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HEAT KERNEL ASYMPTOTICS,
LOCAL INDEX THEOREM AND TRACE INTEGRALS

FOR CAUCHY-RIEMANN MANIFOLDS WITH S1 ACTION

Jih-Hsin Cheng, Chin-Yu Hsiao, I-Hsun Tsai

Abstract. – Among the transversally elliptic operators initiated by Atiyah and Singer,
Kohn’s lb operator on CR manifolds with S1 action is a natural one of geometric
significance for complex analysts. Our first main result establishes an asymptotic ex-
pansion for the heat kernel of such an operator with values in its Fourier components,
which involves a contribution in terms of a distance function from lower dimensional
strata of the S1-action. Our second main result computes a local index density, in
terms of tangential characteristic forms, on such manifolds including Sasakian man-
ifolds of interest in String Theory, by showing that certain non-trivial contributions
from strata in the heat kernel expansion will eventually cancel out by applying Get-
zler’s rescaling technique to off-diagonal estimates. This leads to a local result which
can be thought of as a type of local index theorem on these CR manifolds. We give
examples of these CR manifolds, some of which arise from Brieskorn manifolds. More-
over in some cases, we can reinterpret Kawasaki’s Hirzebruch-Riemann-Roch formula
for a complex orbifold equipped with an orbifold holomorphic line bundle, as an index
theorem obtained by a single integral over a smooth CR manifold. We achieve this
without use of equivariant cohomology method and our method can naturally drop
the contributions arising from lower dimensional strata as done in previous works.

Résumé (Étude asymptotique du noyau de la chaleur, indice local et traces sur les variétés
de Cauchy-Riemann avec action d’un cercle)

Le laplacien de Kohn sur une variété de Cauchy-Riemann (CR) avec action trans-
verse d’un cercle est un exemple important pour l’analyse complexe d’un opérateur
transversalement elliptique. Nous établissons ici un développement asymptotique du
noyau de la chaleur de ses coefficients de Fourier, qui inclut une contribution des
strates singulières de l’action du cercle. Nous calculons ensuite une densité d’indice
locale pour ces opérateurs en montrant, à l’aide de techniques dues à Getzler, que
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certaines contributions des strates singulières non-triviales dans le développement du
noyau de la chaleur s’annulent ici. Ce résultat, que l’on peut interpréter comme un
théorème d’indice local sur ces variétés CR, s’applique notamment aux variétés de Sa-
saki qui sont importantes en théorie des cordes. Nous donnons également des exemples
concrets de telles variétés CR, issues notamment des variétés de Brieskorn. De plus,
nous pouvons réinterpréter dans certains cas la version du théorème de Hirzebruch-
Riemann-Roch pour un orbifold complexe muni d’un fibré orbifold en droites com-
plexes due à Kawasaki comme une formule d’indice. Notre méthode évite le recours à
la cohomologie équivariante et les annulations des termes issus des strates singulières
surviennent naturellement.
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CHAPTER 1

INTRODUCTION AND STATEMENT OF THE RESULTS

1.1. Introduction and Motivation

Let pX,T 1,0Xq be a compact (with no boundary) CR manifold of dimension 2n`1

and let Bb : Ω0,qpXq Ñ Ω0,q`1pXq be the tangential Cauchy-Riemann operator. For a
smooth function u, we say u is CR if Bbu “ 0. In CR geometry, it is crucial to be able
to produce many CR functions. When X is strongly pseudoconvex and the dimension
of X is greater than or equal to five, it is well-known that the space of global smooth
CR functions H0

b pXq is infinite dimensional. When X is weakly pseudoconvex or the
Levi form of X has negative eigenvalues, the space of global CR functions could be
trivial. In general, it is very difficult to determine when the space H0

b pXq is large.

A clue to the above phenomenon arises from the following. By B
2

b “ 0, one has the
Bb-complex: ¨ ¨ ¨ Ñ Ω0,q´1pXq Ñ Ω0,qpXq Ñ Ω0,q`1pXq Ñ ¨ ¨ ¨ and the Kohn-Rossi
cohomology group: Hq

b pXq :“ Ker Bb:Ω
0,q
pXqÑΩ0,q`1

pXq

Im Bb:Ω0,q´1pXqÑΩ0,qpXq
. As in complex geometry, to

understand the space H0
b pXq, one could try to establish, in the CR case, a Hirzebruch-

Riemann-Roch theorem for
n
ř

j“0

p´1qjdimHj
b pXq, an analog of the Euler characteristic,

and to prove vanishing theorems for Hj
b pXq, j ě 1. The first difficulty with such an

approach lies in the fact that dimHj
b pXq could be infinite for some j. Let’s say more

about this in the following.

If X is strongly pseudoconvex and of dimension ě 5, it is well-known that Bb :

Ω0,0pXq Ñ Ω0,1pXq is not hypoelliptic and for q ě 1, q ‰ n, l
pqq
b : Ω0,qpXq Ñ

Ω0,qpXq is hypoelliptic so that dimH0
b pXq “ 8 and dimHq

b pXq ă 8 for q ě 1,
q ‰ n. In other cases if the Levi form of X has exactly one negative, n ´ 1 positive
eigenvalues onX and n ą 3, it is well-known that dimH1

b pXq “ 8, dimHn´1
b pXq “ 8

and dimHq
b pXq ă 8, for q R t1, n´ 1u. With these possibly infinite dimensional

spaces, we have the trouble with defining the Euler characteristic
n
ř

j“0

p´1qjdimHj
b pXq

properly.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2019



2 CHAPTER 1. INTRODUCTION AND STATEMENT OF THE RESULTS

Another line of thought lies in the fact that the space Hq
b pXq is related to the Kohn

Laplacian l
pqq
b “ B

˚

b Bb ` Bb B
˚

b : Ω0,qpXq Ñ Ω0,qpXq. One can try to define the asso-
ciated heat operator e´tl

pqq
b by using spectral theory and then the small t behavior

of e´tl
pqq
b is closely related to the dimension of Hq

b pXq. Unfortunately without any
Levi curvature assumption, l

pqq
b is not hypoelliptic in general and it is unclear how

to determine the small t behavior of e´tl
pqq
b . Even if l

pqq
b is hypoelliptic, it is still

difficult to calculate the local density.
We are led to ask the following question.

Question 1.1. – Can we establish some kind of heat kernel asymptotic expansions for
Kohn Laplacian and obtain a CR Hirzebruch-Riemann-Roch theorem (not necessarily
the usual ones) on some class of CR manifolds?

It turns out that the class of CR manifolds with S1 action is a natural choice
for the above question. On this class of CR manifolds, the geometrical significance
of Kohn’s l b operator is connected with transversally elliptic operators initiated by
Atiyah and Singer [2] (see Folland and Kohn [35, p.113]). Three dimensional (strongly
pseudoconvex) CR manifolds with S1 action have been intensively studied back to
1990s in relation to the CR embeddability problem. We refer the reader to the works
[26] and [49] of Charles Epstein and Laszlo Lempert respectively. (see more comments
on this in Section 1.3). Another related paper is about CR structure on Seifert man-
ifolds by Kamishima and Tsuboi [45] (cf. Remark 1.16). In our present paper the CR
manifold with S1 action is not restricted to the three dimensional case.

To motivate our approach, let’s first look at the case which can be reduced
to complex geometry. Consider a compact complex manifold M of dimension n

and let pL, hLq Ñ M be a holomorpic line bundle over M , where hL denotes a
Hermitian fiber metric of L. Let pL˚, hL

˚

q Ñ M be the dual bundle of pL, hLq
and put X “

!

v P L˚; |v|
2
hL˚ “ 1

)

. We call X the circle bundle of pL˚, hL
˚

q. It
is clear that X is a compact CR manifold of dimension 2n ` 1. Clearly X is
equipped with a natural (globally free) S1 action (by acting on the circular fiber).
Let T P C8pX,TXq be the real vector field induced by the S1 action, that is,
Tu “ B

Bθ pupe
´iθ ˝ xqq|θ“0

, u P C8pXq. This S1 action is CR and transversal, i.e.,
rT,C8pX,T 1,0Xqs Ă C8pX,T 1,0Xq and CT pxq ‘ T 1,0

x X ‘ T 0,1
x X “ CTxX respec-

tively. For each m P Z and q “ 0, 1, 2, . . . , n, put

Ω0,q
m pXq : “

 

u P Ω0,qpXq; Tu “ ´imu
(

“
 

u P Ω0,qpXq; upe´iθ ˝ xq “ e´imθupxq,@θ P r0, 2πr
(

.

Since BbT “ TBb, we have Bb,m “ Bb : Ω0,q
m pXq Ñ Ω0,q`1

m pXq. We consider the
cohomology group: Hq

b,mpXq :“
Ker Bb,m:Ω0,q

m pXqÑΩ0,q`1
m pXq

Im Bb,m:Ω0,q´1
m pXqÑΩ0,q

m pXq
, and call it the m-th S1

Fourier component of the Kohn-Rossi cohomology group.
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1.1. INTRODUCTION AND MOTIVATION 3

The following result can be viewed as the starting point of this paper. Note
Ω0,qpM,Lmq denotes the space of smooth sections of p0, qq forms on M with val-
ues in Lm (m-th power of L) and HqpM,Lmq the q-th B-Dolbeault cohomology group
with values in Lm.

Theorem 1.2. – For every q “ 0, 1, 2, . . . , n, and every m P Z, there is a bijective
map Apqqm : Ω0,q

m pXq Ñ Ω0,qpM,Lmq such that Apq`1q
m Bb,m “ BA

pqq
m on Ω0,q

m pXq. Hence,
Ω0,q
m pXq – Ω0,qpM,Lmq and Hq

b,mpXq – HqpM,Lmq. In particular dimHq
b,mpXq ă 8

and
n
ř

j“0

p´1qjdimHj
b,mpXq “

n
ř

j“0

p´1qjdimHjpM,Lmq.

Theorem 1.2 is probably known to the experts. As a precise reference is not eas-
ily available (see, however, Folland and Kohn [35] p.113), we will give a proof of
Theorem 1.2 in Section 1.5 for the convenience of the reader.

In this paper by Kodaira Laplacian we mean the Laplacian l
pqq
m on Lm-valued

p0, qq forms (on M) associated with the B operator, a term we borrow from the work
of Ma and Marinescu [50]. Let e´tl

pqq
m be the associated heat operator. It is well-

known that e´tl
pqq
m admits an asymptotic expansion as t Ñ 0`. Consider Bmptq :“

pA
pqq
m q

´1 ˝ e´tl
pqq
m ˝ A

pqq
m (Apqqm as in the theorem above). Let l

pqq
b,m be the Kohn

Laplacian (on X) acting on (the m-th S1 Fourier component of) p0, qq forms, with
e´tl

pqq
b,m the associated heat operator.

A word of caution is in order. We made no use of metrics for stating Theorem 1.2.
However, to define those Laplacians above an appropriate choice of metrics is needed
(for adjoint of an operator) so that Apqqm of Theorem 1.2 also preserves the chosen
metrics. With this set up it is fundamental that (cf. Proposition 5.1)

(1.1) e´tl
pqq
b,m “ ppApqqm q

´1 ˝ e´tl
pqq
m ˝Apqqm q ˝Qm “ Bmptq ˝Qm “ Qm ˝Bmptq ˝Qm,

where Qm : Ω0,qpXq Ñ Ω0,q
m pXq is the orthogonal projection. Hence the asymptotic

expansion of e´tl
pqq
m and (1.1) lead to an asymptotic expansion

(1.2) e´tl
pqq
b,mpx, xq „ t´napqqn pxq ` t

´n`1a
pqq
n´1pxq ` ¨ ¨ ¨ .

One goal of this work is to establish a formula similar to (1.2) (which is however
not exactly of this form) on any CR manifold with S1 action. More precisely, due to
the assumption that the S1 action is only locally free, it turns out that e´tl

pqq
b,mpx, xq

cannot have the standard asymptotic expansion as (1.2). Rather, our asymptotic ex-
pansion involves a contribution in terms of a distance function from lower dimensional
strata of the S1 action. (See (1.18) in Theorem 1.3 for details and for our first main
result.) It should be emphasized that no pseudoconvexity condition is assumed.

Roughly speaking, on the regular part of X we have

(1.3) e´tl
pqq
b,mpx, xq „ t´napqqn pxq`t

´n`1a
pqq
n´1pxq`¨ ¨ ¨ mod O

´

t´ne´
ε0d̂px,Xsing q

2

t

¯

.
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4 CHAPTER 1. INTRODUCTION AND STATEMENT OF THE RESULTS

On the whole X we have, however,

(1.4) e´tl
pqq
b,mpx, xq „ t´nApqqn pt, xq ` t

´n`1A
pqq
n´1pt, xq ` ¨ ¨ ¨ .

The difference between (1.4) and (1.3) lies in that Apqqs pt, xq in (1.4) cannot be t-in-
dependent for all s and are not canonically determined (by our method) while apqqs pxq
in (1.3) are t-independent for all s and are canonically determined. This t-dependence
presents a great distinction between our asymptotic expansion and those in the pre-
vious literature. It appears to have a big influence on the formulation and proof of
the relevant index theorems and trace integrals. See Section 7 for more comments.

In addition to the introduction of a distance function d̂ in (1.3) our generalization
has another feature, which is pertinent to the third topic of this paper, as follows. A
heat kernel result for orbifolds obtained in 2008 by Dryden, Gordon, Greenwald and
Webb for the case of Laplacian on functions (see (1.30) and [23]) and independently by
Richardson ([59]) seems to suggest that integrating (1.3) over X is basically a power
series in t

1
2 . See (1.30) for more. To see such a possible connection, one considersX as a

fiber space over X{S1 which is then an orbifold, and presumes boldly an analogy with
“(1.2) for the orbifold case”. Then by the above result [23], integrating (1.3) over X
might give an asymptotic expansion which is a power series at most in the fractional
power t

1
2 of t (cf. Theorem 1.14) (while for the case where the S1 action is globally

free, such as in the circle bundle above, the asymptotic expansion is expressed in the
integral power of t). However, our further study shows that the coefficients of tj for j
being half-integral necessarily vanish in our present case (irrespective of the local or
global freeness of the S1 action). Despite that there is no nontrivial fractional power
in the t-expansion, the corrections/contributions associated with the stratification
of the locally free S1 action do arise nontrivially in a proper sense. Some explicit
computations about these extra terms are worked out in the main result of the final
section (Section 7) regarded as the third topic of this paper.

As far as the asymptotic expansion is concerned, we remark that the approach of
using Kodaira Laplacian on M (downstairs) as done above is no longer applicable
to the general CR case, as the contribution of a distance function on X involved
in our expansion cannot be easily forseen by use of objects in the space downstairs
(an orbifold in general). (However, for trace integrals on invariant functions, cf. Sec-
tion 7, like

ř

m e
´tλm denoted by Iptq in certain Riemannian cases, Iptq has been

studied asymptotically with the help of the underlying/quotient manifold/orbifold,
cf. [59, p. 2316-2317]. See also Proposition 5.1, Remark 5.4.) We must work on the
entire X from scratch with the operator being only transversally elliptic (on X). (See
HRR theorem below for another instance of this idea.) Furthermore, as we make no
assumption on (strong) pseudoconvexity of X, this renders the techniques usually
useful in this direction by previous work (e.g., [4]) hardly adequate in our case. Our
current approach is essentially independent of the previous methods. This technicality
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1.1. INTRODUCTION AND MOTIVATION 5

partly accounts for the length of the present paper (see Section 1.6 for an outline of
proof and Section 7 for a comparison with the previous work).

We expect that the coefficients apqqs pxq in (1.3) are related to some geometric quan-
tities. For q “ 0, function case with strong pseudoconvexity, we refer the reader to the
paper of Beals, Greiner, and Stanton [4]. In this regard, Chern-Moser invariants (see
[18]) or Tanaka-Webster invariants (see [62] or [64]) should be used to express these
coefficients. In our present situation (without assumptions on pseudoconvexity) it is
however more natural to use geometric quantities adapted to the S1 invariance prop-
erty, so that a notion of tangential curvature arises (with the associated tangential
characteristic forms, cf. Section 2.3) and enters into the coefficients of our asymptotic
expansion. It essentially comes back to the Tanaka-Webster curvature in the strongly
pseudoconvex case (cf. Remark 1.9).

The mathematics (existence, asymptotics etc.) of equivariant/transversal heat ker-
nels in the Riemannian situation (including that of Riemannian foliations) have been
studied in recent years and last decades. For a comparison between these develop-
ments and our results, we postpone the survey, together with that of trace integrals,
until Section 7.

Back to the special case of the circle bundleX over a compact complex manifoldM ,
the Hirzebruch-Riemann-Roch Theorem or Atiyah-Singer index Theorem, together
with Theorem 1.2, tells us that

(1.5)
n
ÿ

j“0

p´1qjdimHj
b,mpXq “

n
ÿ

j“0

p´1qjdimHjpM,Lmq “

ż

M

Td pT 1,0Mqch pLmq,

in terms of standard characteristic classes on M . Let’s reformulate (1.5) in geometric
terms on X rather than on M :

(1.6)
n
ÿ

j“0

p´1qjdimHj
b,mpXq “

1

2π

ż

X

Tdb pT
1,0Xq ^ e´m

dω0
2π ^ ω0,

where Tdb pT
1,0Xq denotes the tangential Todd class of T 1,0X and e´m

dω0
2π denotes

the Chern polynomial of the Levi curvature and ω0 is the uniquely determined global
real 1-form (see Section 2.2 and Section 2.3 for the precise definitions).

Our second main result turns to any (abstract) CR manifold X with (locally free)
S1 action (but with no assumption on pseudoconvexity); we see that the above Euler
characteristic has an index interpretation related to Bb ` B

˚

b on X (see (3.12) and
(3.13)). We are able to establish (1.6) (cf. Corollary 1.13) on such X based on our
asymptotic expansion for the heat kernel e´tl

pqq
b,mpx, xq and a type of McKean-Singer

formula on X (see Corollaries 4.8 and 5.16).
As an application to complex (orbifold) geometry, it is worth noting a comparison

between the present result and a result of Kawasaki on Hirzebruch-Riemann-Roch
theorem (HRR theorem for short) on a complex orbifold N ([47]) (which plays the
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role as ourM above). Our formula simplifies Kawazaki’s original one for a certain class
of orbifolds. Indeed, the contribution of the lower dimensional strata of the orbifold
appearing in Kawazaki’s formula vanishes in ours, see Subsection 1.4.2, Theorem 1.28
the remarks following it. In our view this simplification does not appear obvious at all
within the original approach of Kawasaki because in his approach the contributions
from the (lower dimensional) strata of the orbifold cannot be avoided (unless it is
proved to be vanishing) even if the total space of the (orbifold) circle bundle is smooth.
Conceptually speaking one may attribute such a simplification to one’s working on the
entire (smooth) X rather than on the downstairsM (as Kawasaki), a strategy already
employed for the asymptotic expansion above and proving useful again in this context
of (CR) index theorem. We remark that the vanishing of the contribution of strata
also occurs in a related context studied by these works [55], [34] (see also discussions
after Theorem 1.28).

In short our second main result (Theorem 1.10) computes a local index density in
terms of tangential characteristic forms, which is to show that certain non-trivial con-

tributions (cf. t´ne´
ε0d̂px,Xsing q

2

t of (1.3)) in the heat kernel expansion will eventually
cancel out in the index density computation. We can do this by applying Getzler’s
rescaling technique to the off-diagonal estimate (not needed in the classical index
theorems). As, to the best of our knowledge, an appropriate term for such a result
about the local density hasn’t appeared in the literature yet, we shall follow the clas-
sical cases and call it a local index theorem on these CR manifolds (Corollary 1.13),
including Sasakian manifolds of interest in String Theory.

With reference to the questions in the beginning of this Introduction, for further
application of our results to CR geometry it is important to produce many CR func-
tions or CR sections. Namely we hope to know when H0

b pX,Eq or H0
b,mpX,Eq is

large (see Questions 1.18, 1.19 and 1.23 in Section 1.3). Progress towards this circle
of questions seems limited (Section 1.3). We can now develop a tool for tackling some
of these questions. The idea here is to combine our version of CR index theorem with
a sort of vanishing theorem for higher cohomology groups, which is intimately re-
lated to a version of Grauert-Riemenschneider criterion adapted to the CR case. This
methodology turns out to be effective for those CR manifolds studied in this paper.

In Section 1.3 we apply our CR index theorem to prove a CR version of Grauert-
Riemenschneider criterion, and produce many CR functions on a weakly pseudoconvex
CR manifold with transversal S1 action and many CR sections on some class of CR
manifolds, which give answers to some long-standing questions in several complex
variables and CR geometry. In Section 1.4 we provide an abundance of examples of
those CR manifolds studied in the present paper, some of which arise from Brieskorn
manifolds (generalized Hopf manifolds).

There is another index theory of geometric significance, developed by Charles Ep-
stein. He studied the so called relative index of a pair of embeddable CR structures
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through their Szegö projectors in a series of papers (see [27], [28], [29], [30] and [31]).
On the other hand, Erik van Erp derived an index formula for subelliptic opera-
tors on a contact manifold (see [32], [33]). Moreover, recent work of Paradan and
Vergne [55] gave an expression for the index of transversally elliptic operators which
is an integral of compactly supported equivariant form on the cotangent bundle; see
also Fitzpatrick [34] for related directions. Brüning, Kamber and Richardson [13],
[12] computed the index of an equivariant transversally elliptic operator as a sum of
integrals over blow ups of the strata of the group action.

Finally it is natural to ask for a generalization from the action of S1 to that of other
Lie groups or even to foliations (cf. Subsection 7.1 for references). As we will discuss
in Section 7, the asymptotic expansion in the form (1.4) is thereby indicated as a sort
of remedy for (1.3). In this way the “distance function” d̂ shall be involved. All of this
seems to be best illustrated in the present S1 case. It appears also conceivable that
these features shall be preserved for generalization in a certain (as yet unknown) way.
This paper may be presented or read in token of a prototype for further study into
much more complicated, diversified situations.

1.2. Main theorems

We shall now formulate the main results. We refer to Section 2.2 and Section 2.3
for some notations and terminologies used here. After the background material, we
will discuss in the sequel i) asymptotic expansions, ii) a local index theorem and iii)
trace integrals.

1.2.1. Background. – Let pX,T 1,0Xq be a compact connected CR manifold with a
transversal CR locally free S1 action e´iθ, where T 1,0X is a CR structure of X. X is
of dimension 2n` 1 throughout this paper.

Let T P C8pX,TXq be the real vector field induced by the S1 action and let ω0 P

C8pX,T˚Xq be the global real one form determined by xω0, T y “ 1, xω0, u y “ 0,
for every u P T 1,0X ‘ T 0,1X.

Associated with the S1 action of X it is natural to consider various geometric
objects admitting an S1 action. In the following, to streamline the exposition we shall
freely use the notion of rigid objects: “rigid bundles,” “rigid metrics” etc., and refer to
Definitions 2.3, 2.4 and 2.5 for the precise meanings. (See also the work of Baouendi-
Rothschild-Treves [3, Definition II.2] for a similar use of this term.) It suffices to say
here that this notion of rigid objects is nothing but an equivalent way (by using metric)
to consider objects (originally defined without assumption on metric) which admit
(compatible) S1 actions (or S1 invariance, subject to the proper context) provided
one starts with a CR manifold with an S1 action (cf. Theorem 2.11).
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8 CHAPTER 1. INTRODUCTION AND STATEMENT OF THE RESULTS

Henceforth let E be a rigid CR vector bundle over X, equipped with a rigid Hermi-
tian metric x ¨ | ¨ yE . We note that T 1,0X is known to be a rigid complex vector bundle
(see the work of Baouendi-Rothschild-Treves [3]) with a rigid Hermitian metric x ¨ | ¨ y
satisfying extra properties (not specified here, cf. (2.5)). Let x ¨ | ¨ yE be the Hermitian
metric on T˚0,‚X bE induced by those on E and CTX. Denoting by dvX “ dvXpxq

the volume form on X induced by the Hermitian metric x ¨ | ¨ y on CTX we get the
natural global L2 inner product p ¨ | ¨ qE on Ω0,‚pX,Eq.

As remarked in Introduction, for u P Ω0,‚pX,Eq, Tu P Ω0,‚pX,Eq is defined and
TBb “ BbT . For m P Z, put

Ω0,‚
m pX,Eq : “

 

u P Ω0,‚pX,Eq; Tu “ ´imu
(

“
 

u P Ω0,‚pX,Eq; pe´iθq˚u “ e´imθu, @θ P r0, 2πr
(

,

where pe´iθq˚ denotes the pull-back by the map e´iθ : X Ñ X of S1 action.
Write L2pX,T˚0,‚X b Eq (resp. L2

mpX,T
˚0,‚X b Eq) for the L2-completion

of Ω0,‚pX,Eq (resp. Ω0,‚
m pX,Eq) with respect to p ¨ | ¨ qE .

By TBb “ BbT one defines Bb,m : Ω0,‚
m pX,Eq Ñ Ω0,‚

m pX,Eq as the restriction of Bb
on Ω0,‚

m . Write

B
˚

b : Ω0,‚pX,Eq Ñ Ω0,‚pX,Eq, resp. B
˚

b,m : Ω0,‚
m pX,Eq Ñ Ω0,‚

m pX,Eq

for the formal adjoint of Bb (under p ¨ | ¨ qE), resp. Bb,m. Since x ¨ | ¨ yE and x ¨ | ¨ y are
rigid, one sees

TB
˚

b “ B
˚

b T on Ω0,‚pX,Eq,

B
˚

b,m “ B
˚

b |Ω0,‚
m

: Ω0,‚
m pX,Eq Ñ Ω0,‚

m pX,Eq, @m P Z.
(1.7)

Let Am : Ω0,‚
m pX,Eq Ñ Ω0,‚

m pX,Eq be a certain smooth zeroth order operator with
TAm “ AmT and Am : Ω0,˘

m pX,Eq Ñ Ω0,¯
m pX,Eq (arising from a CR version of Spinc

Dirac operator, cf. Definition 4.3). Put

(1.8) rDb,m :“ Bb,m ` B
˚

b,m `Am : Ω0,‚
m pX,Eq Ñ Ω0,‚

m pX,Eq

and let

(1.9) rD˚b,m : Ω0,‚pX,Eq Ñ Ω0,‚pX,Eq

be the formal adjoint of rDb,m (with respect to p ¨ | ¨ qE).
We have rl b,m, given by

(1.10) rl b,m :“ rD˚b,m
rDb,m : Ω0,‚pX,Eq Ñ Ω0,‚pX,Eq,

which denotes them-th modified Kohn Laplacian, thought of as Spinc Kohn Laplacian
(cf. Definition 4.3 and the paragraph below it). We extend rl b,m by

(1.11) rl b,m : Dom rl b,m pĂ L2
mpX,T

˚0,‚X b Eqq Ñ L2
mpX,T

˚0,‚X b Eq,
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with Dom rl b,m :“ tu P L2
mpX,T

˚0,‚X bEq; rl b,mu P L
2
mpX,T

˚0,‚X bEqu in which
rl b,mu is defined in the sense of distribution.

We will show in Section 3 that rl b,m is self-adjoint, Spec rl b,m is a discrete subset
of r0,8r and for ν P Spec rl b,m, ν is an eigenvalue of rl b,m with finite multiplicities
dν ă 8. Let

 

fν1 , . . . , f
ν
dν

(

be an orthonormal frame for the eigenspace of rl b,m with
eigenvalue ν. The (smooth) heat kernel e´tĂl b,mpx, yq can be given by

(1.12) e´t
Ăl b,mpx, yq “

ÿ

νPSpec Ăl b,m

dν
ÿ

j“1

e´νtfνj pxq ^ pf
ν
j pyqq

:,

where pfνj pyqq: denotes the linear map pfνj pyqq: : T˚0,‚
y X bEy Ñ C, upyq P T˚0,‚

y X b

Ey Ñ xupyq | fνj pyq yE P C. Note that fνj pxq ^ pfνj pyqq: is the linear map:

fνj pxq ^ pf
ν
j pyqq

: : T˚0,‚
y X b Ey Ñ T˚0,‚

x X b Ex,

upyq P T˚0,‚
y X b Ey Ñ fνj pxqxupyq | f

ν
j pyq yE P T

˚0,‚
x X b Ex.

Let e´tĂl b,m : L2pX,T˚0,‚XbEq Ñ L2
mpX,T

˚0,‚XbEq be the (continuous) operator
associated with the distribution kernel e´tĂl b,mpx, yq.

Let e1pxq, . . . , edpxq be an orthonormal frame of T˚0,q
x XbEx (q “ 0, 1, . . . , n), and

A P End pT˚0,‚
x X b Exq. Put TrpqqA :“

řd
j“1xAej | ej yE and set

TrA :“
n
ÿ

j“0

TrpjqA,

STrA :“
n
ÿ

j“0

p´1qjTrpjqA.

(1.13)

Let ∇TX be the Levi-Civita connection on TX (with respect to x ¨ | ¨ y). Then
T 1,0X is equipped with a connection ∇T 1,0X :“ PT 1,0X∇TX where PT 1,0X be the
projection from CTX onto T 1,0X.

Let ∇E be the connection on E induced by x ¨ | ¨ yE (see Theorem 2.12).
Let Tdb p∇T

1,0X , T 1,0Xq denote the representative of the tangential Todd class
of T 1,0X and chb p∇E , Eq the representative of the tangential Chern character of E
(see Section 2.3 for tangential classes).

In what follows we aim to define a distance function d̂ which plays an important
role (for the asymptotic expansion) in this paper. For x P X, we say that the period
of x is 2π

` , ` P N provided that e´iθ ˝ x ‰ x for every 0 ă θ ă 2π
` and e´i

2π
` ˝ x “ x.

Put, for each ` P N,

(1.14) X` “
 

x P X; the period of x is 2π
`

(

and let p “ min t` P N; X` ‰ Hu. We call Xp the principal stratum. It is well-
known that if X is connected, then Xp is an open and dense subset of X (see
Proposition 1.24 in Meinrenken [52] and Duistermaat-Heckman [25]). Assume
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X “ Xp1 YXp2 Y ¨ ¨ ¨ YXpk , p “: p1 ă p2 ă ¨ ¨ ¨ ă pk. Put Xsing “ X1
sing :“

Ťk
j“2Xpj , Xr

sing :“
Ťk
j“r`1Xpj , k ´ 1 ě r ě 1. Set Xk

sing :“ H. Note p1|pj
for 1 ď j ď k (cf. Remark 1.17).

Let dp¨, ¨q denotes the standard Riemannian distance with respect to the given
Hermitian metric. Take ζ

(1.15) 0 ă ζ ă inf

"

2π

pk
,

ˇ

ˇ

ˇ

ˇ

2π

pr
´

2π

pr`1

ˇ

ˇ

ˇ

ˇ

, r “ 1, . . . , k ´ 1

*

.

Set, for x P X and r “ 1, 2, . . . , k,

(1.16) d̂ζpx,X
r
sing q :“ inf

"

dpx, e´iθxq; ζ ď θ ď
2π

pr
´ ζ

*

.

This notation reflects the fact that d̂ζpx,Xr
sing q is equivalent to the ordinary dis-

tance dpx,Xr
sing q (see below). Note by definition d̂ζpx,X

k
sing q p“ d̂ζpx,Hqq ą 0 for

all x P X. We remark that for any 0 ă ζ, ζ1 satisfying (1.15), d̂ζpx,Xr
sing q and

d̂ζ1px,X
r
sing q are equivalent (as far as the estimate in Theorem 1.3 below is con-

cerned). We shall denote d̂px,Xr
sing q :“ d̂ζpx,X

r
sing q.

Remark that, by examining the definition d̂px,Xr
sing q “ 0 if and only if x P Xr

sing .
Further, for ε ą 0 there is a δ ą 0 such that d̂px,Xr

sing q ě δ provided x P X satisfies
(the ordinary distance) dpx,Xr

sing q ě ε. It is thus convenient to think of d̂px,Xr
sing q

as a distance function from x to Xr
sing .

Indeed in Theorem 6.7 for a strongly pseudoconvex X there is a constant C ě 1

such that
1

C
dpx,Xr

sing q ď d̂px,Xr
sing q ď Cdpx,Xr

sing q, @x P X.

1.2.2. Asymptotic expansion of the heat kernel e´tĂl b,mpx, xq. – For pr,m P N, put
δpr|m :“ δNp

m
pr
q, that is, δpr|m “ 1 if pr | m and δpr|m “ 0 if pr  |m. With the distance

function d̂, we state the first main result of this paper (see Section 6 for a proof).

Theorem 1.3. – Suppose pX,T 1,0Xq is a compact, connected CR manifold (of di-
mension 2n` 1) with a transversal CR locally free S1 action and let E be a rigid CR
vector bundle over X. With the notations above, there exist aspt, xq p“ as,mpt, xqq P

C8pR` ˆ X,End pT˚0,‚X b Eqq with |aspt, xq| ď C on R` ˆ X where C ą 0 is
independent of t, s “ n, n´ 1, . . ., such that

(1.17) e´t
Ăl b,mpx, xq „ t´nanpt, xq ` t

´n`1an´1pt, xq ` ¨ ¨ ¨ as tÑ 0`.

(See Definition 5.5 for “„”.)
Moreover, there exist αspxq p“ αs,mpxqq P C8pX,End pT˚0,‚X b Eqq, s “

n, n ´ 1, . . ., satisfying the following property. Given any differential operator
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P` : C8pX,T˚0,‚X b Eq Ñ C8pX,T˚0,‚X b Eq of order ` P N0, there exist ε0 ą 0

and C0 ą 0 such that

(1.18)
ˇ

ˇ

ˇ
P`

´

aspt, xq ´ prδpr|mαspxq
¯
ˇ

ˇ

ˇ
ď C0t

´ `
2 e´

ε0d̂px,X
r
sing q

2

t , @t P R`, @x P Xpr

r “ 1, . . . , k.

The following is immediate from the proof of Theorem 1.3.

Corollary 1.4. – Suppose pX,T 1,0Xq is a compact, connected CR manifold with
a transversal CR locally free S1 action and let E be a rigid CR vector bundle
over X. With the notations above, for any r “ 1, . . . , k, any differential operator
P` : C8pX,T˚0,‚X b Eq Ñ C8pX,T˚0,‚X b Eq of order ` P N0, every N0 P N with
N0 ě N0pnq for some N0pnq, there are ε0 ą 0, δ ą 0 and CN0

ą 0 such that
ˇ

ˇ

ˇ

ˇ

ˇ

P`

´

e´t
Ăl b,mpx, xq ´ prδpr|m

N0
ÿ

j“0

t´n`jαn´jpxq
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď CN0

´

t´n`N0`1´ `
2 ` t´n´

`
2 e´

ε0d̂px,X
r
sing q

2

t

¯

, @x P Xpr , @ 0 ă t ă δ.

(1.19)

The expansions in (1.18) and (1.19) involve a contribution in terms of a distance
function from the lower dimensional strata of the S1 action. The analogous phenomena
are encountered in other settings, for instance for the asymptotic of the Bergman
kernel on orbifolds appearing in [19] (see also [50, Thm 5.4.10]) and for the heat
kernel of the Kodaira Laplacian on complex orbifolds in the recent paper [57].

In the following we supplement these results with a number of remarks before going
further.

Remark 1.5. – It should be noticed that prδpr|m “
pr
ř

s“1
e

2πps´1q
pr

mi.

Remark 1.6. – We shall now see that if one wants an asymptotic expansion
of e´tĂl b,mpx, xq to be valid around each x P X (cf. Definition 5.5), then (1.17) is
basically optimal (i.e., in general, aspt, x, yq cannot be t-independent for all s). For U
open with U Ă Xp, a tradition-like formula (assuming p “ 1 for simplicity)

(1.20) e´t
Ăl b,mpx, xq „ C

`

t´nαnpxq ` t
´n`1αn´1pxq ` ¨ ¨ ¨

˘

is valid for x P U and C “ 1 (as follows from (1.18) for l “ 0) whereas for x P Xpr ,
r ě 2, an asymptotic expansion (for pr | m) with C “ pr is valid around an open
subset (Q x) of the stratum Xpr . Since e´t

Ăl b,mpx, yq is going to be a well defined
smooth kernel, it is easily seen that those functions αspxq (s “ n, n´1, . . .) satisfying
Theorem 1.3 are unique (if they exist). (We notice that aspt, xq in (1.17) are not
canonically defined by our method which is subject to choice of BRT trivializations, cf.
(5.42) and Subsection 2.4.) In short, the above suggests that an asymptotic expansion
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of the form as (1.20) can only be true in the piecewise sense with respect to strata.
See also Subsection 7.1.

To confirm this, one uses Theorem 1.14 (see Theorems 7.20 and 7.24 for a more
precise version) by noting

ş

X
Trα`s pxqdvXpxq “ S`1,s in Theorem 7.20 (which is taking

the “even” part of the Laplacian). Hence one can interpret the trace integral result
(obtained by integrating Tre´tĂl b,mpx, xq over X) as one that gives extra nonzero
correction terms, cf. the second line in (1.32) or the third line in (7.57).

It follows that if there exists a global asymptotic expansion (not just in the piece-
wise sense) such as (1.17), then not all of aspt, xq can be independent of t. Oth-
erwise, if all aspt, xq are independent of t, it would be of the form (1.20) glob-
ally by assumption (C “ 1 if p “ 1), so by integrating the trace over X, there
would be no correction terms as discussed above. To say more, e´tĂl b,mpx, xq cannot
have any asymptotic expansion of the form tm1βm1

pxq ` tm2βm2
pxq ` ¨ ¨ ¨ (globally)

m1 ă m2 ă ¨ ¨ ¨ P R, βm1
pxq, βm2

pxq, . . . continuous functions on X. Otherwise by
equating it to (1.17), each aspt, xq would be rendered independent of t, absurd as just
remarked (see the next remark for argument independent of Theorems 1.14, 7.20).

The next remark shows that aspt, xq for the particular s “ n must be dependent
on t (nontrivially). This part will not use Theorem 1.14.

Remark 1.7. – In the above remark a certain discontinuity in the form (1.20) for, say
x P Xp and x P Xp2 seems to appear. We shall now explore it. If the (Gaussian-like)
term to the right of (1.18) is examined, it arises from a precise integral (see (6.8)).
To show that this integral is generally nontrivial, regardless of whether our estimate
given by (1.18) is a fine or crude one, we are actually going to show that the term
for s “ n in (1.18)

anpt, xq ´ prδpr|mαnpxq

is nontrivial. For the sake of illustration we assume that X “ X1 YX2, that is p “ 1

and p2 “ 2, and take m to be an even number. For x P X1, by (1.18) (for l=0) and
p “ 1, we see that anpt, xq “ αnpxq ` rnpt, xq

(1.21) |rnpt, xq| À e´
ε0d̂px,Xsing q

2

t .

As our αnpxq essentially arises from a local Kodaira Laplacian (see (6.1), similar to
discussion after Theorem 1.2), it is well known that αnpxq, as the coefficient of the
leading term (in the t-expansion of the heat kernel for Kodaira Laplacian), is constant
in x with Trαn ą 0 (cf. [36, Lemma 4.1.4 and Section 4.4]). By continuity (as and αs
being globally continuous functions)

(1.22) anpt, xq “ αnpxq ` rnpt, xq

remains true on X2. For x0 P X2, the estimate of (1.18) is given by (with p2 “ 2 and
discussion after (1.16) for d̂px0,Hq ą 0)

(1.23) anpt, x0q “ 2αnpx0q `Opt
8q.
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By (1.22) and (1.23) it follows rnpt, x0q “ αnpx0q`Opt
8q so rnpt, xq « αnpxq around

x0 as t Ñ 0, giving |rnpt, xq| ě ε ą 0 nearby x0 for some constant ε independent
of x and t. But this would be absurd by (1.21) if rn were independent of t (taking
x pP X1,‰ x0q near x0 so that |rnpt, xq| ě ε and letting t Ñ 0 in (1.21)). Hence
anpt, xq cannot be independent of t either, as desired.

Remark 1.8. – To discuss the estimate (1.19), let’s take d̂ in (1.19) to be d for conve-
nience (as remarked previously d̂ is equivalent to the ordinary distance function d at
least in the strongly pseudoconvex case, cf. Theorem 6.7). Take Pl “ id (so l “ 0). The
term to the rightmost of (1.19) appears as a Gaussianlike term. As t Ñ 0, this term
tends to a sort of Dirac delta function supported along the strata Xr

sing (with an extra
singular factor t´

a´1
2 , a “ dimXr

sing). This may conceptually explain the piecewise
continuity nature just discussed in Remarks 1.6 and 1.7 if the asymptotic expansion
is to be expressed in something, without t-dependence, such as αspxq. Conversely, the
estimate as (1.19) involving a type of Dirac delta function is conceptually reasonable
under the piecewise continuity phenomenon in terms of αspxq. For more about this,
some quantitative information may be available by Theorems 1.14, 7.20 and 7.24.

Remark 1.9. – We make a short comment on the coefficients aspt, xq or αjpxq in
(1.18) (the difference between aspt, xq and pαspxq (at a given x P Xp) is Opt8q by
(1.18); this is partly explained conceptually right below). For the standard (elliptic)
case (of Dirac type) it is well-known that the coefficients of a heat kernel along the
diagonal (by taking trace) are expressible in terms of the curvature and its covari-
ant derivatives (e.g., [36]). In our transversally elliptic case (without bundle E for
simplicity) if S1 action is globally free, it follows from the standard case above (cf.
(1.1)-(1.2)) that these coefficients of the (transversal) heat kernel are expressible in
terms of the tangential curvature (and its derivatives) (cf. Section 2.3). In the locally
free case the same results can be achieved in view of the proof of Theorem 1.3, which
basically arises from a procedure of patching and successive approximations based on
the local (transversal) heat kernels that give the asymptotic approximations of the
final (transversal) heat kernel (see Section 1.6 for details of an outline). Since the
local kernels can be so expressed as just said (at least on the principal stratum), it
follows from the asymptotic approximation (e.g., Theorems 2.23 and 2.30 of [5] or
Theorem 5.15 in our case) that the same (expression in tangential curvature and its
derivatives) can be said for the global kernel (on the principal stratum then followed
by continuous extension of this global kernel on X). It is also of interest to consider
the integral version of these coefficients, which is the topic of Section 7 of this paper.

1.2.3. A local index theorem for CR manifolds with S1 action. – Here we discuss issues
related to the index theorem we will prove. We recall that the term to the left of
the inequality in (1.18) is basically nontrivial by Remark 1.7. In our formulation of
index theorems, the contribution arising from such a term is expected to be removed.
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This can be done when rl b,m is the Spinc Kohn Laplacian (cf. (4.12)). In this case,
we show that taking supertrace in (1.19) (Pl “ id) and applying Getzler’s rescaling
technique to the off-diagonal estimate (see Subsection 1.6.3 for more) yield that the
singular part t´n to the rightmost of (1.19) can be removed (see Subsection 1.6.4 and
Section 6 for a proof). More precisely

Theorem 1.10. – Suppose pX,T 1,0Xq is a compact, connected CR manifold with a
transversal CR locally free S1 action and let E be a rigid CR vector bundle over X.
With the notations above, if rl b,m is the Spinc Kohn Laplacian (see (4.12)), then
for r “ 1, . . . , k and every N0 P N with N0 ě N0pnq for some N0pnq, there are ε0 ą 0,
δ ą 0 and CN0

ą 0 such that (STr denoting supertrace, cf. (1.13))
ˇ

ˇ

ˇ

ˇ

ˇ

STr e´t
Ăl b,mpx, xq ´ prδpr|m

N0
ÿ

j“0

t´n`jSTrαn´jpxq
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď CN0

´

t´n`N0`1 ` e´
ε0d̂px,X

r
sing q

2

t

¯

, @ 0 ă t ă δ, @x P Xpr ,

(1.24)

and
STrα`pxq “ 0 for 1 ď ` ď n,

STrα0pxqdvXpxq

“
1

2π

”

Tdb p∇T
1,0X , T 1,0Xq ^ chb p∇E , Eq ^ e´m

dω0
2π ^ ω0

ı

2n`1
pxq

(1.25)

where r¨ ¨ ¨ s2n`1 denotes the part of p2n` 1q-form.

As Spinc objects can be simplified in the Kähler case, so can the Spinc Kohn
Laplacian in the CR Kähler case, to which we turn now.

Definition 1.11. – We say that X is CR Kähler if there is a closed form Θ P

C8pX,T˚1,1Xq such that ΘpZ,Zq ą 0, for all Z P C8pX,T 1,0Xq. We call Θ a CR
Kähler form on X.

When X is a strongly pseudoconvex CR manifold with a transversal CR locally
free S1 action, the closed form dω0 satisfies dω0pZ,Zq ą 0, for all Z P C8pX,T 1,0Xq.
Hence X is CR Kähler.

A quasi-regular Sasakian manifold is also a CR Kähler manifold. We recall that for
a compact smooth manifold X of dimX “ 2n`1, n ě 1, the triple pX, g, αq where g is
a Riemannian metric and α is a real 1-form is called a Sasakian manifold if the cone
C pXq “ tpx, tq P XˆRą0u is a Kähler manifold with complex structure J and Kähler
form t2dα` 2tdt^α compatible with the metric t2g` dtb dt (see [6], [9], [54]). As a
consequence, X is a compact strongly pseudoconvex CR manifold and the Reeb vector
field ξ, defined by αp¨q “ gpξ, ¨q, induces a transversal CR R action on X. If the orbits
of this R action are compact, the Sasakian structure is called quasi-regular. In this
case, the Reeb vector field generates a locally free transversal CR S1 action on X. We
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can thus identify a compact quasi-regular Sasakian manifold with a compact strongly
pseudoconvex CR manifold pX,T 1,0Xq equipped with a transversal CR locally free
S1 action such that the induced vector field of the S1 action coincides with the Reeb
vector field on X (see [53], [54]).

Let X be a CR Kähler manifold with a transversal CR locally free S1 action. If
x ¨ | ¨ y is induced by a CR Kähler form on X, then l b,m is equal to the Spinc Kohn
Laplacian. By Theorem 1.10, we immediately obtain a version of local index theorem
on CR Kähler manifolds with transversal CR locally free S1 action (which include the
compact quasi-regular Sasakian manifolds as a special case by above). These results
are discussed below.

