,∞), Hs) = L2[0,∞)⊗ ℓ2(Zs)⊗ ℓ2(X)⊗H ⊗ ℓ2(Γ).

Lemma 3.10. — For any open subgroupoid G of Γ ⋉ X and any s ≥ 0, the sub-
sets (As(G)r)r≥0 define a filtration of As(G) in the sense of Definition 3.8.

Proof. — An element a ∈ As(G) is in As(G)r if and only if it is in the dense ∗-subal-
gebra CL,0[G; s] and if whenever (gx, g, x) is in supp(a(t)) for some t, we have |g| ≤ r.
The filtration properties follows directly from this, the facts that |gh| ≤ |g||h| and
|g−1| = |g|, and Lemma 3.3.

Our next goal in this section is to discuss what happens when we take products
of elements from As

r and As(G) for some G and r. Note first that analogously to the
case of subgroups, one may build a subgroupoid generated by some S ⊆ Γ ⋉ X by
iteratively closing under taking compositions, inverses, and units in the sense of parts
(i)-(iii) of Definition 3.4 above. From this, it is straightforward to check that if S is
an open subset of Γ ⋉ X, then the subgroupoid it generates is also open: see [10,
Lemma 5.2] for a proof.

Definition 3.11. — Let r ≥ 0 and G be an open subgroupoid of Γ ⋉X, and H be an
open subgroupoid of G. The expansion of H by r relative to G, denoted H+r, is the
open subgroupoid of Γ ⋉X generated by

H ∪ {(gx, g, x) ∈ G | |g| ≤ r, x ∈ H(0)}.

Note that the expansion H+r depends on the ambient groupoid G; we do not
include G in the notation, however, to avoid clutter, and as which groupoid we are
working inside should be clear from context.

We now have two basic lemmas.

Lemma 3.12. — Let G be an open subgroupoid of Γ⋉X, and H an open subgroupoid
of G. Let r, s ≥ 0. Then

As(H) ·As
r(G) ∪As

r(G) ·As(H) ⊆ As(H+r).

Proof. — Immediate from Lemma 3.3.
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Lemma 3.13. — For any r1, r2 ≥ 0 and open subgroupoid H of an open subgroupoid G
of Γ ⋉X, we have that (H+r1)+r2 ⊆ H+(r1+r2).

Proof. — ClearlyH+r1 ⊆ H+(r1+r2), so it suffices to show that if x is in the unit space
of H+r1 and |g| ≤ r2 is such that (gx, g, x) is in G, then (gx, g, x) is in H+(r1+r2).
Indeed, as x is in the unit space of H+r1 there is (hx, h, x) ∈ G with h ∈ Γ, |h| ≤ r1,
and hx ∈ H(0). Hence (gx, gh−1, hx) and (hx, h, x) are in H+(r1+r2) and we have

(gx, g, x) = (gx, gh−1, hx)(hx, h, x) ∈ H+(r1+r2)

as required.

Finally, we conclude this section with the definition of finite dynamical complexity
and a basic lemma about the property.

Definition 3.14. — Let Γ

⟲

X be an action, let G be an open subgroupoid of Γ⋉X,
and let C be a set of open subgroupoids of Γ ⋉ X. We say that G is decomposable
over C if for all r ≥ 0 there exists an open cover G(0) = U0 ∪U1 of the unit space of G
such that for each i ∈ {0, 1} the subgroupoid of G generated by

{(gx, g, x) ∈ G | x ∈ Ui, |g| ≤ r}
(i.e., the expansion U+r

i relative to G of Definition 3.11) is in C .
An open subgroupoid of Γ ⋉ X (for example, Γ ⋉ X itself) has finite dynamical

complexity if it is contained in the smallest set D of open subgroupoids of Γ⋉X that
contains all relatively compact open subgroupoids; and is closed under decomposabil-
ity (2).

We will need a slight variation of this definition.

Definition 3.15. — Say that an open subgroupoid G of Γ⋉X is strongly decomposable
over a set C of open subgroupoids of Γ ⋉ X if for all r ≥ 0 there exists an open
cover G(0) = U0 ∪ U1 of the unit space of G such that for each i ∈ {0, 1}, if Gi is the
subgroupoid of G generated by

{(gx, g, x) ∈ G | x ∈ Ui, |g| ≤ r},
then G+r

i (with expansion taken relative to G) is in C . Let Ds be the smallest class
of open subgroupoids of G that contains the relatively compact open subgroupoids,
and that is closed under strong decomposability.

The following lemma records two basic properties of finite dynamical complexity
that we will need later.

Lemma 3.16. — With notation as above:

(i) if G is an open subgroupoid of Γ ⋉X in the class D (respectively Ds), then all
open subgroupoids of G are in D (respectively Ds);

(ii) we have D = Ds.

2. More precisely, we mean ‘upwards closed’: if G decomposes over D, then G is in D.
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Proof. — For part (i), we just look at the case of D; the case of Ds is similar. Let
D′ be the set of all open subgroupoids of Γ ⋉ X, all of whose open subgroupoids
are in D. Clearly D′ ⊆ D, and D′ contains all open subgroupoids with compact
closure. To complete the proof of (i), it suffices to show that D′ is closed under
decomposability. Say thenG is an open subgroupoid of Γ⋉X that decomposes over D′.
Say H is an open subgroupoid of G and r ≥ 0. Let {U0, U1} be an open cover of G(0)

such that for each i ∈ {0, 1}, the subgroupoid Gi of G generated by

{(gx, g, x) ∈ G | x ∈ Ui, |g| ≤ r}
is in D′. Let Vi = Ui ∩ H(0). Then {V0, V1} is an open cover of H(0) such that the
(open) subgroupoid Hi of H generated by

{(gx, g, x) ∈ H | x ∈ Vi, |g| ≤ r}
is contained in Gi. As each Gi is in D′, this implies that each Hi is in D; in other
words, H decomposes over D, and is thus in D as required.

For part (ii), it clearly suffices to prove that D is closed under strong decomposabil-
ity, and that Ds is closed under decomposability. For the former, say that G strongly
decomposes over D. Then for any r ≥ 0, there is an open cover {U0, U1} of G(0) such
that if Gi is generated by

{(gx, g, x) ∈ G | x ∈ Ui, |g| ≤ r},
then G+r

i is in D. However, Gi is an open subgroupoid of G+r
i whence is in D by

part (i). Hence G decomposes over D, and thus is in D as required.
For the other case, say G decomposes over Ds and let r ≥ 0. Then there is an open

cover G(0) = U0 ∪ U1 such that the subgroupoid Hi of G generated by

{(gx, g, x) ∈ G | x ∈ Ui, |g| ≤ 2r}
is in Ds. We claim that if Gi is the subgroupoid of G generated by

{(gx, g, x) ∈ G | x ∈ Ui, |g| ≤ r},
then G+r

i is an open subgroupoid of Hi; this will suffice to complete the proof by part
(i). Indeed, we have that G+r

i is generated by Gi and

(3.1) {(gx, g, x) ∈ G | x ∈ G(0)
i , |g| ≤ r};

as Gi is clearly contained in Hi, it suffices to show that the latter set is in Hi. Let
then (gx, g, x) be in the set in line (3.1). As x ∈ G(0)

i , we have x = ky for some y ∈ Ui,
and k ∈ Γ with |k| ≤ r. Hence we may rewrite

(gx, g, x) = (gky, g, ky) = (gky, gk, y)(y, k−1, ky);

as y ∈ Ui and |gk|, |k−1| ≤ 2r, the product on the right is in Hi and we are done.
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CONTROLLED K-THEORY

In this section we will introduce the main general tool needed for the proof of
Theorem 2.11: controlled K-theory.

Our treatment in this section is based on the detailed development given by Oyono-
Oyono and the third author [19]. Our controlled K-theory groups are, however, both
more general in some ways, and more specific in others, than those of [19]. We thus try
to keep our exposition self-contained; in particular, we assume no background beyond
the basics of C∗-algebra K-theory as covered for example in [27] or [32]. Throughout,
we provide references to [19] for comparison purposes, and the reader is encouraged
to look there for a broader picture of the theory.

We now define the controlled K-groups that we need. Compare [19, Section 1.2]
for the following definition.

Definition 4.1. — Let A be a C∗-algebra. A quasi-projection in A is an element p
of A such that p = p∗ and ∥p2 − p∥ < 1/8. If S is a self-adjoint subspace of A, write
Mn(S) for the matrices in Mn(A) with all entries coming from S, and P

1/8
n (S) for

the collection of quasi-projections in Mn(S).
Let χ = χ(1/2,∞] be the characteristic function of (1/2,∞]. Then χ is continuous

on the spectrum of any quasi-projection, and thus there is a well-defined map

κ : P 1/8
n (S) → Pn(A), p 7→ χ(p),

where Pn(A) denotes the projections in Mn(A).

Remark 4.2. — The choice of ‘1/8’ in the above is not important: any positive number
less than 1/4 would do just as well. In some arguments in controlled K-theory, it
is useful to allow the bound on the ‘projection error’ ∥p2 − p∥ to change; for this
reason in [19, Section 1.2], what we have called a quasi-projection would be called a
(1/8)-projection. We do not need this extra flexibility, so it is more convenient to just
fix an absolute error bound throughout. Similar remarks apply to quasi-unitaries as
introduced in Definition 4.4 below.
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If A is a C∗-algebra we denote its unitization by Ã. For a natural number n,
let 1n denote the unit of Mn(Ã). For the following definition, compare [19, Section 1,
particularly Definition 1.12].

Definition 4.3. — Let A be a non-unital C∗-algebra, and let S be a self-adjoint sub-
space of A. Let S̃ denote the subspace S + C1 of Ã.

Using the inclusions

P 1/8
n (S̃) ∋ p 7→

(
p 0

0 0

)
∈ P 1/8

n+1(S̃)

we may define the union

P 1/8
∞ (S̃) :=

∞⋃
n=1

P 1/8
n (S̃).

Let C([0, 1], S̃) denote the self-adjoint subspace of the C∗-algebra C([0, 1], Ã)

consisting of functions with values in S̃. Define an equivalence relation on P 1/8
∞ (S̃)×N

by (p,m)∼(q, n) if there exists a positive integer k and an element h of P 1/8
∞ (C([0, 1], S̃))

such that

h(0) =

(
p 0

0 1n+k

)
and h(1) =

(
q 0

0 1m+k

)
.

For (p,m) ∈ P 1/8
∞ (S̃)× N, denote by [p,m] its equivalence class under ∼.

Let now ρ : Mn(S̃) → Mn(C) be the restriction to Mn(S̃) of the map induced on
matrices by the canonical unital ∗-homomorphism ρ : Ã→ C with kernel A. Finally,
define

K
1/8
0 (S) := {[p,m] ∈

(
P 1/8
∞ (S̃)× N

)
/ ∼ | rank(κ(ρ(p))) = m}.

The set K1/8
0 (S) is equipped with an operation defined by

[p,m] + [q, n] :=

[(
p 0

0 q

)
, m+ n

]
.

Using standard arguments in K-theory, one sees that K1/8
0 (S) is an abelian group

with unit [0, 0]: compare [19, Lemmas 1.14 and 1.15].

We now look at controlled K1 groups. Compare [19, Section 1.2] for the following
definition.

Definition 4.4. — Let A be a unital C∗-algebra. A quasi-unitary in A is an element u
of A such that ∥1− uu∗∥ < 1/8 and ∥1− u∗u∥ < 1/8. If S is a self-adjoint subspace
of A containing the unit, write U1/8

n (S) for the collection of quasi-unitaries in Mn(S).
Note that as ∥1− u∗u∥ < 1/8 < 1, u∗u is invertible whence there is a well-defined

map
κ : U1/8

n (S) → Un(A), u 7→ u(u∗u)−1/2,

where Un(A) denotes the unitaries in Mn(A).
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CHAPTER 4. CONTROLLED K-THEORY 19

For the following definition, compare [19, Section 1, particularly Definition 1.12].

Definition 4.5. — Let A be a non-unital C∗-algebra, and let S be a self-adjoint sub-
space of A. Let Ã denote the unitization of A and let S̃ be the subspace S + C1

of Ã.
Using the inclusions

U1/8
n (S̃) ∋ u 7→

(
u 0

0 1

)
∈ U1/8

n+1(S̃)

we may define the union

U1/8
∞ (S̃) :=

∞⋃
n=1

U1/8
n (S̃).

Define an equivalence relation on U
1/8
∞ (S̃) by u ∼ v if there exists an element h

of U1/8
∞ (C([0, 1], S̃)) such that h(0) = u and h(1) = v. For u ∈ U1/8

∞ (S̃), denote by [u]

its equivalence class under ∼.
Finally define

K
1/8
1 (S) := U1/8

∞ (S̃) / ∼ .

The set K1/8
1 (S) is equipped with the operation defined by

[u] + [v] :=

[
u 0

0 v

]
.

Using standard arguments in K-theory, one sees that the operation on K
1/8
1 (S)

makes it into an abelian monoid (1) with unit [1]: compare [19, Lemmas 1.14 and
1.16].

Definition 4.6. — Let A be a C∗-algebra and S a self-adjoint subspace of A. Define

K
1/8
∗ (S) := K

1/8
0 (S)⊕K

1/8
1 (S).

The (graded, unital, abelian) semigroup K
1/8
∗ (S) is called the controlled K-theory

semigroup of S.

Note thatK1/8
∗ (S) depends on the embedding of S inside the ambient C∗-algebraA;

which embedding is being used will always be obvious, however, so we omit it from
the notation.

Remark 4.7. — If S ⊆ T are nested self-adjoint subspaces of a (non-unital) C∗-alge-
bra A, then we may consider elements of matrix algebras over S̃ as elements of matrix
algebras over T̃ . This clearly gives rise to a map on controlled K-theory

(4.1) K
1/8
∗ (S) → K

1/8
∗ (T )

1. The usual arguments showing K1(A) has inverses do not apply as they involve multiplying
elements together, and so potentially go outside S̃.
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20 CHAPTER 4. CONTROLLED K-THEORY

induced by the inclusion. To avoid clutter, we will not use specific notation for these in-
clusion maps; sometimes we refer to them as ‘subspace-inclusion’ maps. We also some-
times abuse terminology and say something like ‘let x and y be elements of K1/8

∗ (S)

that are equal in K
1/8
∗ (T )’; more precisely, this means that x and y are elements

of K1/8
∗ (S) that go to the same element of K1/8

∗ (T ) under the map in line (4.1)
above.

For the next definition and lemma, which compares controlled K-theory to the
usual K-theory groups of a C∗-algebra, compare [19, Remark 1.18 and surrounding
discussion]. Let K∗(A) := K0(A) ⊕ K1(A) denote the usual (topological) K-theory
group of a C∗-algebra A.

Definition 4.8. — Let A be a non-unital C∗-algebra, and let S be a self-adjoint sub-
space of A. Let κ be one of the maps from Definition 4.1 and 4.4 (it will be obvious
from context which is meant). Define maps

c0 : K
1/8
0 (S) → K0(A), [p,m] 7→ [κ(p)]− [1m]

c1 : K
1/8
1 (S) → K1(A), [u] 7→ [κ(u)]

c := c0 ⊕ c1 : K
1/8
∗ (S) → K∗(A).

We call c0, c1, and c the comparison maps.

Standard arguments in C∗-algebra K-theory show that c0, c1 and c are well-defined
unital semigroup homomorphisms. The map c is ‘almost isomorphic’ in the following
sense.

Proposition 4.9. — Let A be a C∗-algebra. Let (Si)i∈I be a collection of self-adjoint
subspaces of A such that the union

⋃
i∈I Si is dense. Then for any x ∈ K∗(A) there

exists Si and y ∈ K1/8
∗ (Si) such that c(y) = x.

Assume moreover that the collection (Si)i∈I is directed for the partial order given
by inclusion. Then if x, y ∈ K

1/8
∗ (Si) are such that c(x) = c(y) there exists Sj con-

taining Si such that x and y become equal in K
1/8
∗ (Sj) in the sense of Remark 4.7.

In particular, if S is a dense self-adjoint subspace of A, then the comparison map
c : K

1/8
∗ (S) → K∗(A) is an isomorphism.

Proof. — We just look at the case of K1: the K0 case is similar. Let [u] be a class
in K1(A). As

⋃
i Si is dense in A, for any ϵ > 0 there is an i ∈ I and v in a matrix

algebra over the unitization of Si such that ∥u − v∥ < ϵ. For ϵ suitably small, this
implies that v is a quasi-unitary, and moreover that ∥κ(v)−u∥ < 2, whence [κ(v)] = [u]

in K1(A).
The injectivity statement follows on applying a similar argument to homotopies.

Indeed, it suffices to show that any homotopy h in C([0, 1],Mn(Ã)) can be approxi-
mated by a homotopy in C([0, 1],Mn(S̃i)) for some i. For this, note that density gives
us elements a0, . . . , am with ak in some Mn(S̃ik

) such that the map g : [0, 1] → A
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which sends k/m to ak and linearly interpolates between these points is a good ap-
proximant to h. The directedness assumption implies there is some Sj that contains
all of Si0 , . . . , Sim

, so g is in C([0, 1],Mn(S̃j)).

The most important examples of subspaces we will use (particularly in the context
of Proposition 4.9) come from filtrations as in Definition 3.8 (see Definition 3.9 and
Lemma 3.10 for examples). It will be convenient to have some additional notation in
the case when A is filtered.

Definition 4.10. — Let A be a non-unital filtered C∗-algebra, and S be a self-adjoint
subspace of A. For each r ≥ 0 and i ∈ {0, 1, ∗}, define

K
r,1/8
i (S) := K

1/8
i (S ∩Ar).

Note that in the case that S = A, our notation agrees with that of [19, Section 1.3].
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CHAPTER 5

STRATEGY OF PROOF OF THEOREM 2.11

In this short section, we set out our strategy for the proof of Theorem 2.11. Our goal
is to reduce the proof to two technical propositions and show how finite dynamical
complexity can be used as an input for these. The two propositions will be proved in
the next two sections.

Throughout this section, Γ

⟲
X is an action as usual, and we use the shorthand

notations of Definition 3.9 for the obstruction C∗-algebras and their groupoid versions.
Here are the two technical propositions, which should be thought of as the base

case and inductive step in the proof. The names ‘homotopy invariance’ and ‘Mayer-
Vietoris’ will be explained in later sections.

Proposition 5.1 (Homotopy invariance argument). — Let G be an open subgroupoid
of Γ ⋉X, and assume s ≥ 0 is such that

G ⊆ {(gx, g, x) ∈ Γ ⋉X | |g| ≤ s}.
Then K∗(A

s(G)) = 0.

Proposition 5.2 (Mayer-Vietoris). — Let G be an open subgroupoid of Γ ⋉ X that is
in the class D of Definition 3.14, and let r0, s0 ≥ 0. Then there is s ≥ max{r0, s0}
depending on r0, s0 and G such that the subspace-inclusion map (cf. Remark 4.7)

K
r0,1/8
∗ (As0(G)) → K

s,1/8
∗ (As(G))

is the zero map.

Proof of Theorem 2.11. — We need to show that for any s0 ≥ 0 and any class
x ∈ K∗(As0) there is s ≥ s0 such that the subspace-inclusion map

K∗(A
s0) → K∗(A

s)

sends x to zero. Proposition 4.9 implies that there is r0 ≥ 0 such that x is in the
image of the comparison map c : K

r0,1/8
∗ (As0) → K∗(A

s0) from Definition 4.8. Propo-
sition 5.2 applied to G = Γ ⋉X implies that there is s ≥ max{r0, s0} such that the
subspace-inclusion map

K
r0,1/8
∗ (As0) → K

s,1/8
∗ (As)
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is zero. Consider the diagram

K∗(A
s0) // K∗(As)

K
r0,1/8
∗ (As0) //

c

OO

K
s,1/8
∗ (As),

c

OO

where the two horizontal arrows are induced by subspace inclusions, and the two
vertical arrows are comparison maps; it is clear from the definition of the comparison
maps that it commutes. We have that the element x ∈ K∗(As0) is in the image of the
left comparison map c, and that the bottom horizontal map is zero. Hence the image
of x under the top horizontal map is zero as claimed.
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HOMOTOPY INVARIANCE

In this section, we prove Proposition 5.1, which we repeat below for the reader’s
convenience.

Proposition 5.1. — Let G be an open subgroupoid of Γ⋉X, and assume s ≥ 0 is such
that

G ⊆ {(gx, g, x) ∈ Γ ⋉X | |g| ≤ s}.
Then K∗(A

s(G)) = 0.

The proof is based on a technique of the third author: see for example [38,
Lemma 4.8]. The K-theory of the localization algebra is an (equivariant) generalized
homology theory in an appropriate sense, and the point of the proof is to show
that this homology theory is homotopy invariant. Having done this, the condition
on s in the statement implies that if {(g1x, g, x), . . . , (gnx, gn, x)} are elements of G
for some x ∈ X, then {g1, . . . , gn} spans a simplex in Ps(Γ); hence the relevant
space becomes contractible in an appropriate sense, and so the result follows from
homotopy invariance.

