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DISCRETE GEOMETRY
AND ISOTROPIC SURFACES

François Jauberteau, Yann Rollin, Samuel Tapie

Abstract. – We consider smooth isotropic immersions from the 2-dimensional torus
into R2n, for n ě 2. When n “ 2 the image of such map is an immersed Lagrangian
torus of R4. We prove that such isotropic immersions can be approximated by arbi-
trarily C

0-close piecewise linear isotropic maps. If n ě 3 the piecewise linear isotropic
maps can be chosen so that they are piecewise linear isotropic immersions as well.

The proofs are obtained using analogies with an infinite dimensional moment map
geometry due to Donaldson. As a byproduct of these considerations, we introduce a
numerical flow in finite dimension, whose limits provide, from an experimental per-
spective, many examples of piecewise linear Lagrangian tori in R4. The DMMF pro-
gram, which is freely available, is based on the Euler method and shows the evolution
equation of discrete surfaces in real time, as a movie.

Résumé (Géométrie discrète et surfaces isotropes). – Nous considérons des immersions
lisses et isotropes du tore de dimension 2 vers R2n, pour n ě 2. Quand n “ 2 l’image
d’une telle application est un tore lagrangien immergé de R4. Nous démontrons que de
telles immersions isotropes peuvent être approximées au sens C

0, par des applications
linéaires par morceaux et isotropes arbitrairement proches. Si n ě 3, il est possible
des choisir des applications linéaires par morceaux qui sont de plus des immersions.

Les démonstrations reposent sur des analogies avec une géométrie et une applica-
tion moment en dimension infinie introduites par Donaldson. Nous en déduisons un
flot en dimension finie, dont les limites, du point de vue expérimental, produisent de
nombreux exemples de tores lagrangiens linéraires par morceaux de R4. Le programme
libre DMMF, basé sur la méthode d’Euler, montre l’équation d’évolution sous forme
de film.
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CHAPTER 1

INTRODUCTION

1.1. Original motivations and background

Lagrangian submanifolds are natural objects, arising in the context of Hamiltonian
mechanics and dynamical systems. Their prominent role in symplectic topology and
geometry should not come as a surprise. In spite of tremendous efforts, the classifi-
cation of Lagrangian submanifolds, up to Hamiltonian isotopy, is generally an open
problem: for instance, Lagrangian tori of the Euclidean symplectic space R4 are not
classified up to Hamiltionian isotopy. Lagrangian submanifolds are also key objects of
various gauge theories. For example, the Lagrangian Floer theory is defined by count-
ing pseudoholomorphic disks with boundary contained in some prescribed Lagrangian
submanifolds. Many examples of smooth Lagrangian submanifolds are known. They
are easy to construct and to deform. In a nutshell, Lagrangian submanifolds are typ-
ical, rather flexible objects, from symplectic topology.

An elementary construction of Lagrangian submanifold is provided by considering
the 0-section of the cotangent bundle of a smooth manifold T˚L, endowed with its
natural symplectic structure ω “ dλ, where λ is the Liouville form. More generally,
it is well known that any section of T˚L given by a closed 1-form is a Lagrangian
submanifold. Furthermore, such Lagrangian submanifolds are Hamiltonian isotopic
to the 0-section if, and only if, the corresponding 1-form is exact. These examples
provide a large class of Lagrangian submanifolds which admit as many Hamiltonian
deformations as smooth function on L modulo constants.

By the Lagrangian neighborhood theorem, every Lagrangian submanifold L of a
symplectic manifold admits a neighborhood symplectomorphic to a neighborhood of
the 0-section of T˚L. It follows that the local Hamiltonian deformations discussed
above (in the case of T˚L) also provide deformations for Lagrangian submanifolds of
any symplectic manifold.

The geometric notion of stationary Lagrangians submanifolds was introduced by
Oh [8, 9] in order to seek canonical representatives, in a given isotopy class of La-
grangian submanifolds. Stationary Lagrangian submanifolds can be though of as
analogs of minimal submanifolds in the framework of symplectic geometry. Station-
ary Lagrangians are expected to be canonical in some sense, and Oh conjectured for
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2 CHAPTER 1. INTRODUCTION

instance that Clifford tori of CP2 should minimize the volume in their Hamiltonian
isotopy class.

As in the case of minimal surfaces, one can define various modified versions of the
mean curvature flow, which are expected to converge toward stationary Lagrangians
submanifolds in a given isotopy class. In an attempt to implement numerical versions
of these flows [5], we ended up facing theoretical problems of a discrete geometric na-
ture. Indeed, from a numerical point of view, surfaces are usually understood as some
type of mesh and their mathematical counterpart is discrete geometry and sometimes
piecewise linear geometry. Two obstacles arose in order to provide a sound numerical
simulation of geometric flows for Lagrangian submanifolds, namely:

1. To the best of our knowledge, discrete Lagrangian surfaces of R4 and more
generally discrete isotropic surfaces of R2n are poorly understood, in fact hardly
studied. We had no available examples of discrete Lagrangian tori in R4 in our
toolbox, save some discrete analogs of product or Chekanov tori (cf. Section 3.5).
Furthermore, we had no deformation theory that we could rely upon contrarily
to the smooth case. Implementing a geometric evolution equation for discrete
Lagrangian surfaces, with so few examples to start the flow was not an enticing
project.

2. As far as a program is based on a numerical implementation, using floating point
numbers, it is not natural to check if a symplectic form vanishes exactly along a
plane. It only makes sense to test if the symplectic density is rather small, which
means that we have an approximate solution of our problem. From an experi-
mental point of view, we dread our numerical flow would exhibit some spurious
drift of the symplectic density. We feared such instabilities may jeopardize our
numerical simulations for flowing Lagrangian submanifolds.

These issues led us to consider an auxiliary flow. Ideally, the auxiliary flow should
attract any discrete surface toward Lagrangian discrete surfaces. The utility of the
auxiliary flow would be 2-fold: its limits would provide examples of Lagrangian discrete
surfaces for our experiments. It may also be used to prevent instabilities of evolution
equation along the moduli space of discrete Lagrangian surfaces.

These questions are part of a larger ongoing project. They have not been fully
investigated yet but stirred many questions of a discrete differential geometric nature,
in the context of symplectic geometry. This paper delivers a few answers to some of
the simplest questions arising, as a spin-off to our initial motivations.

1.2. Statement of results

We consider smooth maps ` : Σ Ñ R2n, where Σ is a surface and n ě 2. The
Euclidean space R2n is endowed with its standard symplectic form ω. A map ` is said
to be isotropic if `˚ω “ 0. Lagrangian tori of R4 are the submanifolds obtained as the
image of Σ by `, in the particular case where 2n “ 4, Σ is diffeomorphic to a torus
and ` is an isotropic embedding.
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In this paper, we construct approximations of smooth isotropic immersions of the
torus in R2n by piecewise linear isotropic maps. The idea is to consider a discretization
of the torus by a square grid and approximate the smooth map by a quadrangular
mesh. This mesh is almost isotropic, in a suitable sense. A perturbative argument
shows that there exists a nearby isotropic quadrangular mesh, which is used to build
a piecewise linear map. We provide a more precise statement of the above claims in
the rest of the introduction.

1.2.1. Piecewise linear isotropic maps. – We recall some usual definitions before stat-
ing one of our main results. A triangulation of R2 is a locally finite simplicial complex
that covers R2 entirely. In this paper, points, line segments, triangles of triangula-
tions are understood as geometrical Euclidean objects of the plane. Similarly, we
shall consider triangulations of quotients of R2 by a lattice Γ, obtained by quotient
of Γ-invariant triangulations of R2.

A piecewise linear map f : R2 Ñ Rm is a continuous map such that, for some
triangulation of R2, the restriction of f to any triangle is an affine map to Rm.

We consider smooth isotropic immersions ` : Σ Ñ R2n, where Σ is diffeomorphic to
a 2-dimensional torus and n ě 2. The Euclidean metric g of R2n induces a conformal
structure on Σ. The uniformization theorem implies that the conformal structure of Σ

actually comes from a quotient of R2, with its canonical conformal structure, by a
lattice. Thus, we have a conformal covering map

p : R2 Ñ Σ,

with group of deck transformations Γ, a lattice of R2.
A triangulation (resp. quadrangulation) of Σ is called an Euclidean triangulation

(resp. quadrangulation) of Σ if the boundary of every face lifts to an Euclidean triangle
(resp.quadrilateral) of R2 via p.

Similarly, a function f : Σ Ñ Rm is a piecewise linear map if it lifts to a piecewise
linear map R2 Ñ Rm via p. Given a piecewise linear map ˆ̀ : Σ Ñ R2n, the pull-back
of the symplectic form ω of R2n makes sense on each triangle of the triangulation
subordinate to ˆ̀. We say that ˆ̀ is a isotropic piecewise linear map if the pull back
of ω vanishes along each face of the triangulation. A piecewise linear map which is
locally injective is called a piecewise linear immersion.

The main result of this paper can be stated as follows:

Theorem A. – Let ` : Σ Ñ R2n be a smooth isotropic immersion, where Σ is a
surface diffeomorphic to a compact torus and n ě 2. Then, for every ε ą 0, there
exists a piecewise linear isotropic map ˆ̀ : Σ Ñ R2n such that for every x P Σ, we have

}`pxq ´ ˆ̀pxq} ď ε.

Furthermore, if n ě 3, we may assume that ˆ̀ is an immersion. If n “ 2, we may
assume that ˆ̀ is an immersion away from a finite union of embedded circles in Σ.
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Loosely stated, Theorem A says that every isotropic immersion ` of a torus into
R2n can be approximated by a piece linear map arbitrarily C

0-close to `. If n ě 3 the
last statement of the theorem provides the following corollary:

Corollary B. – Let n be an integer such that n ě 3. Let Σ be a smoothly immersed
surface in R2n, which is isotropic and diffeomorphic to a compact torus. Then, there
exist piecewise linear immersed surfaces in R2n, which are isotropic, homeomorphic
to a compact torus and arbitrarily close to Σ with respect to the Hausdorff distance.

Remark 1.2.2. – Our technique does not allow to get much better results than a
rather rough C

0-closedness between ` and its approximation ˆ̀. The best evidence
for this weakness is the existence of a certain shear action on the space of isotropic
quadrangular meshes (cf. § 4.2). It would be most interesting to understand whether
these limitations are inherent to the techniques we employed here, or if there are
geometric obstructions to get better estimates.

1.2.3. Isotropic quadrangular meshes. – The main tool to prove Theorem A relies on
quadrangulations of Σ and quadrangular meshes. Quadrangulations of R2 are partic-
ular CW-complex decompositions of R2, where edges are line segments of R2 and the
boundary of every face is an Euclidean quadrilateral. Nevertheless, the precise general
definition of quadrangulations is unimportant for our purpose. Indeed, we shall only
work with particular standard quadrangulations QN pR

2q of R2, pictured as a regular
grid with step size N´1 tiled by Euclidean squares.

Particular Euclidean quadrangulations of QN pΣq, are defined at § 3.3. They are
obtained as quotients of QN pR

2q by certain lattices ΓN of R2. The associated moduli
space of quadrangular meshes is by definition

MN “ C0pQN pΣqq b R2n.

A mesh τ P MN is an object that associates R2n-coordinates to every vertex of the
quadrangulation QN pΣq.

We would like to say that any quadrilateral of R2n contained in an isotropic plane
is an isotropic quadrilateral. However, quadrilaterals are generally not contained in a
2-dimensional plane. The above attempt of definition can be extended via the Stokes
theorem for every non flat quadrilateral: a quadrilateral of R2n is called an isotropic
quadrilateral, if the integral of the Liouville form λ along the quadrilateral — that is
four oriented line segments — vanishes (cf. § 4.1).

Remark 1.2.4. – In particular, for any compact embedded oriented surface S of R2n

with boundary given by an isotropic quadrilateral, we have
ş

S
ω “ 0 by Stokes theo-

rem.

By extension, we say that a mesh τ P MN is isotropic if the quadrilateral in R2n

associated to each face of QnpΣq via τ is isotropic. The main strategy for proving
Theorem A involves the following approximation result:

MÉMOIRES DE LA SMF 161



1.2. STATEMENT OF RESULTS 5

Theorem C. – Given an isotropic immersion ` : Σ Ñ R2n, there exists a family
of isotropic quadrangular meshes ρN P MN defined for every N sufficiently large,
with the following property: for every ε ą 0, there exists N0 ą 0 such that for every
N ě N0 and every vertex v of QN pΣq, we have

}ρN pvq ´ `pvq} ď ε.

An isotropic quadrilateral of R2n is always the base of an isotropic pyramid in R2n

(cf. § 7.1), which is easily found as the solution of a linear system. This remark allows
to pass from an isotropic quadrangular mesh to an isotropic triangular mesh. Together
with Theorem C this provides essentially the proof of Theorem A.

1.2.5. Flow for quadrangular meshes. – Our approach for proving Theorem C has
been inspired to a large extent by the beautiful moment map geometry introduced
by Donaldson [4]. We shall provide a careful presentation of this infinite dimensional
geometry at § 2, and merely state a few facts in this introduction: the moduli space
of maps

M “ tf : Σ Ñ R2nu,

from a surface Σ endowed with a volume form σ into R2n admits a natural formal
Kähler structure, with a formal Hamiltonian action of HampΣ, σq. The moment map
of the action is given by

µpfq “
f˚ω

σ
.

Zeroes of the moment map are precisely isotropic maps. It is tempting to make an
analogy with the Kempf-Ness theorem, which holds in the finite dimensional setting.
We may conjecture that a map f admits an isotropic representative in its complexified
orbit provided some type of algebro-geometric hypothesis of stability. Furthermore,
one can also define a moment map flow, which is naturally defined in the context of
a Kähler manifold endowed with a Hamiltonian group action. Such flow is essentially
the downward gradient of the function }µ}2 on the moduli space, which is expected, in
favorable circumstances, to converge toward a zero of the moment map in a prescribed
orbit.

Remark 1.2.6. – We shall not state any significant results aside the description of
this geometric framework. For instance, it is an open question whether the moment
map flow exists for short time in this context, which is part of a broader ongoing
program.

In an attempt to define a finite dimensional analog of this infinite dimensional
moment map picture, we define a flow analogous to the moment map flow on the
moduli space of meshes MN , called the discrete moment map flow. This flow is now
just an ODE and its behavior can readily be explored from a numerical perspective,
using the Euler method. We provide a computer program called DMMF, available on
the homepage
http://www.math.sciences.univ-nantes.fr/~rollin/index.php?page=flow,
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which is a numerical simulation of the discrete moment map flow. From an experi-
mental point of view, the flow seems to be converging quickly toward isotropic quad-
rangular meshes, for any initial quadrangular mesh (cf. § 8).

1.3. Open questions

Theorem A is a fundamental tool for the discrete geometry of isotropic tori, since
it provides a vast class of examples of piecewise linear objects by approximation of
the smooth ones. Here is a list a questions that arise immediately in this new territory
of discrete symplectic geometry:

1. Is there a converse to Theorem A or Corollary B? Given a piecewise linear
isotropic surface in R2n, is it possible to find a nearby smooth isotropic surface?

2. More generally, to what extent does the moduli space of piecewise linear La-
grangian submanifolds retain the properties of the moduli space of smooth
Lagrangian submanifolds? In spite of groundbreaking progress in symplectic
topology, the classification of Lagrangian submanifolds up to Hamiltonian iso-
topy remains open. It is known that there exists several types of Lagrangian tori
in R4, which are not Hamiltonian isotopic: namely, product tori and Chekanov
tori [1]. On the other hand, Luttinger found infinitely many obstructions in [7]
to the existence of certain type of knotted Lagrangian tori in R4. In particular
spin knots provide knotted tori in R4 which cannot by isotopic to Lagrangian
tori according to Luttinger’s theorem. This thread of ideas led to the conjecture
that product and Checkanov tori are the only classes of Lagrangian tori in R4,
up to Hamiltonian isotopy. Although the result was claimed before, the conjec-
ture is still open for the time being [2]. However it was proved by Dimitroglou
Rizell, Goodman and Ivrii that all embedded Lagrangian tori of R4 are isotopic
trough Lagrangian isotopies [3]. Perhaps an interesting approach to tackle such
conjecture, and more generally any questions involving some type of h-principle,
would be to recast the question in the finite dimensional framework of piecewise
linear Lagrangian tori of R4.

3. The moment map framework, in an infinite dimensional context, presented at
§ 2, has been a great endeavor for proving our main results and introducing
a finite dimensional version of the moment map flow. However, only a faint
shadow of the moment map geometry is recovered in the finite dimensional
world. More precisely, there exists a finite dimensional analog µrN of the moment
map µ on MN . But it is not clear whether µrN is actually a moment map and
for which group action on MN . It would be most interesting to define a finite
dimensional analog of the group HampΣ, σq, and try to make sense of the Kempf-
Ness theorem in this setting.
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1.4. Comments on the proofs—future works

The proofs given in this paper come with a strong differential geometric flavor,
involving uniformization theorem for Riemann surfaces, discrete analysis, discrete
elliptic operators, discrete Schauder estimates, Riemannian geometry, discrete spectral
gap theorem, Gauß curvature and its discrete analogs.

Many of the techniques employed here may be adapted to more general settings.
Working with tori seems to be a key fact however: indeed, Fourier and discrete Fourier
transforms are well adapted for the analysis on tori and their quadrangulations and do
not seem to extend easily. The discrete Schauder estimates derived by Thomée [10],
which are a crucial ingredient of our fixed point principle, are proved using Fourier
transforms.

Although geometric analysis is quite often a powerful tool for proving topological
theorems, symplectic topologists may still expect some more flexible constructions.
Boldly stated, there may be a shorter proof based on more conventional techniques of
symplectic topolology, steming from some local ansatz, some jiggling lemma or in the
spirit of the h-principle. Such proofs might be shorter, more elementary and, perhaps,
lead to some stronger regularity results. These statements are difficult to disprove,
especially since our attempts to deliver alternate proofs of, say Theorem A, along
these lines failed so far.

One of the original motivation for this work was to get some effective constructions,
even for rough PL surfaces, that is when N is quite small. It is unlikely that any of the
flexible constructions could shed some light on this case. On the contrary, one of the
outcome of this paper is a new flow for quadrangular meshes (cf. § 8) that provides
large families of PL isotropic surfaces. Many questions about this finite dimensional
flow remain open, and we would like to tackle them in future research. For instance,
the completeness of the finite dimensional flow is unclear at the moment, although
this is expected, based on numerical evidence.

Another open problem concerns the naturality of our finite dimensional flow
as a good approximation of the infinite dimensional flow a N goes to infinity: let
τN ptq PMN be families of solutions of the finite dimensional flow (8.2), for every
N ą 0, and ft : Σ Ñ R2n, a solution of the infinite dimensional flow (2.2). Assume
that these flows are defined on the same interval t P r0, T s, and that the initial con-
ditions τN p0q converge towards f0 in a suitable sense. Is it true that τN ptq converges
uniformly towards ft in a suitable sense? Under some strong regularity assumptions
of ft, a scheme of proof of such a convergence result, would depend of the following
ingredients:

— Open problem : show that the sequence of finite dimensional evolution equations
converge in a suitable sense to a nice evolution equation in the smooth setting,
perhaps, in some sense, a parabolic equation. Such result could be understood
as an analog of the study of the limit operator Ξ carried out in this paper 4.7.1.
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— Open problem : relying on the Schauder discrete estimates, show that for suitable
norms (perhaps weak discrete Hölder norms), the finite dimensional flow has
some type of regularizing properties similar to parabolic flows. The answer to
this question could be seen as an analog of the spectral gap Theorem 5.5.2.

At the moment of writing, we have no interpretation of the smooth moment map flow
as some type parabolic flow and the above questions remain widely open.

1.5. Organization of the paper

Section § 2 of this paper is a presentation of the moment map geometry of a cer-
tain infinite dimensional moduli spaces introduced by Donaldson. Finite dimensional
analogs of this geometry are used in the rest of the paper. For instance a discrete
version of the moment map flow is introduced at § 8 and implemented on a com-
puter, in order to obtain examples of Lagrangian piecewise linear surfaces from an
experimental point of view. In § 3, we introduce suitable spaces of discrete functions
on tori, together with the analysis suited for implementing the fixed point principle.
This section contains the definition of quadrangulations, discrete functions, discrete
Hölder norms, together with the relevant notions of convergence, culminating with
a type of Ascoli-Arzela theorem (cf. Theorem 3.10.6). The equations for Lagrangian
quadrangular meshes are introduced at § 4, where their linearization is also computed.
As the dimension of the discrete problem goes to infinity, we show that the finite dim-
ensional linearized problem converges toward a smooth differential operator at § 5.
Some uniform estimates on the spectrum of the finite dimensional linearized problem
are derived as a corollary. The proof of Theorem C is completed at § 6, using the
fixed point principle. The proof of Theorem A follows and is completed at § 7 after
introducing some generic perturbations in order to obtain piecewise linear immersions.
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CHAPTER 2

DREAMING OF THE SMOOTH SETTING

The main results of this work (for instance Theorem C), are of discrete geometric
nature. Yet the main ideas of our proof were obtained via an analogy with the moment
map geometry of the space of maps, from the tori endowed with a volume form, into
R2n. This section is independent of the others, but we think it is important to show
how smooth and discrete geometry analogies can be used to unravel unexpected ideas.

2.1. Donaldson’s moment map geometry

The moment map geometry presented here was coined by Donaldson, although
our specific setting is not emphasized in [4]. All the notions of moduli spaces shall
be discussed from a purely formal perspective. With some additional effort, it may
be possible to define infinite dimensional manifolds structures on moduli spaces of
interest, by using suitable Sobolev or Hölder spaces.

Let M be a smooth manifold endowed with a Kähler structure pM,J, ω, gq. The
Kähler structure ofM is given by an integrable almost complex structure J , a Kähler
form ω and the corresponding Kähler metric g. Recall that the Kähler form is related
to the metric via the usual formula

ωpv1, v2q “ gpJv1, v2q, for all v1, v2 P TmM.

The reader may keep in mind the simplest example provided by M “ R2n » Cn with
its induced Euclidean Kähler structure. In this case, ω “ dλ, where λ is the Liouville
form, which implies that the cohomology class rωs P H2pM,Rq vanishes.

Let Σ be a closed surface with orientation induced by a volume form σ. In real
dimension 2, a volume form is also a symplectic form. Thus, the symplectic surface
pΣ, σq admits an infinite dimensional Lie group of Hamiltonian transformations de-
noted

G “ HampΣ, σq.

One can consider the moduli space of smooth maps

M “ tf : Σ ÑM | f˚rωs “ 0u;
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notice that in the case of M “ R2n endowed with the standard symplectic form, the
condition f˚rωs “ 0 is satisfied by every smooth map.

The tangent space TfM is identified with the space of tangent vector fields V
along f , which is the space of smooth map V : Σ Ñ TM such that V pxq P TfpxqM .
There is an obvious right-action of HampΣ, σq on M by precomposition.

As pointed out by Donaldson, the geometry of the target space induces a formal
Kähler structure on M denoted pM , g,Ω, Jq given by

pJV q|x
“ JVx, gpV, V 1q “

ż

Σ

gpV, V 1qσ, ΩpV, V 1q “

ż

Σ

ωpV, V 1qσ,

for any pair of tangent vector fields V, V 1 along f : Σ Ñ R4. By definition, the action
of HampΣ, σq preserves the Kähler structure of M .

The canonical L2-inner product on Σ, given by

xxh, h1yy “

ż

Σ

hh1σ,

allows to define the space of smooth functions orthogonal to constants C80 pΣq, which
in turn, be identified to the Lie algebra Liep G q of G “ HampΣ, σq via the map h ÞÑ Xh.
Here Xh is the Hamiltonian vector field with respect to the symplectic form σ, which
satisfies

ιXhσ “ dh.

The L2-inner product xxh, h1yy also provides an isomorphism between the Lie algebra
of HampΣ, σq and its dual. The Lie algebra and its dual will be identified throughout
this section without any further warning. Since HampΣ, σq acts on M , any element
of the Lie algebra h P Liep G q » C80 pΣq induces a fundamental vector field Yh on M
defined by

Yhpfq “ f˚Xh P TfM .

For f P M , we have f˚rωs “ 0, hence
ż

Σ

f˚ω

σ
σ “

ż

Σ

f˚ω “ 0,

so that we may consider the map

(2.1) µ :

#

M ÝÑ C80 pΣq

f ÞÝÑ µpfq “
f˚ω
σ

By definition, we have the obvious property

µpfq “ 0 ô f˚ω “ 0 ô f is an isotropic map.

But we have much more than an equation:

Proposition 2.1.1 (Donaldson). – The action of HampΣ, σq on M is formally
Hamiltonian and admits µ as a moment map. More precisely:
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1. µ : M Ñ C80 pΣq is HampΣ, σq-equariant in the sense that for every f P M and
u P HampΣ, σq

xxµpf ˝ uq, h ˝ uyy “ xxµpfq, hyy;

2. for every variation V of f

xxDµ|f
¨ V, hyy “ ´ιYhpfqΩpV q,

where D denotes the differentiation of functions on M .

Proof. – Only the second property requires some explanation. We pick a smooth
family of maps ft : Σ Ñ M such that B

Btft|t“0
“ V and f0 “ f . The family is

understood as a smooth map
F : I ˆ Σ ÑM,

where I is a neighborhood of 0 in R and F pt, xq “ ftpxq. We denote by j0 : Σ ãÑ IˆΣ

the canonical embedding given by j0pxq “ p0, xq. Notice that by definition F ˝ j0 “ f .
Then

xxDµ|f
¨ V, hyy “

B

Bt |t“0

ż

Σ

hf˚t ω

“

ż

Σ

hj˚0 L Bt ¨ F
˚ω

“

ż

Σ

hj˚0 pdιBtF
˚ω ` ιBtdF

˚ωq,

where the last line comes from the Cartan formula. The symplectic form is closed,
hence dF˚ω “ F˚dω “ 0. In addition F˚Bt agrees with V along t0u ˆ Σ, so that
j˚0 dιBtF

˚ω “ dj˚0 ιBtF
˚ω “ dωpV, pF ˝ j0q

˚¨q “ df˚ιV ω. It follows that

xxDµ|f
¨ V, hyy “

ż

Σ

hdf˚ιV ω

“ ´

ż

Σ

dh^ f˚ιV ω

“ ´

ż

Σ

ιXhσ ^ f
˚ιV ω.

The interior product is an antiderivation. In particular

ιXhpσ ^ f
˚ιV ωq “ pιXhσq ^ f

˚ιV ω ` pιXhf
˚ιV ωqσ.

The LHS of the above identities must vanish since this is the case for a 3-form over a
surface, and we obtain the identity

xxDµ|f
¨ V, hyy “

ż

Σ

pιXhf
˚ιV ωqσ

“

ż

Σ

ωpV, Yhpfqqσ

“ ΩpV, Yhpfqq,

which proves the proposition.
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2.2. A moment map flow

From this point, gauge theorists may dream of generalizations of the Kempf-Ness
Theorem, which is only known to hold in the finite dimensional setting. The Kempf-
Ness theorem asserts that the existence of a zero of the moment map in a given com-
plexified orbit of the group action is equivalent to an algebraic property of stability, in
the sense of geometric invariant theory. Under the hypothesis of stability, the zeroes
of the moment map are unique up to the action of the real group. Unfortunately the
Kempf-Ness Theorem does not apply immediately in the infinite dimensional setting
and the conjectural isomorphism

M {{ G
C
» µ´1p0q{ G ,

where the LHS is some type of GIT quotient, is out of reach for the moment. To
start with, the complexification of G is not even well defined and the quotient M {{ G

C

does not make sense. Nevertheless, a significant number of this thread of ideas may
be implemented. For instance, we may define a natural moment map flow.

