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DECOMPOSITION OF THE DIAGONAL,
INTERMEDIATE JACOBIANS,

AND UNIVERSAL CODIMENSION-2 CYCLES
IN POSITIVE CHARACTERISTIC

by

J. D. Achter, S. Casalaina-Martin & C. Vial

Abstract. – We consider the connections among algebraic cycles, Abelian varieties, and
stable rationality of smooth projective varieties in positive characteristic. Recently
Voisin constructed two new obstructions to stable rationality for rationally connected
complex projective threefolds by giving necessary and sufficient conditions for the
existence of a cohomological decomposition of the diagonal. In this paper, we show
how to extend these obstructions to rationally chain connected threefolds in positive
characteristic via ℓ-adic cohomological decomposition of the diagonal. This requires
extending results in Hodge theory regarding intermediate Jacobians and Abel-Jacobi
maps to the setting of algebraic representatives. For instance, we show that the alge-
braic representative for codimension-two cycle classes on a geometrically stably ratio-
nal threefold admits a canonical auto-duality, which in characteristic zero agrees with
the principal polarization on the intermediate Jacobian coming from Hodge theory.
As an application, we extend a result of Voisin, and show that in characteristic greater
than two, a desingularization of a very general quartic double solid with seven nodes
does not admit a universal codimension-two cycle class. In the process, we establish
some results on the moduli space of nodal degree-four polarized K3 surfaces in positive
characteristic.

Résumé. (Décomposition de la diagonale, jacobiennes intermédiaires, et cycles universels
de codimension 2 en caractéristique positive). – Nous examinons les relations entre cy-
cles algébriques, variétés abéliennes, et la propriété de rationalité stable pour les
variétés projectives et lisses en caractéristique positive. Récemment, Voisin a exhibé
deux nouvelles obstructions à la rationalité stable pour les solides projectifs com-
plexes rationnellement connexes en donnant des conditions nécessaires et suffisantes à
l’existence d’une décomposition cohomologique de la diagonale. Dans cet article, nous
montrons comment étendre ces obstructions aux solides projectifs rationnellement
connexes par chaîne en caractéristique positive en utilisant la cohomologie ℓ-adique.
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Pour cela, nous étendons des résultats en théorie de Hodge concernant les jacobi-
ennes intermédiaires et les applications d’Abel-Jacobi au contexte des représentants
algébriques. Par exemple, nous établissons que le représentant algébrique pour les cy-
cles de codimension deux sur un solide géométriquement rationnellement stable admet
un isomorphisme canonique vers son dual qui coïncide en caractéristique nulle avec
la polarisation principale sur la jacobienne intermédiaire provenant de la théorie de
Hodge. Comme application, nous étendons un résultat de Voisin et montrons qu’en
caractéristique positive différente de deux une désingularisation d’un solide quartique
très général possédant sept nœuds n’admet pas de classe de cycle universel de codimen-
sion deux. En chemin, nous établissons des résultats concernant l’espace de modules
des surfaces K3 nodales polarisées de degré quatre en caractéristique positive.
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INTRODUCTION

In this paper we consider the connections among algebraic cycle classes, Abelian va-
rieties, and stable rationality of smooth projective varieties in positive characteristic.
As motivation, recall that Clemens and Griffiths [21] have shown that if a complex
projective rationally connected threefold X is rational, then the so-called minimal
cohomology class

(0.1)
[ΘX ]g−1

(g − 1)!
∈ H2g−2(J3(X),Z)

is an effective algebraic cycle class, where g = dim J3(X), and ΘX is the canon-
ical polarization on the intermediate Jacobian J3(X) induced by the cup product
on H3(X,Z), which is principal as h1,0(X) = h3,0(X) = 0. For cubic threefolds,
which are all unirational and therefore rationally connected, Clemens and Griffiths
showed, rephrasing via the Matsusaka-Ran criterion, that [ΘX ]g−1

(g−1)! is not an effective
algebraic cycle class, and therefore that cubic threefolds are not rational.

Recently Voisin [67] showed that if a complex projective rationally connected three-
fold X is stably rational, then the minimal cohomology class (0.1) is an algebraic cycle
class (possibly not effective), and moreover, J3(X) admits a universal codimension-2
cycle class: there exists a cycle class Z ∈ CH2(J3(X) × X), which is fiberwise alge-
braically trivial, such that the composition

ψZ : J3(X) // A2(X)
AJ // J3(X)

t
� // Zt

� // AJ(Zt)

is the identity. While it is not known whether there exist any principally polarized
Abelian varieties (A,Θ) where the class [Θ]g−1

(g−1)! is not algebraic (g = dimA), and thus
it is unclear whether this test for stable irrationality via minimal cohomology classes
can fail, the latter condition, on universal codimension-2 cycle classes, has so far been
more tractable. For a smooth projective threefold X obtained as the desingularization
of a very general quartic double solid with 7 nodes, Voisin showed [67] that J3(X) does
not admit a universal codimension-2 cycle class, and therefore, that such a unirational
threefold is not stably rational. Recall that a nodal quartic double solid X is obtained
as a double cover X → P3 branched along a nodal quartic surface, and that any such
variety is unirational.
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xii INTRODUCTION

A particularly interesting aspect of Voisin’s example is that other standard tests of
stable irrationality fail. More precisely, building on previous work of Artin-Mumford
[10] and Bloch-Srinivas [18], Voisin showed [67] that if a complex projective three-
fold X is stably rational, then:

(1) (Bloch-Srinivas) H1(X,Z) = 0;
(2) (Bloch-Srinivas) H2i(X,Z) is algebraic for all i;
(3) (Bloch-Srinivas) The Abel-Jacobi map AJ : A2(X)→ J3(X) is surjective;
(4) (Artin-Mumford) TorsH•(X,Z) = 0;
(5) (Voisin) J3(X) admits a universal codimension-2 cycle class;
(6) (Voisin) [ΘX ]g−1

(g−1)! ∈ H
2g−2(J3(X),Z) is an algebraic class, where g = dim J3(X).

We have omitted the a priori weaker standard condition that H0(X,ΩiX) = 0

for i > 0 as it is implied by conditions (1)–(3). Also note that since the Albanese
is a stable birational invariant, one gets (1) in characteristic 0 without using the
Bloch-Srinivas arguments; however, for reference in the positive characteristic case,
we prefer to call this a Bloch-Srinivas condition. We emphasize that any complex
projective rationally connected threefold satisfies conditions (1)–(3); for (1) see e.g.,
[18] or [64, Cor. 10.18], (2) is [62, Thm. 2], and (3) is [18, Thm. 1(i)]. In other words,
(1)–(3) are obstructions to the rational connectivity of a threefold, while (4)–(6) are
obstructions to the stable rationality of a rationally connected threefold.

Voisin’s example is the first example of a unirational but stably irrational threefold
satisfying (1)–(4) and (6) above, while only failing (5). Finding examples of unirational
threefolds failing (4) has been the typical method of establishing stable irrationality.
For instance, the first example of a unirational but stably irrational threefold was
due to Artin and Mumford [10], who showed that there are threefolds X obtained
as desingularizations of quartic double solids with 10 nodes in special position, such
that TorsH4(X,Z) ̸= 0 (i.e., (4) fails). In that example (5) and (6) hold trivially
since g = 0. It is not known if there are examples of unirational varieties failing (6),
as again, it is unknown if this condition fails for any principally polarized Abelian
variety.

The goal of this paper is to consider these types of questions in positive charac-
teristic. The Clemens-Griffiths results on rationality have been investigated in this
setting, for instance in [52, 11] over algebraically closed fields, and more recently in
[14, 15] over arbitrary fields. In this paper we focus on the topic of stable rationality,
with an emphasis on Voisin’s conditions (5) and (6). As a brief digression, we recall
that condition (4), as well as the condition that H0(X,ΩiX) = 0 for i > 0, have been
studied extensively in the literature in positive characteristic in the context of sta-
ble rationality. In condition (4), one can for instance replace Betti cohomology with
ℓ-adic cohomology, and Artin-Mumford [10] showed for example that over any alge-
braically closed field k of characteristic not equal to 2 there are threefolds X obtained
as desingularizations of quartic double solids with 10 nodes in special position, such

ASTÉRISQUE 455



INTRODUCTION xiii

that TorsH3(X,Z2) ̸= 0, i.e., (4) fails, and therefore that these give examples of uni-
rational stably irrational threefolds over k. Motivated by Voisin’s degeneration tech-
niques [67] (see also [42, Thm. V.5.14]), the condition on the Hodge numbers has been
studied by Totaro [59], who considered varieties X obtained as desingularizations of
hypersurfaces in positive characteristic with the property that H0(X,ΩdimX−1

X ) ̸= 0;
by degeneration to positive characteristic, he gives examples of rationally connected
but stably irrational hypersurfaces in characteristic 0.

Returning now to the focus of this paper, our goal is to show that over algebraically
closed fields of positive characteristic, there are examples of unirational but stably
irrational threefolds satisfying (1)–(4), and (6) above, while failing obstruction (5);
i.e., examples of unirational threefolds with no universal codimension-2 cycle class.
We in fact study this question more generally over an arbitrary perfect field.

The first issue is to make sense of conditions (3), (5), and (6) over a perfect field K,
since the conditions are defined in terms of the intermediate Jacobian and the Abel-
Jacobi map, which are inherently transcendental. We take two approaches, one that
works in characteristic 0, and one that works in arbitrary characteristic. In the former
case, where we may take K ⊆ C, we have shown [6] that J3

a(X
an), the image of the

Abel-Jacobi map AJ : A2(Xan) → J3(Xan) on algebraically trivial cycle classes,
descends to a distinguished model J3

a,X/K over K such that the Abel-Jacobi map is
Aut(C/K)-equivariant. It is easy to see that if Xan is a rationally connected threefold
(or more generally, has universally trivial rational Chow group of zero cycles), in
which case J3

a(X
an) = J3(Xan), then the canonical principal polarization ΘXan (see

Remark 7.8) descends to a principal polarization ΘX on J3
a,X/K (Theorem 12.12; see

also [14, Prop. 2.5]).
Without the assumption that char(K) = 0, there are two replacements for the Abel-

Jacobi map in condition (3) that both play a crucial role in our treatment. To motivate
this, we recall from [53, Thm. 10.3] that TℓAJ : Tℓ A2(X)→ TℓJ

3
a(X) is an isomor-

phism, and that the Abel-Jacobi map is surjective if and only if the ℓ-adic Abel-Jacobi
map TℓAJ : Tℓ A2(X)→ TℓJ

3(X), or equivalently TℓAJ : Tℓ A2(X)→ H3(X,Zℓ)τ , is
an isomorphism, where the subscript τ indicates the torsion-free quotient. For techni-
cal reasons we find this formulation to be easier to work with in positive characteristic,
and so we actually consider two replacements for the ℓ-adic Abel-Jacobi map.

The first, which is defined on torsion cycles and takes values in the odd cohomology
with torsion coefficients, is the Bloch map [17]; taking Tate modules defines the ℓ-adic
Bloch map Tℓλ2 : Tℓ CH2(XK) −→ H3(XK ,Zℓ(2))τ , with values in ℓ-adic cohomology
modulo torsion. This map, which is in fact defined for cycles of any codimension, was
first considered by Suwa [57] in the case ℓ ̸= p and by Gros-Suwa [35] in the case ℓ = p.
We will focus on the restriction of this map to algebraically trivial cycle classes:

(0.2) Tℓλ
2 : Tℓ A2(XK) −→ H3(XK ,Zℓ(2))τ .

We recently studied the map further in [7], and will rely on the definitions and results
presented there.
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xiv INTRODUCTION

The second replacement for the Abel-Jacobi map, which is defined on algebraically
trivial cycle classes of codimension-2 and takes values in an abstract Abelian variety,
is the second algebraic representative [53] (see §1):

(0.3) ϕ2
XK

: A2(XK) −→ Ab2
XK/K

(K).

Building on work of Murre [53] over an algebraically closed field, we showed in [5] that
the algebraic representative Ab2

XK/K
over K admits a distinguished model Ab2

X/K

over K, distinguished by the fact that the universal regular homomorphism (0.3) is
Gal(K)-equivariant (see §1). Note that if K ⊆ C, then Ab2

X/K = J3
a,X/K ; i.e., the alge-

braic representative agrees with the distinguished model of the algebraic intermediate
Jacobian [5]. Taking Tate modules in (0.3) yields a map

(0.4) Tℓϕ
2
XK

: Tℓ A2(XK) −→ Tℓ Ab2
XK/K

.

While in characteristic zero both maps (0.2) and (0.4) identify canonically with
the ℓ-adic Abel-Jacobi map ([17, Prop. 3.7], [7]), it is not known if they agree in
positive characteristic (i.e., after making some identification of the cohomology of the
Abelian variety Ab2

X/K with that of X). However, in parallel with the characteristic 0

case, for a smooth projective geometrically rationally chain connected variety X the
maps (0.2) and (0.4) are known to be isomorphisms [14, Prop. 2.3]. We also point
out here that in characteristic 0, condition (3) is simply equivalent to H3(X,Q) being
supported on a divisor.

In positive characteristic, the replacement for condition (5) is given by the
notion of a universal codimension-2 cycle class for X, which is a cycle class
Z ∈ CH2(Ab2

X/K ×KX), viewed as a family of cycles on X parameterized by Ab2
X/K ,

which is fiberwise algebraically trivial, such that the composition

ψZ : Ab2
X/K(K) // A2(XK) // Ab2

X/K(K)

t � // Zt
� // ϕ2

XK
(Zt)

is the identity.
Finally, we turn to condition (6); i.e., to a replacement for the principal polar-

ization ΘX . Recall that in characteristic 0 we have Ab2
X/K = J3

a,X/K , so that for a
projective geometrically rationally connected threefold over a field of characteristic 0,
the algebraic representative Ab2

X/K comes equipped with the principal polarization
obtained via intersection in cohomology, as explained above. While in positive char-
acteristic we do not have a way to define a distinguished (principal) polarization
on Ab2

X/K for every rationally chain connected threefold X, we can do something
similar for a class of rationally chain connected threefolds that includes geometrically
stably rational threefolds:

Theorem 1 (Auto-duality of the algebraic representative). — Let X be a smooth pro-
jective threefold over a perfect field K.
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(1) If X is geometrically rationally chain connected, then there is a canonical purely
inseparable symmetric K-isogeny

(0.5) ΘX : Ab2
X/K

// Âb 2
X/K .

(2) If Vℓλ
2 is an isomorphism for some prime ℓ ̸= char(K) (e.g., X is ge-

ometrically uniruled), and XK admits a universal codimension-2 cycle
class Z, then the homomorphism of Abelian varieties induced by the cy-
cle class −(tZ ◦ Z) ∈ CH1(Ab2

XK/K
×K Ab2

XK/K
) descends to K to give a

canonical symmetric K-isogeny

(0.6) ΘX : Ab2
X/K

// Âb 2
X/K ,

which is independent of the choice of universal cycle class Z. If moreover X is
geometrically rationally chain connected, then (0.6) agrees with (0.5).

(3) If X is geometrically stably rational, then XK admits a universal codimension-2
cycle class Z, and the purely inseparable symmetric K-isogeny ΘX is an iso-
morphism.

Theorem 1 is proven in Theorem 4.4 and Theorem 12.12. The idea of the proof is as
follows. One chooses a miniversal codimension-2 cycle class Z ∈ CH2(Ab2

XK/K
×KXK)

of degree N for some natural number N , i.e., ψZ : Ab2
XK/K

→ Ab2
XK/K

is multiplica-
tion by N ; such cycles are known to exist for any surjective regular homomorphism.
The cycle class tZ ◦ Z ∈ CH1(Ab2

XK/K
×K Ab2

XK/K
) then defines, via the theory

of Picard schemes, a symmetric homomorphism ΛZ : (Ab2
X/K)K → (Âb 2

X/K)K . In
Theorem 12.12 we show that ΛZ is surjective, descends to K, and is independent of
the choice of a miniversal cycle class of degree N (although it will depend on N).
We then show that ΛZ is divisible by N2, giving a symmetric isogeny ΛX , which,
when X is geometrically rationally chain connected, we show is an isomorphism
on Tate modules for all primes l, and is therefore a purely inseparable isogeny. For
reasons having to do with positivity, we take ΘX = −ΛX in Theorem 1. When
X is assumed to be geometrically stably rational, we give a different proof of these
facts, and obtain the stronger result, that ΛX is an isomorphism. More precisely,
in Proposition 4.3, we show that there is a universal codimension-2 cycle class Z
over K. As before, the cycle class tZ ◦ Z then defines a symmetric homomorphism
ΛXK

: (Ab2
X/K)K → (Âb 2

X/K)K , which we show via a similar argument is surjective,
descends to K, and is independent of the choice of a universal cycle class, giving a
symmetric isogeny ΛX . However, to show that ΛX is an isomorphism, for which it
suffices to show that ΛXK

is an isomorphism, we use a crucial new ingredient: we
show that for a stably rational threefold over an algebraically closed field, the second
algebraic representative is induced by a cycle class (the meaning of this is made
precise in §1.5 and Proposition 4.3).
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Recall that a symmetric isogeny from an Abelian variety over a field K to its dual
is, after base change to the algebraic closure K, induced by a symmetric line bundle,
and is called a polarization if the line bundle is ample (see §A.2 for a review). We
note that if char(K) = 0, then ΘX in Theorem 1 is the Hodge-theoretic principal
polarization induced via the intersection product in cohomology, as described above.
In fact, in positive characteristic as well, ΘX is induced by the intersection product in
the middle cohomology of X; the meaning of this is made precise in Definition 12.1.
When X is a geometrically rational threefold, Benoist-Wittenberg [14, Cor. 2.8] re-
cently constructed a principal polarization ΘX on Ab2

X/K , which agrees with ΘX of
Theorem 1; in fact, extending the result of Clemens-Griffiths, they show that if X is
rational over K then (Ab2

X/K ,ΘX) is the product of principally polarized Jacobians
of curves. For some rationally chain connected threefolds we can show that ΘX is a
polarization, so that Theorem 1 in fact provides a partial answer to a question of [14,
p. 6] (see §13.2 and Corollary 13.3).

While in the introduction we have so far discussed the results in the context of
rationality, the results, as well as the techniques, are in fact most naturally explained in
terms of decomposition of the diagonal (see §2). The basic implications we use are that
stably rational (resp. rationally chain connected) implies universally trivial integral
(resp. rational) Chow group of zero cycles, which implies strict integral (resp. rational)
Chow decomposition of the diagonal (see Remarks 2.7 and 2.8). In order to study the
question of universal codimension-2 cycle classes, however, we must consider the yet
weaker notion of cohomological decomposition of the diagonal (see §6).

We can now state the following theorem regarding strict cohomological Z-decom-
position of the diagonal with respect to H•(−,Zℓ) (see Definition 6.2), which gener-
alizes [67] to algebraically closed fields of positive characteristic. Recall that Voisin
has shown that a smooth complex projective threefold admits a strict cohomological
Z-decomposition of the diagonal with respect to H•(−,Z) if and only if conditions
(1)–(6) above hold ([67, Thm. 1.7] and [68, Thm. 4.1]). (Note that it is assumed in [68,
Thm. 4.1] that the threefold be rationally connected, but this is used only to ensure
conditions (1)–(3) hold, which we have explained above hold for any complex projec-
tive rationally connected threefold.) We give necessary and sufficient conditions over
an algebraically closed field for the existence of a strict cohomological Zℓ-decomposi-
tion with respect to H•(−,Zℓ) in Theorem 15.5, however here, we prefer to mention
our result on strict cohomological Z-decompositions:

Theorem 2 (Cohomological decomposition of the diagonal). — Let X be a smooth
projective threefold over an algebraically closed field k, and fix a prime number
ℓ ̸= char(k). If ∆X ∈ CH3(X ×k X) admits a strict cohomological Z-decomposition
with respect to H•(−,Zℓ), then:

(1) H1(X,Zℓ) = 0;
(2) H2i(X,Zℓ(i)) is Z-algebraic for all i;
(3) the ℓ-adic Bloch map Tℓλ2 : Tℓ A2(X)→ H3(X,Zℓ(2))τ is an isomorphism;
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(3′) the ℓ-adic map Tℓϕ2
X/k : Tℓ A2(X)→ Tℓ Ab2

X/k is an isomorphism;
(4) TorsH•(X,Zℓ) = 0;
(5) Ab2

X/k admits a universal codimension-2 cycle class;
(6) Assuming (3) and (5), and setting ΘX : Ab2

X/k → Âb 2
X/k to be the sym-

metric isogeny of Theorem 1(2), we have that TℓΘX is an isomorphism, and
[ΘX ]g−1

(g−1)! ∈ H
2g−2(Ab2

X/k,Zℓ(g−1)) is a Z-algebraic class, where g = dimAb2
X/k

and [ΘX ] is the first Chern class of the line bundle associated to ΘX .

As a partial converse, if (1)–(6) (including (3′)) hold, then ∆X ∈ CH3(X ×k X)

admits a strict cohomological Zℓ-decomposition with respect to H•(−,Zℓ).

Theorem 2 is proven in Theorem 15.1, which is in fact stronger, addressing for in-
stance the case of perfect fields, as well as cohomological decompositions of the diago-
nal supported on curves, rather than points (see Remark 15.2). We emphasize that we
have omitted an assertion about the vanishing of Hodge numbers. In characteristic 0,
a strict cohomological Q-decomposition of the diagonal implies that H0(X,ΩiX) = 0

for i > 0 (see e.g., [65, Thm. 4.4(iii)]); however, in positive characteristic, we only know
this holds under the stronger assumption of a strict Chow Z-decomposition of the di-
agonal (see e.g., [59, Lem. 2.2], and also Remark 7.8). In addition, while conditions
(1)–(6) in Theorem 2 are sufficient for the existence of a cohomological Zℓ-decompo-
sition of the diagonal, they are not necessary. This will follow from our Theorem 3
below (and [67] over C), which establishes that the standard desingularization of a
very general quartic double solid with exactly 7 nodes does not admit a universal
codimension-2 cycle class (i.e., (5) fails); on the other hand, it is well-known that
twice the class of the diagonal admits a strict Chow decomposition, and consequently
the diagonal admits a strict cohomological Zℓ-decomposition for all ℓ ̸= 2, char(k)

(see Remarks 17.5 and 17.6). We reiterate that over an algebraically closed field, we
give necessary and sufficient conditions for a cohomological Zℓ-decomposition of the
diagonal in Theorem 15.5.

Also, while we know that (1)–(3′) hold for all geometrically rationally connected
threefolds in characteristic 0, for geometrically rationally chain connected threefolds
in positive characteristic we only know that (1) holds (Corollary 7.7), and that (3) and
(3′) hold [14, Prop. 2.3]. In fact, we expect (3′) may hold for all smooth projective
varieties over any field, and for this reason have separated it from condition (3),
although both (3) and (3′) replace the condition (3) in the complex setting, namely
the surjectivity of the Abel-Jacobi map. In other words, in positive characteristic, (1),
(3), and (3′) should still be viewed as an obstruction to a threefold being rationally
chain connected, while in contrast to the characteristic zero case, (2) could potentially
be an obstruction to the stable rationality of a rationally chain connected threefold.
However, in Corollary 15.4 we show that if a geometrically rationally chain connected
threefold lifts to characteristic 0 to a geometrically rationally connected threefold with
no torsion in cohomology, then conditions (1)–(3′) hold (as well as condition (4)).
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Regarding the proof of Theorem 2, under the assumption of the cohomological
decomposition of the diagonal, (1), (2), and (4) are now standard in the literature:
they follow from the techniques in [18] and [67] (we recall the proof in our setting in
§7.2, §7.3, and §7.1, respectively). In short, under the assumption of the cohomological
decomposition of the diagonal, the main focus is on the conditions (3) and (3′), (5),
and (6). Conditions (3) and (3′) were investigated recently in [14, Prop. 2.3] in the
context of a Chow decomposition of the diagonal; in that setting (3′) is essentially a
consequence of [18, Thm. 1(i)] and (3) is proven similarly. The key addition here, in
the context of cohomological decompositions, is that we show that morphisms induced
by families of cycle classes via universal regular homomorphisms depend only on the
cohomology class of the family of cycles (see Proposition 8.1 and Corollary 8.2). As
Abel-Jacobi maps enjoy this property, we view this as a significant improvement on
the theory of algebraic representatives in positive characteristic. This addition also
allows us to establish (5), which is an extension of a result of Voisin [65, Thm. 4.4(iii)]
[68, Thm. 4.2] to the case of finite and algebraically closed fields (see Corollary 9.3).

Condition (6) follows Voisin’s arguments in Hodge theory, as well as Mboro’s work
on cubic threefolds for char(k) ̸= 2, but we note that there are several significant
additions needed in our work. First and foremost, one needs Theorem 1 to provide a
replacement for the principal polarization, which in Voisin’s case comes from Hodge
theory, and in Mboro’s case comes from the theory of Prym varieties and fibrations
in quadrics, which rules out the case char(k) = 2. Note that ΘX in Theorem 1(1)
and (2) (and therefore in Theorem 2) is not known to be a polarization, or even
an isomorphism. This is an important point in the sense that, unlike the cases con-
sidered by Voisin and Mboro, one does not automatically have condition (6) when
dim Ab2

X/k ≤ 3. We will see this subtle point come into play later. The second key ad-
dition is Proposition 11.6, which is a technical point relating regular homomorphisms
and actions of correspondences, which generalizes a classical result regarding Abel-
Jacobi maps (see [63, Thm. 12.17]), and plays a central role in Voisin’s Hodge-theoretic
arguments in [65, 68]. These techniques are used also in [48], and for instance, Propo-
sition 11.6 applied to cubic threefolds provides a proof of the assertion [48, Lem. 3.3].
Along the way, we positively answer some cases of a conjecture of Gros-Suwa [35,
Conj. III.4.1(iii)] (see Lemma 11.5).

In light of Theorem 2, we extend to positive characteristic Voisin’s result that there
exist unirational complex smooth projective varieties with no universal codimension-2
cycle class.

Theorem 3 (Quartic double solids). — Let k be an uncountable algebraically closed field
with char(k) ̸= 2. Let X̃ be the standard resolution of singularities of a very general
quartic double solid X with exactly n ≤ 9 nodes (and no other singularities). Then
for ℓ = 2:

(A) If n ≤ 6, then (1)–(4) of Theorem 2 hold for X̃, and one or both of (5) and (6)
fail.
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(B) If 7 ≤ n ≤ 9, then (1)–(4), and (6), of Theorem 2 hold for X̃, while (5) fails.
In other words, X̃ does not admit a universal codimension-2 cycle class.

The precise notion of the meaning of a very general quartic double solid with n ≤ 9

nodes is given in §17; essentially it is a quartic double solid obtained from a quartic sur-
face with exactly n nodes, which corresponds to a very general point of the moduli of de-
gree 4polarizedK3 surfaceswith exactlynnodes,whichwe show is irreducible.Note that
one can conclude from Theorems 2 and 3, that over an uncountable algebraically closed
field kwith char(k) ̸= 2, the standard resolution of singularities X̃ of a very general quar-
tic double solidX with at most 9 nodes is not stably rational.

Our proof of Theorem 3, which is given in §17.2, is similar to that in [67], but involves
several key additions. First, as mentioned above, for every n ≤ 9 we show that in the
moduli space of polarized K3 surfaces of degree 4, the discriminant locus corresponding
to K3s with exactlyn ≤ 9 nodes is irreducible (Proposition 17.2), and that for a 10-nodal
quartic K3, the nodes can be deformed independently (Lemma 17.1), so that the Artin-
Mumford example is in the boundary of each of these components of the discriminant
(Corollary 17.3). This result is slightly more general than what is proven in [67] in char-
acteristic 0 (see Remark 17.4), and for instance, even in characteristic 0, gives a clean
statement of Theorem 3 for n = 8, 9 nodes (cf. [67, p. 210]). The point is that while the
locus of n-nodal quartic surfaces in the Hilbert scheme of quartic surfaces with exactly
n = 6, 7, 8, 9 nodes is known to be reducible (see [67, Rem. 1.2]), and for n = 6, 7 Voisin
picks out a distinguished component containing the Artin-Mumford example, the locus
in the moduli space of polarized K3 surfaces is irreducible, and we are free to take very
general points of these irreducible components. Next we show that for n ≤ 9 nodes, one
can lift a nodal quartic surface, along with its nodes, to characteristic 0 (Lemma 17.1).
From this, we can use specialization from characteristic 0 to show that conditions (1)–(4)
hold (Corollary 15.4).

Having established that the Artin-Mumford examples are degenerations of our exam-
ples, the next step is to consider degenerations of decompositions of the diagonal. Since
we must use singular quartic double solids, as well as their resolutions, this requires us to
work with ℓ-adic homological decompositions of the diagonal. This is discussed in §16,
where we show that existence of an ℓ-adic homological decomposition of the diagonal
is stable under specialization from the very general fiber (Theorem 16.6), as well as un-
der resolution of singularities of nodes (Proposition 16.3). From our degeneration to the
Artin-Mumford example, we can then conclude that the standard resolution of singu-
larities of the very general quartic double solid with at most 9 nodes does not admit a
cohomological Z2-decomposition of the diagonal.

Therefore, from Theorem 2, we can conclude that condition (5) or (6) must fail. Turn-
ing now to condition (6), we assume that condition (5) holds, and let ΘX̃ be the associ-
ated symmetric isogeny. We note that unlike the case of characteristic 0, where ΘX̃ is
known to be a principal polarization, in positive characteristic understanding the alge-
braicity of [ΘX̃ ]g−1/(g − 1)!, even when g ≤ 3, is more subtle. In addition, algebraic
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representatives need not be stable under specialization, so that even with a lift to char-
acteristic 0, there is no guarantee that ΘX̃ is a principal polarization. To get around this
issue,wefirst show (Corollary 13.3) that, due to the liftability of X̃ to characteristic 0, the
symmetric isogeny ΘX̃ is a polarization (although not necessarily principal). From this
it follows that the polarized Abelian variety (Ab2

X̃/k
,ΘX̃) admits an isogeny to a prin-

cipally polarized Abelian variety, which has the same dimension, namely g = 10 − n,
and therefore, for dimension reasons, must be a Jacobian of a curve if n = 7, 8, 9. Con-
sequently, provided n = 7, 8, 9, it follows that [ΘX̃ ]g−1/(g − 1)! is Z-algebraic, being
the pull back under the isogeny of the class of the Abel-Jacobi embedded curve in its Ja-
cobian (see Proposition 14.3). Therefore, for n = 7, 8, 9, we must have had that condi-
tion (5) fails, since otherwise conditions (1)–(6) would hold and X̃ would admit a coho-
mological Z2-decomposition of the diagonal, which we know is not the case.

We note that once one has established that the very general quartic double solid with
at most 9 nodes degenerates to the Artin-Mumford example, then the conclusion regard-
ing stable irrationality follows also from the degeneration and resolution of singularities
results of [22, Thm. 1.12], [38, Prop. 8, Thm. 9], [59, Thm. 2.3] (and for char(k) = 0,
from the degeneration results of [67, Thm. 2.1], [54, Thm. 4.2.11], [43, Thm. 1]). The ir-
rationality of desingularizations of all quartic double solids with exactly n ≤ 1 nodes
was established via the Clemens-Griffiths criterion in the case n = 0 (over C) in [61],
and for n = 1 in [11, Thm. 4.9]; recall that the Clemens-Griffiths criterion was extended
to threefolds over an algebraically closed field in [52, Thm. p. 63] and [11, Prop. 4.6], and
to threefolds over arbitrary fields in [14, Thm. 2.7] and [15, Thm. C].

Outline

The paper is split into three parts. Part I focuses on applications of Chow decomposi-
tions of the diagonal to the second algebraic representative. There we start by reviewing
the theory of algebraic representatives and fix the notation for decompositions of the di-
agonal, both ofwhichwill be used throughout the paper.We then proceed to proveTheo-
rem 1 under the hypothesis of stable rationality, and draw some consequences. The main
objective of Part II is the proof of Theorem 2. We proceed by first proving that the ex-
istence of a strict cohomological of the diagonal of a threefold implies conditions (1)–(6)
of Theorem 2, and then conclude this part in §15 by establishing that, conversely, condi-
tions (1)–(6) ensure the existence of a strict Zℓ-decomposition of the diagonal. (Where
possible, we also study p-adic decompositions in positive characteristic p.)Along theway
we complete the proof of Theorem 1 in §12. In Theorem 15.5 we give necessary and suf-
ficient conditions for the existence of a strict cohomological Zℓ-decomposition of the di-
agonal. Finally, in Part III we prove Theorem 3.
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Conventions

A variety over a field is a geometrically reduced separated scheme of finite type over
that field. For a schemeX of finite type over a fieldK, we denote by CHn(X) the Chow
group of codimension-n cycle classes on X, and by An(X) the group of algebraically
trivial cycle classes. Unless explicitly stated otherwise, H• denotes ℓ-adic cohomology
with coefficient ring RH = Zℓ for some ℓ ̸= char(K). For a smooth projective varietyX
over a field K, we denote the cycle class map by [−] : CHn(X) → H2n(X). For
a commutative ring R, and a scheme X of finite type over a field K, we denote
by CH•(X)R := CH•(X)⊗Z R the Chow group with coefficients in R.

The symbol ℓ always denotes a rational prime (i.e., a natural number that is a
prime) invertible in the base field, while l is allowed to be any rational prime, including
the characteristic of the base field.

If G is an Abelian group, then Gτ denotes the quotient of G by its torsion subgroup,
G[ℓ∞] denotes its ℓ-primary torsion and GQ denotes G⊗Z Q.

Given a field K with algebraic closure K and separable closure denoted Ksep,
together with an Aut(K/K) = Gal(Ksep/K)-module M , we denote TlM the Tate
module lim←−M ⊗Z Z/lnZ. As usual, we denote Zℓ(1) the Tate module lim←−µµµℓn ,
where µµµℓn is the group of ℓn-th roots of unity. Given a Zℓ-module M , we denote
M∨ := Hom(M,Zℓ) and M(n) := M ⊗Zℓ

Zℓ(1)
⊗n its n-th Tate twist, where for n < 0

we have Zℓ(1)
⊗n

:= (Zℓ(1)
∨
)⊗−n.

If X is a smooth projective variety over a field K and if l is a prime, we will denote
by

Tlλ
n : Tl CHn(XK)→ H2n−1(XK ,Zl(n))τ

the l-adic Bloch map defined by Suwa [57] in case l is invertible in K and
by Gros-Suwa [35] otherwise; see also [7]. Abusing notation, we will also de-
note by Tlλ

n : Tl A
n(XK)→ H2n−1(XK ,Zl(n))τ the restriction of the above map

to Tl An(XK).
For K of positive characteristic p, see [35, §I.3.1] for details on Hj(XK ,Zp). We

let W(K) denote the ring of Witt vectors over K, and B(K) its field of fractions.
Let H• be a Weil cohomology theory. For X smooth projective and geomet-

rically connected over a field K of pure dimension d, the intersection product
Hk(X)τ ×H2d−k(X)τ → H2d(X) provides a canonical identification

Hi(X)τ (d)
∪
= H2d−i(X)∨τ .
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CHAPTER 1

PRELIMINARIES ON ALGEBRAIC REPRESENTATIVES

In this section we review the notion of an algebraic representative. In positive
characteristic, this takes the role of the intermediate Jacobian.

1.1. Galois-equivariant regular homomorphisms and algebraic representatives

We start by reviewing the definition of a regular homomorphism and of an algebraic
representative (i.e., [53, Def. 1.6.1] or [55, 2.5]), as well as the notion of a Galois-
equivariant algebraic representative ([5, Def. 4.2]).