To try to make the proof more palatable, we will separate it into two parts. The
first is purely K-theoretic: it gives a sufficient condition for two ∗-homomorphisms to
induce the same map on K-theory. The second part uses the underlying dynamics to
build an input to this K-theoretic machine, and completes the proof.

K-theoretic part

We start the K-theoretic part with three basic K-theory lemmas; they are well-
known, but we include proofs where we could not find a good reference. Recall first
that if A is a C∗-algebra, represented faithfully and non-degenerately on a Hilbert
space H, then the multiplier algebra of A is

M(A) := {b ∈ B(H) | ba, ab ∈ A for all a ∈ A};
it is a C∗-algebra. The strict topology on M(A) is the topology generated by the
seminorms

b 7→ ∥ba∥, b 7→ ∥ab∥
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as a ranges over A. The multiplier algebra and strict topology do not depend on the
choice of H up to canonical isomorphism: see for example [21, Section 3.12].

Lemma 6.1. — Let α : A→ C be a ∗-homomorphism of C∗-algebras, and v a partial
isometry in the multiplier algebra of C such that α(a)v∗v = α(a) for all a ∈ A. Then
the map

a 7→ vα(a)v∗

is a ∗-homomorphism from A to C, and induces the same map as α on the level
of K-theory.

Proof. — See for example [14, Lemma 2 in Section 3].

Lemma 6.2. — Let I be an ideal in a unital C∗-algebra C, and define the double of C
along I to be the C∗-algebra

D := {(c1, c2) ∈ C ⊕ C | c1 − c2 ∈ I}.
Assume that C has trivial K-theory. Then the inclusion ι : I → D defined by c 7→ (c, 0)
induces an isomorphism on K-theory, and the inclusion κ : I → D defined by c 7→ (c, c)

induces the zero map on K-theory.

Proof. — Note that ι(I) is an ideal inD, andD/ι(I) is isomorphic to C via the second
coordinate projection. Hence ι is an isomorphism by the six-term exact sequence. On
the other hand, κ factors through the inclusion C → D defined by the same formula
c 7→ (c, c), and thus κ∗ = 0 on K-theory as K∗(C) = 0.

Lemma 6.3. — Say α, β : C → D are ∗-homomorphisms between C∗-algebras with
orthogonal images (this means that α(c1)β(c2) = 0 for all c1, c2 ∈ C).

Then α+β is a ∗-homomorphism from C to D, and as maps on K-theory α∗+β∗ =

(α+ β)∗.

Proof. — Orthogonality of the images of α and β directly implies that α + β is a
∗-homomorphism. For t ∈ [0, π/2], consider the map γt : C →M2(D) defined by

c 7→

(
α(c) 0

0 0

)
+

(
cos(t) sin(t)

− sin(t) cos(t)

)(
0 0

0 β(c)

)(
cos(t) − sin(t)

sin(t) cos(t)

)
.

One directly checks that this is a homotopy of ∗-homomorphisms. Moreover, iden-
tifying K∗(D) with K∗(M2(D)) in the canonical way via the top-left-corner inclu-
sion D→M2(D), it is straightforward to check that (γ0)∗=α∗ + β∗ and (γπ/2)∗=(α+ β)∗.

Before getting to the main result, we need one more preliminary. First, a definition.

Definition 6.4. — Let A be a C∗-algebra. A stability structure for A consists of a
sequence of isometries (un)∞n=0 in M(A) and a topology τ on M(A) such that multi-
plication is continuous on norm-bounded sets (1) with the properties that:

1. For example, the strict topology could be used here, but we will need something a little different.
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(i) u∗num = 0 for n ̸= m;
(ii) for all a ∈ A,

∞∑
n=0

unau
∗
n

τ -converges to an element of M(A);
(iii) there is an isometry v ∈M(A) such that

v
( ∞∑

n=0

unau
∗
n

)
v∗ =

∞∑
n=1

unau
∗
n.

Note that a stable C∗-algebra has a stability structure in a natural way: indeed,
if H is a separable infinite-dimensional Hilbert space, fix isometries un : H → H

with mutually orthogonal ranges such that
∑

n un converges strongly to the identity;
then un naturally defines a multiplier of A ⊗ K (H), which acts by un(a ⊗ k) =

a ⊗ unk on elementary tensors (and similarly for multiplication on the right); then
the isometries (un) together with the strict topology τ define a stability structure.
This is the motivation for the terminology.

Lemma 6.5. — Let A have a stability structure as in Definition 6.4. Then
K∗(M(A)) = 0.

Proof. — Using continuity of multiplication on bounded sets for the τ topology,

µ : M(A) →M(A), a 7→
∞∑

n=0

unau
∗
n

is a ∗-homomorphism. Let v be the isometry appearing in Definition 6.4. Using
Lemma 6.1, µ induces the same map on K-theory as the map a 7→ vµ(a)v∗, i.e.,
as

µ+1(a) :=

∞∑
n=1

unau
∗
n.

Let µ0(a) = u0au
∗
0. Then the images of µ0 and µ+1 are orthogonal, and clearly

µ0 + µ+1 = µ, whence by Lemma 6.3

µ∗ = µ0
∗ + µ+1

∗ = µ0
∗ + µ∗

as maps on K-theory. Hence µ0
∗ = 0. However, by Lemma 6.1 again, µ0

∗ is the identity
map on K∗(M(A)).

Definition 6.6. — Let A be a C∗-algebra which is faithfully and non-degenerately
represented on a Hilbert space H, and which is equipped with a stability structure
(un)∞n=1 and τ as in Definition 6.4.

Let v0 and v∞ be isometries on H that conjugate A to itself. We say that v0 and v∞
are stably equivalent if there are in addition isometries (vn)∞n=1 on H that conjugate
A into itself and that satisfy:
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(i) for any a ∈ A, the sum
∞∑

n=0

unvnav
∗
nu
∗
n

τ -converges to an element of M(A);
(ii) for all 0 ≤ n ≤ ∞, vn+1v

∗
n is in M(A) (where ∞+ 1 = ∞) and the sums

∞∑
n=0

unvn+1v
∗
nu
∗
n and

∞∑
n=0

unv∞v
∗
∞u

∗
n

τ -converge to elements of M(A);
(iii) for any a in A, the difference

∞∑
n=0

unvnav
∗
nu
∗
n −

∞∑
n=0

unv∞av
∗
∞u

∗
n

of elements of M(A) is in A;
(iv) for all a ∈ A

∞∑
n=0

una(v∞v
∗
∞ − vn+1v

∗
n)u∗n and

∞∑
n=0

un(v∞v
∗
∞ − vn+1v

∗
n)au∗n

are in A.

For readers who know the terminology, compare condition (iii) above to the defi-
nition of a quasi-morphism in the sense of Cuntz [5, Section 17.6].

Here is the main K-theoretic ingredient we need.

Proposition 6.7. — Let A be C∗-algebra faithfully represented on a Hilbert space H
equipped with a stability structure (un) and τ . Let v0 and v∞ be stably equivalent
isometries for this representation. Then the homomorphisms

ϕ0, ϕ∞ : A→ A

induced by conjugation by v0 and v∞ induce the same map on K-theory.

Proof. — Let
D := {(a, b) ∈M(A)⊕M(A) | a− b ∈ A}

be the double of M(A) along A as in Lemma 6.2. Note that Lemma 6.5 implies
that K∗(M(A)) = 0, so we may apply the conclusions of Lemma 6.2 to D. Let

C =
{

(c, d) ∈ D | d =

∞∑
n=0

unv∞av
∗
∞u

∗
n for some a ∈ A

}
,

which is a C∗-subalgebra of D. Define also

w1 :=

∞∑
n=0

unvn+1v
∗
nu
∗
n, w2 :=

∞∑
n=0

unv∞v
∗
∞u

∗
n
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(which are elements of M(A) by condition (ii) in Definition 6.6) and set

w := (w1, w2) ∈M(A)⊕M(A).

We claim that w is actually in the multiplier algebra of C.
Indeed, if (c, d) is in C, then dw2 = w2d = d, so it suffices to show that cw1 − d

and w1c− d are in A; we focus on w1c− d, the other case being similar. We have

w1c− d = w1(c− d) + (w1d− d),

whence as c− d ∈ A and w1 ∈M(A), it suffices to show that w1d− d is in A. There
exists a ∈ A with

w1d− d =

∞∑
n=0

un(vn+1v
∗
nv∞av

∗
∞ − v∞av

∗
∞)u∗n

=

∞∑
n=0

un(vn+1v
∗
n − v∞v

∗
∞)v∞av

∗
∞u

∗
n,

and this is in A by condition (iv) of Definition 6.6, completing the proof of the claim.
Now, provisionally define ∗-homomorphisms

α, β : A→ C

by the formulas

α(a) :=

( ∞∑
n=0

unvnav
∗
nu
∗
n,

∞∑
n=0

unv∞av
∗
∞u

∗
n

)
and

β(a) :=

( ∞∑
n=0

unvn+1av
∗
n+1u

∗
n,

∞∑
n=0

unv∞av
∗
∞u

∗
n

)
.

It is clear from our assumptions that α : A → C is a homomorphism. That β is
a homomorphism and has image in C follows as w is in the multiplier algebra
of C, and as wα(a)w∗ = β(a) for all a ∈ A. Moreover, a direct computation gives
that α(a)w∗w = α(a), whence α and β induce the same map K∗(A) → K∗(C) by
Lemma 6.1. Post-composing with the map K∗(C) → K∗(D) induced by the inclusion
of C into D, it follows that α and β induce the same map K∗(A) → K∗(D).

Let now v ∈ M(A) be the isometry with the property in Definition 6.4. Then
(v, v) is a multiplier of D; conjugating by (v, v) and applying Lemma 6.1 shows that β
induces the same map K∗(A) → K∗(D) as the ∗-homomorphism γ : A → D defined
by

γ(a) :=

( ∞∑
n=1

unvnav
∗
nu
∗
n,

∞∑
n=1

unv∞av
∗
∞u

∗
n

)
.

On the other hand, the ∗-homomorphism δ : A→ D defined by

δ : a 7→ (u0v∞av
∗
∞u

∗
0, u0v∞av

∗
∞u

∗
0)
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induces the zero map on K-theory (by Lemma 6.2) and has orthogonal image to γ.
Hence from Lemma 6.3 the sum ϵ := γ + δ is a well-defined ∗-homomorphism that
induces the same map on K-theory as β.

Compiling our discussion so far, we have

(6.1) α∗ = β∗ = γ∗ = γ∗ + δ∗ = ϵ∗

as maps K∗(A) → K∗(D). Let ψ0, ψ∞ : A→ D be the ∗-homomorphisms defined by

ψ0 : a 7→ (u0v0av
∗
0u
∗
0, 0), and ψ∞ : a 7→ (u0v∞av

∗
∞u

∗
0, 0),

and define ζ : A→ D by

ζ(a) :=

( ∞∑
n=1

unvnav
∗
nu
∗
n,

∞∑
n=0

unv∞av
∗
∞u

∗
n

)
.

Note that ζ has orthogonal image to ψ0 and ψ∞, and that

ψ0 + ζ = α and ψ∞ + ζ = ϵ;

hence from Lemma 6.3 and line (6.1),

(ψ0)∗ + ζ∗ = α∗ = ϵ∗ = (ψ∞)∗ + ζ∗.

Canceling ζ∗ thus gives that ψ0 and ψ∞ induce the same maps on K-theory.
Finally, note that if ι : A→ D is the map of Lemma 6.2, then

ψi(a) = u0ι(ϕi(a))u
∗
0

for all a ∈ A and i ∈ {0,∞}. This implies the desired result as Lemmas 6.1 and 6.2
show that conjugation of D by (u0, u0) and ι : A → D both induce isomorphisms
on K-theory.

Dynamical part

We now provide the dynamical input for Proposition 6.7 needed to complete the
proof of Proposition 5.1. Recall that we want to show thatK∗(As(G)) is zero whenever
the open subgroupoid G of Γ ⋉X and number s ≥ 0 satisfy

(6.2) G ⊆ {(gx, g, x) ∈ Γ ⋉X | |g| ≤ s}.
For the remainder of the section, fix s and G satisfying these hypotheses.

We will start by building a convenient representation of the C∗-algebra As(G).
For z ∈ Ps(Γ), recall from Definition 3.2 that supp(z) consists of those g ∈ Γ spanning
the minimal simplex containing z, and define

Ps(G) := {(z, x) ∈ Ps(Γ)×X | (gx, g, x) ∈ G for all g ∈ supp(z)}.
Recall from Definition 2.3 that Zs is our fixed dense subset of Ps(Γ). Define
ZG := (Zs ×X) ∩ Ps(G) and

HG := ℓ2(ZG, H ⊗ ℓ2(Γ)) = ℓ2(ZG)⊗H ⊗ ℓ2(Γ)
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which is a subspace of Hs = ℓ2(Zs ×X,H ⊗ ℓ2(Γ)) as described in line (2.2) above.
We have the following lemma; the proof involves essentially the same computations
as Lemma 3.3 above, and is thus omitted.

Lemma 6.8. — The faithful representation of C∗(G; s) on Hs restricts to a faithful
representation on HG.

For the remainder of this section, we will consider C∗(G; s) as faithfully represented
on HG, and As(G) := C∗L,0(G; s) as faithfully represented on L2([0,∞), HG) in the
obvious way.

Now, the assumption in line (6.2) implies that if (z, x) ∈ Ps(G) and supp(z) =

{g1, . . . , gn}, then {e, g1, . . . , gn} also spans a simplex ∆ in Ps(Γ) such that ∆×{x} is
contained in Ps(G). Hence the family of functions

Fr : Ps(G) → Ps(G), (z, x) 7→ ((1− r)z + re, x), 0 ≤ r ≤ 1

defines a homotopy between the identity map on Ps(G) and the obvious projection
onto the subset {(z, x) ∈ Ps(G) | z = e}, which is just a copy of the unit space G(0).

Let π : ZG → Zs denote the projection onto the first coordinate, and let Z denote
the image of π. Note that Z is countable, whence as H is infinite dimensional we
may find a family {wz,0}z∈Z of isometries on H such that

∑
z∈Z wz,0w

∗
z,0 converges

strongly to the identity. For each z ∈ Z, let wz : H ⊗ ℓ2(Γ) → H ⊗ ℓ2(Γ) be the
isometry defined by wz := wz,0 ⊗ 1ℓ2(Γ).

Now, for each r ∈ Q ∩ [0, 1] define

w(r) : ℓ2(ZG)⊗H ⊗ ℓ2(Γ) → ℓ2(ZG)⊗H ⊗ ℓ2(Γ)

δz,x ⊗ η 7→ δFr(z,x) ⊗ wzη

which is a well-defined isometry by definition of Zs (Definition 2.3 above) and of ZG;
note that the different w(r) have mutually orthogonal ranges as r ranges over Q∩[0, 1].
For each t ∈ [0,∞) and n ∈ N∪{∞} (we assume N includes zero), define an isometry

vn(t) : ℓ2(ZG)⊗H ⊗ ℓ2(Γ) → ℓ2(ZG)⊗H ⊗ ℓ2(Γ)

by the following prescription. First, we define for m ∈ N

vn(m) =


w(0) m ≤ n

w( 1
n (m− n)) m ∈ (n, 2n) ∩ N

w(1) m ≥ 2n.

Schematically, we thus have

vn(m) = w(0), . . . , w(0)︸ ︷︷ ︸
m∈[0,n]

, w( 1
n ), w( 2

n ), . . . , w(n−1
n )︸ ︷︷ ︸

m∈(n,2n)

, w(1), w(1), . . .︸ ︷︷ ︸
m∈[2n,∞)

Now we interpolate between these values by defining for t = m+ s with s ∈ (0, 1),

vn(t) = cos(
π

2
s)vn(m) + sin(

π

2
s)vn(m+ 1).
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It is not difficult to check that the map

[0,∞) → B(ℓ2(ZG)⊗H ⊗ ℓ2(Γ)), t 7→ vn(t)

is norm continuous for each n (and in fact, the family is equicontinuous as n varies),
and that the image consists entirely of isometries. The following schematic may help
to visualize the operators vn(t).

-

t

ss
ss
ss
ss
s6n

�
�

�
�

�
�

�
�

�
�

��

t = n

���
���

���
���

���
���

���
��

t = 2n

w(0)

w(1)

-

-

-

-

-

-

-

Here vn(t) is constantly equal to w(0) in the left triangular region, and constantly
equal to w(1) in the right triangular region. Along each of the horizontal arrows in
the intermediate region, vn(t) interpolates between w(0) and w(1), taking longer and
longer to do so as n increases.

We are now ready to construct isometries as demanded by the definition of stable
equivalence. Define an isometry

vn : L2([0,∞), HG) → L2([0,∞), HG)

for each n by defining for each ξ ∈ L2([0,∞), HG)

(vnξ)(t) := vn(t)(ξ(t)).

On the other hand, choose a unitary isomorphism

H ∼=
∞⊕

n=0

H

and use this to define isometries un,0 : H → H with mutually orthogonal ranges such
that the sum

∑
un,0u

∗
n,0 converges strongly to the identity operator. Define

(6.3) un : L2([0,∞), HG) → L2([0,∞), HG)

to be the isometry on

L2([0,∞), HG) = L2[0,∞)⊗ ℓ2(ZG)⊗H ⊗ ℓ2(Γ)

induced by tensoring un,0 with the identity on the other factors. We may think of
elements of M(As(G)) as functions from [0,∞) to M(C∗(G; s)) (subject to various
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additional conditions, but those are not important here). Thought of like this, let τ be
the topology of pointwise strict convergence on M(As(G)), i.e., a net (mi) converges
to m if and only if (mi(t)) converges to m(t) strictly for all t ∈ [0,∞). It is then not
difficult to see that (un) and τ together define a stability structure, where we take
the isometry v needed by the definition to be

v :=

∞∑
n=0

un+1u
∗
n,

noting that the sum τ -converges to an element of M(As(G)).

Lemma 6.9. — With notation and stability structure as above, the isometries v0 and
v∞ are stably equivalent (in the sense of Definition 6.6) with respect to the C∗-alge-
bra As(G).

Proof. — Let a be an element of CL,0[G; s], and let T = a(t) for some fixed t ∈ [0,∞).
The matrix entries (vn(t)Tvn(t)∗)y,z(x) of vn(t)Tvn(t)∗ will then be a linear combi-
nation of at most four terms of the form

w∗zTFr1 (y),Fr2 (z)(x)w
∗
y

where r1 and r2 are in Q∩ [0, 1], and |r1− r2| < 1/m whenever t > 2m. From this de-
scription, it is straightforward to check that the Rips-propagation of vn(t)a(t)vn(t)∗ is
at most the Rips-propagation of a(t) plus min{1, 2/(t− 1)}; and therefore in partic-
ular that vnav

∗
n is in CL,0[G; s]. Condition (i) follows from this estimate on Rips

propagation and equicontinuity of the sequence of maps (t 7→ vn(t)).
To see that vn+1v

∗
n is a multiplier of As(G), note that operators St := vn+1(t)vn(t)∗

on ℓ2(ZG) ⊗ H ⊗ ℓ2(Γ) have matrix entries (St)y,z that act as constant func-
tions X → B(H ⊗ ℓ2(Γ)); that their Rips-propagation tends to zero as t tends
to infinity uniformly in n; and that they have Γ-propagation at most s for all t.
Condition (ii) follows from this.

Finally, the fact that the operators
∞∑

n=0

unvnav
∗
nu
∗
n −

∞∑
n=0

unv∞av
∗
∞u

∗
n,

as well as
∞∑

n=0

una(v∞v
∗
∞ − vn+1v

∗
n)u∗n and

∞∑
n=0

un(v∞v
∗
∞ − vn+1v

∗
n)au∗n

are in As(G) for all a ∈ As(G) follows from the above discussion and as for any fixed t
and all n > t, vn(t) = v∞(t).

Let now
ϕ0, ϕ∞ : K∗(A

s(G)) → K∗(A
s(G))
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be the maps induced on K-theory by conjugation by v0 and by v∞. Proposition 6.7
and Lemma 6.9 imply that these are the same map. The following two lemmas will
now complete the proof of Proposition 5.1.

Lemma 6.10. — The map

ϕ∞ : K∗(A
s(G)) → K∗(A

s(G))

constructed above is the identity map.

Proof. — The map ϕ∞ is given by conjugation by the isometry w(0) (constantly in
the ‘localization variable’ t), which is in the multiplier algebra of As(G). Hence it
induces the identity on K-theory by Lemma 6.1.

Lemma 6.11. — The map

ϕ0 : K∗(A
s(G)) → K∗(A

s(G))

constructed above is the zero map.