For a proof of the following, see the beginning of Subsection 1.6.4 and the discussion
leading to Proposition 5.9):

Corollary 1.12 (CR Kähler case of Theorem 1.10). – Suppose pX,T 1,0Xq is a
compact, connected CR Kähler manifold with a transversal CR locally free S1 action
and assume that x ¨ | ¨ y is induced by a CR Kähler form on X. Let E be a rigid CR
vector bundle over X. With the notations above, for r “ 1, . . . , k and every N0 P N
with N0 ě N0pnq for some N0pnq, there are ε0 ą 0, δ ą 0 and CN0

ą 0 such that
ˇ

ˇ

ˇ

ˇ

ˇ

STr e´tl b,mpx, xq ´ prδpr|m

N0
ÿ

j“0

t´n`jSTrαn´jpxq
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď CN0

´

t´n`N0`1 ` e´
ε0d̂px,X

r
sing q

2

t

¯

, @ 0 ă t ă δ, @x P Xpr ,

(1.26)

and
STrα`pxq “ 0 for 1 ď ` ď n,

STrα0pxqdvXpxq

“
1

2π

”

Tdb p∇T
1,0X , T 1,0Xq ^ chb p∇E , Eq ^ e´m

dω0
2π ^ ω0

ı

2n`1
pxq.

(1.27)

We are in a position to state an index theorem (including a local index theorem in
the CR Kähler case). Recall thatBb,m :“ Bb : Ω0,q

m pX,Eq Ñ Ω0,q`1
m pX,Eq,m P Z, and

a Bb,m-complex:

Bb,m : ¨ ¨ ¨ Ñ Ω0,q´1
m pX,Eq Ñ Ω0,q

m pX,Eq Ñ Ω0,q`1
m pX,Eq Ñ ¨ ¨ ¨ .

The q-th Bb,m Kohn-Rossi cohomology group (regarded as the m-th Fourier compo-
ment of the ordinary q-th Kohn-Rossi cohomology group) is

Hq
b,mpX,Eq :“

Ker Bb,m : Ω0,q
m pX,Eq Ñ Ω0,q`1

m pX,Eq

Im Bb,m : Ω0,q´1
m pX,Eq Ñ Ω0,q

m pX,Eq
.

We will prove in Theorem 3.7 that dimHq
b,mpX,Eq ă 8 (for each m P Z and

q “ 0, 1, 2, . . . , n) without any Levi curvature assumption.
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In Corollary 4.8 (see also Remark 4.9) we have a McKean-Singer type formula in
our CR case: for every t ą 0,

(1.28)
n
ÿ

j“0

p´1qjdimHj
b,mpX,Eq “

ż

X

STr e´t
Ăl b,mpx, xqdvX .

Combining (1.28), (1.24) and (1.25) and noting e´
ε0d̂px,Xsing q

2

t is bounded by 1

and rapidly decays to 0 for x in the principal stratum as t Ñ 0, we conclude the
following form of an index theorem on our CR manifolds (see Section 2.3 for the
precise meanings of Tdb pT

1,0Xq and chb pEq below):

Corollary 1.13 (CR Index Theorem, cf. Corollary 6.5). – Suppose pX,T 1,0Xq is a
compact, connected CR manifold with a transversal CR locally free S1 action and let
E be a rigid CR vector bundle over X. Then

n
ÿ

j“0

p´1qjdimHj
b,mpX,Eq

“ pδp|m
1

2π

ż

X

Tdb pT
1,0Xq ^ chb pEq ^ e

´m
dω0
2π ^ ω0,

(1.29)

where Tdb pT
1,0Xq denotes the tangential Todd class of T 1,0X and chb pEq denotes

the tangential Chern character of E.

For a connection with other works on index theorems by different formulations
and methods, we refer to comments that come after Theorem 1.28 and to the sixth
paragraph in Subsection 7.1.

1.2.4. Trace integrals in terms of geometry of the S1 stratification. – This is the third
and the last topic of this paper. For some applications (e.g., see a natural connection
with Remark 1.6), one studies the asymptotic behavior of

ş

X
Tr e´tĂl b,mpx, xqdvXpxq.

More comments on the historical respect come in the beginning of Section 7. Suppose
M is an orbifold of (real) dimension k and Hpt, x, xq is the associated heat kernel on
the diagonal for the standard Laplacian on M . It is known in 2008 [23] (for Laplacian
on functions; see also Richardson [59, Theorem 3.5]) that

(1.30)
ż

M

Hpt, x, xqdvXpxq „ t´
k
2 ak`t

´ k2`
1
2 ak´ 1

2
`t´

k
2`1ak´1`t

´ k2`
3
2 ak´ 3

2
`¨ ¨ ¨ ,

where as P R is independent of t, s “ k, k´ 1
2 , k´ 1, . . .. A novelty is that apart from

the overall t´
k
2 the expansion is a power series in t

1
2 .

By a strategy partly in connection with the proof of Theorem 1.3, we obtain an
expansion of the trace integral in the same spirit as (1.30). We find that in our case, the
expansion is a power series still in integral power of t. However, there appear various
corrections (depending on m) supported on each stratum (cf. (7.56) and (7.61)) in
contrast to the expansion in the globally free case (of S1 action).
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More precisely, we have (see Theorems 7.20 and 7.24 for more information and
proof):

Theorem 1.14 (Cf. Theorems 7.20, 7.24). – With notations in Theorem 1.3 and
assumption that the S1 action is locally free but not globally free, let e be the number
(which is even) defined to be the minimum of the (real) codimensions of connected
components M of Xp` for all ` ě 2. For s “ n, n´ 1, . . ., we have

(1.31)
ż

X

Tr as,mpt, xqdvXpxq „ qs,0 ` tqs,1 ` t
2qs,2 ¨ ¨ ¨ as tÑ 0`,

where as,mpt, xq p“ aspt, xqq is as in (1.17) and qs,j P R is independent of t (dependent
on m though), j “ 0, 1, 2, . . .. Similarly, as tÑ 0`,

ż

X

Tr e´t
Ăl b,mpx, xqdvXpxq „ pδp|m

`

t´ncn ` t
´n`1cn´1 ` t

´n`2cn´2 ` ¨ ¨ ¨
˘

` t´n`
e
2 c̃n´ e2 `Opt

´n` e2`1q.

(1.32)

These coefficients satisfy the following. For an ` ě 2, write tM`,γ`uγ` (possibly empty
for some `) for those connected components M`,γ` of Xp` with the codimension
codimM`,γ` “ e. Set S`,γ`,s,m “

ş

M`,γ`

Trαs,mdvM`,γ`
where αs,m p“ αsq is as in

(1.18) and the numerical factor

(1.33) D`,m “ p
?
πqe

ÿ

c,hPN,ph,cq“1
cą1,c|p`,c  |p

e´i
2πh
c m

ˇ

ˇ

ˇ
ei

2πh
c p ´ 1

ˇ

ˇ

ˇ

e pą 0 if p` | mq.

i) qs,1 “ qs,2 “ ¨ ¨ ¨ “ qs, e2´1 “ 0, qs,0 “ pδp|m
ş

X
Trαs,mdvX ps “ n, n ´ 1,

n´ 2, . . .q.
ii) qs, e2 is (a finite sum) of the form

ř

`,γ`
D`,mS`,γ`,s,m ps “ n, n´ 1, n´ 2, . . .q.

iii) cs “
ş

X
Trαs,mdvX ps “ n, n´ 1, n´ 2, . . .q.

iv) c̃n´ e2 “ p2πq
´pn`1q

ř

`,γ`
D`,mvol pM`,γ`q, (vol “ volume), which is ą 0 if p` | m

for each ` here.

The Laplacian in the work [23] is limited to the Laplacian acting on functions while
ours above is not. We remark that in [59, Theorem 3.5] the nontrivial fractional power
in t

1
2 does occur. This is however due partly to a fixed point set of codimension 1

under a reflection isometry (loc. cit., p. 2315). In our CR case, all of the various
fixed point submanifolds are of even (real) codimension, cf. i) of Remark 7.22 or [59,
p. 23–24]. See Section 7 for a comparison of these methods and results.

It will be of interest to study the geometrical significance of the various coefficients
in (1.31) and (1.32) as usually studied in the standard heat kernel case. Some explicit
expressions are available by our treatment, e.g., (7.56), (7.61) and Theorems 7.20, 7.24.

Remark that the above results essentially deal with the Gaussian part of the heat
kernel, which behaves as a Dirac type delta function supported on (each) stratum. By
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contrast, the CR local index theorem as Corollary 1.13 is derived by exploring the non-
Gaussian parts of the heat kernel such as the off-diagonal estimate in Theorem 5.10.
In spirit, the two approaches are complementary to each other in the present paper,
and jointly enhance the understanding of heat kernels for this special class of CR
manifolds.

We indicate a connection with deformation of singularities. In algebraic geometry
it may or may not be possible to arrive at a smoothing of a singularity. In the case
of quotient singularities there are results on their rigidity property (i.e., every de-
formation is trivial) giving the nonexistence of smoothing, under certain conditions
(cf. [1], [61]). Here, as an application of our trace integral, there is the following result
on the “rigidity” aspect of S1 action and of the orbifold geometry.

Corollary 1.15. – Let tXtu´εătăε be a smooth family of compact CR manifolds
with transversal S1 action (dependent on t smoothly) as before. Suppose that the S1 ac-
tion on X0 is locally, but not globally, free. Then the same holds true for all t small.
In the (special) case where X0 is realized as an (orbifold) S1 bundle (associated with
a metrized holomorphic line bundle L0) over a compact complex singular orbifold M0

(see Subsection 1.4.2 for concrete examples), one hence obtains a nonexistence result
on the “smoothing” of the holomorphic object pM0, L0q as a pair.

It is possible to assert (and prove) a refined version of “rigidity” at the level of S1

stratifications via the use of the notion of “types” introduced in Subsection 7.5; the
precise formulation is left to the interested reader.

Proof. – Write X “
Ť

tXt which is smooth by assumption. Suppose h0 is a rigid
metric on X0 (cf. Subsection 1.2.1). It is not difficult to obtain a smooth extension
ht on X, giving a rigid metric on Xt for each t. Because of the nontrivial correction
terms by Theorem 1.14, the nearby S1 actions give nontrivial corrections terms too
(on each Xt) by the continuity of heat kernels; this can occur only when the actions
are locally, but not globally, free by the same theorem.

For those interested in algebraic geometry and singularities, the above “rigidity”
result appears new, to the best of our knowledge. Note, however, that an orbifold
could still be a nonsingular manifold (cf. Subsection 1.4.2 and Theorem 1.30). The
proper meaning of “smoothing” in Corollary 1.15 should be carefully understood in
the sense of group action within our context above.

Two more remarks go as follows.

Remark 1.16. – We note that the topological obstruction exists for a CR manifold
to admit a transversal CR S1 action. For instance, a compact strictly pseudoconvex
CR 3-manifold must have even first Betti number if admitting a transversal CR
S1 action. The reason is that such a manifold must be pseudohermitian torsion free
(see [48]), and this vanishing pseudohermitian torsion implies even first Betti number
as shown by Alan Weinstein (see the appendix in [17]). In this paper, we only consider
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the S1 action that is transversal and locally free. Here are two examples:
Example I: X “

!

pz1, z2, z3q P C3; |z1|
2
` |z2|

2
` |z3|

2
`
ˇ

ˇz2
1 ` z2

ˇ

ˇ

4
`
ˇ

ˇz3
2 ` z3

ˇ

ˇ

6
“ 1

)

.

Then X admits a transversal CR locally free S1 action: e´iθ ˝ pz1, z2, z3q “

pe´iθz1, e
´2iθz2, e

´6iθz3q. It is clear that this S1 action is not globally free.
Example II: Let X be a compact orientable Seifert 3-manifold. Kamishima and
Tsuboi [45] proved that X is a compact CR manifold with a transversal CR locally
free S1 action. X is S1-fibered over a possibly singular base (an orbifold).

In Section 1.4, we collect more examples.

Remark 1.17. – The S1 action might admit a reduction to a simpler one
as HompS1, S1q ‰ id. Recall that p1 “ p ă p2 ă p3 ă ¨ ¨ ¨ ă pk, associated
with periods of X under the given S1 action pe´iθ, xq Ñ e´iθ ˝ x. Then p divides
each pj , j ą 1. For, the isotropy subgroup Zp (“ Z{pZ) Ă S1 acts trivially on the
principal stratum, which is dense and open, hence on the whole X by continuity. The
isotropy subgroups Zpj , j “ 2, . . . , k, on any other stratum must contain Zp, giving
pj
p P N.
One renormalizes the given S1 action by the new S1 action satisfying p “ 1. More

precisely, define

S1 ˆX Ñ X,

pe´iθ, xq Ñ e´iθ ˛ x :“ e´i
θ
p ˝ x.

The new S1-action pe´iθ, ˛q has p “ 1. Let rω0 be the global real one form with respect
to pe´iθ, ˛q and let rHq

b,mpX,Eq be the corrsponding cohomology group with respect
to pe´iθ, ˛q. One sees

rω0 “ pω0,

rHq
b,mpX,Eq “ Hq

b,pmpX,Eq, @m P Z, @q “ 0, 1, 2, . . . , n.
(1.34)

Examining (1.34) and Corollary 1.13 yields that the index formulas in both cases can
be transformed to each other.

1.3. Applications

1.3.1. Applications in CR geometry. – In CR geometry, it has been an important issue
to produce many CR functions or CR sections. Put

H0
b pX,Eq “

 

u P C8pX,Eq; Bbu “ 0
(

.

The following belongs to one of the standard questions in this respect.

Question 1.18. – Let X be a compact weakly pseudoconvex CR manifold. When
is the space H0

b pX,Eq large? (Pseudoconvex CR manifolds will be briefly reviewed
following Definition 2.2.)
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In [49] Lempert proved that a three dimensional compact strongly pseudoconvex
CR manifold X with a transversal CR locally free S1action can be CR embedded
into CN . In [26] Epstein proved that a three dimensional compact strongly pseudo-
convex CR manifold X with a transversal CR globally free S1 action can be embedded
into CN by the positive Fourier components.

The embeddability of X by positive Fourier coefficients is related to the behavior of
the S1 action on X. For example, suppose for f1, . . . , fdm P H

0
b,mpXq and g1 ¨ ¨ ¨ , ghl P

H0
b,lpXq the map

Φm,l : x P X Ñ pf1pxq, . . . , fdmpxq, g1pxq, . . . , ghlpxqq P Cdm`hl

is a CR embedding. Then, the S1 action on X naturally induces an S1 action
on Φm,lpXq, given by the following:

(1.35) e´iθ ˝ pz1, . . . , zdm , zdm`1, . . . , zdm`hlq

“ pe´imθz1, . . . , e
´imθzdm , e

´ilθzdm`1, . . . , e
´ilθzdm`hlq.

In short, under a CR embedding by positive Fourier components, one can describe
the S1 action explicitly. Conversely, to study the embedding theorem of those CR
manifolds by positive Fourier components, it becomes important to know

Question 1.19. – When is dimH0
b,mpX,Eq « mn for m large?

We shall answer, combining our index theorems with some vanishing theorems (see
below), Question 1.18 and Question 1.19 for CR manifolds with transversal CR locally
free S1 action.

Firstly it follows from Corollary 1.13 (by extracting the leading coefficient of the
term mn)

Corollary 1.20. – Under the same assumption as in Corollary 1.13, one has

(1.36)
n
ÿ

j“0

p´1qjdimHj
b,mpX,Eq “ rpδp|m

mn

n!p2πqn`1

ż

X

p´dω0q
n ^ ω0 `Opm

n´1q,

where r denotes the complex rank of the vector bundle E.

For a vanishing theorem we can repeat the proof of Theorem 2.1 in [43] with minor
changes and get

Proposition 1.21. – Under the same assumption as in Corollary 1.13, suppose fur-
ther that X is weakly pseudoconvex. Then, for m " 1 dimHj

b,mpX,Eq “ opmnq, for
every j “ 1, 2, . . . , n.

Combining Corollary 1.20 and Proposition 1.21 one has
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Corollary 1.22. – Under the same assumption as in Proposition 1.21 (with X being
weakly pseudoconvex). One has, for m " 1,

dimH0
b,mpX,Eq “ rpδp|m

mn

n!p2πqn`1

ż

X

p´dω0q
n ^ ω0 ` opm

nq,

where r denotes the complex rank of the vector bundle E. In particular, if the Levi form
is strongly pseudoconvex at some point of X, then dimH0

b,pmpXq « mn for m " 1,
and hence dimH0

b pX,Eq “ 8.

These results have provided answers to Question 1.18 and Question 1.19 (for our
class of CR manifolds).

For another application, it is of great interest in CR geometry to study whether
and when a CR manifold X can be CR embedded into a complex space. It is a
classical theorem of L. Boutet de Monvel [8] which asserts that X can be globally CR
embedded into CN for some N P N provided that X is compact (with no boundary),
strongly pseudoconvex, and of dimension greater than or equal to five.

When X is not strongly pseudoconvex, the space of global CR functions could even
be trivial. As many interesting examples live in the projective space (e. g. the quadric
trzs P CPN´1; |z1|

2`¨ ¨ ¨`|zq|
2´|zq`1|

2´¨ ¨ ¨´|zN |
2 “ 0u), it is natural to consider a

setting analogous to the Kodaira embedding theorem and ask if X can be embedded
into the projective space by means of CR sections of a CR line bundle LÑ X or its
k-th power Lk.

For a study into the above question it is natural to seek the case where the di-
mension of the space H0

b pX,L
kq of CR sections of Lk is large as k Ñ 8 (so one

may hopefully find many CR sections to carry out the embedding). In this regard the
following question is asked by Henkin and Marinescu [51, p.47-48].

Question 1.23. – When is dimH0
b pX,L

kq « kn`1 for k large?

Assume that L is a rigid CR line bundle with a rigid Hermitian fiber metric hL

(i.e., L a CR line bundle admitting a compatible S1 action, cf. the beginning of
Section 2.2). Let R

L
P Ω2

0pXq be the curvature of L associated to hL. For a local
trivializing (S1-invariant) section s of L, |spxq|2hL “ e´2φpxq with Tφ “ 0. Then
R

L
“ 2BbBbφ P Ω2

0pXq. pLk, hL
k

q denotes the k-th power of pL, hLq.
With Corollary 1.13 one can show

Proposition 1.24. – With the notations above, for all δ ą 0, we have

(1.37)
ÿ

mPZ,|m|ďkδ

n
ÿ

j“0

p´1qjdimHj
b,mpX,L

k b Eq

“ rp2πq´n´1 1

n!
kn`1

ż

X

ż

r´δ,δs

piR
L
x ´ sdω0pxqq

n ^ ω0pxqds` opk
n`1q,

as k Ñ `8, where r denotes the complex rank of the vector bundle E.
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Proof. – By Corollary 1.13 one can check
ÿ

mPZ,|m|ďkδ

n
ÿ

j“0

p´1qjdimHj
b,mpX,L

k b Eq

“ rp2πq´n´1
ÿ

mPZ,|m|ďkδ
pδp|m

1

n!

ż

X

pikR
L
x ´mdω0pxqq

n ^ ω0pxq ` opk
nq

“ rp2πq´n´1
ÿ

mPZ,|m|ďkδ
pδp|m

kn

n!

ż

X

piR
L
x ´

m

k
dω0pxqq

n ^ ω0pxq ` opk
nq.

(1.38)

Note pδp|m “ p if p | m, and 0 otherwise. By this and (1.38) we get

(1.39)
ÿ

mPZ,|m|ďkδ

n
ÿ

j“0

p´1qjdimHj
b,mpX,L

k b Eq

“ rp2πq´n´1
ÿ

`PZ,|p`|ďkδ

p

n!
kn

ż

X

piR
L
x ´

p`

k
dω0pxqq

n ^ ω0pxq ` opk
nq.

It is clear that the (Riemann) sum
ř

`PZ,|p`|ďkδ
p
k

ş

X
piR

L
x ´

p`
k dω0pxqq

n ^ ω0pxq con-
verges to

ż

X

ż

r´δ,δs

piR
L
x ´ sdω0pxqq

n ^ ω0pxqds

as k Ñ8. Hence

(1.40)
ÿ

`PZ,|p`|ďkδ
t
p

n!
kn

ż

X

piR
L
x ´

p`

k
dω0pxqq

n ^ ω0pxqu ` opk
nq

“ t
1

n!
kn`1

ż

X

ż

r´δ,δs

piR
L
x ´ sdω0pxqq

n ^ ω0pxqdsu ` opk
n`1q.

Combining (1.40) with (1.39) we have (1.37).

The following two results may be viewed as a companion of the Grauert-
Riemenschneider criterion in the CR case (with S1 action). To start with

Definition 1.25. – We say that pL, hLq is positive at p P X if the curvature R
L
p is a

positive Hermitian quadratic form over T 1,0
p X. We say that pL, hLq is semipositive if

for any x P X there exists a constant δ ą 0 such that R
L
x ´sidω0pxq is a semipositive

Hermitian quadratic form over T 1,0
x X for any |s| ă δ.

We can repeat the proof of Theorem 1.24 in [44] with minor changes and get

Proposition 1.26 (Asymptotical vanishing). – Assume that pL, hLq is a semi-
positive CR line bundle over X. Then, for δ ą 0, δ small, we have

ÿ

mPZ,|m|ďkδ
dimHj

b,mpX,L
k b Eq “ opkn`1q, j “ 1, 2, . . . , n.
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Combining Proposition 1.24 and Proposition 1.26, we get

Corollary 1.27 (Bigness). – Assume that pL, hLq is semi-positive. Then, for δ ą 0,
δ small, we have

(1.41)
ÿ

mPZ,|m|ďkδ
dimH0

b,mpX,L
k b Eq

“ rp2πq´n´1 1

n!
kn`1

ż

X

ż

r´δ,δs

piR
L
x ´ sdω0pxqq

n ^ ω0pxqds` opk
n`1q,

where r denotes the complex rank of the vector bundle E. In particular, if pL, hLq is
positive at some point of X, then

dimH0
b,mpX,L

k b Eq « kn`1.

The above result yields an answer to Question 1.23 in the case pertinent to our
class of CR manifolds.

1.3.2. Kawasaki’s Hirzebruch-Riemann-Roch and Grauert-Riemenschneider criterion
for orbifold line bundles. – There is a link between our CR result and a complex
geometry result of Kawasaki on Hirzebruch-Riemann-Roch formula over complex
orbifolds [47]. Compared to Kawasaki’s, we get a simpler Hirzebruch-Riemann-Roch
formula for some class of orbifold line bundles using our second main Result Corol-
lary 1.13. Moreover, from Corollary 1.22 it follows a Grauert-Riemenschneider crite-
rion for orbifold line bundles.

To the aim we shortly review the orbifold geometry and also set up notations. Let
M be a manifold and G a compact Lie group. Assume that M admits a G-action:

GˆM ÑM,

pg, xq Ñ g ˝ x.

We suppose that the action G on M is locally free, that is, for every point x PM , the
stabilizer group Gx “ tg P G; g ˝ x “ xu of x is a finite subgroup of G. In this case
the quotient space

(1.42) M{G

is known to be an orbifold. A remark of Kawasaki [46, p. 76] discusses the validity of
a converse statement about when a space has a presentation of the form (1.42). (As
is well-known, these spaces are actually called V-manifolds by Satake [60], a slightly
restrictive class of orbifolds.)

We assume now that M is a compact connected complex manifold with complex
structure T 1,0M . G induces an action on CTM :

Gˆ CTM Ñ CTM,

pg, uq Ñ g˚u,
(1.43)
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where g˚ “ pg´1q˚ the push-forward by g´1 on CTM . Suppose G acts holomor-
phically, that is g˚pT 1,0Mq Ă T 1,0M for g P G. Put CT pM{Gq :“ CTM{G,
T 0,1pM{Gq :“ T 0,1M{G and T 1,0pM{Gq :“ T 1,0M{G.

Assume that T 0,1pM{Gq X T 1,0pM{Gq “ t0u. Then, T 1,0pM{Gq gives a complex
structure on M{G and M{G becomes a complex orbifold. Suppose dim CT

1.0pM{Gq “ n.

Let L be a G-invariant holomorphc line bundle overM , that is, there exists a choice
of transition functions h (defined on open charts U) of L such that hpg ˝ xq “ hpxq

for every g P G, x P U with g ˝ x P U . Suppose that L admits a locally free G-action
compatible with that on M , i.e., an action pg, vq pP G ˆ Lq Ñ g ˝ v P L with the
property πpg ˝ vq “ g ˝ pπpvqq (g linearly acts on fibers of L), π : L Ñ M the
projection. Then, L{G is an orbifold holomorphic line bundle over M{G (the fiber is
not necessarily a vector space).

The above construction induced by (locally free) G-action on L naturally extends
to Lm, the m-th power of L, and L˚, the dual line bundle of L. Thus Lm{G and L˚{G
are also orbifold holomorphic line bundles over M{G. Put (q “ 0, 1, 2, . . . , n)

(1.44) Ω0,qpM{G,Lm{Gq :“
 

u P Ω0,qpM,Lmq; g˚u “ u, @g P G
(

.

The Cauchy-Riemann operator B : Ω0,qpM,Lmq Ñ Ω0,q`1pM,Lmq is G-invariant,
hence gives a B-complex pB,Ω0,‚pM{G,Lm{Gqq and the q-th Dolbeault cohomology
group:

HqpM{G,Lm{Gq :“
Ker B : Ω0,qpM{G,Lm{Gq Ñ Ω0,q`1pM{G,Lm{Gq

Im B : Ω0,q´1pM{G,Lm{Gq Ñ Ω0,qpM{G,Lm{Gq
.

Let Tot pL˚q be the space of all non-zero vectors of L˚. Assume that Tot pL˚q{G is
a smooth manifold. Take any G-invariant Hermitian fiber metric hL

˚

on L˚, set
rX “

 

v P L˚; |v|hL˚ “ 1
(

and put X “ rX{G. Since Tot pL˚q{G is a smooth manifold
by the foregoing assumption, X “ rX{G is a smooth manifold. The natural S1 action
on rX induces a locally free S1 action e´iθ on X. One can check that X is a CR
manifold and the S1 action on X is CR and transversal.

In a similar vein as the proof of Theorem 1.2 one can show (for q “ 0, 1, 2, . . . , n

and m P Z)

(1.45) HqpM{G,Lm{Gqq – Hq
b,mpXq.

We pause and introduce some notations. For every x P Tot pL˚q and g P G, put
Npg, xq “ 1 if g R Gx and Npg, xq “ inf

 

` P N˚; g` “ id
(

if g P Gx. Set

(1.46) p “ inf tNpg, xq; x P Tot pL˚q, g P Gx, g ‰ idu .

It should be noticed that the p in (1.46) corresponds to the p of the S1 action on X.

Putting together Corollary 1.13, (1.45) and (1.46) gives
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Theorem 1.28. – With the notations above, recall that we work with assumptions
that M is connected and Tot pL˚q{G is smooth. Then (for every m P Z)

(1.47)
n
ÿ

j“0

p´1qjdimHjpM{G,Lm{Gq “ pδp|m
1

2π

ż

X

Tdb pT
1,0Xq ^ e´m

dω0
2π ^ ω0.

To compare this result with that of Kawasaki ([47]) we assume p “ 1 for simplicity.
Note X is smooth (yet M{G could be singular). The above integral (1.47) reduces to
an integral over the principal stratum of M{G (by integrating ω0 along the fiber S1,
which gives 1). It is thus the same as to say that the contributions from the lower
dimensional strata sum up to zero. As remarked in Introduction a vanishing result as
such is not readily available in the formula of [47]. Note that the notion of “orbifold”
in [47] is slightly more general than that of Satake (on which the present section is
based). As this generality does no real harm to the reasoning above, we omit the
details in this regard.

The above result on the vanishing of the contributions from strata may also be
reflected in the index formula of the works [55], [34] which study the index of transver-
sally elliptic operators on a smooth compact manifold with the action of a compact
Lie group G, by using the framework of equivariant cohomology theory. A remarkable
point is that they define the index as a generalized function (on G) (also discussed in
Atiyah [2], p.9-17). In fact it is not difficult to verify that for the case of the S1 action,
our present m-th index is basically the m-th Fourier component of the corresponding
index (in the sense of generalized functions) of theirs (for the case g “ id P G in [34],
[55]).

The consistency of our result with those works above helps to shape our own view
towards the asymptotic expansion of a (transversal) heat kernel conceived in this
subject.

For examples that satisfy Theorem 1.28 we refer to Section 1.4. There, we con-
struct, among others, an orbifold holomorphic line bundle over a singular complex
orbifold such that the assumptions of Theorem 1.28 and Corollary 1.29 are fulfilled
(see Corollary 1.31 and Subsection 1.4.2 below). Indeed there are ample examples in
this respect.

Take any G-invariant Hermitian fiber metric hL on L and let RL be the associ-
ated curvature RL. We say that RL is semipositive if the Hermitian quadratic form
´BB log hL is semipositve on T 1,0M . We say that RL is positive at p P M if the
Hermitian quadratic form ´BB log hL is positive on T 1,0

p M .

As promised in the beginning of this section, we obtain now a Grauert-
Riemenschneider criterion for orbifold line bundles, upon combining Corollary 1.22
and (1.45).
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Corollary 1.29. – With the notations and assumptions above, suppose that there is
a G-invariant Hermitian fiber metric hL on L such that the associated curvature RL is
semipositive and positive at some point of M . Then dimH0pM{G,Lpm{Gq « mn

for m " 1 and p as in (1.46).

1.4. Examples

In this subsection, some examples of CR manifolds with locally free S1 action
(including those fitting Theorem 1.28 above) are collected.

We first review the construction of generalized Hopf manifolds introduced by
Brieskorn and Van de Ven [10].

1.4.1. Generalized Hopf manifolds. – Let a “ pa1, . . . , an`2q P Nn`2, let z “

pz1, . . . , zn`2q be the standard coordinates of Cn`2 and let Mpaq be the affine
algebraic variety given by the equation

n`2
ÿ

j“1

z
aj
j “ 0.

If some aj “ 1, the variety Mpaq is non-singular. Otherwise Mpaq has exactly one
singular point, namely 0 “ p0, . . . , 0q. Put ČMpaq :“ Mpaq ´ t0u. Now we define a
holomorphic C-action on ČMpaq by

t ˝ pz1, . . . , zn`2q “ pe
t
a1 z1, . . . , e

t
an`2 zn`2q, t P C, pz1, . . . , zn`2q P

ČMpaq.

It is easy to see that the Z-action on ČMpaq is globally free. The equivalence class
of pz1, . . . , zn`2q P Cn`2 with respect to the Z-action is denoted by pz1, . . . , zn`2q`Z
and hence

Hpaq :“ČMpaq{Z “
!

pz1, . . . , zn`2q ` Z; pz1, . . . , zn`2q P
ČMpaq

)

is a compact complex manifold of complex dimension n ` 1. We call Hpaq a (gener-
alized) Hopf manifold.

Let Γa be the discrete subgroup of C, generated by 1 and 2παi, where α is the
least common multiple of a1, a2, . . . , an`2. Consider the complex 1-torus Ta “ C{Γa.
Hpaq admits a natural Ta-action. Put V paq :“ Hpaq{Ta. By Holmann [41], V paq is a
complex orbifold. Let πa : Hpaq Ñ V paq be the natural projection.

The following is well-known (see the discussion before Proposition 4 in [10]).

Theorem 1.30. – Let p “ pz1, . . . , zn`2q ` Z P Hpaq. Assume that there are exactly
k coordinates zj1 , . . . , zjk all different from zero, k ě 2. Then, V paq is non-singular
at πappq if and only if

ra1, . . . , an`2s

raj1 , . . . , ajk s
“

ź

`Rtj1,...,jku

ra1, . . . , an`2s

ra1, . . . , a`´1, a``1, . . . , an`2s
,

MÉMOIRES DE LA SMF 162



1.4. EXAMPLES 27

where rm1, . . . ,mds denotes the least common multiple of m1, . . . ,md P N.

It follows readily

Corollary 1.31. – Assume n ě 2 and pa1, a2, . . . , an`2q “ p4b1, 4b2, 2b3, 2b4, . . . ,

2bn`2q, where bj P Z, bj is odd, j “ 1, . . . , n ` 2. Let p “ p0, 0, 1, i, 0, 0, . . . , 0q ` Z P
Hpaq. Then, V paq is singular at πappq.

The ideas in the next two (sub)subsections are heavily based on Theorem 1.30 and
Corollary 1.31.

1.4.2. Smooth orbifold circle bundle over a singular orbifold.– Put

(1.48) X :“ tpz1, . . . , zn`2q P Cn`2; za1
1 ` za2

2 ` ¨ ¨ ¨ ` z
an`2

n`2 “ 0,

|z1|
2a1 ` |z2|

2a2 ` |z3|
2a3 ` ¨ ¨ ¨ ` |zn`2|

2an`2 “ 1u.

It can be checked that X is a compact weakly pseudoconvex CR manifold of dimension
2n ` 1 with CR structure T 1,0X :“ T 1,0Cn`2 X CTX, where T 1,0Cn`2 denotes the
standard complex structure on Cn`2.

Let α be the least common multiple of a1, . . . , an`2. Consider the following S1 ac-
tion on X:

S1 ˆX Ñ X,

e´iθ ˝ pz1, . . . , zn`2q Ñ pe´i
α
a1
θz1, . . . , e

´i α
an`2

θ
zn`2q.

(1.49)

One sees that the S1 action is well-defined, locally free, CR and transversal. Moreover
one has that the quotient X{S1 is equal to V paq, a “ pa1, a2, . . . , an`2q. Hence,
X{S1 is a complex orbifold.

One sees, by using Corollary 1.31, that the above X{S1 is singular if n ě 2

and pa1, . . . , an`2q “ p4b1, 4b2, 2b3, 2b4, . . . , 2bn`2q, where bj P Z, bj is odd, j “
1, 2, . . . , n` 2.

We now show that pX,T 1,0Xq is CR-isomorphic to the (orbifold) circle bundle
associated with an orbifold line bundle over X{S1 “ V paq.

To see this and to construct the circle bundle in the first place, let L “ pČMpaq ˆ Cq{”,
where pz1, . . . , zn`2, λq ” prz1, . . . , rzn`2, rλq if

rzj “ e
m
aj zj , j “ 1, . . . , n` 2,

rλ “ emλ,

where m P Z. We can check that ” is an equivalence relation and L is a holomorphic
line bundle over Hpaq. The equivalence class of pz1, . . . , zn`2, λq PČMpaqˆC is denoted
by rpz1, . . . , zn`2, λqs. The complex 1-torus Ta action on L is given by the following:

Ta ˆ LÑ L,

pt` iθq ˝ rpz1, . . . , zn`2, λqs Ñ rpe
t`iθ
a1 z1, . . . , e

t`iθ
an`2 zn`2, e

t´i θαλqs,
(1.50)
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where α is the least common multiple of a1, . . . , an`2. One has that the torus action
(1.50) is well-defined and L{Ta is an orbifold line bundle over Hpaq{Ta “ V paq.

Let τ : LÑ L{Ta be the natural projection and for rpz1, . . . , zn`2, λqs P L, we write
τprz1, . . . , zn`2, λsq “ rz1, . . . , zn`2, λs ` Ta. One sees that the pointwise norm∣∣rpz1, . . . , zn`2, λqs`Ta

∣∣2
hL{Ta

:“ |λ|
2
´

|z1|
2a1 `|z2|

2a2 `|z3|
2a3 `¨ ¨ ¨` |z2n`2|

2an`2

¯´1

is well-defined as a Hermitian fiber metric on L{Ta. The (orbifold) circle bundle
CpL{Taq with respect to pL{Ta, hL{Taq is given by

CpL{Taq :“
!

v P L{Ta; |v|
2
hL{Ta “ 1

)

“

"

rpz1, . . . , zn`2, λqs ` Ta;

|λ|
2
“ |z1|

2a1 ` |z2|
2a2 ` |z3|

2a3 ` ¨ ¨ ¨ ` |z2n`2|
2an`2

*

.

(1.51)

One sees that CpL{Taq is a smooth CR manifold with the CR structure

T 1,0CpL{Taq :“ T 1,0L{Ta X CTCpL{Taq,

where T 1,0CpL{Taq denotes the complex structure on L{Ta. Moreover, the orbifold
line bundle L{Ta Ñ V paq satisfies a similar situation as in Theorem 1.28 (i.e., the
space X{S1 “ V paq here as the M{G there, is singular and CpL{Taq as a (orbifold)
circle bundle over M{G is smooth). We are ready to give an CR isomorphism of X
and the (orbifold) circle bundle CpL{Taq. Note CpL{Taq admits a nature S1 action:

e´iθ ˝ prpz1, . . . , zn`2, λqs ` Taq “ rpz1, . . . , zn`2, e
´iθλqs ` Ta.

Let Φ : CpL{Taq Ñ X be the smooth map defined as follows. For every
rpz1, . . . , zn`2, λqs ` Ta P CpL{Taq, there is a unique pẑ1, . . . , ẑn`2q P X such
that

rpz1, . . . , zn`2, λqs ` Ta “ rpẑ1, . . . , ẑn`2, 1qs ` Ta.

Then, Φprpz1, . . . , zn`2, λqs ` Taq :“ pẑ1, . . . , ẑn`2q P X. It can be checked that Φ is a
CR embedding, globally one to one, onto and the inverse Φ´1 : X Ñ CpL{Taq is also
a CR embedding. Moreover e´iθ ˝ Φpxq “ Φpe´iθ ˝ xq, @x P CpL{Taq. We conclude
Φ is a CR isomorphism.

1.4.3. Family, non-pseudoconvex cases and deformations. – With the notation of Sub-
section 1.4.1 we assume a1 “ 1, so

Mpaq “
 

pz1, . . . , zn`2q P Cn`2; z1 “ ´z
a2
2 ´ ¨ ¨ ¨ ´ z

an`2

n`2

(

.
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Fix a q “ 2, 3, . . . , n` 1. Put, for t P C,

Xq,t :“ tpz1, . . . , zn`2q ` Z P Hpaq; ´ |za2
2 ` tza3

3 |
2
´ |z3|

2a3 ´ ¨ ¨ ¨ ´ |zq|
2aq

` |zq`1|
2aq`1 ` ¨ ¨ ¨ ` |zn`2|

2an`2 “ 0u.

(1.52)

One can check that for each t, Xq,t is a compact CR manifold of dimension 2n` 1

with CR structure T 1,0Xq,t :“ T 1,0Hpaq X CTXq,t, where T 1,0Hpaq denotes the
natural complex structure inherited by Mpaq. Note Xq,t1 is diffeomorphic to Xq,t2

for t1, t2 P C since they can be connected through a (smooth) family of compact
manifolds.

Let ra be the least common multiple of a1, . . . , aq. Consider the following S1 action
on Xq,t:

S1 ˆXq,t Ñ Xq,t,

e´iθ ˝ ppz1, . . . , zn`2q ` Zq Ñ pe´iraθp´za2
2 ´ ¨ ¨ ¨ ´ zaqq q ´ z

aq`1

q`1 ´ ¨ ¨ ¨ ´ z
an`2

n`2 ,

e´i
ra
a2
θz2, . . . , e

´i ra
aq
θ
zq, zq`1, . . . , zn`2q ` Z.

(1.53)

One sees that the S1 action is well-defined, locally free, CR and transversal. This
is an example for a family of CR manifolds admitting a transversal CR locally free
S1 action.

Moreover these CR manifolds Xq,t are not pseudoconvex.
Now we consider certain CR deformations of a compact CR manifold X with a

transversal CR locally free S1 action. Let F pxq P C8pXq with TF “ 0 (T the global
real vector field induced by the S1 action). Let Z1, . . . , Zn P C

8pX,T 1,0Xq be a basis
for T 1,0X. Put

(1.54) H1,0X :“ tZj ` ZjpF qT ; j “ 1, 2, . . . , nu .

One can check that H1,0X is a CR structure and the S1 action is locally free, CR
and transversal with respect to this new CR structure H1,0X (see (2.10) via the BRT
construction).

To see how “new” this CR structure H1,0X is, let’s take X to be a circle bundle
associated with a holomorphic line bundle pL, || ¨ ||q over a compact complex mani-
fold M . Consider a change of metric || ¨ || Ñ e´2f || ¨ || on L and the circle bundle rX

thus induced by this new metric. By using the Formula (1.56) below one sees that
H1,0X of (1.54) for F “ ´if is equivalent to T 1,0

rX. But is pX,T 1,0Xq CR equivalent
to p rX,T 1,0

rXq? The answer is in general no. For instance, spherical CR structures on a
certain topological type of X can be obtained by using special metrics on L (cf. [16]).
Hence an arbitrary perturbation of the bundle metric, say by the multiplier e´2f ,
would bring X out of the spherical category. Note that the moduli space of spherical
CR structures in [16] is finite dimensional. It follows that for F a purely imaginary
function on X, the CR structure H1,0X is in general not CR equivalent to T 1,0X.
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If, however, F is a real function, it is easily seen that the change pz, θq Ñ pz, θ`F q is
globally defined, hence it gives a diffeomorhism φ of X. One sees φ˚pT 1,0Xq “ H1,0X,
cf. (1.56) below. So in this case the CR structure H1,0X is equivalent to the original
one.

1.5. Proof of Theorem 1.2

We will use the same notations as in Theorem 1.2. Let s be a local trivializing
section of L defined on some open set U of M , |s|2hL “ e´2φ. Let z “ pz1, . . . , znq be
holomorphic coordinates on U . We identify U with an open set of Cn and have the
local diffeomorphism:

(1.55) τ : U ˆ s´ε0, ε0r Ñ X, pz, θq ÞÑ e´φpzqs˚pzqe´iθ, 0 ă ε0 ď π.

Put D “ U ˆ s´ε0, ε0r as a canonical coordinate patch with pz, θq canonical coor-
dinates (with respect to the trivialization s) such that T “ B

Bθ (recall that T is the
global real vector field induced by the S1 action). Moreover one has

T 1,0X “

"

B

Bzj
´ i

Bφ

Bzj
pzq

B

Bθ
; j “ 1, 2, . . . , n

*

,

T 0,1X “

"

B

Bzj
` i

Bφ

Bzj
pzq

B

Bθ
; j “ 1, 2, . . . , n

*

,

(1.56)

and

(1.57) T˚1,0X “ tdzj ; j “ 1, 2, . . . , nu , T˚0,1X “ tdzj ; j “ 1, 2, . . . , nu .

See also Theorem 2.9 and proof of Proposition 4.2 for similar formulas in the general
case of S1 action.

Let fpzq P Ω0,qpDq. By (1.57) we may identify f with an element in Ω0,qpUq.

The key object in our proof is the map A
pqq
m : Ω0,q

m pXq Ñ Ω0,qpM,Lmq, to be
defined as follows. Let u P Ω0,q

m pXq. We can write upz, θq “ e´imθûpzq (on D) for
some ûpzq P Ω0,qpUq. Then, on U ĂM , we define

(1.58) Apqqm u :“ smpzqemφpzqûpzq P Ω0,qpU,Lmq.

We need to check the following.

i) Apqqm in (1.58) is well-defined, hence gives rise to a global element Apqqm u P

Ω0,qpM,Lmq.

ii) It satisfies the commutativity BApqqm “ A
pq`1q
m Bb (thus induces a map on respec-

tive cohomologies).

To check i) let s and s1 be local trivializing sections of L on an open set U .
Let pz, θq P Cn ˆ R and pz, ηq P Cn ˆ R be canonical coordinates of D with respect
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to s and s1 respectively (D as the above). Set |s|2hL “ e´2φ and |s1|
2
hL “ e´2φ1 . We

write (on D)

u “ e´imθûpzq

u “ e´imηû1pzq.
(1.59)

To check i) amounts to the following

(1.60) smpzqemφpzqûpzq “ sm1 pzqe
mφ1pzqû1pzq, @z P U.

Let s1 “ gs for g a unit on U . To find relations between φ and φ1, û and û1 in
terms of g,

|s1|
2
hL “ e´2φ1 “ |g|

2
|s|

2
hL “ e2 log|g|´2φ,

giving

(1.61) φ1 “ φ´ log |g| .

For û and û1, we first claim the following (τ in (1.55) for pz, θq and τ1 the similar one
for pz, ηq)
(1.62)
If τpz, θq “ τ1pz, ηq, then e´iθ

` gpzq
gpzq

˘
1
2 “ e´iη (with a certain branch of the square root).

Proof of the claim (1.62). – Combining (1.55) and (1.61) one sees

τpz, θq “ s˚pzqe´iθ´φpzq “ s˚1 pzqgpzqe
´iθ´φpzq

“ s˚1 pzqgpzqe
´iθ´φ1pzq´log|gpzq|

“ s˚1 pzq
`gpzq

gpzq

˘
1
2 e´iθ´φ1pzq.

(1.63)

The condition τpz, θq “ τ1pz, ηq is the same as to say, by (1.55),

(1.64) s˚pzqe´iθ´φpzq “ s˚1 pzqe
´iη´φ1pzq.

By (1.63) and (1.64) we deduce that
` gpzq
gpzq

˘
1
2 e´iθ “ e´iη, as claimed.

Now that the relations (1.61) and (1.62) have been found, the (1.60) follows by
using (1.59). Hence Apqqm : Ω0,q

m pXq Ñ Ω0,qpM,Lmq is well-defined, proving i) above.
Moreover it is easily checked that Apqqm is bijective. We omit the detail.
To prove ii) that BApqqm “ A

pq`1q
m Bb, by (1.56) and (1.57) one sees (on D)

(1.65) Bbu “ Bbpe
´imθûq “

n
ÿ

j“1

e´imθdzj^
` Bû

Bzj
pzq `m

Bφ

Bzj
pzqûpzq

˘

.

Hence (1.65) and (1.58) yield

Apq`1q
m pBbuq “ smpzqemφpzq

n
ÿ

j“1

dzj^
` Bû

Bzj
pzq `m

Bφ

Bzj
pzqûpzq

˘

“ smpzqBpemφpzqûpzqq on U,

(1.66)
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giving BApqqm “ A
pq`1q
m Bb. Theorem 1.2 follows.

Remark 1.32. – The map Apqqm does not depend on the metrics of the manifolds X
and M . In later sections we study the Kohn Laplacian and Kodaira Laplacian on X
and M respectively, and try to establish a link between the two Laplacians (with the
aim at the Kohn’s). In this regard we need equip X and M with appropriate metrics
so that Apqqm thus defined is also compatible with these metrics. Note a localization
of this (metrical) construction (cf. Proposition 5.1) paves the way for our subsequent
plan in this work.