Definition 2.2.1. – Let ft P M be a family of maps, for t in an open interval of R.
We say that the family ft is solution of the moment map flow if

(2.2)
df

dt
“ JYµpfqpfq.

Remark 2.2.2. – In the finite dimensional setting, such a moment map flow preserves
the complexified orbits and converges to a zero of the moment map under a suitable
assumption of stability. It is natural to conjecture that this flow should converges
generically to an isotropic map in a prescribed complexified orbit. We shall not tackle
this problem here and only prove some very down to earth properties of the flow.

By construction, we have

gpJYµpfqpfq, V q “ ΩpYµpfq, V q

“ ´xxDµ|f
¨ V, µpfqyy

“ ´
1

2
Dp}µ}2q|f

¨ V,

so that
JYµp¨q “ ´

1

2
grad}µ}2,

which proves the following lemma:

Lemma 2.2.3. – Smooth maps f : Σ ÑM are zeroes of the moment map if, and only
if they are isotropic. In addition, the moment map flow is a downward gradient flow
of the functional f ÞÑ }µpfq}2 on M . More precisely, the evolution equation of the
moment map flow can be written

df

dt
“ ´

1

2
grad}µpfq}2,

where grad is the gradient of a function on M endowed with its Riemannian metric g.
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As a corollary, we see that the functional should decrease along flow lines:

Corollary 2.2.4. – If ft is a smooth family of maps solution of the moment map
flow, then

d

dt
}µpftq}

2 ă 0

unless ft is isotropic, in which case d
dt}µpftq}

2 “ 0 and the flow is stationary.

Proof. – Assume that ft is not isotropic. In particular there exists x P Σ such that
the differential of µpftq does not vanish at x. Otherwise µpftq would be constant. But
the fact that ω is exact would force µpftq “ 0. By definition Xµpftq is a non vanishing
vector field at x since it is the symplectic dual of dµpftq. It follows that Yµpftq does
not vanish hence

d

dt
}µpftq}

2 “ ´2gpJYµpftq, JYµpftqq

“ ´2gpYµpftq, Yµpftqq ă 0.

2.2.5. Laplacian and related operators. – For each vector field V tangent to f , we
define the operator

δf : TfM Ñ C80 pΣq

by

(2.3) δfV “ ´Dµ|f
¨ JV.

We see that the adjoint δ‹f of δf satisfies

gpδ‹fh, V q “ xxδfV, hyy

“ ´xxDµ|f
¨ JV, hyy

“ ΩpYhpfq, JV q

“ gpYhpfq, V q,

so that

(2.4) δ‹fh “ Yhpfq.

For each f P M , we may define a natural Laplacian

(2.5) ∆f “ δfδ
‹
f

acting on smooth functions on Σ.

Remark 2.2.6. – It seems likely that the moment map flow of Definition 2.2.1 can
be interpreted as a parabolic flow, once a suitable analytical framework and gauge
condition have been setup. Although we shall not prove anything about short time
existence of the moment map flow in this work, we provide at least a heuristic evidence.
In the next section, we compute the variation of the moment map and show that the
variation of µpfq, when f is deformed in the direction of the complexified action JYh,
is expressed as a Laplacian of h. However, the systematic study of the moment map
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14 CHAPTER 2. DREAMING OF THE SMOOTH SETTING

flow in the smooth setting is not our purpose here, and we shall return to this question
in a sequel to this paper [6].

2.3. Variations of the moment map

The operator f ÞÑ µpfq is a first order differential operator. This section is devoted
to calculate its linearization.

2.3.1. General variations. – Let fs : Σ Ñ M be a smooth family of maps, with
parameter s P I, where I is an open interval of R. We use the notation,

Vs “
Bfs
Bs

,

for the infinitesimal variation Vs P TfsM of the family fs.
We consider the map F : I ˆ Σ Ñ M given by F ps, xq “ fspxq and the canonical

injection js0 : Σ ãÑ I ˆ Σ, defined by js0pxq “ ps0, xq for some s0 P I. We compute,
using the Cartan formula

Bf˚s ω

Bs |s“s0
“ j˚s0

B

Bs
¨ F˚ω

“ j˚s0pd ˝ ιBs ` ιBs ˝ dqF
˚ω

“ j˚s0d ˝ ιBsF
˚ω

“ j˚s0dF
˚ιVsω

“ df˚s0ιVs0ω,

where we have used the fact that dω “ 0, that d commutes with pullbacks and that
F ˝ js0 “ fs0 .

The form
αs0 “ f˚s ιVs0ω

is called the Maslov form of the deformation fs at s “ s0. The above computation
shows that

Bf˚s ω

Bs
“ dαs,

which reads
Bµpfsq

Bs
“ δαs,

where δ is the operator given by

(2.6) δγ “
dγ

σ
,

for every 1-form γ on Σ.
Thus we have proved the following result:
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Lemma 2.3.2. – Let f : Σ ÑM be a smooth map and V P TfM be an infinitesimal
variation of f . Then

Dµ|f
¨ V “ δαV ,

where αV “ f˚ιV ω is the Maslov form of the deformation and δ is the operator defined
by (2.6).

2.3.3. Variations at an immersion. – We assume now that f : Σ Ñ M is a smooth
immersion. In particular the pullback gΣ “ f˚g is a Riemannian metric on Σ. The
volume form volΣ may not agree with σ, but the 2-forms are related by a conformal
factor

volΣ “ θσ,

where θ : Σ Ñ R is a positive smooth function. We introduce a conformal metric gσ
that satisfies the equation

gΣ “ θgσ,

and the Hodge operator acting on forms of Σ, associated to the metric gσ is denoted ˚σ.

Lemma 2.3.4. – Assume that f : Σ Ñ M is a smooth immersion. Then Σ has
an induced Riemannian metric gΣ. Let gσ be the Riemannian metric with volume
form σ, conformal to gΣ. Let Yh be the fundamental vector field on M associated to
the Hamiltonian function h. Then

∆fh “ δfδ
‹
fh “ ´Dµ|f

¨ JYhpfq “ d˚σθdh “ θ∆σh´ gσpdθ, dhq.

where ∆σ is the Laplacian associated to the Riemannian metric gσ and θ is the con-
formal factor such that gΣ “ θgσ.

Remark 2.3.5. – In particular, if volΣ agrees with σ, then θ “ 1, gσ “ gΣ and the
above formula says that

∆fh “ ∆Σh.

Proof. – Let fs P M , be a smooth family of maps for s P I “ p´ε, εq, with the
property that f0 “ f and V0 “ JYh “ Jf˚Xh. Then

Bµpfsq
Bs

“ δαs by Lemma 2.3.2.
But α0pUq “ f˚ωpV0, Uq “ ωpJf˚Xh, f˚Uq “ ´gpf˚Xh, f˚Uq “ ´gΣpXh, Uq. It
follows that α0pUq “ ´θgσpXh, Uq “ ´θσpXh, ˚σUq “ θ ˚σ dh. Then we conclude
that

Bµpfsq

Bs |s“0
“ ˚σdθ ˚σ dh “ ´d

˚σθdh “ ´θ∆σh` gσpdθ, dhq,

which proves the lemma.

The next lemma shows that ∆f is essentially an isomorphism.

Lemma 2.3.6. – The operator h ÞÑ d˚σθdh is an elliptic operator of order 2, which
is an isomorphism modulo constants.
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16 CHAPTER 2. DREAMING OF THE SMOOTH SETTING

Proof. – The fact that the operator is elliptic of order 2 follows from the formula

d˚σθdh “ θ∆σh´ gσpdθ, dhq.

The operator is selfadjoint since

xxd˚σθdh, h1yy “ xxθdh, dh1yy “ xxh, d˚σθdh1yy.

If h belongs to the kernel of the operator, then

0 “ xxd˚σθdh, hyy “ xxθdh, dhyy,

which implies that h is constant. Because the operator is selfajoint, the orthogonal of
its image is identified to the kernel. So the operator is an isomophism when restricted
to functions which are L2-orthogonal to constants.

2.4. Application

We know that M is acted on by G “ HampΣ, σq. The G -orbit of f P M is de-
noted Of . The group of Hamiltonian transformations does not admit a natural com-
plexification. Nevertheless, it is possible to make sense of its complexified orbits.

The space of vector fields Yu defined by Yupfq “ f˚Xu over M defines an integrable
distribution D Ă TM which is the tangent space to G -orbits. We can consider the
complexified distribution of the tangent bundle to M

D
C
“ D` JD

given by vector fields of the form Yu ` JYv. The fact that G preserves the complex
structure J of M implies that the distribution is formally integrable into a holo-
morphic foliation. A leaf of the foliation, obtained by integrating the distribution, is
refered to as a complexified orbit of G . The complexified orbit of a element f P M is
denoted O

C
f .

We are now assuming for simplicity that M is the Kähler manifolds R2n identified
to Cn. In this case, given f P M , we may consider a type of exponential map given
by

expf pu` ivq “ f ` Yupfq ` JYvpfq,

for u, v P C80 pΣq. This type of exponential map does not come from a Lie group
exponential map. However, expf pu ` ivq provides perturbations of f in directions
tangent to the complexified orbit O

C
f at f .

We have now all the tools necessary to prove the following result:

Theorem 2.4.1. – We choose M “ R2n for the construction of M . Let ` P M be a
smooth isotropic immersion. If f P M is sufficiently close to ` in C

1,α-norm, there
exists a nearby perturbation of the form ˜̀ “ expf pihq, where h is a C

2,α function
on Σ, such that ˜̀ is an isotropic immersion.
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Proof. – We denote by C
k,α, for some Hölder parameter α ą 0, the usual Hölder

spaces. The moduli space M is replaced with M k,α which consists of C
k,α-maps

f : Σ Ñ R2n. Since M k,α is an affine space modeled on C
k,α, it is naturally endowed

with an infinite dimensional manifold structure. In particular, the map expf defines
a smooth map

exp : C
k`1,α

pΣ,Cq ˆM k,α ÝÑ M k,α.

given by ph, fq ÞÑ expf phq.

We denote by C
k,α
0 pΣq the subspace of C

k,α
pΣq that consists of real valued functions

h : Σ Ñ R such that
ş

Σ
hσ “ 0 (i.e., functions orthogonal to constants for the inner

product xx¨, ¨yy). We consider the map

Z :

#

C
2,α
0 pΣq ˆM 1,α ÝÑ M 0,α

ph, fq ÞÝÑ expf p´ihq,

whose differential at p0, `q satisfies
BZ

Bh |p0,`q
¨ 9h “ ´JY 9hp`q

by definition of the exponential map. In particular

(2.7)
Bpµ ˝ Zq

Bh |p0,`q
¨ 9h “ ´Dµ|`

¨ JY 9hp`q “ δ`δ
‹
`h “ ∆`h

by Lemma 2.3.4. This operator is an isomorphism modulo constants by Lemma 2.3.6.
We consider the map

F : C
2,α
0 pΣq ˆM 1,α Ñ C

0,α
0 pΣq

given by F “ µ ˝ Z. We have proved that the differential
BF

Bh |p0,`q
: C

2,α
0 pΣq ÝÑ C

0,α
0 pΣq

is an isomorphism. The rest of the proof follows from the implicit function theorem:
for every f P M 1,α sufficiently close to ` in C

1,α-norm, there exists a unique h̃ “
hpfq P C

2,α
pΣq in a small neighborhood of the origin, such that

F ph̃, fq “ 0.

By definition expf pih̃q “
˜̀ satisfies µp˜̀q “ 0. By assumption ` is smooth. If f is also

smooth, elliptic regularity and standard bootstrapping argument shows that h̃, and
in turn ˜̀, must be smooth as well. This proves the theorem.

Remark 2.4.2. – In Section 4, we will develop a perturbation theory on the space
of quadrangular meshes MN that mimics Theorem 2.4.1. We shall define an analog
δτ of the operator δf in the context of discrete geometry (cf. Formula (4.6)). The
operator δτ , and more precisely its adjoint δ‹τ , could be used to define an analog of
Hamiltonian vector fields in the context of discrete differential geometry, in view of
Formula (2.4). This could be relied upon to define a discrete analog of the gauge group
action G “ HampΣ, σq. This idea will be explored in a sequel to this work [6].
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18 CHAPTER 2. DREAMING OF THE SMOOTH SETTING

2.4.3. Outreach. – In § 4 we shall define finite dimensional analogs of the infinite
dimensional moment map picture presented in the current section. This will provide
the incomplete dictionary below, where the right column is conjecturally a finite
dimensional approximation of the left column:

Infinite dimensional case finite dimensional case
Area form σ on Σ Quadrangulation QN pΣq

M “ tf : Σ Ñ R2nu MN “ C0pQN pΣq b R2n

Canonical Kähler structure Canonical Kähler structure
HampΣ, σq-action ???

Fundamental V.F Yhpfq “ δ‹fh δ‹τφ

A moment map µ : M Ñ C8pΣq µrN : MN Ñ C2pQN pΣqq

The moment map flow (2.2) The discrete flow (8.2)

Many aspects of the above dictionary remain unclear. First, the finite dimensional
picture does not come with a Lie group action that would, in some sense, approximate
HampΣ, σq. In particular µrN is not a moment map and C2pQN pΣqq is not interpreted
as a Lie algebra. The flows are defined on both sides and we would like to compare
them as N goes to infinity. Unfortunately, we do not even know whether the infinite
dimensional flow exists for short time. The discrete flow is an ODE, but it is not
completely understood at this stage. For N fixed, does the flow converge, or does it
blowup? Does a sequence of flow converge to the moment map flow as N goes to
infinity? Can we use the above sketch of correspondence to make sense of some type
of Kempf-Ness theorem in the infinite dimensional setting?

All these gripping questions are postponed to a later work. In this paper, we focus
on the discrete flow on MN , for a given N , and merely provide a computer simulation
of the discrete flow at § 8.
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CHAPTER 3

DISCRETE ANALYSIS

In this section, we consider a real surface Σ, diffeomorphic to a torus. We denote
by g the canonical Euclidean metric of R2n and J the standard complex structure
deduced from the identification R2n » Cn. The standard symplectic form of R2n is
given by ωp¨, ¨q “ gpJ ¨, ¨q and ` : Σ Ñ R2n is an isotropic immersion.

3.1. Conformally flat metric

Every Riemannian metric on a surface diffeomorphic to a torus is conformally flat.
In particular, Σ carries a pullback Riemannian metric

gΣ “ `˚g,

which must be conformally flat. In other words, there exists a covering map

(3.1) p : R2 Ñ Σ

with deck transformations given by a lattice Γ Ă R2. The Euclidean metric geuc of R2

descends as a flat metric gσ on Σ. In addition there exists a positive smooth function
θ : Σ Ñ p0,`8q, known as the conformal factor, such that

gΣ “ θgσ.

The projection p, which descends to the quotient R2{Γ, provides a preferred diffeo-
morphism

(3.2) Φ : R2{Γ Ñ Σ,

which is also an isometry from pR2{Γ, geucq to pΣ, gσq.
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20 CHAPTER 3. DISCRETE ANALYSIS

3.2. Square lattice and checkers board

Let e1 “ p1, 0q and e2 “ p0, 1q be the canonical basis of R2. The basis pe1, e2q is
orthonormal with respect to the canonical Euclidean metric geuc of R2 and it is posi-
tively oriented, by convention.

For every positive integer N , we introduce the lattice ΛN Ă R2 spanned by e1{N

and e2{N :

ΛN “ Z ¨
e1

N
‘ Z ¨

e2

N
Ă R2.

The lattice ΛN provides the familiar picture of a square grid in R2 with step size N´1.
The lattice Γ, introduced at § 3.1, admits a basis pγ1, γ2q, compatible with the canon-
ical orientation of R2. The lattice Γ is generally not a sublattice of ΛN . Indeed, the
components of the vectors γ1, γ2 P R2 may not be rational. This fact will cause a
technical catch for constructing quadrangulations of Σ. Luckily this difficulty is eas-
ily overcome as we shall explain below. The checkers board sublattice Λch

N Ă ΛN is
spanned by the vectors e1`e2

N and e2´e1
N :

Λch
N “ Z ¨

e1 ` e2

N
‘ Z ¨

e2 ´ e1

N
Ă ΛN .

The elements of ΛN Ă R2 may be thought of as the positions of a standard checkers
board game. Then Λch

N acts on ΛN by translations. These translations are spanned
by diagonal motions, as in some kind of checkers game. One can easily see that the
quotient ΛN{Λ

ch
N is isomorphic to Z2 which is isomorphic to the equivalence classes

of the usual black and white positions of the checkers board game.

For each N ą 0 and i “ 1, 2, we choose γNi P Λch
N which is a best approxima-

tion of γi in Λch
N , for the Euclidean distance in R2. By definition, γN1 and γN2 are

linearly independent for all sufficiently large N . We define the lattice ΓN , at least for
sufficiently large N , as

ΓN “ Z ¨ γN1 ‘ Z ¨ γN2 Ă ΛchN Ă ΛN .

We summarize our construction in Figure 1. The red and blue bullets represent the
elements of ΛN , where the red bullets are in Λch

N . We draw the generators γi of Γ and
their best approximations, in red, by elements γNi of Λch

N :
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γ1

γ2

γN1

γN2

Figure 1. Construction of ΓN

By construction, ΓN is a sublattice of Λch
N ; this choice has been designed so that the

checkers graph splits into two connected components precisely (cf. § 3.4). Furthermore,
the lattices ΓN converge towards Γ, in a sense to be made more precise now: the linear
transformation UN of R2 defined by

UN pγ
N
i q “ γi

identifies the lattices ΓN and Γ by an automorphism of R2. Using an operator norm
for linear transformations of R2, we have

(3.3) }UN ´ id|R2
} “ O

`

N´1
˘

.

In conclusion UN converges towards the identity and UN pΓN q “ Γ, which is under-
stood as ΓN converges towards Γ.

By construction, UN descends to the quotient as a (locally linear) diffeomorphism

uN : R2{ΓN Ñ R2{Γ.

The linear transformation UN may not belong to the orthogonal group. Therefore
neither UN nor uN are isometries. But, they are isometries in the limit, since UN
converges to the identity. This fact will be sufficient for our purpose. The quotients
R2{Γ and R2{ΓN are canonically identified to Σ via the diffeomorphisms

R2{ΓN
uN
ÝÑ R2{Γ

Φ
ÝÑ Σ.

There are now several competing covering maps: we defined p : R2 Ñ Σ at (3.1), but
we may also consider the covering maps

(3.4) pN “ p ˝ UN : R2 Ñ Σ.

The group of deck transformation of p is Γ, whereas the group of deck transformations
of pN is ΓN . There are also several flat metrics descending on Σ via p and pN . The first
gσ is induced by the Euclidean metric and the diffeomorphism Φ : R2{Γ Ñ Σ. The
other flat metrics gNσ are induced by the Euclidean metric and the diffeomorphisms

(3.5) ΦN : R2{ΓN Ñ Σ
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induces by (3.4). According to (3.3) we have

gNσ “ gσ ` O
`

N´1
˘

.

3.3. Quadrangulations

Instead of linear triangulations, we shall work with particular linear quadrangu-
lations QN pΣq of Σ. The current section is devoted to the definition of these CW-
complexes.

3.3.1. Quadrangulations of the plane. – For k, l P Z, the points of R2 given by

vkl “
k

N
e1 `

l

N
e2,

are the elements of the lattice ΛN Ă R2. The elements of the lattice ΛN are also
the vertices of a nice quadrangulation QN pR

2q of the plane R2, pictured as the usual
square grid with stepN´1. More precisely, the quadrangulation QN pR

2q is a particular
CW-complex decomposition of R2, characterized by the following properties:
— The edges e1,kl and e2,kl of the quadrangulation are the oriented line segments

of R2 with oriented boundary

Be1,kl “ vk`1,l ´ vkl and Be2,kl “ vk,l`1 ´ vkl.

— The faces fkl of the quadrangulation are oriented squares of R2 with oriented
boundary

Bfkl “ e1,kl ` e2,k`1,l ´ e1,k,l`1 ´ e2,kl.

Figure 2 shows the familiar picture of the plane tiled by squares together with the
notations introduced above.

fk−1,l−1 fk,l−1 fk+1,l−1

fk−1,l fkl fk+1,l

fk−1,l+1 fk,l+1 fk+1,l+1

vk,l vk+1,l

vk,l+1 vk+1,l+1

e1,kl

e1,k,l+1

e
2
,k
l

e
2
,k
+
1
,l

Figure 2. Quadrangulation Q
N

pR2
q
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3.3.2. Quadrangulations of the torus. – The lattice ΛN acts on itself, by translation.
It follows that ΛN also acts naturally on the vertices, on the edges and on the faces
of the quadrangulation QN pR

2q by translation. Since ΓN Ă Λch
N Ă ΛN , the lattice ΓN

acts on QN pR
2q as well. Thus, the quadrangulation descends to a quadrangulation

QN pΣq of the quotient Σ, via the covering map pN : R2 Ñ Σ. When this is clear from
the context, the vertices, edges and faces of QN pΣq will still be denoted vkl, e1,kl,
e2,kl and fkl.

3.3.3. Alternate quadrangulation of the plane. – Our construction involves the various
diffeomorphisms Φ : R2{Γ Ñ Σ and ΦN : R2{ΓN Ñ Σ. For the purpose of analysis
and, more specifically, the notion of convergence, it is convenient to identify Σ with
a single reference quotient, say R2{Γ using Φ.

Lifting QpΣq via the covering map p : R2 Ñ Σ provides a quadrangulation different
from QN pR

2q. We denote by Q̂N pR
2q the quadrangulation obtained as the image

of QN pR
2q by the isomorphism UN : R2 Ñ R2. We also denote by Λ̂N and Λ̂ch

N the
images of ΛN and Λch

N by UN . By definition, Γ is a sublattice of Λ̂ch
N and we have a

sequence of canonical inclusions

Γ Ă Λ̂ch
N Ă Λ̂N ,

which is nothing else but the image of the inclusions

ΓN Ă Λch
N Ă ΛN

by UN . By construction, the quadrangulation Q̂N pR
2q has vertices given by the el-

ements of the lattice Λ̂N . Furthermore Q̂N pR
2q descends to the quotient via the

covering map p : R2 Ñ Σ into a quadrangulation that coincides with QN pΣq.

3.4. Checkers graph

We associate a graph GN pR2q to the quadrangulation QN pR
2q, called the checkers

graph of QN pR
2q. Combinatorially, the vertices zkl of GN pR2q correspond to faces

fkl of QN pR
2q. However a vertex zkl of the graph GN pR2q shall be though of as the

barycenter of the face fkl of QN pR
2q, understood as a square of R2. The fact that

vertices of the graph correspond to points in R2 will be most helpful for defining the
notion of convergence at § 3.8. Two barycenters are connected by an edge if, and only
if, they belong to faces having exactly one vertex in common. For instance the faces
fkl and fk`1,l`1 of QN pR

2q have exactly one vertex in common. An edge between two
vertices of GN pR2q is the segment of straight line of R2 between the two vertices.

Figure 3 shows the quadrangulation QN pR
2q using dashed lines and the corre-

sponding checkers graph GN pR2q. The graph has two connected components painted
with colors red and blue. The bullets correspond to vertices of the graph.
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Figure 3. Graph GN pR2
q

3.4.1. Splitting of the ckeckers graph. – The graph GN pR2q splits into two connected
components denoted

GN pR
2q “ G

`

N pR
2q Y G

´

N pR
2q,

where G
`

N pR2q contains the vertex z00 corresponding to the face f00, by convention.

The lattice ΛN acts by translation on QN pR
2q and on GN pR2q. The action on the

vertices of GN pR2q (or, equivalently the faces of QN pR
2q) is transitive. However the

sublattice Λch
N does not act transitively: in fact it preserves the connected components

of the graph GN pR2q and acts transitively on each component. The quotient ΛN{Λ
ch
N »

Z2 is the residual action of the lattice ΛN on the connected components of GN pR2q.

3.4.2. Checkers graph of the quotient. – By construction ΓN Ă Λch
N , so that the action

of ΛN preserves the connected components of GN pR2q. It follows that the graphs
GN pR2q, G

`

N pR2q and G
´

N pR2q descend as graphs GN pΣq, G
`

N pΣq and G
´

N pΣq on the
quotient Σ » R2{ΓN via the covering map pN : R2 Ñ Σ. Furthermore, the graph
GN pΣq splits into two connected components G

`

N pΣq and G
´

N pΣq:

GN pΣq “ G
`

N pΣq Y G
´

N pΣq.

3.4.3. Alternate checkers graph on the plane. – A discussion similar to the case of
the quadrangulations QN pR

2q and Q̂N pR
2q occurs here (cf. § 3.3.3). We introduce

the checkers graphs ĜN pR2q, Ĝ
`

N pR2q and Ĝ
´

N pR2q obtained as the image of GN pR2q,
G
`

N pR2q and G
´

N pR2q by UN . Similarly to the non-hat version, these graphs can be
also understood as the checkers graphs of Q̂N pR

2q. They descend via the covering
map p : R2 Ñ Σ where we recover GN pΣq, G

`

N pΣq and G
´

N pΣq. If the vertices of the
checkers graph GN pR2q are the barycenters zkl of the faces fkl, their images by UN ,
denoted ẑkl, are the vertices of ĜN pR2q.
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3.5. Examples

The lattices of R2 defined at § 3.2 come with canonical inclusions

Λ1 Ă ¨ ¨ ¨ΛN Ă ΛN`1 Ă ¨ ¨ ¨

and
Λch

1 Ă ¨ ¨ ¨Λch
N Ă Λch

N`1 Ă ¨ ¨ ¨ .

If Γ is a sublattice of Λch
1 , then its approximations ΓN coincide with Γ, which makes

the construction of QN pΣq somewhat simpler. For example, we may consider the
lattice

Γ1 “ Zpe1 ` e2q ‘ Zpe2 ´ e1q Ă Λch
1 ,

or the lattice
Γ2 “ Ze1 ‘ Ze2 “ Λ1.

In the latter case, Γ2 Ă Λch
N if and only if N is even and we shall only consider

QN pΣ
2q when N is even. The quotients Σ1 “ R2{Γ1 and Σ2 “ R2{Γ2 are conformally

isomorphic but the quadrangulations QN pΣ
1q and QN pΣ

2q are not isomorphic through
a conformal mapping.

Let `1 : S1 Ñ C and `2 : S1 Ñ C be two smooth embeddings of the circle into the
complex plane C. This provides an embedding of the torus

` : S1 ˆ S1 ÝÑ C2 » R4

pϕ1, ϕ2q ÞÝÑ p`1pϕ1q, `2pϕ2qq,

which is isotropic since both maps `i are. The image of ` is usually called a product
Lagrangian torus of R4.