Proof. — Let G(0) be the unit space of G, which is an open subgroupoid of Γ ⋉X,
and thus As(G(0)) makes sense. It is straightforward to check that ϕ0 fits into a
commutative diagram

K∗(A
s(G))

''

ϕ0 // K∗(As(G))

K∗(A
s(G(0))),

77

whence it suffices to show that K∗(As(G(0))) = 0.
Say now that a is an element of As(G(0)) and t ∈ [0,∞), y, z ∈ Ps(Γ), and x ∈ X are

such that a(t)y,z(x) ̸= 0. Then by the condition that the support of a(t) is contained
in G(0) (compare Definitions 3.2 and 3.6 above), we must have that for all g ∈ supp(y)

and all h ∈ supp(z), (gx, gh−1, hx) is in G(0). This forces gh−1 to be the identity
element of Γ and thus g = h. As this happens for all g ∈ supp(y) and h ∈ supp(z), this
forces supp(y) and supp(z) to both reduce to a single element of Γ, and moreover that
these elements are necessarily the same. In particular, a(t) has zero Rips-propagation
for all t.

Now, let un : L2([0,∞), HG) → L2([0,∞), HG) be the isometries constructed in
line (6.3) above. For each n ∈ N and element a of As(G(0)), define a(n) to be the
function

a(n)(t) =

{
a(t− n) t ≥ n

0 t < n

in As(G(0)). Define

α : As(G(0)) → As(G(0)), a 7→
∞∑

n=0

una
(n)u∗n.

ASTÉRISQUE 451



DYNAMICAL PART 35

As every element of As(G(0)) has zero Rips-propagation and satisfies a(0) = 0, α is a
well-defined ∗-homomorphism. It thus induces a map on K-theory

α∗ : K∗(A
s(G(0))) → K∗(A

s(G(0))).

However, if ι : As(G(0)) → As(G(0)) is the identity map, then a straightforward ho-
motopy using uniform continuity of each element of As(G(0)) shows that α∗ + ι∗ = α∗
and we are done.
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CHAPTER 7

MAYER-VIETORIS

In this section, we prove Proposition 5.2, which we repeat below for the reader’s
convenience.

Proposition 5.2. — Let G be an open subgroupoid of Γ ⋉X that is in the class D of
Definition 3.14, and let r0, s0 ≥ 0. Then there is s ≥ max{r0, s0} (depending on r0,
s0 and G) such that the subspace-inclusion map (cf. Remark 4.7)

K
r0,1/8
∗ (As0(G)) → K

s,1/8
∗ (As(G))

is the zero map.

As in Section 6, we first build an abstract K-theoretic machine, and then use the
dynamical assumptions to produce ingredients for that machine.

K-theoretic part

We start with a technical lemma about when elements of controlled K-groups are
zero: compare [19, Section 1.6]. The proof is in large part the same as that of [19,
Proposition 1.31], but as our set up and precise statement are a little different, and
to keep things self-contained, we give a complete proof here.

Before stating the lemma, we recall some notation from Section 4, and introduce
some more. Let A be a non-unital C∗-algebra and S ⊆ A a self-adjoint subspace. Let
Ã be the unitization of A, and let S̃ be the subspace of Ã spanned by S and the unit.
Then

κ : P 1/8
n (S̃) → Pn(Ã), p 7→ χ(1/2,∞](p)

is the map from quasi-projections in Mn(S̃) to projections in Mn(Ã) of Definition 4.1.
Similarly,

κ : U1/8
n (S̃) → Un(Ã), u 7→ u(u∗u)−1/2

is the map from quasi-unitaries in Mn(S̃) to unitaries in Mn(Ã) of Definition 4.4. For
each m ∈ N, define

S̃m := span{a1 · · · am ∈ A | ai ∈ S̃ for all i ∈ {1, . . . ,m}}.
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We will also need some notation for standard matrices. Given m ∈ N, we will write
‘1m’ for the m×m identity matrix and ‘0m’ for the m×m zero matrix. We will adopt
the shorthand ‘diag(. . .)’ for a diagonal matrix with given entries: for example

diag(a, b, 0) =

a 0 0

0 b 0

0 0 0

 .

Lemma 7.1. — For any ϵ > 0 there are constants L = L(ϵ) ≥ 0 and M = M(ϵ) ∈ N
with the following properties. Let A be a non-unital C∗-algebra and S ⊆ A a self-
adjoint subspace.

(i) Say l ∈ N and (p, n) ∈ P 1/8
l (S̃)×N is such that the class [p, n] is zero in K1/8

0 (S).
Then there exist k1, k2 ∈ N and a homotopy h : [0, 1] → Pl+k1+k2

(Ã) with

h(0) = diag(0k1 , κ(p), 1k2) and h(1) = diag(0k1 , 0l−n, 1n+k2),

such that there is an L-Lipschitz map hϵ : [0, 1] →Ml+k1+k2
(S̃M ) with

sup
t∈[0,1]

∥hϵ(t)− h(t)∥ < ϵ.

(ii) Say l ∈ N, and u ∈ U1/8
l (S̃) is such that the class [u] is zero in K

1/8
1 (S). Then

there is k ∈ N and a homotopy h : [0, 1] → Ul+k(Ã) with

h(0) = diag(κ(u), 1k) and h(1) = (1l, 1k)

such that there is an L-Lipschitz map hϵ : [0, 1] →Ml+k(S̃M ) such that

sup
t∈[0,1]

∥hϵ(t)− h(t)∥ < ϵ.

To summarize the idea, if a cycle for K1/8
∗ (S) represents the zero class, then this

can be witnessed by a homotopy that is well-controlled, both with respect to how fast
it goes, and with respect to the subspace of M∞(Ã) it passes through.

Proof. — We look first at the case of K0. Let (p, n) ∈ P
1/8
l (S̃) × N satisfy the hy-

potheses of the lemma. Unwrapping the definitions, this is equivalent to saying that
there exist j1, j2, j3 ∈ N and an element {pt}t∈[0,1] of P 1/8

l+j1+n+j2+j3
(C([0, 1], S̃)) such

that
p0 = diag(p, 0j1 , 0n, 1j2 , 0j3) and p1 = diag(0l, 0j1 , 1n, 1j2 , 0j3).

As [0, 1] is compact, there are 0 = t0 < · · · < tN = 1 such that

(7.1) ∥pti
− pti−1

∥ < 1/12 for all i ∈ {1, . . . , N}.
Set m = j1 + j2 + j3 + n+ l. We will first define a Lipschitz homotopy between

diag(p0, 1mN , 0mN ) and diag(0mN , p1, 1mN )

by concatenating the steps below.
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(i) Perform a rotation homotopy between

diag(p0, 1mN , 0mN ) and diag(p0, 1m, 0m, . . . , 1m, 0m︸ ︷︷ ︸
N copies of (1m,0m)

).

(ii) Let

r(t) =

(
cos(πt/2) − sin(πt/2)

sin(πt/2) cos(πt/2)

)
∈M2m(C),

where each entry represents the corresponding scalar times 1m. For i ∈ {1, . . . , N},
in the i-th ‘block’ diag(1m, 0m) appearing in the above apply the homotopy

t 7→

(
1m − pti

0

0 0

)
+ r(t)

(
pti

0

0 0

)
r(t)∗

between diag(1m, 0m) and diag(1− pti
, pti

) to get a homotopy between

diag(p0, 1m, 0m, . . . , 1m, 0m)

and diag(p0, 1m − pt1 , pt1 , 1m − pt2 , pt2 , . . . , 1− ptN
, ptN

).

(iii) For each i ∈ {1, . . . , N}, use a straight line homotopy between 1m − pti
and

1m − pti−1
in each appropriate entry to build a homotopy between

diag(p0, 1m − pt1 , pt1 , 1m − pt2 , pt2 , . . . , 1− ptN
, ptN

)

and diag(p0, 1m − pt0 , pt1 , 1m − pt1 , pt2 , . . . , 1− ptN−1
, ptN

).

(iv) Using a similar homotopy to step (ii), and that p0 = pt0 , build a homotopy
between

diag(p0, 1m − pt0 , pt1 , 1m − pt1 , pt2 , . . . , 1− ptN−1
, ptN

)

and diag(0m, 1m, . . . , 0m, 1m, ptN
).

(v) Finally, recall that ptN
= p1 and use another rotation homotopy between

diag(0m, 1m, . . . , 0m, 1m, p1) and diag(0mN , p1, 1mN )

to complete the proof of the claim.

Write {qt}t∈[0,1] for the homotopy arrived at by concatenating the steps above; it is
straightforward to check that this homotopy is Lipschitz for some universal Lipschitz
constant. Note also that all of the matrices from steps (i)-(v) above have entries
from S̃, so this homotopy has image in Mm(2N+1)(S̃).

We claim that ∥q2t − qt∥ < 5/24 for all t. Indeed, for all t associated to steps (i),
(ii), (iv), and (v) we clearly have that ∥q2t −qt∥ < 1/8, so the only thing to be checked
is the straight line homotopy in step (iii). For this, using the bound in line (7.1) it
suffices to show that if p, q are two quasi-projections with ∥p − q∥ < 1/12, then for
any t ∈ [0, 1],

∥((1− t)p+ tq)2 − ((1− t)p+ tq)∥ < 5/24.
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Computing,

((1− t)p+ tq)2 − ((1− t)p+ tq)

= (1− t)(p2 − p)− (1− t)tp(p− q)− (1− t)tq(q − p) + t(q2 − q).

As ∥p∥ and ∥q∥ are both bounded above by 2, this gives

∥((1− t)p+ tq)2 − ((1− t)p+ tq)∥ < (1− t)(1/8) + t(1− t)(1/6) + t(1− t)(1/6) + t(1/8)

≤ 1/8 + 2/24 = 5/24

as claimed.
Hence the spectrum of every qt is bounded away from 1/2, and thus defining

h(t) := κ(qt) makes sense. Fix a sequence of real-valued polynomials (fi) converging
uniformly to χ(1/2,∞] on the spectrum of every qt. As fi is a polynomial and t 7→ qt is
Lipschitz and bounded, t 7→ fi(qt) is Lipschitz for each i, with some Lipschitz
constant depending only on the fixed choice of fi, and on the Lipschitz constant
of t 7→ qt. It moreover takes image in Mm(2N+1)(S̃

Mi), where Mi is the degree of fi.
It follows from all of this that we may take hϵ(t) := fi(qt) for some suitably large i,
and this will have all the right properties.

We now turn to the case of K1. Let [u] satisfy the hypotheses, so there exist j ∈ N
and a homotopy {ut}t∈[0,1] in U1/8

l+j (C([0, 1], S̃)) such that

u0 = diag(u, 1j) and u1 = diag(1l, 1j).

Set m = l + j. Let 0 = t0 < · · · < tN = 1 be such that

(7.2) ∥uti
− uti−1

∥ < 1/32 for all i ∈ {1, . . . , N}.
We will define a Lipschitz homotopy between

diag(u0, 12mN ) and diag(u1, 12mN ).

by concatenating the homotopies below.

(i) Connect

diag(u0, 12mN ) = diag(u0, 1m, . . . , 1m︸ ︷︷ ︸
N

, 1mN )

and diag(u0, u
∗
t1ut1 , . . . , u

∗
tN
utN

, 1mN )

by the straight line homotopy between the ith copy of 1m and u∗ti
uti

.
(ii) Use a rotation homotopy between

diag(1m, u
∗
t1 , . . . , u

∗
tN
, 1mN ) and diag(u∗t1 , . . . , u

∗
tN
, 1m, 1mN ),

to produce a homotopy between

diag(u0, u
∗
t1ut1 , . . . , u

∗
tN
utN

, 1mN )

= diag(1m, u
∗
t1 , . . . , u

∗
tN
, 1mN )diag(u0, ut1 , . . . , utN

, 1mN )
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and

diag(u∗t1u0, u
∗
t2ut1 , . . . , u

∗
tN
utN−1

, utN
1mN )

= diag(u∗t1 , . . . , u
∗
tN
, 1m, 1mN )diag(u0, ut1 , . . . , utN

, 1mN ).

(iii) Use another straight line homotopy between each u∗ti
uti−1 and 1m to build a

homotopy between

diag(u∗t1u0, u
∗
t2ut1 , . . . , u

∗
tN
utN−1

, utN
, 1mN )

and diag(1m, . . . , 1m︸ ︷︷ ︸
N

, utN
, 1mN ).

(iv) Finally, one more rotation homotopy connects

diag(1m, . . . , 1m︸ ︷︷ ︸
N

, utN
, 1mN ) and diag(u1, 12mN ),

where we used that utN
= u1.

Write {vt}t∈[0,1] for the homotopy resulting from concatenating the above homo-
topies; it is straightforward to check that this homotopy is Lipschitz for some universal
Lipschitz constant, and that each vt is a matrix in Mm(2N+1)(S̃

2).
We claim that for each t,

(7.3) ∥v∗t vt − 1∥ < 7/8 and ∥vtv
∗
t − 1∥ < 7/8.

For t associated to step (iv), this is immediate. For t associated to step (ii), this follows
from the fact that if v and w are quasi-unitaries, then their product satisfies

∥(vw)(vw)∗ − 1∥ ≤ ∥v(ww∗ − 1)v∗∥+ ∥vv∗ − 1∥
< (1 + 1/8)(1/8) + (1/8)

< 7/8

and similarly ∥(vw)∗(vw) − 1∥ < 7/8. For t associated to steps (i) and (iii), we first
claim that if δ, ϵ ∈ (0, 1) and ∥u− v∥ < ϵ, and ∥uu∗− 1∥ < δ and ∥u∗u− 1∥ < δ, then

(7.4) ∥vv∗ − 1∥ < δ + 4ϵ and ∥v∗v − 1∥ < δ + 4ϵ.

Indeed, using that ∥u∥ <
√

1 + δ,

∥vv∗ − 1∥ < ∥vv∗ − uu∗∥+ δ ≤ ∥v∥∥v∗ − u∗∥+ ∥v − u∥∥u∗∥+ δ

< (
√

1 + δ + ϵ)ϵ+ (
√

1 + δ)ϵ+ δ < δ + 4ϵ,

and the other estimate is similar. Now, looking at step (i)„ we have that all elements
appearing in the homotopy are within 1/8 of diag(u0, 12mN ), so applying the estimate
in line (7.4) with δ = ϵ = 1/8 establishes the estimate in line (7.3). On the other hand,
looking at step (iii), we first note that for any i ∈ {1, . . . , N},

∥u∗ti
uti−1

− 1∥ ≤ ∥u∗ti
∥∥uti

− uti−1
∥+ ∥u∗ti

uti
− 1∥

≤
√

1 + 1/8(1/32) + 1/8 < 3/16.
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Hence every element in the homotopy in step (iii) is within 3/16 of

diag(1mN , utN
, 1mN ).

Applying the estimate in line (7.4) with δ = 1/8 and ϵ = 3/16 then again gives the
estimate in line (7.3), and we are done with the claim.

It follows in particular that (v∗t vt)
−1/2 makes sense for all t, and thus we may

define h(t) := κ(vt). Moreover, there is a sequence (fi) of real-valued polynomials
that converges uniformly to the function t 7→ t−1/2 on the spectrum of each v∗t vt.
Analogously to the case of K0, we may now take hϵ(t) := vtfi(v

∗
t vt) for some suitably

large i (depending on ϵ); this has all the right properties.

Our main K-theoretic goal is a sort of controlled Mayer-Vietoris sequence. Let us
first recall the relevant classical Mayer-Vietoris sequence in operator K-theory: see
for example [14, Section 3] or [35, Proposition 2.7.15] for more details.

Proposition 7.2. — Let A be a C∗-algebra, and let I and J be ideals in A such that
A = I + J . Then there is a functorial six-term exact sequence

K0(I ∩ J) // K0(I)⊕K0(J) // K0(A)

∂

��
K1(A)

∂

OO

K1(I)⊕K1(J)oo K1(I ∩ J).oo

The maps
Ki(I ∩ J) → Ki(I)⊕Ki(J)

are of the form x 7→ (x,−x) (where we abuse notation by writing x both for an element
of Ki(I ∩ J), and its image in Ki(I) and Ki(J)), and the maps

Ki(I)⊕Ki(J) → Ki(A)

are of the form (x, y) 7→ x+ y (with a similar abuse of notation).

The maps above labeled ‘∂’ can also be described explicitly (they are connected
to the index and exponential maps of the usual six-term exact sequence), but we will
not need this.

We will need some notation and an appropriate excisiveness condition for our
controlled Mayer-Vietoris sequence.

Definition 7.3. — Let K = K (ℓ2(N)), and A be a C∗-algebra. Let A⊗K denote the
spatial tensor product of A and K ; using the canonical orthonormal basis on ℓ2(N), we
think of elements of A⊗K as N-by-N matrices with entries from A. For a subspace S
of A, let S ⊗K denote the subspace of A⊗K consisting of matrices with all entries
in S.

In particular, if A is filtered as in Definition 3.8, then we may define (A⊗K )r :=

Ar⊗K . It is straightforward to check that this definition induces a filtration on A⊗K .
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Definition 7.4. — Let A be a filtered C∗-algebra, and I be a C∗-ideal in A equipped
with its own filtration. We say that I is a filtered ideal (1)of A if for any r ≥ 0, Ir ⊆ Ar,
and if for any r, s ≥ 0, As · Ir ∪ Ir ·As ⊆ Is+r.

Remark 7.5. — For our applications, the special case where I = A as a C∗-algebra,
but where I and A do not have the same filtration, turns out to be particularly
important.

Definition 7.6. — Let (Iω, Jω;Aω)ω∈Ω be an indexed set of triples, where each Aω is a
filtered C∗-algebra, and each Iω and Jω is a filtered ideal in Aω. Give each stabilization
Aω ⊗K , Iω ⊗K and Jω ⊗K the filtration from Definition 7.3. (Note that Iω ⊗K

and Jω ⊗K are also filtered ideals in Aω ⊗K with these definitions.)
The collection (Iω, Jω;Aω)ω∈Ω of pairs of ideals and C∗-algebras containing them

is uniformly excisive if for any r0,m0 ≥ 0 and ϵ > 0, there are r ≥ r0, m ≥ 0, and
δ > 0 such that:

(i) for any ω ∈ Ω and any a ∈ (Aω⊗K )r0
of norm at most m0, there exist elements

b ∈ (Iω⊗K )r and c ∈ (Jω⊗K )r of norm at most m such that ∥a−(b+c)∥ < ϵ;
(ii) for any ω ∈ Ω and any a ∈ Iω ⊗K ∩ Jω ⊗K such that

d(a, (Iω ⊗K )r0) < δ and d(a, (Jω ⊗K )r0) < δ

there exists b ∈ Iω
r ⊗K ∩ Jω

r ⊗K such that ∥a− b∥ < ϵ.

Note that (ii) implies that for any ω, the family of subspaces (Iω
r ⊗K ∩ Jω

r ⊗K )r≥0

defines a filtration of Iω ⊗K ∩ Jω ⊗K ; we equip each Iω ⊗K ∩ Jω ⊗K with this
filtration.

Note that condition (i) above is a controlled analogue of the condition ‘A = I + J ’
from Proposition 7.2, while condition (ii) is a controlled analogue of the fact that if
a ∈ A is close to both I and J , then there is an element of I ∩ J that is close to a
(this can be shown using approximate units).

We are now ready for our controlled Mayer-Vietoris theorem. See [20, Sections 2
and 3] for related ‘controlled Mayer-Vietoris sequences’, approached in a somewhat
different way.

Proposition 7.7. — Let (Iω, Jω;Aω)ω∈Ω be a uniformly excisive collection, where the
algebras and ideals are all non-unital. Then for any r0 ≥ 0 there are r1, r2 ≥ r0 with
the following property. For each ω and each x ∈ Kr0,1/8

∗ (Aω) there is an element

∂c(x) ∈ Kr1,1/8
∗ (Iω ∩ Jω)

such that if ∂c(x) = 0 then there exist

y ∈ Kr2,1/8
∗ (Iω) and z ∈ Kr2,1/8

∗ (Jω)

1. This is a more general notion than the filtrations on ideals used by Oyono-Oyono and the third
author in [19, Subsection 3.1].
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such that
x = y + z in K

r2,1/8
∗ (Aω)

(where as usual we abuse notation by omitting explicit notation for subspace-inclusion
maps).

Moreover, the ‘boundary map’ ∂c has the following naturality property. Let
(Kθ, Lθ;Bθ)θ∈Θ be another uniformly excisive collection, where the algebras and
ideals are non-unital. Assume moreover that there is a map π : Θ → Ω and for
each θ ∈ Θ an inclusion Aπ(θ) ⊆ Bθ such that for each r ≥ 0 we have that Aπ(θ)

r ⊆ Bθ
r ,

I
π(θ)
r ⊆ Kθ

r , Jπ(θ)
r ⊆ Lθ

r. Let r0 be given, and let r1 be as in the statement above for
both uniformly excisive families (2). Then the diagram

K
r0,1/8
∗ (Aπ(θ))

∂c //

��

K
r1,1/8
∗ (Iπ(θ) ∩ Jπ(θ))

��

K
r0,1/8
∗ (Bθ)

∂c // Kr1,1/8
∗ (Kθ ∩ Jθ),

where the vertical maps are subspace inclusions, commutes.