Some difficulties (and ways out) for a straightforward generalization of the proof
for this special case (globally free S1 action) will be discussed in the subsection below.

1.6. The idea of the proofs of Theorem 1.3, Theorem 1.10 and Corollary 1.13

We will give an outline of main ideas of some proofs. For the proof of Theorem 1.14,
some ideas are outlined in the beginning of Section 7. We refer to Section 2.2 and
Section 2.3 for notations and terminologies used here. The main technical tool of our
method lies in a construction of a heat kernel for the Kohn Laplacian associated to
the m-th S1 Fourier component.

1.6.1. Global difficulties. – For simplicity we assume that X is CR Kähler (cf. Defi-
nition 1.11), E “ C and x ¨ | ¨ y is induced by a CR Kähler form Θ on X. Write B

˚

b for
the adjoint of Bb with respect to p ¨ | ¨ q and B

˚

b,m “ B
˚

b : Ω0,q`1
m pXq Ñ Ω0,q

m pXq with
Ω0,`
m pXq and Ω0,´

m pXq denoting forms of even and odd degree. Consider

D˘b,m :“ Bb,m ` B
˚

b,m : Ω0,˘
m pXq Ñ Ω0,¯

m pXq, m P Z

and let l
`
b,m :“ D´b,mD

`
b,m : Ω0,`

m pXq Ñ Ω0,`
m pXq (l´

b,m :“ D`b,mD
´
b,m similarly).

Extending l
`
b,m and l

´
b,m to L2,`

m pXq and L2,´
m pXq (L2-completion), respectively,

in the standard way, we will show in Theorem 3.5 that Spec l
˘
b,m are discrete subsets

of r0,8r and Spec l
˘
b,m consist of eigenvalues of l

˘
b,m.

For ν P Spec l
`
b,m, let

 

fν1 , . . . , f
ν
dν

(

be an orthonormal frame for the eigenspace

of l
`
b,m with eigenvalue ν. Write T˚0,‚X “

À

0ďqďn T
˚0,qX. e´tl

`
b,mpx, yq :

T˚0,‚
y X Ñ T˚0,`

x X, said to be a heat kernel, is given by (cf. (1.12))

(1.67) e´tl
`
b,mpx, yq “

ÿ

νPSpec l
`
b,m

dν
ÿ

j“1

e´νtfνj pxq ^ pf
ν
j pyqq

:.

(Similarly we can define e´tl
´
b,mpx, yq.)
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We will show in Corollary 4.8 (see also Remark 4.9) that we have a CR McKean-
Singer type formula: for t ą 0,

(1.68)
n
ÿ

j“0

p´1qjdimHj
b,mpXq “

ż

X

´

Tr e´tl
`
b,mpx, xq ´ Tr e´tl

´
b,mpx, xq

¯

dvX .

By this formula the proof of our index theorem (cf. Corollary 1.13) is reduced to de-
termining the small t behavior of the function

´

Tr e´tl
`
b,mpx, xq´Tr e´tl

´
b,mpx, xq

¯

.

With the kernel e´tl
`
b,mpx, yq there is associated an operator denoted by e´tl

`
b,m :

Ω0,`pXq Ñ Ω0,`
m pXq. Note the domain is set to be the full space Ω0,`pXq. From (1.67)

it follows that the kernel satisfies a heat equation which is expressed in the following
operator form

(1.69)
Be´tl

`
b,m

Bt
`l

`
b,me

´tl
`
b,m “ 0

and

(1.70) e´tl
`
b,m
|t“0

“ Q`m,

where Q`m : L2,`pXq Ñ L2,`
m pXq is the orthogonal projection.

The main difficulty lies in that the initial condition (1.70) is a projection operator
rather than an identity operator because we are dealing with part of the L2 space
(i.e., the m-th eigenspaces) rather than the whole L2 space (as in the usual case). In
a similar vein, let us quote in a paper of Richardson [58, p. 358]: “A point of difficulty
that often arises in this area of research is that the space [. . . ] is not the set of all
sections of any vector bundle, and therefore the usual theory of elliptic operators and
heat kernels does not apply directly. . . ”. The condition (1.70) eventually leads to the
result that the heat kernels e´tl

˘
b,mpx, yq do not have the standard expansions (as

usually seen).
For a better understanding let’s assume that X is a (orbifold) circle bundle of an

orbifold line bundle L over a Kähler orbifoldM (see Section 1.4 for specific examples).
As in Theorem 1.2 (see Section 1.5), one sees bijective maps

A˘m : Ω0,˘
m pXq Ñ Ω0,˘pM,Lmq,

such that A´mBb “ BA`m. Let l`
m be the Kodaira Laplacian with values in T˚0,`M b Lm

and let e´tl
`
m be the associated heat operator. Consider Bmptq :“ pA`mq

´1 ˝ e´tl
`
m ˝

A`m. A˘m are metric-independent (on a given X). To get a link between l
`
b,m and l`

m

it requires, however, a compatible choice of metrics on X and M . With this done,
one checks that B1mptq `l

`
b,mBmptq “ 0 and Bmp0q “ I on Ω0,`

m pXq.

But Bmptq is not the heat operator e´tl
`
b,m . A trivial reason is that Bmptq is

defined on Ω0,`
m pXq while e´l

`
b,m is on the whole Ω0,`pXq. In fact one has

(1.71) e´tl
`
b,m “

`

pA`mq
´1 ˝e´tl

`
m ˝A`m

˘

˝Q`m “ Bmptq˝Q
`
m p“ Q`m ˝Bmptq˝Q

`
mq.
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Let Bmpt, x, yq be the distribution kernel of Bmptq. To emphasize the role played
by Q`m in our construction, it is illuminating to note the following (cf. (1.71), (2.2)
and (4.17))

(1.72) e´tl
`
b,mpx, yq “

1

2π

ż π

´π

Bmpt, x, e
´iu ˝ yqe´imudu.

For x P Xp (the principal stratum), from (1.72) and the much better known kernel
e´tl

`
m (on the principal stratum of M) it follows

(1.73) e´tl
`
b,mpx, xq „ t´na`n pxq ` t

´pn´1qa`n´1pxq ` ¨ ¨ ¨ .

However for x R Xp, by lack of the asymptotic expansion of Bmptq (or e´tl
`
m on

low dimensional strata of M) it is unclear how one can understand the asymptotic
behavior of e´tl

`
b,mpx, xq by means of (1.72). This presents a major deviation from

proof of the globally free case (as Theorem 1.2, cf. (1.1), (1.2)).
To see more clearly the discrepancy between the two cases (locally free and globally

free) we note that the expansion (1.73) converges only locally uniformly on Xp, due
to a nontrivial contribution involving a “distance function” (see Subsection 1.6.3 for
more). In fact the expansion of the form (1.73) which is usually seen, cannot hold
here (globally on X) (cf. Remark 1.6).

It is thus not immediate for one to arrive at a detailed understanding of the
(transversal) heat kernel by only using the global argument. Even in the (smooth) orb-
ifold circle bundle case, to understand the asymptotic behavior of the heat operator
e´tl

`
b,m we will still need to work directly on the CR manifold X instead of M .

In this paper we give a construction which is independent of the use of orbifold
geometry and is more adapted to CR geometry as our CR manifold X is not assumed
to be an orbifold circle bundle of a complex orbifold. Because of the failure of the
global argument as just said, we are now led to work on it locally. The framework for
this is BRT trivialization (Section 2.4) which is first treated by Baouendi, Rothschild
and Treves [3] in a more general context.

1.6.2. Transition to local situation. – Let B :“ pD, pz, θq, ϕq be a BRT trivialization
(see Theorem 2.9). We write D “ U ˆ s´ε, εr, where ε ą 0 and U is an open set
of Cn. Let L Ñ U be a trivial line bundle with a non-trivial Hermitian fiber metric
|1|

2
hL “ e´2ϕ (where ϕ P C8pD,Rq is as in Theorem 2.9) and pLm, hL

m

q Ñ U be
the m-th power of pL, hLq. Θ (cf. Definition 1.11, recalling that X is CR Kähler as
assumed for the moment) induces a Kähler form ΘU on the complex manifold U . Let
x ¨, ¨ y be the Hermitian metric on CTU (associated with ΘU ), inducing together with
hL

m

the L2 inner product p ¨, ¨ qm on Ω0,˚pU,Lmq.
Let B

˚,m
: Ω0,q`1pU,Lmq Ñ Ω0,qpU,Lmq be the formal adjoint of B with respect

to p ¨, ¨ qm. Put, as the case of Db,m and l b,m, D˘B,m :“ B ` B
˚,m

: Ω0,˘pU,Lmq Ñ

Ω0,¯pU,Lmq and l
`
B,m :“ D´B,mD

`
B,m : Ω0,`pU,Lmq Ñ Ω0,`pU,Lmq.
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In Proposition 5.1, by the above choice of metrics in forming Laplacians on two
different spaces (D and U), we can provide a link between these Laplacians, asserting
that

(1.74) e´mϕl
˘
B,mpe

mϕ
ruq “ eimθl

˘
b,mpuq,

where as before, u P Ω0,˘
m pXq can be written (on D) as upz, θq “ e´imθrupzq for some

rupzq P Ω0,˘pU,Lmq Ă Ω0,˘pD,Lmq.
Write x “ pz, θq, y “ pw, ηq (on D). With (1.74) one expects that the heat kernel

e´tl
`
b,mpx, yq locally (on D) should be

(1.75) e´mϕpzq´imθe´tl
`
B,mpx, yqemϕpwq`imη.

Thus one obtains local heat kernels on these BRT charts.
We would like to patch them up. Assume that X “ D1 Y D2 Y ¨ ¨ ¨ Y DN (where

Dj in a BRT trivialization Bj :“ pDj , pz, θq, ϕjq) with Dj “ Uj ˆ s´δj , rδjr Ă CnˆR,
δj ą 0, rδj ą 0, Uj is an open set in Cn).

Let χj , rχj P C80 pDjq (j “ 1, 2, . . . , N). Put

Amptq “
N
ÿ

j“1

χjpxq
´

e´mϕjpzq´imθe
´tl

`
Bj,mpz, wqemϕjpwq`imη

¯

rχjpyq,

Pmptq “ Amptq ˝Q
`
m.

(1.76)

It is hoped that Pmp0q “ Q`m and P
1

mptq ` l
`
b,m Pmptq is small as t Ñ 0`

for certain χj , rχj . This is related to asymptotic heat kernel. But as we will see, this
standard patch-up construction does not quite work out in our case.

In short, we will see that in the locally free case the nice (pointwise) relation
(1.74) between Kodaira and Kohn Laplacians does not quite carry over to the global
objects: heat kernels, whose mutual relation is to be seen below by more delicate
analysis relevant to the presence of strata beyond the principal stratum.

1.6.3. Local difficulties. – A necessary condition for Pmp0q “ Q`m is (cf. Lemma 5.11)

(1.77)
N
ÿ

j“1

χjpxq

ż π

´π

rχjpw, ηq|w“z
dη “ 1.

For the cut-off functions χj , rχj above, a reasonable choice (adapted to BRT trivial-
izations) is the following (for j “ 1, 2, . . . , N):

i) χjpz, θq P C80 pDjq with
řN
j“1 χj “ 1 on X,

ii) τjpzq P C80 pUjq with τjpzq “ 1 if pz, θq P Suppχj ,

iii) σj P C80 ps´δj , rδjrq with
şδ̃j
´δj

σjpηqdη “ 1.
Set rχjpyq ” τjpwqσjpηq. Then χjpxq, rχjpyq satisfy (1.77).

One can check Pmp0q “ Q`m and a little more work shows

(1.78) P
1

mptq `l
`
b,m Pmptq “ Rmptq ˝Q

`
m,
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where for some k,
(1.79)

Rmptq “
N
ÿ

j“1

k
ÿ

`“1

L`,j

´

χjpxqe
´mϕjpzq´imθ

¯

P`,j

´

e
´tl

`
Bj,mpz, wq

¯

emϕjpwq`imηrχjpyq,

L`,j is a partial differential operator of order ě 1 and ď 2 (for all `, j) and P`,j is a par-

tial differential operator of order 1 acting on x (for all `, j). Since
ˇ

ˇ

ˇ

ˇ

e
´tl

`
Bj,mpz, wq

ˇ

ˇ

ˇ

ˇ

„

1
tn e

´
|z´w|2

t , there could be terms of the form, say

(1.80) P`,j

´

e
´tl

`
Bj,mpz, wq

¯

„
1

tn
e´

|z´w|2

t
|z ´ w|

t
.

To require P
1

mptq ` l
`
b,m Pmptq to be small (as t Ñ 0`) we need (by substituting

(1.80) into (1.79) to get singular terms in powers of 1
t smooth out):

(1.81)
L`,j

´

χjpxqe
´mϕjpzq´imθ

¯

emϕjpwq`imηrχjpyq “ 0 if z is close to w (|z ´ w| À
?
t).

Since χj may not be constant on Supp rχj (for some j), it is hard for (1.81) to hold.
Despite that in the usual (elliptic) case a construction of the heat kernel using cut-off
functions as above is available, in view that a distance function will appear in our
asymptotic expression (cf. (1.85) below) it is unclear whether this type of standard
construction can be immediately carried out in our case.

It turns out that upon transferring to an adjoint version of the original equation
one may bypass the aforementioned difficulty (cf. Lemmas 5.11, 5.12), to which we
turn now.

For j “ 1, 2, . . . , N there exists ABj ,`pt, z, wq (P C8pR` ˆ Uj ˆ Uj , T
˚0,`U b

pT˚0,`Uq˚q, cf. Proposition 5.7), regarded as an adjoint heat kernel, such that

limtÑ0`ABj ,`ptq “ I in D 1pU, T˚0,`Uq,

A1Bj ,`ptqu`ABj ,`ptqpl
`
Bj ,m

uq “ 0, @u P Ω0,`
c pUq, @t ą 0,

(1.82)

and ABj ,`pt, z, wq admits an asymptotic expansion as tÑ 0` (see (5.19)). Put

(1.83) Hjpt, x, yq “ χjpxqe
´mϕjpzq´imθABj ,`pt, z, wqe

mϕjpwq`imη
rχjpyq.

Also set

(1.84) Γptq :“
N
ÿ

j“1

Hjptq ˝Q
`
m : Ω0,`pXq Ñ Ω0,`pXq.

By using the adjoint equation, we can avoid the difficulty mentioned in (1.81) so
that Γptq gives an asymptotic (adjoint) heat kernel (see that below (1.76)). To get
back to the kernel of the original equation, we can now start with the adjoint of Γptq.
By carrying out the (standard) method of successive approximation, we can reach the
global kernel of the adjoint of (the adjoint of) e´tl

`
b,m (Section 5.2). This yields the
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kernel of e´tl
`
b,m since e´tl

`
b,m is self-adjoint. More precisely we can prove that (see

Theorem 5.15 and Theorem 6.1)

›

›

›
e´tl

`
b,mpx, yq ´ Γpt, x, yq

›

›

›

C0pXˆXq
ď e´

ε1
t , @t P p0, ε2q,

Γpt, x, xq „
´

p
ÿ

s“1

e
2πps´1q

p mi
¯

8
ÿ

j“0

t´n`jα`n´jpxq mod O
´

t´ne´
ε0d̂px,Xsing q

2

t

¯

, @x P Xp,

(1.85)

where α`s pxq P C8pX,End pT˚0,`X b Eqq, s “ n, n ´ 1, . . ., ε0, ε1, ε2 ą 0 some
constants and d̂ a sort of “distance function” (discussed above Theorem 1.3).

The appearance of this distance function d̂ may be attributed to the use of projec-
tion Q`m in (1.84) (which picks up the m-th Fourier component; see (5.42) and (6.8)).
See below for more about this point. By the first inequality in (1.85) one obtains the
(same) asymptotic expansion
(1.86)

e´tl
`
b,mpx, xq „

´

p
ÿ

s“1

e
2πps´1q

p mi
¯

8
ÿ

j“0

t´n`jα`n´jpxq mod O
´

t´ne´
ε0d̂px,Xsing q

2

t

¯

on Xp. Similar results hold for e´tl
´
b,mpx, xq.

The terms involved in O
´

t´ne´
ε0d̂px,Xsing q

2

t

¯

of (1.86) are singular (due to t´n

as xÑ Xsing). Only upon taking the supertrace can these terms be (partially) canceled
(t´n dropping out). That is, for x P Xp

Tr e´tl
`
b,mpx, xq ´ Tr e´tl

´
b,mpx, xq

„

´

p
ÿ

s“1

e
2πps´1q

p mi
¯

8
ÿ

j“0

t´n`j
´

Trα`n´jpxq ´ Trα´n´jpxq
¯

mod O
´

e´
ε0d̂px,Xsing q

2

t

¯

.

(1.87)

To see this conceptually, let’s take, for instance, (1.71) and (1.72) in which along
the diagonal (i.e., setting x “ y to the left of (1.72)), the off-diagonal contribution
(in the term to the right of the same equation) still enters nontrivially (unseen in the
usual elliptic case) due to the projection Q`m.

To get estimates on these off-diagonal terms our argument (cf. Theorem 5.10) is
based on the rescaling technique of Getzler and on a supertrace identity in Berenzin
integral (cf. Prop. 3.21 of [5]), which combine to give the needed (partial) cancelation.
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From (1.68), (1.86) and (1.87) it follows

(1.88)
n
ÿ

j“0

p´1qjdimHj
b,mpX,Eq

“

´

p
ÿ

s“1

e
2πps´1q

p mi
¯

lim
tÑ0`

ż

X

n
ÿ

`“0

t´`
´

Trα`` pxq ´ Trα´` pxq
¯

dvXpxq.

Remark that we have had a (transversal) heat kernel which is put in the disguise of
the spectral geometry (1.67), (4.15). To our knowledge no argument in the literature
claims that (in the transversally elliptic case) the spectral heat kernel shall have the
asymptotic estimates as (1.86). The somewhat lengthy part of our reconstruction of
the (transversal) heat kernel (beyond its spectral realization) becomes indispensable
as far as our purpose is concerned.

1.6.4. Completion by evaluating local density and by using Spinc structure. – As above
we first treat the case that X is CR Kähler (Definition 1.11). In view of (1.88), to
complete the proof of our index theorem (cf. Corollary 1.13) amounts to understanding
the small t behavior of the local density

n
ÿ

`“0

t´`
´

Trα`` pxq ´ Trα´` pxq
¯

.

Let’s be back to the local situation. Fix x0 P Xp. Let Bj “ pDj , pz, θq, ϕjq (j “
1, 2, . . . , N) be BRT trivializations as before. Assume that x0 P Dj and x0 “ pzj , 0q P

Uj Ă Dj .

As our heat kernel (on X) is related to the local heat kernel (on Uj), one sees (for
some N0pnq ě n)

(1.89)
N0pnq
ÿ

`“0

t´`
´

Trα`` px0q ´ Trα´` px0q

¯

“
1

2π

N
ÿ

j“1

χjpx0q

´

TrABj ,`pt, zj , zjq ´ TrABj ,´pt, zj , zjq
¯

`Optq,

where ABj ,`pt, z, wq is as in (1.82).

By borrowing the rescaling technique in [5] and [24] we can show (in a fairly
standard manner, cf. Theorem 5.9 or the second half of this section) that for each
j “ 1, 2, . . . , N ,

(1.90)
´

TrABj ,`pt, z, zq ´ TrABj ,´pt, z, zq
¯

dvUj pzq

“ rTd p∇T
1,0Uj , T 1,0Ujq ^ ch p∇L

m

, Lmqs2npzq `Optq, @z P Uj ,
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(dvUj the induced volume form on Uj) where Td p∇T 1,0Uj , T 1,0Ujq and ch p∇Lm , Lmq
denote the representatives of the Todd class of T 1,0Uj and the Chern character of Lm,
respectively.

A novelty here is Section 2.3 in which we will introduce tangential characteristic
classes, tangential Chern character and tangential Todd class on CR manifolds with
S1 action, so that

(1.91)
rTd p∇T 1,0Uj , T 1,0Ujq ^ ch p∇Lm , Lmqs2npzjq

dvUj pzjq

“
rTdb p∇T

1,0X , T 1,0Xq ^ e´m
dω0
2π ^ ω0s2n`1px0q

dvXpx0q
,

where Tdb p∇T
1,0X , T 1,0Xq denotes the representative of the tangential Todd class

of T 1,0X (associated with the given Hermitian metric (2.9)). From (1.89), (1.90) and
(1.91) it follows

(1.92)
n
ÿ

`“0

t´`
´

Trα`` pxq ´ Trα´` pxq
¯

dvXpxq

“
1

2π

”

Tdb p∇T
1,0X , T 1,0Xq ^ e´m

dω0
2π ^ ω0

ı

2n`1
pxq `Optq, @x P Xp.

(The Optq term to the rightmost of (1.92) actually vanishes by using (5.22).)
Combining (1.92) and (1.88) we get our index theorem (cf. Corollary 1.13) when

X is CR Kähler.
When X is not CR Kähler, we still have (1.85), (1.86) and (1.88). The ensuing

obstacles are more or less known:
i) the rescaling technique does not quite work well as the local operator l

`
Bj ,m

in
(1.82) is not going to be of Dirac type (in a strict sense);

ii) it is obscure to understand the small t behavior of ABj ,`pt, z, zq in this case;
iii) (1.90) is not even true in general.
To overcome this difficulty in the CR case, we follow the classical (yet nonKähler)

case and introduce some kind of CR Spinc Dirac operator on CR manifolds with
S1 action:

rDb,m “ Bb ` B
˚

b ` zeroth order term

with modified/Spinc Kohn Laplacians rl
`

b,m “
rD˚b,m

rDb,m, rl
´

b,m “
rDb,m

rD˚b,m.
A word of caution is in order. The above adaptation of the idea of Spinc structure to

our CR case is not altogether straightforward. Locally X is realized as a (portion of a)
circle bundle over a small piece of complex manifold (via BRT charts), so presumably
there could arise a problem of patching up when this global Spinc operator is to be
formed. See Proposition 4.2 for more.
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We will show in Theorem 4.7 the homotopy invariance for the index of Bb ` B
˚

b ,
and in Corollary 4.8 a McKean-Singer formula for the modified Kohn Laplacians:
for t ą 0,

(1.93)
n
ÿ

j“0

p´1qjdimHj
b,mpX,Eq “

ż

X

´

Tr e´t
Ăl
`

b,mpx, xq ´ Tr e´t
Ăl
´

b,mpx, xq
¯

dvX .

For u P Ω0,˘
m pXq we can write (on D) upz, θq “ e´imθrupzq for some rupzq P

Ω0,˘pU,Lmq with D in a BRT trivialization B :“ pD, pz, θq, ϕq.
A fundamental relation that we will show in Proposition 5.1, based on Proposi-

tion 4.2, is that

(1.94) e´mϕ rl
˘

B,mpe
mϕ

ruq “ eimθ rl
˘

b,mpuq,

where rl
˘

B,m “ D˚B,mDB,m : Ω0,˘pU,Lmq Ñ Ω0,˘pU,Lmq and DB,m : Ω0,˘pU,Lmq Ñ

Ω0,¯pU,Lmq the (ordinary) Spinc Dirac operator (cf. Definition 4.1) with respect
to the Chern connection on Lm (induced by hL

m

) and the Clifford connection
on ΛpT˚0,1Uq (induced by the given Hermitian metric on ΛpT˚0,1Uq).

It is conceivable that X with the CR structure and X{S1 “ M with the complex
structure (if defined) are linked in some way (as Theorem 1.2). To say more, the
Result (1.94) asserts a fundamental fact that not only complex/CR geometrically can
the two spaces be linked, but metrically in the sense of Laplacians they also can. This
link is important for our Spinc approach to the CR case to be possible.

In the remaining let’s give an outline with the CR Spinc Dirac operator when
X is not CR Kähler. Although the following ingredients mostly parallel those in the
preceding Subsection 1.6.3, the success of this method relies on, among others, the
Spinc structure and the associated Clifford connection. For that reason and for the
sake of clarity, we prefer to put down the precise formulas despite the great similarity
in expressions as above.

As (1.82), there exists (modified) rABj ,`pt, z, wq such that

lim
tÑ0`

rABj ,`ptq “ I in D 1pUj , T
˚0,`Ujq,

rA1Bj ,`ptqu`
rABj ,`ptqp rl

`

Bj ,muq “ 0, @u P Ω0,`
0 pUjq, @t ą 0,

(1.95)

and rABj ,`pt, z, wq admits an asymptotic expansion as tÑ 0` (see (5.19)). Put

rHjpt, x, yq “ χjpxqe
´mϕjpzq´imθ

rABj ,`pt, z, wqe
mϕjpwq`imη

rχjpyq,

rΓptq “
N
ÿ

j“1

rHjptq ˝Qm.
(1.96)

Similar to (1.85) and (1.86) in Subsection 1.6.3, one has

(1.97)
›

›

›
e´t

Ăl
`

b,mpx, yq ´ rΓpt, x, yq
›

›

›

C0pXˆXq
ď e´

ε1
t , @t P p0, ε2q
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and
(1.98)

rΓpt, x, xq „
´

p
ÿ

s“1

e
2πps´1q

p mi
¯

8
ÿ

j“0

t´n`jrα`n´jpxq mod O
´

t´ne´
ε0d̂px,Xsing q

2

t

¯

, @x P Xp,

with some constants ε0, ε1, ε2 ą 0, giving
(1.99)

e´t
Ăl
`

b,mpx, xq „
´

p
ÿ

s“1

e
2πps´1q

p mi
¯

8
ÿ

j“0

t´n`jrα`n´jpxq mod O
´

t´ne´
ε0d̂px,Xsing q

2

t

¯

on Xp. Similar results hold for e´tĂl
´

b,mpx, xq.
The novelty here is analogous to (1.87). By taking supertrace we can improve the

estimates in (1.99) (see Theorem 6.4) so that t´n is removed:

Tr e´t
Ăl
`

b,mpx, xq ´ Tr e´t
Ăl
´

b,mpx, xq

„

´

p
ÿ

s“1

e
2πps´1q

p mi
¯

8
ÿ

j“0

t´n`j
´

Tr rα`n´jpxq ´ Tr rα´n´jpxq
¯

mod O
´

e´
d̂px,Xsing q

2

t

¯

,

(1.100)

for x P Xp. Hence (1.93) and (1.100) give
(1.101)
n
ÿ

j“0

p´1qjdimHj
b,mpX,Eq “

´

p
ÿ

s“1

e
2πps´1q

p mi
¯

lim
tÑ0`

ż

X

n
ÿ

`“0

t´`
´

Tr rα`` pxq ´ Tr rα´` pxq
¯

dvXpxq.

A key advantage of introducing our CR Spinc Dirac operator is basically that
Lichnerowicz formulas hold for rl

`

B,m (and rl
´

B,m). This enables us to apply the
rescaling technique (this part of rescaling is essentially the same as in classical cases,
cf. [5] and [24]) and to obtain that for each j “ 1, 2, . . . , N ,

(1.102)
´

Tr rABj ,`pz, zq ´ Tr rABj ,´pz, zq
¯

dvUj pzq

“ rTd p∇T
1,0Uj , T 1,0Ujq ^ ch p∇L

m

, Lmqs2npzq `Optq, @z P Uj .

Rewriting (1.102) in tangential forms, one has

(1.103)
n
ÿ

`“0

t´`
´

Tr rα`` pxq ´ Tr rα´` pxq
¯

dvXpxq

“
1

2π

”

Tdb p∇T
1,0X , T 1,0Xq ^ e´m

dω0
2π ^ ω0

ı

2n`1
pxq `Optq,

for t ą 0 and x P Xp.
Theorem 1.3, Theorem 1.10 and Corollary 1.13 follows from (1.99), (1.100), (1.101)

and (1.103).
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The layout of this paper is as follows. In Section 2.1 and Section 2.2, we collect some
notations, definitions, terminologies and statements we use throughout. In Section 2.3,
we introduce the tangential de Rham cohomology group, tangential Chern character
and tangential Todd class on CR manifolds with S1 action. In Section 2.4, we recall
a classical result of Baouendi-Rothschild-Treves [3] which plays an important role in
our construction of the heat kernel. We also prove that for a rigid vector bundle F
over X there exist rigid Hermitian metric and rigid connection on F . In Section 3,
we establish a Hodge theory for Kohn Laplacian in the L2 space of the m-th S1

Fourier component. In Section 4, we introduce our CR Spinc Dirac operator rDb,m,
modified/Spinc Kohn Laplacians rl

˘

b,m and prove (1.93). In Section 5, we construct

approximate heat kernels for the operators e´tĂl
˘

b,m and prove that e´tĂl
˘

b,mpx, yq

admit asymptotic expansions in the sense as (1.97). In Section 6, we prove (1.98),
(1.100), (1.103) and finish the proofs of Theorem 1.3, Theorem 1.10 and Corollary 1.13.
In Section 7 we prove Theorem 1.14.
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PART I

PREPARATORY FOUNDATIONS





CHAPTER 2

PRELIMINARIES

2.1. Some standard notations

We use the following notations: N “ t1, 2, . . .u, N0 “ N Y t0u, R is the set of
real numbers, R` :“ tx P R; x ě 0u. For a multiindex α “ pα1, . . . , αnq P Nn0 we set
|α| “ α1 ` ¨ ¨ ¨ ` αn. For x “ px1, . . . , xnq we write

xα “ xα1
1 ¨ ¨ ¨xαnn , Bxj “

B

Bxj
, Bαx “ B

α1
x1
¨ ¨ ¨ Bαnxn “

B|α|

Bxα
,

Dxj “
1

i
Bxj , Dα

x “ Dα1
x1
¨ ¨ ¨Dαn

xn , Dx “
1

i
Bx .

Let z “ pz1, . . . , znq, zj “ x2j´1 ` ix2j , j “ 1, . . . , n, be coordinates of Cn. We write

zα “ zα1
1 ¨ ¨ ¨ zαnn , zα “ zα1

1 ¨ ¨ ¨ zαnn ,

Bzj “
B

Bzj
“

1

2

´

B

Bx2j´1
´ i

B

Bx2j

¯

, Bzj “
B

Bzj
“

1

2

´

B

Bx2j´1
` i

B

Bx2j

¯

,

Bαz “ B
α1
z1 ¨ ¨ ¨ B

αn
zn “

B|α|

Bzα
, Bαz “ B

α1

z1
¨ ¨ ¨ B

αn
zn
“
B|α|

Bzα
.

Let X be a C8 orientable paracompact manifold. We denote the tangent and
cotangent bundle of X by TX and T˚X respectively, and the complexified tangent
and cotangent bundle by CTX and CT˚X. We write x ¨, ¨ y to denote the pointwise
pairing between T˚X and TX and extend x ¨, ¨ y bilinearly to CT˚X ˆ CTX.

Let E, F be C8 vector bundles over X. We write F b E˚ for the vector bundle
over X ˆX with fiber over px, yq P X ˆX consisting of linear maps from Ey to Fx.

Let Y Ă X be an open subset. The spaces of smooth sections and distribution
sections of E over Y will be denoted by C8pY,Eq and D 1pY,Eq respectively. Let
E 1pY,Eq be the subspace of D 1pY,Eq whose elements are of compact support in Y .
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For m P R, we let HmpY,Eq denote the Sobolev space of order m for sections of E
over Y . Put

Hm
loc pY,Eq “

 

u P D 1pY,Eq; ϕu P HmpY,Eq, ϕ P C8c pY q
(

,

Hm
comp pY,Eq “ Hm

locpY,Eq X E 1pY,Eq .

2.2. Set up and terminology

Let pX,T 1,0Xq be a compact CR manifold of dimension 2n ` 1, n ě 1, where
T 1,0X is a CR structure of X. That is T 1,0X is a subbundle of rank n of the complex-
ified tangent bundle CTX, satisfying T 1,0X X T 0,1X “ t0u, where T 0,1X “ T 1,0X,
and rV, Vs Ă V, V “ C8pX,T 1,0Xq.

We assume that X admits an S1 action: S1 ˆ X Ñ X. We write e´iθ to denote
the S1 action. Let T P C8pX,TXq be the global real vector field induced by the
S1 action given by pTuqpxq “ B

Bθ

`

ppe´iθq˚uqpxq
˘

|θ“0
for u P C8pXq.

Definition 2.1. – We say that the S1 action e´iθ is CR if rT,C8pX,T 1,0Xqs Ă

C8pX,T 1,0Xq and the S1 action is transversal if for each x P X, CT pxq ‘ T 1,0
x X ‘

T 0,1
x X “ CTxX. Moreover, we say that the S1 action is locally free if T ‰ 0 every-

where.

We assume throughout that pX,T 1,0Xq is a compact CR manifold with a transver-
sal CR locally free S1 action e´iθ with T the global vector field induced by the S1 ac-
tion. Let ω0 P C

8pX,T˚Xq be the global real one form determined by xω0, u y “ 0

for all u P T 1,0X ‘ T 0,1X, and xω0, T y “ 1.

Definition 2.2. – For p P X, the Levi form Lp is the Hermitian quadratic form
on T 1,0

p X given by LppU, V q “ ´
1
2ix dω0ppq, U ^ V y, U, V P T 1,0

p X.

If the Levi form Lp is semi-positive definite (resp. positive definite), we say that
X is weakly pseudoconvex (resp. strongly pseudoconvex) at p. If the Levi form is
semi-positive definite (resp. positive definite) at every point of X, we say that Xis
weakly pseudoconvex (resp. strongly pseudoconvex).

Denote by T˚1,0X and T˚0,1X the dual bundles of T 1,0X and T 0,1X respectively.
Define the vector bundle of pp, qq forms by T˚p,qX “ ΛppT˚1,0Xq ^ ΛqpT˚0,1Xq.

Let D Ă X be an open subset and E be a complex vector bundle over D. De-
note by Ωp,qpD,Eq (resp. Ωp,qpDq) the space of smooth sections of T˚p,qX b E

(resp. T˚p,qX)) over D and by Ωp,qc pD,Eq (resp. Ωp,qc pDq) those elements of com-
pact support in D.
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Put
T˚0,‚X :“

à

jPt0,1,...,nu

T˚0,jX,

T˚0,`X :“
à

jPt0,1,...,nu,j is even
T˚0,jX,

T˚0,´X :“
à

jPt0,1,...,nu,j is odd
T˚0,jX.

Put Ω0,‚pX,Eq, Ω0,`pX,Eq and Ω0,´pX,Eq in a similar way as above.
Fix θ0 P s´π, πr. Let pe´iθ0q˚ : ΛrpCT˚Xq Ñ ΛrpCT˚Xq be the pull-back map,

pe´iθ0q˚ : T˚p,q
e´iθ0˝x

X Ñ T˚p,qx X. Define for u P Ωp,qpXq

(2.1) Tu :“
B

Bθ

`

pe´iθq˚u
˘

|θ“0
P Ωp,qpXq.

(See also (2.13).)
Clearly

(2.2) upxq “
ÿ

mPZ

1

2π

ż π

´π

ppe´iθq˚uqpxqeimθdθ.

Let Bb : Ω0,qpXq Ñ Ω0,q`1pXq be the tangential Cauchy-Riemann operator. From
the CR property of the S1 action it follows that (see also (2.14))

TBb “ BbT on Ω0,qpXq.

Naturally associated with the S1 action are the so-called rigid objects. See also [3]
for a similar use of this term (cf. Definition II.2 of loc.cit.).

Definition 2.3. – Let D Ă X be an open set and u P C8pDq. We say that u is
rigid if Tu “ 0, u is Cauchy-Riemann (CR for short) if Bbu “ 0 and u is a rigid CR
function if Bbu “ 0 and Tu “ 0.

Definition 2.4. – Let F be a complex vector bundle of rank r over X. We say that
F is rigid (resp. CR) if X can be covered by open subsets Uj with trivializing frames
tf1
j , f

2
j , . . . , f

r
j u such that the corresponding transition functions are rigid (resp. CR)

(in the sense of the preceding definition).

Let F be a rigid (CR) vector bundle over X. In this work, we fix open cover
pUjq

N
j“1 of X and a family

 

f1
j , f

2
j , . . . , f

r
j

(N

j“1
of trivializing frames

 

f1
j , f

2
j , . . . , f

r
j

(

on each Uj such that the entries of the transition matrices between different frames
 

f1
j , f

2
j , . . . , f

r
j

(

are rigid (CR). We say that a frame f is rigid (CR) if f is rigid (CR)

with respect to
 

f1
j , f

2
j , . . . , f

r
j

(N

j“1
. We can define the operator T on Ω0,qpX,F q.

Indeed, every u P Ω0,qpX,F q can be written on Uj as u “
ř

u` b f `j and we set
Tu “

ř

Tu` b f
`
j . Then Tu is well defined as element of Ω0,qpX,F q, since the entries
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of the transition matrices between different frames
 

f1
j , f

2
j , . . . , f

r
j

(

are annihilated
by T .

Let X be a compact CR manifold with a locally free transversal CR S1 action. In
this work, we say that a trivializing frame f of T 1,0X is rigid if f is rigid with respect
to BRT frames (see Theroem 2.9 for the meaning of BRT frames). By using duality,
we can also define BRT frames for the bundle

À2n`1
r“1 ΛrpCT˚Xq and we say that a

trivializing frame f of
À2n`1

r“1 ΛrpCT˚Xq is rigid if f is rigid with respect to BRT
frames.

Let F be a rigid complex vector bundle over X in the sense of Definition 2.4.

Definition 2.5. – Let x ¨ | ¨ yF be a Hermitian metric on F . We say that x ¨ | ¨ yF is
a rigid Hermitian metric if for every rigid local frames tf1, . . . , fru of F , we have
T x fj | fk yF “ 0, for j, k “ 1, 2, . . . , r.

The condition of being rigid is not a severe restriction as far as the S1 action is
concerned. See Theorems 2.11 and 2.12 which we shall prove within the framework of
BRT trivializations in the next section.

Henceforth let E be a rigid CR vector bundle over X. Write Bb : Ω0,qpX,Eq Ñ

Ω0,q`1pX,Eq for the tangential Cauchy-Riemann operator. Since E is rigid, we can
define Tu for u P Ω0,qpX,Eq (cf. Theorem 2.11) and have

(2.3) TBb “ BbT on Ω0,qpX,Eq.

For m P Z, let

(2.4) Ω0,q
m pX,Eq :“

 

u P Ω0,qpX,Eq; Tu “ ´imu
(

and put Ω0,‚
m pX,Eq, Ω0,`

m pX,Eq and Ω0,´
m pX,Eq in a similar way as above.

Put Bb,m :“ Bb : Ω0,q
m pX,Eq Ñ Ω0,q`1

m pX,Eq with a Bb,m-complex:

Bb,m: ¨ ¨ ¨ Ñ Ω0,q´1
m pX,Eq Ñ Ω0,q

m pX,Eq Ñ Ω0,q`1
m pX,Eq Ñ ¨ ¨ ¨ .

Define

Hq
b,mpX,Eq :“

Ker Bb,m : Ω0,q
m pX,Eq Ñ Ω0,q`1

m pX,Eq

Im Bb,m : Ω0,q´1
m pX,Eq Ñ Ω0,q

m pX,Eq
.

It is instructive to think of Hq
b,mpX,Eq as the m-th S1 Fourier component of the q-th

Bb Kohn-Rossi cohomology group.
We will prove in Theorem 3.7 that dimHq

b,mpX,Eq ă 8, for m P Z and q “

0, 1, 2, . . . , n.
We take a rigid Hermitian metric x ¨ | ¨ yE on E (in the sense of Definition 2.5), and

a rigid Hermitian metric x ¨ | ¨ y on CTX such that

(2.5) T K pT 1,0X ‘ T 0,1Xq, xT |T y “ 1

(and T 1,0X K T 0,1X). (This is always possible; see Theorem 2.11 and Theorem 9.2
in [42].)
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The Hermitian metric x ¨ | ¨ y on CTX induces by duality a Hermitian metric
on CT˚X and on the bundles of p0, qq forms T˚0,qX (q “ 0, 1 ¨ ¨ ¨ , n), to be denoted
by x ¨ | ¨ y too. A Hermitian metric denoted by x ¨ | ¨ yE on T˚0,‚XbE is induced by those
on T˚0,‚X and E. Let the lnear map Apx, yq P pT˚0,‚X b Eqb pT˚0,‚X b Eq˚|px,yq

.
We write |Apx, yq| to denote the natural matrix norm of Apx, yq induced by x ¨ | ¨ yE .

We denote by dvX “ dvXpxq the induced volume form, and form the global
L2 inner products p ¨ | ¨ qE and p ¨ | ¨ q on Ω0,‚pX,Eq and Ω0,‚pXq respectively, with
L2-completion L2pX,T˚0,qX b Eq and L2pX,T˚0,qXq. Similar notation applies
to L2

mpX,T
˚0,qX b Eq and L2

mpX,T
˚0,qXq (the completions of Ω0,q

m pX,Eq and
Ω0,q
m pXq with respect to p ¨ | ¨ qE and p ¨ | ¨ q).
Put L2pX,T˚0,‚XbEq, L2,`pX,Eq and L2,´pX,Eq in a similar way as above, and

L2
mpX,T

˚0,‚X b Eq, L2,`
m pX,Eq and L2,´

m pX,Eq too.

2.3. Tangential de Rham cohomology group, Tangential Chern character and Tangen-
tial Todd class

In this section it is convenient to put Ωr0pXq “
!

u P
À

p`q“r Ωp,qpXq; Tu “ 0
)

for r “ 0, 1, 2, . . . , 2n (without any danger of confusion with Ωp,q0 in the preceding
section) and set Ω‚0pXq “

À2n
r“0 Ωr0pXq. Since Td “ dT (see (2.3)), we have d-complex:

d : ¨ ¨ ¨ Ñ Ωr´1
0 pXq Ñ Ωr0pXq Ñ Ωr`1

0 pXq Ñ ¨ ¨ ¨

Define the r-th tangential de Rham cohomology group:

H
r
b,0pXq :“

Ker d : Ωr0pXq Ñ Ωr`1
0 pXq

Im d : Ωr´1
0 pXq Ñ Ωr0pXq

.

Put H
‚
b,0pXq “

À2n
r“0 H

r
b,0pXq.

Let a complex vector bundle F over X of rank r be rigid as in Definition 2.4. We
will show in Theorem 2.12 that there exists a connection ∇ on F such that for any
rigid local frame f “ pf1, f2, . . . , frq of F on an open set D Ă X, the connection
matrix θp∇, fq “ pθj,kqrj,k“1 satisfies

θj,k P Ω1
0pDq,

for j, k “ 1, . . . , r. We call ∇ as such a rigid connection on F . Let Θp∇, F q P
C8pX,Λ2pCT˚Xq b End pF qq be the associated tangential curvature.

Let hpzq “
ř8

j“0 ajz
j be a real power series on z P C. Set

HpΘp∇, F qq “ Tr
´

h
` i

2π
Θp∇, F q

˘

¯

.

It is clear that HpΘp∇, F qq P Ω‚0pXq.
The following is well-known (see Theorem B.5.1 in Ma-Marinescu [50]).

Theorem 2.6. – HpΘp∇, F qq is a closed differential form.
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That the tangential de Rham cohomology class

rHpΘp∇, F qqs P H
‚
b,0pXq

does not depend on the choice of rigid connections ∇ is given by

Theorem 2.7. – Let ∇1 be another rigid connection on F . Then, HpΘp∇, F qq ´
HpΘp∇1, F qq “ dA, for some A P Ω‚0pXq.

Proof. – The idea of the proof is standard. For each t P r0, 1s, put ∇t “ p1´tq∇`t∇1
which is a rigid connection on F . Set

Qt “
i

2π
Tr

´

B∇t
Bt

h1
` i

2π
Θp∇t, F q

˘

¯

.

Since ∇t is rigid, it is easily seen that

(2.6) Qt P Ω‚0pXq.

It is well-known that (see Remark B.5.2 in Ma-Marinescu [50])

(2.7) HpΘp∇, F qq ´HpΘp∇110 Qtdt.

From (2.6) and (2.7), the theorem follows.

For hpzq “ ez put

(2.8) chb p∇, F q :“ HpΘp∇, F qq P Ω‚0pXq,

and for hpzq “ logp z
1´e´z q set

(2.9) Tdb p∇, F q :“ eHpΘp∇,F qq P Ω‚0pXq.

We can now introduce tangential Todd class and tangential Chern character.

Definition 2.8. – The tangential Chern character of F is given by

chb pF q :“ rchb p∇, F qs P H
‚
b,0pXq

and the tangential Todd class of F is given by

Tdb pF q “ rTdb p∇, F qs P H
‚
b,0pXq.

Baouendi-Rothschild-Treves [3] proved that T 1,0X is a rigid complex vector bundle
over X (cf. the first part of Theorem 2.11 below). The tangential Todd class of T 1,0X

and tangential Chern character of T 1,0X are thus well defined.
The tangential Chern classes can be defined similarly. Put detp iΘp∇,F q2π t ` Iq “

r
ř

j“0

ĉjp∇, F qtj . Thus ĉjp∇, F q P Ω2j
0 pDq. By the matrix identity detA “ eTr plogAq and

taking hpzq “ logp1 ` zq, one sees ĉjp∇, F q (j “ 0, 1, . . . , r) is a closed differential
form on X and its tangential de Rham cohomology class rĉjp∇, F qs P H

2j
b,0pXq is

independent of the choice of rigid connections ∇. Put ĉjpF q “ rĉjp∇, F qs P H
2j
b,0pXq.
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We call ĉjpF q the j-th tangential Chern class of F , and ĉpF q “ 1 `
r
ř

j“1

ĉjpF q P

H
‚
b,0pXq the tangential total Chern class of F .

2.4. BRT trivializations and rigid geometric objects

In this paper, much of our strategy is heavily based on the following result thanks to
Baouendi-Rothschild-Treves [3, Proposition I.2]. Note in the following, Zj corresponds
to Lj in their proposition. Some geometrical significance related to a certain circle
bundle structure will be discussed in the proof of Proposition 4.2.

