Meémoires

de la SOCIETE MATHEMATIQUE DE FRANCE

Numéro 161 DISCRETE GEOMETRY
Nouvelle s€rie A ND ISOTROPIC SURFACES

Francois JAUBERTEAU,
Yann ROLLIN & Samuel TAPIE

2 01 9

SOCIETE MATHEMATIQUE DE FRANCE




Comité de rédaction

Christine BACHOC Laurent MANIVEL
Yann BUGEAUD Julien MARCHE
Jean-Francgois DAT Kieran O’GRADY
Clotilde FERMANIAN Emmanuel RUSS

Pascal HUBERT Christophe SABOT

Marc HERZLICH (dir.)

Diffusion
Maison de la SMF AMS
Case 916 - Luminy P.O. Box 6248
13288 Marseille Cedex 9 Providence RI 02940
France USA
commandes@smf .emath.fr WWW.ams.org
Tarifs

Vente au numéro : 35 € ($52)
Abonnement électronique : 113 € ($170)
Abonnement avec supplément papier : 167 €, hors Europe : 197 € ($296)

Des conditions spéciales sont accordées aux membres de la SMF.

Secrétariat

Mémoires de la SMF
Société Mathématique de France
Institut Henri Poincaré, 11, rue Pierre et Marie Curie
75231 Paris Cedex 05, France

Tél : (33) 01 44 27 6799 e Fax : (33) 01 40 46 90 96
memoires@smf.emath.fr e http://smf.emath.fr/

© Société Mathématique de France 2019

Tous droits réservés (article L 122—/ du Code de la propriété intellectuelle). Toute représentation ou
reproduction intégrale ou partielle faite sans le consentement de l’éditeur est illicite. Cette représen-
tation ou reproduction par quelque procédé que ce soit constituerait une contrefagon sanctionnée par

les articles L 335-2 et suivants du CPI.
ISSN papier 0249-633-X; électronique : 2275-3230
ISBN 978-2-85629-905-0

doi:10.24033/msmf.469

Directeur de la publication : Stéphane SEURET



http://smf.emath.fr/

MEMOIRES DE LA SMF 161

DISCRETE GEOMETRY
AND ISOTROPIC SURFACES

Francois Jauberteau
Yann Rollin
Samuel Tapie

Société Mathématique de France 2019



F. Jauberteau
Frangois Jauberteau, Laboratoire Jean Leray, Université de Nantes.

E-mail : francois. jauberteau@univ-nantes.fr

Y. Rollin
Yann Rollin, Laboratoire Jean Leray, Université de Nantes.

E-mail : yann.rollin@univ-nantes.fr

S. Tapie
Samuel Tapie, Laboratoire Jean Leray, Université de Nantes.

E-mail : samuel .tapie@univ-nantes.fr

Texte regu le 12 mars 2018, révisé le 11 décembre 2018, accepté le 24 janvier 2019.

2000 Mathematics Subject Classification. — 5299, 53D12; 39A14, 39A70, 47B39,
53D50, 53D20, 53D30.

Key words and phrases. — Discrete geometry, piecewise linear submanifolds, La-
grangian tori, isotropic tori, discrete Laplacian, discrete moment map.

Mots clefs. — Géométrie discréte, sous-variétés linéaires par morceaux, tores lagran-
giens, tores isotropes, laplacien discret, application moment discréte.




DISCRETE GEOMETRY
AND ISOTROPIC SURFACES

Francois Jauberteau, Yann Rollin, Samuel Tapie

Abstract. — We consider smooth isotropic immersions from the 2-dimensional torus
into R??, for n > 2. When n = 2 the image of such map is an immersed Lagrangian
torus of R4. We prove that such isotropic immersions can be approximated by arbi-
trarily C°-close piecewise linear isotropic maps. If n > 3 the piecewise linear isotropic
maps can be chosen so that they are piecewise linear isotropic immersions as well.

The proofs are obtained using analogies with an infinite dimensional moment map
geometry due to Donaldson. As a byproduct of these considerations, we introduce a
numerical flow in finite dimension, whose limits provide, from an experimental per-
spective, many examples of piecewise linear Lagrangian tori in R*. The DMMF pro-
gram, which is freely available, is based on the Euler method and shows the evolution
equation of discrete surfaces in real time, as a movie.

Résumé (Géométrie discrete et surfaces isotropes). — Nous considérons des immersions
lisses et isotropes du tore de dimension 2 vers R?", pour n > 2. Quand n = 2 'image
d’une telle application est un tore lagrangien immergé de R%. Nous démontrons que de
telles immersions isotropes peuvent étre approximées au sens GO, par des applications
linéaires par morceaux et isotropes arbitrairement proches. Si n > 3, il est possible
des choisir des applications linéaires par morceaux qui sont de plus des immersions.

Les démonstrations reposent sur des analogies avec une géométrie et une applica-
tion moment en dimension infinie introduites par Donaldson. Nous en déduisons un
flot en dimension finie, dont les limites, du point de vue expérimental, produisent de
nombreux exemples de tores lagrangiens linéraires par morceaux de R*. Le programme
libre DMMF, basé sur la méthode d’Euler, montre 1’équation d’évolution sous forme
de film.
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CHAPTER 1

INTRODUCTION

1.1. Original motivations and background

Lagrangian submanifolds are natural objects, arising in the context of Hamiltonian
mechanics and dynamical systems. Their prominent role in symplectic topology and
geometry should not come as a surprise. In spite of tremendous efforts, the classifi-
cation of Lagrangian submanifolds, up to Hamiltonian isotopy, is generally an open
problem: for instance, Lagrangian tori of the Euclidean symplectic space R* are not
classified up to Hamiltionian isotopy. Lagrangian submanifolds are also key objects of
various gauge theories. For example, the Lagrangian Floer theory is defined by count-
ing pseudoholomorphic disks with boundary contained in some prescribed Lagrangian
submanifolds. Many examples of smooth Lagrangian submanifolds are known. They
are easy to construct and to deform. In a nutshell, Lagrangian submanifolds are typ-
ical, rather flexible objects, from symplectic topology.

An elementary construction of Lagrangian submanifold is provided by considering
the 0-section of the cotangent bundle of a smooth manifold 7% L, endowed with its
natural symplectic structure w = d\, where X is the Liouville form. More generally,
it is well known that any section of T*L given by a closed 1-form is a Lagrangian
submanifold. Furthermore, such Lagrangian submanifolds are Hamiltonian isotopic
to the 0-section if, and only if, the corresponding 1-form is exact. These examples
provide a large class of Lagrangian submanifolds which admit as many Hamiltonian
deformations as smooth function on L modulo constants.

By the Lagrangian neighborhood theorem, every Lagrangian submanifold L of a
symplectic manifold admits a neighborhood symplectomorphic to a neighborhood of
the 0-section of T*L. It follows that the local Hamiltonian deformations discussed
above (in the case of T*L) also provide deformations for Lagrangian submanifolds of
any symplectic manifold.

The geometric notion of stationary Lagrangians submanifolds was introduced by
Oh [8, 9] in order to seek canonical representatives, in a given isotopy class of La-
grangian submanifolds. Stationary Lagrangian submanifolds can be though of as
analogs of minimal submanifolds in the framework of symplectic geometry. Station-
ary Lagrangians are expected to be canonical in some sense, and Oh conjectured for
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2 CHAPTER 1. INTRODUCTION

instance that Clifford tori of CP? should minimize the volume in their Hamiltonian
isotopy class.

As in the case of minimal surfaces, one can define various modified versions of the
mean curvature flow, which are expected to converge toward stationary Lagrangians
submanifolds in a given isotopy class. In an attempt to implement numerical versions
of these flows [5], we ended up facing theoretical problems of a discrete geometric na-
ture. Indeed, from a numerical point of view, surfaces are usually understood as some
type of mesh and their mathematical counterpart is discrete geometry and sometimes
piecewise linear geometry. Two obstacles arose in order to provide a sound numerical
simulation of geometric flows for Lagrangian submanifolds, namely:

1. To the best of our knowledge, discrete Lagrangian surfaces of R* and more
generally discrete isotropic surfaces of R2™ are poorly understood, in fact hardly
studied. We had no available examples of discrete Lagrangian tori in R* in our
toolbox, save some discrete analogs of product or Chekanov tori (cf. Section 3.5).
Furthermore, we had no deformation theory that we could rely upon contrarily
to the smooth case. Implementing a geometric evolution equation for discrete
Lagrangian surfaces, with so few examples to start the flow was not an enticing
project.

2. Asfar as a program is based on a numerical implementation, using floating point
numbers, it is not natural to check if a symplectic form vanishes exactly along a
plane. It only makes sense to test if the symplectic density is rather small, which
means that we have an approximate solution of our problem. From an experi-
mental point of view, we dread our numerical flow would exhibit some spurious
drift of the symplectic density. We feared such instabilities may jeopardize our
numerical simulations for flowing Lagrangian submanifolds.

These issues led us to consider an auxiliary flow. Ideally, the auxiliary flow should
attract any discrete surface toward Lagrangian discrete surfaces. The utility of the
auxiliary flow would be 2-fold: its limits would provide examples of Lagrangian discrete
surfaces for our experiments. It may also be used to prevent instabilities of evolution
equation along the moduli space of discrete Lagrangian surfaces.

These questions are part of a larger ongoing project. They have not been fully
investigated yet but stirred many questions of a discrete differential geometric nature,
in the context of symplectic geometry. This paper delivers a few answers to some of
the simplest questions arising, as a spin-off to our initial motivations.

1.2. Statement of results

We consider smooth maps £ : ¥ — R?", where ¥ is a surface and n > 2. The
Euclidean space R?" is endowed with its standard symplectic form w. A map £ is said
to be isotropic if £*w = 0. Lagrangian tori of R* are the submanifolds obtained as the
image of ¥ by ¢, in the particular case where 2n = 4, ¥ is diffeomorphic to a torus
and / is an isotropic embedding.
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1.2. STATEMENT OF RESULTS 3

In this paper, we construct approximations of smooth isotropic immersions of the
torus in R?" by piecewise linear isotropic maps. The idea is to consider a discretization
of the torus by a square grid and approximate the smooth map by a quadrangular
mesh. This mesh is almost isotropic, in a suitable sense. A perturbative argument
shows that there exists a nearby isotropic quadrangular mesh, which is used to build
a piecewise linear map. We provide a more precise statement of the above claims in
the rest of the introduction.

1.2.1. Piecewise linear isotropic maps. — We recall some usual definitions before stat-
ing one of our main results. A triangulation of R? is a locally finite simplicial complex
that covers R? entirely. In this paper, points, line segments, triangles of triangula-
tions are understood as geometrical Euclidean objects of the plane. Similarly, we
shall consider triangulations of quotients of R? by a lattice I', obtained by quotient
of T-invariant triangulations of R2.

A piecewise linear map f : R?> — R™ is a continuous map such that, for some
triangulation of R?, the restriction of f to any triangle is an affine map to R™.

We consider smooth isotropic immersions £ : ¥ — R?", where ¥ is diffeomorphic to
a 2-dimensional torus and n > 2. The Euclidean metric g of R?” induces a conformal
structure on Y. The uniformization theorem implies that the conformal structure of 3
actually comes from a quotient of R2?, with its canonical conformal structure, by a
lattice. Thus, we have a conformal covering map

p:R? %,
with group of deck transformations I, a lattice of R?.

A triangulation (resp. quadrangulation) of ¥ is called an Fuclidean triangulation
(resp. quadrangulation) of ¥ if the boundary of every face lifts to an Euclidean triangle
(resp.quadrilateral) of R? via p.

Similarly, a function f : 3 — R™ is a piecewise linear map if it lifts to a piecewise
linear map R? — R™ via p. Given a piecewise linear map i:x - R?", the pull-back
of the symplectic form w of R?" makes sense on each triangle of the triangulation
subordinate to /. We say that lis a isotropic piecewise linear map if the pull back
of w vanishes along each face of the triangulation. A piecewise linear map which is
locally injective is called a piecewise linear immersion.

The main result of this paper can be stated as follows:

THEOREM A. — Let £ : ¥ — R2" be a smooth isotropic immersion, where ¥ is a
surface diffeomorphic to a compact torus and n = 2. Then, for every ¢ > 0, there
exists a piecewise linear isotropic map £ : & — R2™ such that for every x € X, we have

l¢(z) — ix)] <.

Furthermore, if n = 3, we may assume that £ is an immersion. If n = 2, we may
assume that £ is an immersion away from a finite union of embedded circles in X.
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4 CHAPTER 1. INTRODUCTION

Loosely stated, Theorem A says that every isotropic immersion ¢ of a torus into
R?™ can be approximated by a piece linear map arbitrarily C%-close to £. If n > 3 the
last statement of the theorem provides the following corollary:

COROLLARY B. — Let n be an integer such that n = 3. Let 3 be a smoothly immersed
surface in R?™, which is isotropic and diffeomorphic to a compact torus. Then, there
exist piecewise linear immersed surfaces in R2", which are isotropic, homeomorphic
to a compact torus and arbitrarily close to ¥ with respect to the Hausdorff distance.

REMARK 1.2.2. — Our technique does not allow to get much better results than a
rather rough C%-closedness between ¢ and its approximation /. The best evidence
for this weakness is the existence of a certain shear action on the space of isotropic
quadrangular meshes (cf. §4.2). It would be most interesting to understand whether
these limitations are inherent to the techniques we employed here, or if there are
geometric obstructions to get better estimates.

1.2.3. Isotropic quadrangular meshes. — The main tool to prove Theorem A relies on
quadrangulations of ¥ and quadrangular meshes. Quadrangulations of R? are partic-
ular CW-complex decompositions of R?, where edges are line segments of R? and the
boundary of every face is an Euclidean quadrilateral. Nevertheless, the precise general
definition of quadrangulations is unimportant for our purpose. Indeed, we shall only
work with particular standard quadrangulations ¢, (R?) of R2, pictured as a regular
grid with step size N~! tiled by Euclidean squares.

Particular Euclidean quadrangulations of ), (X), are defined at §3.3. They are
obtained as quotients of ¢, (R?) by certain lattices I'y of R?. The associated moduli
space of quadrangular meshes is by definition

MN = CO(QN(Z» RR*".

A mesh 7 € .#yx is an object that associates R?"-coordinates to every vertex of the
quadrangulation @), (X).

We would like to say that any quadrilateral of R?" contained in an isotropic plane
is an isotropic quadrilateral. However, quadrilaterals are generally not contained in a
2-dimensional plane. The above attempt of definition can be extended via the Stokes
theorem for every non flat quadrilateral: a quadrilateral of R?" is called an isotropic
quadrilateral, if the integral of the Liouville form A along the quadrilateral — that is
four oriented line segments — vanishes (cf. §4.1).

REMARK 1.2.4. — In particular, for any compact embedded oriented surface S of R?"
with boundary given by an isotropic quadrilateral, we have SS w = 0 by Stokes theo-
rem.

By extension, we say that a mesh 7 € .#y is isotropic if the quadrilateral in R2"
associated to each face of ¢ (X) via 7 is isotropic. The main strategy for proving
Theorem A involves the following approximation result:
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1.2. STATEMENT OF RESULTS 5

THEOREM C. — Given an isotropic immersion £ : ¥ — R2", there exists a family
of isotropic quadrangular meshes py € M defined for every N sufficiently large,
with the following property: for every € > 0, there exists Ny > 0 such that for every
N = Ny and every vertex v of ), (%), we have

lon (v) = £(v)| <e.

An isotropic quadrilateral of R?" is always the base of an isotropic pyramid in R?"
(cf. §7.1), which is easily found as the solution of a linear system. This remark allows
to pass from an isotropic quadrangular mesh to an isotropic triangular mesh. Together
with Theorem C this provides essentially the proof of Theorem A.

1.2.5. Flow for quadrangular meshes. — Our approach for proving Theorem C has
been inspired to a large extent by the beautiful moment map geometry introduced
by Donaldson [4]. We shall provide a careful presentation of this infinite dimensional
geometry at §2, and merely state a few facts in this introduction: the moduli space
of maps
M= {f: 2 - R™},
from a surface ¥ endowed with a volume form o into R2" admits a natural formal
Kaéhler structure, with a formal Hamiltonian action of Ham(X, ¢). The moment map
of the action is given by .
uip) =2
o
Zeroes of the moment map are precisely isotropic maps. It is tempting to make an
analogy with the Kempf-Ness theorem, which holds in the finite dimensional setting.
We may conjecture that a map f admits an isotropic representative in its complezified
orbit provided some type of algebro-geometric hypothesis of stability. Furthermore,
one can also define a moment map flow, which is naturally defined in the context of
a Kéhler manifold endowed with a Hamiltonian group action. Such flow is essentially
the downward gradient of the function |u|? on the moduli space, which is expected, in
favorable circumstances, to converge toward a zero of the moment map in a prescribed
orbit.

REMARK 1.2.6. — We shall not state any significant results aside the description of
this geometric framework. For instance, it is an open question whether the moment
map flow exists for short time in this context, which is part of a broader ongoing
program.

In an attempt to define a finite dimensional analog of this infinite dimensional
moment map picture, we define a flow analogous to the moment map flow on the
moduli space of meshes .#, called the discrete moment map flow. This flow is now
just an ODE and its behavior can readily be explored from a numerical perspective,
using the Euler method. We provide a computer program called DMMF, available on
the homepage

http://www.math.sciences.univ-nantes.fr/~rollin/index.php?page=£flow,
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6 CHAPTER 1. INTRODUCTION

which is a numerical simulation of the discrete moment map flow. From an experi-
mental point of view, the flow seems to be converging quickly toward isotropic quad-
rangular meshes, for any initial quadrangular mesh (cf. §8).

1.3. Open questions

Theorem A is a fundamental tool for the discrete geometry of isotropic tori, since
it provides a vast class of examples of piecewise linear objects by approximation of
the smooth ones. Here is a list a questions that arise immediately in this new territory
of discrete symplectic geometry:

1. Is there a converse to Theorem A or Corollary B? Given a piecewise linear
isotropic surface in R?”, is it possible to find a nearby smooth isotropic surface?

2. More generally, to what extent does the moduli space of piecewise linear La-
grangian submanifolds retain the properties of the moduli space of smooth
Lagrangian submanifolds? In spite of groundbreaking progress in symplectic
topology, the classification of Lagrangian submanifolds up to Hamiltonian iso-
topy remains open. It is known that there exists several types of Lagrangian tori
in R*, which are not Hamiltonian isotopic: namely, product tori and Chekanov
tori [1]. On the other hand, Luttinger found infinitely many obstructions in [7]
to the existence of certain type of knotted Lagrangian tori in R%. In particular
spin knots provide knotted tori in R* which cannot by isotopic to Lagrangian
tori according to Luttinger’s theorem. This thread of ideas led to the conjecture
that product and Checkanov tori are the only classes of Lagrangian tori in R*,
up to Hamiltonian isotopy. Although the result was claimed before, the conjec-
ture is still open for the time being [2]. However it was proved by Dimitroglou
Rizell, Goodman and Ivrii that all embedded Lagrangian tori of R* are isotopic
trough Lagrangian isotopies [3]. Perhaps an interesting approach to tackle such
conjecture, and more generally any questions involving some type of h-principle,
would be to recast the question in the finite dimensional framework of piecewise
linear Lagrangian tori of R*.

3. The moment map framework, in an infinite dimensional context, presented at
§2, has been a great endeavor for proving our main results and introducing
a finite dimensional version of the moment map flow. However, only a faint
shadow of the moment map geometry is recovered in the finite dimensional
world. More precisely, there exists a finite dimensional analog u7; of the moment
map p on .#n. But it is not clear whether p}; is actually a moment map and
for which group action on .#p. It would be most interesting to define a finite
dimensional analog of the group Ham(X, o), and try to make sense of the Kempf-
Ness theorem in this setting.
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1.4. COMMENTS ON THE PROOFS—FUTURE WORKS 7

1.4. Comments on the proofs—future works

The proofs given in this paper come with a strong differential geometric flavor,
involving wuniformization theorem for Riemann surfaces, discrete analysis, discrete
elliptic operators, discrete Schauder estimates, Riemannian geometry, discrete spectral
gap theorem, Gaufl curvature and its discrete analogs.

Many of the techniques employed here may be adapted to more general settings.
Working with tori seems to be a key fact however: indeed, Fourier and discrete Fourier
transforms are well adapted for the analysis on tori and their quadrangulations and do
not seem to extend easily. The discrete Schauder estimates derived by Thomée [10],
which are a crucial ingredient of our fixed point principle, are proved using Fourier
transforms.

Although geometric analysis is quite often a powerful tool for proving topological
theorems, symplectic topologists may still expect some more flexible constructions.
Boldly stated, there may be a shorter proof based on more conventional techniques of
symplectic topolology, steming from some local ansatz, some jiggling lemma or in the
spirit of the h-principle. Such proofs might be shorter, more elementary and, perhaps,
lead to some stronger regularity results. These statements are difficult to disprove,
especially since our attempts to deliver alternate proofs of, say Theorem A, along
these lines failed so far.

One of the original motivation for this work was to get some effective constructions,
even for rough PL surfaces, that is when N is quite small. It is unlikely that any of the
flexible constructions could shed some light on this case. On the contrary, one of the
outcome of this paper is a new flow for quadrangular meshes (cf. § 8) that provides
large families of PL isotropic surfaces. Many questions about this finite dimensional
flow remain open, and we would like to tackle them in future research. For instance,
the completeness of the finite dimensional flow is unclear at the moment, although
this is expected, based on numerical evidence.

Another open problem concerns the naturality of our finite dimensional flow
as a good approzimation of the infinite dimensional flow a N goes to infinity: let
7N (t) € AN be families of solutions of the finite dimensional flow (8.2), for every
N >0, and f; : ¥ — R?", a solution of the infinite dimensional flow (2.2). Assume
that these flows are defined on the same interval ¢t € [0,7], and that the initial con-
ditions 7 (0) converge towards fy in a suitable sense. Is it true that 7x(¢) converges
uniformly towards f; in a suitable sense? Under some strong regularity assumptions
of f;, a scheme of proof of such a convergence result, would depend of the following
ingredients:

— Open problem : show that the sequence of finite dimensional evolution equations
converge in a suitable sense to a nice evolution equation in the smooth setting,
perhaps, in some sense, a parabolic equation. Such result could be understood
as an analog of the study of the limit operator = carried out in this paper 4.7.1.
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8 CHAPTER 1. INTRODUCTION

— Open problem : relying on the Schauder discrete estimates, show that for suitable
norms (perhaps weak discrete Holder norms), the finite dimensional flow has
some type of regularizing properties similar to parabolic flows. The answer to
this question could be seen as an analog of the spectral gap Theorem 5.5.2.

At the moment of writing, we have no interpretation of the smooth moment map flow
as some type parabolic flow and the above questions remain widely open.

1.5. Organization of the paper

Section § 2 of this paper is a presentation of the moment map geometry of a cer-
tain infinite dimensional moduli spaces introduced by Donaldson. Finite dimensional
analogs of this geometry are used in the rest of the paper. For instance a discrete
version of the moment map flow is introduced at §8 and implemented on a com-
puter, in order to obtain examples of Lagrangian piecewise linear surfaces from an
experimental point of view. In § 3, we introduce suitable spaces of discrete functions
on tori, together with the analysis suited for implementing the fixed point principle.
This section contains the definition of quadrangulations, discrete functions, discrete
Hélder norms, together with the relevant notions of convergence, culminating with
a type of Ascoli-Arzela theorem (cf. Theorem 3.10.6). The equations for Lagrangian
quadrangular meshes are introduced at § 4, where their linearization is also computed.
As the dimension of the discrete problem goes to infinity, we show that the finite dim-
ensional linearized problem converges toward a smooth differential operator at §5.
Some uniform estimates on the spectrum of the finite dimensional linearized problem
are derived as a corollary. The proof of Theorem C is completed at §6, using the
fixed point principle. The proof of Theorem A follows and is completed at § 7 after
introducing some generic perturbations in order to obtain piecewise linear immersions.
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CHAPTER 2

DREAMING OF THE SMOOTH SETTING

The main results of this work (for instance Theorem C), are of discrete geometric
nature. Yet the main ideas of our proof were obtained via an analogy with the moment
map geometry of the space of maps, from the tori endowed with a volume form, into
R2". This section is independent of the others, but we think it is important to show
how smooth and discrete geometry analogies can be used to unravel unexpected ideas.

