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HEAT KERNEL ASYMPTOTICS,
LOCAL INDEX THEOREM AND TRACE INTEGRALS
FOR CAUCHY-RIEMANN MANIFOLDS WITH S' ACTION

Jih-Hsin Cheng, Chin-Yu Hsiao, I-Hsun Tsai

Abstract. — Among the transversally elliptic operators initiated by Atiyah and Singer,
Kohn’s [, operator on CR manifolds with S' action is a natural one of geometric
significance for complex analysts. Our first main result establishes an asymptotic ex-
pansion for the heat kernel of such an operator with values in its Fourier components,
which involves a contribution in terms of a distance function from lower dimensional
strata of the S'-action. Our second main result computes a local index density, in
terms of tangential characteristic forms, on such manifolds including Sasakian man-
ifolds of interest in String Theory, by showing that certain non-trivial contributions
from strata in the heat kernel expansion will eventually cancel out by applying Get-
zler’s rescaling technique to off-diagonal estimates. This leads to a local result which
can be thought of as a type of local index theorem on these CR manifolds. We give
examples of these CR manifolds, some of which arise from Brieskorn manifolds. More-
over in some cases, we can reinterpret Kawasaki’s Hirzebruch-Riemann-Roch formula
for a complex orbifold equipped with an orbifold holomorphic line bundle, as an index
theorem obtained by a single integral over a smooth CR manifold. We achieve this
without use of equivariant cohomology method and our method can naturally drop
the contributions arising from lower dimensional strata as done in previous works.

Résumé (Etude asymptotique du noyau de la chaleur, indice local et traces sur les variétés
de Cauchy-Riemann avec action d’un cercle)

Le laplacien de Kohn sur une variété de Cauchy-Riemann (CR) avec action trans-
verse d’un cercle est un exemple important pour ’analyse complexe d’un opérateur
transversalement elliptique. Nous établissons ici un développement asymptotique du
noyau de la chaleur de ses coefficients de Fourier, qui inclut une contribution des
strates singuliéres de I'action du cercle. Nous calculons ensuite une densité d’indice
locale pour ces opérateurs en montrant, & I'aide de techniques dues & Getzler, que

(© Mémoires de la Société Mathématique de France 162, SMF 2019



certaines contributions des strates singuliéres non-triviales dans le développement du
noyau de la chaleur s’annulent ici. Ce résultat, que 'on peut interpréter comme un
théoréme d’indice local sur ces variétés CR, s’applique notamment aux variétés de Sa-
saki qui sont importantes en théorie des cordes. Nous donnons également des exemples
concrets de telles variétés CR, issues notamment des variétés de Brieskorn. De plus,
nous pouvons réinterpréter dans certains cas la version du théoréme de Hirzebruch-
Riemann-Roch pour un orbifold complexe muni d’un fibré orbifold en droites com-
plexes due & Kawasaki comme une formule d’indice. Notre méthode évite le recours a
la cohomologie équivariante et les annulations des termes issus des strates singuliéres
surviennent naturellement.
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CHAPTER 1

INTRODUCTION AND STATEMENT OF THE RESULTS

1.1. Introduction and Motivation

Let (X,T%°X) be a compact (with no boundary) CR manifold of dimension 2n + 1
and let , : Q09(X) — Q%9T1(X) be the tangential Cauchy-Riemann operator. For a
smooth function u, we say u is CR if dyu = 0. In CR geometry, it is crucial to be able
to produce many CR functions. When X is strongly pseudoconvex and the dimension
of X is greater than or equal to five, it is well-known that the space of global smooth
CR functions Hy(X) is infinite dimensional. When X is weakly pseudoconvex or the
Levi form of X has negative eigenvalues, the space of global CR functions could be
trivial. In general, it is very difficult to determine when the space H, l? (X) is large.

A clue to the above phenomenon arises from the following. By 5127 = 0, one has the
Op-complex: -+ — Q9I71(X) - Q04(X) - Q%9F1(X) — ... and the Kohn-Rossi
Ker 9,:0%9(X)—-Q% 171 (X)
Imgbzﬂovq_l(X)—>90>q(X) :
understand the space Hp (X), one could try to establish, in the CR case, a Hirzebruch-

cohomology group: H}(X) := As in complex geometry, to

Riemann-Roch theorem for Y. (—1)/dimH g (X), an analog of the Euler characteristic,
j=0

and to prove vanishing theorems for H} (X), j > 1. The first difficulty with such an

approach lies in the fact that dimH; (X) could be infinite for some j. Let’s say more

about this in the following.

If X is strongly pseudoconvex and of dimension > 5, it is well-known that J :
0%0(X) — Q%1(X) is not hypoelliptic and for ¢ > 1, ¢ # n, Dl(f) : Q0(X) —
Q%9(X) is hypoelliptic so that dim H)(X) = o and dim H}(X) < o for ¢ > 1,
q # n. In other cases if the Levi form of X has exactly one negative, n — 1 positive
eigenvalues on X and n > 3, it is well-known that dim H} (X) = o0, dim H;" ' (X) = o
and dim H!(X) < oo, for ¢ ¢ {1,n —1}. With these possibly infinite dimensional
spaces, we have the trouble with defining the Euler characteristic Y, (—1)/dimH; g (X)

j=0
properly.
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2 CHAPTER 1. INTRODUCTION AND STATEMENT OF THE RESULTS

Another line of thought lies in the fact that the space H(X) is related to the Kohn
Laplacian [1\% = 3, 0 + 05 05 : Q%9(X) — 9%9(X). One can try to define the asso-
ciated heat operator e—t0L” by using spectral theory and then the small ¢ behavior
of e t0h” is closely related to the dimension of Hy(X). Unfortunately without any
Levi curvature assumption, D,()‘I) is not hypoelliptic in general and it is unclear how
to determine the small ¢ behavior of e=*0s” . Even if ng) is hypoelliptic, it is still
difficult to calculate the local density.

We are led to ask the following question.

QUESTION 1.1. — Can we establish some kind of heat kernel asymptotic expansions for
Kohn Laplacian and obtain a CR Hirzebruch-Riemann-Roch theorem (not necessarily
the usual ones) on some class of CR manifolds?

It turns out that the class of CR manifolds with S! action is a natural choice
for the above question. On this class of CR manifolds, the geometrical significance
of Kohn’s [, operator is connected with transversally elliptic operators initiated by
Atiyah and Singer [2] (see Folland and Kohn [35, p.113]). Three dimensional (strongly
pseudoconvex) CR manifolds with S! action have been intensively studied back to
1990s in relation to the CR embeddability problem. We refer the reader to the works
[26] and [49] of Charles Epstein and Laszlo Lempert respectively. (see more comments
on this in Section 1.3). Another related paper is about CR structure on Seifert man-
ifolds by Kamishima and Tsuboi [45] (cf. Remark 1.16). In our present paper the CR
manifold with S action is not restricted to the three dimensional case.

To motivate our approach, let’s first look at the case which can be reduced
to complex geometry. Consider a compact complex manifold M of dimension n
and let (L,hY) — M be a holomorpic line bundle over M, where h’ denotes a
Hermitian fiber metric of L. Let (L*,hL™) — M be the dual bundle of (L,h%)

and put X = {ve L*, |v|iL* = 1}. We call X the circle bundle of (L*,hL*). It
is clear that X is a compact CR manifold of dimension 2n + 1. Clearly X is
equipped with a natural (globally free) S* action (by acting on the circular fiber).
Let T € C®(X,TX) be the real vector field induced by the S! action, that is,
Tu = %(u(e‘w ox))|0=0, u € C®(X). This S! action is CR and transversal, i.e.,
[T,C*(X,T"°X)] ¢ C*(X,T*"°X) and CT(z) ® T}°X @ TO'X = CT,X respec-
tively. For each m € Z and ¢ = 0,1,2,...,n, put
Q%(X): = {ue Q¥YX); Tu = —imu}
= {ue Q"(X); u(e ®ox) =e "™u(z),V0 € [0,2n[} .

Since 0,7 = T0p, we have Op.m = 0p : Q%I(X) — Q%9+1(X). We consider the
Fl .00:q —0,a+1 .
Iferg”'”goﬁf;,(f(&)ggofq(g)), and call it the m-th S?
m Op,m 8em, —>3im
Fourier component of the Kohn-Rossi cohomology group.

cohomology group: Hy, (X) :=
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1.1. INTRODUCTION AND MOTIVATION 3

The following result can be viewed as the starting point of this paper. Note
0%4(M, L™) denotes the space of smooth sections of (0,q) forms on M with val-
ues in L™ (m-th power of L) and H?(M, L™) the g-th 0-Dolbeault cohomology group
with values in L™.

THEOREM 1.2. — For every q = 0,1,2,...,n, and every m € Z, there is a bijective
map ALY : Q%9(X) — Q%9(M, L™) such that Aﬁ%*l)éb,m =0A% on 0%9(X). Hence,
Q04(X) = Q%(M, L™) and HY, (X) = HY(M,L™). In particular dim H  (X) < o0
and 3 (~1)dim B, (X) = 3. (—1)7dim H (M, L™).

/=0 =0

Theorem 1.2 is probably known to the experts. As a precise reference is not eas-
ily available (see, however, Folland and Kohn [35] p.113), we will give a proof of
Theorem 1.2 in Section 1.5 for the convenience of the reader.

In this paper by Kodaira Laplacian we mean the Laplacian I:\ﬁ,ql) on L™-valued
(0,q) forms (on M) associated with the ¢ operator, a term we borrow from the work
of Ma and Marinescu [50]. Let e~t0i be the associated heat operator. It is well-
known that e *0% admits an asymptotic expansion as ¢ — 0. Consider B,,(t) :=
(Agﬁ))*l o e—tOW o A%) (Afﬂ) as in the theorem above). Let DIE?T)R be the Kohn
Laplacian (on X) acting on (the m-th S' Fourier component of) (0, q) forms, with
e_tDl(ff)n the associated heat operator.

A word of caution is in order. We made no use of metrics for stating Theorem 1.2.
However, to define those Laplacians above an appropriate choice of metrics is needed
(for adjoint of an operator) so that A,(g) of Theorem 1.2 also preserves the chosen
metrics. With this set up it is fundamental that (cf. Proposition 5.1)

(1.1) e—tmé‘ﬁn = ((A(q))*1 oeftmiz) oAg{)) 0Qm = Bn(t)oQm = Qum o By (t) 0 Qu,

m

where Q,, : Q%9(X) — Q%9(X) is the orthogonal projection. Hence the asymptotic
expansion of e~t0 and (1.1) lead to an asymptotic expansion

(@)
(1.2) e t0um (z,z) ~ t7"al? (x) + t‘"“a,(lqll(x) +o--

One goal of this work is to establish a formula similar to (1.2) (which is however
not exactly of this form) on any CR manifold with S* action. More precisely, due to
the assumption that the S' action is only locally free, it turns out that eitDé?r)" (z,z)
cannot have the standard asymptotic expansion as (1.2). Rather, our asymptotic ex-
pansion involves a contribution in terms of a distance function from lower dimensional
strata of the S* action. (See (1.18) in Theorem 1.3 for details and for our first main
result.) It should be emphasized that no pseudoconvexity condition is assumed.

Roughly speaking, on the regular part of X we have

n—

: £0d(#, Xging )2
(1.3) e_tij;,,v)n (.’JZ,:L‘) N tina,(lq) (.77) +tfn+la(4)1(m)+. .. mod O(tinei%),
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4 CHAPTER 1. INTRODUCTION AND STATEMENT OF THE RESULTS

On the whole X we have, however,
(1.4) et (z,z) ~ t7T"AD (¢, ) + t7"+1A£Lq21(t,x) +

The difference between (1.4) and (1.3) lies in that A (t,x) in (1.4) cannot be ¢-in-
dependent for all s and are not canonically determined (by our method) while al? (x)
in (1.3) are t-independent for all s and are canonically determined. This ¢-dependence
presents a great distinction between our asymptotic expansion and those in the pre-
vious literature. It appears to have a big influence on the formulation and proof of
the relevant index theorems and trace integrals. See Section 7 for more comments.

In addition to the introduction of a distance function d in (1.3) our generalization
has another feature, which is pertinent to the third topic of this paper, as follows. A
heat kernel result for orbifolds obtained in 2008 by Dryden, Gordon, Greenwald and
Webb for the case of Laplacian on functions (see (1.30) and [23]) and independently by
Richardson ([59]) seems to suggest that integrating (1.3) over X is basically a power
series in ¢z . See (1.30) for more. To see such a possible connection, one considers X as a
fiber space over X /S* which is then an orbifold, and presumes boldly an analogy with
“(1.2) for the orbifold case”. Then by the above result [23], integrating (1.3) over X
might give an asymptotic expansion which is a power series at most in the fractional
power t2 of ¢ (cf. Theorem 1.14) (while for the case where the S action is globally
free, such as in the circle bundle above, the asymptotic expansion is expressed in the
integral power of t). However, our further study shows that the coefficients of t/ for j
being half-integral necessarily vanish in our present case (irrespective of the local or
global freeness of the S* action). Despite that there is no nontrivial fractional power
in the t-expansion, the corrections/contributions associated with the stratification
of the locally free S' action do arise nontrivially in a proper sense. Some explicit
computations about these extra terms are worked out in the main result of the final
section (Section 7) regarded as the third topic of this paper.

As far as the asymptotic expansion is concerned, we remark that the approach of
using Kodaira Laplacian on M (downstairs) as done above is no longer applicable
to the general CR case, as the contribution of a distance function on X involved
in our expansion cannot be easily forseen by use of objects in the space downstairs
(an orbifold in general). (However, for trace integrals on invariant functions, cf. Sec-
tion 7, like >, e **m denoted by I(t) in certain Riemannian cases, I(t) has been
studied asymptotically with the help of the underlying/quotient manifold /orbifold,
cf. [59, p. 2316-2317]. See also Proposition 5.1, Remark 5.4.) We must work on the
entire X from scratch with the operator being only transversally elliptic (on X). (See
HRR theorem below for another instance of this idea.) Furthermore, as we make no
assumption on (strong) pseudoconvexity of X, this renders the techniques usually
useful in this direction by previous work (e.g., [4]) hardly adequate in our case. Our
current approach is essentially independent of the previous methods. This technicality

m
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1.1. INTRODUCTION AND MOTIVATION 5

partly accounts for the length of the present paper (see Section 1.6 for an outline of

proof and Section 7 for a comparison with the previous work).

We expect that the coefficients agq)(x) in (1.3) are related to some geometric quan-

tities. For ¢ = 0, function case with strong pseudoconvexity, we refer the reader to the
paper of Beals, Greiner, and Stanton [4]. In this regard, Chern-Moser invariants (see
[18]) or Tanaka-Webster invariants (see [62] or [64]) should be used to express these
coefficients. In our present situation (without assumptions on pseudoconvexity) it is
however more natural to use geometric quantities adapted to the S! invariance prop-
erty, so that a notion of tangential curvature arises (with the associated tangential
characteristic forms, cf. Section 2.3) and enters into the coefficients of our asymptotic
expansion. It essentially comes back to the Tanaka-Webster curvature in the strongly
pseudoconvex case (cf. Remark 1.9).

The mathematics (existence, asymptotics etc.) of equivariant/transversal heat ker-
nels in the Riemannian situation (including that of Riemannian foliations) have been
studied in recent years and last decades. For a comparison between these develop-
ments and our results, we postpone the survey, together with that of trace integrals,
until Section 7.

Back to the special case of the circle bundle X over a compact complex manifold M,
the Hirzebruch-Riemann-Roch Theorem or Atiyah-Singer index Theorem, together
with Theorem 1.2, tells us that

(1.5) an(—l)jdimHg,m(X)—i(—l)jdimHj(M,Lm)—f Td (T*°M)ch (L™),
j=0 §=0 M

in terms of standard characteristic classes on M. Let’s reformulate (1.5) in geometric
terms on X rather than on M:
(1.6) D(=1YdimH]  (X) = if Tdy (T10X) A ™™ 5% A wy,

= ’ 2m Jx
where Tdy, (T1°X) denotes the tangential Todd class of T1°X and e~ denotes
the Chern polynomial of the Levi curvature and wy is the uniquely determined global
real 1-form (see Section 2.2 and Section 2.3 for the precise definitions).

Our second main result turns to any (abstract) CR manifold X with (locally free)
S1 action (but with no assumption on pseudoconvexity); we see that the above Euler
characteristic has an index interpretation related to dp + 5: on X (see (3.12) and
(3.13)). We are able to establish (1.6) (cf. Corollary 1.13) on such X based on our

asymptotic expansion for the heat kernel e_tDl(fzn(
formula on X (see Corollaries 4.8 and 5.16).

As an application to complex (orbifold) geometry, it is worth noting a comparison
between the present result and a result of Kawasaki on Hirzebruch-Riemann-Roch
theorem (HRR theorem for short) on a complex orbifold N ([47]) (which plays the

z,z) and a type of McKean-Singer
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6 CHAPTER 1. INTRODUCTION AND STATEMENT OF THE RESULTS

role as our M above). Our formula simplifies Kawazaki’s original one for a certain class
of orbifolds. Indeed, the contribution of the lower dimensional strata of the orbifold
appearing in Kawazaki’s formula vanishes in ours, see Subsection 1.4.2, Theorem 1.28
the remarks following it. In our view this simplification does not appear obvious at all
within the original approach of Kawasaki because in his approach the contributions
from the (lower dimensional) strata of the orbifold cannot be avoided (unless it is
proved to be vanishing) even if the total space of the (orbifold) circle bundle is smooth.
Conceptually speaking one may attribute such a simplification to one’s working on the
entire (smooth) X rather than on the downstairs M (as Kawasaki), a strategy already
employed for the asymptotic expansion above and proving useful again in this context
of (CR) index theorem. We remark that the vanishing of the contribution of strata
also occurs in a related context studied by these works [55], [34] (see also discussions
after Theorem 1.28).

In short our second main result (Theorem 1.10) computes a local index density in

terms of tangential characteristic forms, which is to show that certain non-trivial con-
€ dA(z,XSin )2
tributions (cf. t e~ R of (1.3)) in the heat kernel expansion will eventually

cancel out in the index density computation. We can do this by applying Getzler’s
rescaling technique to the off-diagonal estimate (not needed in the classical index
theorems). As, to the best of our knowledge, an appropriate term for such a result
about the local density hasn’t appeared in the literature yet, we shall follow the clas-
sical cases and call it a local index theorem on these CR manifolds (Corollary 1.13),
including Sasakian manifolds of interest in String Theory.

With reference to the questions in the beginning of this Introduction, for further
application of our results to CR geometry it is important to produce many CR func-
tions or CR sections. Namely we hope to know when H}(X,E) or Hy, (X,E) is
large (see Questions 1.18, 1.19 and 1.23 in Section 1.3). Progress towards this circle
of questions seems limited (Section 1.3). We can now develop a tool for tackling some
of these questions. The idea here is to combine our version of CR index theorem with
a sort of vanishing theorem for higher cohomology groups, which is intimately re-
lated to a version of Grauert-Riemenschneider criterion adapted to the CR case. This
methodology turns out to be effective for those CR manifolds studied in this paper.

In Section 1.3 we apply our CR index theorem to prove a CR version of Grauert-
Riemenschneider criterion, and produce many CR functions on a weakly pseudoconvex
CR manifold with transversal S' action and many CR sections on some class of CR
manifolds, which give answers to some long-standing questions in several complex
variables and CR geometry. In Section 1.4 we provide an abundance of examples of
those CR manifolds studied in the present paper, some of which arise from Brieskorn
manifolds (generalized Hopf manifolds).

There is another index theory of geometric significance, developed by Charles Ep-
stein. He studied the so called relative index of a pair of embeddable CR. structures
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1.2. MAIN THEOREMS 7

through their Szegd projectors in a series of papers (see [27], [28], [29], [30] and [31]).
On the other hand, Erik van Erp derived an index formula for subelliptic opera-
tors on a contact manifold (see [32], [33]). Moreover, recent work of Paradan and
Vergne [55] gave an expression for the index of transversally elliptic operators which
is an integral of compactly supported equivariant form on the cotangent bundle; see
also Fitzpatrick [34] for related directions. Briining, Kamber and Richardson [13],
[12] computed the index of an equivariant transversally elliptic operator as a sum of
integrals over blow ups of the strata of the group action.

Finally it is natural to ask for a generalization from the action of S! to that of other
Lie groups or even to foliations (cf. Subsection 7.1 for references). As we will discuss
in Section 7, the asymptotic expansion in the form (1.4) is thereby indicated as a sort
of remedy for (1.3). In this way the “distance function” d shall be involved. All of this
seems to be best illustrated in the present S! case. It appears also conceivable that
these features shall be preserved for generalization in a certain (as yet unknown) way.
This paper may be presented or read in token of a prototype for further study into
much more complicated, diversified situations.

1.2. Main theorems

We shall now formulate the main results. We refer to Section 2.2 and Section 2.3
for some notations and terminologies used here. After the background material, we
will discuss in the sequel i) asymptotic expansions, ii) a local index theorem and iii)
trace integrals.

1.2.1. Background. — Let (X,T1°X) be a compact connected CR manifold with a
transversal CR locally free S' action e=*, where T"°X is a CR structure of X. X is

of dimension 2n + 1 throughout this paper.

Let T € C*(X,TX) be the real vector field induced by the S* action and let wy €
C*(X,T*X) be the global real one form determined by (wp, T') = 1, {wp, u) = 0,
for every v e TV X @ TO1 X.

Associated with the S! action of X it is natural to consider various geometric
objects admitting an S! action. In the following, to streamline the exposition we shall

RRANAS

freely use the notion of rigid objects: “rigid bundles,” “rigid metrics” etc., and refer to
Definitions 2.3, 2.4 and 2.5 for the precise meanings. (See also the work of Baouendi-
Rothschild-Treves [3, Definition I1.2] for a similar use of this term.) It suffices to say
here that this notion of rigid objects is nothing but an equivalent way (by using metric)
to consider objects (originally defined without assumption on metric) which admit
(compatible) S* actions (or S! invariance, subject to the proper context) provided

one starts with a CR manifold with an S! action (cf. Theorem 2.11).

SOCIETE MATHEMATIQUE DE FRANCE 2019



8 CHAPTER 1. INTRODUCTION AND STATEMENT OF THE RESULTS

Henceforth let E be a rigid CR vector bundle over X, equipped with a rigid Hermi-
tian metric (- |- ). We note that 719X is known to be a rigid complex vector bundle
(see the work of Baouendi-Rothschild-Treves [3]) with a rigid Hermitian metric (|- )
satisfying extra properties (not specified here, cf. (2.5)). Let (- |- )g be the Hermitian
metric on 7*%*X ® E induced by those on E and CTX. Denoting by dvx = dvx(z)
the volume form on X induced by the Hermitian metric {-|-) on CTX we get the
natural global L? inner product (-|-)g on Q%*(X, E).

As remarked in Introduction, for u € Q%*(X, E), Tu € Q%*(X, E) is defined and
T0, = 0pT. For m € Z, put

Q% (X, E): = {ue Q¥ (X,E); Tu = —imu}
={ue Q" (X, E); () *u = e~"™0, Ve [0, 2n [},

where (e7%%)* denotes the pull-back by the map e~ : X — X of S! action.
Write L?(X,T*%*X ® E) (resp. L2,(X,T***X ® E)) for the Ly-completion
of Q%*(X, E) (resp. Q%°*(X, E)) with respect to (|- )g.
By T30y, = 0,T one defines dp ,, : Q9°(X, E) — Q%*(X, E) as the restriction of J,
on Q%°. Write
0, 1 Q"% (X,E) — Q" (X, E), resp. 0y, : % (X, E) — Q% (X, E)

for the formal adjoint of J, (under (-|-)g), resp. Opm. Since (-|-)g and (-|-) are
rigid, one sees
To, =0, on Q**(X,E),

1.7 _ -
(1) Fym = 0y |0 * WX, E) - Q% (X, E), VmeL.

Qn®

Let Ay, : Q% (X, E) — Q%°(X, E) be a certain smooth zeroth order operator with
TA;, = A,T and A, : Q%+ (X, E) - Q%% (X, E) (arising from a CR version of Spin®
Dirac operator, cf. Definition 4.3). Put

(1.8) Dy = Opm + Opon + Am - Q00 (X, E) — Q% (X, E)
and let
(1.9) Di,,: Q"*(X,E) — Q" (X, E)

be the formal adjoint of ﬁb,m (with respect to (|- )g).
We have i‘b,m, given by

(1.10) Clym := Dff pDom : Q%% (X, E) — Q°*(X, E),

which denotes the m-th modified Kohn Laplacian, thought of as Spin® Kohn Laplacian
(cf. Definition 4.3 and the paragraph below it). We extend ﬁbm by

(1.11) Clpm : Dom [y (€ L2(X, T*** X ® E)) — L2, (X, T***X Q E),
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1.2. MAIN THEOREMS 9

with Dom [Jp, := {u € L2 (X, T*** X ® E); (pmu € L2, (X, T***X ® E)} in which
ﬁb,mu is defined in the sense of distribution.