Theorem 2.9. – For every point x0 P X there exist local coordinates x “

px1, . . . , x2n`1q “ pz, θq “ pz1, . . . , zn, θq, zj “ x2j´1 ` ix2j , j “ 1, . . . , n, x2n`1 “ θ,
defined in some small neighborhood D “ tpz, θq : |z| ă δ,´ε0 ă θ ă ε0u of x0, δ ą 0,
0 ă ε0 ă π, such that pzpx0q, θpx0qq “ p0, 0q and

T “
B

Bθ

Zj “
B

Bzj
´ i

Bϕ

Bzj
pzq

B

Bθ
, j “ 1, . . . , n,

(2.10)

where Zjpxq, j “ 1, . . . , n, form a basis of T 1,0
x X for each x P D and ϕpzq P

C8pD,Rq is independent of θ. We summarize these data by the notation pD, pz, θq, ϕq.
We call pD,x “ pz, θq, ϕq BRT trivialization, tZju

n
j“1 BRT frame and we call

x “ pz, θq canonical coordinates.
Furthermore, let pD, pz, θq, ϕq and p rD, pw, ηq, rϕq be two such data on D. Then the

coordinate transformation between them on DX rD satisfies the following. There exist
holomorphic functions Hj, j “ 1, . . . , n, and g on tz P Cn; |z| ă δu with g nowhere
vanishing, such that

w “ pw1, . . . , wnq “ Hpzq “ pH1pzq, . . . ,Hnpzqq,

η “ θ ` arg gpzq pmod 2πq where arg gpzq “ Im log gpzq,

rϕpHpzq, Hpzqq “ ϕpz, zq ` log |gpzq|.

(2.11)

Remark 2.10. – The formulas in (2.11) generalize those in [3, the line below (I.31)]
which correspond to the case gpzq ” constant. See the proof of Proposition 4.2 for a
derivation. It should be noticed that our notation ´ Bϕ

Bzj
is equal to φk,zj (k “ 1) in

[3, the line below (I.31)].

There exist examples that H is not necessarily one to one. Nevertheless, it can be
shown that after shrinkingD and rD properly, it is one to one, hence a biholomorphism.

We call the above triple pD, pz, θq, ϕq a BRT trivialization. Note for pz, θq P D and
´π ă α ă π, e´iα ˝ pz, θq “ pz, θ ` αq if te´itα ˝ pz, θqu0ďtď1 Ă D.
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By using BRT trivializations some operations simplify, as follows. Under the BRT
triple pD, pz, θq, ϕq it is clear that

tdzj1 ^ ¨ ¨ ¨ ^ dzjq , 1 ď j1 ă ¨ ¨ ¨ ă jq ď nu

is a basis for T˚0,q
x X for every x P D. For u P Ω0,qpXq, on D we write

(2.12) u “
ÿ

j1ă¨¨¨ăjq

uj1¨¨¨jqdzj1 ^ ¨ ¨ ¨ ^ dzjq .

Recall that T is the vector field associated with the S1 action. We have

(2.13) Tu “
ÿ

j1ă¨¨¨ăjq

pTuj1¨¨¨jq qdzj1 ^ ¨ ¨ ¨ ^ dzjq

and Tu is independent of the choice of BRT trivializations.

For Bb on the BRT triple pD, pz, θq, ϕq we have

(2.14) Bb “

n
ÿ

j“1

dzj ^ p
B

Bzj
` i

Bϕ

Bzj
pzq

B

Bθ
q.

The rigid objects (discussed in the preceding section) are natural geometric objects
pertinent to the S1 action. In the following X is again a compact connected CR
manifold with a transversally CR locally free S1 action.

Theorem 2.11. – Suppose F is a complex vector bundle over X (not necessarily a
CR bundle) and admits an S1 action compatible with that on X. Then F is actually
a rigid vector bundle (in the sense of Definition 2.4). Moreover there is a rigid Her-
mitian metric x ¨ | ¨ yF on F . Conversely if F is a rigid vector bundle, then F admits
a compatible S1 action.

Proof. – We first work on the existence of a rigid Hermitian metric (assuming F is
rigid). Fix p P X and let pD, pz, θq, ϕq be a BRT trivialization around p such that
pzppq, θppqq “ p0, 0q, pz, θq P tz P Cn´1 : |z| ă δu ˆ tθ P R : |θ| ă δu for some δ ą 0.
Put
A :“ tλ P r´π, πs : there is a local rigid trivializing frame (l.r.t. frame for short)

defined on
 

e´iθ ˝ pz, 0q; |z| ă ε, θ P r´π, λ` εq
(

for some 0 ă ε ă δu.

Clearly A is a non-empty open set in r´π, πs. We claim A “ r´π, πs. (Remark that
the l.r.t. frame above is closely related to the canonical basis in [3, Definition I.3
without (I.29a)] when E is T 1,0X.)

It suffices to prove A is closed. Let λ0 be a limit point of A. For some small ε1 ą 0,
there is a l.r.t. frame f̂ “ pf̂1, . . . , f̂rq defined on

 

e´iθ ˝ pz, 0q; |z| ă ε1, λ0 ´ ε1 ă θ1 ă λ0 ` ε1

(

.
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By assumption λ0 P A there exists a l.r.t. frame rf “ p rf1, . . . , rfrq defined around
te´iθ ˝ pz, 0qu in which |z| ă ε2, θ P r´π, λ0 ´

ε1
2 q for some ε2 ą 0. Now rf “ gf̂ on

!

e´iθ ˝ pz, 0q; |z| ă ε0, θ P pλ0 ´ ε1, λ0 ´
ε1

2
q

)

, ε0 “ min tε1, ε2u ,

for some rigid r ˆ r matrix g.
We now patch up the frames. Put , for θ P r´π, λ0´

ε1
2 q, f “ rf (on te´iθ ˝ pz, 0qu)

and for θ P rλ0 ´
ε1
2 , λ0 ` ε1q, f “ gf̂ because g is independent of θ. By rf “ gf̂ on

the overlapping, f is well-defined as a l.r.t. frame on
 

e´iθ ˝ pz, 0q; |z| ă ε0, θ P r´π, λ0 ` ε1q
(

.

extending θ “ λ0. Thus A is closed as desired.
By the discussion above we can actually find local rigid trivializations W1, . . . ,WN

such that X “
ŤN
j“1Wj and each Wj Ą

Ť

´πďθďπ e
´iθWj (i.e., Wj is S1 invariant).

Take any Hermitian metric x ¨, ¨ yF on F . Let x ¨ | ¨ yF be the Hermitian metric on F
defined as follows. For each j “ 1, 2, . . . , N , let h1

j , . . . , h
r
j be local rigid trivializing

frames on Wj . Put xhsjpxq |htjpxq yF “
1

2π

şπ

´π
xhsjpe

´iu ˝ xq, htjpe
´iu ˝ xq yF du, s, t “

1, 2, . . . , r. One sees that x ¨ | ¨ yF is well-defined as a rigid Hermitian metric on F .
By examining the above reasoning we have also proved that if F is rigid, then

it admits a natural S1 action (by declaring the l.r.t. frames as S1 invariant frames)
compatible with that on X.

For the reverse direction if F admits a compatible S1 action, by using BRT triv-
ializations one can construct S1 invariant local frames. These invariant local frames
can be easily verified to be local rigid frames, or equivalently the transition functions
between them are annihilated by T due to the S1 invariant property. Hence F is rigid
by definition.

We shall now prove

Theorem 2.12. – Assume the complex vector bundle F is rigid (on X). There exists a
rigid connection on F . And if F is equipped with a rigid Hermitian metric, there exists
a rigid connection compatible with this Hermitian metric. Suppose F is furthermore
CR (and rigid) equipped with a rigid Hermitian metric h. Then there exists a unique
rigid connection (see the second paragraph of Subsection 2.3) ∇F compatible with h
such that ∇F induces a Chern connection on Uj (of any given BRT chart), and that
the S1 invariant sections are its parallel sections along S1 orbits of X.

Proof. – Let ∇ be a connection on F . For any g P S1 considering g˚∇ on g˚F which
is F by using Theorem 2.11 and summing over g (in analogy with the construction
of a rigid Hermitian metric above), one obtains a rigid connection on F . Suppose
F has a rigid Hermitian metric x ¨ | ¨ yF and a connection ∇ compatible with x ¨ | ¨ yF .
One readily sees that the rigid connection resulting from the preceding procedure
of summation, is still compatible with x ¨ | ¨ yF . For the last statement, note that i)
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given a rigid CR bundle F with a rigid Hermitian metric h and any BRT chart
Dj “ Uj ˆ s´ε, εr, pF, hq can descend to Uj as a holomorphic vector bundle with the
inherited metric, and ii) for a holomorphic vector bundle with a Hermitian metric,
the Chern connection is canonically defined. Combining i) with ii) and using the
S1 invariant local frames (cf. proof of Theorem 2.11), one can construct a canonical
connection ∇Fj on Uj . Then by using (2.10), (2.11) and the canonical property of the
Chern connection, one sees that these ∇Fj patch up to form a global connection ∇F
on X, satisfying the property as stated in the proposition.
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CHAPTER 3

A HODGE THEORY FOR l
pqq

b,m

A Hodge decomposition theorem for Bb on pseudoconvex CR manifolds has been
well developed. See [15, Section 9.4] for a nice presentation in some respects; see
also [62]. Our goal of this section is to develop an analogous theory for l

pqq
b,m on CR

manifolds with transversal CR locally free S1 action (irrespective of pseudoconvexity).
Much of what follows appears to parallel the corresponding part of Hodge theory in
complex geometry.

Besides the relevance to the index theorem on CR manifolds, the present theory
has an application to our proof of homotopy invariance of index (Theorem 4.7).

As before,X is a compact CR manifold with a transversal CR locally free S1 action.
Let B

˚

b : Ω0,q`1pX,Eq Ñ Ω0,qpX,Eq (q “ 0, 1, 2, . . . , n) be the formal adjoint of Bb
with respect to p ¨ | ¨ qE . Put l

pqq
b :“ BbB

˚

b ` B
˚

b Bb : Ω0,qpX,Eq Ñ Ω0,qpX,Eq. T is
the vector field on X induced by the S1 action, TBb “ BbT and Bb,m :“ Bb|Ω0,q

m

:

Ω0,q
m pX,Eq Ñ Ω0,q`1

m pX,Eq on eigenspaces of the S1 acton p@m P Zq.

Recall that x ¨ | ¨ yE is rigid. One sees TB
˚

b “ B
˚

b T so that B
˚

b |Ω0,q`1
m

: Ω0,q`1
m pX,Eq Ñ

Ω0,q
m pX,Eq is the same as the formal adjoint B

˚

b,m of Bb,m. Form l
pqq
b,m “ Bb,mB

˚

b,m `

B
˚

b,mBb,m : Ω0,q
m pX,Eq Ñ Ω0,q

m pX,Eq. We have l
pqq
b,m “ l

pqq
b |Ω0,q

m pX,Eq
.

On a general compact CR manifold, there is a fundamental result that follows from
Kohn’s L2 estimates. (See [15, Theorem 8.4.2]). Adapting it to our present situation,
we can state the result as follows.

Theorem 3.1. – For every s P N0, there is a constant Cs ą 0 such that

}u}s`1 ď Cs

´
›

›

›
l
pqq
b u

›

›

›

s
` }Tu}s ` }u}s

¯

, @u P Ω0,qpX,Eq,

where }¨}s denotes the usual Sobolev norm of order s on X.

Theorem 3.1 restricted to Ω0,q
m pX,Eq yields
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Corollary 3.2. – Fix m P Z. For every s P N0, there is a constant Cs ą 0 such that

}u}s`1 ď Cs

´
›

›

›
l
pqq
b,mu

›

›

›

s
` }u}s

¯

, @u P Ω0,q
m pX,Eq.

This suggests that a good regularity theory might exist on our X. Observe that, al-
though l

pqq
b is not elliptic onX, l

pqq
b ´T 2 is and restricts to l

pqq
b,m`m

2 on Ω0,q
m pX,Eq.

In fact, without using the above theorems all of the following results are essentially
proven by standard results in elliptic theory.

Write Dom l
pqq
b,m :“ tu P L2

mpX,T
˚0,qXbEq; l

pqq
b,mu P L

2
mpX,T

˚0,qXbEqu where

l
pqq
b,mu is defined in the sense of distribution. l

pqq
b,m is extended by

(3.1) l
pqq
b,m : Dom l

pqq
b,m pĂ L2

mpX,T
˚0,qX b Eqq Ñ L2

mpX,T
˚0,qX b Eq.

Lemma 3.3. – We have Dom l
pqq
b,m “ L2

mpX,T
˚0,qX b Eq XH2pX,T˚0,qX b Eq.

Proof. – For the inclusion put v “ l
pqq
b,mu P L

2
mpX,T

˚0,qX b Eq.

Then pl pqq
b,m´T

2qu “ v`m2u P L2
mpX,T

˚0,qX bEq. Since pl pqq
b ´T 2q is elliptic,

we conclude u P H2pX,T˚0,qX b Eq. The reverse inclusion is clear.

Lemma 3.4. – We have that l
pqq
b,m : Dom l

pqq
b,m pĂ L2

mpX,T
˚0,qX b Eqq Ñ

L2
mpX,T

˚0,qX b Eq is self-adjoint.

Proof. – Since the similar extension of l
pqq
b on L2pX,T˚0,qX bEq is self-adjoint and

its restriction to (an invariant subspace) L2
mpX,T

˚0,qXbEq gives l
pqq
b,m, l

pqq
b,m is also

self-adjoint.

Let Spec l
pqq
b,m Ă r0,8r denote the spectrum of l

pqq
b,m (Davies [20]).

Proposition 3.5. – Spec l
pqq
b,m is a discrete subset of r0,8r. For any ν P Spec l

pqq
b,m,

ν is an eigenvalue of l
pqq
b,m and the eigenspace

E
q
m,νpX,Eq :“

 

u P Dom l
pqq
b,m; l

pqq
b,mu “ νu

(

is finite dimensional with E
q
m,νpX,Eq Ă Ω0,q

m pX,Eq.

Proof. – l
pqq
b ´T 2 ” ∆ is a second order elliptic operator. By standard elliptic theory,

∆ and hence ∆ ` m2, satisfy the statement of the proposition on the (invariant)
subspace L2

mpX,T
˚0,qX b Eq Ą Ω0,q

m pX,Eq. On it T 2 acts as ´m2, the proposition
follows for l

pqq
b,m which is ∆`m2 on L2

mpX,T
˚0,qX b Eq.
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A role analogous to the Green’s operator in the ordinary Hodge theory is given as
follows. Let

N pqqm : L2
mpX,T

˚0,qX b Eq Ñ Dom l
pqq
b,m

be the partial inverse of l
pqq
b,m and let

Πpqqm : L2
mpX,T

˚0,qX b Eq Ñ Ker l
pqq
b,m

be the orthogonal projection. We have

l
pqq
b,mN

pqq
m `Πpqqm “ I on L2

mpX,T
˚0,qX b Eq,

N pqqm l
pqq
b,m `Πpqqm “ I on Dom l

pqq
b,m.

(3.2)

Lemma 3.6. – We have N pqqm : Ω0,q
m pX,Eq Ñ Ω0,q

m pX,Eq.

Proof. – A slight variant of the standard argument applies as l
pqq
b is almost elliptic.

Let u P Ω0,q
m pX,Eq and put N pqqm u “ v P L2

mpX,T
˚0,qX bEq. By (3.2), pI ´Π

pqq
m qu “

l
pqq
b,mv, giving

(3.3) pl
pqq
b,m ´ T

2qv “ pI ´Πpqqm qu`m
2v.

By Proposition 3.5, Ker l
pqq
b,m consists of smooth sections, so Π

pqq
m u is smooth and

(3.4) pI ´Πpqqm qu P Ω0,q
m pX,Eq.

By combining (3.3) and (3.4) and noting l
pqq
b ´T 2 is elliptic, the standard technique

in elliptic regularity applies to give v P Ω0,q
m pX,Eq.

The following is a version of “harmonic realization” of cohomology.

Theorem 3.7. – For every q P t0, 1, 2, . . . , nu and every m P Z, we have

(3.5) Ker l
pqq
b,m “ E

q
m,0pX,Eq – Hq

b,mpX,Eq.

As a consequence dimHq
b,mpX,Eq ă 8 by Proposition 3.5.

Proof. – The argument is mostly standard (although l
pqq
b is not elliptic). Consider

the map

τ qm : Ker Bb,m X Ω0,q
m pX,Eq Ñ Ker l

pqq
b,m,

u ÞÑ Πpqqm u.
(3.6)

Clearly τ qm is surjective. Put Mq
m :“

 

Bb,mu; u P Ω0,q´1
m pX,Eq

(

. The theorem follows
if one shows

(3.7) Ker τ qm “Mq
m.
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It is easily seen Mq
m Ă Ker τ qm since Mq

m K Ker l
pqq
b,m. For the converse let u P Ker τ qm

so Π
pqq
m u “ 0. From (3.2) we have

(3.8) u “ l
pqq
b,mN

pqq
m u`Πpqqm u “ pBb B

˚

b ` B
˚

b BbqN
pqq
m u.

We claim that

(3.9) B
˚

b BbN
pqq
m u “ 0.

One sees, by using B
2

b “ 0 for the first equality below,

p B
˚

b BbN
pqq
m u | B

˚

b BbN
pqq
m u qE “ p B

˚

b Bbl
pqq
m N pqqm u |N pqqm u qE “ p B

˚

b BbpI ´Πpqqm qu |N
pqq
m uqE

“ p B
˚

b Bbu |N
pqq
m uqE ,

(3.10)

which is zero because u P Ker Bb,m by (3.6), giving the claim (3.9). By (3.8) and (3.9),

(3.11) u “ Bb B
˚

bN
pqq
m u,

with B
˚

bN
pqq
m u P Ω0,q´1

m pX,Eq by Lemma 3.6. By (3.11), u PMq
m, yielding the desired

inclusion Ker τ qm ĂMq
m. Hence (3.7).

Let Db,m :“ Bb ` B
˚

b : Ω0,`
m pX,Eq Ñ Ω0,´

m pX,Eq with extension Db,m

Db,m : DomDb,m pĂ L2,`
m pX,Eqq Ñ L2,´

m pX,Eq,

DomDb,m “
 

u P L2,`
m pX,Eq; distribution Db,mu P L

2,`
m pX,Eq

(

. The Hilbert space
adjoint of Db,m with respect to p ¨ | ¨ qE is given by D˚b,m : DomD˚b,m pĂ L2,´

m pX,Eqq Ñ

L2,`
m pX,Eq.
Combining Proposition 3.5 and Theorem 3.7, one can verify (as in standard Hodge

theory)

Theorem 3.8. – With the notation above

KerDb,m “
à

qPt0,1,...,nu
q even

Ker l
pqq
b,m pĂ Ω0,`

m pX,Eqq,

KerD˚b,m “
à

qPt0,1,...,nu
q odd

Ker l
pqq
b,m pĂ Ω0,´

m pX,Eqq.
(3.12)

Put indDb,m :“ dim KerDb,m ´ dim KerD˚b,m. Hence, together with Theorem 3.7,

(3.13)
n
ÿ

j“0

p´1qjdimHj
b,mpX,Eq “ indDb,m.
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We are prepared by Theorem 3.8 to see that to calculate
řn
j“0p´1qjdimHj

b,mpX,Eq

is the same as to calculate the index indDb,m. To do so effectively we need to modify
the Dirac type operator Db,m hence the standard Kohn Laplacian because the mod-
ified versions rDb,m, rl b,m will have a manageable heat kernel that suits our purpose
better for the CR non-Kähler case (cf. Remark 4.9). Lastly we shall give an argument
for the homotopy invariance, and obtain indDb,m “ ind rDb,m.

The main idea here is borrowed from that of classical cases. But as the CR man-
ifold X is not assumed to be a (orbifold) circle bundle globally, there could arise
the problem of patching (from local constructions to the global one). Part of the
technicality in the beginning of this section lies in a careful treatment in this regard.

We recall some basics of Clifford connection and Spinc Dirac operator. For more
details we refer to Chapter 1 in [50] and [24].

Let B :“ pD, pz, θq, ϕq be a BRT trivialization with D “ U ˆ s´ε, εr where ε ą 0

and U is an open set of Cn. Using ϕ in B, we let x ¨, ¨ y be the Hermitian metric
on CTU induced by that on D

(4.1) x
B

Bzj
,
B

Bzk
y “ x

B

Bzj
´ i

Bϕ

Bzj
pzq

B

Bθ
|
B

Bzk
´ i

Bϕ

Bzk
pzq

B

Bθ
y, j, k “ 1, 2, . . . , n

(cf. Theorem 2.9). By (2.10) and Theorem 2.9, the above metric is actually intrinsically
defined.

The x ¨, ¨ y induces Hermitian metrics on T˚0,qU still denoted by x ¨, ¨ y and a Rie-
mannian metric gTU on TU .

For any v P TU with decomposition v “ vp1,0q`vp0,1q P T 1,0U‘T 0,1U , let vp1,0q,˚ P
T˚0,1U be the metric dual of vp1,0q with respect to x ¨, ¨ y. That is, vp1,0q,˚puq “
x vp1,0q, u y for all u P T 0,1U .

The Clifford action v on ΛpT˚0,1Uq :“
Àn

q“0 T
˚0,qU is defined by

(4.2) cpvqp¨q “
?

2pvp1,0q,˚ ^ p¨q ´ ivp0,1qp¨qq

(where ^ and i denote the exterior and interior product respectively).
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Let twju
n
j“1 be a local orthonormal frame of T 1,0U with respect to x ¨, ¨ y with dual

frame
 

wj
(n

j“1
. Write

(4.3) e2j´1 “
1?
2
pwj ` wjq and e2j “

i?
2
pwj ´ wjq, j “ 1, 2, . . . , n,

for an orthonormal frame of TU . Let ∇TU be the Levi-Civita connection on TU

(with respect to gTU ), and ∇det be the Chern connection on the determinant line
bundle det pT 1,0Uq (with x ¨, ¨ y), with connection forms ΓTU and Γdet associated to
the frames teju

2n
j“1 and w1 ^ ¨ ¨ ¨ ^ wn. That is,

∇TUej e` “ ΓTU pejqe`, j, ` “ 1, 2, . . . , 2n,

∇det pw1 ^ ¨ ¨ ¨ ^ wnq “ Γdetw1 ^ ¨ ¨ ¨ ^ wn.
(4.4)

The Clifford connection ∇Cl on ΛpT˚0,1Uq is defined for the frame
 

wj1 ^ ¨ ¨ ¨ ^ wjq ; 1 ď j1 ă ¨ ¨ ¨ ă jq ď n
(

by the local formula

(4.5) ∇Cl “ d`
1

4

2n
ÿ

j,`“1

xΓTUej , e` ycpejqcpe`q `
1

2
Γdet .

In general a Levi-Civita connection ∇ cannot be compatible with the complex
structure unless a certain extra condition is imposed such as Kähler condition on
the metric. Alternatively one takes the orthogonal projection PT 1,0X∇ to produce
a connection on T 1,0X. One key point above is that the Clifford connection ∇Cl

(regardless of Kähler condition nor orthogonal projection) defines a Hermitian con-
nection (connection compatible with the underlying Hermitian metric) on ΛpT˚0,1Uq

(see Proposition 1.3.1 in [50]).

Let’s be back to the CR case. In the same notation as before, Ω0,qpU,Eq denotes the
space of p0, qq forms on U with values in E, Ω0,`pU,Eq the even part and Ω0,´pU,Eq

the odd part of Ω0,‚pU,Eq etc.

AssumeX is equipped with a CR bundle E which is rigid. Being rigid E can descend
as a holomorphic vector bundle over U . We may assume that E is (holomorphically)
trivial on U (possibly after shrinking U). A rigid Hermitian (fiber) metric x ¨ | ¨ yE
descends to a Hermitian (fiber) metric x ¨ | ¨ yE on E over U . Let ∇E be the Chern
connection on E associated with x ¨ | ¨ yE (over U).

We still denote by ∇Cl the connection on ΛpT˚0,1UqbE induced by ∇Cl and ∇E .

Definition 4.1. – The Spinc Dirac operator DB is defined by

(4.6) DB “
1
?

2

2n
ÿ

j“1

cpejq∇Cl
ej : Ω0,‚pU,Eq Ñ Ω0,‚pU,Eq.
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It is well-known thatDB is formally self-adjoint (see Proposition 1.3.1 and equation
(1.3.1) in [50]) and DB : Ω0,˘pU,Eq Ñ Ω0,¯pU,Eq.

Write B
˚

: Ω0,q`1pU,Eq Ñ Ω0,qpU,Eq for the adjoint of B : Ω0,qpU,Eq Ñ

Ω0,q`1pU,Eq with respect to the L2 inner product on Ω0,qpU,Eq induced by x ¨, ¨ y
and x ¨ | ¨ yE (q “ 0, 1, 2, . . . , n´ 1). Then, by Theorem 1.4.5 in [50]

(4.7) DB “ B ` B
˚
`AB : Ω0,˘pU,Eq Ñ Ω0,¯pU,Eq,

where AB : Ω0,˘pU,Eq Ñ Ω0,¯pU,Eq is a smooth zeroth order operator and AB “

ABpzq, independent of θ. Moreover, AB does not depend on E and acts only on the
factor Ω0,‚pXq. Note that AB as an operator Ω0,‚pU,Eq Ñ Ω0,‚pU,Eq is self-adjoint
because both DB and B ` B

˚
are so.

The following is instrumental in forming a global operator from local ones, whose
proof is based on canonical coordinates of BRT trivializations. Note for u P Ω0,qpD,Eq

(q “ 0, 1, 2, . . . , n) with u “ upzq, i.e., u is independent of θ, we may identify such u
with an element in Ω0,qpU,Eq by using (2.12) (and vice versa).

Proposition 4.2. – Let B “ pD, pz, θq, ϕq and rB “ pD, pw, ηq, rϕq be two BRT
trivializations with D “ U ˆ s´ε, εr for ε ą 0 and an open set U of Cn. Let
AB , A rB : Ω0,˘pU,Eq Ñ Ω0,¯pU,Eq be the operators given by (4.7). Fix an m P Z.
For u P Ω0,˘

m pX,Eq we can write up“ u|D
q “ e´imθvpzq “ e´imηrvpwq for some

vpzq, rvpwq P Ω0,˘pU,Eq. Then

(4.8) e´imθABpvpzqq “ e´imηA
rBprvpwqq on D.

Proof. – Although we shall only use part of the coordinate transformation of BRT
trivializations (2.11)

w “ Hpzq, BHpzq “ 0; η “ θ ` arg gpzq; rϕpHpzq, Hpzqq “ ϕpz, zq ` log |gpzq|,

(4.9)

let’s give a geometrical interpretation of how the above can be obtained for an in-
dependent interest. This complements the treatment of [3]. See Subsection 5.1 (cf.
Remark 5.3) for its use in the construction of a modified Kodaira Laplacian.

To see (4.9), we are going to realize D (possibly after shrinking it) as (part of) the
total space of a circle bundle associated with a trivial holomorphic line bundle L over
a complex manifold U Ă Cn. More precisely suppose L is equipped with a Hermitian
metric such that a local basis 1 has ||1|| “ e´2φpzq and Y “ tpz, λq Ă Cn`1; |λ|2e2φ “

1u is the circle bundle inside the L˚. Write ρ “ |λ|2e2φ ´ 1 and λ|Y
“ e´φ´iθ.

One has T 0,1Y “ pKer Bρq X T 0,1Cn`1. In terms of pz, θq coordinates on Y , one has
T 0,1Y “ Span

´

t B
Bzj
` i Bφ

Bzj
pzq B

Bθ ; j “ 1, 2, . . . , nu
¯

(and T 1,0Y “ T 0,1Y ) because the

RHS is checked to be contained in Ker Bρ and it has the correct dimension. In view
of Theorem 2.9 by taking the above φ to be ϕ of Zj in (2.10) and mapping pz, θq of D
to pz, e´φpzq´iθq of Y , it will be seen that D is realized in this way as a portion of Y .
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For this realization, we compare the above with [3, (0.1) or Theorem I.2] and
set up the (holomorphic) transformation in coordinates: setting our ϕ, λ, θ and z

(on U) above to be φ, eiw, ´s1 and z respectively in [3, (0.1) and Theorem I.2]).
Then our Zj in (2.10) corresponds to Lj in [3, Proposition I.2]. One sees that the
ambient complex space of [3] is (locally) biholomorphic to part of the above L˚. For
the next purpose, let us give an instrinsic formulation of this complex space from
another point of view. Let Rą0 be the set of positive real numbers. Consider DˆRą0

and equip it with the complex structure J defined as follows. J |TU is set to be the
complex structure of U ; it suffices to define J on s´ε, εr ˆRą0 with coordinates s, r:
JpB{Brq “ ´ 1

rB{Bs, Jp
1
rB{Bsq “ B{Br. Note this definition of J is independent of

choice of BRT trivializations (since Zj Ă T 1,0Y identified with T 1,0U , gives a local
basis of T 1,0D; see Theorem 2.9, and tzu ˆ s´ε, εr for each z P U is (part of) an
S1 orbit in X). J is seen to be (equivalent to) the complex structure on L˚ (with
pz, s, rq P DˆRą0 and pz, reisq P L˚ in correspondence), hence an integrable complex
structure.

Let now rB “ pD, pw, ηq, rϕq be any other BRT chart. Correspondingly we will
denote the associated objects by the same notation as in B but topped with a tilde.
Note that in rB the set defined by w “ w0 for a fixed w0 is part of an S1 orbit in X;
the same can be said with B. Conversely, any S1 orbit of X is described (locally)
by the θ parameter in any BRT charts with z-coordinates being fixed. By using
pDˆRą0, Jq above, one has L˚ – L̃˚ (locally) by a biholomorphism F that preserves
respective fibers (since these are S1 orbits, described by θ parameters in each chart
and hence must be in correspondence via DˆRą0 by the property of BRT charts as
just remarked). Further, one sees that F restricted to fibers has to be linear, hence
F is a bundle isomorphism. Geometrically this picture is essentially the same as a local
change of holomorphic coordinates on the base manifold U and a change of a local
basis of L˚ by ẽ˚pzq “ gpzqe˚pzq with ||e˚||2 “ e2ϕ, ||ẽ˚||2 “ e2ϕ̃ for some nowhere
vanishing holomorphic function gpzq on U . The above transformation Formula (4.9)
easily follows from this concrete realization.

Using the above transformation (4.9), one claims

DB “ D
rB on Ω0,˘pU,Eq,

AB “ A
rB on Ω0,˘pU,Eq.

(4.10)

To see this for the case without E, noteD is just realized as (part of) the total space
of a circle bundle of a holomorphic line bundle. Clearly BU ` B

˚

U does not depend on
choice of holomorphic coordinates on U ; that is, BU`B

˚

U is an intrinsic object (because
the Hermitian metric used for B

˚

U is intrinsic, see (4.1)). The same idea can be applied
to DB which is defined above as an intrinsic object too. Therefore (4.10) holds with
the change of coordinates in (4.9) (using only w “ Hpzq). In the general case where
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E is not necessarily the trivial bundle C, the reasoning is basically unchanged. Hence
the claim (4.10).

By (4.9) vpzq “ e´imGpzqrvpwq (Gpzq “ arg gpzq), hence by (4.10)

e´imθABpvpzqq “ e´imθABpe
´imGpzq

rvpwqq

“ e´imθA
rBpe

´imGpzq
rvpwqq “ e´imηA

rBprvpwqq,

proving the proposition.

We are now ready to introduce a global operator:

Definition 4.3. – For every m P Z, let Am : Ω0,˘
m pX,Eq Ñ Ω0,¯

m pX,Eq be the
linear operator defined as follows. Let u P Ω0,˘

m pX,Eq. Then, v :“ Amu is an element
in Ω0,¯

m pX,Eq such that for every BRT trivialization B :“ pD, pz, θq, ϕq (D “ U ˆ

s´ε, εr, ε ą 0, U an open set in Cn) we have v|D “ e´imθABpruqpzq where u “
e´imθrupzq on D for some ru P Ω0,˘pU,Eq and AB is given in (4.7).

In view of Proposition 4.2, Definition 4.3 is well-defined.
We are now in a position to define the modified Kohn Laplacian (Spinc Kohn

Laplacian) including a type of CR Spinc Dirac operator rDb,m. One goal of this part
is to express the index of rDb,m in an integral form of the heat kernel density (cf.
Proposition 4.6).

The treatment below mostly follows traditional cases except the use of the pro-
jection operator Q˘m together with its explicit expression in integral (see (4.16) and
(4.17)).

By using Am in Definition 4.3 we consider

rDb,m “ Bb ` B
˚

b `Am : Ω0,‚
m pX,Eq Ñ Ω0,‚

m pX,Eq,

rD˘b,m “ Bb ` B
˚

b `Am : Ω0,˘
m pX,Eq Ñ Ω0,¯

m pX,Eq
(4.11)

with the formal adjoint rD˚b,m on Ω0,‚
m pX,Eq. We remark that rD˚b,m “ rDb,m

on Ω0,‚
m pX,Eq. Now, as AB is self-adjoint on Ω0,˚pU,Eq as aforementioned, it

follows that Am is self-adjoint on Ω0,‚
m pX,Eq. That rDb,m is self-adjoint follows

as Bb ` B
˚

b is also self-adjoint.
The modified/Spinc Kohn Laplacian is given by

rl b,m :“ rD˚b,m
rDb,m : Ω0,‚

m pX,Eq Ñ Ω0,‚
m pX,Eq

rl
`

b,m :“ rD˚b,m
rDb,m|Ω0,`

m pX,Eq
“ rD´b,m

rD`b,m : Ω0,`
m pX,Eq Ñ Ω0,`

m pX,Eq,
(4.12)

where rl
´

b,m :“ rD`b,m
rD´b,m. We extend rl

`

b,m and rl
´

b,m by

rl
˘

b,m : Dom rl
˘

b,m pĂ L2,˘
m pX,Eqq Ñ L2,˘

m pX,Eq,(4.13)

where Dom rl
˘

b,m :“ tu P L2,˘
m pX,Eq; distribution rl

˘

b,mu P L
2,˘
m pX,Equ.
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Clearly rl b,m ´ T 2 (where T is the real vector field induced by the S1 action) is
(the restriction of) an elliptic operator on X since pBb ` B

˚

b q
2 ´ T 2 is.

Put as usual, the Sobolov spaces (cf. Subsection 2.1) Hs,`pX,Eq, Hs,´pX,Eq the
even and odd part ofHspX,T˚0,‚bEq. In the same vein as Lemma 3.3 and Lemma 3.4
one has

(4.14) Dom rl
˘

b,m “ L2,˘
m pX,Eq XH2,˘pX,Eq, rl

`

b,m and rl
´

b,m are self-adjoint.

Further, for the spectrum Spec rl
`

b,m Ă r0,8r (resp. Spec rl
´

b,m Ă r0,8r) one has
(similar to Proposition 3.5)

Proposition 4.4. – Spec rl
`

b,m is a discrete subset of r0,8r. For any µ P Spec rl
`

b,m,
µ is an eigenvalue of rl

`

b,m and the eigenspace

rE
`

m,νpX,Eq :“
 

u P Dom rl
`

b,m; rl
`

b,mu “ νu
(

is finite dimensional with rE
`

m,νpX,Eq Ă Ω0,`
m pX,Eq. Similar results hold for the case

of l
´
b,m.

The following can be proved by standard argument.

Lemma 4.5. – We have Spec rl
`

b,m X s0,8r “ Spec rl
´

b,m X s0,8r, and for every

0 ‰ µ P Spec rl
`

b,m, dim rE
`

m,µpX,Eq “ dim rE
´

m,µpX,Eq.

We are going to introduce a McKean-Singer type formula (Corollary 4.8). Let
F be a complex vector bundle over X of rank r with a Hermitian metric x ¨ | ¨ yF .
Let Apx, yq P C8pX ˆX,F b F˚q. For every u P C8pX,F q,

ş

X
Apx, yqupyqdvXpyq P

C8pX,F q is defined in a fairly standard manner.
Much of what follows parallels the classical cases except that Q`m is introduced in

our case. For ν P Spec rl
˘

b,m let P˘m,ν : L2,˘pX,Eq Ñ rE
˘

m,νpX,Eq be the orthogonal
projections (with respect to p ¨ | ¨ qE), and P˘m,νpx, yq (P C8pX ˆX, pT˚0,˘X b Eqb

pT˚0,˘X b Eq˚q) the distribution kernels of P˘m,ν .

The heat kernels of rl
`

b,m and rl
´

b,m are given by

(4.15) e´t
Ăl
˘

b,mpx, yq “ P˘m,0px, yq `
ÿ

νPSpec Ăl
˘

b,m,νą0

e´νtP˘m,νpx, yq

with the associated continuous operators e´tĂl
˘

b,m : Ω0,˘pX,Eq Ñ Ω0,˘
m pX,Eq Ă

Ω0,˘pX,Eq. e´tĂl
˘

b,m is self-adjoint on Ω0,˘pX,Eq.
Remark that the heat kernels (4.15) are smooth. For, the eigenfunctions involved (in

the equivalent form as (1.67)) are still eigenfunctions of p rl b,m´T
2q hence eigenfunc-

tions of an elliptic operator. In the elliptic case, one has the Gärding type inequality
which estimates the various Sobolev norms of the eigenfunctions, and hence mainly
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by Sobolev embeddings, gives eventually the smoothness of the heat kernels (cf. [36,
Lemmas 1.6.3 and 1.6.5]).

An important operator is given by the orthogonal projection

(4.16) Q˘m : L2,˘pX,Eq Ñ L2,˘
m pX,Eq

(for the m-th Fourier component). Fourier analysis with (2.2) gives

(4.17) Q˘mu “
1

2π

ż π

´π

ppe´iθq˚uqpxqeimθdθ, @u P Ω0,˘pX,Eq.

The explicit expression (4.17) turns out to be crucial to many (unconventional) esti-
mates later.

It is fairly standard (note Q`m in the second line below) to obtain (by (4.15))

p
B

Bt
` rl

˘

b,mqpe
´tĂl

˘

b,muq “ 0, @u P Ω0,˘pX,Eq, @t ą 0,

lim
tÑ0`

pe´t
Ăl
˘

b,muq “ Q˘mu, @u P Ω0,˘pX,Eq.
(4.18)

For ν P Spec rl
`

b,m, let
 

fν1 , . . . , f
ν
dν

(

be an orthonormal basis for rE
`

m,νpX,Eq.
Define

(4.19) TrP`m,νpx, xq :“
dν
ÿ

j“1

ˇ

ˇfνj pxq
ˇ

ˇ

2

E
P C8pXq,

which is equal to TrP`m,νpx, xq “
řd
j“1xP

`
m,νpx, xqejpxq | ejpxq yE where tejpxquj is

any orthonormal basis of T˚0,`
x X b Ex. Define TrP´m,µpx, xq similarly.

Clearly d˘ν “
ş

X
TrP˘m,νpx, xqdvXpxq.

Put Tr e´t
Ăl
˘

b,mpx, xq :“ TrP˘m,0px, xq `
ř

νPSpec Ăl
˘

b,m,νą0
e´νtTrP˘m,νpx, xq, so

for t ą 0

(4.20)
ż

X

Tr e´t
Ăl
˘

b,mpx, xqdvXpxq “ dim rE
˘

m,0pX,Eq `
ÿ

νPSpec Ăl
˘

b,m,νą0

e´νtdim rE
˘

m,νpX,Eq.

Combining Lemma 4.5 and (4.20) gives
(4.21)
ż

X

´

Tr e´t
Ăl
`

b,mpx, xq ´ Tr e´t
Ăl
´

b,mpx, xq
¯

dvXpxq “ dim Ker rl
`

b,m ´ dim Ker rl
´

b,m.

As in Theorem 3.8 one has

(4.22) Ker rDb,m “ Ker rl
`

b,m Ă Ω0,`
m pX,Eq, Ker rD˚b,m “ Ker rl

´

b,m Ă Ω0,´
m pX,Eq.

Put ind rDb,m :“ dim Ker rDb,m ´ dim Ker rD˚b,m. We express the index (by (4.22)
and (4.21)) as
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Proposition 4.6. – For every t ą 0, we have

(4.23) ind rDb,m “

ż

X

´

Tr e´t
Ăl
`

b,mpx, xq ´ Tr e´t
Ăl
´

b,mpx, xq
¯

dvXpxq.

The invariance of the index is expressed by the following (some aspects on indDb,m

refer to Theorem 3.8).

Theorem 4.7 (Homotopy invariance). – We have indDb,m “ ind rDb,m.

To summarize (with Theorem 4.7, Proposition 4.6 and (3.13)) we have a McKean-
Singer formula (cf. Corollary 5.16 for McKean-Singer (II)).

Corollary 4.8 (McKean-Singer (I)). – Fix m P Z. For t ą 0, we have

(4.24)
n
ÿ

j“0

p´1qjdimHj
b,mpX,Eq “

ż

X

´

Tr e´t
Ăl
`

b,mpx, xq ´Tr e´t
Ăl
´

b,mpx, xq
¯

dvXpxq.

Remark 4.9. – To compare with the original Kohn Laplacian, a similar formula (as
Corollary 4.8)

n
ÿ

j“0

p´1qjdimHj
b,mpX,Eq “

ż

X

´

Tr e´tl
`
b,mpx, xq ´ Tr e´tl

´
b,mpx, xq

¯

dvXpxq

holds. When X is not CR Kähler, it is obscure, by the experience from classical
cases, to calculate the density Tr e´tl

`
b,mpx, xq ´ Tr e´tl

´
b,mpx, xq with the original

Kohn Laplacian. The introduction of the modified Kohn Laplacians replacing l
˘
b,m

by rl
˘

b,m is expected to facilitate this calculation. But because of the unconventional

asymptotic expansion of e´tĂl
˘

b,mpx, xq some novelty beyond the classical cases shows
up (as mentioned in Introducton). It should be noted that when X is CR Kähler,
rl
˘

b,m “ l
˘
b,m.

To prove Theorem 4.7 in the remaining of this section, observe that it is nothing
but a statement of homotopy invariance of index. For, with Am a global operator
(see Definition 4.3), putting Lt “ Bb,m ` B

˚

b,m ` tAm : Ω0,`
m pX,Eq Ñ Ω0,´

m pX,Eq

for t P r0, 1s, gives the homotopy between L0 “ Db,m and L1 “ rDb,m.
Remark that there have been proofs for results of this type; for instance, see [5]

using heat kernel method and [7] using functional analysis method (both not exactly
formulated in the above form though). To make it accessible to a wider readership, we
include a (comparatively) self-contained and short proof. It is amusing to note that
the Hodge theory in Section 3 is useful at certain points of our proof.

Some preparations are in order. We extend Lt by setting

DomLt “ tu P L
2,`
m pX,Eq; distribution Ltu P L2,´

m pX,Equ

so that Lt : DomLt pĂ L2,`
m pX,Eqq Ñ L2,´

m pX,Eq. Write L˚t for the Hilbert space
adjoint of Lt.
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Let H1,`
m pX,Eq be the completion of Ω0,`

m pX,Eq with respect to the Hermitian
inner product

Qpu, vq “ pu | v qE ` p Bbu | Bbv qE ` p B
˚

b u | B
˚

b v qE .

Clearly H1,`
m pX,Eq Ă DomLt,@ t P R. One can show that H1,`

m pX,Eq “ DomLt.
Let t “ 0. Assume L0f “ u with f, u P L2,`

m and also assume f K Ker l
`
b,m since for

any smooth g, f ` g P H1,`
m iff f P H1,`

m . Using the partial inverse Nm in (3.2) of our
Hodge theory in Section 3, we have L0Nmf “ NmL0f “ Nmu since L0 commutes
with Nm as in the ordinary Hodge theory. Now L˚0L0Nmf “ l

`
b,mNmf “ f by (3.2),

one has f “ L˚0Nmu. But Nmu increases the (Sobolev) order of regularity of u by 2

and then L˚0Nmu decreases by 1, the regularity of f is of order 1. By localization, with
a partition of unity, on an open subset D in place of X and by the Formula (2.14) in
BRT charts D “ Uˆs´ δ, δr for Bb, it follows from the standard Gärding’s inequality
(e.g., [37, p. 93]) that the above Qp¨, ¨q is equivalent to the Sobolev norm of order one
(on the m-th component). Hence f P H1,`

m . For t ‰ 0, since Lt “ L0 ` tAm with Am
a smooth zeroth order operator, it follows DomLt “ DomL0.

Consider H0 :“ H1,`
m pX,Eq ‘KerL˚0 and H1 “ L2,´

m pX,Eq ‘KerL0. Let p ¨ | ¨ qH0

and p ¨ | ¨ qH1 be inner products on H0 and H1 respectively, given by

p pf1, g1q | pf2, g2q qH0
“ Qpf1, f2q ` p g1 | g2 qE ,

p p rf1, rg1q | p rf2, rg2q qH1 “ p
rf1 | rf2 qE ` p rg1 | rg2 qE .

Let PKerL0
denote the orthogonal projection onto KerL0 with respect to p ¨ | ¨ qE .

Let At : H0 Ñ H1 be the (continous) linear map defined as follows. For pu, vq P H0,

Atpu, vq “ pLtu` v, PKerL0
uq P H1.

Lemma 4.10. – There is a r ą 0 such that At : H0 Ñ H1 is invertible, for every
0 ď t ď r.

Proof. – We first claim that

(4.25) A0 is invertible.

If A0pu, vq “ 0 for some pu, vq P H0, then

(4.26) iq L0u “ ´v P KerL˚0 , iiq PKerL0
u “ 0.

By (4.26)

(4.27) pL0u |L0u qE “ ´pL0u | v qE “ ´pu |L
˚
0v qE “ 0,

giving u P KerL0. Hence by ii) of (4.26) we obtain u “ 0, giving also v “ 0 by i) of
(4.26). We have proved that A0 is injective.

We shall now prove that A0 is surjective. Let pa, bq P H1. First we note L0 :

DomL0 Ñ L2,´
m pX,Eq has an L2 closed range, so

(4.28) a “ L0α` β, α P H1,`
m pX,Eq, α K KerL0, β P pRangL0q

K “ KerL˚0 .
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Another way to see (4.28) is to use l
´
b,mN

´
m ` Π´m “ I (on L´m) of (3.2) (for the

“´” case) of Hodge theory in Section 3, and obtain a “ L0L
˚
0N

´
ma ` Π´ma where

Π´ma P KerL˚0 (cf. Theorem 3.8) and L˚0N
´
ma P H

1,`
m pX,Eq as mentioned above this

lemma. In either way, by (4.28) one sees

A0pα` b, βq “ pL0pα` bq ` β, PKerL0
pα` bqq “ pL0α` β, bq “ pa, bq.