2.1. Donaldson’s moment map geometry

The moment map geometry presented here was coined by Donaldson, although
our specific setting is not emphasized in [4]. All the notions of moduli spaces shall
be discussed from a purely formal perspective. With some additional effort, it may
be possible to define infinite dimensional manifolds structures on moduli spaces of
interest, by using suitable Sobolev or Hélder spaces.

Let M be a smooth manifold endowed with a K&hler structure (M, J,w,g). The
Kahler structure of M is given by an integrable almost complex structure J, a K&hler
form w and the corresponding Ké&hler metric g. Recall that the Kéhler form is related
to the metric via the usual formula

w(vy,ve) = g(Jui,vs), for all vi,ve € T, M.

The reader may keep in mind the simplest example provided by M = R?” ~ C™ with
its induced Euclidean Ké&hler structure. In this case, w = d\, where X is the Liouville
form, which implies that the cohomology class [w] € H?(M,R) vanishes.

Let ¥ be a closed surface with orientation induced by a volume form o. In real
dimension 2, a volume form is also a symplectic form. Thus, the symplectic surface
(X,0) admits an infinite dimensional Lie group of Hamiltonian transformations de-
noted

¢ = Ham(X, o).
One can consider the moduli space of smooth maps

M={f:Z>M | [f*w]=0}
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10 CHAPTER 2. DREAMING OF THE SMOOTH SETTING

notice that in the case of M = R?" endowed with the standard symplectic form, the
condition f*[w] = 0 is satisfied by every smooth map.

The tangent space T¢.# is identified with the space of tangent vector fields V/
along f, which is the space of smooth map V' : ¥ — T'M such that V(z) € Ty, M.
There is an obvious right-action of Ham(X, o) on .# by precomposition.

As pointed out by Donaldson, the geometry of the target space induces a formal
Kaéhler structure on .# denoted (#,g,,J) given by

vy, = Ve o) = |

oV, Ve, QV,V) — J w(V, V"o,
>

b
for any pair of tangent vector fields V, V' along f : & — R*. By definition, the action
of Ham(X, o) preserves the Kéhler structure of ..

The canonical L2-inner product on X, given by

Ch Wy = L W',

allows to define the space of smooth functions orthogonal to constants C§°(X), which
in turn, be identified to the Lie algebra Lie({) of { = Ham(X, o) via the map h — Xp,.
Here X}, is the Hamiltonian vector field with respect to the symplectic form o, which
satisfies
tx,0 = dh.

The L%-inner product {h,h’) also provides an isomorphism between the Lie algebra
of Ham(X, o) and its dual. The Lie algebra and its dual will be identified throughout
this section without any further warning. Since Ham(X, o) acts on .#, any element
of the Lie algebra h € Lie({) ~ C§°(X) induces a fundamental vector field Yy, on A
defined by

Yh(f) = f*Xh € Tf./ﬂ.
For f € .#, we have f*[w] = 0, hence

s O

so that we may consider the map
M — CP (D)
W
fo— o =5

By definition, we have the obvious property

(2.1)

p(f) =0« f*w=0< fisan isotropic map.

But we have much more than an equation:

PROPOSITION 2.1.1 (Donaldson). — The action of Ham(X,0) on A4 is formally
Hamiltonian and admits p as a moment map. More precisely:
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2.1. DONALDSON’S MOMENT MAP GEOMETRY 11

1. p: M — CP(X) is Ham(X, 0)-equariant in the sense that for every f € 4 and
u € Ham(3, o)
Cuf ou),how) = Lu(f), h);

2. for every variation V of f
Dp|, - Vi) = =t (nUV),
where D denotes the differentiation of functions on A .

Proof. — Only the second property requires some explanation. We pick a smooth
family of maps f; : ¥ — M such that % ft| = V and fy = f. The family is
understood as a smooth map

t=0

F:Ix%— M,

where I is a neighborhood of 0 in R and F(¢t,z) = f;(z). We denote by jo : ¥ — I x X
the canonical embedding given by jo(x) = (0, z). Notice that by definition Foj, = f.
Then

2
(Duj, Vi) = G, | bt
:f hit Lo, - F*w
b
= J hjg (dea, F*w + 15,dF*w),
¥

where the last line comes from the Cartan formula. The symplectic form is closed,
hence dF*w = F*dw = 0. In addition F*0; agrees with V along {0} x X, so that
JEdie, F*w = djfro, F*w = dw(V, (F o jo)*-) = df *tyw. It follows that

(Duj Vi) = | b
= —J dh A ffryw
b}

= —J tx,0 A fFyw.
b
The interior product is an antiderivation. In particular
tx, (0 A friyw) = (1x,0) A frayw + (Lx, ffryw)o.

The LHS of the above identities must vanish since this is the case for a 3-form over a
surface, and we obtain the identity

Duj, Vi) = | (ex £l

:Lmummm
A

which proves the proposition. U

SOCIETE MATHEMATIQUE DE FRANCE 2019



12 CHAPTER 2. DREAMING OF THE SMOOTH SETTING

2.2. A moment map flow

From this point, gauge theorists may dream of generalizations of the Kempf-Ness
Theorem, which is only known to hold in the finite dimensional setting. The Kempf-
Ness theorem asserts that the existence of a zero of the moment map in a given com-
plexified orbit of the group action is equivalent to an algebraic property of stability, in
the sense of geometric invariant theory. Under the hypothesis of stability, the zeroes
of the moment map are unique up to the action of the real group. Unfortunately the
Kempf-Ness Theorem does not apply immediately in the infinite dimensional setting
and the conjectural isomorphism

MG~ 0)/6,
where the LHS is some type of GIT quotient, is out of reach for the moment. To
start with, the complexification of ¢ is not even well defined and the quotient . // ¢
does not make sense. Nevertheless, a significant number of this thread of ideas may
be implemented. For instance, we may define a natural moment map flow.

DEFINITION 2.2.1. — Let f; € .# be a family of maps, for t in an open interval of R.
We say that the family f; is solution of the moment map flow if

dj
di; = I (f)-
REMARK 2.2.2. — In the finite dimensional setting, such a moment map flow preserves
the complexified orbits and converges to a zero of the moment map under a suitable
assumption of stability. It is natural to conjecture that this flow should converges
generically to an isotropic map in a prescribed complexified orbit. We shall not tackle
this problem here and only prove some very down to earth properties of the flow.

(2.2)

By construction, we have
80,5 (), V) = Q¥,u(p), V)
= —Du|, - Vil F))

1 2
5 D(lulP)], -V,

so that L
Wy = —5erad|ul?,

which proves the following lemma:

LEMMA 2.2.3. — Smooth maps f : ¥ — M are zeroes of the moment map if, and only
if they are isotropic. In addition, the moment map flow is a downward gradient flow
of the functional f — |u(f)||* on 4. More precisely, the evolution equation of the
moment map flow can be written

df 1
Z — —Zprad 2
o = osradle()I%,
where grad is the gradient of a function on .# endowed with its Riemannian metric g.
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2.2. A MOMENT MAP FLOW 13

As a corollary, we see that the functional should decrease along flow lines:

COROLLARY 2.2.4. — If f; is a smooth family of maps solution of the moment map
flow, then

Dutsor <o

unless fy is isotropic, in which case % |u(f;)|* =0 and the flow is stationary.

Proof. — Assume that f; is not isotropic. In particular there exists x € X such that
the differential of u(f;) does not vanish at z. Otherwise pu(f;) would be constant. But
the fact that w is exact would force u(f;) = 0. By definition X4,y is a non vanishing
vector field at = since it is the symplectic dual of du(f;). It follows that Y, s,y does
not vanish hence

—20(3Y%u(s0), IV u(s)

= —=20(Yyu(1), Yu(sn) <O O

d
el

2.2.5. Laplacian and related operators. — For each vector field V' tangent to f, we
define the operator
8¢ : Tyl — CL (%)
by
(2.3) 0V = —Du|f -JV.
We see that the adjoint 6} of dy satisfies
9(63h, V) = K65V, b
= (D, - TV, Y
= Q(Yh(f)7 JV)

= g(Ya(f), V),
so that
(2.4) 0th = Yu(f).
For each f € .#, we may define a natural Laplacian
(2.5) Ay =0676%

acting on smooth functions on X.

REMARK 2.2.6. — It seems likely that the moment map flow of Definition 2.2.1 can
be interpreted as a parabolic flow, once a suitable analytical framework and gauge
condition have been setup. Although we shall not prove anything about short time
existence of the moment map flow in this work, we provide at least a heuristic evidence.
In the next section, we compute the variation of the moment map and show that the
variation of u(f), when f is deformed in the direction of the complexified action JY3,,
is expressed as a Laplacian of h. However, the systematic study of the moment map
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14 CHAPTER 2. DREAMING OF THE SMOOTH SETTING

flow in the smooth setting is not our purpose here, and we shall return to this question
in a sequel to this paper [6].

2.3. Variations of the moment map

The operator f — u(f) is a first order differential operator. This section is devoted
to calculate its linearization.

2.3.1. General variations. — Let f; : ¥ — M be a smooth family of maps, with
parameter s € I, where I is an open interval of R. We use the notation,

ofs

0s

Vy =

)

for the infinitesimal variation Vi € Ty, .# of the family f,.

We consider the map F : I x ¥ — M given by F(s,z) = fs(x) and the canonical
injection js, : & < I x %, defined by js,(z) = (so,z) for some sy € I. We compute,
using the Cartan formula

afs*w s 0 *
as |S=Soi SO%-FW
= ji(dots, + 1o, 0 d)F*w

=jadouy, F*w
= j;kodF*LvSw
=d :;Lvsow,
where we have used the fact that dw = 0, that d commutes with pullbacks and that
Fojsy = fso-
The form
5y = fS*LVSOw

is called the Maslov form of the deformation fs at s = sg. The above computation
shows that

of*w
2 =d EX)
0s «
which reads
0
,U«(fs) — (5013,
0s
where ¢ is the operator given by
dy
2.6 oy = —,
(2.6) T=

for every 1-form ~ on X.

Thus we have proved the following result:
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2.3. VARIATIONS OF THE MOMENT MAP 15

LEMMA 2.3.2. — Let f: ¥ — M be a smooth map and V € Ty.# be an infinitesimal
variation of f. Then

Du‘f -V =day,

where ay = f*uyw is the Maslov form of the deformation and § is the operator defined
by (2.6).

2.3.3. Variations at an immersion. — We assume now that f : ¥ — M is a smooth
immersion. In particular the pullback gs; = f*g is a Riemannian metric on X. The
volume form voly, may not agree with o, but the 2-forms are related by a conformal
factor

voly, = 0o,
where 6 : ¥ — R is a positive smooth function. We introduce a conformal metric g,
that satisfies the equation

g = egtﬂ

and the Hodge operator acting on forms of 3, associated to the metric g, is denoted *,.

LEMMA 2.3.4. — Assume that f : ¥ — M is a smooth immersion. Then ¥ has
an induced Riemannian metric gs. Let g, be the Riemannian metric with volume
form o, conformal to gs,. Let Yy, be the fundamental vector field on .# associated to
the Hamiltonian function h. Then

Ash=06;81h = —Dp|, - JYn(f) = d**0dh = 0A;h — g, (df, dh).

where A, is the Laplacian associated to the Riemannian metric g, and 6 is the con-
formal factor such that gs, = 0g,.

REMARK 2.3.5. — In particular, if voly, agrees with o, then 8 = 1, g, = gs and the
above formula says that

Ash = Ash.

Proof. — Let fs € 4, be a smooth family of maps for s € I = (—¢,¢), with the
property that fo = f and Vy = JY,, = Jf X. Then O‘LéifS) = das by Lemma 2.3.2.
But O[0([]) = f*u)(‘/(),U) = w(Jf*Xhaf*U) = _g(f*Xhaf*U) = _gZ(XhaU)' It
follows that ag(U) = —0¢,(Xp,U) = —00(Xp,*;U) = 0 %, dh. Then we conclude

that
5/18(]%) loco = x,d0 x5 dh = —d*°0dh = —0A,h + g,(d0, dh),
s ls=
which proves the lemma. O

The next lemma shows that Ay is essentially an isomorphism.

LEMMA 2.3.6. — The operator h — d*°0dh is an elliptic operator of order 2, which
is an isomorphism modulo constants.
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16 CHAPTER 2. DREAMING OF THE SMOOTH SETTING

Proof. — The fact that the operator is elliptic of order 2 follows from the formula
d*s0dh = 0A,h — g, (df, dh).
The operator is selfadjoint since
«d*>0dh,h") = {Bdh,dh") = {h,d*  6dh").
If h belongs to the kernel of the operator, then
0 = {d**0dh, h) = {Odh, dh),

which implies that A is constant. Because the operator is selfajoint, the orthogonal of
its image is identified to the kernel. So the operator is an isomophism when restricted
to functions which are L2-orthogonal to constants. O

2.4. Application

We know that .# is acted on by ¢ = Ham(X,0). The (-orbit of f € .# is de-
noted Of. The group of Hamiltonian transformations does not admit a natural com-
plexification. Nevertheless, it is possible to make sense of its complexified orbits.

The space of vector fields Y,, defined by Y,,(f) = f+ X, over .# defines an integrable
distribution ) = T.# which is the tangent space to (-orbits. We can consider the
complexified distribution of the tangent bundle to .#

D" = D+3D

given by vector fields of the form Y, + JY,. The fact that { preserves the complex
structure J of .# implies that the distribution is formally integrable into a holo-
morphic foliation. A leaf of the foliation, obtained by integrating the distribution, is
refered to as a complezified orbit of ¢. The complexified orbit of a element f € .Z is
denoted 0?.

We are now assuming for simplicity that M is the Kahler manifolds R?" identified
to C™. In this case, given f € .#, we may consider a type of exponential map given
by

expy(u+ ) = f+ Yu(f) + IV (f),
for u,v € C§°(X). This type of exponential map does not come from a Lie group
exponential map. However, exp; (u + iv) provides perturbations of f in directions
tangent to the complexified orbit 0(? at f.
We have now all the tools necessary to prove the following result:

THEOREM 2.4.1. — We choose M = R?™ for the construction of .# . Let £ € .# be a
smooth isotropic immersion. If f € A is sufficiently close to ¢ in Ch* -norm, there
exists a nearby perturbation of the form £ = exp;(ih), where h is a C** function

on X3, such that £ is an isotropic immersion.
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Proof. — We denote by Gk’a, for some Holder parameter v > 0, the usual Holder
spaces. The moduli space .# is replaced with .#* which consists of Ok’a—maps
f: 3 — R?". Since .#%% is an affine space modeled on Gk’a, it is naturally endowed
with an infinite dimensional manifold structure. In particular, the map exp; defines
a smooth map

exp: CFTH(S,C) x ™ — e
given by (h, f) — exp;(h).
We denote by CS’O‘ () the subspace of C* (%) that consists of real valued functions

h : ¥ — R such that { ho = 0 (i.e., functions orthogonal to constants for the inner
product (-, -»). We consider the map

Z-{ C(E) x A — a0

(h, f) —> expy(—ih),
whose differential at (0, ¢) satisfies
0z . .
o —J;(0)
by definition of the exponential map. In particular
opoZ) . x
(2.7) oh |(07£) -h = —D[L|e -JY; (£) = 640, h = Agh

by Lemma, 2.3.4. This operator is an isomorphism modulo constants by Lemma 2.3.6.
We consider the map

F:Cy¥E) x MM — Co¥(%)
given by F' = p o Z. We have proved that the differential

oF

anlon
is an isomorphism. The rest of the proof follows from the implicit function theorem:

for every f € .#1* sufficiently close to £ in Gl’a—norm, there exists a unique h =
h(f) € C**(X) in a small neighborhood of the origin, such that

F(h,f)=0.
By definition exp f(lil) — [ satisfies (/) = 0. By assumption £ is smooth. If f is also

 02(2) — 0 (D)

smooth, elliptic regularity and standard bootstrapping argument shows that h, and
in turn ¢, must be smooth as well. This proves the theorem. U

REMARK 2.4.2. — In Section 4, we will develop a perturbation theory on the space
of quadrangular meshes .# that mimics Theorem 2.4.1. We shall define an analog
0. of the operator d; in the context of discrete geometry (cf. Formula (4.6)). The
operator d,, and more precisely its adjoint 07, could be used to define an analog of
Hamiltonian vector fields in the context of discrete differential geometry, in view of
Formula (2.4). This could be relied upon to define a discrete analog of the gauge group

action {{ = Ham(3X, o). This idea will be explored in a sequel to this work [6].
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18 CHAPTER 2. DREAMING OF THE SMOOTH SETTING

2.4.3. Outreach. — In §4 we shall define finite dimensional analogs of the infinite
dimensional moment map picture presented in the current section. This will provide
the incomplete dictionary below, where the right column is conjecturally a finite
dimensional approximation of the left column:

Infinite dimensional case finite dimensional case
Area form o on ¥ Quadrangulation ¢, (%)
M= {f:T - R™M} My = C°(Qn(Z) @R
Canonical Kéhler structure Canonical Kéhler structure
Ham(X, o)-action 777
Fundamental V.F Y, (f) = d}h 0red
A moment map p: A — CF(X) | ply: My — C*(Qn(D))
The moment map flow (2.2) The discrete flow (8.2)

Many aspects of the above dictionary remain unclear. First, the finite dimensional
picture does not come with a Lie group action that would, in some sense, approximate
Ham(X, o). In particular p} is not a moment map and C?( (), (%)) is not interpreted
as a Lie algebra. The flows are defined on both sides and we would like to compare
them as IV goes to infinity. Unfortunately, we do not even know whether the infinite
dimensional flow exists for short time. The discrete flow is an ODE, but it is not
completely understood at this stage. For N fixed, does the flow converge, or does it
blowup? Does a sequence of flow converge to the moment map flow as N goes to
infinity? Can we use the above sketch of correspondence to make sense of some type
of Kempf-Ness theorem in the infinite dimensional setting?

All these gripping questions are postponed to a later work. In this paper, we focus
on the discrete flow on .#}y, for a given N, and merely provide a computer simulation
of the discrete flow at §8.
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CHAPTER 3

DISCRETE ANALYSIS

In this section, we consider a real surface X, diffeomorphic to a torus. We denote
by ¢ the canonical Euclidean metric of R?” and J the standard complex structure
deduced from the identification R?" ~ C". The standard symplectic form of R?" is
given by w(-,-) = g(J-,+) and £ : ¥ — R?" is an isotropic immersion.

3.1. Conformally flat metric

Every Riemannian metric on a surface diffeomorphic to a torus is conformally flat.
In particular, ¥ carries a pullback Riemannian metric

g = g*ga
which must be conformally flat. In other words, there exists a covering map
(3.1) p:R? > %

with deck transformations given by a lattice I'  R2. The Euclidean metric geyc of R?
descends as a flat metric g, on X. In addition there exists a positive smooth function
6 :% — (0,40), known as the conformal factor, such that

g= = egtr

The projection p, which descends to the quotient R?/T', provides a preferred diffeo-
morphism

(3.2) ®:R*T - %,

which is also an isometry from (R?/T, geye) to (2, go)-
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20 CHAPTER 3. DISCRETE ANALYSIS

3.2. Square lattice and checkers board

Let e; = (1,0) and ez = (0,1) be the canonical basis of R?. The basis (e1,ez) is
orthonormal with respect to the canonical Euclidean metric geuc of R? and it is posi-
tively oriented, by convention.

For every positive integer N, we introduce the lattice Ay < R? spanned by e;/N
and eg/N:

€2

NCR2.

[
AN=Z~ﬁ1®Z~

The lattice Ay provides the familiar picture of a square grid in R? with step size N 1.
The lattice T', introduced at § 3.1, admits a basis (1, y2), compatible with the canon-
ical orientation of R%. The lattice I' is generally not a sublattice of Ay. Indeed, the
components of the vectors 71,72 € R? may not be rational. This fact will cause a
technical catch for constructing quadrangulations of . Luckily this difficulty is eas-
ily overcome as we shall explain below. The checkers board sublattice A%} = Ay is
spanned by the vectors % and “25°L:

e1 + eg ey — €1

AL =7
N

@Z‘ CAN.

The elements of Ay — R? may be thought of as the positions of a standard checkers
board game. Then A}:\}} acts on Ay by translations. These translations are spanned
by diagonal motions, as in some kind of checkers game. One can easily see that the
quotient Ay /Aﬁ\l,1 is isomorphic to Zy which is isomorphic to the equivalence classes
of the usual black and white positions of the checkers board game.

For each N > 0 and i = 1,2, we choose v € A} which is a best approxima-
tion of ; in AS}, for the Euclidean distance in R2. By definition, 4%V and ~ are
linearly independent for all sufficiently large N. We define the lattice I', at least for
sufficiently large N, as

In=Z-YN@Z-~Y c AS} < An.

We summarize our construction in Figure 1. The red and blue bullets represent the
elements of Ay, where the red bullets are in AS?. We draw the generators ~y; of I' and
their best approximations, in red, by elements v/¥ of AS}:
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3.2. SQUARE LATTICE AND CHECKERS BOARD 21

FiGure 1. Construction of 'y

By construction, Iy is a sublattice of A‘j\};; this choice has been designed so that the
checkers graph splits into two connected components precisely (cf. § 3.4). Furthermore,
the lattices I' y converge towards I', in a sense to be made more precise now: the linear
transformation Uy of R? defined by

UN(%'N) =%

identifies the lattices I'y and T’ by an automorphism of R2. Using an operator norm
for linear transformations of R2, we have

(3.3) |Un —id],| = O(N7Y).

In conclusion Uy converges towards the identity and Un(T'y) = I, which is under-
stood as I'y converges towards I'.
By construction, Uy descends to the quotient as a (locally linear) diffeomorphism

uy : R?/Ty — R?/T.

The linear transformation Uy may not belong to the orthogonal group. Therefore
neither Uy nor uy are isometries. But, they are isometries in the limit, since Uy
converges to the identity. This fact will be sufficient for our purpose. The quotients
R?/T" and R?/T' are canonically identified to ¥ via the diffeomorphisms

R?/Ty % R2)T -2, 5.
There are now several competing covering maps: we defined p : R?> — ¥ at (3.1), but
we may also consider the covering maps
(3.4) py =poUyn:R? - X,

The group of deck transformation of p is I', whereas the group of deck transformations
of py is I'y. There are also several flat metrics descending on ¥ via p and py. The first
go is induced by the Euclidean metric and the diffeomorphism ® : R?/T' — 3. The
other flat metrics g are induced by the Euclidean metric and the diffeomorphisms

(3.5) Oy :R*Ty - %
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induces by (3.4). According to (3.3) we have
9 =g, +O(N7Y).

3.3. Quadrangulations

Instead of linear triangulations, we shall work with particular linear quadrangu-

lations () (¥) of ¥. The current section is devoted to the definition of these CW-
complexes.

3.3.1. Quadrangulations of the plane. — For k,[ € Z, the points of R? given by

k l
Vil = N + N

are the elements of the lattice Ay — R2. The elements of the lattice Ay are also
the vertices of a nice quadrangulation @, (R?) of the plane R?, pictured as the usual
square grid with step N ~!. More precisely, the quadrangulation ¢ N (R?) is a particular
CW-complex decomposition of R2, characterized by the following properties:

— The edges e ; and ey j; of the quadrangulation are the oriented line segments

of R? with oriented boundary

0e1 ki = Vit1, — Vi and deg g = Vi 141 — Vi
— The faces fj; of the quadrangulation are oriented squares of R? with oriented
boundary
Ofpi = e + €2 k41,0 — €1 k141 — €2,k

Figure 2 shows the familiar picture of the plane tiled by squares together with the
notations introduced above.

fr1041 £ 141 frt1011
Vi i+1 V41,041
x €1 k,1+1 ’
3 3
fic—l,l & iy 3 fk+1,l
© )

. 4 >0
Vil €1 ki V41,1

fr11-1 fri-1 11

FIGURE 2. Quadrangulation @, (R?)
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3.3.2. Quadrangulations of the torus. — The lattice Ay acts on itself, by translation.
It follows that Ay also acts naturally on the vertices, on the edges and on the faces
of the quadrangulation QN (R?) by translation. Since I'y < A‘j\l,“ c Ay, the lattice I' iy
acts on QN(R2) as well. Thus, the quadrangulation descends to a quadrangulation
@ (X) of the quotient X, via the covering map py : R? — ¥. When this is clear from
the context, the vertices, edges and faces of QN(E) will still be denoted vi;, €1 ki,
€2 Kl and fkl'

3.3.3. Alternate quadrangulation of the plane. — Our construction involves the various
diffeomorphisms ® : R?/T' — ¥ and &y : R?/T'y — . For the purpose of analysis
and, more specifically, the notion of convergence, it is convenient to identify ¥ with
a single reference quotient, say R?/T" using ®.