We will show in Section 3 that ﬁb,m is self-adjoint, Specﬁb,m is a discrete subset
of [0,0[ and for v € Spec[Jpm, v is an eigenvalue of [ 1y, with finite multiplicities
d, < 0. Let {fl”, e fgu} be an orthonormal frame for the eigenspace of ﬁb,m with

eigenvalue v. The (smooth) heat kernel e t0om (z,y) can be given by

dy
(1.12) e tem(zy) = Y D@ A W),
VeSpecﬁb mJ=1
where (fY (y))" denotes the linear map (f7(y))" : T}** X Q B, — C, u(y) e T;**X ®
E, — {u(y) | f¥(y) )& € C. Note that f}(x) A (f}(y))' is the linear map:
fi (=

)
)A(fr) T X ® E, > T X Q E,,
u(y) e T X @ By — f () uly) | f/(y) ) € TF** X ® E,.

Let e~tClom : L2(X, T** X ®E) — L2, (X, T*%* X @ E) be the (continuous) operator
associated with the distribution kernel e~tClom (z,y).

Let e1(z),...,eq(x) be an orthonormal frame of T4 X ®E, (¢ =0,1,...,n), and
A€ End (T X ® E,). Put TrD A:= 317 | {Ae;|e; )p and set

TrA:= Y T4,
j=0

(1.13) n
Z 1T A,

Let VTX be the Levi-Civita connection on T'X (with respect to (-|-)). Then
T1OX is equipped with a connection V7 X := PpioyxVTX
projection from CT X onto T™9X.

Let VE be the connection on E induced by (-|-)g (see Theorem 2.12).
Let Tdy (VTI'OX,TI’OX) denote the representative of the tangential Todd class
of T*°X and chy, (VF, E) the representative of the tangential Chern character of E

(see Section 2.3 for tangential classes).

where Priox be the

In what follows we aim to define a distance function d which plays an important
role (for the asymptotic expansion) in this paper. For z € X, we say that the period
of x is 7, ¢ € N provided that e~ o z # z for every 0 < 6 <
Put, for each £ e N,

(1.14) Xy = {z € X; the period of z is 27}

_j2r
”ande T ox =1

and let p = min{leN; X, # J}. We call X, the principal stratum. It is well-
known that if X is connected, then X, is an open and dense subset of X (see
Proposition 1.24 in Meinrenken [52] and Duistermaat-Heckman [25]). Assume
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10 CHAPTER 1. INTRODUCTION AND STATEMENT OF THE RESULTS

X=X, uXp,U-UXp,p =p1 <p < - < pgp. Put Xging = X3, =

sing

Uf 0 Xp;s Xine = Ui Xp;, k=1 =71 > 1 Set X, := & Note pi|p;

sing j=r+1
for 1 < j <k (cf. Remark 1.17).

Let d(-,-) denotes the standard Riemannian distance with respect to the given
Hermitian metric. Take ¢

2r |2 2
(1.15) 0<C<1nf{ LS LI ,rzl,...,k—l}.
pk Dr Dr+1
Set,forxe X andr=1,2,...,k,
o0 2
(116) d (]7 Xsmg) inf d( T,e w):C<‘9 ?_C
T

This notation reflects the fact that dg(x Xling ) 1s equivalent to the ordinary dis-
tance d(z, X[ ) (see below). Note by definition dg(ar: XE V(= d}(az &) > 0 for

sing sing
all z € X. We remark that for any 0 < (,(; satisfying (1.15), dc(:v Xiing ) and
de, (z, Xlng ) are equivalent (as far as the estimate in Theorem 1.3 below is con-
cerned). We shall denote d(z, X%, ) := d¢(z, X},

sing sing )
Remark that, by examining the definition d(x Xling) = 0if and only if w € X7, ..

Further, for & > 0 there is a § > 0 such that d(z, X7, ) = 6 provided z € X satisfies

sing
(the ordinary distance) d(z, Xg,,) > €. It is thus convenient to think of d(z, X7,

sing )
as a distance function from z to Xg . .
Indeed in Theorem 6.7 for a strongly pseudoconvex X there is a constant C' > 1

such that

éd(:v Xt ) <d(z, XT. ) < Cd(z, XTI, ), VzeX.

sing sing sing

1.2.2. Asymptotic expansion of the heat kernel e‘fﬁbvm(m,x). — For p,,m € N, put
Op,|m = (5N(]gﬁr)7 that is, oy, |, = 1if p, | m and 0, |, = 0if p, |m. With the distance

function d, we state the first main result of this paper (see Section 6 for a proof).

THEOREM 1.3. — Suppose (X,T'°X) is a compact, connected CR manifold (of di-
mension 2n + 1) with a transversal CR locally free S* action and let E be a rigid CR
vector bundle over X. With the notations above, there exist as(t,x) (= asm(t,x)) €
C*[Ry x X,End (T***X ® E)) with |as(t,z)] < C on Ry x X where C > 0 is
independent of t, s =n,n —1,..., such that

(1.17) e‘tﬁ”’m(m,m) ~t an(t,x) +t " a, 1 (tx) + - ast — 0t

(See Definition 5.5 for “~”.)
Moreover, there exist as(z) (= asm(z)) € CP(X,End (T***X ® E)), s =
n,m — 1,..., satisfying the following property. Given any differential operator
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1.2. MAIN THEOREMS 11

P : C*(X,T***X ® E) > C*(X,T*"*X ® E) of order £ € Ny, there exist g9 > 0
and Cy > 0 such that

7 2
. sod(z,X:ing )

(1.18) ‘Pg (as(t,;c) - pr5pr|mas(x))‘ < Cpt™ ze g , VteRy, VzeX,,
r=1,...,k.
The following is immediate from the proof of Theorem 1.3.

COROLLARY 1.4. — Suppose (X,T4°X) is a compact, connected CR manifold with
a transversal CR locally free S' action and let E be a rigid CR vector bundle
over X. With the notations above, for any r = 1,...,k, any differential operator
P : C®(X, T***X ®E) - C*(X, T*"*X ® E) of order £ € Ny, every Ny € N with
No = No(n) for some Ny(n), there are g > 0, 6 > 0 and Cy, > 0 such that

P, (e*tD”v”*(w,I) — Py m Dt o (w))
j=0

(1.19)

cod(=. X2 g )2

< Ch, (t_"“v”l_% T P G ), Vz e X,, VO<t<é.

The expansions in (1.18) and (1.19) involve a contribution in terms of a distance
function from the lower dimensional strata of the S* action. The analogous phenomena,
are encountered in other settings, for instance for the asymptotic of the Bergman
kernel on orbifolds appearing in [19] (see also [50, Thm 5.4.10]) and for the heat
kernel of the Kodaira Laplacian on complex orbifolds in the recent paper [57].

In the following we supplement these results with a number of remarks before going
further.

Pr 2m(s—1) .

REMARK 1.5. — It should be noticed that p.d,, |, = > e » ™.
s=1
REMARK 1.6. — We shall now see that if one wants an asymptotic expansion

of e~tClom (z,z) to be valid around each z € X (cf. Definition 5.5), then (1.17) is
basically optimal (i.e., in general, as(¢, z,y) cannot be t-independent for all s). For U
open with U < Xp, a tradition-like formula (assuming p = 1 for simplicity)

(1.20) e~t0om (z,3) ~ C(t "o (z) +t " ap_1(z) + )

is valid for z € U and C' = 1 (as follows from (1.18) for [ = 0) whereas for z € X, ,
r = 2, an asymptotic expansion (for p, | m) with C = p, is valid around an open
subset (3 x) of the stratum X, . Since e‘tﬁbM(x,y) is going to be a well defined
smooth kernel, it is easily seen that those functions as(z) (s = n,n—1,...) satisfying
Theorem 1.3 are unique (if they exist). (We notice that a,(¢,z) in (1.17) are not
canonically defined by our method which is subject to choice of BRT trivializations, cf.

(5.42) and Subsection 2.4.) In short, the above suggests that an asymptotic expansion
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12 CHAPTER 1. INTRODUCTION AND STATEMENT OF THE RESULTS

of the form as (1.20) can only be true in the piecewise sense with respect to strata.
See also Subsection 7.1.

To confirm this, one uses Theorem 1.14 (see Theorems 7.20 and 7.24 for a more
precise version) by noting §, Traf (z)dvx (x) = S}, in Theorem 7.20 (which is taking
the “even” part of the Laplacian). Hence one can interpret the trace integral result
(obtained by integrating Tre—t0om (z,z) over X) as one that gives extra nonzero
correction terms, cf. the second line in (1.32) or the third line in (7.57).

It follows that if there exists a global asymptotic expansion (not just in the piece-
wise sense) such as (1.17), then not all of as(t,z) can be independent of ¢. Oth-
erwise, if all a,(¢,z) are independent of ¢, it would be of the form (1.20) glob-
ally by assumption (C' = 1 if p = 1), so by integrating the trace over X, there
would be no correction terms as discussed above. To say more, e‘tﬁbvm(m, x) cannot
have any asymptotic expansion of the form ™ B, () + t™2 B, (x) + - -+ (globally)
mp < mg < -+ € R, B, (2), Bm, (), ... continuous functions on X. Otherwise by
equating it to (1.17), each as(t,z) would be rendered independent of ¢, absurd as just
remarked (see the next remark for argument independent of Theorems 1.14, 7.20).

The next remark shows that as(¢,z) for the particular s = n must be dependent
on t (nontrivially). This part will not use Theorem 1.14.

REMARK 1.7. — In the above remark a certain discontinuity in the form (1.20) for, say
z € X, and z € X, seems to appear. We shall now explore it. If the (Gaussian-like)
term to the right of (1.18) is examined, it arises from a precise integral (see (6.8)).
To show that this integral is generally nontrivial, regardless of whether our estimate
given by (1.18) is a fine or crude one, we are actually going to show that the term
for s =n in (1.18)

an(t,x) — pTépr‘man(m)
is nontrivial. For the sake of illustration we assume that X = X; U Xo, that isp =1
and py = 2, and take m to be an even number. For z € X, by (1.18) (for [=0) and
p =1, we see that a,(t,z) = an(z) + rn(t, )

cod(@, Xging )2

(1.21) lrn(t,z)| <e ™+
As our a,(x) essentially arises from a local Kodaira Laplacian (see (6.1), similar to
discussion after Theorem 1.2), it is well known that a,(z), as the coefficient of the
leading term (in the t-expansion of the heat kernel for Kodaira Laplacian), is constant
in z with Tr o, > 0 (cf. [36, Lemma 4.1.4 and Section 4.4]). By continuity (as and a;
being globally continuous functions)

(1.22) an(t,x) = ap(z) + rp(t, x)

remains true on Xs. For 2y € X», the estimate of (1.18) is given by (with p; = 2 and
discussion after (1.16) for d(zo, &) > 0)

(1.23) an(t, ) = 20, (z0) + O(t).
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By (1.22) and (1.23) it follows 7, (¢, o) = an(z) + O(t*) so r,(t,x) ~ ay(z) around
xo as t — 0, giving |r,(¢,2)] = € > 0 nearby z, for some constant e independent
of z and t. But this would be absurd by (1.21) if r,, were independent of ¢ (taking
x (€ X1,# x0) near xo so that |r,(¢,z)| > € and letting ¢t — 0 in (1.21)). Hence
an(t, ) cannot be independent of ¢ either, as desired.

REMARK 1.8. — To discuss the estimate (1.19), let’s take d in (1.19) to be d for conve-
nience (as remarked previously d is equivalent to the ordinary distance function d at
least in the strongly pseudoconvex case, cf. Theorem 6.7). Take P, = id (so ! = 0). The
term to the rightmost of (1.19) appears as a Gaussianlike term. As ¢ — 0, this term

tends to a sort of Dirac delta function supported along the strata X

sing (With an extra

singular factor =7, a = dimXg, .
continuity nature just discussed in Remarks 1.6 and 1.7 if the asymptotic expansion
is to be expressed in something, without ¢-dependence, such as a,(z). Conversely, the
estimate as (1.19) involving a type of Dirac delta function is conceptually reasonable
under the piecewise continuity phenomenon in terms of as(x). For more about this,

some quantitative information may be available by Theorems 1.14, 7.20 and 7.24.

). This may conceptually explain the piecewise

REMARK 1.9. — We make a short comment on the coefficients as(t,z) or a;(z) in
(1.18) (the difference between a;(t,z) and pas(z) (at a given z € X,) is O(t*) by
(1.18); this is partly explained conceptually right below). For the standard (elliptic)
case (of Dirac type) it is well-known that the coefficients of a heat kernel along the
diagonal (by taking trace) are expressible in terms of the curvature and its covari-
ant derivatives (e.g., [36]). In our transversally elliptic case (without bundle E for
simplicity) if S! action is globally free, it follows from the standard case above (cf.
(1.1)-(1.2)) that these coefficients of the (transversal) heat kernel are expressible in
terms of the tangential curvature (and its derivatives) (cf. Section 2.3). In the locally
free case the same results can be achieved in view of the proof of Theorem 1.3, which
basically arises from a procedure of patching and successive approximations based on
the local (transversal) heat kernels that give the asymptotic approximations of the
final (transversal) heat kernel (see Section 1.6 for details of an outline). Since the
local kernels can be so expressed as just said (at least on the principal stratum), it
follows from the asymptotic approximation (e.g., Theorems 2.23 and 2.30 of [5] or
Theorem 5.15 in our case) that the same (expression in tangential curvature and its
derivatives) can be said for the global kernel (on the principal stratum then followed
by continuous extension of this global kernel on X). It is also of interest to consider
the integral version of these coefficients, which is the topic of Section 7 of this paper.

1.2.3. Alocal index theorem for CR manifolds with S action. — Here we discuss issues
related to the index theorem we will prove. We recall that the term to the left of
the inequality in (1.18) is basically nontrivial by Remark 1.7. In our formulation of
index theorems, the contribution arising from such a term is expected to be removed.

SOCIETE MATHEMATIQUE DE FRANCE 2019
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This can be done when [, is the Spin® Kohn Laplacian (cf. (4.12)). In this case,
we show that taking supertrace in (1.19) (P, = id) and applying Getzler’s rescaling
technique to the off-diagonal estimate (see Subsection 1.6.3 for more) yield that the
singular part t~" to the rightmost of (1.19) can be removed (see Subsection 1.6.4 and
Section 6 for a proof). More precisely

THEOREM 1.10. — Suppose (X, T1°X) is a compact, connected CR manifold with a
transversal CR locally free S' action and let E be a rigid CR vector bundle over X.
With the notations above, if [1p.m is the Spin® Kohn Laplacian (see (4.12)), then
forr=1,...,k and every Ng € N with Ny = Ny(n) for some Ny(n), there are g9 > 0,
d > 0 and Cn, > 0 such that (STr denoting supertrace, cf. (1.13))

~ No .
STre tHem (2, 2) — Pr0p, |m Z t " tSTr an_j(m))‘

(1.24) =0
Eoci(m,Xsring )2
<CNO(t_"+N°+1+e_ ; ), VO<t<d, VreX,,
and
STray(z) =0 forl<{<n,
(1.25) STr ap(z)dvx ()
1

- [Tdb (VT"°X TLOX) A chy (VE, E) A e ™5 A wo] (z)
2w 2n+1

where [- -+ |ant1 denotes the part of (2n + 1)-form.

As Spin® objects can be simplified in the K&hler case, so can the Spin® Kohn
Laplacian in the CR Kahler case, to which we turn now.

DEFINITION 1.11. — We say that X is CR Kéhler if there is a closed form © €
C*®(X,T*\1X) such that ©(Z,Z) > 0, for all Z € C°(X,TH°X). We call © a CR
Kahler form on X.

When X is a strongly pseudoconvex CR manifold with a transversal CR locally
free S1 action, the closed form dwy satisfies dwy(Z,Z) > 0, for all Z € C°(X,T*°X).
Hence X is CR Kahler.

A quasi-regular Sasakian manifold is also a CR Kahler manifold. We recall that for
a compact smooth manifold X of dimX = 2n+1,n > 1, the triple (X, g, o) where g is
a Riemannian metric and « is a real 1-form is called a Sasakian manifold if the cone
C(X) = {(z,t) € X xR-0} is a Kéhler manifold with complex structure J and Kéhler
form t2da + 2tdt A o compatible with the metric t2g + dt ® dt (see [6], [9], [54]). As a
consequence, X is a compact strongly pseudoconvex CR manifold and the Reeb vector
field &, defined by a(-) = g(¢&, +), induces a transversal CR R action on X. If the orbits
of this R action are compact, the Sasakian structure is called quasi-regular. In this
case, the Reeb vector field generates a locally free transversal CR S! action on X. We
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can thus identify a compact quasi-regular Sasakian manifold with a compact strongly
pseudoconvex CR manifold (X,7T%°X) equipped with a transversal CR locally free
ST action such that the induced vector field of the S! action coincides with the Reeb
vector field on X (see [53], [54]).

Let X be a CR Kihler manifold with a transversal CR locally free S action. If
(-]-» is induced by a CR Ké&hler form on X, then [, is equal to the Spin® Kohn
Laplacian. By Theorem 1.10, we immediately obtain a version of local index theorem
on CR Kihler manifolds with transversal CR locally free S action (which include the
compact quasi-regular Sasakian manifolds as a special case by above). These results
are discussed below.

For a proof of the following, see the beginning of Subsection 1.6.4 and the discussion
leading to Proposition 5.9):

COROLLARY 1.12 (CR Kihler case of Theorem 1.10). — Suppose (X,T'°X) is a
compact, connected CR Kdihler manifold with a transversal CR locally free S' action
and assume that (-|-) is induced by a CR Kdihler form on X. Let E be a rigid CR
vector bundle over X. With the notations above, forr = 1,...,k and every Ny € N
with Ng = No(n) for some No(n), there are g > 0, § > 0 and Cy, > 0 such that

No
STre *Bem(z,2) — pr, m Z t STy ozn,j(:c))

(1.26) io
Not1 EOJ(E’XsTing )2
< Oy (£HM0H 4T ) Vo<t <5, Vae X,
and
STroay(z) =0 forl<{<n,
(1.27) STr ap(z)dvx (x)

1

= [Tdb (VT"*X T1OX) A chy, (VE, E) A e ™5 A wo] (2).

2n+1

We are in a position to state an index theorem (including a local index theorem in
the CR Kébhler case). Recall thatdy ., := dp : Q%(X, E) — Q%71(X, E),m € Z, and
a gb,m—complexz

By 2+ = QI (X, E) — QUI(X, ) — QU (X, E) - -
The g-th 0y, Kohn-Rossi cohomology group (regarded as the m-th Fourier compo-
ment of the ordinary g-th Kohn-Rossi cohomology group) is
Ker 0y : Q%9(X, E) —» Q%Y1 (X, E
H;)Im(X, E) = erfb, Om_(l ) ) mO ( Y )
’ Im 0y : W' (X, E) > QY(X, E)

We will prove in Theorem 3.7 that dim Hy, (X,E) < oo (for each m € Z and
g=0,1,2,...,n) without any Levi curvature assumption.
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In Corollary 4.8 (see also Remark 4.9) we have a McKean-Singer type formula in
our CR case: for every ¢t > 0,

(1.28) Z(fl)jdim Hg’m(X, E) = J STr eftﬁ’%m(as,x)dvx.
=0 X

c0d(=, Xging )?
Combining (1.28), (1.24) and (1.25) and noting e~ 55— s bounded by 1
and rapidly decays to 0 for x in the principal stratum as ¢ — 0, we conclude the
following form of an index theorem on our CR manifolds (see Section 2.3 for the

precise meanings of Tdy, (T1°X) and chy, (E) below):

COROLLARY 1.13 (CR Index Theorem, cf. Corollary 6.5). — Suppose (X,T1°X) is a
compact, connected CR manifold with a transversal CR locally free S' action and let
E be a rigid CR vector bundle over X. Then

Y (-1)/dim Hj (X, E)
(1.29) 3=0
1 1,0 —m %0
= pép‘mﬁ Tdy, (T7°X) A chy (E) Ae”™ 20 A wp,
b'e

where Tdy, (T1°X) denotes the tangential Todd class of T'°X and chy, (E) denotes
the tangential Chern character of E.

For a connection with other works on index theorems by different formulations
and methods, we refer to comments that come after Theorem 1.28 and to the sixth
paragraph in Subsection 7.1.

1.2.4. Trace integrals in terms of geometry of the S stratification. — This is the third
and the last topic of this paper. For some applications (e.g., see a natural connection
with Remark 1.6), one studies the asymptotic behavior of {, Tre™* Oom (z,z)dvx ().
More comments on the historical respect come in the beginning of Section 7. Suppose
M is an orbifold of (real) dimension k and H (¢, z,x) is the associated heat kernel on
the diagonal for the standard Laplacian on M. It is known in 2008 [23] (for Laplacian
on functions; see also Richardson [59, Theorem 3.5]) that

(1.30) f H(t,z,z)dvx(z) ~ t 3 ay, +t_%+%ak_% Ft 5 g, +t‘§+%ak_% +o-,
M

where a; € R is independent of ¢, s = k, k — %, k—1,.... A novelty is that apart from
the overall t=5 the expansion is a power series in t3,

By a strategy partly in connection with the proof of Theorem 1.3, we obtain an
expansion of the trace integral in the same spirit as (1.30). We find that in our case, the
expansion is a power series still in integral power of t. However, there appear various
corrections (depending on m) supported on each stratum (cf. (7.56) and (7.61)) in
contrast to the expansion in the globally free case (of S action).

MEMOIRES DE LA SMF 162
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More precisely, we have (see Theorems 7.20 and 7.24 for more information and
proof):

THEOREM 1.14 (Cf. Theorems 7.20, 7.24). — With notations in Theorem 1.8 and
assumption that the S' action is locally free but not globally free, let e be the number
(which is even) defined to be the minimum of the (real) codimensions of connected
components M of X,, for all{ > 2. For s =n,n —1,..., we have

(1.31) J Tras m(t, z)dvx (z) ~ gs0 +tgs,1 + t2qs,2 <o ast— 0T,
X

where as m (¢, z) (= as(t,z)) is as in (1.17) and g5 ; € R is independent of t (dependent
on m though), j = 0,1,2,.... Similarly, ast — 07,

Tre t0om (7, 2)dvx (T) ~ Popjm (tfncn +t " e, +t T 2, g+ - )

(1.32) Jx

HETEE, . O,

These coefficients satisfy the following. For an £ > 2, write {Mjg ,}, (possibly empty
for some £) for those connected components My., of X,, with the codimension
codim My, = e. Set Sprp6m = SMMZ Tras,mdee’w where s m (= ) is as in
(1.18) and the numerical factor

_i2mho
e € © .
(1.33) Dy = (V) Z T (>0 if p|m).
¢,heN, (h,c)=1 ‘GZTP -1
c>1,¢c|pe,c|p

) g1 = g2 = = goc1 = 0, g0 = Popim §x Tragmdvx (s = n,n —1,
n—2,...).

ii) gs,¢ 4s (a finite sum) of the form Zem Dy mSeye,sm (S=n,n—1,n—2,...).

i) ¢s = §y Tragmdox (s =n,n—1,n—2,...).

iv) épe = (2m)~(n+1) 220, De;mvol (My,), (vol = volume), which is > 0 if p, | m
for each ¢ here.

The Laplacian in the work [23] is limited to the Laplacian acting on functions while
ours above is not. We remark that in [59, Theorem 3.5] the nontrivial fractional power
in ¢z does occur. This is however due partly to a fixed point set of codimension 1
under a reflection isometry (loc. cit., p. 2315). In our CR case, all of the various
fixed point submanifolds are of even (real) codimension, cf. i) of Remark 7.22 or [59,
p. 23-24]. See Section 7 for a comparison of these methods and results.

It will be of interest to study the geometrical significance of the various coefficients
in (1.31) and (1.32) as usually studied in the standard heat kernel case. Some explicit
expressions are available by our treatment, e.g., (7.56), (7.61) and Theorems 7.20, 7.24.

Remark that the above results essentially deal with the Gaussian part of the heat
kernel, which behaves as a Dirac type delta function supported on (each) stratum. By
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18 CHAPTER 1. INTRODUCTION AND STATEMENT OF THE RESULTS

contrast, the CR local index theorem as Corollary 1.13 is derived by exploring the non-
Gaussian parts of the heat kernel such as the off-diagonal estimate in Theorem 5.10.
In spirit, the two approaches are complementary to each other in the present paper,
and jointly enhance the understanding of heat kernels for this special class of CR
manifolds.

We indicate a connection with deformation of singularities. In algebraic geometry
it may or may not be possible to arrive at a smoothing of a singularity. In the case
of quotient singularities there are results on their rigidity property (i.e., every de-
formation is trivial) giving the nonexistence of smoothing, under certain conditions
(ct. [1], [61]). Here, as an application of our trace integral, there is the following result
on the “rigidity” aspect of S! action and of the orbifold geometry.

COROLLARY 1.15. — Let {X;}_c<t<c be a smooth family of compact CR manifolds
with transversal S* action (dependent ont smoothly) as before. Suppose that the S ac-
tion on Xy is locally, but not globally, free. Then the same holds true for all t small.
In the (special) case where X is realized as an (orbifold) S* bundle (associated with
a metrized holomorphic line bundle Lo) over a compact complex singular orbifold My
(see Subsection 1.4.2 for concrete examples), one hence obtains a nonexistence result
on the “smoothing” of the holomorphic object (Mo, Lg) as a pair.

It is possible to assert (and prove) a refined version of “rigidity” at the level of S*
stratifications via the use of the notion of “types” introduced in Subsection 7.5; the
precise formulation is left to the interested reader.