The subscript in ‘∂c’ stands for ‘controlled’: ∂c is a controlled analogue of the usual
Mayer-Vietoris boundary map in K-theory. It will be crucial for our applications that
the numbers r0, r1, r2 appearing in the above are all independent of the index ω.

Proof. — Let Λ be a set equipped with a map π : Λ → Ω. Let K denote the com-
pact operators on ℓ2(N) and let

∏
λ∈ΛA

π(λ) ⊗K denote the C∗-algebra of bounded,
Λ-indexed sequences where the λth element comes from Aπ(λ)⊗K . With notation as
in Definition 7.3, define

AΛ :=

{
(aλ) ∈

∏
λ∈Λ

Aπ(λ) ⊗K
∣∣∣ there is r ≥ 0 with aλ ∈ Aπ(λ)

r ⊗K for all λ

}
,

which is a ∗-subalgebra of
∏

λ∈ΛA
π(λ) ⊗K , and let AΛ be its C∗-algebraic closure.

Define also IΛ to be{
(aλ) ∈ AΛ

∣∣∣ there is r ≥ 0 with aλ ∈ Iπ(λ)
r ⊗K for all λ

}
and similarly for JΛ. The definition of a filtered ideal (see Definition 7.4 above) implies
that IΛ and JΛ are ∗-ideals in AΛ, whence their closures IΛ and JΛ are C∗-ideals
in AΛ. Moreover, the uniform excisiveness assumption implies that AΛ = IΛ + JΛ.

2. We may assume the same r1 works for both families at once by combining them into a single
family and applying the first part.
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Hence (see for example [14, Section 3]) there is a six-term exact Mayer-Vietoris se-
quence

(7.5) K0(IΛ ∩ JΛ) // K0(IΛ)⊕K0(JΛ) // K0(AΛ)

∂

��
K1(AΛ)

∂

OO

K1(IΛ)⊕K1(JΛ)oo K1(IΛ ∩ JΛ).oo

From now on, we will focus on the case of K0; the case of K1 is essentially the
same. Define

Λ := {(ω, x) | ω ∈ Ω, x ∈ Kr0,1/8
0 (Aω)}

equipped with the map π : Λ → Ω that sends an element to its first coordinate. For
each λ = (ω, x) ∈ Λ choose a pair

(pλ, nλ) ∈ P 1/8
mλ

(Aω
r0

)× N

for some mλ ∈ N (see Definition 4.1 for notation) such that x = [pλ, nλ]. Identifying
Mmλ

(Aω) with the C∗-subalgebra of Aω ⊗K consisting of N × N matrices that are
only non-zero in the first mλ×mλ square in the top left corner, we get a well-defined
element p⃗ := (pλ)λ∈Λ of AΛ. With κ as in Definition 4.1, the formal difference

x⃗ := [(κ(pλ))λ∈Λ]− [(1nλ
)λ∈Λ]

defines an element ofK0(AΛ), and so the Mayer-Vietoris sequence of line (7.5) gives an
element ∂(x⃗) inK1(IΛ∩JΛ). We may represent ∂(x⃗) as a Λ-indexed collection (uλ)λ∈Λ,
where each uλ is a unitary in a matrix algebra over the unitization of Iπ(λ)∩Jπ(λ). On
the other hand, by definition of IΛ and JΛ and by the uniform excisiveness condition
there is r1 ≥ 0 (which we may assume is at least r0) and a Λ-tuple (vλ)λ∈Λ with
each vλ in some matrix algebra over the space spanned by Iπ(λ)

r1 ∩ Jπ(λ)
r1 and the unit,

and so that ∥uλ− vλ∥ < 1/20. From this estimate, one checks that each vλ is a quasi-
unitary as in Definition 4.4 and thus defines a class [vλ] ∈ Kr1,1/8

1 (Iπ(λ) ∩ Jπ(λ)). For
each λ = (ω, x) ∈ J , define

∂c(x) := [vλ] ∈ Kr1,1/8
1 (Iω ∩ Jω).

We now look at what happens when ∂c(x) = 0. Let Λ′ ⊆ Λ be the subset of
all (ω, x) ∈ Λ such that ∂c(x) = 0 in K

r1,1/8
1 (Iπ(λ) ∩ Jπ(λ)). Define a new element

x⃗ ′ ∈ K0(AΛ) by setting the λth component equal to [κ(pλ)] − [1nλ
] if λ ∈ Λ′, and

equal to 0 otherwise.
For each λ = (ω, x) ∈ Λ′ let vλ be a quasi-unitary such that ∂c(x) = [vλ]. The fact

that [vλ] is zero in K
r1,1/8
1 (Iπ(λ) ∩ Jπ(λ)) for each λ ∈ Λ′ and Lemma 7.1 together

give a homotopy between a stabilized version of the sequence (κ(vλ))λ∈Λ′ and zero
in K1(IΛ ∩JΛ). With ∂ the standard boundary map as in diagram (7.5) we thus have
that ∂(x⃗ ′) = 0 in K1(IΛ ∩ JΛ). Hence by exactness of the Mayer-Vietoris sequence
there are elements y⃗ ∈ K0(IΛ) and z⃗ ∈ K0(JΛ) such that x⃗ ′ = y⃗ + z⃗ in K0(AΛ) (as
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usual, we have suppressed notation for subspace-inclusion maps). Suitably approxi-
mating representatives of y⃗ and z⃗ in each component and applying the injectivity part
of Proposition 4.9 gives the desired conclusion.

The naturality property in the second paragraph of the statement follows directly
from the corresponding naturality property for the classical Mayer-Vietoris sequence:
we leave the details to the reader.

Dynamical part

We now use the dynamical assumptions to produce ingredients for the K-theoretic
machine just built, and thus complete the proof of Proposition 5.2.

First, we define the algebras we will be using. These are subalgebras of our usual
obstruction C∗-algebrasAs from Definition 3.9, but we will also need to allow ourselves
to change the filtrations involved in order to ‘relax control’ in some sense. This will
give us two different uniformly excisive families in the sense of Definition 7.6: our first
task in this section will be to define these families and establish that they are indeed
uniformly excisive.

Definition 7.8. — Fix an open subgroupoid G of Γ ⋉ X and a constant s0 ≥ 1. Let
Ω be the set of all pairs ω = (G0, G1) where G0 and G1 are open subgroupoids of G
such that G(0) = G

(0)
0 ∪ G(0)

1 . Throughout this definition, we work relative to the
subgroupoid G when defining expansions as in Definition 3.11.

For our first family, let ω = (G0, G1) ∈ Ω and r ≥ 0, and define

Bω
r := As0(G+r

0 )r +As0(G+r
1 )r +As0(G+r

0 ∩G+r
1 )r

and define also
Bω :=

⋃
r≥0

Bω
r

to be the closure of the union of the family {Bω
r }r≥0 in the norm topology of As0 .

Remark 7.9. — We note that the filtration (Bω
r )r≥0 depends on the pair ω = (G0, G1),

and not only on the ambient groupoid G. In the main proof, we will choose an appro-
priate pair (G0, G1) based on a given scale r for the original filtration on As that was
introduced in Definition 3.9. Thus the filtration on As will be adapted depending on
the scale at which we are working, and the decomposition of G that is appropriate to
that scale.

Define subspaces of Bω
r by

Iω
r := As0(G+r

0 )r +As0(G+r
0 ∩G+r

1 )r

and
Jω

r := As0(G+r
1 )r +As0(G+r

0 ∩G+r
1 )r
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and define
Iω :=

⋃
r≥0

Iω
r , Jω :=

⋃
r≥0

Jω
r .

We now come to our second family. Let Ω × [s0,∞) be the set of all triples
(ω, s) = (G0, G1, s), where G0 and G1 are open subgroupoids of G and s ≥ s0.
For (G0, G1, s) ∈ Ω× [s0,∞) and r ≥ 0, define a subspace Bω,s

r of As by

Bω,s
r := As0(G+r

0 )r +As0(G+r
1 )r +As(G+r

0 ∩G+r
1 )sr

and define also
Bω,s :=

⋃
r≥0

Bω,s
r

to be the closure of the union of the family {Bω,s
r }r≥0 in the norm topology of As.

Define subspaces of Bω,s
r by

Iω,s
r := As0(G+r

0 )r +As(G+r
0 ∩G+r

1 )sr

and
Jω,s

r := As0(G+r
1 )r +As(G+r

0 ∩G+r
1 )sr

and finally define
Iω,s :=

⋃
r≥0

Iω,s
r , Jω,s :=

⋃
r≥0

Jω,s
r .

Remark 7.10. — (This remark may be safely ignored by readers who do not know the
earlier work.) Comparing our work in this paper to [8], the second filtration above
plays an analogous role to the relative Rips complex of [8, Appendix A].

Our aim is to show that the definitions above give us two uniformly excisive families
in the sense of Definition 7.6. This requires some preliminaries on ‘partition of unity’
type constructions.

The next definition and lemma will be given in slightly more generality than we
need as this does not complicate the proof, and maybe makes the statements slightly
cleaner.

Definition 7.11. — Let K be a compact subset of X, let {U0, . . . , Un} be a finite
collection of open subsets of X that cover K, and let {ϕ0, . . . , ϕn} be a subordinate
partition of unity on K: precisely, each ϕi is a continuous function X → [0, 1] with
support contained in Ui, and for each x ∈ K we have ϕ0(x) + · · ·+ ϕn(x) = 1.

Let s ≥ 0 and recall the definitions of the Rips complex Ps(Γ), barycentric co-
ordinates tg : Ps(Γ) → [0, 1], and Hilbert space Hs := ℓ2(Zs × X,H ⊗ ℓ2(Γ)) from
Section 2. For i ∈ {0, . . . , n}, let Mi be the multiplication operator on Hs associated
to the function

Zs ×X → [0, 1], (z, x) 7→
∑
g∈Γ

tg(z)ϕi(gx).

For the next lemma, recall the notion of the support of an operator in C∗(Γ

⟲

X; s)

from Definition 3.2 above.
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Lemma 7.12. — With notation as in Definition 7.11, the operators Mi have the fol-
lowing properties.

(i) Each Mi has norm at most one.
(ii) If T ∈ C∗(Γ ⟲ X; s) satisfies

{x ∈ X | (gx, g, x) ∈ supp(T ) for some g ∈ Γ} ⊆ K,

then T = T (M0 + · · ·+Mn).
(iii) For any T ∈ C∗(Γ ⟲ X; s) and i ∈ {0, . . . , n},

supp(TMi) ⊆

{
(gx, g, x) ∈ Γ ⋉X

∣∣∣ x ∈ ⋃
|h|≤s

h · Ui

}
∩ supp(T ).

Proof. — Part (i) follows as each Mi is a multiplication operator associated to a
function with range contained in [0, 1]. For use in the remainder of the proof, note
that for i ∈ {0, . . . , n}, any T ∈ C∗(Γ ⟲ X; s) and any y, z ∈ Zs and x ∈ X,

(7.6) (TMi)y,z(x) = Ty,z(x) ·
∑
h∈Γ

th(z)ϕi(hx).

Hence

(7.7) T (M0 + · · ·+Mn)y,z(x) = Ty,z(x) ·
∑
h∈Γ

th(z)(ϕ0(hx) + · · ·+ ϕn(hx)).

Assume now T satisfies the support condition in part (ii). If Ty,z(x) = 0, then clearly
the above is zero. Otherwise, if Ty,z(x) ̸= 0, then (gx, gh−1, hx) ∈ supp(T ) for all
g ∈ supp(y) and h ∈ supp(z). In particular, hx ∈ K for all h ∈ supp(z), and so∑

h∈Γ

th(z)(ϕ0(hx) + · · ·+ ϕn(hx)) =
∑
h∈Γ

th(z) = 1,

using that {ϕ0, . . . , ϕn} is a partition of unity on K; combined with line (7.7), this
gives part (ii).

For part (iii), say (gx, gk−1, kx) ∈ supp(TMi) for some T ∈ C∗(Γ ⟲ X; s). Hence
there are y, z ∈ Zs with g ∈ supp(y), k ∈ supp(z) and (TMi)y,z(x) ̸= 0. From line
(7.6), this implies that Ty,z(x) ̸= 0, whence (gx, gk−1, kx) ∈ supp(T ). On the other
hand, we must also have ∑

h∈Γ

th(z)ϕi(hx) ̸= 0,

whence there is h ∈ supp(z) with ϕi(hx) ̸= 0, and thus hx is in Ui. As h and k are both
in supp(z) and z is in Zs, this forces |kh−1| ≤ s. On the other hand, kx = (kh−1)hx is
in (kh−1)Ui, which completes the proof.

We are now ready to show that the families from Definition 7.8 are uniformly
excisive.

Lemma 7.13. — Fix an open subgroupoid G of Γ⋉X, and s0 ≥ 1. Let Ω be the set of
all pairs (G0, G1) of open subgroupoids of G as in Definition 7.8. Then with notation
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as in that definition, the collections

(Iω, Jω;Bω)ω∈Ω and (Iω,s, Jω,s;Bω,s)(ω,s)∈Ω×[s0,∞)

are uniformly excisive.

Proof. — Each subspace Bω
r of As0 is self-adjoint as it is a sum of subspaces that

are themselves self-adjoint by Lemma 3.3. It is clear that Bω
r0
⊆ Bω

r for r0 ≤ r, and
the union

⋃
r≥0B

ω
r is dense in Bω by definition. These observations apply similarly

for Bω,s
r , and for Iω

r , Jω
r , Iω,s

r , and Jω,s
r . To complete the proof that Bω is filtered and

Iω, Jω are filtered ideals (and similarly for the s-decorated versions) we must look at
products. Let r1, r2 ≥ 0. First, note that the inclusions

As0(G+r1
i )r1 ·As0(G+r2

i )r2 ⊆ As0(G
+(r1+r2)
i )r1+r2 , where i ∈ {0, 1},

As0(G+r1
0 ∩G+r1

1 )r1
·As0(G+r2

0 ∩G+r2
1 )r2

⊆ As(G
+(r1+r2)
0 ∩G+(r1+r2)

1 )r1+r2
,

and

As(G+r1
0 ∩G+r1

1 )r1s ·As(G+r2
0 ∩G+r2

1 )r2s ⊆ As(G
+(r1+r2)
0 ∩G+(r1+r2)

1 )(r1+r2)s

follow directly from Lemmas 3.3 and 3.12. Similarly,

As0(G+r1
0 )r1 ·As0(G+r2

1 )r2 ⊆ As0(G
+(r1+r2)
0 )r1+r2 ∩As0(G

+(r1+r2)
1 )r1+r2

and finally, using that As0(G)r ⊆ As(G)r for any open G and r ≥ 0 and that s ≥ s0 ≥ 1,

As0(G+r1
i )r1 ·As(G+r2

0 ∩G+r2
1 )r2s ⊆ As((G+r2

0 ∩G+r2
1 )+r1)r2s+r1

⊆ As((G+r2
0 ∩G+r2

1 )+r1)(r2+r1)s

⊆ As((G+r2
0 )+r1 ∩ (G+r2

1 )+r1)(r1+r2)s

⊆ As(G
+(r1+r2)
0 ∩G+(r1+r2)

1 )(r1+r2)s

for i ∈ {0, 1}, where the last step uses Lemma 3.13. Combining the last four displayed
lines completes the check that both Bω and Bω,s are filtered. Moreover, they show
that Iω and Jω are filtered C∗-ideals in Bω, and similarly for the s-decorated versions.

We now have to check that the collection (Iω, Jω;Bω)ω∈Ω is uniformly excisive as
in Definition 7.6, and similarly for the s-decorated versions. For notational simplicity,
we will ignore the copy of the compact operators appearing in Definition 7.6: the
reader can check this makes no real difference to the proof.

Look first at part (i) of the definition. Let Ui be the unit space ofG+r0
i for i ∈ {0, 1}.

Say a is an element of Bω
r0

whence

K := {x ∈ X | (gx, g, x) ∈ supp(a(t)) for some t ∈ [0,∞), g ∈ Γ},
is a compact subset of U0 ∪ U1 (see Definitions 3.6 and 3.9 above). Let M0, M1 be
as in Definition 7.11 with respect to the Rips complex Ps(Γ), the compact set K,
the open sets U0 and U1, and some choice of partition of unity {ϕ0, ϕ1}. From
Lemma 7.12 part (i) we have that ∥M0∥ ≤ 1 and ∥M1∥ ≤ 1, and from part (ii)
that a(t)(M0 +M1) = a(t) for all t. Hence to complete the proof that our algebras
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satisfy part (i) of Definition 7.6, it suffices to show that there exists r ≥ 0 (which
is allowed to depend on r0 and s0, but not on any of the other data) such that for
each ω, t 7→ a(t)M0 is in Iω

r and t 7→ a(t)M1 is in Jω
r . We focus on the case of M0

and Iω; the other case is similar. We claim that in fact r = 2r0 + s0 works.
Write a = b0+b1+c, where bi ∈ As0(G+r0

i )r0
and c ∈ As0(G+r0

0 ∩G+r0
1 )r0

. Part (iii)
of Lemma 7.12 implies that for each t ∈ [0,∞)

supp(b0(t)M0) ⊆ supp(b0(t)) and supp(c(t)M0) ⊆ supp(c(t)),

from which it follows straightforwardly that t 7→ b0(t)M0 and t 7→ c(t)M0 are
in As0(G+r0

0 )r0
and As0(G+r0

0 ∩ G+r0
1 )r0

respectively; moreover, these are subspaces
of Iω

r . To complete the proof, we check that t 7→ b1(t)M0 is in Iω
r .

Assume that (gx, gh−1, hx) is in the support of b1(t)M0 for some t, and write
T = b1(t) for ease of notation. Then there exist y, z ∈ Ps0

(Γ) with g ∈ supp(y),
h ∈ supp(z) and (TM0)y,z(x) ̸= 0. Hence from line (7.6) we must have that Ty,z(x) ̸= 0

and so y, z are actually in Ps0
(Γ) and |gh−1| ≤ r0 ≤ r. Moreover,∑

k∈Γ

tk(z)ϕ0(kx) ̸= 0,

whence there is k ∈ supp(z) such that ϕ0(kx) ̸= 0, and in particular, kx is in the unit
space of G+r0

0 . On the other hand,

(gx, gh−1, hx) = (gx, gk−1, kx)(kx, kh−1, hx).

The first factor in the product is in (G+r0
0 )+r0 ⊆ G+2r0

0 using that |gk−1| ≤ r0,
that kx is in the unit space of G+r0

0 , and Lemma 3.13. The second factor is
in (G+r0

0 )+s0 ⊆ G
+(r0+s0)
0 using that |kh−1| ≤ s0, that kx is in the unit space

of G+r0
0 , and Lemma 3.13. Hence (gx, gh−1, hx) is in G

+(2r0+s0)
0 . To summarize,

we have shown at this point that b1(t)M0 has support in G
+(2r0+s0)
0 for all t, and

thus t 7→ b1(t)M0 is in Bs0(G+r
0 )r as claimed. The s-decorated case can be handled

precisely analogously.

We now look at part (ii) of Definition 7.6. Say a is in both Iω and Jω, and that a is
within δ := ϵ/3 of both Iω

r0
and Jω

r0
. Let a0 and a1 be elements of Iω

r0
and Jω

r0

respectively which are at most δ away from a. Define

K := {x ∈ X | (gx, g, x) ∈ supp(a0(t)) for some t ∈ [0,∞), g ∈ Γ},
a compact subset of the unit space U0 of G+r0

0 . Let M0 be as in Definition 7.11 with
respect to the Rips complex Ps0

(Γ), the compact set K, and the open cover {U0} of K.
From Lemma 7.12 parts (i) and (ii) we have that ∥M0∥ ≤ 1 and that a0(t)M0 = a0(t)

for all t. Hence for any t ∈ [0,∞)

∥a(t)− a1(t)M0∥
≤ ∥a(t)− a0(t)∥+ ∥a0(t)− a(t)M0∥+ ∥a(t)M0 − a1(t)M0∥
< ϵ.
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On the other hand, an argument precisely analogous to the one used above to establish
part (i) of Definition 7.6 shows that a1(t)M0 is contained in Iω

r ∩Jω
r , where r = 2r0+s0,

and we are done. The s-decorated case can again be handled analogously.

We need one more preliminary lemma before the proof of Proposition 5.2. The
proof is similar to (and simpler than) the part of the proof of Lemma 7.13 above that
establishes part (i) of Definition 7.6, and is therefore omitted.

Lemma 7.14. — Fix an open subgroupoid G of Γ ⋉ X and s0 ≥ 0. Let r0 ≥ 0. Let
G(0) = U0 ∪U1 be an open cover of G(0), and for i ∈ {0, 1}, let Gi be the subgroupoid
of G generated by

{(gx, g, x) ∈ G | x ∈ Ui, |g| ≤ r0}.
Then As0(G)r0

⊆ As0(G
+(2r0+s0)
0 )2r0+s0

+As0(G
+(2r0+s0)
1 )2r0+s0

.

Finally, we are ready for the proof of Proposition 5.2, the last step we need in the
proof of Theorem 2.11.