Lifting Q(X) via the covering map p : R? — ¥ provides a quadrangulation different
from @, (R?). We denote by QN(R2) the quadrangulation obtained as the image
of @y (R?) by the isomorphism Uy : R? — R?. We also denote by Ax and A the
images of Ay and A} by Uy. By definition, I is a sublattice of f\?\},‘ and we have a
sequence of canonical inclusions

I'c Aﬁ\},‘ c Ay,
which is nothing else but the image of the inclusions

by Un. By construction, the quadrangulation QN (R2) has vertices given by the el-

ements of the lattice Ay. Furthermore QN (R?) descends to the quotient via the
covering map p : R — ¥ into a quadrangulation that coincides with @ ().

3.4. Checkers graph

We associate a graph { (R?) to the quadrangulation @, (R?), called the checkers
graph of @, (R?). Combinatorially, the vertices zx; of {,(R?) correspond to faces
fry of Oy (R?). However a vertex zy; of the graph (, (R?) shall be though of as the
barycenter of the face fy; of QN(RZ), understood as a square of R%2. The fact that
vertices of the graph correspond to points in R? will be most helpful for defining the
notion of convergence at § 3.8. Two barycenters are connected by an edge if, and only
if, they belong to faces having exactly one vertex in common. For instance the faces
fi; and fi19 41 of Q) N(R2) have exactly one vertex in common. An edge between two
vertices of (5 (R?) is the segment of straight line of R? between the two vertices.

Figure 3 shows the quadrangulation (), (R?) using dashed lines and the corre-
sponding checkers graph ( (R?). The graph has two connected components painted
with colors red and blue. The bullets correspond to vertices of the graph.
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FiGURE 3. Graph (, (R?)

3.4.1. Splitting of the ckeckers graph. — The graph () (R?) splits into two connected
components denoted

On(R?) = OR(R?) U On(R?),
where QE (R?) contains the vertex zgo corresponding to the face fo, by convention.

The lattice Ay acts by translation on @, (R?) and on {, (R?). The action on the
vertices of () (R?) (or, equivalently the faces of ), (R?)) is transitive. However the
sublattice A}J\l} does not act transitively: in fact it preserves the connected components
of the graph (, (R?) and acts transitively on each component. The quotient A /A ~
Zs is the residual action of the lattice Ay on the connected components of ¢, (R?).

3.4.2. Checkers graph of the quotient. — By construction T'y = A, so that the action
of Ay preserves the connected components of ((R?). It follows that the graphs
Cn(R?), 05 (R?) and (y(R?) descend as graphs (5 (%), (x(E) and (y(X) on the
quotient ¥ ~ R?/T'y via the covering map py : R?> — X. Furthermore, the graph
¢ (%) splits into two connected components (4 (2) and (x(X):

On(D) = On(Z) v On(D).

3.4.3. Alternate checkers graph on the plane. — A discussion similar to the case of
the quadrangulations @, (R?) and QN(RQ) occurs here (cf. §3.3.3). We introduce
the checkers graphs QN (R?%), {;7/; (R?%) and {;7/;, (R?) obtained as the image of (, (R?),
¢ (R?) and (y(R?) by Uy. Similarly to the non-hat version, these graphs can be
also understood as the checkers graphs of QN (R?%). They descend via the covering
map p : R? — ¥ where we recover ( (%), 05 (X) and ( (). If the vertices of the
checkers graph (, (R?) are the barycenters zy; of the faces fx;, their images by Uy,

denoted 7y, are the vertices of (5 (R2).
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3.5. Examples

The lattices of R? defined at § 3.2 come with canonical inclusions
Aic Ay cAngp -
and
AP AR AR
If T is a sublattice of A", then its approximations I'yy coincide with I', which makes
the construction of ¢),(X) somewhat simpler. For example, we may consider the
lattice
I" = Z(ey + e3) ®Z(eg — e1) < AS™,
or the lattice
F// = Zel (&) ZBQ = Al.
In the latter case, I” < AS} if and only if N is even and we shall only consider
Qn(E") when N is even. The quotients £’ = R?/I” and X" = R?/T" are conformally
isomorphic but the quadrangulations ¢ (¥') and ¢ (£") are not isomorphic through
a conformal mapping.
Let 1 : S' — C and ¢ : S* — C be two smooth embeddings of the circle into the
complex plane C. This provides an embedding of the torus
£0:St' xSt —C?~R?
(¢1,2) — (L(p1), La(p2)),
which is isotropic since both maps ¢; are. The image of £ is usually called a product
Lagrangian torus of R,

The map ¢ can be approximated by a piecewise linear maps. The idea is to ap-
proximate the two embedded circles by polygons of C. We obtain a product of two
polygons approximating the product torus. More precisely, we define

(N (N"'Z)/Z — C
by £¥ (v) = £;(v). The map £V can be extended as a piecewise linear map denoted

(N R/Z — C

as well. If N is sufficiently large, the maps ¢V are piecewise linear embeddings. For
the same reasons as before, the product embedding

Iy St xSt >R
defined by £y (p1,02) = (£ (p1),€Y (p2)) is isotropic and it is a piecewise linear
isotropic approximation of £. Notice that the maps £ can be recovered only from the
R*-coordinates of the vertices of the points in A /Z2. These vertices are by definition
the vertices of the quadrangulation ¢) (3"), modulo the isomorphism

Sl % Sl ~ RQ/F// _ Z”,

where I' = A; is the standard lattice described above. Notice that each face of the
quadrangulation is mapped to a quadrilateral of R* contained in a Lagrangian plane.
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REMARK 3.5.1. — The piecewise linear isotropic embeddings ¢y of the torus de-
scribed above were essentially the only examples known at the begining of this re-
search project. If £ is any smooth isotropic map, one can construct samples ¢y as
above (cf. §4.3). Strictly speaking, these samples are quadrangular meshes. In general
these samples are not exactly isotropic. From this point of view, the product exam-
ples described above are very special, because in this case the samples are isotropic.
In general, one needs a suitable perturbation theory so that they become isotropic,
which is the technical task of this paper.

3.6. A splitting for discrete functions

The vector space of discrete functions on the faces of the quadrangulation
Qn(R?) is denoted C?(Q,(R?)). A discrete function ¢ is defined by its values on
faces given by

br1 = d(fi1) = (&, fur)-
In the above notation, {-,-) is the duality bracket, and a discrete function is under-
stood as a linear form on the vector space Ca(Q, (R?)) spanned by the faces of the
quadrangulation.

By construction there is a canonical identification between the faces fi; of ¢ N(R2)
and the vertices of the graph zy; of (y(R?). Therefore, a discrete function ¢ can be
understood, either as a function on faces fy; of @, (R?), or as a function on vertices
zj; of (5 (R?). The above identification leads to an isomorphism of discrete functions

(3.6) C*(Qy(R?)) = C°(On(R?)) = CO(GR(R?) @ C°(G (R?)).
The same decomposition holds for the hat version of theses objects and we have a
canonical isomorphism

A A A + A —
(3.7) C*(Qy(R?)) = C°(Gn(R?)) = C%(Gn(R?) @ CO(Gn (R?).
The isomorphism (3.6) descends to the quotient ¥ via py and may be expressed as
an isomorphism

(3.8) C*(Qn (D)) = C(Gn(2)) = CO(Gn () @ CO(Gn (X))
Any discrete function ¢, in one of the three kind of spaces C°({(-)) as above, admits
a unique decomposition according to the splittings (3.6), (3.7) or (3.8)
$=9¢"+¢7,

where ¢t € CO(0% ().

The induced splitting of C?(Q(-)) via the isomorphisms (3.6), (3.7) or (3.8) is
also denoted
(3.9 C*(Qy () = C(Qy() @ C2(Qy ()
When the discrete function ¢ is regarded as a constant function on faces of the quad-
rangulation, we also write ¢ = ¢+ + ¢~ according to the above splitting.
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CONVENTION 3.6.1. — In the sequel we shall use a shorthand in order to make state-
ments that hold either for cocycles of the graph QX, (X), or for cocycles of the graph
O n(X). For this purpose, we will use the notation C};{,(E) and the convention below:

For every statement using the symbols + and F, the reader should either

— replace all symbols + (resp F) consistently with + (resp. —), or
— replace all symbols + (resp F) consistently with — (resp. +).

3.7. Discrete Holder norms

In this section we define particular norms on the space C?(Q, (R?)) (or equiva-
lently, on the space C°({, (R?)), which is a discrete analog of the Holder norm. The
norms are defined first on each component of the splitting (3.9) (or (3.6)).

3.7.1. C°-norm. — Given ¢ € C°((};(R?)) we define its C°-norm by
(3.10) I¢leo = sup  [{¢,2)].

ze€o (05 (R?))

We define a similar norm on C%(({y(R?) (resp. C°((y(R?)) by taking the sup on
vertices of (5 (R?) (resp. (' (R?)). We deduce a norm, with the same notation | - | po
on C% (@, (R?)) via the isomorphisms (3.6) and (3.9). These quantities may be infi-
nite. Later we shall restrict to periodic functions, which are bounded and have a well
defined (°-norm.

3.7.2. Finite differences. — The canonical basis (ej,ez) with canonical coordinates
(z,y) of R? is not the best for our situation. Most of the times, we shall rotate
the plane R? by an angle 7 /4. For this purpose we introduce the rotated orthonormal
basis (e}, e,) of R? given by

e1 + ea €2 — €1
3.11 e = ey = .
( ) 1 \/5 ’ 2 \/Q
The coordinates (u,v) with respect to the basis (e}, e}) are deduced from the canonical
coordinates (z,y) € R? by the formula

T +y y—x

3.12 U=— V= .

(3.12) 7 7

We define finite differences of ¢ € C°( {7 (R?)), which are discrete analogs of the

partial derivatives of a function on R?, with respect to u or v. These differences are
denoted

o9 2

2 9% _ 0/ pt (2
(%17 aaﬂ (’)"1—] and 877 € C (QN(R ))7
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where the forward or retrograde arrows indicate forward or retrograde differences,
defined as follows: for ¢ € CO(("(R?)), we write ¢p; = (¢, 2> for zx;, € Co( G5 (R?))
and put

(3.13) <Z—?,zkz> - %mz i)
(3.14) <aq, Z) = \/»((lsk-&-l 1+1 — Bki),
(3.15) <(9H Zki) = ﬁ(fbkz — ¢r+1,4-1) and
(3.16) <%,sz> = %(@H,m = Pr1)-

The finite differences are defined with the same formulae if ¢ € C°({™ (R?)). Since all
the indices involved in the above formulae correpond to vertices in connected compo-

nent of zy; in ¢, (R?), the finite differences a‘?_, %=, 5’7’) and aaa define endomorphisms

Co(ON(R?) @ CO(Gn(R?) — C°(Gn(R?)) ® CO(G (R?)),
which respect the above splitting.

Finite differences can also be expressed using the translations of AS} acting on
functions. If T,,, T, are the translations acting on { (R?), given respectively by the

vectors €522 and 25, then
% N 0 N
(3.17) b f(sboT ¢ = T(fb ¢poT, )
and
0p N % N
(3.18) % = E(qﬁoTv - ¢)a % T(Qb ¢ T )

As an immediate consequence of (3.17), we have

op 09
3.19 — = —oT,
(3:.19) o7 dm W
so that the functions % and (‘j—% have the same (C’-norm. The same holds for the
v-coordinate since by (3.18)
op 0o
3.2 Lo,
(3.20) o7 T

so that finite differences g—% and % have the same C’-norm.

NOTATION 3.7.3. — As far as we are concerned with the C°-norms of finite differ-
ences, we could drop the arrow notation over u or v, since the forward of retrograde
differences have the same norms.
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3.7.4. Definition of Holder norms. — For ¢ € C°( (5, (R?)), we may define its C'-norm

as
) | |09
”¢”01 - ”¢“00 + ou 0 v 0
and its C*-norm by
020 ¢ 9
[¢ll g2 = ¢al+’3u2 00*'67,2 w | oudv |

More generally we can define a C*-norm on C°({*(R?)) by induction. Similarly we
define a C*-norm on C°( (R2)).
For a positive Holder constant a € (0,1), we define the C**_Hélder norm of

¢€C°(G" (R?)) by

(3.21) 16l gore = bl g0 + sup % =
Zkl,ZmHECO(g;(RQ))q ||zk5l - zmnH
Zk1 FZmn

where |2zg; — Zmn| is the Euclidean distance between zy; and 2z, in R2. The
CH*-Hélder norm of ¢ € CO(1 (R?)) is defined by

0¢ 0¢
o= + = +l=
e = loleo + [32) 4%
and its C**-Holder norm is defined by
0% 0% %
9leze =1le + | 50z] .+ |72 . ‘auav o

More generally, we can define a C***-Hélder norm by induction on C°(¢" (R?)), in a
obvious way. We define a C* and a C"*-Hélder norm on C°({™ (R2)) by taking the
sup of the above formulae on vertices of (5 (R?) instead.

3.7.5. Weak Holder norms. — For ¢ € C?(Q,,(R?)) ~ C°({(R?)) we use the direct
sum decomposition ¢ = ¢ + ¢~ of (3.6) or (3.9). We define the weak GZ’a—norm of ¢
by

(7l L P ) P
where the Hélder norms of each components ¢T are defined in the previous section.
Similarly, the weak Oi—norm of ¢ is defined by

[6lex = l¢F | o + 67 or -

REMARK 3.7.6. — As you may have noticed, the discrete CZ’Q—Ht’)lder norms or
CF -norms defined above on C°%(¢n(R?)) are called weak. Indeed, only the variations
of ¢ in the diagonal directions spanned by the vectors 51'2“32 and “25°L are taken into
account. It turns out that these weak norms are the one appropriate to set up the

fixed point principle, as explained in § 6.
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In the sequel, we shall drop the term weak for the sake of brevity. However, the
reader should bear in mind that these norms may allow some unexpected behavior
when N goes to infinity (cf. Example 3.8.4).

3.7.7. Quotient and alternate quadrangulatlons — The alternate versions of the quad-
rangulation QN (R?) and checkers graph (}N (R?) are canonically isomorphic to the
non-hat versions ¢, (R?) and ¢, (R?). Thus, we have an isomorphism

C2(Qy(R?) ~ C2(Qy(R?))

This isomorphism allows to define CF and CF*-norms on CQ(QN (R%)). A function
¢ € C*(Qy (X)) admits a lift ¢y = ¢ o py € C?(Q,(R?)). We define the norms of ¢
as the norms of its lift:

|8l s = lonlgres  8lex = lnle -

REMARK 3.7.8. — The discrete functions on ¥ have finite Hélder norm since they are
bounded, and so are their finite differences.

3.8. Convergence of discrete functions

In this section, a suitable notion of convergence for a sequence of discrete functions
is introduced. This concept will be the cornerstone of a version of the Ascoli-Arzela
compactness theorem. It will be an essential tool to obtain spectral gap results at § 5.5.

3.8.1. Definition of converging sequences

DEFINITION 3.8.2. — Let (Ni)ken be an increasing sequence of positive integers. Let
YN, € C’O(é’/]i\,k (R?)) be a sequence of discrete functions and ¢ : R? — R be a function
defined on the plane.

Assume that for every point w € R? and € > 0, there exists 6 > 0 and an integer
ko > 0, such that for every integer k = ko and verter z € Qﬂ;ﬂik (R?)) with the
property that |w — z| < 6, we have |p(w) — ¢¥n, (z)| <€

Then we say that the sequence of discrete functions (Y, ) converges toward the
function ¢ : R? — R. This property is denoted by

YN, = ¢ or limyy, = ¢.

If Y, € C’O(Z}N]c (R?)) is a sequence of discrete functions with associated decom-
position Yy, = 1/}1-‘\_7;@ + ¢y, and with the property that the components converge to
functions ¢ and ¢, in the sense of the above definition, i.e.,

vh oot and gy, — ¢,
we say that Py, converges toward the pair of functions (¢*,¢~). This property is
denoted by

d}Nk - (¢+7¢7) or hm’d)Nk = (¢+7¢7)'
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REMARK 3.8.3. — The above definition may also be stated in a somewhat slicker way:
o+

we say that a sequence ¢y, € C°({y (R?)) converges toward a function ¢ : R* - R

if, at every point w of the plane, ¥y, takes arbitrarily close values to ¢(w), for every

k sufficiently large and for all vertices of ijk (R?) in a sufficiently small neighborhood
of w.

ExXAMPLE 3.8.4. — The splitting of discrete functions into their positive and negative
components leads to some unusual type converging sequences in the sense of Defi-
nition 3.8.2. For example, we may define a sequence of discrete comb functions as

follows. We define ¢7; € CO(Z};_:, (R?)) as a constant function each connected compo-
nent of the graph, equal to +1 at each vertex of Q/]Jf,(Rz) Let 1 : R? — R be the
constant function equal to 1 at every point of the plane. Then lim 1/1;{, = 1 whereas
limyy = —1. If Yy := ¢} + ¢y, then ¥y converges and

limy = (1,—1).

Typically, the sequence ¥ is uniformly bounded in weak C?I;Q-norm. Our notion of
convergence is designed to state a version of the Ascoli-Arzela theorem in this setting.

The notion of convergence of discrete functions is extended to C?(Q, (X)) as fol-
lows:

DEFINITION 3.8.5. — Let ¢, € C’O((}Ji\}k(E)) be a sequence of discrete functions and
. .t

¢ : % — R be a function defined on ¥. Let n, = b, op € C°(Qy, (R?)) be the lift

of YN, via the canonical projection p andq@ =¢op:R? — R be the lift of p. We

say that (1, ) converges to ¢ if (Yn,) € CO(C}JJf,k(E)) converges to ¢ : R2 — R in the
sense Definition 3.8.2. This property is denoted by

YN — ¢ or limy = 9.

If Y, € CO(QNk(Z)) is a sequence of discrete functions with associated decompo-
sition YN, = 1/1;{,k + ¢y, and with the property that both components converge to some
functions ¢* : ¥ — R and ¢~ : ¥ — R in the sense of the above definition, we say
that ¥y, converges toward the pair of functions (¢, ¢~ ) and denote this by

'l/)Nk - (¢+a¢7) or llm¢Nk = (¢+a¢7)'

3.8.6. Continuity and limits of discrete functions. — Our notion of convergence for dis-
crete function is intimately related to the uniform convergence, in the case of contin-
uous functions. Indeed, we have the following result:

At
PROPOSITION 3.8.7. — Let ¢y, € C%({y, (R?)) be a sequence of discrete functions
converging toward ¢ : R?> — R. Then ¢ must be continuous.
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et
Proof. — The proof goes by contradiction: assume that ¥n, € C°(Cy(R?)) is a se-
quence converging toward a discontinuous function ¢. Then there exists g > 0, w € R?
and a sequence of points wy, € R? such that limy_,o wy, = w and |p(wy,) — d(w)| = &o
for all k.

From the definition of convergence of discrete functions, we can extract a sequence
A+
N/, from Nj and vertices zj of QN;Q (R?) such that |wy — zx| — 0 and [Ny (zk) —
d(wg)| — 0 as k — .
By construction lim z; = w. Furthermore

|p(wr) — p(w)| < |p(wi) — VY (2&)] + YNy (2k) — d(w)].

The LHS is bounded below by g9 > 0. The first term of the RHS converges to 0 by
definition of the sequences. The second term of the RHS converges to zero, by defi-
nition of the convergence of a sequence of discrete functions. This is a contradiction,
hence ¢ : R? — R is continuous. O

COROLLARY 3.8.8. — Let ¢y, € CO(Q]J*\F,(E)) be a sequence of discrete functions con-
verging toward ¢ : ¥ — R. Then ¢ is continuous.

Proof. — We use the covering map p : R? — ¥ and apply Proposition 3.8.7 to the lift
of the functions. O

3.8.9. Samples and convergence of discrete functions

DEFINITION 3.8.10. — If ¢ : R? — R is any real function, we define its samples
.
ox € COEn(R?)) by
(Pn>2r1) == D(2ra1),

s
for every 2 € Co((y(R?)). We define similarly the samples ¢= € CO(0x (X)) of a
real function ¢ : X — R. Let qAS = ¢op: R? - R be the lift of ¢ via the projec-

. g
tion p. Its samples gb;—(, € C°((Qn(R?)), as defined above, descend to discrete functions
qﬁ € CO((}Ji\,(Z)) on the quotient, referred to as the samples of ¢.

The convergence defined in Definition 3.8.2 is uniform in the sense of the following
lemma:

PROPOSITION 3.8.11. — Let wﬁk € CO(C}]in (32)) be a sequence of discrete functions
converging to ¢ : X — R and ¢3; € CO(C}Iin (X)) be the samples of ¢. Then

klgrc}c H(]ﬁ]i\}k - w]in || 0 =0.

Proof. — Since ¢ : ¥ — R is a limit of a sequence of discrete functions, it is continuous
by Corollary 3.8.8. The surface ¥ is compact, hence ¢ is uniformly continuous by Heine

, 2 o
theorem. We denote by wjf,k and ¢ the canonical lifts of wj{]k € C%(y(R?)) and ¢
via the projection p : R2 — ¥. Since ¢ is uniformly continuous, so is ¢. Let ¢, be a
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positive real number. By uniform continuity, there exists § > 0 such that for every
w,w’ € R?

(3.22) Jw—w'|| < 8= |p(w) — dw')| <e.
By definition of the convergence of discrete functions, for each w € R?, we may

choose an integer k(w) > 0 and and a real number n(w) > 0 such that for all k£ > k(w)
At
and z € €y({y, (R?)) we have

(3.23) |2 = w| < n(w) =[5, (2) - d(w)| <e.

For each w € R?, put
d(w) = min(4, n(w)).

The family of open Euclidean balls B(w,§(w)), centered at w € R? with radius 6(w),
provides an open cover of R2. Their images U,, = p(B(w,d(w))), by the canonical
projection p : R? — ¥, provide an open cover of the compact surface 3. Hence we
can extract a finite cover U; = U, of 3, for a finite collection of points {w; € R2,1 <
i < d}. We put kg = max{k(w;)1<i<qa} and consider k > ko.

Every z € Qo((};f,k (2)) is an element of one of the open sets U;. Hence z admits a

S+
lift 2 € €y({y, (R?)) contained in one of a the balls B(w;, §(w;)). In particular

V5%, (2) = 9%, (2)] = %, (2) — o, (2)] < 195, (&) — $(w)] + |$(wi) — I, (2)].
The first term of the RHS is bounded above by e by (3.23). By definition qZA)Iin (z) =
$(2), hence the second term of the RHS is bounded above by ¢ thanks to (3.22). In
conclusion

Yy, (2) — o3, (2)] < 2,
which shows that
[¥x — ¢nlleo < 2e,

for k > ko. O
We also have a sort of converse for Proposition 3.8.11:

PROPOSITION 3.8.12. — Let wjf,k € CO((}Ji\—,k (X)) be a sequence of discrete functions
and ¢ : X — R a continuous function such that

: + + —
Km [¢%, =¥l =0,
where d)j{,k € C’O(Q;f,lc (X)) are the samples of ¢. Then
lim ¢y = ¢.

Proof. — The compactness of ¥ implies the uniform continuity of ¢, which is a key
argument in a proof closely related to the one of Proposition 3.8.11. The details are
left to the interested reader. O
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Proposition 3.8.12 has the following immediate corollary, which shows that samples
of a function are natural approximations:

COROLLARY 3.8.13. — Let ¢ : £ — R be a continuous function, and ¢ € C°((r (%))
its samples. Then

lim ¢F, = ¢.