Proof. — Write X = | J, X; which is smooth by assumption. Suppose hg is a rigid
metric on Xy (cf. Subsection 1.2.1). It is not difficult to obtain a smooth extension
h: on X, giving a rigid metric on X; for each ¢. Because of the nontrivial correction
terms by Theorem 1.14, the nearby S! actions give nontrivial corrections terms too
(on each X;) by the continuity of heat kernels; this can occur only when the actions
are locally, but not globally, free by the same theorem. O

For those interested in algebraic geometry and singularities, the above “rigidity”
result appears new, to the best of our knowledge. Note, however, that an orbifold
could still be a nonsingular manifold (cf. Subsection 1.4.2 and Theorem 1.30). The
proper meaning of “smoothing” in Corollary 1.15 should be carefully understood in
the sense of group action within our context above.

Two more remarks go as follows.

REMARK 1.16. — We note that the topological obstruction exists for a CR manifold
to admit a transversal CR S' action. For instance, a compact strictly pseudoconvex
CR 3-manifold must have even first Betti number if admitting a transversal CR
S action. The reason is that such a manifold must be pseudohermitian torsion free
(see [48]), and this vanishing pseudohermitian torsion implies even first Betti number
as shown by Alan Weinstein (see the appendix in [17]). In this paper, we only consider
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1.3. APPLICATIONS 19

the S! action that is transversal and locally free. Here are two examples:

Example I: X = {(zl,zQ,zg) e C3 |a1|” + |zaf* + |2s)* + |22 + 22‘4 + |23 + z3‘6 = 1}.
Then X admits a transversal CR locally free S' action: e % o (z1,29,23) =
(e*wzl, e 20 4, 6*61923). It is clear that this S* action is not globally free.

Example II: Let X be a compact orientable Seifert 3-manifold. Kamishima and
Tsuboi [45] proved that X is a compact CR manifold with a transversal CR locally

free S* action. X is S'-fibered over a possibly singular base (an orbifold).
In Section 1.4, we collect more examples.

REMARK 1.17. — The S! action might admit a reduction to a simpler one
as Hom(S!,S') # id. Recall that p; = p < py < p3 < --- < py, associated
with periods of X under the given S' action (e7*% z) — e~ o z. Then p divides
each p;, j > 1. For, the isotropy subgroup Z, (= Z/pZ) < S* acts trivially on the
principal stratum, which is dense and open, hence on the whole X by continuity. The
isotropy subgroups Z,,, j = 2,...,k, on any other stratum must contain Z,, giving
% eN.

One renormalizes the given S' action by the new S! action satisfying p = 1. More
precisely, define

Slx X - X,
(e ) e Wog:= e o .
The new S'-action ( 9 o) has p = 1. Let @y be the global real one form with respect

to (e7%, o) and let H & (X, E) be the corrsponding cohomology group with respect
to (e7%, ). One sees

(:)0 = pWwo,
(1.34) N
HY,(X,E) = HS  (X,E), YmeZ, ¥g=0,1,2,...,n

Examining (1.34) and Corollary 1.13 yields that the index formulas in both cases can
be transformed to each other.

1.3. Applications

1.3.1. Applications in CR geometry. — In CR geometry, it has been an important issue
to produce many CR functions or CR sections. Put

HY)(X,E) = {ue C*(X,E); dyu = 0}.
The following belongs to one of the standard questions in this respect.

QUESTION 1.18. — Let X be a compact weakly pseudoconvex CR manifold. When
is the space Hy (X, E) large? (Pseudoconvex CR manifolds will be briefly reviewed
following Definition 2.2.)
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20 CHAPTER 1. INTRODUCTION AND STATEMENT OF THE RESULTS

In [49] Lempert proved that a three dimensional compact strongly pseudoconvex
CR manifold X with a transversal CR locally free S'action can be CR embedded
into CV. In [26] Epstein proved that a three dimensional compact strongly pseudo-
convex CR manifold X with a transversal CR globally free S* action can be embedded
into CV by the positive Fourier components.

The embeddability of X by positive Fourier coefficients is related to the behavior of
the S* action on X . For example, suppose for f1,..., fa,, € Hy,,(X) and g1--- ,gn, €
Hy,(X) the map

SpiixeX - (fi(@),..., fa, (2),91(x),...,gn(x)) € Clmth

is a CR embedding. Then, the S' action on X naturally induces an S! action
on &, ;(X), given by the following:

(135) €_i0O(Zl,...,de,de+1,...,de+hl)

—im0 —im0 —ilf —il6
= (e 21,...,€ Zdy € Zdy 41y € 24, +hy )

In short, under a CR embedding by positive Fourier components, one can describe
the S! action explicitly. Conversely, to study the embedding theorem of those CR
manifolds by positive Fourier components, it becomes important to know

QUESTION 1.19. — When is dimH?, (X, E) ~ m" for m large?

We shall answer, combining our index theorems with some vanishing theorems (see
below), Question 1.18 and Question 1.19 for CR manifolds with transversal CR locally
free S action.

Firstly it follows from Corollary 1.13 (by extracting the leading coefficient of the
term m™)

COROLLARY 1.20. — Under the same assumption as in Corollary 1.18, one has
(1.36) Z (—1)Ydim Hj (X, E) = rp6 J (—dwo)™ A wo +O(m™ 1),

= plm n!(2m)n+L [y

where r denotes the complex rank of the vector bundle E.

For a vanishing theorem we can repeat the proof of Theorem 2.1 in [43] with minor
changes and get

ProprosSITION 1.21. — Under the same assumption as in Corollary 1.13, suppose fur-
ther that X is weakly pseudoconvex. Then, for m » 1 dim Hg,m(X, E) = o(m™), for
every j =1,2,...,n.

Combining Corollary 1.20 and Proposition 1.21 one has
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COROLLARY 1.22. — Under the same assumption as in Proposition 1.21 (with X being
weakly pseudoconvez). One has, for m > 1,

n

. m n n
dim Hgm(X, E) = rpcSp‘mn!(T)nH fX(—dwo) A wp + o(m™),

where r denotes the complex rank of the vector bundle E. In particular, if the Levi form

is strongly pseudoconvez at some point of X, then dim Hl?,pm(X) ~m" form » 1,
and hence dim HY (X, E) = o.

These results have provided answers to Question 1.18 and Question 1.19 (for our
class of CR manifolds).

For another application, it is of great interest in CR geometry to study whether
and when a CR manifold X can be CR embedded into a complex space. It is a
classical theorem of L. Boutet de Monvel [8] which asserts that X can be globally CR
embedded into CV for some N € N provided that X is compact (with no boundary),
strongly pseudoconvex, and of dimension greater than or equal to five.

When X is not strongly pseudoconvex, the space of global CR functions could even
be trivial. As many interesting examples live in the projective space (e. g. the quadric
{[z] € CPN71; 212+ -+ |24]? — |2g41/2 — - - —|2n|? = 0}), it is natural to consider a
setting analogous to the Kodaira embedding theorem and ask if X can be embedded
into the projective space by means of CR sections of a CR line bundle L — X or its
k-th power LF.

For a study into the above question it is natural to seek the case where the di-
mension of the space HY(X, L") of CR sections of L* is large as k — o (so one
may hopefully find many CR sections to carry out the embedding). In this regard the
following question is asked by Henkin and Marinescu [51, p.47-48].

QUESTION 1.23. — When is dim HY (X, L*) ~ k™" for k large?

Assume that L is a rigid CR line bundle with a rigid Hermitian fiber metric h”
(i.e., L a CR line bundle admitting a compatible S! action, cf. the beginning of
Section 2.2). Let R e 02(X) be the curvature of L associated to h’. For a local
trivializing (S'-invariant) section s of L, |s(z)[}, = e 2%(®) with T¢ = 0. Then
C%L = 20,0p¢ € Q2(X). (LF, th) denotes the k-th power of (L,h%).

With Corollary 1.13 one can show

PROPOSITION 1.24. — With the notations above, for all § > 0, we have

(1.37) > Zn](—l)jdimHgm(X, L*QE)

meZ,|m|<ks =0
1
=r(@2n) "t kTt (i ﬂi — sdwp(2))™ A wo(z)ds + o(k™ ),
n! x J[-6,5]

as k — 400, where v denotes the complex rank of the vector bundle E.
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Proof. — By Corollary 1.13 one can check

> i (—1)/dim Hj (X, L* @ E)

meZ,|m|<ks j=0

(138 = S phy | (RGRE — mden(e))” A wn(a) + oK)

mez,|m|<ks
—n— k™ ) m
=r(2m) "t 2 p5p|mmj (zﬂ?/ﬁ - ?dwo(x))" A wo(z) + o(k™).
meZ,|m|<kd TYX

Note pdy|,, = p if p | m, and 0 otherwise. By this and (1.38) we get

(1.39) > i(—l)jdimHg’m(X, L*®E)

meZ,|m|<ks j=0

=r@2n) ! Z %k" fX(zﬂﬁ - p{dwg(:p))" A wol(z) + o(k™).

n:
0eZ,|pt|<kd

It is clear that the (Riemann) sum »,c7 01 <ks % §5 (@ 0735 - p%dwo(a:))” A wo(x) con-
verges to

J J ¢ C‘/?/ﬁ — sdwo(z))™ A wo(x)ds
x J[=5,6]

as k — oo. Hence

a0y N (B [ GRE - Bdan(o) nwn(a) + ok

€2, |pt|<ks k
1
= {—'k”“ J f (i RE — sdwo(x))™ A wo(z)ds} + o(k™1).
n: X J[-6,8]
Combining (1.40) with (1.39) we have (1.37). O

The following two results may be viewed as a companion of the Grauert-
Riemenschneider criterion in the CR case (with S* action). To start with

DEFINITION 1.25. — We say that (L, h%) is positive at p € X if the curvature C%ﬁ isa
positive Hermitian quadratic form over TZ}’OX . We say that (L, h”) is semipositive if

for any = € X there exists a constant § > 0 such that 0%5 — sidwo(x) is a semipositive
Hermitian quadratic form over T}°X for any |s| < 4.

We can repeat the proof of Theorem 1.24 in [44] with minor changes and get

PROPOSITION 1.26 (Asymptotical vanishing). — Assume that (L,h%) is a semi-
positive CR line bundle over X. Then, for § > 0, § small, we have

> dimH] (X, LF®E)=o(k™™), j=12,...,n.

meZ,|m|<ks
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Combining Proposition 1.24 and Proposition 1.26, we get

COROLLARY 1.27 (Bigness). — Assume that (L, h%) is semi-positive. Then, for § > 0,
6 small, we have

(1.41) >, dimHp, (X, ¥ ®E)

meZ,m|<kd
1
_ r(27r)_"_1—'k"+1f f (1 RE — sduwo(@))" A wolx)ds + o(k™),
n: X J[-46,8]

where v denotes the complex rank of the vector bundle E. In particular, if (L, ht) is
positive at some point of X, then

dim Hy (X, L* @ E) ~ k" *1.

The above result yields an answer to Question 1.23 in the case pertinent to our
class of CR manifolds.

1.3.2. Kawasaki’s Hirzebruch-Riemann-Roch and Grauert-Riemenschneider criterion
for orbifold line bundles. — There is a link between our CR result and a complex
geometry result of Kawasaki on Hirzebruch-Riemann-Roch formula over complex
orbifolds [47]. Compared to Kawasaki’s, we get a simpler Hirzebruch-Riemann-Roch
formula for some class of orbifold line bundles using our second main Result Corol-
lary 1.13. Moreover, from Corollary 1.22 it follows a Grauert-Riemenschneider crite-
rion for orbifold line bundles.

To the aim we shortly review the orbifold geometry and also set up notations. Let
M be a manifold and G a compact Lie group. Assume that M admits a G-action:

GxM— M,
(9,2) > gox.
We suppose that the action G on M is locally free, that is, for every point x € M, the

stabilizer group G, = {g € G; gox = z} of z is a finite subgroup of G. In this case
the quotient space

(1.42) M/G

is known to be an orbifold. A remark of Kawasaki [46, p. 76] discusses the validity of
a converse statement about when a space has a presentation of the form (1.42). (As
is well-known, these spaces are actually called V-manifolds by Satake [60], a slightly
restrictive class of orbifolds.)
We assume now that M is a compact connected complex manifold with complex
structure T1°M. G induces an action on CTM:
G xCI'M —- CTM,

(1.43) (9,u) = g*u,
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where g* = (g7 !); the push-forward by g=! on CT'M. Suppose G acts holomor-

phically, that is g*(T*°M) < TYOM for ¢ € G. Put CT(M/G) := CTM/G,
TOYM/G) := T®'M /G and T*°(M/G) := T*'M/G.

Assume that T%Y(M/G) n TY°(M/G) = {0}. Then, T*°(M/G) gives a complex
structure on M /G and M /G becomes a complex orbifold. Suppose dim ¢T**(M/G) = n.

Let L be a G-invariant holomorphc line bundle over M, that is, there exists a choice
of transition functions h (defined on open charts U) of L such that h(g o x) = h(z)
for every g € G, x € U with goz € U. Suppose that L admits a locally free G-action
compatible with that on M, i.e., an action (g9,v) (€ G x L) — gowv € L with the
property m(g o v) = g o (w(v)) (g linearly acts on fibers of L), 7 : L — M the
projection. Then, L/G is an orbifold holomorphic line bundle over M /G (the fiber is
not necessarily a vector space).

The above construction induced by (locally free) G-action on L naturally extends
to L™, the m-th power of L, and L*, the dual line bundle of L. Thus L™ /G and L*/G
are also orbifold holomorphic line bundles over M /G. Put (¢ = 0,1,2,...,n)

(1.44) Q¥(M/G,L™/G) := {ue Q*I(M,L™); g*u =u, VgeG}.

The Cauchy-Riemann operator 0 : Q%9(M,L™) — Q04t1(M,L™) is G-invariant,
hence gives a d-complex (J,Q%*(M /G, L™/G)) and the g-th Dolbeault cohomology
group:

Kerd: Q%4(M/G,L™/G) — Q%Y (M /G, L™/G)

Imo: Q0a—1(M/G,L™/G) — Q%4(M/G,L™/G)

HY(M/G,L™/G) :=

Let Tot (L*) be the space of all non-zero vectors of L*. Assume that Tot (L*)/G is
a smooth manifold. Take any G-invariant Hermitian fiber metric RL* on L*, set
X = {veL* |v|,.x =1} and put X = X/G. Since Tot (L*)/G is a smooth manifold
by the foregoing assumption, X = X /G is a smooth manifold. The natural S! action
on X induces a locally free S' action e * on X. One can check that X is a CR
manifold and the S* action on X is CR and transversal.

In a similar vein as the proof of Theorem 1.2 one can show (for ¢ = 0,1,2,...,n
and m € Z)
(1.45) HY(M/G,L™/G)) ~ Hg,m(X).

We pause and introduce some notations. For every z € Tot (L*) and g € G, put
N(g,z) =1if g¢ G, and N(g,z) = inf{feN*; gt = id} if ge G. Set

(1.46) p=inf{N(g,z); x € Tot (L*), g€ Gy, g #id}.

It should be noticed that the p in (1.46) corresponds to the p of the S! action on X.
Putting together Corollary 1.13, (1.45) and (1.46) gives
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THEOREM 1.28. — With the notations above, recall that we work with assumptions
that M is connected and Tot (L*)/G is smooth. Then (for every m € Z)

(1.47) > (-1)'dim H(M/G,L™/G) = p(5p|m%f Tdy (TY0X) A e™™ 5 A wp.
3=0 X

To compare this result with that of Kawasaki ([47]) we assume p = 1 for simplicity.
Note X is smooth (yet M /G could be singular). The above integral (1.47) reduces to
an integral over the principal stratum of M /G (by integrating wy along the fiber S*,
which gives 1). It is thus the same as to say that the contributions from the lower
dimensional strata sum up to zero. As remarked in Introduction a vanishing result as
such is not readily available in the formula of [47]. Note that the notion of “orbifold”
in [47] is slightly more general than that of Satake (on which the present section is
based). As this generality does no real harm to the reasoning above, we omit the
details in this regard.

The above result on the vanishing of the contributions from strata may also be
reflected in the index formula of the works [55], [34] which study the index of transver-
sally elliptic operators on a smooth compact manifold with the action of a compact
Lie group G, by using the framework of equivariant cohomology theory. A remarkable
point is that they define the index as a generalized function (on G) (also discussed in
Atiyah [2], p.9-17). In fact it is not difficult to verify that for the case of the S! action,
our present m-th index is basically the m-th Fourier component of the corresponding
index (in the sense of generalized functions) of theirs (for the case g = id € G in [34],
[55]).

The consistency of our result with those works above helps to shape our own view
towards the asymptotic expansion of a (transversal) heat kernel conceived in this
subject.

For examples that satisfy Theorem 1.28 we refer to Section 1.4. There, we con-
struct, among others, an orbifold holomorphic line bundle over a singular complex
orbifold such that the assumptions of Theorem 1.28 and Corollary 1.29 are fulfilled
(see Corollary 1.31 and Subsection 1.4.2 below). Indeed there are ample examples in
this respect.

Take any G-invariant Hermitian fiber metric h* on L and let RY be the associ-
ated curvature R”. We say that R” is semipositive if the Hermitian quadratic form
—00log h® is semipositve on TVOM. We say that R is positive at p € M if the
Hermitian quadratic form —ddlog h” is positive on Tpl’OM .

As promised in the beginning of this section, we obtain now a Grauert-
Riemenschneider criterion for orbifold line bundles, upon combining Corollary 1.22
and (1.45).
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COROLLARY 1.29. — With the notations and assumptions above, suppose that there is
a G-invariant Hermitian fiber metric h™ on L such that the associated curvature R” is
semipositive and positive at some point of M. Then dim H°(M /G, LP™/G) ~ m™
form > 1 and p as in (1.46).

1.4. Examples

In this subsection, some examples of CR manifolds with locally free S! action
(including those fitting Theorem 1.28 above) are collected.

We first review the construction of generalized Hopf manifolds introduced by
Brieskorn and Van de Ven [10].

1.4.1. Generalized Hopf manifolds. - Let a = (ai,...,a,42) € N2 let 2z =
(21,...,2n4+2) be the standard coordinates of C"*2 and let M(a) be the affine
algebraic variety given by the equation

n+2

a; _
Z z;j = 0.
j=1

If some a; = 1, the variety M (a) is non-singular. Otherwise M (a) has exactly one

—_—

singular point, namely 0 = (0,...,0). Put M(a) := M(a) — {0}. Now we define a
holomorphic C-action on M (a) by

t _t
to(z1,...,2nt2) = (e3121,...,e* 22, .9), t€C, (z1,...,2n12) € M(a).

It is easy to see that the Z-action on M (a) is globally free. The equivalence class
of (21,...,2n42) € C"*2 with respect to the Z-action is denoted by (z1, ..., 2ni2) + Z
and hence

H(a) i= M{@)/Z = { (21, 2n12) + Zi (21, - 2n42) € M(0)}

is a compact complex manifold of complex dimension n + 1. We call H(a) a (gener-
alized) Hopf manifold.

Let T, be the discrete subgroup of C, generated by 1 and 27ai, where « is the
least common multiple of aj,as,...,a,42. Consider the complex 1-torus T, = C/T,.
H(a) admits a natural T,-action. Put V(a) := H(a)/T,. By Holmann [41], V(a) is a
complex orbifold. Let 7, : H(a) — V(a) be the natural projection.

The following is well-known (see the discussion before Proposition 4 in [10]).

THEOREM 1.30. — Let p = (#1,...,2n+2) + Z € H(a). Assume that there are exactly

k coordinates zj,, ...,z all different from zero, k > 2. Then, V(a) is non-singular
at m,(p) if and only if

[ala"‘yan+2] _ [ala"'7a'n+2]

[ajl, e ,ajk] f¢{j1 jk} [al, ey Qp_1, ag_;,_l, e ,an+2] ’
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where [my,...,mq]| denotes the least common multiple of my,...,mq € N.
It follows readily

COROLLARY 1.31. — Assume n > 2 and (a1,as,...,an42) = (4b1,4ba,2b3, 2by, .. .,
2b,,12), where bj € Z, bj is odd, j =1,...,n+2. Let p = (0,0,1,4,0,0,...,0)+Z €
H(a). Then, V(a) is singular at 7, (p).

The ideas in the next two (sub)subsections are heavily based on Theorem 1.30 and
Corollary 1.31.

1.4.2. Smooth orbifold circle bundle over a singular orbifold.— Put

(1.48) X :={(21,--,2n42) € C"2 200 4+ 252 + - + 2075 =0,

B

21 + |22‘2a2

+ 1232 - |z = 1)

It can be checked that X is a compact weakly pseudoconvexr CR manifold of dimension
2n + 1 with CR structure 710X := T1OC+2 ~ CTX, where T1°C"*2 denotes the
standard complex structure on C"+2,

Let o be the least common multiple of a1, ..., an42. Consider the following S ac-
tion on X:
Slx X - X,
(1.49) . a . a
e ®o(z,...,2n42) — (eilﬁezl, . € Tni2 ezn+2).

One sees that the S! action is well-defined, locally free, CR and transversal. Moreover
one has that the quotient X/S' is equal to V(a), a = (a1,as,...,a,:2). Hence,
X /S is a complex orbifold.

One sees, by using Corollary 1.31, that the above X/S! is singular if n > 2
and (a1,...,an42) = (4b1,4bg,2b3,2by,...,2b,49), where b; € Z, b; is odd, j =
1,2,...,n+2.

We now show that (X,T%°X) is CR-isomorphic to the (orbifold) circle bundle
associated with an orbifold line bundle over X /S = V (a).

To see this and to construct the circle bundle in the first place, let L = (M\(d/) x C)/=,

~

where (21,...,2n4+2,A) = (21,. .., Znt2, A) if
Yi=eviz, j=1,...n+2
)= e\,
where m € Z. We can check that = is an equivalence relation and L is a holomorphic
line bundle over H(a). The equivalence class of (z1,. .., 2n+2,A) € M(a)x C is denoted
by [(#1,. .-, #nt+2,A)]. The complex 1-torus T, action on L is given by the following:
T, x L — L,
(1-50) t+i6 t+i6 Y
(t + Za) © [(zla sy Bn+2, )‘)] - [(6 121, ...,e% 2 2n 0,6 _1Z>\)]a
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where « is the least common multiple of a,...,a,+2. One has that the torus action
(1.50) is well-defined and L/Ty, is an orbifold line bundle over H(a)/T, = V(a).

Let 7 : L — L/T, be the natural projection and for [(21,..., 2,42, \)] € L, we write

7([2z1,- -+ 2Zns2, A]) = [21, - - -, Znt2, A] + T, One sees that the pointwise norm

, -
[(z1,- - 22, V] + Tay yms = |>\|2(|z1|2a1 + 2] + |25 2 +...+‘Z2"+2‘2an+z)

is well-defined as a Hermitian fiber metric on L/T,. The (orbifold) circle bundle
C(L/T,) with respect to (L/T,, h%/T=) is given by

C(L)T,) := {v e L/Ty; [0, = 1}
(1.51) = {[(zl,...,zn+2,)\)] + Ty;
|/\|2 = |Z1|2a1 + |22|2a2 + |23|2a3 + e+ |22n+2|2a"+2}.

One sees that C(L/T,) is a smooth CR manifold with the CR structure
™°c(L/T,) := T*°L/T, n CTC(L/T,),

where TH°C(L/T,) denotes the complex structure on L/T,. Moreover, the orbifold
line bundle L/T, — V(a) satisfies a similar situation as in Theorem 1.28 (i.e., the
space X/S! = V(a) here as the M /G there, is singular and C(L/T,) as a (orbifold)
circle bundle over M /G is smooth). We are ready to give an CR isomorphism of X
and the (orbifold) circle bundle C(L/T,). Note C(L/T,) admits a nature S' action:

e o ([(z15- s 2na2, N + Ta) = [(21, - - -, Znt2, eiie)\)] +T,.

Let ® : C(L/T,) — X be the smooth map defined as follows. For every
[(#15-+s2n42,N)] + Ty € C(L/T,), there is a unique (%1,...,2,42) € X such
that

[(21, ey Zn+2, )\)] + Ta = [(21, ceey 2n+2; 1)] + Ta.

Then, ®([(z1,-. ., 2n+2, A)] + Ta) := (21,-.., 2nt2) € X. It can be checked that ® is a
CR embedding, globally one to one, onto and the inverse ®! : X — C(L/T,) is also
a CR embedding. Moreover =% o ®(z) = ®(e~*® o ), Vz € C(L/T,). We conclude
® is a CR isomorphism.

1.4.3. Family, non-pseudoconvex cases and deformations. — With the notation of Sub-

section 1.4.1 we assume a; = 1, so

M(a) = {(zl,...,zn+2) eC"t2; 2 = —23 ZZ:—?
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Fixaqg=2,3,...,n+ 1. Put, for t € C,
(1.52)
Xop=A{(21,. ., 2ns2) + Z € H(a); — |257 + t25°° — |23]>% — -+ — |z, |**
+ |2ge1 4 + [2nge] P = 0}
One can check that for each ¢, X, ; is a compact CR manifold of dimension 2n + 1
with CR structure T9°X,; := T19H(a) n CTX,:, where TV9H(a) denotes the
natural complex structure inherited by M(a). Note X,, is diffeomorphic to X,

for t;,t; € C since they can be connected through a (smooth) family of compact
manifolds.