Proof of Proposition 5.2. — Let B be the class of open subgroupoids G of Γ⋉X such
that the conclusion of Proposition 5.2 holds for all open subgroupoids of G, in such a
way that the resulting constant s depends only on G and not on the particular open
subgroupoid under consideration. It will suffice to show that B contains D. For this
it suffices to show that B contains all relatively compact open subgroupoids of Γ⋉X,
and that it is closed under decomposability.

Let then G be an open subgroupoid of Γ⋉X with compact closure, and let r0 and
s0 be given. As G has compact closure, the number

s1 = max{|g| | (gx, g, x) ∈ G},
is finite. Let s = max{r0, s0, s1}; we claim this s has the right property. We have
that As(G)s = As(G) and so

K
s,1/8
∗ (As(G)) = K∗(A

s(G))

by Proposition 4.9. Moreover, the group on the right hand side is zero by Proposi-
tion 5.1, and so in particular the map

K
r0,1/8
∗ (As0(G)) → K

s,1/8
∗ (As(G)) = K∗(A

s(G))

is certainly zero. Moreover, the same s clearly works for any open subgroupoid of G.
Hence G is in B as required.

Now let G be an open subgroupoid of Γ ⋉ X that decomposes over B, and let
r0, s0 ≥ 0 be given; we may assume that s0 ≥ 1. Let r1 = r1(2r0 + s0, s0) ≥ r0 be
the constant given by Proposition 7.7 with respect to the uniformly excisive families
(Iω, Jω;Bω)ω∈Ω and (Iω,s, Jω,s;Bω,s)(ω,s)∈Ω×[s0,∞) from Definition 7.8; we may as-
sume that r1 ≥ 1. Let r2 = r2(r1, s0) ≥ r1 be the constant given by Proposition 7.7 for
the uniformly excisive collection (Iω,s, Jω,s;Bω,s)(ω,s)∈Ω×[s0,∞). Let G(0) = U0∪U1 be
an open cover with the property that if Gi is the subgroupoid of G generated by

{(gx, g, x) ∈ G | x ∈ Ui, |g| ≤ r0},
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then G+r2
i is in the class B (and therefore that G+r1

0 ∩ G+r1
1 is in B too, as B is

closed under taking open subgroupoids).
Let the constant s1 = s1(r0, s0, G

+r1
0 ∩G+r1

1 ) ≥ max{r0, s0} be as in the inductive
hypothesis for the groupoid G+r1

0 ∩G+r1
1 . Finally, let s = s(r2 +s1, s1, G

+r2
0 , G+r2

1 ) be
as in the inductive hypothesis for both of the groupoids G+r2

i simultaneously (this
is possible, as if s has the right property for some groupoid, then clearly any s′ ≥ s

works too). We claim that this s has the right properties.
Let then x be an element ofKr0,1/8

∗ (As0(G)). Using Lemma 7.14 we have a subspace
inclusion map

K
r0,1/8
∗ (As0(G)) → K

2r0+s0,1/8
∗ (Bω(G)),

where we have used the notation of Definition 7.8 and written ω = (G0, G1) ∈ Ω.
Hence we may consider x as an element of K2r0+s0,1/8

∗ (Bω(G)). Using Proposition 7.7,
we have a commutative diagram of controlled boundary maps

K
2r0+s0,1/8
∗ (Bω)

��

∂c // Kr1
∗ (Iω ∩ Jω)

��
K

2r0+s0,1/8
∗ (Bω,s1)

∂c // Kr1
∗ (Iω,s1 ∩ Jω,s1).

The definition of the algebras involved implies that the right hand vertical map iden-
tifies with the forget control map

Kr1
∗ (As0(G+r1

0 ∩G+r1
1 )) → Ks1r1

∗ (As1(G+r1
0 ∩G+r1

1 )),

which is zero by hypothesis and the fact that r1 ≥ 1. Hence the image of x
in Kr1

∗ (Iω,s1 ∩ Jω,s1) is zero.
We now apply Proposition 7.7 to get

y ∈ Kr2,1/8
∗ (Iω,s1), z ∈ Kr2,1/8

∗ (Jω,s1)

such that x = y + z inside Kr2,1/8
∗ (Bω,s1). Consider the commutative diagram

x ∈ K2r0+s0,1/8
∗ (Bω)

��

K
r2,1/8
∗ (Iω,s1)⊕K

r2,1/8
∗ (Jω,s1) //

��

K
r2,1/8
∗ (Bω,s1)

��

K
r2+s1,1/8
∗ (As1(G+r2

0 ))⊕K
r2+s1,1/8
∗ (As1(G+r2

1 ))

��

// Kr2+s1,1/8
∗ (As1(G))

��

K
s,1/8
∗ (As(G+r2

0 ))⊕K
s,1/8
∗ (As1(G+r2

1 )) // Ks,1/8
∗ (As(G)),
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where the horizontal maps are defined by taking sums, and the vertical maps by
inclusion of the various subspaces involved. Note that y and z both go to zero under
the lower vertical map on the left hand side by inductive hypothesis and the choice
of s. Hence x goes to zero in the bottom right group as it is equal to y + z there,
and we are done for G itself. A precisely analogous argument works for any open
subgroupoid of G, completing the proof.
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APPENDIX A

FINITE DYNAMICAL COMPLEXITY FOR ÉTALE GROUPOIDS

Our goals in this appendix are: to relate finite dynamical complexity to finite
decomposition complexity in the sense of Guentner, Tessera, and Yu [8, 9]; to show
that finite dynamical complexity implies topological amenability of the underlying
action; and to collect together several open questions. This material is not necessary
to read the main body of the paper, but provides some useful context, and also shows
that many examples of groupoids with finite dynamical complexity exist.

Finite decomposition complexity

We will give a convenient definition of finite decomposition complexity in A.2,
adapted slightly from [9, Definition 2.1.3]. This needs some preliminaries. We will
write ‘A = B

⊔
C’ to mean that a set A is the disjoint union of subsets B and C, and

similarly for unions of more than two subsets. As in [9, Section 2], if Z and {Zi}i∈I

are subspaces of a metric space X, then the notation

Z =
⊔

i, r-disjoint

Zi

means that Z is the disjoint union of the Zi, and that d(Zi, Zj) > r for i ̸= j.

Definition A.1. — Let X be a metric spac (with finite-valued metric). A collection
of subsets Y is a disjoint family if no two elements of Y intersect. Given a disjoint
family Y , we associate a metric space XY by taking the underlying set to be

XY :=
⊔

Y ∈Y

Y,

and equipping XY with the (possibly infinite-valued) metric

dY (x, y) :=

{
dY (x, y) x, y ∈ Y for some Y ∈ Y

∞ otherwise

(in words, the metric agrees with that from Y on each ‘component’ subset Y ∈ Y ,
and sets the distance between distinct ‘components’ to be infinity).
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Finally, for r > 0 the Y -neighborhood of a subset Z of XY is defined to be

Nr,Y (Z) := {y ∈ XY | dY (y, z) < r for some z ∈ Z}.

Definition A.2. — Let X be a metric space (with finite-valued metric). A disjoint
family Y of subspaces of X is uniformly bounded if supY ∈Y diam(Y ) is finite.

Let C be a collection of disjoint families of subspaces of X. A disjoint family of sub-
spaces Y is decomposable over C if for all r ≥ 0 there exist disjoint families Z0,Z1 ∈ C

such that for all Y ∈ Y there exists a decomposition

Y = Y0 ∪ Y1

and further decompositions

Yi =
⊔

j∈JY,i, 2r−disjoint

Yij

such that for each i ∈ {0, 1} and j ∈ JY,i, Nr,Y (Yij) is in Zi.
Define Dm to be the smallest collection of disjoint families of subspaces of X that:

contains the uniformly bounded disjoint families; and is closed under decomposability.
The metric space X has finite decomposition complexity if the singleton family {X} is
contained in Dm.

Using the discussion in [9, 3.1.3], it is not too difficult to see that the above defi-
nition is equivalent to [9, Definition 2.1.3].

Here is the first main goal of this appendix.

Theorem A.3. — Let Γ be a countable discrete group, equipped as usual with a metric
arising from a proper length function. Then the following are equivalent:

(i) Γ has finite decomposition complexity;
(ii) the canonical action of Γ on its Stone-Čech compactification has finite dynamical

complexity in the sense of Definition 3.14.

We will actually prove this in a little more generality, more because this makes
the proof more conceptual than because we want the generality for its own sake.
Throughout the rest of this section, then, we will work in the context of étale (1)

groupoids: our conventions here match those of [6, Section 5.6], so in particular we
will write G for an étale groupoid, G(0) for its unit space, s, r : G→ G(0) for the source
and range maps, and for x ∈ G(0), Gx and Gx denote s−1(x) and r−1(x) respectively.
A pair of elements (g, h) ∈ G×G is composable if s(g) = r(h), and their product or
composition is then written gh.

Here is the definition of finite dynamical complexity for general étale groupoids.

Definition A.4. — Let G be an étale groupoid, letH be an open subgroupoid of G, and
let C be a set of open subgroupoids of G. We say that H is decomposable over C if for

1. We will always assume our groupoids are locally compact and Hausdorff, and do not repeat
these assumptions.
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any open, relatively compact subset K of H there exists an open cover H(0) = U0∪U1

of the unit space of H such that for each i ∈ {0, 1} the subgroupoid of H generated
by

{h ∈ K | s(h) ∈ Ui}
is in C .

An open subgroupoid of G (for example, G itself) has finite dynamical complexity
if it is contained in the smallest set Dg of open subgroupoids of G that: contains all
relatively compact open subgroupoids; and is closed under decomposability.

We leave the elementary check that this reduces to Definition 3.14 in the case
that G = Γ ⋉X for some action Γ

⟲

X to the reader: compare [10, Lemma 5.4].
The following basic lemma will also be left to the reader: compare part (i) of

Lemma 3.16 above for the part about groupoids and [9, 3.1.3] for the part about
spaces.

Lemma A.5. — (i) Let G be an étale groupoid, and H an open subgroupoid in the
class Dg of Definition A.4. Then all open subgroupoids of H are also contained
in Dg.

(ii) Let X be a metric space, and let Y be a family of subspaces of X in the class Dm

of Definition A.2. Let Z be another family of subspaces of X such that each
Z ∈ Z is contained in some element of Y . Then Z is also in Dm.

We will look at a particular class of groupoids arising from discrete metric spaces:
we will assume such metric spaces have bounded geometry meaning that for all
r ∈ [0,∞), the cardinality of all r-balls in the space is uniformly bounded. Recall
that we allow our metrics to be infinite valued.

The following groupoids were introduced by Skandalis, Tu, and Yu [29]; see also
[26, Chapter 10].

Definition A.6. — Let X be a bounded geometry metric space (possibly with infinite-
valued metric), and let βX be its Stone-Čech compactification. For each r ∈ [0,∞),
let

Er = {(x, y) ∈ X ×X | d(x, y) ≤ r}.
As X is a subspace of βX we may identify Er with a subspace of βX ×βX, and take
its closure Er. The coarse groupoid of X is the union

G(X) :=
⋃

r∈[0,∞)

Er

equipped with the restriction of the pair groupoid operations it inherits as a subset
of βX × βX, and with the weak topology it inherits from the union above (2), when
each Er is given the subspace topology from βX × βX.

2. This means that a subset U of G(X) is defined to be open exactly when U ∩ Er is open for
each r ∈ [0,∞); this is not the same as the subspace topology from βX × βX.
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The groupoids G(X) are locally compact, Hausdorff, étale and σ-compact: see [29,
Section 3.2] or [26, Chapter 10]. Moreover, if X = Γ is a discrete group equipped with
a metric as in Definition 2.1 above, then G(X) is canonically isomorphic to Γ⋉βΓ: see
[29, Proposition 3.4]. Note that if Y is a disjoint family of subspaces of X and XY is
the associated metric space as in Definition A.1, then G(XY ) identifies naturally with
a (closed and open) subgroupoid of G(X); we will always make this identification in
what follows.

Here then is the theorem we will actually prove. From the comments in the para-
graph above, it implies Theorem A.3.

Theorem A.7. — Let X be a bounded geometry metric space (with finite-valued met-
ric). Then the following are equivalent:

(i) X has finite decomposition complexity;
(ii) the coarse groupoid G(X) has finite dynamical complexity.

Proof. — To show that (i) implies (ii), it will suffice to show that if Y is in Dm, then
G(XY ) is in Dg. For this, it suffices to show that the collection

(A.1) {Y | G(XY ) ∈ Dg}
of disjoint families of subspaces of X contains the uniformly bounded families, and is
closed under decomposability of metric families: indeed, this implies that the family
in line (A.1) contains Dm by definition of Dm, and thus that it contains {X} by
assumption (i); hence G(X) is in Dg, which is the required conclusion.

Say first then that Y is a disjoint family of uniformly bounded subspaces of X, say
all with diameters at most s. Then G(XY ) is contained in the compact set Es ⊆ G(X)

from Definition A.6, whence G(XY ) has compact closure and is thus in Dg.
To complete the proof of (i) implies (ii), it remains to show that the collection

in line (A.1) is closed under decomposability of disjoint families. Say then that Y is
a disjoint family of subspaces of X that decomposes over the collection of disjoint
families in line (A.1). We will show that G(XY ) decomposes over Dg, which will
suffice to show that Y is in the collection of families in line (A.1). Let then K be an
open, relatively compact subset of G(XY ). As G(X) is the union of the (compact)
open subsets {Er}r≥0, there is r ≥ 0 with K contained in Er. As in Definition A.2,
there are families Z0,Z1 in the set in line (A.1) such that every Y ∈ Y admits a
decomposition Y = Y0 ∪ Y1 such that each Yi further decomposes as

Yi =
⊔

j∈JY,i, 2r-disjoint

Yij

with each r-neighborhood Nr,Y (Yij) in Zi. Now, let Yi be the family of sub-
spaces {Nr,Y (Yij) | j ∈ JY,i, Y ∈ Y}. Let Ui be the closure of the set⋃

Y ∈Y ,j∈JY,i

Yij
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in G(XY )(0), which is a (closed and) open set. Then {U0, U1} is an open cover
of G(XY )(0) and it is not too difficult to check that the subgroupoid Hi of G(XY )

generated by
{g ∈ G(XY ) | s(g) ∈ Ui, g ∈ K}

is contained in G(XYi
). As Zi is in the collection in line (A.1), we have that G(XZi

) is
in Dg; moreover, each G(XYi

) is contained in G(XZi
) and so G(XYi

) is in Dg by
Lemma A.5, and so each Hi is also in Dg by the same lemma again. This com-
pletes the proof that G(XY ) decomposes over Dg, and thus the proof of (i) implies (ii).

We now show (ii) implies (i). It will be helpful to first introduce some notation. If
H is an open subgroupoid of G(X), let ∼ be the equivalence relation on X ∩ H(0)

defined by x ∼ y if (x, y) is an element of H, and let XH be the disjoint family of
equivalence classes for this equivalence relation.

Now, to prove (ii) implies (i), it will suffice to show that if G(XY ) is in Dg, then
Y is in Dm. For this it suffices to show that the collection

(A.2) {H | XH ∈ Dm}
of open subgroupoids of G(X) contains the relatively compact open subgroupoids,
and is closed under decomposability of groupoids: indeed, given this, the collection
in line (A.2) contains Dg, whence in particular it contains G(X) by assumption (ii);
however, XG(X) = {X} so this gives that {X} is in Dm, and so we are done at that
point.

Say first then that H is a relatively compact open subgroupoid of G(X). Then
as the collection {Er}r≥0 of (compact) open subsets covers G(X), there must exist
s ≥ 0 with H ⊆ Es. This implies that every Y ∈ XH has diameter at most s, and
thus XH is in Dm and so H is contained in the collection in line (A.2).

It remains to show that the collection in line (A.2) is closed under decomposability
of groupoids. Let then H be an open subgroupoid of G(X) that decomposes over
the collection in line (A.2). We will aim to show that XH decomposes over Dm,
and thus that XH is in Dm, and so H is in the collection in line (A.2). Let then
r ∈ [0,∞) be given, and let K be the compact subset E2r of G(X). The definition of
decomposability of H gives us an open cover H(0) = U0 ∪ U1 of the unit space of H
such that the subgroupoids Hi of G generated by

(A.3) {g ∈ G | s(g) ∈ Ui, g ∈ K}
are in the family in line (A.2). Let XHi

= {Xij}j∈Ji
be the disjoint family of equiva-

lence classes corresponding to Hi. Let Y be an element of XH , and for j ∈ J0 define

Y0j := Y ∩ U0 ∩X0j

and for j ∈ J1, define

Y1j := (Y ∩X1j) \ U0.
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Then we have
Y =

( ⊔
j∈J0

Y0j

)
︸ ︷︷ ︸

=:Y0

⊔
( ⊔

j∈J1

Y1j

)
︸ ︷︷ ︸

=:Y1

.

As Hi is generated by the set in line (A.3) with E2r = K, we have that

Yi =
⊔

j∈Ji, 2r-disjoint

Yij ,

and that each Nr,Y (Yij) is contained in Xij , and thus that each Nr,Y (Yij) is contained
in an element of the disjoint family XHi . Setting Zi = XHi , we now have that XH

decomposes over Dm, and we are done.

Amenability

Our second goal in this appendix is to discuss the relationship of finite dynam-
ical complexity to amenability. See [1] for a comprehensive discussion of amenable
groupoids, and [6, Section 5.6] for a self-contained discussion of the étale case (which
is all we will need). In particular, the next definition is a slight variant of [6, Defi-
nition 5.6.13] and [1, Proposition 2.2.13]. The only difference between our definition
and that of [6, Definition 5.6.13] is that our assumption (i) is not present in [6, Defi-
nition 5.6.13]. It follows, however, from the argument that ‘condition (a) is irrelevant’
in the proof of [1, Proposition 2.2.13] that this leads to an equivalent definition.

Definition A.8. — A locally compact, Hausdorff, étale groupoid G is amenable if for
all compact K ⊆ G and all ϵ > 0 there exists a continuous, compactly supported
function µ : G→ [0, 1] such that:

(i) for all x ∈ G(0), we have
∑

g∈Gx
µ(g) ≤ 1;

(ii) for all k ∈ K, we have |1−
∑

g∈Gr(k)
µ(g)| < ϵ;

(iii) for all k ∈ K, we have
∑

g∈Gr(k)
|µ(g)− µ(gk)| < ϵ.

Our next goal is to prove the following theorem.

Theorem A.9. — Let G be a locally compact, Hausdorff, étale groupoid with finite
dynamical complexity. Then G is amenable.

This result is inspired by [9, Theorem 4.6], part of which states that finite decom-
position complexity for a bounded geometry metric space implies property A in the
sense of [39, Definition 2.1]. As finite decomposition complexity for a bounded geom-
etry metric space is equivalent to finite dynamical complexity for the corresponding
coarse groupoid (Theorem A.7 above), and as property A for a bounded geometry
metric space is equivalent to amenability of the corresponding coarse groupoid ([29,
Theorem 5.3]), Theorem A.9 above is a generalization of the result of [9, Theorem 4.6].
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We now turn to the proof of Theorem A.9. It suffices (as usual!) to show that the
class A of amenable open subgroupoids of any étale groupoid G contains the rela-
tively compact open subgroupoids, and is closed under decomposability. The following
lemma (which is presumably well-known to experts) starts this off.

Lemma A.10. — Let G be an étale groupoid, and let H be an open subgroupoid of G
with compact closure. Then H is amenable.

Remark A.11. — In the case H as in Lemma A.10 is σ-compact, there is a direct
proof of the lemma using [23, Theorem 2.14]. Indeed, in this theorem Renault shows
that for a σ-compact, locally compact, Hausdorff, étale groupoid G (and indeed more
generally), amenability is equivalent to the existence of a sequence (µn : G→ [0,∞))

of Borel functions such that

(i) for all x ∈ G(0), we have
∑

g∈Gx
µn(g) ≤ 1;

(ii) for all x ∈ G(0), we have
∑

g∈Gx
µn(g) → 1;

(iii) for all k ∈ G, we have
∑

g∈Gr(k)
|µn(g)− µn(gk)| → 0.

Now, let H be as in Lemma A.10 and also be σ-compact. Define

µ : H(0) → [0, 1], x 7→ |Hx|−1.

It is not difficult to check that the (constant) sequence (µn = µ) satisfies the properties
above exactly, so we are done.

Below we give a general proof of Lemma A.10 as some examples that are impor-
tant to us (specifically, the coarse groupoids of Definition A.6) have open, relatively
compact subgroupoids that are not σ-compact.

Proof of Lemma A.10. — Let N = sup{|r−1(x) ∩H| | x ∈ H(0)}. Compactness of H
implies that this is finite. We will proceed by induction on N . In the base case N = 1,
H is just a space and is thus clearly amenable. Assume now that we have proven all
cases up to N − 1, and assume that H has some range fibers with cardinality N , but
none higher. Let U = {x ∈ H(0) | |r−1(x)| = N}, which is open as H is étale, and
clearly it is invariant for the H action. Let F = H(0) \U , which is closed, and let HU

and HF be the respective restrictions of H to U and F . Note that HF is amenable
by inductive hypothesis. We first claim that HU is amenable.