Thus A0 is surjective. The claim (4.25) follows.
Let A´1

0 : H1 Ñ H0 be the inverse of A0. It follows from open mapping theorem
that A´1

0 is continuous.
To finish the proof the following arguement based on geometric series is standard.

Write At “ A0`Rt, where Rt : H0 Ñ H1 is continuous and there is a constant c ą 0

such that }Rtu}H1
ď ct }u}H0

, for u P H0. Put

Ht “ I ´A´1
0 Rt ` pA

´1
0 Rtq

2 ´ pA´1
0 Rtq

3 ` ¨ ¨ ¨ ,

rHt “ I ´RtA
´1
0 ` pRtA

´1
0 q2 ´ pRtA

´1
0 q3 ` ¨ ¨ ¨ .

Since A´1
0 is continuous, Ht : H0 Ñ H0 and rHt : H1 Ñ H1 are well-defined as

continuous maps for small t ě 0. Moreover At ˝ pHt ˝ A
´1
0 q “ I (on H1) and

pA´1
0 ˝ rHtq ˝ At “ I on (H0), giving right and left inverses of At for small t ě 0.

Hence the lemma follows.

For t P r0, 1s write L˚t : DomL˚t pĂ L2,´
m pX,Eqq Ñ L2,`

m pX,Eq for the adjoint
of Lt with respect to p ¨ | ¨ qE . Similar to L0 and L1, one has dim KerLt ă 8 and
dim KerL˚t ă 8 (with KerLt Ă Ω0,`

m pX,Eq, KerL˚t Ă Ω0,´
m pX,Eq).

Put indLt :“ dim KerLt ´ dim KerL˚t .

Lemma 4.11. – There is a r0 ą 0 such that indLt “ indL0, for every 0 ď t ď r0.

Proof. – Let r ą 0 be as in Lemma 4.10. We first show that

(4.29) indL0 ď indLt, @ 0 ď t ď r.

Fix 0 ď t ď r. We define

B : KerL˚t ‘KerL0 Ñ KerLt ‘KerL˚0

as follows. Let pa, bq P KerL˚t ‘KerL0. By Lemma 4.10,

At : H1,`
m pX,Eq ‘KerL˚0 Ñ L2,´

m pX,Eq ‘KerL0

is invertible. There is a unique pu, vq P H1,`
m pX,Eq‘KerL˚0 “ DomLt‘KerL˚0 such

that Atpu, vq “ pa, bq. Let PKerLt : L2,`
m pX,Eq Ñ KerLt be the orthogonal projection

with respect to p ¨ | ¨ qE . Then the above map B is defined by

Bpa, bq :“ pPKerLtu, vq P KerLt ‘KerL˚0 .

We claim that B is injective. If so, then

(4.30) dim KerL˚t ` dim KerL0 ď dim KerLt ` dim KerL˚0 ,
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i.e., dim KerL0 ´ dim KerL˚0 ď dim KerLt ´ dim KerL˚t , yielding the desired (4.29).
For the claim that B is injective, if Bpa, bq “ p0, 0q for some pa, bq P KerL˚t ‘KerL0,

write pu, vq (P H1,`
m pX,Eq‘KerL˚0 ) such that Atpu, vq “ pa, bq. As p0, 0q “ Bpa, bq “

pPKerLtu, vq, PKerLtu “ 0 and v “ 0. Using the definition of At, one has

(4.31) Atpu, vq “ Atpu, 0q “ pLtu, PKerL0
uq “ pa, bq P KerL˚t ‘KerL0

to give a “ Ltu P KerL˚t , hence p a | a qE “ p a |Ltu qE “ pL˚t a |u qE “ 0 gives
Ltu “ a “ 0 so that u P KerLt, i.e., u “ PKerLtu by definition. It follows that
u “ 0 since PKerLtu “ 0 as just seen. With u “ 0 and (4.31) one sees pa, bq “
pLtu, PKerL0

uq “ p0, 0q, giving the injectivity of B.
By the same argument, indL˚0 ď indL˚t for small t. By indL˚t “ ´indLt, indL0 ě

indLt holds. This and (4.29) prove the lemma.

Proof of Theorem 4.7. – Let

I0 :“ tr P r0, 1s; there is an ε ą 0 such that indLt “ ind L0, @t P pr ´ ε, r ` εq X r0, 1su .

I0 ‰ H is open by Lemma 4.11. Around a limit point r8 of I0, by the same type of
argument in the proof of Lemma 4.11 and Lemma 4.10 (replacing t “ 0 by t “ r8
in H0, H1 and A0), one finds indLt “ indLr8 for t P pr8 ´ ε0, r8 ` ε0q with some
ε0 ą 0. This implies I0 is closed in r0, 1s, so I0 “ r0, 1s.
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CHAPTER 5

ASYMPTOTIC EXPANSIONS FOR THE HEAT KERNELS
OF THE MODIFIED KOHN LAPLACIANS

In view of the McKean-Singer formula (Corollary 4.8), one of the goals is to cal-
culate the local density (i.e., the term to the right of (4.24)). It consists in obtaining
an asymptotic expansion for the heat kernel of the modified Kohn Laplacian (Spinc

Kohn Laplacian), to which we base our approach on two main steps. While the first
step is motivated by the globally free case (see Theorem 1.2), it will be replaced by
a local version within the framework of BRT trivializations (Section 2.4). A crucial
off-diagonal estimate is going to be done in this subsection (cf. Theorem 5.10). In the
second step we use the adjoint version of the heat equation to construct a global heat
kernel with an asymptotic expansion related to local kernels.

5.1. Heat kernels of the modified Kodaira Laplacians on BRT trivializations

This subsection is motivated by the globally free case (cf. Theorem 1.2). Here the
emphasis is made on the localization of the argument including the Spinc structure
(which is needed for explicit local formulas of the heat kernel density). An important
heat kernel estimate, termed as off-diagonal estimate, will be established in Theo-
rem 5.10.

It is worth remarking that in the statement and proof of Theorem 1.2, we make no
use of harmonic theory. In the locally free case, by contrast, it will be an important
step to relate the (modified) Kohn Laplacian to (modified) Kodaira Laplacian (see
discussion after that theorem). Since these Laplacians are defined via certain adjoints,
suitable matching of metrics involved in both Laplacians must be done as an essential
step.

We will use the same notations as in Section 4. Let B :“ pD, pz, θq, ϕq be a BRT
trivialization (with D “ U ˆ s´ε, εr, ε ą 0 and U an open subset of Cn, cf. Subsec-
tion 2.4). For x P D wrtie z “ zpxq and θ “ θpxq. Since E is rigid and CR, equipped
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with a rigid Hermitian (fiber) metric x ¨ | ¨ yE , (as in Section 4) E descends as a (holo-
morphically trivial) vector bundle over U (possibly after shrinking U) and x ¨ | ¨ yE as
a Hermitian (fiber) metric on E over U .

Let L Ñ U be a trivial (complex) line bundle with a non-trivial Hermitian fiber
metric |1|2hL “ e´2ϕ (ϕ as in the above BRT triple B). Write pLm, hL

m

q Ñ U for the
m-th power of pL, hLq. Let Ω0,qpU,E b Lmq be the space of p0, qq forms on U with
values in EbLm (q “ 0, 1, 2, . . . , n). As usual, Ω0,`pU,EbLmq and Ω0,´pU,EbLmq

denote forms of even and odd degree.
To start with the matching of the metrics we let x ¨, ¨ y be the Hermitian metric

on CTU given by (cf. (4.1))

(5.1) x
B

Bzj
,
B

Bzk
y “ x

B

Bzj
´ i

Bϕ

Bzj
pzq

B

Bθ
|
B

Bzk
´ i

Bϕ

Bzk
pzq

B

Bθ
y, j, k “ 1, 2, . . . , n.

x ¨, ¨ y induces Hermitian metrics on T˚0,qU (bundle of p0, qq forms on U), denoted
also by x ¨, ¨ y. These metrics induce Hermitian metrics on T˚0,qU b E, still denoted
by x ¨ | ¨ yE .

Let p ¨, ¨ q be the L2 inner product on Ω0,qpU,Eq induced by x ¨, ¨ y, x ¨ | ¨ yE , and
similarly p ¨, ¨ qm the L2 inner product on Ω0,qpU,E b Lmq induced by x ¨, ¨ y, x ¨ | ¨ yE
and hL

m

.
Let BLm : Ω0,qpU,E b Lmq Ñ Ω0,q`1pU,E b Lmq, pq “ 0, 1, 2, . . . , n ´ 1q, be the

Cauchy-Riemann operator. Let

B
˚

Lm : Ω0,q`1pU,E b Lmq Ñ Ω0,qpU,E b Lmq

be the formal adjoint of BLm with respect to p ¨, ¨ qm.
An essential operator that enters our picture is the following one (of Dirac type).

(5.2) DB,m p“ D`´B,mq :“ BLm ` B
˚

Lm `AB : Ω0,`pU,E b Lmq Ñ Ω0,´pU,E b Lmq,

where AB : Ω0,`pU,E b Lmq Ñ Ω0,´pU,E b Lmq is as in (4.7) (replacing E there
by E b Lm here) and

(5.3) D˚B,m : Ω0,´pU,E b Lmq Ñ Ω0,`pU,E b Lmq

the formal adjoint of DB,m with respect to p ¨, ¨ qm. (Note DB,m on the full Ω0,‚ “

Ω0,` ‘ Ω0,´ is self-adjoint; see the line below (4.6). But we prefer to use the above
D˚B,m in the present context.) Note also L with the metric hL depends on the choice of
a BRT trivialization. However, AB is indeed an intrinsic object; we refer to Remark 5.3
in this regard.

One has the modified/Spinc Kodaira Laplacian:

(5.4) rl
`

B,m :“ D˚B,mDB,m : Ω0,`pU,E b Lmq Ñ Ω0,`pU,E b Lmq.

One may define rl
´

B,m : Ω0,´pU,E b Lmq Ñ Ω0,´pU,E b Lmq analogously (by
starting with D´`B,m or D˚B,m).
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The following fact appears fundamental in itself. It is instrumental to our construc-
tion of a heat kernel (cf. (5.46)) (See, however, remarks after its proof).

Proposition 5.1. – Using the above notations, let u P Ω0,˘
m pX,Eq. On D we can

write upz, θq “ e´imθrupzq for some rupzq P Ω0,˘pU,Eq. Recall that the modified Kohn
Laplacian rl

˘

b,m is given in (4.12). We write s for the local basis 1m of Lm. Then

(5.5) e´mϕ rl
˘

B,mpe
mϕ

rub sq “ peimθ rl
˘

b,mpuqq b s.

Without any danger of confusion we may write

(5.6) e´mϕ rl
˘

B,mpe
mϕ

ruq “ eimθ rl
˘

b,mpuq.

Proof. – One may work out this result by explicit computations. The following gives
a somewhat conceptual proof. The idea is that one continues to match the objects
on U and on D pĂ Xq. (In this way it turns out that no explicit computations of these
Laplacians in local coordinates are needed.)

We define χ : Ω0,qpU,Eq Ñ Ω0,qpU,E b Lmq (q “ 0, 1, 2, . . . , n) by ṽpzq Ñ

ṽpzqemϕpzq b spzq for ṽ P Ω0,qpU,Eq. Note χ preserves the (pointwise) norms. Equiv-
alently χpe´mϕṽq “ ṽ b s.

We define δṽ “ Bṽ ` mpBϕq ^ ṽ for ṽ P Ω0,qpU,Eq where B : Ω0,qpU,Eq Ñ

Ω0,q`1pU,Eq. One may verify

(5.7) BLm ˝ χ “ χ ˝ δ on Ω0,qpU,Eq.

Indeed, by χpe´mϕBũq “ Bũbs “ BLmpũbsq, one sees the term to the left of (5.7):
BLm ˝ χpe

´mϕũq p“ BLmpũ b sqq “ χpe´mϕBũq. Further, by using definition of δ one
computes emϕδpe´mϕũq “ Bũ. Then χpe´mϕBũq “ χpe´mϕpemϕδpe´mϕũqqq, which is
χpδpe´mϕũqq, giving the term to the right of (5.7) and proving (5.7).

Since χ is norm-preserving, we have also

(5.8) B
˚

Lm ˝ χ “ χ ˝ δ˚

between respective adjoints. Combining (5.7) and (5.8) gives for lB,m ” pB
˚

Lm`BLmq
2

and ∆ ” pδ˚ ` δq2

(5.9) lB,m ˝ χ “ χ ˝∆.

By (2.14) for Bb, one computes, for g “ e´imθg̃ P Ω0,q
m pU ˆs´ε, εr, Eq “ Ω0,q

m pD,Eq

(5.10) eimθBbpe
´imθ g̃pzqq “ δpg̃pzqq.

Write the map χ1 : Ω0,q
m pD,Eq Ñ Ω0,qpU,Eq for χ1pgq “ χ1pe

´imθg̃q “ g̃, equiva-
lently, χ1pgq “ eimθg. Note χ1 preserves the respective (pointwise) norms (cf. (5.1)).

By (5.10) one sees (with Bb,m “ Bb|Ω0,q
m

)

(5.11) χ1 ˝ Bb,m “ δ ˝ χ1 on Ω0,q
m pD,Eq.
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By (2.5) the L2 inner product on Ω0,q
m pD,Eq is clearly 2εp ¨, ¨ q with the L2 inner

product p ¨, ¨ q on Ω0,qpU,Eq. Thus, in the same way as (5.9) by using (5.11) we have
for l b,m ” pB

˚

b,m ` Bb,mq
2 (and ∆ ” pδ˚ ` δq2 as above)

(5.12) χ1 ˝l b,m “ ∆ ˝ χ1 on Ω0,q
m pD,Eq.

Combining (5.12) and (5.9) yields

l b,m “ pχχ1q
´1 ˝lB,m ˝ pχχ1q(5.13)

By χχ1pe
´imθũq “ emϕũb s and pχχ1q

´1pṽ b sq “ e´imθe´mϕṽ, one obtains

(5.14) pl b,muq b s “ e´imθe´mϕplB,me
mϕpũb sqq for u “ e´imθũ P Ω0,q

m pD,Eq,

giving e´mϕlB,mpe
mϕ

ruq “ eimθl b,mpuq in notation similar to (5.6).
For modified Laplacians, from the definition of the zeroth order operator Am :

Ω0,`
m pX,Eq Ñ Ω0,´

m pX,Eq (see Definition 4.3), it is clear that (in notation similar to
(5.6))

(5.15) e´mϕABpe
mϕ

ruq “ eimθAmpuq.

In a way similar to (5.14) it follows by using (5.15) that

e´mϕDB,mpe
mϕ

ruq “ eimθ rDb,mpuq

hence easily that
e´mϕ rl

`

B,mpe
mϕ

ruq “ eimθ rl
`

b,mpuq

proving the proposition.

Remark 5.2. – Remark that one might be led by Proposition 5.1 to reduce the study
of Kohn rl

˘

b,m to that of Kodaira rlB,m. Indeed such a reduction works quite well
in the globally free case (see discussion following Theorem 1.2 in Introduction). In
the locally free case (of S1 action), however, a naive thought of using the Kodaira
Laplacian and its associated (local) heat kernels for a better understanding of the
heat kernel in Kohn’s case is not directly accessible (see remarks following proof of
Theorem 5.15). Namely the associated heat kernels of the two Laplacians cannot
be easily linked as (5.5) seems to suggest. This reflects the fact that the associated
heat kernels, rather than Laplacians themselves, are objects which are more global
in nature. More in this regard will be pursued in the coming Subsection 5.2 and
Section 6.

Remark 5.3. – The definition of AB in (5.2) depends on a BRT triple, and the same
can be said with Proposition 5.1. To see that AB has an intrinsic meaning, one uses
the transformation of BRT coordinates as shown in the proof of Proposition 4.2. The
geometrical construction given there shows that locally X is part of a circle bundle
inside the L˚ (with metric induced by that of L) over U , and the quantities such
as ϕ, z and θ in a BRT triple are associated with geometric ones as metric for a local
basis (of L), coordinates on the base U and (part of) a holomorphic coordinate on
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fibers (of L˚) respectively. The transformation in these quantities with another choice
of a BRT chart is nothing more than a change of holomorphic coordinates of the same
line bundle. It follows that AB is intrinsic in a proper sense. A similar explanation
can be given to Proposition 5.1 too (although we do not strictly need this intrinsic
property in what follows).

Remark 5.4. – In the case of certain Riemannian foliations, it is known that the
Laplacian downstairs and Laplacian upstairs (in a suitable generalized sense) can be
related in spirit similar to that in our proposition above. See [59, p. 2310-2311].

As remarked in Subsection 1.6.3, to suit our purpose we will actually be considering
adjoint heat equation and adjoint heat kernel first.

To proceed further, some notations are in order. Let M be a C8 orientable para-
compact manifold of dimension m with a vector bundle F over it.

Definition 5.5. – Let Apt, xq P C8pR` ˆM,F q. We write

Apt, xq „ tkb´kpx, tq ` t
k`1b´k`1px, tq ` t

k`2b´k`2px, tq ` ¨ ¨ ¨ as tÑ 0`,

bspx, tq P C
8pM,F q a possibly t-dependent smooth function,

s “ ´k,´k`1,´k`2, . . ., for k P Z, provided that for every ` P N, there is a constant
M1pm, `q such that for every compact set K Ť M , every M0 P N with M0 ě M0pmq

for some M0pmq (m “ dimM), there are constants C`,K,M0 ą 0, ε0 ą 0 independent
of t such that

ˇ

ˇ

ˇ

ˇ

ˇ

Apt, xq ´
M0
ÿ

j“0

tk`jb´k`jpx, tq

ˇ

ˇ

ˇ

ˇ

ˇ

C`pKq

ď C`,K,M0
tM0´M1pm,`q, @ 0 ă t ă ε0.

Remark 5.6. – In the important case of the heat kernel ptpx, yq of a generalized
Laplacian on a compact Riemannian manifold B of dimension β, M “ B ˆ B is of
dimension m “ 2β and k “ ´β

2 . One can take M0pmq “ r
β
2 s`1 and M1pm, `q “

β``
2 .

See [5, Theorem 2.30]. In this case bspt, xq for all s can be taken to be independent
of t.

The novelty above is that bs could be nontrivially dependent on t (in contrast to
the conventional case of an asymptotic expansion for heat kernels).

Let T˚0,`U and T˚0,´U denote forms of even degree and odd degree in T˚0,‚U ,
respectively as before. If T pz, wq P pT˚0,`UbEqbpT˚0,`UbEq˚|pz,wq

, write |T pz, wq|
for the standard pointwise matrix norm of T pz, wq induced by x ¨, ¨ y and x ¨ | ¨ yE .

Suppose Gpt, z, wq P C8pR` ˆ U ˆ U, pT˚0,`U b Eqb pT˚0,`U b Eq˚q. As usual,
we denote Gptq : Ω0,`

c pU,Eq Ñ Ω0,`pU,Eq (resp. G1ptq) the continuous operator
associated with the kernel Gpt, z, wq (resp. BGpt,z,wq

Bt ) (Ω0,`
c pU,Eq denotes elements of

compact support in U).
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We are now ready to consider the heat operators associated with rl
`

B,m and rl
´

B,m

in an adjoint version. By using the Dirichlet heat kernel construction (see [38] or [14])
we can obtain the theorem stated in the following form.

Proposition 5.7. – There exists an

AB,`,mpt, z, wq “: AB,`pt, z, wq P C
8pR` ˆ U ˆ U, pT˚0,`U b Eqb pT˚0,`U b Eq˚q

such that
limtÑ0`AB,`ptq “ I in D 1pU, T˚0,`U b Eq,

A1B,`ptqu`AB,`ptqp rl
`

B,muq “ 0, @u P Ω0,`
c pU,Eq, @t ą 0,

(5.16)

and AB,`pt, z, wq satisfies the following: (I) For every compact set K Ť U and every
α1, α2, β1, β2 P Nn0 , every γ P N0, there are constants Cγ,α1,α2,β1,β2,K ą 0, ε0 ą 0 and
P P N independent of t such that
(5.17)
ˇ

ˇ

ˇ
B
γ
t B

α1
z B

α2

z B
β1
w B

β2

w AB,`pt, z, wq
ˇ

ˇ

ˇ
ď Cγ,α1,α2,β1,β2,Kt

´P e´ε0
|z´w|2

t , @pt, z, wq P R` ˆK ˆK.

(II) Let g P Ω0,`
c pU,Eq. For every α1, α2 P Nn0 and every compact set K Ť U , there

is a Cα1,α2,K ą 0 independent of t such that

(5.18) sup t|Bα1
z B

α2

z pAB,`ptqgqpzq| ; z P Ku

ď Cα1,α2,K

ÿ

β1,β2PNn0 ,|β1|`|β2|ď|α1|`|α2|

sup
!
ˇ

ˇ

ˇ
Bβ1
z B

β2

z gpzq
ˇ

ˇ

ˇ
; z P U

)

.

(III) AB,`pt, z, wq admits an asymptotic expansion in the following sense (see Defi-
nition 5.5 for „). For some KB,`pt, z, wq

AB,`pt, z, wq “ e´
h`pz,wq

t KB,`pt, z, wq,

KB,`pt, z, wq „ t´nb`n pz, wq ` t
´n`1b`n´1pz, wq ` ¨ ¨ ¨

` b`0 pz, wq ` tb
`
´1pz, wq ` ¨ ¨ ¨ as tÑ 0`,

b`s pz, wq p“ b`s,mpz, wqq P C
8pU ˆ U, pT˚0,`U b Eqb pT˚0,`U b Eq˚q,

(5.19)

s “ n, n´ 1, n´ 2, . . ., where h`pz, wq P C8pU ˆ U,R`q with h`pz, zq “ 0 for every
z P U and for every compact set K Ť U , there is a constant CK ą 1 such that
1
Ck
|z ´ w|

2
ď h`pz, wq ď CK |z ´ w|

2.

In (5.16) with rl
´

B,m in place of rl
`

B,m, corresponding statements (with AB,´,KB,´

etc.) for rl
´

B,m hold true as well.

Remark 5.8. – One may use a (weaker) version in the sense of asymptotic heat
kernel. More precisely, it was shown in [24, p. 96] that there is a

Apt, z, wq P C8pR` ˆ U ˆ U, pT˚0,`U b Eqb pT˚0,`U b Eq˚q
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with the property that Apt, z, wq satisfies (5.17)-(5.19) and

lim
tÑ0`

ABptq “ I in D 1pU, T˚0,`U b Eq,

A1Bptqu`ABptqp rl
`

B,muq “ Qptqu, @u P Ω0,`
c pU,Eq, @t ą 0,

(5.20)

whereQptq is a smoothing operator on U with distribution kernelQpt, x, yq P C8pR`ˆ
U ˆU, pT˚0,`U bEqb pT˚0,`U bEq˚q and Qt “ Opt`8q. The notation Qt “ Opt`8q

means that for every ` P N, every compact set K Ť U and every N ą 0 there is a
ε ą 0 and a constant C`,K,N ą 0 such that

(5.21) |Qpt, x, yq|C`pKˆKq ď C`,K,N t
N , for every 0 ă t ă ε.

The asymptotic heat kernels are not unique. Let Âpt, z, wq P C8pR` ˆ U ˆ

U, pT˚0,`U b Eqb pT˚0,`U b Eq˚q and assume that Âpt, z, wq satisfies (5.17)-(5.19)
and (5.20). Then, Âpt, z, wq ´ Apt, z, wq “ Opt`8q in the sense of (5.21) and the
symbols b`j pz, wq, j “ n, n´ 1, . . ., in the expansion (5.19) are unique (cf. [24, p. 96]).

We are interested in calculating Tr b`s pz, zq´Tr b´s pz, zq (s “ n, n´1, . . . , 0) (where
Tr b˘s pz, zq “

ř

jx b
`
s pz, zqej | ej yE for any orthonormal frame ej of T˚0,`

z UbEz). The

idea relies on Lichnerowicz formulas for (modified/Spinc Kodaira Laplacians) rl
`

B,m

and rl
´

B,m (cf. Theorem 1.3.5 and Theorem 1.4.5 in [50]) so that the (by now standard)
rescaling technique in [5] and [24] can apply well.

To state the result precisely, we introduce some notations. Let ∇TU be the Levi-
Civita connection on CTU with respect to x ¨, ¨ y. Let PT 1,0U be the natural projec-
tion from CTU onto T 1,0U . ∇T 1,0U :“ PT 1,0U∇TU is a connection on T 1,0U . Let
∇EbLm be the (Chern) connection on E b Lm Ñ U (induced by x ¨, ¨ yE and hL

m

,
see Theorem 2.12). Let Θp∇T 1,0U , T 1,0Uq pP C8pU,Λ2pCT˚Uq b End pT 1,0Uqqq and
Θp∇EbLm , E b Lmq pP C8pU,Λ2pCT˚Uq b End pE b Lmqqq be the associated curva-
tures. As in complex geometry, put

Td p∇T
1,0U , T 1,0Uq “ eTr php i2πΘp∇T

1,0U ,T 1,0Uqqq, hpzq “ logp
z

1´ e´z
q,

ch p∇EbL
m

, E b Lmq “ Tr prhp
i

2π
Θp∇EbL

m

, E b Lmqqq, rhpzq “ ez.

Then the above calculation leads to the following.

´

Tr b`s pz, zq ´ Tr b´s pz, zq
¯

“ 0, s “ n, n´ 1, . . . , 1,
´

Tr b`0 pz, zq ´ Tr b´0 pz, zq
¯

dvU pzq “
”

Td p∇T
1,0U , T 1,0Uq ^ ch p∇EbL

m

, E b Lmq
ı

2n
pzq,

(5.22)

@z P U , where r¨ ¨ ¨ s|2n denotes the 2n-form part.
As the calculation to be performed here is almost entirely the same as in the

standard case, we omit the detail.
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Let ∇TX be the Levi-Civita connection on TX with respect to x ¨ | ¨ y and ∇E the
connection on E associated with x ¨ | ¨ yE (cf. Theorem 2.12). In similar notation as
above ∇T 1,0X :“ PT 1,0X∇TX is a connection on T 1,0X.

Since ∇T 1,0X and ∇E are rigid, in view of compatibility of metrics (and connec-
tions) in (5.1) and Theorem 2.12, one sees that @ pz, θq P D (for ω0 see lines below
Definition 2.1):

Td p∇T
1,0U , T 1,0Uqpzq “ Tdb p∇T

1,0X , T 1,0Xqpz, θq

ch p∇EbL
m

, E b Lmqpzq “
´

chb p∇E , Eq ^ e´m
dω0
2π

¯

pz, θq
(5.23)

and

(5.24)
”

Td p∇T
1,0U , T 1,0Uq ^ ch p∇EbL

m

, E b Lmq
ı

2n
pzq ^ dθ

“

”

Tdb p∇T
1,0X , T 1,0Xq ^ chb p∇E , Eq ^ e´m

dω0
2π ^ ω0

ı

2n`1
pz, θq.

To sum up we arrive at the following (by (5.22), (5.24) and dvU ^ dθ “ dvX on D
cf. (2.5))

Proposition 5.9. – With the notations above, we have

(5.25)
´

Tr b`0 pz, zq ´ Tr b´0 pz, zq
¯

dvXpz, θq

“

”

Tdb p∇T
1,0X , T 1,0Xq ^ chb p∇E , Eq ^ e´m

dω0
2π ^ ω0

ı

2n`1
pz, θq, @pz, θq P D.

To state the final technical result of this subsection, we first identify T˚0,‚
z2 U bEz2

with T˚0,‚
z1 UbEz1 (by parallel transport along geodesics joining z1, z2 P U), so we can

identify T P pT˚0,‚U b Eqb pT˚0,‚U b Eq˚|pz1,z2q
with an element in End pT˚0,‚

z1 U b Ez1q.
With this identification, write

(5.26) Trz1 T :“
d
ÿ

j“1

xTej | ej yE ,

where e1, . . . , ed is an orthonormal frame of T˚0,‚
z1 U b Ez1 .

In the proof of Theorem 1.10 (see Theorem 6.4), somewhat surprisingly, as deviated
from the classical case, we need to estimate the off-diagonal terms Trz b

`
s pz, wq ´

Trz b
´
s pz, wq for each s. For this, the following can be considered as another application

of the rescaling technique (and an identity in Berenzin integral as usual).

Theorem 5.10 (Off-diagonal estimate). – With the notations above, we have

(5.27) Trz b
`
s pz, wq ´ Trz b

´
s pz, wq “ Op|z ´ w|

2s
q

locally uniformly on U ˆ U , s “ n, n´ 1, . . . , 1.

MÉMOIRES DE LA SMF 162



5.1. HEAT KERNELS OF THE MODIFIED KODAIRA LAPLACIANS 79

Proof. – Recall that E is (holomorphically) trivial on U . Let e1, . . . , e2n be an or-
thonormal basis for T˚0 U . For f P T˚0 U , let cpfq P End pT˚0,‚

0 Uq be the natural
Clifford action of f (see (4.2) or [5]). As usual, for every strictly increasing multi-
index J “ pj1, . . . , jqq we set |J | :“ q, eJ :“ ej1 ^ ¨ ¨ ¨ ejq and cpeJq “ cpej1q ¨ ¨ ¨ cpejq q.

For T P End pT˚0,‚
0 Uq, we can always write T “

ÿ1

|J|ď2n
cpeJqTJ (TJ P C), where

ÿ1

denotes the summation over strictly increasing multiindices. For k ď 2n, we put

(5.28) rT sk :“
ÿ1

|J|“k

TJeJ pP CT˚k0 Uq.

and a similar expression for rT s (without the subscript k). We identity T with rT s
without any danger of confusion. We say that ordT ď k if TJ “ 0, for all |J | ą k,
and ordT “ k if ordT ď k and rT sk ‰ 0.

A crucial result for our need here is an identity in Berenzin integral (see [5, Propo-
sition 3.21, Definition 3.4 and (1.28)]) which asserts that if ordT ă 2n then STrT “ 0

(see (1.13) for the definition of supertrace there) and

(5.29) STrT “ p´2iq2nSTrTJ0cpeJ0q, J0 “ p1, 2, . . . , 2nq.

Recall the identification T˚0,‚
x U – T˚0,‚

0 U just mentioned above the theorem, so
that a smooth function F pxq P pT˚0,‚Uqb pT˚0,‚Uq˚|p0,xq

is identified with a function

xÑ F pxq P End pT˚0,‚
0 Uq, giving a Taylor expansion

F pxq “
ÿ

αPN2n
0 ,|α|ďP

xαFα `Op|x|
P`1

q, Fα P End pT˚0,‚
0 Uq.

We are ready to apply Getzler’s rescaling technique to off-diagonal estimates. Con-
sider ABpt, x, yq ” ABpt, z, wq :“ AB,`pt, z, wq ‘ AB,´pt, z, wq (cf. Proposition 5.7)
and let χ P C8c pUq with χ “ 1 near z “ 0. Let

(5.30) rpu, t, xq :“
2n
ÿ

k“1

u´
k
2`nrχp

?
uxqABput, 0,

?
uxqsk.

Note that AB is actually identified with rABs similarly to the case of T above, so that
the k-form part (k ą n) of (5.30) makes sense.

It is well-known that (see [5]) limuÑ0 rpu, t, xq “ gpt, xq P C8pR` ˆ Cn,CT˚‚Cnq
in C8-topology locally uniformly (CT˚‚Cn “

Àk“2n
k“0 ΛkCT˚Cn). In particular,

limuÑ0 rpu, 1, xq2n “ gp1, xq2n in C8-topology locally uniformly, for their 2n-form
parts.

Let bspz, wq :“ b`s pz, wq ‘ b
´
s pz, wq, s “ n, n´ 1, . . . (cf. (5.19)). One sees

(5.31)

rpu, 1, xq2n “ e´
h`p0,

?
uxq

u χp
?
uxq

´

u´nrbnp0,
?
uxqs2n`u

´n`1rbn´1p0,
?
uxqs2n`¨ ¨ ¨

¯

.
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Since limuÑ0 e
´
h`p0,

?
uxq

u converges to a smooth function in C8-topology locally uni-
formly on Cn (see (5.19) in Proposition 5.7), we deduce that
(5.32)
lim
uÑ0

´

u´nrbnp0,
?
uxqs2n`u

´n`1rbn´1p0,
?
uxqs2n`¨ ¨ ¨

¯

“ ĝpxq P C8pCn,CT˚‚Cnq

in C8-topology locally uniformly. Fix P " 1. Write

(5.33) ĝpxq “
ÿ

αPN2n
0 ,|α|ďP

ĝαx
α `Op|x|

P`1
q.

and for each s “ n, n´ 1, . . .,

(5.34) bsp0, xq “
ÿ

αPN2n
0 ,|α|ďP

bs,αx
α `Op|x|

P`1
q.

Hence
(5.35)
rbsp0,

?
uxqs2n “

ÿ

αPN2n
0 ,|α|ďP

u
|α|
2 rbs,αs2nx

α ` u
P`1

2 Op|x|
P`1

q, s “ n, n´ 1, . . . ,

and from (5.32), (5.33) and (5.35) it follows that for every α P N2n
0

(5.36) lim
uÑ0

´

u´n`
|α|
2 rbn,αs2n ` u

´n`1`
|α|
2 rbn´1,αs2n ` ¨ ¨ ¨

¯

“ ĝα.

With (5.36) we conclude

(5.37) rbn,αs2n “ 0, @ |α| ă 2n.

Combining (5.37) and (5.34), we see

Tr0 b
`
n p0, wq ´ Tr0 b

´
n p0, wq “ Op|w|

2n
q.

We can repeat the method above for the second leading term, and deduce similarly

Tr0 b
`
s p0, wq ´ Tr0 b

´
s p0, wq “ Op|w|

2s
q, s “ n´ 1, n´ 2, . . . , 1.

The theorem follows.

5.2. Heat kernels of the modified Kohn Laplacians (Spinc Kohn Laplacians)

Based on Proposition 5.1, one is tempted to patch up the local heat kernels of
the modified Kodaira Laplacian constructed in Propostion 5.7 to form a global heat
kernel for the modified Kohn Laplacian. This is no problem in the globally free case
(of the S1 action). In the locally free case, however, some delicate points arise as the
relation of the two Laplacians given in the above proposition is, by nature, a local
property, whereas the heat kernels are global objects. See discussions after proof of
Proposition 5.1 and of Theorem 5.15 with (5.56) for more.

As remarked in Subsection 1.6.3, if we use the adjoint version of the original heat
equation, it becomes more effective to go over the desired process of patching up. It
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is worth noting that an important role, mostly unseen traditionally, is played by the
projection Q˘m in our situation.

Assume X “ D1 YD2 Y ¨ ¨ ¨ YDN with each Bj :“ pDj , pz, θq, ϕjq a BRT trivial-
ization. A slightly more complicated set up is as follows. Write for each j, Dj “ Uj ˆ

s´2δj , 2rδjr Ă CnˆR, δj ą 0, rδj ą 0, Uj “ tz P Cn; |z| ă γju. Put D̂j “ Ûjˆs´
δj
2 ,

rδj
2 r,

Ûj “
 

z P Cn; |z| ă
γj
2

(

. We suppose X “ D̂1 Y D̂2 Y ¨ ¨ ¨ Y D̂N .
Here are some cut-off functions, all with values in r0, 1s; the choice is adapted to

BRT trivializations.
i) χjpxq P C8c pD̂jq with

řN
j“1 χj “ 1 on X. Put

Aj “
!

z P Ûj ; there is a θ P s´ δj
2 ,

rδj
2 r such that χjpz, θq ‰ 0

)

.

ii) τjpzq P C8c pÛjq with τj ” 1 on some neighborhood Wj of Aj .

iii) σj P C8c ps´
δj
2 ,

rδj
2 rq with

ş
rδj{2

´δj{2
σjpθqdθ “ 1.

iv) σ̂j P C8c ps´δj , rδjrq such that σ̂j “ 1 on some neighborhood of Suppσj and
σ̂jpθq “ 1 if there exists z such that pz, θq P Suppχj .

Write x “ pz, θq, y “ pw, ηq P Cn ˆ R. We are going to lift many objects in the
preceding subsection defined on Uj to the ones defined on D̂j via the above cut-off
functions.

Let ABj ,`pt, z, wq, KBj ,`, hj,`pz, wq and b
`
j,s (s “ n, n ´ 1, . . .) be as in Proposi-

tion 5.7 and (5.19). Slightly tediously, we put

Hjpt, x, yq “ Hj,`pt, x, yq “ χjpxqe
´mϕjpzq´imθABj ,`pt, z, wqe

mϕjpwq`imητjpwqσjpηq

Gjpt, x, yq “ Gj,`pt, x, yq “ χjpxqe
´mϕjpzq´imθABj ,`pt, z, wqe

mϕjpwq`imητjpwq.

(5.38)

and (the last two equations are from (5.19))

K̂j,`pt, x, yq “ K̂jpt, x, yq “ χjpxqe
´mϕjpzq´imθKBj ,`pt, z, wqe

mϕjpwq`imητjpwqσjpηq

ĥj,`px, yq “ σ̂jpθqhj,`pz, wqσ̂jpηq P C
8
c pDjq, x “ pz, θq, y “ pw, ηq

b̂`j,spx, yq “ χjpxqe
´mϕjpzq´imθb`j,spz, wqe

mϕjpwq`imητjpwqσjpηq, s “ n, n´ 1, . . .

β̂`j,spx, yq “ χjpxqe
´mϕjpzq´imθb`j,spz, wqe

mϕjpwq`imητjpwq, s “ n, n´ 1, . . .

ABj ,`pt, z, wq “ e´
h`pz,wq

t KBj ,`pt, z, wq

KBj ,`pt, z, wq „ t´nb`j,npz, wq ` t
´n`1b`j,n´1pz, wq ` ¨ ¨ ¨

` b`j,0pz, wq ` tb
`
j,´1pz, wq ` ¨ ¨ ¨ as tÑ 0`.

(5.39)

Remark that these expressions, apart from cut-off functions, are mainly motivated
by the Formulas (5.5), (5.6) of Proposition 5.1. Let Hjptq be the continuous operator
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associated with Hjpt, x, yq, for which we put down the expression for later use (cf.
(5.44) and (5.46))

Hjptq :Ω0,`pX,Eq Ñ Ω0,`pX,Eq,

uÑ

ż

χjpxqe
´mϕjpzq´imθABj ,`pt, z, wqe

mϕjpwq`imητjpwqσjpηqupyqdvXpyq.

(5.40)

Consider the patched up kernel (recall that Qm is the projection on the m-th
Fourier component, cf. (4.16))

(5.41) Γptq :“
N
ÿ

j“1

Hjptq ˝Qm : Ω0,`pX,Eq Ñ Ω0,`pX,Eq

and let Γpt, x, yq P C8pR`ˆXˆX, pT˚0,`XbEqbpT˚0,`XbEq˚q be the distribution
kernel of Γptq.

For an explicit expression, one sees (using Qm of (4.17)) that

Γpt, x, yq “
1

2π

N
ÿ

j“1

ż π

´π

ppe´iuq˚yHjqpt, x, yqe
´imudu

“
1

2π

N
ÿ

j“1

ż π

´π

e´
ĥj,`px,e

´iu˝yq

t ppe´iuq˚y K̂jqpt, x, yqe
´imudu

„ t´na`n pt, x, yq ` t
´n`1a`n´1pt, x, yq ` ¨ ¨ ¨ as tÑ 0`,

(5.42)

where we have written

(5.43) a`s pt, x, yq “
1

2π

N
ÿ

j“1

ż π

´π

e´
ĥj,`px,e

´iu˝yq

t ppe´iuq˚y b̂
`
j,sqpx, yqe

´imudu,

s “ n, n´ 1, n´ 2, . . . Note that a`s pt, x, yq and b̂
`
j,spx, yq depend on m. For the initial

condition of Γpt, x, yq, one has the following.

Lemma 5.11. – We have

lim
tÑ0`

Γptqu “ Qmu pon D 1pX,T˚0,`X b Eqq,

for u P Ω0,`pX,Eq.

Proof. – For u P Ω0,`pX,Eq, Qmu P Ω0,`
m pX,Eq, Qmu|Dj can be expressed

as e´imηvjpwq for some vjpwq P Ω0,`pUj , Eq. With (5.40) we find (note ABj ,`ptq “ I

MÉMOIRES DE LA SMF 162



5.2. HEAT KERNELS OF THE MODIFIED KOHN LAPLACIANS 83

as tÑ 0 and dvDj “ dvUjdη by (2.5))

lim
tÑ0`

HjptqQmu “ lim
tÑ0`

ż

χjpxqe
´mϕjpzq´imθABj ,`pt, z, wqe

mϕjpwq`imη

¨ τjpwqσjpηqe
´imηvjpwqdvUj pwqdη

“ lim
tÑ0`

ż

χjpxqe
´mϕjpzq´imθABj ,`pt, z, wqe

mϕjpwqτjpwqvjpwqdvUj pwq

“ χjpxqe
´mϕjpzq´imθemϕjpzqτjpzqvjpzq

“ χje
´imθvj “ χjQmu.

(5.44)

With the above, the lemma follows from (5.41) and
ř

j χj “ 1.

Γptq satisfies an adjoint type heat equation asymptotically in the following sense
(cf. [24, p. 96]).

Lemma 5.12. – We consider rl
`

b,m ˝Qm still denoted by rl
`

b,m. Γpt, x, yq satisfies

Γ1ptqu` Γptq rl
`

b,mu “ Rptqu, @u P Ω0,`pX,Eq,

where Rptq : Ω0,`pX,Eq Ñ Ω0,`pX,Eq is the continuous operator with distribution
kernel Rpt, x, yq (P C8pR`ˆXˆX, pT˚0,`XbEqbpT˚0,`XbEq˚q), which satisfies
the following. For every ` P N0, there exists an ε0 ą 0, C` ą 0 independent of t such
that

(5.45) }Rpt, x, yq}C`pXˆXq ď C`e
´
ε0
t , @ t P R`.

Proof. – As in the preceding lemma let u P Ω0,`
m pX,Eq and write u|Dj “ e´imηvjpwq

for some vjpwq P Ω0,`pUj , Eq on Dj . By this, (5.5), (5.16) and (5.40) it is a bit tedious
but straightforward to compute

H 1jptqu`Hjptq rl
`

b,mu

“

ż

χjpxqe
´mϕjpzq´imθA1Bj ,`pt, z, wqe

mϕjpwq`imητjpwqσjpηqupyqdvXpyq

`

ż

χjpxqe
´mϕjpzq´imθABj ,`pt, z, wqe

mϕjpwq`imητjpwqσjpηqp rl
`

b,muqpyqdvXpyq

“

ż

χjpxqe
´mϕjpzq´imθA1Bj ,`pt, z, wqτjpwqe

mϕjpwqvjpwqdvUj pwq

`

ż

χjpxqe
´mϕjpzq´imθABj ,`pt, z, wqτjpwqp rl

`

Bj ,mpe
mϕjvjqqpwqdvUj pwq

(5.46)
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“

ż

χjpxqe
´mϕjpzq´imθA1Bj ,`pt, z, wqτjpwqe

mϕjpwqvjpwqdvUj pwq

`

ż

χjpxqe
´mϕjpzq´imθABj ,`pt, z, wqp rl

`

Bj ,mpτje
mϕjvjqqpwqdvUj pwq

`

ż

χjpxqSjpt, x, wqvjpwqdvUj pwq

“

ż

χjpxqSjpt, x, wqvjpwqdvUj pwq “

ż

χjpxqSjpt, x, wqe
imησjpηqupyqdvXpyq,

where

Sjpt, x, wq “ e´mϕjpzq´imθABj ,`pt, z, wqrτjpwq, rl
`

Bj ,mse
mϕjpwq

P C8c pR` ˆDj ˆ Uj , pT
˚0,`X b Eqb pT˚0,`X b Eq˚q.

Note τjpzq “ 1 for pz, θq in some small neighborhood of Suppχj . One sees that
χjpxqSjpt, x, wq “ 0 if px,wq is in some small neighborhood of pz, zq. Hence by using
(5.17) for (5.46) (on |z´w| away from zero), we conclude that for every ` P N0, there
is an ε ą 0 independent of t such that

(5.47) }χjpxqSjpt, x, wq}C`pXˆXq ď C`e
´ εt , @t P R`.

Put rRpt, x, yq :“
řN
j“1 χjSjpt, x, wqe

imησjpηq P C
8pR` ˆX ˆX, pT˚0,`X bEqb

pT˚0,`X b Eq˚q and set

Rpt, x, yq “
1

2π

ż π

´π

rppe´iuq˚yRqpt, x, yqe
´imudu.

Let Rptq : Ω0,`pX,Eq Ñ Ω0,`pX,Eq be the continuous operator with distribution
kernel Rpt, x, yq. Note that Rptq “ Rptq ˝ Qm (cf. (5.42) and (5.41)). By (5.47),
Rpt, x, yq satisfies (5.45) and by (5.46) and (5.41), one sees Γ1ptqu`Γptq rl

`

b,mu “ Rptqu,
@u P Ω0,`pX,Eq. The lemma follows.

To get back to the original heat equation from its adjoint version, it suffices to take
the adjoints Γ˚ptq of Γptq and R˚ptq of Rptq (with respect to p ¨ | ¨ qE) because rl

`

b,m is
self-adjoint. Hence combining Lemma 5.11 and Lemma 5.12 one obtains the following
(asymptotic) heat kernel.

Theorem 5.13. – With the notations above, we have

lim
tÑ0`

Γ˚ptqu “ Qmu on D 1pX,T˚0,`X b Eq

for u P Ω0,`pX,T˚0,`X b Eq and ( rl`

b,m ˝Qm still denoted by rl
`

b,m below, which is
self-adjoint)

BΓ˚ptq

Bt
u` rl

`

b,mΓ˚ptqu “ R˚ptqu, @u P Ω0,`pX,Eq,
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where R˚ptq is the continuous operator with the distribution kernel R˚pt, x, yq satis-
fying a similar estimate as Rptq in Lemma 5.12.

Based on the above theorem, one way to solving our heat equation resorts to the
method of successive approximation. This part of reasoning is basically standard. But
because of the important role played by Q`m in the final result (cf. McKean-Singer
(II) in Corollary 5.16), for the convenience of the reader we sketch some details and
refer the full details to, e.g., [5, Section 2.4].