The map ` can be approximated by a piecewise linear maps. The idea is to ap-
proximate the two embedded circles by polygons of C. We obtain a product of two
polygons approximating the product torus. More precisely, we define

`Ni : pN´1Zq{ZÑ C

by `Ni pvq “ `ipvq. The map `Ni can be extended as a piecewise linear map denoted

`Ni : R{ZÑ C

as well. If N is sufficiently large, the maps `Ni are piecewise linear embeddings. For
the same reasons as before, the product embedding

`N : S1 ˆ S1 Ñ R4

defined by `N pϕ1, ϕ2q “ p`N1 pϕ1q, `
N
2 pϕ2qq is isotropic and it is a piecewise linear

isotropic approximation of `. Notice that the maps `N can be recovered only from the
R4-coordinates of the vertices of the points in ΛN{Z2. These vertices are by definition
the vertices of the quadrangulation QN pΣ

2q, modulo the isomorphism

S1 ˆ S1 » R2{Γ2 “ Σ2,

where Γ2 “ Λ1 is the standard lattice described above. Notice that each face of the
quadrangulation is mapped to a quadrilateral of R4 contained in a Lagrangian plane.
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Remark 3.5.1. – The piecewise linear isotropic embeddings `N of the torus de-
scribed above were essentially the only examples known at the begining of this re-
search project. If ` is any smooth isotropic map, one can construct samples `N as
above (cf. § 4.3). Strictly speaking, these samples are quadrangular meshes. In general
these samples are not exactly isotropic. From this point of view, the product exam-
ples described above are very special, because in this case the samples are isotropic.
In general, one needs a suitable perturbation theory so that they become isotropic,
which is the technical task of this paper.

3.6. A splitting for discrete functions

The vector space of discrete functions on the faces of the quadrangulation
QN pR

2q is denoted C2pQN pR
2qq. A discrete function φ is defined by its values on

faces given by
φkl “ φpfklq “ xφ, fkly.

In the above notation, x¨, ¨y is the duality bracket, and a discrete function is under-
stood as a linear form on the vector space C2pQN pR

2qq spanned by the faces of the
quadrangulation.

By construction there is a canonical identification between the faces fkl of QN pR
2q

and the vertices of the graph zkl of GN pR2q. Therefore, a discrete function φ can be
understood, either as a function on faces fkl of QN pR

2q, or as a function on vertices
zkl of GN pR2q. The above identification leads to an isomorphism of discrete functions

(3.6) C2pQN pR
2qq » C0p GN pR

2qq “ C0p G
`

N pR
2qq ‘ C0p G

´

N pR
2qq.

The same decomposition holds for the hat version of theses objects and we have a
canonical isomorphism

(3.7) C2p Q̂N pR
2qq » C0p ĜN pR

2qq “ C0p Ĝ
`

N pR
2qq ‘ C0p Ĝ

´

N pR
2qq.

The isomorphism (3.6) descends to the quotient Σ via pN and may be expressed as
an isomorphism

(3.8) C2pQN pΣqq » C0p GN pΣqq “ C0p G
`

N pΣqq ‘ C
0p G

´

N pΣqq.

Any discrete function φ, in one of the three kind of spaces C0p GN p¨qq as above, admits
a unique decomposition according to the splittings (3.6), (3.7) or (3.8)

φ “ φ` ` φ´,

where φ˘ P C0p G
˘

N p¨qq.
The induced splitting of C2pQN p¨qq via the isomorphisms (3.6), (3.7) or (3.8) is

also denoted

(3.9) C2pQN p¨qq “ C2
`pQN p¨qq ‘ C

2
´pQN p¨qq.

When the discrete function φ is regarded as a constant function on faces of the quad-
rangulation, we also write φ “ φ` ` φ´ according to the above splitting.
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Convention 3.6.1. – In the sequel we shall use a shorthand in order to make state-
ments that hold either for cocycles of the graph G

`

N pΣq, or for cocycles of the graph
G
´

N pΣq. For this purpose, we will use the notation G
˘

N pΣq and the convention below:

For every statement using the symbols ˘ and ¯, the reader should either

— replace all symbols ˘ (resp ¯) consistently with ` (resp. ´), or
— replace all symbols ˘ (resp ¯) consistently with ´ (resp. `).

3.7. Discrete Hölder norms

In this section we define particular norms on the space C2pQN pR
2qq (or equiva-

lently, on the space C0p GN pR2qq, which is a discrete analog of the Hölder norm. The
norms are defined first on each component of the splitting (3.9) (or (3.6)).

3.7.1. C
0-norm. – Given φ P C0p G

`

N pR2qq we define its C
0-norm by

(3.10) }φ} C0 “ sup
zPC0p G`N pR2qq

|xφ, zy|.

We define a similar norm on C0p G
´

N pR2q (resp. C0p GN pR2q) by taking the sup on
vertices of G

´

N pR2q (resp. GN pR2q). We deduce a norm, with the same notation } ¨ } C0

on C2
˘pQN pR

2qq via the isomorphisms (3.6) and (3.9). These quantities may be infi-
nite. Later we shall restrict to periodic functions, which are bounded and have a well
defined C

0-norm.

3.7.2. Finite differences. – The canonical basis pe1, e2q with canonical coordinates
px, yq of R2 is not the best for our situation. Most of the times, we shall rotate
the plane R2 by an angle π{4. For this purpose we introduce the rotated orthonormal
basis pe11, e12q of R2 given by

(3.11) e11 “
e1 ` e2
?

2
, e12 “

e2 ´ e1
?

2
.

The coordinates pu, vq with respect to the basis pe11, e12q are deduced from the canonical
coordinates px, yq P R2 by the formula

(3.12) u “
x` y
?

2
, v “

y ´ x
?

2
.

We define finite differences of φ P C0p G
˘

N pR2qq, which are discrete analogs of the
partial derivatives of a function on R2, with respect to u or v. These differences are
denoted

Bφ

B ~u
,

Bφ

B~u
,

Bφ

B ~v
and

Bφ

B~v
P C0p G

˘

N pR
2qq,
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where the forward or retrograde arrows indicate forward or retrograde differences,
defined as follows: for φ P C0p G

`
pR2qq, we write φkl “ xφ, zkly for zkl P C0p G

`

N pR2qq

and put

x
Bφ

B ~u
, zkly “

N
?

2
pφkl ´ φk´1,l´1q,(3.13)

x
Bφ

B~u
, zkly “

N
?

2
pφk`1,l`1 ´ φklq,(3.14)

x
Bφ

B ~v
, zkly “

N
?

2
pφkl ´ φk`1,l´1q and(3.15)

x
Bφ

B~v
, zkly “

N
?

2
pφk´1,l`1 ´ φklq.(3.16)

The finite differences are defined with the same formulae if φ P C0p G
´
pR2qq. Since all

the indices involved in the above formulae correpond to vertices in connected compo-
nent of zkl in GN pR2q, the finite differences B

B ~u
, B
B~u ,

B

B ~v
and B

B~v define endomorphisms

C0p G
`

N pR
2qq ‘ C0p G

´

N pR
2qq ÝÑ C0p G

`

N pR
2qq ‘ C0p G

´

N pR
2qq,

which respect the above splitting.

Finite differences can also be expressed using the translations of Λch
N acting on

functions. If Tu, Tv are the translations acting on GN pR2q, given respectively by the
vectors e1`e2

N and e2´e1
N , then

(3.17)
Bφ

B~u
“

N
?

2
pφ ˝ Tu ´ φq,

Bφ

B ~u
“

N
?

2
pφ´ φ ˝ T´1

u q

and

(3.18)
Bφ

B~v
“

N
?

2
pφ ˝ Tv ´ φq,

Bφ

B ~v
“

N
?

2
pφ´ φ ˝ T´1

v q.

As an immediate consequence of (3.17), we have

(3.19)
Bφ

B~u
“
Bφ

B ~u
˝ Tu,

so that the functions Bφ
B~u and Bφ

B ~u
have the same C

0-norm. The same holds for the
v-coordinate since by (3.18)

(3.20)
Bφ

B~v
“
Bφ

B ~v
˝ Tv,

so that finite differences Bφ
B ~v

and Bφ
B~v have the same C

0-norm.

Notation 3.7.3. – As far as we are concerned with the C
0-norms of finite differ-

ences, we could drop the arrow notation over u or v, since the forward of retrograde
differences have the same norms.
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3.7.4. Definition of Hölder norms. – For φ P C0p G
`

N pR2qq, we may define its C
1-norm

as

}φ} C1 “ }φ} C0 `

›

›

›

›

Bφ

Bu

›

›

›

›

C0

`

›

›

›

›

Bφ

Bv

›

›

›

›

C0

and its C
2-norm by

}φ} C2 “ }φ} C1 `

›

›

›

›

B2φ

Bu2

›

›

›

›

C0

`

›

›

›

›

B2φ

Bv2

›

›

›

›

C0

`

›

›

›

›

B2φ

BuBv

›

›

›

›

C0

.

More generally we can define a C
k-norm on C0p G

`
pR2qq by induction. Similarly we

define a C
k-norm on C0p G

´
pR2qq.

For a positive Hölder constant α P p0, 1q, we define the C
0,α-Hölder norm of

φ P C0p G
`
pR2qq by

(3.21) }φ} C0,α “ }φ} C0 ` sup
zkl,zmnPC0p G`N pR

2
qq

zkl‰zmn
q

|φkl ´ φmn|

}zkl ´ zmn}α
,

where }zkl ´ zmn} is the Euclidean distance between zkl and zmn in R2. The
C

1,α-Hölder norm of φ P C0p G
`
pR2qq is defined by

}φ} C1,α “ }φ} C0 `

›

›

›

›

Bφ

Bu

›

›

›

›

C0,α

`

›

›

›

›

Bφ

Bv

›

›

›

›

C0,α

,

and its C
2,α-Hölder norm is defined by

}φ} C2,α “ }φ} C1 `

›

›

›

›

B2φ

Bu2

›

›

›

›

C0,α

`

›

›

›

›

B2φ

Bv2

›

›

›

›

C0,α

`

›

›

›

›

B2φ

BuBv

›

›

›

›

C0,α

.

More generally, we can define a C
k,α-Hölder norm by induction on C0p G

`
pR2qq, in a

obvious way. We define a C
k and a C

k,α-Hölder norm on C0p G
´
pR2qq by taking the

sup of the above formulae on vertices of G
´

N pR2q instead.

3.7.5. Weak Hölder norms. – For φ P C2pQN pR
2qq » C0p GN pR2qq we use the direct

sum decomposition φ “ φ``φ´ of (3.6) or (3.9). We define the weak C
k,α
w -norm of φ

by
}φ} Ck,αw

“
›

›φ`
›

›

Ck,α
`
›

›φ´
›

›

Ck,α
,

where the Hölder norms of each components φ˘ are defined in the previous section.
Similarly, the weak C

k
w-norm of φ is defined by

}φ} Ckw
“
›

›φ`
›

›

Ck
`
›

›φ´
›

›

Ck
.

Remark 3.7.6. – As you may have noticed, the discrete C
k,α
w -Hölder norms or

C
k
w-norms defined above on C0p GN pR2qq are called weak. Indeed, only the variations

of φ in the diagonal directions spanned by the vectors e1`e2
2 and e2´e1

2 are taken into
account. It turns out that these weak norms are the one appropriate to set up the
fixed point principle, as explained in § 6.
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In the sequel, we shall drop the term weak for the sake of brevity. However, the
reader should bear in mind that these norms may allow some unexpected behavior
when N goes to infinity (cf. Example 3.8.4).

3.7.7. Quotient and alternate quadrangulations. – The alternate versions of the quad-
rangulation Q̂N pR

2q and checkers graph ĜN pR2q are canonically isomorphic to the
non-hat versions QN pR

2q and GN pR2q. Thus, we have an isomorphism

C2pQN pR
2qq » C2p Q̂N pR

2qq.

This isomorphism allows to define C
k
w and C

k,α
w -norms on C2p Q̂N pR

2qq. A function
φ P C2pQN pΣqq admits a lift φN “ φ ˝ pN P C

2pQN pR
2qq. We define the norms of φ

as the norms of its lift:

}φ} Ck,αw
“ }φN } Ck,αw

, }φ} Ckw
“ }φN } Ckw

.

Remark 3.7.8. – The discrete functions on Σ have finite Hölder norm since they are
bounded, and so are their finite differences.

3.8. Convergence of discrete functions

In this section, a suitable notion of convergence for a sequence of discrete functions
is introduced. This concept will be the cornerstone of a version of the Ascoli-Arzela
compactness theorem. It will be an essential tool to obtain spectral gap results at § 5.5.

3.8.1. Definition of converging sequences

Definition 3.8.2. – Let pNkqkPN be an increasing sequence of positive integers. Let
ψNk P C

0p Ĝ
˘

Nk
pR2qq be a sequence of discrete functions and φ : R2 Ñ R be a function

defined on the plane.
Assume that for every point w P R2 and ε ą 0, there exists δ ą 0 and an integer

k0 ą 0, such that for every integer k ě k0 and vertex z P C0p Ĝ
˘

Nk
pR2qq with the

property that }w ´ z} ď δ, we have |φpwq ´ ψNkpzq| ď ε.
Then we say that the sequence of discrete functions pψNkq converges toward the

function φ : R2 Ñ R. This property is denoted by

ψNk Ñ φ or limψNk “ φ.

If ψNk P C0p ĜNkpR
2qq is a sequence of discrete functions with associated decom-

position ψNk “ ψ`Nk ` ψ´Nk and with the property that the components converge to
functions φ` and φ´, in the sense of the above definition, i.e.,

ψ`Nk Ñ φ` and ψ´Nk Ñ φ´,

we say that ψNk converges toward the pair of functions pφ`, φ´q. This property is
denoted by

ψNk Ñ pφ`, φ´q or limψNk “ pφ
`, φ´q.
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Remark 3.8.3. – The above definition may also be stated in a somewhat slicker way:
we say that a sequence ψNk P C0p Ĝ

`

Nk
pR2qq converges toward a function φ : R2 Ñ R

if, at every point w of the plane, ψNk takes arbitrarily close values to φpwq, for every
k sufficiently large and for all vertices of Ĝ

`

Nk
pR2q in a sufficiently small neighborhood

of w.

Example 3.8.4. – The splitting of discrete functions into their positive and negative
components leads to some unusual type converging sequences in the sense of Defi-
nition 3.8.2. For example, we may define a sequence of discrete comb functions as
follows. We define ψ˘N P C

0p Ĝ
˘

N pR2qq as a constant function each connected compo-
nent of the graph, equal to ˘1 at each vertex of G

˘

N pR2q. Let 1 : R2 Ñ R be the
constant function equal to 1 at every point of the plane. Then limψ`N “ 1 whereas
limψ´N “ ´1. If ψN :“ ψ`N ` ψ

´
N , then ψN converges and

limψN “ p1,´1q.

Typically, the sequence ψN is uniformly bounded in weak C
0,α
w -norm. Our notion of

convergence is designed to state a version of the Ascoli-Arzela theorem in this setting.

The notion of convergence of discrete functions is extended to C2pQN pΣqq as fol-
lows:

Definition 3.8.5. – Let ψNk P C0p G
˘

Nk
pΣqq be a sequence of discrete functions and

φ : Σ Ñ R be a function defined on Σ. Let ψ̂Nk “ ψNk ˝ p P C
0p Ĝ

˘

Nk
pR2qq be the lift

of ψNk via the canonical projection p and φ̂ “ φ ˝ p : R2 Ñ R be the lift of φ. We
say that pψNkq converges to φ if pψ̂Nkq P C0p G

˘

Nk
pΣqq converges to φ̂ : R2 Ñ R in the

sense Definition 3.8.2. This property is denoted by

ψN Ñ φ or limψN “ ψ.

If ψNk P C0p GNkpΣqq is a sequence of discrete functions with associated decompo-
sition ψNk “ ψ`Nk`ψ

´
Nk

and with the property that both components converge to some
functions φ` : Σ Ñ R and φ´ : Σ Ñ R in the sense of the above definition, we say
that ψNk converges toward the pair of functions pφ`, φ´q and denote this by

ψNk Ñ pφ`, φ´q or limψNk “ pφ
`, φ´q.

3.8.6. Continuity and limits of discrete functions. – Our notion of convergence for dis-
crete function is intimately related to the uniform convergence, in the case of contin-
uous functions. Indeed, we have the following result:

Proposition 3.8.7. – Let ψNk P C0p Ĝ
˘

Nk
pR2qq be a sequence of discrete functions

converging toward φ : R2 Ñ R. Then φ must be continuous.
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Proof. – The proof goes by contradiction: assume that ψNk P C0p Ĝ
˘

N pR2qq is a se-
quence converging toward a discontinuous function φ. Then there exists ε0 ą 0, w P R2

and a sequence of points wk P R2 such that limkÑ8 wk “ w and |φpwkq ´ φpwq| ě ε0

for all k.
From the definition of convergence of discrete functions, we can extract a sequence

N 1k from Nk and vertices zk of Ĝ
˘

N 1k
pR2q such that |wk ´ zk| Ñ 0 and |ψN 1kpzkq ´

φpwkq| Ñ 0 as k Ñ8.
By construction lim zk “ w. Furthermore

|φpwkq ´ φpwq| ď |φpwkq ´ ψN 1kpzkq| ` |ψN 1kpzkq ´ φpwq|.

The LHS is bounded below by ε0 ą 0. The first term of the RHS converges to 0 by
definition of the sequences. The second term of the RHS converges to zero, by defi-
nition of the convergence of a sequence of discrete functions. This is a contradiction,
hence φ : R2 Ñ R is continuous.

Corollary 3.8.8. – Let ψNk P C0p G
˘

N pΣqq be a sequence of discrete functions con-
verging toward φ : Σ Ñ R. Then φ is continuous.

Proof. – We use the covering map p : R2 Ñ Σ and apply Proposition 3.8.7 to the lift
of the functions.

3.8.9. Samples and convergence of discrete functions

Definition 3.8.10. – If φ : R2 Ñ R is any real function, we define its samples
φ˘N P C

0p Ĝ
˘

N pR2qq by
xφ˘N , ẑkly :“ φpẑklq,

for every ẑkl P C0p Ĝ
˘

N pR2qq. We define similarly the samples φ˘N P C0p G
˘

N pΣqq of a
real function φ : Σ Ñ R. Let φ̂ “ φ ˝ p : R2 Ñ R be the lift of φ via the projec-
tion p. Its samples φ̂˘N P C

0p Ĝ
˘

N pR2qq, as defined above, descend to discrete functions
φ˘N P C

0p G
˘

N pΣqq on the quotient, referred to as the samples of φ.

The convergence defined in Definition 3.8.2 is uniform in the sense of the following
lemma:

Proposition 3.8.11. – Let ψ˘Nk P C
0p G

˘

Nk
pΣqq be a sequence of discrete functions

converging to φ : Σ Ñ R and φ˘N P C
0p G

˘

Nk
pΣqq be the samples of φ. Then

lim
kÑ8

›

›φ˘Nk ´ ψ
˘
Nk

›

›

C0 “ 0.

Proof. – Since φ : Σ Ñ R is a limit of a sequence of discrete functions, it is continuous
by Corollary 3.8.8. The surface Σ is compact, hence φ is uniformly continuous by Heine
theorem. We denote by ψ̂˘Nk and φ̂ the canonical lifts of ψ˘Nk P C

0p Ĝ
˘

N pR2qq and φ

via the projection p : R2 Ñ Σ. Since φ is uniformly continuous, so is φ̂. Let ε, be a
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positive real number. By uniform continuity, there exists δ ą 0 such that for every
w,w1 P R2

(3.22) }w ´ w1} ď δ ñ |φ̂pwq ´ φ̂pw1q| ď ε.

By definition of the convergence of discrete functions, for each w P R2, we may
choose an integer kpwq ě 0 and and a real number ηpwq ą 0 such that for all k ě kpwq

and ẑ P C0p Ĝ
˘

Nk
pR2qq we have

(3.23) }ẑ´ w} ď ηpwq ñ |ψ̂˘Nkpẑq ´ φ̂pwq| ď ε.

For each w P R2, put
δpwq “ minpδ, ηpwqq.

The family of open Euclidean balls Bpw, δpwqq, centered at w P R2 with radius δpwq,
provides an open cover of R2. Their images Uw “ ppBpw, δpwqqq, by the canonical
projection p : R2 Ñ Σ, provide an open cover of the compact surface Σ. Hence we
can extract a finite cover Ui “ Uwi of Σ, for a finite collection of points twi P R2, 1 ď

i ď du. We put k0 “ maxtkpwiq1ďiďdu and consider k ě k0.
Every z P C0p G

˘

Nk
pΣqq is an element of one of the open sets Ui. Hence z admits a

lift ẑ P C0p Ĝ
˘

Nk
pR2qq contained in one of a the balls Bpwi, δpwiqq. In particular

|ψ˘Nkpzq ´ φ
˘
Nk
pzq| “ |ψ̂˘Nkpẑq ´ φ̂

˘
Nk
pẑq| ď |ψ̂˘Nkpẑq ´ φ̂pwiq| ` |φ̂pwiq ´ φ̂

˘
Nk
pẑq|.

The first term of the RHS is bounded above by ε by (3.23). By definition φ̂˘Nkpẑq “
φ̂pẑq, hence the second term of the RHS is bounded above by ε thanks to (3.22). In
conclusion

|ψ˘Nkpzq ´ φ
˘
Nk
pzq| ď 2ε,

which shows that
}ψ˘N ´ φ

˘
N } C0 ď 2ε,

for k ě k0.

We also have a sort of converse for Proposition 3.8.11:

Proposition 3.8.12. – Let ψ˘Nk P C
0p G

˘

Nk
pΣqq be a sequence of discrete functions

and φ : Σ Ñ R a continuous function such that

lim
kÑ8

›

›φ˘Nk ´ ψ
˘
Nk

›

›

C0 “ 0,

where φ˘Nk P C
0p G

˘

Nk
pΣqq are the samples of φ. Then

limψ˘Nk “ φ.

Proof. – The compactness of Σ implies the uniform continuity of φ, which is a key
argument in a proof closely related to the one of Proposition 3.8.11. The details are
left to the interested reader.
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Proposition 3.8.12 has the following immediate corollary, which shows that samples
of a function are natural approximations:

Corollary 3.8.13. – Let φ : Σ Ñ R be a continuous function, and φ˘N P C
0p G

˘

N pΣqq

its samples. Then
limφ˘N “ φ.

3.9. Precompactness

We denote by } ¨ } C0,α the usual Hölder norm on the space of function φ : Σ Ñ R,
defined with respect to the Riemannian metric gσ, for instance. The corresponding
Hölder space is denoted C

0,α
pΣq. We may now state a version of the Ascoli-Arzela

theorem adapted to our setting:

Theorem 3.9.1 (Ascoli-Arzela, first version). – Let ψ˘Nk be a sequence of discrete
function in C0p G

˘

Nk
pΣqq, which are uniformly bounded in C

0,α-norm. In other words,
there exists a constant c ą 0 with the property that

}ψ˘Nk} C0,α ď c,

for all k P N. Then there exists a subsequence N 1k of Nk and a function φ˘ : Σ Ñ R
in C

0,α
pΣq, such that

limψ˘N 1k
“ φ˘.

Proof. – Let ψNk P C0p G
`

Nk
pΣqq be a sequence of discrete functions bounded in Hölder

norm, as in the theorem.
We start by choosing a countable dense set Q “ tqn P Σ, n P Nu of Σ; for instance

the projection by p : R2 Ñ Σ of the points of rational coordinates in R2 is a possible
choice. For each qn, we choose a lift q̂n such that ppq̂nq “ qn. For each n we choose a
sequence ẑnNk P C0p Ĝ

`

Nk
pR2qq such that that

lim
kÑ8

ẑnNk “ q̂n.

We denote by ψ̂Nk “ ψNk ˝ p P C
0p Ĝ

`

Nk
pR2qq the canonical lift of ψNk . By as-

sumption, the uniform estimate on the Hölder norms provides a uniform bound
|ψ̂Nkpẑ

n
Nk
q| ď c. Hence we can choose a subsequenceN0

k of integers such that ψ̂N0
k
pẑ0
N0
k
q

converges as k Ñ8.
By extracting a subsequence N1

k of N0
k , we may assume that ψ̂N1

k
pẑn
N1
k
q converges

for n “ 0 or 1, as k Ñ 8. Extracting subsequences inductively provides family of
subsequences Nm

k , indexed by m, such that ψ̂Nmk pẑ
n
Nmk
q converges for fixed 0 ď n ď m

as k Ñ 8. Finally, using the diagonal subsequence Mk “ Nk
k , we find a subsequence

ψMk
such that ψ̂Mk

pẑnMk
q converges for every n P N, as k Ñ8.

The function
φ : QÑ R
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is defined on the countable dense subset Q Ă Σ by

φpqnq “ lim
kÑ8

ψ̂Mk
pẑnMk

q.

Since the ψNk are uniformly bounded with respect to the discrete C
0,α-norms, it

follows that the function φ : QÑ R is bounded with respect to the usual C
0,α-norm.

In particular φ is uniformly continuous on Q, hence it admits a unique continuous
extension φ : Σ Ñ R which turns out to be in C

0,α
pΣq as well. One can readily check,

using the uniform Hölder-norm estimates, that the construction of the function φ is
independent of the choice of sequences ẑnN . Furthermore the uniform Hölder estimates
imply that

lim
kÑ8

}ψMk
´ φMk

} C0 “ 0,

where φMk
P C0p G

`

Mk
pΣqq are the samples of φ. This implies by Proposition 3.8.12

that
limψMk

“ φ.

3.10. Higher order convergence

We are interested in stronger convergence of discrete functions, taking into account
higher order finite differences. We start by stating the following elementary results:

Lemma 3.10.1. – Let ψNk P C0p G
˘

Nk
pΣqq be a sequence of discrete functions. The

finite differences BψNk
B~u (resp. BψNk

B~v ) converge if, and only if, the finite differences
BψNk
B ~u

(resp. BψNk
B ~v

) converge. It they converge, they have the same limits:

lim
BψNk
B~u

“ lim
BψNk
B ~u

, lim
BψNk
B~v

“ lim
BψNk
B ~v

.

Proof. – This follows from the fact that finite differences in the forward and backward
directions are related by the translations Tu, or Tv, spanning the lattice Λch

N , thanks
to Formulae (3.19) and (3.20).

Remark 3.10.2. – According to the above lemma, one can talk about the conver-
gence of the finite differences of a sequence of discrete functions without specifying
on the forward or retrograde directions.

Proposition 3.10.3. – Let ψNk P C0p G
˘

Nk
pΣqq be a converging sequence of discrete

functions such that its first order finite differences converge as well towards the limits

φ “ limψNk , φu “ lim
BψNk
B~u

and φv “ lim
BψNk
B~v

.

Then, the limit φ : Σ Ñ R is of class C
1 with partial derivatives given by

Bφ

Bu
“ φu,

Bφ

Bv
“ φv.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2019



36 CHAPTER 3. DISCRETE ANALYSIS

Proof. – One can readily show that φ is a primitive function of φu (resp. φv) in
the u-direction (resp. v-direction) using Riemann sums. The limits φu and φv are
continuous by Lemma 3.8.7 and it follows that φ is continuously differentiable.