Indeed, to see this, letK ⊆ HU be a compact set, and ϵ > 0. Let ϕ : H
(0)
U → [0, 1] be

any compactly supported function that is equal to 1 on r(K) ∪ s(K), and define
µ(h) = 1

N ϕ(s(h)) for all h ∈ HU ; we claim that this has the right properties. We
first claim that µ is compactly supported. To see this, note that µ is supported
in s−1(supp(ϕ)), whence it suffices to show that s−1(E) is compact for any compact
subset E of H(0)

U . For each x ∈ H(0), choose an open set Vx with compact closure,
and such that s−1(Vx) can be written as a disjoint union

s−1(Vx) =

N⊔
j=1

V (j)
x ,
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where s restricts to a homeomorphism s : V
(j)
x → Vx, and each V

(j)
x has compact

closure; using local compactness, the fact that s is a local homeomorphism and the
fact that each source fiber contains exactly N elements, it is not too difficult to see
that such sets exist. Now, let x1, . . . , xn be a finite collection of points of H(0)

U such
that E ⊆

⋃n
i=1 Vxi

. Then

s−1(E) ⊆
n⋃

i=1

N⋃
j=1

V (j)
xi

the set on the right is a finite union of sets with compact closure, so has compact
closure, and the set s−1(E) is closed. It is thus compact, and we have completed the
proof that µ is compactly supported.

To complete the proof that µ has the properties needed to show amenability, for
each x ∈ H(0)

U , note now that∑
h∈(HU )x

µ(h) =
1

N

∑
h∈Hx

ϕ(x) = ϕ(x),

which is at most one for a general x, and exactly one if x = r(k) for some k ∈ K. On
the other hand, we have that for each k ∈ K,∑

h∈(HU )r(k)

|µ(h)− µ(hk)| = 1

N

∑
h∈(HU )r(k)

|ϕ(r(k))− ϕ(s(k))|,

which is exactly zero as ϕ is identically one on r(K)∪ s(K). This completes the proof
that HU is amenable.

Now, consider the commutative diagram of C∗-algebras

0 // C∗max(HU ) //

��

C∗max(H) //

��

C∗max(HF ) //

��

0

0 // C∗r (HU ) // C∗r (H) // C∗r (HF ) // 0.

The top row is exact as this always holds for the maximal groupoid C∗-algebra (see [1,
Lemma 6.3.2]—the second countability assumption there is unnecessary in the étale
case). The bottom row might not be exact, although all that can go wrong is that
the kernel of the map out of C∗r (H) might not equal the image of the map going in.
However, as HU and HF are amenable, the left and right hand vertical arrows are
the identity map ([6, Corollary 5.6.17]); it follows from this and a diagram chase that
the bottom row is in fact exact in this case. Now, as HU and HF are amenable, their
reduced C∗-algebras are nuclear [6, Theorem 5.6.18]. Finally, an extension of nuclear
C∗-algebras is nuclear [6, Proposition 10.1.3], so this implies that C∗r (H) is nuclear
and thus that H is amenable by [6, Theorem 5.6.18] again.

We will need the following lemma about the existence of almost invariant partitions
of unity, which can be proved in the same way as [10, Proposition 7.1].
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Lemma A.12. — Let G be an étale groupoid, C a collection of open subgroupoids of G,
and let H be an open subgroupoid of G that decomposes over C . Then for any open,
relatively compact subset K of H and any ϵ > 0 there exists an open cover {U0, U1}
of H(0) and continuous compactly supported functions ϕi : H(0) → [0, 1] with the
following properties.

(i) For each i ∈ {0, 1}, the set

{k ∈ K | s(k) ∈ Ui}
generates an open subgroupoid Hi of H (whence also of G) in the class C .

(ii) Each ϕi is supported in Ui.
(iii) For all x ∈ H(0), ϕ0(x)+ϕ1(x) ≤ 1, and for all k ∈ K, ϕ0(r(k))+ϕ1(r(k)) = 1.
(iv) For any k ∈ K, and i ∈ {0, 1}, |ϕi(s(k))− ϕi(r(k))| < ϵ.

We are now ready to complete the proof of the Theorem A.9 by showing that the
collection A of amenable open subgroupoids of G is closed under decomposability.

Proof of Theorem A.9. — Let H be an open subgroupoid of G that decomposes
over A , and let K ⊆ H be compact, and ϵ > 0. Using local compactness, expanding
K slightly we may assume that K is in fact open and relatively compact. Let U0, U1,
H0, H1, and ϕ0, ϕ1 be as in Lemma A.12 for the relatively compact set K and error
estimate ϵ/3. An elementary argument shows that K can be written as K0∪K1, where
each Ki is open, and has compact closure inside Hi. For each i, let µi : Hi → [0, 1] be
a function as in the definition of amenability, with respect to the compact set which
is the closure Ki of Ki, and error estimate ϵ/3. Extending by zero outside (the open
set) Hi, we may assume that µi is defined on all of H. Define

µ : H → [0, 1], h 7→ ϕ0(s(h))µ0(h) + ϕ1(s(h))µ1(h),

which we claim has the right properties.
Indeed, note first for any x ∈ H(0),∑

h∈Hx

µ(h) =
∑

h∈Hx

ϕ0(s(h))µ0(h) + ϕ1(s(h))µ1(g)

= ϕ0(x)
∑

h∈(H0)x

µ0(h) + ϕ1(x)
∑

h∈(H1)x

µ1(h)

≤ ϕ0(x) + ϕ1(x) ≤ 1.

On the other hand, for any k ∈ K,∣∣∣1− ∑
h∈Hr(k)

µ(h)
∣∣∣ = ∣∣∣1− ∑

h∈Hr(k)

ϕ0(s(h))µ0(h) + ϕ1(s(h))µ1(h)
∣∣∣

= ϕ0(r(k))
∣∣∣1− ∑

h∈(H0)r(k)

µ0(h)
∣∣∣+ ϕ1(r(k))

∣∣∣1− ∑
h∈(H1)r(k)

µ1(h)
∣∣∣

< ϕ0(r(k))ϵ+ ϕ1(r(k))ϵ = ϵ.
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Finally, we note that for any k ∈ K,∑
h∈Hr(k)

|µ(h)− µ(hk)| ≤
1∑

i=0

∑
h∈Hr(k)

ϕi(s(h))|µi(h)− µi(hk)|+ µi(hk)|ϕi(s(h))− ϕi(s(hk))|

=

1∑
i=0

∑
h∈(Hi)r(k)

ϕi(r(k))|µi(h)− µi(hk)|+ µi(hk)|ϕi(r(k))− ϕi(s(k))|

=

1∑
i=0

ϕi(r(k))
∑

h∈(Hi)r(k)

|µi(h)− µi(hk)|

+

1∑
i=0

|ϕi(r(k))− ϕi(s(k))|
∑

h∈(Hi)r(k)

µi(hk)

<
( 1∑

i=0

ϕi(r(k))
) ϵ

3
+

2ϵ

3
· 1 = ϵ.

This completes the proof.

Open questions

To state the following lemma, we recall that if G is an étale groupoid and x ∈ G(0),
then the isotropy group of G at x is

{g ∈ G | r(g) = s(g) = x}.
We then have the following, which provides an easy obstruction to finite dynamical
complexity.

Lemma A.13. — Let G be an étale groupoid with finite dynamical complexity. Then
all isotropy groups of G are locally finite (3).

Proof. — Let LF be the collection of all open subgroupoids of G whose isotropy
groups are locally finite. It suffices to show that LF contains the relatively compact
open subgroupoids, and is closed under decomposability. We leave the details to the
reader.

At this point, we know two obstructions to a groupoid having finite dynamical
complexity: having infinite isotropy, and being non-amenable. The following question
seems particularly interesting. It is closely related to [9, Question 5.1.3], and is a
more general version of the well-known question as to whether finite decomposition
complexity and Yu’s property A are equivalent.

3. Recall that a group Γ is locally finite if any finite subset of Γ generates a finite group.
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Question A.14. — Say G is a principal (4), amenable, étale groupoid. Must G have
finite dynamical complexity?

The connection to finite decomposition complexity of groups is not completely
clear. The following questions are thus natural.

Question A.15. — If Γ ⋉X is a transformation groupoid with finite dynamical com-
plexity (and X compact), must Γ have finite decomposition complexity?

By analogy with the case of finite dynamic asymptotic dimension [10, Section 6],
we suspect the answer to the above question is ‘yes’, but did not seriously pursue this.

Question A.16. — If Γ has finite decomposition complexity, must it admit an action
on the Cantor set with finite dynamical complexity?

Much more ambitiously, we do not see any obvious obstructions to a positive answer
to the following question. While we would be surprised if it has a positive answer in
general, it is also interesting to ask about special classes of groups Γ such as nilpotent
groups (compare [30]), free groups, general word hyperbolic groups, or even linear
groups (compare [8, Section 3]).

Question A.17. — If Γ has finite decomposition complexity, must any free amenable
action of Γ have finite dynamical complexity?

Another interesting question, related to our earlier work [10] is as follows.

Question A.18. — Say G is an étale groupoid with finite dynamic asymptotic dimen-
sion. Must G have finite dynamical complexity?

We suspect the answer is ‘yes’, but it is currently not clear. Note that the answer
is clearly yes if the dynamic asymptotic dimension of G is zero or one.

Question A.19. — Say G is an étale groupoid with finite dynamical complexity. What
structural properties must the reduced C∗-algebra C∗r (G) have?

Certainly C∗r (G) must be nuclear by Theorem A.9 and [6, Theorem 5.6.18]. How-
ever, we do not know much beyond this. For example, if C∗r (G) is also assumed simple,
one might ask about properties of interest in the classification program such as com-
parison and Z -stability (although to avoid examples like those in [7] and thus have
some hope of positive results, one should assume that G(0) is ‘reasonable’, say for
example finite-dimensional, or just a Cantor set).

4. This means that all isotropy groups are trivial; one could also ask what happens when the
isotropy groups are just assumed locally finite.
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APPENDIX B

COMPARISON TO THE BAUM-CONNES ASSEMBLY MAP

The purpose of this appendix is to identify the standard picture of the Baum-
Connes assembly map for Γ with coefficients in C(X) as discussed in say [4], with our
picture defined using localization algebras and the evaluation-at-zero map. As it is no
more complicated and may be useful for other work, we do this in more generality
than necessary for this paper in that we allow C(X) to be replaced by an arbitrary
(separable) Γ-C∗-algebra A.

Of necessity, we assume more of the reader than in the rest of the paper: specifically,
some working knowledge of Hilbert modules (see [17] for background and conventions)
and of equivariant KK-theory (see [16, Section 2] for background and conventions).
On the other hand, it is certainly not necessary to read this appendix to understand
the rest of the paper.

Definition B.1. — Let Γ be a countable discrete group, and A a (separable) Γ-C∗-al-
gebra. Let Y be a locally compact metric space, equipped with a proper, co-compact,
and isometric Γ-action, and fix a compact subset K ⊆ Y such that Γ · K = Y . Let
HY be a non-degenerate, covariant representation of C0(Y ) with the property that
no non-zero element of Y acts as a compact operator. Let H be a separable infinite-
dimensional Hilbert space equipped with the trivial Γ action.

Define the Hilbert A-module Y EA to be the tensor product

Y EA := HY ⊗A⊗H ⊗ ℓ2(Γ)

(here the tensor products are completed external tensor product of Hilbert modules:
see [17, Chapter 4]). We write elementary tensors in Y EA as

ξ ⊗ a⊗ η ⊗ ζ, ξ ∈ HY , a ∈ A, η ∈ H, ζ ∈ ℓ2(Γ).

The actions of Γ on C0(Y ) and A are denoted γ and α respectively, and the uni-
taries implementing the action of g ∈ Γ on ℓ2(Γ) and HY are denoted by λg and ug

respectively. We define an action ϵ of Γ on Y EA by

ϵg(ξ ⊗ a⊗ η ⊗ ζ) := ugξ ⊗ αg(a)⊗ η ⊗ λgζ.
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We write ϵ̃ for the Γ-action on the C∗-algebra L (Y EA) of adjointable operators on Y EA

defined for e ∈ Y EA by
(ϵ̃g(T ))(e) := ϵg(T (ϵg−1(e)));

note that even though the linear isometries ϵg : Y EA → Y EA are not adjointable
operators, we nonetheless have that if T is adjointable, then ϵ̃g(T ) is too.

The A-valued inner product on Y EA is given on elementary tensors by

⟨ξ1 ⊗ a1 ⊗ η1 ⊗ ζ1, ξ2 ⊗ a2 ⊗ η2 ⊗ ζ2⟩ := ⟨ξ1, ξ2⟩⟨η1, η2⟩⟨ζ1, ζ2⟩a∗1a2,

the right action of a1 ∈ A by

(ξ ⊗ a⊗ η ⊗ ζ) · a1 := ξ ⊗ aa1 ⊗ η ⊗ ζ,

and the left action of f ∈ C0(Y ) by

(B.1) f · (ξ ⊗ a⊗ η ⊗ ζ) = fξ ⊗ a⊗ η ⊗ ζ;

if we need notation for this representation, we will denote it by π : C0(Y ) → L (Y EA),
but we will generally omit the π when no confusion is likely to arise.

Denote by K (Y EA) the compact operators on Y EA in the sense of Hilbert module
theory, so in this case K (Y EA) is naturally isomorphic to K (HY ⊗H⊗ℓ2(Γ))⊗A (see
[17, pages 9-10]). We will need the following properties of an adjointable operator T
on Y EA.

(i) T is locally compact if for any f ∈ C0(Y ), fT and Tf are in the C∗-algebra
K (Y EA).

(ii) The support of T , denoted supp(T ), is the complement of the set{
(y, z) ∈ Y × Y there are f1, f2 ∈ C0(Y ) with f1(y) ̸= 0, f2(y) ̸= 0

and f1Tf2 = 0

}
.

The metric propagation of T is the extended real number

sup{d(y, z) | (y, z) ∈ supp(T )}.
(iii) The Γ-propagation of T is the extended real number

sup{|g| | supp(T ) ∩K × gK ̸= ∅}
(where we recall that K ⊆ Y is a fixed compact set satisfying Γ ·K = Y ).

(iv) T is Γ-invariant if ϵ̃g(T ) = T for all g ∈ Γ.

The Roe algebra, denoted C∗(Y ;A), associated to Y EA is the C∗-algebra closure of
the ∗-algebra of all finite Γ-propagation, locally compact, Γ-invariant adjointable op-
erators on Y EA for the norm inherited from L (Y EA). The localization algebra, denoted
C∗L(Y ;A), associated to Y EA is the C∗-algebra completion of the ∗-algebra all bounded,
uniformly continuous functions

a : [0,∞) → C∗(Y ;A)

such that the Γ-propagation of a(t) is bounded independently of t, such that the
metric propagation tends to zero as t tends to infinity, and where the norm is given
by supt ∥a(t)∥C∗(Y ;A).
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Remark B.2. — (i) The exact numerical value of the Γ-propagation as defined
above depends on the choice of compact set K ⊆ Y with Γ · K = Y . How-
ever, whether or not the Γ-propagation of a family of operators is bounded
does not depend on the choice of K, whence the Roe algebras and localization
algebras do not depend on this choice.

(ii) Say Y = Ps(Γ) is a Rips complex of Γ and set HY = ℓ2(Zs) as in Definition 2.2.
Say A = C(X). Considering ℓ2(X) as a left A-module, we may form the internal
Hilbert module tensor product of Y EA and ℓ2(X) over A (see [17, Chapter 4]),
and thus get an isomorphism of Hilbert spaces

Y EA ⊗A ℓ2(X) ∼= HY ⊗ ℓ2(X)⊗H ⊗ ℓ2(Γ).

The map

L (Y EA) → B(ℓ2(Γ)⊗HY ⊗H ⊗ ℓ2(X)), T 7→ T ⊗A 1ℓ2(X)

from the adjointable operators on Y EA to the bounded operators on
ℓ2(Γ)⊗HY ⊗H ⊗ ℓ2(X) is then an isometric ∗-homomorphism (see the
discussion on [17, page 42]), and it is not difficult to check that it takes the Roe
algebra C∗(Y ;A) onto the Roe algebra C∗(Γ

⟲

X; s) as in Definition 2.4. Thus
the two notions agree in this special case.

(iii) Note that if Y = Ps(Γ), then we may use HY = ℓ2(Zs) (to avoid silly de-
generacies, we should assume here that s is large enough that Ps(Γ) is not
zero-dimensional). It is clear then that if s ≤ t, there are isometric inclusions
C∗(Ps(Γ);A) → C∗(Pt(Γ);A), and similarly for the localization algebras.

Now, there is an evaluation-at-zero map

ϵ0 : K∗(C
∗
L(Y ;A)) → K∗(C

∗(Y ;A))

induced by the obvious underlying ∗-homomorphism. Our goal here is to relate this
to the Baum-Connes assembly map for Γ with coefficients in A as in [4, Section 9].

In order to make this precise, let us fix some terminology. A cut-off function for Y is
a non-negative valued function c ∈ Cc(Y ) such that∑

g∈Γ

c(gy) = 1

for all y ∈ Y ; using properness and cocompactness, it is not difficult to see that such
a c exists and we fix one from now on. If as usual γ denotes the action of Γ on C0(Y ),
then the basic projection associated to c is the element

pY ∈ Cc(Γ, C0(Y )) ⊆ C0(Y ) ⋊r Γ

defined by

(B.2) pY (g) := γg(c)c.

The associated class

[pY ] ∈ K0(C0(Y ) ⋊r Γ) = KK0(C, C0(Y ) ⋊r Γ)
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does not depend on the choice of c. The assembly map

µ : KKΓ
∗ (C0(Y ), A) → K∗(A⋊r Γ)

is defined as the composition

KKΓ
∗ (C0(Y ), A)

jΓ
r // KK∗(C0(Y ) ⋊r Γ, A⋊r Γ)

[pY ]⊗· // KK(C, A⋊r Γ),

where the first map is Kasparov’s descent morphism (see [16, Theorem 3.11]), and
the second is Kasparov product with [pY ] ∈ KK(C, C0(Y ) ⋊r Γ).

The assembly maps as defined above are functorial under proper, equivariant, con-
tinuous maps of the space Y appearing on the left hand side. Let EΓ be a universal
Γ-space for proper actions as in [4, Section 1] and define

KKΓ
∗ (EΓ, A) := lim

Y⊆EΓ
KKΓ

∗ (C0(Y ), A),

where the limit is over all Γ-invariant cocompact subspaces of EΓ. Finally, the Baum-
Connes assembly map is the map

µ : KKΓ
∗ (EΓ, A) → K∗(A⋊r Γ),

defined as the direct limit of the individual assembly maps defined above.
We will want to use the following concrete model for EΓ. Let XΓ :=

⋃
s≥0 Ps(Γ)

equipped with ℓ1-metric; as discussed in [4, Section 2], this is a model for the classi-
fying space EΓ. Moreover, the individual Rips complexes form a ‘homotopy-cofinal’
system inside the collection of Γ-cocompact equivariant subsets (ordered by inclu-
sion) of XΓ: precisely, we mean that for any cocompact Y ⊆ XΓ, the inclusion map
is (equivariantly, properly) homotopic to a map with image in some Ps(Γ). Hence the
Baum-Connes assembly map is equivalent to the direct limit of the assembly maps for
the individual Rips complexes, i.e., the Baum-Connes assembly map can be thought
of as a map

µ : lim
s→∞

KKΓ
∗ (C0(Ps(Γ)), A) → K∗(A⋊r Γ).

We are now ready to state the main result of this section.

Theorem B.3. — Let Γ be a countable discrete group, and A a Γ-C∗-algebra. Let
Y be a locally compact metric space, equipped with a proper, cocompact, and isometric
Γ-action. Let

µ : KKΓ
∗ (C0(Y ), A) → K∗(A⋊r Γ)

be the assembly map associated to this data. Then there is a commutative diagram

KKΓ
∗ (C0(Y ), A)

��

µ // K∗(A⋊r Γ)

��
K∗(C

∗
L(Y ;A))

ϵ0 // K∗(C∗(Y ;A)),

where the vertical maps are isomorphisms.
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Moreover, let s ≤ t be non-negative real numbers, and say Ps(Γ), Pt(Γ) are the
associated Rips complexes. Then with notation as above, there is a commutative dia-
gram

KKΓ
∗ (C0(Ps(Γ)), A)

��

((

µ // K∗(A⋊r Γ)

=

((

��

KKΓ
∗ (C0(Pt(Γ)), A)

��

µ // K∗(A⋊r Γ)

��

K∗(C
∗
L(Ps(Γ);A))

ϵ0 //

((

K∗(C
∗(Ps(Γ);A))

((
K∗(C

∗
L(Pt(Γ);A))

ϵ0 // K∗(C∗(Pt(Γ);A)).