To start with, suppose Aptq, Bptq and Cptq : Ω0,`pX,Eq Ñ Ω0,`pX,Eq are
continuous operators with distribution kernels Apt, x, yq, Bpt, x, yq and Cpt, x, yq P

C8pR` ˆX ˆX, pT˚0,`X bEqb pT˚0,`X bEq˚q. Define the (continuous) operator
pA 7Bqptq : Ω0,`pX,Eq Ñ Ω0,`pX,Eq with distribution kernel

pA 7Bqpt, x, yq :“

ż t

0

ż

X

Apt´ s, x, zqBps, z, yqdvXpzqds

pP C8pR` ˆX ˆX, pT˚0,`X b Eqb pT˚0,`X b Eq˚qq.

(5.48)

It is standard that ppA 7Bq 7 Cqptq “ pA 7 pB 7 Cqqptq, denoted in common by

pA 7B 7 Cqptq.

(The generalization to more operators is similar.)

The method of successive approximation results in a solution (which is actually
unique by Theorem 5.15 below) to our heat equation, as follows.

Proposition 5.14. – i) (Existence) Fix ` P N, ` ě 2. There is an ε ą 0 such that
the sequence

(5.49) Λptq :“ Γ˚ptq ´ pΓ˚ 7R˚qptq ` pΓ˚ 7R˚ 7R˚qptq ´ ¨ ¨ ¨

converges in C`pp0, εq ˆX ˆX, pT˚0,`X b Eqb pT˚0,`X b Eq˚q and

Λptq : Ω0,`pX,Eq Ñ C`pX,T˚0,`X b Eq X L2,`
m pX,Eq,

lim
tÑ0`

Λptqu “ Qmu on D 1pX,T˚0,`X b Eq, @u P Ω0,`pX,Eq,

Λ1ptqu` rl
`

b,mΛptqu “ 0, @u P Ω0,`pX,Eq.

(5.50)

ii) (Approximation) Write Λpt, x, yq, pP C`pp0, εqˆXˆX, pT˚0,`XbEqbpT˚0,`Xb

Eq˚qq for the distribution kernel of Λptq. Then there exists an ε0 ą 0 independent of t
such that

(5.51) }Λpt, x, yq ´ Γ˚pt, x, yq}C`pXˆXq ď e´
ε0
t , @ t P p0, ε0q.

With rl
´

b,m in place of rl
`

b,m in (5.50), the corresponding statements for rl
´

b,m (with
Λ´,Γ´ etc.) hold true as well.
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Proof. – We sketch a proof of ii) and comment on i). For notational convenience we
set Z “ R˚, Z2 “ R˚ 7R˚, Z3 “ R˚ 7R˚ 7R˚ etc. as defined in (5.48) with || ¨ ||` as
the C`-norm on XˆX. By using (5.45) (for R˚) one sees that there are 1 ą δ0, δ1 ą 0

such that for all t P p0, δ0q,

(5.52) }Z}` ď
1

2
e´

δ1
t ,

›

›Z2
›

›

`
ď

1

22
e´

δ1
t , . . .

Similarly from the estimate of Γ˚ptq (see (5.17)) with the above (5.52) we conclude
that for all t P p0, δ0q,

}Γ˚ 7 Z}` ď
C1

2
e´

δ1
t ,

›

›Γ˚ 7 Z2
›

›

`
ď
C1

22
e´

δ1
t , . . . ,(5.53)

where C1 ą 0 is some constant. Hence the sequence (5.49) converges (in C`pp0, εq ˆ
X ˆX, pT˚0,`X b Eqb pT˚0,`X b Eq˚q) and (5.51) holds.

It takes slightly more work to verify (5.50) in i). Let qkpt, x, yq be the pk ` 1q-th
term in (5.49). One verifies directly by computation of the convolution that

(5.54) Btq
kpt, x, yq ` rl

`

b,mq
kpt, x, yq “ Zkpt, x, yq ` Zk`1pt, x, yq

(cf. [5, (2) of Lemma 2.22]). Since Λpt, x, yq is the alternating sum of these qk, by the
good estimates (5.52) and (5.53), one interchanges the order of the action of pBt` rl

`

b,mq

on Λpt, x, yq with the summation. By telescoping with (5.54), one finds that the heat
Equation (5.50) of i) is satisfied (cf. [5, Theorem 2.23]).

The uniqueness part of the above theorem is included in the following. (Note
e´t

Ăl
`

b,mpx, yq is as in (4.15).)

Theorem 5.15. – i) (Uniqueness) We have e´tĂl
`

b,mpx, yq “ Λpt, x, yq (P C`pp0, εq ˆ
X ˆ X, pT˚0,`X b Eq b pT˚0,`X b Eq˚qq. Hence by (5.51), for every ` P N0 there
exist ε0 ą 0 and ε ą 0 (independent of t) such that

(5.55)
›

›

›
e´t

Ăl
`

b,mpx, yq ´ Γpt, x, yq
›

›

›

C`pXˆXq
ď e´

ε0
t , @t P p0, εq.

As a consequence e´tĂl
`

b,mpx, yq and Γpt, x, yq are the same in the sense of asymptotic
expansion (as defined in Definition 5.5).

ii) (Asymptotic expansion) More explicitly one has (cf. (5.42))

e´t
Ăl
`

b,mpx, yq „ t´na`n pt, x, yq ` t
´n`1a`n´1pt, x, yq ` ¨ ¨ ¨ ` a

`
0 pt, x, yq ` ta

`
´1pt, x, yq

` ¨ ¨ ¨ as tÑ 0`,

a`s pt, x, yq p“ a`s,mpt, x, yqq “
1

2π

N
ÿ

j“1

ż π

´π

e´
ĥj,`px,e

´iu˝yq

t ppe´iuq˚y b̂
`
j,sqpx, yqe

´imudu

pP C8pR` ˆX ˆX, pT˚0,`X b Eqb pT˚0,`X b Eq˚qq,

(5.56)
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s “ n, n´ 1, n´ 2, . . .

Similar statements hold for the case of e´tĂl
´

b,mpx, yq as well.

Proof. – The argument for the uniqueness part is standard. To sketch it, there is
the following trick (cf. [5, Lemma 2.16]) in which we shall use heat equations for
both kernels (cf. (4.18) and (5.50)). For 0 ă t ă ε (ε as in Proposition 5.14) and
f, g P Ω0,`pX,Eq

0 “

ż t

0

B

Bs

´

pΛpt´ sqf | e´s
Ăl
`

b,mg qE

¯

ds

“ pQmf | e
´tĂl

`

b,mg qE ´ pΛptqf |Qmg qE

“ p f | e´t
Ăl
`

b,mg qE ´ pΛptqf | g qE

“ p e´t
Ăl
`

b,mf | g qE ´ pΛptqf | g qE ,

proving that e´tĂl
`

b,mpx, yq “ Λpt, x, yq.
The estimates (5.55) and (5.56) follow from (5.51) and (5.42) (e´tĂl

`

b,m is self-
adjoint).

Remark that by Proposition 5.1 it was tempting to speculate that the heat kernel
for (modified/Spinc) Kohn Laplacian might be (at least asymptotically) the (local)
heat kernel for (modified/Spinc) Kodaira Laplacian. This is however too much to
be true as suggested by the above Theorem 5.15 because the asymptotic expansion
of (modified) Kohn Laplacian involves a nontrivial t-dependence in aspt, x, yq (cf.
Remark 1.6 and Remark 1.7).

We are ready to establish a link between our index and the heat kernel density
of (modified) Kodaira Laplacian. For a`` pt, x, xq in (5.56), define Tr a`` pt, x, xq “
řd
s“1x a

`
` pt, x, xqespxq | espxq yE as usual, where tespxqus an othonormal frame (of

T˚0,`
x X b Ex). (Similar notation and definition apply to the case of a´` pt, x, xq. )
To sum up from Corollary 4.8 and (5.56), there is a second form of McKean-Singer

type formula for the index in our case (cf. Corollary 4.8 for the first form).

Corollary 5.16 (McKean-Singer (II)). – We have
(5.57)

n
ÿ

j“0

p´1qjdimHj
b,mpX,Eq “ lim

tÑ0`

ż

X

n
ÿ

`“0

t´`
´

Tr a`` pt, x, xq ´ Tr a´` pt, x, xq
¯

dvXpxq.

By this result we are now reduced to computing aspt, x, xq in the following section.
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CHAPTER 6

PROOFS OF THEOREMS 1.3 AND 1.10

We are in a position to prove the main results of this paper. A new ingredient
is the notion of “distance function” d̂ (see (1.16) for the definition and Theorem 6.7
for its property). This function naturally appears when we compute aspt, x, xq in the
form of an integral (5.56). In the remaining part of this section we prove that this
“distance function” is equivalent to the ordinary distance function at least in the
strongly pseudoconvex case (Theorem 6.7).

Theorem 1.3 is proved in Theorem 6.1, Remark 6.2, Corollary 6.3 together with
Theorem 5.15; Theorem 1.10 proved in Theorem 6.4 and in (6.15).

In the same notations as before recall that Xp` “

!

x P X; the period of x is 2π
p`

)

,
1 ď ` ď k with p|p` (all `) and p “ p1. Xp is open and dense in X. See the discussion
preceding Theorem 1.3 for more detail.

Let Gjpt, x, yq be as in (5.38). (Notations set up in (5.38)–(5.43) will be useful in
what follows.) By the construction of Gjpt, x, yq, it is clear that

1

2π

N
ÿ

j“1

Gjpt, x, xq „ t´nα`n pxq ` t
´n`1α`n´1pxq ` ¨ ¨ ¨ as tÑ 0`,

α`s pxq “
1

2π

N
ÿ

j“1

β̂`j,spx, yq|y“x
P C8pX,End pT˚0,`X b Eqq, s “ n, n´ 1, . . . .

(6.1)

α`s pxq are independent of choice of BRT trivialization charts (in view of Re-
mark 5.8). It is perhaps instructive to think of these as the data of the asymptotic
expansion associated with the “underlying Kodaira Laplacian” (cf. loc. cit. and Propo-
sition 5.1) regardless of the existence of a genuine “underlying space”.

Recall the asymptotic expansions of Γpt, x, yq and e´tĂl
`

b,mpx, yq (they coincide by
Theorem 5.15), in which we have a`s pt, x, yq (P C8pR` ˆ X ˆ X, pT˚0,`X b Eq b

pT˚0,`X bEq˚q), s “ n, n´ 1, . . ., cf. (5.56) or (5.42). By the construction, Γpt, x, yq

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2019



92 CHAPTER 6. PROOFS OF THEOREMS 1.3 AND 1.10

and aspt, x, yq of (5.56) depend on the choice of BRT charts. (The authors do not
know whether there exists a canonical choice of aspt, x, yq in this respect.)

We are now ready to give a proof of the following.

Theorem 6.1 (Cf. Theorem 1.3). – For every N0 P N with N0 ě N0pnq for some
N0pnq, there exist ε0 ą 0, δ ą 0 and CN0

ą 0 such that

ˇ

ˇ

ˇ

ˇ

ˇ

N0
ÿ

j“0

t´n`ja`n´jpt, x, xq ´ prδpr|m

N0
ÿ

j“0

t´n`jα`n´jpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď CN0

´

t´n`N0`1 ` t´ne
´ε0d̂px,X

r
sing q

2

t

¯

, @x P Xpr pr “ 1, . . . , kq, @ 0 ă t ă δ.

(6.2)

Proof. – For simplicity, we only prove Theorem 6.1 for r “ 1. The proof for r ą 1 is
similar.

As in the beginning of Section 5.2, there are BRT trivializations Bj :“

pDj , pz, θq, ϕjq, j “ 1, . . . , N . We write

Dj “ Uj ˆ s´2δj , 2rδjr, D̂j “ Ûj ˆ s´
δj
2
,
rδj
2
r pĂ Cn ˆ Rq,

with Uj “ tz P Cn; |z| ă γju , Ûj “ tz P Cn; |z| ă γj{2u for some δj ą 0, rδj ą 0,
γj ą 0.

Assume X “ D̂1 Y ¨ ¨ ¨ Y D̂N . In the following we let δj “ rδj “ ζ (all j), ζ satisfy
(1.15) with 4 |ζ| ă 2π

p .
It is easily verified that there is an ε̂0 ą 0 such that (dp¨, ¨q the ordinary distance

function on X)

ε̂0dppz1, θ1q, pz2, θ1qq ď |z1 ´ z2| ď
1

ε̂0
dppz1, θ1q, pz2, θ1qq, @ pz1, θ1q, pz2, θ1q P Dj ,

ε̂0dppz1, θ1q, pz2, θ1qq
2 ď hj,`pz1, z2q ď

1

ε̂0
dppz1, θ1q, pz2, θ1qq

2, @ pz1, θ1q, pz2, θ1q P Dj ,

(6.3)

where hj,`pz, wq is as in (5.19).
Recall that the modified distance d̂ which is defined in (1.16). We are going to

compare d̂ with (6.3).
Fix x0 P Xp. Suppose x0 P D̂j for some j “ 1, 2, . . . , N and also suppose x0 “ pz, 0q

on Dj .
Some crucial remarks are in order.
i) For 0 ď |u| ď 2ζ the action of e´iu on x0 is only moving along the “angle”

direction (due to the assumption that a BRT trivialization Dj is valid here), i.e., the
z-coordinates of x0 and e´iu ˝ x0 are the same.

ii) Let a u0 P r2ζ,
2π
p ´ 2ζs be given. Assume that the action by e´iu0 on x0 still

belongs to D̂j with a coordinate e´iu0 ˝ x0 “ pz̃, η̃q. Then it could happen that z̃ ‰ z
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because the orbit te´iv ˝ x0u for 2ζ ď v ď 2π
p ´ 2ζ may partly lie outside of Dj . We

will show in (6.4) below that indeed z̃ ‰ z in this case.
Remark that the above ii) is basically the reason responsible for why the contribu-

tion of our distance function d̂ enters, as seen shortly. The question about whether the
condition e´iu0 ˝ x0 P D̂j of ii) is vacuous or not will be discussed below (equivalent
to whether J below is an empty set or not).

We shall now formulate the above ii) more precisely. If x0 P D̂j , we claim the
following.

Suppose e´iθ ˝ x0 “ prz, rηq also belongs to D̂j for some θ P r2ζ, 2π
p ´ 2ζs.

Then |z ´ rz| ě ε̂0 d̂px0, Xsing q pą 0q.
(6.4)

Proof of the claim. – By pz̃, η̃q P D̂j one has eiη̃ ˝ pz̃, η̃q “ pz̃, 0q equivalently e´iη̃ ˝
pz̃, 0q “ pz̃, η̃q (by the above i) as |η̃| ď ζ

2 here). One sees (by (6.3) and isometry
of S1 action for the first inequality below)

|rz ´ z| ě ε̂0 dpe
iη̃ ˝ pz̃, η̃q, eiη̃ ˝ pz, η̃qq “ ε̂0 dpe

iη̃ ˝ pe´iθ ˝ x0q, x0q

ě ε̂0 inf

"

dpe´iu ˝ e´iθ ˝ x0, x0q; |u| ď
ζ

2

*

ě ε̂0 inf

"

dpe´iθ̂ ˝ x0, x0q; ζ ď θ̂ ď
2π

p
´ ζ

*

“ ε̂0 d̂px0, Xsing q

(6.5)

(see (1.16) for the definition of d̂), as claimed.

Remark that a sharp result in this direction (6.4) is proved in Lemma 7.6.
We continue with the proof of the theorem. We need to estimate Γptq “

řN
j“1Hjptq˝

Qm for the first summation to the left of (6.2). By definition (see (5.42)) this is in
turn to estimate

(6.6)
1

2π

ż π

´π

ppe´iuq˚yHjqpt, x0, x0qe
´imudu

and sum over j “ 1, . . . , N .
We first assume that in (6.6), x0 “ pz, 0q in D̂j and x0 R D̂k for any other k ‰ j.
To work on (6.6) we shall divide r´π, πs in (6.6) into two types.
The first type is to estimate 1

2π

ş2ζ

´2ζ
ppe´iuq˚yHjqpt, x0, x0qe

´imudu. Note if
u P r´2ζ, 2ζs and e´iu ˝ x0 “ pzu, θuq, then pzu, θuq “ pz, uq (by i) above (6.4)),
i.e., e´iu ˝ pz, 0q “ pz, uq. Hence, by (5.38) the factor eimη in Hj is going to be
eimu and this is canceling off the term e´imu in the integral (6.6). By (5.19),
h`pz, zuq “ h`pz, zq “ 0 (also by (6.3)) and the factor e´

h`
t of ABj ,` in Hj of (5.38)

becomes 1. Finally we note that for σj in Hj of (5.38),
ş

I
σjpθqdθ “ 1, I “ r´ ζ

2 ,
ζ
2 s.
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To sum up, by (5.38) and (5.19) one obtains the following (x0 R D̂k for k ‰ j)

(6.7)
1

2π

ż 2ζ

´2ζ

ppe´iuq˚yHjqpt, x0, x0qe
´imudu

„

´

t´nα`n px0q ` t
´pn´1qα`n´1px0q ` ¨ ¨ ¨

¯

as tÑ 0`,

where α`s pxq, s “ n, n´ 1, . . ., are as in (6.1).

For the second type suppose u P r2ζ, 2π
p ´ 2ζs. Note the action by e´iu on x0 may

change the z coordinate of x0 by ii) above (6.4). We let J be the subset of those
u P r2ζ, 2π

p ´ 2ζs ” E that e´iu ˝ x0 “ pzu, θuq belongs to D̂j (then zu ‰ z by (6.4)),
and J 1 be the complement of J in E. One finds, for some ε0 ą 0, δ ą 0 and C0 ą 0

(independent of j, x0), that

ˇ

ˇ

ˇ

ˇ

1

2π

ż

uPr2ζ, 2πp ´2ζs

ppe´iuq˚yHjqpt, x0, x0qe
´imudu

ˇ

ˇ

ˇ

ˇ

ď
1

2π

ż

uPJ

ˇ

ˇppe´iuq˚yHjqpt, x0, x0qe
´imu

ˇ

ˇ du

`
1

2π

ż

uPJ 1

ˇ

ˇppe´iuq˚yHjqpt, x0, x0qe
´imu

ˇ

ˇ du

ď C0t
´ne

´ε0d̂px0,Xsing q
2

t , @ 0 ă t ă δ,

(6.8)

where the integral over J 1 vanishes because the cut-off function σj in Hj of (5.38)
gives σjpηpyqq “ 0 for y “ e´iu ˝x0 R D̂j as σj “ 0 outside D̂j (see lines above (5.38)),
and the second inequality arises from applying (6.3) and (6.4) to h`pz, zuq in Hj (see
(5.38) and (5.19)).

Is J an empty set? We remark that the top term in (6.8) is in general nonzero
(by combining (6.7) and Remark 1.7 for p “ 1). Hence J ‰ H in general. There is
a geometrical way to see the claim that for some open subset V of X, if x0 P V ,
then J ‰ H. For simplicity assume X “ X1 Y X2, i.e., p “ 1 and p2 “ 2. Choose
y P X2. Let g “ e´i

2π
p2 P S1. Fix a neighborhood U Ă D̂j of y in X. Since g ˝ y “ y,

by continuity argument there are neighborhoods N1, N2 of y, g in X, S1 respectively
such that the action h ˝ x P U if ph, xq P N2ˆN1. Choose N1 Ă D̂j , N2 small and set
V ” N1zX2. It follows that for these x0 P V , J ‰ H since N2 Ă J . This result also
accounts for the necessity of the remark ii) above (6.4) and hence that of a certain
extra contribution (e.g., d̂) in estimates (6.8).

Suppose p “ 1. Then (6.7) and (6.8), Definition 5.5 for„ and Remark 5.6 (by noting
that dimX “ 2n ` 1, dimUj “ 2n, M0pmq “ n ` 1, m “ 4n “ 2β, M1pm, `q “ n
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for ` “ 0) immediately lead to
ˇ

ˇ

ˇ

ˇ

ˇ

Γpt, x0, x0q ´

N0
ÿ

j“0

t´n`jα`n´jpx0q

ˇ

ˇ

ˇ

ˇ

ˇ

ď CN0

´

t´n`N0 ` C0t
´ne

´ε0d̂px0,Xsing q
2

t

¯

, N0 ě N0pnq, @ 0 ă t ă δ.

(6.9)

Now adding t´n`N0`1α`n´N0´1 to (6.9) and substracting it we improve t´n`N0

by t´n`N0`1. Hence the estimate (6.2) of the theorem for p “ 1.
Suppose p ą 1. Then one has an extra p´1 sectors in r´π, πs (obtained by shifting

the above first sector s “ 1 by a common ps´ 1q 2π
p ):

(6.10) rps´ 1q
2π

p
´ 2ζ, ps´ 1q

2π

p
` 2ζs, rps´ 1q

2π

p
` 2ζ, s

2π

p
´ 2ζs, s “ 1, . . . , p

(s “ p` 1 identified with s “ 1) over which the integrals correspond to types I (6.7)
and II (6.8) respectively. One may check without difficulty that the version of the claim
(6.4) adapted to these sectors holds true as well. On each of these sectors, a simple
(linear) change of variable for u, which is to bring the intervals of the integration on
these sectors back to those in (6.7) and (6.8), produces the extra numerical factor in

sum (by e´imudu in (6.6)) :
p
ř

s“1
e

2πps´1q
p mi

“ pδp|m as expressed in (6.2).

Finally, note that we have assumed x0 “ pz, 0q P D̂j . In this case the above
argument appears symmetrical in writing. This (assumption) is however not essential.
Since we shall also adopt a similar assumption in Section 7, we give an outline about
the asymmetrical situation (i.e., x0 “ pz, θq, θ ‰ 0) of the argument. By going over
the same process, one sees the following. i) If x “ pz, vq, with 0 ă v ď ζ

2 , the intervals
in (6.7), (6.8) shall be replaced by r´2ζ ´ v, 2ζ ´ vs, r2ζ ´ v, 2π

p ´ 2ζ ´ vs (thought
of as translated by a common ´v) with the new integrals denoted by (6.7)’, (6.8)’,
respectively; ii) r´2ζ ´ v, 2ζ ´ vs Ě r´ζ, ζs hence

ş

σpuqdu is still 1 in (6.7)’ ; iii) In
the proof of claim (6.5), eiη̃ should be replaced by eiγ with γ “ η̃ ´ v, pz̃, 0q by pz̃, vq
and θ P r2ζ, 2π

p ´ 2ζs by θ P r2ζ ´ v, 2π
p ´ 2ζ ´ vs throughout (6.4) and (6.5). One can

check that the reasoning in (6.5) remains basically unchanged, and the conclusion of
(6.5) holds true as well in this modified case; iv) By the preceding ii) and iii), the
results corresponding to (6.7)’ and (6.8)’ hold true. Hence the asymmetrical situation
follows.

We have also assumed x0 R D̂k for k ‰ j. This condition is unimportant if we take
the preceding asymmetrical situation into account (for x0 P D̂k, k ‰ j in the general
case), and note that there is a hidden partition of unity in tHjuj“1,...,N .

An alternative of the above is to use the kernel e´tĂl
`

b,mpx, yq in place of Γpt, x, yq

and a`s pt, x, yq. An advantage is that e´tĂl
`

b,mpx, yq is independent of BRT charts, so
that for a given point x0 we can take a covering of X by convenient BRT charts for
the previous special conditions to be satisfied (e.g., x0 “ pz, 0q, x0 P D̂j for exactly
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one j etc.). By the asymptotic property between e´tĂl
`

b,mpx, yq and Γpt, x, yq (5.55),
this also leads to Theorem 6.1.

Remark 6.2. – For the relation between a`s pt, x, yq|y“x and αspxq as stated in (1.18)
of Theorem 1.3, the method of the above proof works. By using (setting y “ x below)

(6.11) a`s pt, x, yq “
1

2π

N
ÿ

j“1

ż π

´π

e´
ĥj,`px,e

´iu˝yq

t ppe´iuq˚y b̂
`
j,sqpx, yqe

´imudu

(see (5.56)) with the same reasoning as (6.7), (6.8) and (6.10), one obtains (1.18)
for P` “ id. For ` ą 0, (1.18) follows using

(6.12) Bxe
´ x

2

t “ ´2t´
1
2 p
x2

t
q1{2e´

x2

t “ Opt´
1
2 q

in (6.11) and by noting Remark 5.6 as in (6.9). Remark that if one extracts the
corresponding coefficients of t´s in (6.2) of Theorem 6.1 and uses the Result (6.2),

the estimate appears to be e´
ε0d̂px,Xsingq

t `Opt8q which is slightly weaker than above
(due to Opt8q).

For similar estimates with regard to Cl topology we have the following (cf. (6.12)
and Remark 5.6).

Corollary 6.3. – In the same notation as above, for any differential opera-
tor P` : C8pX,T˚0,`X b Eq Ñ C8pX,T˚0,`X b Eq of order ` P N and every
N0 ě N0pnq for some N0pnq,

(6.13)

ˇ

ˇ

ˇ

ˇ

ˇ

P`

´

N0
ÿ

j“0

t´n`ja`n´jpt, x, xq ´ prδpr|m

N0
ÿ

j“0

t´n`jα`n´jpxq
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď CN0

´

t´n`N0`1´ `
2 ` t´n´

`
2 e

´ε0d̂px,X
r
sing q

2

t

¯

, @ 0 ă t ă δ, @x P Xpr ,

for some ε0 ą 0, δ ą 0 and CN0
ą 0 independent of x.

Note the singular behavior t´n (in the term to the rightmost of (6.2)). So the
estimate (6.2) is not directly applicable to the proof of our local index theorem.
That is, computation involving as cannot be automatically reduced to computation

involving αs as soon as x pP Xpq approaches Xsing. Intuitively t´ne
´ε0d̂px,Xsing q

2

t goes
to a kind of Dirac delta function (along Xsing) as t Ñ 0 (apart from a factor of the
form 1

tβ
, some β ą 0). So after integrating (6.2) over X, a nonzero contribution due

to this term could appear or even blow up as t Ñ 0. A more precise analysis along
this line will be taken up in the study of trace integrals in Section 7.

Fortunately, the abovementioned singular behavior can be removed (t´n dropping
out completely) after taking the supertrace, so that the index density for our need
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does exist. (However, as far as the full kernel is concerned, a certain estimate such as
that in Theorem 6.1 is unavoidable as discussed in Remark 1.8).

We shall now take up this improvement on (6.2) under supertrace. We formulate
it as follows, whose proof is heavily based on the off-diagonal estimate obtained in
Theorem 5.10.

Theorem 6.4 (Cf. Theorem 1.10). – With the notations above, for every N0 P

N, N0 ě N0pnq for some N0pnq, there exist ε0 ą 0, δ ą 0 and CN0 ą 0 such that

(6.14)
ˇ

ˇ

ˇ

ˇ

ˇ

Tr e´t
Ăl
`

b,mpx, xq ´ Tr e´t
Ăl
´

b,mpx, xq ´ prδpr|m

N0
ÿ

j“0

t´n`j
´

Trα`n´jpxq ´ Trα´n´jpxq
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď CN0

´

t´n`N0`1 ` e´
ε0d̂px,X

r
sing q

2

t

¯

, @ 0 ă t ă δ, @x P Xpr ,

The implication of Theorem 6.4 yields a link between the two identities arising
from Corollary 5.16 and Proposition 5.9 together with (5.22):

lim
tÑ0`

ż

X

n
ÿ

`“0

t´`
´

Tr a`` pt, x, xq ´ Tr a´` pt, x, xq
¯

dvXpxq “
n
ÿ

j“0

p´1qjdimHj
b,mpX,Eq

lim
tÑ0`

ż

X

n
ÿ

`“0

t´`
´

Trα`` pxq ´ Trα´` pxq
¯

dvXpxq

“
1

2π

ż

X

Tdb p∇T
1,0X , T 1,0Xq ^ chb p∇E , Eq ^ e´m

dω0
2π ^ ω0pxq.

(6.15)

It follows that the two in (6.15) are equal because in (6.14), e´
ε0d̂px,Xsing q

2

t pď 1q Ñ 0

in L1 by Lebesgue’s dominated convergence theorem as tÑ 0` on Xp. We arrive now
at an index theorem for our class of CR manifolds.

Corollary 6.5 (Cf. Corollary 1.13). – We have

(6.16)
n
ÿ

j“0

p´1qjdimHj
b,mpX,Eq

“ pδp|m
1

2π

ż

X

”

Tdb p∇T
1,0X , T 1,0Xq ^ chb p∇E , Eq ^ e´m

dω0
2π ^ ω0

ı

2n`1
pxq,

where r¨ ¨ ¨ s2n`1 denotes the p2n` 1q-form part.

We turn now to the proof of Theorem 6.4.
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Proof of Theorem 6.4. – For simplicity, we only prove Theorem 6.4 for r “ 1. The
proof for r ą 1 is similar. Adopting the same notations as in the proof of Theorem 6.1
(e.g., Bj , Dj , D̂j ¨ ¨ ¨ ), we shall follow a similar line of thought as in Theorem 6.1.

Fix x0 P Xp. As e´t
Ăl
`

b,mpx, yq and Γpt, x, yq are asymptotically the same (Theo-
rem 5.15), we also break the desired estimate at x “ x0 into two types of integrals
corresponding to (6.7) and (6.8).

One integral is over I “ r´2ζ, 2ζs and the other over I 1, the complement of I
in r´π, πs. The first type gives rise to the first term to the right of (6.14) almost the
same way as (6.7).

The key of this proof lies in the second type which corresponds to (6.8). It is
estimated over I 1, as in (6.17) below. (Here we rewrite Hj in a convenient form, in

terms of ĥj,`, K̂j,` of (5.39), reminiscent of an analogous relation AB,` “ e´
h`
t KB,`

in (5.19).)
(6.17)
1

2π

N
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ż

uPI1
e´

ĥj,`px0,e
´iu˝x0q

t

´

ppe´iuq˚yTr K̂j,`qpt, x0, x0q ´ ppe
´iuq˚yTr K̂j,´qpt, x0, x0q

¯

du

ˇ

ˇ

ˇ

ˇ

.

We shall now show that there exist ε0 ą 0 and C ą 0 (independent of x0) such
that (6.17) is bounded above by

(6.18) Ce´
ε0d̂px0,Xsing q

2

t

for small t P R`. To see this we first note that for k ě 0,

(6.19) e´ε
x2

t

`x2

t

˘k
ď Ck,εe

´ε x
2

2t

for some constant Ck,ε independent of x and t ą 0. Write x0 “ pz, θq and e´iu ˝ x0 “

pzu, θuq in BRT coordinates. Since ĥj,`px0, e
iu˝x0q is essentially h`pz, zuq « |z´zu|2,

we have

(6.20) e´
ĥpx0,e

iu˝x0q
t ď e´2c1

|z´zu|
2

t ď e´c1
ε̂0d̂px0,Xsing q

2

t e´c1
|z´zu|

2

t

for some constant c1 ą 0 by using (6.4) for d̂. By using the off-diagonal estimate of
Theorme 5.10 and by (5.19), (5.39) for linking b‚ with K‚, one obtains the following
estimate from (6.20)

ˇ

ˇ

ˇ

ˇ

e´
ĥj,`px0,e

´iu˝x0q

t

´

ppe´iuq˚yTr K̂j,`qpt, x0, x0q ´ ppe
´iuq˚yTr K̂j,´qpt, x0, x0q

¯

ˇ

ˇ

ˇ

ˇ

ď e´c1
ε̂0d̂px0,Xsing q

2

t

n
ÿ

k“0

constants ¨ e´c1
|z´zu|

2

t

` |z ´ zu|
2k

tk
`Optq

˘

(6.21)

for (6.17). Now one readily obtains the bound (6.18) from (6.21) and (6.19).
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Combining the above estimates for integrals of the first type and second type (6.17),

we obtain (6.14) in the way similar to (6.9) (with t´n dropping out of t´ne´
ε0d̂

2

t ).

In the remaining part of this section we give a geometric meaning for d̂px,Xr
sing q

(when X is strongly pseudoconvex). To this aim it is useful to use another equivalent
form of the function d̂, as follows (without any pseudoconvexity condition on X).

Lemma 6.6. – There exists a small constant ε0 ą 0 (satisfying (1.15) at least) with
the following property. Fix an ε with 0 ă ε ď ε0. For x P X define another “distance
function” d̂2 by (for a fixed `)

d̂2px,X
`´1
singq “ inf

"

dpx, e´iθ ˝ xq;
2π

p`
´ ε ď θ ď

2π

p`
` ε

*

(X`´1
sing “ Xp` Y Xp``1

¨ ¨ ¨ ). Then d̂2px,X
`´1
singq is equivalent to d̂px,X`´1

singq. (Namely
1

C`,ε
d̂2 ď d̂ ď C`,εd̂2 for some constant C`,ε independent of x).

We postpone the proof of the lemma until after Theorem 6.7.
For technical reasons we impose a pseudoconvex condition on X in the following

although the same result is expected to hold without this condition.

Theorem 6.7. – With the notations above, assume that X is strongly pseudoconvex.
Then there is a constant C ě 1 such that

1

C
dpx,Xr

sing q ď d̂px,Xr
sing q ď Cdpx,Xr

sing q, @x P X.

Proof. – For simplicity, we assume that X “ X1 Y X2, i.e., p “ 1, p2 “ 2, so that
Xsing ” X1

sing “ X2 pr “ 1q by definition. For the general case, the proof is essentially
the same. Let f, g : X Ñ r0,`8r be positive functions. We write fpxq « gpxq if there
is a constant C ą 1 such that

1

C
gpxq ď fpxq ď Cgpxq,

for every x P X. By Lemma 6.6, for every (small and fixed) ε ą 0 we have

(6.22) d̂px,Xsing q « inf
 

dpx, e´iθ ˝ xq; π ´ ε ď θ ď π ` ε
(

.

Since Xis strongly pseudoconvex, it is well-known that (see [40]) there exists a CR
embedding:

Φ : X Ñ CN ,
x ÞÑ pf1pxq, . . . , fN pxqq

(6.23)

with fj P H0
b,mj

pXq for some mj P N (j “ 1, . . . , N).
We assume thatm1, . . . ,ms are odd numbers andms`1, . . . ,mN are even numbers.

By p “ 1 and p2 “ 2 one sees that (cf. (1.35))

(6.24) x P Xsing if and only if f1pxq “ ¨ ¨ ¨ “ fspxq “ 0
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so that

(6.25) dpx,Xsing q
2 «

s
ÿ

j“1

|fjpxq|
2
, @x P X.

Now, by using the embedding Theorem (6.23) (together with (1.35)) we have

(6.26) dpx, e´iπ ˝ xq2 «
N
ÿ

j“1

ˇ

ˇfjpxq ´ fjpe
´iπ ˝ xq

ˇ

ˇ

2
“ 4

s
ÿ

j“1

|fjpxq|
2
« dpx,Xsing q

2

and hence for every π ´ ε ď θ ď π ` ε (ε ą 0 small)

(6.27) dpx, e´iθ ˝ xq2 «
N
ÿ

j“1

ˇ

ˇfjpxq ´ fjpe
´iθ ˝ xq

ˇ

ˇ

2

ě

s
ÿ

j“1

ˇ

ˇp1´ e´imjθqfjpxq
ˇ

ˇ

2
«

s
ÿ

j“1

|fjpxq|
2
« dpx,Xsing q

2.

By (6.27) we conclude that

(6.28) inf
 

dpx, e´iθ ˝ xq; π ´ ε ď θ ď π ` ε
(

« dpx,Xsing q.

Combining (6.22) and (6.28) we have proved the theorem.

We give now:

proof of Lemma 6.6. – In the following we write d̂pxq “ d̂px,X`´1
singq and d̂2pxq “

d̂2px,X
`´1
singq for a fixed `. For an illustration we assume X “ X1 Y X2, i.e., p1 “ 1,

p2 “ 2, and x P X1 (d̂2 “ d̂ “ 0 for x P X2.) Write I for the complement
of I 1 ” sπ ´ ε, π ` εr in rζ, 2π ´ ζs ” K (where ζ satisfies (1.15) and ε ą 0 a
small constant to be specified, cf. the line above (6.35)). By definition d̂2 ě d̂ p“ d̂ζq

(d̂2 is to take inf over I 1 while d̂ over K, and I 1 Ă K).
It remains to see d̂2 ď Cd̂ for some C. Put

fSpxq “ inf
θPS

 

dpx, e´iθ ˝ xq
(

for a set S. We claim that there exists a c, 1 ą c ą 0,

(6.29) fIpxq ě c

for all x P X1. Indeed for each x P X and for any θ P I “ rζ, π ´ εs Y rπ ` ε, 2π ´ ζs

one sees x ‰ e´iθ ˝x. So (6.29) follows by a compactness argument. Let M ě 1 be an
upper bound of d̂2. We claim

(6.30) d̂2pxq ď
M

c
d̂pxq, x P X.

Note d̂pxq “ fKpxq “ mintfIpxq, fI1pxqu and d̂2 “ fI1 . Suppose fKpyq ă fIpyq.
Then fKpyq “ fI1pyq, i.e., d̂pyq “ d̂2pyq and (6.30) holds for these y (as M

c ą 1). If
fKpyq ě fIpyq (for some y P X1), then fKpyq “ fIpyq, giving d̂pyq ě c by (6.29).
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For these y, (6.30) still holds. In any case we have proved (6.30) for x P X1, hence
for x P X (d̂ “ d̂2 “ 0 at x P X2).

For another illustration, in the same notation as above except that say, X “ X1 Y

X2 Y X4 (i.e., p3 “ 4). We are going to prove the lemma for the case ` “ 2 (with
x P X1, as d̂ “ d̂2 “ 0 at x R X1 for ` “ 2).

With the above I, I 1 and K, let J be the complement of J 1 ” sπ2 ´ ε, π2 ` εr Y

s 3π2 ´ ε,
3π
2 ` εr in I.

It follows, similarly as (6.29), that there exists a c2, 1 ą c2 ą 0 such that

(6.31) fJpxq ě c2, @x P X.

Let tWαuα be the set of connected components of X4. Each y P X4 is a fixed point
of the subgroup Z4 “ t1, e

iπ2 , eiπ, ei
3π
2 u of S1; write λi,αpgq for all the eigenvalues of

the isotropy (and isometric) action of g P Z4 on TyX for y P Wα. All of them are
independent of the choice of y PWα. Let

CM “ max
1‰gPZ4,λi,αpgq

t|λi,αpgq ´ 1|u ą 0; cm “ min
1‰gPZ4,λi,αpgq‰1

t|λi,αpgq ´ 1|u ą 0.

Let B “ tx P X; d̂2pxq ě p
CM
cm
` 1qMc2 d̂pxq ą 0u (M ě 1 as above). Clearly B Ă X1

(zero distance for x P X2 YX4). We claim that

(6.32) B XX4 “ H.

To see (6.32) suppose otherwise. Let yn P B and yn Ñ y P X4 as nÑ 8. Observe
that fKpynq ‰ fI1pynq for all n because the equality d̂pynq “ d̂2pynq (note fK “ d̂ and
fI1 “ d̂2) clearly contradicts the definition of B with yn P B. By K “ I 1 Y J 1 Y J , we
are left with two possibilities for a yn

iq fKpynq “ fJ 1pynq

iiq fKpynq “ fJpynq.
(6.33)

Suppose i). By examining the isotropy (and isometric) action of Z4 at y P X4, one
sees that both ratios below

(6.34)
dpyn, e

ßπ ˝ ynq

dpyn, eßπ2 ˝ ynq
,

dpyn, e
ßπ ˝ ynq

dpyn, eß 3π
2 ˝ ynq

are bounded above by CM
cm
` 1

4 as n " 1. Since I 1 and J 1 are ε-neighborhoods around π
and tπ2 ,

3π
2 u respectively, by choosing a sufficiently small ε (say ε ď ε0) one sees from

(6.34)

(6.35)
fI1pynq

fJ 1pynq
ď
CM
cm

`
1

2
, n " 1.

We claim that this contradicts yn P B. Note fK “ d̂ and fI1 “ d̂2 so that the
assmption i) fKpynq “ fJ 1pynq amounts to d̂pynq “ fJ 1pynq and (6.35) gives

(6.36)
d̂2pynq

d̂pynq
ď
CM
cm

`
1

2
, n " 1.
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By yn P B, (6.36) contradicts the definition of B.
Suppose ii) of (6.33). By (6.31), fJpxq ě c2 for all x P X hence by fK “ d̂ and ii)

of (6.33), one obtains d̂pynq ě c2, giving d̂2pynq ě p
CM
cm
`1qM by using yn P B, which

is absurd since d̂2 ď M by assumption. The claim (6.32) is proved by contradictions
in i) and ii) of (6.33).

Granting the claim (6.32) we have B Ă X1 Y X2 (which is open in X). Since
for θ P I and x P X1YX2 (in particular for x P B) x ‰ e´iθ ˝x, by compactness there
exists a c3, 1 ą c3 ą 0 satisfying (as in (6.29))

(6.37) fIpxq ě c3

for all x P B. One asserts that

(6.38) d̂2pxq ď p
CM
cm

` 1q
M

c2c3
d̂pxq, @x P B.

The argument is similar. By fK “ mintfI , fI1u, a) fKpxq “ fI1pxq or b) fKpxq “ fIpxq.
a) If fKpxq “ fI1pxq, then by fK “ d̂ and fI1 “ d̂2, d̂pxq “ d̂2pxq; b) if fKpxq “ fIpxq,
then by (6.37) and fK “ d̂, d̂pxqc3 ě 1 (for x P B). In both cases a) and b), (6.38) holds
(by M ě 1 an upper bound of d̂2 and 1

c2
, 1
c3
ą 1).

Finally, Since the same inequalily of (6.38) holds for all x outside B by definition
of B (with d̂2 “ d̂ “ 0 for x P X2 Y X4), the equivalence between d̂ and d̂2 (for all
x P X) is proved.

The proof for the general case clearly flows from the similar pattern as above
(although tedious). We shall omit the detail.
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CHAPTER 7

TRACE INTEGRALS AND PROOF OF THEOREM 1.14

7.1. A setup, including a comparison with recent developments

There is a vast literature about heat kernels on manifolds. A comparison between
the previous results and those of ours in the present paper shall now be discussed
before we proceed further. A concise account of the (ordinary) heat kernel in diversified
aspects is given in Richardson [59] and references therein. A generalization of the
heat kernel to orbit spaces of a group Γ (of isometries) acting on a manifold M

dates back to the seminal work of H. Donnelly in late ’70s [21], [22]. Among others,
Donnelly calculated the asymptotic expansion of the trace of the ordinary heat kernel
on M restricted to Γ-invariant functions (here Γ-action is assumed to be properly
discontinous on M). Brüning and Heintze in ’84 [11] studied the equivariant trace
with Γ replaced by a compact group G of isometries (including the trace restricted
to G-invariant eigenfunctions). A similar study (of trace) into the orbifold case has
been made recently in [59] and [23]. In all of these works the asymptotic expansion
of the (ordinary) heat kernel is more or less regarded as known. The questions or
techniques come down partly to that used in Donnelly [21] where the contributions
to the trace integral are shown to be essentially supported on the fixed point set of
the group action.

In a closely related direction some authors consider the case of Riemannian foli-
ations. In this regard, if the orbits of a group acting by isometries are of the same
dimension, this forms an example of a Riemannian foliation. For a Riemannian foli-
ation, one is usually restricted to the space of basic functions which are constant on
leaves of the foliation. Similar ideas apply to give basic forms. The basic Laplacian
and basic heat kernel KBpt, x, yq can then be defined. Over decades there has been
much study into the existence part of the basic heat kernel KBpt, x, yq, which is finally
proven in great generality by E. Park and K. Richardson in ’96 [56]. Another proof
on the existence is found in ’98 [58], which gives a specific formula for KBpt, x, yq and
allows them to obtain an asymptotic formula for KBpt, x, xq. We denote the trace
integral (on basic functions) by Tr e´t4B (which is

ř

m e
´tλm for certain eigenvalues
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with multiplicities). In [59] and [58] the trace integral is also denoted by KBptq which
will be avoided here due to a possible confusion. We shall dwell upon this important
point after the next paragraph.

Let’s first pause for a moment for comparison. For the part of the trace integral,
the basic technique based on Donnelly is also employed here so that the extra contri-
butions, if exist, are expected to be supported on the (lower dimensional) strata. One
of our features, however, is Lemma 7.6 which leads to a precise information about
the Gaussianlike term of the heat kernel and facilitates our ensuing asymptotic ex-
pansion (of the trace integral) in explicit expressions essentially based only on the
data given by the ordinary (Kodaira) heat kernel (hence computable in a sense, cf.
Remarks 7.25, 1.9). In the process we also need to sum over the group elements (Sub-
sections 7.2, 7.3) and patch up these local sums over X (Subsections 7.4, 7.5). For
the part of the asymptotic expansion, our present heat kernel by its very definition
is similar to the KB above. Yet objects beyond the basic forms, allowing a gener-
alization in the equivariant sense, indexed by m(P Z) in our notation (with m “ 0

corresponding to the case for KB), with bundle-values, are considered here. Since we
allow CR nonKähler case, suitable Spinc structure in our CR version need be devised
and equipped here in order for the rescaling technique of Getzler and our discovery
of the off-diagonal estimate (Theorem 5.10) to go through. In this regard, it is not
obvious at all (to us) whether the existence theory in the Riemannian case as above
can be directly applied to our case. Indeed, besides the need of the Spinc structure,
our proof of the heat kernel is heavily based on the feature of the group action on
CR manifolds, encoded by the BRT trivialization (Subsection 2.4), through the use
of the adjoint version of the original equation (Subsection 1.6). Above all, it lies in
the following how our approach distinguishes itself from those of others.

Notably, a seeming inconsistency could occur. That is, a discovery in the works [59]
and [58] reveals that the so obtained asymptotic expansion for KBpt, x, xq cannot be
integrated (over x) to give the asymptotics of the trace (integral). This perhaps takes
one by surprise. See p. 2304 of [59] and remark in p. 379 of [58]. Despite this, the work
[59] manages to prove an asymptotic expansion for the trace integral (on basic func-
tions) by using the work [11] (rather than by integrating the asymptotics ofKBpt, x, xq

obtained therein). In this way, some nontrivial logarithmic terms are to appear un-
less they are proved to be vanishing. A conjecture has thus been introduced by K.
Richardson in ’10 [59, Conjecture 2.5] to the effect that in the Riemannian setting as
above, for the (special) case of the isometric group action on a compact manifold, the
logarithmic terms in the asympototic expansion of the trace integral Tr e´t4B must
vanish and under a mild assumption (on orientation), there shall be no fractional
powers in t (except possibly an overall fractional power in t). It is worth mentioning
that the works [58] and [59] discuss a number of interesting examples pertinent to
the aforementioned peculiar phenomenon. Despite that the seeming inconsistency is
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consistent with examples by explicit computations, it remains conceptually unclear
how this phenomenon comes about.