3.9. Precompactness

We denote by | - || go.« the usual Holder norm on the space of function ¢ : ¥ — R,
defined with respect to the Riemannian metric g,, for instance. The corresponding
Holder space is denoted C”%(X). We may now state a version of the Ascoli-Arzela
theorem adapted to our setting:

THEOREM 3.9.1 (Ascoli-Arzela, first version). — Let wjf,k be a sequence of discrete

function in CO((}ﬁk (2)), which are uniformly bounded in C>®-norm. In other words,
there exists a constant ¢ > 0 with the property that

le%lk H oo S G
for all k € N. Then there exists a subsequence N}, of Ny and a function ¢* : & — R
in CO%(%), such that
limyy, = ¢T.
k

Proof. — Let ¢, € C’O(C}JJ\F]k (X)) be a sequence of discrete functions bounded in Holder
norm, as in the theorem.

We start by choosing a countable dense set Q = {g, € X,n € N} of X; for instance
the projection by p : R? — ¥ of the points of rational coordinates in R? is a possible
choice. For each g,, we choose a lift g, such that p(g,) = g,. For each n we choose a

et
sequence 27 € €o({y, (R?)) such that that
5 2 =
- ot
We denote by ¢, = ¢¥n, op € C’O((}J\,,c (R?)) the canonical lift of 1y, . By as-
sumption, the uniform estimate on the Hoélder norms provides a uniform bound
[N, (2%, )| < c. Hence we can choose a subsequence Ny of integers such that Yo (i?vg)
converges as k — 00.
By extracting a subsequence N} of NP, we may assume that ¢ N} (2%.) converges
k
for n = 0 or 1, as k — oo0. Extracting subsequences inductively provides family of
subsequences N;", indexed by m, such that ¢nm (i’zi,,zn) converges for fixed 0 < n <m
as k — oo. Finally, using the diagonal subsequence My = N, ,f, we find a subsequence
Y, such that ¥y, (2}, ) converges for every n € N, as k — c0.
The function

¢:Q—>R
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is defined on the countable dense subset Q < 3 by
Blan) = lim Drr, (25,
—00

Since the ¢y, are uniformly bounded with respect to the discrete Co’a—norms, it
follows that the function ¢ : @ — R is bounded with respect to the usual C**-norm.
In particular ¢ is uniformly continuous on @, hence it admits a unique continuous
extension ¢ : ¥ — R which turns out to be in CO’Q(E) as well. One can readily check,
using the uniform Hélder-norm estimates, that the construction of the function ¢ is
independent of the choice of sequences z%;. Furthermore the uniform Hélder estimates
imply that

thn;O Hka - ¢Mk HGO =0,

where ¢y, € CO(QX/[’C(E)) are the samples of ¢. This implies by Proposition 3.8.12
that

m ey, = ¢. O

3.10. Higher order convergence

We are interested in stronger convergence of discrete functions, taking into account
higher order finite differences. We start by stating the following elementary results:

LEMMA 3.10.1. — Let ¢y, € CO((}]i\}k(E)) be a sequence of discrete functions. The

finite differences aﬁgk (resp. aqggk ) converge if, and only if, the finite differences
aqﬁg’“ (resp. aﬁgk) converge. It they converge, they have the same limaits:
0 0 0 0
lim zgl_\,]’“ = lim T(/;J_v . lim ?I_Yk = lim 1(/;1_\/ k.
U U U v

Proof. — This follows from the fact that finite differences in the forward and backward
directions are related by the translations T,,, or T}, spanning the lattice A}, thanks
to Formulae (3.19) and (3.20). O

REMARK 3.10.2. — According to the above lemma, one can talk about the conver-
gence of the finite differences of a sequence of discrete functions without specifying
on the forward or retrograde directions.

PROPOSITION 3.10.3. — Let ¥, € CO(QJin(E)) be a converging sequence of discrete
functions such that its first order finite differences converge as well towards the limits

0 0
¢ =limy, , ¢y = lim zfsz and ¢, = lim wivk.
ou 0
Then, the limit ¢ : ¥ — R is of class C' with partial derivatives given by
¢ 0
o Pu, P G-
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Proof. — One can readily show that ¢ is a primitive function of ¢, (resp. ¢,) in
the wu-direction (resp. v-direction) using Riemann sums. The limits ¢, and ¢, are
continuous by Lemma 3.8.7 and it follows that ¢ is continuously differentiable. O

Lemma 3.10.1 and Proposition 3.10.3 motivate the following definition:

DEFINITION 3.10.4. — If a sequence of discrete functions ¢y, € CO(Q’/;{,J_(E)) con-
verges together with its finite differences, up to order k, we say that the sequence
(¥n;) converges in the C*_sense toward the function ¢ = limyy,. We denote this
property by
ck
YN, — &

If¢n, € CO(QNj (X)) is a sequence of discrete functions with decompositions Y, =

wﬁj + 1[}1(,]_ and ¢7, ¢~ : ¥ — R are functions such that

4+ CF + _ Ck _
wNj—>¢ s andi/JNj—>¢ ,

we say that Yy, converges in the weak C"-sense toward the pair of functions (¢T,¢7).
This property is denoted

wNj — (¢ ’¢ )
This definition and Propositions 3.10.3 leads to the following corollary:

ProPOSITION 3.10.5. — If ¥, € CO(QIJ—\F,J_(E)) converges in the C* sense, the limit

¢ = limyy; is of class CF. Furthermore the finite differences of 1, converge, up to
order k toward the corresponding partial derivatives of ¢.

We may now state an improved version of the Ascoli-Arzela theorem in the o
setting:

THEOREM 3.10.6 (Ascoli-Arzela, second version). — Let ¢y, be a sequence of discrete

function in CO((}%],(E)), which are uniformly bounded in C*®-norm for some k > 0
in the sense that there exists a constant ¢ > 0 with the property that

[¥n,lgre < ¢ forall j = 0.

Then there exists a subsequence NJ’- of N; and a function ¢ : ¥ — R with ¢ € Gk’a(E),

such that
Ck @

(2
Proof. — We give a sketch of proof in the case k¥ = 1. By assumption, the ¢y, are
uniformly bounded in C"“-norms. Thus the finite differences of order 1 are bounded
in C”“-norm:
o |5

‘ 5¢N

Co,a 00 o
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and we may apply Theorem 3.9.1 to the first order finite differences. After passing to
suitable subsequences, we may assume that
OYN; o, p OYN; o 5
ol “ou v
where ¢y, ¢, € CV*(X). Since ¥y is bounded in C"'-norm, we may apply Ascoli-
Arzela again and assume, up to further extraction, that

lim d}Nj = ¢7
for some continuous function ¢. The rest of the proof follows from Proposition 3.10.3.
The general case is proved by induction on k. O

3.11. Examples of discrete convergence

We present two examples of converging sequences of discrete functions that will
turn out to be useful.

3.11.1. Samples of continuously differentiable functions. — Corollary 3.8.13 extends to
stronger Gk—convergence as follows:

ProprosITION 3.11.2. — Let ¢ : ¥ — R be a function of class Gk, and (;S]iv €
CO(Gn (%)) its samples. Then

ot Lo,

Proof. — The Taylor formula insures that finite differences of ¢JJ{, converge uniformly
to the corresponding partial derivative of ¢. It follows by Proposition 3.8.12 that, up
to order k, the finite differences of qﬁﬁ converge in the sense of Definition 3.8.5, which
proves the proposition. O

3.11.3. Discrete tangent vector fields. — We may consider discrete functions with val-
ues in R™, or more precisely R?", rather than real valued functions. It is an easy
exercise to check that all the notions of convergence of discrete functions, Holder
norms, introduced before trivially extend to this setting.

Given a smooth immersion ¢ : ¥ — R2" we shall define a sample 7y €
C%(Qn(2)) ® R*™ of ¢ at §4.1. We will show that the discrete tangent vector fields
associated to the diagonals of the sample 7 converge in Proposition 4.3.1.
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CHAPTER 4

PERTURBATION THEORY FOR ISOTROPIC MESHES

We keep on using the notations of the previous section. Recall that £ : ¥ — R?" is
a smooth isotropic immersion and ¥ a surface diffeomorphic to a torus. The surface
is endowed with the pullback metric g5 and the flat metric g, related by a conformal
factor gz = 6g,. There is also a family of flat metrics g”¥ induced by the diffeomor-
phism @y : R?/T 5y — . We construct the various versions of quadrangulations and
the checkers graphs as in § 3.

4.1. Isotropic quadrangular meshes

A quadrangular mesh
Te My =C'Qy(E)) @R

associates R?"-coordinates to each vertex of ¢),,(X). One can define a unique piecewise
linear map

L TN - R™

from the 1-skeleton X}, of the quadrangulation ¢, (¥) into R*", which agrees with 7
at vertices. Contrarily to the case of a triangulation, there is generally no piecewise
linear extension to the 2-skeleton, that is ¥. Indeed, quadrilaterals of R2” may not
be planar. There are several options to construct extensions of £, : E}V — RN t0 %,
but this is not a fundamental issue as we shall see.

DEFINITION 4.1.1. — An Euclidean quadrilateral of R®™ is said to be isotropic if the
integral of the Liouville form X along the quadrilateral vanishes. Similarly, a mesh
T € M is called isotropic if the quadrilaterals of R™ associated to each face of Q) (%)
via T are isotropic in the above sense. The space LN < M is the set of all isotropic
quadrangular meshes T € M.
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4.1.2. Equation for isotropic quadrilaterals. — An oriented quadrilateral of R?® can
be given by 4 ordered vertices (Ag, A1, A2, A3). We introduce the diagonals of the
quadrilateral

(41) Do = A()AQ, D1 = A1A3.

Then we have the following result, which shows that the equation for an isotropic
quadrilateral is quadratic:

LEMMA 4.1.3. — The integral of the Liouville form A along an oriented quadrilateral
(Ag,...,A3) of R?™ is given by

1

EW(D07 D1>7

where D; are the diagonals of the quadrilateral defined by (4.1).

Proof. — We construct a pyramid 2 with base the quadrilateral ¢) and with apex
located at the origin O € R?", for instance. By Stokes Theorem

[ -

The integral of the RHS is the sum of the symplectic areas of the four triangles
(OA;A;+1), for i considered as an index modulo 4. Hence the integral of the Liouville
form is given by

1 s 1
§§)W(OAZ,OAZ+1) = §w(D0,D1). O
4.1.4. Diagonals notation. — For 7 € .#x, we consider the lifts 7 = 7 o py €

C°(Q(R?)). Using the notations of §3.3.1, we define the diagonals
D, D? & C¥(Q, (R) @ R
by
DY (f) = 7(Vit1,041) — T(Vi)
and
DY (fri) = T(Vi,is1) — T(Vig1,0)-

Then, D¥ and D? descend to the quotient > and provide discrete vector fields denoted
in the same way

DY, DY e C*(Qy(5)) @ B2 = C°((y(8)) OB,

By definition D? and D? represent certain diagonals of each face of the quadrangular

mesh 7. It is also convenient to introduce the renormalized discrete vector fields
N N
U = —=D} and ¥;=—=D7.
\2 A2
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4.1.5. Equation for isotropic mesh. — The problem of finding isotropic meshes can be
formulated using a suitable equation. Each 7 € .# and each face f € €3(§),,) defines
Euclidean quadrilateral in R?", given by the R??-coordinates of ordered vertices of f.
Such a quadrilateral has a symplectic area defined by the integral of the Liouville
form A along the quadrilateral. We can pack this data into a map

pn My — C*(QN (D)),

such that {un(7),f) is the symplectic area of the corresponding quadrilateral. The
space of isotropic meshes £y is by definition the set of solutions of the equation
un = 0. In other words

%N D gN = /LJ_VI(O)

For analytical reasons, it will be convenient to introduce a renormalized version of uy,
defined by

py = N?uy.

REMARK 4.1.6. — Given f € €(Q, (X)), the real number p}(f) is the ratio be-
tween the symplectic area (un(7),f) and the Euclidean area of f with respect to the
metric gV, which is
1
Area(f, gY) = N2

In this sense pu%; can be regarded as a discrete version of the moment map u(¢) = Z*?‘”
introduced at §2 and (u’y (7),f) as the symplectic density of the face f with respect
to 7.

The space of isotropic meshes £y is the zero set of u}. This subspace is defined
by a system of quadratic polynomials as shown by the following lemma.

LEMMA 4.1.7. — The map pun : MN — Cz(QN(E)) is quadratic. More precisely, we
have

(42) Guxe(r), £ = Sw(DY(£), DX(F)

and

(4.3) (i (1), £) = w(%:(£), V=(£)).

Proof. — This is an immediated consequence of Lemma 4.1.3. O

DEFINITION 4.1.8. — Since puy : My — C*(Q (X)) is a quadratic map, it is associ-
ated to a unique symmetric bilinear map

\I/N : ./ﬂN X %N — CZ(QN(Z))

Similarly, W'y is the symmetric bilinear map associated to the quadratic map ply.
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4.2. Shear action on meshes

The space .#y admits an obvious action induced by the translations of R?”, which
preserves the subspace of isotropic meshes Zy. However, translations belong to a
larger group acting on .#y, defined below, preserving isotropic meshes.

The space of vertices of ¢) (R?) admits a splitting similar to faces. Indeed, A} acts
on the vertices, with exactly two orbits denoted €7 (R?) and €, (R?), with the con-
vention that voo € € (R?). This splitting descends to the quotient via py : R? — X,
where we have two sets of vertices (cf. Figure 1 for a picture)

€(%) = €5 (2) v & (2).

For any mesh 7 € .#x and vector T = (T, T_) € R?" x R?", we define the action
of T on T by

(r,2vy+ Ty ifveed (D),

(Temv) = { vy + T ifved; ().

The above action of R?" x R?" on .#y is called the shear action. If T, = T_ the
action of T' is the usal action by translations mentionned earlier. However, the shear
action 7 — T - 7 by a vector T = (T, 0) pulls apart positive and negative vertices
of 7. But the shear action preserves isotropic meshes:

PROPOSITION 4.2.1. — The space of isotropic meshes T < M is invariant under
the shear action.

Proof. — The diagonals of the quadrilaterals associated to some mesh 7 are invariant
under the shear action. In particular, any isotropic mesh remains isotropic under the
shear action by Lemma 4.1.3. O

REMARK 4.2.2. — The shear symmetry shows that the space of isotropic quadrangular
meshes “y = (u%)"1(0) does not become more regular as N — o0 in a naive sense.
Intuitively, if 7 is isotropic and close to a smooth immersed surface (in some C'-sence),
the isotropic mesh (7Ty,0) - 7 now looks wild (cf. Figure 1), even more so as the
step size of the quadrangulation goes to 0. This explains why Schauder estimates for
discrete ellitpic operators involve only weak Hélder norms introduced at § 3.7. In turn
Theorem A and Theorem C are only stated with C°-norms.

On the contrary, it could be argued that shear symmetry could be used to improve
regularity, rather than destroying it. It is possible to obtain good strong C'-estimates
in Theorem C at one quadrilateral of the quadrangular mesh py, modulo the shear
action. Unfortunately, it seems unlikely that one could pass in general from such a
local to a global strong C'-estimate.
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75 45

FIGURE 1. Shear action on the blue vertices of a mesh

REMARK 4.2.3. — We will make seldom mention of the shear action. But this action
will be crucial at § 7 to get more generic isotropic quadrangular meshes.

4.3. Meshes obtained by sampling

. . . N W .
Given a smooth immersion £ : X R2", we construct a canonical sequence of
approximations of ¢ by quadrangular meshes

TNE%N.

The map £ : ¥ — R2" can be restricted to the vertices of Qn(X). Hence we may
define an element 7y € .#, called a sample of £, by

™~(v) = £(v),
for each v € € ( Q) (2)).

We would like to discuss more precisely the nature of the convergence of 7y to-
wards ¢ in the spirit of §3. This is possible at the cost of extending all the analysis
introduced at §3 for discrete functions on faces of ¢, (X) to the case of functions
defined at vertices. Instead of carrying this uncomplicated but lengthy work, we will
adopt a more straightforward approach here.

For the special case 7 = 7, where the meshes 7y are the samples of an immersion
¢ : ¥ — R? the diagonals D¥, DY, 7%, and ¥, are denoted D%, D%, %y and ¥y
instead. Then we have the following result

PROPOSITION 4.3.1. — The sequence of discrete vector fields 02/Ni and 7/1;; €

CO((}JJ{,(E)) QR2" converge in the C"-sense, for every k. Furthermore

ok of

More precisely, if we denote by %y, (resp. ¥3;) the samples of % (resp. %) then
|y — | ox = O(NTY) and | — Vlloy = ONTY).

%J\J,L —k> —  and ”f/ﬁ
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4.4. Almost isotropic samples

The defect of the samples 7y to be isotropic is given by the sequence of discrete
functions

(4.4) v = pi (1) € C*(Q (%))

The error ny is small as N goes to infinity in the sense of the following proposition:

PROPOSITION 4.4.1. — Let £ : ¥ — R be a smooth isotropic immersion and TN € MN
be the sequence of samples of £ with respect to the quadrangulations )\ (X). Let ny =
p(tn) € C*(Qy (X)) be the isotropic defect of Tiv. Then for every integer k = 0, we
have

Inxl s = O(N7Y).

Proof. — For each face f € €;(¢\ (X)), the quantity nx(f) is given by

() = S (DR (), DR () = wln (), Fa(1).

The formula for discrete differences of a quadratic form and the Ok—convergence of
Proposition 4.3.1 proves the proposition. O

4.5. Inner products

The tangent vectors to the space of meshes .# and the space of discrete functions
come equiped with canonical inner products, which are crucial for the analysis.

4.5.1. The case of function. — The space C?(Q, (X)) of discrete functions comes
equiped with an Euclidean inner product which is a discrete version of the L2-inner
product for smooth functions. The space C3(¢)\ (X)) admits a canonical basis, given
by the set of faces f € €3({,(X)). Thus, we have a corresponding dual basis f*
of C?(Qy (X)) defined by

1iff =1
=1

0 otherwise,
where (-, -) is the duality bracket.

Recall that the area of a face f of ¢),,(X), with respect to the Riemannian metric gy,
is equal to N~2. The 1-form f* is understood as a constant function equal to 1 on
the face f and 0 on other faces. This intuition gives an interpretation of the duality
bracket

(5 CH(Qu (D)) x Co(Qy (%)) > R

as the pointwise evaluation of functions on face. This leads to a discrete analog

K5 ) C*(Qy(B) x C*(Qu(R) » R

MEMOIRES DE LA SMF 161



4.5. INNER PRODUCTS 45

of the L?-inner product defined by

0 iffy, #6,
(EF ) = { .

L iff = .

The corresponding Euclidean norm on C?(Q (X)) is simply denoted |- |. Notice that
the splitting of

C*(Qn (D)) = C°(Gn () = C°(On(2) @ CO(Gx (%))

is orthogonal for -, -)». By construction, we have the following result:

PROPOSITION 4.5.2. — Let 1/}1%& € C’O(Q]ivk(E)) be a converging sequence of discrete
functions with lim wﬁk = ¢t. Then

_ 1
lim [y, [* = 51677z,

where | ¢~ |12 is the L?>-norm of ¢* with respect to the Riemannian flat metric g, .
In particular if both sequences converge and ¢ = ¢~ = ¢, then lim |, ||> = |¢]2..

Proof. — Let ¢Ji\, be the sequence of samples of ¢*. Then qu%,\ﬁ is understood as a
Riemann sum for the integral |¢*|2,. Compared to a usual Riemann sum, we are
throwing away half of the faces of the subdivision, and we have

. 1
tim 65 ° = S6% 3.

Using the Go—convergence of wf, and Proposition 3.8.11, we deduce that

lim [¢3 — ¢x|* =0,

and the proposition follows by the triangle inequality. O

4.5.3. The case of vector fields. — The space T'..#y consists of tangent vectors V €
C°(Qy (X)) ® R*™. Here V is understood as a family of vectors, given at each ver-
tex v of Qy(X) by V(v) = (V,v) € R*. We deduce an Euclidean inner product
on C°(Q,) ®R?, defined by

WVy=15 D eV, V).

vedo(Qn (%))

The corresponding Euclidean norm is also denoted | - ||.
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4.6. Linearized equations

Recall that the moduli space of quadrangular meshes .# is in fact the vector
space C%(Q (X)) @ R*™. So for 7 € .4y, the tangent space at 7 is identified to

Ty My = C%(Qn (D) @R*™ = Ay.

Hence a tangent vector at 7 is identified to a familly of vectors of R?" defined at each
vertex of the quadrangulation.

The differential of p7y : #n — C*(Q, (X)) at 7, which is a linear map denoted
DU?VL TN — 02(QN(E)),
is readily computed. Formally, we have
Dy -V = 20 (r,V),

where W7, is the symmetric bilinear map associated to the quadratic map uf,. For
a more explicit formula, we merely need to compute the variation of the symplectic
area of a quadrilateral in R?", which is being deformed by moving its vertices. Let
V e T, # N be a discrete vector field. We define a path of quadrangulations by

e =T+ tV, for t e R.

We would like to express the variation of p’y along 7. In order to state a result, we
need some additional notations.

4.6.1. Other diagonal notations. — We introduced the diagonals D¥ and DY at §4.1.4.
We need now a slightly different indexing in order to have a simple expression of the
differential of pf. We denote by fy; for k,l € Z, the faces of QN(RQ). Their image
under the projection py are still denoted fy; € €(¢, (X)). Similarly, we denote
by vi the vertices of @, (R?) and their image by py as vertices of @, (2). Let
VeT, My =C°(Qy(X)) @ R* be a vector given as family of vectors

Vkl B <V, Vkl> € RQn.
We define a deformation of the quadrangulation 7 by 7; = 7 4+ tV, or in coordinates
(T, Vi) = (T, Vi) + tVig.

Let 7 € M, f € €3(Q 5 (R?)) and v € €y(@, (R?)) be one of the vertices of f. We
enumerate the vertices (vg, v, va,vs) of f consistently with the orientation and such
that vy = v. The diagonals are defined by

D‘Thf = T(Vg) — T(Vl) € R2n

and if v is not a vertex of f, we put D7 = 0. Figure 2 shows a diagrammatic
representation of the above construction, with orientation conventions.
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7(v)

FIGURE 2. A face f of a mesh 7 with one diagonal and orientations

NOTATION 4.6.2. — The vector D ¢ € R2™ is called the diagonal opposite to v of the
face £ with respect to 7.

With these notations, we have the following expression for the variation of the
symplectic area:

LEMMA 4.6.3. — We have
1

d
Dl = =5 > W), D).
velo(Qy (X))

Proof. — We use the ordered vertices (Ag, Aj, A2, A3) of an oriented quadrilateral
in R?" and consider a variation (A}, A}, AL, AL) = (Ao, A1, Az, A3) +t(Vo, Vi, Va, V3).
We denote by Df and D! the diagonals of the deformed quadrilateral. By Lemma 4.1.3,
its symplectic area is
59(D5, DY),
Hence, the variation of symplectic area at ¢t = 0 is given by
1

3 (—w(Vo, D1) +w(V1, Do) +w(Va, D1) — w(V3, Dy)) -

Using our conventions for the diagonals of quadrilaterals, this proves the lemma. [J

4.6.4. Computation of the discrete Laplacian. — Any discrete vector field V € T, . #Z is
given by a family of vectors

V, =(V,v) e R*".
The almost complex structure J of R?® ~ C™ induces a canonical action on T, .#y =
C?(Q5 (X)) ® R®™ that can be expressed as

(JV)y i= J(V,).

Recall that the Euclidean metric g and the symplectic form w of R?” are related by
the formula
Vug,ug € R*™, wlug,ug) = g(Jug, ug).

According to the Lemma 4.6.3, the differential of uy at 7 satisfies

(Dpn|, - Vi) = —5 Nw(V(v), Dy ).
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hence )
Dpn| - IV.E) =53 9(V(v), DY ).