Lemma 3.10.1 and Proposition 3.10.3 motivate the following definition:

Definition 3.10.4. – If a sequence of discrete functions ψNj P C0p G
˘

Nj
pΣqq con-

verges together with its finite differences, up to order k, we say that the sequence
pψNj q converges in the C

k-sense toward the function φ “ limψNj . We denote this
property by

ψNj
Ck
ÝÑ φ.

If ψNj P C0p GNj pΣqq is a sequence of discrete functions with decompositions ψNj “
ψ`Nj ` ψ

´
Nj

and φ`, φ´ : Σ Ñ R are functions such that

ψ`Nj
Ck
ÝÑ φ`, and ψ´Nj

Ck
ÝÑ φ´,

we say that ψNj converges in the weak C
k-sense toward the pair of functions pφ`, φ´q.

This property is denoted

ψNj
Ckw
ÝÑ pφ`, φ´q.

This definition and Propositions 3.10.3 leads to the following corollary:

Proposition 3.10.5. – If ψNj P C0p G
˘

Nj
pΣqq converges in the C

k sense, the limit

φ “ limψNj is of class C
k. Furthermore the finite differences of ψNj converge, up to

order k toward the corresponding partial derivatives of φ.

We may now state an improved version of the Ascoli-Arzela theorem in the C
k

setting:

Theorem 3.10.6 (Ascoli-Arzela, second version). – Let ψNj be a sequence of discrete
function in C0p G

˘

Nj
pΣqq, which are uniformly bounded in C

k,α-norm for some k ě 0,
in the sense that there exists a constant c ą 0 with the property that

}ψNj } Ck,α ď c for all j ě 0.

Then there exists a subsequence N 1j of Nj and a function φ : Σ Ñ R with φ P C
k,α
pΣq,

such that
ψN 1j

Ck,α
ÝÑ φ.

Proof. – We give a sketch of proof in the case k “ 1. By assumption, the ψNj are
uniformly bounded in C

1,α-norms. Thus the finite differences of order 1 are bounded
in C

0,α-norm:
›

›

›

›

BψNj
B~u

›

›

›

›

C0,α

ď c,

›

›

›

›

BψNj
B~v

›

›

›

›

C0,α

ď c.
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and we may apply Theorem 3.9.1 to the first order finite differences. After passing to
suitable subsequences, we may assume that

BψNj
B~u

C0

ÝÑ φu,
BψNj
B~v

C0

ÝÑ φv,

where φu, φv P C
0,α
pΣq. Since ψN is bounded in C

1,1-norm, we may apply Ascoli-
Arzela again and assume, up to further extraction, that

limψNj “ φ,

for some continuous function φ. The rest of the proof follows from Proposition 3.10.3.
The general case is proved by induction on k.

3.11. Examples of discrete convergence

We present two examples of converging sequences of discrete functions that will
turn out to be useful.

3.11.1. Samples of continuously differentiable functions. – Corollary 3.8.13 extends to
stronger C

k-convergence as follows:

Proposition 3.11.2. – Let φ : Σ Ñ R be a function of class C
k, and φ˘N P

C0p G
˘

N pΣqq its samples. Then

φ˘N
Ck
ÝÑ φ.

Proof. – The Taylor formula insures that finite differences of φ˘N converge uniformly
to the corresponding partial derivative of φ. It follows by Proposition 3.8.12 that, up
to order k, the finite differences of φ˘N converge in the sense of Definition 3.8.5, which
proves the proposition.

3.11.3. Discrete tangent vector fields. – We may consider discrete functions with val-
ues in Rm, or more precisely R2n, rather than real valued functions. It is an easy
exercise to check that all the notions of convergence of discrete functions, Hölder
norms, introduced before trivially extend to this setting.

Given a smooth immersion ` : Σ Ñ R2n, we shall define a sample τN P

C0pQN pΣqq b R2n of ` at § 4.1. We will show that the discrete tangent vector fields
associated to the diagonals of the sample τN converge in Proposition 4.3.1.
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CHAPTER 4

PERTURBATION THEORY FOR ISOTROPIC MESHES

We keep on using the notations of the previous section. Recall that ` : Σ Ñ R2n is
a smooth isotropic immersion and Σ a surface diffeomorphic to a torus. The surface
is endowed with the pullback metric gΣ and the flat metric gσ related by a conformal
factor gΣ “ θgσ. There is also a family of flat metrics gNσ induced by the diffeomor-
phism ΦN : R2{ΓN Ñ Σ. We construct the various versions of quadrangulations and
the checkers graphs as in § 3.

4.1. Isotropic quadrangular meshes

A quadrangular mesh

τ P MN “ C0pQN pΣqq b R2n

associates R2n-coordinates to each vertex of QN pΣq. One can define a unique piecewise
linear map

`τ : Σ1
N Ñ R2n

from the 1-skeleton Σ1
N of the quadrangulation QN pΣq into R2n, which agrees with τ

at vertices. Contrarily to the case of a triangulation, there is generally no piecewise
linear extension to the 2-skeleton, that is Σ. Indeed, quadrilaterals of R2n may not
be planar. There are several options to construct extensions of `τ : Σ1

N Ñ R2N to Σ,
but this is not a fundamental issue as we shall see.

Definition 4.1.1. – An Euclidean quadrilateral of R2n is said to be isotropic if the
integral of the Liouville form λ along the quadrilateral vanishes. Similarly, a mesh
τ P MN is called isotropic if the quadrilaterals of Rn associated to each face of QN pΣq

via τ are isotropic in the above sense. The space LN Ă MN is the set of all isotropic
quadrangular meshes τ P MN .
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4.1.2. Equation for isotropic quadrilaterals. – An oriented quadrilateral of R2n can
be given by 4 ordered vertices pA0, A1, A2, A3q. We introduce the diagonals of the
quadrilateral

(4.1) D0 “
ÝÝÝÑ
A0A2, D1 “

ÝÝÝÑ
A1A3.

Then we have the following result, which shows that the equation for an isotropic
quadrilateral is quadratic:

Lemma 4.1.3. – The integral of the Liouville form λ along an oriented quadrilateral
pA0, . . . , A3q of R2n is given by

1

2
ωpD0, D1q,

where Di are the diagonals of the quadrilateral defined by (4.1).

Proof. – We construct a pyramid P with base the quadrilateral Q and with apex
located at the origin O P R2n, for instance. By Stokes Theorem

ż

Q

λ “

ż

P

ω.

The integral of the RHS is the sum of the symplectic areas of the four triangles
pOAiAi`1q, for i considered as an index modulo 4. Hence the integral of the Liouville
form is given by

1

2

3
ÿ

i“0

ωp
ÝÝÑ
OAi,

ÝÝÝÝÑ
OAi`1q “

1

2
ωpD0, D1q.

4.1.4. Diagonals notation. – For τ P MN , we consider the lifts τ̃ “ τ ˝ pN P

C0pQN pR
2qq. Using the notations of § 3.3.1, we define the diagonals

Du
τ , D

v
τ P C

2pQN pR
2qq b R2n

by
Du
τ pfklq “ τ̃pvk`1,l`1q ´ τ̃pvklq

and
Dv
τ pfklq “ τ̃pvk,l`1q ´ τ̃pvk`1,lq.

Then, Du
τ and Dv

τ descend to the quotient Σ and provide discrete vector fields denoted
in the same way

Du
τ , D

v
τ P C

2pQN pΣqq b R2n » C0p GN pΣqq b R2n.

By definition Du
τ and Dv

τ represent certain diagonals of each face of the quadrangular
mesh τ . It is also convenient to introduce the renormalized discrete vector fields

Uτ “
N
?

2
Du
τ and Vτ “

N
?

2
Dv
τ .
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4.1.5. Equation for isotropic mesh. – The problem of finding isotropic meshes can be
formulated using a suitable equation. Each τ P MN and each face f P C2pQN q defines
Euclidean quadrilateral in R2n, given by the R2n-coordinates of ordered vertices of f .
Such a quadrilateral has a symplectic area defined by the integral of the Liouville
form λ along the quadrilateral. We can pack this data into a map

µN : MN ÝÑ C2pQN pΣqq,

such that xµN pτq, fy is the symplectic area of the corresponding quadrilateral. The
space of isotropic meshes LN is by definition the set of solutions of the equation
µN “ 0. In other words

MN Ą LN “ µ´1
N p0q.

For analytical reasons, it will be convenient to introduce a renormalized version of µN ,
defined by

µrN “ N2µN .

Remark 4.1.6. – Given f P C2pQN pΣqq, the real number µrN pfq is the ratio be-
tween the symplectic area xµN pτq, fy and the Euclidean area of f with respect to the
metric gNσ , which is

Areapf , gNσ q “
1

N2
.

In this sense µrN can be regarded as a discrete version of the moment map µp`q “ `˚ω
σ

introduced at § 2 and xµrN pτq, fy as the symplectic density of the face f with respect
to τ .

The space of isotropic meshes LN is the zero set of µrN . This subspace is defined
by a system of quadratic polynomials as shown by the following lemma.

Lemma 4.1.7. – The map µN : MN Ñ C2pQN pΣqq is quadratic. More precisely, we
have

(4.2) xµN pτq, fy “
1

2
ωpDu

τ pfq, D
v
τ pfqq

and

(4.3) xµrN pτq, fy “ ωpUτ pfq,Vτ pfqq.

Proof. – This is an immediated consequence of Lemma 4.1.3.

Definition 4.1.8. – Since µN : MN Ñ C2pQN pΣqq is a quadratic map, it is associ-
ated to a unique symmetric bilinear map

ΨN : MN ˆMN Ñ C2pQN pΣqq.

Similarly, Ψr
N is the symmetric bilinear map associated to the quadratic map µrN .
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4.2. Shear action on meshes

The space MN admits an obvious action induced by the translations of R2n, which
preserves the subspace of isotropic meshes LN . However, translations belong to a
larger group acting on MN , defined below, preserving isotropic meshes.

The space of vertices of QN pR
2q admits a splitting similar to faces. Indeed, Λch

N acts
on the vertices, with exactly two orbits denoted C`0 pR2q and C´0 pR2q, with the con-
vention that v00 P C

`
0 pR2q. This splitting descends to the quotient via pN : R2 Ñ Σ,

where we have two sets of vertices (cf. Figure 1 for a picture)

C0pΣq “ C
`
0 pΣq Y C

´
0 pΣq.

For any mesh τ P MN and vector T “ pT`, T´q P R2n ˆ R2n, we define the action
of T on τ by

xT ¨ τ,vy “

#

xτ,vy ` T` if v P C`0 pΣq,

xτ,vy ` T´ if v P C´0 pΣq.

The above action of R2n ˆ R2n on MN is called the shear action. If T` “ T´ the
action of T is the usal action by translations mentionned earlier. However, the shear
action τ ÞÑ T ¨ τ by a vector T “ pT`, 0q pulls apart positive and negative vertices
of τ . But the shear action preserves isotropic meshes:

Proposition 4.2.1. – The space of isotropic meshes LN Ă MN is invariant under
the shear action.

Proof. – The diagonals of the quadrilaterals associated to some mesh τ are invariant
under the shear action. In particular, any isotropic mesh remains isotropic under the
shear action by Lemma 4.1.3.

Remark 4.2.2. – The shear symmetry shows that the space of isotropic quadrangular
meshes LN “ pµ

r
N q
´1p0q does not become more regular as N Ñ 8 in a naive sense.

Intuitively, if τ is isotropic and close to a smooth immersed surface (in some C1-sence),
the isotropic mesh pT`, 0q ¨ τ now looks wild (cf. Figure 1), even more so as the
step size of the quadrangulation goes to 0. This explains why Schauder estimates for
discrete ellitpic operators involve only weak Hölder norms introduced at § 3.7. In turn
Theorem A and Theorem C are only stated with C

0-norms.

On the contrary, it could be argued that shear symmetry could be used to improve
regularity, rather than destroying it. It is possible to obtain good strong C

1-estimates
in Theorem C at one quadrilateral of the quadrangular mesh ρN , modulo the shear
action. Unfortunately, it seems unlikely that one could pass in general from such a
local to a global strong C

1-estimate.
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Figure 1. Shear action on the blue vertices of a mesh

Remark 4.2.3. – We will make seldom mention of the shear action. But this action
will be crucial at § 7 to get more generic isotropic quadrangular meshes.

4.3. Meshes obtained by sampling

Given a smooth immersion ` : Σ Ñ R2n, we construct a canonical sequence of
approximations of ` by quadrangular meshes

τN P MN .

The map ` : Σ Ñ R2n can be restricted to the vertices of QN pΣq. Hence we may
define an element τN P MN , called a sample of `, by

τN pvq “ `pvq,

for each v P C0pQN pΣqq.
We would like to discuss more precisely the nature of the convergence of τN to-

wards ` in the spirit of § 3. This is possible at the cost of extending all the analysis
introduced at § 3 for discrete functions on faces of QN pΣq to the case of functions
defined at vertices. Instead of carrying this uncomplicated but lengthy work, we will
adopt a more straightforward approach here.

For the special case τ “ τN , where the meshes τN are the samples of an immersion
` : Σ Ñ R2n, the diagonals Du

τ , Dv
τ , Uτ and Vτ are denoted Du

N , D
v
N ,UN and VN

instead. Then we have the following result

Proposition 4.3.1. – The sequence of discrete vector fields U ˘
N and V ˘

N P

C0p G
˘

N pΣqq b R2n converge in the C
k-sense, for every k. Furthermore

U ˘
N

Ck
ÝÑ

B`

Bu
and V ˘

N
Ck
ÝÑ

B`

Bv
.

More precisely, if we denote by U 1
N (resp. V 1

N ) the samples of B`
Bu (resp. B`

Bu) then

}UN ´U 1
N }Ckw “ OpN´1q and }VN ´ V 1

N }Ckw “ OpN´1q.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2019



44 CHAPTER 4. PERTURBATION THEORY FOR ISOTROPIC MESHES

4.4. Almost isotropic samples

The defect of the samples τN to be isotropic is given by the sequence of discrete
functions

(4.4) ηN “ µrN pτN q P C
2pQN pΣqq.

The error ηN is small as N goes to infinity in the sense of the following proposition:

Proposition 4.4.1. – Let ` : Σ Ñ R be a smooth isotropic immersion and τN P MN

be the sequence of samples of ` with respect to the quadrangulations QN pΣq. Let ηN “
µrpτN q P C

2pQN pΣqq be the isotropic defect of τN . Then for every integer k ě 0, we
have

}ηN } Ckw
“ OpN´1q.

Proof. – For each face f P C2pQN pΣqq, the quantity ηN pfq is given by

ηN pfq “
N2

2
ωpDu

N pfq, D
v
N pfqq “ ωpUN pfq,VN pfqq.

The formula for discrete differences of a quadratic form and the C
k-convergence of

Proposition 4.3.1 proves the proposition.

4.5. Inner products

The tangent vectors to the space of meshes MN and the space of discrete functions
come equiped with canonical inner products, which are crucial for the analysis.

4.5.1. The case of function. – The space C2pQN pΣqq of discrete functions comes
equiped with an Euclidean inner product which is a discrete version of the L2-inner
product for smooth functions. The space C2pQN pΣqq admits a canonical basis, given
by the set of faces f P C2pQN pΣqq. Thus, we have a corresponding dual basis f˚

of C2pQN pΣqq defined by

xf˚, f 1y “

#

1 if f “ f 1

0 otherwise,

where x¨, ¨y is the duality bracket.
Recall that the area of a face f of QN pΣq, with respect to the Riemannian metric gNσ ,

is equal to N´2. The 1-form f˚ is understood as a constant function equal to 1 on
the face f and 0 on other faces. This intuition gives an interpretation of the duality
bracket

x¨, ¨y : C2pQN pΣqq ˆ C2pQN pΣqq Ñ R
as the pointwise evaluation of functions on face. This leads to a discrete analog

xx¨, ¨yy : C2pQN pΣqq ˆ C
2pQN pΣqq Ñ R
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of the L2-inner product defined by

xxf˚1 , f
˚
2 yy “

#

0 if f1 ‰ f2,
1
N2 if f1 “ f2.

The corresponding Euclidean norm on C2pQN pΣqq is simply denoted } ¨ }. Notice that
the splitting of

C2pQN pΣqq » C0p GN pΣqq “ C0p G
`

N pΣqq ‘ C
0p G

´

N pΣqq

is orthogonal for xx¨, ¨yy. By construction, we have the following result:

Proposition 4.5.2. – Let ψ˘Nk P C
0p G

˘

Nk
pΣqq be a converging sequence of discrete

functions with limψ˘Nk “ φ˘. Then

lim }ψ˘Nk}
2 “

1

2
}φ˘}2L2 ,

where }φ˘}L2 is the L2-norm of φ˘ with respect to the Riemannian flat metric gσ.
In particular if both sequences converge and φ` “ φ´ “ φ, then lim }ψNk}

2 “ }φ}2L2 .

Proof. – Let φ˘N be the sequence of samples of φ˘. Then }φ˘N }
2 is understood as a

Riemann sum for the integral }φ˘}2L2 . Compared to a usual Riemann sum, we are
throwing away half of the faces of the subdivision, and we have

lim }φ˘N }
2 “

1

2
}φ˘}2L2 .

Using the C
0-convergence of ψ˘N and Proposition 3.8.11, we deduce that

lim }φ˘N ´ ψ
˘
N }

2 “ 0,

and the proposition follows by the triangle inequality.

4.5.3. The case of vector fields. – The space TτMN consists of tangent vectors V P

C0pQN pΣqq b R2n. Here V is understood as a family of vectors, given at each ver-
tex v of QN pΣq by V pvq “ xV,vy P R2n. We deduce an Euclidean inner product
on C0pQN q b R4, defined by

xxV, V 1yy “
1

N2

ÿ

vPC0p Q
N
pΣqq

gpV pvq, V 1pvqq.

The corresponding Euclidean norm is also denoted } ¨ }.
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4.6. Linearized equations

Recall that the moduli space of quadrangular meshes MN is in fact the vector
space C0pQN pΣqq b R2n. So for τ P MN , the tangent space at τ is identified to

TτMN “ C0pQN pΣqq b R2n “ MN .

Hence a tangent vector at τ is identified to a familly of vectors of R2n defined at each
vertex of the quadrangulation.

The differential of µrN : MN Ñ C2pQN pΣqq at τ , which is a linear map denoted

DµrN |τ
: TτMN Ñ C2pQN pΣqq,

is readily computed. Formally, we have

DµrN |τ
¨ V “ 2Ψr

N pτ, V q,

where Ψr
N is the symmetric bilinear map associated to the quadratic map µrN . For

a more explicit formula, we merely need to compute the variation of the symplectic
area of a quadrilateral in R2n, which is being deformed by moving its vertices. Let
V P TτMN be a discrete vector field. We define a path of quadrangulations by

τt “ τ ` tV, for t P R.

We would like to express the variation of µrN along τt. In order to state a result, we
need some additional notations.

4.6.1. Other diagonal notations. – We introduced the diagonals Du
τ and Dv

τ at § 4.1.4.
We need now a slightly different indexing in order to have a simple expression of the
differential of µrN . We denote by fkl for k, l P Z, the faces of QN pR

2q. Their image
under the projection pN are still denoted fkl P C2pQN pΣqq. Similarly, we denote
by vkl the vertices of QN pR

2q and their image by pN as vertices of QN pΣq. Let
V P TτMN “ C0pQN pΣqq b R2n be a vector given as family of vectors

Vkl “ xV,vkly P R2n.

We define a deformation of the quadrangulation τ by τt “ τ ` tV , or in coordinates

xτt,vkly “ xτ,vkly ` tVkl.

Let τ P MN , f P C2pQN pR
2qq and v P C0pQN pR

2qq be one of the vertices of f . We
enumerate the vertices pv0,v1,v2,v3q of f consistently with the orientation and such
that v0 “ v. The diagonals are defined by

Dτ
v,f “ τpv3q ´ τpv1q P R2n

and if v is not a vertex of f , we put Dτ
v,f “ 0. Figure 2 shows a diagrammatic

representation of the above construction, with orientation conventions.

MÉMOIRES DE LA SMF 161



4.6. LINEARIZED EQUATIONS 47

τ (v)

Dτ
v,f

Figure 2. A face f of a mesh τ with one diagonal and orientations

Notation 4.6.2. – The vector Dτ
v,f P R2n is called the diagonal opposite to v of the

face f with respect to τ .

With these notations, we have the following expression for the variation of the
symplectic area:

Lemma 4.6.3. – We have
d

dt
xµN pτtq, fy|t“0

“ ´
1

2

ÿ

vPC0p Q
N
pΣqq

ωpV pvq, Dτ
v,f q.

Proof. – We use the ordered vertices pA0, A1, A2, A3q of an oriented quadrilateral
in R2n and consider a variation pAt0, At1, At2, At3q “ pA0, A1, A2, A3q` tpV0, V1, V2, V3q.
We denote byDt

0 andDt
1 the diagonals of the deformed quadrilateral. By Lemma 4.1.3,

its symplectic area is
1

2
ωpDt

0, D
t
1q.

Hence, the variation of symplectic area at t “ 0 is given by
1

2
p´ωpV0, D1q ` ωpV1, D0q ` ωpV2, D1q ´ ωpV3, D0qq .

Using our conventions for the diagonals of quadrilaterals, this proves the lemma.

4.6.4. Computation of the discrete Laplacian. – Any discrete vector field V P TτMN is
given by a family of vectors

Vv “ xV, vy P R2n.

The almost complex structure J of R2n » Cn induces a canonical action on TτMN “

C2pQN pΣqq b R2n that can be expressed as

pJV qv :“ JpVvq.

Recall that the Euclidean metric g and the symplectic form ω of R2n are related by
the formula

@u1, u2 P R2n, ωpu1, u2q “ gpJu1, u2q.

According to the Lemma 4.6.3, the differential of µN at τN satisfies

xDµN |τ
¨ V, fy “ ´

1

2

ÿ

v

ωpV pvq, Dτ
v,f q.
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hence
xDµN |τ

¨ JV, fy “
1

2

ÿ

v

gpV pvq, Dτ
v,f q.

In turn, we have

(4.5) xDµrN |τ
¨ JV, fy “

N2

2

ÿ

v

gpV pvq, Dτ
v,f q.

We introduce the operator (notice the analogy with Formula 2.3)

(4.6) δτ “ ´Dµ
r
N |τ

˝ J,

so that Formula (4.5) reads

(4.7) xδτV,
ÿ

f

φpfqfy “
N2

2

ÿ

v,f

φpfqgpV pvq, Dτ
v,f q.

or, equivalently

(4.8) δτV “
N2

2

ÿ

v,f

gpV pvq, Dτ
v,f qf

˚.

With the above conventions

(4.9) xδτV,
ÿ

f

φpfqfy “ N2xxδτV,
ÿ

f

φpfqf˚yy

and it follows from Formulae (4.7) and (4.9) that

xxδτV,
ÿ

f

φpfqf˚yy “
1

2

ÿ

v,f

φpfqgpV pvq, Dτ
v,f q.

We deduce that the ajoint δ‹τ of δτ for the inner product xx¨, ¨yy satisfies

xxV, δ‹τ
ÿ

f

φpfqf˚yy “
1

2

ÿ

v

1

N2
g

˜

V pvq,
ÿ

f

N2φpfqDτ
v,f

¸

“ xxV,
N2

2

ÿ

v,f

φpfqDτ
v,fv

˚yy,

which proves the following lemma

Lemma 4.6.5. – The operator

δτ : TτNMN Ñ C2pQN pΣqq

is given by

(4.10) δτV “
N2

2

ÿ

v,f

gpV pvq, Dτ
v,f qf

˚,

whereas its adjoint
δ‹τ : C2pQN pΣqq Ñ TτNMN
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is given by

(4.11) δ‹τφ “
N2

2

ÿ

v,f

φpfqDτ
v,f b v˚.

Remark 4.6.6. – The operator δτ “ ´DµrN |τ ˝ J is the finite dimensional version
of δf “ ´Dµ|f ˝ J considered in the smooth setting (cf. § 2.2.5). In the smooth set-
ting, the adjoint δ‹f allows to recover the Hamiltonian infinitesimal action of the gauge
group G “ HampΣ, σq on M according to the identity (2.4). In the finite dimensional
approximation, there is no clear group action on MN for which µrN would be the
corresponding moment map. However, the vector fields Vφpτq “ δ‹τφ define infinites-
imal isometric Hamiltonian action which should play the role of finite dimensional
approximations of HampΣ, σq.

The kernel of δ‹τ contains the constants discrete functions, but might contain other
function as well. This is not the case generically, according to the proposition below

Proposition 4.6.7. – Let τ P MN be a generic quadrangular mesh in the following
sense: for every vertex v of the quadrangulation QN pΣq, the four possibly non vanish-
ing diagonals Dτ

v,f , where f is a face that contains the vertex v span a 3-dimensional
subspace of R2n. Then the kernel of δ‹τ reduces to constant discrete functions.

Proof. – The equation δ‹τφ “ 0 provides a linear system of rank 3 with four variables
associated to each vertex. This imply that φ must be locally constant around each
vertex and it follows that φ is constant.

Definition 4.6.8. – Given a quadrangular mesh τ P MN , we define the discrete
Laplacian ∆τ : C2pQN pΣqq Ñ C2pQN pΣqq associated to the mesh τ by

∆τ “ δτδ
‹
τ .

Given a smooth isotropic immersion ` : Σ Ñ R2n and its samples τN P MN , the
associated operators to δτN , δ‹τN and ∆τN are denoted δN , δ‹N and ∆N , for simplicity.

Remark 4.6.9. – Notice the analogy between the operator ∆f defined by For-
mula (2.5) and ∆τ . The operator ∆τ will play a central role in the perturbation theory
of quadrangular meshes, as ∆f did for smooth isotropic immersions. The reader should
already be aware that ∆τ is not the classical Laplacian associated to the mesh τ , as
will become clear from the sequel.

By Formula (4.11) we have

δ‹τ f
˚ “

N2

2

ÿ

v

Dv,fv
˚,
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By Formula (4.10) we have

∆τ f
˚ “

N4

4

ÿ

v,f2

gpDτ
v,f , D

τ
v,f2qf

˚
2 .

We obtain the following result

Proposition 4.6.10. – For φ P C2pQN pΣqq, we have

∆τφ “
N4

4

ÿ

v,f ,f2

φpfqgpDτ
v,f , D

τ
v,f2qf

˚
2 .

4.7. Coefficients of the discrete Laplacian

The discrete Laplacian ∆N is an endomorphism of C2pQN pΣqq whose coefficients
are explicitely given by Proposition 4.6.10. When dealing with τN , we use the notation
Dv,f :“ DτN

v,f for simplicity. We introduce the coefficients

βf1f2 “
N4

4

ÿ

v

gpDv,f1 , Dv,f2q.

By Proposition 4.6.10 we have

∆N f˚1 “
ÿ

f1,f2

βf1f2f
˚
2 .

4.7.1. Splitting of the Laplacian. – The matrix pβff 1q is obviously symmetric in f and
f 1, which is not surprising since ∆N is selfadjoint by definition. The matrix is sparse
in the sense that most of the coefficients βff 1 vanish. There are three types of possibly
non vanishing coefficients:
(1) f “ f 1.
(2) f and f 1 have only one vertex in common.
(3) f and f 1 have exactly one edge (and two vertices) in common.

Using the above observation, we may write the operator ∆N as a sum

∆N “ ∆E
N `∆I

N .