Our present work affirms the above conjecture of Richardson (with extension to
the S1-equivariant case) in the special case of CR manifolds studied here (see Theo-
rems 7.20, 1.14). One key point for all of this lies in (1.4) with t-dependent coefficients
in t powers, which is regarded as the asymptotic expansion one shall be dealing with
in this paper, rather than a classical looking one (1.3) (which is similar in nature
to those proposed and studied in [58], [59]). See also our Remarks 1.6, 1.7 and 1.8,
which are closely related to the above singular behavior of a classical formulation of
asymptotic expansion. Put simply, the formulation (1.3) of an asymptotic expansion
leads to certain discontinuities of the t-coefficients along the strata (cf. [58, (4.7)] for
a concrete example). A remedy for (1.3) by (1.4) is mainly made via the introduction
of a “distance function” (see Theorem 1.3). Eventually, in this work we can restore the
trace integral as the integration of our (unconventional) asymptotic expansion of the
relevant heat kernel (see Definition 5.5 for the meaning of our asymptotic expansion).
Thus, our trace integral and our asymptotic expansion of the heat kernel jointly clar-
ify (with our class of manifolds) the somewhat undesirable phenomenon which is as
mentioned above.

To go from the trace integral to the index theorem (thought of as a supertrace
integral) is usually not immediate. To the knowledge of the authors, the argument
for the proof of index theorems by using trace integrals remains unclarified (cf. Re-
mark 7.26). Completely new ideas might be required; see [13], [12] for very interesting
ideas. In the present paper, we couldn’t make our understanding of the (transversal)
heat kernel (for our class of CR manifolds) complete without employing the rescaling
technique of Getzler and the off-diagonal estimate (Theorem 5.10) adapted to our
setting. These results explore in depth the non-Gaussian terms of our (transversal)
heat kernel, in contrast to the Gaussianlike term explored in the trace integral here.
With these two parts together, our approach studies the meaningful separate aspects
of the heat kernel in an unified manner, hence results in an (local) index theorem and
the trace integral. These point to the differences between our approaches/results and
those of the recent development.

We turn now to our proof of the trace integral. The line of thought in the proof
involves four stages.

In the first stage while the proof in the beginning echoes that in last section, we
shall make use of Lemma 6.6 and Theorem 6.7 to handle the distance function d̂.
(Here we assume the strongly pseudoconvex condition on X.) After this initial step,
we shall take a different approach that supersedes the previous one, which is more
quantitative in nature without the strongly pseudoconvex condition on X (hence
without using Lemma 6.6 and Theorem 6.7). This approach is partly based on the
differential geometric information of the various isotropy actions associated with the
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fixed point sets (strata) of the S1 action. This allows us to learn more precise details
about the heat kernel of Kohn Laplacian, hence to refine the computation in (7.13)
which is basically qualitative. (See (7.13) for a kind of Dirac delta functions associated
with the strata.) Remark that one key point here is the notion of type which is initially
designed for the need of computation. In the fourth stage it is attached to the S1

stratification closely.
In the second, third and fourth stages, the treatment goes in line with that in the

first stage and is mostly technical so as to integrate the results obtained in the first
stage in a well organized manner. The non unique way (subject to choice of BRT triv-
ializations) of giving the asymptotic expansion of e´tĂl

`

b,mpt, x, yq (cf. Theorem 6.1)
leaves us the freedom of choosing convenient BRT charts to work out some compu-
tations. The salient fact that e´tĂl

`

b,mpt, x, yq is an intrinsic object (yet not directly
computable), thus is independent of choice of BRT trivializations, is essential to giving
intrinsic meanings to some BRT-dependent computations (cf. the contrast between
Propositions 7.16 and 7.18 on ηs-terms). This conceptual understanding turns out to
be crucial to our final result. The extension of the previous notion “type” to the S1

stratification is the last conceptual step for the completion of the proof.
As before, X pdimX “ 2n ` 1q is a compact connected CR manifold with a

transversal CR locally free S1 action. To proceed with the proof of Theorem 1.14,
assume

X “ Xp YXp2 Y ¨ ¨ ¨ YXpk ,(7.1)

where

Xp` “

s
ď̀

γ“1

Xp`pγq , ps`“1 “ 1q,(7.2)

as a disjoint union of (connected) submanifolds Xp`pγq (Xp` , being the fixed point set

of an isometry e´i
2π
p` , is a submanifold (possibly disconnected)).

Write e`pγq for the (real) codimension of Xp`pγq in X. When there is no danger of
confusion, we may drop γ and write e` for e`pγq. Recall that X`´1

sing “ Xp`YXp``1
Y¨ ¨ ¨ .

We follow the notations in Subsection 5.2 and the beginning of the last sec-
tion. Thus Bj :“ pDj , pz, θq, ϕjq (j “ 1, 2, ¨ ¨ ¨ , N) with Dj “ Uj ˆ s´2δj , 2rδjr,

Uj “ tz P Cn; |z| ă γju and similarly D̂j “ Ûj ˆ s´
δj
2 ,

rδj
2 r, Ûj “

 

z P Cn; |z| ă
γj
2

(

.
We let δj “ rδj “ ζ, j “ 1, 2, . . . , N and assume X “ D̂1 Y ¨ ¨ ¨ Y D̂N . As before, we
assume that ζ ą 0 satisfies (1.15).

7.2. Local angular integral

Recall that ĥj,`px, yq, b̂`j,spx, yq of (5.39) (to be given below); a`s pt, x, yq involves a
certain integral over r0, 2πs (cf. (5.43)), s “ n, n´ 1, . . .. One key step is the following
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local version. That is, the (trace) integral of the form
(7.3)

It “ I
pjq
t pp`, gq ”

1

2π

ż 2π
p`
`ε

2π
p`
´ε

ż

X

gpxqe´
ĥj,`px,e

´iu˝xq

t ppe´iuq˚yTr b̂`j,sqpx, xqe
´imudvXpxqdu.

The trace “Tr” here is actually well defined despite a slight abuse of notation about
ppe´iuq˚y b̂

`
j,sqpx, xq at the second variable (see the line above (2.2)).

Recall that the expressions in (5.39) (to be used in what follows):

ĥj,`px, yq “ σ̂jpθqhj,`pz, wqσ̂jpηq P C
8
c pDjq, x “ pz, θq, y “ pw, ηq

b̂`j,spx, yq “ χjpxqe
´mϕjpzq´imθb`j,spz, wqe

mϕjpwq`imητjpwqσjpηq, s “ n, n´ 1, . . .

(7.4)

with suitable cut-off functions χj , τj , σj and σ̂j defined there.
There will be cases for the Result (7.3). We need some preparations and notations.
For It “ Itpp`, gq of (7.3), take a point x0 P Supp g XXp` , then x0 P Xp`pγ`q

for a
γ` P t1, . . . , s`u. Locally at x0 there are higher dimensional strata

(7.5) Xpi1pγi1 q
“ X Ľ Xpi2pγi2 q

Ľ ¨ ¨ ¨ Ľ Xpif pγif q
Ľ Xpif`1pγif`1

q
“ Xp`pγ`q

passing through x0 where i1 “ 1 ă i2 ă ¨ ¨ ¨ ă if ă if`1 “ `, P t1, 2, . . . , ` ´ 1, `u.
Here (to be useful later) pi1 |pi2 ¨ ¨ ¨ |pif |p` (by Remark 1.17 similarly). We claim that
the strata in (7.5) are uniquely determined by x0. Fix ` P t1, . . . , ku, where k P N is
introduced in (7.1). We first show that the decomposition

(7.6) Xp` “

s
ď̀

γ“1

Xp`pγq , ps`“1 “ 1q,

is a disjoint union of connected components. We write Xp` “
Ťs1`
γ“1Aγ as a disjoint

union of connected components. Below the set difference AzB is also denoted as A´B.
Then we have

(7.7) Xp` “

´

A1z
`

Xp` ´Xp`

˘

¯

Y

´

A2z
`

Xp` ´Xp`

˘

¯

Y ¨ ¨ ¨Y

´

As1`z
`

Xp` ´Xp`

˘

¯

.

Since Xp` ´ Xp` Ă
Ť

ją`pXpj X Xp`q, Xp` ´ Xp` is a submanifold of Xp` of real
codimensioně 2 (see Remark 7.22). We conclude that Aγz

`

Xp` ´Xp`

˘

is connected,
for every γ “ 1, . . . , s1` and thus the decomposition (7.7) is the same as the decomposi-
tion (7.2) and hence s1` “ s`. We may assume that Aγz

`

Xp` ´Xp`

˘

“ Xp`pγq, for every
γ “ 1, 2, . . . , s`. Then Aγ “ Xp`pγqY

`

Xp` ´Xp`

˘

“ Xp`pγq, for every γ “ 1, . . . , s`.
We have proved that the decomposition (7.6) is a disjoint union of connected com-
ponents. Hence, for every pu ă p`, there is at most one connected component of Xpu

containing Xp`pγ`q. Thus, the strata in (7.5) are uniquely determined as claimed.
From now on, our smooth function gpxq will be chosen to be of good support(see

Definition 7.7 below for the meaning of good support), Thus Definition 7.1 below is
independent of choice of point x0. Fix a i`, i1 ď i` ď if . We say
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Definition 7.1. – i) The type τpItq of Itpp`, gq at x0 is

τpItq :“ pi1pγi1q, i2pγi2q, . . . , if pγif q, if`1pγif`1
qq

where i1 “ γi1 “ 1 and if`1 “ ` always. The length lpτpIt, x0qq of the type is f ` 1.
Itpp`, gq is said to be of simple type if in τpIt, x0q, pi1, i2, . . . , if`1q “ p1, 2, . . . , `´1, `q.

ii) Two given types

τpItpp`1 , g1qq “ pi1pγi1q, i2pγi2q, . . . , if1`1pγif1`1
qq

τpItpp`2 , g2qq “ pj1pγ
1
j1q, j2pγ

1
j2q, . . . , jf2`1pγ

1
jf2`1

qq

are said to be in the same class provided a) f1 “ f2 :“ f , `1 “ `2, i1 “ j1, i2 “ j2, . . .,
if “ jf and b) the codimensions of the corresponding strata coincide: e`1pγ`1 q “
e`2pγ1`2 q

, ei1pγi1 q “ ej1pγ1j1 q
, ei2pγi2 q “ ej2pγ1j2 q

, . . . , eif pγif q “ ejf pγ1jf q
.

iii) As above It “ Itpp`, gq, suppose Supp g X Xp` “ H, equivalently Supp g Ă
Ť`´1
q“1Xp`´q . We say τpItq is of trivial type.

In the final subsection, the notion of “type” will be naturally extended to each
connected submanifold Xp`pγq in the strata. By this, the influence of the geometry of
the S1 stratification on the heat kernel trace integral will become more evident.

Most numerical results in what follows will only depend on the equivalence classes
of types. But for the sake of notational convenience, we assume It to be of simple
type or trivial type in the proposition below. In the following proposition, ii) and
Case a) of iii) are basically of trivial type; i) and Case b) of iii) are of simple type.
The modification to the general type is basically only complicated in notation and
will be treated later.

Proposition 7.2. – Suppose x0 P D̂j. Then there exist a neighborhood Ω̃ (Ť D̂j)
of x0 and an ε̃ ą 0 (depending on x0) such that for every Ω Ă Ω̃, every gpxq P C8c pΩq
we have the following for It of (7.3) with any ε ď ε̃.

i) ` “ 1. For x “ pz, vq P D̂j write zpxq “ z and θpxq “ v.

It “ e´
2πi
p m 1

2π

ż ε

´ε

ż

X

gpxqχjpxqTr b`j,spz, zqτjpzqσjpv ` ψqdvXpxqdψ.

In particular, It is a constant independent of t. (Note it is b`j,s instead of b̂`j,s here;
the same can be said with (7.8) below.)

ii) Suppose e´i
2π
p` ˝ x0 R D̂j (here ` “ 2, 3, . . . , k). Then It “ 0.

iii) Suppose e´i
2π
p` ˝ x0 P D̂j (here ` “ 2, 3, . . . , k).

Case a) x0 P
Ťq“`´1
q“1 Xp`´q . Then It „ Opt8q as tÑ 0`.

Case b) x0 R
Ťq“`´1
q“1 Xp`´q and x0 P Xp`pγ`q

Ă Xp` . Take local coordinates
(e` “ e`pγ`q for some γ` “ 1, . . . , s`)

y “ py1, . . . , y2n`1q “ pŷ, Y q with ŷ “ py1 ¨ ¨ ¨ , ye`q and Y “ pye``1, . . . , y2n`1q
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defined on Ω such that

Xp` X Ω “ ty P Ω; y1 “ ¨ ¨ ¨ “ yel “ 0u .

Assume (possibly after shrinking Ω about x0) Ω “
Ť

jPt1,...,kupXpjpγjq
X Ωq (for some

γj “ 1, . . . , sj) which is seen to be (by assumption of simple type)

pXp`pγ`q
X Ωq

`´1
ď

q“1

pXp`´qpγ`´qq
X Ωq.

Write e`´q`1 ´ e`´q for the codimension of Xp`´q`1
in Xp`´q where pµ “ pµpγµq

for µ “ `´ q` 1 and µ “ `´ q respectively. If y “ pz, θq (in BRT coordinates), write
zpyq for z and if y “ p0, Y q, write Y for p0, Y q and zpY q for zpyq. Similar notation
for θpY q etc.

Then pe` “ e`pγ`qq

It “ b
pjq

s,
e`
2

t
e`
2 ` b

pjq

s,
e``1

2

t
e``1

2 ` ¨ ¨ ¨ ,

where the first coefficient bpjq
s,
e`
2

is given by

(7.8) b
pjq

s,
e`
2

“ π
e`
2 e
´ 2πi
p`
m
`´1
ź

q“1

ˇ

ˇ

ˇ
e
i2π
p`
p`´q

´ 1
ˇ

ˇ

ˇ

´pe`´q`1´e`´qq

ˆ

1

2π

ż ε

´ε

ż

Xp`pγ`q

gpY qχjpY qTr b`j,spzpY q, zpY qqτjpzpY qqσjpθpY q ` uqdvXp`pγ`q
pY qdu.

In particular, for s “ n pcf.dimX “ 2n ` 1q, (7.8) for bpjq
n,
e`
2

simplifies by using

Tr b`j,npz, zq ” p2πq
´n.

Proof. – Write x0 “ pz0, θ0q. For simplicity, assume θ0 “ 0 without loss of generality
(cf. the last three paragraphs of the proof of Theorem 6.1 for a similar situation).
Note that the existence of Ω̃ and ε̃ in the statement above will be obvious from the
proof below and we shall not refer to them explicitly.

To see i), we note that e´i
2π
p “ id on X (because it is so on Xp by definition

which is dense (and open) in X). For x “ pz, vq lying in the BRT neighborhood
D̂j and for u “ 2π

p ˘ ε such that e´iu ˝ x “ e˘iε ˝ x lies in Dj (Ą D̂j), one has

e˘iε ˝x “ pz, v¯εq by construction of BRT charts Dj . In this case e´
ĥj,`px,e

´iu˝xq

t ” 1

since ĥj,`px, e´iu ˝ xq “ 0 by hj,`pz, zq “ 0 of (7.4). The same reasoning applies
to ppe´iuq˚yTr b̂`j,sqpx, xq to reach Tr b`j,spz, zq. Now choose a neighborhood Ω Ť D̂j

of x0 then a small ε ą 0 (depending on x0) such that e˘iε ˝ x lies in Dj for x P Ω.
As g P C8c pΩq, we can apply the above argument for these x by making ψ “ u´ 2π

p

(|ψ| ď ε) so that e´iu ˝ x “ e´iψ ˝ x “ pz, v ` ψq. In (7.4) one thus has θ “ v, w “ z

and η “ v ` ψ. By these remarks, i) of the proposition follows from (7.3) and (7.4).
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For ii) of the proposition, with x0 P D̂j yet e
´i 2πp` ˝x0 R D̂j , by continuity of S1 ac-

tion there exist a neighborhood Ω (Ť D̂j) of x0 and an ε ą 0 such that e´iu ˝ x R D̂j

for x P Ω and u P s 2πp` ´ε,
2π
p`
`εr. Hence for these x P Ω, b̂j,`px, e

´i 2πp` ˝xq “ 0 because
of the cut-off function τj (of compact support in Ûj Ă D̂j) involved in b̂j,` (see (7.4)),
giving I “ 0 in (7.3).

For case a) of iii), the assumption gives x0 P Xp`´q , q P t1, 2, . . . , ` ´ 1u. Further,

by assumption e´i
2π
p` ˝ x0 P D̂j we write e´i

2π
p` ˝ x0 “ prz0, rθ0q with

ˇ

ˇ

ˇ

rθ0

ˇ

ˇ

ˇ
ă

ζ
2 . We claim

z̃0 ‰ z0. The line of argument is slightly different from that in (6.4). Suppose z̃0 “ z0.
Then by eirθ0 ˝ pe´i

2π
p` ˝ x0q “ ei

rθ0 ˝ prz0, rθ0q “ prz0, 0q “ pz0, 0q “ x0 (recall that θ0 “ 0

in the beginning of the proof). Hence,

(7.9)
2π

p`
´ rθ0 “ m

2π

p`´q
, m P Z

by assumption x0 P Xp`´q . But
ˇ

ˇ

ˇ

rθ0

ˇ

ˇ

ˇ
ă

ζ
2 and ζ is assumed to satisfy (1.15), so the

above equality is absurd, proving the claim z̃0 ‰ z0 by contradiction.
Now that rz0 ‰ z0, there exists a neighborhood Ω of x0 and an ε ą 0 (dependent

on x0) such that for x P Ω and θ P s 2πp` ´ ε, 2π
p`
` εr, writing e´iθ ˝ x “ prz, θ̃q and

x “ pz, θq one has |rz ´ z| ě 1
2 |rz0 ´ z0| ” δ by using continuity of S1 action at x “ x0

and θ “ 2π
p`
. From the property of ĥj,`px, yq (which is essentially |z ´ w|2, cf. (5.19)

and (5.39)) one sees that I of (7.3) gives
(7.10)

1

2π

ż 2π
p`
`ε

2π
p`
´ε

ż

X

gpxqe´
ĥj,`px,e

´iu˝xq

t ppe´iuq˚yTr b`j,sqpx, xqe
´imudvXpxqdu “ Opt8q,

as t Ñ 0` (for g P C8c pΩq) simply because the exponential term in (7.10) decays
rapidly if |rz ´ z| ě δ here, proving case a) of iii) of the proposition.

To prove case b) of iii), we first give an estimate under an additional assumption
that X is strongly pseudoconvex, then we will drop this assumption and carry out
some refined computations to complete the proof.

Since x0 is a fixed point of e´
2πi
p` by assumption, by continuity of S1 action there

exist an open subset Ω of x0 and a small constant 0 ă ε ă ζ
2 such that e´iθ ˝ x P D̂j

for x P Ω and θ P s 2πp` ´ ε, 2π
p`
` εr. We assume that Ω is small, say contained in the

BRT chart D̂j , and satisfies the local coordinates of case b) of iii). For x “ pz, vq P Ω

and θ P s 2πp` ´ ε,
2π
p`
` εr, write e´iθ ˝ x “ prz, rvq P D̂j .

We claim that there exists a positive continuous function f1pxq such that

(7.11) hj,`pz, rzq ě f1pxqdpx,Xp`q
2, @x P Ω,

where hj,` is as in (7.4) (cf. (5.19)). (Here is the only place where we use the assump-
tion that X is strongly pseudoconvex.)
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Granting the claim (7.11), with the local coordinates in iii), suppose ypx0q “

Y px0q “ 0. Rewrite the quotient dpy,Xp` q
2

p|y1|
2`¨¨¨`|ye` |

2
q
as

(7.12) dpy,Xp`q
2 “ f2pyqp|y1|

2
` ¨ ¨ ¨ ` |ye` |

2
q, @y P Ω̂,

where f2pyq is a positive continuous function.
With (7.11) and (7.12), we estimate ĥj,` below and have the following (see (7.4)

or (5.39) and note gpxq P C80 pΩq, Ω small).

It “
1

2π

ż 2π
p`
`ε

2π
p`
´ε

ż

X

gpxqe´
ĥj,`px,e

´iu˝xq

t ppe´iuq˚yTr b`j,sqpx, xqe
´imudvXpxqdu

ď
1

2π

ż 2π
p`
`ε

2π
p`
´ε

ż

X

gpxqe´
f1pxqdpx,Xp`

q2

t ppe´iuq˚yTr b`j,sqpx, xqe
´imudvXpxqdu

“
1

2π

ż 2π
p`
`ε

2π
p`
´ε

ż

X

gpyqe´
f1pyqf2pyqp|y1|

2`¨¨¨`|ye` |
2
q

t ppe´iuq˚yTr b`j,sqpy, yqe
´imudvXpyqdu

„ c
pjq

s,
e`
2

t
e`
2 ` c

pjq

s,
e``1

2

t
e``1

2 ` ¨ ¨ ¨ as tÑ 0`,

(7.13)

where the last step is obtained by a change-of-variable (rescaling yi by
?
tyi,

i “ 1, . . . e`, e` ě 1 as ` ě 2) and cpjqs.k P R is independent of t (k “ e`
2 ,

e``1
2 , . . .).

We are left with the proof of the claim (7.11). Part of the argument echos
that for (6.4). We first estimate |z ´ rz|

2. Without any danger of confusion we
omit “˝” in what follows. By pz, 0q “ eivx and pz̃, 0q “ eiṽpe´iθxq, |z ´ rz| is equiv-
alent to dpeivx, eiṽpe´iθxqq (cf. (6.3)) which is the same as dpx, e´ivpeiṽpe´iθxqqq.
As pz̃, ṽq, pz, vq P D̂j , one has ṽ, v ď ζ

2 . By choosing ζ, ε to be (much) less than the
ε0 of Lemma 6.6, one sees dpx, e´ivpeiṽpe´iθxqqq ě d̂2px,X

`´1
singq of Lemma 6.6. By the

same lemma

(7.14) d̂2px,X
`´1
singq is equivalent to d̂px,X`´1

singq.

As |z ´ rz|
2 is also equivalent to hj,`pz, z̃q of (7.11) (cf. (6.3)) and (7.14) is equivalent

to dpx,X`´1
singq by Theorem 6.7 with our assumption X is strongly pseudoconvex, we

have now shown

(7.15) hj,`pz, z̃q ě c ¨ dpx,X`´1
singq

2

for some constant c ą 0. In view that X`´1
sing “ Xp`YXp``1

¨ ¨ ¨ and the assmption that
x0 P Xp` , one sees, possibly after shrinking Ω, dpx,X`´1

singq “ dpx,Xp`q “ dpx,Xp`q.
Hence we have reached (7.11) from (7.15), as desired.

Following (7.13) we shall now make some accurate computations for case b) of iii)
of this propostion.
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Henceforward we do not assume that X is strongly pseudoconvex; we will not use
Lemma 6.6 and Theorem 6.7 as used above.

Write 2π
p`
“ ω and u “ ψ`ω. In coordinates of case b) of iii), in view of (7.13) one

seeks to identify, among others,

(7.16) lim
tÑ0`

ĥj,`pp
?
tŷ, Y q, e´iup

?
tŷ, Y qq

t
,

where we have rescaled ŷ Ñ
?
tŷ, and we omit “˝” for the e´iu P S1 action.

Since the fixed point set of an isometry is totally geodesic, we assume Y to be a
system of geodesic coordinates at Y “ 0 of Xp` , as pŷ, Y q the geodesic coordinates
at p0, 0q of X. We choose Y “ 0 in (7.16) to simplify the notation. Expressed in BRT
coordinates, p

?
tŷ, 0q “ pz0, v0q and e´iωp

?
tŷ, 0q “ pz1, v1q (by continuity of S1 action,

for t small e´iωp
?
tŷ, 0q P D̂j since e´iωp0, 0q “ p0, 0q).

One sees e´iup
?
tŷ, 0q “ e´iψpz1, v1q “ pz1, v1 ` ψq for |ψ| ď ε. By (7.4) one sees

(7.17) ĥj,`pp
?
tŷ, 0q, e´iup

?
tŷ, 0qq is now reduced to hj,`pz0, z1q,

which is independent of ψ for u in the ε-neighborhood of ω.
Namely ĥj,`pp

?
tŷ, 0q, e´iup

?
tŷ, 0qq ” ĥj,`pp

?
tŷ, 0q, e´iωp

?
tŷ, 0qq for u in the

ε-neighborhood of ω.
Now x0 “ p0, 0q is a fixed point of e´iω (ω “ 2π

p`
). One can see that Tx0

X under the
isotropy action induced by e´iω decomposes as an orthogonal direct sum of eigenspaces
(whereNpS{Mq denotes the normal bundle of a submanifold S in an ambient manifold
M with NppS{Mq the fiber of NpS{Mq at p, and Xpµ “ Xpµpγµq

for some γµ “
1, 2, . . . , sµ; µ “ 1, 2, . . . , `)

Tx0
Xp` , Nx0

pXp`{Xp`´1
q, Nx0

pXp`´1
{Xp`´2

q ¨ ¨ ¨ , Nx0
p Xp2{Xpq

associated with eigenvalues

(7.18) 1, eiωp`´1 , eiωp`´2 , . . . , eiωp respectively.

For instance, assume ` “ 2 and take g “ e
2πi
p2 . Set q “ p2

p pP Nq. On Nx0pXp2{Xpq,
g ‰ id and gq “ id. Hence v P Nx0pXp2{Xpq is rotated by the angle 2π

q which is ωp.
The goal in what follows is to prove the claim that for q “ 1, . . . , `´ 1,

(7.19)

lim
tÑ0`

ĥj,`pp
?
tŷ, 0q, e´iωp

?
tŷ, 0qq

t
“
ˇ

ˇeiωp`´q ´ 1
ˇ

ˇ

2
||ŷ||2 for ŷ P Nx0

pX`´q`1{X`´qq

or equivalently, in the notation above (see (7.17))

(7.20) lim
tÑ0`

hj,`pz0, z1q

t
“
ˇ

ˇeiωp`´q ´ 1
ˇ

ˇ

2
||ŷ||2 (for ŷ P Nx0

pX`´q`1{X`´qq),

where || ¨ || denotes the norm with respect to the metric tensor of X at x0.
Our proof of claim (7.19) is based on the following sequence of lemmas.
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Lemma 7.3. – With the notation above, for ŷ P Nx0pX`´q`1{X`´qq we have

lim
tÑ0`

d2
Xpp
?
tŷ, 0q, e´iωp

?
tŷ, 0qq

t
“

ˇ

ˇeiωp`´q ´ 1
ˇ

ˇ

2
||ŷ||2,

where dX denotes the distance on X.

Proof. – On Tp0,0qX the action induced by e´iω rotates the tangent vector ŷ by the
angle ωp`´q. Hence the lemma follows from the well known fact that in a Riemannian
manifold pM, gq, if a, b in M are the images of A , B in TpM by the exponential map
at p PM , then as pa, bq Ñ pp, pq

(7.21) lim
dM pa, bq

||A´B||
Ñ 1,

where || ¨ || is g at p (cf. [39, Proposition 9.10]).

Sublemma 7.4. – Suppose N is a Riemannian submanifold of a Riemannian mani-
fold M . Then the respective distance functions on M and on N are infinitesimally the
same. More precisely, suppose in N , pn ‰ qn for all n P N, and pn, qn Ñ p as nÑ8

for a given point p P N . Then limnÑ8
dM ppn,qnq
dN ppn,qnq

“ 1. Moreover, suppose tn,M (resp.
tn,N ) in TpnM are the unit tangent vectors along which the minimal geodesics in M
(resp. N) join pn and qn. Then limnptn,M ´ tn,N q “ 0.

Proof. – Suppose the special case pn “ p for all n. Let γn be a geodesic (with unit
speed) of N joining p and qn, and βn “ exp´1

p pγnq Ă TpM . Write lnptq for the length
of (part of) βn (with the parameter going from 0 to t) measured with the metric
gij “ 1 ` Op|x|2q in geodesic coordinates (at p). Write ||v|| for the Euclidean norm
of a vector v P TpM expressed in geodesic coordinates. Given a curve βptq Ă TpM ,

βp0q “ p, 9βp0q ‰ 0, one sees the length function lptq “
şt

0

b

ă 9βptq, 9βptq ągijdt satisfies
ˇ

ˇ

ˇ

||βptq||´lptq
||βptq||

ˇ

ˇ

ˇ
“ Optq ď Ct for a (locally bounded) quantity C which depends only,

apart from β, on the local geometry at p (uniformly). Clearly this implies the lemma
if qn is assumed to approach p along a given geodesic γ of N . If qn approaches p
along different geodesics γn, since these geodesics can be uniformly controlled by the
local geometry around p, the same results hold as well. For the general case where
pn are different, the similar argument using the control by local geometry implies
ˇ

ˇ

ˇ

dM ppn,qnq´dN ppn,qnq
dM ppn,qnq

ˇ

ˇ

ˇ
ď CpdM ppn, qnqq. The assertion about the unit tangent vectors

can be proved similarly.

Sublemma 7.5. – Let N be a differentiable manifold equipped with two Riemannian
metrics g and h, and p P N . Assume that gppq “ hppq. Suppose that in N , pn ‰ qn
for all n P N such that limn pn “ limn qn “ p. Then limnÑ8

dgppn,qnq
dhppn,qnq

“ 1 where
d‚ denotes the (metric-dependent) distance function on N .
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Proof. – The result is local; assume N Ă Rn as an open subset. By comparison to
a fixed Euclidean metric, we assume g is Euclidean inherited from Rn. By reasoning
similar to the previous sublemma, it is seen that for n ąą 1, dhppn, qnq is basically
p1˘ C maxt||pn ´ p||, ||qn ´ p||uqdgppn, qnq (where || ¨ || denotes the Euclidean norm)
with a uniform bound C. The assertion follows.

The last lemma (as our main lemma) is as follows. (This lemma can be viewed as
a sharp version of the important claim (6.4) in the proof of Theorem 6.1, which bears
upon the reason why our distance function d̂ arises.)

Lemma 7.6. – In the previous notation, write p “ pzppq, θppqq and q “ pzpqq, θpqqq
in pz, θq coordinates on the BRT chart D̂j “ Ûj ˆ s´

ζ
2 ,

ζ
2 r. We omit the subscript j

in what follows. Let S “ S1 ˝ p be the S1-orbit of p and NpS{Xq be the normal
bundle of S in X identified with the orthogonal complement of TS in TX|S. Suppose
pn ‰ qn for all n and pn, qn Ñ p P X as n Ñ 8 such that Dn “ exp´1

X,pppnq,
An “ exp´1

X,ppqnq P NppS{Xq. In the case where pn ‰ p and qn ‰ p (for all n), suppose
that the angle at p given by the vectors Dn and An are bounded away from 0 as nÑ8.
Then (see (4.1) for the metric on U giving dU below)

(7.22) lim
nÑ8

dXppn, qnq

dU pzppnq, zpqnqq
“ 1.

In particular zppnq ‰ zpqnq for n large.

Proof. – In this proof we take the same notation U “ Ûj seated as an embedded
submanifold of X with θ “ 0. As in (the proof of) Sublemma 7.4, we first assume
pn “ p for all n. By applying the S1 isometries we assume p “ pzppq, 0q P U .
By using the construction of our rigid metric on X (cf. (2.5) and (4.1)) it may
be assumed that at p, NppS{Xq “ TpU . To see this, by the geometrical interpre-
tation of BRT transformations in (the proof of) Proposition 4.2 one can adjust
the BRT coordinates such that dφppq “ 0 (similar to the well known fact that
for a hermitian metric h of a holomorphic line bundle L on a complex manifold,
at any given point p one has dhppq “ 0 up to a change of local frames of L).
This gives T 0,1

p D “ t B
Bzj
` i Bφ

Bzj
pzq B

Bθ ; j “ 1, 2, . . . , nu “ t B
Bzj

; j “ 1, 2, . . . , nu (and

T 1,0D “ T 0,1D) (cf. loc. cit.). It easily follows NppS{Xq “ TpU as claimed. A word
of caution is in order. The (intrinsic) geometrical interpretation for BRT charts (cf.
loc. cit. and remarks after (4.1)) shows that the asserted (7.22) is independent of
choice of BRT coordinates (on that particular BRT neighborhood). On the other
hand, U considered as an embedded submanifold of X as done above does depend
on the choice of BRT coordinates.

The first reduction step is as follows. U is endowed with another (Riemannian)
metric inherited, as a submanifold, from that of X. This is different from the metric
originally defined (on U , cf. (4.1)), yet the two metrics coincide at p as can be seen
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above. By Sublemma 7.5 it is enough to prove (7.22) with this inherited metric.
Without the danger of confusion we shall adopt the same notation dU p¨, ¨q for the new
distance function in what follows.

Fix an n and set q “ qn, q1iθpqq ˝ q “ pzpqq, 0q P U . Put A “ exp´1
X,ppqq,

B “ exp´1
X,ppq

1q P TpX, so ||A|| “ dXpp, qq, ||B|| “ dXpp, q
1q (where TpX is equipped

with the Euclidean metric || ¨ || in geodesic coordinates). We are going to prove,
as nÑ8,

(7.23) lim
||A||

||B||
“ 1.

One has dXpp, q1q{dU pp, q1q Ñ 1 by Sublemma 7.4. Hence, to prove (7.22) for this
special case pn “ p is the same as to prove dXpp, qq{dXpp, q1q Ñ 1 which is (7.23)
above.

To see (7.23) (hence (7.22)), we first argue (7.24) below. Let L Ă TpX be the line
determined by A,B, i.e., L “ tA` tpB ´Aq; t P Ru. Then

(7.24) L is approximately orthogonal to A and to B (when n is large).

Note that A P NppS{Xq “ TpU from the condition of the lemma, and that B is
nearly lying on TpU (with a small angle between B and TpU) by using Sublemma 7.4
on tangents. Let Γ1 “ teiθ ˝ quθPr0,θpqqs Ă X (θpqq ě 0, say) joining q and q1 and
Γ “ exp´1

X,pΓ1 Ă TpX joining A and B. Recall that the vector field T induced by the
S1 action is orthogonal to U at p as mentioned above, hence Tq1Γ1 K Tq1U approx-
imately (as n ąą 1). On the other hand, by TpS K TpU and Γ1 « S (as n " 1),
one sees by A P TpU that TAΓ K TpU approximately (as vector subspaces in TpX).
In sum, if q, q1 are close to p (so Tq1U close to TpU), then TAΓ K TpU , TBΓ K TpU

approximately (cf. the foliation argument below); for this we write Γ K A,B approx-
imately. We are ready to prove (7.24). Pulling back the S1 foliation locally around p
via expX,p in the same way as Γ was obtained from Γ1, there is a foliation F around
p in TpX in which (part of) Γ lies as a leaf. Write p P Γ0 pĂ exp´1

X,pSq P F . As n " 1,
the line L determined by A,B P Γ tends to the tangent line p“ TpSq to Γ0 at p
(since the leaf Γ of F tends to the leaf Γ0). Hence by using the uniform continuity
for F around p, L is close to lines L̃ tangent to leaves Γ̃ of F if Γ̃ are nearby Γ0

and L̃ nearby TpS. In particular, L is close to the tangent lines TAΓ, TBΓ (as n " 1).
Now that Γ K A,B approximately as just shown, giving readily TAΓ K A, TBΓ K B

approximately, this in turn yields L K A,B approximately pn " 1q, proving (7.24).

For q1 close to p, by simple Euclidean geometry (on TpX), ||A ´ B|| is rather
small in comparison to ||A|| and ||B|| by using L K A,B approximately (7.24), i.e.,
||A´B|| “ op||A||q, op||B||q. By using law of cosines, one can obtain (7.23), yielding the
special case pn “ p of the lemma. As this step appears crucial and will be instrumental
to the general case, we prefer to supply some details as follows.
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Take a triangle with vertices Ti pi “ 1, 2, 3q, angles αi at Ti and δi the length of
the side facing Ti. Suppose α2 ď α3 and both « π

2 . Set α2 “
π
2 ´ α, 0 ă α ! 1.

Let D sit on the line L1 determined by T2 and T3 such that the line L2 determined
by T1 and D is perpendicular to L1. Assume first that D sits between T2 and T3.
Then δ1 “ δ3 sin θ1 ` δ2 sin θ2 where θ1, θ2 (with θ1 ` θ2 “ α1) are angles given by L2

and the two sides at T1. Thus δ1
δ3
ď 2 sinα1 ( δ2δ3 ď 1 by α2 ď α3). If D sits outside the

triangle, then δ1 “ δ3 sinα´ δ2 sin θ3, θ3 “ α´α1, so δ1
δ3
ď sinα. One obtains δ1

δ3
Ñ 0

if both α1 Ñ 0 and αÑ 0. By δ2
1 “ δ2

2 ` δ
2
3 ´ 2δ2δ3 cosα1, one has

p1´
δ2
δ3
q2 “ p

δ1
δ3
q2 ´

2δ2
δ3
p1´ cosα1q ď p

δ1
δ3
q2 ď sinα` 2 sinα1

giving δ2
δ3
Ñ 1 if both α2, α3 «

π
2 (hence α, α1 « 0). As said, this yields (7.23).

We draw some consequences in order for the general case. If α1 Ñ 0 (by
α2, α3 Ñ π{2), then the two sides at α1 are close to each other, i.e., limpA{||A|| ´

B{||B||q “ 0 (as q Ñ p). One sees that if C “ exp´1
U,ppq

1q P TpU , then by using (7.23)
and Sublemma 7.4 on tangents via B,

(7.25) aq lim ||A||{||C|| “ 1, bq limpA{||A|| ´ C{||C||q “ 0.

We are ready to prove the general case pn ‰ p. Write D “ exp´1
X,pppnq,

F “ exp´1
U,ppp

1
nq in the same way as A “ exp´1

X,ppqnq, C “ exp´1
U,ppq

1
nq above. With

D,F in place of A,C in (7.25) one has the same results for D,F :

(7.26) aq lim ||D||{||F || “ 1, bq limpD{||D|| ´ F {||F ||q “ 0.

In view of (7.21) one has ||D ´ A||{dXppn, qnq Ñ 1, ||F ´ C||{dU pp
1
n, q

1
nq Ñ 1.

Hence to prove (7.22), i.e., dXppn, qnq{dU pp1n, q1nq Ñ 1, is the same as to show
lim ||D ´A||{||F ´ C|| “ 1. This is intuitively clear by (7.25), (7.26) (which alludes
to A « C and D « F ) provided that the angle given by the two vectors D and A at p
(hence by F and C at p, cf. b) of (7.25) and (7.26)) is not approaching zero. This is
precisely the condition given in the lemma. For the rigor of this argument one may
use law of cosines without difficulty. Hence the lemma follows.

Proof of claim (7.20). – By combining Lemma 7.6 and Lemma 7.3 we can finish the
proof of the claim (7.20) provided that hjpz1, z2q “ d2

Uj
pz1, z2q. But this is a standard

fact for the heat kernels of Dirac and Laplacian type (see [5, Theorem 2.29]); see also
the famous result of S. R. S. Varadhan[63] for a generalization in this regard.

Proof of Proposition 7.2 resumed. – We are now ready to prove case b) of iii) of
Proposition 7.2. To work on the integral It of (7.3) we are going to refine the com-
putation contained in (7.13). Indeed, case b) of iii) can be obtained if one notes the
following αq ´ εq (part of them similar to the proof of i) of this proposition):
α)

ş8

´8
e´a

2x2

dx “
?
π
|a| ;

β) using (7.19) (with q “ 1, 2, . . . , `´ 1) for e´
ĥ
`
j,s
t in (7.3);
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γ) change of variable u “ ψ ` 2π
p`

in (7.3);

δ) in (7.3), by rescaling ŷ Ñ
?
tŷ, b̂`j,spp

?
tŷ, Y q, e´iu ˝ p

?
tŷ, Y qq replacing

b̂`j,spx, e
´iu ˝ xq, tends to b̂`j,spp0, Y q, e

´iu ˝ p0, Y qq “ b̂`j,spp0, Y q, e
´iψ ˝ p0, Y qq be-

cause p0, Y q P Xp` . But |ψ| being small pď εq, e´iψ ˝ p0, Y q does not change the
zpp0, Y qq (“ zpY q) coordinate in D̂j , giving b̂`j,spp0, Y q, e

´iψ˝p0, Y qq “ b`j,spzpY q, zpY qq

(up to cut-off functions);

ε) as t Ñ 0, σjpηq “ σjpθpe
´iu ˝ p0, Y qqq “ σjpθpe

´iψ ˝ p0, Y qqq “ σjpθpY q ` ψq.
With η “ θ ` ψ and u “ ψ ` 2π{p` in (7.3) and (7.4), a cancelation occurs for the
three exponentials there; eventually a numerical factor e´i2πm{p` is pulled out. And
instead of Tr b̂`j,s in It of (7.3), we are reduced to χjTr b`j,s (no “hat” on b`j,s here) as
put down in this proposition.

The formula for the coefficient bpjq
s,
e`
2

of (7.8) follows from αq ´ εq above.

Finally, for s “ n, it is well-known that (dropping j here) Tr b`n pz, zq in the integral
(7.8) being the leading coefficient term in the asymptotic expansion of the (Spinc)
Kodaira heat kernel, is constant in z and equals p4πq´n ¨

`

rkp
Ź

T˚0,1pUqq
˘

“ p2πq´n

([36, (a) of Theorem 4.4.1], cf. [5, Theorem 2.41]).

7.3. Global angular integral

To work out the global version (i.e., the integration on r0, 2πs) it is natural to
consider not only (an ε-neighborhood of) 2π{p` but also all their multiples s2π{p`,
s P N, s ď p`. The analysis will thus partly depend on whether s2π{p` “ s12π{p`1 for
some s, s1, p`, p`1 or not. One needs a systematic control of the behavior in this regard.
Further, since the result will appear as a sum over these ε-neighborhoods, to organize
this sum in a manageable way is also desirable. We shall now mainly deal with these
issues in this subsection.

There are minor duplication and perhaps discrepancy in notation between this
subsection and the preceding one. But, it would have appeared cumbersome if we had
set up this generality right in the preceding subsection (as the resulting proof would
have become much less illuminating).

Recall that the S1-period of X denoted by 2π
p ą

2π
p2
ą ¨ ¨ ¨ ą 2π

pk
with p|p`, 1 ď ` ď k

(cf. Remark 1.17) and the stratum Xp` (the set of points of period 2π
p`
) is a disjoint

union of connected submanifolds
Ť

1ďγ`ďs`
Xp`pγ`q

.
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Definition 7.7. – Fix a smooth function g ı 0 on X. We say that g is of good
support if the following conditions are satisfied.

iq Supp g Ă Xpi1pγi1 q
YXpi2pγi2 q

Y ¨ ¨ ¨ YXpitpγit q
YXpit`1pγit`1

q
,

1 “ i1 ă i2 ă ¨ ¨ ¨ ă it`1 ď k,

iiq Supp g XXpispγis q
‰ H, @s, 1 ď s ď t` 1,

iiiq Xpi1pγi1 q
Ľ Xpi2pγi2 q

Ľ ¨ ¨ ¨ Ľ Xpitpγit q
Ľ Xpit`1pγit`1

q
,

(7.27)

where the number k appearing in i) is introduced in (7.1),

Since the decomposition (7.6) is a disjoint union of connected components, it is
clear that given any x0 P X there exists a neighborhood Ω Q x0 such that every
nontrivial gpxq P C80 pΩq is of good support in the sense above.

Definition 7.8. – Let gpxq be a smooth function on X of good support in the sense
above, (7.27). Let c P N. We define a number ipc, gq “ ipcq associated with c and g as
follows:

i) ipc, gq :“ ` ě 2 if the following is satisfied a) c | p`, ` “ is for some s, 2 ď s ď

t` 1 and b) c ffl pis1 for all s
1 ă s.

ii) ipc, gq :“ 1 if c | p pp “ pi1q. This is independent of g.
iii) ipc, gq :“ 8 if c ffl pis for each s with 1 ď s ď t` 1.

It is easily seen that pipcq|pis for each is with ipcq ď is ď it`1 if ipcq ‰ 8. Indeed,
pi1 |pi2 | ¨ ¨ ¨ |pit`1

(cf. Remark 1.17 for a similar case).
By the above definition, one sees

Lemma 7.9. – Let x P Supp g, ipcq ‰ 8 and h P N with ph, cq “ 1. Then e´i
2πh
c ˝x “ x

if and only if x P Xpipcq .

Let h P N with ph, cq “ 1 and h ă c. We consider the integral similar to (7.3)
for ipcq ‰ 8:

It “ I
pjq
t ppipcq, g,

h

c
q

”
1

2π

ż 2πh
c `ε

2πh
c ´ε

ż

X

gpxqe´
ĥj,`px,e

´iu˝xq

t ppe´iuq˚yTr b̂`j,sqpx, xqe
´imudvXpxqdu.

(7.28)

The above extends to the case ipcq “ 8 simply by formally setting Ipjqt ppipcq“8, g,
h
c q

to be the integral to the right of (7.28).

Definition 7.10. – i) Set ipcq of Definition 7.8 to be `. Assume ` ‰ 8. Define
the type τpItppipcq, g, hc qq to be τpItpp`, gqq where τpItpp`, gqq is given in i) of
Definition 7.1.

ii) The notions of simple type and class are defined similarly. (Note there is no
trivial type for ` ‰ 8.)
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iii) If ipcq “ 8, then Supp g X Xa “ H where Xa is the fixed point set of a “
e´i2π{c P S1 (whether Xa is empty or not depends on c). In this case we define
it to be the trivial type (cf. iii) of Definition 7.1).

Remark 7.11. – The notion of type concerns only the local stratificaton (of the
S1 action) at x0 around which Ω Ą Supp g is a small neighborhood. Thus, with a
small open subset Ω Ă X one may associate the type τpΩq without referring to any
kind of integral. In the fourth subsection, we will basically adopt this viewpoint for
our purpose.