In turn, we have

N2
(4.5) (Dpy|_- IV, £) = N ZQ(V(V)7 v.t)-
We introduce the operator (notice the analogy with Formula 2.3)
(4.6) 0y = _DMR’L o J,
so that Formula (4.5) reads
N2
(4.7) <5T‘/)2¢(f)f> = Tqu(f)g(V(v), v£)-
f v,f
or, equivalently
N2
(4.8) 6V = Y g(V(v), D\Tr,f)f*-
v,f
With the above conventions
(4.9) (6:V, D 8(E)F) = N2¢3-V, ) 6(H)f*)
£ £

and it follows from Formulae (4.7) and (4.9) that
1
(8, 2 6O = 5 D 6()g(V(v), DY p)-
f v,f

We deduce that the ajoint §* of 4, for the inner product (-, -) satisfies
V5*2¢ f*>>—ZNQg< 2N2 )
— X Z (£

which proves the following lemma

LEMMA 4.6.5. — The operator
Try My — C*(Qn(2))

is given by

N2
(4.10) 5V = 5 2 9(V(v), Dy p)f*,
v,f

whereas its adjoint

52+ C(Qy (8)) = Tryotliy
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is given by
N2
(4.11) 51p = — > ¢(F)D] f @ v*.
2 v,f 7
REMARK 4.6.6. — The operator 6, = —D,u’"N‘T o J is the finite dimensional version

of 6y = *Dp,|f o J considered in the smooth setting (cf. §2.2.5). In the smooth set-

ting, the adjoint 5} allows to recover the Hamiltonian infinitesimal action of the gauge
group { = Ham(X, o) on .# according to the identity (2.4). In the finite dimensional
approximation, there is no clear group action on .#y for which u’ would be the
corresponding moment map. However, the vector fields Vy(7) = 0%¢ define infinites-
imal isometric Hamiltonian action which should play the role of finite dimensional
approximations of Ham(3, o).

The kernel of §; contains the constants discrete functions, but might contain other
function as well. This is not the case generically, according to the proposition below

PROPOSITION 4.6.7. — Let T € .#N be a generic quadrangular mesh in the following
sense: for every vertex v of the quadrangulation ¢) (X), the four possibly non vanish-
ing diagonals Dy ¢, where £ is a face that contains the vertex v span a 3-dimensional
subspace of R?™. Then the kernel of 6% reduces to constant discrete functions.

Proof. — The equation §7¢ = 0 provides a linear system of rank 3 with four variables
associated to each vertex. This imply that ¢ must be locally constant around each
vertex and it follows that ¢ is constant. O

DEFINITION 4.6.8. — Given a quadrangular mesh 7 € # N, we define the discrete
Laplacian A, : C*(Q 5 (X)) — C?(Qy (X)) associated to the mesh T by

Given a smooth isotropic immersion £ : ¥ — R?™ and its samples ™5 € M, the

associated operators to 0,y , 0% and A, are denoted dn, 65 and Ay, for simplicity.

TN

REMARK 4.6.9. — Notice the analogy between the operator Ay defined by For-
mula (2.5) and A.. The operator A, will play a central role in the perturbation theory
of quadrangular meshes, as A did for smooth isotropic immersions. The reader should
already be aware that A, is not the classical Laplacian associated to the mesh 7, as
will become clear from the sequel.

By Formula (4.11) we have

2
6:f* = NT Z Dv,fV*v
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By Formula (4.10) we have

Af* = N742 ( T T )f*
T 4 g v,f» v,f2/*2 -

v,f>

We obtain the following result
PROPOSITION 4.6.10. — For ¢ € C?(Q (X)), we have

N4
A= e Z (£)g(D3 ¢, D3 ¢, )f5
v,f,f5

4.7. Coefficients of the discrete Laplacian

The discrete Laplacian Ay is an endomorphism of C?( Q) (2)) whose coefficients
are explicitely given by Proposition 4.6.10. When dealing with 7,7, we use the notation
Dy ¢ := D% for simplicity. We introduce the coefficients

N4
6f1f2 = ng(DV7f1’DV7f2)'

By Proposition 4.6.10 we have
ANEF = " Beef5.

f1.f2

4.7.1. Splitting of the Laplacian. — The matrix (8g+) is obviously symmetric in f and
f’, which is not surprising since Ay is selfadjoint by definition. The matrix is sparse
in the sense that most of the coefficients Gg/ vanish. There are three types of possibly
non vanishing coefficients:

(1) £=1".

(2) f and f’ have only one vertex in common.

(3) f and f’ have exactly one edge (and two vertices) in common.

Using the above observation, we may write the operator Ay as a sum
Ay = AR + AL
Here
E px N4 *
ANf = T Z g(Dv,fa Dv,fg)fQ P
V,fQEElz(f)
where F15(f) is the set of faces fy such that the pair (f,f3) is of type (1) or (2), and

I Nt
ANf>l< = 1 Z 9<Dv,f7DV,f2)f;7
v, f26 B3 (F)
where E3(f) is the set of faces f5 such that the pair (f, f3) is of type (3). By definition,
we have the following lemma
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LEMMA 4.7.2. — The operator AL preserves the components of the direct sum de-
composition C2(Q (X)) ® C2(Qy (X)), whereas A}, exchanges the components. Ac-
cordingly, there have a block decomposition of the discrete Laplacian

A — ( AR | AL )
AL | A%
4.7.3. Finite difference operators and discrete Laplacian. — The smooth Laplacian (2.5)
is related to a twisted Riemannian Laplacian by Lemma 2.3.4. The goal of this section

is to find a similar expression for the discrete Laplacian An ¢, using finite difference
operators.

The strategy is to compute (An¢,f) at some face f of ¢, (¥). For this purpose,
we will use the notations fy; and v;; for faces and vertices of QN (Rz), considered as
vertices and faces of @), (X) (cf. §3.3.1 and §4.1.4). The values of a discrete function
are denoted

b1 = (&, frr),

and the diagonals D;jx; are obtained as Dy, ;f,,, with the convention that D;jx; = 0 if
v;; is not a vertex of the face fy; in QN (R?). The coefficients Byimy are denoted B, ¢,
and we choose the integers k,l so that f = fi;. The coefficients Bgs vanishes unless
f =f" or f and f’ are contiguous faces. In such case we may choose a unique pair of
integers (m,n) such that £’ = f,,, withme {k—1,k,k+ 1} and ne {l — 1,1,1 + 1}.
Under these conditions (cf. §4.7.1)

1. fy; and f,,, are of type (1) if (&,
2. fi; and f,,, are of type (2) if (m
3. fy; and £, are of type (3) if (m

2

I)=(m
l+1l)or (k+1,lF1),
,) or (k,1+1).

For the first type of coefficients, we find
N4 9
Brikt = T;HDUMH )

where we may take the sum over all pairs of indices 4,5 € Z. For the second type of

cooefficients, we have
4

N
Tg(Dijkh Dijmn),

where v;; is the common vertex of fy; and f,,,, in @ (R?). In the third case there are
two common vertices v;; and v;;; which belong to the same edge. Then

ﬂklmn =

4 4

N
—9(Dijki, Dijmn) + TQ(Di’j’kla Ditjimn)-

ﬂklmn = 4

For simplicity of notations, we also use the notations D}, and D}, for the diag-
onal (cf. §4.1.4), which differ only by a sign. We start our computations with the
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operator AY:

4N~ 4<A o, fkl> = —¢rp_1,- 19(Dk 1,1— 17Dkl) ¢k+1,l+19(Dz+1,l+1a D%z)
- ¢k71,l+1g(‘Dk71,l+1’ D) — ¢k+1,l719(DIch+1,lfl7 Dy;)
+ 261 (9(Di, D) + 9(Dxy, D))
One can write
Grr1,0419(Di 1041, Dit) = Grv1,0419(Di y, Diy)

+ ¢k19(Dis1,141 — Dii» D)

+ (1,041 — 5,1)9(Diy1.101 — Dits Dit)
and similar Leibnitz type decomposition for the other terms. Thus, we obtain accord-
ingly

AN"HAR S, 1) = (—r-1,-1 — Pr+1,41 + 20k1)9(Dyy, Diy)
+ (=br—1,041 — Prr1,-1 + 2¢11)9(Dyy, Diy)
= ®rg(Dy_1,-1 + Diy1041 — 2D5y, Diy)

— ¢r19(Dyy1,-1 + Di_1,11 — 2Dj, D)
—(Pr—1,-1 — ®r1)9(Dx_1,-1 — Di1, Diy)
— (Bt1,041 — k)9 (D 1,41 — Diis Dit)
— (Px—1,041 — x1)9(D)_1 141 — Dy, Diy)
— (Pr+1,0-1 — Pr1)9(Dys1,—1 — Dy, D)

We gather the RHS into a sum of three operators: first we define Aﬁ This operator
will turn out to be a discrete version of the Riemannian Laplace-Beltrami operator
on X:

AN"HAL S, fr) = (—r—1,-1 — Srs1,041 + 20w1)9(D}y, D)
+ (=Pr-1,141 — Pr+1,1-1 + 20k1)9(Djg1y Digt),
then we define the operator K ﬁ, which is some kind of discrete curvature operator by
AN"HEKN G, fur) = —0kg(Di—1,-1 T Dii1,41 — 2Dy Diy)
— ¢r19(Diy1,-1 + Di_1,41 — 2Dj;, Digy)-

The last four lines can be rearranged into an operator 'Y given by

AN~ 4<F ¢7fkl> = _*(d)k 1,l-1 — ¢kl)(‘Dk 1,1— 1| |Dzl|z)
1 v v

- §(¢k+1,z+1 - ¢kl)(|Dk+1,l+1|3 - \Dkz\j)
1 u u

- §(¢k—1,l+1 - ¢kl)(|Dk—1,l+1|§ - \Dkz\i)

1 u u
- §(¢k+1,l71 — ¢kl)(|Dk+1,l71|§ - \Dkz\j)

MEMOIRES DE LA SMF 161



4.7. COEFFICIENTS OF THE DISCRETE LAPLACIAN 53

plus an operator
— 1 v v
4N 4<8§¢7 fkl> = *i(ﬁbk—l,l—l - ¢kl)|Dk_171_1 - Dkl|§

- §(¢k+1,l+1 — &) D041 — D%z\j

1 u u

- §(¢k—1,l+1 — k)| Di—1,041 — Dkz\j
1 u u

- §(¢k+l,l—1 = &k)| Dk y1-1 — Dkl\z-

So, we have a decomposition
A E
ALY = AL + KN +T8 + Ex.
Similar computations can be carried out for AL,

ANHAN ¢, fi) = Sr+1,1(—=9(Dy 1.4 Diy) — 9(Dii1.05 Diy))
Gk,14+1(9(Dy 415 Diy) + 9(Di 141, Dit))
¢k_1,z(*g(D£_1,z, D) — Q(DZ—leDEl))
br,1-1(+9(Dy 1, Dip) + 9(Dy 1, Diyp))-

We introduce the averaging operator ¢ — ¢ defined by

br1 =<, fu1) = % (Grt1, + Pr—1,0 + Orjir1 + Pri—1),
and we write each term above under the form
Drt1,19(DF 4105 D) = (Pt + (Srv10 — bra))g (DR + (Diy1y — DRy), D) -
Expanding these expressions leads to
AN~YANS, fr) = drag (DR 1 — Diyay) — (Di_1y — Diyzi1), D)
+ brug ((Dﬁ,m —Diy1) — (D1 — Dg,zq),Dzl)
+ 2((Pk,+1 — Ph—1,1) — (Pr+1,0 — Bki-1))9(Dy, D)
+ (k410 — ngl)(*g(DZH,z — Dy, Diy) — 9(Dyy1, — Dy, Diy))
+ (¢k,141 — k1) (9(D3 141 — Dy Diy) + 9(Dii i1 — Digg, Diy))
+ (Pr—1,0 — szlx_g(szl,l — Dy, Dyy) — 9(Di—1, — Dt D))
+ (a1 — Pr)(g( ki1—1— Dii, D) + 9(Dy 1 — Dy, Dyy))-
The first two lines can be expressed using Chasles relation as an operator
AN"HKL ¢, fu) = (Eklg(szl,lJrl + Dii1,-1 — 2Dy, Dig)
+ nglg(Dz+1,l+1 + D{_1,-1 — 2Dy, Dyy)-

In particular, we see that if ¢p; = ¢x;, then <(K_f0 + Kf))qﬁ, fi1) = 0. We decompose
AT as a sum

AL = KL + &4,
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All the above operators may be expressend in terms of finite differences. First we

define analog 6%,6% € C?(( (X)) of the conformal factor 6 by
On = |uxl;, and 0% = [V

and a discrete analog of the Gau® curvature plus an energy term ky € C?((y (X))

given by
N — g a(—a—» Ny /N a(_a_, N N

PROPOSITION 4.7.4. — The operators introduced above satisfy the following identites
for every discrete function ¢:

B & &
AN¢:_< Nam*“”a*a*)‘b
KNo =kn-¢
1 (0006%  2600% 0 00% 06 0%
Ty = (a*a**aaaa+%aa+aaaﬁ

) = —grad¢ - gradfy
and
KLo=—ky-o.

The operators 8% and 85\, become negligible as IV goes to infinity, in the sense of
the following proposition:

PROPOSITION 4.7.5. — There exists a sequence ey = O(N~1) with ex > 0 such that
for all N and all functions ¢ € C*(Q (%)), we have

I
| €Nl oe <enlBlleae, and [ERG|eon < enld]gze,
|ExSleo <enldle: and [ERleo < enld]ee.
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CHAPTER 5

LIMIT OPERATOR

5.1. Computation of the limit operator

We denote by A, (resp. Ay the Laplace-Beltrami operator associated to the Rie-
mannian metric g, (resp. gs) on X.

THEOREM 5.1.1. — Let k be an integer such that k > 2. For every sequence of discrete
functions Yy, € CQ(QNk (X)), converging in the Ofu—sense toward a pair of functions
(¢™,¢7), we have

AN YN, = E(p*,¢7),
where Z(¢™, ¢~ is the pair of functions defined by
S0, 67) = (0806" — go(ds*,d0) + (K + E)(¢" —¢7),
0206™ — g5(d8™,d0) + (K + B)(9™ — ¢%)),
where K is the Gauf§ curvature of gz and E is a nonnegative function on ¥ defined

at (5.1).

Proof. — The result is a trivial consequence of Proposition 4.7.4 and the convergence
of the coefficients of the operator. The only non trivial fact that must be proved is
the following lemma.

LEMMA 5.1.2. — We have the identity

o0 or o3 ot
K+E=-g <8u23v’ (?U) —9 (8v28u’ 6u> ’

where K is the Gauf curvature of the metric g> and E is the nonnegative function
on ¥ defined via the second fundamental form I of £: ¥ — R2"

2et o2t o 0 o 0
(5-1) E=2 (é’u&’v " Oudv ) =29 <]I <8u’8v>’n<6u’(}v>)'
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Proof. — Recall the standard formula for the Gauf curvature K of the metric g* =
£*g = g, conformal to the flat metric g,:

K= %GAU log 6.

Using the classical identity
0A,logh = A0 + 0 g, (db,dd)

g (200 _ (oo
“I\owaou) I\ )
we compute
00 0% ot 06 0%¢ oL

(52) v 29 <0u0v’ 0u) T ou 29 (Ouav’ (77)) ’
hence

@ _, 03¢ % Lo 0% ox

v 9\ uov?’ Ou 9\ Guov’ Budv

P, (P Ay (P P
oz~ 9\ ou2ov’ Bu I\ udv’ duov )

2

and using the fact that

and

In particular

o0 2

go<d0ad9) = ‘(711

L (PN 2 oy

= 9\ Gudv’ ou I\ udv v )
thanks to Formula (5.2). The fact that g—ﬁ and g—ﬁ is an orthogonal family of vectors
of g-norm /6 implies that any vector V € R?" satisfies the identity

or\? o0\?
g<v,au> +g<‘/7(’}’0> :09 (VT7VT)’

where V7' is the g-orthogonal projection of V onto the plane spaned by % and g—f.
In other words, V7T is the g-orthogonal projection onto the tangent plane to 4(X).

Therefore
2t e’
Oudv  Oudv

30 o B0 o o2 o2
Aol = =29 (8u5v2’ au> —% <6u2(7v’ av> — 4 (auav’ auav> '
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In conclusion

2K = 0A,log
= A0 + 0 g,(db, o)
P NP S LS (B ot
= T o du N ou2dn’ dv I\ oudv oudw |’

where | denotes the component of a vector orthogonal to the tangent space to £ at a
point. O

COROLLARY 5.1.3. — For all integers k > 0,
k
iy > K + E.

The coefficients of Ay are now all understood asymptotically. This completes the
proof of the theorem. O

DEFINITION 5.1.4. — The operator defined by
E(67,67) = (08507 — g5 (d6™,d0) + (K + E)(¢* — ),

08,6 — go(dp™,d0) + (K + E)(¢~ — ¢*))
is called the limit operator of Ay .

REMARK 5.1.5. — In particular, the limit operator = is elliptic. This fact will be
crucial to derive uniform discrete Schauder estimates for Ay.

5.2. Kernel of the limit operator

PROPOSITION 5.2.1. — A pair of smooth functions (¢7,¢~) is an element of the
kernel of the limit operator Z if, and only if, there exists some real constants ¢y and
c1 such that

Tt =co+c107t, d =co—ci07h
with ¢; = 0, unless the function E vanishes identically on ¥. In particular the kernel
of 2 has dimension 1 or 2 depending on the vanishing of E.

Proof. — The proposition is proved by a straightforward argument using integration
by part. A few formulae are needed in order to give a streamlined proof:

LEMMA 5.2.2. — For every smooth function f: X — R, we have
d*gadf = 9Ao’f - ga(dfa da))

where d*° is the adjoint of d with respect to the L%-inner product induced by g,. On
the other hand, we have

0d*07d0f = 0A,f — g, (df,d0) + 2K f,

where K is the Gauf$ curvature of gs.
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Proof. — For every 1-form § and every function w on X, we have d*s (wf) = — #, d*,
(w/@) = — %o d(w *a /8) = — *g (dw A #q 3+ wd x4 /6) = wd*oﬁ - *aga(dwyﬁ)VOla =
wd*e § — g, (dw, §). In conclusion

d* (wp) = wd* B — g»(dw, §).

The first formula of the lemma follows from the above identity. For second identity,
we have 0-1d(0f) = fdlog8 + df. Now, d**0~1d(0f) = fd* dlog — g, (df,dlog8) +
d*e df. We use the fact that the Gauf curvature of gy is given by the formula 2K =
A, logf and deduce the second identity of the lemma. O

We may now complete the proof ot Proposition 5.2.1. Let ¢* be a solution of the
system

9Aa¢+ - ga(d¢+ad6) + (K + ‘E)((ZSJr - qsi) =0
08:¢" — go(d¢™,do) + (K + E)(¢~ — ") = 0.
Adding up the two equations gives the identity
9Aa(¢+ + ¢_) - <d(¢+ + ¢_)7d0>cf =0= d*aed(¢+ + ¢_)

by Lemma 5.2.2. Integrating against ¢* + ¢~ using the L2-inner product induced

by go gives 0 = (d*0d(¢" + ¢7),¢" + ¢ )r2 = (Bd(¢p" + ¢7),d(¢" + ¢7))r2. Since
6 is positive, this forces

¢+ + ¢_ = 200,
for some constant cy.

On the other hand the difference of the two equations provides the identity
00 (67 —¢7) — go(d(¢™ — ¢7),d0) +2(K + E)(¢" —¢7) =0.
by Lemma 5.2.2 we deduce that
0d* 0~ 1do(pT — ¢ ) +2E(¢pT —¢7) = 0.
Integrating the above equation against §(¢™ — ¢~ ) provides the identity
Od($* — ¢7),d(¢" — ¢ iz + QE(@" —¢7), 6% — ¢ e = 0.

Now 6 is positive and E is nonnegative, so the two terms of the LHS are non negative:
they must vanish both. The vanishing of the first term forces

¢t — ¢ =20""¢y,

for somme real constant c¢;. The vanishing of the second term implies that ¢; = 0
unless F vanishes identically on X. O
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5.3. Degenerate families of quadrangulations

Proposition 5.2.1 leads us to distinguish two types of constructions.

Recall that the construction of ¢), (¥) depends on the choice of a Riemannian
universal cover p : R? — X for the flat metric g, on . Such cover are not unique.
They may be, for instance, precomposed with a rotation of R%. Equivalently, we may
replace the canonical basis of R? by a rotated basis, which also provides rotated
(u, v)-coordinates.

We introduce a definition of degeneracy, bearing on pairs (p, £), that consists of an
isotropic immersion £ : ¥ — R?" and a choice of Riemannian cover p : R? — ¥ for a
flat metric g,, in the conformal class of the induced metric gy .

DEFINITION 5.3.1. — We say that the pair (p,£) is degenerate, if the function E :
¥ — R defined by (5.1) vanishes identically. Otherwise, we say that the pair (p, ) is
nondegenerate.

EXAMPLE 5.3.2. — An example of degenerate pair is provided by the map
R —CQC~R*
defined by
£(z,y) = (exp(2miu)), exp(2miv)) € C2,

where (z,y) are the canonical coordinates of R? and (u,v) are the rotated coordinates
defined by (3.12). This map clearly satisfies

0%
(5.3) Tudn 0

Moreover, ¢ is invariant under the lattice I' spanned by

eites €2—¢€1

and N Hence ¢ de-

scends to a quotient map denoted ¢ : R?/T — C2. We obtain a pair (p,£), where
p: R? - R?/T is the canonical projection, which is degenerate in the sense of Defini-
tion 5.3.1 by (5.3).

Degenerate pairs can create additional technical difficulties. Nevertheless, they may
be taken care of with some additional caution (cf. § 5.6). Or they can just be avoided
according to the following proposition:

PROPOSITION 5.3.3. — Given a pair (p,£), there always exists a rotation r of R? such
that (por, ) is non degenerate.

Proof. — The (u,v) coordinates of R? induce an orthonormal basis of tangent vectors
of ¥ for the metric g,, denoted %, % If (p,£) is degenerate, Il must vanishes identi-
cally on this pair of vector fields. If (por, £) is degenerate for every rotation of R?, the
second fundamental form must also vanish for every pair of tangent vectors obtained
by rotating the basis %, % This means that II vanishes on every pair of orthogonal
tangent vectors for g,. Since gy is conformal to g,, this means that II must vanish
for every pair of orthogonal tangent vectors for gs. This is a contradiction according

to the following lemma:
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LEMMA 5.3.4. — For any immersion £ : ¥ — R?", where ¥ is a closed surface dif-
feomorphic to a torus, there exists a point x € ¥ and an orthogonal basis of tangent
vectors U, V' for the induced metric gy, such that the second fundamental form sat-
isfies W(U, V') # 0.

Proof. — We choose a point z € T,3. Assume that II(U,V) vanishes for every or-
thonormal basis (U, V) of T,,X. Notice that in this case (U +V,U —V) is an orthogonal
basis, hence, by assumption I(U + V,U — V) = 0, and we have
nLU,U0)=0U+V,U-V)+LA(V,V)=1I(V,V).
By the Gaufl Theorema Egregium, the curvature K of gy is given by
K = 79(]I(U7 V)v ]I(Vva U)) + g(]I(Ua U)a ]I(V7 V))
According to our discussion, we deduce that

By the Gau-Bonnet formula, a torus with nonnegative curvature has vanishing cur-
vature. Thus K = 0, and as a corollary II(U,U) = 0, which implies that I = 0. In
conclusion the image of £ : ¥ — R2" is totally geodesic. The only totally geodesic
surfaces of R?" are 2-planes. This forces the image of £ to be contained in a plane.
This is not possible for an immersion of a compact surface. O

In conclusion there is a choice of rotation r such that (p o r,¢) is nondegenerate,
which proves the proposition. O

5.4. Schauder Estimates

The following result is a consequence of a theorem of Thomée, stated in a broader
context [10], for various elliptic finite difference operators, in the case of domains of R™
covered by square lattices of step h = N~1. We provide here a statement adapted
to the torus ¥ identified to quotients R?/T'y endowed with its spaces of discrete
functions.

THEOREM 5.4.1 (Thomée type theorem). — There exists a constant ¢; > 0 such that
for all N =0 and for all functions ¢ € C*(Q (X)), we have

|1Pntpllgoe + [Yllgo = eall9b] gz

where
Py = Aﬁ + ]._‘JE\}

Proof. — Proposition 4.7.4 can be readily used to prove an analog of Theorem 5.1.1
for the opertors Py. In other words, for every k > 2, for every sequence %y, €
C%(Qy (¥)) such that (cf. (2.5) and Lemma 2.3.4 as well)

J

k k—2
(5.4) by, S5 6 = Pan, T Arh
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The operators Py admit canonical lifts Py : C2(Q, (R?)) — C2(Qy(R?)). The
elliptic operator A, can also be lifted as an elliptic operator with smooth coeffi-
cients A, acting on functions on the plane. By Property (5.4), the discrete operators
Py : C? 2(Qn(R?) — C3(Qy(R?)) converge toward the elliptic operator Ay. This
implies that the sequence of discrete operators Py is consistent with the elliptic op-
erator Ay and that the operators Py must be elliptic, for N sufficiently large, in the
sense of Thomeée [10].