Here the diagonal maps are induced by the inclusion Ps(Γ) → Pt(Γ), together with
Remark B.2 for the Roe algebras and localization algebras. Hence taking the direct
limit as s→∞ identifies the Baum-Connes assembly map

µ : lim
s→∞

KKΓ
∗ (Ps(Γ), A) → K∗(A⋊r Γ)

with the evaluation-at-zero map

ϵ0 : lim
s→∞

K∗(C
∗
L(Ps(Γ);A)) → lim

s→∞
K∗(C

∗(Ps(Γ);A)).

In order to explain the proof of Theorem B.3, we will need to define some auxiliary
C∗-algebras. The statement in the second part of Theorem B.3 on compatibility with
increasing the Rips parameter is straightforward from the proof of the first part, so
we only give the proof of the first part. Say then that Y , HY , and A as above are all
fixed.

Definition B.4. — Let Y EA be as above, and let C∗ and C∗L be shorthand for the
associated Roe algebra and localization algebra. An adjointable operator T on Y EA is
pseudolocal if for any f ∈ C0(Y ), the commutator [f, T ] is in K (Y EA). Let D∗ denote
the C∗-algebra closure of the collection of all finite Γ-propagation, pseudolocal, Γ-in-
variant adjointable operators on Y EA inside L (Y EA). Let D∗L denote the C∗-algebra
completion of all bounded, uniformly continuous functions

a : [0,∞) → D∗

such that the Γ-propagation of a(t) is uniformly bounded for all t, such that the
metric propagation tends to zero as t tends to infinity, and where the norm is given
by supt ∥a(t)∥D∗ .

Note that C∗ and C∗L are ideals in D∗ and D∗L respectively.
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We will prove the first part of Theorem B.3 by showing that there is a commutative
diagram

(B.3) KKΓ
i (C0(Y ), A)

µ //

(i)

��

Ki(A⋊r Γ)

(ii)

��
Ki+1(D

∗/C∗)
∂ // Ki(C

∗)

Ki+1(D
∗
L/C

∗
L)

(iii)

OO

(iv) // Ki(C
∗
L)

ϵ0

OO

such that the arrows labeled by roman numerals are all isomorphisms.

Remark B.5. — The arrow labeled ‘∂’ is the standard boundary map in the K-theory
six-term exact sequence associated to the short exact sequence

0 // C∗ // D∗ // D∗/C∗ // 0.

Note that we get for free from this proof that ∂ gives another model for the assembly
map: this is a version with coefficients of the ‘Paschke duality’ model for the (coarse)
Baum-Connes assembly map that is discussed for example in [25] and [12].

We now explain the main steps of the proof, starting with the top square in dia-
gram (B.3). The arrow labeled (i) is a form of Paschke duality, and is shown to be
an isomorphism by building on arguments in [13, Chapter 8]; the key technical points
needed in addition are Fell’s trick, Kasparov’s stabilization theorem, and Kasparov’s
Hilbert module version of Voiculescu’s theorem [15]. The arrow labeled (ii) is induced
by a Morita equivalence, which is canonical given the fixed choice of cut-off func-
tion c. The argument that the top square commutes involves a significant amount of
computation, and is based on [25].

For the bottom square, the arrow labeled (iii) is induced by the evaluation-at-zero
map, and the arrow labeled (iv) is the boundary map from the K-theory six-term
exact sequence associated to the short exact sequence

0 // C∗L // D∗L // D∗L/C
∗
L

// 0.

As we have a commutative diagram

0 // C∗L //

ϵ0

��

D∗L
//

ϵ0

��

D∗L/C
∗
L

//

ϵ0

��

0

0 // C∗ // D∗ // D∗/C∗ // 0,

commutativity of the bottom square is immediate from naturality of the six-term
exact sequence and Remark B.5. Our proofs that (iii) and (iv) are isomorphisms are
closely based on arguments from [22] (which were in turn inspired by work of the
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third author [37], although that paper uses quite a different argument); in both cases,
the proofs boil down to clever uses of Eilenberg swindles.

In the next two subsections, we look at the top (‘Paschke duality’) and bottom
(‘Localization algebra’) squares in diagram B.3 separately.

Paschke duality square

Let us set up some conventions for equivariant KK-theory. We will work entirely
in the odd KK and K groups: the even case can be deduced from the odd case by
replacing A with A⊗ C0(R), where C0(R) has the trivial Γ-action (alternatively, the
even case can be handled directly by arguments analogous to those used below for
the odd case, but is notationally more complicated due to the necessity of dragging
gradings through all the proofs).

Let B, C be (trivially graded) Γ-C∗-algebras. We will write cycles for KKΓ
1 (B,C)

as quadruples (E , F, β, ϕ) where E is a Hilbert C-module, F is an adjointable operator
on L (E ), β is a Γ-action on E by bounded linear isometries (not necessarily by ad-
jointable operators, however), and ϕ : B → L (E ) is an equivariant ∗-homomorphism.
Cycles for KK1(B,C) will analogously be written (E , F, ϕ). See [16, Section 2] for the
precise conditions needed to be satisfied by these cycles.

We will need the following Hilbert module version of Voiculescu’s theorem, due to
Kasparov [15, Theorem 5]; as the statement is a little technical, we repeat the special
case we need for the reader’s convenience.

Theorem B.6. — Let B be a unital, nuclear, separable C∗-algebra, and C a σ-unital
C∗-algebra. Assume that B is equipped with a unital ∗-representation B → B(H) on
some separable infinite dimensional Hilbert space H whose image contains no compact
operators. Let moreover H ⊗C be the standard Hilbert C-module, and note that there
is a unital inclusion

π : B → B(H) → L (H ⊗ C),

where the map from the bounded operators on H to the adjointable operators on
H ⊗ C is defined by amplification (see [17, page 35]).

Let ϕ : B → L (H ⊗ C) be a unital ∗-homomorphism, and consider the
sum ϕ⊕ π : B → L ((H ⊗ C)⊕ (H ⊗ C)). Then there is an adjointable isometry
V : H ⊗ C → (H ⊗ C)⊕ (H ⊗ C) such that the difference

V ∗π(b)V − ϕ(b)

is in K (H ⊗ C) for all b ∈ B.

While Kasparov’s theorem also applies in the presence of a compact group action,
there is unfortunately no general version for non-compact groups. To get around this
issue in the case of proper actions that is relevant for us, we need a version of Fell’s
trick for Hilbert modules that we now discuss.

Let E be an equivariant Hilbert A-module, with Γ-action β, and recall that the
Γ-action on A is denoted by α. We will denote by ℓ2(Γ)⊗ E the usual external tensor
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product of Hilbert modules (see [17, Chapter 4]), equipped with the Γ action λ ⊗ β

defined as the tensor product of the left regular representation and β, the right action
of A defined by (δg ⊗ e) · a := δg ⊗ ea, and the inner product defined by

⟨δg1
⊙ e1, δg2

⊙ e2⟩ := ⟨δg1
, δg2

⟩ℓ2(Γ)⟨e1, e2⟩E .
With this structure, ℓ2(Γ)⊗ E is again an equivariant Hilbert A-module.

On the other hand, let ℓ20(Γ) denote the elements of ℓ2(Γ) with finite support, and
let ℓ20(Γ)⊙E denote the algebraic tensor product (over C). Let Γ act on ℓ20(Γ)⊙E by the
tensor product λ⊙ 1 of the left regular representation and the trivial representation.
Define a right action of A on ℓ20(Γ)⊙ E by the formula (δg ⊙ e) · a := δg ⊙ eαg−1(a),
and define an A-valued inner product by the formula

⟨δg1
⊙ e1, δg2

⊙ e2⟩ := ⟨δg1
, δg2

⟩ℓ2(Γ)⟨βg−1
1

(e1), βg−1
2

(e2)⟩E
on elementary tensors, and extending. One checks that this is an A-valued inner
product, so completion gives a Hilbert A-module, which we denote by ℓ2(Γ, E ). The
action of Γ moreover extends to an action on ℓ2(Γ, E ), which we still denote by λ⊗ 1,
and the result is an equivariant Hilbert A-module.

For δg⊗e ∈ ℓ2(Γ)⊗ E , define U(δg⊗e) := δg⊗αg(a). It is straightforward to check
that U extends to an equivariant unitary isomorphism

U : ℓ2(Γ)⊗ E → ℓ2(Γ, E ),

of Hilbert A-modules. Using such a U to switch ‘on / off’ the second component of a
Γ-action of this form is called Fell’s trick.

Lemma B.7. — Let (E , F, β, ϕ) be a cycle representing some class x∈KKΓ
1 (C0(Y ), A).

Then there is a (non-canonical) way of associating a new cycle representing x

to (E , F, β, ϕ) that has the following additional properties.

(i) The new cycle has the form (Y EA, F, ϵ, π), where F is a self-adjoint element
of D∗ and π : C0(Y ) → L (Y EA) is as defined in line (B.1) above.

(ii) The process takes: degenerate cycles to compact perturbations of degenerate cy-
cles; unitary equivalences of cycles to compact perturbations of unitary equiva-
lences of cycles; operator homotopies to operator homotopies; and direct sums
of cycles to orthogonal sums of operators.

Proof. — We just give the proof of part (i) above; part (ii) follows from the proof we
give and direct checks.

Recall that γ denotes the action of Γ on C0(Y ), and that c is a fixed choice of cut-
off function for the action of Γ on Y . Let (E , F, β, ϕ) be a cycle for KKΓ

1 (C0(Y ), A).
Cutting down to C0(Y ) · E , we may assume that the action of C0(Y ) on E is nonde-
generate (compare [16, Lemma 2.8]). Let Ec denote the equivariant subspace Cc(Y ) ·E
of E , which is dense by non-degeneracy. Define V : Ec → ℓ2(Γ)⊗ E by the formula

V : e 7→
∑
g∈Γ

δg ⊗ γg(c)e;
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the sum makes sense as properness of the Γ action combined with the compact support
conditions on c and e imply that only finitely many terms are non-zero. Computing
gives

⟨V e, V e⟩ =
∑

g,h∈Γ

⟨δg, δh⟩⟨γg(c)e, γh(c)e⟩ =
〈∑

g∈Γ

γg(c
2)e, e

〉
= ⟨e, e⟩,

from which it follows that V extends to an isometric linear map V : E →ℓ2(Γ)⊗ E . It
is straightforward to check moreover that V is equivariant, and has an adjoint defined
by

V ∗ : δg ⊗ e 7→ γg(c)e.

In particular, there is an equivariant submodule E ′ of ℓ2(Γ)⊗ E such that
V (E )⊕ E ′ ∼= ℓ2(Γ)⊗ E . Summing our cycle (E , F, β, ϕ) with the degenerate cycle
(E ′, 1, β ⊗ λ|E ′ , 0) and applying a unitary isomorphism, we may replace our original
cycle by one of the form (ℓ2(Γ) ⊗ E , F, λ ⊗ β, ϕ) (this F and ϕ are not the same as
the original ones, but what exactly they are does not matter at this point; we abuse
notation as the price to pay for not multiplying primes or subscripts).

Conjugating by the unitary appearing in Fell’s trick, we may replace our cycle by
one of the form (ℓ2(Γ, E ), F, λ ⊗ 1, ϕ). Now, ignoring the Γ actions, Kasparov’s sta-
bilization theorem (see for example [17, Chapter 6]) embeds E as a complemented
submodule of HY ⊗H ⊗A. Hence we may embed ℓ2(Γ, E ) equivariantly as a comple-
mented submodule of ℓ2(Γ, HY ⊗H ⊗ A). Adding a degenerate cycle equipped with
the zero action of C0(Y ), we may thus assume that our class is represented by a cycle
of the form

(ℓ2(Γ, HY ⊗H ⊗A), F, λ⊗ 1HY ⊗H⊗A, ϕ).

Applying Fell’s trick again, this time ‘in reverse’ then shows that there is a cycle of
the form

(B.4) (Y EA, F, ϵ, ϕ)

representing the same class. Note from our construction so far that while the action
of C0(Y ) on Y EA need not be non-degenerate, we do at least have that the submodule
ϕ(C0(Y )) · Y EA is complemented.

Now, let C̃0(Y ) denote the unitization of C0(Y ); abusing notation slightly, write

π : C̃0(Y ) → B(HY ) → L (Y EA),

for the unital ∗-homomorphism extending our fixed π; here the first arrow is the
unital extension of our fixed representation, and the second is amplification. The
C∗-algebra C̃0(Y ) is nuclear, and we assumed that no non-zero element acts as a
compact operator on HY . Hence (replacing ϕ with its unitization) Theorem B.6 gives
an adjointable isometry

V : Y EA → Y EA

with the property that
V ∗π(f)V − ϕ(f) ∈ K (Y EA)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



76 APPENDIX B. COMPARISON TO THE BAUM-CONNES ASSEMBLY MAP

for all f ∈ C0(Y ).
Unfortunately, V does not need to respect the action of Γ, but we can rectify this

as follows. Choose a family of equivariant isometries(
vg : ℓ2(Γ)⊗H → ℓ2(Γ)⊗H

)
g∈Γ

with the properties that
∑

g vgv
∗
g = 1 (convergence in the strong operator topology)

and v∗hvg = 0 for h ̸= g (such exist by the classical version of Fell’s trick), and
abusing notation, also write vg for the isometries on Y EA induced by these. Consider
the submodule Ec := ϕ(Cc(Y )) · Y EA of Y EA, which is dense in the complemented
submodule E := ϕ(C0(Y )) · Y EA of Y EA. Define a map

W : Ec → Y EA, e 7→
∑
g∈Γ

vg ϵ̃g(V )γg(c)e,

which makes sense as the compact support conditions on c and Ec guarantee that the
sum on the right is finite. Computing, for any e1, e2 ∈ Ec,

⟨We1,We2⟩ =
∑

g,h∈Γ

⟨vg ϵ̃g(V )γg(c)e1, vhϵ̃h(V )γh(c)e2⟩

=
∑

g,h∈Γ

⟨v∗hvg ϵ̃g(V )γg(c)e1, ϵ̃h(V )γh(c)e2⟩

=
∑
g∈Γ

⟨ϵ̃g(V )γg(c)e1, ϵ̃h(V )γh(c)e2⟩

=
∑
g∈Γ

⟨ϵg(V ∗V )γg(c)e1, γg(c)e2⟩

=
∑
g∈Γ

⟨γg(c
2)e1, e2⟩ = ⟨e1, e2⟩.

Hence W extends to an isometry E → Y EA, which is clearly equivariant. Extending W
by zero on the complement of E , we may considerW as an equivariant partial isometry
W : Y EA → Y EA, and it is straightforward to check (using that WW ∗ is the projection
onto E := ϕ(C0(Y )) · Y EA) that

W ∗π(f)W − ϕ(f) ∈ K (Y EA)

for all f ∈ C0(Y ). This gives us that

(Y EA,W
∗FW, ϵ, π)

(where F is in the cycle in line (B.4)) is a cycle for KKΓ
1 (C0(Y ), A) that is equivalent

to our original cycle.
We now have a cycle (Y EA, F, ϵ, π) on the correct equivariant C0(Y )-A module Y EA.

Replacing the operator F by ∑
g

γg(c)ϵ̃g(F )γg(c)
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(the sum converges strictly, as one can see using elements of Cc(Y ) · Y EA as we have
a couple of times already), we get a new cycle which is just a compact perturbation
of the old one, and for which F is equivariant and of finite Γ-propagation. Together
with the other conditions defining a Kasparov cycle, this gives that F is an element
of D∗. Finally, replacing F by 1

2 (F + F ∗), we may assume that F is self-adjoint and
are done.

The above lemma now allows us to define the map labeled (i) in Diagram (B.3),
and show it to be an isomorphism.

Definition B.8. — Define a homomorphism

δ : KKΓ
1 (C0(Y ), A) → K1(D

∗/C∗)

by first representing a class x in KKΓ
1 (C0(Y ), A) as a cycle of the form in Lemma B.7;

then note the conditions on a Kasparov cycle imply that the image of 1
2 (1 + F )

in D∗/C∗ is a projection p, and define δ(x) := [p].

The following proof is based on [13, Theorem 8.4.3]: see the discussion there for
more details.

Corollary B.9. — The map δ from Definition B.8 above is a well-defined isomorphism.

Proof. — We note first that the equivalence relation on cycles used to define
KKΓ

1 (C0(Y ), A) may be taken to be that generated by operator homotopies, addition
of degenerate cycles, and unitary equivalences. Indeed, as already noted there is a
canonical process

F ⇝
∑
g∈Γ

γg(c)ϵ̃g(F )γg(c)

for replacing operators by Γ-invariant ones. Using this, it is not too difficult to see
that the proof that the equivalence relation on cycles used to define KK1(B,C) may
be taken to be that generated by operator homotopies, addition of degenerate cycles,
and unitary equivalences in the non-equivariant case [28, Theorem 19] extends to
the equivariant groups KKΓ

1 (C0(Y ), A) (it is important here that C0(Y ) is a proper
Γ-algebra). The fact that δ is well-defined follows from this: operator homotopies
give rise to homotopic projections, unitary equivalences to Murray-von Neumann
equivalent projections, and degenerate cycles to projections vulnerable to an Eilenberg
swindle. Moreover, δ is a homomorphism as one can add orthogonal projections.

To see that δ is an isomorphism, note that it is surjective as every element
of K∗(D∗/C∗) can be represented by a projection in D∗/C∗ (as opposed to a matrix
algebra over it), and lifting to D∗ gives rise to a cycle for KKΓ(C0(Y ), A). It is
injective as the equivalence relations on projections and unitaries defining K∗(D∗/C∗)
lift to equivalences of Kasparov cycles.

We now recall some more details about the KK-theoretic assembly map

µ : KKΓ
1 (C0(Y ), A) → K1(A⋊r Γ).
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We start with a class on the left hand side represented by some cycle (E , F, β, ϕ).
Kasparov [16, 3.7 – 3.11] defines a descent homomorphism

jΓr : KKΓ
1 (C0(Y ), A) → KK1(C0(Y ) ⋊r Γ, A⋊r Γ)

from equivariant KK groups to the non-equivariant KK groups of crossed products
as follows. Define a scalar product on Cc(Γ, E ) with values in Cc(Γ, A) by for each
pair for e1, e2 ∈ Cc(Γ, E ) defining the function

⟨e1, e2⟩ : Γ → A

by the formula
⟨e1, e2⟩(g) :=

∑
h∈Γ

αh−1

(
⟨e1(h), e2(hg)⟩E

)
.

Define a right action of Cc(Γ, A) on Cc(Γ, E ) by the formula

(e · a)(g) :=
∑
h∈G

e(h)αh(a(h−1g)).

Kasparov shows that the inner product is positive, and thus it makes sense to define
E ⋊Γ as the Hilbert A⋊r Γ-module defined by simultaneous completion (see [17, pages
4-5]). The module E ⋊ Γ is equipped with a left action of C0(Y ) ⋊r Γ defined as the
integrated form of the covariant representation defined by setting

(ϕ̃(f) · e)(g) := ϕ(f) · e(g), f ∈ C0(Y ), e ∈ Cc(Γ, E ), g ∈ Γ

and the unitary representation of Γ defined by

(ug · e)(h) := ϵg(e(g
−1h)), g, h ∈ Γ, e ∈ Cc(Γ, E ).

Kasparov shows that this integrates to a representation of C0(Y )⋊r Γ, also denoted ϕ̃,
so E ⋊ Γ is a C0(Y ) ⋊r Γ-A ⋊r Γ bimodule. An operator F̃ is defined on E by the
formula

(F̃ · e)(g) := F · e(g).
The map jΓr is then defined by j[E , F, β, ϕ] = [E ⋊ Γ, F̃ , ϕ̃].

The second step in defining the assembly map is to choose a cut-off function c for Y ,
and use it to construct a basic projection as in line (B.2) above and thus a class [pY ]

in K0(C0(Y ) ⋊r Γ) ∼= KK0(C, C0(Y ) ⋊r Γ). The assembly map is now defined by

µ[E , F, β, ϕ] := [pY ]
⊗

C0(Y )⋊rΓ

jΓr [E , F, β, ϕ] ∈ KK∗(C, A⋊r Γ),

where ‘⊗C0(Y )⋊rΓ’ denotes Kasparov product over the C∗-algebra C0(Y ) ⋊r Γ. More
explicitly, one checks directly that this class is represented by the Kasparov cycle

(p̃Y (E ⋊ Γ), p̃Y F̃ p̃Y , ι)

for KK∗(C, A ⋊r Γ), where ι : C → L (E ⋊ Γ) is the unital representation given
by z 7→ zpY (in what follows will usually omit the ‘ϕ̃’ where this is unlikely to cause
confusion). Hence

µ[E , F, β, ϕ] = [pY (E ⋊ Γ), pY F̃ pY , ι].
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In order to analyze this cycle, it will be extremely convenient to introduce a new
Hilbert A⋊r Γ module as follows; the following discussion is inspired by, but a little
different from [25, Lemmas 2.1, 2.2, 2.3 and 3.4]. Let ℓ20(Γ) denote the subspace of
finitely supported functions in ℓ2(Γ). Write ‘⊙’ for the uncompleted tensor product
over C, and define

E0 := HY ⊙A⊙H ⊙ ℓ20(Γ),

which is a dense subspace of Y EA. Equip E0 with the restriction of the Γ-action ϵ

on Y EA; symbolically, this is given by

ϵg(ξ ⊙ a⊙ η ⊙ δh) := ugξ ⊙ αg(a)⊙ η ⊙ δgh.