Here

∆E
N f˚ “

N4

4

ÿ

v,f2PE12pfq

gpDv,f , Dv,f2qf
˚
2 ,

where E12pfq is the set of faces f2 such that the pair pf , f2q is of type (1) or (2), and

∆I
N f˚ “

N4

4

ÿ

v,f2PE3pfq

gpDv,f , Dv,f2qf
˚
2 ,

where E3pfq is the set of faces f2 such that the pair pf , f2q is of type (3). By definition,
we have the following lemma
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Lemma 4.7.2. – The operator ∆E
N preserves the components of the direct sum de-

composition C2
`pQN pΣqq ‘ C

2
´pQN pΣqq, whereas ∆I

N exchanges the components. Ac-
cordingly, there have a block decomposition of the discrete Laplacian

∆N “

˜

∆E
N ∆I

N

∆I
N ∆E

N

¸

.

4.7.3. Finite difference operators and discrete Laplacian. – The smooth Laplacian (2.5)
is related to a twisted Riemannian Laplacian by Lemma 2.3.4. The goal of this section
is to find a similar expression for the discrete Laplacian ∆Nφ, using finite difference
operators.

The strategy is to compute x∆Nφ, fy at some face f of QN pΣq. For this purpose,
we will use the notations fkl and vij for faces and vertices of QN pR

2q, considered as
vertices and faces of QN pΣq (cf. § 3.3.1 and § 4.1.4). The values of a discrete function
are denoted

φkl “ xφ, fkly,

and the diagonals Dijkl are obtained as Dvijfkl , with the convention that Dijkl “ 0 if
vij is not a vertex of the face fkl in QN pR

2q. The coefficients βklmn are denoted βfklfmn

and we choose the integers k, l so that f “ fkl. The coefficients βff 1 vanishes unless
f “ f 1 or f and f 1 are contiguous faces. In such case we may choose a unique pair of
integers pm,nq such that f 1 “ fmn with m P tk ´ 1, k, k ` 1u and n P tl ´ 1, l, l ` 1u.
Under these conditions (cf. § 4.7.1)

1. fkl and fmn are of type (1) if pk, lq “ pm,nq,
2. fkl and fmn are of type (2) if pm,nq “ pk ˘ 1, l ˘ 1q or pk ˘ 1, l ¯ 1q,
3. fkl and fmn are of type (3) if pm,nq “ pk ˘ 1, lq or pk, l ˘ 1q.

For the first type of coefficients, we find

βklkl “
N4

4

ÿ

ij

}Dijkl}
2,

where we may take the sum over all pairs of indices i, j P Z. For the second type of
cooefficients, we have

βklmn “
N4

4
gpDijkl, Dijmnq,

where vij is the common vertex of fkl and fmn in QN pR
2q. In the third case there are

two common vertices vij and vi1j1 which belong to the same edge. Then

βklmn “
N4

4
gpDijkl, Dijmnq `

N4

4
gpDi1j1kl, Di1j1mnq.

For simplicity of notations, we also use the notations Du
kl and Dv

kl for the diag-
onal (cf. § 4.1.4), which differ only by a sign. We start our computations with the
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operator ∆E
N :

4N´4x∆E
Nφ, fkly “ ´φk´1,l´1gpD

v
k´1,l´1, D

v
klq ´ φk`1,l`1gpD

v
k`1,l`1, D

v
klq

´ φk´1,l`1gpD
u
k´1,l`1, D

u
klq ´ φk`1,l´1gpD

u
k`1,l´1, D

u
klq

` 2φklpgpD
u
kl, D

u
klq ` gpD

v
kl, D

v
klqq.

One can write

φk`1,l`1gpD
v
k`1,l`1, D

v
klq “ φk`1,l`1gpD

v
k,l, D

v
klq

` φklgpD
v
k`1,l`1 ´D

v
kl, D

v
klq

` pφk`1,l`1 ´ φk,lqgpD
v
k`1,l`1 ´D

v
kl, D

v
klq

and similar Leibnitz type decomposition for the other terms. Thus, we obtain accord-
ingly

4N´4x∆E
Nφ, fkly “ p´φk´1,l´1 ´ φk`1,l`1 ` 2φklqgpD

v
kl, D

v
klq

` p´φk´1,l`1 ´ φk`1,l´1 ` 2φklqgpD
u
kl, D

u
klq

´ φklgpD
v
k´1,l´1 `D

v
k`1,l`1 ´ 2Dv

kl, D
v
klq

´ φklgpD
v
k`1,l´1 `D

u
k´1,l`1 ´ 2Du

kl, D
u
klq

´ pφk´1,l´1 ´ φklqgpD
v
k´1,l´1 ´D

v
kl, D

v
klq

´ pφk`1,l`1 ´ φklqgpD
v
k`1,l`1 ´D

v
kl, D

v
klq

´ pφk´1,l`1 ´ φklqgpD
u
k´1,l`1 ´D

u
kl, D

u
klq

´ pφk`1,l´1 ´ φklqgpD
u
k`1,l´1 ´D

u
kl, D

u
klq.

We gather the RHS into a sum of three operators: first we define ∆̂E
N . This operator

will turn out to be a discrete version of the Riemannian Laplace-Beltrami operator
on Σ:

4N´4x∆̂E
Nφ, fkly “ p´φk´1,l´1 ´ φk`1,l`1 ` 2φklqgpD

v
kl, D

v
klq

` p´φk´1,l`1 ´ φk`1,l´1 ` 2φklqgpD
u
kl, D

u
klq,

then we define the operator KE
N , which is some kind of discrete curvature operator by

4N´4xKE
Nφ, fkly “ ´φklgpD

v
k´1,l´1 `D

v
k`1,l`1 ´ 2Dv

kl, D
v
klq

´ φklgpD
v
k`1,l´1 `D

u
k´1,l`1 ´ 2Du

kl, D
u
klq.

The last four lines can be rearranged into an operator ΓEN given by

4N´4xΓENφ, fkly “ ´
1

2
pφk´1,l´1 ´ φklqp|D

v
k´1,l´1|

2

g
´ |Dv

kl|
2

g
q

´
1

2
pφk`1,l`1 ´ φklqp|D

v
k`1,l`1|

2

g
´ |Dv

kl|
2

g
q

´
1

2
pφk´1,l`1 ´ φklqp|D

u
k´1,l`1|

2

g
´ |Du

kl|
2

g
q

´
1

2
pφk`1,l´1 ´ φklqp|D

u
k`1,l´1|

2

g
´ |Du

kl|
2

g
q
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plus an operator

4N´4x E
E
Nφ, fkly “ ´

1

2
pφk´1,l´1 ´ φklq|D

v
k´1,l´1 ´D

v
kl|

2

g

´
1

2
pφk`1,l`1 ´ φklq|D

v
k`1,l`1 ´D

v
kl|

2

g

´
1

2
pφk´1,l`1 ´ φklq|D

u
k´1,l`1 ´D

u
kl|

2

g

´
1

2
pφk`1,l´1 ´ φklq|D

u
k`1,l´1 ´D

u
kl|

2

g
.

So, we have a decomposition

∆E
N “ ∆̂E

N `K
E
N ` ΓEN ` E

E
N .

Similar computations can be carried out for ∆I
N .

4N´4x∆I
Nφ, fkly “ φk`1,lp´gpD

v
k`1,l, D

u
klq ´ gpD

u
k`1,l, D

v
klqq

φk,l`1pgpD
v
k,l`1, D

u
klq ` gpD

u
k,l`1, D

v
klqq

φk´1,lp´gpD
v
k´1,l, D

u
klq ´ gpD

u
k´1,l, D

v
klqq

φk,l´1p`gpD
v
k,l´1, D

u
klq ` gpD

u
k,l´1, D

v
klqq.

We introduce the averaging operator φ ÞÑ φ̄ defined by

φ̄kl “ xφ̄, fkly “
1

4
pφk`1,l ` φk´1,l ` φk,l`1 ` φk,l´1q ,

and we write each term above under the form

φk`1,lgpD
v
k`1,l, D

u
klq “ pφ̄kl ` pφk`1,l ´ φ̄klqqg

`

Dv
k,l ` pD

v
k`1,l ´D

v
k,lq, D

u
kl

˘

.

Expanding these expressions leads to

4N´4x∆I
Nφ, fkly “ φ̄klg

`

pDv
k,l`1 ´D

v
k`1,lq ´ pD

v
k´1,l ´D

v
k,l´1q, D

u
kl

˘

` φ̄klg
`

pDu
k,l`1 ´D

u
k`1,lq ´ pD

u
k´1,l ´D

u
k,l´1q, D

v
kl

˘

` 2ppφk,l`1 ´ φk´1,lq ´ pφk`1,l ´ φk,l´1qqgpD
v
kl, D

u
klq

` pφk`1,l ´ φ̄klqp´gpD
v
k`1,l ´D

v
kl, D

u
klq ´ gpD

u
k`1,l ´D

u
kl, D

v
klqq

` pφk,l`1 ´ φ̄klqpgpD
v
k,l`1 ´D

v
kl, D

u
klq ` gpD

u
k,l`1 ´D

u
kl, D

v
klqq

` pφk´1,l ´ φ̄klqp´gpD
v
k´1,l ´D

v
kl, D

u
klq ´ gpD

u
k´1,l ´D

u
kl, D

v
klqq

` pφk,l´1 ´ φ̄klqpgpD
v
k,l´1 ´D

v
kl, D

u
klq ` gpD

u
k,l´1 ´D

u
kl, D

v
klqq.

The first two lines can be expressed using Chasles relation as an operator

4N´4xKI
Nφ, fkly “ φ̄klgpD

u
k´1,l`1 `D

u
k`1,l´1 ´ 2Du

kl, D
u
klq

` φ̄klgpD
v
k`1,l`1 `D

v
k´1,l´1 ´ 2Dv

kl, D
v
klq.

In particular, we see that if φkl “ φ̄kl, then xpKI
τ0 `KE

τ0qφ, fkly “ 0. We decompose
∆I as a sum

∆I
N “ KI

N ` E
I
N .
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All the above operators may be expressend in terms of finite differences. First we
define analog θuN , θ

v
N P C

2p GN pΣqq of the conformal factor θ by

θuN “ }UN }
2
g, and θ

v
N “ }VN }

2
g

and a discrete analog of the Gauß curvature plus an energy term κN P C2p GN pΣqq

given by

κN “ ´g

ˆ

B2

B ~uB~u
VN ,VN

˙

´ g

ˆ

B2

B ~vB~v
UN ,UN

˙

.

Proposition 4.7.4. – The operators introduced above satisfy the following identites
for every discrete function φ:

∆̂E
Nφ “ ´

ˆ

θuN
B2

B ~uB~u
` θvN

B2

B ~vB~v

˙

φ

KE
Nφ “ κN ¨ φ

ΓENφ “ ´
1

2

ˆ

Bφ

B ~u

BθvN
B ~u

`
Bφ

B~u

BθvN
B~u

`
Bφ

B ~v

BθuN
B ~v

`
Bφ

B~v

BθuN
B~v

˙

“ ´gradφ ¨ gradθN

and

KI
Nφ “ ´κN ¨ φ̄.

The operators E
E
N and E

I
N become negligible as N goes to infinity, in the sense of

the following proposition:

Proposition 4.7.5. – There exists a sequence εN “ OpN´1q with εN ą 0 such that
for all N and all functions φ P C2pQN pΣqq, we have

} E
I
Nφ} C0,α ď εN }φ} C2,α , and } E

E
Nφ} C0,α ď εN }φ} C2,α ,

} E
I
Nφ} C0 ď εN }φ} C2 and } E

E
Nφ} C0 ď εN }φ} C2 .
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CHAPTER 5

LIMIT OPERATOR

5.1. Computation of the limit operator

We denote by ∆σ (resp. ∆Σ the Laplace-Beltrami operator associated to the Rie-
mannian metric gσ (resp. gΣq on Σ.

Theorem 5.1.1. – Let k be an integer such that k ě 2. For every sequence of discrete
functions ψNk P C2pQNkpΣqq, converging in the C

k
w-sense toward a pair of functions

pφ`, φ´q, we have

∆NkψNk
Ck´2

ÝÑ Ξpφ`, φ´q,

where Ξpφ`, φ´q is the pair of functions defined by

Ξpφ`, φ´q “
´

θ∆σφ
` ´ gσpdφ

`, dθq ` pK ` Eqpφ` ´ φ´q,

θ∆σφ
´ ´ gσpdφ

´, dθq ` pK ` Eqpφ´ ´ φ`q
¯

,

where K is the Gauß curvature of gΣ and E is a nonnegative function on Σ defined
at (5.1).

Proof. – The result is a trivial consequence of Proposition 4.7.4 and the convergence
of the coefficients of the operator. The only non trivial fact that must be proved is
the following lemma:

Lemma 5.1.2. – We have the identity

K ` E “ ´g

ˆ

B3`

Bu2Bv
,
B`

Bv

˙

´ g

ˆ

B3`

Bv2Bu
,
B`

Bu

˙

,

where K is the Gauß curvature of the metric gΣ and E is the nonnegative function
on Σ defined via the second fundamental form II of ` : Σ Ñ R2n

(5.1) E “ 2g

˜

B2`

BuBv

K

,
B2`

BuBv

K
¸

“ 2g

ˆ

II

ˆ

B

Bu
,
B

Bv

˙

, II

ˆ

B

Bu
,
B

Bv

˙˙

.
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Proof. – Recall the standard formula for the Gauß curvature K of the metric gΣ “

`˚g “ θgσ, conformal to the flat metric gσ:

K “
1

2
θ∆σ log θ.

Using the classical identity

θ∆σ log θ “ ∆σθ ` θ
´1gσpdθ, dθq

and using the fact that

θ “ g

ˆ

B`

Bu
,
B`

Bu

˙

“ g

ˆ

B`

Bv
,
B`

Bv

˙

,

we compute

(5.2)
Bθ

Bv
“ 2g

ˆ

B2`

BuBv
,
B`

Bu

˙

,
Bθ

Bu
“ 2g

ˆ

B2`

BuBv
,
B`

Bv

˙

,

hence
B2θ

Bv2
“ 2g

ˆ

B3`

BuBv2
,
B`

Bu

˙

` 2g

ˆ

B2`

BuBv
,
B2`

BuBv

˙

and
B2θ

Bu2
“ 2g

ˆ

B3`

Bu2Bv
,
B`

Bu

˙

` 2g

ˆ

B2`

BuBv
,
B2`

BuBv

˙

.

In particular

gσpdθ, dθq “

ˇ

ˇ

ˇ

ˇ

Bθ

Bu

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

Bθ

Bv

ˇ

ˇ

ˇ

ˇ

2

“ 4g

ˆ

B2`

BuBv
,
B`

Bu

˙2

` 4g

ˆ

B2`

BuBv
,
B`

Bv

˙2

,

thanks to Formula (5.2). The fact that B`
Bu and B`

Bv is an orthogonal family of vectors
of g-norm

?
θ implies that any vector V P R2n satisfies the identity

g

ˆ

V,
B`

Bu

˙2

` g

ˆ

V,
B`

Bv

˙2

“ θg
`

V T , V T
˘

,

where V T is the g-orthogonal projection of V onto the plane spaned by B`
Bu and B`

Bv .
In other words, V T is the g-orthogonal projection onto the tangent plane to `pΣq.
Therefore

θ´1gσpdθ, dθq “ 4g

˜

B2`

BuBv

T

,
B2`

BuBv

T
¸

and

∆σθ “ ´2g

ˆ

B3`

BuBv2
,
B`

Bu

˙

´ 2g

ˆ

B3`

Bu2Bv
,
B`

Bv

˙

´ 4g

ˆ

B2`

BuBv
,
B2`

BuBv

˙

.
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In conclusion

2K “ θ∆σ log θ

“ ∆σθ ` θ
´1gσpdθ, dθq

“ ´2gp
B3`

BuBv2
,
B`

Bu
q ´ 2gp

B3`

Bu2Bv
,
B`

Bv
q ´ 4g

˜

B2`

BuBv

K

,
B2`

BuBv

K
¸

,

where K denotes the component of a vector orthogonal to the tangent space to ` at a
point.

Corollary 5.1.3. – For all integers k ě 0,

κN
Ck
ÝÑ K ` E.

The coefficients of ∆N are now all understood asymptotically. This completes the
proof of the theorem.

Definition 5.1.4. – The operator defined by

Ξpφ`, φ´q “
´

θ∆σφ
` ´ gσpdφ

`, dθq ` pK ` Eqpφ` ´ φ´q,

θ∆σφ
´ ´ gσpdφ

´, dθq ` pK ` Eqpφ´ ´ φ`q
¯

is called the limit operator of ∆N .

Remark 5.1.5. – In particular, the limit operator Ξ is elliptic. This fact will be
crucial to derive uniform discrete Schauder estimates for ∆N .

5.2. Kernel of the limit operator

Proposition 5.2.1. – A pair of smooth functions pφ`, φ´q is an element of the
kernel of the limit operator Ξ if, and only if, there exists some real constants c0 and
c1 such that

φ` “ c0 ` c1θ
´1, φ´ “ c0 ´ c1θ

´1.

with c1 “ 0, unless the function E vanishes identically on Σ. In particular the kernel
of Ξ has dimension 1 or 2 depending on the vanishing of E.

Proof. – The proposition is proved by a straightforward argument using integration
by part. A few formulae are needed in order to give a streamlined proof:

Lemma 5.2.2. – For every smooth function f : Σ Ñ R, we have

d˚σθdf “ θ∆σf ´ gσpdf, dθq,

where d˚σ is the adjoint of d with respect to the L2-inner product induced by gσ. On
the other hand, we have

θd˚σθ´1dθf “ θ∆σf ´ gσpdf, dθq ` 2Kf,

where K is the Gauß curvature of gΣ.
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Proof. – For every 1-form β and every function w on Σ, we have d˚σ pwβq “ ´˚σ d˚σ
pwβq “ ´ ˚σ dpw ˚σ βq “ ´ ˚σ pdw ^ ˚σβ ` wd ˚σ βq “ wd˚σβ ´ ˚σgσpdw, βqvolσ “

wd˚σβ ´ gσpdw, βq. In conclusion

d˚σ pwβq “ wd˚σβ ´ gσpdw, βq.

The first formula of the lemma follows from the above identity. For second identity,
we have θ´1dpθfq “ fd log θ` df . Now, d˚σθ´1dpθfq “ fd˚σd log θ´ gσpdf, d log θq `

d˚σdf . We use the fact that the Gauß curvature of gΣ is given by the formula 2K “

θ∆σ log θ and deduce the second identity of the lemma.

We may now complete the proof ot Proposition 5.2.1. Let φ˘ be a solution of the
system

θ∆σφ
` ´ gσpdφ

`, dθq ` pK ` Eqpφ` ´ φ´q “ 0

θ∆σφ
´ ´ gσpdφ

´, dθq ` pK ` Eqpφ´ ´ φ`q “ 0.

Adding up the two equations gives the identity

θ∆σpφ
` ` φ´q ´ xdpφ` ` φ´q, dθyσ “ 0 “ d˚σθdpφ` ` φ´q

by Lemma 5.2.2. Integrating against φ` ` φ´ using the L2-inner product induced
by gσ gives 0 “ xd˚θdpφ` ` φ´q, φ` ` φ´yL2 “ xθdpφ` ` φ´q, dpφ` ` φ´qyL2 . Since
θ is positive, this forces

φ` ` φ´ “ 2c0,

for some constant c0.

On the other hand the difference of the two equations provides the identity

θ∆σpφ
` ´ φ´q ´ gσpdpφ

` ´ φ´q, dθq ` 2pK ` Eqpφ` ´ φ´q “ 0.

by Lemma 5.2.2 we deduce that

θd˚σθ´1dθpφ` ´ φ´q ` 2Epφ` ´ φ´q “ 0.

Integrating the above equation against θpφ` ´ φ´q provides the identity

xθdpφ` ´ φ´q, dpφ` ´ φ´qyL2 ` x2Epφ` ´ φ´q, φ` ´ φ´yL2 “ 0.

Now θ is positive and E is nonnegative, so the two terms of the LHS are non negative:
they must vanish both. The vanishing of the first term forces

φ` ´ φ´ “ 2θ´1c1,

for somme real constant c1. The vanishing of the second term implies that c1 “ 0

unless E vanishes identically on Σ.
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5.3. Degenerate families of quadrangulations

Proposition 5.2.1 leads us to distinguish two types of constructions.
Recall that the construction of QN pΣq depends on the choice of a Riemannian

universal cover p : R2 Ñ Σ for the flat metric gσ on Σ. Such cover are not unique.
They may be, for instance, precomposed with a rotation of R2. Equivalently, we may
replace the canonical basis of R2 by a rotated basis, which also provides rotated
pu, vq-coordinates.

We introduce a definition of degeneracy, bearing on pairs pp, `q, that consists of an
isotropic immersion ` : Σ Ñ R2n and a choice of Riemannian cover p : R2 Ñ Σ for a
flat metric gσ, in the conformal class of the induced metric gΣ.

Definition 5.3.1. – We say that the pair pp, `q is degenerate, if the function E :

Σ Ñ R defined by (5.1) vanishes identically. Otherwise, we say that the pair pp, `q is
nondegenerate.

Example 5.3.2. – An example of degenerate pair is provided by the map

` : R2 ÝÑ Cb C » R4

defined by
`px, yq “ pexpp2πiuqq, expp2πivqq P C2,

where px, yq are the canonical coordinates of R2 and pu, vq are the rotated coordinates
defined by (3.12). This map clearly satisfies

(5.3)
B2`

BuBv
“ 0.

Moreover, ` is invariant under the lattice Γ spanned by e1`e2?
2

and e2´e1?
2

. Hence ` de-
scends to a quotient map denoted ` : R2{Γ Ñ C2. We obtain a pair pp, `q, where
p : R2 Ñ R2{Γ is the canonical projection, which is degenerate in the sense of Defini-
tion 5.3.1 by (5.3).

Degenerate pairs can create additional technical difficulties. Nevertheless, they may
be taken care of with some additional caution (cf. § 5.6). Or they can just be avoided
according to the following proposition:

Proposition 5.3.3. – Given a pair pp, `q, there always exists a rotation r of R2 such
that pp ˝ r, `q is non degenerate.

Proof. – The pu, vq coordinates of R2 induce an orthonormal basis of tangent vectors
of Σ for the metric gσ, denoted B

Bu ,
B
Bv . If pp, `q is degenerate, II must vanishes identi-

cally on this pair of vector fields. If pp˝r, `q is degenerate for every rotation of R2, the
second fundamental form must also vanish for every pair of tangent vectors obtained
by rotating the basis B

Bu ,
B
Bv . This means that II vanishes on every pair of orthogonal

tangent vectors for gσ. Since gΣ is conformal to gσ, this means that II must vanish
for every pair of orthogonal tangent vectors for gΣ. This is a contradiction according
to the following lemma:
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Lemma 5.3.4. – For any immersion ` : Σ Ñ R2n, where Σ is a closed surface dif-
feomorphic to a torus, there exists a point x P Σ and an orthogonal basis of tangent
vectors U , V for the induced metric gΣ, such that the second fundamental form sat-
isfies IIpU, V q ‰ 0.

Proof. – We choose a point x P TxΣ. Assume that IIpU, V q vanishes for every or-
thonormal basis pU, V q of TxΣ. Notice that in this case pU`V,U´V q is an orthogonal
basis, hence, by assumption IIpU ` V,U ´ V q “ 0, and we have

IIpU,Uq “ IIpU ` V,U ´ V q ` IIpV, V q “ IIpV, V q.

By the Gauß Theorema Egregium, the curvature K of gΣ is given by

K “ ´gpIIpU, V q, IIpV,Uqq ` gpIIpU,Uq, IIpV, V qq.

According to our discussion, we deduce that

K “ gpIIpU,Uq, IIpU,Uqq ě 0.

By the Gauß-Bonnet formula, a torus with nonnegative curvature has vanishing cur-
vature. Thus K “ 0, and as a corollary IIpU,Uq “ 0, which implies that II “ 0. In
conclusion the image of ` : Σ Ñ R2n is totally geodesic. The only totally geodesic
surfaces of R2n are 2-planes. This forces the image of ` to be contained in a plane.
This is not possible for an immersion of a compact surface.

In conclusion there is a choice of rotation r such that pp ˝ r, `q is nondegenerate,
which proves the proposition.

5.4. Schauder Estimates

The following result is a consequence of a theorem of Thomée, stated in a broader
context [10], for various elliptic finite difference operators, in the case of domains of Rn
covered by square lattices of step h “ N´1. We provide here a statement adapted
to the torus Σ identified to quotients R2{ΓN endowed with its spaces of discrete
functions.

Theorem 5.4.1 (Thomée type theorem). – There exists a constant c1 ą 0 such that
for all N ě 0 and for all functions ψ P C2pQN pΣqq, we have

}PNψ} C0,α
w
` }ψ} C0 ě c1}ψ} C2,α

w
,

where
PN “ ∆̂E

N ` ΓEN .

Proof. – Proposition 4.7.4 can be readily used to prove an analog of Theorem 5.1.1
for the opertors PN . In other words, for every k ě 2, for every sequence ψNj P
C2
`pQNj pΣqq such that (cf. (2.5) and Lemma 2.3.4 as well)

(5.4) ψNj
Ck
ÝÑ φ ñ PNjψNj

Ck´2

ÝÑ ∆`φ.
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The operators PN admit canonical lifts P̃N : C2
`pQN pR

2qq Ñ C2
`pQN pR

2qq. The
elliptic operator ∆` can also be lifted as an elliptic operator with smooth coeffi-
cients ∆̃` acting on functions on the plane. By Property (5.4), the discrete operators
P̃N : C2

`pQN pR
2qq Ñ C2

`pQN pR
2qq converge toward the elliptic operator ∆̃`. This

implies that the sequence of discrete operators P̃N is consistent with the elliptic op-
erator ∆̃` and that the operators P̃N must be elliptic, for N sufficiently large, in the
sense of Thomée [10].

We consider a fundamental domain D of the action of Γ on R2. For r0 ą 0 suffi-
ciently large, D Ă Bp0, r0q. We define

Ω0 “ Bp0, r0 ` 1q, Ω1 “ Bp0, r0 ` 2q and Ω2 “ R2,

where Bp0, rq is an Euclidean ball of R2 or radius r, centered at the origin. By defi-
nition we have compact embeddings of the domains Ω0 Ť Ω1 Ť Ω2.

The finite differences (3.17) and (3.18) used to obtain the discrete finite difference
operators P̃N correspond to the finite differences defined in [10], modulo a translation
operator for the retrograde differences. It follows that [10, Theorem 2.1] applies in
our setting: there exists a constant c ą 0 such that for every N sufficiently large and
φ P C2

`pR2q,

(5.5) }φ} C2,α
T pΩ1q

ď c
!

}P̃Nφ} C0,α
T pΩ2q

` }φ} C0
T pΩ2q

)

.