We consider a fundamental domain &) of the action of ' on R2. For ry > 0 suffi-
ciently large, &) < B(0,7¢). We define

Qo = B(0,70 +1), Qi = B(0,79 +2) and Qy = R?,

where B(0,r) is an Euclidean ball of R? or radius r, centered at the origin. By defi-
nition we have compact embeddings of the domains ¢ € 2 € Q5.

The finite differences (3.17) and (3.18) used to obtain the discrete finite difference
operators Py correspond to the finite differences defined in [10], modulo a translation
operator for the retrograde differences. It follows that [10, Theorem 2.1] applies in
our setting: there exists a constant ¢ > 0 such that for every N sufficiently large and

¢ e CL(R?),
(5.5) 19l 20y < 1PN Sl o9 + 19l g ) }-

REMARK 5.4.2. — In the above notations, the Ci®(Q;)-norm on C2 (4, (R?)) are
the norms defined in [10], using only forward differences. For Q, = R?, these norms
coincide with the ¢"™*-norms introduced at §3.7.

If @ = B(0,R), the definition of the norms given at (3.10) and (3.21) has to be
modified slightly for the 01}’0‘ (©)-norm. In order to describe what has to be modified,
assume for a moment that ¢ is a discrete function defined only on the set of vertices
of (}(R?) contained in Q. Notice that the finite differences g¢ and 0¢> are defined on
a smaller set, and the second order partial derivative on an even smaller set, etc. The
G?Q(Q)—norms are defined similarly to the C***-norms, by taking the corresponding
sup on a smaller set of vertices. Namely, the vertices of QX, (R2) contained in Q where
the relevant partial derivatives are well defined.

For ¢ € C3(Qy(X)), we define the lift ¢y = 9 o py. By Remark 5.4.2, since
Qs = R?% the RHS of (5.5) applied to ¢y is equal to

c{IPx N o + oo }-

By definition of the discrete Holder norms, [¢]p = [¢n|po and since Pyon =
(PnY) o pn, we have

| Pnon | goe = [ Pntp] go.e
Thus by (5.5)

(5.6) %0 bl gz ) < e IPN Wl oo + [l 0}
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We conclude using the following result

LEMMA 5.4.3. — There exists a constant ¢’ > 0 such that for every N sufficiently
large and all ¢ € C3 (9 (%))

!
lplleze < ¥ opnl e (q,)-

Proof of the lemma. — By definition, g contains a fundamental domain ) of T,
and furthermore &) € Qg. By construction, the lattices I'y admit fundamental do-
mains )y which converge (say in Hausdorff distance) toward ). Therefore ) € Qo
for all N sufficiently large.

In particular every vertex z € (5 () admits a lift z € ¢} (R?) via py such that
z € Qg. This shows that
[P0 < [¥opnles o)

If N is sufficiently large, the finite differences of order 1 or 2 of 1) o px are well defined
at Z depend only on values taken by the function on the domain ;. It follows by
Remark 5.4.2 that

(5.7) l¥opnlez < [¥opnlez o)

If ¢ is any discrete function in C°( (% (R?)), for every pair of vertices v, v/ of {1 (R?)
with vo € Qg and v’ ¢ Q;, we have

[€(vo) — £(v')]

[vo = v’

< [€(vo) = E(v)| < 2] o

since ||[vg — v/| = 1. We apply this inequality to the second order finite differences
of 1 o py. This shows that the C**-norm of 1 o pn is controled by its C*-norm and
its C3*(Q4)-norm. Hence by (5.7) the C2*(€;)-norm controls the ¢*“-norm. O

Using the lemma and (5.6), we deduce that for every N sufficiently large and
Y e C3(Qy (X)), we have

Nl gze = ¢[Y opnlgre < cfIPutlgne + [$leo }-

This proves the theorem for N sufficiently large and ¢ € C% (@ (X)). The same result
holds if 1) € C2(Q, (X)). For a general 9, we use the decomposition in components
¥ =T + 1~ and the theorem follows, for N sufficiently large, by definition of the
weak Holder norms. If the theorem holds for N sufficiently large, it holds for every N
since C?( @, (X)) is finite dimensional, and all norms are equivalent. O

COROLLARY 5.4.4. — There exists a constant co > 0 such that for all N = 0 and for
all functions ¢ € C*(Q (X)), we have

IANG o + @]l o = 2Bl g2,e-
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Proof. — We use the decomposition ¢ = ¢ + ¢~ and prove the corollary in the case
of the operator

Ay =AY + T8 + KE + K§

first.
Then Aly¢ = o = o+ + ~, where v+ = PyoT + kn(¢T — ¢7) and ¢~ =
Pné~ + kn(p™ — gz_3+) Since kx converges in the sense of Lemma 5.1.3, we deduce

that x| g0« is uniformly bounded for all N. Thus a C*bound on ¢ provides a
nga—boundwon kn¢T. Similarly a C2*-bound provides C%*-bound on ¢*. In other
words, there exists a constant ¢ > 0 independent of N and ¢ such that
len (@ = ) eoe < 6]l g0 and |n (9™ = 67)] o0 < )l o0
It follows that
IANG] eoe + 2@l o0 = [ Pn] eose,
and by Theorem 5.4.1

(5-8) ANl o + (2" + D]l o = el 2o

We are not quite finished since we have a Ci’a—estimate for ¢ in the above inequal-
ity rather than a (°-estimate as in the corollary. We prove a weaker version of the
corollary first: we show that there exists a constant ¢’ > 0 such that for all N and for
all ¢,

(5.9) [ ANl oy + Bl o = "l goyer-

If this is true, the corollary trivially follows in the case of A’y from (5.8) and (5.9).
Finally, Proposition 4.7.5 completes the proof in the case of Ay = Ay + ek 4+ ek

Assume that (5.9) does not hold. Then theres exists a sequence of discrete functions
®N, € GQ(QNk (X)) with the property that

I6nileoe =1, |AN, Nl ege — 0 and |ény [, — 0.

Using Inequality (5.8), we obtain a uniform Gi’a—bound on ¢y, . By the Ascoli-Arzela
Theorem 3.10.6, we may assume up to extraction of a subsequence, that ¢y, converges
in the Gi)—sense toward a pair of functions (¢*,¢~) on X. Since the convergence
is C2 hence (°, the condition [én, | o — O forces ¢ = ¢~ = 0. This imply that

C: . . . .
én, —= (0,0), and in particular |¢y, |2 — 0. Since the C2-discrete norm controls

the C;*-discrete norm, this contradicts the assumption ¢y, | o = 1. O

5.5. Spectral gap

We define the discrete functions

1% € CO(Gn(2)) = C1(Qy (D)
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by
" 1 ifze&(@n(D)
<1]_\77z> = . F
0 ifze&(0y(X%)).
We also define the discrete functions 1y,(y € C°({0y (X)) by
1y =145 + 1y
(v =05 15 — 05 1y,

where 0y is any discrete function, sufficiently close to 8%, or 0%;. For instance, we put
1
On = 5(97\, +0%).

We define the spaces of discrete functions #y < C°({ (X)) by

(5.10)

e = R-1pn if (p,£) is nondegenerate,
N R-1y®R-{y in the degenerate case.

In addition, we denote by
Ay < C*(Qn (%))
the orthogonal complement of %, with respect to the (-, -)-inner product.

REMARKS 5.5.1. — The function 1y and more generally, any constant function, is
contained in the kernel of the operator Ay. Indeed, Ay = dnéy, but d*1y =0

by Formula (4.11).
— The sequence of discrete functions (n converges toward the pair of functions
(0=1,—671), at least in the (2 -sense. Whenever £ is degenerate, we must have

cO
An¢y —(0,0),
by Theorem 5.1.1 and Proposition 5.2.1.

— The kernel of Ay is at least 1 dimensional. If £ is degenerate, our next result
at Theorem 5.5.2, implies that for N sufficiently large, ker Ay has dimension at
most 2. Although (v may not belong to ker A, the previous remark shows that
this function is approximately in the kernel. In this sense, £ may be thought
of as an approximate kernel of A .

THEOREM 5.5.2. — There exists a real constant cs > 0 such that, for all positive
integers N sufficiently large and for all discrete function ¢ € #y, we have

[ANGl eoe = esldllzye-

Proof. — We are assuming that ¢ is degenerate. Since the proof in the nondegenerate
case is completely similar, we leave the details to the reader. We start by proving a
weaker version of the theorem:

LEMMA 5.5.3. — There exists a real constant ¢y > 0 such that, for all positive integers
N sufficiently large and for all discrete function ¢ € Hx, we have

IANS| co,« = call@] co-
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Proof of Lemma 5.5.3. — Assume that the result is false. Then there exists a sequence
N, € fj\t such that

Vk H¢Nk HGO =1, and HAqust H % T 0.
Using Corollary 5.4.4, we deduce a C**-bound on ¢n, . Thanks to the Ascoli-Arzela

Theorem 3.10.6, we may assume that ¢y, converges in the weak 02—sense, up to
further extraction:

ez _
(5.11) one —> (67, 97).
By Theorem 5.1.1, we conclude that

An, dn, -5 Z(, 67).

The condition |An, ¢n, | 0.« — 0 implies that |An, ¢n,|lce — 0, which shows that
the limit is (0, 0). Therefore

(5.12) (¢pt,¢7) e ker E.

We are assuming now that we are in the degenerate case as before. The nondegenerate
case is treated similarly. By assumption ¢, is orthogonal to %, hence ¢y, ,1n, ) =
«on,,Cn,. ) = 0. Since all these discrete functions converge in the (’-sense, we deduce
that the limit also satisfy the orthogonality relation, that is

K(¢*,67), (1, 1)) =K(é%,¢7), (671,071 =0.
In other words (¢, ¢~ ) is L?-orthogonal to ker =. In view of (5.12) we deduce that
" =9~ =0,
and by (5.11), we deduce that

[énillce — 0,

which contradicts the assumption |¢n, [0 = 1. This completes the proof of the
lemma. O

By Lemma 5.5.3, we have for every ¢ € %

(L+ci ANl = [ANS] gy + 8] o-

By Corollary 5.4.4, the RHS is an upper bound for ¢z @] p2.. The constant,

c2
C =
P79 + ch
satisfies the theorem, which completes the proof. O
COROLLARY 5.5.4. — 1. If (p,f) is nondegenerate, then for every N sufficiently

large, the kernel of Ay is given by ker Ay = # = R-1y. Furthermore Jyf is
preserved by An which induces an isomorphism A : C%JL\, — J&ﬁ
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2. More generally, including the case where (p,£) is degenerate, there is a direct
sum decomposition for every N sufficiently large

C*(Qy(B) = Hn @ An(Hy),

and a constant cg independent of N, such that for all ¢ € C*(Q (X)) decom-
posed according to the above splitting as ¢ = ¢ + ¢>, we have

(5.13) coll @l g = 19l g + I pall goye-

Proof. — The first statement is a consequence of the second statement: In the nonde-
generate case, £y is one dimensional and #y < ker Ay. Hence A(J%; ]\J,-) has codimen-
sion at most 1 in C?(Q,(X)). By the second statement the codimension is exactly 1.
Therefore ker Ay = . The rest of the statement follows using the fact that Ay is
selfadjoint.

‘We merely have to prove the second statement of the corollary. We start by proving
that we have a splitting as claimed. Suppose that the intersection J#x N A(%]\%) is
not reduced to 0 for arbitrarily large N. Then we may find a sequence ¢y, contained
in the intersections and such that ||¢n, [0 = 1.

We notice that |[1n] o =1 and that |{n| o converges toward a positive constant,
since (y converges toward the pair of functions (6=, —671). Since ¢n, € Hn,, we
may write

oN, = arln, resp. ¢n, = arln, + bi(n, in the degenerate case.

We deduce that the uniform C’-bound on ¢n, provides a uniform bound on the
coefficients ay and bx. We may after extracting a suitable subsequence assume that
the coeflicients converge as k goes to infinity. In particular ¢, converges toward an
element of ker =, say in the C°-sense. By construction we have a uniform quu—bound
on ®y,, which provides a uniform Cgu’a—bound.

On the other hand ¢y, € Ap, (Ji/]\%) so that there exists a sequence ¥y, € Jifj\%k
with ¢n, = An,¥n,. By Theorem 5.5.2, the uniform G%Q—bound on ¢y, provides a
uniform Gfu’a—bound on ¢y, . By Ascoli-Arzella Theorem 3.10.6, we may assume that
Yy, converges in the (- -sense toward a limit (+,1~) after extraction. It follows
that ¢y, = A, b, converges in the ( -sense toward Z(1T, 1~ ). In conclusion ¢y,
converges in the (’-sense to an element of Im= N ker & = {0}.

In conclusion, the limit of ¢, must be the pair of functions (0, 0), which contradicts
the fact that |¢n, | o = 1. Thus

Hn 0 An (A ) = {0},

for all sufficiently large N. By Theorem 5.5.2, we know that the restriction of Ay
to J(]\% is injective provided N is large enough. For dimensional reasons, we have a
splitting

A ® AN (A ) = CH(Qy (D).
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We now proceed to the last part of the second statement. If the control (5.13)
does not hold, we find a sequence of discrete functions ¢n, € C2(QNk(E)) with
decompositions

7 A
(ka = ¢Nk + (?ka’

and the property that
Y A
lon,ll oo — 0 and @, [l go« + [dN, [l co,« = 1.

The C%%bound on ¢y, provides a uniform C°-bound. As in the first part of the
proof, we may use this bound to show that, up to extraction of a subsequence, ¢,
converges in the Cilu—sense toward a limit (¢, $~) € ker Z.

Similarly, the 02;” bound on qﬁk can be used to show that, up to extraction of a

subsequence, the sequence converges in the C°-sense toward a limit (¢Z, ¢ ) in the
image of =.

Eventually, we may assume that ¢, converges in the C’-sense toward a limit (¢ +
¢L, ¢~ + ¢5) € ker E@® ImE. The fact that |¢n, | 0.« — 0 implies that |¢n,[ o — 0
and by uniqueness of the limit, we deduce that ¢* = 0 and ¢ = 0.

However, ¢, converges in the stronger, says, C.,-sense, hence |@y, | go.. — 0. We
deduce that

7 A A
Ione]l = lone = SN, Moo < lomilleg + IEN, ege — O,

which contradicts the assumption [¢n, [[co.a + |67, |co.e = 1. O

5.6. Modified construction in the degenerate case

The situation for degenerate pairs (p, £) came as a surprise to us. Our first guess was
that the operators Ay should converge in a reasonnable sense toward the operator
involved in the smooth setting (2.5). Consequently, we expected the kernel of Ay to
be one dimensional, at least for N large enough. The first clue that this was not true
came from a local model: in this model, we do not choose X to be a torus, but a
copy of R? embedded in R?" as an isotropic Euclidean plane identified to R? with its
quadrangulation ¢, (R?). Then one can check that the funtion 13 — 1y belongs to
the kernel of §3, directly from the Formula (4.11).

The presence of a 2-dimensional almost kernel J#y in the degenerate case will
create some trouble for solving our problem. We may overcome them by changing
slightly our construction.
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5.6.1. The setup. — We start with a degenerate pair (pg, £s), where
ls:S — R*

is an isotropic immersion and S is a surface diffeomorphic to an oriented torus. We
carry out the constructions of quadrangulations (), (S), graphs §,(S) exactly as
in the case of ¥ (cf. §3), except one crucial detail. The lattice group I'(S) of the
covering map pgs : R? — S admits oriented basis (71(S),72(S)). This is where comes
the difference with §3.2: we choose a best approximation v4'(S) € A} of 75(9) and
YV (S) € AN\ASE for v1(S). Notice that in the case of ¥, both ~;¥(S) were chosen
in ASH.

This minor change still allows us to construct families of quadrangulations and
checkers graph. The only difference is that action of the lattice

Tn(8) = span{r{' (5), 7 ()}
does not preserve the connected components of the decomposition
+ —
On(R?) = On(R?) U Oy (R?),
and this splitting does not descend as a splitting of {, (S). In particular discrete func-
tions ¢ € C?(Q(S)) do not split into a positive and negative component. However,

we may construct the constant function 1y € C?(§, (S)), which is the constant 1 on
every face of the quadrangulation.

5.6.2. The double cover. — We define
I' = span{v1,72},

where
v1 = 271 (S) and v2 = 72(9).
The quotient ¥ = R?/T" comes with a covering map of index 2
(5.14) %% - 8,
and an action of G ~ I'/T'(S) ~ Z3 on ¥ by deck tranformations. We define accordingly
'y = Span{f}l{va ’Yév}a

where
7 =291 (8) and 1" =77’ (9).
Notice that 2Ax < AS}, hence by definition ¥ € AS*. We also have double covers
Py :X S

with deck transformations Gy ~ I'y/I'ny(S) ~ Zs which come from the canonical
projections R?/T'y — R?/T'x(S). In particular there are canonical embeddings of
discrete functions spaces induced by pullback

(@%)* : C*(Qn(8)) — C*(Qy (%))
The action of Gy induces an action on C%(Q (X)) and the image of (®)* consists
of the discrete functions which are G y-invariant.
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5.6.3. Meshes and operators for the modified construction. — Like for 3, we may define
the samples 7y € .#n(S) = C°(Qy(S)) @ R?" of the map £s : S — R?", the inner
product -, -» and the operators dx, o}, etc. Using the canonical projections

(@R)* : C°(Qn(5)) ®R™™ — CO(Q (%)) ®R™™,

we see that the pullbacks satisfy 7x = (®%)*7x(S). In other words, they are also the
samples of the lifted isotropic immersion £ = £go®° : ¥ — R?", Then 7y also induces
operators denoted dy, 65 and Ay which commute with the pullback operation, by
naturality of the construction.

5.6.4. Spectral gap for the degenerate case. — All the norms defined on C?(Q (%))
induce norms on C?(Q,;(5)) via the pullbacks (®3)*, denoted in the same way. For
instance, for ¢ € C2(Q,(S)), we have

|6l ez = ¢ 0 @[l 2.e

Then we prove the following result:

THEOREM 5.6.5. — Let £g : S — R2™ be an isotropic immersion of an oriented
surface diffeomorphic to a torus with a conformal cover p : R? — S. There exists a
constant cs5 > 0 such that for every N sufficiently large and every ¢ € C?(Q\(S))
with ¢, 1n) = 0, we have

AN goe = 5]l g2

Proof. — We choose N sufficiently large, so that the assumptions of Theorem 5.5.2 are
satisfied. Let ¢ € C?(Q(9)) be a discrete function such that {¢,1y)). There may
be some ambiguity in our notations, so we should emphasize that (®3)*1y is equal
to 1y € C*(Qn(2)).

We consider the pullback ¢y = ¢ o @3 of ¢ regarded as an element of C2( Q) N(2)).
By definition of inner products and pullbacks by 2-fold covers, we have

(61w = 5Bn, 1w,

hence, by assumption, {¢n,1x) = 0.

Notice that the action of Gy = (¥n) ~ Zy on C*({, (X)) respects the inner
product -, ). Since vV (S) ¢ A}, we also have

Ty - 1?{, = 1, and conversely Ty -1y = 1;{,.
By construction the discrete function 6y is G invariant. Thus
Ty v =Tn- (O3 (13 = 1y)) = 05 (Z15 +1x) = —Cn.
The above property implies that any Gpy-invariant discrete function is orthogonal
to CN:
Lon vy = LN N, Tn - (v ) = Loy —Cn ),

therefore

on, ¢y = 0.
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In conclusion qg ~ is orthogonal to ¢y and we may apply Theorem 5.5.2 to (]3 N, which
proves the theorem with c5 = c3. O

REMARK 5.6.6. — Notice that Theorem 5.6.5 applies whether the pair (p,£g) is de-
generate or nondegenerate. The applications are different from Theorem 5.5.2, in the
sense that we are dealing with different type of quadrangulations and meshes. For in-
stance the spaces of quadrangular meshes .#y admits a shear action whereas .#y (.S)
does not. Indeed the checkers graph associated to ¢, (S) is connected whereas the
checkers graph of ¢ (¥) is not.
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CHAPTER 6

FIXED POINT THEOREM

6.1. Fixed point equation

All the tools have been introduced in order to be able to apply the contraction
mapping principle. We consider an isotropic immersion £ : ¥ — R2?", its sequence of
samples 7y € .4 as before and the map

Fy : C2(Qy (%)) — CX(Qy (),
defined by
Fn(¢) = puy (Tv — JOx ).
Solving the equation Fi(¢) = 0 provides an isotropic perturbation of the sample
mesh 7.

REMARK 6.1.1. — The perturbative approach introduced here is an analog of Theo-
rem 2.4.1 in the smooth setting. Indeed, let us denote by fy : ¥ — R?" a smooth per-
turbation of £ : ¥ — R?™ and h a smooth function on X. The perturbation 7y —J&} @ is
a discrete analog of the smooth perturbation K (h, fv) = expy (—ih) = fx — J&F h.
Thus the equation Fy(¢) = 0 is the discrete analog of the equation F'(h, fy) = 0 (cf.
(2.7)) in the smooth setting.

The differential of the map is given by DFN|0 P = —DuMTN o Jén(P) = Indno
hence
DFy| -¢ = Ang.
As pointed out in Lemma 4.1.7, the map py is quadratic. According to Definition 4.1.8
and (4.4) one can write

Aneg =2V (TN, 9)
and
Fn(¢) =nn + Ang + pi(JON ),
where ny = Fn(0) is the error term. We introduce the space

%N:AN(%]\%)v
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where #j is the almost kernel of Ay defined at (5.10). By Corollary 5.5.4, we have
a direct sum decomposition

C*(Qn (%)) = AN @ Ay,

for every N sufficiently large.
We define the Green operator G of Ay by

Oif¢€e%/N,

G —
() { ¢ € H+ with the property that Ay¢ = 1 if 1 € Ay

The Green operator is bounded independently of N, which is a crucial property for
the application of the fixed point principle:

PROPOSITION 6.1.2. — There exists a constant cs > 0 such that for all positive inte-
gers N and ¢ € C*(Q, (X)), we have

cs[[ 8l coe = |G (D) 2y

Proof. — For every N > Ny sufficiently large, we may use the decomposition ¢ =
¢ + ¢ and the fact that

(6.1) cll @l oo = 18l goo + I pall ggye

thanks to Corollary 5.5.4. By definition ¢o = A1 for some ¢ € #5+, and Gy (¢) = 9.
By Theorem 5.5.2 and (6.1), we deduce that

¢l e = [Bal coe = csltp gz
This proves the proposition. O

Notice that by definition, Gy takes values in %y and has kernel #y. If ¢ € Ay,
we have Gy o Ay¢ = ¢. Therefore

GNoFn(®) = ¢ +Gn (v + uy(JoNe))-

For ¢ € ,/“i/]\%, the equation

Fn(¢) € AN
is equivalent to

¢ =Tn(9),
where

Ty : Ky — K
is the map defined by
Tn(¢) = —Gn(ny + pn(JoN9)).

We merely need to apply the fixed point principle to the map T .
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6.2. Contracting map
Notice that

Tn(¢) —Tn(9') = Gy oy (Jox¢) — G o iy (JoNnd')

1
hence

62)  T(8) - Tw(@)) = 5On o Wi (J5x (6 +6), 5K (6 — 9).