Provisionally define a new inner product on E0 with values in Cc(Γ, A) ⊆ A ⋊r Γ by
the formula

⟨e1, e2⟩EA⋊rΓ
(g) := ⟨e1, ϵg(e2)⟩Y EA

,

and a right action of Cc(Γ, A) by

e · b :=
∑
g∈Γ

ϵg−1(e · b(g)),

where the product ‘e · b(g)’ on the right refers to the A-module structure of Y EA.
Define finally a linear map

(B.5) U : E0 → Y EA ⋊ Γ, (Ue)(g) := c · ϵg(e).
A direct computation that we leave to the reader shows that for any e1, e2 ∈ E0, we
have

(B.6) ⟨Ue1, Ue2⟩Y EA⋊Γ = ⟨e1, e2⟩EA⋊rΓ

and moreover for all e ∈ E0 and b ∈ Cc(Γ, A) we have (Ue) · b = U(e · b).
It follows from this that the form ⟨, ⟩EA⋊rΓ

is positive semi-definite, and thus simul-
taneous completion as discussed in [17, pages 4-5] gives rise to a Hilbert A⋊rΓ-module
EA⋊rΓ. Moreover, the map in line (B.5) above extends to an isometric inclusion

U : EA⋊rΓ → Y EA ⋊ Γ.

Lemma B.10. — The map U : EA⋊rΓ → Y EA ⋊ Γ is an adjointable isometry, with
image exactly equal to pY · (Y EA ⋊ Γ).

Proof. — An elementary computation shows that the adjoint of U is given for
e ∈ Y EA ⋊ Γ by the formula

U∗e =
∑
g∈Γ

ϵg−1(c · e(g));
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combined with the formula in line (B.6), we now have that U is an adjointable isom-
etry. Computing, for any e ∈ Y EA ⋊ Γ and g ∈ Γ

(UU∗e)(g) = c · ϵg(U∗e) = c · ϵg
(∑

h∈Γ

ϵh−1(c · e(h))
)

=
∑
h∈Γ

cγgh−1(c) · e(h).

Making the change of variables k = gh−1, this becomes

UU∗e(g) =
∑
k∈Γ

cγk(c)e(k−1g) = (pY · e)(g).

In other words, the range projection of U is pY , which completes the proof.

Now, let E : A ⋊r Γ → A denote the faithful conditional expectation defined
by b 7→ b(e), where e here denotes the identity element of Γ. Following the discussion
in [17, pages 57-58], this conditional expectation gives rise to a ‘localization’ Hilbert
A-module EA⋊rΓ,E defined as the separated completion of EA⋊rΓ for the A-valued
inner product defined by

⟨e1, e2⟩EA⋊rΓ,E
:= E(⟨e1, e2⟩EA⋊rΓ

).

Moreover, there is a ∗-representation

πE : L (EA⋊rΓ) → L (EA⋊rΓ,E).

defined on the dense subspace of EA⋊rΓ,E defined as the image of EA⋊rΓ by the formula
πE(T ) · e = T · e; as in our case E is faithful, πE is isometric.

Lemma B.11. — The localization EA⋊rΓ,E identifies naturally with Y EA: more pre-
cisely, on the dense subspace of these A-modules defined by E0, the inner products
agree.

Moreover, having made this identification, the ∗-representation πE takes K (EA⋊rΓ)

onto C∗.

Proof. — The first part is clear from the formulas involved. For the second part, recall
first that K (EA⋊rΓ) is generated by operators of the form

θe1,e2
: e 7→ e1⟨e2, e⟩EA⋊rΓ

,

where e1, e2, e are in EA⋊rΓ (or just in the dense subspace E0). Computing,

θe1,e2
(e) =

∑
g∈Γ

ϵg−1(e1⟨e2, e2⟩EA⋊rΓ
(g)) =

∑
g∈Γ

ϵg−1(e1⟨e2, ϵg(e)⟩Y EA
).

Now, let us specialize to the case where ei = ξi ⊙ ai ⊙ ηi ⊙ δhi
for i ∈ {1, 2}, and

e = ξ ⊙ a⊙ η ⊙ δh are all given by elementary tensors, which we may regard equally
as elements of Y EA. The first part combined with the above computation then says
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that

πE(θe1,e2)e =
∑
g∈Γ

ϵg−1(e1⟨e2, ϵg(e)⟩Y EA
)

=
∑
g∈Γ

⟨η2, η⟩⟨ξ1, ugξ2⟩⟨δh1 , δgh⟩ug−1ξ1 ⊗ αg−1(a1a
∗
2)a⊗ η ⊗ δg−1h1

.

It is straightforward to check that the operator πE(θe1,e2
) is in C∗, and moreover that

linear combinations of such operators are dense in C∗, completing the proof.

At this point, we have that EA⋊rΓ is an A ⋊r Γ-module, and that the compact
operators on it identify naturally with C∗. To complete the proof that A ⋊r Γ is
Morita equivalent with C∗, it will suffice to show that EA⋊rΓ is full. For the sake of
completeness, as well as to ease the subsequent analysis, the next lemma gives a more
precise statement.

To state it, define a Cc(Γ, A)-valued inner product on E0 by the formula

⟨ξ1 ⊙ a1 ⊙ η1 ⊙ δh1 , ξ2 ⊙ a2 ⊙ η2 ⊙ δh2⟩(g) := ⟨ξ1, ξ2⟩⟨η1, η2⟩⟨δg, δh−1
1 h2

⟩αh−1
1

(a∗1a2).

In other words, identifying ℓ20(Γ) ⊙ A with Cc(Γ, A) in the natural way, this is
HY ⊙H ⊙ Cc(Γ, A) with its natural Cc(Γ, A)-valued inner product. Thus it is posi-
tive definite, and completion gives rise to the standard A⋊rΓ-moduleHY ⊗H⊗A⋊rΓ.

Lemma B.12. — The map

V : E0 → E0, ξ ⊙ a⊙ η ⊙ δh 7→ uh−1ξ ⊙ αh−1(a)⊙ η ⊙ δh−1

extends to an isometric isomorphism

V : EA⋊rΓ → HY ⊗H ⊗A⋊r Γ.

In particular, conjugation by V induces an isomorphism

K (EA⋊rΓ) ∼= K (HY ⊗H)⊗A⋊r Γ,

and combining with Lemma B.11, C∗ ∼= K ⊗A⋊r Γ.

Proof. — Computing,

⟨V (ξ1 ⊙ a1 ⊙ η1 ⊙ δh1
), V (ξ2 ⊙ a2 ⊙ η2 ⊙ δh2

)⟩HY ⊗H⊗A⋊rΓ(g)

= ⟨uh−1ξ, u−1
h2
ξ2⟩⟨η1, η2⟩⟨δg, δh1h−1

2
⟩αh1

(αh−1
1

(a∗1)αh2
(a2))

= ⟨ξ, u−1
h1h2

ξ2⟩⟨η1, η2⟩⟨δg, δh1h−1
2
⟩a∗1αh1h−1

2
(a2)

= ⟨ξ, u−1
g ξ2⟩⟨η1, η2⟩⟨δh1

, δgh2
⟩a∗1αg(a2)

= ⟨ξ1 ⊙ a1 ⊙ η1 ⊙ δh1
, ξ2 ⊙ a2 ⊙ η2 ⊙ δh2

⟩EA⋊rΓ
(g).

Hence V extends to an isometry from EA⋊rΓ into HY ⊗ H ⊗ A ⋊r Γ. A standard
computation shows that V is adjointable, with adjoint given on E0 by the same formula
as for V , i.e.,

V ∗(ξ ⊙ a⊙ η ⊙ δh) = uh−1ξ ⊙ αh−1(a)⊙ η ⊙ δh−1 .
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Clearly from these formulas V has dense image, and thus extends to a unitary iso-
morphism as claimed.

To complete the statement about the compact operators, note that we now have

K (EA⋊rΓ) ∼= K (HY ⊗H ⊗A⋊r Γ) ∼= K (HY ⊗H)⊗K (A⋊r Γ)

∼= K (HY ⊗H)⊗A⋊r Γ,

where the first isomorphism is conjugation by V , the second is a standard general
isomorphism for external tensor products of Hilbert modules discussed in [17, page 37],
and the third is the standard identification K (B) ∼= B for any C∗-algebra considered
as a Hilbert module over itself as discussed in [17, page 10].

We now go back to commutativity of the top square of diagram (B.3). Filling in
some more details, the top square in Diagram (B.3) looks as follows.

KKΓ
1 (C0(Y ), A) //

δ ∼=

��

KK1(C, A⋊r Γ) ∼=
κ // K1(A⋊r Γ)

��
K1((A⋊r Γ)⊗K )

��

∼= s

OO

K1(K (EA⋊rΓ))

∼= adV

OO

∼= πE

��
K0(D

∗/C∗)
∂

// K1(C
∗),

where in the above:

(i) the map labeled δ is the Paschke duality isomorphism of Corollary B.9;
(ii) the map labeled ∂ is the standard boundary map in K-theory;
(iii) the composition of the top two horizontal arrows is the the Baum-Connes as-

sembly map µ (we have explicitly included the isomorphism κ);
(iv) the map labeled πE is the map on K-theory induced by the isomorphism of

Lemma B.11;
(v) the map labeled adV is the map on K-theory induced by conjugation by the

unitary isomorphism of Lemma B.12;
(vi) the map labeled s is the stabilization isomorphism in K-theory.

Consider now what happens to a class in KKΓ
1 (C0(Y ), A) as it goes around this

diagram. Using Lemma B.7, we may assume our class is of the form [Y EA, F, ϵ, π],
where F is in D∗. As discussed above, the assembly map µ along the top row of
diagram (B.3) takes this class to

[pY · (Y EA ⋊ Γ), pY F̃ pY , ι] ∈ KK1(C, A⋊r Γ),

where ι is the unit representation of C. Using Lemma B.10, this class is the same
as [EA⋊rΓ, U

∗F̃U, ι]. Lemma B.12 implies that EA⋊rΓ is actually a standard module
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over A⋊r Γ, and thus one of the standard formulations of the isomorphism between
KK∗(C, B) and K∗(B) (see [5, 17.5.4 – 17.5.6]) says that this class corresponds to
the image of the projection 1

2 (1 + U∗F̃U) under the composition

∂ : K0(L (EA⋊rΓ)/K (EA⋊rΓ)) → K1(K (EA⋊rΓ)) → K1(A⋊r Γ),

of the K-theory boundary map and the combination of the isomorphism adV and the
stabilization isomorphism. On the other hand, going around the square to the bottom
right corner in the other direction, our class [Y EA, F, ϵ, π] goes to the image of the
projection 1

2 (1 + F ) in D∗/C∗ under the boundary map

∂ : K0(D
∗/C∗) → K1(C

∗).

Consider then the commutative diagram of boundary maps

K0(L (EA⋊rΓ)/K (EA⋊rΓ))
∂ // K1(K (EA⋊rΓ))

K0(D
∗/C∗)

∂
//

π−1
E

OO

K1(C
∗),

π−1
E

OO

where the vertical maps are induced by the inverse of πE restricted to its image. To
complete the proof, the discussion above implies that it will be enough to show that
the projections

1

2
(1 + U∗F̃U) and π−1

E (
1

2
(1 + F ))

in L (EA⋊rΓ)/K (EA⋊rΓ) are the same. For this the following lemma suffices, so it
completes our analysis of the top sqaure.

Lemma B.13. — For any F ∈ D∗,
πE(U∗F̃U)− F

is in C∗.

Proof. — We compute what the operator πE(U∗F̃U) does on an element e of E0⊆Y EA.

πE(U∗F̃U)e = U∗F̃Ue =
∑
g∈Γ

ϵg−1(c(F̃Ue)(g)) =
∑
g∈Γ

ϵg−1(cF (Ue)(g))

=
∑
g∈Γ

ϵg−1(cFcϵg(e)) =
∑
g∈Γ

γg−1(c)Fγg−1(c)e,

where the last inequality used Γ-invariance of F . Hence

πE(U∗F̃U)− F =
∑
g∈Γ

γg−1(c)Fγg−1(c)− F.

To see that this operator is in C∗, we must show that it is Γ-invariant, has finite
Γ-propagation, and is A-locally compact. The first two of these are clear, as they hold
for each of the two terms individually. To see that the operator is A locally compact,
let f be an element of Cc(Y ). Let S := {g ∈ Γ | f · γg−1(c) ̸= 0}, which is finite by
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properness of the action, and compact support of f and c. Then we have

f ·
(∑

g∈Γ

γg−1(c)Fγg−1(c)− F
)

= f ·
(∑

g∈S

γg−1(c)Fγg−1(c)−
∑
g∈S

γg−1(c2)F
)

= f ·
(∑

g∈S

γg−1(c)[F, γg−1(c)]
)
,

where the first equality uses that
∑
γg−1(c2) = 1. The sum in parentheses is a finite

sum of operators in K (Y EA), so we are done.

Localization algebra square

In studying the bottom square, it will help to introduce some auxiliary C∗-alge-
bras. For a C∗-algebra B, let TB denote the C∗-algebra of all bounded, uniformly
continuous functions from [0,∞) to B. We then have a commutative diagram of short
exact sequences of C∗-algebras.

(B.7) 0 // C∗ // D∗ // D∗/C∗ // 0

0 // TC∗ //

OO

TD∗ //

OO

TD∗/TC∗ //

OO

0

0 // C∗L //

OO

D∗L
//

OO

D∗L/C
∗
L

//

OO

0.

Here the upper three vertical arrows are all induced by evaluation-at-zero maps, while
the lower three vertical arrows are all induced by simply forgetting the condition on
metric propagation in the definition of D∗L and C∗L. As already mentioned, the bottom
square in Diagram (B.3) is induced by the boundary maps from the top and bottom
sequences in Diagram (B.7), and thus automatically commutes, so it remains to show
that the maps labeled (iii) and (iv) in Diagram (B.3) are isomorphisms. Indeed, that
(iii) is an isomorphism follows from Lemmas B.14 and B.15 below, while isomorphism
of (iv) is Lemma B.16 below, so these lemmas complete our analysis of the bottom
square.

Lemma B.14. — (Compare [22, Proposition 3.6].) The upper three vertical maps in
Diagram (B.7) induce isomorphisms on K-theory.

Proof. — Using the six term exact sequence and the five lemma, it suffices to show
the two maps on the left induce isomorphisms on K-theory. For this it suffices to
show the following: if B is a C∗-algebra which has a stability structure in the sense
of Definition 6.4, then the evaluation-at-zero map TB → B induces an isomorphism
on K-theory. Using the six term exact sequence again, it suffices to show that if B is
any C∗-algebra with a stability structure, then

T0B := {f ∈ TB | f(0) = 0}
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has trivial K-theory. This is what we will now do.
Let (un) be the unitaries in the definition of a stability structure. For an element

b ∈ T0(B), extend b to a function b : R → B by setting b(t) = 0 for all t < 0. For
each n, define an inclusion

µn : T0B → T0B, (µnb)(t) = b(t− n).

Then each µn is a ∗-homomorphism. Moreover, the map

µ : T0B → T0B, b 7→
∞∑

n=0

unµn(b)u∗n

is a ∗-homomorphism, as for any fixed t, all but finitely many of the functions µn(b)

take the value zero at t. Conjugating by the isometry

v =

∞∑
n=0

un+1u
∗
n

shows that µ induces the same map on K-theory as the map µ′ : T0B → T0B defined
by

µ′(b) =

∞∑
n=1

unµn−1(b)u
∗
n,

and applying a shift homotopy at each ‘level’ indexed by n (plus using uniform con-
tinuity of b) shows that µ′ induces the same map on K-theory as µ+1 : T0B → T0B

defined by

µ+1(b) :=

∞∑
n=1

unµn(b)u∗n.

Then we clearly have that
µ = adu0 ◦ µ0 + µ+1

as ∗-homomorphisms (the right hand side is a ∗-homomorphism as µ0 and µ+1 have
orthogonal images: compare Lemma 6.3 above). Note that adu0 is just conjugation by
an isometry in the multiplier algebra of T0B, and thus defines the identity onK-theory
(see Lemma 6.1 above). Hence passing to induced maps on K-theory gives

µ∗ = (adu0
)∗ ◦ (µ0)∗ + µ+1

∗ = id + µ∗,

and canceling µ∗ gives that the identity map is zero, which gives K∗(T0(B)) = 0 as
claimed.

Lemma B.15. — (Compare [22, Proposition 2.3].) With notation as in Diagram (B.7)
above, the map D∗L/C

∗
L → TD∗/TC∗ is an isomorphism of C∗-algebras.

Proof. — We define an inverse map. As the action of Γ on Y is proper, arguing as
in [35, Corollary A.2.8] one sees that for each n, there exists a partition of unity
{ϕi,n : Y → [0, 1]}i∈In

, which is Γ-invariant, such that each ϕi,n has compact support
of diameter at most 1/n, and such that

∑
i∈In

ϕ2
i,n(y) = 1 for all y ∈ Y . Define a
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map Φ : TD∗ → D∗L by stipulating that when t ∈ [n, n+ 1],

Φ(a)(t) := (n+ 1− t)
∑

i∈In+1

ϕi,n+1a(t)ϕi,n+1 + (t− n)
∑

i∈In+2

ϕi,n+2a(t)ϕi,n+2.

Then it is not too difficult to see that Φ is a well-defined complete contraction,
that Φ descends to a well-defined ∗-homomorphism on the quotients, and that
Φ(a(t))− a(t) ∈ TC∗ for all a and all t (compare [22, Lemma 2.2]). The result follows
from this.

Lemma B.16. — (Compare [22, Proposition 3.5].) The C∗-algebra D∗L has trivial
K-theory.

Proof. — Again, we use the stability structure (un)∞n=0 on D∗L coming from a decom-
position of the ‘auxiliary Hilbert space’ H into countably many infinite dimensional
summands. For each n, define a ∗-homomorphism µn : D∗L → D∗L by the formula

(µn(a))(t) = a(t+ n).

Then we may define µ : D∗L →M(D∗L) by the formula

µ(a) :=

∞∑
n=0

unµn(a)u∗n.

Note however, that the image actually lands in D∗L, not its multiplier algebra: the
point is that [µn(a)(t), f ] → 0 in norm as n → ∞ for any f ∈ C0(Y ) and t ∈ [0,∞],
using the propagation condition (compare the proof of [24, Proposition 5.18]). A
combination of conjugation by an isometry and a homotopy quite analogous to the
argument of Lemma B.14 shows that µ induces the same map on K-theory as µ+1,
where the latter is defined by the same formula, except that the sum starts at n = 1.
Finally, we have that as maps on K-theory

µ∗ = (adu0
)∗ ◦ (µ0)∗ + µ+1

∗ = id + µ∗,

whence the identity induces the zero map on K-theory, and we are done.
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In this volume, we introduce a property of topological dy-
namical systems that we call finite dynamical complexity. For
systems with this property, one can in principle compute the
K-theory of the associated crossed product C∗-algebra by split-
ting it up into simpler pieces and using the methods of controlled
K-theory. The main part of the paper illustrates this idea by giv-
ing a new proof of the Baum-Connes conjecture for actions with
finite dynamical complexity.

We have tried to keep the paper as self-contained as possi-
ble: we hope the main part will be accessible to someone with the
equivalent of a first course in operator K-theory. In particular,
we do not assume prior knowledge of controlled K-theory, and
use a new and concrete model for the Baum-Connes conjecture
with coefficients that requires no bivariant K-theory to set up.

Nous introduisons une nouvelle propriété des systèmes dy-
namiques topologiques, que nous appelons complexité dynamique
finie. Les produits-croisés de C∗-algèbres associés aux systèmes
dynamiques ayant cette propriété peuvent être décomposés en
parties plus simples, ce qui permet de calculer leurs groupes de
K-théorie, via des méthodes de K-théorie contrôlée.

Dans cet article, nous illustrons cette idée en donnant une
nouvelle preuve de la conjecture de Baum-Connes pour les ac-
tions de complexité dynamique finie. Nous avons essayé de ren-
dre l’article aussi indépendant du reste de la littérature que possi-
ble, afin qu’il reste accessible pour quelqu’un n’ayant suivi qu’un
premier cours de K-théorie opératorielle. En particulier, nous ne
supposons aucune connaissance préalable de la K-théorie con-
trôlée, et nous utilisons un nouveau modèle concret pour la con-
jecture de Baum-Connes à coefficients qui n’utilise pas la K-
théorie bivariante de Kasparov.
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