Let X be a smooth projective variety over an algebraically closed field k and let
n be a nonnegative integer. For a smooth separated scheme T of finite type over k,
we denote

A n
X/k(T ) := {Z ∈ CHn(T ×k X) | ∀t ∈ T (k), the Gysin fiber Zt is algebraically trivial}

and for all Z ∈ A n
X/K(T ) we denote by

wZ : T (k)→ An(X)

the map defined by wZ(t) = Zt. Given an Abelian variety A/k, a regular homomor-
phism (in codimension n)

ϕ : An(X) // A(k)

is a homomorphism of groups such that for every Z ∈ A n
X/k(T ), the composition

T (k)
wZ // An(X)

ϕ // A(k)

is induced by a morphism of varieties

ψZ : T → A.

An algebraic representative (in codimension n) is a regular homomorphism

ϕnX/k : An(X)→ AbnX/k(k)

that is initial among all regular homomorphisms (in codimension n); in particular if
it exists then it is unique up to unique isomorphism. For n = 1, the algebraic rep-
resentative is given by (Pic0

X/k)red together with the Abel-Jacobi map. For n = dX ,
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the algebraic representative is given by the Albanese variety and the Albanese map.
For n = 2, it is a result of Murre [53, Thm. A] that there exists an algebraic repre-
sentative.

We now review the extension in [5] to the case of a smooth projective variety X

over a perfect field K. Given an Abelian variety A/K, we say that a regular ho-
momorphism ϕ : An(XK) → A(K) is Galois-equivariant if it is equivariant with
respect to the natural actions of Gal(K). We say that an algebraic representative
ϕn
XK/K

: An(XK)→ Abn
XK/K

(K) is Galois-equivariant if Abn
XK/K

descends to an
Abelian variety AbnX/K defined over K in such a way that ϕn

XK/K
is a Galois-

equivariant regular homomorphism. We show [5, Thm. 4.4] that if XK admits an
algebraic representative in codimension n, (Abn

XK/K
, ϕn
XK/K

), then Abn
XK/K

descends
uniquely to an Abelian variety, denoted AbnX/K , over K making ϕn

XK/K
Galois-

equivariant. We also show that these are stable under Galois base change of field,
as well as under algebraically closed base change of field.

Importantly for our purposes, we show that for any Galois-equivariant regular
homomorphism ϕ : An(XK)→ A(K), any smooth separated scheme T of finite type
over K, and any cycle class Z ∈ CHn(T ×K X) such that for every t ∈ T (K) the
Gysin fiber Zt is algebraically trivial, the induced map ψZK

: TK → AK descends to
a morphism ψZ : T → A of K-schemes.

1.2. The functorial approach

In [8] we have translated the notion of a Galois-equivariant regular homomorphism
into a functorial language, which greatly clarifies many of the arguments in [5], allow-
ing us to extend some of those results, and also discuss algebraic representatives in
families. As we believe this is the correct language to use going forward, we will use
this notation in this paper. Here we briefly review the definition, referring the reader to
[8] for details. Over a perfect field (which is the setting here), the functorial approach
is entirely equivalent to the notion of a Galois-equivariant regular homomorphism,
and the reader is free to simply interchange the notation throughout.

Fix a field K. We start by defining the category of spaces that provide parameter
spaces for our cycles. Specifically, we define

Sm/K

to be the category with objects being smooth separated schemes of finite type over K,
and with morphisms being morphisms of K-schemes. Note that every morphism
t : T ′ → T in Sm/K is lci in the sense of [32, B.7.6] (see [32, B.7.3]), so that there
is a refined Gysin pull-back t! [32, §6.6]. The functor of codimension-n algebraically
trivial cycle classes on X over K is the contravariant functor

A n
X/K : Sm/K −→ AbGp
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1.2. THE FUNCTORIAL APPROACH 5

to the category of Abelian groups AbGp given by families of algebraically trivial
cycles on X/K. Precisely, given T in Sm/K, we take A i

X/K(T ) to be the group of
cycle classes Z ∈ CHi(T ×K X) such that Zt ∈ CHi(XKs) is algebraically trivial for
some (equivalently, for any) separably closed point t : SpecKs → T ; see [8, §1.1]. The
functor is defined on morphisms t : T ′ → T in Sm/K via the refined Gysin pullback t!

for lci morphisms.
Let A/K be an Abelian variety, viewed via Yoneda as the contravariant repre-

sentable functor Hom(−, A) : Sm/K → AbGp. A regular homomorphism in codimen-
sion n from A n

X/K to A/K is a natural transformation of functors

Φ : A n
X/K → A.

Here we parse the definition. Given T in Sm/K, we obtain Φ(T ) : A n
X/K(T )→ A(T );

in other words, given a cycle class Z ∈ A n
X/K(T ), i.e., a family of algebraically trivial

cycle classes on X parameterized by T , we obtain a K-morphism Φ(T )(Z) : T → A.
The regular homomorphism Φ is said to be surjective if it is surjective on Ksep-points,
i.e., if

ϕ := Φ(Ksep) : A n
X/K(Ksep) = An(XKsep)→ A(Ksep)

is surjective. An algebraic representative in codimension n consists of an Abelian
variety AbnX/K over K together with a natural transformation of functors

ΦnX/K : A n
X/K → AbnX/K

over Sm/K that is initial among all regular homomorphisms Φ : A n
X/K → A. An al-

gebraic representative, if it exists, is a surjective regular homomorphism [8, Prop. 5.1]
and it is unique up to unique isomorphism.

Remark 1.1 (Connection with Galois-equivariant regular homomorphisms). — If K is
perfect, then regular homomorphisms and algebraic representatives in this sense are
equivalent to Galois-equivariant regular homomorphisms and algebraic representa-
tives over K (see [8]). One translates the notation as follows. Given a regular ho-
momorphism Φ : A n

X/K → A, then ϕ = Φ(K) : A n
X/K(K) = An(XK) → A(K) is

a Galois-equivariant regular homomorphism. Conversely, given a Galois-equivariant
regular homomorphism ϕ : An(XK) → A(K), then we define a regular homomor-
phism Φ : A n

X/K → A as follows. For T in Sm/K and Z ∈ A n
X/K(T ), it is shown in

[8] that there is a morphism Φ(T )(Z) = ψZ : T → A of K-schemes determined by the
map of K-points given by t 7→ ϕ(Zt). The assignment on morphisms T ′ → T is made
in the obvious way.

Remark 1.2. — We have shown in [8, Thm. 1] that algebraic representatives satisfy
base change and descent along separable field extensions. More precisely, for a smooth
projective variety X over a field K and a (not necessarily algebraic) separable field
extension Ω/K, an algebraic representative ΦiXΩ

: A i
XΩ/Ω

→ AbiXΩ/Ω exists if and
only if an algebraic representative ΦiX : A i

X/K → AbiX/K exists. If this is the case,
we have in addition that there is a canonical isomorphism AbiXΩ/Ω

∼−→ (AbiX/K)Ω,
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6 CHAPTER 1. PRELIMINARIES ON ALGEBRAIC REPRESENTATIVES

and ΦiXΩ
(Ω) : Ai(XΩ)→ AbiXΩ/Ω(Ω) is Aut(Ω/K)-equivariant, relative to the above

identification. We will typically use this in the case where Ω/K is an extension of a
perfect field K by an algebraically closed field Ω.

1.3. Miniversal and universal cycles

Let X be a smooth projective variety over a field K and let Φ : A n
X/K → A be

a regular homomorphism. A miniversal cycle class for Φ is a cycle Z ∈ A n
X/K(A)

such that the homomorphism ψZ := Φ(A)(Z) : A → A is given by multiplication
by r for some natural number r, which we call the degree of Z. A miniversal cycle
class is called universal if ψZ := Φ(A)(Z) : A → A is the identity morphism, i.e., if
it is miniversal of degree one. In the case where Φ is an algebraic representative for
codimension-n cycles on X, we call a universal cycle class for Φ a universal cycle in
codimension-n for X (or for Ab2

X/K).
If K is algebraically closed, it is a classical and crucial fact [53, 1.6.2 & 1.6.3] that

a miniversal cycle class exists if and only if Φ is surjective; this also holds without
any restrictions on the field K by [8, Lem. 4.7]. In particular, since an algebraic
representative is always a surjective regular homomorphism [8, Prop. 5.1], it always
admits a miniversal cycle class. However, the existence of a universal cycle class is
restrictive: Voisin [67] established that the standard desingularization of the very
general complex double quartic solid with 7 nodes does not admit a universal cycle
class in codimension 2. One of the main results of this paper, Theorem 3, consists in
extending Voisin’s result to the positive characteristic case.

Nonetheless, recall [8, §7.1] that if X is a smooth projective variety over a field K,
then its first algebraic representative exists and it coincides with the reduced Picard
scheme (Pic0

X)red; in addition if X possesses a zero-cycle of degree-1 (e.g., if K is
finite or separably closed), then X admits a universal cycle class in codimension 1.

1.4. Regular homomorphisms and torsion

The following lemma is crucial.

Lemma 1.3 ([12, Prop. 11, Lem. p. 259]). — Let A be an Abelian variety over K. The
map A(Ksep)→ A0(AKsep), a 7→ [a]−[0] is an isomorphism on torsion. In particular,
for any integer N > 1, it sends N -torsion to N -torsion.

It admits the following consequence, which will be used in the proofs of Theorem 4.4
and Proposition 8.1.

Lemma 1.4. — Let X be a smooth projective variety over a field K. If Z ∈ A n
X/K(B) is

a family of algebraically trivial cycles on X parameterized by an Abelian variety B

over K with Z0 = 0 ∈ An(X), then wZ : B(Ksep) → An(XKsep), b 7→ Zb is a homo-
morphism on torsion. In particular, if Φ : A n

X/K → A is a regular homomorphism,
then for any prime l we have TlψZ = TlΦ(Ksep) ◦ TlwZ : TlB → TlA.
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Proof. — That wZ : B(Ksep) → An(XKsep), b 7→ Zb is a homomorphism on torsion
follows simply from the fact that it factors throughB(Ksep)→ A0(BKsep), b 7→ [b]−[0]

and from Lemma 1.3.
Note that given any Z ∈ A n

X/K(T ) for any smooth variety T over K, we do have
Φ(T )(Z) =: ψZ = Φ ◦ wZ , where wZ : T → A n

X/K is seen as a natural transfor-
mation. The assertion about Tate modules when T is an Abelian variety uses the
above-established fact that in that case wZ(Ksep) : B(Ksep) → A n

X/K(Ksep) is a
homomorphism on torsion.

Proposition 1.5. — Let X be a smooth projective variety over a field K ⊆ C, and
let ΦnX/K : A n

X/K → AbnX/K be the algebraic representative of X for n = 1, 2 or
dimX. Then (ϕnX)tors : An(XK)tors → AbnX/K(K)tors is an isomorphism. In particu-
lar TℓϕnX : Tℓ An(XK)→ Tℓ AbnX/K is an isomorphism for all primes ℓ.

Proof. — For n = 1 this is a result of Bloch and for n = dimX this is a result of
Roitman (see e.g., [7] for references). For n = 2, this is a direct result of [53] over C
and [8] that algebraic representatives are stable under base change of field from K to
an algebraically closed field Ω containing K.

In contrast, if char(K) > 0, it is not known whether

(Φ2
X/K)tors : A2(XKsep)tors → Ab2

X/K(Ksep)tors

is injective. The following proposition shows however that (Φ2
X/K)tors is surjective. In

order to deduce that TℓΦ2
X/K is surjective, one needs some more assumptions:

Proposition 1.6. — Let X be a smooth projective variety over a perfect field K and let
Φ : A n

X/K → A be a surjective regular homomorphism.
Denote ϕ := Φ(K) : An(XK)→ A(K). Then

(1) ϕtors : An(XK)tors → A(K)tors is surjective.
(2) ϕ[l∞] : An(XK)[l∞]→ A(K)[l∞] is surjective for all primes l.
(3) Tlϕ : Tl A

n(XK)→ TlA(K) has finite cokernel for all primes l, and if ΦK admits
a miniversal cycle class of degree r coprime to l, then Tlϕ is surjective.

Proof. — Parts (1) and (2) are [6, Lem. 3.2, Rem. 3.3]; part (3) follows immediately
from the definition of miniversality, and the fact that all surjective regular homomor-
phisms admit a miniversal cycle class of some degree.

1.5. Regular homomorphisms induced by cycle classes

One of the difficulties in working with regular homomorphisms is that it is hard
to construct non-trivial examples. In this subsection we explain (§1.5.1) that given
any Abelian variety A/K and any cycle class Ẑ ∈ CHdX+1−n(X ×K Â) there is an
induced a regular homomorphism

(1.1) Ẑ∗ : A n
X/K −→ A.
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8 CHAPTER 1. PRELIMINARIES ON ALGEBRAIC REPRESENTATIVES

While there is no guarantee that such a regular homomorphism will be nonzero (any
such regular homomorphism would be zero in the case n = 1 if H1(X,OX) = 0, since
in this case the algebraic representative (Pic0

X/K)red is trivial), we nevertheless find
this to be quite helpful in constructing regular homomorphisms. Conversely, regular
homomorphisms induced by cycle classes enjoy properties that we exploit in §4.

1.5.1. — Let X and Y be smooth projective varieties over a field K. Then any cycle
class

Z ∈ CHdX+1−n(X ×K Y )

induces a regular homomorphism

(1.2) ΦZ = Z∗ : A n
X/K

Z∗ // A 1
Y/K

AJ // (Pic0
Y/K)red,

where AJ : A 1
Y/K → (Pic0

Y/K)red is the Abel-Jacobi map to the first algebraic rep-
resentative, and Z∗ : A n

X/K → A 1
Y/K is the canonical natural transformation in-

duced by the correspondence Z. In other words, given any Γ ∈ A n
X/K(T ), we have

Z ◦Γ ∈ CH1(T ×K Y ) = A1(T ×K Y ), and the theory of regular homomorphisms (i.e.,
the Abel-Jacobi map) provides a morphism T → (Pic0

Y/K)red. Note that on points,
this sends a point t of T to the point corresponding to the line bundle associated to
the divisor (Z ◦ Γ)t = Z∗(Γt) on Y . We observe that our notation overloads the use
of Z∗, since it has two meanings in (1.2); some motivation for this is that the Abel-
Jacobi map is an isomorphism when evaluated on K-points, and the meaning of Z∗
should always be clear from the context. For Z ∈ CHdX+1−n(Y ×K X), we denote
by Z∗ the regular homomorphism (tZ)∗ induced by the transpose tZ.

If we apply this construction to the case Y = Â for an Abelian variety A/K (and
switch notation Z = Ẑ), we obtain the regular homomorphism (1.1).

Question 1.7. — Given a regular homomorphism Φ : A n
X/K → A, when is Φ induced

by a cycle ? In other words, when is there a cycle class Ẑ ∈ CHdX+1−n(X ×K Â) with
Φ = Ẑ∗ ?

If X admits a zero-cycle of degree 1, the question has a positive answer for
n = dimX:

Lemma 1.8. — Let X be a smooth projective variety over a field K admitting a
zero-cycle of degree 1. The algebraic representative ΦdX

X/K : A dX

X/K → AlbX/K is in-
duced by the universal codimension-1 cycle class Z ∈ CH1((Pic0

X/K)red ×K X); i.e.,
ΦdX

X/K = Z∗ := tZ∗.

Proof. — This is explained in [8, Thm. 7.9(i) and Rem. 7.4].

We will see in Proposition 4.3 that the question also has a positive answer for
codimension-2 cycles on stably rational threefolds over an algebraically closed field;
this is a crucial step towards establishing Theorem 1.
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1.5.2. — The main point of the following discussion is to prove Lemma 1.9, regarding
regular homomorphisms induced by correspondences. We start by recalling some basic
facts concerning the Picard scheme. Let X and Y be smooth projective varieties
over a field K admitting K-points x0 and y0 respectively. Then there is a canonical
isomorphism
(1.3)

CH1(X ×K Y )

p∗X CH1(X) + p∗Y CH1(Y )
= Hom(AlbX/K ,Pic0

Y/K) (= Hom(AlbY/K ,Pic0
X/K)),

which is induced from the homomorphism sending a line-bundle L on X ×K Y with
trivial restriction on {x0} ×K Y to the unique homomorphism AlbX/K → Pic0

Y/K

induced by the morphism X → Pic0
Y/K given on points by x 7→ L|{x}×KY

. Note that

the homomorphism AlbX/K → Pic0
Y/K above is the one induced from the regular

homomorphism A dX

X/K → Pic0
Y/K by the universal property of the Albanese map,

considered as an algebraic representative for zero-cycles on X. Note also that the
second equality of (1.3) is simply given by taking the dual homomorphism. Finally, we
note that Hom(AlbX/K ,Pic0

Y/K) = Hom(AlbX/K , (Pic0
Y/K)red), since AlbX/K , being

an Abelian variety, is reduced.
Now consider the case where X = B is an Abelian variety of dimension g. If

Z ∈ CH1(B ×K Y ),

then identifying B = AlbB/K , the homomorphism B → (Pic0
Y/K)red induced by (1.3)

coincides with the homomorphism Φ(B)(∆B − (B × {0})) : B → (Pic0
Y/K)red where

Φ is the regular homomorphism

Φ = Z∗ : A g
B/K → A 1

Y/K → (Pic0
Y )red

of (1.2) with n = g, and
∆B ∈ CHg(B ×K B)

is the family of dimension-0 cycles given by the diagonal. Indeed, it is enough to
check that these two homomorphisms agree on Ksep-points. We have a commutative
diagram

B(Ksep) //

id &&

A0(BKsep)

alb

��

Z∗ // A1(YKsep)

AJ

��
B(Ksep) // Pic0

Y (Ksep),

where the left triangle commutes because alb([x] − [0]) = x by definition of the
Albanese map, and where the bottom horizontal arrow is the homomorphism induced
by the fact that alb is an algebraic representative for A g

B/K . The latter coincides, by
construction, with the homomorphism induced by the canonical isomorphism (1.3).

A special case we will use often is:
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Lemma 1.9. — Let X be a smooth projective variety over a field K, and let A and
B be Abelian varieties over K. Given correspondences Z ∈ CHn(B ×K X) and
Ẑ ∈ CHdX+1−n(X ×K Â), the regular homomorphism

Φ : A dB

B/K

Z∗ // A n
X/K

Ẑ∗ // A

when evaluated at the Abelian variety B and the cycle ∆B − (B ×K {0}) ∈ A dB

B/K(B)

gives a homomorphism

(1.4) Φ(B)(∆B − (B ×K {0})) : B −→ A,

which agrees with the homomorphism induced from the correspondence

Ẑ ◦ Z ∈ CH1(B ×K A)

via (1.3), and which on K points factors as

(1.5) B(K)
wZ // An(XK)

Ẑ∗ // A(K).

Moreover, the dual homomorphism Â→ B̂ to (1.4) is induced by tZ ◦ tẐ.

Proof. — Everything except the assertion (1.5) follows from the discussion above. For
(1.5), we simply note that from the definitions, there is a factorization

B(K)
wZ //

w∆B−(B×K{0}) %%

An(XK)
Ẑ∗ // A(K).

AdB (BK).

Z∗

OO
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CHAPTER 2

PRELIMINARIES
ON CHOW DECOMPOSITION

OF THE DIAGONAL

In this section we recall the definition of a Chow decomposition of the diagonal,
and the connection with universal CH0-triviality. The purpose is primarily to fix
terminology, since the terminology is somewhat fluid in the literature. In particular,
we consider here decompositions of the diagonal that are slightly more general than
those equivalent to universal CH0-triviality, and we wish, as well, to keep track of the
exact multiple of the diagonal that may admit a decomposition.

Recall that for a scheme X of finite type over a field K, we say that a cycle
class Z ∈ CHn(X) is supported on a closed subscheme W ⊆ X if it is in the kernel of
the restriction map CHn(X)→ CHn(X ∖W ). Equivalently, from the exact sequence

(2.1) CHn(W )→ CHn(X)→ CHn(X ∖W )→ 0,

we can say that Z is supported on W if and only if it is the push forward of a cycle
class on W .

Definition 2.1 (Chow decomposition of a cycle class). — Let R be a commutative ring.
Let X be a smooth projective variety over a field K, and let

ji : Wi
� � ̸= // X , i = 1, 2

be reduced closed subschemes not containing any component of X. An R-decomposi-
tion of type (W1,W2) of a cycle class Z ∈ CHdX (X ×K X)R is an equality

(2.2) Z = Z1 + Z2 ∈ CHdX (X ×K X)R,

where Z1 ∈ CHdX (X×KX)R is supported on W1×KX and Z2 ∈ CHdX (X×KX)R is
supported on X ×KW2. When R = Z, we call this a decomposition of type (W1,W2).

We say that Z ∈ CHdX (X ×K X)R has an R-decomposition of type (d1, d2) if it
admits an R-decomposition of type (W1,W2) with dimW1 ≤ d1 and dimW2 ≤ d2.

Remark 2.2. — We note here for convenience that if X is smooth and projective,
a decomposition of a multiple N∆X of the diagonal must have d1 + d2 ≥ dX − 1.
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Indeed, if d1 + d2 < dX − 1, then a short argument using (3.4), below, would imply
that N · H2(X) = 0, giving a contradiction as the class of any ample line bundle
on X is not torsion.

In what follows, let
pri : X ×K X → X, i = 1, 2

be the respective projection maps.

Example 2.3. — For projective space PrK , the diagonal class is

∆Pr
K

=

r−1∑
i=0

pr∗1[H]i × pr∗2[H]r−i ∈ CHr(PrK ×K PrK),

where [H] is the class of a hyperplane in PrK . Thus for any non-negative integers d1, d2

with d1 + d2 = r − 1, the cycle class ∆Pr
K
∈ CHr(PrK ×K PrK) has a decomposition of

type (W1,W2) with Wi ⊆ PnK a linear space of dimension di, i = 1, 2.

In many situations, we will want to specify a more restricted type of decomposition,
which is common in the literature due to its connection with universal CH0-triviality
(see Remark 2.6 below).

Definition 2.4 (Strict decomposition of a cycle class). — A strict R-decomposition of
a cycle class Z ∈ CHdX (X ×K X)R is an R-decomposition of type (dX − 1, 0). In
other words, it is an equality Z = Z1 +Z2 ∈ CHdX (X ×K X)R as in (2.2) where Z1is
supported on D×KX for some codimension-1 subvariety D ⊆ X and Z2 is supported
on X ×K W2 for some 0-dimensional subvariety W2 ⊆ X. When R = Z, we call this
a strict decomposition.

Remark 2.5 (Strict decomposition of the diagonal). — If for some integer N > 0 we
have N∆X = Z1 + Z2 ∈ CHdX (X ×K X)R is a strict R-decomposition of N times
the diagonal, then the image of the degree map CH0(X)R → R contains NR and
Z2 = pr∗2 α for any zero-cycle α ∈ CH0(X) of degree N . Indeed, by definition of a
strict decomposition, we must have Z2 = pr∗2 α for some zero-cycle α ∈ CH0(X)R.
Letting ∆X act on zero-cycles on X, and since Z1 acts trivially on zero-cycles on X,
we find that for all β ∈ CH0(X)R we have Nβ = (∆X)∗β = (pr∗2 α)∗β = deg(β)α. It
follows that deg(α) = N and that any zero-cycle of degree N is rationally equivalent
to α. In particular, in the situation where R = Z and X(K) ̸= ∅, if ∆X admits a
strict decomposition, then Z2 = X ×K x for any K-point x ∈ X(K).

Remark 2.6 (Universal CH0-triviality). — A proper variety X over a field K is
said to be universally (CH0)R-trivial if, for any field extension L/K, the degree
map CH0(XL)R → R is an isomorphism. When R = Z, we simply say universally
CH0-trivial. It follows classically from [18] that a smooth proper variety X over a
field K is universally (CH0)R-trivial if and only if the class of the diagonal admits a
strict R-decomposition.
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Remark 2.7 (Stably rational varieties and decomposition of the diagonal). — It is well-
known (see, e.g., [32, Ex. 16.1.11]) that universal CH0-triviality is a stable birational
invariant for smooth proper varieties. Thus a stably rational proper variety is univer-
sally CH0-trivial. As a consequence, for a stably rational smooth projective variety X,
we have that ∆X ∈ CHdX (X ×K X) admits a strict decomposition.

Remark 2.8 (Rationally chain connected varieties and decomposition of the diagonal).
— Let X/K be a smooth projective rationally chain connected variety over a field K.
From say [42, Thm. IV.3.13], we have that XΩ is CH0-trivial for every algebraically
closed field Ω/K, and therefore that X is universally (CH0)Q-trivial. It follows that
some nonzero integer multiple of the diagonal N∆X ∈ CHdX (X×KX) admits a strict
decomposition.

Remark 2.9 (Unirational varieties and decomposition of the diagonal). — Let
X be a smooth projective unirational variety over a field K. As X is rationally
chain connected, it follows that some nonzero integer multiple of the diagonal
N∆X ∈ CHdimX(X ×K X) admits a strict decomposition. In fact, if Pn 99K X is
a dominant rational map of degree N , then CH0(X)Z[1/N ] is universally trivial,
so that ∆X ∈ CHdX (X ×K X) admits a strict Z[ 1

N ]-decomposition (Remark 2.6).
However, if either char(K) = 0, or K is perfect and dX ≤ 3, then we obtain the
stronger result that N∆X ∈ CHdX (X ×K X) admits a strict decomposition; this is
well-known, and we direct the reader to the proof of [48, Prop. 2.2].

Remark 2.10 (Uniruled varieties and decomposition of the diagonal). — Let X be
a smooth projective geometrically uniruled variety over a field K. It is clear
that CH0(X)Q is universally supported on a subvariety W2 of dimension dX − 1, in
the sense that the push-forward map CH0((W2)L)Q → CH0(XL)Q is surjective for
all field extensions L/K. By [18], we see that ∆X ∈ CHdimX(X ×K X)Q admits a
Q-decomposition of type (W1,W2) with dimW1 ≤ dX − 1. Clearing denominators,
there is some nonzero integer multiple N∆X ∈ CHdimX(X ×K X) that admits a
decomposition of type (W1,W2).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2025





CHAPTER 3

FACTORING CORRESPONDENCES WITH GIVEN SUPPORT

A key tool we will use in what follows is the fact that a decomposition of the
diagonal, viewed from the perspective of correspondences, gives a factorization of
the identity into maps involving lower dimensional varieties. Here we consider the
situation in the various cohomology theories. The key point is that correspondences
require intersection theory, and therefore we prefer to work on smooth spaces.

3.1. A factorization lemma for correspondences

Let X be a scheme of finite type over a field K. We say that X has dimension ≤ d
if all irreducible components of X have dimension ≤ d, while we say X has pure
dimension d if all irreducible components of X have dimension d.

Lemma 3.1. — Let X and Y be connected smooth proper varieties over a field K of
characteristic exponent p, and let j : W ↪→ X be a closed subscheme of dimension ≤ n.
If Z ∈ CHc(X ×K Y ) is a cycle class of dimension c supported on W ×K Y , then
Z, seen as a correspondence from X to Y with Z[ 1p ]-coefficients, factors through a

scheme W̃ which is smooth proper and of finite type over a finite purely inseparable
extension of K and of pure dimension n. More precisely, there exist a nonnegative
integer e and correspondences Z̃ ∈ CHc(W̃ ×K Y ) and γ̃ ∈ CHdimX(X ×K W̃ ) such
that

pe Z = Z̃ ◦ γ̃ in CHc(X ×K Y ).

In addition, assuming K is perfect and that resolution of singularities holds in di-
mensions ≤ n over K, the correspondence Z factors as above with e = 0 and with W̃
smooth proper of finite type over K of pure dimension n.

Proof. — It is clearly sufficient to establish the lemma for a cycle class Z that is
the class of an integral closed subscheme of X ×K Y that, by abuse of notation, we
still denote Z. Replacing W with the (scheme-theoretic) image of Z inside X via the
first projection, we may assume that W is integral and that Z dominates W . Let
us consider an alteration τ : W ′ → W (i.e., τ proper and generically finite) of W
with W ′ smooth and proper over a finite purely inseparable extension L of K. By
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[58, Thm. 4.3.1] we may in fact choose τ of degree pe for some nonnegative integer e,
while we can choose τ to be of degree 1 if K is perfect and resolution of singularities
holds in dimensions ≤ n (which is the case for n = 3 in positive characteristic [25,
Thm. p. 1893] and for any n in zero characteristic). Since the push-pull along the field
extension L/K is multiplication by [L : K], which in our case is a power of p, we may
by pulling back Z to XL ×L YL = (X ×K Y )L assume that L = K. We now define
j̃ := j ◦ τ ◦ pW ′ : W̃ → X, where pW ′ : W̃ := Pn−dimW

L ×L W ′ → W ′ is the natural
projection, and we set γ̃ to be the transpose of the class of the graph of j̃. We claim
that there is a cycle class Z̃ ∈ CHc(W̃ ×K Y ) such that

(3.1) (j̃ × IdY )∗Z̃ = pe Z.

Together with the identity (j̃×IdY )∗Z̃ = Z̃ ◦ γ̃ (see [32, 16.1.1]), we obtain the sought-
after cycles γ̃ and Z̃. To establish the claim, consider the fibered product diagram

W ′ ×K Y
τ×IdY // W ×K Y

W ′◦ ×K Y
τ×IdY //

?�

OO

W ◦ ×K Y,
?�

OO

where W ◦ is the smooth locus of W , and W ′◦ is the pre-image of W 0 under τ . Since
W ◦, W ′◦, and W ′ are all smooth, all of the morphisms in the diagram admit lci
factorizations in the sense of Fulton (see [32, Note, p. 439]); thus all the morphisms
admit refined Gysin pull-backs. We further restrict W ◦ (and W ′◦) so that W ′◦ →W ◦

is finite and flat (it is generically finite and generically étale). With this set-up, we
set Z ′ to be the closure in W ′ ×K Y of the flat pull back of Z along the composition
W ′◦ ×K Y → W ◦ ×K Y ↪→ W ×K Y , where Z is considered as a cycle on W ×K
Y ; the assertion (j̃ × IdY )∗Z

′ = peZ then follows from functoriality of pull-back,
and the fact that the push-forward of a pull-back along a finite flat morphism is
multiplication by the degree. Indeed, we are assuming that Z dominates W . Since
W ′◦ ×K Y →W ◦ ×K Y ↪→W ×K Y is a composition of flat morphisms, we may use
flat pull-back. Taking the closure in W ′ ×K Y we obtain a class in W ′ ×K Y . Now
by definition of the push-forward, and the fact that Z dominates W , we can compute
this on W ′◦ ×K Y →W ◦ ×K Y giving the result.

Finally, we define Z̃ := {0} × Z ′ ∈ CHc((Pn−dimW
L ×L W ′) ×K Y ) and we clearly

have (pW ′ × IdY )∗Z̃ = Z ′ and hence (j̃ × IdY )∗Z̃ = peZ.

3.2. Factorizations of morphisms induced by correspondences

With the set-up of Lemma 3.1 and its proof, we can factor the action of the corre-
spondence peZ in various settings as follows.

3.2.1. Chow groups. — The correspondence

peZ∗ : CHn(X)→ CHn(X), α 7→ pe(pr1)∗(pr∗2 α · Z),
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and the correspondence

peZ∗ : CHn(X)→ CHn(X), α 7→ pe(pr2)∗(pr∗1 α · Z),

factor, respectively, as:
(3.2)

CHd
W̃
−dX+n(W̃ )

j̃∗

**

CHn(X)

Z̃∗
((

peZ∗ // CHn(X)

CHn(X)

Z̃∗
44

peZ∗ // CHn(X) CHn(W̃ ).
j̃∗

66

3.2.2. Algebraic representatives. — We obtain factorizations similar to (3.2) if we
consider algebraically trivial cycle classes. This induces diagrams of algebraic repre-
sentatives, if they exist:
(3.3)

A
d

W̃
−dX+n

W̃/K j̃∗

))

A n
X/K

peZ∗ //

Φn
X/K

��

j̃∗

((

A n
X/K

Φn
X/K

��

A n
X/K

Z̃∗ 55
peZ∗ //

Φn
X/K

��

Φ
d

W̃
−dX+n

W̃ /K��

A n
X/K

Φn
X/K

��

A n
W̃/K

Z̃∗
66

Φn

W̃ /K

��

Ab
d

W̃
−dX+n

W̃/K j̃∗

))

AbnX/K
peZ∗

j̃∗ ((

// AbnX/K

AbnX/K

Z̃∗ 55
peZ∗ // AbnX/K Abn

W̃/K
,

Z̃∗

66

where the dashed arrows are induced by the universal property of the algebraic rep-
resentative.

3.2.3. Cohomology groups. — In the same situation at the start of §3, fix a Weil
cohomology theory H• with coefficient ring RH, and a ring homomorphism R→ RH.
Then the correspondences peZ∗ : Hn(X) → Hn(X) and peZ∗ : Hn(X) → Hn(X)

factor, respectively, as:
(3.4)

H2(d
W̃
−dX)+n(W̃ )(d

W̃
− dX)

j̃∗

++

Hn(X)

j̃∗
((

peZ∗ // Hn(X)

Hn(X)

Z̃∗
33

peZ∗ // Hn(X) Hn(W̃ ).
Z̃∗

66

Note that in the case where n is even, these diagrams are compatible with the cycle
class maps and the diagrams (3.2).

3.2.4. Abel-Jacobi maps. — Consider now the case where K ⊆ C. Since corre-
spondences induce morphisms of integral Hodge structures, we obtain factoriza-
tions similar to (3.3). Here CH∗(−)hom denotes the kernel of the cycle class map
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CH∗(−)→ H2∗(−,Z(∗)).
(3.5)

CHd
W̃
−dX+n(W̃ an)hom

j̃∗
**

CHn(Xan)hom
peZ∗ //

AJ

��

j̃∗

))
CHn(Xan)hom

AJ

��

CHn(Xan)hom

Z̃∗
44
peZ∗ //

AJ

��

AJ��
CHn(Xan)hom

AJ

��

CHn(W̃ an)hom

Z̃∗ 55

AJ

��
J2(d

W̃
−dX+n)−1(W̃ an)

j̃∗ **

J2n−1(Xan)
peZ∗

j̃∗
))

// J2n−1(Xan)

J2n−1(Xan)

Z̃∗ 44
peZ∗ // J2n−1(Xan) J2n−1(W̃ an).

Z̃∗

55

In [6], we have defined a distinguished model J2n−1
a,X/K of the image of the Abel-

Jacobi map on algebraically trivial cycle classes AJ : An(Xan)→ J2n−1(Xan). From
the functoriality statement of [6, Prop. 5.1], we obtain commutative diagrams:
(3.6)

A
d

W̃
−dX+n

W̃/K j̃∗

))

A n
X/K

peZ∗ //

AJ

��

j̃∗

((

A n
X/K

AJ

��

A n
X/K

Z̃∗ 55

peZ∗ //

AJ

��

AJ
��

A n
X/K

AJ

��

A n
W̃/K

Z̃∗
66

AJ

��

J
2(d

W̃
−dX+n)−1

a,W̃/K j̃∗

))

J2n−1
a,X/K

peZ∗

j̃∗
''

// J2n−1
a,X/K

J2n−1
a,X/K

Z̃∗ 55
peZ∗ // J2n−1

a,X/K J2n−1

a,W̃/K
.

Z̃∗

77

Note that the morphisms of complex tori in (3.5) and (3.6) are induced by the mor-
phisms in cohomology (3.4) with H•(−) = H•((−)an,Z).