Let @ be the least common multiple of ay, ..., a,. Consider the following S! action
on Xg4:

St x Xgt = Xq

(153) 67i0 o ((Zla .. '7zn+2) + Z) - (671'619(7'232 - qu) - ZZiJil - Z?Li*;?
_;a —_i4.9
e 2 2y, e P 20, 2g 41y Zns2) + 2

One sees that the S' action is well-defined, locally free, CR and transversal. This
is an example for a family of CR manifolds admitting a transversal CR locally free
St action.

Moreover these CR manifolds X, ; are not pseudoconvex.

Now we consider certain CR deformations of a compact CR manifold X with a
transversal CR locally free S* action. Let F(z) € C*(X) with TF = 0 (T the global
real vector field induced by the S* action). Let Z1,..., Z, € C*(X,T1°X) be a basis
for T10X. Put

(1.54) HYX :={Z; + Z;(F)T; j = 1,2,...,n}.

One can check that H'°X is a CR structure and the S action is locally free, CR
and transversal with respect to this new CR structure H1:X (see (2.10) via the BRT

construction).

To see how “new” this CR structure H10X is, let’s take X to be a circle bundle
associated with a holomorphic line bundle (L, || - ||) over a compact complex mani-
fold M. Consider a change of metric || - || — e 2f|| - || on L and the circle bundle X

thus induced by this new metric. By using the Formula (1.56) below one sees that
HY0X of (1.54) for F = —if is equivalent to 720X . But is (X, T°X) CR equivalent
to ()Z' ,THOX )? The answer is in general no. For instance, spherical CR structures on a
certain topological type of X can be obtained by using special metrics on L (cf. [16]).
Hence an arbitrary perturbation of the bundle metric, say by the multiplier e=27,
would bring X out of the spherical category. Note that the moduli space of spherical
CR structures in [16] is finite dimensional. It follows that for F' a purely imaginary
function on X, the CR structure H*YX is in general not CR equivalent to T1°X.

SOCIETE MATHEMATIQUE DE FRANCE 2019



30 CHAPTER 1. INTRODUCTION AND STATEMENT OF THE RESULTS

If, however, F' is a real function, it is easily seen that the change (z,0) — (z,0+F) is
globally defined, hence it gives a diffeomorhism ¢ of X. One sees ¢4 (T*°X) = H10X,
cf. (1.56) below. So in this case the CR structure H%X is equivalent to the original
one.

1.5. Proof of Theorem 1.2

We will use the same notations as in Theorem 1.2. Let s be a local trivializing
section of L defined on some open set U of M, |s|iL =e 2. Let 2z = (21,...,2,) be
holomorphic coordinates on U. We identify U with an open set of C" and have the
local diffeomorphism:

(1.55) 7:U x ]—e0,60[ = X, (2,0) — e *®s*(2)e™ 0 <go <.

Put D = U x |—&g,¢€0[ as a canonical coordinate patch with (z,6) canonical coor-
dinates (with respect to the trivialization s) such that T = % (recall that T is the
global real vector field induced by the S! action). Moreover one has

0 .0 o .
1,0 = _— —_— =
. ¢ { (z)ae,] 1,2,...,n},

7
. TOlX = i+ia—¢(z)ﬁ'j:1 2 n
0z; 0z 06’ A
and
(1.57) T*OX ={dz;; 7 =1,2,...,n}, T*'X ={dz;;j=1,2,...,n}.

See also Theorem 2.9 and proof of Proposition 4.2 for similar formulas in the general
case of S action.

Let f(2) € Q%9(D). By (1.57) we may identify f with an element in Q%¢(U).

The key object in our proof is the map Al . N%(X) — QY9(M,L™), to be
defined as follows. Let u € Q%9(X). We can write u(z,0) = e"*™%(z) (on D) for
some 4i(2) € Q%9(U). Then, on U = M, we define

(1.58) ADy = 5™ (2)e™? P q(z) e Q%9(U, L™).

We need to check the following.

i) Al in (1.58) is well-defined, hence gives rise to a global element APy e

Q09(M, L™).
ii) It satisfies the commutativity EA%) = AS,‘{H)EI) (thus induces a map on respec-
tive cohomologies).

To check i) let s and s; be local trivializing sections of L on an open set U.
Let (z,68) € C" x R and (z,7) € C™ x R be canonical coordinates of D with respect
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to s and s; respectively (D as the above). Set |s|,21L = e 2% and |sl|,21L = e 291, We
write (on D)

u = e MG (2)
u=e "™ (2).
To check i) amounts to the following

(1.60) s™(2)em?Fa(z) = sT(2)e™*1 Py (2), VzeU.

(1.59)

Let s; = gs for g a unit on U. To find relations between ¢ and ¢, 4 and 4; in
terms of g,

1l = €72 =gl fff = oo =2,
giving
(1.61) ¢1=¢ —loglg|.
For 4 and 4, we first claim the following (7 in (1.55) for (z,0) and 7, the similar one
for (z,7m))
(1.62)

If 7(2,0) = 71(z,7m), then 6_19(98) = e~ (with a certain branch of the square root).

Proof of the claim (1.62). — Combining (1.55) and (1.61) one sees
7(2,0) = s*(2)e %) = s¥(2)g(z)e ¥~

(1.63) = 5¥(2)g(z)e" 0~ #1(z)loglg ()]
g(Z) 1 e
:3* 2) (== 2e ? d’l(z)'
16)(5)
The condition 7(z,0) = 71(2,7) is the same as to say, by (1.55),
(164) S* (Z)efiefdﬂz) = 8’{(2)671-7774‘51(‘3).
By (1.63) and (1.64) we deduce that (gézg)%e_w = e " as claimed. O

Now that the relations (1.61) and (1.62) have been found, the (1.60) follows by
using (1.59). Hence AY Q%4(X) — Q%4(M,L™) is well-defined, proving i) above.
Moreover it is easily checked that Agf{) is bijective. We omit the detail.
To prove ii) that 04 = A3, by (1.56) and (1.57) one sees (on D)
- ot ¢
1.65 Opu = Op(e™ ™4 ez — (2)a(2)).
09 D=2 = e A () m E (i)
Hence (1.65) and (1.58) yield

A(q+1) (gbu) _ Sm(z)em¢(z) Z dEjA (@(2’) +m a(b (Z)’&(Z))

m

(1.66) = 0zj 0Z;
= 5™(2)0(e™?*)a(z)) on U,
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giving EA,(E) = A,(;{H)Eb, Theorem 1.2 follows.

REMARK 1.32. — The map Afﬂb) does not depend on the metrics of the manifolds X
and M. In later sections we study the Kohn Laplacian and Kodaira Laplacian on X
and M respectively, and try to establish a link between the two Laplacians (with the
aim at the Kohn’s). In this regard we need equip X and M with appropriate metrics
so that Agg) thus defined is also compatible with these metrics. Note a localization
of this (metrical) construction (cf. Proposition 5.1) paves the way for our subsequent
plan in this work.

Some difficulties (and ways out) for a straightforward generalization of the proof
for this special case (globally free S* action) will be discussed in the subsection below.

1.6. The idea of the proofs of Theorem 1.3, Theorem 1.10 and Corollary 1.13

We will give an outline of main ideas of some proofs. For the proof of Theorem 1.14,
some ideas are outlined in the beginning of Section 7. We refer to Section 2.2 and
Section 2.3 for notations and terminologies used here. The main technical tool of our
method lies in a construction of a heat kernel for the Kohn Laplacian associated to
the m-th S' Fourier component.

1.6.1. Global difficulties. — For simplicity we assume that X is CR Kéhler (cf. Defi-
nition 1.11), E = C and (- |- ) is induced by a CR Kéhler form © on X. Write 5: for
the adjoint of 0, with respect to (-|-) and E;m = 5: : QUatl(X) — Q%4(X) with
Q%+ (X) and Q%7 (X) denoting forms of even and odd degree. Consider
Dy, 1= Obm + Oy - A0 (X) = Q%F(X), meZ

and let (0, := Dy Dyf - Q0+ (X) — Q).+ (X) @y, := Dy, Dy, similarly).

Extending D;m and [, ,, to L%7(X) and L%~ (X) (Lz—completlon), respectively,
in the standard way, we will show in Theorem 3.5 that SpecDim are discrete subsets
of [0, 00 and SpecDZ—fm consist of eigenvalues of Dl;—tm.

For v € Spec[ll':m, let {f{’, RN f(’i’u} be an orthonormal frame for the eigenspace

of [J;,, with eigenvalue v. Write T*0*X = Do<q<n T*0ax . e tOim (z,y)
TFO* X — TF%* X, said to be a heat kernel, is given by (cf. (1.12))

dy,
(1.67) e Dim(z,y) = D) Z eV () A (FL ().

veSpec[];" b,m

(Similarly we can define e *Hom (z,7).)
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We will show in Corollary 4.8 (see also Remark 4.9) that we have a CR McKean-
Singer type formula: for t > 0,

(1.68) Y (~1/dim ], (X) = J

(Tr e~ 0im (z,2) — Tre "Hom (g, m))dvx.
b'e

By this formula the proof of our index theorem (cf. Corollary 1.13) is reduced to de-
termining the small ¢ behavior of the function (Tr e~ 0im (z,2) — Tre "Hom (g, x))

With the kernel e *Dm (z,y) there is associated an operator denoted by et 0im .

Q%+ (X) — Q%F(X). Note the domain is set to be the full space Q% (X). From (1.67)
it follows that the kernel satisfies a heat equation which is expressed in the following
operator form

0t 00 m
(169) eT + D;me_“:‘;’r*m =0
and
—-t0f,, _ N+
(1.70) e e =@,

where Q. : L»*(X) — L2, (X) is the orthogonal projection.

The main difficulty lies in that the initial condition (1.70) is a projection operator
rather than an identity operator because we are dealing with part of the L? space
(i.e., the m-th eigenspaces) rather than the whole L? space (as in the usual case). In
a similar vein, let us quote in a paper of Richardson [58, p. 358]: “A point of difficulty
that often arises in this area of research is that the space [...] is not the set of all
sections of any vector bundle, and therefore the usual theory of elliptic operators and
heat kernels does not apply directly. ..”. The condition (1.70) eventually leads to the
result that the heat kernels et (z,y) do not have the standard expansions (as
usually seen).

For a better understanding let’s assume that X is a (orbifold) circle bundle of an
orbifold line bundle L over a K&hler orbifold M (see Section 1.4 for specific examples).
As in Theorem 1.2 (see Section 1.5), one sees bijective maps

AL Q% (X)) - Q%F (M, L™,

such that A, 0, = 0A;. Let (1} be the Kodaira Laplacian with values in 7*%* M @ L™
and let e *Om be the associated heat operator. Consider B, (t) := (A}) toe tHm o
A}, A% are metric-independent (on a given X). To get a link between [1;, and (1,
it requires, however, a compatible choice of metrics on X and M. With this done,
one checks that By, (t) +;,,Bm(t) = 0 and B, (0) = I on Q0" (X).

But B,,(t) is not the heat operator e 'O, A trivial reason is that B, (t) is
defined on Q%% (X) while ¢"D%.m is on the whole Q%+ (X). In fact one has

(171) e Fom — ((45) " oe™ TR0 A%) 0Qf, = Bu(t)o Qs (= Qo B ()0 Q).
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Let B,,(t,z,y) be the distribution kernel of B,,(t). To emphasize the role played
by @}, in our construction, it is illuminating to note the following (cf. (1.71), (2.2)
and (4.17))

1 (™ , A
(1.72) e_tD;m(a:,y) =5- B, (t,z,e " oy)e " du.

u —T
For z € X, (the principal stratum), from (1.72) and the much better known kernel
e~*Om (on the principal stratum of M) it follows

(1.73) eftD;m(a:,x) ~t el (x) + ™ Vat (@) -

However for z ¢ X, by lack of the asymptotic expansion of B,,(t) (or e~t0m on
low dimensional strata of M) it is unclear how one can understand the asymptotic
behavior of e~ !Dom (z,z) by means of (1.72). This presents a major deviation from
proof of the globally free case (as Theorem 1.2, cf. (1.1), (1.2)).

To see more clearly the discrepancy between the two cases (locally free and globally
free) we note that the expansion (1.73) converges only locally uniformly on X,, due
to a nontrivial contribution involving a “distance function” (see Subsection 1.6.3 for
more). In fact the expansion of the form (1.73) which is usually seen, cannot hold
here (globally on X) (cf. Remark 1.6).

It is thus not immediate for one to arrive at a detailed understanding of the
(transversal) heat kernel by only using the global argument. Even in the (smooth) orb-
ifold circle bundle case, to understand the asymptotic behavior of the heat operator
et 0bm we will still need to work directly on the CR manifold X instead of M.

In this paper we give a construction which is independent of the use of orbifold
geometry and is more adapted to CR geometry as our CR manifold X is not assumed
to be an orbifold circle bundle of a complex orbifold. Because of the failure of the
global argument as just said, we are now led to work on it locally. The framework for
this is BRT trivialization (Section 2.4) which is first treated by Baouendi, Rothschild
and Treves [3] in a more general context.

1.6.2. Transition to local situation. — Let B := (D, (z,0),¢) be a BRT trivialization
(see Theorem 2.9). We write D = U x |—¢,e[, where ¢ > 0 and U is an open set
of C". Let L — U be a trivial line bundle with a non-trivial Hermitian fiber metric
112, = e 2% (where ¢ € C*(D,R) is as in Theorem 2.9) and (L™,h%™) — U be
the m-th power of (L,hl). © (cf. Definition 1.11, recalling that X is CR Kihler as
assumed for the moment) induces a Kéhler form Oy on the complex manifold U. Let
(-, - ) be the Hermitian metric on CTU (associated with O ), inducing together with
RE™ the L? inner product (-, - ),, on QO*(U, L™).

Let 0" : QO4t1(U, L™) — QO4(U, L™) be the formal adjoint of 0 with respect
to (-, - )m. Put, as the case of Dy, and p,m, D%,m =04+0™ . QOt(U,L™) —
QO%+(U,L™) and ng,)m = DE,ng,m : QO (U, L™) — QO (U, L™).
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In Proposition 5.1, by the above choice of metrics in forming Laplacians on two
different spaces (D and U), we can provide a link between these Laplacians, asserting
that

(1.74) e "™ Em(em"’ﬂ) = "™ ;f)m (u),
where as before, u € Q%% (X) can be written (on D) as u(z,0) = e~"™%(z) for some
t(z) e Q%X(U, L™) < Q%* (D, L™).

Write = (2,0), y = (w,n) (on D). With (1.74) one expects that the heat kernel
eitD;m(a:,y) locally (on D) should be

(175) efmgp(z)fimeeftmgm (IL‘, y)emcp(w)+imn'

Thus one obtains local heat kernels on these BRT charts.

We would like to patch them up. Assume that X = Dy U Dy U --- U Dy (where
D, in a BRT trivialization B, := (D;, (2,6), ¢;)) with D; = U; x |—6;,6;[  C" x R,
§; >0, gj > 0, U, is an open set in C").

Let Xja)?j € CSO(D]) (] = 1,2,...,N). Put

N
—me.i(z)—im 7t\:\+vm me;(w)+im v
w1 - Z x; () (e 23 (2)=iml o T By om (5 ) emes (W)t n)xj(y)’

cy)m(t) = C%m(t) OQ;";L'

It is hoped that 2,,(0) = Q; and P, (t) + g Pm(t) is small as t — 0F
for certain x;, X;. This is related to asymptotic heat kernel. But as we will see, this
standard patch-up construction does not quite work out in our case.

In short, we will see that in the locally free case the nice (pointwise) relation
(1.74) between Kodaira and Kohn Laplacians does not quite carry over to the global
objects: heat kernels, whose mutual relation is to be seen below by more delicate
analysis relevant to the presence of strata beyond the principal stratum.

1.6.3. Local difficulties. — A necessary condition for 2,,(0) = Q;} is (cf. Lemma 5.11)

(L.77) Z X; (@ J Xi(w,m)| __dn=1.

For the cut-off functions x,, X; above, a reasonable choice (adapted to BRT trivial-
izations) is the following (for j =1,2,...,N):

i) x;j(2,0) € C°(D;) with 3,7, x; = 1 on X,

ii) 7;(z) € C§°(U;) with 7;(2) = 1 if (2,6) € Supp x;,

iii) o € CF (135, ;[) with §%; o;(n)dn = 1.
Set X;(y) = 7j(w)o;j(n). Then x,(x), X;(y) satisfy (1.77).

One can check 2,,(0) = Q; and a little more work shows

(1‘78) ﬂgin(t) +|:|lj:m‘yjm(t) = lﬁm(t) © :w
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where for some k&,
(1.79)

N k
e (z)—im *tDJrvm me;(w)+imn>
Romt) = D3 D Lo (xs(@)e 5@ ) Py s (7 D50 (2, w) ) ermest) timngs ),
j=1¢=1

L, ; is a partial differential operator of order > 1 and < 2 (for all 4, j) and P, ; is a par-

_ +
tial differential operator of order 1 acting on z (for all 4, ). Since tDB]"m(

e z,w)| ~

1 _|z*w\2

g€t ,there could be terms of the form, say

O+ 1 _z—w?|z—w
(1.80) Pg’j<€ tDBjrm(z,w))mJt—ne 7 | ; |

To require 2., (t) + Oy Pm(t) to be small (as t — 0F) we need (by substituting

(1.80) into (1.79) to get singular terms in powers of  smooth out):
(1.81)

Ly ; <Xj(w)e_"“"j(Z)_img)em“"j(w)+im">~<]~(y) =0 if zis close to w (|z — w| < V).

Since x; may not be constant on Supp X; (for some j), it is hard for (1.81) to hold.
Despite that in the usual (elliptic) case a construction of the heat kernel using cut-off
functions as above is available, in view that a distance function will appear in our
asymptotic expression (cf. (1.85) below) it is unclear whether this type of standard
construction can be immediately carried out in our case.

It turns out that upon transferring to an adjoint version of the original equation
one may bypass the aforementioned difficulty (cf. Lemmas 5.11, 5.12), to which we
turn now.

For j = 1,2,...,N there exists Ap, ((t,z,w) (¢ C*(Ry x U; x U;, T*O"U ¥
(T*0FU)*), cf. Proposition 5.7), regarded as an adjoint heat kernel, such that

lim¢ o4 Ap, +(t) = I in 2'(U,T*"1U),

1.82
(1.82) B+ (t)u+ ABJ.,JF(t)(ng’mu) =0, Yue Q2T (U), Vt>0,

and Ap, (t,z,w) admits an asymptotic expansion as t — 0% (see (5.19)). Put

(1.83) Hj(t,z,y) = x;(x)e ™0 Ap, (8, 2,w)e™? W FmI55(y).
Also set

N
(1.84) L(t):= Y. Hj(t)oQy : Q¥ (X) - Q¥ F(X).

j=1

By using the adjoint equation, we can avoid the difficulty mentioned in (1.81) so
that T'(t) gives an asymptotic (adjoint) heat kernel (see that below (1.76)). To get
back to the kernel of the original equation, we can now start with the adjoint of I'(¢).
By carrying out the (standard) method of successive approximation, we can reach the

global kernel of the adjoint of (the adjoint of) e 0hm (Section 5.2). This yields the
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kernel of e~ !Jem since e tDom is self-adjoint. More precisely we can prove that (see
Theorem 5.15 and Theorem 6.1)

(1.85)
—t05m T ( <e T, Vte (0
He (xay) ( ,.’E,'y) CO(X xX) € ) ( 782)a
D © ; 2
w(sm1) . c0d(2, Xging )
I'(t,z,x) ~( Z e "”) Z t"ay_i(z) mod O(t*"ef B ), Va € X,
s=1 =0

where af(z) € C*(X,End (T***X ® E)), s = n,n — 1,..., €9,61,62 > 0 some
constants and d a sort of “distance function” (discussed above Theorem 1.3).

The appearance of this distance function d may be attributed to the use of projec-
tion @ in (1.84) (which picks up the m-th Fourier component; see (5.42) and (6.8)).
See below for more about this point. By the first inequality in (1.85) one obtains the
(same) asymptotic expansion
(1.86)

P ©

e t0im (z,x) ~( Z ewm) Z t_"ﬂ'a;lj(:c) mod O(t_"e_

s=1 7=0

c0d(z, Xging )2)
t

—tD;m(

on X,. Similar results hold for e x,T).

e d(w,XSin )2
The terms involved in O(t*"ef . of (1.86) are singular (due to ¢t~

as & — Xging). Only upon taking the supertrace can these terms be (partially) canceled
(t~™ dropping out). That is, for x € X,

(1.87)
Tre_tD;m(x,x) —Tre "Hom (g, )
p w(s— N 2 . c0d(z, Xging )2
~( Z e =5 1)"”) Z tnta (Tra:_j(x) — Tra;_j(x)) mod O(ei B )

s=1 j=0

To see this conceptually, let’s take, for instance, (1.71) and (1.72) in which along
the diagonal (i.e., setting z = y to the left of (1.72)), the off-diagonal contribution
(in the term to the right of the same equation) still enters nontrivially (unseen in the
usual elliptic case) due to the projection Q' .

To get estimates on these off-diagonal terms our argument (cf. Theorem 5.10) is
based on the rescaling technique of Getzler and on a supertrace identity in Berenzin
integral (cf. Prop. 3.21 of [5]), which combine to give the needed (partial) cancelation.
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From (1.68), (1.86) and (1.87) it follows
(1.88) > (~1)dim Hj (X, E)
7=0

P se
= R e ~ Trag (2))dvx ().
(;16 » t—1>I(1)1+f Z oy ( a, (z) |dvx (z)

Remark that we have had a (transversal) heat kernel which is put in the disguise of
the spectral geometry (1.67), (4.15). To our knowledge no argument in the literature
claims that (in the transversally elliptic case) the spectral heat kernel shall have the
asymptotic estimates as (1.86). The somewhat lengthy part of our reconstruction of
the (transversal) heat kernel (beyond its spectral realization) becomes indispensable
as far as our purpose is concerned.

1.6.4. Completion by evaluating local density and by using Spin® structure. — As above
we first treat the case that X is CR Ké&hler (Definition 1.11). In view of (1.88), to
complete the proof of our index theorem (cf. Corollary 1.13) amounts to understanding
the small ¢ behavior of the local density

i t=* <Tr af () — Tray (x))
£=0

Let’s be back to the local situation. Fix zy € X,. Let B; = (D;,(2,6),¢;) (j =
1,2,...,N) be BRT trivializations as before. Assume that zyp € D; and z¢ = (2;,0) €
Uj C Dj.

As our heat kernel (on X) is related to the local heat kernel (on Uj;), one sees (for
some Ny(n) = n)

No(n)

(189) Y +(Tray (zo) — Tray (a0))

£=0
1 X
- Z (20) (Tr A, 1 (12, 2) = Tr Ap,, (.25, 29) ) + O(8),
where Ap, (t,2z,w) is as in (1.82).
By borrowing the rescaling technique in [5] and [24] we can show (in a fairly

standard manner, cf. Theorem 5.9 or the second half of this section) that for each
j=12,...,N,

(1.90) (Tr A, 4+(t,z,2) = Tr Ag, _(t, 2, z))dvU]. (2)
— [Td(VT"°Us TYOU,) A ch (V2" L™)]an(2) + O(t), Vze U,

MEMOIRES DE LA SMF 162



1.6. THE IDEA OF THE PROOFS OF THEOREM 1.3, THEOREM 1.10 AND... 39

vy, the induced volume form on U;) where “°U; 7100 and ch (VE™, L™
dvy, the induced vol f U;) where Td (VT f

denote the representatives of the Todd class of T71°U; and the Chern character of L™,
respectively.

A novelty here is Section 2.3 in which we will introduce tangential characteristic
classes, tangential Chern character and tangential Todd class on CR manifolds with
ST action, so that

[Td (VU3 TVOU;) A ch (VE™, L™)]20(2))
dvy, (z;)

[Tdp (VTLOX,TLOX) Ae IR A wo2n+1(zo)

- dvx (zo)

(1.91)

)

where Tdy (VTI'OX ,T19X) denotes the representative of the tangential Todd class
of T10X (associated with the given Hermitian metric (2.9)). From (1.89), (1.90) and
(1.91) it follows

(1.92) Z t=* (Tr af (z) — Tray (z))dvx(x)
=0

1
Con
(The O(t) term to the rightmost of (1.92) actually vanishes by using (5.22).)

Combining (1.92) and (1.88) we get our index theorem (cf. Corollary 1.13) when
X is CR Kéhler.

When X is not CR Kibhler, we still have (1.85), (1.86) and (1.88). The ensuing
obstacles are more or less known:

[Tdb (VTOX TLOX) A em 52 woL @ +0(), VreX,
n—+

i) the rescaling technique does not quite work well as the local operator ng,m in
(1.82) is not going to be of Dirac type (in a strict sense);

ii) it is obscure to understand the small ¢ behavior of Ap; ,(t,2,2) in this case;

iii) (1.90) is not even true in general.

To overcome this difficulty in the CR case, we follow the classical (yet nonKéahler)
case and introduce some kind of CR Spin® Dirac operator on CR manifolds with
S! action:

INDb,m =0+ 5: + zeroth order term
with modified/Spin® Kohn Laplacians ﬁ;m = INDZ’)"’mIN)b’m, ﬁ;m = IN)b’mf)l’f’m.

A word of caution is in order. The above adaptation of the idea of Spin® structure to
our CR case is not altogether straightforward. Locally X is realized as a (portion of a)
circle bundle over a small piece of complex manifold (via BRT charts), so presumably
there could arise a problem of patching up when this global Spin® operator is to be
formed. See Proposition 4.2 for more.
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We will show in Theorem 4.7 the homotopy invariance for the index of 0 + 5:,
and in Corollary 4.8 a McKean-Singer formula for the modified Kohn Laplacians:
for t > 0,

(Tr e tTom (z,z) —Tr e t0om (z, ;1:)) dvx.