PropPoOSITION 6.2.1. — There exists a constant c; > 0 such that for every ¢,
¢' € C*(Qy (%)), we have
[N (TN, ToNG ) oo < crllll gz 4] c2po-

Proof. — Recall that, for T € Ay, py(7) € C?(Q, (X)) is given by the formula

iy (1), ) = (% (6), 74 (D))
We deduce that
1

W (r,7), 8 = 7|0 (), 72 (0) + w(%(8), 72 (9)),

and it follows that for some universal constant ¢, > 0, we have
(6.3) @ (7, 7)o < C?[H%H v e P VA R 0?,;“]'
LEMMA 6.2.2. — There exists a universal constant ¢ > 0 such that for all discrete
function ¢ and T = JoN ¢, we have
1% gp.e and Y] e < 16l cae-

Proof. — We carry out the proof in the case of %, as the proof for ¥, is almost
identical. Using the index notations, we have

1
Uz fu1) = N (<5z*v¢’ Vit1,i+1) — ON D, Vk,l>>'

Using the expression of §};, we obtain
1
U, Ba) = 575 ((¢k+1,lD}$+1,z — k1D 1) — (Bk 41Dk 101 — Pk—1,1Dk_1,1)

+ (Pr+1,041 D)1 101 — 260 Diy + ¢k71,171DZ71,171))-

The first line in the above computation is related to the second order finite difference
% of ¢ whereas the second line is related to the finite difference % of ¢. The
fact the renormalized diagonals converge smoothly allows to control the Gi’a—norms
of these terms using the C2*-norm of ¢. O

Inequality (6.3) together with Lemma 6.2.2 completes the proof of the proposition.
O
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COROLLARY 6.2.3. — For all ¢ > 0 there exists Ng = 1 and § > 0 such that for all
N > Ny, ¢,¢' € Hy, such that |@| pz.e <3 and ||¢'] 2.« < &, we have

1T (8) = Tn (&) gz < €l — ¢/l 20

Proof. — By (6.2), Proposition 6.1.2 and Proposition 6.2.1

1
1T (¢) = Tn (@) ez = IGN T (JON (S + ¢), Tox (&' = 8)) [l 2=

C7Cs
< 21g+ ¢ g |6 — 'l e
In conclusion we may choose 6 = —=—, which proves the corollary. O

crcy

6.3. Fixed point principle

The idea, as usual is to check whether the sequence T%(0) converges. If so, the
limit must be a fixed point of T)y. We have the following classical proposition

PROPOSITION 6.3.1. — Let (E, |-||) be a finite dimensional (or Banach) normed vector
space and T : E — E an application such that
1. There exists 6 > 0 such that the restriction of T to the closed ball Bs of E,

centered at 0 with radius §, is %-contmctant, i.e.,

1
e,y € B, 2] <& and Jy| <& = [T(z) - T(y)] < 5l -yl

2. |T(0)] <3

Then the sequence (ti) defined by to = 0 and txy1 = T(tx) converges to an element
tw € E with |te| < 8. Furthermore, ty, is a fized point for T. Such fized point are
unique in the ball Bs. In addition, we have |ty | < 2|T(0)]|.

Proof. — The uniqueness of fixed points is a trivial consequence of the contracting
property of T in the ball B; = {r € E|z| < 6}.

For the convergence, we show first by induction that ¢, remains in Bs for all k :
this is the case for ¢ty = 1 and ¢; by assumption. Assume now that if t, ..., tx_1 € Bs.
Then

1
[tk = tr—rl = [T (th-1) = T(e—2)]| < 5 lte—1 — th—2]
and by induction
[tk = te1ll = 55 lte—p — te—p-].-

In particular

1 1

[te = tr—1ll = 2,67_1Ht1 —to| = FHT(O) I-

In turn we have

tp =tg —to = (tg —tg—1) + (tk—1 — th—2) + -+ (t1 — to)
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and by the triangle inequality,

1—- L

1
— 2 <2[T(0)] <4,
2

k—1
1
AN OIDY o5 = IT(0)]
j=0

so that t; € Bs. This completes the induction and shows that ¢, remains in Bs.
Eventually, we just have to prove that t; converges. But this is clear since
tetp = te = (tktp = thap—1) T (Ckap—2 = thap—2) + -+ + (tkr1 — tk)

and by the triangle inequality
o 1 2
Itr+p — tll < [tkt1 — til Z % S 2 thg1 —tr] < 2,€7_1\|T(0)H»
j=0

which shows that t; is Cauchy hence convergent in the closed ball Bs. The fact that
the limit of ¢; is a fixed point of T is clear from the definition of the sequence, by
uniqueness of the limit. O

We obtain the following result

THEOREM 6.3.2. — There exists a positive integer Ny and a real number 6 > 0 such
that for all N = Ny there exists a unique ¢y € c%/]\J,‘ that satisfies

H(bN”dfuva <6 and FN(¢N) € XN.

Furthermore the sequence satisfies |¢n | p2.a = O(N71).

PROPOSITION 6.3.3. — Let £ : ¥ — R2" be an isotropic immersion and p : R?2 —
a conformal cover introduced before, such that the pair (p,f) is nondegenerate. Then
the meshes

pN = TN — JONON € M,

where ¢ is defined by Theorem 6.3.2 for every N = Ny are isotropic.

Proof of Proposition 6.3.3. — By definition u'\(pn) € <Fn. By nondegeneracy,
Fn = Rly, so that pfy(pn) = A1y for some constant \. We deduce that

Qo (pn ) In) = AN, In)-

This quantity does not vanish unless A = 0. But {ufy (pn), 1n)) is the total symplectic
area of the mesh pp, which has to vanish by Stokes theorem, since the symplectic
form of R* is exact. In conclusion A = 0 so that u’y(pn) = 0. O
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6.4. Proof of Theorem C

We merely need to gather the previous technical results so that the proof and our
main result follows as a corollary.

Proof of Theorem C. — Let £ : ¥ — R?" we a smooth isotropic immersion. By Propo-
sition 5.3.3, we may always assume that the conformal cover p : R? — ¥ is chosen in
such a way that the pair (p, £) is non degenerate. By Proposition 6.3.3, the quadran-
gular meshes py provided by Theorem 6.3.2, for N sufficiently large, are isotropic.
The estimate [¢n| ¢z« = O(N~') implies that

sup  [pn(v) = (V) e = O(NTH).
vees(Qy (%))

It follows that
sup  [pn(v) —£(v)| = O(N7Y),
vedo (Qn (X))
which proves the theorem. U

6.5. The degenerate case

If (p, ¢) is a degenerate pair, Theorem 6.3.2 still provides a family of quadrangular
meshes py with the property that py € #y. However py may not be an isotropic
mesh since J#y may not reduce to constants. This difficulty can be taken care of
by working Z,-equivariantly. Given a degenerate pair (pg, £s), we construct modified
quadrangulations ¢), (S) as in §5.6. Using the notation introduced at § 5.6, we con-
sider the lifted pair (p, £) given by p = pg o ®° and £ = £g o ®°, where ®°: ¥ — S is
a double cover introduced at (5.14). The pair (p,£) is degenerate as well. Using The-
orem 6.3.2, we find a corresponding family of quadrangular meshes py. All these
construction are G y-equivariant. In particular py € J#y is also Gy-invariant. We
have

pn = anly + bn(nw,
where py and 1y are Gy-invariant. However (y is G y-anti-invariant (cf. proof of

Theorem 5.6.5), which implies that by = 0. We conclude that ay = 0 as in the proof
of Proposition 6.3.3.

In conclusion py descends to the Gy-quotient as an isotropic quadrangular mesh
p% € #n(S) and we have proved the following result

PROPOSITION 6.5.1. — Let (ps,£s) be any pair, where £s : S — R?" is an isotropic
immersion and ps : R? — S an associated conformal cover. Let T3 € .M n(S) be the
family of samples of £g. Then, there exists a family of isotropic quadrangular meshes
p% € MN(S) such that

max o (v) = 78 (V)| = O(N ).
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REMARK 6.5.2. — The approach presented in Proposition 6.5.1 appears as a good
solution to treat our perturbation problem in a uniform manner, whether or not the
pair (p,£) is degenerate. The main flaw of such technique, relying on Zs-equivariant
constructions, is that the moduli spaces .#y(S) do not admit a shear action as defined
in §4.2 (this is due to the connectedness of the checkers graph of ¢, (S)). Unfortu-
nately, the shear action is used in a crucial way at § 7 to obtain generic quadrangular
meshes that will allow to construct piecewise linear immersions as in Theorem A.
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CHAPTER 7

FROM QUADRANGULATIONS TO TRIANGULATIONS

The previous section was devoted to the construction of isotropic meshes associ-
ated to quadrangulations, sufficiently close to a given smooth isotropic immersion
¢:¥ — R?". In this section, we explain how to define a nearby isotropic piecewise
linear map as an approximation of £. The idea is to pass from an isotropic quadran-
gulation to an isotropic triangulation.

7.1. From quadrilaterals to pyramids

The goal of this section is to explain how to pass from an isotropic quadrilateral to
an isotropic pyramid, by adding one apex to the quadrilateral. We start by studying
a single isotropic quadrilateral (Ao, A1, Aa, A3), where A; are points in R?". We shall
use the notations

(71) DO = AOA2 and D1 = A1A2,

for the two diagonals of the quadrilateral. Recall that the quadrilateral is isotropic if,
and only if

w(D(), Dl) = 0.
REMARK 7.1.1. — If the diagonals of an isotropic quadrilateral are linearly indepen-
dent vectors of R?", this implies that

L=RDy®RD;
is an isotropic plane of R?".
DEFINITION 7.1.2. — A pyramid is given by five points (P, Ag, A1, As, A3) of R*™.
The four points of quadrilateral (Ao, ..., As), called the base of the pyramid and the
apex P € R?". If the four triangles given by (PA;A;1), where i is understood as an

index modulo 4, are contained in isotropic planes of R?", we say that the pyramid is
an isotropic pyramid (cf. Figure 1).
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P
As As
Ag Ay
FIGURE 1. Pyramid with apex P and base (Ao, A1, A2, As3)

The following lemma shows a first relation between isotropic quadrilaterals and
isotropic pyramids:

LEMMA 7.1.3. — The base of an isotropic pyramid is an isotropic quadrilateral.

Proof. — The result is obtained as a trivial consequence of the Stokes theorem, or by
elementary algebraic manipulations. O

Conversely, we have the following result:

LEMMA 7.1.4. — Let Q = (Ao, ..., A3) be an isotropic quadrilateral of R®™ with lin-
early independent diagonals. We denote by Wé) be the symplectic orthogonal of the
vector space spanned by the sides of the quadrilateral Q. Let W¢ be the set of points
P e R?™ which are the apezxes of isotropic pyramids with base given by the quadrilat-
eral Q. Then Wq is an affine subspace of R®" with underlying vector space Wé Its
dimension is 2n — 2 if Q is flat and 2n — 3 otherwise.

Proof. — We are looking for a solution of the linear system of four equations
w(PA;, A A1) =0,

where 0 < i < 3. Put

(7.2) X =GP,

where G is by convention the barycenter of the quadrilateral. The system can be
expressed as

w(X7 AiAiJrl) = W(G—A; Az’Ai+1)-
The LHS correspond to a linear map with kernel W,.

If the quadrilateral is flat, it is contained in an isotropic affine plane parallel to
L =RDy®RD;. Any point P in the plane of the quadrilateral is the apex of an
isotropic pyramid. Furthermore, the space of solutions is an affine space of codimen-
sion 2.

If the quadrilateral is not flat, then dim Wé = 2n — 3 and the LHS of the linear
system has rank 3. The condition that the quadrilateral is isotropic is precisely the
compatibility condition, that insures that the RHS of the equations is in the image of
the Linear map. We conclude that the system of equations admits a 2n—3-dimensional
affine space of solutions. O
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Lemma 7.1.4 is a excellent tool for passing from isotropic meshes associated to
quadrangulations to isotropic meshes associated to triangulations and, in turns, to
piecewise linear isotropic maps. One issue, that has to be dealt with, is how C?-es-
timates are preserved and also, whether the piecewise linear map induced by this
construction are still immersions. Indeed, Lemma, 7.1.4 does not provide any informa-
tion about the distance from Wy to the quadrilateral.

7.1.5. Optimal apex. — There exists large families of isotropic pyramids as shown by
Lemma 7.1.4. In this section we introduce some particular solutions of the correspond-
ing linear system, called optimal pyramids and optimal apex.

We use the notations introduced in the proof of Lemma 7.1.4. Again, we con-
sider an isotropic quadrilateral @ = (Ay,...,As). We are assuming that @ has lin-
early independent diagonals Dy, D;. Hence the diagonals span an isotropic plane
L =RDy@®RD;. We may consider its complexification

(7.3) L“=L®JL,

and the corresponding orthogonal complex (and symplectic) splitting
R =L@ M.

Notice that the real dimension of LC is 4.

We are looking for a point P € R?" solution of the linear system

(7.4) w@GP, A A1) =v 0<i<3,
where
(7.5) v = w(GA;, GA).

According to Lemma 7.1.4, the affine space of solutions Wé has dimension 2n — 2
or 2n — 3 in R?" depending on the flatness of the quadrilateral. We may reduce to
particular solutions by adding the constraint

(7.6) PG e LE.

We use the notation X = GP. A quadrilateral (Ag,...,As) is determined by speci-
—_

fying its barycenter G, the side vector V = AgA; and the diagonals Dy and D,. We

first compute the terms ~y; of the RHS in terms of these quantities. By definition

4A0G = AgA, + AgAy + ApAs = Dy + Dy + 2V,
4A,G = A1Ag+ A1 Ay + A A = Doy + Dy — 2V,
4A,G = AyAg + A Al + Az A; = —3Dy + D; +2V,
4A3G = A3Ag + A3A; + A3A, = Do — 3D, —2V.
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Hence
16y = w(Do + D1+ 2V, Dy + Dy — 2V)
= 40.1(‘/, Dy + D1),
16’)/1 = W(DO + D1 —2V,—3Dg + D1 + 2V)
— 4w(V, Dy — Dy),
(7.7) (V. Do = D)

16y = w(—3Dg + D1 + 2V, Dy — 3Dy — 2V)

—4w(V, Dy + D),

w(Dg —3Dy —2V,Dy + Dy +2V)

—4w(V, Dy — Dy).

Let D} and D be the basis of L defined by the orthogonality conditions
Vi,j€{0,1}, g(D;,D}) = by

163

and put
(7.8) B, =JD,, i€{0,1},
which are a basis for JL. Notice that by definition
w(D;, Bj) = g(Di, Dj) = d;;.
We may express the vectors X and V using the basis (Do, D1, Bo, By) of L® as

(7.9) X =aoDo + a1Dy + byBy + b1 By,
(7.10) V = aoDy + a1 D1 + oBo + 81 B1 + Vi,
where «;, 8;,a;,b; € R and Vyy € M. By (7.7) (7.9) and (7.10), we have
40 = fo + b,
dm = fo — b,
Ay = —By — By,
4v3 = —Po + b1
The linear system (7.4) with constraint (7.6) is equivalent to (after adding up lines)
w(X,V) = o,
(7.11) w(X, Do) = v + 71,

w(X,D1) =7 + 72,

where we have removed the last redundant equation. Eventually, a solution of (7.11)
is given by

1
apfo + a1 — boag — biay = Z(ﬂo + 61),

1
(712) bO = 75/607
1
bl = §ﬂ17
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i.e., the solutions X are given by

(7.13) X =agDg + a1D; — %Bo + %Bl,

where ag and a satisfy the affine equation

(7.14) Boao + frar = %(ﬂo +61) + w
In conclusion, any solution (ag,a1) of the affine equation

(7.15) Boag + Bra; = £(V),

where

. ﬂo(l — 20&0) + ,81(1 + 20[1)

§(V) = 1
provides a solution to our linear system. If the orthogonal projection of V' onto JL
does not vanish, we have (8p,81) # (0,0) and the above equation defines a line,
which, in turn defines a one dimensional space of solutions X € LC. We summarize
our computations in the following lemma:

LEMMA 7.1.6. — Assume that Q = (Ao,...,As) is an isotropic quadrilateral with
linearly independent diagonals in R?™. Assume that the orthogonal projection of Q
in LC is not a flat quadrilateral. Then set of points P € G + LT which are the apex of
an isotropic pyramid over Q, form a 1-dimensional affine space.

Under the assumptions of the lemma, we may consider a particular solution given
by

Bo B1 Bo B1

— ————>Dy — —By+ —Bj.
83 + 63 grrpt 20

The above solution corresponds to the apex P, which is the closest point to the
barycenter G, with the property that the corresponding pyramid is isotropic and
GP € LC. This leads us to the following definition:

(7.16) X =¢£(V) Do +£(V)

DEFINITION 7.1.7. — Let (Ay,...,A3) be an isotropic quadrilateral of R®™ with lin-
early independent diagonals and G be its barycenter. The closest point P to G in G+L°
such that (P, Ay, ..., As) isotropic is called the optimal apex, and the corresponding
pyramid an optimal isotropic pyramid.

REMARK 7.1.8. — If the orthogonal projection of the quadrilateral in L is flat, then
the optimal apex is just the barycenter G of the quadrilateral. If it is not flat the
optimal apex is given by X = GTP), where X is given by Formula (7.16).

Optimal pyramids enjoy nice properties. We first point out that they are almost
always non degenerate in the sense of the following lemma:
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LEMMA 7.1.9. — Let (Ay,...,As) be an isotropic quadrilateral such that its orthogo-
nal projection on LT is not flat. Using the above notations, let V' be the orthogonal
projection of V on LC and X be the optimal solution. Then Dy, D1,V' X is a basis
of LC, unless By = 0 or By = 0. If Bof1 # 0 the rays of the optimal isotropic pyramid
P—>A,~, for 0 < i < 3 are linearly independent.

Proof. — Easy manipulations on vectors show that the vector space spanned
by Dy, D1,V’, X is also spanned by Dy, D; and the vectors

BoBo + 1By and — BoBo + S1Bi.
The two above vectors belong to JL and they are linearly independent if, and only if

BoBr # 0,

which proves the lemma as the second statement is an immediate consequence of the
first. O

7.2. ("-estimates for optimal pyramids

DEFINITION 7.2.1. — A quadrilateral of R?™ with orthonormal diagonals (Dg, D1) is
called an orthonormogonal quadrilateral. If the diagonals satisfy

Vi,j €{0,1} |g(Ds, Dj) — b5 <,
for some € > 0, we say that they are e-orthonormal. Under this assumption, we say
that the quadrilateral is e-orthonormogonal.
By continuity, we have the following result:
LEMMA 7.2.2. — For every pair Dy, D1 € R?*™ of linearly independent vectors, we
define Dy, D} € span(Dy, D1) by the orthogonality relations
g(DZ,D;) = (Sij,V’L',j € {0, 1}

Then D{, D] is a basis of span(Dg, D1). Furthermore, for every €’ > 0 there exists
g0 > 0 such that for every 0 < € < g9 and every e-orthonormal family (Dy, D1), the
family (D[, DY) is €' -orthonormal.

REMARK 7.2.3. — We shall assume from now on that the quadrilateral is e-orthonor-
mogonal, with € > 0 sufficiently small, so that Dy, D; are linearly independent,
|D;|| <2 and | D} < 2.

PROPOSITION 7.2.4. — There exist C > 0 and € > 0 such that for every e-orthonor-
mogonal isotropic quadrilateral of diameter d, the diameter d' of the corresponding
optimal isotropic pyramid satisfies

d <C(d+1).
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Loosely stated, the above proposition says that, for every isotropic quadrilateral
which is almost orthonormogonal, the diameter of the optimal isotropic pyramid is
commensurate with the diameter of the quadrilateral.

Proof. — If the projection of the quadrilateral in LT is flat, then the optimal apex
coincide with the barycenter of the quadrilateral and the proposition is obvious. Thus,
we will assume that the projection of the quadrilateral is not flat in the rest of the
proof.

As ¢ — 0, the basis Dy, D1, By, By becomes almost orthonormal. In particular,
there exists € > 0 sufficiently small such that under the assumptions of the proposition,
we have

max(|ag, |a1l, |Bol, [B1]) < 2[V].

Then Formula (7.16) for the optimal solution X = agDg + a1 D1 + by By + b1 B; shows
that all the coefficients a; and b; are controlled by [V + 1 (up to multiplication by a
universal constant). Now,

| X1 < laolll Dol + [ax[|D1] + [bol [ Boll + [ba][ B1]-
According to Remark 7.2.3, if ¢ is sufficiently small, we have
IDi] and | D} < 2.
Hence |B}| < 2 and it follows from the triangle inequality that
| X < 2(lao| + [ax] + [bo] + [ba])-

This shows that the distance between the optimal apex and the center of gravity of the
quadrilateral is controlled by [|[V'|+1, up to multiplication by a universal constant. The
diameters of the quadrilateral controls ||V, hence the diameter of the quadrilateral
controls | X|| and the lemma follows. O

7.3. Many quadrilaterals and pyramids

Every faces of an isotropic quadrangular mesh 7 € .Z can be seen as a collection
of isotropic quadrilaterals of R?". In this section we explain how to define particular
triangulations & n(X) as a refinement of the quadrangulations ¢ (X). Then we ex-
plain how to deduce an isotropic quadrangular mesh 7/ € .Z} = C°( & n(Z))from .

7.3.1. Triangulations obtained by refinement. — We define triangulation & y(R?) by
replacing each face f of @) (R?) with its barycenter z¢ € R2. The barycenter z¢ is
joined to the vertices of the face f by straight line segments. We also add four faces
given by the four triangles which appear as in the picture below. This operation is
better understood by drawing a local picture of the corresponding C'W-complexes
of RZ:
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Qn(R?) Tn(R?)

FIGURE 2. Triangular refinement of a quadrangulation

As explained in § 3.3 in the case of quadrangulations, the triangulations &/ y(R?)
descend to ¥ via the covering map py : R? — X. The resulting triangulation of ¥ is
denoted & n(X). We define a moduli space of mesh associated to such triangulation

My = CO(T n(%) @R,

7.3.2. Optimal triangulation of isotropic quadrangular mesh. — Let 7 € .#y be an
isotropic quadrangular mesh. In addition, we are assuming that the quadrilateral
of R?™ associated to each face f of @), (¥) via 7 have linearly independent diagonals.
For each face f of ¢),;(X), the mesh 7 associates an isotropic quadrilateral with linearly
independent diagonals. We associate an optimal apex Py € R?" to such a quadrilateral.
Then, we define a triangular mesh 7’ € .#Z}; as follows:

— If v is a vertex of §)(X), we define 7/(v) = 7(v).

— If z is a vertex of I x(X) which is not a vertex of &/ 5(X), it is the barycenter
of a face f of ¢, (X) and we put 7/(z) = Py, where Py is the optimal vertex
defined via 7.

This leads us to the following definition

DEFINITION 7.3.3. — Let T € .#n be an isotropic quadrangular mesh with linearly in-
dependent diagonals. The triangular mesh ' € #}; defined above is called the optimal
triangulation of the isotropic mesh T.

By construction, we have the following obvious property:

PROPOSITION 7.3.4. — Let 7 € M be an isotropic quadrangular mesh with linearly
independent diagonals. The optimal triangulation 7' € .4} of the quadrangular mesh T
defines a piecewise linear map ¢’ : ¥ — R2™, which is isotropic.
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7.4. Approximation by isotropic triangular mesh

In Theorem 6.3.2, we construct a sequence of isotropic quadrangular meshes
PN € M out of a smooth isotropic immersion £ : ¥ — R?". By construction,

pn =Tn — JONON,

where ||¢n|c2.« = O(N~'). By Proposition 4.3.1, the renormalized diagonals of Ty
converge towards the partial derivatives of ¢. Thus, the same holds for py, i.e.,

ol ol

u and “V,fv — 5

In particular the diagonals are linearly independent for every IV sufficiently large and
we may define an optimal isotropic triangulation p € .#} associated to py as in
the previous section. It turns out that the triangular meshes p/y are also good e°
approximations of the map ¢ in the sense of the following proposition:

+
(7.17) Uk —

PROPOSITION 7.4.1. — There exists a constant C > 0, and Ny > 0 such that for every
integer N > Ny and every vertex ve & n(2)

)~ o ()] < -

Proof. — Since [¢n | g2« = O(N '), we deduce that |¢n e = O(N~1). It follows that
there exists a constant C; > 0, such that |pn(v) — 75 (V)| = [0xon (V)] < C1 N1
for every N sufficiently large and every vertex v of ), (X). In such case, we have
v (V) = £(v) and py (V) = p/y(V) so that

Gy

(7.18) [ev) =PV < %

If v is a vertex of & () but not a vertex of ¢ (3), it is associated to a face f of the
quadrangulation and p/y(v) is the optimal apex associated to f and py, by definition
of piy (cf. §7.3.2). The renormalized diagonals %, J—r and 7/ * converge toward Oe
and ‘% ~ by (7.17). The partial derivatives g and 65 are orthogona,l7 with norm \f .
Therefore
1

(7.19) [TN%;V, ﬁ%;

converge toward a pair of smooth orthonormal vector fields on ¥. In particular, there
exists Ng such that for all N > Ny, the vectors fields (7.19) are e-orthonormal, where
€ > 0 is chosen according to Proposition 7.2.4. Since 8 is a positive smooth function
on a compact surface, it is bounded above and below by positive constants. Since
9;{, — 0, it follows that € is also uniformly bounded above and below by positive
constants for N sufficiently large. Using Proposition 7.2.4 with the rescaled pyramid,
we deduce that the apex v is close to all the vertices z of f in the sense that, for some
constant Cy > 0 independent of Ny, v and z, we have

(7.20) Iov(v) — px ()] < .
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Since £ is smooth, there exists a constant C3 > 0 such that for every pair of points
w1, ws € ¥ contained in the same face of ¢, (X), we have

(7.21) Je(wn) ~ )] < 2.