3.3. Chow decomposition of the diagonal and existence of algebraic representatives

As already hinted at in [5, §6.2], the existence of certain Chow decompositions of
the diagonal implies the existence of algebraic representatives.

Proposition 3.2 (Existence of algebraic representatives). — Let X be a smooth pro-
jective variety over a perfect field K and let n be a positive integer. Assume that
∆X ∈ CHdX (X ×K X)Q admits a decomposition of type (d1, d2) with d1 ≤ dX−(n−1)

and d2 ≤ n− 1. Then there is an algebraic representative ΦnX/K : A n
X/K → AbnX/K .

Proof. — By Lemma 3.1, we may write ∆X = Z̃1 ◦ γ̃1 + tγ̃2 ◦ tZ̃2, with
Z̃i ∈ CHdX

(W̃i ×K X)Q and γ̃i ∈ CHdX (X ×K W̃i)Q for some smooth projective
varieties W̃i of pure dimension di with d1 = dX − n + 1 and d2 = n − 1. By (3.2)
with rational coefficients, this decomposition provides a surjective homomorphism
A1((W̃1)K)→ An(XK) induced by a correspondence, and we conclude the existence
of the algebraic representative by Saito’s criterion (e.g., [8, Prop. 5.3]), as in the
proof of [5, Prop. 6.7].
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CHAPTER 4

CHOW DECOMPOSITION AND SELF-DUALITY
OF THE ALGEBRAIC REPRESENTATIVE

The aim of this section is to prove the auto-duality statement of Theorem 1 in
the case where the threefold is assumed to be geometrically stably rational; this is
Theorem 4.4(2). We start with a motivic result (Theorem 4.2), which allows us to
show that threefolds admitting a strict decomposition of the diagonal have universal
regular homomorphisms for codimension-2 cycle classes that are themselves induced
by a cycle class (Proposition 4.3). With this we prove Theorem 4.4.

4.1. A motivic statement

To start with, we consider a commutative unital ring R and we consider the cat-
egory MK,R of pure Chow motives over K with R-coefficients as described in [9,
§4]. Denote by h(X)R the Chow motive of X with R-coefficients. Here is a general
proposition, which is a version of [60, Thm. 2.1] with R-coefficients.

Proposition 4.1. — Let X be a smooth projective variety of pure dimension d over
a perfect field K, and let p ∈ HomMK,R

(h(X)R, h(X)R) := CHd(X ×K X)R be an
idempotent correspondence with the property that p∗CH0(XL)R = 0 for all field ex-
tensions L/K. Assume either that the exponential characteristic of K is invertible
in R or that resolution of singularities holds in dimensions ≤ d − 1. Then there
exist a smooth projective variety Y over K of dimension d − 1 and an idempotent
q ∈ CHd−1(Y ×K Y )R such that (X, p, 0) ≃ (Y, q,−1) in MK,R.

Proof. — Let us denote by Xi the connected components of X and by
pij ∈ HomMK,R

(h(Xi)R, h(Xj)R) the (i, j)-component of p. By assumption,
if ηi denotes the generic point of Xi, then we have p∗[ηi] = 0 and hence
(pij)∗[ηi] = 0 for all j. But (pij)∗[ηi] is the restriction of pij ∈ CHd(Xi ×K Xj)R
to lim−→CHd(U×KXj)R = CH0((Xj)k(ηi))R, where the limit is taken over all open sub-
sets U ofXi. Therefore, by the localization exact sequence for Chow groups, there exist
for all j a proper closed subsetDij ⊂ Xi and a correspondence γij ∈ CHd(Dij×KXj)R
such that γij maps to pij via the inclusion Dij ×K Xj → Xi ×K Xj . In other words,
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20 CHAPTER 4. CHOW DECOMPOSITION AND SELF-DUALITY

pij is supported on Dij ×K Xj . By Lemma 3.1, we get a factorization pij = rij ◦ sij ,
where rij ∈ CHd(Yij ×K Xj)R and sij ∈ CHd(Xi ×K Yij)R and where Yij is smooth
projective over K of pure dimension d − 1. If we now consider the correspon-
dences r =

⊔
rij and s =

⊔
sij , we have p = r ◦ s. Moreover, the correspondence

q := s◦r ◦s◦r = s◦p◦r ∈ CHd−1(Y ×K Y )R is an idempotent, and p◦r ◦q ◦s◦p = p

as well as q ◦ s ◦ p ◦ r ◦ q = q. These last two equalities exactly mean that p ◦ r ◦ q,
seen as a morphism of Chow motives with R-coefficients from (Y, q,−1) to (X, p, 0),
is an isomorphism, with inverse q ◦ s ◦ p.

Theorem 4.2. — Let X be a (geometrically) connected smooth projective threefold over
a perfect field K. Assume that CH0(X)R is universally spanned by a degree-1 zero-
cycle x ∈ CH0(X)R. Set

Γ := ∆X − x×K X −X ×K x ∈ CH3(X ×K X)R.

Then there exist a smooth projective curve C over K, an idempotent correspondence
p ∈ CH1(C ×K C)R and an isomorphism of Chow motives with R-coefficients

(X,Γ) ≃ (C, p,−1).

Conceretely, there exist a smooth projective curve C over K and correspondences
α ∈ CH2(X ×K C)R and β ∈ CH2(C ×K X)R such that Γ = β ◦ α.

Proof. — First note that Γ does not depend on the choice of the degree-1 zero-
cycle x. That X admits a decomposition of the diagonal implies not only that
Γ∗CH0(XL)R = 0 but also that Γ∗ CH0(XL)R = 0 for all field extensions L/K.
Since resolution of singularities holds for surfaces over perfect fields, we may apply
Proposition 4.1 and obtain a smooth projective surface S together with an idempo-
tent q ∈ CH2(S ×K S)R such that the Chow motive with R-coefficients (S, q,−1) is
isomorphic to (X,Γ, 0). Since Γ∗CH0(XL)R = 0 for all field extensions L/K, we
find that q∗ CH0(SL)R = 0 for all field extensions L/K. Applying Proposition 4.1
to the motive (S, tq, 0), we obtain a smooth projective curve C and an idempotent
p ∈ CH1(C ×K C)R such that (S, tq, 0) is isomorphic to (C, tp,−1). Dualizing we get
that (S, q,−1) is isomorphic to (C, p,−1), thereby concluding the proof.

4.2. Proof of auto-duality in Theorem 1

As a first consequence of Theorem 4.2, one obtains information on the second
algebraic representative for threefolds admitting a decomposition of the diagonal.
The key feature of the following proposition is that for such threefolds the second
algebraic representative is induced by an algebraic cycle.

Proposition 4.3. — Let X be a smooth projective threefold over a field K that is ei-
ther finite or algebraically closed. Assume that there exists a natural number N such
that N∆X admits a strict decomposition. Then the second algebraic representative

Φ2
X/K : A 2

X/K → Ab2
X/K
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admits a degree-N miniversal cycle Z ∈ A2(Ab2
X ×KX).

Moreover, ϕ2
XK

:= Φ2
X/K(K) : A2(XK) → Ab2

X/K(K) is an isomorphism
and there is a nonnegative integer d such that NdΦ2

X/K is induced by a cycle

Ẑ ∈ CH2(Âb 2
X ×K X), i.e., with the notation of §1.5

NdΦ2
X/K = Ẑ∗ : A 2

X/K → Ab2
X/K .

Proof. — First, we note that more generally, ϕ2
XK

is an isomorphism under the
weaker hypothesis that X is a smooth proper variety of any dimension whose di-
agonal ∆X ∈ CHdX (X ×K X)⊗Q admits a Q-decomposition of type (dX − 1, 1);
see Proposition 10.1. Likewise, Φ2

X/K admits a degree-N miniversal cycle under the
weaker hypothesis that X is a smooth proper variety of dimension ≤ 4 such that
N∆X ∈ CHdX (X ×K X) admits a decomposition of type (dX−1, 1); see Theorem 9.1.
In fact, in the aforementioned two results, it is enough to assume the existence of a
cohomological decomposition (we discuss this notion in §6). Hence the key feature of
Proposition 4.3, i.e., requiring the hypothesis of a strict integral (Chow) decompo-
sition of N times the diagonal, is that we establish that NdΦ2

X/K is induced by a
cycle Ẑ for some nonnegative integer d.

It remains to prove that there is a nonnegative integer d such that NdΦ2
X/K is

induced by a cycle. Via Theorem 4.2 with R = Z[1/N ], the proof reduces to the case
of codimension-1 cycles on curves. Indeed, with the notation of Theorem 4.2 and after
clearing out denominators, we have a commutative diagram

A 2
X/K

Φ2
X/K

��

α // A 1
C/K

AJ≃
��

β // A 2
X/K

Φ2
X/K

��
Ab2

X/K

f // Pic0
C/K

g // Ab2
X/K ,

where α ∈ CH2(X ×K C) and β ∈ CH2(C ×K X) are integral correspondences such
that α◦β = Ndp and β ◦α = NdΓ for some nonnegative integer d, and where f and g
are the (unique) homomorphisms induced by the universal property of the algebraic
representatives. Since the integral correspondences Nd(x ×K X) and Nd(X ×K x)

act as zero on A 2
X/K , the integral correspondence NdΓ acts as multiplication by Nd

on A 2
X/K . Thus, if albC : C → Pic0

C denotes the K-morphism c 7→ OC(c− c0) for any
choice of zero-cycle c0 of degree 1 on C (which exists if K is finite or algebraically
closed) and if PAb2

X
denotes the universal line-bundle on Ab2

X/K ×KÂb 2
X/K , then, by

Lemma 1.8, NdΦ2
X/K is induced by the correspondence PAb2

X
◦ g ◦ albC ◦ α.

We are now in a position to prove the auto-duality statement of Theorem 1, which
we formulate in the more precise form of Theorem 4.4, below. The basic observation
is that when X is a threefold, then given any miniversal cycle Z ∈ A 2(Ab2

X/K ×KX),
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the symmetric correspondence tZ ◦ Z ∈ CH1(Ab2
X/K ×KAb2

X/K) induces a mor-
phism Ab2

X/K → Âb 2
X/K that is symmetric. We return to investigating such mor-

phisms later, in §12, in more generality. Here we focus on the case of threefolds under
the assumption that the diagonal admits a strict (Chow) decomposition, so that we
can use Proposition 4.3, which implies the stronger conclusion that the given mor-
phism is an isomorphism.

Theorem 4.4 (Auto-duality). — Let X be a smooth projective threefold over a perfect
field K and let Ω/K be an algebraically closed field extension.

(1) Let Z ∈ CH2(Ab2
XΩ/Ω×ΩXΩ) be a miniversal cycle over Ω, of degree, say, r.

Let N be a natural number. Assume that NΦ2
XΩ/Ω

is induced by a cycle

Ẑ ∈ CH2(Âb 2
XΩ
×Ω XΩ). Then the symmetric Ω-homomorphism

Ab2
XΩ/Ω −→ Âb 2

XΩ/Ω

induced by tZ ◦ Z ∈ CH1(Ab2
XΩ/Ω×Ω Ab2

XΩ/Ω) is an isogeny with kernel con-
tained in the torsion subscheme Ab2

XΩ/Ω[Nr2]. In particular, the degree of this
isogeny divides (Nr2)2g where g is the dimension of Ab2

XΩ/Ω.
(2) Assume that ∆XΩ

admits a strict decomposition. Let Z ∈ CH2(Ab2
XΩ/Ω×ΩXΩ)

be a universal cycle over Ω, the existence of which is provided by Proposition 4.3.
Then the symmetric Ω-homomorphism

Ab2
XΩ/Ω −→ Âb 2

XΩ/Ω

induced by tZ ◦Z ∈ CH1(Ab2
XΩ/Ω×Ω Ab2

XΩ/Ω) is an isomorphism that descends
to a symmetric K-isomorphism

ΛX : Ab2
X/K −→ Âb 2

X/K

independent of the choice of the universal cycle Z.

Proof. — From Chow rigidity, and descent for regular homomorphisms along separa-
ble field extensions [8, Thm. 1] (see Remark 1.2), we may immediately reduce to the
case Ω = K.

(1) We have on K-points a commutative diagram

(4.1) Âb 2
XK/K

(K)
wẐ

((

Nr // Âb 2
XK/K

(K)

A2(XK)

Z∗ 66

ϕ2
X

K

((
Ab2

XK/K
(K)

wZ
66

r // Ab2
XK/K

(K),

F

OO

where Nϕ2
XK

= Ẑ∗ and where F : Ab2
XK/K

→ Âb 2
XK

is the homomorphism induced
by the universal property of Φ2

X/K . The bottom horizontal arrow is by definition
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ψZ := ϕ2
XK
◦ wZ and is multiplication by r because Z is a degree-r miniversal cycle

for Φ2
X/K . The top horizontal arrow Z∗ ◦ wẐ is multiplication by Nr. Indeed, by

Lemma 1.9, it is induced by the cycle tZ ◦ Ẑ and is the dual of the homomorphism
Ab2

XK/K
→ Ab2

XK/K
induced by the transpose tẐ ◦ Z, which in turn is nothing but

NψZ , as it coincides with Ẑ∗ ◦wZ = Nϕ2
XK
◦wZ . In particular, applying Lemma 1.9

to the composition Z∗ ◦wZ , and using the bottom horizontal arrow, we see that rF is
induced by tZ ◦ Z.

Now, since F ◦ψẐ = Nr · id : Âb 2
XK
→ Âb 2

XK
, and since an Abelian variety and its

dual have the same dimension, it is clear that F , and hence rF , is an isogeny. In addi-
tion, we find that the kernel of F is contained in the torsion subscheme Ab2

XΩ/Ω[Nr]

and hence that the kernel of rF is contained in the torsion subscheme Ab2
XΩ/Ω[Nr2].

(2) By Proposition 4.3, Φ2
XK/K

admits a universal cycle Z ∈ CH2(Ab2
XK/K

×KXK)

and is induced by a cycle Ẑ ∈ CH2(Âb 2
XK/K

×K XK). By point (1), the symmetric

K-homomorphism Ab2
XK/K

−→ Âb 2
XK/K

induced by tZ ◦ Z is an isomorphism and

it coincides with the K-homomorphism F of (4.1). We now proceed to show that the
isomorphism F descends to a homomorphism ΛX over K and is independent of the
choice of a universal cycle Z for Φ2

X/K .
The starting point is that Φ2

X/K : A2(XK)→ Ab2
XK/K

(K) is an isomorphism that
is Gal(K)-equivariant by [5], so that its inverse wZ is also Gal(K)-equivariant. In
order to show that Z∗ ◦ wZ is Gal(K)-equivariant and independent of Z, it suffices
to show that the induced map on Tate modules Z∗ ◦ wZ : Tℓ Ab2

XK/K
→ TℓÂb 2

XK/K

is Gal(K)-equivariant and independent of Z, for some prime ℓ ̸= charK. However,
the isomorphism Z∗ : Tℓ A2(XK) → TℓÂb 2

XK
is the dual of the Gal(K)-equivariant

isomorphism (TℓΦ
2
X/K)−1 : TℓAb2

XK/K
→ Tℓ A2(XK), where Tℓ A2(XK) is identified

with its dual via the Gal(K)-equivariant isomorphism Tℓλ
2 : Tℓ A2(XK)→ H3(XK ,Zℓ(2))

provided by [7, Prop. 5.2] (see also Proposition 7.12 below), and the Gal(K)-equiv-
ariant perfect pairing given by the intersection product

H3(XK ,Zℓ(2))×H3(XK ,Zℓ(2))→ Zℓ(1),

via the following commutative diagram
(4.2)

Tℓ Ab2
X/K

wZ=(Φ2
X/K)−1

))
//

id ''

Tℓ A0(Ab2
XK/K

)

Tℓλ
0 ≃
��

Z∗ // Tℓ A2(XK)
Z∗ //

Tℓλ
2 ≃

��

Tℓ A1(Ab2
XK/K

)

Tℓλ
1 ≃
��

Tℓ Ab2
X/K

Z∗ // H3(XK ,Zℓ(2))
Z∗ // TℓÂb 2

X/K ,
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where the left triangle commutes thanks to §1.5.2 together with Lemma 1.4 and the
fact that the Bloch map λ0 coincides with the Albanese map on ℓ-primary torsion [17,
Prop. 3.9].

Remark 4.5. — In Theorem 4.4(2), note that although the homomorphism
Ab2

XK/K
→ Âb 2

XK/K
descends to K, the cycle Z ∈ A2(Ab2

XK/K
×KXK) might

not be defined over K.

Remark 4.6. — Note that the proof of Theorem 4.4(2) realizes Ab2
XK/K

as a direct
factor of Pic0

C/K
for some smooth projective curve C over K. Although Pic0

C/K
is

principally polarizable, this is not enough to conclude that Ab2
XK/K

is principally
polarizable and hence is isomorphic to its dual. Indeed, any Abelian variety is the
direct summand of a principally polarizable Abelian variety; this can be seen for in-
stance by Zarhin’s trick which states that, for any Abelian variety A, the Abelian
variety (A×K Â)4 is principally polarizable, while A need not be principally polariz-
able.

As an application of Theorem 4.4(2), we can refine [7, Thm. 15 & 6.4] in the case
of stably rational threefolds:

Corollary 4.7. — Let X be a smooth projective stably rational threefold over a
field K that is either finite or algebraically closed. Then there exist correspondences
Z ∈ CH2(Ab2

X ×KX) and Z ′ ∈ CH2(X ×K Ab2
X) inducing for all primes l inverse

isomorphisms

Z∗ : Tl Ab2
X

∼=−−−−→ H3(XK ,Zl(2)) and Z ′∗ : H3(XK ,Zl(2))
∼=−−−−→ Tl Ab2

X

of Gal(K)-modules.

Proof. — By Proposition 4.3, let Z ∈ CH2(Ab2
X ×KX) be a universal codimension-2

cycle for X. By [7, Thm. 6.4] and the fact that resolution of singularities holds
for surfaces over perfect fields, Z induces for all primes l an isomorphism
Z∗ : Tl Ab2

X
≃−→ H3(XK ,Zl(2)). With Θ : Ab2

X → Âb 2
X the canonical K-iso-

morphism induced by Z∗ ◦ Z∗ provided by Theorem 4.4, we get that Z ′∗ := Θ−1 ◦ Z∗
provides the inverse to Z∗.
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CHAPTER 5

SPECIALIZATION AND POLARIZATION
ON THE ALGEBRAIC REPRESENTATIVE

Given an Abelian variety A over a field K, recall that a symmetric isogeny
Θ : A→ Â is called a polarization if there exists an ample symmetric line-bundle L
on AK such that ΘK : AK → ÂK is given by a 7→ t∗aL⊗L−1, where ta : AK → AK is
the translation-by-a morphism; see also §A.2. In characteristic zero, by Hodge theory,
the isomorphism ΘX = −ΛX in Theorem 4.4 agrees with the canonical principal
polarization induced by the cup-product on H3(XC,Z) (Theorem 12.12 and Re-
mark 12.13). Although there are Abelian varieties A that are isomorphic to their
dual but are not principally polarizable (we thank Bas Edixhoven for explaining an
example to us), we are led to make the following conjecture:

Conjecture 5.1 (Canonical polarization). — Let X be a smooth projective threefold
over a perfect field K and let Ω/K be an algebraically closed field extension. Assume
that ∆XΩ

admits a strict decomposition (i.e., XΩ is universally CH0-trivial). Then
the canonical symmetric K-isomorphism ΘX : Ab2

X/K → Âb 2
X/K , where ΘX = −ΛX

(Theorem 4.4) is a principal polarization.

With this as motivation, we now establish some results regarding specialization and
Chow decomposition. For that purpose, let X → S be a smooth projective morphism,
where S is the spectrum of a DVR with generic point η and closed point s. We denote
η and s algebraic closures of η and s, respectively, and we denote Xη and Xs the
generic fiber and the closed fiber of X → S, respectively.

We start with the following basic result about polarizations:

Lemma 5.2 (Polarizations and specializations for algebraic representatives). — If
Θη : Ab2

Xη/η → Âb 2
Xη/η

is a degree-d isogeny, then Ab2
Xη/η and ΘXη extend to a

degree-d isogeny ΘX : Ab2
X/S → Âb 2

X/S of Abelian S-schemes, and the following are
equivalent: ΘX is a polarization, ΘXη

is a polarization, ΘX |s is a polarization.

Proof. — The fact that Ab2
Xη/η extends to an Abelian scheme Ab2

X/S is [8, Thm. 8.3],
and essentially follows directly from the Ogg-Néron-Shafarevich criterion, and the fact
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26 CHAPTER 5. SPECIALIZATION AND POLARIZATION

that the second Bloch map is injective ([8, Thm. 8.3] makes the stronger assertion that
this extension is the relative algebraic representative for X/S, which we do not use
here). The fact that ΘXη

then extends to an isogeny (resp. isomorphism) ΘX over S is
standard (see e.g., [8, Prop. 4.5] and [51, Prop. 6.1]). Regarding polarizations, recall
that by [51, p. 121], we have that 2ΘX is induced by a line bundle L on Ab2

X/S . Thus,
for questions of polarizations, if suffices to establish the ampleness of the fibers of L.
On the one hand, since relative ampleness is an open property over the base, we have
that L is ample if and only if L|s is ample. On the other hand, assuming Lη is ample,
it suffices to show that L|s is ample. In general, relative ampleness is not a closed
condition, however, for Abelian varieties, a nondegenerate line bundle is ample if and
only if it is effective [50]. Therefore, taking Dη to be an effective divisor realizing the
line bundle Lη, we may take the closure of Dη to obtain an effective divisor D over S
realizing L. Thus Ls is effective and nondegenerate, and therefore ample.

Proposition 5.3. — Assume both the generic point η and the closed point s of S have
perfect residue fields and assume that the diagonal ∆Xη has a strict decomposition
(e.g., Xη is geometrically stably rational). (By specialization, ∆Xs

also has a strict
decomposition [67, Thm. 2.1], [22, Thm. 1.12].) Denote by ΘXs : Ab2

Xs/s → Âb 2
Xs/s

and ΘXη
: Ab2

Xη/η → Âb 2
Xη/η

the negatives of the canonical isomorphisms provided
by Theorem 4.4(2).

Then Ab2
Xη/η and ΘXη

extend to an isomorphism ΘX : Ab2
X/S → Âb 2

X/S of Abelian
S-schemes, and there is a canonical isomorphism

(5.1) (Ab2
Xs/s,ΘXs

) ∼= (Ab2
X/S |s,ΘX |s).

In particular, ΘXη
is a polarization (and therefore a principal polarization) if and only

if ΘXs
is.

Proof. — From Lemma 5.2, it suffices to establish the canonical isomorphism (5.1).
By Proposition 4.3, ϕ2

Xη
and ϕ2

Xs
are isomorphisms, and, by [7, Prop. 5.2] (see

also Proposition 7.12 below), the maps Tℓλ2
Xη

: Tℓ A2(Xη) → H3(Xη,Zℓ(2)) and
Tℓλ

2
Xs

: Tℓ A2(Xs) → H3(Xs,Zℓ(2)) are isomorphisms for all primes ℓ. Choose a
prime ℓ invertible in the function fields κ(s) and κ(η). On the one hand, we obtain
a Galois-equivariant isomorphism Tℓλ

2
Xη
◦ (Tℓϕ

2
Xη

)−1 : Tℓ Ab2
Xη/η → H3(Xη,Zℓ(2)),

showing that Ab2
Xη/η has good reduction. On the other hand, since the specializa-

tion map H3(Xη,Zℓ(2))→ H3(Xs,Zℓ(2)) is an isomorphism (by smooth proper base
change), it follows that dim Ab2

Xs/s = dimAb2
Xη/η.

Let Z ∈ A2(Ab2
Xη/η ×ηXη) be a universal cycle for Ab2

Xη/η and Ẑ be a cycle
inducing Φ2

Xη/η
. We denote Zs and Ẑs their specializations. Let also ζ be a universal

cycle for Ab2
Xs

and ζ̂ be a cycle inducing Φ2
Xs

. The key point is that since ϕη is
induced by a cycle Ẑ, its specialization defines a regular homomorphism, namely the
one induced by the specialization of the cycle Ẑ. Therefore, we have a commutative
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diagram
Ab2

X/S |s(s) wZs

((

= //

ψZs

22

Ab2
X/S |s(s)

A2(Xs)

Ẑ∗s 66

ϕ2
Xs

=ζ̂∗

))
Ab2

Xs/s(s),

f

OO

where the upper triangle is the specialization of the corresponding triangle over η,
where f is the homomorphism induced by the universal property of Φ2

Xs
, and where

ψZs : Ab2
X/S |s → Ab2

Xs/s is the homomorphism induced by the cycle Zs. Hence
f : Ab2

Xs/s → Ab2
X/S |s is surjective.

We already established that dim Ab2
Xs/s = dim Ab2

X/S , and we can thus conclude
that f is an isomorphism (with inverse ψZs).

We now check that the isomorphism ψZs
is canonical, i.e., it does not depend

on the choice of a universal cycle Z for Ab2
Xη/η. Choose a prime ℓ invertible in the

function fields κ(s) and κ(η). It is enough to check that TℓψZs
is canonical and, since

on s-points we have ψZs
= ϕ2

Xs
◦wZs

, by Lemma 1.4, it suffices to check that TℓwZs
is

canonical. We have a commutative diagram

(5.2) Tℓ Ab2
Xη/η

TℓwZ //

sp ∼=
��

Tℓ A2(Xη)

sp

��

Tℓλ
2

∼=
// H3(Xη,Zℓ(2))

sp ∼=
��

Tℓ Ab2
Xs/s

TℓwZs // Tℓ A2(Xs)
Tℓλ

2

∼=
// H3(Xs,Zℓ(2)).

The commutativity of the right square shows that the middle specialization map
is an isomorphism. We can conclude that TℓwZs

is canonical by noting that
TℓwZ = (Tℓϕ

2
Xη

)−1 is canonical.
Finally, the isomorphism f : Ab2

Xs/s
∼−→ Ab2

X/S |s satisfies ΘXs = f∨ ◦ ΘXη |s ◦ f ;
i.e., it is in fact an isomorphism f : (Ab2

Xs
,ΘXs

)
∼−→ (Ab2

X/S |s,ΘXS |s). This follows
from the commutativity of the outer square of the diagram

Ab2
X/S |s(s)

wZs

''

−ΘXS |s //

ψZs

��

Âb 2
X/S |s(s)

f∨

��

A2(Xs)

Z∗s 77

ζ∗

''
Ab2

Xs/s(s)

wζ
77

−ΘXs //

f

OO

Âb 2
Xs/s

(s).

ψ∨Zs

OO

This whole diagram is in fact commutative: by duality it suffices to check that
−ΘXs

◦ ψZs
is induced by tζ ◦ Zs ∈ CH1(Ab2

X/S |s ×s Ab2
Xs/s). By construction,
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28 CHAPTER 5. SPECIALIZATION AND POLARIZATION

−ΘXs
is such that the regular homomorphism ζ∗ : A 2

Xs/s
→ Âb 2

Xs
is equal

to (−ΘXs)s ◦ϕ2
Xs

, and it follows that the homomorphism induced by tζ ◦Zs coincides
with the homomorphism (−ΘXs

)s ◦ ϕ2
Xs

(Ab2
X/S |s)(Zs) = (−ΘXs

)s ◦ ψZs
.

Remark 5.4. — As already mentioned, in characteristic 0, the isomorphism
ΘX = −ΛX in Theorem 4.4 agrees with the canonical principal polarization in-
duced by the cup-product on H3(XC,Z) (Theorem 12.12 and Remark 12.13). In
particular, Proposition 5.3 implies that for a smooth projective geometrically stably
rational threefold over a perfect field K that lifts to a smooth projective geometrically
stably rational threefold in characteristic zero, the isomorphism ΘX is a principal
polarization. Later, we will strengthen this to show that we only need to assume
that X lifts to a geometrically rationally chain connected threefold (Corollary 13.3).
We point out, however, that while we have a stronger hypothesis in Proposition 5.3,
we also get the stronger conclusion that (Ab2

X/S)s ∼= Ab2
Xs/s, and moreover, that

the principal polarization on the generic fiber extends to a principal polarization on
the special fiber, which agrees with the canonical auto-duality of Theorem 4.4. In
Corollary 13.3 we will only obtain that (Ab2

X/S)s is isogenous to Ab2
Xs/s.
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COHOMOLOGICAL DECOMPOSITION
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REPRESENTATIVES





CHAPTER 6

PRELIMINARIES
ON COHOMOLOGICAL DECOMPOSITION

OF THE DIAGONAL

In this section, we deviate slightly from our Conventions and fix an arbitrary Weil
cohomology theory H• and denote RH its coefficient ring. If X is a smooth projective
variety over a field K, the cohomology class of a cycle class Z ∈ CHi(X) will be
denoted [Z] ∈ H2i(X)(i). The following definition parallels the definition of Chow
decomposition of the diagonal.

Definition 6.1 (Cohomological decomposition of a cycle class). — Let R → RH be a
homomorphism of commutative rings. Let X be a smooth projective variety over a
field K, and let

ji : Wi
� � ̸= // X , i = 1, 2

be reduced closed subschemes not equal to X. A cohomological R-decomposition of
type (W1,W2) of a cycle class Z ∈ CHdX (X×KX)R with respect to H• is an equality

(6.1) [Z] = [Z1] + [Z2] ∈ H2dX (X ×K X)(dX),

where Z1 ∈ CHdX (X×KX)R is supported on W1×KX and Z2 ∈ CHdX (X×KX)R is
supported on X ×K W2 (see (2.1) for the support of a cycle). When R = Z, we call
this a cohomological decomposition of type (W1,W2) with respect to H•. We say
that Z ∈ CHdX (X×K X)R has a cohomological R-decomposition of type (d1, d2) with
respect to H• if it admits a cohomological R-decomposition of type (W1,W2) with
dimW1 ≤ d1 and dimW2 ≤ d2.

Beware that these definitions depend a priori on the choice of the Weil cohomology
theory H•. We emphasize that the cycle classes Z1, Z2 in the definition are cycle
classes with R-coefficients, and the statement about support of Z1, Z2 is in terms
of the Chow group (not the cohomology group). Clearly, by applying the cycle class
map, we see that if a cycle class Z has an R-decomposition of type (W1,W2), then
it has a cohomological R-decomposition of type (W1,W2) (with respect to any Weil
cohomology theory). We will primarily be interested in the case where R = Z and
where Z = N∆X is a multiple of the diagonal in X ×K X.
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Note that with the notations of Lemma 3.1, if a cycle Z ∈ CHdX (X ×K X)R is
cohomologically equivalent to a cycle supported on W ×K X, then the maps peZ∗ :

Hn(X)→ Hn(X) and peZ∗ : Hn(X)→ Hn(X) factor, respectively, as:
(6.2)

H2(d
W̃
−dX)+n(W̃ )(d

W̃
− dX)

j̃∗

++

Hn(X)

j̃∗
((

peZ∗ // Hn(X)

Hn(X)

Z̃∗
33

peZ∗ // Hn(X) Hn(W̃ ).
Z̃∗

66

Definition 6.2 (Strict cohomological decomposition of a cycle class). — A strict coho-
mological R-decomposition of a cycle class Z ∈ CHdX (X ×K X)R is a cohomological
R-decomposition of type (dX − 1, 0). In other words, it is an equality as in (6.1) such
that Z1 ∈ CHdX (X ×K X)R is supported on D ×K X for some codimension-1 sub-
variety D ⊆ X, and Z2 ∈ CHdX (X ×K X)R for some zero-cycle class α ∈ CH0(X)R.
When R = Z, we call this a strict cohomological decomposition.

Remark 6.3 (Strict cohomological decomposition of the diagonal). — As in Remark 2.5,
if N [∆X ] = [Z1] + [Z2] ∈ H2dX (X ×K X)(dX) is a strict cohomological R-decompo-
sition, then [Z2] = pr∗2[α] for any zero-cycle α ∈ CH0(X) of degree N . In particular,
in the situation where R = Z and X(K) ̸= ∅, if ∆X admits a strict cohomological
decomposition, then [Z2] = [X ×K x] for any K-point x ∈ X(K).

Remark 6.4. — In the case where K ⊆ C and R = Z (resp. Q), the comparison
isomorphisms in cohomology imply that if Z ∈ CHd(X1×KX2)R has a cohomological
R-decomposition of type (W1,W2) (resp. a strict cohomological R-decomposition)
with respect to H•((−)an,Z) (resp. H•((−)an,Q)) then for each prime number ℓ it has
a cohomological R-decomposition of type (W1,W2) (resp. a strict R-decomposition)
with respect to H•((−)K ,Zℓ) (resp. H•((−)K ,Qℓ)).
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CHAPTER 7

COHOMOLOGICAL DECOMPOSITION,
TORSION, ALGEBRAICITY,

AND THE BLOCH MAP

We now proceed to recall some of the basic results concerning decomposition of
the diagonal, which essentially go back to Bloch-Srinivas, and have recently been
strengthened by Voisin. The main addition in this section is to explain how to modify
these results to hold in the case of varieties over arbitrary perfect fields.

A projective variety W over a perfect field K admits an alteration W̃ →W of de-
gree M invertible in RH with W̃ smooth projective over K in the following situations:

— If H• is ℓ-adic étale cohomology H•(X) = H•(XK ,Zℓ) with ℓ invertible in K.
This is Gabber’s ℓ′-alteration theorem. A strengthening, due to Temkin [58],
shows that a projective variety W over K admits an alteration W̃ → W as
above of degree some power of the characteristic exponent of K.

— If W admits a resolution of singularities (in which case M can be chosen to be
equal to 1). This holds unconditionally if char(K) = 0 or if dimW ≤ 3 [25].

We fix a ring homomorphism R→ RH.

7.1. Cohomological decomposition of the diagonal and torsion in cohomology

Each of Betti, ℓ-adic and crystalline cohomology has the property that H0, H1 and
H2 dimX are torsion-free for proper smooth varieties X, and vanish in degrees greater
than 2 dimX. (In degree 1 this follows, for instance, from the identification of H1(X)

with H1(AlbX/K), and the known calculation for Abelian varieties. See [40, II.3.11.2]
for the case of crystalline cohomology.)

Proposition 7.1 ([65, Thm. 4.4(i)]). — Let K be a perfect field, and assume Hi is
torsion-free for i = 0, 1. Let X/K be a smooth projective variety. Assume that for
some N in R the multiple N∆XK

∈ CHdX (XK ×K XK)R admits a cohomologi-
cal R-decomposition of type (W1,W2) with dimW1 ≤ dX − 1 and dimW2 ≤ 1. Let
W̃1 → W1 be an alteration of degree M invertible in RH with W̃1 smooth projective
over K.
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(1) If Hi−2(W̃1) is torsion-free (e.g., i ≤ 3), then torsion in Hi(X) is killed by
multiplication by N .

(2) If Hi(W̃1) is torsion-free (e.g., i > 2dX − 3), then torsion in Hi(X) is killed by
multiplication by N .

Proof. — This follows directly from the proof [65, Thm. 4.4(i)]; i.e., from the factor-
ization of correspondences in cohomology (6.2).

As before, if N is a natural number whose image is zero in the coefficient ring of
the cohomology theory, the conclusions of Proposition 7.1 are trivial. At the opposite
extreme, if the image ofN is a unit in RH, then under the hypotheses we may conclude
that Hi(X) is torsion-free.

Corollary 7.2. — Let K be a perfect field, and assume Hi(−) is torsion-free for
i = 0, 1. Let X/K be a smooth projective variety. If ∆XK

∈ CHdX (XK ×K XK)

admits a cohomological R-decomposition of type (W1,W2) with dimW1 ≤ dX − 1

and dimW2 ≤ 1, and with W1 admitting a resolution of singularities, then Hi(X) is
torsion-free for i ≤ 3 and i ≥ 2dX − 2.