(1.93) Z (—1)Ydim Hj , (X, E) = JX

For u € Q%%(X) we can write (on D) u(z,0) = e~ "%i(z) for some u(z) €
Q%% (U, L™) with D in a BRT trivialization B := (D, (z,0), ¢).

A fundamental relation that we will show in Proposition 5.1, based on Proposi-
tion 4.2, is that

(1.94) e g (€™P) = €0, (),

where (15, = D%, Dpm : Q95 (U, L™) — QU%(U,L™) and Dp,pn - Q45 (U, L™) —
QOF (U, L™) the (ordinary) Spin® Dirac operator (cf. Definition 4.1) with respect
to the Chern connection on L™ (induced by h'™) and the Clifford connection
on A(T*%1U) (induced by the given Hermitian metric on A(T*%107)).

It is conceivable that X with the CR structure and X/S' = M with the complex
structure (if defined) are linked in some way (as Theorem 1.2). To say more, the
Result (1.94) asserts a fundamental fact that not only complex/CR geometrically can
the two spaces be linked, but metrically in the sense of Laplacians they also can. This
link is important for our Spin® approach to the CR case to be possible.

In the remaining let’s give an outline with the CR Spin® Dirac operator when
X is not CR Kahler. Although the following ingredients mostly parallel those in the
preceding Subsection 1.6.3, the success of this method relies on, among others, the
Spin® structure and the associated Clifford connection. For that reason and for the
sake of clarity, we prefer to put down the precise formulas despite the great similarity
in expressions as above.

As (1.82), there exists (modified) gBﬁ(t, z,w) such that

lim ZBj7+(t) =1 in @/(Uj,T*O’+Uj),
(1.95) N o
by (®ut Ap, ()1, ) =0, Yue QYT (U)), V>0,

and ABj,Jr(t, z,w) admits an asymptotic expansion as t — 0 (see (5.19)). Put
‘E[j (tv T, y) = Xj (x)eim%‘ (Z)iimegl?jnL (t, Z, w)emcpj (w)+imn>zj (y)7
(1.96)

Similar to (1.85) and (1.86) in Subsection 1.6.3, one has

< 6_571, Vit e (0,62)

~+ ~
197 ” _tDb’m ) =T t) ) ‘ ==
(1.97) € (z,y) - T(t,2,9) o (xx)
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and
(1 98)

2m(s=1) epd(z, Xging )?
L'(t,z,z) (Ze » )Zt”‘” (@) modO(t_"e_ o ), Ve e X,

with some constants g, 1,62 > 0, giving
(1.99)

077 QECE IR gk 204 Xsing
e bﬂﬂ(x,x)fv(Ze » )Zt iy _i() modO(t "e g )
s=1 3=0
on X,. Similar results hold for e t0om (z,x).

The novelty here is analogous to (1.87). By taking supertrace we can improve the
estimates in (1.99) (see Theorem 6.4) so that " is removed:

(1.100)
Tre~t0om (z,z) —Tr e~ t0om (z,z)
n(s=1 , A(@ Xsing )2
(Z e G )"”) Z t—t (Tr&:{_j(:n) — T‘r&;_j(:c)) mod O(e_ C ),
7=0

for € X,. Hence (1.93) and (1.100) give

(L101)
-5 gy | S oo

A key advantage of introducing our CR Spin® Dirac operator is basically that
Lichnerowicz formulas hold for ﬁ;m (and ﬁ;’m). This enables us to apply the
rescaling technique (this part of rescaling is essentially the same as in classical cases,
cf. [5] and [24]) and to obtain that for each j = 1,2,..., N,

(1.102) (Tr EB]H_(Z, z) —Tr gBjy_(z, z))dvUj (2)
— [Td(VT"°Us TYOU,) A ch (V2" L™)]an(2) + O(t), Vz e U;.
Rewriting (1.102) in tangential forms, one has

(1.103) ¢t (Tr & (z) — Tray (m))dvx (z)
£=0

1 1,
— [Tdb (v? OX,Tl’OX) AeTE A W
7r

(z) +O(t),

]2n+1
for t > 0 and z € X,,.

Theorem 1.3, Theorem 1.10 and Corollary 1.13 follows from (1.99), (1.100), (1.101)
and (1.103).
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The layout of this paper is as follows. In Section 2.1 and Section 2.2, we collect some
notations, definitions, terminologies and statements we use throughout. In Section 2.3,
we introduce the tangential de Rham cohomology group, tangential Chern character
and tangential Todd class on CR manifolds with S action. In Section 2.4, we recall
a classical result of Baouendi-Rothschild-Treves [3] which plays an important role in
our construction of the heat kernel. We also prove that for a rigid vector bundle F’
over X there exist rigid Hermitian metric and rigid connection on F. In Section 3,
we establish a Hodge theory for Kohn Laplacian in the L2 space of the m-th S!
Fourier component. In Section 4, we introduce our CR Spin® Dirac operator ﬁb,m,

modified /Spin® Kohn Laplacians ﬁim and prove (1.93). In Section 5, we construct

approximate heat kernels for the operators e‘tﬁbivm and prove that e‘tﬁbivm (z,v)
admit asymptotic expansions in the sense as (1.97). In Section 6, we prove (1.98),
(1.100), (1.103) and finish the proofs of Theorem 1.3, Theorem 1.10 and Corollary 1.13.
In Section 7 we prove Theorem 1.14.
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CHAPTER 2

PRELIMINARIES

2.1. Some standard notations

We use the following notations: N = {1,2,...}, Ny = N u {0}, R is the set of

real numbers, R, := {z € R; z > 0}. For a multiindex a = (ay,...,a,) € NI we set
la| = a1 + -+ + ay. For ¢ = (x1,...,z,) we write
0 olal
a _ Q1 pOn — @ _ A1 )% .
T =T Ty™s azj = (%;‘j’ Op = azll azn o’
1 (o7 « (o7 1
Let z = (21,...,2n), 2j = T2j—1 + %25, j = 1,...,n, be coordinates of C". We write
Za:Z?l"'Zf;"7 EO‘:E?l...Eg"’
0 1 0 .0 0 1 0 .0
z; = :7( — 15 )a afj: — :7( +1 ))
aZj 2 (3’acgj,1 0x2; (?Zj 2 6x2j,1 ang
olel N N olel
a‘; = a‘zlll ...ag‘: = 762'@7 @? = (3211 "'95,7 = 7(}71 .

Let X be a C* orientable paracompact manifold. We denote the tangent and
cotangent bundle of X by T'X and T*X respectively, and the complexified tangent
and cotangent bundle by CT'X and CT*X. We write -, - ) to denote the pointwise
pairing between T*X and TX and extend (-, - ) bilinearly to CT*X x CTX.

Let E, F be C*™ vector bundles over X. We write F'[x] E* for the vector bundle
over X x X with fiber over (z,y) € X x X consisting of linear maps from E, to F;.

Let Y < X be an open subset. The spaces of smooth sections and distribution
sections of E over Y will be denoted by C*(Y,E) and 2'(Y, E) respectively. Let
&' (Y, E) be the subspace of 2'(Y, E) whose elements are of compact support in Y.
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For m € R, we let H™(Y, E) denote the Sobolev space of order m for sections of E
over Y. Put

H2 (Y, E) = {ue 9'(V, E); pue H™(Y, E), g € C2(Y)},
Hlp (Y, E) = HIL(Y, E) 1 &' (Y, E).

comp

2.2. Set up and terminology

Let (X,T%°X) be a compact CR manifold of dimension 2n + 1, n > 1, where
T10X is a CR structure of X. That is T1'°X is a subbundle of rank n of the complex-
ified tangent bundle CTX, satisfying T2°X n T%1X = {0}, where T%1X = T1.0X,
and [V, V] ¢ UV, V= C*(X, T*X).

We assume that X admits an S* action: S x X — X. We write e =% to denote
the S! action. Let T € C®(X,TX) be the global real vector field induced by the
St action given by (Tu)(z) = a% (((e7®)*u)(z)) g fOT u € C*(X).
DEFINITION 2.1. — We say that the S! action e~ is CR if [T,C®(X,T°X)] <
C®(X,T*°X) and the S* action is transversal if for each x € X, CT(z) ® T} °X @
T9'X = CT,X. Moreover, we say that the S! action is locally free if T # 0 every-
where.

We assume throughout that (X,71°X) is a compact CR manifold with a transver-
sal CR locally free S' action e~*® with T the global vector field induced by the S* ac-
tion. Let wp € C*(X,T*X) be the global real one form determined by {wg, u) =0
for all u e T*°X ® T X, and {wp, T ) = 1.

DEFINITION 2.2. — For p € X, the Levi form %, is the Hermitian quadratic form
on Tp°X given by Z,(U,V) = —5:(dwo(p), U AV ), U,V e T}°X.

If the Levi form Z, is semi-positive definite (resp. positive definite), we say that
X is weakly pseudoconvex (resp. strongly pseudoconvex) at p. If the Levi form is
semi-positive definite (resp. positive definite) at every point of X, we say that Xis
weakly pseudoconvex (resp. strongly pseudoconvex).

Denote by T*9X and T*%1 X the dual bundles of 779X and T%!X respectively.
Define the vector bundle of (p, q) forms by T*P4X = AP(T*1.0X) A AY(T*01X).

Let D < X be an open subset and E be a complex vector bundle over D. De-
note by QP9(D,E) (resp. Q74(D)) the space of smooth sections of T*P9X ® E
(resp. T*P1X)) over D and by QP9(D,E) (resp. 2%(D)) those elements of com-
pact support in D.
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Put
T**X = @ T*X,
G€{0, 1,000}
T*0F X = P T*09 X,
je{0,1,...,n},J is even
T*9" X = P T X.

je{0,1,...,n},j is odd

Put Q% (X, E), Q% (X, E) and Q> (X, E) in a similar way as above.
Fix 0y € |—m,m[. Let (e7%%)* : A"(CT*X) — A"(CT*X) be the pull-back map,
(e=to)* . T*Pd X — T*P4X. Define for u € QP9(X)

e~ 0oz

(2.1) Tu := é%((e*w)*u)bzo e QPI(X).
(See also (2.13).)
Clearly
(2.2) u(z) = Z % i ((e7%)*u)(z)e™0df.
meZ -

Let 0y : 2%9(X) — Q%971(X) be the tangential Cauchy-Riemann operator. From
the CR property of the S! action it follows that (see also (2.14))

Téb = EbT on Qo’q(X).

Naturally associated with the S* action are the so-called rigid objects. See also [3]
for a similar use of this term (cf. Definition II.2 of loc.cit.).

DEFINITION 2.3. — Let D < X be an open set and u € C*(D). We say that u is
rigid if Tu = 0, u is Cauchy-Riemann (CR for short) if dyu = 0 and u is a rigid CR
function if dpu = 0 and Tu = 0.

DEFINITION 2.4. — Let F' be a complex vector bundle of rank 7 over X. We say that
F is rigid (resp. CR) if X can be covered by open subsets U; with trivializing frames
{ fjl, jz’ .-+, f]} such that the corresponding transition functions are rigid (resp. CR)
(in the sense of the preceding definition).

Let F' be a rigid (CR) vector bundle over X. In this work, we fix open cover
(U;)IL, of X and a family {f}, f?,..., fjr}j,vzl of trivializing frames {f}, f?,..., fI'}
on each U; such that the entries of the transition matrices between different frames
{f},f3, ..., ff} arerigid (CR). We say that a frame f is rigid (CR) if f is rigid (CR)
with respect to {fjl, j2, ...,f;};v:l. We can define the operator T' on Q%9(X, F).
Indeed, every u € Q%(X, F) can be written on U; as u = Y uy ® ff and we set
Tu = Y Tu;® ff. Then Tu is well defined as element of 2%9(X, F), since the entries
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of the transition matrices between different frames { fjl, j2, N } are annihilated
by T.

Let X be a compact CR manifold with a locally free transversal CR S! action. In
this work, we say that a trivializing frame f of 710X is rigid if f is rigid with respect
to BRT frames (see Theroem 2.9 for the meaning of BRT frames). By using duality,
we can also define BRT frames for the bundle (—anJ{l A"(CT*X) and we say that a

trivializing frame f of @?f:{l A"(CT*X) is rigid ;f f is rigid with respect to BRT
frames.

Let F be a rigid complex vector bundle over X in the sense of Definition 2.4.

DEFINITION 2.5. — Let {-|-)r be a Hermitian metric on F. We say that (|- )p is
a rigid Hermitian metric if for every rigid local frames {f1,..., fr} of F, we have

T{fij| fu)r =0, for j,k=1,2,...,7.

The condition of being rigid is not a severe restriction as far as the S' action is
concerned. See Theorems 2.11 and 2.12 which we shall prove within the framework of
BRT trivializations in the next section.

Henceforth let E be a rigid CR vector bundle over X. Write 0, : Q%9(X,E) —
Q09+ (X E) for the tangential Cauchy-Riemann operator. Since E is rigid, we can
define Tu for u € Q%9(X, E) (cf. Theorem 2.11) and have

(2.3) Ty = 04T on Q¥9(X, E).

For m € Z, let
(2.4) Q%(X,E) :={ue Q"(X,E); Tu = —imu}
and put Q%° (X, E), Q% (X, E) and Q% (X, E) in a similar way as above.

Put Opm = 0p : Q%4(X, E) — Q%471 (X, E) with a 0y ,,,-complex:

Opm: = Q2N X, E) —» Q09X E) - QYUY X, E) — -+ .

Define B . 01
) e B o B
It is instructive to think of H ;{m(X , E) as the m-th S! Fourier component of the g-th

0y Kohn-Rossi cohomology group.

We will prove in Theorem 3.7 that dim Hy, (X,E) < o, for m € Z and ¢ =
0,1,2,...,n.

We take a rigid Hermitian metric (- |- )g on E (in the sense of Definition 2.5), and
a rigid Hermitian metric (-|-) on CT'X such that

(2.5) T1L(TYXeT™X), (T|T)=1

(and TH°X | T91X). (This is always possible; see Theorem 2.11 and Theorem 9.2
in [42].)
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The Hermitian metric (-|-) on CTX induces by duality a Hermitian metric
on CT*X and on the bundles of (0,q) forms T*%4X (¢ =0,1---,n), to be denoted
by (|- ) too. A Hermitian metric denoted by (- | - ) on T*%* X®EF is induced by those
on T*%*X and E. Let the Inear map A(z,y) € (T***X ® E) X (T***X ® E)*l(z o
We write |A(z,y)| to denote the natural matrix norm of A(z,y) induced by (- | >E

We denote by dvxy = dvx(z) the induced volume form, and form the global
L? inner products (-|-)g and (-|-) on Q%*(X,E) and Q%°*(X) respectively, with
L2-completion L*(X,T*%9X ® E) and L?*(X,T*%¢X). Similar notation applies
to L2, (X, T**X ® E) and L2 (X,T*%9X) (the completions of Q%9(X,E) and
Q%9(X) with respect to (-|-)g and (-|-)).

Put L?(X,T***X®E), L*>*(X, E) and L*»~ (X, E) in a similar way as above, and
L2 (X, T**X @ E), L%+ (X, E) and L%~ (X, E) too.

2.3. Tangential de Rham cohomology group, Tangential Chern character and Tangen-
tial Todd class
In this section it is convenient to put Qf(X) = {u € Dpsger WUX); Tu = 0}

for r = 0,1,2,...,2n (without any danger of confusion with Qf'? in the preceding
section) and set Q8 (X) = (—Dizo Q4(X). Since T'd = dT (see (2.3)), we have d-complex:

diee = QHX) = Q(X) - QHX) -
Define the r-th tangential de Rham cohomology group:
Kerd : Q4(X) — Q5™ (X)
T Imd: Q) Y(X) - Qp(X)

Fyo(X)
Put s o(X) = Dy Hyo(X),

Let a complex vector bundle F' over X of rank r be rigid as in Definition 2.4. We
will show in Theorem 2.12 that there exists a connection V on F' such that for any
rigid local frame f = (f1, f2,...,fr) of F on an open set D < X, the connection
matrix (V, f) = (0;)} ,_, satisfies

0% € (D),

for j,k = 1,...,7. We call V as such a rigid connection on F. Let O(V,F) €
C*®(X,A?(CT*X)®End (F)) be the associated tangential curvature.

Let h(z) = Z?:o ajz’ be a real power series on z € C. Set

1
H(O(V,F)) = Tr (h(%@(v,F))).
It is clear that H(O(V, F)) € Q5(X).
The following is well-known (see Theorem B.5.1 in Ma-Marinescu [50]).

THEOREM 2.6. — H(O(V, F)) is a closed differential form.
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That the tangential de Rham cohomology class
[H(O(V, F))] € &y 0(X)

does not depend on the choice of rigid connections V is given by

THEOREM 2.7. — Let V' be another rigid connection on F. Then, H(O(V,F)) —
H(O(V',F)) =dA, for some Ae Q3(X).

Proof. — The idea of the proof is standard. For each ¢ € [0, 1], put V; = (1—¢)V +tV’
which is a rigid connection on F'. Set

Qi = 5-Tr (%h’(i@(%,F))).
Since V; is rigid, it is easily seen that
(2.6) Q€ 0(X).
It is well-known that (see Remark B.5.2 in Ma-Marinescu [50])
(2.7) H(O(V,F)) — HO(VQ.dt.
From (2.6) and (2.7), the theorem follows. O

For h(z) = e® put
(2.8) chy, (V,F):= HO(V,F)) € Q)(X),
and for h(z) = log(1—==) set
(2.9) Tdy, (V, F) := 7 ®V:F) e 08 (X).
We can now introduce tangential Todd class and tangential Chern character.

DEFINITION 2.8. — The tangential Chern character of F' is given by
chy, (F) = [chy (V, F)] € &y o(X)

and the tangential Todd class of F is given by
Tdy, (F) = [Tdy, (V, F)] € &y o(X).

Baouendi-Rothschild-Treves [3] proved that T*9X is a rigid complex vector bundle
over X (cf. the first part of Theorem 2.11 below). The tangential Todd class of 719X
and tangential Chern character of T*°X are thus well defined.

The tangential Chern classes can be defined similarly. Put det(mt +1I) =

27
3 &;(V, F)t?. Thus &;(V, F) € Q7 (D). By the matrix identity det A = e™ (2 4) and
j=0
taking h(z) = log(l + 2), one sees &;(V,F) (j = 0,1,...,7) is a closed differential
form on X and its tangential de Rham cohomology class [¢;(V, F)] € Q%?O(X ) is

independent of the choice of rigid connections V. Put é;(F) = [¢;(V, F)] € (%,2)?0 (X).
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We call &;(F) the j-th tangential Chern class of F, and é(F) = 1+ ), &(F) €

My o(X) the tangential total Chern class of F.

2.4. BRT trivializations and rigid geometric objects

In this paper, much of our strategy is heavily based on the following result thanks to
Baouendi-Rothschild-Treves [3, Proposition I.2]. Note in the following, Z; corresponds
to fj in their proposition. Some geometrical significance related to a certain circle
bundle structure will be discussed in the proof of Proposition 4.2.

THEOREM 2.9. — For every point xg € X there exist local coordinates x =
(IZIl, e ,x2n+1) = (2,0) = (21, .. .,zn,H),zj = T25-1 + 7;.'1}2j,j = 1, ey Ny Topn41 = 9,
defined in some small neighborhood D = {(z,0) : |z| < 6, —eq < 0 < &0} of zg, § > 0,
0 <eg <m, such that (2(xo),0(zo)) = (0,0) and

0
=%

_ 0 _iaﬁ(z)ﬁ
I (}‘zj 8Zj 86’
where Zj(z), j = 1,...,n, form a basis of T}°X for each x € D and p(z) €
C*(D,R) is independent of 0. We summarize these data by the notation (D, (z,0),¢).

We call (D,x = (2,0),¢) BRT trivialization, {Z;} BRT frame and we call
x = (z,0) canonical coordinates.

(2.10)

ij=1...,n,

i1

Furthermore, let (D, (z,0),¢) and (D, (w,n),3) be two such data on D. Then the
coordinate transformation between them on D n D satisfies the following. There exist
holomorphic functions H;, 5 = 1,...,n, and g on {z € C"; |z| <} with g nowhere
vanishing, such that

w = (wy,...,w,) = H(z) = (H1(2),...,Hy(2)),
(2.11) n=0+argg(z) (mod2m) where argg(z) = Imlogg(z),
P(H(2), H(z)) = ¢(2,%) + log|g(2)|.

REMARK 2.10. — The formulas in (2.11) generalize those in [3, the line below (1.31)]
which correspond to the case g(z) = constant. See the proof of Proposition 4.2 for a
derivation. It should be noticed that our notation —(%’; is equal to ¢z, (k = 1) in
[3, the line below (1.31)].

There exist examples that H is not necessarily one to one. Nevertheless, it can be
shown that after shrinking D and D properly, it is one to one, hence a biholomorphism.

We call the above triple (D, (z,0), ¢) a BRT trivialization. Note for (z,0) € D and
—T<a<m e ®o(z,0)=(2,0+a)if {e"* o (2,0)}o<t<1 = D.
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By using BRT trivializations some operations simplify, as follows. Under the BRT
triple (D, (z,0), ¢) it is clear that

{dzj; Ao A dZ, 1 < j1 <. <jg<n}

is a basis for T%9X for every x € D. For u € 2%9(X), on D we write
(212) u = Z ’Uljl..,jqdzji‘l VANRIRREVAN dq

J1<-<Jjq
Recall that T is the vector field associated with the S* action. We have
(2.13) Tu = Z (Tuy, .5, )dZ5 A -+ A dZ5,

J1<-<Jq
and Tu is independent of the choice of BRT trivializations.

For 0, on the BRT triple (D, (z,8),¢) we have

Oy 0
ot e s

The rigid objects (discussed in the preceding section) are natural geometric objects
pertinent to the S! action. In the following X is again a compact connected CR
manifold with a transversally CR locally free S* action.

THEOREM 2.11. — Suppose F is a complex vector bundle over X (not necessarily a
CR bundle) and admits an S* action compatible with that on X. Then F is actually
a rigid vector bundle (in the sense of Definition 2.4). Moreover there is a rigid Her-
mitian metric {-|- ) on F. Conversely if F is a rigid vector bundle, then F admits
a compatible ST action.

Proof. — We first work on the existence of a rigid Hermitian metric (assuming F is
rigid). Fix p € X and let (D, (z,0),¢) be a BRT trivialization around p such that
(2(p),0(p)) = (0,0), (2,0) e {z e C"1: |z| <} x{#eR: |§] <d} for some § > 0.
Put

A :={Xe[—m, ] : there is a local rigid trivializing frame (l.r.t. frame for short)

defined on {e 0 (2,0); |2| <¢,0 € [-m, A +¢)} for some 0 < & < §}.

Clearly A is a non-empty open set in [—m, 7]. We claim A = [—7,7]. (Remark that
the lLr.t. frame above is closely related to the canonical basis in [3, Definition 1.3
without (I.29a)] when E is T19X.)

It suffices to prove A is closed. Let A\¢ be a limit point of A. For some small e; > 0,
there is a l.r.t. frame f = (f1,..., f,) defined on

{67i00 (Z,O); |Z| <e1,Ag—€1 <01 <X +61}.
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By assumption \g € A there exists a l.r.t. frame f = (ﬁ,,fr) defined around
{e7" 0 (2,0)} in which |z| < 3,0 € [-7, Ao — ) for some £; > 0. Now f = gf on
{efw o (2,0); [2] < €9,0 € (Ao —€1,A0 — %1)}, g0 = min {1, €2},

for some rigid r x r matrix g.

We now patch up the frames. Put , for 6 € [-m, Ao — ), f = f (on {e7 o (2,0)})
and for 0 € [\g — 5, Ao + 1), f = gf because g is independent of §. By f: gf on
the overlapping, f is well-defined as a l.r.t. frame on

{e7 0 (2,0); |2| <e0,0 € [-m, Ao + 1)} -

extending 6 = \g. Thus A is closed as desired.

By the discussion above we can actually find local rigid trivializations Wy, ..., Wy
such that X = Uj\]:l W; and each W; o |J_, o<, e “W; (ie., W; is S! invariant).
Take any Hermitian metric (-, - )r on F. Let (-|-)r be the Hermitian metric on F’
defined as follows. For each j = 1,2,..., N, let hj,...,h% be local rigid trivializing
frames on W;. Put (hi(z) |hl(z) )r = 5= §" (hS(e”™ o), hi(e™™ o z) Ypdu, s,t =
1,2,...,7. One sees that (-|-)p is well-defined as a rigid Hermitian metric on F.

By examining the above reasoning we have also proved that if F' is rigid, then
it admits a natural S* action (by declaring the Lr.t. frames as S! invariant frames)
compatible with that on X.

For the reverse direction if F' admits a compatible S* action, by using BRT triv-
ializations one can construct S! invariant local frames. These invariant local frames
can be easily verified to be local rigid frames, or equivalently the transition functions
between them are annihilated by T due to the S' invariant property. Hence F is rigid
by definition. O

We shall now prove

THEOREM 2.12. — Assume the complex vector bundle F is rigid (on X ). There exists a
rigid connection on F'. And if F' is equipped with a rigid Hermitian metric, there exists
a Tigid connection compatible with this Hermitian metric. Suppose F is furthermore
CR (and rigid) equipped with a rigid Hermitian metric h. Then there exists a unique
rigid connection (see the second paragraph of Subsection 2.8) VF compatible with h
such that VI induces a Chern connection on Uj (of any given BRT chart), and that
the S invariant sections are its parallel sections along S* orbits of X.