Remark 5.4.2. – In the above notations, the C
k,α
T pΩiq-norm on C2

`pQN pR
2qq are

the norms defined in [10], using only forward differences. For Ω2 “ R2, these norms
coïncide with the C

k,α-norms introduced at § 3.7.
If Ω “ Bp0, Rq, the definition of the norms given at (3.10) and (3.21) has to be

modified slightly for the C
k,α
T pΩq-norm. In order to describe what has to be modified,

assume for a moment that φ is a discrete function defined only on the set of vertices
of G

`

N pR2q contained in Ω. Notice that the finite differences Bφ
Bu and Bφ

Bu are defined on
a smaller set, and the second order partial derivative on an even smaller set, etc. The
C
k,α
T pΩq-norms are defined similarly to the C

k,α-norms, by taking the corresponding
sup on a smaller set of vertices. Namely, the vertices of G

`

N pR2q contained in Ω where
the relevant partial derivatives are well defined.

For ψ P C2
`pQN pΣqq, we define the lift φN “ ψ ˝ pN . By Remark 5.4.2, since

Ω2 “ R2, the RHS of (5.5) applied to φN is equal to

c
!

}P̃NφN } C0,α ` }φN } C0

)

.

By definition of the discrete Hölder norms, }ψ} C0 “ }φN } C0 and since P̃NφN “

pPNψq ˝ pN , we have
}P̃NφN } C0,α “ }PNψ} C0,α .

Thus by (5.5)

(5.6) }ψ ˝ pN } C2,α
T pΩ1q

ď c
!

}PNψ} C0,α ` }ψ} C0

)

.
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We conclude using the following result

Lemma 5.4.3. – There exists a constant c1 ą 0 such that for every N sufficiently
large and all ψ P C2

`pQN pΣqq

c1}ψ} C2,α ď }ψ ˝ pN } C2,α
T pΩ1q

.

Proof of the lemma. – By definition, Ω0 contains a fundamental domain D of Γ,
and furthermore D Ť Ω0. By construction, the lattices ΓN admit fundamental do-
mains DN which converge (say in Hausdorff distance) toward D. Therefore DN Ť Ω0

for all N sufficiently large.

In particular every vertex z P G
`

N pΣq admits a lift z̃ P G
`

N pR2q via pN such that
z P Ω0. This shows that

}ψ} C0 ď }ψ ˝ pN } C0
T pΩ1q

.

If N is sufficiently large, the finite differences of order 1 or 2 of ψ ˝pN are well defined
at z̃ depend only on values taken by the function on the domain Ω1. It follows by
Remark 5.4.2 that

(5.7) }ψ ˝ pN } C2 ď }ψ ˝ pN } C2
T pΩ1q

.

If ξ is any discrete function in C0p G
`

N pR2qq, for every pair of vertices v0, v1 of G
`

N pR2q

with v0 P Ω0 and v1 R Ω1, we have

|ξpv0q ´ ξpv
1q|

}v0 ´ v1}α
ď |ξpv0q ´ ξpv

1q| ď 2}ξ} C0

since }v0 ´ v1} ě 1. We apply this inequality to the second order finite differences
of ψ ˝ pN . This shows that the C

2,α-norm of ψ ˝ pN is controled by its C
2-norm and

its C
2,α
T pΩ1q-norm. Hence by (5.7) the C

2,α
T pΩ1q-norm controls the C

2,α-norm.

Using the lemma and (5.6), we deduce that for every N sufficiently large and
ψ P C2

`pQN pΣqq, we have

c1}ψ} C2,α “ c1}ψ ˝ pN } C2,α ď c
!

}PNψ} C0,α ` }ψ} C0

)

.

This proves the theorem for N sufficiently large and ψ P C2
`pQN pΣqq. The same result

holds if ψ P C2
´pQN pΣqq. For a general ψ, we use the decomposition in components

ψ “ ψ` ` ψ´ and the theorem follows, for N sufficiently large, by definition of the
weak Hölder norms. If the theorem holds for N sufficiently large, it holds for every N
since C2pQN pΣqq is finite dimensional, and all norms are equivalent.

Corollary 5.4.4. – There exists a constant c2 ą 0 such that for all N ě 0 and for
all functions φ P C2pQN pΣqq, we have

}∆Nφ} C0,α
w
` }φ} C0 ě c2}φ} C2,α

w
.
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Proof. – We use the decomposition φ “ φ` ` φ´ and prove the corollary in the case
of the operator

∆1N “ ∆̂E
N ` ΓEN `K

E
N `K

I
N

first.
Then ∆1Nφ “ ψ “ ψ` ` ψ´, where ψ` “ PNφ

` ` κN pφ
` ´ φ̄´q and ψ´ “

PNφ
´ ` κN pφ

´ ´ φ̄`q. Since κN converges in the sense of Lemma 5.1.3, we deduce
that }κN } C0,α

w
is uniformly bounded for all N . Thus a C

0,α
w -bound on φ provides a

C
0,α
w -bound on κNφ

˘. Similarly a C
0,α
w -bound provides C

0,α
w -bound on φ̄˘. In other

words, there exists a constant c1 ą 0 independent of N and φ such that

}κN pφ
` ´ φ̄´q} C0,α

w
ď c1}φ} C0,α

w
and }κN pφ´ ´ φ̄`q} C0,α

w
ď c1}φ} C0,α

w
.

It follows that
}∆1Nφ} C0,α

w
` 2c1}φ} C0,α

w
ě }PNφ} C0,α

w
,

and by Theorem 5.4.1

(5.8) }∆1Nφ} C0,α
w
` p2c1 ` 1q}φ} C0,α

w
ě c}φ} C2,α

w
.

We are not quite finished since we have a C
0,α
w -estimate for φ in the above inequal-

ity rather than a C
0-estimate as in the corollary. We prove a weaker version of the

corollary first: we show that there exists a constant c2 ą 0 such that for all N and for
all φ,

(5.9) }∆1Nφ} C0,α
w
` }φ} C0 ě c2}φ} C0,α

w
.

If this is true, the corollary trivially follows in the case of ∆1N from (5.8) and (5.9).
Finally, Proposition 4.7.5 completes the proof in the case of ∆N “ ∆1N ` E

E
N ` E

I
N .

Assume that (5.9) does not hold. Then theres exists a sequence of discrete functions
φNk P C

2
pQNkpΣqq with the property that

}φNk} C0,α
w
“ 1, }∆1NkφNk} C0,α

w
Ñ 0 and }φNk} C0

w
Ñ 0.

Using Inequality (5.8), we obtain a uniform C
2,α
w -bound on φNk . By the Ascoli-Arzela

Theorem 3.10.6, we may assume up to extraction of a subsequence, that φNk converges
in the C

2
w-sense toward a pair of functions pφ`, φ´q on Σ. Since the convergence

is C
2
w hence C

0, the condition }φNk} C0 Ñ 0 forces φ` “ φ´ “ 0. This imply that

φNk
C2
w
ÝÑ p0, 0q, and in particular }φNk} C2

w
Ñ 0. Since the C

2
w-discrete norm controls

the C
0,α
w -discrete norm, this contradicts the assumption }φNk} C0,α

w
“ 1.

5.5. Spectral gap

We define the discrete functions

1˘N P C
0p G

˘

N pΣqq » C2
˘pQN pΣqq
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by

x1˘N , zy “

#

1 if z P C0p G
˘

N pΣqq

0 if z P C0p G
¯

N pΣqq.

We also define the discrete functions 1N , ζN P C
0p GN pΣqq by

1N “ 1`N ` 1´N

ζN “ θ´1
N ¨ 1`N ´ θ

´1
N ¨ 1´N ,

where θN is any discrete function, sufficiently close to θuN or θvN . For instance, we put

θN “
1

2
pθuN ` θ

v
N q.

We define the spaces of discrete functions KN Ă C0p GN pΣqq by

(5.10) KN “

#

R ¨ 1N if pp, `q is nondegenerate,
R ¨ 1N ‘ R ¨ ζN in the degenerate case.

In addition, we denote by
K K
N Ă C2pQN pΣqq

the orthogonal complement of KN , with respect to the xx¨, ¨yy-inner product.

Remarks 5.5.1. – The function 1N and more generally, any constant function, is
contained in the kernel of the operator ∆N . Indeed, ∆N “ δNδ

‹
N , but d‹1N “ 0

by Formula (4.11).
— The sequence of discrete functions ζN converges toward the pair of functions
pθ´1,´θ´1q, at least in the C

2
w-sense. Whenever ` is degenerate, we must have

∆NζN
C0
w
ÝÑ p0, 0q,

by Theorem 5.1.1 and Proposition 5.2.1.
— The kernel of ∆N is at least 1 dimensional. If ` is degenerate, our next result

at Theorem 5.5.2, implies that for N sufficiently large, ker ∆N has dimension at
most 2. Although ζN may not belong to ker ∆N , the previous remark shows that
this function is approximately in the kernel. In this sense, KN may be thought
of as an approximate kernel of ∆N .

Theorem 5.5.2. – There exists a real constant c3 ą 0 such that, for all positive
integers N sufficiently large and for all discrete function φ P K K

N , we have

}∆Nφ} C0,α
w
ě c3}φ} C2,α

w
.

Proof. – We are assuming that ` is degenerate. Since the proof in the nondegenerate
case is completely similar, we leave the details to the reader. We start by proving a
weaker version of the theorem:

Lemma 5.5.3. – There exists a real constant c4 ą 0 such that, for all positive integers
N sufficiently large and for all discrete function φ P K K

N , we have

}∆Nφ} C0,α
w
ě c4}φ} C0 .
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Proof of Lemma 5.5.3. – Assume that the result is false. Then there exists a sequence
φNk P K K

Nk
such that

@k }φNk} C0 “ 1, and }∆NkφNk} C0,α
w
ÝÑ 0.

Using Corollary 5.4.4, we deduce a C
2,α-bound on φNk . Thanks to the Ascoli-Arzela

Theorem 3.10.6, we may assume that φNk converges in the weak C
2-sense, up to

further extraction:

(5.11) φNk
C2
w
ÝÑ pφ`, φ´q.

By Theorem 5.1.1, we conclude that

∆NkφNk
C0

ÝÑ Ξpφ`, φ´q.

The condition }∆NkφNk} C0,α Ñ 0 implies that }∆NkφNk} C0 Ñ 0, which shows that
the limit is p0, 0q. Therefore

(5.12) pφ`, φ´q P ker Ξ.

We are assuming now that we are in the degenerate case as before. The nondegenerate
case is treated similarly. By assumption φNk is orthogonal to KN , hence xxφNk ,1Nkyy “
xxφNk , ζNkyy “ 0. Since all these discrete functions converge in the C

0-sense, we deduce
that the limit also satisfy the orthogonality relation, that is

xxpφ`, φ´q, p1,1qyy “ xxpφ`, φ´q, pθ´1,´θ´1qyy “ 0.

In other words pφ`, φ´q is L2-orthogonal to ker Ξ. In view of (5.12) we deduce that

φ` “ φ´ “ 0,

and by (5.11), we deduce that
}φNk} C0 ÝÑ 0,

which contradicts the assumption }φNk} C0 “ 1. This completes the proof of the
lemma.

By Lemma 5.5.3, we have for every φ P K K
N

p1` c´1
4 q}∆Nφ} C0,α

w
ě }∆Nφ} C0,α

w
` }φ} C0 .

By Corollary 5.4.4, the RHS is an upper bound for c2}φ} C2,α
w

. The constant,

c3 “
c2

1` c´1
4

satisfies the theorem, which completes the proof.

Corollary 5.5.4. – 1. If pp, `q is nondegenerate, then for every N sufficiently
large, the kernel of ∆N is given by ker ∆N “ KN “ R ¨1N . Furthermore K K

N is
preserved by ∆N which induces an isomorphism ∆N : K

K

N Ñ K
K

N .
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2. More generally, including the case where pp, `q is degenerate, there is a direct
sum decomposition for every N sufficiently large

C2pQN pΣq “ KN ‘∆N pK
K
N q,

and a constant c6 independent of N , such that for all φ P C2pQN pΣqq decom-
posed according to the above splitting as φ “ φ̄` φ∆, we have

(5.13) c6}φ} C0,α
w
ě }φ̄} C0,α

w
` }φ∆} C0,α

w
.

Proof. – The first statement is a consequence of the second statement: In the nonde-
generate case, KN is one dimensional and KN Ă ker ∆N . Hence ∆pK K

N q has codimen-
sion at most 1 in C2pQN pΣqq. By the second statement the codimension is exactly 1.
Therefore ker ∆N “ KN . The rest of the statement follows using the fact that ∆N is
selfadjoint.

We merely have to prove the second statement of the corollary. We start by proving
that we have a splitting as claimed. Suppose that the intersection KN X∆pK K

N q is
not reduced to 0 for arbitrarily large N . Then we may find a sequence φNk contained
in the intersections and such that }φNk} C0 “ 1.

We notice that }1N } C0 “ 1 and that }ζN } C0 converges toward a positive constant,
since ζN converges toward the pair of functions pθ´1,´θ´1q. Since φNk P KNk , we
may write

φNk “ ak1Nk resp. φNk “ ak1Nk ` bkζNk in the degenerate case.

We deduce that the uniform C
0-bound on φNk provides a uniform bound on the

coefficients ak and bk. We may after extracting a suitable subsequence assume that
the coefficients converge as k goes to infinity. In particular φNk converges toward an
element of ker Ξ, say in the C

0-sense. By construction we have a uniform C
1
w-bound

on ΦNk , which provides a uniform C
0,α
w -bound.

On the other hand φNk P ∆NkpK
K
N q so that there exists a sequence ψNk P K K

Nk

with φNk “ ∆NkψNk . By Theorem 5.5.2, the uniform C
0,α
w -bound on φNk provides a

uniform C
2,α
w -bound on ψNk . By Ascoli-Arzella Theorem 3.10.6, we may assume that

ψNk converges in the C
2
w-sense toward a limit pψ`, ψ´q after extraction. It follows

that φNk “ ∆NkψNk converges in the C
0-sense toward Ξpψ`, ψ´q. In conclusion φNk

converges in the C
0-sense to an element of ImΞX ker Ξ “ t0u.

In conclusion, the limit of φNk must be the pair of functions p0, 0q, which contradicts
the fact that }φNk} C0 “ 1. Thus

KN X∆N pK
K
N q “ t0u,

for all sufficiently large N . By Theorem 5.5.2, we know that the restriction of ∆N

to K K
N is injective provided N is large enough. For dimensional reasons, we have a

splitting
KN ‘∆N pK

K
N q “ C2pQN pΣqq.
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We now proceed to the last part of the second statement. If the control (5.13)
does not hold, we find a sequence of discrete functions φNk P C2pQNkpΣqq with
decompositions

φNk “ φ̄Nk ` φ
∆
Nk
,

and the property that

}φNk} C0,α
w
Ñ 0 and }φ̄Nk} C0,α

w
` }φ∆

Nk
} C0,α
w
“ 1.

The C
0,α
w -bound on φ̄Nk provides a uniform C

0-bound. As in the first part of the
proof, we may use this bound to show that, up to extraction of a subsequence, φ̄Nk
converges in the C

1
w-sense toward a limit pφ̄`, φ̄´q P ker Ξ.

Similarly, the C
0,α
w bound on φ∆

Nk
can be used to show that, up to extraction of a

subsequence, the sequence converges in the C
0-sense toward a limit pφ`∆, φ

´
∆q in the

image of Ξ.

Eventually, we may assume that φNk converges in the C
0-sense toward a limit pφ̄``

φ`∆, φ̄
´ ` φ´∆q P ker Ξ‘ ImΞ. The fact that }φNk} C0,α

w
Ñ 0 implies that }φNk} C0 Ñ 0

and by uniqueness of the limit, we deduce that φ̄˘ “ 0 and φ∆ “ 0.

However, φ̄Nk converges in the stronger, says, C
1
w-sense, hence }φ̄Nk} C0,α

w
Ñ 0. We

deduce that

}φ̄Nk} “ }φNk ´ φ
∆
Nk
} C0,α
w
ď }φNk} C0,α

w
` }φ∆

Nk
} C0,α
w
Ñ 0,

which contradicts the assumption }φNk} C0,α
w
` }φ∆

Nk
} C0,α
w
“ 1.

5.6. Modified construction in the degenerate case

The situation for degenerate pairs pp, `q came as a surprise to us. Our first guess was
that the operators ∆N should converge in a reasonnable sense toward the operator
involved in the smooth setting (2.5). Consequently, we expected the kernel of ∆N to
be one dimensional, at least for N large enough. The first clue that this was not true
came from a local model: in this model, we do not choose Σ to be a torus, but a
copy of R2 embedded in R2n as an isotropic Euclidean plane identified to R2 with its
quadrangulation QN pR

2q. Then one can check that the funtion 1`N ´ 1´N belongs to
the kernel of δ‹N directly from the Formula (4.11).

The presence of a 2-dimensional almost kernel KN in the degenerate case will
create some trouble for solving our problem. We may overcome them by changing
slightly our construction.
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5.6.1. The setup. – We start with a degenerate pair ppS , `Sq, where

`S : S ÝÑ R4

is an isotropic immersion and S is a surface diffeomorphic to an oriented torus. We
carry out the constructions of quadrangulations QN pSq, graphs GN pSq exactly as
in the case of Σ (cf. § 3), except one crucial detail. The lattice group ΓpSq of the
covering map pS : R2 Ñ S admits oriented basis pγ1pSq, γ2pSqq. This is where comes
the difference with § 3.2: we choose a best approximation γN2 pSq P Λch

N of γ2pSq and
γN1 pSq P ΛNzΛ

ch
N for γ1pSq. Notice that in the case of Σ, both γNi pSq were chosen

in Λch
N .

This minor change still allows us to construct families of quadrangulations and
checkers graph. The only difference is that action of the lattice

ΓN pSq “ spantγN1 pSq, γ
N
2 pSqu

does not preserve the connected components of the decomposition

GN pR
2q “ G

`

N pR
2q Y G

´

N pR
2q,

and this splitting does not descend as a splitting of GN pSq. In particular discrete func-
tions φ P C2pQN pSqq do not split into a positive and negative component. However,
we may construct the constant function 1N P C

2pQN pSqq, which is the constant 1 on
every face of the quadrangulation.

5.6.2. The double cover. – We define

Γ “ spantγ1, γ2u,

where
γ1 “ 2γ1pSq and γ2 “ γ2pSq.

The quotient Σ “ R2{Γ comes with a covering map of index 2

(5.14) ΦS : Σ Ñ S,

and an action ofG » Γ{ΓpSq » Z2 on Σ by deck tranformations. We define accordingly

ΓN “ spantγN1 , γ
N
2 u,

where
γN1 “ 2γN1 pSq and γ

N
2 “ γN2 pSq.

Notice that 2ΛN Ă Λch
N , hence by definition γNi P Λch

N . We also have double covers

ΦSN : Σ Ñ S

with deck transformations GN » ΓN{ΓN pSq » Z2 which come from the canonical
projections R2{ΓN Ñ R2{ΓN pSq. In particular there are canonical embeddings of
discrete functions spaces induced by pullback

pΦSN q
˚ : C2pQN pSqq ÝÑ C2pQN pΣqq.

The action of GN induces an action on C2pQN pΣqq and the image of pΦSN q
˚ consists

of the discrete functions which are GN -invariant.

MÉMOIRES DE LA SMF 161



5.6. MODIFIED CONSTRUCTION IN THE DEGENERATE CASE 69

5.6.3. Meshes and operators for the modified construction. – Like for Σ, we may define
the samples τSN P MN pSq “ C0pQN pSqq b R2n of the map `S : S Ñ R2n, the inner
product xx¨, ¨yy and the operators δN , δ‹N , etc. Using the canonical projections

pΦSN q
˚ : C0pQN pSqq b R2n ÝÑ C0pQN pΣqq b R2n,

we see that the pullbacks satisfy τN “ pΦSN q
˚τN pSq. In other words, they are also the

samples of the lifted isotropic immersion ` “ `S ˝ΦS : Σ Ñ R2n. Then τN also induces
operators denoted δN , δ‹N and ∆N which commute with the pullback operation, by
naturality of the construction.

5.6.4. Spectral gap for the degenerate case. – All the norms defined on C2pQN pΣqq

induce norms on C2pQN pSqq via the pullbacks pΦSN q
˚, denoted in the same way. For

instance, for φ P C2pQN pSqq, we have

}φ} C2,α “ }φ ˝ ΦSN } C2,α .

Then we prove the following result:

Theorem 5.6.5. – Let `S : S Ñ R2n be an isotropic immersion of an oriented
surface diffeomorphic to a torus with a conformal cover p : R2 Ñ S. There exists a
constant c5 ą 0 such that for every N sufficiently large and every φ P C2pQN pSqq

with xxφ,1N yy “ 0, we have

}∆Nφ} C0,α ě c5}φ} C2,α .

Proof. – We choose N sufficiently large, so that the assumptions of Theorem 5.5.2 are
satisfied. Let φ P C2pQN pSqq be a discrete function such that xxφ,1N yy. There may
be some ambiguity in our notations, so we should emphasize that pΦSN q

˚1N is equal
to 1N P C

2pQN pΣqq.
We consider the pullback φ̃N “ φ˝ΦSN of φ regarded as an element of C2pQN pΣqq.

By definition of inner products and pullbacks by 2-fold covers, we have

xxφ,1N yy “
1

2
xxφ̃N ,1N yy,

hence, by assumption, xxφ̃N ,1N yy “ 0.
Notice that the action of GN “ xΥN y » Z2 on C2pQN pΣqq respects the inner

product xx¨, ¨yy. Since γN1 pSq R Λch
N , we also have

ΥN ¨ 1
`
N “ 1´N and conversely ΥN ¨ 1

´
N “ 1`N .

By construction the discrete function θN is GN invariant. Thus

ΥN ¨ ζN “ ΥN ¨ pθ
´1
N p1

`
N ´ 1´N qq “ θ´1

N p´1`N ` 1´N q “ ´ζN .

The above property implies that any GN -invariant discrete function is orthogonal
to ζN :

xxφ̃N , ζN yy “ xxΥN ¨ φ̃N ,ΥN ¨ ζN yy “ xxφ̃N ,´ζN yy,

therefore
xxφ̃N , ζN yy “ 0.
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In conclusion φ̃N is orthogonal to KN and we may apply Theorem 5.5.2 to φ̃N , which
proves the theorem with c5 “ c3.

Remark 5.6.6. – Notice that Theorem 5.6.5 applies whether the pair pp, `Sq is de-
generate or nondegenerate. The applications are different from Theorem 5.5.2, in the
sense that we are dealing with different type of quadrangulations and meshes. For in-
stance the spaces of quadrangular meshes MN admits a shear action whereas MN pSq

does not. Indeed the checkers graph associated to QN pSq is connected whereas the
checkers graph of QN pΣq is not.
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CHAPTER 6

FIXED POINT THEOREM

6.1. Fixed point equation

All the tools have been introduced in order to be able to apply the contraction
mapping principle. We consider an isotropic immersion ` : Σ Ñ R2n, its sequence of
samples τN P MN as before and the map

FN : C2pQN pΣqq ÝÑ C2pQN pΣqq,

defined by
FN pφq “ µrN pτN ´ Jδ

‹
Nφq .

Solving the equation FN pφq “ 0 provides an isotropic perturbation of the sample
mesh τN .

Remark 6.1.1. – The perturbative approach introduced here is an analog of Theo-
rem 2.4.1 in the smooth setting. Indeed, let us denote by fN : Σ Ñ R2n a smooth per-
turbation of ` : Σ Ñ R2n and h a smooth function on Σ. The perturbation τN´Jδ‹Nφ is
a discrete analog of the smooth perturbation Kph, fN q “ expfN p´ihq “ fN ´ Jδ

‹
fN
h.

Thus the equation FN pφq “ 0 is the discrete analog of the equation F ph, fN q “ 0 (cf.
(2.7)) in the smooth setting.

The differential of the map is given by DFN |0 ¨ φ “ ´Dµ
r
N |τN

˝ Jδ‹N pφq “ δNδ
‹
Nφ

hence
DFN |0

¨ φ “ ∆Nφ.

As pointed out in Lemma 4.1.7, the map µrN is quadratic. According to Definition 4.1.8
and (4.4) one can write

∆Nφ “ 2Ψr
N pτN , φq

and
FN pφq “ ηN `∆Nφ` µ

r
N pJδ

‹
Nφq,

where ηN “ FN p0q is the error term. We introduce the space

HN “ ∆N

`

K K
N

˘

,
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where KN is the almost kernel of ∆N defined at (5.10). By Corollary 5.5.4, we have
a direct sum decomposition

C2pQN pΣqq “ KN ‘HN ,

for every N sufficiently large.
We define the Green operator GN of ∆N by

GN pψq “

#

0 if ψ P KN ,
φ P K K

N with the property that ∆Nφ “ ψ if ψ P HN .

The Green operator is bounded independently of N , which is a crucial property for
the application of the fixed point principle:

Proposition 6.1.2. – There exists a constant c8 ą 0 such that for all positive inte-
gers N and φ P C2pQN pΣqq, we have

c8}φ} C0,α
w
ě }GN pφq} C2,α

w
.

Proof. – For every N ě N0 sufficiently large, we may use the decomposition φ “

φ̄` φ∆ and the fact that

(6.1) c6}φ} C0,α
w
ě }φ̄} C0,α

w
` }φ∆} C0,α

w
,

thanks to Corollary 5.5.4. By definition φ∆ “ ∆Nψ for some φ P K K
N , andGN pφq “ ψ.

By Theorem 5.5.2 and (6.1), we deduce that

c6}φ} C0,α
w
ě }φ∆} C0,α

w
ě c3}ψ} C2,α

w
.

This proves the proposition.

Notice that by definition, GN takes values in K K
N and has kernel KN . If φ P K K

N ,
we have GN ˝∆Nφ “ φ. Therefore

GN ˝ FN pφq “ φ`GN pηN ` µ
r
N pJδ

‹
Nφqq .

For φ P K K
N , the equation

FN pφq P KN

is equivalent to
φ “ TN pφq,

where
TN : K K

N ÝÑ K K
N

is the map defined by

TN pφq “ ´GN pηN ` µ
r
N pJδ

‹
Nφqq.

We merely need to apply the fixed point principle to the map TN .
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6.2. Contracting map

Notice that

TN pφq ´ TN pφ
1q “ GN ˝ µ

r
N pJδ

‹
Nφq ´GN ˝ µ

r
N pJδ

‹
Nφ

1q

“
1

2
GN ˝Ψr

N pJδ
‹
Nφ

1 ` Jδ‹Nφ, Jδ
‹
Nφ

1 ´ Jδ‹Nφq,

hence

(6.2) TN pφq ´ TN pφ
1q “

1

2
GN ˝Ψr

N

`

Jδ‹N pφ
1 ` φq, Jδ‹N pφ

1 ´ φq
˘

.

Proposition 6.2.1. – There exists a constant c7 ą 0 such that for every φ,
φ1 P C2pQN pΣqq, we have

}Ψr
N pJδ

‹
Nφ, Jδ

‹
Nφ

1q} C0,α
w
ď c7}φ} C2,α

w
}φ1} C2,α

w
.

Proof. – Recall that, for τ P MN , µrN pτq P C
2pQN pΣqq is given by the formula

xµrN pτq, fy “
1

2
ωpUτ pfq,Vτ pfqq.