In particular, if X/K is a smooth projective threefold such that ∆XK
belonging

to CH3(XK ×K XK) admits a cohomological R-decomposition of type (W1,W2) with
dimW2 ≤ 1, then Hi(X) is torsion-free for all i.

Proof. — This is immediate from the proposition, using the fact that there is resolu-
tion of singularities for surfaces over perfect fields.

Remark 7.3. — For a smooth projective threefold X over a field K, and H• denoting
Betti or ℓ-adic cohomology (ℓ ̸= char(K)) recall that H0(X), H1(X), and H6(X) are
torsion-free. Moreover, TorsH2(X) ∼= TorsH5(X) and TorsH3(X) ∼= TorsH4(X). If
X is unirational over C, a result of Serre [56] implies that the fundamental group
of X is trivial, so that H1(X) = H5(X) = 0.

Corollary 7.4. — Let X be a smooth projective threefold over a perfect field K. If the
class of the diagonal ∆XK

∈ CH3(XK ×K XK) admits a cohomological W(K)-decom-
position of type (W1,W2) with respect to crystalline cohomology H•

cris(−/W(K)), with
dimW1 ≤ dX − 1 and dimW2 ≤ 1, then the Picard scheme Pic0

X/K is reduced.

Proof. — Note that W1, like any surface over a perfect field, admits a resolution of
singularities. By Corollary 7.2, we have that H2

cris(X/W(K)) is torsion-free, and so
(e.g., [40, Prop. II.5.16]) Pic0

X/K is reduced.

For threefolds, it is often convenient to also consider the following situation:

Proposition 7.5. — Let X be a smooth projective threefold over a perfect field K, and
let H• denote Betti, crystalline or ℓ-adic cohomology (with ℓ ̸= charK). Assume that
for some N ∈ R the multiple N∆XK

∈ CHdX (XK ×K XK)R admits a cohomological
R-decomposition of type (W1,W2). Let W̃2 →W2 be a resolution of singularities.
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(1) For i ≤ 3, if Hi(W̃2) is torsion-free (e.g., W̃2 is rational), then torsion
in Hi(X) is killed by multiplication by N .

(2) For i > 3, if Hi−2(W̃2) is torsion-free (e.g., W̃2 is rational), then Hi(X) is killed
by multiplication by N .

Proof. — The arguments are the same as for Proposition 7.1.

7.2. Cohomological decomposition of the diagonal and vanishing cohomology

We now consider some results on vanishing of cohomology. The main take-away for
our applications is Corollary 7.7 for threefolds.

Proposition 7.6. — Let X be a smooth projective variety over a perfect field K. Assume
that for some N ∈ R the multiple N∆XK

∈ CHdX (XK ×K XK)R admits a cohomo-
logical R-decomposition of type (W1,W2) with dimW1 ≤ dX − 1 and dimW2 = 0. Let
W̃1 → W1 be an alteration of degree M invertible in R with W̃1 smooth projective
over K.

(1) If i ≥ 1 and Hi−2(W̃1) = 0 (e.g., i = 1), then Hi(X) is killed by multiplication
by N .

(2) If i ̸= 2dX and Hi(W̃1) = 0 (e.g., i = 2dX − 1), then Hi(X) is killed by
multiplication by N .

Proof. — This follows directly from the proof [65, Thm. 4.4(i)]; i.e., from the factor-
ization of correspondences in cohomology (6.2).

Note that if the image of N is zero in the coefficient ring of the cohomology theory,
the conclusions of Proposition 7.1 are trivial. At the opposite extreme, if the image
of N is a unit in RH, then under the hypotheses we may conclude that Hi(X) = 0.

Corollary 7.7. — Let X be a smooth projective variety over a perfect field K. Assume
that for some N ∈ R the multiple N∆X ∈ CHdX (XK×KXK)R admits a cohomological
R-decomposition of type (W1,W2) with dimW1 ≤ dX − 1 and dimW2 = 0, with W1

admitting a resolution of singularities. Then H1(X) and H2dX−1(X) are killed by
multiplication by N . If N = 1, then H1(X) = H2dX−1(X) = 0.

In particular, if X/K is a smooth projective threefold such that N∆XK
belonging

to CH3(XK ×K XK)R admits a strict cohomological R-decomposition (e.g., X is
geometrically rationally chain connected), then H1(X) = 0 and H5(X) is killed
by multiplication by N . If N = 1 (e.g., X is geometrically stably rational), then
H1(X) = H5(X) = 0.

Proof. — This is immediate from the proposition. The key point is that H1(X)

and H2dX−1(X) model the cohomology of the Abelian varieties (Pic0
XK/K

)red and
AlbXK/K

, respectively, and thatH1(X) is torsion while torsion inH2dX−1(X) is killed
by multiplication by N under our assumption on the decomposition of the diagonal
by virtue of Corollary 7.2. The assertion for threefolds follows as there is resolution
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of singularities for surfaces over perfect fields. For the case where X is assumed to be
geometrically rationally chain connected, see Remark 2.8.

Remark 7.8 (Vanishing Hodge numbers). — Let X be a smooth projective variety
over a field K. If X is geometrically rationally chain connected and K is perfect, the
previous corollary implies that H1(X) = 0. In characteristic 0, this implies the vanish-
ing of H0(X,ΩX) and H1(X,OX); here we recall some further results on vanishing
Hodge numbers. First, if X is geometrically separably rationally connected over a
field K, then H0(X,Ω⊗iX ) = 0 for all i > 0 [42, Cor. IV.3.8], and H1(X,OX) = 0

[34, Thm. p. 872]. More generally, if ∆XK
admits a strict Chow decomposition, then

[59, Lem. 2.2] implies that H0(X,ΩiX) = 0 for i > 0. If K ⊆ C, the proof of [66,
Thm. 3.13], or equivalently of [64, Thm. 10.17, p. 294], shows that if for some natural
number N the multiple N∆XC ∈ CHdX (XC ×C XC) admits a cohomological decom-
position of type (d1, d2) with respect to H•((−)an,Z), then H0(X,ΩiX) = 0 for all
i > d2.

7.3. Cohomological decomposition of the diagonal and algebraic cycle classes

Definition 7.9 (Algebraic cohomology classes). — LetX be a smooth projective variety
over a perfect field K. Let R → RH be a ring homomorphism. We say that a class
α ∈ H2i(X)(i) is R-algebraic if it is in the image of the cycle class map

[−] : CHi(X)R → H2i(X)(i).

We say that H2i(X) is R-algebraic if the map above is surjective. We say that
α ∈ H2i(X)(i) is algebraic (resp. H2i(X) is algebraic) if it is RH-algebraic. In other
words, H2i(X) is algebraic if H2i(X)(i) is spanned over RH by the image of the cycle
class map [−] : CHi(X)→ H2i(X)(i).

Note that we require algebraic cohomology classes to be the classes of algebraic
cycles on X, rather than on XK . This leads to some subtleties. For instance, even
for i = 0, one may have H0(X) is not algebraic: consider X connected but not
geometrically connected. Likewise, even for i = dX , one may have H2dX (X) is not
algebraic: taking X to be a smooth conic over Q with no Q-points, H2(XQ,Z2) is not
spanned by zero-cycles on X, as there is no zero-cycle of odd degree defined over Q.
Note however that, if K is a finite field, then any variety over K admits a zero-cycle
of degree-1 and hence H2dX (X) is indeed algebraic in that case.

Proposition 7.10. — Let X be a smooth projective variety over a perfect field K. As-
sume that for some natural number N the multiple N∆X ∈ CHdX (X ×K X)R ad-
mits a cohomological R-decomposition of type (W1,W2) with dimW1 ≤ dX − 1 and
dimW2 ≤ 1. Let W̃1 → W1 be an alteration of degree M invertible in RH with W̃1

smooth projective over K.

(1) If H2i−2(W̃1) is R-algebraic (e.g., 2i ≤ 2), then N · H2i(X) is R-algebraic.
(2) If H2i(W̃1) is R-algebraic (e.g., 2i ≥ 2dX − 2), then N · H2i(X) is R-algebraic.
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Proof. — This follows directly from the proof of [18, Thm. 1(iv)] or [65, Thm. 4.4(ii)];
i.e., from the factorization of correspondences in cohomology (3.4).

Note that if the image of N is zero in the coefficient ring of the cohomology theory,
the conclusions of Proposition 7.10 are trivial.

Corollary 7.11. — Let X be a smooth projective variety over an algebraically closed
field K. If ∆X ∈ CHdX (X ×K X) admits a cohomological R-decomposition of
type (W1,W2) with dimW1 ≤ dX − 1 and dimW2 ≤ 1, and with W1 admitting a
resolution of singularities, then H2i(X) is R-algebraic for 2i ≤ 2 and 2i ≥ 2dX − 2.

In particular, for any smooth projective threefold X over an algebraically closed
field K such that ∆X ∈ CHdX (X ×K X) admits a cohomological R-decomposition of
type (2, 1), we have H2i(X) is R-algebraic for all i.

Proof. — This is immediate from Proposition 7.10.

7.4. Cohomological decomposition of the diagonal and the Bloch map

We observe here that the assumption of [7, Prop. 5.2] involving a Chow decompo-
sition can be weakened to a cohomological decomposition:

Proposition 7.12. — Let X be a smooth projective variety over a perfect field K of
characteristic exponent p. Fix a natural number N and a prime ℓ. Either let RH = Zℓ
and assume ℓ ∤ pN , or let RH = Qℓ and assume ℓ ̸= p. Fix a ring homomorphism
R→ RH. Assume that N∆X ∈ CHdX (X ×K X) admits an R-cohomological decom-
position of type (dX − 1, 2) with respect to H•(−, RH).

Then the inclusion Vℓ A2(XK) ↪→ Vℓ CH2(XK) is an isomorphism of Gal(K)-mod-
ules, and the second ℓ-adic Bloch map

Vℓλ
2 : Vℓ CH2(XK) −→ H3(XK ,Qℓ(2))

is an isomorphism of Galois modules.
Moreover, if RH = Zℓ, then

Tℓλ
2 : Tℓ CH2(XK) −→ H3(XK ,Zℓ(2))τ

is an isomorphism of Gal(K)-modules; and if dimW1 ≤ dX−1 and dimW2 ≤ 1, then
H3(XK ,Zℓ) is torsion-free.

Proof. — The proof is exactly the same as that of [7, Prop. 5.2], where the assertion
is made only for a Chow decomposition of the diagonal. For convenience, we include
the proof here for a cohomological R-decomposition with respect to H•(−,Zℓ); the
case of H•(−,Qℓ) is identical. Let ℓ be a prime. That Tℓλ2 is an injective morphism
of Gal(K)-modules was reviewed in [7]. Using Lemma 3.1, one decomposes Npe∆∗

X =

peZ∗1 + peZ∗2 , with factorizations peZ∗1 = (j̃1)∗ ◦ Z̃∗1 and peZ∗2 = (Z̃2)∗ ◦ j̃∗2 . (For use in
Lemma 7.13 below, we note that we can set e = 0 in case dimX ≤ 4 due to resolution
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of singularities [25] in dimensions ≤ 3.) We obtain by the naturality of the ℓ-adic
Bloch map a commutative diagram
(7.1)

Tℓ CH2(XK)
Z̃∗1⊕j̃

∗
2 //

Tℓλ
2

��

Tℓ CH1((W̃1)K)⊕ Tℓ CH2((W̃2)K)
(j̃1)∗+(Z̃2)∗ //

≃ Tℓλ
1

W̃1
⊕Tℓλ

2

W̃2
��

Tℓ CH2(XK)

Tℓλ
2

��
H3(XK ,Zℓ(2))τ

Z̃∗1⊕j̃
∗
2// H1((W̃1)K ,Zℓ(1))⊕H3((W̃2)K ,Zℓ(2))τ

(j̃1)∗+(Z̃2)∗// H3(XK ,Zℓ(2))τ .

The middle vertical arrow is an isomorphism by Kummer theory and Rojtman’s theo-
rem (see [7]), while the composition of the (bottom) horizontal arrows is multiplication
by Npe. A diagram chase then establishes the surjectivity of Tℓλ2.

Finally, in case dimW2 ≤ 1, that H3(XK ,Zℓ(2)) is torsion-free follows simply from
the factorization of the multiplication by Npe map

H3(XK ,Zℓ(2))
Z̃∗1 // H1((W̃1)K ,Zℓ(1))

(j̃1)∗ // H3(XK ,Zℓ(2))

and the fact that H1((W̃1)K ,Zℓ(1)) is torsion-free.

For the sake of completeness, we record an analogous statement about p-tor-
sion in Chow. Note that in positive characteristic p, crystalline cohomology, unlike
H•(−,Qp), is a Weil cohomology.

Lemma 7.13. — Let X be a smooth projective variety over a perfect field K of
characteristic p > 0. Let RH be either W(K) or B(K), and fix a ring ho-
momorphism R → RH. Assume that for some natural number N , we have
that N∆X ∈ CHdX (X ×K X) admits an R-cohomological decomposition of
type (dX − 1, 2) with respect to H•

cris(−/RH).
Then the inclusion Vp A2(XK) ↪→ Vp CH2(XK) is an isomorphism of Gal(K)-mod-

ules, and the second p-adic Bloch map

Vpλ
2 : Vp CH2(XK) −→ H3(XK ,Qp(2))

is an isomorphism of Gal(K)-modules.
Moreover, if RH = W(K), if p ∤ N , and if resolution of singularities holds in

dimension < dX , then Tp A2(XK)→ Tp CH2(XK) is an isomorphism, and the second
p-adic Bloch map

Tpλ
2 : Tp CH2(XK) −→ H3(XK ,Zp(2))τ

is an isomorphism of Gal(K)-modules. If in addition we have dimW1 ≤ dX − 1 and
dimW2 ≤ 1, then H3

cris(X/W(K)) and H3(XK ,Zp(2)) are torsion-free.

Proof. — The proof strategy is identical to that of Proposition 7.12, bearing in mind
that a decomposition in crystalline cohomology induces maps on p-adic cohomology,
and that the necessary properties of the p-adic Bloch map are secured by Gros and
Suwa [35].
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We can similarly give a small improvement on [14, Prop. 2.3(ii)] regarding the
Bloch map, which shows that under the stronger assumption that the decomposition
is of type (dX − 1, 1), one gets the stronger conclusion that the ℓ-adic Bloch map is
an isomorphism at all primes.

Proposition 7.14 ([14, Prop. 2.3(ii)]). — Let X be a smooth projective variety over a
perfect field K of characteristic exponent p. Fix a natural number N and a prime l;
let H•(−) denote H•(−,Zl) if l ̸= p and H•

cris(−/W(K)) if l = p.
Suppose that N∆X ∈ CHdX (X ×K X) admits a Z-cohomological decomposition of

type (dX − 1, 1) with respect to H•. Then the second Bloch map

λ2 : A2(XK)[l∞] −→ H3(XK ,Zl(2))⊗Zl
Ql/Zl

is an isomorphism of Gal(K)-modules. Taking Tate modules, the second l-adic Bloch
map

Tlλ
2 : Tl A

2(XK) −→ H3(XK ,Zl(2))τ

is also an isomorphism of Gal(K)-modules.

Proof. — We adapt the proof of [14, Prop. 2.3(ii)] to the setting of cohomological
decomposition of the diagonal, and verify in the process that argument of Benoist-
Wittenberg works for p-adic cohomology, as well. For X smooth and projective, we
have a diagram with exact row (see e.g., [7, A.16] and [35, (3.33)])

CH2(XK)[l∞]� _

λ2
l

�� ))
0 // H3(XK ,Zl(2))⊗Zl

Ql/Zl // H3(XK ,Ql/Zl(2)) // H4(XK ,Zl(2)),

where the dashed arrow is, up to sign, the cycle class map ([23, Cor. 4], [35,
Prop. III.1.16 and Prop. III.1.21]). Since algebraically trivial cycles are ho-
mologically trivial, it follows that the image of A2(XK)[l∞] under λ2

l is con-
tained in H3(XK ,Zl) ⊗Zl

Ql/Zl ⊆ H3(XK ,Ql/Zl). In particular, the cokernel
of λ2

l : A2(XK)[l∞]→ H3(XK ,Zl(2))⊗Zl
Ql/Zl is divisible.

Now suppose N∆X admits a cohomological decomposition of type (dX − 1, 1).
Arguing as in the proof of Proposition 7.12 and Lemma 7.13, cokerλ2

l is annihilated
by Npe. Therefore, this cokernel is trivial, and

λ2
l : A2(XK)[l∞]→ H3(XK ,Zl(2))⊗Zl

Ql/Zl
is an isomorphism. Taking the Tate module of this isomorphism gives the assertion
for the l-adic Bloch map, since H3(XK ,Zl) is a finitely generated Zl-module, and so
it is elementary to check that Tl(H3(XK ,Zl)⊗Zl

Ql/Zl) ∼= H3(XK ,Zl)τ .
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CHAPTER 8

COHOMOLOGICAL CORRESPONDENCES
AND

ALGEBRAIC REPRESENTATIVES

Recall that for a complex projective manifold X, given a cycle class Z ∈ CHn(T ×X)

parameterized by a complex projective manifold T with fiber-wise homologically triv-
ial cycle classes, the Abel-Jacobi map induces a holomorphic map T → J2n−1(X),
t 7→ AJ(Zt), which, by construction, only depends on the cohomology class of Z
in H2n(T ×X,Z). The main goal of this section is to show (Corollary 8.2) that the
same holds for morphisms induced by algebraic representatives. In fact, this follows
from Proposition 8.1, which will allow us in many situations to “lift” to rational
equivalence the action of a cohomological decomposition on algebraic representa-
tives. Recall that, given a smooth projective variety X over a field K, an algebraic
representative ΦiX : A i

X/K → AbiX/K exists for i ∈ {1, 2, dX}; see [8].

Proposition 8.1. — Let X and Y be smooth proper varieties of dimension dX and
dY respectively over a field K and let γ ∈ CHdX+j−i(X ×K Y ) be a correspondence.
Assume that j ∈ {1, 2, dY } and that an algebraic representative ΦiX : A i

X/K → AbiX/K

exists. Let f : AbiX/K → AbjY/K be the morphism induced by γ and the universal
property of the algebraic representative via the commutative diagram

(8.1) A i
X/K

γ∗ //

Φi
X ��

A j
Y/K

Φj
Y��

AbiX/K
f // AbjY/K .

If [γ] = 0 ∈ H2(dX+j−i)(XKsep ×Ksep YKsep ,Qℓ(dX + j − i)) for some ℓ ̸= char(K),
then f = 0. In other words, f depends only on the cohomology class of γ.

Moreover, if [γ] = 0 ∈ H2(dX+j−i)(XKsep ×Ksep YKsep ,Z/ℓν+1Z(dX + j − i)) for
some ℓ ̸= char(K) and some natural number ν, then f [ℓν ] : AbiX/K [ℓν ]→ AbjY/K [ℓν ] is
the zero map.
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Proof. — First note that, since ΦjY ◦ γ∗ : A i
X/K → AbjY/K defines a regular homo-

morphism, the universal property of the algebraic representative AbiX/K provides a
K-homomorphism f : AbiX/K → AbjY/K giving the commutative diagram (8.1).

Let Z be a miniversal cycle (see §1.3) for ΦiX and let us denote r the natural
number such that the K-homomorphism ΦiX(AbiX/K)(Z) is given by multiplication
by r. Recalling that ΦiX(AbiX/K)(Z) is simply given by ϕiXK

◦ wZ , we then have

(8.2) ϕjYK
◦ γ∗ ◦ wZ = f ◦ (ϕiXK

◦ wZ) = r f.

Now, if [γ] = 0 ∈ H2(dX+j−i)(XKsep ×Ksep YKsep ,Qℓ(dX + j − i)), clearly [γ ◦ Z]

also vanishes. By naturality of the ℓ-adic Bloch maps, we hence get a commutative
diagram

Vℓ AbiX/K //

id ((

γ∗◦wZ

**
Vℓ A0((AbiX/K)Ksep)

γ∗◦Z∗ //

Vℓλ
0

��

Vℓ Aj(YKsep)

Vℓλ
j

��
Vℓ AbiX/K

γ∗◦Z∗=0 // H2j−1(YKsep ,Qℓ(j)).

Note that the left triangle commutes thanks to §1.5.2 together with Lemma 1.4 and
the fact that the Bloch map λ0 coincides with the Albanese map on ℓ-primary tor-
sion [17, Prop. 3.9]. Recalling that Vℓλj is injective for j = 1, 2, dY , we conclude that
γ∗ ◦ wZ : Vℓ AbiX/K → Vℓ Aj(YKsep) is zero, and hence in view of (8.2) that r ·Vℓf = 0;
i.e., f = 0.

The same argument works in the case

[γ] = 0 ∈ H2(dX+j−i)(XKsep ×Ksep YKsep ,Z/ℓν+1Z(dX + j − i)),
using that the finite level Bloch maps λj [ℓν ] are injective for j = 1, 2, dY (see [7,
App. A, Prop. A.27]), and replacing the Tate modules with ℓν-torsion in the diagram
above.

From Proposition 8.1 we can show that morphisms induced by projective families
of cycles and universal regular homomorphisms depend only on the cohomology class
of the family of cycles.

Corollary 8.2. — Let X and T be a smooth projective varieties over a field K, with
T (K) ̸= ∅, and let Z ∈ A i

X/K(T ) be a family of algebraically trivial cycle classes.
Assume that there exists an algebraic representative ΦiX/K : A i

X/K → AbiX/K (e.g.,
i ∈ {1, 2, dX}), and let

ψZ : T −→ AbiX/K

be the associated morphism. If [Z] = 0 ∈ H2i((T ×K X)K ,Qℓ(i)), then ψZ = 0; in
other words, ψZ depends only on the cohomology class of Z.
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Proof. — Fix t0 ∈ T (K). Set Γ = ∆T − (T ×K t0) and Z ′ = Z+(T ×K Zt0). We have
the commutative diagram

T

albt0

��

wΓ

t 7→t−t0 //

ψZ

**

AdT (TK)
Z′∗ //

ϕ
dT
T

K ��

Ai(XK)

ϕi
X

K

��
AlbT/K AbdT

X/K f
// AbiX/K .

By Proposition 8.1, f depends only on the cohomology class [Z ′], and therefore, by
commutativity, we see that ψZ depends only on the cohomology class [Z ′]. Now since
the cohomology class [Zt0 ] depends only on the cohomology class [Z], we see that the
cohomology class [Z ′] depends only on the cohomology class [Z].

Remark 8.3. — In both Proposition 8.1 and Corollary 8.2, if K ⊆ C, then by the
comparison theorems in cohomology, one is free to replace ℓ-adic cohomology with
Betti cohomology.
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CHAPTER 9

COHOMOLOGICAL DECOMPOSITION
AND

UNIVERSAL CODIMENSION-2 CYCLE CLASSES

This section contains our new results regarding cohomological decomposition of
the diagonal and universal codimension-2 cycle classes.

For a surjective regular homomorphism Φ : A n
X/K → A, a universal (resp. miniver-

sal) codimension-n cycle class (for Φ) is a cycle class Z ∈ A n
X/K(A) such that the

induced morphism ψZ = Φ(A)(Z) : A→ A is the identity (resp. N times the identity
for some natural number N). It is a basic fact that there always exist miniversal cy-
cle classes [5, Lem. 4.9]. Theorem 9.1 relates the number N in the case of algebraic
representatives to cohomological decompositions of N times the diagonal.

We start by recalling the well-known story for n = 1, coming from the identification
Ab1

X/K = (Pic0
X/K)red. For brevity, we will call a universal codimension-1 cycle class

for Ab1
X/K a universal divisor. There exists a universal divisor if each component of X

admits a K-point (e.g., if K is separably closed). In general, there need not exist a
universal divisor; in fact, one can exhibit curves over fields of characteristic 0 with
no universal divisor. However, any smooth projective variety X over a finite field K

(with or without a K-point) does admit a universal divisor. We refer the reader to [8,
§7.1] for more details.

The Albanese morphism provides an algebraic representative in codimension
n = dimX, and we have the identification AbnX/K = AlbX/K . Voisin [69, Cor. 0.14]
showed that a universal zero-cycle does not necessarily exist even for K algebraically
closed, thereby answering the question raised in [8, Rem. 7.11].

We now investigate the connection between universal codimension-2 cycle classes
and cohomological decompositions of the diagonal.

Theorem 9.1 (Miniversal cycle classes on algebraic representatives). — Let X be a
smooth projective variety over a perfect field K of characteristic exponent p. Fix a
positive integer n and a prime number ℓ ̸= p. Assume:

— for some natural number N (resp. some natural number N coprime to ℓ) the
multiple N∆X ∈ CHdX (X ×K X) of the diagonal admits a cohomological
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decomposition (resp. cohomological Zℓ-decomposition) of type (W1,W2) with
dW1
≤ dX − (n− 1) and dW2

≤ n− 1;
— W1 admits a smooth projective alteration of degree pe admitting a universal

divisor (e.g., K is finite or algebraically closed).

If there exists an algebraic representative ΦnX/K : A n
X/K → AbnX/K (e.g., n ∈ {1, 2, dX}),

then there exists a family of algebraically trivial cycle classes Z ∈ A n
X/K(AbnX/K)

such that the induced morphism of Abelian varieties over K,

ψZ = ΦnX/K(AbnX/K)(Z) : AbnX/K → AbnX/K ,

is multiplication by Npe (resp. multiplication by r for some natural number r coprime
to ℓ).

Remark 9.2. — In Theorem 9.1, the constraints on dW1
and dW2

are perhaps more
restrictive than they first appear. In fact, we can have dW1

= dX − (n − 1) and
dW2 = n − 1 or n − 2, or we can have dW1 = dX − n and dW2 = n − 1, since
from Remark 2.2, we know that dW1

+ dW2
≥ dX − 1. At the same time, since

0 ≤ dW1
, dW2

≤ dX − 1, this also puts the constraints 2 ≤ n ≤ dX . Moreover, in the
case dW1 = dX − n, it will follow from the proof of Theorem 9.1 that ΦnX/K = 0.

Proof. — Assuming a cohomological decomposition, the proof of [65, Thm. 4.4(iii)]
applies here; i.e., this follows from the factorization of correspondences (3.3) and
Prop. 8.1. More precisely, using Lemma 3.1, one decomposes Npe∆∗

X = peZ∗1 + peZ∗2 ,
with factorizations peZ∗1 = (j̃1)∗ ◦ Z̃∗1 and peZ∗2 = (Z̃2)∗ ◦ j̃∗2 . Since n > dim W̃2, it
follows that j̃∗2 = 0 on Chow groups, and therefore, by diagram (3.3), this also holds
for the induced morphism of Abelian varieties. We therefore obtain a commutative
diagram

(9.1) A n
X/K

Φn
X

��

Z̃∗1 // A 1
W̃1/K

Φ1

W̃1
≃
��

(j̃1)∗ // A n
X/K

Φn
X

��
AbnX

Z̃∗1 // (Pic0
W̃1/K

)red
(j̃1)∗ // AbnX ,

where the composition of the horizontal arrows is given by multiplication by Npe and
where we have denoted Z̃∗1 : AbnX/K → (Pic0

W̃1
)red and (j̃1)∗ : (Pic0

W̃1
)red → AbnX/K

the K-homomorphisms induced by the correspondences Z̃∗1 and (j̃1)∗. Here we are
using Proposition 8.1.

We have assumed the existence of a universal divisor D̃ ∈ A 1
W̃1/K

((Pic0
W̃1/K

)red),
meaning that the induced morphism:

ψD̃ = Φ1
W̃1/K

((Pic0
W̃1/K

)red)(D̃) : (Pic0
W̃1/K

)red → (Pic0
W̃1/K

)red

is the identity. Consider the cycle class

Z := (j̃1)∗ ◦ D̃ ◦ Z̃∗1 ∈ A n
X/K(AbnX/K).
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It is then clear from (9.1) that the associated homomorphism

ψZ = ΦnX/K(AbnX/K)(Z) : AbnX/K → AbnX/K

is given by Npe IdAbn
X/K

.
The case where one assumes a cohomological Zℓ-decomposition is similar. For sim-

plicity, since we are assuming that ℓ ∤ N , N is invertible in Zℓ, and so we may and do
assume N = 1. We assume that we have Z1, Z2, as in the definition of the Zℓ-decom-
position of the diagonal, observing that they are given as cycles with Zℓ-coefficients.

We have by definition that [∆X ] = [Z1] + [Z2] in H2dX ((X ×K X)K ,Zℓ(dX)).
Now let Z ′1 and Z ′2 be integral cycles which ℓ-adically approximate Z1 and Z2. (Con-
cretely, if Zi =

∑
aijZj with aij ∈ Zℓ, choose a′ij ∈ Z with a′ij ≡ aij mod ℓ2,

and let Z ′i =
∑
a′ijZi.) We therefore have the equality [∆X ] = [Z ′1] + [Z ′2]

in H2dX ((X ×K X)K ,Z/ℓ2Z(dX)). The rest of the proof goes through identi-
cally, so that we find a cycle Z such that that the associated homomorphism
ψZ [ℓ] = ΦnX/K(AbnX/K)(Z)[ℓ] : AbnX/K [ℓ]→ AbnX/K [ℓ] is given by Npe IdAbn

X/K
. Note

that the cycle Z depended on our choice to approximate to order ℓ2, as well as our
choice of lift; truncating at higher order would also work, although it typically yields
a different cycle Z. In any case, since ψZ is an injection on ℓ-torsion, it is an injection
on ℓ-power torsion, and therefore an isomorphism on ℓ-power torsion.

It follows that ψZ is an isogeny, of degree coprime to ℓ. Arguing as in [5, Lem. 4.9]
or [8, Lem. 4.7], one can find a cycle Z ′ ∈ A n

X/K(AbnX/K) so that ψZ′ is multiplication
by r for some natural number r with ℓ ∤ r.

Corollary 9.3 (Universal codimension-2 cycle classes). — Suppose X is a smooth pro-
jective variety of dimension ≤ 4 over a field K that is either finite or algebraically
closed. If ∆X admits a cohomological decomposition (resp. cohomological Zℓ-decom-
position) of type (dX − 1, 1), then there exists a universal codimension-2 cycle class
(resp. a miniversal codimension-2 cycle class of degree coprime to ℓ).

Proof. — This follows immediately from Theorem 9.1 and the fact [25] that resolution
of singularities holds for varieties of dimension ≤ 3 over perfect fields.

We now consider the case whereX is a smooth projective variety over a fieldK ⊆ C,
and we consider the surjective regular homomorphism AJ : A n

X/K → J2n+1
a,X/K to the

distinguished model, given by the Abel-Jacobi map, as defined in [6].

Theorem 9.4 (Mini- and universal cycle classes on distinguished models). — Let X be
a smooth projective variety over a field K ⊆ C, and fix a positive integer n. Assume
further that for some natural number N the multiple N∆X ∈ CHdX (X×KX) admits a
cohomological decomposition of type (W1,W2) with dW2 ≤ n−1, dW1 ≤ dX+1−n, and
that W1 admits a resolution of singularities with each component admitting a K-point.
Then there exists a family of algebraically trivial cycle classes Z ∈ A n

X/K(J2n−1
a,X/K) such

that the induced morphism of Abelian varieties over K,

ψZ : J2n−1
a,X/K → J2n−1

a,X/K ,
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is multiplication by N .

Proof. — The proof of Theorem 9.4 is identical to that of Theorem 9.1, except one
uses diagram (3.6) rather than (3.3) and the fact that the action of a correspondence
on intermediate Jacobians only depends on its cohomology class.

Remark 9.5. — In the cases n = 1, 2 or dX , we have J2n−1
a,X/K = AbnX/K , and the Abel-

Jacobi map is the universal regular homomorphism ΦnX/K , so that in those cases
Theorems 9.4 and 9.1 are closely related. The benefit of Theorem 9.4 is that in char-
acteristic 0, we always have the distinguished model of the image of the Abel-Jacobi
map for any n, whereas algebraic representatives, in any characteristic, are known to
exist in general only for n = 1, 2, dX .
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CHAPTER 10

THE STANDARD ASSUMPTION

We now discuss an isomorphism, (10.5) below, that plays a central role in our
presentation moving forward (Theorem 12.6 and consequently Theorem 1(1)–(2)). It
makes it possible, in positive characteristic, to relate the Tate module of the second
algebraic representative of a smooth projective variety X to the third cohomology
group of X. Since we expect such an isomorphism to hold true in general (and it
does in characteristic zero and in any characteristic for geometrically rationally chain
connected varieties; see Proposition 10.3), we call this the standard assumption (Defi-
nition 10.5). In order to slightly streamline the presentation, we recall our convention
that ℓ always denotes a rational prime (i.e., a prime number in Z) invertible in the
base field (which we denote by K), while l is allowed to be the (positive) characteristic
of the base field.

10.1. Cohomological decomposition of the diagonal and Bloch-Srinivas’ result on alge-
braic representatives

A fundamental result due to Bloch-Srinivas [18, Thm. 1(i)] states that over an al-
gebraically closed field of characteristic 0, a decomposition of the diagonal implies the
algebraic representative in codimension-2 is isomorphic to the group of algebraically
trivial codimension-2 cycle classes. Their argument carries over to smooth projective
varieties over perfect fields (this was also recently observed in [14, Prop. 2.3]). Here we
improve their result by only assuming the existence of a cohomological decomposition
of the diagonal.

Proposition 10.1. — Let X be a smooth projective variety over a perfect field K of
characteristic exponent p and let ℓ be a prime ̸= p. Suppose that, for some natural
number N , the multiple N∆XK

∈ CHdX (XK×KXK) admits a cohomological decom-
position (resp. Zℓ-decomposition) of type (dX − 1, 1) with respect to H•(−,Zℓ). Then
the universal regular homomorphism Φ2

X/K : A 2
X/K → Ab2

X/K is an isomorphism
of Gal(K)-modules on K-points; i.e.,

Φ2
X/K(K) : A2(XK)

∼−→ Ab2
X/K(K)
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(resp. is an isomorphism on ℓ-power torsion if ℓ ∤ N ; i.e., Φ2
X/K(K)[ℓ∞] is an iso-

morphism).

Proof. — We combine the proof in [18, Thm. 1(i)], where it is assumed that
N∆XK

∈ CHdX (XK ×K XK) admits a decomposition of type (dX − 1, 1), with
Proposition 8.1.

First, it suffices to prove the result after base change to the algebraic closure K,
so we assume that K = K to make the notation more streamlined. We only need
to show that ϕ2

X = Φ2
X/K(K) : A2(X) → Ab2

X/K(K) is injective, since the map to
the algebraic representative is always surjective on points over an algebraically closed
field.