Proof. — Let V be a connection on F. For any g € S! considering ¢*V on ¢*F which
is F' by using Theorem 2.11 and summing over g (in analogy with the construction
of a rigid Hermitian metric above), one obtains a rigid connection on F. Suppose
F has a rigid Hermitian metric {-|-)r and a connection V compatible with (- |- )p.
One readily sees that the rigid connection resulting from the preceding procedure
of summation, is still compatible with (-|-)p. For the last statement, note that i)
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given a rigid CR bundle F' with a rigid Hermitian metric h and any BRT chart
D; =U; x |—¢,¢[, (F,h) can descend to U; as a holomorphic vector bundle with the
inherited metric, and ii) for a holomorphic vector bundle with a Hermitian metric,
the Chern connection is canonically defined. Combining i) with ii) and using the
S1 invariant local frames (cf. proof of Theorem 2.11), one can construct a canonical
connection Vf on U;. Then by using (2.10), (2.11) and the canonical property of the
Chern connection, one sees that these Vf patch up to form a global connection V¥
on X, satisfying the property as stated in the proposition. O
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A HODGE THEORY FOR (1),

A Hodge decomposition theorem for ¢, on pseudoconvex CR manifolds has been
well developed. See [15, Section 9.4] for a nice presentation in some respects; see
also [62]. Our goal of this section is to develop an analogous theory for Dg?gn on CR
manifolds with transversal CR locally free S! action (irrespective of pseudoconvexity).
Much of what follows appears to parallel the corresponding part of Hodge theory in
complex geometry.

Besides the relevance to the index theorem on CR manifolds, the present theory
has an application to our proof of homotopy invariance of index (Theorem 4.7).

As before, X is a compact CR manifold with a transversal CR locally free S! action.
Let 0, : QO4+1(X E) — Q%4(X,E) (¢ = 0,1,2,...,n) be the formal adjoint of
with respect to (-|-)g. Put ng) 1= 0p0p + 0y 0p : QX E) — QO4(X, E). T is
the vector field on X induced by the S' action, 70, = 0,T and 5b’m = gb\ﬂo,q :
Q%4(X, E) — Q%4t1(X, E) on eigenspaces of the S! acton (VYm € Z). "

Recall that { - | - ) is rigid. One sees T0, = 0, T so that 5:|Q%q+1 :QYIL(XF) —
0%9(X, E) is the same as the formal adjoint 5;m of Jp,m. Form D,()’qT)n = 51)77”5:,7% +

B b - Q%X E) — Q%(X, E). We have (1§, = (047 o, oy

On a general compact CR manifold, there is a fundamental result that follows from
Kohn’s L? estimates. (See [15, Theorem 8.4.2]). Adapting it to our present situation,
we can state the result as follows.

THEOREM 3.1. — For every s € Ny, there is a constant Cs > 0 such that
ful,sy < C(|O87u] +1Tul, + lul,), vue2™(X,E),
S

where |-|, denotes the usual Sobolev norm of order s on X.

Theorem 3.1 restricted to 29:9(X, E) yields
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COROLLARY 3.2. — Fiz m € Z. For every s € Ny, there is a constant Cs > 0 such that

ul,py < Co( |50 +[ul,), vueQl(x,B).

This suggests that a good regularity theory might exist on our X. Observe that, al-
though [ I()q) is not elliptic on X, [J ,()q) —T? is and restricts to [] ,E?r)n +m? on Q%X E).
In fact, without using the above theorems all of the following results are essentially
proven by standard results in elliptic theory.

erte Dom[1{"), := {u e L2 (X, T* X Q E); D(‘” we L2 (X, T*9X ®E)} where

Db mu is defined in the sense of distribution. Db m is extended by

(3.1) 049 : Dom[O?) (< L2,(X, T**X ® E)) — L2,(X, T**'X ® E).
LEMMA 3.3. — We have Dom[1}") = L2,(X,T**9X ® E) n H*(X,T*1X ® E).

Proof. — For the inclusion put v = Dl()?r)nu € L2 (X, T*X Q@ E).

Then (07, — T%)u = v +m?u € L% (X, T*>X ® E). Since (0} — T?) is elliptic,
we conclude u € H?(X,T*%9X ® E). The reverse inclusion is clear. O

LEMMA 3.4. — We have that D(q) : DomD(q) (c L2(X,T*"9X ® E)) —
L2 (X, T*"9X ® E) is self-adjoint.

Proof. — Since the similar extension of [] éq) on L2(X, T* X ®E) is self—adjoint and
its restriction to (an invariant subspace) L2, (X, T*%4X ® E) gives Db s DZ()?BR is also
self-adjoint. O

Let SpecDé?Bn < [0, o[ denote the spectrum of [](q) (Davies [20]).

(a)

b,m’

ProPoOSITION 3.5. — Spech()qgn is a discrete subset of [0, 0. For any v € Spec[]

v is an eigenvalue ofD(q) and the eigenspace

Eh (X, E):={ue Domem, D(q) u=vu}
is finite dimensional with €}, (X, E) c Q%4(X, E).
Proof. — [J; (@) _72 — A is a second order elliptic operator. By standard elliptic theory,
A and hence A + m?, satisfy the statement of the proposition on the (invariant)

subspace L2, (X, T**X ® E) o Qovq(X E). On it T? acts as —m?, the proposition
follows for D(q) which is A + m? on L2 (X, T**X ® E). O
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A role analogous to the Green’s operator in the ordinary Hodge theory is given as
follows. Let

N@ : L2(X,T**9X ® E) — Dom[J{"),

be the partial inverse of [] (@) and let

bm

o9 : 2 (X, T*X ® E) — Ker[]\?

b,m
be the orthogonal projection. We have
O N@ 4 1@ = [ on L2,(X,T*9X @ E),

(3.2)
N,(,?)Dl()?gn + Hgg) =1 on DomD(q) .

bm
LEMMA 3.6. — We have N\ : Q%9(X, E) — Q%(X, E).

Proof. — A slight variant of the standard argument applies as D,()q) is almost elliptic.

Let u € Q%9(X, E) and put N\Pu = v e L2, (X, T**9X @ E). By (3.2), (I - I )u =
O ,()?T)nv, giving

(3.3) O (@ _ T = (I — TTD)u + m2v.

bm

By Proposition 3.5, KerDé?T)n consists of smooth sections, so 1'[5,3)

u is smooth and
(3.4) (I - e Q%(X, E).

By combining (3.3) and (3.4) and noting DISQ) —T? is elliptic, the standard technique
in elliptic regularity applies to give v € Q%%(X, E). O

The following is a version of “harmonic realization” of cohomology.

THEOREM 3.7. — For every q € {0,1,2,...,n} and every m € Z, we have
(3.5) Ker[1y) = €2, o(X,E) =~ H{ (X, E).

As a consequence dim Hy, (X, E) < o by Proposition 3.5.

Proof. — The argument is mostly standard (although ng) is not elliptic). Consider

the map
. 74 : Ker 0pm N Q%X E) — Ker‘:‘l()q'r)n’
(3.6) U H%)u.

Clearly 77 is surjective. Put M2 := {5b)mu; ue QYI-H(X, E)} The theorem follows
if one shows

(3.7 Kerrl = MZ.
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It is easily seen M7, < Ker 7 since M2 | Ker[] ,()q;l. For the converse let u € Ker 7,
so TPy = 0. From (3.2) we have

(3.8) u=040 N@u+ 0@ u = (3,0, + 0y 0p) N
We claim that
(3.9) 0, Ny = 0.

One sees, by using 5127 = 0 for the first equality below,

(3.10)

(2 uNDu |3y N Du)p = (3 OO NDu| NDu)p = (35 dp(I — T )u | NDu)
= (5: Opu | N\Du) g,

which is zero because u € Ker 0, ,,, by (3.6), giving the claim (3.9). By (3.8) and (3.9),

(3.11) w =20y 0, NDu,
with 5:N7(,§1)u e Q%4-1(X, F) by Lemma 3.6. By (3.11), u € M2, yielding the desired
inclusion Ker 7, ¢ MY,. Hence (3.7). O

Let Dy i= 0 + 0y : Q5T (X, E) — Q% (X, E) with extension Dy,
Dym : Dom Dy, ,,, (€ L2 (X, E)) — L% (X, E),

Dom Dy, = {u € L% (X, E); distribution Dy, ,u € L% (X, E)}. The Hilbert space
adjoint of Dy, ,,, with respect to (-|-)g is given by Dy, : Dom Dy (< L%~ (X,E)) —
L2H (X, E).

Combining Proposition 3.5 and Theorem 3.7, one can verify (as in standard Hodge
theory)

THEOREM 3.8. — With the notation above

KerDy,, = P Kerl:lz()‘i)n (c Q%F (X, E)),

qe{0,1,...,n}
q even

@  Ker;?, (c 57 (X, E)).
qe{0,1,...,n}
q odd

Put ind Dy, ,, := dim Ker Dy, ,,, — dim Ker Dl;k,m' Hence, together with Theorem 3.7,

(3.13) Y (~1)dim H] (X, E) = ind Dy .
=0

(3.12)
Ker D;m
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MODIFIED KOHN LAPLACIAN (Spin® KOHN LAPLACIAN)

We are prepared by Theorem 3.8 to see that to calculate Z?ZO(—I)jdim Hg’m (X, E)
is the same as to calculate the index ind Dy ,,. To do so effectively we need to modify
the Dirac type operator Dy, hence the standard Kohn Laplacian because the mod-
ified versions Db " Db m Wwill have a manageable heat kernel that suits our purpose
better for the CR non-Kéhler case (cf. Remark 4.9). Lastly we shall give an argument
for the homotopy invariance, and obtain ind Dy ,,, = ind bb,m.

The main idea here is borrowed from that of classical cases. But as the CR man-
ifold X is not assumed to be a (orbifold) circle bundle globally, there could arise
the problem of patching (from local constructions to the global one). Part of the
technicality in the beginning of this section lies in a careful treatment in this regard.

We recall some basics of Clifford connection and Spin® Dirac operator. For more
details we refer to Chapter 1 in [50] and [24].

Let B := (D, (z,0),¢) be a BRT trivialization with D = U x ]|—¢, [ where ¢ > 0
and U is an open set of C". Using ¢ in B, we let (-, -) be the Hermitian metric
on CTU induced by that on D

0 O J, 0 850
(“1) <(9z 7> <(/zj 623( )% 0z oz
(cf. Theorem 2.9). By (2.10) and Theorem 2.9, the above metric is actually intrinsically
defined.

The (-, -) induces Hermitian metrics on T#%9U still denoted by (-, - ) and a Rie-
mannian metric g”Y on TU.

For any v € TU with decomposition v = v(1:0) 4901 e TLOTPTOIT, let 710)* €
T*%1U be the metric dual of v(%) with respect to (-, -). That is, 7H0*(u) =
(w0 7 for all u e TOMU.

The Clifford action v on A(T*%1U) : (—Bq o T*99U is defined by

(4.2) c(v)(-) = V2@ HO* A () = iyon ()

(where A and 4 denote the exterior and interior product respectively).

() > Ghk=1,2,....n
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Let {w;};_, be alocal orthonormal frame of T""-°U with respect to (-, - ) with dual
frame {w’ };;1' Write

(43) €251 = %(wg +Ej) and €25 = ﬁ(wj 7@;‘), j = 1,2,...,’!1,

for an orthonormal frame of TU. Let VU be the Levi-Civita connection on TU
(with respect to g7Y), and V9 be the Chern connection on the determinant line
bundle det (T1°U) (with (-, -)), with connection forms I'"V and I'!** associated to
the frames {ej}?zl and wy A+ -+ A wy,. That is,

4 Vile, =T"(e;)er, j,€=1,2,...,2n,

Vdet(wl/\~~/\wn)=I‘detw1/\~~~Awn.

The Clifford connection V' on A(T*%'U) is defined for the frame
{wh A-Aw 1<y < < jg <n}

by the local formula

12n

1
U det
1 MZ::SF e;,eq c(ej)c(er) + 51" )

(4.5) Ve =d+

In general a Levi-Civita connection V cannot be compatible with the complex
structure unless a certain extra condition is imposed such as Ké&hler condition on
the metric. Alternatively one takes the orthogonal projection PrioxV to produce
a connection on T1°X. One key point above is that the Clifford connection V°!
(regardless of Kéhler condition nor orthogonal projection) defines a Hermitian con-
nection (connection compatible with the underlying Hermitian metric) on A(T*%1U)
(see Proposition 1.3.1 in [50]).

Let’s be back to the CR case. In the same notation as before, 2%:4(U, E) denotes the
space of (0,q) forms on U with values in E, Q% (U, E) the even part and Q% (U, E)
the odd part of Q%*(U, E) etc.

Assume X is equipped with a CR bundle F which is rigid. Being rigid F can descend
as a holomorphic vector bundle over U. We may assume that E is (holomorphically)
trivial on U (possibly after shrinking U). A rigid Hermitian (fiber) metric {-|-)g
descends to a Hermitian (fiber) metric (-|-)r on E over U. Let V¥ be the Chern
connection on E associated with {-|-)g (over U).

We still denote by V! the connection on A(T*%1U)® E induced by V°! and VZ.

DEFINITION 4.1. — The Spin® Dirac operator Dpg is defined by

1 2n . .
(4.6) Dp = 7 Dlee;) VS : QY (U, E) — Q°* (U, E).
j=1
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It is well-known that Dp is formally self-adjoint (see Proposition 1.3.1 and equation
(1.3.1) in [50]) and Dp : Q>*(U,E) — Q%F (U, E).

Write 0 : QUUt1(U,E) — Q%(U,E) for the adjoint of 0 : QO(U,E) —
Q09*+1(U, E) with respect to the L? inner product on Q%4(U, E) induced by (-, -)
and {(-|->g (¢ =0,1,2,...,n —1). Then, by Theorem 1.4.5 in [50]

(4.7) Dp=0+0 +Ap: Q% (U,E) - Q"F(U,E),

where Ag : QO*(U,E) — QYT (U, E) is a smooth zeroth order operator and Ag =
Ap(z), independent of . Moreover, A does not depend on E and acts only on the
factor Q%°(X). Note that Ap as an operator Q%*(U, E) — Q%*(U, E) is self-adjoint
because both D and 0 + 2" are so.

The following is instrumental in forming a global operator from local ones, whose
proof is based on canonical coordinates of BRT trivializations. Note for u € 2%9(D, E)
(¢g=0,1,2,...,n) with u = u(z), i.e., u is independent of 6, we may identify such u
with an element in Q%9(U, E) by using (2.12) (and vice versa).

PROPOSITION 4.2. — Let B = (D, (z,0),¢) and B = (D, (w,n),3) be two BRT
trivializations with D = U x |—e,e[ for ¢ > 0 and an open set U of C™. Let
Ap, Az : QVF(U,E) — Q¥F(U,E) be the operators given by (4.7). Fiz an m € Z.
For u € Q%*(X,E) we can write u(= u‘D) = e "MIy(z) = e "™"y(w) for some
v(2),(w) € QO (U, E). Then

(4.8) e " Ap(v(z)) = e ™ A5 (V(w)) on D.

Proof. — Although we shall only use part of the coordinate transformation of BRT
trivializations (2.11)

(4.9)

w=H(z), 0H(z)=0; n=0+argg(z); @(H(2),H(2)) = ¢(2,%) +log|g(2)],
let’s give a geometrical interpretation of how the above can be obtained for an in-
dependent interest. This complements the treatment of [3]. See Subsection 5.1 (cf.
Remark 5.3) for its use in the construction of a modified Kodaira Laplacian.

To see (4.9), we are going to realize D (possibly after shrinking it) as (part of) the
total space of a circle bundle associated with a trivial holomorphic line bundle L over
a complex manifold U < C™. More precisely suppose L is equipped with a Hermitian
metric such that a local basis 1 has ||1|| = e 2¢(*) and Y = {(z,\) < C"t1; |\|?e?¢ =
1} is the circle bundle inside the L*. Write p = |\|?e?** — 1 and Ay = e ¢,
One has T9'Y = (Ker dp) n T%1C"*1. In terms of (z,6) coordinates on Y, one has
T%'Y = Span ({ o 4 z%’j(z)%, j=1,2,... ,n}) (and T*0Y = TO.1Y) because the

07 -
o0z

RHS is checked to be contained in Ker dp and it has the correct dimension. In view
of Theorem 2.9 by taking the above ¢ to be ¢ of Z; in (2.10) and mapping (z,§) of D
to (z,e~?(*)=) of Y, it will be seen that D is realized in this way as a portion of Y.
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For this realization, we compare the above with [3, (0.1) or Theorem I.2] and
set up the (holomorphic) transformation in coordinates: setting our ¢, A, 6 and 2
(on U) above to be ¢, €, —s; and z respectively in [3, (0.1) and Theorem 1.2]).
Then our Z; in (2.10) corresponds to L; in [3, Proposition 1.2]. One sees that the
ambient complex space of [3] is (locally) biholomorphic to part of the above L*. For
the next purpose, let us give an instrinsic formulation of this complex space from
another point of view. Let R ¢ be the set of positive real numbers. Consider D x R
and equip it with the complex structure J defined as follows. J lro is set to be the
complex structure of U; it suffices to define J on |—¢,¢[ x R~ with coordinates s,r:
J(0/or) = —10/0s, J(L0/0s) = 0/or. Note this definition of J is independent of
choice of BRT trivializations (since Z; < T*%Y identified with T"°U, gives a local
basis of T1°D; see Theorem 2.9, and {z} x ]—e¢,¢[ for each z € U is (part of) an
S1 orbit in X). J is seen to be (equivalent to) the complex structure on L* (with
(2,8,7) € D xR~¢ and (z,7e**) € L* in correspondence), hence an integrable complex
structure.

Let now B = (D, (w,n),) be any other BRT chart. Correspondingly we will
denote the associated objects by the same notation as in B but topped with a tilde.
Note that in B the set defined by w = wy for a fixed wq is part of an S! orbit in X;
the same can be said with B. Conversely, any S! orbit of X is described (locally)
by the 6 parameter in any BRT charts with z-coordinates being fixed. By using
(D x R, J) above, one has L* =~ L* (locally) by a biholomorphism F' that preserves
respective fibers (since these are S! orbits, described by § parameters in each chart
and hence must be in correspondence via D x R~ by the property of BRT charts as
just remarked). Further, one sees that F restricted to fibers has to be linear, hence
F is a bundle isomorphism. Geometrically this picture is essentially the same as a local
change of holomorphic coordinates on the base manifold U and a change of a local
basis of L* by *(z) = g(z)e*(z) with ||e*||? = e2%,||é*||> = €2 for some nowhere
vanishing holomorphic function g(z) on U. The above transformation Formula (4.9)
easily follows from this concrete realization.

Using the above transformation (4.9), one claims

(4.10) Dp =Dp on Q**(U,E),
Ap=Az on Q"*(U,E).

To see this for the case without E, note D is just realized as (part of) the total space
of a circle bundle of a holomorphic line bundle. Clearly 0y + 5; does not depend on
choice of holomorphic coordinates on U; that is, 0y +5; is an intrinsic object (because
the Hermitian metric used for 5; is intrinsic, see (4.1)). The same idea can be applied
to Dp which is defined above as an intrinsic object too. Therefore (4.10) holds with
the change of coordinates in (4.9) (using only w = H(z)). In the general case where
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E is not necessarily the trivial bundle C, the reasoning is basically unchanged. Hence
the claim (4.10).
By (4.9) v(z) = e "¢ )3 (w) (G(z) = arg g(z)), hence by (4.10)

e ™ Ap(v(z)) = e ™0 Ag (e ™CE) G (w))
=e M A(eT PN (w)) = e ™A (B(w)),
proving the proposition. O
We are now ready to introduce a global operator:

DEFINITION 4.3. — For every m € Z, let A, : Q%*(X,E) — Q%% (X, E) be the
linear operator defined as follows. Let u € Q%*(X, E). Then, v := A,,u is an element
in Q%7 (X, E) such that for every BRT trivialization B := (D, (2,60),¢) (D = U x
]—e,e[, € > 0, U an open set in C™) we have v, = e ™9 Ap(1)(z) where u =
e~ 9%(2) on D for some % € Q% (U, E) and Ap is given in (4.7).

In view of Proposition 4.2, Definition 4.3 is well-defined.

We are now in a position to define the modified Kohn Laplacian (Spin® Kohn
Laplacian) including a type of CR Spin® Dirac operator f)b’m. One goal of this part
is to express the index of l~)b7m in an integral form of the heat kernel density (cf.
Proposition 4.6).

The treatment below mostly follows traditional cases except the use of the pro-
jection operator Qi together with its explicit expression in integral (see (4.16) and
(4.17)).

By using A,, in Definition 4.3 we consider

ﬁb,m :5b +5Z +Am : Q?ﬂ.(XvE) - Q?ﬁ.(XwE)a

(4.11) N L B
D, =0+ 0, + Ap : Q0 (X, E) - Q07 (X, E)

with the formal adjoint f);‘m on Q%*(X,E). We remark that l~);‘m = l~)b,m
on Q%*(X,E). Now, as AB7 is self-adjoint on Q%*(U,E) as aforen;entioned, it
follows that A,, is self-adjoint on Q%°(X, E). That f)b,m is self-adjoint follows
as 0Op + 5: is also self-adjoint.

The modified/Spin® Kohn Laplacian is given by

~

Db,m = -5;me771 : Q?ﬁ.(Xa E) - Q?n’,.(Xv E)

(4.12) =+ DE n— Dt 0,+ 0,+

Upm = Db,me,m|QO +(X,E) = Db,me,m 1T (XL E) - QT (X E),
where ﬁ;m = 5;ml~7b_,m. We extend ﬁ;m and ﬁ;m by
(4.13) Clpm : Dom[ly, (€ L3E(X, B)) — L%E(X, EB),

where Domﬁim := {u € L%* (X, F); distribution Ij;_r’mu e L2*(X,E)}.
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Clearly [Jp,m — T? (where T is the real vector field induced by the S' action) is
(the restriction of) an elliptic operator on X since (0 + 5:)2 —T7? is.

Put as usual, the Sobolov spaces (cf. Subsection 2.1) H** (X, E), H>~ (X, E) the
even and odd part of H*(X,T***®FE). In the same vein as Lemma 3.3 and Lemma 3.4
one has

(4.14) Dom[l,,, = L3 (X, E) n H>*(X, E), (14, and (7., are self-adjoint.

Further, for the spectrum Specﬁ;:m < [0, 00[ (resp. Specﬁ;m c [0,90[) one has
(similar to Proposition 3.5)

PROPOSITION 4.4. — Specﬂ:’m is a discrete subset of [0,0[. For any p € Specﬁzm,

u is an eigenvalue ofﬁ;:m and the eigenspace
»t ~ 4~
Emu(X,E) = {u € Dom [y ,.; Oy mtt = Vu}

is finite dimensional with BZL,V(X, E) < Q%+ (X, E). Similar results hold for the case
of Oy -

The following can be proved by standard argument.

LEMMA 4.5. — We have Specﬁ;m n 10,00[ = Specldy,, N 10,0, and for every
~ ~+ ~—
0+#pe SpecDZm, dim &,, ,(X,E) =dim &,, (X, E).

We are going to introduce a McKean-Singer type formula (Corollary 4.8). Let
F be a complex vector bundle over X of rank r with a Hermitian metric (-|-)p.
Let A(z,y) € C*(X x X,FRIF*). For every u € C*(X,F), §, A(z,y)u(y)dvx(y) €
C®(X, F) is defined in a fairly standard manner.

Much of what follows parallels the classical cases except that @, is introduced in
our case. For v € Specﬁbi’m let PY, : L>*(X,E) — Ei’V(X, E) be the orthogonal
projections (with respect to (-|-)g), and PY ,(z,y) (€ C*(X x X, (T***X Q E)
(T***X ® E)*)) the distribution kernels of Py .

The heat kernels of ﬁ:’m and ﬁ;m are given by

=+
(4.15) et (z,y) = Pr o(x,y) + > ey ()

veESpec ﬁbiym,u>0

with the associated continuous operators et . OO (X, E) - QUE(XE) <
00+ (X,E). e t0im is self-adjoint on Q%% (X, E).

Remark that the heat kernels (4.15) are smooth. For, the eigenfunctions involved (in
the equivalent form as (1.67)) are still eigenfunctions of ((J5 ., —7?) hence eigenfunc-
tions of an elliptic operator. In the elliptic case, one has the Garding type inequality
which estimates the various Sobolev norms of the eigenfunctions, and hence mainly
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by Sobolev embeddings, gives eventually the smoothness of the heat kernels (cf. [36,
Lemmas 1.6.3 and 1.6.5]).

An important operator is given by the orthogonal projection

(4.16) Q : I**(X,E) — L%*(X, E)

(for the m-th Fourier component). Fourier analysis with (2.2) gives
1 4 . .

(4.17) QFu= o ((e7)*u)(x)e™%df, Yue QV*(X,E).
T

-7
The explicit expression (4.17) turns out to be crucial to many (unconventional) esti-
mates later.