In particular, for v and z as above,

[e(v) = Pn (W) < [€(v) = £(2)] + () — pn (2)] + o (2) = Py (V)]

Since z and v belong to the same face, [¢(v) —£(z)| < C3N~! by (7.21). The second
term satisfies |¢(z) —pn(z)|| < C1N~! by (7.18) and the third term |pn (z) —p/y (V)] <
CyN~! by (7.20). The proposition follows, with C = C; + Cy + Cs. O

We deduce the following result, which proves the first part of Theorem A

THEOREM 7.4.2. — The piecewise linear maps £y : X — R2" associated to the trian-
gular meshes py are isotropic. Furthermore

[€—enleo = ONTY),

where | - | o denotes the usual C°-norm for maps ¥ — R2".

Proof. — The first part of the theorem is obvious. By definition of an isotropic trian-
gular mesh, the piecewise linear map ¢y associated to p'y is isotropic.
The following lemma is a trivial consequence of the convergence statement of Propo-

sition 7.4.1. This roughly says that the triangles of the mesh py have diameter of
order O(N1).

LEMMA 7.4.3. — There exists a constant Cy > 0 such that for every N sufficiently
large and every pair of vertices vi, vy of & n(X) which belong to the same face

C
o (v1) — Py (v2)] < F4

Lemma 7.4.3 applied to the piecewise linear maps ¢ shows that there exists a
constant C5 > 0 such that for every N sufficiently large and wq,ws € ¥ which belong
to the same triangular face of & (%), we have
Gs
N

For N sufficiently large, we may assume the control (7.21). For w € ¥ and N suffi-
ciently large, we choose a vertex v of the face of & 5 (2) which contains w. Then

e (w) = £(w)]| < [n (w) = En (V)] + [€n (V) = (V)] + [[€(v) = £(w)].

The first term is bounded by (7.22), the second term is bounded by Proposition 7.4.1
and the third is bounded by (7.21). This proves the theorem. O

(7.22) € (w1) — £n (w2)]| <
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7.5. Piecewise linear immersions

Recall that a piecewise linear map is an immersion if, and only if, it is a locally
injective map. The piecewise linear isotropic approximations ¢ of a smooth isotropic
immersion £ : ¥ — R2" considered at § 7.4 are only close in C°-norm by Theorem 7.4.2.
Since this estimate is rather weak, we cannot deduce from this fact that ¢y is an
immersion for N sufficiently large. However there are many free parameters in our
construction:

— The distortion action on .# preserves isotropic meshes.
— The apex of each isotropic pyramid with fixed base lies in an affine space of
dimension at least 2n — 3.

These parameters can be used to construct piecewise linear isotropic immersions, at
least when the dimension of the target space is sufficiently large, which turns out to
be n = 3.

REMARK 7.5.1. — If £ is an immersion, showing that the piecewise linear isotropic
surfaces £ which we construct converge to £ in €% norm would be enough to get
piecewise linear isotropic immersions. Unfortunately, eventhough it follows from the
proof of Theorem C in Section 6 that the £y converge to £ in Gﬁ,’a—norms, we cannot
get better control than c° away from diagonal directions due to the shear action.

7.5.2. Perturbed meshes without flat faces. — We start by perturbing the isotropic
quadrangular meshes py € .# constructed at Theorem 6.3.2. Our goal is to perturb
pn by the shear action, to make sure that the quadrilateral associated to each face of
the mesh satisfy the following proposition and, in particular, are not flat in R2".

PROPOSITION 7.5.3. — For every N sufficiently large, there exists Ty € R?™ x R?"
such that for every s > 0 small enough, the quadrangular mesh

Py = STN - pN
satisfies the following properties:

1. For each face of the quadrangular mesh p3;, the orthogonal projection of the
corresponding quadrilateral onto the complexr space generated by its diagonals
(cf. (7.3)) is not flat.

2. For every vertex v of Q (X)), the four vectors of R*™, associated via pj to the
four edges with vertex v, span a 3-dimensional subspace of R?™. Furthermore
any triplet obtained as a subset of the four above vectors is a linearly independent
family.

3. The associated triangular meshes (p%)' € M}, have generic pyramids. In other
words, for every vertex v of & n(X) which is not a vertex of (%), the four
vectors of R?*™ associated to the four edges of the mesh (p%) at v are linearly
independent.
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Proof. — We use the notations introduced at the beginning of § 7: for a quadrilateral
Q = (Ao,...,As) of R?>", we denote by X the vector defined by (7.2), Do, D; the
diagonals defined (7.1) and by By, B; the vectors (7.8) of JL (cf. (7.3)).

The condition that the projection of the quadrilateral onto L€ is flat is equivalent
to Bo = fB1 = 0, where the f; has been defined in (7.10). Assume that the projection
is flat. Then for every T, € R?"” not contained in the hyperplanes Sy = 0 or §; = 0,
the projection of the quadrilateral Qs = (Ag + sT4, A1, A + sT, A3) is not flat for
every s > 0. Furthermore the optimal pyramid with base Q) is generic in the sense of
Lemma 7.1.9.

Let pn be the isotropic quadrangular mesh considered in hypothesis of the propo-
sition. We choose T, € R?" which satisfies the above property, for every quadrilateral
associated to faces of the mesh py with flat projection onto the space of complexified
directions. This is possible, since we merely need to choose T, € R?" away from a
finite collection of 2-planes. Then p%; := (sT,0) - pn satisfies the items (1) and (3)
of the proposition provided s > 0 is sufficiently small.

We just have to show that the condition (2) can be satisfied for a suitable choice
of deformations. Given a vertex v of ¢ (%) we consider the four diagonals D{’} for
the four quadrangular faces f with vertex v. The renormalized diagonals of the mesh
converge toward the partial derivatives of £ at v (cf. (7.17)) as N — co. Since £ is an
immersion, this shows that the four vectors fo} span a space of dimension 2 or 3 for
every N sufficiently large. If this space is 3-dimensional, (2) is satisfied with s = 0
and nothing needs to be done. Assume that the space of diagonals is 2-dimensional.
The four vertices connected by an edge to v define four points of R?" via py. By
assumption, these points lie in an affine plane of R*". If py(v) does not belong to
this plane, then (2) is satified. Otherwise, we require the additional condition that
T, does not belong to the plane spanned by the diagonals. We have to consider every
vertex v as above and this adds a finite number of conditions for choosing T, . A finite
family of proper subspaces of a vector space never covers the entire space. Thus it
is possible to find the desired Ty . This concludes the proof of the proposition with
Tn = (T4,0). O

COROLLARY 7.5.4. — Given N large enough, for every s > 0 sufficiently small, the
isotropic triangulation (p%) defines a piecewise linear map ly s : & — R?*™ which is
an immersion at every point w € ¥ which does not belong to the 1-skeleton of Q)5 (X).
In particular £ s is an immersion at almost every point of X.

Proof. — By linerarity, it is sufficient to check that ¢ is an immersion at every vertex
of & n(X) which is not a vertex of ¢, (). But this is clear for N large enough and
s > 0 sufficiently small, by Proposition 7.5.3, item (3). O

REMARK 7.5.5. — The above corollary proves the second part of Theorem A con-
cerning piecewise linear isotropic immersions when n = 2. Indeed, the the 1-skeleton
of @ (X) is a finite union of meridians of the torus 3.
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7.5.6. Further perturbations by moving apexes. — We are going to apply further isotro-
pic perturbations to the triangular meshes (p3;)’ € .4}, so that that the corresponding
piecewise linear map is also an immersion along the 1-skeleton of ¢), (X).

By definition, (p%/)’ is defined from the quadrangular mesh p?%;, by adding the apex
of an optimal isotropic pyramid for each face of ¢, (X). The definition of an optimal
pyramid is somewhat arbitrary: for N large enough and s > 0 sufficiently small, every
face of p%; satisfy Proposition 7.5.3, item (1). Hence, for each face of p%, the affine
space of apexes of isotropic pyramids is 2n — 3-dimensional. We deduce the following
lemma:

LEMMA 7.5.7. — For N large enough and s > 0 sufficiently small, there ezists a
family of isotropic deformations of the triangular isotropic mesh (p%)’. This family
is obtained by moving each vertex of & n(X) which does not belong to @ (%) within
a 2n — 3-dimensional affine space.

The key observation, that will make Lemma 7.5.7 useful for our purpose, is that
2n — 3 = 3 for n > 3. In particular, we deduce the following proposition:

PROPOSITION 7.5.8. — Assume that n > 3, and N is sufficiently large. Then, for
every s > 0 sufficiently small, there exist isotropic triangular meshes arbitrarily close
to (p%)’, which define piecewise linear immersions ¥ — R?".

Proof. — As in Corollary 7.5.4, showing that a map is an immersion is a purely local
matter. We draw a local picture of the triangular mesh (p3;)’, near the image O of
vertex v of @, (¥). In Figure 3, the bullet labeled O actually represents p, (v) € R?".
Similarly, all be points P;, and A;; € R2™ of the picture are images of corresponding
vertices of & n () by the triangular isotropic mesh (p%;)’. Notice that the black and
blue bullets are prescribed by the quadrangular mesh p3;, whereas the red bullets are
defined by its triangular refinement (p%)’. More specifically, the red bullets are the
optimal apexes of the corresponding optimal isotropic pyramids.

FI1GURE 3. Local perturbations of a triangular mesh
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We are now looking for a perturbation (p%)” of (p%)’ by moving the points A;;.
We denote E’N7$ (resp. /1/\75) the piecewise linear maps associated the triangular mesh
(px)" (resp. (py)")-

1. The property of being an immersion is stable under small deformations. Thus,
for sufficiently small perturbation, Corollary 7.5.4 holds for E?’V,s as well. In
particular, Zﬁ’\,’s is an immersion at every point w € 3 contained in the interior
of one of the four faces of ¢), (X), with vertex v (the four smaller square in the
figure).

2. Suppose that we can choose a perturbation so that that 3’\7,s is an immersion
at the vertex v (corresponding to the point O). By linearity, this implies that

s is an immersion at every interior point w € ¥ of the union of shaded faces
of the triangulation & () (with gray color on the picture).

If we are able to show that there exists a perturbation, which satifies the condition (2)
as above, we deduce, together with the above property (1), that the piecewise linear
map £} , is an immersion at every interior point w of the union of the four faces
of @ (%) with vertex v (the big square in Figure 3). In conclusion, if we have proved
the following lemma.:

LEMMA 7.5.9. — If (p%)” is a triangular mesh sufficiently close to (p%)’, such that
the correponding piecewise linear map 9'\,73 : 3 — R?" s an immersion at every vertex
of Qn (%), then £y , is an immersion at every point of %.

We merely need to show that there exists an isotropic perturbation (pn,s)” which
satisfies the hypothesis of Lemma 7.5.9 and the proof of the proposition will be com-
plete.

Consider the mesh (p% )’ represented locally by Figure 3. There are 2n — 3 degrees
of freedom for perturbing each red vertex A;;, in such a way that the triangular mesh
remains isotropic. We would like to put them in general position, so that the piecewise
linear map is an immersion at O. First, notice that the local injectivity is partially
satisfied by (p%;) for every s > 0 sufficiently small. Indeed, by Corollary 7.5.4, two
contiguous triangles of the mesh (p%;)’ in a common pyramid, for instance (OPyAo1)
and (OAg; Py), are contained in distinct planes intersecting along a line of R?", which
in this particular case is (OAo1).

Consider now the two triangles of (OPyAg;) and (OA3oPy) of R?™. There are two
possibilities:

1. The line (OAsp) is not contained in the plane of the triangle (OFPyAo1), the two

triangles lie in distinct plane intersecting along the line (OP,).

2. The line (OAjzp) is contained in the plane of the triangle (OPyAg1). In this case,

the associated piecewise linear map is not locally injective at O.

In the second situation, we can always find an arbitrarily small perturbation of the
point Azg which brings us back to the first situation, such that the associated piecewise
linear map is still isotropic. Indeed, as pointed out there is a 2n — 3 > 3 dimensional
family of points As3p such that provide isotropic perturbation. There is a least. Such
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space cannot be contained in the plane of (OPyAp;) for obvious dimensional reasons.
Thus, we may find the wanted arbitrarily small isotropic perturbations of Azg such
that we are in the first situation.

We consider now the case where we have two non contiguous triangles, for in-
stance (OPyAp1) and OP;Aj2. We know that the three lines OFP;, OAp; and OP;
span a 3-dimensional space by Corollary 7.5.4. By moving slightly A;s within its
(2n — 3)-dimensional family of isotropic perturbation, we can make sure that the in-
tersection of the planes containing the triangles (OPyAo;1) and (OP;A1z) reduces to
the point O.

There are other situations that we should handle as well. For instance, we consider
the triangles (OPyAo1) and (OA12P;). By Propositin 7.5.3, item (2), the lines (OF;)
and (OP,) are distinct. Up to a small isotropic perturbation by moving Ag; within
its 2n — 3-dimensional family, we may assume that Ay; does not belong to the plane
(OPyP,). By moving A;s similarly, we may assume that A;o does not belong to the
plane that contains the triangle (OPyAp1). Eventually, the two planes that contain
(OPyAp1) and (OA12P,), after perturbation, intersect at a single point O.

Other cases are dealt with similarly. Eventually we have proved that there are
arbitrarily small isotropic deformations of (p3%;)’, obtained by moving the points A;;,
such that the eight triangles of the mesh around O lie in distinct planes. In particular,
the corresponding piecewise linear map is an immersion at the vertex v.

By induction, we can apply further similar perturbation, so that the isotropic
piecewise linear map is an immersion at every vertex of ¢, (¥). This proves the
proposition. O

7.6. Proof of Theorem A
Gathering our results provides a complete proof one of our main results:

Proof of Theorem A. — The existence of Go—approximations of smooth isotropic im-
mersions £ : ¥ — R2" by piecewise linear isotropic maps is proved in Theorem 7.4.2.
The statement for existence of approximations by piecewise linear isotropic immer-
sions is a proved at Proposition 7.5.8. The remaining case, for n = 2, is a consequence
of Corollary 7.5.4. O
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CHAPTER 8

DISCRETE MOMENT MAP FLOW

The moduli space # = {f : ¥ — M, f*[w] = 0}, where ¥ is a closed surface
endowed with an area form o was introduced at §2. If M is a Kéahler mani-
fold, then .# has an induced formal Kéihler structure (.#,J,g,§?). The group
¢ = Ham(X, o) acts isometrically on .#. The action is Hamiltonian, with moment
map p: # — CF(X), given by u(f) = fﬂ%’ In this setting, a natural moment map
flow is defined (cf. §2.2) by

b Saradiul?.
The properties of the above flow shall be studied in a sequel to this work [6]. For the
time being, we merely provide a numerical simulation of the above flow, implemented
in the program Discrete Moment Map Flow (DMMF'), hosted on the webpage:

http://www.math.sciences.univ-nantes.fr/“rollin/index.php?page=£flow.

The idea is to approximate the flow, which is an evolution equation on an infinite
dimensional space of maps, by an analog finite dimensional approximation. The finite
dimensional flow is expected to converge in some sense to the infinite dimensional
flow as N — o0, at least in favorable situations, but this is part of a broader project
to be expanded later in [6].

8.1. Definition of the finite dimensional flow

In the rest of this section, we focus on the case where M = R*, with its standard
Kaéhler structure and ¥ is a surface diffeomorphic to a torus, endowed covering map
p: R? — ¥ with T, its group of deck transformation, which is a lattice of R?. This data
allows to define the quadrangulations ¢, (X). The space of quadrangular meshes .Zy
is seen as a discrete analog of the moduli space .#. The moment map p has a discrete
version as well, given by

Wy < My — C*(Qy ().
The space of discrete functions C?(Q, (X)) is also understood as a discrete analog
of C*(X). Recall that this space of discrete functions is endowed with an inner product
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«-,-», which is an analog of the L?-inner product induced by o (cf. §4.5) and denoted
«-,-» as well. We denote by || - || the norm induced by the inner product (-, -». Then

Dlux|?| -V = 2(Dui |-V, (7))
— —2(Dyiy| o J - IV, (1))
= 205, (IV), i (7))

=2(JV, 67 un (7)),
hence
1 T * T
(8.1) - §DHMNH2\T V=LV, Jo pn (7)),
where

0r = —DuMT oJ.
Its adjoint 6* is defined by «d,V,¢» = (V,0r¢». For each map v : .y —

C?*(Qy (X)), we may define a formal gradient vector field on the moduli space

gradu : My — C°(Qy (%)) ®R*
by Du| -V = grad ul_, V'». Thus, by (8.1),

1 ks *x T
—Serad |y (1) = T8 ui (7)

and we can define a downward gradient flow by

dr 1 -
@ —§gradHMNH27
which is equivalent to
dr -
(82) a JOLpn (7).

DEFINITION 8.1.1. — A solution 7y : I — N of the ordinary differential Equa-
tion (8.2), where I is an open interval of R, is called a solution of the discrete moment
map flow.

REMARK 8.1.2. — The discrete moment map flow is an ordinary differential equation
with smooth coefficients on the affine space .#p. The solution exists for short time
but might blowup in finite time. The general behavior of the flow will be addressed
in a sequel to this work [6].

The flow has typical properties of ODE with smooth coefficients:

PROPOSITION 8.1.3. — Assume that 71 : [0,C) — AN is a mazimal solution of the
the discrete moment map flow. If 7y is bounded for ¢t € [0,C), then C = +0. If in
addition T; converges to some Ty, then iy (7x) € ker 6 .
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REMARK 8.1.4. — If the function |u’||* on .#N were Morse, any bounded flow T,
would automatically converge toward a critical point of the function. Although we
are not trying to prove this fact, all our experiments with the DMMF program seem
to indicate that the flow is generically bounded and convergent. If kerd, = 0, the
conclusion of Proposition 8.1.3 implies that ply (7o) is a constant discrete function
and, by Stokes theorem, 7,, must be an isotropic quadrangular mesh. Notice that the
fact that the kernel of the operator ¢ is 1-dimensional holds for generic 7 according
to Proposition 4.6.7. This is also confirmed by all the experiments using the DMMF
program.

Proof. — If C is finite, and Z—’t' is bounded, then 73 must converge to some 7¢ ast — C.
This contradicts the fact that C' is maximal. Hence, if C is finite, ‘fi—; must be un-
bounded. In particular 7; cannot remain in a bounded set, as the RHS of the evolution
equation would be bounded. In conclusion, if 7; is bounded, we have C = +c0. If 74 con-

verges towards 7, the limit must be a fixed point of the flow and 07 ufy (1) = 0. O

REMARKS 8.1.5. — The kernel of the operator § contains the constants. In the general
setting the kernel may not be reduced to constant and Proposition 8.1.3 does not allow
to conclude that limits of the discrete flow are isotropic quadrangular meshes. It seems
reasonable, especially in view of the experimental results of § 8.2, to expect that the
flow is always trapped in a compact set of .#y. The study of these questions shall be
carried out in a sequel to this work [6].

8.2. Implementation of the discrete flow

8.2.1. Particular lattices. — Recall that the quadrangulations ¢),(X) are defined by
identifying the torus ¥ with a quotient, via the diffeomorphism ® : R?/I" — ¥ induced
by the covering map p : R2 — ¥. We merely have to make a choice for the lattice T,
in order to define ), (X) and a corresponding discrete moment map flow. This choice
is arbitrary and a sufficiently sophisticated program could deal with any choice. This
is not the case of the DMMF program, however, which is base on the choice of lattice

F” = Z61 @ Ze2,

and surface ¥ = R?/T" already introduced at §3.5. Then IV = Ay for every positive
integer N. The quadrangulation QN(]R2) descends as a quadrangulation of the quo-
tient @, (). The quadrangulation has N? vertices and a mesh in .#y can be stored
as an N x N array with entries in R%.

8.2.2. The Euler method. — It is easy to provide numerical approximations of an ODE
such as the discrete moment map flow by the Euler method. We consider discrete
time values t; = iAt, where 7 is an integer and At > 0 is a small time step increment.
Starting at time tg = 0 with a mesh 79 € .#y, we compute 71, T2, etc., as follows:
given 7; € .y at time t = iAt we compute

Vi = 67, uin (73)
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and define

Ti+1 = T; + At - J‘/l
The above computations are easy to carry out and the operator & is explicitly given
by Lemma 4.6.5. Starting from any quadrangular mesh, we can compute the above
flow very quickly in real time on an ordinary machine, whenever N is not too big (for
instance N < 100 on our laptop).

8.2.3. Visualization. — A choice has to be made for the visualization of each mesh
T € My on a computer screen. The basic idea is to choose a projection of R* on a
3-dimensional manifold and represent a mesh as a surface in a 3-dimensional space.
We explain now the choice made in the DMMF program, which may not be the best
for certain situations: we perform a radial projection of the vertices of 7 onto the unit
sphere S? of R*, centered at the origin. This projection is followed by a stereographic
projection of the sphere minus a point onto one of its tangent spaces identified to R3.
Once the positions of the projections of the vertices of 7 in R? are computed, we can
draw the quadrilateral associated to the faces in R3. A library like OpenGL allows to
represent a quadrangular mesh of R? in perspective. We fill the faces with a range of
colors which depends on the symplectic density of each face (i.e., the value of p’y(7) on
this face). In addition, motions of the mouse are used to precompose these projections
with Euclidean rotations of R%. This technique allows the user to look at surfaces from
various angles using the mouse.

8.2.4. The DMMF code. — We found out that the processing language, which is a
Java dialect, was extremely efficient to code the DMMF program. The source code
and more information on the technical aspects of the DMMF program are available
on the homepage:

http://www.math.sciences.univ-nantes.fr/~rollin/index.php?page=£flow.

The program starts the flow by sampling various examples of parametrized tori in R%.
From an experimental point of view, our numerous observations seem to indicate that
the flow should always converges, that the convergence is fast, and that the limits are
isotropic. Figure 1 shows an example of (static) output of the DMMF program. This
quadrangular mesh has diameter of order 1 and symplectic density of order 1078. The
reader is encouraged to experiment directly the more interactive and dynamic aspects
of the program.
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We consider smooth isotropic immersions from the 2-dimensional torus into
R?", for n > 2. When n = 2 the image of such map is an immersed Lagrangian
torus of R*. We prove that such isotropic immersions can be approximated
by arbitrarily C%-close piecewise linear isotropic maps. If n > 3 the piecewise
linear isotropic maps can be chosen so that they are piecewise linear isotropic
immersions as well.

The proofs are obtained using analogies with an infinite dimensional
moment map geometry due to Donaldson. As a byproduct of these
considerations, we introduce a numerical flow in finite dimension, whose limits
provide, from an experimental perspective, many examples of piecewise linear
Lagrangian tori in R*. The DMMF program, which is freely available, is based
on the Euler method and shows the evolution equation of discrete surfaces in
real time, as a movie.

Nous considérons des immersions lisses et isotropes du tore de dimension 2
vers R?®, pour n > 2. Quand n = 2 'image d’une telle application est un
tore lagrangien immergé de R*. Nous démontrons que de telles immersions
isotropes peuvent étre approximées au sens C°, par des applications linéaires
par morceaux et isotropes arbitrairement proches. Si n > 3, il est possible des
choisir des applications linéaires par morceaux qui sont de plus des immersions.

Les démonstrations reposent sur des analogies avec une géométrie et une
application moment en dimension infinie introduites par Donaldson. Nous
en déduisons un flot en dimension finie, dont les limites, du point de vue
expérimental, produisent de nombreux exemples de tores lagrangiens linéraires
par morceaux de R%. Le programme libre DMMF, basé sur la méthode d’Euler,
montre ’équation d’évolution sous forme de film.
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