We are given that

N [∆X ] = [Z1] + [Z2] ∈ H2dX (X ×K X,Zℓ(dX))

with Z1 ∈ CHdX (X ×K X) supported on W1 ×K X where W1 is a divisor, and
Z2 ∈ CHdX (X ×K X) is supported on X ×K W2 with dimW2 ≤ 1. Since K = K is
perfect, we have a smooth projective alteration of W1 of some degree a power of p,
say pe. We then consider the correspondence Npe∆∗

X . By Proposition 8.1, Npe∆∗
X

acts as peZ∗1 +peZ∗2 on Ab2
X/K . Now we use our factorization (3.3). As dimW2 ≤ 1, we

have peZ∗2 = 0 on A2(X), so that Npe∆∗
X = peZ∗1 on Ab2

X/K . Under the identification
A1(W̃1) = (Pic0(W̃1))red(K) we obtain a map r := (j̃1)∗ ◦ Z̃∗1 : Ab2

X/K(K)→ A2(X),
which is a homomorphism (via a diagram chase) with kernel contained in the Npe-tor-
sion. The inverse of the isomorphism Ab2

X/K(K)/(ker r)
∼→ A2(X) is a regular ho-

momorphism (use that for any smooth variety T we have A2(T ×K X) is divisible),
and then a diagram chase using the universal property of the algebraic representative
shows that Φ2

X/K is injective, completing the proof.
In the case of a Zℓ-cohomological decomposition, we make the same modifications

as in Theorem 9.1. From Proposition 1.6, we know that Φ2
X/K(K)[ℓ∞] is surjective,

so we only need to show it is injective. As before, we may set N = 1. We assume
that we have Z1, Z2, as in the definition of the Zℓ-decomposition of the diagonal,
observing that they are given as cycles with Zℓ-coefficients. We have by definition
that [∆X ] = [Z1]+[Z2] in H2dX ((X×KX)K ,Zℓ(dX)). As in the proof of Theorem 9.1,
choose integral cycles Z ′1 and Z ′2 which respectively approximate Z1 and Z2 modulo ℓ2.
We have the equality [∆X ] = [Z ′1] + [Z ′2] in H2dX ((X ×K X)K ,Z/ℓ2Z(dX)). The rest
of the proof goes through identically, so that we find that Φ2

X/K(K) is an injection
on ℓ-torsion. This implies it is an injection on ℓ-power torsion, and we are done.

Remark 10.2. — In Prop. 10.1, the natural transformation Φ2
X/K : A 2

X/K → Ab2
X/K

need not be an isomorphism of functors [8, Rem. 5.2].

We have the following application:

Proposition 10.3. — Let X be a smooth projective variety over a perfect field K. As-
sume one of the following:
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(1) char(K) = 0, or,
(2) for some natural number N , the multiple N∆XK

∈ CHdX (XK ×K XK) admits
a cohomological decomposition (resp. Zℓ-decomposition) of type (dX − 1, 1) with
respect to H•(−,Zℓ) for some prime ℓ ̸= char(K).

Then for all primes l (resp. for l = ℓ), the morphisms

ϕ2
XK

[l∞] : A2(XK)[l∞]
∼−→ Ab2

X/K(K)[l∞](10.1)

Tlϕ
2
XK

: Tl A
2(XK)

∼−→ Tl Ab2
X/K(10.2)

are isomorphisms of Gal(K)-modules.

Proof. — Under the hypothesis (1), applying Tl to both sides of (10.1), we see that
the morphism (10.2) follows from (10.1). For (10.1), using Lecomte’s rigidity theorem
[45], we immediately reduce to the case K = C, in which case this is [53, Thm. 10.3].
We note that there is a small gap in Murre’s proof; it is not obvious that for a
surjective regular homomorphism, the induced morphism on ℓ-torsion is surjective.
This uses Lemma 1.3 and the existence of miniversal cycles, and is explained in [6,
Lem. 3.2(b) & Rem. 3.3].

Under hypothesis (2), the conclusions follow immediately from Proposition 10.1.

Remark 10.4. — If in Proposition 10.3 the decomposition is of type (dX − 1, 2), and
ℓ ∤ Np, then (10.1) and (10.2) are isomorphisms. This follows by combining Proposi-
tion 8.1 with the arguments for [7, Prop. 3.8(3)] (which addresses the case of a Chow
decomposition).

10.2. The standard assumption

To start our discussion, we observe that given a regular homomorphism

Φ : A n
X/K

// A,

if the natural map

(10.3) TlΦ(K) : Tl A
n(XK)

≃ // TlA

is an isomorphism, then there is a canonical morphism ι of Gal(K)-modules:
(10.4)

TlA(K)
TlΦ(K)−1

//

ι

22
Tl A

n(XK) �
� // Tl CHn(XK)

Tlλ
n

// H2n−1(XK ,Zl(n))τ .

When K = C, n is 1, 2, or dX , and A = AbnX/K , this agrees with the canonical
inclusion coming from Hodge theory (as the Bloch map agrees with the Abel-Jacobi
map on torsion [17, Prop. 3.7]).
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An isomorphism of the type (10.3) in the case n = 2 turns out to be quite central
to our treatment and deserves to be singled out:

Definition 10.5 (The standard assumption). — We say a smooth projective variety X
over a field K and a prime l satisfy the standard assumption, or that X satisfies the
standard assumption at l, if the homomorphism

(10.5) ϕ2
XK

[l∞] : A2(XK)[l∞] // Ab2
X/K [l∞]

is an isomorphism.

If the standard assumption holds, then, by taking Tate modules,

(10.6) Tlϕ
2
XK

: Tl A
2(XK) // Tl Ab2

X/K

is an isomorphism, as well, in which case we will denote

(10.7) ι : Tl Ab2
X/K

(Tlϕ
2
X

K
)−1

∼
// Tl A

2(XK)
Tlλ

2

// H3(XK ,Zl(n))τ

the composition, and similarly with Ql-coefficients.

Remark 10.6. — As explained in Proposition 10.3, the standard assumption holds
unconditionally if char(K) = 0, and holds in positive characteristic for those smooth
projective varieties X whose diagonal admit a positive multiple with a cohomologi-
cal decomposition of type (dX − 1, 1); e.g., geometrically rationally chain connected
varieties. We in fact expect that the standard assumption holds unconditionally; to
establish this for almost all primes, it would suffice to show the standard assumption
holds for varieties over finite fields (see [7, Lem. 4.3]).
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CHAPTER 11

ALGEBRAIC REPRESENTATIVES
AND

COHOMOLOGICAL ACTIONS OF CORRESPONDENCES

It is a basic fact in Hodge theory that for a family of homologically trivial cycle
classes, the normal function defined via the Abel-Jacobi map induces on cohomology
the same morphism as the family of cycle classes viewed as a correspondence (see
(11.1)). As this fact is quite useful in characteristic 0, the purpose of this section is to
explain how to interpret this fact in positive characteristic, which we do in terms of the
commutativity of a certain diagram (see (11.2)). The main results are Proposition 11.6,
as well as Proposition 11.6 together with its consequence, Corollary 11.8, regarding
the case of codimension-2 cycle classes, which essentially says that the diagram is
commutative for geometrically rationally chain connected varieties (see Remark 11.9).

11.1. Defining the commutative diagram

For motivation, consider the situation where X and T are complex projective man-
ifolds, and Z ∈ CHn(T ×X) is a cycle class that is fiberwise algebraically trivial, i.e.,
Z ∈ AX/C(T ). Via the Abel-Jacobi map, we obtain a morphism

ψZ : T // J2n−1(X).

It is a standard fact (see e.g., [63, Thm. 12.17]) that (ψZ)∗ and the correspondence Z∗
agree on H2dT−1(T,Z) in the sense that there is a commutative diagram

(11.1) H1(T,Z)
(ψZ)∗ //

Z∗
++

H1(J
2n−1(X),Z) H2n−1(X,Z(n))τ

H2n−1(X,Z(n)).

22 22

We note that ψZ has image contained in the image J2n−1
a (X) of the restriction of

the Abel-Jacobi map to algebraically trivial cycles AJ : An(X) → J2n−1(X). If
X admits K ⊆ C as a field of definition, the subtorus J2n−1

a (X) ⊆ J2n−1(X) was
shown in [6] to admit a distinguished model J2n−1

a,X/K over K, in such a way that
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AJ : An(X)→ J2n−1
a (X) is Aut(C/K)-equivariant. Since the Bloch map agrees with

the Abel-Jacobi map on torsion [17, Prop. 3.7], we obtain for smooth projective vari-
eties T,X over a field K ⊆ C and Z ∈ A n

X/K(T ) a commutative diagram:

Tℓ An(XK)
TℓAJ

uu
Tℓλ

n

**
H2dT−1(TK ,Zℓ(dT ))

Z∗ ++

(ψZ)∗ // TℓJ
2n−1
a,X/K

� � // H2n−1(XK ,Zℓ(n))τ

H2n−1(XK ,Zℓ(n)).

22 22

As the Abel-Jacobi map is complex in nature, it is not immediately clear how
to generalize this statement to varieties over fields of positive characteristic. How-
ever, as algebraic representatives provide a replacement for the Abel-Jacobi maps
in positive characteristic, let us assume that there exists an algebraic representative
ΦnX/K : A n

X/K → AbnX/K , which is always the case if n = 1, 2, dX . While in general it
is unclear whether there is a canonical map Tl AbnX/K → H2n−1(XK ,Zl(n))τ , if we
assume that

Tlϕ
n
XK

: Tl A
n(XK)

∼−→ Tl AbnX/K
is an isomorphism, then we obtain a diagram
(11.2)

H2dT−1(TK ,Zl(dT ))

Z∗ ,,

(ψZ)∗// TlAbnX/K
(Tlϕ

n
X)−1

≃
// Tl A

n(XK)
Tlλ

n

// H2n−1(XK ,Zl(n))τ

H2n−1(XK ,Zl(n)).

22 22

Note that if n = 1 or n = dX , then TlϕnXK
is an isomorphism for all primes l (for n = 1

this is Kummer theory, while for n = dX this is Rojtman’s theorem; see [17, 35, 49],
and [7, Appendix] for a review). Recall also from Remark 10.6 that TlϕnXK

is an
isomorphism for n = 2 in characteristic zero and for geometrically rationally chain
connected varieties in positive characteristic.

The question is then the following:

Question 11.1. — Assuming TlϕnXK
: Tl A

n(XK)
∼−→ Tl AbnX/K is an isomorphism,

under what conditions is diagram (11.2) commutative ?

In Lemma 11.4 below, we establish the commutativity of (11.2) in the case
n = 1 and in Corollary 11.7 below, we establish the commutativity of (11.2) in the
case n = dX . If n = 2 and K ⊆ C, the algebraic representative Φ2

X/K coincides with
the Abel-Jacobi map after base-change to C. As such, under the above conditions,
the diagram (11.2) commutes. The commutativity of (11.2) for n = 2 and for
perfect fields K of positive characteristic will be established in Corollary 11.8 below,
assuming that Tlϕ2

XK
is an isomorphism and that Vlλ2 is surjective.
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Remark 11.2. — Note that since H2n−1(XK ,Zl(n))τ is by definition torsion-free, it
suffices to show that (11.2) is commutative with Ql-coefficients. Indeed, suppose M
and N are Zl-modules, and f, g : M → N are Zl-module homomorphisms that agree
after tensoring with Ql. If N is torsion-free, then f = g: given m ∈ M , we have
that r(f(m) − g(m)) = 0 for some r ∈ Zl; but since N is torsion-free, this implies
that f(m) = g(m).

11.2. Diagram (11.2) in the case n = 1

In case char(K) = 0, as explained in §11.1, the diagram (11.2) with n = 1 com-
mutes. We now observe that it also commutes with n = 1 for any perfect field K. We
start by recalling the following fact:

Proposition 11.3. — Let X be a smooth projective variety over a perfect field K, and
let n be a natural number. Then there exist a smooth projective, geometrically integral,
curve C over K admitting a K-point and a correspondence γ ∈ CHn(X ×K C) such
that for all primes ℓ ̸= char(K)

Nn−1H2n−1(XK ,Qℓ(n)) = Im
(
γ∗ : H1(CK ,Qℓ(1)) −→ H2n−1(XK ,Qℓ(n))

)
.

Here, N• is the geometric coniveau filtration.

Proof. — This is [6, Prop. 1.1] which actually holds over any perfect field K.

Lemma 11.4 (Diagram (11.2) with n = 1). — Let X be a smooth projective variety over
a perfect field K and let l be a prime number. The map Tlϕ1

XK
: Tl A

1(XK)
∼−→ Tl Ab1

X/K

is an isomorphism, and for any smooth projective variety T and any Z ∈ A 1
X/K(T ),

the diagram (11.2) commutes in the case n = 1. In particular, if T = B is an Abelian
variety, then Tlλ

1 ◦ TlwZ = Z∗ : TlB → H1(XK ,Zl(1)).

Proof. — Using the fact that Ab1
X/K = (Pic0

X/K)red (e.g., [8, Rem. 7.2]), it follows
from the definition of the Picard functor that ϕ1

XK
: A1(XK)

∼−→ Ab1
X/K(K) is an iso-

morphism. Taking Tate modules gives that the map Tlϕ1
XK

: Tl A
1(XK)

∼−→ Tl Ab1
X/K

is an isomorphism.
We now proceed to establish the commutativity of (11.2) in the case n = 1.

We first consider the case where T is a curve. The key point is then to use the
identification, valid even when l = char(K) (e.g., [35, Cor. 3.3]), that H1(XK ,µµµlν ) =

Pic0
XK/K

(K)[lν ], obtained via identifying µµµlν -torsors over X with étale covers,
and then with torsion line bundles (and similarly for T ). Using that dT = 1 (so
that H2dT−1(TK ,Zl(dT )) = H1(TK ,Zl(1))), the commutativity follows from the
definitions of the maps.

For the general case, it is slightly more convenient to use Remark 11.2, and prove
commutativity with Ql-coefficients.

Initially, suppose l = ℓ ̸= char(K). To start, we use Proposition 11.3: there exist
a smooth projective curve C over K and a correspondence γ ∈ CH1(C ×K T ) such
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that H2dT−1(TK ,Qℓ(dT )) = γ∗H
1(CK ,Qℓ(1)). We then consider the diagram

(11.3)

H1(CK)(1)
γ∗// //

(Z◦γ)∗
//

(ψZ◦γ)∗

''
H2dT−1(TK)(dT )

Z∗ ,,

(ψZ)∗// VlAb1
X/K

(Vlϕ
1
X)−1

≃
// Vl A

1(XK)
λ1

X // H1(XK)(1)

H1(XK)(1).

where we are using Qℓ-coefficients. A diagram chase then completes the proof of
commutativity.

We now consider the case where l = p = char(K) > 0. The same γ and C used be-
fore yield a surjection of F -isocrystals γ∗ : H1

cris(C/B(K))(1)→ H2dT−1
cris (T/B(K))(dT ).

Upon taking Frobenius invariants, we obtain a surjection

γ∗,p : H1(CK ,Qp(1))→ H2dT−1(XK ,Qp(dT )).

The same chase of (11.3) establishes the commutativity.
Finally, that Tlλ1 ◦ TlwZ = Z∗ in case T is an Abelian variety follows from the

commutativity of (11.2) and Lemma 1.4.

11.3. Diagram (11.2) in the case n > 1

We start with the following observation which answers positively the conjecture
[35, Conj. III.4.1(iii)] in case 2n − 1 ≤ dX (and in case 2n − 1 > dX provided X

satisfies the Lefschetz standard conjecture):

Lemma 11.5 ([7, Prop. 6.1 & Rem. 6.2]). — Let X be a smooth projective variety over a
perfect field K. Let n be a natural number and let ℓ0 ̸= char(K) be a prime. Suppose
that

Vℓ0λ
m : Vℓ0 Am(XK) −→ H2m−1(XK ,Qℓ0(m))

is surjective for m := min{n, dX − n+ 1}.
Then Vlλ

n : Vl A
n(XK) −→ H2n−1(XK ,Ql(n)) is surjective for all primes l.

In addition, there exist an Abelian variety A over K, and correspondences
Γ ∈ CHdX+1−n(X ×K Â) and Γ′ ∈ CHn(A ×K X), which induce for all primes l

isomorphisms of Gal(K)-modules

Γ∗ : H2n−1(XK ,Ql(n))
∼−→ VlA

and Γ′∗ : VlA
∼−→ H2n−1(XK ,Qℓ(n)).

(11.4)

Proof. — This is essentially [7, Prop. 6.1] and we provide a proof here for
convenience. We start with the given ℓ0 ̸= char(K). We can of course as-
sume 0 ≤ n ≤ d, so that 0 ≤ m ≤ d/2. Since Vℓ0λ

m is surjective, and since
im(Vℓ0λ

m) = Nm−1H2m−1(XK ,Qℓ0(m)) (see [57, Prop. 5.2] or [7, Prop. 2.1]), there
exist by Proposition 11.3 a smooth projective, geometrically integral, curve C over K
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admitting a K-point and a correspondence γ ∈ CHm(X ×K C) inducing a surjection

H1(CK ,Qℓ0(1))
γ∗ // // H2m−1(XK ,Qℓ0(m)).

Taking a hyperplane section HX and dualizing the surjection above we obtain an
injection

H2m−1(XK ,Qℓ0(m))
Hd−2m+1

X

∼
// H2d−2m+1(XK ,Qℓ0(d−m+ 1))

� � γ∗ // H1(CK ,Qℓ0(1)).

The correspondence γ∗ ◦Hd−2m+1
X ◦ γ∗ ∈ CH1(C ×K C)Q induces, via the choice of

a K-point on C, an element of f ∈ End(AlbC)⊗Q. Using the semi-simplicity of the
category of Abelian varieties over K up to isogeny, taking A to be the image of f ,
and clearing denominators, we obtain correspondences Γ ∈ CHdX+1−m(X ×K Â) and
Γ′ ∈ CHm(A ×K X) such that Γ ◦ Γ′ ∈ CH1(A × Â) induces an isogeny A → A and
such that

Γ∗ : H2m−1(XK ,Qℓ0(m))
∼−→ Vℓ0A

and Γ′∗ : Vℓ0A
∼−→ H2m−1(XK ,Qℓ0(m))

are isomorphisms. In case m = d− n+ 1, by dualizing, we also obtain isomorphisms
tΓ′∗ : H2n−1(XK ,Qℓ0(n))

∼−→ Vℓ0Â

and tΓ∗ : Vℓ0Â
∼−→ H2n−1(XK ,Qℓ0(n)).

We conclude that the homomorphisms (11.4) are isomorphisms for all primes
ℓ ̸= p using the invariance of the ℓ-adic Betti numbers for all ℓ ̸= p. Since crys-
talline and ℓ-adic Betti numbers coincide, Γ induces an isomorphism of isocrystals
H2n−1

cris (X/B(K))(n) ∼= H1
cris(A/B(K)); taking Frobenius invariants yields (11.4) with

l = p.
Finally, from the right-hand side isomorphism of (11.4), we see that for all primes l

we have H2n−1(XK ,Ql(n)) = Nn−1H2n−1(XK ,Ql(n)). We conclude, by [7, Prop. 2.1]
again, that Vlλn is surjective.

The main result of this section is the following proposition providing an answer to
Question 11.1 under certain conditions.

Proposition 11.6. — Let X be a smooth projective variety over a perfect field K.
Suppose that X admits an algebraic representative ΦnX : A n

X/K → AbnX/K in
codimension n and suppose that there exists a prime ℓ0 ̸= char(K) such that
Vℓ0λ

m : Vℓ0 Am(XK) −→ H2m−1(XK ,Qℓ0(m)) is surjective for m := min{n, d− n+ 1}.
Let l be any prime such that TlϕnXK

: Tl A
n(XK)

∼−→ Tl AbnX/K is an isomorphism.
Then for any smooth projective variety T and any Z ∈ A n

X/K(T ), the diagram (11.2)
commutes.

Proof. — As mentioned in Remark 11.2, it suffices to prove the commutativity of
(11.2) with Ql-coefficients. The proof consists in reducing to the case of codimension-1
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cycles by showing that the diagram (11.2) with Ql-coefficients is the direct summand
of a similar diagram with Ab1 in place of Abn, in which case the commutativity is
proven in Lemma 11.4.

Using the given ℓ0, choose A, Γ and Γ′ as in Lemma 11.5; recall that these objects
induce the isomorphisms (11.4) for all l. By the universal property of the algebraic
representatives, the correspondence Γ induces a K-morphism f : AbnX → Ab1

A = A∨

and the correspondence Γ′ induces a K-morphism g : Ab1
A → AbnX , making the

following diagrams commute:

An(XK)
ϕn

X
K //

Γ∗
��

AbnX(K)

f

��

A1(AK)
ϕ1

A
K //

Γ′∗

��

Ab1
A(K)

g

��
A1(AK)

ϕ1
A

K // Ab1
A(K) An(XK)

ϕn
X

K // AbnX(K).

Given a regular homomorphism Φ : A i
X/K → D and a smooth separated variety T

over K, a correspondence Θ ∈ A i
X/K(T ) induces a K-morphism ψΘ : T → D, which

itself induces a morphism (ψΘ)∗ : H2dT−1(TK ,Zl(dT )) → TlD. We obtain a commu-
tative diagram
(11.5)

H2dT−1(TK ,Ql(dT ))
ψZ,∗ //

ψΓ◦Z,∗ ))

ψΓ′◦Γ◦Z,∗

$$

Vl AbnX/K

Vlf��

(Vlϕ
n
X

K
)−1

≃
// Vl A

n(XK)

Γ∗��

λn
X // // H2n−1(XK ,Ql(n))

Γ∗
��

Vl Ab1
A/K

Vlg
��

(Vlϕ
1
A

K
)−1

≃
// Vl A

1(AK)

Γ′∗��

λ1
A

≃
// H1(AK ,Ql(1))

Γ′∗��
Vl AbnX/K

(Vlϕ
n
X

K
)−1

≃
// Vl A

n(XK)
λn

X // // H2n−1(XK ,Ql(n)).

The right squares commute thanks to the naturality of the Bloch map (see [35] for
the case l = p), the middle squares commute by construction of f and g and the
left part of the diagram commutes by the definition of regular homomorphisms. The
commutativity of (11.5) yields

Γ′∗ ◦ Γ∗ ◦ λnX ◦ (Vlϕ
2
X)−1 ◦ ψZ∗ = Γ′∗ ◦ λ1

A ◦ (Vlϕ
1
A)−1 ◦ ψΓ◦Z,∗ = Γ′∗ ◦ Γ∗ ◦ Z∗,

i.e., that the diagram (11.2) commutes after composing with Γ′∗ ◦ Γ∗.
Since Γ′∗ ◦ Γ∗ : H2n−1(XK ,Ql(n))→ H2n−1(XK ,Ql(n)) is an isomorphism thanks

to Lemma 11.5, we conclude the diagram (11.2) commutes with Ql-coefficients.

We obtain unconditionally the commutativity of the diagram (11.2) in case n = dimX:

Corollary 11.7 (Diagram (11.2) with n = dimX). — Let X be a smooth projective va-
riety of dimension d over a perfect field K. Then, for any smooth projective variety T ,
any Z ∈ A d

X/K(T ) and any prime l, the diagram (11.2) with n = d commutes.
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Proof. — Recall that an algebraic representative for codimension-d cycles on XK is
given by the Albanese morphism. The latter is an isomorphism on torsion by Ro-
jtman’s theorem and so Tlϕ

d
XK

is an isomorphism. On the other hand Tlλ
1 is an

isomorphism by Kummer theory. The assumptions of Proposition 11.6 are met and
we can conclude.

Finally, since this will be important to us, we state explicitly Proposition 11.6 in
the case n = 2:

Corollary 11.8 (Diagram (11.2) with n = 2). — Let X be a smooth projective variety
over a perfect field K. If char(K) > 0, suppose that there exists a prime ℓ0 ̸= char(K)

such that Vℓ0λ2 : Vℓ0 A2(XK)→ H3(XK ,Qℓ0(2)) is surjective.
If X satisfies the standard assumption at l (Definition 10.5), then for any smooth

projective variety T and for any Z ∈ A 2
X/K(T ), the diagram (11.2) with n = 2

commutes.

Proof. — The case where char(K) = 0 was explained in §11.1 (and the standard
assumption is satisfied for all l). The case where char(K) > 0 is Proposition 11.6
in case dX > 2 and Corollary 11.7 in case dX = 2 (in which case the assumptions
on Tℓϕ2

XK
and Vℓλ2 are superfluous).

Remark 11.9. — Note that, due to Proposition 7.12 and Proposition 10.1, the as-
sumptions of Corollary 11.8 are met for smooth projective varieties X over a perfect
field K whose CH0(X)Q is universally supported on a curve, e.g., for smooth pro-
jective geometrically rationally chain connected varieties, or for smooth projective
varieties with geometric MRC quotient of dimension ≤ 1.

11.4. Commutativity in the case of an Abelian variety

In case the parameter space T = B is an Abelian variety, we can rephrase the
commutativity of (11.2) under less restrictive assumptions. The point is that in this
case (11.2) becomes

TlB

Z∗
,,

(ψZ)∗//

TℓwZ

''
TlAbnX/K

(Tlϕ
n
X)−1

≃
// Tl A

n(XK)
Tlλ

n

// H2n−1(XK ,Zl(n))τ

H2n−1(XK ,Zl(n))

22 22

and therefore, ignoring the existence of the algebraic representative, and whether
Tlϕ

n
X is an isomorphism if the algebraic representative exists, we can rephrase com-

mutativity as:

Proposition 11.10. — Let X be a smooth projective variety over a perfect field K and
let n be a natural number. Suppose there exists a prime ℓ0 ̸= char(K) such that

Vℓ0λ
m : Vℓ0 Am(XK) −→ H2m−1(XK ,Qℓ0(m))
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is surjective for m := min{n, d− n+ 1}.
Then, for any Abelian variety B over K, any Z ∈ A n

X/K(B) and any prime l, the
diagram

(11.6) TlB
wZ //

Z∗

''

Tl A
n(XK)

Tlλ
n

��
H2n−1(XK ,Zl(n))τ

is commutative.

Proof. — Recall from Lemma 1.4 that in our situation wZ induces a map on l-adic
Tate modules. Since TlB and H2n−1(XK ,Zl(n))τ are torsion-free, it suffices to
prove commutativity of (11.2) with Ql-coefficients. The proof consists then in us-
ing Lemma 11.5 to reduce to the case of codimension-1 cycles, in which case the
commutativity is proven in Lemma 11.4.

Using ℓ0, choose A, Γ and Γ′ as in Lemma 11.5. We obtain a commutative diagram

(11.7) TlB
wZ //

wΓ◦Z ))

Tl A
n(XK)

Γ∗��

Tlλ
n
X // H2n−1(XK ,Ql(n))τ

Γ∗��
Tl A

1(AK)

Γ′∗��

Tlλ
1
A

≃
// H1(AK ,Ql(1))

Γ′∗��
Tl A

n(XK)
Tlλ

n
X // H2n−1(XK ,Ql(n))τ .

The squares commute thanks to the naturality of the Bloch map and the left part
of the diagram commutes by the definition of the maps wZ and wΓ◦Z . Therefore
Γ′∗ ◦ Γ∗ ◦ TlλnX ◦ wZ = Γ′∗ ◦ Tlλ1

A ◦ wΓ◦Z = Γ′∗ ◦ (Γ ◦ Z)∗, where the second equality
follows from Lemma 11.4. Thus the diagram (11.6) commutes after composing with
Γ′∗ ◦ Γ∗. Since Γ′∗ ◦ Γ∗ : H2n−1(XK ,Ql(n)) → H2n−1(XK ,Ql(n)) is an isomorphism,
we conclude the diagram (11.6) commutes with Ql-coefficients.
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CHAPTER 12

COHOMOLOGICAL DECOMPOSITION
AND

SELF-DUALITY OF THE ALGEBRAIC REPRESENTATIVE

Let X be a smooth projective threefold over a field K and assume that XK admits
a universal codimension-2 cycle Z. The aim of this section is to study the symmetric
K-homomorphism

ΘX : Ab2
XK/K

→ Âb 2
XK/K

induced (see §1.5) by the cycle −(tZ ◦ Z) ∈ CH1(Ab2
XK/K

×K Ab2
XK/K

). Under the
assumption that Vℓλ2 is surjective for some prime ℓ ̸= char(K), we show in Theo-
rem 12.6 that ΘX is an isogeny that descends to K and is independent of the choice
of the universal cycle Z. Moreover, in characteristic 0, in the case where X is geo-
metrically rationally connected, we show that ΘX is the Hodge-theoretic polarization
induced via the intersection pairing in cohomology (see Remark 12.7), and that a
similar statement holds in positive characteristic for the symmetric K-isogeny ΘX

induced by −(tZ ◦ Z) (the precise meaning of this is explained in Definition 12.1).
In particular, this shows that the isomorphism in Theorem 4.4, in characteristic 0,
agrees with the Hodge-theoretic polarization induced via the intersection pairing in
cohomology. In addition, let us already mention that, in positive characteristic, we
will show in Proposition 13.1 that ΘX is a polarization under some liftability con-
ditions to characteristic zero. For instance, in Corollary 13.3, we will show that if
X is a geometrically stably rational threefold, and if X lifts to characteristic 0 as a
geometrically rationally connected threefold, then ΘX is a principal polarization.

12.1. Motivation from Hodge theory: morphisms of Abelian varieties induced by cup
product in cohomology

Let X be a complex projective manifold, let H be an ample divisor on X, let
n be a nonnegative integer with 1 ≤ 2n− 1 ≤ dX , and assume Nn−1H2n−1(X,Q) =

H2n−1(X,Q), which implies

H2n−1(X,C) = Hn+1,n(X)⊕Hn,n−1(X).
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Then the Hodge-Riemann bilinear pairing (α, β) 7→ i(−1)n
∫
X
α∧β∧[H]dX−2n−1 gives

a Hermitian form h on Hn,n+1(X) so that − Im 2h is the cup product in cohomology
(up to a sign):

H2n−1(X,Z)τ ⊗H2n−1(X,Z)τ −→ H2dX (X,Z) = Z

(α, β) 7→ (−1)n−1α ∪ β ∪ [H]dX−2n−1.

The associated linear map 2h : Hn−1,n(X) → Hn−1,n(X) therefore induces a
symmetric isogeny

ΘX : J2n−1(X)→ Ĵ2n−1(X)

on the intermediate Jacobian. Note that under the assumption Nn−1H2n−1(X,Q) =

H2n−1(X,Q), we have that J2n−1(X) is equal to J2n−1
a (X), i.e., the image of the

Abel-Jacobi map on algebraically trivial cycle classes, which is an Abelian variety.
The above discussion can be rephrased as saying that ΘX induces a commutative

diagram

H1(J
2n−1(X),Z)

=
��

ΘX // H1(Ĵ
2n−1(X),Z)

H2n−1(X,Z)τ
∪(−1)n−1[H]dX−2n+1

// H2dX−2n+1(X,Z)τ .

=

OO

The left vertical arrow is the canonical identification coming from the construction
of the intermediate Jacobian, while the right vertical arrow is the dual identification,
where we identify H1(J

2n−1(X),Z)∨ = H1(Ĵ
2n−1(X),Z) via the Weil pairing, and

we identify H2n−1(X,Z)∨τ = H2dX−2n+1(X,Z)τ via the cup product. We review this
standard Hodge theory in §A.4.

Taking the Tate module of the Abel-Jacobi map gives us two equivalent
maps [17, Prop. 3.7], namely the maps TℓAJ : Tℓ An(X) → TℓJ

2n−1
a (X) and

Tℓλ
n : Tℓ An(X)→ H2n−1(X,Zℓ)τ , and we can rephrase the diagram above ℓ-adi-

cally as saying the following diagram commutes:

H1(J
2n−1(X),Zℓ)

TℓΘX // H1(Ĵ
2n−1(X),Zℓ)

(TℓAJ)∨

��
Tℓ An(X)

Tℓλ
n

��

TℓAJ

OO

Tℓ An(X)∨

H2n−1(X,Zℓ)τ
∪(−1)n−1[H]dX−2n+1

// H2dX−2n+1(X,Zℓ)τ .
(Tℓλ

n)∨
OO

The isogeny ΘX is in fact the only morphism Θ : J2n−1(X) → Ĵ2n−1(X) mak-
ing the above diagram commute (for any ℓ). Indeed, since for Abelian varieties A,B,
the natural map Hom(A,B) → Hom(VℓA, VℓB) is an inclusion, it suffices to show
that VℓAJ : Vℓ An(X) → VℓJ

2n−1(X) is surjective; this follows from the Proposi-
tion 1.6 using the fact that the Abel-Jacobi map is a surjective regular homomorphism
(TℓAJ is in fact an isomorphism for n = 1, 2, dX).
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Note that if the Hodge coniveau filtration satisfies Ni−1
H H2i−1(X,Q) = 0 for all

i < n; i.e., the middle two terms of the Hodge decomposition are zero for all odd
cohomology in degree less than 2n−1, which holds for instance if n = 1, or if dX ≥ 3,
n = 2, and h1,0 = 0, then the Hodge-Riemann bilinear pairing is positive definite, so
that ΘX is a polarization.

12.2. Distinguished homomorphisms

The discussion above motivates the following definition:

Definition 12.1 (Distinguished homomorphism). — Let X be a smooth projective va-
riety over a perfect field K, let H ∈ CH1(X) be the class of an ample divisor, let
n be a natural number such that 1 ≤ 2n − 1 ≤ dX , let Ω/K be an algebraically
closed field extension, let l be a prime, and let Φ : A n

X/K → A be a surjective regular
homomorphism. We say that a homomorphism

Λ : AΩ −→ ÂΩ

is l-distinguished (with respect to H) if it is induced by cup product in cohomology
in the sense that the following diagram commutes:

(12.1) TlAΩ
TlΛ // TlÂΩ

(Tlϕ)∨

��
Tl A

n(XΩ)

Tlϕ

OO

Tlλ
n

��

Tl A
n(XΩ)∨(1)

H2n−1(XΩ,Zl(n))τ
∪[H]dX−2n+1

// H2dX−2n+1(XΩ,Zl(dX − n+ 1))τ .

(Tlλ
n)∨

OO

Here (TlAΩ)∨(1) is identified with TlÂΩ via the Weil pairing (see A.1), and
H2n−1(XΩ,Z)∨τ is identified with H2dX−2n+1(XΩ,Z)τ via the cup product. We say
that Λ is distinguished if it is distinguished for all primes l.

Remark 12.2. — Note that in comparison to the motivation in §12.1, we have removed
the factor of (−1)n−1 in the bottom row of (12.1) to simplify some of the diagrams, and
to make the presentation more clearly motivic. When we are interested in questions
of positivity, we will always replace the (ℓ-)distinguished homomorphism Λ with the
homomorphism Θ = (−1)n−1Λ.

Lemma 12.3 (Uniqueness and descent). — Let ℓ ̸= char(K) be prime. In the no-
tation of Definition 12.1, there is at most one ℓ-distinguished homomorphism
Λ : AΩ → ÂΩ, and this morphism descends to a K-homomorphism Λ : A → Â.
Moreover, Θ = (−1)n−1Λ is a (principal) polarization if and only if Θ = (−1)n−1Λ is
a (principal) polarization.

Proof. — As in the case of the Abel-Jacobi map (§12.1), by virtue of the fact that the
natural map Hom(A,B) → Hom(VℓA, VℓB) is an inclusion, and the fact that Vℓϕ is
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surjective for all ℓ (Proposition 1.6(3)), a diagram chase in (12.1) shows that an
ℓ-distinguished homomorphism, if it exists, is unique. To show an ℓ-distinguished ho-
momorphism Λ descends to K it suffices to show that it is Aut(Ω/K)-equivariant on
Tate modules. In fact, it suffices to show that VℓΛ is Aut(Ω/K)-equivariant; since
Vℓϕ is surjective, this follows again from a diagram chase in (12.1). Finally, it is stan-
dard that Θ = (−1)n−1Λ is a (principal) polarization if and only if Θ = (−1)n−1Λ is
a (principal) polarization (see §A.2).

In light of the uniqueness and descent of Lemma 12.3, if ΦnX/K : A n
X/K → AbnX/K is

an algebraic representative, we use the notation

ΛX : AbnX/K → Âb
n

X/K

for a distinguished symmetric K-isogeny, if it exists. Note that unless d = 2n− 1, we
have that ΛX depends a priori on H as well as X.