It is fairly standard (note @, in the second line below) to obtain (by (4.15))
; ﬁf e tTomu) =0, Yue QOF(X,E), Vt> o0,
(4.18) ¢ .
lim (e™"Homu) = Qpu, Vue Q% (X, E).
t—0

For v € Specﬁ;’m, let {ff,...,fgy} be an orthonormal basis for B;’,,(X, E).
Define

dy
(4.19) Tt P}, Z 5 €07 (X),

which is equal to Tr P (z,z) = Zj:1<P7Jg7u(a:,m)ej(a:) |ej(z) g where {e;(z)}; is
any orthonormal basis of T+ X ® E,. Define Tr P, ,(z, ) similarly.
Clearly df = {, Tr PL (2, z)dvx ().

~

Put Tre 'Hom(z,2) := TrPE (z,2) + 3 eSpoclTE o€ V'Tr Py (x,), so
) v ecdp m ¥ ,
fort >0
(4.20)
+ ~+ ~+
Tre~tTom m(z,r)dvx (z) = dim &, (X, E) + Z e 'dim €, (X, E).

X
uESpecDbim,u>0

Combining Lemma 4.5 and (4.20) gives
(4.21)

J (’I‘re‘tﬁzm (x, 1) — 'I‘re_tﬁ;vm(x,:v))dvx(x) = dimKerﬁ;:m — dimKer[J, ,,.
X

As in Theorem 3.8 one has

(4.22) Ker Dy, = Ker[dy,, < Q%7 (X, E), KerDf,, = Ker[J,,, < Q% (X, E).

Put ind ﬁb,m := dim Ker lw)b,m — dim Ker 5:7m. We express the index (by (4.22)
and (4.21)) as
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PROPOSITION 4.6. — For every t > 0, we have

(4.23) ind Dy, = J (Tr et Tem (z,z) — Tre tDom (g, :c)) dvx (z).
X
The invariance of the index is expressed by the following (some aspects on ind Dy, ,,

refer to Theorem 3.8).
THEOREM 4.7 (Homotopy invariance). — We have ind Dy, ,,, = ind 51,7,,1.

To summarize (with Theorem 4.7, Proposition 4.6 and (3.13)) we have a McKean-
Singer formula (cf. Corollary 5.16 for McKean-Singer (II)).

COROLLARY 4.8 (McKean-Singer (I)). — Fiz m € Z. For t > 0, we have

(4.24) j;)(—l)jdim H), (X,E)= JX (Tr e v (z,2) — Tre tHom (z, m))dvx (z).

REMARK 4.9. — To compare with the original Kohn Laplacian, a similar formula (as
Corollary 4.8)

Y (=1Ydim H] (X, E) = J
j=0

(1) T Ot
X

holds. When X is not CR Kahler, it is obscure, by the experience from classical
cases, to calculate the density Tre Dom (z,z) — Tre *Hom (2, 2) with the original
Kohn Laplacian. The introduction of the modified Kohn Laplacians replacing D;fm

~+
by om is expected to facilitate this calculation. But because of the unconventional

~
asymptotic expansion of e "em (2, ) some novelty beyond the classical cases shows
up (as mentioned in Introducton). It should be noted that when X is CR Kéhler,

~+ +
wam :Db_,m'

To prove Theorem 4.7 in the remaining of this section, observe that it is nothing
but a statement of homotopy invariance of index. For, with A,, a global operator
(see Definition 4.3), putting L; = 0pm + EZ,m + tA, QT (X,E) - Q% (X,E)
for ¢ € [0, 1], gives the homotopy between Ly = Dy, and Ly = ZNDb,m.

Remark that there have been proofs for results of this type; for instance, see [5]
using heat kernel method and [7] using functional analysis method (both not exactly
formulated in the above form though). To make it accessible to a wider readership, we
include a (comparatively) self-contained and short proof. It is amusing to note that
the Hodge theory in Section 3 is useful at certain points of our proof.

Some preparations are in order. We extend L; by setting

Dom L; = {u € L% " (X, E); distribution Lyu € L%~ (X, E)}

so that L; : Dom Ly (c L%%(X,E)) — L2 (X,E). Write L} for the Hilbert space
adjoint of Lj;.
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Let HL (X, E) be the completion of Q%" (X, E) with respect to the Hermitian

inner product
Q(u,v) = (u|v)p + (Fpu| 050 )5 + (Fpu| Fyv) 5.

Clearly H;*(X,E) c Dom L;,Vt € R. One can show that H., (X, E) = Dom L;.
Let t = 0. Assume Lof = u with f,u € L%* and also assume f | KerD;m since for
any smooth g, f + g€ HL T iff f € HL.*. Using the partial inverse N,, in (3.2) of our
Hodge theory in Section 3, we have LoN,,f = Np,Lof = Nju since Ly commutes
with N, as in the ordinary Hodge theory. Now L§LoN,, f = D;mNmf = f by (3.2),
one has f = LENpu. But N,,u increases the (Sobolev) order of regularity of u by 2
and then L§ N,,u decreases by 1, the regularity of f is of order 1. By localization, with
a partition of unity, on an open subset D in place of X and by the Formula (2.14) in
BRT charts D = Ux] — §,d] for 0y, it follows from the standard Gérding’s inequality
(e.g., [37, p. 93]) that the above Q(-, ) is equivalent to the Sobolev norm of order one
(on the m-th component). Hence f € HL*. For t # 0, since L; = Lo + tA,, with A,,
a smooth zeroth order operator, it follows Dom L; = Dom L.

Consider Hy := HL (X, E)®Ker L} and H, = L%~ (X, E) ®Ker Lo. Let (|- ) g,
and (-|-)g, be inner products on Hy and H; respectively, given by

((f1,91) | (f2,92) ), = Q(f1, f2) + (91192 )E,
((f1,00) | (F2,92) ), = (f1| F2)E + (§1132) -

Let Pker 1, denote the orthogonal projection onto Ker Ly with respect to (|- )g.
Let A; : Hy — H; be the (continous) linear map defined as follows. For (u,v) € Hy,

A¢(u,v) = (Liu + v, Pker o) € Hy.

LEMMA 4.10. — There is a r > 0 such that Ay : Hy — H; is invertible, for every
o<t<r.

Proof. — We first claim that

(4.25) Ay is invertible.

If Ao(u,v) =0 for some (u,v) € Hp, then

(4.26) i) Lou = —v e Ker L§, ii) Pxerr,u = 0.

By (4.26)

(4.27) (Lou|Lou)g = —(Lou|v)g = —(u| L{v)g = 0,

giving u € Ker Ly. Hence by ii) of (4.26) we obtain u = 0, giving also v = 0 by i) of
(4.26). We have proved that A is injective.

We shall now prove that Ay is surjective. Let (a,b) € H;. First we note Lg :
Dom Ly — L%~ (X, E) has an L? closed range, so

(4.28) a=Loa+fB, ac H:'(X,E), alKerLy, Be (RangLg)’t = KerL¥.
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Another way to see (4.28) is to use (1, ,, N, + 1L, = I (on L) of (3.2) (for the
“—7” case) of Hodge theory in Section 3, and obtain a = LoL{N,,a + II,,a where
II,.a € Ker L} (cf. Theorem 3.8) and L N,,a € H!;* (X, E) as mentioned above this
lemma. In either way, by (4.28) one sees

Ao(a+b,8) = (Lo(a + b) + B, Pxer L, (@ + b)) = (Lo + 8,b) = (a,b).

Thus Ay is surjective. The claim (4.25) follows.

Let Ay 1. Hy — Hy be the inverse of Ag. It follows from open mapping theorem
that Ay is continuous.

To finish the proof the following arguement based on geometric series is standard.
Write A; = Ag + Ry, where R; : Hy — H; is continuous and there is a constant ¢ > 0
such that |Ryully, < ctluly,, for ue Ho. Put

Hy=1—-Ay"Ry + (Ag'R)? — (A R )* + -+ -,
Hy =T — RAGY + (RAGY)? — (RAAG)? +--- .

Since Agl is continuous, H; : Hy — Hy and I—NIt : Hy — H; are well-defined as

continuous maps for small ¢ > 0. Moreover A; o (H; o A;') = I (on H;) and
(Agt o Hy) o Ay = I on (Hy), giving right and left inverses of A; for small ¢ > 0.
Hence the lemma follows. O

For t € [0,1] write L} : Dom L} (c L%~ (X,E)) — L%% (X, E) for the adjoint
of L; with respect to (-|-)g. Similar to Lo and L, one has dimKer L; < oo and
dimKer L} < oo (with Ker L; = Q%% (X, E), Ker L} < Q% (X, E)).

Put ind L; := dim Ker L; — dim Ker L}.

LEMMA 4.11. — There is a rg > 0 such that ind Ly = ind Lo, for every 0 <t < rg.

Proof. — Let 7 > 0 be as in Lemma 4.10. We first show that
(4.29) indLop <ind Ly, VO<t<r.
Fix 0 <t < r. We define
B:Ker L ®Ker Ly — Ker L; ® Ker L
as follows. Let (a,b) € Ker L} @ Ker Ly. By Lemma 4.10,
Ay HYT(X,E)®Ker L — L% (X, E) ®Ker Ly

is invertible. There is a unique (u,v) € H: (X, E)®XKer L = Dom L; @ Ker L} such
that A (u,v) = (a,b). Let Pkerr, : L% (X, E) — Ker L; be the orthogonal projection
with respect to (-|-)g. Then the above map B is defined by

B(a,b) := (Pkerr,u,v) € Ker Ly ® Ker L§.
We claim that B is injective. If so, then

4.30 dim Ker L} + dim Ker Ly < dim Ker L; + dim Ker L,
t 0
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i.e., dim Ker Ly — dim Ker L < dim Ker L; — dim Ker L, yielding the desired (4.29).
For the claim that B is injective, if B(a,b) = (0, 0) for some (a, b) € Ker LF¥®Ker Ly,

write (u,v) (€ H:T (X, E)@®Ker L¥) such that A;(u,v) = (a,b). As (0,0) = B(a,b) =

(PkerL,u,v), Pkerr,u =0 and v = 0. Using the definition of A;, one has

(4.31) Ai(u,v) = At(u,0) = (Liu, Pker L,u) = (a,b) € Ker L @ Ker Ly

to give a = Liu € Ker Lf, hence (ala)g = (a|Lwu)g = (Lfalu)g = 0 gives
Liu = a = 0 so that u € Ker Ly, i.e., u = Pkerr,u by definition. It follows that
u = 0 since Pkerr, v = 0 as just seen. With v = 0 and (4.31) one sees (a,b) =
(Ltu, Pger Lou) = (0,0), giving the injectivity of B.

By the same argument, ind L} < ind L} for small ¢. By ind L} = —ind Ly, ind Ly >
ind L; holds. This and (4.29) prove the lemma. O

Proof of Theorem 4.7. — Let
Iy := {r € [0,1]; there is an & > 0 such that ind L; = ind Ly, Vt € (r —¢,7 + ) n [0,1]}.

Iy # & is open by Lemma 4.11. Around a limit point r, of Iy, by the same type of
argument in the proof of Lemma 4.11 and Lemma 4.10 (replacing ¢ = 0 by ¢t = 7
in Hy, Hy and Ap), one finds ind L; = ind L, for t € (1o, — €0,700 + €0) With some
€0 > 0. This implies Iy is closed in [0,1], so Iy = [0,1]. O
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CHAPTER 5

ASYMPTOTIC EXPANSIONS FOR THE HEAT KERNELS
OF THE MODIFIED KOHN LAPLACIANS

In view of the McKean-Singer formula (Corollary 4.8), one of the goals is to cal-
culate the local density (i.e., the term to the right of (4.24)). It consists in obtaining
an asymptotic expansion for the heat kernel of the modified Kohn Laplacian (Spin©
Kohn Laplacian), to which we base our approach on two main steps. While the first
step is motivated by the globally free case (see Theorem 1.2), it will be replaced by
a local version within the framework of BRT trivializations (Section 2.4). A crucial
off-diagonal estimate is going to be done in this subsection (cf. Theorem 5.10). In the
second step we use the adjoint version of the heat equation to construct a global heat
kernel with an asymptotic expansion related to local kernels.

5.1. Heat kernels of the modified Kodaira Laplacians on BRT trivializations

This subsection is motivated by the globally free case (cf. Theorem 1.2). Here the
emphasis is made on the localization of the argument including the Spin® structure
(which is needed for explicit local formulas of the heat kernel density). An important
heat kernel estimate, termed as off-diagonal estimate, will be established in Theo-
rem 5.10.

It is worth remarking that in the statement and proof of Theorem 1.2, we make no
use of harmonic theory. In the locally free case, by contrast, it will be an important
step to relate the (modified) Kohn Laplacian to (modified) Kodaira Laplacian (see
discussion after that theorem). Since these Laplacians are defined via certain adjoints,
suitable matching of metrics involved in both Laplacians must be done as an essential
step.

We will use the same notations as in Section 4. Let B := (D, (z,0),¢) be a BRT
trivialization (with D = U x |—¢,¢[, € > 0 and U an open subset of C", cf. Subsec-
tion 2.4). For z € D wrtie z = z(x) and 6 = 6(z). Since F is rigid and CR, equipped
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with a rigid Hermitian (fiber) metric (- |- )g, (as in Section 4) E descends as a (holo-
morphically trivial) vector bundle over U (possibly after shrinking U) and {-|-)g as
a Hermitian (fiber) metric on E over U.

Let L — U be a trivial (complex) line bundle with a non-trivial Hermitian fiber
metric |15, = e"2# (¢ as in the above BRT triple B). Write (L™, h2™) — U for the
m-th power of (L,h%). Let Q%4(U, E ® L™) be the space of (0,q) forms on U with
values in EQ L™ (¢ =0,1,2,...,n). As usual, Q%" (U, EQ L™) and Q°~ (U, EQ L™)
denote forms of even and odd degree.

To start with the matching of the metrics we let (-, -) be the Hermitian metric
on CTU given by (cf. (4.1))

0 . , 0 o) c, 0 o, 0 —

(-, -» induces Hermitian metrics on T*%¢U (bundle of (0,q) forms on U), denoted
also by (-, - ). These metrics induce Hermitian metrics on T*%U ® E, still denoted
by (-] )E-

Let (-, -) be the L? inner product on Q%4(U, E) induced by (-, -», {-|-)g, and
similarly (-, - ),, the L? inner product on Q%4(U, E ® L™) induced by (-, -), (|- g
and hL™.

Let pm : Q®9(U,E® L™) — QY (U, E® L™), (¢ = 0,1,2,...,n — 1), be the
Cauchy-Riemann operator. Let

Opm 1 QOTH U EQL™) — Q%(U,E® L™)

be the formal adjoint of 0y with respect to (-, - ).
An essential operator that enters our picture is the following one (of Dirac type).

(5.2) Dpm(=D}5,) t=0pm + 0pm + Ap : QOH(U,E® L™) — Q" (U,E® L™),

where Ag : QT (U, E® L™) — Q% (U,E® L™) is as in (4.7) (replacing E there
by E® L™ here) and

(5.3) D§ QO (U, EQL™) - Q" (U EQL™)

the formal adjoint of Dp ., with respect to (-, - )m. (Note Dp,, on the full Q0 =
0%+ @ Q% is self-adjoint; see the line below (4.6). But we prefer to use the above
D3 ,, in the present context.) Note also L with the metric h depends on the choice of
a BRT trivialization. However, A is indeed an intrinsic object; we refer to Remark 5.3

in this regard.
One has the modified/Spin® Kodaira Laplacian:

(5.4) D pm = D5 mDpm : QO (U, EQ L™) — Q% (U,E® L™).

One may define ﬁ;,m QO (U, E® L™) - Q% (U,E ® L™) analogously (by
starting with Dg,j:n or Df ).
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The following fact appears fundamental in itself. It is instrumental to our construc-
tion of a heat kernel (cf. (5.46)) (See, however, remarks after its proof).

PROPOSITION 5.1. — Using the above notations, let u € Q%+ (X, E). On D we can
write u(z,0) = e”"™0U(2) for some (z) € Q¥*(U, E). Recall that the modified Kohn
Laplacian ﬁim is given in (4.12). We write s for the local basis 1™ of L™. Then

—mer> T mesy imo~
(5.5) e (€A @) = (€ Dy (1) ®s.
Without any danger of confusion we may write
—mpr T me~ imo=~
(5.6) e, (€770) = €T, (u).

Proof. — One may work out this result by explicit computations. The following gives
a somewhat conceptual proof. The idea is that one continues to match the objects
on U and on D (c X). (In this way it turns out that no explicit computations of these
Laplacians in local coordinates are needed.)

We define x : Q¥(U,E) — Q"U,E® L™) (¢ = 0,1,2,...,n) by 9(2) —
#(2)e™?(*) @ 5(z) for © € Q®4(U, E). Note x preserves the (pointwise) norms. Equiv-
alently x(e"™%9) = 1 ® s.

We define 69 = 00 + m(dp) A ¥ for © € QY9(U,E) where 0 : Q%(U,E) —
0%9+t1(U E). One may verify
(5.7) drmox=x0d on QYU E).

Indeed, by x (e ™%0@) = 0ii®s = 0= (i®s), one sees the term to the left of (5.7):
Opm o x(e”™%4) (= Opm (@ ® 8)) = x(e"™¥0a). Further, by using definition of § one
computes e™?§(e”™%4) = dii. Then x(e " ™¥00%) = x (e ™#(e™#§(e~™%1))), which is
x(6(e~™¥1)), giving the term to the right of (5.7) and proving (5.7).

Since x is norm-preserving, we have also
(5.8) T o x = x00*

between respective adjoints. Combining (5.7) and (5.8) gives for (g, = (5zm +0pm)?
and A = (6* + )2

(5.9) OBmox=x°A.
By (2.14) for 0p, one computes, for g = e ™G € Q%9(U x |—¢,¢[, E) = Q%4(D, E)
(5.10) ey (e”"™4(2)) = 8(3(2)).

Write the map x; : Q%9(D, E) — Q%4(U, E) for x1(g9) = x1(e"™™%§) = §, equiva-
lently, x1(g) = e¢™?g. Note x; preserves the respective (pointwise) norms (cf. (5.1)).
By (5.10) one sees (with 0y, = 5b|QM)

(5.11) X100pm =00x1 on Q%4(D,E).
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By (2.5) the L? inner product on Q%9(D, E) is clearly 2¢(-, -) with the L? inner
product (-, -) on Q%4(U, E). Thus, in the same way as (5.9) by using (5.11) we have
for Tpm = (5;,” + Op,m)? (and A = (6% + §)? as above)

(5.12) X1°0bm =Ao0x1 on Q04(D,E).
Combining (5.12) and (5.9) yields
(5.13) Obm = (xx1) " 00 B,m © (xx1)

By xx1(e7"%%) = €™ ®@ s and (xx1) (7 ® s) = e "™Pe~™%, one obtains
(5.14) (Tpmu) @ s = e ™™™ (O ne™? (i ®s)) for u=e "ue Q%(D,E),
giving e ™[] g 1 (€™ %) = €™’} ,,(u) in notation similar to (5.6).

For modified Laplacians, from the definition of the zeroth order operator A,, :
Q%+ (X, E) — Q% (X, E) (see Definition 4.3), it is clear that (in notation similar to
(5.6))

(5.15) e ™ Ap(e™PU) = ™0 A, (u).

In a way similar to (5.14) it follows by using (5.15) that

e ™ Dp m(e™P0) = eimef)b,m(u)
hence easily that
¢ (€™0) = €00y ()
proving the proposition. O

REMARK 5.2. — Remark that one might be led by Proposition 5.1 to reduce the study
of Kohn ﬂ;‘r’m to that of Kodaira [] B,m- Indeed such a reduction works quite well
in the globally free case (see discussion following Theorem 1.2 in Introduction). In
the locally free case (of S! action), however, a naive thought of using the Kodaira
Laplacian and its associated (local) heat kernels for a better understanding of the
heat kernel in Kohn’s case is not directly accessible (see remarks following proof of
Theorem 5.15). Namely the associated heat kernels of the two Laplacians cannot
be easily linked as (5.5) seems to suggest. This reflects the fact that the associated
heat kernels, rather than Laplacians themselves, are objects which are more global
in nature. More in this regard will be pursued in the coming Subsection 5.2 and
Section 6.

REMARK 5.3. — The definition of Ap in (5.2) depends on a BRT triple, and the same
can be said with Proposition 5.1. To see that Ap has an intrinsic meaning, one uses
the transformation of BRT coordinates as shown in the proof of Proposition 4.2. The
geometrical construction given there shows that locally X is part of a circle bundle
inside the L* (with metric induced by that of L) over U, and the quantities such
as o, z and 0 in a BRT triple are associated with geometric ones as metric for a local
basis (of L), coordinates on the base U and (part of) a holomorphic coordinate on
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fibers (of L*) respectively. The transformation in these quantities with another choice
of a BRT chart is nothing more than a change of holomorphic coordinates of the same
line bundle. It follows that Ap is intrinsic in a proper sense. A similar explanation
can be given to Proposition 5.1 too (although we do not strictly need this intrinsic
property in what follows).

REMARK 5.4. — In the case of certain Riemannian foliations, it is known that the
Laplacian downstairs and Laplacian upstairs (in a suitable generalized sense) can be
related in spirit similar to that in our proposition above. See [59, p. 2310-2311].

As remarked in Subsection 1.6.3, to suit our purpose we will actually be considering
adjoint heat equation and adjoint heat kernel first.

To proceed further, some notations are in order. Let M be a C* orientable para-
compact manifold of dimension m with a vector bundle F' over it.

DEFINITION 5.5. — Let A(t,z) € C* (R x M, F). We write
A(t,x) ~ t*b_p (2, t) + tF 0 pyq (,t) + tFT20_p oz, t) + - ast — 0F,
bs(z,t) € C*(M, F) a possibly t-dependent smooth function,

s=—k,—k+1,—k+2,..., for k € Z, provided that for every ¢ € N, there is a constant
M (m, £) such that for every compact set K € M, every My € N with My = My(m)
for some My(m) (m = dim M), there are constants Cy g a1, > 0, €9 > 0 independent
of ¢ such that

My
Aty z) = D b g j(x,t) < Cp o, tMoMmb v o <t < g

3=0 CH(K)

REMARK 5.6. — In the important case of the heat kernel p;(z,y) of a generalized
Laplacian on a compact Riemannian manifold B of dimension 3, M = B x B is of
dimension m = 26 and k = —g. One can take My(m) = [g] +1 and My(m,¥) = %.
See [5, Theorem 2.30]. In this case bs(t,z) for all s can be taken to be independent
of ¢.

The novelty above is that bs could be nontrivially dependent on ¢ (in contrast to
the conventional case of an asymptotic expansion for heat kernels).

Let T*%*U and T*%~U denote forms of even degree and odd degree in T*%°U,
respectively as before. If T'(z,w) € (T**"UQ E)X(T*»tUQE)* |(Z )
for the standard pointwise matrix norm of T'(z,w) induced by (-, > and { | )g.

Suppose G(t, z,w) € C*(R, x U x U, (T***U ® E) X (T*""U ® E)*). As usual,
we denote G(t) : Q¥+ (U,E) — QYT (U,E) (resp. G'(t)) the continuous operator
associated with the kernel G(¢, z, w) (resp. %) (Q2+(U, E) denotes elements of
compact support in U).

, write |T'(z, w)|
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We are now ready to consider the heat operators associated with O] ;m and [] ;m
in an adjoint version. By using the Dirichlet heat kernel construction (see [38] or [14])
we can obtain the theorem stated in the following form.

PROPOSITION 5.7. — There exists an
Ap 4 m(t,z,w) =1 Ag 1 (t,2,w) e C*(Ry x U x U, (T**"U ® E) X (T**"U ® E)*)
such that
limy 0+ Ap +(t) = I in 2'(U,T*>"U ® E),
(510) by (u+ Ap ()T pmu) =0, Yue QOH(U,E), V>0,

and Ap +(t, z,w) satisfies the following: (I) For every compact set K € U and every
o, o, 41, B2 € N§, every v € Ny, there are constants Cy a1 ,a,,8:,8.,k > 0, €0 > 0 and
P € N independent of t such that
(5.17)

lz—w?

63631(};2(’)51 a%AB,+(t7sz) < 0’7’017042,51752’1(15_136_60 L V(t,z,w) ERy x K x K.

(II) Let g € Q%F (U, E). For every ay,az € NJ and every compact set K € U , there
is a Cq, 0,k > 0 independent of t such that

(5.18)  sup {|07* 2% (Ap,+ (t)9)(2)]; 2 € K}

< Coya0,K Z sup{ 6516§2g(z)‘ ;zZ € U} .

B1,B26NG | B1|+|B2|<|ar [+|az|
(III) Ap +(t, 2z, w) admits an asymptotic expansion in the following sense (see Defi-
nition 5.5 for ~). For some Kp (t,z,w)

Ay (zw)
AB,+(tasz) =€ ¢ KB,-‘r(taZ?w)a

510 Kpa (b 20) ~ 1778 (2,0) + £ B (2,0) + -+
+bg (z,w) +tb"  (z,w) + -+ ast— 0T,
bi (z,w) (= b, (z,w)) € CP(U x U, (T**"U @ E) X (T*""U Q@ E)*),

s=mn,n—1n—2,..., where hy(z,w) € C*(U x U,Ry) with hy(z,z) = 0 for every
z € U and for every compact set K € U, there is a constant Cx > 1 such that
C%c |z —w|’> < hy(z,w) < Ck |z —w]>.