We deduce that

xΨr
N pτ, τ

1q, fy “
1

4

”

ωpUτ pfq,Vτ 1pfqq ` ωpUτ 1pfq,Vτ pfqq
ı

,

and it follows that for some universal constant c17 ą 0, we have

(6.3) }Ψr
N pτ, τ

1q} C0,α
w
ď c17

”

}Uτ } C0,α
w
}Vτ 1} C0,α

w
` }Vτ } C0,α

w
}Uτ 1} C0,α

w

ı

.

Lemma 6.2.2. – There exists a universal constant c27 ą 0 such that for all discrete
function φ and τ “ Jδ‹Nφ, we have

}Uτ } C0,α
w

and }Vτ } C0,α
w
ď c27}φ} C2,α

w
.

Proof. – We carry out the proof in the case of Uτ , as the proof for Vτ is almost
identical. Using the index notations, we have

xUτ , fkly “
1

N

´

xδ‹Nφ,vk`1,l`1y ´ xδ
‹
Nφ,vk,ly

¯

.

Using the expression of δ‹N , we obtain

xUτ , fkly “
1

N2

´

pφk`1,lD
u
k`1,l ´ φk,l´1D

u
k,l´1q ´ pφk,l`1D

u
k,l`1 ´ φk´1,lD

u
k´1,lq

` pφk`1,l`1D
v
k`1,l`1 ´ 2φklD

v
kl ` φk´1,l´1D

v
k´1,l´1q

¯

.

The first line in the above computation is related to the second order finite difference
B
2

BuBv of φ whereas the second line is related to the finite difference B
2

Bu2 of φ. The
fact the renormalized diagonals converge smoothly allows to control the C

0,α
w -norms

of these terms using the C
2,α
w -norm of φ.

Inequality (6.3) together with Lemma 6.2.2 completes the proof of the proposition.
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Corollary 6.2.3. – For all ε ą 0 there exists N0 ě 1 and δ ą 0 such that for all
N ě N0, φ, φ1 P K K

N , such that }φ} C2,α ď δ and }φ1} C2,α ď δ, we have

}TN pφq ´ TN pφ
1q} C2,α

w
ď ε}φ´ φ1} C2,α

w
.

Proof. – By (6.2), Proposition 6.1.2 and Proposition 6.2.1

}TN pφq ´ TN pφ
1q} C2,α

w
“

1

2
}GNΨr

N

`

Jδ‹N pφ
1 ` φq, Jδ‹N pφ

1 ´ φq
˘

} C2,α
w

ď
c7c8

2
}φ` φ1} C2,α

w
}φ´ φ1} C2,α

w
.

In conclusion we may choose δ “ ε
c7c8

, which proves the corollary.

6.3. Fixed point principle

The idea, as usual is to check whether the sequence T kN p0q converges. If so, the
limit must be a fixed point of TN . We have the following classical proposition

Proposition 6.3.1. – Let pE, }¨}q be a finite dimensional (or Banach) normed vector
space and T : EÑ E an application such that

1. There exists δ ą 0 such that the restriction of T to the closed ball B̄δ of E,
centered at 0 with radius δ, is 1

2 -contractant, i.e.,

@x, y P E, }x} ď δ and }y} ď δ ñ }T pxq ´ T pyq} ď
1

2
}x´ y}.

2. }T p0q} ď δ
2 .

Then the sequence ptkq defined by t0 “ 0 and tk`1 “ T ptkq converges to an element
t8 P E with }t8} ď δ. Furthermore, t8 is a fixed point for T . Such fixed point are
unique in the ball B̄δ. In addition, we have }t8} ď 2}T p0q}.

Proof. – The uniqueness of fixed points is a trivial consequence of the contracting
property of T in the ball B̄δ “ tx P E}x} ď δu.

For the convergence, we show first by induction that tk remains in B̄δ for all k :
this is the case for t0 “ 1 and t1 by assumption. Assume now that if t0, . . . , tk´1 P B̄δ.
Then

}tk ´ tk´1} “ }T ptk´1q ´ T ptk´2q} ď
1

2
}tk´1 ´ tk´2}

and by induction

}tk ´ tk´1} “
1

2p
}tk´p ´ tk´p´1}.

In particular

}tk ´ tk´1} “
1

2k´1
}t1 ´ t0} “

1

2k´1
}T p0q}.

In turn we have

tk “ tk ´ t0 “ ptk ´ tk´1q ` ptk´1 ´ tk´2q ` ¨ ¨ ¨ ` pt1 ´ t0q
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and by the triangle inequality,

}tk} ď }T p0q}
k´1
ÿ

j“0

1

2k
“ }T p0q}

1´ 1
2j

1´ 1
2

ď 2}T p0q} ď δ,

so that tk P B̄δ. This completes the induction and shows that tk remains in B̄δ.

Eventually, we just have to prove that tk converges. But this is clear since

tk`p ´ tk “ ptk`p ´ tk`p´1q ` ptk`p´2 ´ tk`p´2q ` ¨ ¨ ¨ ` ptk`1 ´ tkq

and by the triangle inequality

}tk`p ´ tk} ď }tk`1 ´ tk}
8
ÿ

j“0

1

2j
ď 2}tk`1 ´ tk} ď

2

2k´1
}T p0q},

which shows that tk is Cauchy hence convergent in the closed ball B̄δ. The fact that
the limit of tk is a fixed point of T is clear from the definition of the sequence, by
uniqueness of the limit.

We obtain the following result

Theorem 6.3.2. – There exists a positive integer N0 and a real number δ ą 0 such
that for all N ě N0 there exists a unique φN P K K

N that satisfies

}φN } C2,α
w
ď δ and FN pφN q P KN .

Furthermore the sequence satisfies }φN } C2,α
w
“ OpN´1q.

Proposition 6.3.3. – Let ` : Σ Ñ R2n be an isotropic immersion and p : R2 Ñ Σ

a conformal cover introduced before, such that the pair pp, `q is nondegenerate. Then
the meshes

ρN “ τN ´ Jδ
‹
NφN P MN ,

where φN is defined by Theorem 6.3.2 for every N ě N0 are isotropic.

Proof of Proposition 6.3.3. – By definition µrN pρN q P KN . By nondegeneracy,
KN “ R1N , so that µrN pρN q “ λ1N for some constant λ. We deduce that

xxµrN pρN q,1N yy “ λxx1N ,1N yy.

This quantity does not vanish unless λ “ 0. But xxµrN pρN q,1N yy is the total symplectic
area of the mesh ρN , which has to vanish by Stokes theorem, since the symplectic
form of R4 is exact. In conclusion λ “ 0 so that µrN pρN q “ 0.
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6.4. Proof of Theorem C

We merely need to gather the previous technical results so that the proof and our
main result follows as a corollary.

Proof of Theorem C. – Let ` : Σ Ñ R2n we a smooth isotropic immersion. By Propo-
sition 5.3.3, we may always assume that the conformal cover p : R2 Ñ Σ is chosen in
such a way that the pair pp, `q is non degenerate. By Proposition 6.3.3, the quadran-
gular meshes ρN provided by Theorem 6.3.2, for N sufficiently large, are isotropic.
The estimate }φN } C2,α

w
“ OpN´1q implies that

sup
vPC0p Q

N
pΣqq

}ρN pvq ´ τN pvq} C1,α
w
“ OpN´1q.

It follows that
sup

vPC0p Q
N
pΣqq

}ρN pvq ´ `pvq} “ OpN´1q,

which proves the theorem.

6.5. The degenerate case

If pp, `q is a degenerate pair, Theorem 6.3.2 still provides a family of quadrangular
meshes ρN with the property that ρN P KN . However ρN may not be an isotropic
mesh since KN may not reduce to constants. This difficulty can be taken care of
by working Z2-equivariantly. Given a degenerate pair ppS , `Sq, we construct modified
quadrangulations QN pSq as in § 5.6. Using the notation introduced at § 5.6, we con-
sider the lifted pair pp, `q given by p “ pS ˝ΦS and ` “ `S ˝ΦS , where ΦS : Σ Ñ S is
a double cover introduced at (5.14). The pair pp, `q is degenerate as well. Using The-
orem 6.3.2, we find a corresponding family of quadrangular meshes ρN . All these
construction are GN -equivariant. In particular ρN P KN is also GN -invariant. We
have

ρN “ aN1N ` bNζN ,

where ρN and 1N are GN -invariant. However ζN is GN -anti-invariant (cf. proof of
Theorem 5.6.5), which implies that bN “ 0. We conclude that aN “ 0 as in the proof
of Proposition 6.3.3.

In conclusion ρN descends to the GN -quotient as an isotropic quadrangular mesh
ρSN P MN pSq and we have proved the following result

Proposition 6.5.1. – Let ppS , `Sq be any pair, where `S : S Ñ R2n is an isotropic
immersion and pS : R2 Ñ S an associated conformal cover. Let τSN P MN pSq be the
family of samples of `S. Then, there exists a family of isotropic quadrangular meshes
ρSN P MN pSq such that

max
v
}ρSN pvq ´ τ

S
N pvq} “ OpN´1q.
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Remark 6.5.2. – The approach presented in Proposition 6.5.1 appears as a good
solution to treat our perturbation problem in a uniform manner, whether or not the
pair pp, `q is degenerate. The main flaw of such technique, relying on Z2-equivariant
constructions, is that the moduli spaces MN pSq do not admit a shear action as defined
in § 4.2 (this is due to the connectedness of the checkers graph of QN pSq). Unfortu-
nately, the shear action is used in a crucial way at § 7 to obtain generic quadrangular
meshes that will allow to construct piecewise linear immersions as in Theorem A.
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CHAPTER 7

FROM QUADRANGULATIONS TO TRIANGULATIONS

The previous section was devoted to the construction of isotropic meshes associ-
ated to quadrangulations, sufficiently close to a given smooth isotropic immersion
` : Σ Ñ R2n. In this section, we explain how to define a nearby isotropic piecewise
linear map as an approximation of `. The idea is to pass from an isotropic quadran-
gulation to an isotropic triangulation.

7.1. From quadrilaterals to pyramids

The goal of this section is to explain how to pass from an isotropic quadrilateral to
an isotropic pyramid, by adding one apex to the quadrilateral. We start by studying
a single isotropic quadrilateral pA0, A1, A2, A3q, where Ai are points in R2n. We shall
use the notations

(7.1) D0 “
ÝÝÝÑ
A0A2 and D1 “

ÝÝÝÑ
A1A2,

for the two diagonals of the quadrilateral. Recall that the quadrilateral is isotropic if,
and only if

ωpD0, D1q “ 0.

Remark 7.1.1. – If the diagonals of an isotropic quadrilateral are linearly indepen-
dent vectors of R2n, this implies that

L “ RD0 ‘ RD1

is an isotropic plane of R2n.

Definition 7.1.2. – A pyramid is given by five points pP,A0, A1, A2, A3q of R2n.
The four points of quadrilateral pA0, . . . , A3q, called the base of the pyramid and the
apex P P R2n. If the four triangles given by pPAiAi`1q, where i is understood as an
index modulo 4, are contained in isotropic planes of R2n, we say that the pyramid is
an isotropic pyramid (cf. Figure 1).
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FRANÇOIS JAUBERTEAU, YANN ROLLIN, AND SAMUEL TAPIE

A0 A1

A2A3

P

Figure 6. Pyramid with apex P and base (A0, A1, A2, A3)Figure 1. Pyramid with apex P and base pA0, A1, A2, A3q

The following lemma shows a first relation between isotropic quadrilaterals and
isotropic pyramids:

Lemma 7.1.3. – The base of an isotropic pyramid is an isotropic quadrilateral.

Proof. – The result is obtained as a trivial consequence of the Stokes theorem, or by
elementary algebraic manipulations.

Conversely, we have the following result:

Lemma 7.1.4. – Let Q “ pA0, . . . , A3q be an isotropic quadrilateral of R2n with lin-
early independent diagonals. We denote by W 1

Q be the symplectic orthogonal of the
vector space spanned by the sides of the quadrilateral Q. Let WQ be the set of points
P P R2n which are the apexes of isotropic pyramids with base given by the quadrilat-
eral Q. Then WQ is an affine subspace of R2n with underlying vector space W 1

Q. Its
dimension is 2n´ 2 if Q is flat and 2n´ 3 otherwise.

Proof. – We are looking for a solution of the linear system of four equations

ωp
ÝÝÑ
PAi,

ÝÝÝÝÑ
AiAi`1q “ 0,

where 0 ď i ď 3. Put

(7.2) X “
ÝÝÑ
GP,

where G is by convention the barycenter of the quadrilateral. The system can be
expressed as

ωpX,
ÝÝÝÝÑ
AiAi`1q “ ωp

ÝÝÑ
GAi,

ÝÝÝÝÑ
AiAi`1q.

The LHS correspond to a linear map with kernel W 1
Q.

If the quadrilateral is flat, it is contained in an isotropic affine plane parallel to
L “ RD0 ‘ RD1. Any point P in the plane of the quadrilateral is the apex of an
isotropic pyramid. Furthermore, the space of solutions is an affine space of codimen-
sion 2.

If the quadrilateral is not flat, then dimW 1
Q “ 2n ´ 3 and the LHS of the linear

system has rank 3. The condition that the quadrilateral is isotropic is precisely the
compatibility condition, that insures that the RHS of the equations is in the image of
the Linear map. We conclude that the system of equations admits a 2n´3-dimensional
affine space of solutions.
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Lemma 7.1.4 is a excellent tool for passing from isotropic meshes associated to
quadrangulations to isotropic meshes associated to triangulations and, in turns, to
piecewise linear isotropic maps. One issue, that has to be dealt with, is how C0-es-
timates are preserved and also, whether the piecewise linear map induced by this
construction are still immersions. Indeed, Lemma 7.1.4 does not provide any informa-
tion about the distance from WQ to the quadrilateral.

7.1.5. Optimal apex. – There exists large families of isotropic pyramids as shown by
Lemma 7.1.4. In this section we introduce some particular solutions of the correspond-
ing linear system, called optimal pyramids and optimal apex.

We use the notations introduced in the proof of Lemma 7.1.4. Again, we con-
sider an isotropic quadrilateral Q “ pA0, . . . , A3q. We are assuming that Q has lin-
early independent diagonals D0, D1. Hence the diagonals span an isotropic plane
L “ RD0 ‘ RD1. We may consider its complexification

(7.3) LC “ L‘ JL,

and the corresponding orthogonal complex (and symplectic) splitting

R2n “ LC ‘M.

Notice that the real dimension of LC is 4.

We are looking for a point P P R2n solution of the linear system

(7.4) ωp
ÝÝÑ
GP,

ÝÝÝÝÑ
AiAi`1q “ γi 0 ď i ď 3,

where

(7.5) γi “ ωp
ÝÝÑ
GAi,

ÝÝÝÝÑ
GAi`1q.

According to Lemma 7.1.4, the affine space of solutions W 1
Q has dimension 2n ´ 2

or 2n ´ 3 in R2n depending on the flatness of the quadrilateral. We may reduce to
particular solutions by adding the constraint

(7.6) ÝÝÑ
PG P LC.

We use the notation X “
ÝÝÑ
GP . A quadrilateral pA0, . . . , A3q is determined by speci-

fying its barycenter G, the side vector V “ ÝÝÝÑA0A1 and the diagonals D0 and D1. We
first compute the terms γi of the RHS in terms of these quantities. By definition

4
ÝÝÑ
A0G “

ÝÝÝÑ
A0A1 `

ÝÝÝÑ
A0A2 `

ÝÝÝÑ
A0A3 “ D0 `D1 ` 2V,

4
ÝÝÑ
A1G “

ÝÝÝÑ
A1A0 `

ÝÝÝÑ
A1A2 `

ÝÝÝÑ
A1A3 “ D0 `D1 ´ 2V,

4
ÝÝÑ
A2G “

ÝÝÝÑ
A2A0 `

ÝÝÝÑ
A2A1 `

ÝÝÝÑ
A2A3 “ ´3D0 `D1 ` 2V,

4
ÝÝÑ
A3G “

ÝÝÝÑ
A3A0 `

ÝÝÝÑ
A3A1 `

ÝÝÝÑ
A3A2 “ D0 ´ 3D1 ´ 2V.
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Hence
16γ0 “ ωpD0 `D1 ` 2V,D0 `D1 ´ 2V q

“ 4ωpV,D0 `D1q,

16γ1 “ ωpD0 `D1 ´ 2V,´3D0 `D1 ` 2V q

“ 4ωpV,D0 ´D1q,

16γ2 “ ωp´3D0 `D1 ` 2V,D0 ´ 3D1 ´ 2V q

“ ´4ωpV,D0 `D1q,

16γ3 “ ωpD0 ´ 3D1 ´ 2V,D0 `D1 ` 2V q

“ ´4ωpV,D0 ´D1q.

(7.7)

Let D10 and D11 be the basis of L defined by the orthogonality conditions

@i, j P t0, 1u, gpDi, D
1
jq “ δij

and put

(7.8) Bi “ JD1i, i P t0, 1u,

which are a basis for JL. Notice that by definition

ωpDi, Bjq “ gpDi, Djq “ δij .

We may express the vectors X and V using the basis pD0, D1, B0, B1q of LC as

X “ a0D0 ` a1D1 ` b0B0 ` b1B1,(7.9)

V “ α0D0 ` α1D1 ` β0B0 ` β1B1 ` VM ,(7.10)

where αi, βi, ai, bi P R and VM PM . By (7.7) (7.9) and (7.10), we have

4γ0 “ β0 ` β1,

4γ1 “ β0 ´ β1,

4γ2 “ ´β0 ´ β1,

4γ3 “ ´β0 ` β1.

The linear system (7.4) with constraint (7.6) is equivalent to (after adding up lines)

(7.11)

$

’

&

’

%

ωpX,V q “ γ0,

ωpX,D0q “ γ0 ` γ1,

ωpX,D1q “ γ1 ` γ2,

where we have removed the last redundant equation. Eventually, a solution of (7.11)
is given by

(7.12)

$

’

’

’

’

’

&

’

’

’

’

’

%

a0β0 ` a1β1 ´ b0α0 ´ b1α1 “
1

4
pβ0 ` β1q,

b0 “ ´
1

2
β0,

b1 “
1

2
β1,
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i.e., the solutions X are given by

(7.13) X “ a0D0 ` a1D1 ´
β0

2
B0 `

β1

2
B1,

where a0 and a1 satisfy the affine equation

(7.14) β0a0 ` β1a1 “
1

4
pβ0 ` β1q `

β1α1 ´ β0α0

2
.

In conclusion, any solution pa0, a1q of the affine equation

(7.15) β0a0 ` β1a1 “ ξpV q,

where

ξpV q :“
β0p1´ 2α0q ` β1p1` 2α1q

4
provides a solution to our linear system. If the orthogonal projection of V onto JL
does not vanish, we have pβ0, β1q ‰ p0, 0q and the above equation defines a line,
which, in turn defines a one dimensional space of solutions X P LC. We summarize
our computations in the following lemma:

Lemma 7.1.6. – Assume that Q “ pA0, . . . , A3q is an isotropic quadrilateral with
linearly independent diagonals in R2n. Assume that the orthogonal projection of Q
in LC is not a flat quadrilateral. Then set of points P P G`LC which are the apex of
an isotropic pyramid over Q, form a 1-dimensional affine space.

Under the assumptions of the lemma, we may consider a particular solution given
by

(7.16) X “ ξpV q
β0

β2
0 ` β

2
1

D0 ` ξpV q
β1

β2
0 ` β

2
1

D1 ´
β0

2
B0 `

β1

2
B1.

The above solution corresponds to the apex P , which is the closest point to the
barycenter G, with the property that the corresponding pyramid is isotropic and
ÝÝÑ
GP P LC. This leads us to the following definition:

Definition 7.1.7. – Let pA0, . . . , A3q be an isotropic quadrilateral of R2n with lin-
early independent diagonals and G be its barycenter. The closest point P to G in G`LC

such that pP,A0, . . . , A3q isotropic is called the optimal apex, and the corresponding
pyramid an optimal isotropic pyramid.

Remark 7.1.8. – If the orthogonal projection of the quadrilateral in LC is flat, then
the optimal apex is just the barycenter G of the quadrilateral. If it is not flat the
optimal apex is given by X “

ÝÝÑ
GP , where X is given by Formula (7.16).

Optimal pyramids enjoy nice properties. We first point out that they are almost
always non degenerate in the sense of the following lemma:
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Lemma 7.1.9. – Let pA0, . . . , A3q be an isotropic quadrilateral such that its orthogo-
nal projection on LC is not flat. Using the above notations, let V 1 be the orthogonal
projection of V on LC and X be the optimal solution. Then D0, D1, V

1, X is a basis
of LC, unless β0 “ 0 or β1 “ 0. If β0β1 ‰ 0 the rays of the optimal isotropic pyramid
ÝÝÑ
PAi, for 0 ď i ď 3 are linearly independent.

Proof. – Easy manipulations on vectors show that the vector space spanned
by D0, D1, V

1, X is also spanned by D0, D1 and the vectors

β0B0 ` β1B1 and ´ β0B0 ` β1B1.

The two above vectors belong to JL and they are linearly independent if, and only if

β0β1 ‰ 0,

which proves the lemma as the second statement is an immediate consequence of the
first.

7.2. C
0-estimates for optimal pyramids

Definition 7.2.1. – A quadrilateral of R2n with orthonormal diagonals pD0, D1q is
called an orthonormogonal quadrilateral. If the diagonals satisfy

@i, j P t0, 1u
ˇ

ˇ

ˇ
gpDi, Djq ´ δij

ˇ

ˇ

ˇ
ď ε,

for some ε ą 0, we say that they are ε-orthonormal. Under this assumption, we say
that the quadrilateral is ε-orthonormogonal.

By continuity, we have the following result:

Lemma 7.2.2. – For every pair D0, D1 P R2n of linearly independent vectors, we
define D10, D11 P spanpD0, D1q by the orthogonality relations

gpDi, D
1
jq “ δij ,@i, j P t0, 1u.

Then D10, D
1
1 is a basis of spanpD0, D1q. Furthermore, for every ε1 ą 0 there exists

ε0 ą 0 such that for every 0 ă ε ă ε0 and every ε-orthonormal family pD0, D1q, the
family pD10, D11q is ε1-orthonormal.

Remark 7.2.3. – We shall assume from now on that the quadrilateral is ε-orthonor-
mogonal, with ε ą 0 sufficiently small, so that D0, D1 are linearly independent,
}Di} ď 2 and }D1i} ď 2.

Proposition 7.2.4. – There exist C ą 0 and ε ą 0 such that for every ε-orthonor-
mogonal isotropic quadrilateral of diameter d, the diameter d1 of the corresponding
optimal isotropic pyramid satisfies

d1 ď Cpd` 1q.
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Loosely stated, the above proposition says that, for every isotropic quadrilateral
which is almost orthonormogonal, the diameter of the optimal isotropic pyramid is
commensurate with the diameter of the quadrilateral.

Proof. – If the projection of the quadrilateral in LC is flat, then the optimal apex
coincide with the barycenter of the quadrilateral and the proposition is obvious. Thus,
we will assume that the projection of the quadrilateral is not flat in the rest of the
proof.

As ε Ñ 0, the basis D0, D1, B0, B1 becomes almost orthonormal. In particular,
there exists ε ą 0 sufficiently small such that under the assumptions of the proposition,
we have

maxp|α0|, |α1|, |β0|, |β1|q ď 2}V }.

Then Formula (7.16) for the optimal solution X “ a0D0` a1D1` b0B0` b1B1 shows
that all the coefficients ai and bi are controlled by }V } ` 1 (up to multiplication by a
universal constant). Now,

}X} ď |a0|}D0} ` |a1|}D1} ` |b0|}B0} ` |b1|}B1}.

According to Remark 7.2.3, if ε is sufficiently small, we have

}Di} and }D1j} ď 2.

Hence }B1j} ď 2 and it follows from the triangle inequality that

}X} ď 2p|a0| ` |a1| ` |b0| ` |b1|q.

This shows that the distance between the optimal apex and the center of gravity of the
quadrilateral is controlled by }V }`1, up to multiplication by a universal constant. The
diameters of the quadrilateral controls }V }, hence the diameter of the quadrilateral
controls }X} and the lemma follows.

7.3. Many quadrilaterals and pyramids

Every faces of an isotropic quadrangular mesh τ P MN can be seen as a collection
of isotropic quadrilaterals of R2n. In this section we explain how to define particular
triangulations T N pΣq as a refinement of the quadrangulations QN pΣq. Then we ex-
plain how to deduce an isotropic quadrangular mesh τ 1 P M 1

N “ C0pT N pΣqqfrom τ .

7.3.1. Triangulations obtained by refinement. – We define triangulation T N pR2q by
replacing each face f of QN pR

2q with its barycenter zf P R2. The barycenter zf is
joined to the vertices of the face f by straight line segments. We also add four faces
given by the four triangles which appear as in the picture below. This operation is
better understood by drawing a local picture of the corresponding CW -complexes
of R2:
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•
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•
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TN(R2)

Figure 2. Triangular refinement of a quadrangulation

As explained in § 3.3 in the case of quadrangulations, the triangulations T N pR2q

descend to Σ via the covering map pN : R2 Ñ Σ. The resulting triangulation of Σ is
denoted T N pΣq. We define a moduli space of mesh associated to such triangulation

M 1
N “ C0pT N pΣqq b R2n.

7.3.2. Optimal triangulation of isotropic quadrangular mesh. – Let τ P MN be an
isotropic quadrangular mesh. In addition, we are assuming that the quadrilateral
of R2n associated to each face f of QN pΣq via τ have linearly independent diagonals.
For each face f of QN pΣq, the mesh τ associates an isotropic quadrilateral with linearly
independent diagonals. We associate an optimal apex Pf P R2n to such a quadrilateral.
Then, we define a triangular mesh τ 1 P M 1

N as follows:

— If v is a vertex of QN pΣq, we define τ 1pvq “ τpvq.
— If z is a vertex of T N pΣq which is not a vertex of T N pΣq, it is the barycenter

of a face f of QN pΣq and we put τ 1pzq “ Pf , where Pf is the optimal vertex
defined via τ .

This leads us to the following definition

Definition 7.3.3. – Let τ P MN be an isotropic quadrangular mesh with linearly in-
dependent diagonals. The triangular mesh τ 1 P M 1

N defined above is called the optimal
triangulation of the isotropic mesh τ .

By construction, we have the following obvious property:

Proposition 7.3.4. – Let τ P MN be an isotropic quadrangular mesh with linearly
independent diagonals. The optimal triangulation τ 1 P M 1

N of the quadrangular mesh τ
defines a piecewise linear map `1 : Σ Ñ R2n, which is isotropic.
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7.4. Approximation by isotropic triangular mesh

In Theorem 6.3.2, we construct a sequence of isotropic quadrangular meshes
ρN P MN out of a smooth isotropic immersion ` : Σ Ñ R2n. By construction,

ρN “ τN ´ Jδ
‹
NφN ,

where }φN }C2,α “ OpN´1q. By Proposition 4.3.1, the renormalized diagonals of τN
converge towards the partial derivatives of `. Thus, the same holds for ρN , i.e.,

(7.17) U ˘
ρN ÝÑ

B`

Bu
and V ˘

ρN ÝÑ
B`

Bv
.