Remark 12.4. — Note that since the inclusion Hom(A,B)→ HomGal(K)(TℓA, TℓB) is
bijective if and only if Hom(A,B) = 0, the existence of an ℓ-distinguished mor-
phism Λ is not formal from the rest of the diagram (12.1).

In summary, with Hodge theory as our inspiration, our goal is to investigate when
algebraic representatives admit distinguished polarizations. Obviously, motivated by
the case of characteristic 0, we have the following examples (recall that the distin-
guished model of the algebraic intermediate Jacobian agrees with the algebraic rep-
resentative in characteristic 0 for n = 1, 2, dX):

Example 12.5 (Distinguished polarizations for distinguished models in characteristic 0).
— As in §12.1, let X be a complex projective manifold, let H be an ample di-
visor on X, let n be a nonnegative integer with 1 ≤ 2n − 1 ≤ dX , and assume
Nn−1H2n−1(X,Q) = H2n−1(X,Q), which implies

H2n−1(X,C) = Hn+1,n(X)⊕Hn,n−1(X).

Then the symmetric isogeny ΛX := (−1)n−1ΘX : J2n−1(X) → Ĵ2n−1(X) induced
by H and the cup product in cohomology is ℓ-distinguished, and therefore descends
to symmetric K-isogeny ΛX on J2n−1

a,X/K . If the Hodge coniveau filtration satisfies
Ni−1
H H2i−1(X,Q) = 0 for all i < n, then ΘX = (−1)n−1ΛX is a polarization

on J2n−1
a,X/K .

In positive characteristic, we will use miniversal cycles to construct distinguished
homomorphisms.

12.3. Distinguished homomorphisms and miniversal cycles

Let X be a smooth projective variety over a perfect field K, let H ∈ CH1(X) be the
class of an ample divisor, and n a natural number such that 1 ≤ 2n− 1 ≤ dX := dimX.
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Let A be an Abelian variety over K, and let Ω/K be an algebraically closed field
extension. Then for any cycle Z ∈ CHn(XΩ ×Ω AΩ), the cycle

tZ ◦ [∪HdX−2n+1] ◦ Z ∈ CH1(AΩ ×Ω AΩ)

induces, via §1.5, a symmetric Ω-homomorphism

(12.2) ΛZ : AΩ −→ ÂΩ.

Our goal is to investigate when this construction gives a distinguished homomorphism
on A, in the sense of Definition 12.1.

12.3.1. — The first observation is that, for each prime l, we have by construction a
commutative diagram

(12.3) TlA
TlΛZ //

Z∗

��

TlÂ

H2n−1(XΩ,Zl(n))τ ,
∪[H]dX−2n+1

// H2dX−2n+1(XΩ,Zl(dX − n+ 1))τ

Z∗

OO

where (TlA)∨(1) is identified with TlÂ via the Weil pairing, and we identify
TlAΩ = TlA by rigidity. When l = ℓ ̸= char(K), (12.3) follows by taking the ℓ-adic
realization of an equality of cycle classes. If char(K) = p > 0, then taking cycle
classes in crystalline cohomology yields a diagram

Hcris
1 (A/W(K))

ΛZ,cris //

Z∗,cris

��

Hcris
1 (Â/W(K))

H2n−1
cris (X/W(K)(n))τ

[H]dX−2n+1

// H2d−2n+1
cris (X/W(K)(d− n+ 1))τ

Z∗cris

OO

and then taking F -invariants gives (12.3) with l = p.

12.3.2. — Suppose now that Φ : A n
X/K → A is a surjective regular homomorphism

and assume that Vℓλn : Vℓ An(XK) −→ H2n−1(XK ,Qℓ(n)) is surjective for some
prime ℓ ̸= charK. Then, by combining (12.1) and (12.3) together with Lemma 11.5
and Proposition 11.10, we obtain for all primes l a commutative diagram
(12.4)

TlAΩ

wZ

��
Z∗

##

TlΛZ //
TlψZ

**

TlÂΩ

TlAΩ
∃? TlΛ // TlÂΩ

(TlψZ)∨
22

(Tlϕ)∨ ,,
Tl A

n(XΩ)
Tlϕ

33

Tlλ
n

��

Tl A
n(XΩ)∨

(wZ)∨

OO

H2n−1(XΩ,Zl(n))τ
∪[H]dX−2n+1

// H2dX−2n+1(XΩ,Zl(dX − n+ 1))τ

(Tlλ
n)∨

OO
Z∗

cc
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and we are asking whether there exists an Ω-homomorphism Λ : AΩ → ÂΩ making
the diagram commute for all l. Note from Lemma 12.3 that Λ, if it exists, is unique
and descends to K, and note also that the homomorphism ΛZ : AΩ → ÂΩ is uniquely
determined (since Hom(A,B)→ Hom(TℓA, TℓB) is injective for ℓ ̸= charK).

We fix a miniversal cycle Z ∈ A n
XΩ/Ω

(AΩ) of degree, say, r, meaning that
ψZ : A→ A is multiplication by r. By considering the diagram (12.4) at a prime
ℓ ̸= char(K) and arguing as in the proof of Lemma 12.3, we see that ΛZ descends
to K and only depends on r (i.e., does not depend on the choice of a miniversal cycle
of degree r).

If Vℓλn is bijective, then the symmetric K-homomorphism ΛZ is an isogeny (for
instance, replace Tℓ by Vℓ in the above diagram (12.4) and use that r is invertible
in Qℓ).

In case Z ∈ A n
XΩ/Ω

(AΩ) is a universal cycle (i.e., ψZ = idA), then there exists a
distinguished homomorphism Λ, namely, Λ = ΛZ , since ψZ = idA.

The following theorem summarizes the above discussion:

Theorem 12.6 (Distinguished morphisms motivically). — Let X be a smooth projective
variety over a perfect field K, let H be an ample divisor on X, let n be a natural
number such that 1 ≤ 2n − 1 ≤ dX , and let Ω/K be an algebraically closed field ex-
tension. Further, let Φ : A n

X/K → A be a surjective regular homomorphism and let

Z ∈ A n
XΩ/Ω

(AΩ) be a miniversal cycle of degree r. We denote ΛZ : AΩ → ÂΩ the sym-
metric Ω-homomorphism induced by the cycle tZ ◦HdX−2n+1 ◦ Z ∈ CH1(AΩ ×Ω AΩ).

Assume that for some prime ℓ0 ̸= char(K):
— Vℓ0λ

n : Vℓ0 An(XK) −→ H2n−1(XK ,Qℓ0(n)) is surjective.

Then the symmetric Ω-homomorphism ΛZ : AΩ → ÂΩ descends to K and depends
only on H and r (and not on the choice of the miniversal cycle Z of degree r).
Moreover,

(1) If Z is universal (i.e., r = 1), then ΛZ is a distinguished symmetric K-homo-
morphism.

(2) If Tliϕ are isomorphisms for a given set of primes {li}i∈I , then there exists a
symmetric K-homomorphism Λ′ : A→ Â such that

(12.5) ΛZ =
( ∏
l∈{li}i∈I

lvl(r)
)2

Λ′.

(3) If Tlϕ is an isomorphism at the primes l dividing r, then there exists a dis-
tinguished symmetric K-homomorphism Λ, which makes (12.4) commute at all
primes l, and ΛZ = r2Λ.

Finally, if in addition Vℓ0λ
n is bijective, then ΛZ is a symmetric K-isogeny (and

hence so are Λ′ and Λ in (2) and (3), respectively).

Proof. — Everything except (2) and (3) follows immediately from the commutativity
of (12.4) and from the discussion above. Clearly (2) =⇒ (3). Concerning (2), at the
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primes li for which Tliϕ are isomorphisms, we obtain from (12.4) a Galois-equivariant
homomorphism αi : TliA→ TliÂ such that r2αi = TliΛZ . We next recall the following
elementary fact: Given a free Z-module M (of finite rank), an element m ∈ M and
a prime l, denoting by π : M ↪→ M ⊗ Zl the canonical map, if π(m) is divisible
by an integer N (i.e., in the image of the multiplication by N map), then m is
divisible by lvl(N). Applying this to the Abelian group of homomorphisms from AΩ

to ÂΩ, this implies that ΛZ is divisible by l
2vli

(r)

i . Hence, there exists a symmetric
K-homomorphism Λ′ : A → Â such that (12.5) holds. In particular, we see that ΛZ
becomes divisible by r2 after inverting the primes l dividing r but distinct from
the li.

Remark 12.7 (Characteristic 0). — Let X be a smooth projective variety over a
field K ⊆ C, as in Example 12.5. Assuming that the bullet point condition in
Theorem 12.6 holds, and that there is a universal codimension-n cycle class for XC
(resp. Tℓϕ and Tℓλn are isomorphisms for all primes ℓ), then the symmetric K-isogeny
Θ = (−1)n−1Λ of Theorem 12.6(1) (resp. (3)) agrees with the polarization ΘX

on J2n−1
a,X/K from Example 12.5. Indeed, both are ℓ-distinguished, and so we may employ

Lemma 12.3.

Remark 12.8 (ΘZ = (−1)n−1ΛZ). — We emphasize that in light of the Hodge theory,
it is ΘZ := (−1)n−1ΛZ in Theorem 12.6 that one might hope is a polarization on A.
We discuss this further in §13.

Corollary 12.9 (Distinguished homomorphisms for codimension-1 cycles). — Let
Φ1
X/K : A 1

X/K → (Pic0
X)red = Ab1

X/K be the Abel-Jacobi map (the first al-
gebraic representative). Then there exists a distinguished symmetric K-isogeny
ΛX : (Pic0

X)red → (Pic0
X)∨red, which, in case K ⊆ C, agrees with the polarization ΘX

induced by Hodge theory (see Example 12.5).

Proof. — Note that Vlλ1 is an isomorphism for all primes l and that the Abel-Jacobi
map Φ : A 1

X/K → (Pic0
X)red always admits a universal cycle Z ∈ A n

XΩ/Ω
(AΩ) so that

Theorem 12.6(1) applies. The agreement of ΛX with the polarization ΘX induced by
Hodge theory comes from the fact that both are distinguished homomorphisms.

Remark 12.10 (Curves). — In Corollary 12.9, if X is a curve, then ΛX is independent
of the choice ofH, and agrees with the canonical principal polarization on the Jacobian
of the curve, since the canonical principal polarization is known to be distinguished.

Corollary 12.11 (Distinguished homomorphisms for codimension-2 cycles). — Let
Φ2
X/K : A 2

X/K → Ab2
X/K be the second algebraic representative and let N be a natural

number. Suppose that, for a prime ℓ ̸= char(K), we have that N∆XΩ
admits a

cohomological Zℓ-decomposition of type (dX − 1, 1) with respect to H•(−,Zℓ), e.g.,
X is geometrically rationally connected. Then

(1) There is a distinguished symmetric K-isogeny ΛX : Ab2
X/K → Âb

2

X/K .
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(2) If in addition dimX ≤ 4, then X admits a codimension-2 miniversal cycle
Z ∈ A n

XΩ/Ω
(AΩ) of degree N (Corollary 9.3) and ΛZ = N2ΛX .

(3) If further N = 1, e.g., if X is geometrically stably rational of dimension ≤ 4,
then X admits a codimension-2 universal cycle Z and ΛZ = ΛX .

Moreover, in case K ⊆ C, the symmetric K-isogeny −ΛX agrees with the polarization
ΘX induced by Hodge theory (see Example 12.5).

Proof. — The assumption on N∆XΩ implies that Vℓλ2 is bijective (Proposition 7.12)
and that the Tlϕ are isomorphisms for all primes l (Proposition 10.3). Items (1)–(3)
then follow from Theorem 12.6. In case K ⊆ C, the agreement of −ΛX with the
polarization ΘX induced by Hodge theory comes from the fact that both ΛX and
−ΘX are distinguished homomorphisms.

As another consequence of Theorem 12.6 we obtain a cohomological analogue to
Theorem 4.4; this result will in fact show that the isomorphism ΘX in Theorem 4.4
is distinguished, and therefore, via Lemma 12.3, in characteristic 0, agrees with the
principal polarization coming from Hodge theory:

Theorem 12.12 (Threefolds). — Let X be a smooth projective threefold over
a perfect field K, and let Ω/K be an algebraically closed field extension. Let
Z ∈ A 2

XΩ/Ω
(Ab2

XΩ/Ω) be a miniversal cycle class.

(1) If Vℓλ2 is an isomorphism for some prime ℓ ̸= char(K) (e.g., if X is geomet-
rically uniruled), then the Ω-homomorphism ΛZ : Ab2

XΩ/Ω → Âb 2
XΩ/Ω

induced
by the cycle class tZ ◦ Z ∈ CH1(Ab2

XΩ/Ω×Ω Ab2
XΩ/Ω) descends to a symmetric

K-isogeny
ΛZ : Ab2

X/K → Âb 2
X/K

depending only on the degree of Z as a miniversal cycle. Moreover, if Z is
universal, then ΛZ is distinguished and we denote ΛZ by ΛX .

(2) If CH0(XK) ⊗ Z[ 1
N ] is universally trivial for some natural number N (e.g.,

X is geometrically rationally chain connected), then there exists a distinguished
purely inseparable symmetric K-isogeny ΛX : Ab2

X/K → Âb 2
X/K . Moreover, if

char(K) ∤ N , then ΛX is an isomorphism.
(3) If CH0(XK) is universally trivial (e.g., X is geometrically stably rational), then

the distinguished symmetric K-isogeny ΛX is an isomorphism.

Moreover, if K ⊆ C, then the symmetric K-isogeny −ΛX of (2) and (3) agrees with
the principal polarization ΘX induced by Hodge theory (see Example 12.5).

Proof. — Item (1) follows immediately from Theorem 12.6. In cases (2) and (3), the
diagonal of XK admits in particular a Chow Q-decomposition of type (2, 2) and it
follows from Proposition 7.14 that Tlλ2 (and hence Vlλ2) is bijective for all primes l.
Concerning (2), the diagonal of XK admits in particular a Chow Q-decomposition of
type (2, 1), and hence Tlϕ2 is an isomorphism for all primes l by Proposition 10.3.
Combined with the fact that Tlλ2 is bijective for all primes l, there exists from
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Theorem 12.6(3) a distinguished symmetric K-isogeny ΛX and it follows from di-
agram (12.4) that TlΛX is an isomorphism for all primes l and hence that ΛX is a
purely inseparable isogeny. On the other hand, by Theorem 4.4(1), the universal triv-
iality of CH0(XK) ⊗ Z[ 1

N ] yields that the degree of the isogeny ΛX divides a power
of N ; it follows that, if char(K) ∤ N , ΛX is an isomorphism. For (3), if CH0(XK) is
universally trivial, then by Corollary 9.3 XK admits a universal codimension-2 cy-
cle Z and ΛZ is the distinguished symmetric K-isogeny (i.e., it coincides with ΛX)
by Theorem 12.6(1). Now, the fact that ΛZ is an isomorphism follows by noting
that by construction ΛZ coincides with the symmetric K-isomorphism ΛX of Theo-
rem 4.4(2).

Remark 12.13. — Note that by construction, the symmetric isogeny ΛX in Theo-
rem 12.12 agrees with that in Theorem 4.4 when there is a (Chow) decomposition of
the diagonal, so that the symmetric K-isomorphism ΛX of Theorem 4.4(2) is distin-
guished.
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CHAPTER 13

SPECIALIZATION AND POLARIZATION
ON THE ALGEBRAIC REPRESENTATIVE

Regarding whether the symmetric K-isogeny ΘX = (−1)n−1ΛX of Theo-
rem 12.6(2) is a polarization, in this section we present results for threefolds
that essentially say that if a geometrically stably rational threefold can be lifted to
a geometrically rationally chain connected threefold in characteristic 0, then ΘX is
a principal polarization. While many of the examples we have in mind are liftable
to characteristic 0 (see e.g., [37, Thms. 22.1, 22.3]), recall, of course, that there are
smooth, projective, even rational varieties, over perfect fields of characteristic p > 0

that do not lift (see e.g., [3]).

13.1. Inducing polarizations on the algebraic representative via specialization

Proposition 13.1 (Polarizations and specialization). — Suppose that S is the spectrum
of a DVR with generic point η and special point s both with perfect residue fields.
Suppose f : X → S is a smooth projective morphism, and let H be a relatively ample
divisor. Fix a natural number n such that 2n− 1 ≤ d = dimS X , and let ℓ be a prime
invertible in κ(s).

Assume that:

— There exist algebraic representatives ΦnXη/η
: A n

Xη/η
→ AbnXη/η

and ΦnXs/s
: A n

Xs/s
→ AbnXs/s;

— Tℓϕ
n
Xη

: Tℓ An(Xη)→ Tℓ AbnXη

and TℓϕnXs
: Tℓ An(Xs)→ Tℓ AbnXs

are isomorphisms;
— Vℓλ

n
Xη

: Vℓ An(Xη)→ H2n−1(Xη,Qℓ(n))

and VℓλnXs
: Vℓ An(Xs)→ H2n−1(Xs,Qℓ(n)) are isomorphisms.

Let Zη ∈ A n
Xη/η

(AbnXη/η) be a miniversal cycle of degree rη, and let ζ ∈ A n
Xs/s

(AbnXs/s)

be a miniversal cycle of degree rs. Let ΛZη
and Λζ be the symmetric K-isogenies of

Theorem 12.6.
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Then (AbnXη
,ΛZη ) extends to an Abelian scheme (AbnX/S ,Λ) over S, and Zη induces

an isogeny

(13.1) h : (AbnX/S |s, r
2
sΛ|s)→ (AbnXs/s,Λζ);

the notation above using pairs, consisting of an Abelian variety and a morphism to
the dual Abelian variety, indicates that the indicated extensions and morphisms make
the associated diagrams commute. In particular, ΘZη

:= (−1)n−1ΛZη
is a polarization

if and only if Θζ := (−1)n−1Λζ is.
Moreover, if ℓ ∤ r, d = 2n− 1, and TℓλnXη

and TℓλnXs
are isomorphisms, then Tℓh is

an isomorphism.

Remark 13.2. — With the view to lifting to characteristic 0, we will want to
employ Proposition 13.1 in the case where AbnXη/η admits in addition an ℓ-dis-
tinguished symmetric K-isogeny Λ′η. In that case, Λ′η extends to a symmetric
K-isogeny Λ′ on AbnX/S , and we have Λ′ = r2ηΛ, so that we have in that case an
isogeny h : (AbnX/S |s, r

2
sr

2
ηΛ

′|s) → (AbnXs/s,Λζ). In particular, Θ′η := (−1)n−1Λ′η is
a polarization if and only if Θζ := (−1)n−1Λζ is a polarization. If AbnXs/s also
admits an ℓ-distinguished symmetric K-isogeny Λs, then we have the isogeny
h : (AbnX/S |s, r

2
ηΛ

′|s)→ (AbnXs/s,Λs) .

Proof. — First, from the bullet point assumptions, we have a Galois-equivariant iso-
morphism Vℓλ

n
Xη
◦ (Vℓϕ

n
Xη

)−1 : Vℓ AbnXη/η → H2n−1(Xη,Qℓ(n)), showing by the Ogg-
Néron-Shafarevich criterion that AbnXη/η extends to an Abelian scheme AbnX/S over S.
The fact that ΛZη

then extends to a morphism Θ over S is standard (see e.g., [8,
Prop. 4.5] and [51, Prop. 6.1]). Just as in Lemma 5.2, we have that the following
are equivalent: Θ is a polarization; Θη is a polarization; Θ|s is a polarization. Thus
we have reduced to showing the existence of the isogeny h in the statement in the
theorem, as well as the assertion about Tℓh.

Let now Zη ∈ CHn(AbnXη/η ×ηXη) and ζ ∈ CHn(AbnXs/s×sXs) be miniversal
codimension-n cycle classes. From our assumptions we have the commutative dia-
grams (12.4):
(13.2)

Tℓ AbnXη/η

TℓΛZη //

TℓψZη

��
(Zη)∗

""

TℓÂb nXη/η
Tℓ AbnXs/s

TℓΛζ //

Tℓψζ

��
ζ∗

""

TℓÂb nXη/η

Tℓ AbnXη/η

αη //

ι
��

TℓÂb nXη/η

Tℓψ
∨
Zη

OO

Tℓ AbnXs/s

αs //

ι
��

TℓÂb nXs/s

Tℓψ
∨
ζ

OO

H2n−1(Xη,Zℓ)τ
∪[Hη]d−2n+1

// H2d−2n+1(Xη,Zℓ)τ

ι∨
OO

(Zη)∗

aa

H2n−1(Xs,Zℓ)τ
∪[Hs]d−2n+1

// H2d−2n+1(Xs,Zℓ)τ .
ι∨
OO

ζ∗

aa

whose arrows are all isomorphisms after tensoring with Qℓ and where ι := Tℓλ
n ◦ (Tℓϕ

n)−1,
with ϕn denoting the universal regular homomorphism. We have omitted the Tate
twists in the diagram above for space. Note that while Bloch maps are stable under
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specialization, regular homomorphisms need not be, and so we may not simply
take the specialization of the bottom half of the diagram on the left, and expect to
obtain the bottom of the diagram on the right. In any case, we can already draw the
conclusion that TℓΛZη = r2ηαη and TℓΛζ = r2sαs.

Let us now consider Zs ∈ An(AbnXS/S |s ×s Xs), the specialization of the cycle Zη.
This cycle induces a homomorphism h = ψZs

: AbnXS/S |s → AbnXs/s, and we consider
the diagram

(13.3) Tℓ AbnX/S |s
TℓΛZs //

TℓψZs=Tℓh
��

(Zs)∗

""

TℓÂb nX/S |s

Tℓ AbnXs/s

αs //

ι
��

TℓÂb nXs/s

Tℓĥ=Tℓψ
∨
Zs

OO

H2n−1(Xs,Zℓ(n))τ
∪[Hs]d−2n+1

// H2d−2n+1(Xs,Zℓ(n))τ .

ι∨
OO

(Zs)∗

aa

Thanks to Proposition 11.6, the vertical arrows form commutative diagrams. We
observe that the outer rectangle is nothing but the specialization of the outer rectangle
on the left-hand side of diagram (13.2) and is hence commutative. In addition, the
bottom square, being the right-hand side of (13.2), is commutative. Thus the diagram
(13.3) is commutative.

Tensoring (13.3) with Qℓ, the morphisms ι and (Zs)∗ are isomorphisms, and there-
fore Vℓh is an isomorphism, implying that h is an isogeny. On the other hand, the
commutativity of the top square of diagram (13.3) implies that TℓΛZs

= Tℓĥ◦αs◦Tℓh.
Thus Tℓ(r2sΛZs

) = Tℓĥ ◦ r2sαs ◦ Tℓh = Tℓĥ ◦ TℓΛζ ◦ Tℓh = Tℓ(ĥ ◦ Λζ ◦ h), establishing
(13.1).

Finally, if we assume that Tℓλ
n
Xη

: Tℓ An(Xη) → H2n−1(Xη,Zℓ(n)) and
Tℓλ

n
Xs

: Tℓ An(Xs)→ H2n−1(Xs,Zℓ(n)) are isomorphisms, that ℓ ∤ r, and that
d = 2n− 1, then all of the morphisms in (13.3) are isomorphisms, and therefore the
isogeny h induces an isomorphism Tℓh : Tℓ AbnX/S |s → Tℓ AbnXs

.

We can apply this to the case of a threefold liftable to characteristic 0, which
essentially says that for a smooth projective geometrically rationally chain connected
threefold X over a perfect field K that lifts to a geometrically rationally connected
threefold in characteristic 0, then ΘX is a principal polarization.

Corollary 13.3 (Threefolds). — Suppose that X/S is a smooth projective threefold over
the spectrum S of a DVR, such that the fraction field κ(η) has characteristic 0 and
the residue field κ(s) is perfect. With XC the base change of the generic fiber Xη to C,
assume that H1(XC,Z) = 0 and AJ : A2(XC) → J3(XC) is surjective (e.g., XC is
rationally connected).

If for some natural number N , the multiple N∆Xs ∈ CH3(Xs ×s Xs) admits a co-
homological Z-decomposition of type (2, 1) with respect to H•(−,Zℓs) for all primes
ℓ ̸= char(κ(s)) (e.g., Xs is geometrically rationally chain connected), then ΘXs

, the
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negative of the ℓ-distinguished symmetric isogeny ΛXs of Theorem 12.12, is a polar-
ization on Ab2

Xs/s.
If moreover, ∆Xs

∈ CH3(Xs ×s Xs)Z[ 1
N ] admits a strict Chow decomposition for

some natural number N coprime to char(K) (e.g., Xs is geometrically stably rational),
then ΘXs is a principal polarization.

Proof. — On the generic fiber, we know that in characteristic 0 both Tℓϕ2 and Tℓλ2

are isomorphisms so long as the Abel-Jacobi map is surjective (e.g., XC is uniruled
[63, Thm. 12.22]). Thus the last two bullet points of Proposition 13.1 are satisfied for
the generic fiber. Moreover, in characteristic 0, the Hodge-theoretic polarization ΘXη

induces a distinguished symmetric isogeny Λη = −ΘXη
on Ab2

Xη/η, since we have
assumed that H1(XC,Z) = 0 (Theorem 12.6(2) and Remark 12.7), which holds if we
assume XC is rationally connected.

For the special fiber, the cohomological decomposition of a multiple of the diagonal
implies that Ab2

Xs/s admits a distinguished symmetric K-isogeny (Corollary 12.11),
and that Tℓϕ2 and Tℓλ2 are isomorphisms (Propositions 10.1 and 7.14), where ϕ2 indi-
cates the universal regular homomorphism. Thus the last two bullet points of Propo-
sition 13.1 are satisfied for the special fiber.

Thus we can conclude from Proposition 13.1 that ΘXs is a polarization.

13.2. Rationally chain connected threefolds and the work of Benoist-Wittenberg

Let X be a smooth projective threefold over a perfect field K, and let
Λ : Ab2

X/K → Âb 2
X/K be a symmetric K-isogeny. Benoist-Wittenberg introduced

the following terminology:
(i) Λ satisfies [14, Property 2.4(i)] if Λ is distinguished.
(ii) Λ satisfies [14, Property 2.4(ii)] if Θ = −Λ is a principal polarization.

Benoist-Wittenberg give an equivalent formulation via the first Chern class [Λ] (see
§A.2). However we prefer to work in the setting of symmetric isogenies. They ask [14,
p. 6]:

Question 13.4 ([14]). — Let X be a smooth projective threefold over a perfect field K
of positive characteristic, with CH0(XK)Q universally trivial. Does there exist a sym-
metric K-isogeny ΛX on Ab2

X/K such that:

(1) ΛX is distinguished (i.e., satisfies [14, Property 2.4(i)]) ?
(2) ΛX is distinguished and principal (i.e., ΛX is an isomorphism) ?
(3) ΛX is distinguished and ΘX = −ΛX is a polarization ?
(4) ΛX is distinguished and ΘX = −ΛX is a principal polarization (i.e., satisfies

[14, Property 2.4(i) and (ii)]) ?

Recall that if the characteristic of K is zero, then the Hodge theoretic principal
polarization ΘX has the property that ΛX = −ΘX is distinguished (i.e., ΛX satisfies
[14, Property 2.4(i) and (ii)]).
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When X is a geometrically rational threefold over a perfect field K, Benoist-
Wittenberg provide an affirmative answer to all parts of their question by con-
structing a principal polarization ΘX on Ab2

X/K such that ΛX = −ΘX is distin-
guished [14, Cor. 2.8]. In fact, they extend the Clemens-Griffiths condition over C,
showing that if X is rational over K, then (Ab2

X/K ,ΘX) is the product of princi-
pally polarized Jacobians of curves. Note that since their symmetric isogeny ΛX is
distinguished, their result shows that in this case the symmetric K-isomorphism
ΘX = −ΛX : Ab2

X/K → Âb 2
X/K of Theorem 4.4(2) and Theorem 12.12 is a prin-

cipal polarization.
Our results provide an affirmative answer to part (1) of their question, and provide

some further evidence for an affirmative answer to the other parts of their question.
More precisely, given a smooth projective threefold X over a perfect field K of positive
characteristic, with CH0(XK)Q universally trivial, there exists a purely inseparable
symmetric K-isogeny ΛX on Ab2

X/K such that:
(1) ΛX is distinguished (i.e., satisfies [14, Property 2.4(i)]);
(2) ΛX is distinguished and principal if CH0(XK)Z[ 1

N ] is universally trivial for some
natural number N coprime to char(K);

(3) ΛX is distinguished and ΘX = −ΛX is a polarization if X lifts to characteristic 0

to a geometrically universally (CH0)Q-trivial smooth projective threefold;
(4) ΛX is distinguished and ΘX = −ΛX is a principal polarization (i.e., satisfies [14,

Property 2.4(i) and (ii)]) if CH0(XK)Z[ 1
N ] is universally trivial for some natural

number N coprime to char(K), and X lifts to characteristic 0 to a geometrically
universally (CH0)Q-trivial smooth projective threefold.

The existence of the purely inseparable symmetric K-isogeny ΛX , as well as (1) and
(2), are shown in Theorem 12.12. (3) and (4) are shown in Corollary 13.3. Note that in
the language here, Conjecture 5.1 asserts that if we assume further that CH0(XK) is
universally trivial, then the distinguishedK-isomorphism ΛX of (2) above should have
ΘX = −ΛX being a (principal) polarization; i.e., it should also satisfy condition (4),
without requiring the further hypothesis of lifting to characteristic 0.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2025





CHAPTER 14

COHOMOLOGICAL DECOMPOSITION OF THE DIAGONAL,
ALGEBRAIC REPRESENTATIVES,

AND MINIMAL COHOMOLOGY CLASSES

In this section, we relate cohomological decomposition of the diagonal to minimal
cohomology classes. This follows Voisin’s work, with the key addition being that we
must use replacements for the canonical principal polarization coming from Hodge
theory, as well as the canonical identification of the cohomology of a rationally con-
nected threefold with the first homology of the intermediate Jacobian. The starting
point is a technical condition (∗R), which is central to the discussion.

14.1. The technical condition (∗R) for a cohomological decomposition of the diagonal

The following technical theorem has a number of interesting applications. The key
point is the condition (∗R) for a smooth projective variety X over a field K, with
respect to a fixed Weil cohomology theory H and a ring homomorphism R→ RH:

(∗R)

There exist finitely many (not necessarily distinct) smooth projec-
tive varieties Yi over K of dimension dX − 2, and correspondences
Γi ∈ CHdX−1(Yi ×K X)R, such that for any α, β ∈ HdX (X),

⟨α, β⟩X =
∑
i

⟨Γ∗iα,Γ∗i β⟩Yi
.

This technical condition was introduced by Voisin [68, (35)] in the case K = C,
R = Z, and H• is Betti cohomology. We will see in §14.3, following Voisin, that this
condition can be related to universal cycle classes and to minimal cohomology classes
on Abelian varieties.

Remark 14.1. — If K is either separably closed or finite and if dX > 2, it is equivalent
in (∗R) to require the correspondences Γi to belong to A dX−1

X/K (Yi)R. To see this one
replaces Γi with Γi−Yi×Γi|yi,0

for any choice of zero-cycle yi,0 ∈ CH0(Yi) of degree 1,

and one notes that (Yi × Γi|yi,0
)∗α = 0 for all α ∈ HdX (X) for dimension reasons.
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Theorem 14.2 ([68, Thm. 3.1], [48, Thm. 3.1]). — Let X be a smooth projective variety
over a field K, and let R→ RH be a ring homomorphism.
(A) If ∆X ∈ CHdX (X ×K X) admits a strict cohomological R-decomposition such

that D ⊆ X (in the notation of Definition 6.2) admits an embedded resolution
to a normal crossing divisor (e.g., K is perfect and dX = 3 [25]), then (∗R) is
satisfied.

(B) As a partial converse, if (∗R) is satisfied, and the additional criteria are met:
(1) H•(X) has no torsion,
(2) H2i(X)(i) is R-algebraic for 2i ̸= dX ,
(3) H2i+1(X) = 0 for 2i+ 1 ̸= dX ,

then ∆X ∈ CHdX (X ×K X) admits a strict cohomological RH-decomposition.

Proof. — The proof of [68, Thm. 3.1] carries over directly to this case. The case
at hand here, where K = K and H• is ℓ-adic cohomology (ℓ ̸= char(K)), is [48,
Thm. 3.1].

14.2. A first result concerning minimal cohomology classes

For use in the proof of Theorem 3, we record the following consequence of Corol-
lary 13.3 regarding minimal cohomology classes:

Proposition 14.3 (Minimal cohomology classes). — With the same notation and
assumptions as in Corollary 13.3, if g = dim Ab2

Xη/η = dim Ab2
Xs/s ≤ 3, then

[ΘXs
]g−1/(g − 1)! is Z-algebraic.

Proof. — We know from Corollary 13.3 that ΘXs is a polarization. Thus there is an
isogeny of polarized Abelian varieties

h : (Ab2
Xs/s,ΘXs

)→ (A,Θ)

with target a principally polarized Abelian variety of dimension g (see e.g., [29,
Prop. 11.25, Cor. 11.26], or [50, Cor. 1, p. 234]). For dimension reasons, (A,Θ) is the
Jacobian of a (possibly reducible) curve C, and therefore [Θ]g−1/(g − 1)! is the class
of the Abel-Jacobi embedded curve [C]. Consequently, h∗[C] = h∗[Θ]g−1/(g − 1)! =

[ΘXs ]
g−1/(g − 1)! is Z-algebraic.

14.3. Cohomological decompositions, universal codimension-2 cycles, and minimal co-
homology classes

We now revisit the technical Theorem 14.2, and convert the condition (∗R) to a
condition on universal codimension-2 cycles and minimal cohomology classes.

Proposition 14.4. — Let X be a smooth projective threefold over a perfect field K and
let ℓ ̸= char(K) be a prime. Assume that

— H3(XK ,Zℓ(2)) is torsion-free;
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— Tℓϕ
2
X : Tℓ A2(XK) −→ Tℓ Ab2

X/K is an isomorphism (standard assumption at ℓ);
— Tℓλ

2 : Tℓ A2(XK) −→ H3(XK ,Zℓ(2)) is an isomorphism.

Assume further (e.g., K is finite or algebraically closed and X admits a universal
codimension-2 cycle class; see Theorem 12.6) that there exists an ℓ-distinguished sym-
metric K-isogeny ΛX : Ab2

X/K → Âb 2
X/K (Definition 12.1) such that TℓΛX is an

isomorphism, and set [ΛX ] to be the first Chern class (§A.2).

(A) If (∗R) holds, and if K is either finite or algebraically closed, then

[ΛX ]g−1

(g − 1)!
∈ H2g−2((Ab2

X/K)K ,Zℓ(g − 1))

is R-algebraic, where g := dimAb2
X/K .

(B) If the class [ΛX ]g−1

(g−1)! ∈ H
2g−2((Ab2

X/K)K ,Zℓ(g − 1)) is R-algebraic, and Ab2
X/K

admits a universal codimension-2 cycle class, then (∗R) holds.

Remark 14.5. — The R-algebraicity of [ΛX ]g−1/(g− 1)! is a tautology if (g− 1)! is a
unit in the coefficient ring R.