First, one examines the case ipc, gq “ 8, which turns out to be inessential.

Lemma 7.12. – Let c P N. There exists a (finite) covering of BRT trivializations on X
with the following property. For any smooth function g of small compact support (cf.
Definition 7.7), suppose ipc, gq “ 8 and x0 with gpx0q ‰ 0, given. Then there exist a
small open set Ω Q x0 and a small ε̃ ą 0 such that for any χ P C80 pΩq, if one replaces
g by χg in the integral It of (7.28), this It with any 0 ă ε ď ε̃, equals 0, or Opt8q
as tÑ 0`.

Proof. – By the definition of ipc, gq “ 8, if the fixed point set Xa of a “ e´i2π{c is
empty, one chooses a covering of BRT trivializations tDjuj (cf. lines above Subsec-
tion 7.2) such that D̂j X ahpD̂jq “ H for all j and h with ph, cq “ 1. In this case
the remaining argument by using the continuity of the S1 action, is almost the same
as ii) of Proposition 7.2, yielding It “ 0. If Xa is not empty, one chooses any (finite)
covering of BRT trivializations (such as the one given prior to Subsection 7.2). Then
it may occur the extra case ah ˝ x0 P D̂j for some D̂j Q x0 if the choice of g is such
that x0 is very near Xa. In this case the remaining argument is essentially similar to
Case a) of iii) of Proposition 7.2, giving rise to It “ Opt8q as tÑ 0`.

To compute It of (7.28), we assume the simple type condition for I (when it is
not of trivial type) as given in Definition 7.10. Combining Lemma 7.12 we have the
following corollary, as a generalization of Proposition 7.2.

Corollary 7.13. – Notations and the simple type condition as above. Assume that
the covering by BRT trivializations satisfies Lemma 7.12. Let c P N, x0 P X, Ω Q x0

an open subset and g P C80 pΩq (of good support as above). Then the ε ą 0 (in It) and
Ω can be chosen to satisfy the following.

a) The same results (for computing It “ I
pjq
t ppipcq, g,

1
c q of (7.28)) hold true as

in Proposition 7.2 provided that one adopts the replacement of e´i2π{p, e´i2π{p`

by e´i2π{c in i), ii) and iii) of the statement, and ` (not the one in 2π
p`
q by ipcq

in Cases a), b) of iii) throughout (so p`´q Ñ pipcq´q, e` Ñ eipcq, e`´q`1 Ñ

eipcq´q`1, e`´q Ñ eipcq´q and γ` Ñ γipcq, X` Ñ Xipcq, X`´q Ñ Xipcq´q etc. in
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Case b)). Note that after the replacement, ipcq “ 8 in Case a) and ipcq ‰ 8 in
Case b), of iii).

b) More generally, for h P N, ph, cq “ 1 and h ă c, with the replacement 2π
c Ñ

2πh
c

(and ` not the one in 2π
p`

by ipcq in Cases a), b) of iii)), the same results (for

computing It “ I
pjq
t ppipcq, g,

h
c q of (7.28)) hold true as well.

Proof of Corollary 7.13. – One sees that with the replacement of 2π
p`

by 2π
c or 2πh

c ,
the condition on c (in Definition 7.8) renders the argument in proof of Proposition 7.2
essentially unchanged. For instance, with (7.9) replaced by 2πh

c ´ rθ0 “ m 2π
p`´q

, taking
ζ smaller does the job. Further, with substitution of ` (not in 2π

p`
) by ipcq, the distinct

eigenvalues t1, ei
2π
p`
p`´1 , e

i 2πp`
p`´2 , . . . e

i 2πp`
p
u of the isotropy action (of e´i

2π
p` at x0) (cf.

(7.18)) are changed to t1, ei
2πh
c pipcq´1 , ei

2πh
c pipcq´2 , . . . ei

2πh
c pu (of e´i

2πh
c at x0) (which

remain distinct).

Let c P N and g a smooth function on X of good support as above, with ipcq p“

ipc, gqq in Definition 7.8. We are going to associate certain numerical factors. For a
contrast, we will give them for cases of the simple type and the general type separately
(cf. Definitions 7.1 and 7.10).

For the simple type, the numerical factor dc “ dc,g,m is set to be

iq ipcq “ 1

if c ą 1, dc p“ dc,g,mq :“
ÿ

hPN,hăc,ph,cq“1

e´
2πi
c hm; if c “ 1, dc :“ 1.

iiq 8 ą ipcq ě 2

dc p“ dc,g,mq :“ p
?
πqeipcq

ÿ

hPN,hăc,ph,cq“1

e´i
2πh
c m

śipcq´1
q“1

ˇ

ˇ

ˇ
ei

2πh
c pipcq´q ´ 1

ˇ

ˇ

ˇ

eipcq´q`1´eipcq´q

iiiq ipcq “ 8

dc p“ dc,g,mq :“ 1.

(7.29)

Remark 7.14. – For the general type, the dc,g,m for ipcq ě 2 should be modified as
follows.

In notation of Definition 7.10, let it be given

τpItppipcq, g,
h

c
qq “ pi1pγi1q, i2pγi2q, . . . , if pγif q, if`1pγif`1

qq

where i1 “ γi1 “ 1, if`1 “ ipcq ‰ 8, say. (In the previous Definition 7.1, if`1 “ `.
Here we have if`1 “ ipcq.)

One sees that the eigenvalues of the isotropy action of e´
2πi
c h (at x0 P Xpipcqpγipcqq

)
are:

(7.30) ei
2πh
c pi1 , ei

2πh
c pi2 , . . . , ei

2πh
c pif , 1
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(because by writing e´
2πi
c h “ pe

´ 2πi
p` qj if h{c “ j{p` with ` “ ipcq, the eigenvalues

are λj where λ “ eiωpi1 , eiωpi2 , . . ., ω “ 2π
p`
, cf. (7.18)) with multiplicities (where

ei1pγi1 q “ 0)
(7.31)
ei2pγi2 q ´ ei1pγi1 q, . . . , eif pγif q ´ eif´1pγif´1

q, eipcqpγipcqq ´ eif pγif q, dimX ´ eipcqpγipcqq.

Write, for 1 ď r ď f ,

(7.32) λr :“ ei
2πh
c pir ; mr :“ eir`1pγir`1

q ´ eirpγir q (with if`1 :“ ipcq).

Numerical factors dc for the general type. – Given τpItq “ pi1pγi1q, i2pγi2q, . . . ,

if pγif q, if`1pγif`1
qq of general type, It “ Itpp`, g,

h
c q with ipcq “ `, the numerical

factors dc similar to (7.29) are defined as follows.

If c is of ipcq “ 1 or 8, then dc is the same as dc in i), iii) of (7.29). For c with
8 ą ipcq ě 2,

8 ą ipcq p“ ipc, gqq ě 2, dc :“ p
?
πq
eipcqpγipcqq

ÿ

hPN,hăc,ph,cq“1

e´i
2πh
c m

śif
r“1 |λr ´ 1|

mr
,

(7.33)

where we recall that eipcqpγipcqq “ codimXpipcqpγipcqq
and that τpΩq is introduced in

Remark 7.11.

Note that the Ω pŢ Supp gq is chosen to be small enough so that there is no mixing
of types. The factor dc of (7.33) is well defined.

We turn now to the global version (over the entire r0, 2πs) of the integral It (of
(7.3) or (7.28)).

Let
(7.34)

Js,t “ J
pjq
s,t “ J

pjq
s,t,mpgpxqq ”

1

2π

ż

X

gpxqe´
ĥj,`px,e

´iu˝xq

t ppe´iuq˚yTr b̂`j,sqpx, xqe
´imudvXpxq,

where gpxq P C80 pΩq with Ω satisfying Proposition 7.2. We assume gpxq is of good
support in the sense of Definition 7.7.

We are going to compute
ş2π

0
Js,tdu, a r0, 2πs-integral version of the integral I

in (7.3).

To this aim, the main tool is the corollary below which is a reformulation of Corol-
lary 7.13. But prior to this, let’s write, for x0 P X, gpxq P C

8
0 pΩq with Ω a small
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neighborhood at x0,

` ě 1,

I
`,pjq
`pγ`q,s

p“ I
`,pjq

Xp`pγ`q
,s,m

pgqq (zpY q “ zpxq below; b`j,s “ b`j,s,m without “hat” over it)

”
1

2π

ż ε

´ε

ż

Xp`pγ`q

gpY qχjpY qTr b`j,spzpY q, zpY qqτjpzpY qqσjpθpY q ` uqdvXp`pγ`q
pY qdu

` “ 1, I
`,pjq
1,s p“ I

`,pjq
X,s,mq “ I

`,pjq

Xp,s
pgq “ I

`,pjq
X,s pgq

dc “ dc,g,m,τpΩq cf. (7.33), also written as dc,g,m,I with I “ I
`,pjq
ipcqpγipcqq,s

.

(7.35)

The proof of the previous results in the case of simple type remains basically un-
changed for the case of general type. With the numerical factor dc introduced in (7.29)
and (7.33), one sees the following.

Corollary 7.15. – Notations as above with the general type τpItq allowed (cf. Defi-
nitions 7.1 and 7.10). Assume that the covering by BRT trivializations tD̂juj satisfies
Lemma 7.12. Let c P N and x0 P X. For an ε, write µc :“

Ť

hPN,hăc,ph,cq“1s
2πh
c ´ εr,

2πh
c ` ε for c ą 1 and λ1 :“ s´ε, εr for c “ 1. Write Ω Ă X for an open subset with
x0 P Ω. Then the ε ą 0 and Ω can be chosen to satisfy the following. (Recall that with
respect to tD̂juj we write J pjqs,t “ J

pjq
s,t pgq for any given g P C80 pΩq of good support in

the sense of Definition 7.7.)
i) Suppose x0 P Xp. Then

if ipcq “ 1,
ż

µc

J
pjq
s,t du “ dcI

`,pjq
X,s ;

if ipcq ě 2 (giving ipcq “ 8 here),
ż

µc

J
pjq
s,t du “ 0 or „ Opt8q (as tÑ 0`).

The ` ě 2 in the following ii) and iii) is such that x0 P Xp` (so x0 P Xp`pγ`q
, for

some γ`).
ii) Assume e´

i2πh
c ˝ x0 R D̂j (giving ipcq “ 8). Then

ş

µc
J
pjq
s,t du “ 0.

iii) Assume e´
i2πh
c ˝ x0 P D̂j. Then (as tÑ 0`)

if ipcq ě `` 1 (giving ipcq “ 8 here),
ż

µc

J
pjq
s,t du “ 0 or „ Opt8q;

if 2 ď ipcq ď `,
ż

µc

J
pjq
s,t du „ dcI

`,pjq
ipcqpγipcqq,s

?
t
eipcqpγipcqq `Op

?
t
eipcqpγipcqq`1

q;

if ipcq “ 1,
ż

µc

J
pjq
s,t du “ dcI

`,pjq
X,s ,

where we note dc “ dc,g,m,I in (7.35) with I “ I
`,pjq
ipcqpγipcqq,s

.
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We are now ready to compute
ş2π

0
Js,tdu.

Let µc be as in Corollary 7.15 (with a given gpxq of good support).

S1 “ tc P N; ipc, gq “ 1u,

S2 “ tc P N; 8 ě ipc, gq ě 2 and c | p` for some `, 2 ď ` ď ku

Λ “ Λ1 Y Λ2 with Λ1 “
ď

cPS1

µc, Λ2 “
ď

cPS2

µc; N “ r0, 2πszΛ.
(7.36)

By using (7.36) and corollaries above one has the following.

Proposition 7.16. – Let x0 P X. Then we can find tD̂ju
K
j“1 a finite covering of X

by BRT charts that satisfy Lemma 7.12 and ε ą 0 (for Λ1, Λ2 in i), ii), resp. below)
and an open set Ω of x0, such that for every gpxq P C8c pΩq of good support in the
sense of Definition 7.7), and every s “ n, n´ 1, . . ., one has the following.

i)
ş

Λ1
J
pjq
s,t du “

`
řp
q“1 e

´
i2πqm
p

˘

I
`,pjq
X,s , for every j P t1, 2, . . . ,Ku.

ii)
Case a) If x0 P Xp,

ş

Λ2
J
pjq
s,t du „ 0 or Opt8q (as t Ñ 0`), for every j P

t1, 2, . . . ,Ku.
Case b) If x0 P Xp` with ` ě 2,

ż

Λ2

J
pjq
s,t du „

`

ÿ

c
2ďipcqď`

pdcI
`,pjq
ipcqpγipcqq,s

?
t
eipcqpγipcqq `Op

?
t
eipcqpγipcqq`1

qq
˘

`Opt8q (as tÑ 0`),

for every j P t1, 2, . . . ,Ku, where dc “ dc,g,m,I , I “ I
`,pjq
ipcqpγipcqq,s

, cf. (7.33)
and (7.35).

iii) For every s “ n, n ´ 1, . . . and every j P t1, 2, . . . ,Ku, write
ş

N
J
pjq
s,t pgqdu :“

η
pjq
s,t pgq. Then, for every P P N, there are constants C ą 0 and c1 ą 0 which are
dependent on tD̂ju

K
j“1, Ω, P and independent of g and t, such that

(7.37)

ˇ

ˇ

ˇ

ˇ

ˇ

K
ÿ

j“1

P
ÿ

s“´n

tsη
pjq
s,t pgq

ˇ

ˇ

ˇ

ˇ

ˇ

ď CtP`1

ż

X

|gpxq|dvXpxq, for every 0 ă t ă c1.

Proof. – The action by e´iθ with θ P N is fixed point free on X. Each point in X has
a distinguished neighborhood Ω̂ such that if x P Ω̂ and θ P N , e´iθ ˝ x R Ω̂ by using
continuity of the S1 action. By compactness, we can take a finite covering tD̂ju

K̃
j“1 of

BRT charts satisfying Lemma 7.12 (as there are only finitely many c here), such that
there exist an ε ą 0 (for Λ1, Λ2 in i), ii), resp.) and an open set Ω of x0 (small enough)
with Ω Ť D̂1 and ΩX D̂j “ H if j ě 2, and if x P Ω and θ P N , then e´iθ ˝ x R D̂1.

To see i), by i) and iii) of Corollary 7.15 it suffices to note
ř

c,ipcq“1 dc “
řp
q“1 e

´
i2πqm
p by (7.29). Case a) of ii) follows directly from i) of loc. cit. whereas

Case b) from iii) of loc. cit. by writing
ş

Λ2
Js,tdu “

ř

2ďipcqď`

ş

µc
Js.tdu `

ř

ipcqě``1

ş

µc
Js,tdu.
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To see iii), For every j P t1, 2, . . . , K̃u, let Hjptq be the operator constructed in
(5.40) with respect to the BRT charts tD̂ju

K̃
j“1. Note that x P Ω and θ P N , we have

e´iθ ˝ x R D̂1. From this observation, it is easy to see that

(7.38) Hpt, x, e´iu ˝ xq “ Opt`8q, for every u P N and every y P Ω.

From (7.38), we get (7.37).

7.4. Patching up angular integrals over X ; proof for the simple type

We are going to study the main issue

(7.39)
ż

X

Tr a`s pt, x, xqdvXpxq,

where we recall that (by (5.43))

a`s pt, x, yq p“ a`s,mpt, x, yqq pb̂
`
j,s “ b̂`j,s,mq

“
1

2π

N
ÿ

j“1

ż π

´π

e´
ĥj,`px,e

´iu˝yq

t ppe´iuq˚y b̂
`
j,sqpx, yqe

´imudu, s “ n, n´ 1, n´ 2, . . . .

(7.40)

For this, one would like to patch up those integrals
ş2π

0
J
pjq
s,t du of the last subsection

over j. However, a`s pt, x, yq is not canonically defined by our method and is in fact
dependent on the choice of BRT charts. A direct study of it appears inefficient (unless
one sticks to a fixed covering of BRT charts).

It turns out to be more effective if instead, one studies its equivalence (cf. (5.56)
in the asymptotic sense):

(7.41)
ż

X

Tr e´t
Ăl
`

b,mpx, xqdvXpxq

in which e´tĂl
`

b,mpx, yq is of course independent of choice of BRT charts.

Suppose an s “ n, n´1, . . . are given. Assume that the BRT covering tD̂juj satisfies
Proposition 7.16 in which by using compactness, one can find a (finite) covering tΩαuα
of X, Ωα Ť D̂j if D̂jXΩα ‰ H, and an ε ą 0 such that the conclusion i), ii) and iii) of
that proposition hold with each of these Ωα and this ε. As indicated in Proposition 7.2,
whenever necessary, one can shrink the size of Ωα without changing ε. For ρ “ ε

2 ,
we assume (possibly after shrinking Ωα and using compactness) for each α, j, and for
some (possibly big) m ą 1,

(7.42) θ-coordinates of Ωα, D̂j lie inside of r´ρ, ρs, r´mρ,mρs respectively.
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Let tgαpxquα be a partition of unity subordinate to this covering (i.e., Supp gα Ť Ωα).
We further assume each gα is of good support in the sense of Definition 7.7. One sees
that as tÑ 0`

(7.43)
ż

X

gαpxqTr e´t
Ăl
`

b,mpx, xqdvXpxq „
ÿ

j

ÿ

s“n,n´1,...

t´s
ż 2π

0

J
pjq
s,t pgαpxqqdu,

where the term to the right is computed with respect to any given BRT covering
of X, including but not restricted to, the previous tD̂juj . Hence at each stage of
the computation we may choose convenient BRT charts for the need (as far as the
asymptotic expansion as tÑ 0` is concerned).

By Proposition 7.16, (7.43) is reduced to computing Ipjq`,s pgαq (see (7.35)) (for a
fixed gα).

Henceforth, in the following we fix an (arbitrarily given) α. As aforementioned, we
are free to reset the BRT charts tD̂juj (with certain cut-off functions). To do so, we
make the following definition for convenience.

Definition 7.17. – Fix an x0 P X. tD̂juj (D̂j Ă Dj etc. notations as in the beginning
of this section) a (finite) covering of X, is said to be a covering by distinguished BRT
charts at x0 provided that x0 P D̂j for some j and x0 R D̂k for all k ‰ j.

Now, we can further assume that for the above fixed α and for an x P Ωα, tD̂juj is
distinguished at x in the sense of Definition 7.17. In fact we can assume a little more
that Ωα Ť D̂j0 and Ωα X D̂k “ H for k ‰ j0; namely tD̂juj is distinguished at x for
each x P Ωα. Also, we assume that (7.42) is satisfied.

We shall now choose the cut-off function σj0 , in notation of (7.35), that satisfies
(see lines above (5.38))

(7.44)
ż mρ

´mρ

σj0puqdu “

ż ρ

´ρ

σj0puqdu “ 1, Suppσj0 Ă s´ρ, ρr

and choose χj0 ” 1, so τj0 ” 1, on Ωα (see loc. cit.).
With the above setup, some simplifications for (7.43) occur. Firstly,

(7.45)
ż

X

gαpxqTr e´t
Ăl
`

b,mpx, xqdvXpxq „
ÿ

s“n,n´1,...

t´s
ż 2π

0

J
pj0q
s,t pgαpxqqdu.

We are reduced, by Proposition 7.16, to computing the integrals in (7.35).
Secondly, in notation of (7.35) there is an angular integral

(7.46)
ż ε

´ε

σj0pθpY q ` uqdu.

For a fixed Y P Ωα, θpY q P r´ρ, ρs by (7.42), and for u going through r´ε, εs “
r´2ρ, 2ρs of (7.46), one sees that θpY q ` u covers r´ρ, ρs, it follows from (7.44) that
the angular integral (7.46) is 1.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2019



126 CHAPTER 7. TRACE INTEGRALS AND PROOF OF THEOREM 1.14

Thirdly, by the above condition on χj0 and τj0 one obtains, with (7.46) ” 1, the
following for (7.35).
(7.47)

I
`,pj0q
`pγ`q,s

pgαpxqq p“ I
`,pj0q

Xp`pγ`q
,s
pgαpxqqq “

1

2π

ż

Xp`pγ`q

gαpY qTr b`j0,spzpY q, zpY qqdvXp`pγ`q
pY q

p` ě 1; s “ n, n´ 1, . . .q.

Finally, recall that α`s pxq is as in our main Result Theorem 1.3 (cf. Theorem 6.1)
defined in (6.1) which is independent of choice of BRT charts and cut-off functions
(cf. Remarks 1.6 and 5.8). Indeed one sees, for x P Ωα,

(7.48)
1

2π
b`j0,spzpxq, zpxqq “ α`s pxq p“ α`s,mpxqq

by (6.1) and the choice of distinguished BRT charts here.

In sum, since the above applies to each Ωα in the covering tΩαuα, by (7.47) and
(7.48) we have reached the following invariant expressions (independent of choice of
BRT coverings)

pk ě ` ě 1q S``pγ`q,spgαq p “ S`Xp`pγ`q ,s,m
pgαqq

” S
`,pj0q
`pγ`q,s

pgαq “

ż

Xp`pγ`q

gαpY qTrα`s,mpY, Y qdvXp`pγ`q
pY q

S``pγ`q,s p “ S`Xp`pγ`q ,s,m
q

”
ÿ

α

S``pγ`q,spgαq “

ż

Xp`pγ`q

Trα`s,mpY, Y qdvXp`pγ`q
pY q.

(7.49)

Now (7.43) and (7.45) can be given, by using (7.49) and Proposition 7.16, as follows.

First, we classify the set tΩαuα by writing
(7.50)
χpαq p“ χpΩαqq “ ` if Ωα XXp` ‰ H and for any `1 ą `, Ωα XXp`1 “ H, 1 ď `, `1 ď k.

Note dc below (with a specific c) is given without ambiguity (cf. (7.33)) by the
local nature of Ωα and gα.

Proposition 7.18. – With the notation above and in terms of the functions of
(7.49), let α and any m P N be given. Then we have, as t Ñ 0`, for gα with
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Supp gα Ť Ωα such that χpαq “ `,

ż

X

gαpxqTre´t
Ăl
`

b,mpx, xqdvXpxq „
ÿ

s“n,n´1,...

t´sAspgαq where Aspgαq is given by

Aspgαq “
`

p
ÿ

q“1

e´
i2πqm
p

˘

S`X,spgαq

`
ÿ

c
2ďipcqď`

pdcS
`

ipcqpγipcqq,s
pgαq

?
t
eipcqpγipcqq `Op

?
t
eipcqpγipcqq`1

qq

` ηspgαq,

(7.51)

where ipcq “ ipc, gαq, dc “ dc,gα,m,I , I “ S`ipcqpγipcqq,spgαq by (7.35) and (7.33),

and ηspgαq (which equals
ř

j η
pjq
s,t pgαq in notation of Proposition 7.16 and distin-

guished BRT charts at x0) satisfies the following estimate: For every P P N, there
are constants C ą 0, c1 ą 0, where C, c1 depend on P and are independent of gα
and t, such that

ˇ

ˇ

ˇ

ˇ

ˇ

P
ÿ

s“´n

tsηs,tpgαq

ˇ

ˇ

ˇ

ˇ

ˇ

ď CtP`1

ż

X

|gαpxq|dvXpxq, for every 0 ă t ă c1.

In the remaining of this subsection, to streamline the argument we assume the
simplest case that

iq each Xp` , 1 ď ` ď k, is connected

iiq X “ Xp Ľ Xp2 Ľ Xp3 ¨ ¨ ¨ Ľ Xpk .

(We postpone the general case to the next subsection.) One sees p|p2| ¨ ¨ ¨ |pk.
Hence all types reduce to simple types (cf. Definition 7.10).
In this case, the argument γ` in `pγ`q will henceforth be dropped throughout the

remaining of this subsection.
It will take a bit more work to sum (7.51) over α. The numerical factor dc (cf.

(7.29)) in this simplified case satisfies the following. For smooth functions g, g1 of
good support (Definition 7.7), if ipc, gq “ ipc, g1q pď 8q, then dc,g,m “ dc,g1,m. It is
useful to set, for g “ gα with χpαq ě ` in ii) below (χpαq as in (7.50)),

iqD1,g p“ D1,g,mq ”
ÿ

c, ipc,gq“1

dc,g,m “
p
ÿ

q“1

e´
i2πqm
p ;

iiq pk ě ` ě 2q D`,g p“ D`,g,mq ”
ÿ

c, ipc,gq“`

dc,g,m.

(7.52)

Suppose α, β P
Ť

`1ě` χ
´1p`1q. As said above, one sees D`,gα “ D`,gβ for 1 ď ` ď k

(because ipc, gαq “ ` if and only if ipc, gβq “ ` here). We write
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Definition 7.19. – D` p“ D`,mq :“ D`,gα p“ D`,gα,mq for any α with χpαq ě `,
1 ď ` ď k.

By using (7.51) of Proposition 7.18 and Definition 7.19, one sees, for α P χ´1p`q,

α P χ´1p`q,

ż

X

gαpxqTr e´t
Ăl
`

b,mpx, xqdvXpxq „
ÿ

s“n,n´1,...

t´sˆ

η´s,tpgαq `D1S
`
1,spgαq `

ÿ

c,ipcq“2

`

dcS
`
2,spgαq

?
t
e2
`Op

?
t
e2`1

q
˘

` ¨ ¨ ¨

`
ÿ

c,ipcq“`

`

dcS
`
`,spgαq

?
t
e`
`Op

?
t
e``1

q
˘

“
ÿ

s

t´s
´

η´s,tpgαq `D1S
`
1,spgαq `

`

D2S
`
2,spgαq

?
t
e2
`Op

?
t
e2`1

q
˘

` ¨ ¨ ¨

`
`

D`S
`
`,spgαq

?
t
e`
`Op

?
t
e``1

q
˘

¯

.

(7.53)

Combining (7.50) and (7.53) yields the following as tÑ 0` (where tαuα “ χ´1p1qY

χ´1p2q Y χ´1p3q ¨ ¨ ¨ ):

ż

X

Tr e´t
Ăl
`

b,mpx, xqdvXpxq
´

“
ÿ

α

ż

X

gαpxqTre´t
Ăl
`

b,mpx, xqdvXpxq
¯

„
ÿ

s“n,n´1,...

t´s
´

`

ÿ

αPχ´1p1q

D1S
`
1,spgαq

˘

`
`

p
ÿ

αPχ´1p2q

D1S
`
1,spgαqq ` p

ÿ

αPχ´1p2q

D2S
`
2,spgαq

?
t
e2
`Op

?
t
e2`1

qq
˘

`
`

p
ÿ

αPχ´1p3q

D1S
`
1,spgαqq ` p

ÿ

αPχ´1p3q

D2S
`
2,spgαq

?
t
e2
`Op

?
t
e2`1

qq

` p
ÿ

αPχ´1p3q

D3S
`
3,spgαq

?
t
e3
`Op

?
t
e3`1

qq
˘

` ¨ ¨ ¨ `
ÿ

α

η´s,tpgαq
¯

.

(7.54)

We rearrange (7.54) as (only keeping terms in leading order)

ÿ

s

t´s ˆ
´

ÿ

α

η´s,tpgαq `
`

ÿ

αPχ´1p1q

D1S
`
1,spgαq `

ÿ

αPχ´1p2q

D1S
`
1,spgαq

`
ÿ

αPχ´1p3q

D1S
`
1,spgαq ` . . .

˘

`
`

p
ÿ

αPχ´1p2q

D2S
`
2,spgαq

?
t
e2
` ¨ ¨ ¨ q

` p
ÿ

αPχ´1p3q

D2S
`
2,spgαq

?
t
e2
` ¨ ¨ ¨ q ` p

ÿ

αPχ´1p4q

¨ ¨ ¨ q ` ¨ ¨ ¨
˘

(7.55)
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`
`

p
ÿ

αPχ´1p3q

D3S
`
3,spgαq

?
t
e3
` ¨ ¨ ¨ q

` p
ÿ

αPχ´1p4q

D3S
`
3,spgαq

?
t
e3
` ¨ ¨ ¨ q ` p

ÿ

αPχ´1p5q

¨ ¨ ¨ q ` ¨ ¨ ¨
˘

` ¨ ¨ ¨

¯

which equals (by (7.49) and S``,spgαq “ 0 for α P χ´1p`1q with `1 ă `),
ÿ

s“n,n´1¨¨¨

t´s ˆ
´

ÿ

α

η´s,tpgαq `D1S
`
1,s `

`

D2S
`
2,s

?
t
e2
`Op

?
t
e2`1

q
˘

`
`

D3S
`
3,s

?
t
e3
`Op

?
t
e3`1

q
˘

` ¨ ¨ ¨
˘

` ¨ ¨ ¨

¯

.

(7.56)

For s “ n, we have S``,n “
1

2π p2πq
´nvolpXp`q (see iii) of Proposition 7.2).

For the term given by the sum
ř

α ηs,tpgαq in (7.56), by Proposition 7.18 we obtain
that for every P P N, there are constants C ą 0, c1 ą 0, where C, c1 depend on P
and are independent of gα and t, such that

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

α

P
ÿ

s1“´n

ts
1

ηs1,tpgαq

ˇ

ˇ

ˇ

ˇ

ˇ

ď CtP`1
ÿ

α

ż

X

|gαpxq|dvXpxq, for every 0 ă t ă c1.

By the definition of asymptotic expansion (cf. Definition 5.5), the term
ř

α ηs,tpgαq

becomes immaterial to the exact form of the asymptotic expansion.
Further, the asymptotic expansion of (7.39) basically follows from that of

ş

X
Tr e´t

Ăl
`

b,mpx, xqdvXpxq.
We have now proved (part of) the main result of this section.

Theorem 7.20 (Cf. Theorem 1.14). – Suppose X “ Xp Ľ Xp2 Ľ ¨ ¨ ¨ Ľ Xpk “ Xpk

with each stratum Xp` a connected submanifold. Let a`s pt, x, yq p“ a`s,mpt, x, yqq,
s “ n, n´ 1, . . ., be as in (5.56). Write e2 for the (real) codimension of Xp2 (which is
an even number, cf. Remark 7.22 below). (Recall that the numerical factors D`,m are
as given in Definition 7.19 and the integrals S``,s p“ S``,s,mq in (7.49) with subscripts
simplified in the present case.) Then the following holds.

i) As tÑ 0`,
ż

X

Tr e´t
Ăl
`

b,mpx, xqdvXpxq

„ D1,m

`

p2πq´1p2πtq´nvolpXq ` t´n`1S`1,n´1 ` t
´n`2S`1,n´2 ` ¨ ¨ ¨

˘

` p2πq´pn`1qD2,mvolpXp2qt
´n`

e2
2 `Opt´n`

e2`1
2 q.

(7.57)

In particular, by pδp|m
řp
q“1 e

´ 2πi
p qm

“ p for p | m and 0 otherwise, one has D1,m “ p

if p | m. If p2 | m (thus p | m too), then D1,m, D2,m ą 0.
ii) In the asymptotic expansion (7.57), all the coefficients of tj for j being half-

integral, vanish. Hence, the remaining term in (7.57) is Opt´n`
e2
2 `1q.
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iii) As a consequence of (7.56) and ii)

(7.58)
ż

X

Tr a`s,mpt, x, xqdvXpxq „ D1,mS
`
1,s`D2,mS

`
2,st

e2
2 `Opt

e2
2 `1q, as tÑ 0`.

The similar results hold true for the case
ş

X
Tr e´t

Ăl
´

b,mpx, xqdvXpxq and
ş

X
Tr a´s,mpt, x, xqqdvXpxq as well.

Proof. – It remains to prove ii) of the theorem. Recall that the last two paragraphs
of the proof of Proposition 7.2, especially the item δ) there. In the present case, by
scaling pŷ Ñ

?
tŷq and using (7.19), it reduces to computing the expansion (in

?
t) of

aq b̂`j,spp
?
tŷ, Y q, e´iu ˝ p

?
tŷ, Y qq

bq dvXpxq
(7.59)

for a fixed u.
Write gupxq “ e´iu ˝ x and

b̂`j,spp
?
tŷ, Y q, e´iu ˝ p

?
tŷ, Y qq “ pb̂j,s ˝ pid, guqqpp

?
tŷ, Y q, p

?
tŷ, Y qq.

By δ) mentioned above, gup0, Y q is only away from p0, Y q by a small difference
pď εq in their θ-coordinates, hence by continuity, gupp

?
tŷ, Y qq lies in an Op2εq-small

neighborhood of p0, Y q (as t Ñ 0`), giving that the Taylor expansion of b̂j,spx, yq,
x “ p

?
tŷ, Y q, y “ e´iu ˝ x, around x “ y “ p0, Y q ” Y ” 0 can be done in terms of

integral powers of
?
tŷi where ŷi is in ŷ. Hence the coefficients of the tj for j being

half-integral must involve an odd power of some variable ŷi in ŷ. Since ŷ sits in an
even dimensional space (cf. i) of Remark 7.22 below), dvXpxq is of integral power in t.
With a), b) of (7.59), by using i) the claim (7.19), ii)

ş8

´8
e´ŷ

2
i ŷni dŷi “ 0 for an odd

number n and iii) for a polynomial P pxq,
ş8

1{
?
t
e´x

2

P pxqdx „ Opt8q (as tÑ 0`), our
assertion about the asymptotic expansion in ii) of the theorem follows.

Remark 7.21. – One may think of the second line in (7.57) as the main terms which
remind one of the close relation between the Kodaira Laplacian and Kohn Laplacian
(cf. Proposition 5.1). However, one key point in this paper is the idea that if the
S1 action is locally free (but not globally free) on X, then this relation cannot be
altogether extended to their heat kernels. In this regard the correction terms exist,
and consist in the third line of (7.57) linked up with the higher strata of the (locally
free) S1 action beyond the principal stratum.

Remark 7.22. – i) Let us prove that e`, the codimension of Xp` , is even. Xp` is S1

invariant; TXp` “ pRTK X TXp`q ‘ RT |Xp`
where RT is the line subbundle of TX

generated by B{Bθ such that RT ‘ RTK “ TX. In a BRT chart U ˆ sε, εr we denote
U ˆ t0u (Ă X) by Ũ . Write pRTK X TXp`q|ŨXXp`

” E. For any given p P U , with

p̃ “ pˆ t0u, one may choose a BRT coordinate such that Ep̃ Ă Tp̃Ũ (see the proof of
Lemma 7.6 where Tp̃Ũ “ RTK|p̃). Without loss of generality we may assume p̃ P Xp` .
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Write g “ ei2π{p` pP S1q which is CR and an isometry with the fixed point set Xp` .
By dg ˝ J “ J ˝ dg “ J on Ep̃ with J the complex structure of Tp̃Ũ , Ep̃ is invariant
under J . It follows E is of even dimension, so Xp` is of odd dimension, i.e., e` is
even. ii) For 1 ď ` ď k we can write Xp` Ñ Mp` for a complex manifold Mp` ,
as an S1 fiber bundle. The quantities α˘s pxq are S1 invariant by construction (see
(7.47)-(7.49)), hence descend to Mp` . One sees S˘X`,s p” S˘`,sq “

2π
p`
S˘Mp`,s

pS˘Mp`,s
“

ş

Mp`

Trα˘s dvMp`
q. Here, the metric on Mp` (cf. dvMp`

) is defined in a way similar to
that given in (4.1). This suggests a question of how the heat kernels (for the locally
free S1 action) of the present paper may be connected with (certain suitably defined)
heat kernels in the orbifold base X{S1. In a certain Riemannian setting, some work
in a similar direction has been done (cf. [59, Theorems 3.5, 3.6]).

7.5. Types for S1 stratifications; proof for the general type

Lastly, to modify the above reasoning to the case beyond the simple type is es-
sentially not difficult. Suppose, say, Xp2 has several connected components Yi such
that the simple type condition is assumed along each component Yi. Then, clearly the
above argument applies to the individual Yi and the result is just to sum up over i.
Without assuming the simple type condition on Yi, say, inside some Yi the next stra-
tum Xp3 has seated several components Zj or some components Zj are seated even
outside of each Yi. Then by localization argument along each Zj just as done above,
one repeats the pattern similarly. The process continues.

We are now motivated to transplant the notion of “type,” “class” in Definition 7.1
for the integral I of (7.3) into the geometry of the stratification of the S1 action.

For a connected component Xp`pγ`q
Ă Xp` , γ` P t1, . . . , s`u, contained in the higher

dimensional connected components of the strata

pX “qXpi1pγi1 q
Ľ Xpi2pγi2 q

¨ ¨ ¨ Ľ Xpif pγif q
Ľ Xpif`1pγif`1

q
“ Xp`pγ`q

,

where i1 “ 1 ă i2 ă ¨ ¨ ¨ ă if ă if`1 “ ` P t1, 2, , . . . , ` ´ 1, `u, we define its type
τpXp`pγ`q

q by

(7.60) τpXp`pγ`q
q ” τp`pγ`qq :“ pi1pγi1q, i2pγi2q, . . . , if pγif q, if`1pγif`1

qq,

i1 “ γi1 “ s1 “ 1; if`1 “ `. One has pi1 |pi2 | ¨ ¨ ¨ |pif`1
(cf. Remark 1.17 for a similar

case).
The notions such as simple type, class and length lpτq are defined similarly, cf.

Definition 7.1. (No definition of trivial type is given here. See iii) of Definition 7.23
below in which ipc, rτ sq “ 8 corresponds to the trivial type, cf. iii) of Definition 7.10.)

Recall that if M Ă N is a finite disjoint union of submanifolds Mj , then the
dimension of M is maxjtdimRMju and the codimension of M is dimRN ´ dimRM .

The following definition, which is bit tedious yet bears a great similarity as previ-
ously, is set up for the immediate use in the general situation.
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Definition 7.23. – i) Write ν` “ trτ s; τ “ τpXp`pγ`q
q, γ` “ 1, 2, . . . , s`u for the set of

equivalence classes of types τ “ τpXp`pγ`q
q of connected components Xp`pγ`q

in Xp` .
ii) Write (similar to (7.49), (7.48))

S``pγ`q,s p“ S`Xp`pγ`q ,s,m
q “

ż

Xp`pγ`q

Trα`s pY, Y qdvXp`pγ`q
pY q pα`s “ α`s,mq

associated with Xp`pγ`q
.

iii) Let rτ s “ rpi1pγi1q, i2pγi2q, . . . , if pγif q, if`1pγif`1
qqs be given. If c | p1, define

ipc, rτ sq “ 1. (Hence it is independent of rτ s.) If c ffl p1 and c | p`, ` “ is for some
s, 2 ď s ď f ` 1, such that c ffl is1 for all s1 ă s. Then ipc, rτ sq :“ ` ě 2. If c ffl pis
for 1 ď s ď t` 1, ipc, rτ sq :“ 8. We may write ipcq for ipc, rτ sq.

iv) For ipc, rτ sq ě 2, define the numerical factors dc,m,rτs correspondingly as in
(7.33). For ipcq “ 1, define dc,m,rτs “ dc (which is independent of τ) as in (7.29).

v) For a given rτ s, if ipcq “ 1, then define the weight factors D1 as in (7.52) (which
is independent of τ) and if ipcq ‰ 1,8, define D`,rτs p“ D`,m,rτsq ”

ř

c, ipcq“` dc,m,rτs.
vi) Write eiq,rτs ” eiqpγiq q with τp`pγ`qq “ pi1pγi1q, . . . , iqpγiq q, . . . , if`1pγif`1

qq for
the codimension of Xpiq pγiq q

. Obviously, ei1,rτs ă ei2,rτs ă ¨ ¨ ¨ . For rτ s P ν`, write
erτs ” eif`1pγif`1

q, i.e., e`pγ`q.
vii) Write e “ min rτsPν`

2ď`ďk

erτs p“ minτ,lpτq“2 erτs by vi) aboveq and for ` ě 2,

ν̂` “ trτ̂`s P ν`; τ̂` “ p1, `pγ`qq of length two such that e`pγ`q “ e, i.e., erτ̂`s “ eu Ă ν`.

Of course, it is not ruled out that for some values of `, ν̂` could be an empty set.
Intuitively, one thinks of e as the minimal codimension among those connected com-
ponents Xp`pγ`q

such that if Xp`1 Ľ Xp`pγ`q
, then Xp`1 “ Xp1 the principal stratum.

viii) For a fixed rκs P ν` in i), write (see (7.60) for τp`pγ`qq ” τpXp`pγ`q
q)

Zrκs,s “
ÿ

γ`, rτp`pγ`qqs“rκs
1ďγ`ďs`

S``pγ`q,s.

For the case of general type, we can obtain results corresponding to (7.54), (7.55)
and (7.56) (yet complicated in expressions here). We are content with summarizing
the final result as follows.

ż

X

Tre´t
Ăl
`

b,mpx, xqdvXpxq

„
ÿ

s“n,n´1¨¨¨

t´s ˆ
´

D1S
`
1,s `

ÿ

rκ2sPν2

`

D2,rκ2sZrκ2s,s

?
t
erκ2s `Op

?
t
erκ2s

`1
q
˘

`
ÿ

rκ3sPν3

`

D3,rκ3sZrκ3s,s

?
t
erκ3s `Op

?
t
erκ3s

`1
q
˘

` ¨ ¨ ¨

¯

.

(7.61)

The following main result of this subsection parallels Theorem 7.20 in the last
subsection. By comparison, to collect the coefficients for the next leading order in t
or
?
t in (7.61) here, we have a slightly more complicated summation (regarded as
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part of corrections as indicated in Remark 7.21) in the formula below. Note that the
conversion to the stated form of Theorem 1.14 is nothing but a direct consequence of
an examination (slightly tedious) of the various definitions here.

Theorem 7.24 (Cf. Theorem 1.14). – Notations as in Theorem 7.20 without assum-
ing the conditions of connectedness and simple-type there. The weight factors D`,m,rτs,
the integrals S``pγ`q,s p“ S``pγ`q,s,mq, e, τ̂` etc. are just given above. One has the follow-
ing.

i) As tÑ 0`,
ż

X

Tr e´t
Ăl
`

b,mpx, xqdvXpxq

„ D1,m

`

p2πq´1p2πtq´nvolpXq ` t´n`1S`1,n´1 ` t
´n`2S`1,n´2 ` ¨ ¨ ¨

˘

` t´n`
e
2 p

ÿ

rτ̂`sPν̂`
2ď`ďk

D`,m,rτ̂`sZrτ̂`s,nq `Opt
´n` e`1

2 q

(7.62)

(where recall that Zrτ̂`s,n “ p2πq
´pn`1q

ř

γ`, 1ďγ`ďs`
codimXp`pγ`q

“e
volpXp`pγ`q

q ą 0 in the locally

free case of the S1 action). If p` | m (thus p1 | m too), then D1,m, D`,m,rτ̂`s ą 0.

ii) In the asymptotic expansion (7.62), all the coefficients of tj for j being half-
integral, vanish.

iii) As a consequence of (7.61) and ii),

(7.63)
ż

X

Tr a`s,mpt, x, xqdvXpxq „ D1,mS
`
1,s ` t

e
2 p

ÿ

rτ̂`sPν̂`
2ď`ďk

D`,m,rτ̂`sZrτ̂`s,sq `Opt
e
2`1q

(where Zrτ̂`s,s “
ř

γ`, 1ďγ`ďs`
codimXp`pγ`q

“e
S``pγ`q,s).

The similar results hold for
ş

X
Tr e´t

Ăl
´

b,mpx, xqqdvXpxq and
ş

X
Tr a´s,mpt, x, xqdvXpxq.

Remark 7.25. – The quantities involved above are computable in the sense that
they are basically reduced to those involved in the (ordinary) Kodaira heat kernel
by ii) of Definition 7.23, cf. Remark 1.9.

Remark 7.26. – It is not obvious how one can compute the supertrace integral, hence
our index Theorem 6.4, Corollary 6.5 solely by techniques similar to those derived in
(7.62), partly because here we are not using the off-diagonal estimate of Theorem 5.10
which is partly based on a cancelation result in Berenzin integral (see the proof of
that theorem). These results (of estimate and cancelation) appear to lie beyond what
the geometry of the stratifications can reveal as done in this Section 7.
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Among the transversally elliptic operators initiated by Atiyah and Singer,
Kohn’s lb operator on CR manifolds with S1 action is a natural one of
geometric significance for complex analysts. Our first main result establishes
an asymptotic expansion for the heat kernel of such an operator with values
in its Fourier components, which involves a contribution in terms of a distance
function from lower dimensional strata of the S1-action. Our second main
result computes a local index density, in terms of tangential characteristic
forms, on such manifolds including Sasakian manifolds of interest in String
Theory, by showing that certain non-trivial contributions from strata in the
heat kernel expansion will eventually cancel out by applying Getzler’s rescaling
technique to off-diagonal estimates. This leads to a local result which can be
thought of as a type of local index theorem on these CR manifolds. We give
examples of these CR manifolds, some of which arise from Brieskorn manifolds.
Moreover in some cases, we can reinterpret Kawasaki’s Hirzebruch-Riemann-
Roch formula for a complex orbifold equipped with an orbifold holomorphic
line bundle, as an index theorem obtained by a single integral over a smooth CR
manifold. We achieve this without use of equivariant cohomology method and
our method can naturally drop the contributions arising from lower dimensional
strata as done in previous works.

Le laplacien de Kohn sur une variété de Cauchy-Riemann (CR) avec action
transverse d’un cercle est un exemple important pour l’analyse complexe d’un
opérateur transversalement elliptique. Nous établissons ici un développement
asymptotique du noyau de la chaleur de ses coefficients de Fourier, qui inclut
une contribution des strates singulières de l’action du cercle. Nous calculons
ensuite une densité d’indice locale pour ces opérateurs en montrant, à l’aide de
techniques dues à Getzler, que certaines contributions des strates singulières
non-triviales dans le développement du noyau de la chaleur s’annulent ici. Ce
résultat, que l’on peut interpréter comme un théorème d’indice local sur ces
variétés CR, s’applique notamment aux variétés de Sasaki qui sont importantes
en théorie des cordes. Nous donnons également des exemples concrets de
telles variétés CR, issues notamment des variétés de Brieskorn. De plus, nous
pouvons réinterpréter dans certains cas la version du théorème de Hirzebruch-
Riemann-Roch pour un orbifold complexe muni d’un fibré orbifold en droites
complexes due à Kawasaki comme une formule d’indice. Notre méthode évite
le recours à la cohomologie équivariante et les annulations des termes issus des
strates singulières surviennent naturellement.
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