In particular the diagonals are linearly independent for every N sufficiently large and
we may define an optimal isotropic triangulation ρ1N P M 1

N associated to ρN as in
the previous section. It turns out that the triangular meshes ρ1N are also good C

0

approximations of the map ` in the sense of the following proposition:

Proposition 7.4.1. – There exists a constant C ą 0, and N0 ą 0 such that for every
integer N ě N0 and every vertex v P T N pΣq

}`pvq ´ ρ1N pvq} ď
C

N
.

Proof. – Since }φN } C2,α
w
“ OpN´1q, we deduce that }φN } C1

w
“ OpN´1q. It follows that

there exists a constant C1 ą 0, such that }ρN pvq ´ τN pvq} “ }δ
‹
NφN pvq} ď C1N

´1

for every N sufficiently large and every vertex v of QN pΣq. In such case, we have
τN pvq “ `pvq and ρN pvq “ ρ1N pvq so that

(7.18) }`pvq ´ ρ1N pvq} ď
C1

N
.

If v is a vertex of T N pΣq but not a vertex of QN pΣq, it is associated to a face f of the
quadrangulation and ρ1N pvq is the optimal apex associated to f and ρN , by definition
of ρ1N (cf. § 7.3.2). The renormalized diagonals U ˘

ρN and V ˘
ρN converge toward B`

Bu

and B`
Bv by (7.17). The partial derivatives B`

Bu and B`
Bv are orthogonal, with norm

?
θ.

Therefore

(7.19)
1

?
θN

U ˘
ρN ,

1
?
θN

V ˘
ρN

converge toward a pair of smooth orthonormal vector fields on Σ. In particular, there
exists N0 such that for all N ě N0, the vectors fields (7.19) are ε-orthonormal, where
ε ą 0 is chosen according to Proposition 7.2.4. Since θ is a positive smooth function
on a compact surface, it is bounded above and below by positive constants. Since
θ˘N Ñ θ, it follows that θN is also uniformly bounded above and below by positive
constants for N sufficiently large. Using Proposition 7.2.4 with the rescaled pyramid,
we deduce that the apex v is close to all the vertices z of f in the sense that, for some
constant C2 ą 0 independent of N0, v and z, we have

(7.20) }ρ1N pvq ´ ρN pzq} ď
C2

N
.
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Since ` is smooth, there exists a constant C3 ą 0 such that for every pair of points
w1, w2 P Σ contained in the same face of QN pΣq, we have

(7.21) }`pw1q ´ `pw2q} ď
C3

N
.

In particular, for v and z as above,

}`pvq ´ ρ1N pvq} ď }`pvq ´ `pzq} ` }`pzq ´ ρN pzq} ` }ρN pzq ´ ρ
1
N pvq}.

Since z and v belong to the same face, }`pvq ´ `pzq} ď C3N
´1 by (7.21). The second

term satisfies }`pzq´ρN pzq} ď C1N
´1 by (7.18) and the third term }ρN pzq´ρ1N pvq} ď

C2N
´1 by (7.20). The proposition follows, with C “ C1 ` C2 ` C3.

We deduce the following result, which proves the first part of Theorem A

Theorem 7.4.2. – The piecewise linear maps `N : Σ Ñ R2n associated to the trian-
gular meshes ρ1N are isotropic. Furthermore

}`´ `N } C0 “ OpN´1q,

where } ¨ } C0 denotes the usual C
0-norm for maps Σ Ñ R2n.

Proof. – The first part of the theorem is obvious. By definition of an isotropic trian-
gular mesh, the piecewise linear map `N associated to ρ1N is isotropic.

The following lemma is a trivial consequence of the convergence statement of Propo-
sition 7.4.1. This roughly says that the triangles of the mesh ρ1N have diameter of
order OpN´1q.

Lemma 7.4.3. – There exists a constant C4 ą 0 such that for every N sufficiently
large and every pair of vertices v1,v2 of T N pΣq which belong to the same face

}ρ1N pv1q ´ ρ
1
N pv2q} ď

C4

N
.

Lemma 7.4.3 applied to the piecewise linear maps `N shows that there exists a
constant C5 ą 0 such that for every N sufficiently large and w1, w2 P Σ which belong
to the same triangular face of T N pΣq, we have

(7.22) }`N pw1q ´ `N pw2q} ď
C5

N
.

For N sufficiently large, we may assume the control (7.21). For w P Σ and N suffi-
ciently large, we choose a vertex v of the face of T N pΣq which contains w. Then

}`N pwq ´ `pwq} ď }`N pwq ´ `N pvq} ` }`N pvq ´ `pvq} ` }`pvq ´ `pwq}.

The first term is bounded by (7.22), the second term is bounded by Proposition 7.4.1
and the third is bounded by (7.21). This proves the theorem.
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7.5. Piecewise linear immersions

Recall that a piecewise linear map is an immersion if, and only if, it is a locally
injective map. The piecewise linear isotropic approximations `N of a smooth isotropic
immersion ` : Σ Ñ R2n considered at § 7.4 are only close in C

0-norm by Theorem 7.4.2.
Since this estimate is rather weak, we cannot deduce from this fact that `N is an
immersion for N sufficiently large. However there are many free parameters in our
construction:

— The distortion action on MN preserves isotropic meshes.
— The apex of each isotropic pyramid with fixed base lies in an affine space of

dimension at least 2n´ 3.

These parameters can be used to construct piecewise linear isotropic immersions, at
least when the dimension of the target space is sufficiently large, which turns out to
be n ě 3.

Remark 7.5.1. – If ` is an immersion, showing that the piecewise linear isotropic
surfaces `N which we construct converge to ` in C

0,α norm would be enough to get
piecewise linear isotropic immersions. Unfortunately, eventhough it follows from the
proof of Theorem C in Section 6 that the `N converge to ` in C

k,α
w -norms, we cannot

get better control than C
0 away from diagonal directions due to the shear action.

7.5.2. Perturbed meshes without flat faces. – We start by perturbing the isotropic
quadrangular meshes ρN P MN constructed at Theorem 6.3.2. Our goal is to perturb
ρN by the shear action, to make sure that the quadrilateral associated to each face of
the mesh satisfy the following proposition and, in particular, are not flat in R2n.

Proposition 7.5.3. – For every N sufficiently large, there exists TN P R2n ˆ R2n

such that for every s ą 0 small enough, the quadrangular mesh

ρsN “ sTN ¨ ρN

satisfies the following properties:

1. For each face of the quadrangular mesh ρsN , the orthogonal projection of the
corresponding quadrilateral onto the complex space generated by its diagonals
(cf. (7.3)) is not flat.

2. For every vertex v of QN pΣq, the four vectors of R2n, associated via ρsN to the
four edges with vertex v, span a 3-dimensional subspace of R2n. Furthermore
any triplet obtained as a subset of the four above vectors is a linearly independent
family.

3. The associated triangular meshes pρsN q
1 P M 1

N have generic pyramids. In other
words, for every vertex v of T N pΣq which is not a vertex of QN pΣq, the four
vectors of R2n associated to the four edges of the mesh pρsN q

1 at v are linearly
independent.
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Proof. – We use the notations introduced at the beginning of § 7: for a quadrilateral
Q “ pA0, . . . , A3q of R2n, we denote by X the vector defined by (7.2), D0, D1 the
diagonals defined (7.1) and by B0, B1 the vectors (7.8) of JL (cf. (7.3)).

The condition that the projection of the quadrilateral onto LC is flat is equivalent
to β0 “ β1 “ 0, where the βi has been defined in (7.10). Assume that the projection
is flat. Then for every T` P R2n not contained in the hyperplanes β0 “ 0 or β1 “ 0,
the projection of the quadrilateral Qs “ pA0 ` sT`, A1, A2 ` sT`, A3q is not flat for
every s ą 0. Furthermore the optimal pyramid with base Qs is generic in the sense of
Lemma 7.1.9.

Let ρN be the isotropic quadrangular mesh considered in hypothesis of the propo-
sition. We choose T` P R2n which satisfies the above property, for every quadrilateral
associated to faces of the mesh ρN with flat projection onto the space of complexified
directions. This is possible, since we merely need to choose T` P R2n away from a
finite collection of 2-planes. Then ρsN :“ psT`, 0q ¨ ρN satisfies the items (1) and (3)
of the proposition provided s ą 0 is sufficiently small.

We just have to show that the condition (2) can be satisfied for a suitable choice
of deformations. Given a vertex v of QN pΣq we consider the four diagonals DρN

v,f for
the four quadrangular faces f with vertex v. The renormalized diagonals of the mesh
converge toward the partial derivatives of ` at v (cf. (7.17)) as N Ñ8. Since ` is an
immersion, this shows that the four vectors DρN

v,f span a space of dimension 2 or 3 for
every N sufficiently large. If this space is 3-dimensional, (2) is satisfied with s “ 0

and nothing needs to be done. Assume that the space of diagonals is 2-dimensional.
The four vertices connected by an edge to v define four points of R2n via ρN . By
assumption, these points lie in an affine plane of R2n. If ρN pvq does not belong to
this plane, then (2) is satified. Otherwise, we require the additional condition that
T` does not belong to the plane spanned by the diagonals. We have to consider every
vertex v as above and this adds a finite number of conditions for choosing T`. A finite
family of proper subspaces of a vector space never covers the entire space. Thus it
is possible to find the desired T`. This concludes the proof of the proposition with
TN “ pT`, 0q.

Corollary 7.5.4. – Given N large enough, for every s ą 0 sufficiently small, the
isotropic triangulation pρsN q

1 defines a piecewise linear map `N,s : Σ Ñ R2n which is
an immersion at every point w P Σ which does not belong to the 1-skeleton of QN pΣq.
In particular `N,s is an immersion at almost every point of Σ.

Proof. – By linerarity, it is sufficient to check that `N,s is an immersion at every vertex
of T N pΣq which is not a vertex of QN pΣq. But this is clear for N large enough and
s ą 0 sufficiently small, by Proposition 7.5.3, item (3).

Remark 7.5.5. – The above corollary proves the second part of Theorem A con-
cerning piecewise linear isotropic immersions when n “ 2. Indeed, the the 1-skeleton
of QN pΣq is a finite union of meridians of the torus Σ.
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7.5.6. Further perturbations by moving apexes. – We are going to apply further isotro-
pic perturbations to the triangular meshes pρsN q

1 P M 1
N , so that that the corresponding

piecewise linear map is also an immersion along the 1-skeleton of QN pΣq.
By definition, pρsN q

1 is defined from the quadrangular mesh ρsN , by adding the apex
of an optimal isotropic pyramid for each face of QN pΣq. The definition of an optimal
pyramid is somewhat arbitrary: for N large enough and s ą 0 sufficiently small, every
face of ρsN satisfy Proposition 7.5.3, item (1). Hence, for each face of ρsN , the affine
space of apexes of isotropic pyramids is 2n´ 3-dimensional. We deduce the following
lemma:

Lemma 7.5.7. – For N large enough and s ą 0 sufficiently small, there exists a
family of isotropic deformations of the triangular isotropic mesh pρsN q

1. This family
is obtained by moving each vertex of T N pΣq which does not belong to QN pΣq within
a 2n´ 3-dimensional affine space.

The key observation, that will make Lemma 7.5.7 useful for our purpose, is that
2n´ 3 ě 3 for n ě 3. In particular, we deduce the following proposition:

Proposition 7.5.8. – Assume that n ě 3, and N is sufficiently large. Then, for
every s ą 0 sufficiently small, there exist isotropic triangular meshes arbitrarily close
to pρsN q

1, which define piecewise linear immersions Σ ãÑ R2n.

Proof. – As in Corollary 7.5.4, showing that a map is an immersion is a purely local
matter. We draw a local picture of the triangular mesh pρsN q

1, near the image O of
vertex v of QN pΣq. In Figure 3, the bullet labeled O actually represents ρsN pvq P R2n.
Similarly, all be points Pi, and Aij P R2n of the picture are images of corresponding
vertices of T N pΣq by the triangular isotropic mesh pρsN q

1. Notice that the black and
blue bullets are prescribed by the quadrangular mesh ρsN , whereas the red bullets are
defined by its triangular refinement pρsN q

1. More specifically, the red bullets are the
optimal apexes of the corresponding optimal isotropic pyramids.

• •

• •

•

•

•

•

•

•

•

•

• P0P2

P1

P3

A12 A01

A23 A30

O

Figure 3. Local perturbations of a triangular mesh
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We are now looking for a perturbation pρsN q
2 of pρsN q

1 by moving the points Aij .
We denote `1N,s (resp. `

2
N,s) the piecewise linear maps associated the triangular mesh

pρsN q
2 (resp. pρsN q

2).
1. The property of being an immersion is stable under small deformations. Thus,

for sufficiently small perturbation, Corollary 7.5.4 holds for `2N,s as well. In
particular, `2N,s is an immersion at every point w P Σ contained in the interior
of one of the four faces of QN pΣq, with vertex v (the four smaller square in the
figure).

2. Suppose that we can choose a perturbation so that that `2N,s is an immersion
at the vertex v (corresponding to the point O). By linearity, this implies that
`2N,s is an immersion at every interior point w P Σ of the union of shaded faces
of the triangulation T N pΣq (with gray color on the picture).

If we are able to show that there exists a perturbation, which satifies the condition (2)
as above, we deduce, together with the above property (1), that the piecewise linear
map `2N,s is an immersion at every interior point w of the union of the four faces
of QN pΣq with vertex v (the big square in Figure 3). In conclusion, if we have proved
the following lemma:

Lemma 7.5.9. – If pρsN q
2 is a triangular mesh sufficiently close to pρsN q

1, such that
the correponding piecewise linear map `2N,s : Σ Ñ R2n is an immersion at every vertex
of QN pΣq, then `

2
N,s is an immersion at every point of Σ.

We merely need to show that there exists an isotropic perturbation pρN,sq2 which
satisfies the hypothesis of Lemma 7.5.9 and the proof of the proposition will be com-
plete.

Consider the mesh pρsN q
1 represented locally by Figure 3. There are 2n´ 3 degrees

of freedom for perturbing each red vertex Aij , in such a way that the triangular mesh
remains isotropic. We would like to put them in general position, so that the piecewise
linear map is an immersion at O. First, notice that the local injectivity is partially
satisfied by pρsN q

1 for every s ą 0 sufficiently small. Indeed, by Corollary 7.5.4, two
contiguous triangles of the mesh pρsN q

1 in a common pyramid, for instance pOP0A01q

and pOA01P1q, are contained in distinct planes intersecting along a line of R2n, which
in this particular case is pOA01q.

Consider now the two triangles of pOP0A01q and pOA30P0q of R2n. There are two
possibilities:

1. The line pOA30q is not contained in the plane of the triangle pOP0A01q, the two
triangles lie in distinct plane intersecting along the line pOP0q.

2. The line pOA30q is contained in the plane of the triangle pOP0A01q. In this case,
the associated piecewise linear map is not locally injective at O.

In the second situation, we can always find an arbitrarily small perturbation of the
point A30 which brings us back to the first situation, such that the associated piecewise
linear map is still isotropic. Indeed, as pointed out there is a 2n´ 3 ě 3 dimensional
family of points A30 such that provide isotropic perturbation. There is a least. Such
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space cannot be contained in the plane of pOP0A01q for obvious dimensional reasons.
Thus, we may find the wanted arbitrarily small isotropic perturbations of A30 such
that we are in the first situation.

We consider now the case where we have two non contiguous triangles, for in-
stance pOP0A01q and OP1A12. We know that the three lines OP0, OA01 and OP1

span a 3-dimensional space by Corollary 7.5.4. By moving slightly A12 within its
p2n´ 3q-dimensional family of isotropic perturbation, we can make sure that the in-
tersection of the planes containing the triangles pOP0A01q and pOP1A12q reduces to
the point O.

There are other situations that we should handle as well. For instance, we consider
the triangles pOP0A01q and pOA12P2q. By Propositin 7.5.3, item (2), the lines pOP0q

and pOP2q are distinct. Up to a small isotropic perturbation by moving A01 within
its 2n´ 3-dimensional family, we may assume that A01 does not belong to the plane
pOP0P2q. By moving A12 similarly, we may assume that A12 does not belong to the
plane that contains the triangle pOP0A01q. Eventually, the two planes that contain
pOP0A01q and pOA12P2q, after perturbation, intersect at a single point O.

Other cases are dealt with similarly. Eventually we have proved that there are
arbitrarily small isotropic deformations of pρsN q

1, obtained by moving the points Aij ,
such that the eight triangles of the mesh around O lie in distinct planes. In particular,
the corresponding piecewise linear map is an immersion at the vertex v.

By induction, we can apply further similar perturbation, so that the isotropic
piecewise linear map is an immersion at every vertex of QN pΣq. This proves the
proposition.

7.6. Proof of Theorem A

Gathering our results provides a complete proof one of our main results:

Proof of Theorem A. – The existence of C
0-approximations of smooth isotropic im-

mersions ` : Σ Ñ R2n by piecewise linear isotropic maps is proved in Theorem 7.4.2.
The statement for existence of approximations by piecewise linear isotropic immer-
sions is a proved at Proposition 7.5.8. The remaining case, for n “ 2, is a consequence
of Corollary 7.5.4.
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CHAPTER 8

DISCRETE MOMENT MAP FLOW

The moduli space M “ tf : Σ Ñ M,f˚rωs “ 0u, where Σ is a closed surface
endowed with an area form σ was introduced at § 2. If M is a Kähler mani-
fold, then M has an induced formal Kähler structure pM , J, g,Ωq. The group
G “ HampΣ, σq acts isometrically on M . The action is Hamiltonian, with moment
map µ : M Ñ C80 pΣq, given by µpfq “ f˚ω

σ . In this setting, a natural moment map
flow is defined (cf. § 2.2) by

df

dt
“ ´

1

2
grad}µ}2.

The properties of the above flow shall be studied in a sequel to this work [6]. For the
time being, we merely provide a numerical simulation of the above flow, implemented
in the program Discrete Moment Map Flow (DMMF), hosted on the webpage:

http://www.math.sciences.univ-nantes.fr/~rollin/index.php?page=flow.

The idea is to approximate the flow, which is an evolution equation on an infinite
dimensional space of maps, by an analog finite dimensional approximation. The finite
dimensional flow is expected to converge in some sense to the infinite dimensional
flow as N Ñ 8, at least in favorable situations, but this is part of a broader project
to be expanded later in [6].

8.1. Definition of the finite dimensional flow

In the rest of this section, we focus on the case where M “ R4, with its standard
Kähler structure and Σ is a surface diffeomorphic to a torus, endowed covering map
p : R2 Ñ Σ with Γ, its group of deck transformation, which is a lattice of R2. This data
allows to define the quadrangulations QN pΣq. The space of quadrangular meshes MN

is seen as a discrete analog of the moduli space M . The moment map µ has a discrete
version as well, given by

µrN : MN Ñ C2pQN pΣqq.

The space of discrete functions C2pQN pΣqq is also understood as a discrete analog
of C8pΣq. Recall that this space of discrete functions is endowed with an inner product
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xx¨, ¨yy, which is an analog of the L2-inner product induced by σ (cf. § 4.5) and denoted
xx¨, ¨yy as well. We denote by } ¨ } the norm induced by the inner product xx¨, ¨yy. Then

D}µrN }
2
|τ
¨ V “ 2xxDµrN |τ

¨ V, µrN pτqyy

“ ´2xxDµrN |τ
˝ J ¨ JV, µrN pτqyy

“ 2xxδτ pJV q, µ
r
N pτqyy

“ 2xxJV, δ‹τµ
r
N pτqyy,

hence

(8.1) ´
1

2
D}µrN }

2
|τ
¨ V “ xxV, Jδ‹τµ

r
N pτqyy,

where
δτ “ ´Dµ

r
N |τ

˝ J.

Its adjoint δ˚τ is defined by xxδτV, φyy “ xxV, δ‹τφyy. For each map u : MN Ñ

C2pQN pΣqq, we may define a formal gradient vector field on the moduli space

gradu : MN ÝÑ C0pQN pΣqq b R4

by Du|τ ¨ V “ xxgradu|τ
, V yy. Thus, by (8.1),

´
1

2
grad}µrN pτq}

2 “ Jδ‹τµ
r
N pτq

and we can define a downward gradient flow by

dτ

dt
“ ´

1

2
grad}µrN }

2,

which is equivalent to

(8.2)
dτ

dt
“ Jδ‹τµ

r
N pτq.

Definition 8.1.1. – A solution τt : I Ñ MN of the ordinary differential Equa-
tion (8.2), where I is an open interval of R, is called a solution of the discrete moment
map flow.

Remark 8.1.2. – The discrete moment map flow is an ordinary differential equation
with smooth coefficients on the affine space MN . The solution exists for short time
but might blowup in finite time. The general behavior of the flow will be addressed
in a sequel to this work [6].

The flow has typical properties of ODE with smooth coefficients:

Proposition 8.1.3. – Assume that τt : r0, Cq Ñ MN is a maximal solution of the
the discrete moment map flow. If τt is bounded for t P r0, Cq, then C “ `8. If in
addition τt converges to some τ8, then µrN pτ8q P ker δ˚τ8 .
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Remark 8.1.4. – If the function }µrN }
2 on MN were Morse, any bounded flow τt

would automatically converge toward a critical point of the function. Although we
are not trying to prove this fact, all our experiments with the DMMF program seem
to indicate that the flow is generically bounded and convergent. If ker δτ8 “ 0, the
conclusion of Proposition 8.1.3 implies that µrN pτ8q is a constant discrete function
and, by Stokes theorem, τ8 must be an isotropic quadrangular mesh. Notice that the
fact that the kernel of the operator δ‹τ is 1-dimensional holds for generic τ according
to Proposition 4.6.7. This is also confirmed by all the experiments using the DMMF
program.

Proof. – If C is finite, and dτ
dt is bounded, then τt must converge to some τC as tÑ C.

This contradicts the fact that C is maximal. Hence, if C is finite, dτ
dt must be un-

bounded. In particular τt cannot remain in a bounded set, as the RHS of the evolution
equation would be bounded. In conclusion, if τt is bounded, we have C “ `8. If τt con-
verges towards τ8, the limit must be a fixed point of the flow and δ‹τ8µ

r
N pτ8q “ 0.

Remarks 8.1.5. – The kernel of the operator δ‹τ contains the constants. In the general
setting the kernel may not be reduced to constant and Proposition 8.1.3 does not allow
to conclude that limits of the discrete flow are isotropic quadrangular meshes. It seems
reasonable, especially in view of the experimental results of § 8.2, to expect that the
flow is always trapped in a compact set of MN . The study of these questions shall be
carried out in a sequel to this work [6].

8.2. Implementation of the discrete flow

8.2.1. Particular lattices. – Recall that the quadrangulations QN pΣq are defined by
identifying the torus Σ with a quotient, via the diffeomorphism Φ : R2{Γ Ñ Σ induced
by the covering map p : R2 Ñ Σ. We merely have to make a choice for the lattice Γ,
in order to define QN pΣq and a corresponding discrete moment map flow. This choice
is arbitrary and a sufficiently sophisticated program could deal with any choice. This
is not the case of the DMMF program, however, which is base on the choice of lattice

Γ2 “ Ze1 ‘ Ze2,

and surface Σ “ R2{Γ2 already introduced at § 3.5. Then Γ2 Ă ΛN for every positive
integer N . The quadrangulation QN pR

2q descends as a quadrangulation of the quo-
tient QN pΣq. The quadrangulation has N2 vertices and a mesh in MN can be stored
as an N ˆN array with entries in R4.

8.2.2. The Euler method. – It is easy to provide numerical approximations of an ODE
such as the discrete moment map flow by the Euler method. We consider discrete
time values ti “ i∆t, where i is an integer and ∆t ą 0 is a small time step increment.
Starting at time t0 “ 0 with a mesh τ0 P MN , we compute τ1, τ2, etc., as follows:
given τi P MN at time t “ i∆t we compute

Vi “ δ‹τiµ
r
N pτiq
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and define
τi`1 “ τi `∆t ¨ JVi.

The above computations are easy to carry out and the operator δ‹τ is explicitly given
by Lemma 4.6.5. Starting from any quadrangular mesh, we can compute the above
flow very quickly in real time on an ordinary machine, whenever N is not too big (for
instance N ď 100 on our laptop).

8.2.3. Visualization. – A choice has to be made for the visualization of each mesh
τ P MN on a computer screen. The basic idea is to choose a projection of R4 on a
3-dimensional manifold and represent a mesh as a surface in a 3-dimensional space.
We explain now the choice made in the DMMF program, which may not be the best
for certain situations: we perform a radial projection of the vertices of τ onto the unit
sphere S3 of R4, centered at the origin. This projection is followed by a stereographic
projection of the sphere minus a point onto one of its tangent spaces identified to R3.
Once the positions of the projections of the vertices of τ in R3 are computed, we can
draw the quadrilateral associated to the faces in R3. A library like OpenGL allows to
represent a quadrangular mesh of R3 in perspective. We fill the faces with a range of
colors which depends on the symplectic density of each face (i.e., the value of µrN pτq on
this face). In addition, motions of the mouse are used to precompose these projections
with Euclidean rotations of R4. This technique allows the user to look at surfaces from
various angles using the mouse.

8.2.4. The DMMF code. – We found out that the processing language, which is a
Java dialect, was extremely efficient to code the DMMF program. The source code
and more information on the technical aspects of the DMMF program are available
on the homepage:
http://www.math.sciences.univ-nantes.fr/~rollin/index.php?page=flow.

The program starts the flow by sampling various examples of parametrized tori in R4.
From an experimental point of view, our numerous observations seem to indicate that
the flow should always converges, that the convergence is fast, and that the limits are
isotropic. Figure 1 shows an example of (static) output of the DMMF program. This
quadrangular mesh has diameter of order 1 and symplectic density of order 10´8. The
reader is encouraged to experiment directly the more interactive and dynamic aspects
of the program.
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Figure 1. Isotropic quadrangular mesh
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We consider smooth isotropic immersions from the 2-dimensional torus into
R2n, for n ě 2. When n “ 2 the image of such map is an immersed Lagrangian
torus of R4. We prove that such isotropic immersions can be approximated
by arbitrarily C 0-close piecewise linear isotropic maps. If n ě 3 the piecewise
linear isotropic maps can be chosen so that they are piecewise linear isotropic
immersions as well.

The proofs are obtained using analogies with an infinite dimensional
moment map geometry due to Donaldson. As a byproduct of these
considerations, we introduce a numerical flow in finite dimension, whose limits
provide, from an experimental perspective, many examples of piecewise linear
Lagrangian tori in R4. The DMMF program, which is freely available, is based
on the Euler method and shows the evolution equation of discrete surfaces in
real time, as a movie.

Nous considérons des immersions lisses et isotropes du tore de dimension 2
vers R2n, pour n ě 2. Quand n “ 2 l’image d’une telle application est un
tore lagrangien immergé de R4. Nous démontrons que de telles immersions
isotropes peuvent être approximées au sens C0, par des applications linéaires
par morceaux et isotropes arbitrairement proches. Si n ě 3, il est possible des
choisir des applications linéaires par morceaux qui sont de plus des immersions.

Les démonstrations reposent sur des analogies avec une géométrie et une
application moment en dimension infinie introduites par Donaldson. Nous
en déduisons un flot en dimension finie, dont les limites, du point de vue
expérimental, produisent de nombreux exemples de tores lagrangiens linéraires
par morceaux de R4. Le programme libre DMMF, basé sur la méthode d’Euler,
montre l’équation d’évolution sous forme de film.
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