Proof. — A version where K = C, R = Z, and one uses Betti cohomology is [68, Pf. of
Thm. 4.1] in case (A) and [65, Pf. of Thm. 4.9] in case (B). The case where X is a cubic
threefold, K = K, char(K) ̸= 2, ℓ = 2, and R = Z2 is [48, Thm. 3.2]. To be precise,
we note that our assumptions are slightly different from those of Voisin or Mboro. In
Voisin’s version, the bullet point conditions in the statement of the proposition are
replaced with the canonical identification H3(X,Z) = H1(J

3(X),Z) ∼= H1(J3(X),Z)

induced via the principal polarization ΘX = −ΛX coming from the intersection prod-
uct on H3(X,Z). Similarly, Mboro uses the principally polarized Prym variety (P,Ξ)

of the cubic threefold as a replacement for the intermediate Jacobian, which Beauville
has shown is in fact the algebraic representative and is isomorphic to the group of
algebraically trivial codimension-2 cycle classes, as well as Beauville’s identification
H3(X,Zℓ) = H1(P,Zℓ) (see [11]).

While our conditions essentially reduce to Voisin’s and Mboro’s in these special
cases, our proposition applies more generally. Nevertheless, essentially the same argu-
ment as in [68, Pf. of Thm. 4.1] and [48, Thm. 3.2] carries over to this situation: a key
point is that one can replace [48, Lem 3.3] with Corollary 11.8. Note also that in the
work of both Voisin and Mboro, ΘX is a principal polarization, but the arguments in
the setting of H•(−,Zℓ) only require that it be an ℓ-distinguished symmetric isogeny
that induces an isomorphism on ℓ-adic Tate modules.

Since our assumptions are more general, we provide a proof. For brevity, we denote
H•(−) = H•(−,Zℓ). First, by our assumptions that ΛX is ℓ-distinguished and TℓΛX is
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an isomorphism, then by Lemma A.1, we have a commutative diagram (see (12.1))

Tℓ Ab2
X/K

ι≃
��

H1(Ab2
X/K)(1)

∪ [ΛX ]g−1

(g−1)!oo

H3(X)(2) H3(X)(2),

ι∨ ≃

OO

where ι = Tℓλ
2 ◦ (Tℓϕ

2)−1. Since H3(X)(2) is identified with H3(X)∨(−1) via the
intersection pairing, we get

⟨α, β⟩X =
〈
ι∨(α), ι∨(β) ∪ [ΛX ]g−1

(g − 1)!

〉
Ab2

X/K

for all α, β ∈ H3(X)(2).(14.1)

We proceed to prove (A). Assume that (∗R) holds. Since we are assuming
K finite or algebraically closed, we may assume by Remark 14.1 that the cycles
Γi ∈ CHdX−1(Yi ×K X)R in fact sit in A dX−1

X/K (Yi)R. We can thus consider the
K-morphisms

γi := Φ2
X/K(Yi)(Γi) : Yi → Ab2

X/K .

Corollary 11.8 implies that

(Γi)∗ = ι ◦ (γi)∗ : H1(Yi)→ H3(X)(2).

By dualizing we get

Γ∗i = γ∗i ◦ ι∨ : H3(X)(2)→ H1(Yi)(1).

By combining (∗R) with (14.1), we get for all α, β ∈ H3(X)(2)〈
ι∨(α), ι∨(β) ∪ [ΛX ]g−1

(g − 1)!

〉
Ab2

X/K

=
∑
i

ni⟨Γ∗iα,Γ∗i β⟩Yi

=
∑
i

niγ
∗
i ⟨ι∨(α), ι∨(β)⟩Ab2

X/K
.

It follows that
[ΛX ]g−1

(g − 1)!
=

∑
i

ni(γi)∗γ
∗
i [Ab2

X/K ] =
∑
i

ni(γi)∗[Yi],

thereby establishing the R-algebraicity of [ΛX ]g−1

(g−1)! .
We now prove (B). By assumption, there are finitely many connected curves Ci

in Ab2
X/K and constants ni ∈ R such that [ΛX ]g−1

(g−1)! =
∑
i ni[Ci]. Let C̃i → Ci be the

normalization morphisms and denote ji : C̃i → Ab2
X/K the natural morphism. The

map ∪ [ΛX ]g−1

(g−1)! : H1(Ab2
X/K)(1) → Tℓ Ab2

X/K is then given by
∑
i ni(ji)∗j

∗
i . Let now

Z ∈ A 2
X/K(Ab2

X/K) be a universal cycle. By Corollary 11.8, ι coincides with Z∗ and
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ι∨ coincides with Z∗; see (12.4). We get

⟨α, β⟩X =
〈
Z∗α,Z∗β ∪ [ΛX ]g−1

(g − 1)!

〉
Ab2

X/K

= ⟨α,
∑
i

ni(ji)∗j
∗
i Z

∗β⟩Ab2
X/K

=
∑
i

⟨j∗i Z∗α, j∗i Z∗β⟩Ab2
X/K

,

where the first equality is (14.1) and the last equality is obtained using the projection
formula. This establishes (∗R).

We next translate this into a statement about cohomological decompositions of the
diagonal:

Corollary 14.6. — With the assumptions of Proposition 14.4, we have:
(A) If K is finite or algebraically closed and if ∆X ∈ CHdX (X ×K X) ad-

mits a strict cohomological R-decomposition, then the cohomology class
[ΛX ]g−1

(g−1)! ∈ H
2g−2((Ab2

X/K)K ,Zℓ(g − 1)) is R-algebraic, where g := dimAb2
X/K .

Assume further (to the assumptions of Proposition 14.4) that:
— H•(XK ,Zℓ) has no torsion,
— H2i(XK ,Zℓ(i)) are Zℓ-algebraic for all i,
— H1(XK ,Zℓ) = 0.
Then we have:

(B) If the class [ΛX ]g−1

(g−1)! ∈ H
2g−2((Ab2

X/K)K ,Zℓ(g− 1)) is Zℓ-algebraic, and Ab2
X/K

admits a universal codimension-2 cycle, then ∆X ∈ CHdX (X ×K X) admits a
strict cohomological Zℓ-decomposition.

Proof. — This is immediate from Theorem 14.2 and Proposition 14.4.
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CHAPTER 15

PROOF OF THEOREM 2

We are now in a position to prove Theorem 2. The main result of this section
is Theorem 15.1, which is more general. We also provide necessary and sufficient
conditions for a threefold over an algebraically closed field to admit a cohomological
Zℓ-decomposition in Theorem 15.5.

15.1. Proof of Theorem 2

Theorem 15.1. — Let X be a smooth projective threefold over a perfect field K.
If K = K is algebraically closed and the diagonal ∆X ∈ CH3(X ×K X) admits

a strict cohomological Z-decomposition with respect to H•(−,Zℓ), then for all prime
numbers ℓ ̸= char(K):

(1) H1(XK ,Zℓ) = 0;
(2) H2i(XK ,Zℓ(i)) is Z-algebraic for all i;
(3) the ℓ-adic Bloch map Tℓλ2 : Tℓ A2(XK)→ H3(XK ,Zℓ(2))τ is an isomorphism;
(3′) the ℓ-adic map Tℓϕ2

X/K : Tℓ A2(XK)→ Tℓ Ab2
X/K is an isomorphism;

(4) TorsH•(XK ,Zℓ) = 0;
(5) Ab2

X/K admits a universal codimension-2 cycle class;
(6) assuming (3) and (5), and setting ΘX : Ab2

X/K → Âb 2
X/K to be the sym-

metric isogeny of Theorem 1(2), we have that TℓΘX is an isomorphism, and
the class [ΘX ]g−1

(g−1)! ∈ H
2g−2((Ab2

X/K)K ,Zℓ(g − 1)) is a Z-algebraic class, where
g = dimAb2

X/K and [ΘX ] is the first Chern class of the line bundle associated
to ΘX .

As a partial converse, let K be any perfect field and assume that (1)–(6) hold
(including (3′)) for some prime number ℓ ̸= char(K), where in (6) we define [ΘX ]

to be the first Chern class of the line bundle associated to (ΘX)K (§A.3). Then the
diagonal ∆X ∈ CH3(X ×K X) admits a strict cohomological Zℓ-decomposition.

Remark 15.2. — In the case whereK = K, if we just assume that ∆X ∈ CH3(X×KX)

admits a cohomological Z-decomposition of type (2, 1), then (2)–(5) hold.
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Proof. — Assume K = K and that the diagonal ∆X ∈ CH3(X ×K X) admits a
strict cohomological Z-decomposition. Item (1) is Corollary 7.7 (and in fact we get
this using just a strict Zℓ-decomposition). Item (2) is Corollary 7.11 (and in fact we
get Zℓ-algebraicity using just a strict cohomological Zℓ-decomposition of type (2, 1),
and using just a cohomological Z-decomposition of type (2, 1) we get Z-algebraicity).
Note that this is the only place where we use that the field is algebraically closed; if
one could prove Corollary 7.11 over finite fields, then Theorem 15.1 would hold over
finite fields, as well. Item (3) is Proposition 7.12 (and in fact we get this using just
a Zℓ-decomposition of type (2, 2)). Item (3′) is Proposition 10.1 (and in fact we get
this using just a Zℓ-decomposition of type (2, 1)). Item (4) is Corollary 7.2 (and in
fact we get this using just a Zℓ-decomposition of type (2, 1)). Item (5) is Corollary 9.3
(and in fact we get this using just a Z-decomposition of type (2, 1)). Item (6) is
Corollary 14.6(A).

The converse statement is Corollary 14.6(B). As this is the easier direction of Corol-
lary 14.6, for convenience, we provide a brief proof in the notation of Theorem 15.1.
Working component-wise, we may and do assume X is connected. By assumption (4),
the intersection pairing H2(X)×H4(X)→ RH(−3) is perfect. By assumption (1) in
case i = 1 and i = 2, it follows that the Künneth projectors π2

X and π4
X belong to the

image of CH3(X×K)RH → H6(X ×K X)(3). Moreover, assumption (1) in case i = 3

provides a zero-cycle x ∈ CH0(X)RH of degree 1. We then consider the cycle

π3
X := ∆X − x×K X − π2

X − π4
X −X ×K x ∈ CH3(X ×K X)RH ,

whose cohomology class defines, by assumptions (1) and (4), the Künneth projector
on H3(X). We aim to show that [π3

X ] is supported on D ×K X for some divisor D.
By assumptions (3), (3′), and (5), together with Lemma A.1 and Corollary 11.8, we
have a commutative diagram (where as usual ΛX = −ΘX):

Tℓ Ab2
X/K

Z∗≃
��

H1(Ab2
X/K)(1)

∪ [ΛX ]g−1

(g−1)!oo

H3(X)(2) H3(X)(2),

Z∗ ≃
OO

where Z ∈ A 2
X/K(Ab2

X/K) is any universal codimension-2 cycle. Therefore,

[π3
X ] = [π3

X ] ◦ Z∗ ◦
(
− ∪ [ΛX ]g−1

(g − 1)!

)
◦ Z∗ ◦ [π3

X ].

By assumption (6), there are finitely many connected curves Ci in Ab2
X/K and

constants ni ∈ RH such that [ΛX ]g−1

(g−1)! =
∑
i ni[Ci]. Let C̃i → Ci be the normal-

izations morphisms and denote ji : C̃i → Ab2
X/K the natural morphisms. The

map ∪ [ΛX ]g−1

(g−1)! : H1(Ab2
X/K)(1) → Tℓ Ab2

X/K is then given by
∑
i ni(ji)∗j

∗
i . There-

fore, the cohomological correspondence [π3
X ] factors through

⊕
iH1(C̃i)(−1), thereby

establishing it is supported on D ×K X for some divisor D in X.
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15.2. Regarding conditions (1)–(4) of Theorem 15.1 in positive characteristic

As explained in the introduction, for any complex projective rationally connected
threefold, conditions (1)–(3′) of Theorem 15.1 hold. We show here that any smooth
projective geometrically rationally chain connected threefold that lifts to a smooth
projective geometrically rationally connected threefold in characteristic zero with no
torsion in cohomology also satisfies conditions (1)–(3′), as well as (4) (Corollary 15.4).

We start with a preliminary result that follows directly from a result of Voisin [62,
Thm. 2]:

Theorem 15.3 (Voisin). — Suppose that X/S is a smooth projective threefold over the
spectrum S of a DVR R, such that the fraction field K := κ(η) ⊆ C is characteristic 0,
and the residue field k := κ(s) is algebraically closed. Let XC be the base change of Xη,
and fix a prime ℓ ̸= charκ(s).

(1) If H•(X an
C ,Z) has no ℓ-torsion, then H•(Xs,Zℓ) has no torsion.

(2) If in addition XC is rationally connected or satisfies H2(XC,OXC) = 0

(resp. XC is uniruled or satisfies KXC
∼= OXC and H2(XC,OXC) = 0), then

H2(Xs,Zℓ(1)) (resp. H4(Xs,Zℓ(2))) is algebraic.
(3) If R = W(k), the ring of Witt vectors of k, and if p ≥ 5, then under the hypoth-

esis that H•(X an
C ,Z) has no torsion, the crystalline cohomology H•

cris(Xs/W(k))

has no torsion; and under the hypotheses of (2), H2
cris(Xs/W(k)) and

H4
cris(Xs/W(k)), respectively, are algebraic.

Proof. — If H•(X an
C ,Z) has no ℓ-torsion, then H•(XC,Zℓ) = H•(X an

C ,Zℓ) =

H•(X an
C ,Z) ⊗Z Zℓ, which also has no torsion. By proper base change, we also

have that H•(XC,Zℓ) = H•(XK ,Zℓ) = H•(Xs,Zℓ), and so we have completed the
argument for (1).

For claim (2) on algebraicity, we argue as follows. First, as H2(XC,OXC) = 0, either
by assumption or else by using the assumption that XC is rationally connected, then we
can conclude thatH2(X an

C ,C) = H1,1(X an
C ), so that algebraicity ofH2(X an

C ,Z) follows
from the Lefschetz-(1, 1) theorem. In the case where XC is uniruled, or KXC

∼= OXC

and H2(XC,OXC) = 0, the algebraicity of H4(X an
C ,Z) is Voisin’s result [62, Thm. 2].

Since we are assuming (1), we haveH•(XC,Zℓ) = H•(X an
C ,Zℓ) = H•(X an

C ,Z)⊗Z Zℓ
and it follows from Chow’s theorem that H2i(XC,Zℓ(i)) is algebraic for i = 1, 2 so
long as H2i(X an

C ,Z(i)) is. We next claim that this implies H2i(XK ,Zℓ(i)) is algebraic.
Indeed, given any α ∈ H2i(XK ,Zℓ(i)), by proper base change, α is identified with a
class in H2i(XC,Zℓ(i)). By algebraicity, we can write α =

∑
ai[Zi] for some cycles Zi

on XC, and some coefficients ai ∈ Zℓ. Each cycle Zi lies on some component of the
Hilbert scheme for XC, which is the base change to C of the Hilbert scheme for XK .
Since the cohomology class of a cycle is the same for any cycle in the same compo-
nent of the Hilbert scheme (we can use resolution of singularities, for instance, to
get a smooth curve interpolating), we can replace Zi with a cycle Z ′i defined over K
(corresponding to any K-point of the corresponding Hilbert scheme), and we have
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α =
∑
ai[Zi] =

∑
ai[Z

′
i]. Thus H2i(XK ,Zℓ(i)) is algebraic. Now using the identi-

fication H2i(XK ,Zℓ(i)) = H2i(Xs,Zℓ(i)) via proper base change, and the fact that
specialization of cycles in Chow respects the cycle class map [32, Exa. 20.3.5] (e.g.,
(16.5)), we have that H2i(Xs,Zℓ(i)) is algebraic.

For (3), the hypothesis that Xs lifts to an unramified mixed characteristic DVR
guarantees that the freeness of H•(XC,Z), and thus that of H•(XK ,Zp), implies that
of H•

cris(Xs/W(k)) [20, Thm. 1.1]. Moreover, this freeness allows one to define an
integral crystalline cycle class map. Now suppose that H2i(XC,Z(i)) is algebraic. The
comparison isomorphism between Betti and de Rham cohomology is compatible with
cycle class maps, and thus H2i

dR(X an
C ) is algebraic. Spreading and specializing shows

that there is a finite extension L/B(k) such that H2i
dR(XL) is algebraic. (Note that

the residue field of L is again k.) The comparison isomorphism between the de Rham
cohomology of XL and the crystalline cohomology of Xs is compatible with cycle class
maps [33, App. B], and thus H2i

cris(Xs/W(k)) is algebraic as well.

We can now show that conditions (1)–(4) of Theorem 15.1 hold for all threefolds
liftable to rationally connected threefolds in characteristic 0 with no torsion in coho-
mology.

Corollary 15.4. — Suppose that X/S is a smooth projective threefold over the spec-
trum S of a DVR R, such that the fraction field κ(η) ⊆ C is characteristic 0, and
the residue field κ(s) is algebraically closed. If Xs and Xη are geometrically rationally
chain connected, and H•(Xη,Zℓ) is torsion-free, then Xs satisfies conditions (1)–(4)
of Theorem 15.1.

Proof. — Since Xs is rationally chain connected, a multiple of the diagonal admits
a strict decomposition. Then condition (1) is Corollary 7.7. (2) and (4) follow from
Theorem 15.3. (3) and (3′) are [7, Cor. 7.4].

15.3. Necessary and sufficient conditions for a cohomological Zℓ-decomposition

We will see below, in Remark 17.6, that there are examples of smooth projec-
tive threefolds over an algebraically closed field k = K = K such that the diagonal
admits a cohomological Zℓ-decomposition for some prime ℓ ̸= char(k), but where con-
dition (5) in Theorem 15.1 fails. In other words, while conditions (1)–(6) are sufficient
for a cohomological Zℓ-decomposition of the diagonal, they are not necessary. The
following theorem gives necessary and sufficient conditions for a cohomological Zℓ-de-
composition:

Theorem 15.5 (Cohomological Zℓ-decomposition of the diagonal). — Let X be a
smooth projective threefold over an algebraically closed field k, and fix a prime
number ℓ ̸= char(k). Then ∆X ∈ CH3(X ×k X) admits a strict cohomological
Zℓ-decomposition with respect to H•(−,Zℓ) if and only if

(1) H1(X,Zℓ) = 0;
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(2ℓ) H2i(X,Zℓ(i)) is Zℓ-algebraic for all i;
(3) The ℓ-adic Bloch map Tℓλ2 : Tℓ A2(X)→ H3(X,Zℓ(2))τ is an isomorphism;
(3′) The ℓ-adic map Tℓϕ2

X/k : Tℓ A2(X)→ Tℓ Ab2
X/k is an isomorphism;

(4) TorsH•(X,Zℓ) = 0;
(5ℓ) Ab2

X/k admits a miniversal codimension-2 cycle class Z of degree coprime to ℓ;
(6ℓ) assuming (3) and (5ℓ), and setting ΘZ : Ab2

X/k → Âb 2
X/k to be the

morphism induced by the cycle class −(tZ ◦ Z) (see (12.2) and Theo-
rem 12.6), we have that ΘZ is a symmetric isogeny of degree coprime
to ℓ, and [ΘZ ]g−1

(g−1)! ∈ H
2g−2(Ab2

X/k,Zℓ(g − 1)) is a Zℓ-algebraic class, where
g = dimAb2

X/k and [ΘZ ] is the first Chern class of the line bundle associated
to ΘZ .

Proof. — The necessity of the conditions above is given in the proof of Theorem 15.1:
the results cited in that proof show that the weaker conditions in Theorem 15.5 hold
under the weaker hypothesis of a cohomological Zℓ-decomposition. Note that in going
from (3) and (5ℓ) to the symmetric isogeny ΘX of (6ℓ), we are using Theorem 12.6 in
the case of a miniversal cycle, rather than the case of a universal cycle.

The proof of sufficiency is again Corollary 14.6(B). Technically, if Z is a
miniversal codimension-2 cycle class of degree r coprime to ℓ, then the symmet-
ric isogeny ΛZ = −ΘZ of Theorem 12.6 is not ℓ-distinguished, but rather, satisfies
TℓΛZ = r2 ◦ ι∨ ◦ ι, where ι = Tℓλ

2 ◦ (Tℓϕ
2)−1. It is easy to see that Proposition 14.4

holds under this hypothesis, and therefore that Corollary 14.6(B) does, as well. One
notationally easy way to express that is to say that 1

r2 ΛZ ∈ Hom(Ab2
X/K , Âb

2

X/)Q is
ℓ-distinguished, in the sense that 1

r2TℓΛZ = ι∨ ◦ ι, and one can check that Proposi-

tion 14.4 and Corollary 14.6(B) hold for symmetric K-isogenies Λ : Ab2
X/K → Âb

2

X/K

such that TℓΛ is an isomorphism, and such that there is an integer N invertible in R,
such that 1

NΛ is ℓ-distinguished.

Remark 15.6. — Since conditions (1)–(4) of Theorem 15.1 imply conditions (1)–(4)
of Theorem 15.5, one can apply Corollary 15.4 to Theorem 15.5, as well.
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CHAPTER 16

HOMOLOGICAL DECOMPOSITION OF THE DIAGONAL,
RESOLUTION OF SINGULARITIES, AND SPECIALIZATION

The goal of this section is to show that cohomological decomposition of the diagonal
is stable under specialization, and under resolution of singularities for nodal projective
varieties. The results generalize Voisin’s results over C. Since those arguments are
made with cycle classes in Betti homology, the central point is to convert elements of
the arguments to work in Borel-Moore homology, or more precisely, in the algebraic
setting of ℓ-adic homology. For this we need a few basic results on ℓ-adic homology,
which unfortunately we could not find in the literature.

In this section, for uniformity, we fix a coefficient ring Λ = Z or Zℓ. For an al-
gebraically closed field k and a scheme π : X → Spec k of finite type over k, we
denote by ωX := Rπ!Λ the dualizing sheaf in the derived category of constructible
Λ-sheaves on X. For a scheme π : X → SpecK of finite type over a field K, we denote
by Hi(X) := H−i(XK , ωXK

) the ℓ-adic homology, or alternatively, the Borel-Moore
homology, when working over K = C and with the analytic topology; we refer the
reader to [44] for details on ℓ-adic homology, and to [19] for details on the Borel-Moore
homology.

16.1. Homological decomposition of the diagonal

As before, let RH denote the coefficient ring of H•; i.e., Zℓ for ℓ-adic homology,
and Z for Borel-Moore homology. We adapt Definition 6.1 to the setting of homology:

Definition 16.1 (Homological decomposition of a cycle class). — Let R → RH be a
homomorphism of commutative rings. Let X be a scheme of finite type over a field K,
and let

ji : Wi
� � ̸= // X , i = 1, 2

be reduced closed subschemes not equal to X. A homological R-decomposition of
type (W1,W2) of a cycle class Z ∈ CHdX (X ×K X)R (with respect to H•) is an
equality

(16.1) [Z] = [Z1] + [Z2] ∈ H2dX
(X ×K X)(−dX),
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where Z1 ∈ CHdX (X×KX)R is supported on W1×KX and Z2 ∈ CHdX (X×KX)R is
supported on X ×K W2 (see (2.1) for the support of a cycle). When R = Z, we
call this a homological decomposition of type (W1,W2) (with respect to H•). We say
that Z ∈ CHdX (X ×K X)R has a homological R-decomposition of type (d1, d2) (with
respect to H•) if it admits a homological R-decomposition of type (W1,W2) with
dimW1 ≤ d1 and dimW2 ≤ d2.

Remark 16.2. — Recall that in the case where X is smooth projective and equidimen-
sional, a homological decomposition is the same as a cohomological decomposition.
Indeed, setting H• to be ℓ-adic cohomology with Zℓ-coefficients in the case of ℓ-adic
homology, or Betti cohomology in the case of Borel-Moore homology, the cap product
with the fundamental class of X induces for all i (e.g., [44, p. 173]) an isomorphism
− ∩ [X] : H2dX−i(X)(dX)

∼→ Hi(X), and the cycle class maps are compatible [44,
Rem. 6.4].

16.2. Homological decomposition of the diagonal and resolution of singularities

16.2.1. Long exact sequences in ℓ-adic homology. — In this section we recall some long
exact sequences in ℓ-adic homology. These are standard in Borel-Moore homology,
going back to the original paper [19]. Unfortunately, these do not seem to appear
in the literature in the analogous theory of ℓ-adic homology. Here we present the
arguments of [19] in the modern language of the 6-functor formalism, establishing the
results in either setting.

First, assume that i : Z ⊆ X is a closed subvariety, and let U = X − Z be the
complement, with inclusion j : U ⊆ X. Then there is a long exact sequence (e.g., [19,
Thm. 3.8] in Borel-Moore homology)

(16.2) · · · // Hi(Z)
i∗ // Hi(X)

j∗ // Hi(U) // · · ·

The key observation to establish this is that there is an exact triangle in the derived
category of constructible sheaves

i∗ωZ → ωX → j∗ωU → i∗ωZ [1].

Taking the long exact sequence in hyper-cohomology gives (16.2). To obtain this exact
triangle, we replace ωX with a quasi-isomorphic complex of injectives, I•, and then
consider the short exact sequence (e.g., [36, Exe. II.1.20])

0→H 0
Z (I•)→ I• → j∗(I

•|U )→ 0,

which is exact on the right since injectives are flasque. This gives the exact triangle

H 0
Z (ωX)→ ωX → j∗(ωX |U )→H 0

Z (ωX)[1].

Now we recall that ωX := Rπ!Λ, where π : X → SpecK is the structure morphism.
For closed immersions, we have i∗Ri! = H 0

Z [44, (0.3.2)(a)], so that on the left we
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have H 0
Z (ωX) = i∗i

!ωX = i∗i
!π!Λ = i∗ωZ . For open immersions, we have Rj! = j∗ so

that ωX |U = j∗ωX = Rj!Rπ!Λ = ωU .

Similarly, suppose that we have X = X1∪X2 a decomposition of a variety into two
irreducible components. Let ij : Xj ↪→ X, j = 1, 2, be the closed immersions of the
components, and let i12 : X1 ∩X2 ↪→ X be the closed immersion of the intersection.
Then we have a long exact sequence (e.g., [19, Thm. 3.10] in Borel-Moore homology)

(16.3) · · · // Hi(X1 ∩X2) // Hi(X1)⊕Hi(X2) // Hi(X) // · · ·

where the maps are the obvious inclusion and difference maps. Again, the point is
that we have an exact triangle

i12∗ωX1∩X2
→ i1∗ωX1

⊕ i2∗ωX2
→ ωX → i12∗ωX1∩X2

[1].

The argument to obtain this exact triangle is similar. We replace ωX with a quasi-
isomorphic complex of injectives, I•, and then consider the short exact sequence

0→H 0
X1∩X2

(I•)→H 0
X1

(I•)⊕H 0
X2

(I•)→ I• → 0,

where again we get exactness on the right using that injectives are flasque. This gives
the exact triangle

H 0
X1∩X2

(ωX)→H 0
X1

(ωX)→ ωX →H 0
X1∩X2

(ωX)[1].

Now we use again the description of the extraordinary pull back for closed immersions
to conclude H 0

X1∩X2
(ωX) = i12∗ωX1∩X2

and H 0
Xj

(ωX) = ij∗ωXj
.

16.2.2. Applications to decomposition of the diagonal and resolution of singularities.
— Recall that we say that a variety X over a perfect field K has at worst ordinary
double point singularities if it is smooth over K, or has isolated singular points, each
of which is a K-point with a projective tangent cone that is a smooth quadric over K.

Proposition 16.3. — Let X be a projective variety over an algebraically closed field k,
having only ordinary double point singularities, let ϵ : X̃ → X be the standard resolu-
tion obtained by blowing up the singular points of X, and assume that the even degree
cohomology of X̃ is algebraic and without torsion. Then ∆X ∈ CHdX (X×kX) admits
a strict homological R-decomposition if and only if ∆X̃ ∈ CHdX (X̃ ×k X̃) admits a
strict homological R-decomposition.

Remark 16.4. — A similar result holds for Chow groups [67, Thm. 2.1] [22, Thm. 1.14]
[38, Prop. 8]).

Proof. — The case where K = C and cycles are taken in Betti homology is [67,
Thm. 2.1]. Since we have (16.2) and (16.3) in ℓ-adic (and Borel-Moore) homology,
and the even degree cohomology of a smooth quadric over an algebraically closed
field is algebraic [2, Exp. XII,Thm. 3.3], Voisin’s proof carries over essentially without
change. For convenience, we include the proof here.

We start with the easy direction. Assume that ∆X̃ ∈ CHdX (X̃ ×k X̃) has a
strict R-decomposition, [∆X̃ ] = [Z̃1] + [Z̃2] with Z̃1 supported on D̃ ×k X̃ and
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Z̃2 = p̃r∗2[α̃] for some zero-cycle class α̃ ∈ CH0(X̃). Now since ϵ is proper, we have
push forward in homology that is compatible with the cycle class maps [44, §6].
Then we simply push-forward via the proper map ϵ × ϵ. More precisely, we have
∆X = (ϵ× ϵ)∗∆X̃ , Z1 := (ϵ× ϵ)∗Z̃1 supported on D×kX where D is the image of D̃,
and Z2 := (ϵ× ϵ)∗Z̃2 = (ϵ× ϵ)∗p̃r∗2α̃ = pr∗2ϵ∗α̃. This provides the strict decomposition
for ∆X .

Conversely, assume we have a strict R-decomposition of the diagonal for X:

(16.4) [∆X ]− [Z1]− [Z2] = 0 ∈ H2dX
(X ×k X)(−dX),

where Z2 = pr∗2 α for some zero-cycle class α ∈ CH0(X)R. For space, we will leave off
all of the Tate twists in what follows.

We denote by xi the singular points of X, x the union of the singular points, Qi
the exceptional divisors (smooth quadrics) for the resolution ϵ : X̃ → X, and Q the
union of these quadrics.

There is a diagram of maps of homology groups:

H2dX
(X ×k X) // H2dX

(X ×k X − (X ×k x ∪X ×k x))

H2dX
(X̃ ×k X̃) // H2dX

(X̃ ×k X̃ − (X̃ ×k Q ∪Q×k X̃)).

Since ϵ : X̃ → X is lci (X̃ is smooth), we may take the Gysin pull back Z̃1 of Z̃,
and set Z̃2 = p̃r∗2ϵ

∗α. We find that the classes

[∆X ]− [Z1]− [Z2] (= 0 ∈ H2dX
(X ×k X))

[∆X̃ ]− [Z̃1]− [Z̃2]
(
∈ H2dX

(X̃ ×k X̃)
)

have the same image in

H2dX
(X ×k X − (X ×k x ∪X ×k x)) = H2dX

(X̃ ×k X̃ − (X̃ ×k Q ∪Q×k X̃)).

From the long exact sequence (16.2), one obtains that

[∆X̃ ]− [Z1]− [Z2] ∈ H2dX
(X̃ ×k X̃)

comes from a homology class

β ∈ H2dX
(X̃ ×k Q ∪Q×k X̃).

The next observation is that the closed subset X̃ ×k Q ∪ Q ×k X̃ ⊆ X̃ ×k X̃ is the
union of X̃ ×k Q and Q×k X̃ glued along Q×k Q, so that we have from (16.3)

· · · → H2dX
(X̃ ×k Q)⊕H2dX

(Q×k X̃)→ H2dX
(X̃ ×k Q ∪Q×k X̃)→ H2dX−1(Q×k Q)→ · · ·

As Q×Q =
∐
i,j Qi×Qj , and Qi×Qj has trivial homology in odd degree [2, Exp. XII,

Thm. 3.3], we conclude that H2dX−1(Q×k Q) = 0, so that β comes from a homology
class

γ = (γ1, γ2) ∈ H2dX
(X̃ ×k Q)⊕H2dX

(Q×k X̃).
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We now use the assumption made on X̃, namely that its even degree coho-
mology is algebraic. As the cohomology of Q has no torsion and is algebraic [2,
Exp. XII,Thm. 3.3] (this is the only place we are using that k is algebraically closed),
we get by the Künneth decomposition that

H2dX
(Q×k X̃) = H2dX−2(Q×k X̃) =

⊕
0≤2i≤2dX−2

H2i(Q)⊗H2dX−2−2i(X̃)

is generated by classes of algebraic cycles zj×k z′j ⊆ Q×k X̃, and similarly for X̃×kQ.
Putting everything together, we get an equality

∆X̃ − [Z1]− [Z2] =
∑

nj [zj ×k z′j ] +
∑

n′j [z
′
j ×k zj ] ∈ H2dX

(X̃ ×k X̃).

This provides us with an integral cohomological decomposition of the diagonal. Indeed,
all the cycle classes of the form [X̃s×k pt] are cohomologous and they have to sum-up
to zero, while all the other terms [z′k×k zk] with dim z′k < n are supported on D×k X̃
for some closed algebraic subset D ⊊ X̃.

16.3. Homological decomposition of the diagonal and specialization

16.3.1. Specialization and cycle class maps in ℓ-adic homology. — Let B be a smooth
variety of dimension 1 over a field K, let f : X → B be a smooth morphism. Setting
Xη to be the geometric generic fiber, and Xb to be the fiber over a K-point b ∈ B(K),
one has a commutative diagram [32, Exa. 20.3.5] (see [31, p. 65] and [1, SGA6, Exp. X,
7.13-7.16])

(16.5) CHn(Xη)
sp //

[−]

��

CHn(Xb)

[−]

��
H2n(Xη) H2n(Xb),

where the top arrow is the specialization map of [32, §20.3], and the bottom equality
comes from proper base change. If K = C, and we identify κ(η) = C, then we have
the same result in Borel-Moore homology.

If more generally we want to consider a morphism f : X → B of finite type,
then there is a specialization map in ℓ-adic homology making the following diagram
commute:

(16.6) CHn(Xη)
sp //

[−]
����

CHn(Xb)

[−]

��
H2n(Xη)′

sp // H2n(Xb),

where H2n(Xη)
′ ⊆ H2n(Xη) is the image of the cycle class map. Again, if K = C,

and we identify κ(η) = C, then we have the same result in Borel-Moore homology.
Since there does not appear to be a reference in the literature, we explain this now.
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Setting B◦ = B − {b} and f◦ : X ◦ = B◦ ×B X → B◦ to be the restriction, we obtain
a commutative diagram

CHn(Xb)

CHn(Xb)
i∗

//

[−]

��

CHn(X/B)
j∗
//

[−]

��

i!
11

CHn(X ◦/B◦) //

[−]

��

sp
55

[−]��
0

H2n(Xb)

H2n(Xb)
i∗

// H2n(X )
j∗
//

i!
11

H2n(X ◦),

where the horizontal sequences are exact ([32, Prop. 1.8] and (16.2)). Since i!i∗ = 0

for Chow groups [32, §20.3], the top of this diagram gives the definition of the special-
ization map [32, §20.3]. The compatibility of the cycle class maps with proper push
forward and flat pull back is standard [44, §6].

On the images of the cycle class maps in homology, by commutativity, we have
i!i∗ = 0, so that from the diagram above, we can define the specialization map in
homology:

CHn(X ◦/B◦)
sp //

[−]
����

CHn(Xb)

[−]

��
H2n(X ◦)′

sp // H2n(Xb).

We obtain (16.6) by spreading cycle classes after finite base changes, as in [32,
Exa. 20.3.8].

Remark 16.5. — Let f : X → B be a smooth morphism of smooth varieties of finite
type over a field K, and let B′ ⊆ B be a closed regular embedding of codimension 1

with trivial normal bundle. Let η (resp. η′) be the generic point of B (resp. B′). The
arguments above generalize to this setting (see [32, Exa. 20.3.8]) to give a specializa-
tion map

CHn(Xη)
sp //

[−]
����

CHn(Xη′)

[−]

��
H2n(Xη)′

sp // H2n(Xη′)′.

For any b ∈ B(K), if we iteratively take smooth subvarieties b ∈ B′ ⊆ B, and restrict
to Zariski open subsets to trivialize the normal bundle, we obtain a restriction map
(16.6) even if dimB > 1.

16.3.2. Application: strict decomposition of the diagonal and specialization

Theorem 16.6. — Let B be a smooth integral variety over a field K, let π : X → B be
a flat projective morphism of relative dimension d. If there exists a K-point b ∈ B(K)

such that for the fiber Xb the class of the diagonal ∆Xb
∈ CHd(Xb ×K Xb) does not
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admit a strict homological R-decomposition, then the same is true for the geometric
generic fiber Xη.

Remark 16.7. — A similar result holds for Chow groups [67, Thm. 2.1] [22, Thm. 1.14]
[38, Thm. 9].

Proof. — Using Remark 16.5, it suffices to prove the theorem for dimB = 1. The
case where K = C is a special case of [67, Thm. 2.1]. We proceed to give a similar
proof in the setting of ℓ-adic homology.

We start with a few simplifying assumptions. Since the algebraic closure of the
function field of B is isomorphic to the algebraic closure of the function field of BK ,
we may assume that K = K. Also, since the geometric generic fiber does not change
after finite base change, we are free to make finite base changes.

We will now prove the contrapositive of the theorem, and therefore we start by
assuming ∆Xη

∈ CHd(Xη×ηXη) admits a strict homological R-decomposition. By the
finite type hypotheses, there is some finite extension of the function field κ(η) of B over
which the decomposition is defined. Therefore, after spreading, we may assume that
after a finite surjective base change B′ → B there exist a divisor D′ ⊆ X ′ := B′×BX ,
which we may assume to contain no fiber of X ′ → B′, a cycle Z1 ∈ CHd(X ′ ×B′ X ′)
supported on D′×B′ X ′, and a zero cycle α′ ∈ CH0(X ′) of relative degree-1 such that
setting Z2 = pr∗2 α

′, we have

[∆X′η
]− [(Z1)η]− [(Z2)η] = 0 ∈ H2d(X

′
η ×κ(η) X

′
η)(−d).

Since we are free to make finite base changes, to simplify the notation we relabel B′

as B and continue the proof. We claim that at every K-point b ∈ B(K), we have

[∆Xb
]− [(Z1)b]− [(Z2)b] = 0 ∈ H2d(Xb ×K Xb)(−d).

But this follows from the compatibility of the cycle class map with specialization given
in (16.6).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2025





CHAPTER 17

QUARTIC DOUBLE SOLIDS AND THE PROOF OF THEOREM 3

We now use the results developed so far to show that there exist unirational three-
folds in positive characteristic that have no universal codimension-2 cycle class.

The starting point is the result of Artin and Mumford, that over an algebraically
closed field k of characteristic ̸= 2 there exists a quartic double solid X with ex-
actly 10 singular points, in special position, all of which are nodes; i.e, a double cover
of P3

k branched along a quartic with 10 nodes in special position, such that the stan-
dard resolution of singularities ϵ : X̃ → X has non-trivial torsion in cohomology:
for H•(−) given by Betti cohomology H•(−,Z), or 2-adic cohomology H•(−,Z2), we
have TorsH4(X̃) ̸= 0 [10, Prop. 3, §4]. It follows from Corollary 7.2 that the class of
the diagonal [∆X̃ ] ∈ H6(X̃ ×k X̃)(3) does not admit an RH-decomposition.

We use this as a starting point for the investigation of desingularizations of quar-
tic double solids with at most 9 nodes. In order to connect such threefolds to the
Artin-Mumford example we take a brief excursion into the moduli spaces of (lattice-
polarized) K3 surfaces in Section 17.1.

17.1. Nodal quartic surfaces

Let k be an algebraically closed field with char(k) ̸= 2. Let Y ⊂ P3
k be a quartic

surface smooth away from rational double points P1, . . . , Pn ∈ Y (k), with n ≥ 1. Let
ϖ : Ỹ → Y be the minimal resolution of Y , obtained by blowing up the n nodes. Then
Ỹ is a smooth K3 surface. Let λ = ϖ∗OP3(1) ∈ Pic(Ỹ ) ∼= NS(Ỹ ), and for 1 ≤ i ≤ n let
ϵi be the class ofϖ−1(Pi) in Pic(Ỹ ). Under the intersection pairing, we have (λ, λ) = 4;
(ϵi, ϵi) = −2; (λ, ϵi) = 0; and, if i ̸= j, then (ϵi, ϵj) = 0. Therefore, the Z-span
of {λ, ϵ1, . . . , ϵn} is a primitive sub-lattice of Pic(Ỹ ) of rank n+1. Moreover, forN ≫ 0,
Nλ−

∑
ϵi is (very) ample. In particular, the lattice spanned by {λ, ϵ1, . . . , ϵn} contains

the class of a polarization.
With this notation, it is not hard to show:

Lemma 17.1. — Let k be an algebraically closed field. Suppose that either char(k) ̸= 2

and R = k[[T ]], or that char(k) = p > 2 and that R is the ring of Witt vectors W(k).
Let B = Frac(R).
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Let Y ⊂ P3
k be a quartic surface which has n rational double points and is smooth

elsewhere. Then for each 0 ≤ m ≤ n, there exists a deformation Y/R of Y/k such
that YB has exactly m nodes.

Proof. — This follows from the deformation theory for K3 surfaces worked out in [26];
see, e.g., [4, Prop. 3.8] for details. We assume char(k) = p > 2, since the deformation
theory in [26] is built in analogy to the well-known classical case over the complex num-
bers. Let Runiv = W(k)[[T1, . . . , Tn]], and choose an isomorphism Def(Ỹ ) ∼= Spf Runiv.
We have seen that the collection {λ, ϵ1, . . . , ϵn} is a linearly independent set of prim-
itive elements of Pic(Ỹ ). Consequently, there exist f0, . . . , fn ∈ Runiv such that,
for 0 ≤ m ≤ n, Runiv/(f0, . . . , fm) is smooth over W(k) of relative dimension 19−m;
and if A is an Artinian algebra, and if µ : Runiv → A is a deformation of Ỹ to A, then
ϵi (resp. λ) extends to ỸA if and only if µ(fi) = 0 (resp. µ(f0) = 0). In particular,
Def(Ỹ , {λ, ϵ1, . . . , ϵm}) ∼= Spf Runiv/(f0, . . . , fm).

So, let p be the maximal ideal of R, and fix 0 ≤ m ≤ n. Choose a compatible family
of surjections µj : Runiv → R/(p)j such that µj(fi) = 0 if and only if i ≤ m. We ob-
tain a formal deformation of Ỹ to Spf R. Moreover, since (for N ≫ 0) Nλ−

∑m
i=1 ϵi

is ample on the generic fiber, the formal deformation algebraizes to yield an alge-
braic deformation Ỹ /R of Ỹ over R. The only (−2)-curves on ỸB are the curves
representing ϵ1, . . . , ϵm; contracting these – equivalently, mapping Ỹ to P3

R using the
quasi-ample line bundle λ – gives the desired deformation of Y .

Already, this is adequate for producing examples of Theorem 3. To show that
for m ≤ n an arbitrary m-nodal quartic surface degenerates to an arbitrary n-nodal
quartic requires a brief detour into the moduli theory of K3 surfaces.

Let R4,≥n / Z[1/2] be the moduli space of quartic surfaces with at least n rational
double points. Our goal is to show:

Proposition 17.2. — If n < 10, then each fiber of R4,≥n → SpecZ[1/2] is geometrically
irreducible.

Proof. — Before proceeding, it may be worth recalling Madapusi Pera’s strategy for
showing that away from characteristics dividing 2d, the moduli space R2d of quasipo-
larized K3 surfaces of degree 2d, is irreducible [46, Cor. 5.16]. The well-known period
map for K3 surfaces realizes R2d(C) as an arithmetic quotient of a Hermitian sym-
metric domain. This quotient admits a canonical model over Z[1/2d]; the existence of
a good arithmetic compactification for such an orthogonal Shimura variety implies,
by Zariski’s main theorem, that the space stays irreducible upon reduction modulo a
prime. We adopt a similar strategy here, using the notion of a lattice-polarized K3
surface.

Initially, since the maximal number of nodes on a quartic surface is achieved by
the 16 nodes of a Kummer surface, we merely assume that 1 ≤ n ≤ 16. Let Ln be the
free Z-module generated by symbols ℓ, e1, . . . , en, equipped with the pairing (ℓ, ℓ) = 4;
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(ei, ei) = −2; and all other pairings are zero. Then Ln is a lattice of rank n + 1 and
signature (1, n).

Now let Y/k be a quartic surface with n rational double points. A labeling of the
these double points – equivalently, a labeling of n exceptional curves in the minimal
resolution Ỹ → Y – induces a primitive embedding of lattices

Ln
α // Pic(Ỹ )

ℓ � // λ

ei
� // ϵi.

Moreover, λ is a quasi-polarization on Ỹ ; and if Y is smooth away from the n double
points, then α(Ln) contains the ample classes Nλ−

∑
ϵi for N ≫ 0.

In short, (Ỹ , α) is an element of RLn(k), where RLn is the moduli space of K3
surfaces (quasi-) polarized by the lattice Ln ([4, 27]). Let R4,≥n be the moduli space
of quartic K3 surfaces with at least n rational double points. Contracting the classes
represented by α(e1), . . . , α(en) defines a morphism

β : RLn
// R4,≥n,

which restricts to an isomorphism

R◦Ln

// R4,=n,

where the source is the moduli space of K3 surfaces with an ample lattice polarization
by Ln, and R4,=n is the space of quartic surfaces in P3 with exactly n rational double
points. By Lemma 17.1, R4,=n is fiberwise (over Z[1/2]) dense in R4,≥n, and thus
R◦Ln

is fiberwise dense in RLn .
It thus suffices to show that each fiber of RLn is geometrically irreducible; it is now

that we start assuming n ≤ 9. Then there is a unique primitive embedding of Ln into
the standard K3 lattice (e.g., [39, Thm. 14.1.12]). Consequently, over C, there exist a
Hermitian symmetric domain DLn of type IV, and an arithmetic group of automor-
phisms ΓLn of DLn , such that the complex period map yields an isomorphism [28,
Thm. 10.1]

RLn
(C)

τLn,C// ΓLn\DLn .

In particular, RLn,C is irreducible. The theory of integral canonical models of Shimura
varieties provides a canonical stack ShLn over Z[1/2] with ShLn

C = ΓLn\DLn [41], and
τC is the complex fiber of a morphism

RLn

τLn // ShLn

of stacks over Z[1/2] [4, Lem 6.4]. It is known that ShLn is fiberwise geometrically irre-
ducible [47, Cor. 4.1.11]. Because fibers of RLn and of ShLn have the same dimension,
it suffices to show that τLn

is an immersion.
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Let p be an odd prime, and choose N so that µ := Nλ −
∑
ϵi is ample and

d := 1
2 (µ, µ) is relatively prime to p. We have a morphism ϕ : RLn

→ R2d which,
on S-points, is given by (Ỹ → S, α) 7→ (Ỹ → S, α(Nℓ−

∑
ei)).

As in [4, §6], we have a commuting diagram of stacks over Z(p):

R◦Ln

ϕ

��

τLn // ShLn

��
R◦2d
� � τ2d // Sh⟨2d⟩.

Since the minimal resolution of a K3 surface with exactly n nodes admits a unique
Ln-polarization, ϕ is an immersion. Since τ2d is an immersion [46, Cor. 5.15], τLn is
an immersion, too.

Corollary 17.3. — Let k be an algebraically closed field with char(k) ̸= 2. Suppose
Y1 and Y2 are quartic surfaces with, respectively, exactly m and n < 10 nodes, with
m ≤ min(n, 9). Then there exist a twice-pointed curve (T, t1, t2) over k, and a relative
quartic surface Y → T , such that Yt1 ∼= Y1 and Yt2 ∼= Y2.

Proof. — By Lemma 17.1, the closure of R4,=m in R4,≥m contains R4,≥n. Now use
the fact (Proposition 17.2) that R4,≥m,k is irreducible.

Remark 17.4. — While we show above that, for n ≤ 9, the locus R4,≥n of degree-
4 polarized K3 surfaces with greater than or equal to n nodes is irreducible, and
therefore contains the Artin-Mumford example with n = 10 nodes (since one can
deform the nodes independently for n ≤ 10), the situation for the locus Hilb4

P3
k,≥n

of
quartic surfaces with greater than or equal to n nodes in the Hilbert scheme Hilb4

P3
k

of
quartic surfaces is different. For contrast, we recall the situation over C. It is known
that for n = 6, 7, 8, 9, the locus Hilb4

P3
C,≥n

is reducible (see [67, Rem. 1.2]), while
for n ≤ 7, there is a unique irreducible component of Hilb4

P3
C,≥n

dominating (P3
C)(n) by

the map sending an m-nodal quartic to its set of nodes, and this component contains
the Artin-Mumford examples [67, §2]. For quartics with exactly n = 8, 9 nodes, it is a
classical result that the nodes must be in special position in P3

C (there is no component
of Hilb4

P3
C,≥n

dominating (P3)n); we direct the reader to the MathSciNet review of [67]
for references.

17.2. Quartic double solids and the proof of Theorem 3

The previous section essentially says that quartic double solids are liftable to quar-
tic double solids in characteristic 0, and that every quartic double solid with at most
9 nodes (and no other singularities) degenerates to the Artin-Mumford example with
10 nodes (since the nodes deform independently). We use this to give a proof of
Theorem 3:
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Proof of Theorem 3. — In the case where char k = 0, this is [67, Thm. 1.9]. We now
proceed with the proof under the hypothesis that char k > 2.

To investigate conditions (1)–(4) of Theorem 2, we will first want to use that
X̃ lifts to characteristic 0. More precisely, let us fix notation, and suppose that Y is
the n-nodal quartic surface over k defining X̃. In other words, we have X̃ → X → P3

k,
and the second morphism is the double cover of projective space branched over Y . For
concreteness, suppose that Y is defined by q(x0, x1, x2, x3) = 0 for some homogeneous
quartic polynomial q(x0, x1, x2, x3), so that X is defined by q(x0, x1, x2, x3) + x2

4 = 0

in the weighted projective space P4
k(1, 1, 1, 1, 2). Now we may take the lift Y/S of Y

to characteristic 0 of Lemma 17.1, and we define X/S in P4
S(1, 1, 1, 1, 2) by taking the

double cover of P3
S branched along Y. We then define X̃/S by blowing up the locus

in Y of nodes in the fibers; i.e., the singular locus of the map Y → S. In other words,
X̃ lifts to characteristic 0 as the standard resolution of singularities of a quartic double
solid with exactly n nodes.

With this lift X̃/S of X̃ to characteristic 0, then using the fact that in character-
istic 0 the standard resolution of singularities of a quartic double solid with exactly
n nodes is rationally connected and has no 2-torsion in cohomology for n ≤ 9 [30],
we can conclude from Corollary 15.4 that X̃ satisfies conditions (1)–(4) of Theorem 2
with ℓ = 2 for n ≤ 9.

Thus we can focus on conditions (5) and (6). For this we will use a new deformation
of X, namely a deformation to the Artin-Mumford example. More precisely, with X

and Y as above, according to Corollary 17.3, we can find a second family of quartic
surfaces Y ′ → S′ over a k-curve S′, with points s′1, s′2 ∈ S′(k) such that Y ′s′1

∼= Y

and Y ′s′2 is isomorphic to the quartic surface of the Artin-Mumford example. We take
X ′/S′ to be the double cover of P3

S′ branched along Y ′. Then X ′s′1
∼= X, and X ′s′2 is

the Artin-Mumford quartic double solid. We denote by X̃ ′s′2 → X ′s′2 the standard
resolution of singularities of the Artin-Mumford quartic double solid; i.e., the Artin-
Mumford example. As TorsH4(X̃ ′s′2 ,Z2) ̸= 0 [10, Prop. 3, §4], we see that the Artin-

Mumford example X̃ ′s′2 does not admit a strict cohomological Z2-decomposition of the
diagonal (Corollary 7.2). Using Proposition 16.3 twice and Theorem 16.6 once, we can
conclude that X̃ = X̃ ′s′1 does not admit a a strict cohomological Z2-decomposition of
the diagonal.

Therefore, from Theorem 2, one of the conditions (5) or (6) must fail. Let us focus
on (6). Using that (3) and (3′) hold for X̃, it follows that dim Ab2

X̃/K
= dimH3(X̃K ,Qℓ).

By proper base change, we know that H3(X̃K ,Qℓ) ∼= H3(X̃η,Qℓ), and it is well-
known that dimH3(X̃η,Qℓ) = 10 − n (for n = 0, this is the standard computation
of the Betti numbers of a double cover, and for n ≥ 1 this is [11, 4.10.4]). Using
again the lift X̃/S of X̃ to characteristic 0, then assuming (5) holds, we can use
Proposition 14.3 to conclude that for n = 7, 8, 9, we have that [ΘX̃ ]g−1/(g − 1)! is
Z-algebraic, so that condition (6) holds. Therefore, for n = 7, 8, 9, we must have had
that condition (5) fails, since otherwise conditions (1)–(6) would hold and X̃ would
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admit a cohomological Z2-decomposition of the diagonal, which we know is not the
case.

Remark 17.5. — Here we recall that the standard desingularization X̃ of a nodal
quartic double solid is unirational. For the case of n = 0 nodes, we direct the reader to
[70, p. 10], where a unirational parameterization of X̃ is given; Welters works over C
but the argument holds for char(k) ̸= 2. For n ≥ 1, we have moreover that X̃ is
separably rationally connected, there is a degree 2 dominant rational map P3

k 99K X̃,
and the class 2∆X̃ ∈ CH3(X̃ ×k X̃) admits a strict decomposition. This can be found
in [11, 4.5.4], [13, Exa. 3, p. 25]. For convenience, we sketch the argument here. The
key point is to show is that there is a degree-2 dominant rational map to X̃ from a
rational threefold. Projecting from a chosen node exhibits the blow-up X ′ of X at that
node as a singular fibration in quadrics. The exceptional divisor Q ⊆ X ′ is a quadric
surface, which, under the structure map X ′ → P2

k, gives a double cover of P2
k. The base

change of X ′ to Q under this double cover admits a section, and therefore is rational
(see e.g., [11, Prop. 4.1]), completing the proof. If P3

k 99K X̃ is the associated degree-2
dominant rational map from projective space, then since char k ̸= 2, we must have
that this is a separable rational map, so that X̃ is separably rationally connected [42,
Exa. IV.3.2.6.2]. Finally, the degree-2 dominant rational map P3

k 99K X̃ also implies
that 2∆X admits a strict decomposition (Remark 2.9).

Remark 17.6. — In Theorem 3 we showed that the standard desingularization
of a very general quartic double solid with exactly n ≤ 9 nodes does not admit
a cohomological Z2-decomposition of the diagonal. The previous remark implies
that for 1 ≤ n ≤ 9, the diagonal admits a cohomological Zℓ-decomposition for all
ℓ ̸= 2, char(k), since 2 is invertible in Zℓ. This shows in particular that while condi-
tions (1)–(6) in Theorem 2 are sufficient to imply the existence of a cohomological
Zℓ-decomposition, they are not necessary. See Theorem 15.5 for necessary and
sufficient conditions for a cohomological Zℓ-decomposition.
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APPENDIX A

SOME FACTS ABOUT ABELIAN VARIETIES

A.1. The Weil pairing

Let A/K be an Abelian variety over a field, with dual Abelian variety Â. For
any integer N , the group scheme Â[N ] is canonically isomorphic to the Cartier dual
A[N ]D := Hom(A[N ],GM ) of A[N ], and thus there is a canonical Weil pairing

(A.1) A[N ]× Â[N ] // µµµN .

Let l be any prime. The l-adic Tate module of A is TlA := lim←−A[ln](K). If
l = ℓ ̸= char(K), then TℓA is abstractly isomorphic to Z2 dimA

ℓ ; but if p = char(K) > 0,
then TpA is free over Zp of rank at most dimA. For any l, we have a canonical iso-
morphism

(A.2) Tl(Â) = Tl(A)∨(1)

(the notation is recalled in our Conventions). To see this in the case where
l = p = char(K) = p > 0, use (A.1) to obtain that Â[p∞] is isomorphic to
the Serre dual (A[p∞])D = Hom(A[p∞],µµµp∞); then use the fact that TpA =

Tp(A[p∞]), and that for any p-divisible group G there are canonical isomorphisms
Tp(G

D) ∼= HomZp(Tp(G)(−1),Zp) = Tp(G)∨(1).
If ℓ ̸= char(K), then the intersection pairing, Poincaré duality and the Weil pairing

yield canonical isomorphisms

(A.3) H2g−1(A,Zℓ(g))
∪
= H1(A,Zℓ)∨

PD
= TℓA

Weil
= (TℓÂ)∨(1)

PD
= H1(Â,Zℓ(1))

and

H2g−1(A,Qℓ(g))
∪
= H1(A,Qℓ)∨

PD
= VℓA

Weil
= (VℓÂ)∨(1)

PD
= H1(Â,Qℓ(1)).

If K is perfect of characteristic p > 0, there are canonical isomorphisms of F -crys-
tals

H2g−1
cris (A/W)(g) = H1

cris(A/W)∨ = H1(Â/W)(1);

taking invariants under F yields (A.3) at p.
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A.2. Line bundles and symmetric isogenies

We review the link between symmetric isogenies A → Â and line bundles on AK .
We also prove Lemma A.1, which we will use later.

Let A be an Abelian variety over a field K. Recall that, to an isomorphism class of
a line bundle L on A, one associates the (symmetric, i.e., self-dual) homomorphism
φL : A → Â, which on points a ∈ A(K) is given by φL(a) = t∗aL ⊗ L−1. When
K is finite or algebraically closed, the assignment L 7→ φL surjects onto the set of
symmetric isogenies (e.g., [24, Thm. 2.6] if K is finite and [50, §20] if K = K). We
say that L is nondegenerate if φL is an isogeny. For nondegenerate line bundles L,L′

on A, we have φL = φL′ if and only if L and L′ are algebraically equivalent, i.e., if
and only if L and L′ differ by translation.

A symmetric isogeny Λ : A → Â is principal if it is an isomorphism. If L is a line
bundle on AK such that ΛK = φL, we have the equalities Lg/g! = χ(L) = ±

√
degφL,

where g = dimA. In other words, Λ is principal if and only if χ(L) = ±1. We observe
that if Ω/K is any algebraically closed field, then ΛΩ : AΩ → ÂΩ is principal if and
only if Λ is.

Recall that a symmetric isogeny Λ : A→ Â is a polarization if ΛK : AK → ÂK is
induced by an ample line bundle; i.e., for any line bundle L on AK such that ΛK = φL,
we have that L is ample. Recall that a nondegenerate line bundle L is ample if and only
if h0(A,L) > 0 (e.g., [50, §17]), and so Λ is a polarization (resp. principal polarization)
if and only if h0(A,L) > 0 (resp. h0(A,L) = 1). We observe that if Ω/K is any
algebraically closed field, then ΛΩ : AΩ → ÂΩ is a (principal) polarization if and only
if Λ is. Indeed, clearly if Λ is a polarization, then ΛΩ is as well. Conversely, suppose
that ΛΩ is a polarization, and let L be a line bundle on AK such that ΛK = φL.
As L is by definition non-degenerate, and a non-degenerate line bundle on an Abelian
variety is ample if and only if it is effective, it suffices to show that L is effective. For
this, note that ΛΩ = (φL)Ω = φLΩ . Since ΛΩ is a polarization, it follows that LΩ is
ample, and therefore effective. Using cohomology and base-change (over the affine
base fields), one concludes that L is effective.

A.3. First Chern class of a symmetric isogeny

Given a symmetric isogeny Λ : A → Â, we denote by [Λ] ∈ H2(AK ,Zℓ(1)) the
first Chern class of the unique line bundle (up to translation) on AK inducing the
base change of Λ to K. In other words, if L is any line bundle on AK such that
ΛK = φL : AK → ÂK , then we set [Λ] := c1(L). One can realize the first Chern
class of Λ more directly in the following way. The symmetric isogeny Λ induces by
Tensor-Hom adjunction a morphism TℓΛ : TℓA ⊗ TℓÂ

∨ → Zℓ. The Weil pairing
e : TℓA× TℓÂ→ Zℓ(1) then provides an isomorphism e : TℓÂ

∨ ∼→ TℓA(−1), which all
together gives the pairing

EΛ : TℓA× TℓA→ Zℓ(1), (x, y) 7→ e(x, TℓΛ(y)).
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It is classical that the pairing EΛ is alternating and that, seen as an element
of (

∧2
TℓA)∨(1) = H2(AK ,Zℓ(1)), it coincides with c1(L) for any line bundle L such

that Λ = φL; see e.g., [29, (11.23)].
In case a symmetric isogeny Λ induces an isomorphism TℓΛ : TℓA

≃−→ TℓÂ, the
inverse to TℓΛ has an explicit description in terms of the first Chern class [Λ]:

Lemma A.1. — Let Λ : A → Â be a symmetric isogeny of a g-dimensional Abelian
variety over a field K. If TℓΛ : TℓA

≃−→ TℓÂ is an isomorphism for some prime ℓ,
then the inverse is given by the map

(TℓΛ)−1 =
[Λ]g−1

(g − 1)!
∪ − : H1(AK ,Zℓ(1))→ H2g−1(AK ,Zℓ(g)),

where we have identified TℓA with H2g−1(AK ,Zℓ(g)) and TℓÂ with H1(AK ,Zℓ(1)) as
laid out in §A.1.

Proof. — Identifying [Λ] with the pairing EΛ above, one concludes by using the fact
that the cohomology algebra H•(AK ,Zℓ) identifies, via the intersection pairing, with
the alternating algebra on H1(AK ,Zℓ).

A.4. Some Hodge theoretic conventions

Suppose that X is a complex projective manifold of dimension dX , with ample
divisor H. Setting ω = c1(H) ∈ H2(X,Z), and using ω also for the associated 2-form
inH2

dR(X,C) under the natural mapH2(X,Z)→ H2(X,C) = H2
dR(X,C), the Hodge-

Riemann bilinear form on Hp,q(X) is the Hermitian form given by

h(α, β) = ip−q(−1)
k(k−1)

2

∫
X

α ∧ β ∧ ωn−k,

where k = p+ q.
Fixing an integer n such that 1 ≤ 2n − 1 ≤ dX , assume that NnH2n−1(X,Q) =

H2n−1(X,Q), which implies that

H2n−1
dR (X,C) = Hn,n−1(X)⊕Hn−1,n(X).

Via the composition

H2n−1(X,Z) // H2n−1
dR (X,C) // // Hn−1,n(X)

α � // αn,n−1 + αn−1,n � // αn−1,n

we obtain an inclusion H2n+1(X,Z)τ ⊆ Hn,n+1(X), where in the above we have
αn,n−1 = αn−1,n. The intermediate Jacobian is the complex torus

J2n−1(X) = Hn−1,n(X)/H2n−1(X,Z)τ .

The Hodge-Riemann bilinear form on Hn−1,n(X) is in this case

h(α, β) = (i)(n−1)−n(−1)(2n−1)(2n−2)/2

∫
X

α ∧ β ∧ ωdX−2n+1 = i(−1)n
∫
X

α ∧ β ∧ ωdX−2n+1.
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For any α, β ∈ H2n−1(X,Z), after viewing them as classes in H2n−1
dR (X,C) under the

natural map, we have that

α ∪ β ∪ [H]dX−2n+1 =

∫
X

α ∧ β ∧ ωdX−2n+1

=

∫
X

(αn−1,n + αn−1,n) ∧ (βn−1,n + βn−1,n) ∧ ωdX−2n+1

= 2Re

∫
X

αn−1,n ∧ βn−1,n ∧ ωdX−2n+1

= 2Re(−i)(−1)nh(αn−1,n, βn−1,n)

= 2(−1)n
(
Imh(αn−1,n, βn−1,n)

)
.

In other words, for the hermitian form 2h on Hn−1,n(X), the associated alternating
form

E = − Im 2h : Hn−1,n(X)×Hn−1,n(X)→ R
when restricted to the image H2n−1(X,Z)τ ⊆ Hn−1,n(X) is given by (−1)n−1 times
the cup product in cohomology (via the morphism H2n−1(X,Z)→ Hn−1,n(X)). We
note the consequence that E evaluated on H2n−1(X,Z)τ ⊆ Hn−1,n(X) takes integral
values. Summarizing, we have the commutative diagram

(A.4) Hn−1,n(X)×Hn−1,n(X)
E=− Im 2h // R

H2n−1(X,Z)τ ×H2n−1(X,Z)τ
E=− Im 2h //

?�

OO

Z
?�

OO

H2n−1(X,Z)×H2n−1(X,Z)
(−1)n−1α∪β∪ωdX−2n+1

//

OO

Z.

As in [16, §2.2], since the hermitian form 2h has associated alternating form E

taking integral values on the integral lattice, there is an induced line bundle ΘX

on J2n−1(X), such that

c1(ΘX) = E = (−1)n−1

∫
X

(−) ∧ (−) ∧ ωdX−2n−1

under the identification H2(J2n−1(X),Z) =
∧2

H1(J2n−1(X),Z) =
∧2

H2n−1(X,Z)∨τ .
Note that in [16, §2.2], they associate to the hermitian form 2h the alternating
form Im 2h, and therefore their alternating form is the negative of c1(ΘX).

We now translate this discussion using Tensor-Hom adjunction. First, we see
that 2h induces an isomorphism

Hn−1,n(X)
α 7→2h(α,−)

∼
// Hn−1,n(X)

∨
.

Now, given a complex vector space V there is an identification

(A.5) HomC(V ,C) = HomR(V,R)

ℓ 7→ − Im ℓ.
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The inverse map is given by ϕ 7→ ϕ(i(−))− iϕ(−). Note that in [16, §2.2] the opposite
identification is made by the assignment ℓ 7→ Im ℓ. Using the identification (A.5)
above, we have from (A.4) a commutative diagram

Hn−1,n(X)
α 7→2h(α,−)

∼
// Hn−1,n(X)

∨

Hn−1,n(X) ∼
α 7→− Im 2h(α,−)// HomR(Hn−1,n(X),R).

As a consequence of the discussion above, the Hodge-Rieman bilinear form induces
a commutative diagram

Hn−1,n(X)
α7→2h(α,−)

∼
// Hn−1,n(X)

∨

H2n−1(X,Z)τ //
?�

OO

(H2n−1(X,Z)τ )̂ ,
?�

OO

where by definition

(H2n−1(X,Z)τ )̂ = {φ ∈ Hn−1,n(X)
∨

: φ(α) ∈ Z for all α ∈ H2n−1(X,Z)τ}
(A.6)

= {ϕ ∈ HomR(Hn−1,n(X),R) : ϕ(α) ∈ Z for all α ∈ H2n−1(X,Z)τ}.(A.7)

This by definition induces an isogeny of complex tori

ΘX : J2n−1(X) −→ Ĵ2n−1(X).

As in [16, §2.2], one has that ΘX = φΘX
; note that despite our difference in conven-

tions from [16, §2.2] regarding alternating forms, the map ΘX is determined by its
induced morphism on complex vector spaces, which is given by the hermitian form 2h,
which is the same in our conventions and those of [16, §2.2].

Taking the induced map in homology for ΘX , and combining with the discussion
above, we obtain a commutative diagram

H1(J
2n−1(X),Z)

=
��

ΘX // H1(Ĵ
2n−1(X),Z)

H2n−1(X,Z)τ
∪(−1)n−1[H]dX−2n+1

// H2dX−2n+1(X,Z)τ .

=

OO

The left vertical arrow is the canonical identification coming from the construction
of the intermediate Jacobian, while the right vertical arrow is the dual identifica-
tion, where we identify H1(Ĵ

2n−1(X),Z) = H1(J
2n−1(X),Z)∨ via the Weil pair-

ing, and we identify H2n−1(X,Z)∨τ = H2dX−2n+1(X,Z)τ via the cup product. Note
that the Weil pairing is the composition of the identifications H1(Ĵ

2n−1(X),Z) =

(H2n−1(X,Z)τ )̂ = H1(J
2n−1(X),Z)∨, where the first is the canonical identification

from the definition, and the second comes from the evaluation pairing from the Defi-
nition (A.7). This second identification uses the convention (A.5); using the opposite
convention, i.e., taking the imaginary part of a Hermitian form, rather than its nega-
tive, may lead one naturally in the analysis above to include an extra factor of (−1)
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in the bottom row of the diagram, in which case one would have to use the negative
of the Weil pairing to make the diagram commute.

Finally, we note that taking Tate modules, this gives a commutative diagram

TℓJ
2n−1(X)

=
��

TℓΘX

c1(ΘX)
// TℓĴ2n−1(X)

H2n−1(X,Zℓ)τ
∪(−1)n−1[H]dX−2n+1

// H2dX−2n+1(X,Zℓ)τ ,

=

OO

where in the top row we have identified TℓΘX with c1(ΘX) as elements of
H2(J2n−1(X),Zℓ) as in §A.3.

A.4.1. Polarizations. — If we assume that Nm
H H

2m−1(X,Q) = 0 for all 1 ≤ m < n,
i.e., if Hm,m−1(X) = 0 for all 1 ≤ m < n, then Hn−1,n(X) is primitive, and the
Hodge-Riemann bilinear form is positive definite on Hn−1,n(X). In this case, ΘX is
ample, and gives a polarization on J2n−1(X).

Remark A.2 (Weight-1 Hodge structure). — The category of polarized Abelian va-
rieties is equivalent to the category of polarized weight-1 Z-Hodge structures. In
the case where Nm

H H
2m−1(X,Q) = 0 for all 1 ≤ m < n, the polarized Abelian

variety (J2n−1(X),ΘX) corresponds to the polarized weight-1 Z-Hodge structure
(H2n−1(X,Z)τ , Q), where Q is the alternating form

Q : H2n−1(X,Z)τ ×H2n−1(X,Z)τ −→ Z

Q(α, β) = (−1)n−1

∫
X

α ∧ β ∧ ωdX−2n+1.

To be clear, the Hodge decomposition is given by (H2n−1(X,Z)τ ⊗Z C)1,0 =

Hn,n−1(X). Note that under these identifications, the polarizations satisfy
Q = E = c1(ΘX). The associated Hermitian forms also agree, as i0−1Q(α, β) =

i−1Q(α, β) = i(−1)n
∫
X
α ∧ β ∧ ωdX−2n+1 = h(α, β).
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We consider the connections among algebraic cycles,
Abelian varieties, and stable rationality of smooth projective va-
rieties in positive characteristic. Voisin constructed two new ob-
structions to stable rationality for rationally connected complex
smooth projective threefolds by giving necessary and sufficient
conditions for the existence of a cohomological decomposition of
the diagonal. We extend these obstructions to positive charac-
teristic via ℓ-adic cohomological decomposition of the diagonal,
by transferring results in Hodge theory regarding intermediate
Jacobians (and their autoduality) and Abel-Jacobi maps to the
setting of algebraic representatives.

Nous considérons les liens entre les cycles algébriques, les
variétés abéliennes et la rationalité stable des variétés projectives
lisses en caractéristique positive. Voisin a construit deux nou-
velles obstructions à la rationalité stable pour les solides projec-
tifs lisses complexes rationnellement connexes en donnant des
conditions nécessaires et suffisantes pour l’existence d’une dé-
composition cohomologique de la diagonale. Nous étendons ces
obstructions à la caractéristique positive, via la décomposition
cohomologique ℓ-adique de la diagonale, en transférant des ré-
sultats en théorie de Hodge concernant les jacobiennes intermé-
diaires (et leur autodualité) et les applications d’Abel-Jacobi au
cadre des représentants algébriques.
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