In (5.16) with ﬁ;’m in place ofﬁ;,m, corresponding statements (with Ag _, Kp,_
etc.) for (g, hold true as well.

REMARK 5.8. — One may use a (weaker) version in the sense of asymptotic heat
kernel. More precisely, it was shown in [24, p. 96] that there is a

At,z,w) e CP(Ry x U x U, (T* U ® B) X (T**TU ® E)*)
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with the property that A(¢, z,w) satisfies (5.17)-(5.19) and

lim Ag(t) =1 in 2'(U,T**"U® E),
(520) t—0+

Agtyu+ Apt) (O pmu) = Q(t)u, Yue QY (U,E), Vit >0,
where Q(t) is a smoothing operator on U with distribution kernel Q(¢, z,y) € C* (R, x
UxU,(T*"UQE)X(T*>*U®E)*) and Q; = O(t**). The notation Q; = O(t*®)
means that for every £ € N, every compact set K € U and every N > 0 there is a
€ > 0 and a constant Cy g,y > 0 such that

(5.21) Q% Y)|ce (e x iy < Cor ntN, forevery 0 <t <e.

The asymptotic heat kernels are not unique. Let A(t, z,w) € CPRy x U x
U, (T*"U @ E) K (T***U @ E)*) and assume that A(t, z, w) satisfies (5.17)-(5.19)
and (5.20). Then, A(t,z,w) — A(t,z,w) = O(t**®) in the sense of (5.21) and the
symbols b;L(z, w), j =n,n—1,..., in the expansion (5.19) are unique (cf. [24, p. 96]).

We are interested in calculating Tr b7 (z,z) —Trb; (2,2) (s = n,n—1,...,0) (where
Trbt(z,2) = 2,;{b5 (2,2)ej | ej )k for any orthonormal frame e; of T*+*U®E,). The
idea relies on Lichnerowicz formulas for (modified/Spin® Kodaira Laplacians) ﬁ;’m

and [] B.m (cf. Theorem 1.3.5 and Theorem 1.4.5 in [50]) so that the (by now standard)
rescaling technique in [5] and [24] can apply well.

To state the result precisely, we introduce some notations. Let VIV be the Levi-
Civita connection on CTU with respect to (-, ). Let Pri,0y be the natural projec-
tion from CTU onto TH0U. VIV .= PrioyVTU is a connection on THOU. Let
VE®L™ be the (Chern) connection on E ® L™ — U (induced by (-, -)g and hL",
see Theorem 2.12). Let ©(VZ"°U T1OU) (¢ C*(U, A2(CT*U) @ End (T*°U))) and
O(VE®L™ E® L™) (e C*(U, A*(CT*U) ® End (E ® L™))) be the associated curva-
tures. As in complex geometry, put

Td (VU 7107 = T (M0 V. TH00) ) —1og( );

1—e*
°
27

Then the above calculation leads to the following.
(5.22)

(Trb;(z,z)—Trb;(z,z)) =0, s=n,n—1,...,1,

ch (VO E@L™) = Tr (W(;-O(V"®*" . EQ L™))), h(z) ="

(ﬁ be (z,2) — Trby (2, z))dvU(z) - [Td (VT"U 710U A ch (VEOL™ E @ Lm)]2n (2),

Vz e U, where [-- ]|2n denotes the 2n-form part.

As the calculation to be performed here is almost entirely the same as in the
standard case, we omit the detail.
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Let VTX be the Levi-Civita connection on T'X with respect to {-|-) and V¥ the
connection on E associated with {-|-)g (cf. Theorem 2.12). In similar notation as
above VT'°X .= Pr10xVTX is a connection on T1:0X.

Since V7"°X and VZ are rigid, in view of compatibility of metrics (and connec-
tions) in (5.1) and Theorem 2.12, one sees that V¥ (z,0) € D (for wy see lines below
Definition 2.1):

Td (VT 790U (z) = Tdy, (VT X, THOX) (2, 0)
(5.23) - B oo mia
ch (VE® ,E@Lm)(z)z(chb(v E) ne m%)(z,e)

and

(5.24) [Td (VT"°U L0 A ch (VEOL™ E® Lm)] (2) A dO

2n

— [Tdb (VTLUX,TLOX) A chy, (VE,E) A eI A wo] (2,0).

2n+1

To sum up we arrive at the following (by (5.22), (5.24) and dvy A df = dvx on D
cf. (2.5))

PROPOSITION 5.9. — With the notations above, we have
(5.25) <Tr b (z,2) — Trby (2, z))dvx(z, 0)

= [Tdb (VTLOX,TI’OX) A chy, (VE E) A eI A wo] (2,0), V(z,0)€eD.

2n+1

To state the final technical result of this subsection, we first identify TZ";O*’U®EZ2
with Tz"‘lo"U ®E., (by parallel transport along geodesics joining z1, 22 € U), so we can
identify T € (T***U ® E) X (T***U ® E)*| with an element in End (T}**U @ E., ).
With this identification, write

(21,22)

d
(5.26) Tr,, T:= Y (Te;| € )p,
j=1
where e1,...,e4 is an orthonormal frame of Tz*lo"U QRFE,,.

In the proof of Theorem 1.10 (see Theorem 6.4), somewhat surprisingly, as deviated
from the classical case, we need to estimate the off-diagonal terms Tr, b} (2, w) —
Tr, b, (z,w) for each s. For this, the following can be considered as another application
of the rescaling technique (and an identity in Berenzin integral as usual).

THEOREM 5.10 (Off-diagonal estimate). — With the notations above, we have
(5.27) Tr, bF (z,w) — Tr, by (z,w) = O(|z — w|*)

locally uniformly on U x U, s=n,n—1,...,1.
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Proof. — Recall that E is (holomorphically) trivial on U. Let ey,..., e, be an or-
thonormal basis for T#U. For f € TFU, let ¢(f) € End (TF*°U) be the natural
Clifford action of f (see (4.2) or [5]). As usual, for every strictly increasing multi-
index J = (j1,...,Jq) we set |J| :=q, ey :=ej, A---e;, and c(es) = c(ej,) - -c(ej,)-
For T € End (TF*°U), we can always write T = Z/‘qun c(es)Ty (Ty € C), where

/
Z denotes the summation over strictly increasing multiindices. For k < 2n, we put

(5.28) [Tl := Y Tyes (e CTF*U).
|J]=Fk

and a similar expression for [T (without the subscript k). We identity T with [T']
without any danger of confusion. We say that ordT < k if Ty = 0, for all |J| > k,
and ordT =k if ordT < k and [T # 0.

A crucial result for our need here is an identity in Berenzin integral (see [5, Propo-
sition 3.21, Definition 3.4 and (1.28)]) which asserts that if ord T < 2n then STrT = 0
(see (1.13) for the definition of supertrace there) and

(5.29) STrT = (—2i)*"STr Ty,cles,), Jo=(1,2,...,2n).

Recall the identification T}0°U =~ T>l<0 *U just mentioned above the theorem, so

that a smooth function F(z) € (T*%*U)x(T*%*U)* l(0.0) is identified with a function

z — F(z) € End (Tg"*U), giving a Taylor expansion
F(z)= Y 2°F,+O0(2["""), F,eEnd(T;"°U).

aeNZ™ ,|a|<P

We are ready to apply Getzler’s rescaling technique to off-diagonal estimates. Con-
sider Ap(t,z,y) = Ap(t,z,w) := Ap +(t,2z,w) ® Ap _(t,z,w) (cf. Proposition 5.7)
and let x € C¥(U) with x = 1 near z = 0. Let

(5.30) r(u,t, ) Z w3 [y (vauz) A (ut, 0, v/uz)]x.

Note that Ap is actually identified with [Ap] similarly to the case of T above, so that
the k-form part (k > n) of (5.30) makes sense.

It is well-known that (see [5]) lim, o7 (u,t,z) = g(t,z) € C* (R, x C*,CT**C"™)
in C®-topology locally uniformly (CT*°C" = @’,ﬁig" AFCT*C"™). In particular,
limy, o 7r(u,1,2)2, = g(1,2)2, in C®-topology locally uniformly, for their 2n-form
parts.

Let bs(z,w) := b (z,w) ®b; (2,w), s =n,n—1,... (cf. (5.19)). One sees
(5.31)

h+(0 Jaz)
r(u,1,@)20 = € x(v/uw) (w7 (0, v/uw)on + 1~ b1 (0, V) an ++ - ).
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Since lim,,_.q e‘w converges to a smooth function in C®-topology locally uni-
formly on C™ (see (5.19) in Proposition 5.7), we deduce that

(5.32)

iig%) (u*”[bn(O, Vuz)]on+u"" by, 1 (0, Vuz) | on +- - ) =g(z) €C*®(C",CT*C")

in C®-topology locally uniformly. Fix P » 1. Write

(5.33) gy = D) gaz® +0(|z"H).
aENg",\a\gP

and for each s =n,n—1,...,

(5.34) bs(0,2) = > beaz®+0(z[7).
aeN2" |a|<P

Hence
(5.35)
[bS(O, \/ﬂx)]Zn = Z u‘%l[bs,ahnxa +u#o(|x|P+1)7 s=n,n— 17“‘7

a€NZ™ |a|<P

and from (5.32), (5.33) and (5.35) it follows that for every a € N2

. Lol g1y lel R
(536) ili% (u 3 [bn,a]Qn +u [bn—l,a]Qn + ) = 9a-
With (5.36) we conclude
(5.37) [brn,al2n =0, V|a| <2n.

Combining (5.37) and (5.34), we see
Tro b} (0, w) — Tro b, (0, w) = O(|w|*™).
We can repeat the method above for the second leading term, and deduce similarly
Tro b7 (0,w) — Tro b (0,w) = O(lw|*), s=n—1,n—2,...,1.
The theorem follows. O

5.2. Heat kernels of the modified Kohn Laplacians (Spin® Kohn Laplacians)

Based on Proposition 5.1, one is tempted to patch up the local heat kernels of
the modified Kodaira Laplacian constructed in Propostion 5.7 to form a global heat
kernel for the modified Kohn Laplacian. This is no problem in the globally free case
(of the S* action). In the locally free case, however, some delicate points arise as the
relation of the two Laplacians given in the above proposition is, by nature, a local
property, whereas the heat kernels are global objects. See discussions after proof of
Proposition 5.1 and of Theorem 5.15 with (5.56) for more.

As remarked in Subsection 1.6.3, if we use the adjoint version of the original heat
equation, it becomes more effective to go over the desired process of patching up. It
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is worth noting that an important role, mostly unseen traditionally, is played by the
projection Q:{% in our situation.

Assume X = Dy U Dy U --- U Dy with each B; := (Dj, (2,6),¢;) a BRT trivial-
ization. A slightly more complicated set up is as follows. Write for each j, D; = U IR
1—26; QS[CC"XR 0; >0, 5 >0,U; 7{26((:” 2| < ;). Put D; = U x]—;,%[
U ={zeC™ |z < W”} We suppose X = Dy uDy U -+ U Dy.

Here are some cut-off functions, all with values in [0, 1]; the choice is adapted to
BRT trivializations.

i) x,(z) € C*(D;) with Z;V=1 Xx; =1 on X. Put

A, —{zeU],there isafe]— %’ %[such that x;(z, 0)#0}

ii) 7;(2) € CX(U;) with 7; = 1 on some neighborhood W; of A;.

i) 0; € C2(]—%, %[) with 355/2/2 o;(0)do = 1.

iv) 6; € C*(]—6;,8;[) such that &, = 1 on some neighborhood of Suppo; and
&;(6) = 1 if there exists z such that (2,6) € Supp x;.

Write z = (2,60), y = (w,n) € C™ x R. We are going to lift many objects in the
preceding subsection defined on Uj to the ones defined on ﬁj via the above cut-off
functions.

Let Ap, +(t,z,w), KB, 1, hj 1 (z,w) and b;s (s =n,n—1,...) be as in Proposi-
tion 5.7 and (5.19). Slightly tediously, we put

(5.38)
Hj(t,,y) = Hj 4 (t,2,y) = x;j(x)e ™ O M0 Ap (¢, 2,w)e™?s )T Mg (w)o(n)
Gj(t,z,y) = Gj+(t,z,y) = Xj(:c)e_m“’ﬂ(z) ’mBABJ,Jr(t z w)em“’j(w)”m"q(w).

and (the last two equations are from (5.19))

(5. 39)
( 2,y) = Kj(t,2,y) = x;(@)e 17K g (8 2,w)e™e T (w)oy ()
+(2,y) = 65(0)h;+ (2, w)U]( )€ CE(D;), = =(2,0), y=(wn)
(:Iz,y) = x;j(z)e e ”"eb*-' J(z,w0)eme T () g (), s =n,n—1,...
ﬂ;rs(a:,y) = Xg( )e_"wf(z) ”"‘ngr (z,w)em"’j(w)”m"Tj(w), s=n,n—1,...
Ap, 1 (t,z,w) = tzw)KBw(t Z,w)
Kp,,+(t,z,w) ~ "b+ n(2,w) + L (2 w)

+b]o(z,w) + 0] (z,w) +--- ast—07.

Remark that these expressions, apart from cut-off functions, are mainly motivated
by the Formulas (5.5), (5.6) of Proposition 5.1. Let H,(t) be the continuous operator
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associated with H;(t,z,y), for which we put down the expression for later use (cf.
(5.44) and (5.46))

(5.40)
H;(t) :Q""(X,E) - Q"1 (X, E),

U — f xj(z)e M (z)_imeABj,+ (t, z,w)e™¥i (w)”"”’Tj (w)o;(nu(y)dvx (y).

Consider the patched up kernel (recall that @, is the projection on the m-th
Fourier component, cf. (4.16))

(5.41) i QY T(X,E) - QYN (X, E)

and let T'(¢,z,y) € C* (R, x X x X, (T*O* X®E)X(T*%* X®FE)*) be the distribution
kernel of I'(¢).

For an explicit expression, one sees (using @, of (4.17)) that

L(t,z,y) = Z J_ e "M)RH) (t, x,y)e ™ du

(5.42)

iUoy)

1 T hja(meT
O R
27 ioid-m

~t ") (tx,y) + " et (ta,y) + -0 ast— 07,

n—1

(™) K))(t,z,y)e ™ du

where we have written
LRI Peoy) »
643)  al(to) Z [ e (7 )3b].) e ™ du,

s=n,n—1,n—2,... Note that al (¢,z,y) and IA);L,S(;E, y) depend on m. For the initial
condition of T'(¢, z,y), one has the following.
LEMMA 5.11. — We have

lim T(t)u = Qmu (on 2'(X,T**TX ® E)),

t—0+

forue QT (X, E).

Proof. — For u € QYT(X,E), Qnu € Q%7 (X,E), Qmu|,, can be expressed
. J
as e~y (w) for some v;(w) € Q% (U;, E). With (5.40) we find (note Ap, 4 (t) =T
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as t — 0 and dvp, = dvy,dn by (2.5))

(5.44)
_ 1 . —mep;(z)—im6 me;(w)+imn
tli%1+H t)Qmu = 111(1)1+ x;(x)e A, +(t,z,w)e
(w)a; (m)e™"™M; (w)dvy, (w)dy
= hm J —me; (2)= Ml Ap, (2 ,w)e™es (W) r 7j(w)v; (w)dvy, (w)

=Xj(w)€ s (2) =m0 e (B (2)v;(2)
im@

= xje " = x;Qmu.
With the above, the lemma follows from (5.41) and },; x; = 1. O

['(t) satisfies an adjoint type heat equation asymptotically in the following sense
(cf. [24, p. 96]).

LEMMA 5.12. — We consider ﬁ;’m 0 Q still denoted by ﬁ;’m [(t, z,y) satisfies
I (t)u + D)y mu = R(t)u, Yue QO (X, E),

where R(t) : Q¥T (X, E) — Q%7 (X, E) is the continuous operator with distribution
kernel R(t,z,y) (€ C*(Ry x X x X, (T*** X QE)X(T**»* X ® E)*) ), which satisfies
the following. For every £ € Ny, there exists an €9 > 0, Cy > 0 independent of t such
that

(5.45) |R(t 2, 9) | oo xxx) < Cee™F, VEeR,.

Proof. — As in the preceding lemma let u € Q%+ (X, E) and write Ulp, = e~ My, (w)

for some v;(w) € Q% F(U;, E) on D;. By this, (5.5), (5.16) and (5.40) it is a bit tedious
but straightforward to compute

(5.46)
H(tyu + H; ()T, u

_ j x5 (@)e MDA (15 ap)emes @I ()0 () do ()
n f X (@)e MM AL (1 )emes @ Himn ) g (n)(C) (9) dv (3)
= [xst@e e A (2073 w)em e ) oy, ()

+ JX;’ ()e 1M At 2,w)7 () (D B, (€797 05)) (w)dv, ()

g
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= | xj(@)e P ETO AL (E 2, w)Ty(w)e™ W (w)dvg, (w)
+ ol B O 42 w) (O, (5™ o) (w)dos, ()
+ xS, 0,2, 0, ) )

= JXJ(I)Sj(tw,W)Uj(w)dUUj (w) = JX;‘(I)SJ(@w,w)eim"Uj(ﬂ)U(y)de(y),
where

S; (t,z,w) = e*mipj(z)fimOABj&(t’ z, U))[Tj (w), ] gj7m]emtpj (w)
€ CgO(R_;r X DJ X Uj) (T*O’JFX ®E) (T*O,JrX ®E)*)

Note 7j(z) = 1 for (z,6) in some small neighborhood of Supp x;. One sees that
X;(x)S;(t, x,w) = 0 if (z,w) is in some small neighborhood of (z, z). Hence by using
(5.17) for (5.46) (on |z — w| away from zero), we conclude that for every £ € Ny, there
is an € > 0 independent of ¢ such that

(5.47) I3 (@) (1,2, | ) < Coe™F, Vi€ Ry

Put R(t,z,y) := Zjvzl x;jS;(t, z,w)e™o;(n) € CP(Ry x X x X, (T**" X Q E)
(T*%* X ® E)*) and set
1 (™~ . ,
R(t,z,y) = o— | ((e7™)yR)(¢t, z,y)e” ™ du.

2 J_,

Let R(t) : Q¥T(X,E) — Q%" (X, E) be the continuous operator with distribution
kernel R(t,xz,y). Note that R(t) = R(t) o Q (cf. (5.42) and (5.41)). By (5.47),
R(t,z,y) satisfies (5.45) and by (5.46) and (5.41), one sees I (t)u+T'(t)[] ;mu = R(t)u,
Vu € Q%*(X, E). The lemma follows. O

To get back to the original heat equation from its adjoint version, it suffices to take
the adjoints I'*(¢) of I'(t) and R*(¢) of R(t) (with respect to (-|-)g) because ﬁ;m is
self-adjoint. Hence combining Lemma 5.11 and Lemma 5.12 one obtains the following
(asymptotic) heat kernel.

THEOREM 5.13. — With the notations above, we have

lim I'*(tu = Qmu on 72'(X, T**TX QE)

t—
forue QO (X, T*"T X ® E) and (ﬂ;m o Qm still denoted by ﬂ:’m below, which is
self-adjoint)

oT*(t)
ot

u+ Oy D (t)u = R*()u, Yue QO (X, E),
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where R*(t) is the continuous operator with the distribution kernel R*(t,x,y) satis-
fying a similar estimate as R(t) in Lemma 5.12.

Based on the above theorem, one way to solving our heat equation resorts to the
method of successive approximation. This part of reasoning is basically standard. But
because of the important role played by @ in the final result (cf. McKean-Singer
(II) in Corollary 5.16), for the convenience of the reader we sketch some details and
refer the full details to, e.g., [5, Section 2.4].

To start with, suppose A(t), B(t) and C(t) : Q" (X,E) — Q%" (X,E) are
continuous operators with distribution kernels A(t,z,y), B(¢t,z,y) and C(t,z,y) €
CP(R; x X x X, (T*" "X ® E)X (T*** X ® E)*). Define the (continuous) operator
(A B)(t): Q¥F(X,E) — Q%* (X, E) with distribution kernel

(AfB)(t,z,y) := fo fx A(t —s,z,2)B(s, z,y)dvx (z)ds

(e C”(Ry x X x X, (T*" X ® B) X (T*" "X ® E)*)).

(5.48)

It is standard that ((Af B)$C)(t) = (A4 (Bt C))(t), denoted in common by
(A BEC)(t).

(The generalization to more operators is similar.)

The method of successive approximation results in a solution (which is actually
unique by Theorem 5.15 below) to our heat equation, as follows.

PROPOSITION 5.14. — i) (Existence) Fiz £ € N, £ > 2. There is an € > 0 such that
the sequence

(5.49) At) :=T*(t) — (T* g R¥)(¢) + (T § R* § R¥)(¢) — - -
converges in C((0,¢) x X x X, (T** X @ E) X (T*** X ® E)*) and
At): Q"F(X,E) - CHX,T** "X ® E) n L% (X, E),
(5.50) [Jim, At)u = Quu on 2'(X,T*+*X ®E), Yue Q"™ (X,E),
N (t)u+ Oy mA(t)u = 0, Vue QO (X, E).

ii) (Approzimation) Write A(t,z,y), (€ C*((0,€)x X x X, (T*** XQE)X(T** T X®
E)*)) for the distribution kernel of A(t). Then there exists an ey > 0 independent of t
such that

(5.51) |A(t,2,9) = T*(t, 2, 9) | oexwx) <€ Fr VEE (0,60).

With ﬁ;m in place ofﬁ;m in (5.50), the corresponding statements forlfll;m (with
A_,T_ ete.) hold true as well.
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Proof. — We sketch a proof of ii) and comment on i). For notational convenience we
set Z = R*, Z? = R* { R*, Z% = R* { R* { R* etc. as defined in (5.48) with || - ||€ as
the C*-norm on X x X. By using (5.45) (for R*) one sees that there are 1 > &y, > 0
such that for all ¢ € (0, dy),

1 & 1 _5
(5.52) 12, < e, |z2), < 53¢ oo
Similarly from the estimate of I'*(¢) (see (5.17)) with the above (5.52) we conclude

that for all ¢ € (0, &),
Ciot, ooy 27, < Dot

where C; > 0 is some constant. Hence the sequence (5.49) converges (in C*((0,€) x
X x X,(T** X @ E) ® (T*** X ® E)*)) and (5.51) holds.

It takes slightly more work to verify (5.50) in i). Let ¢*(¢,z,y) be the (k + 1)-th
term in (5.49). One verifies directly by computation of the convolution that

(5.53) IT* 8 2], <

(5.54) 2q" (t,2,y) + Clymd®(t, 2, y) = Z5(t,2,y) + 2874 (8,2, y)

(cf. [5, (2) of Lemma 2.22]). Since A(t,,y) is the alternating sum of these ¢*, by the
good estimates (5.52) and (5.53), one interchanges the order of the action of (0;+[] ;m)
on A(t,z,y) with the summation. By telescoping with (5.54), one finds that the heat
Equation (5.50) of i) is satisfied (cf. [5, Theorem 2.23]). O

The uniqueness part of the above theorem is included in the following. (Note
et (2, y) is as in (4.15).)

THEOREM 5.15. — 1) (Uniqueness) We have e tTom (z,y) = A(t,z,y) (€ C*((0,¢) x
X x X, (T "X @ E) X (T*"" X ® E)*)). Hence by (5.51), for every £ € Ny there
exist g > 0 and € > 0 (independent of t) such that

€0

<e *+, Vte(0,¢).

—ty _
(5.55) e (z,y) F(t,z,y)‘cg(XXX)\

As a consequence e=tTom (z,y) and I'(t,x,y) are the same in the sense of asymptotic
expansion (as defined in Definition 5.5).
i) (Asymptotic expansion) More explicitly one has (cf. (5.42))
(5.56)
~+
e tHom(z,y) ~t7"a) (t,z,y) + 7" el (tx,y) + - +ad (b 2,y) +tat (t 2, y)

+-- ast— 0T,

N - _
1 4 _hj 4 (@eTMoy) iuNkD —imu
0t (t,2,9) (= af (2 y) = = 3 f eI (e ) (o, e ™ du

(eCPRy x X x X, (T**" X @ E)X (T** T X ® E)*)),
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s=nn—1n—2,...
Similar statements hold for the case of e Hem (z,y) as well.

Proof. — The argument for the uniqueness part is standard. To sketch it, there is
the following trick (cf. [5, Lemma 2.16]) in which we shall use heat equations for
both kernels (cf. (4.18) and (5.50)). For 0 < ¢ < € (e as in Proposition 5.14) and
f9e Q" (X, E)

t

0 -
0= [ 5 (a¢-9)f1eTing)e)ds
0 (98

— (Quf et Tomg) g — (A F|Qmo)e
(fle” tDb’"g)E—(A(t)ﬂg)E

— (e Timflg)e — (AD)f|9)5,
y) =

proving that et ﬁ;m( Aty z,y).
The estimates (5.55) and (5.56) follow from (5.51) and (5.42) (e_t':];m is self-
adjoint). O

Remark that by Proposition 5.1 it was tempting to speculate that the heat kernel
for (modified/Spin®) Kohn Laplacian might be (at least asymptotically) the (local)
heat kernel for (modified/Spin®) Kodaira Laplacian. This is however too much to
be true as suggested by the above Theorem 5.15 because the asymptotic expansion
of (modified) Kohn Laplacian involves a nontrivial t-dependence in as(t,z,y) (cf.
Remark 1.6 and Remark 1.7).

We are ready to establish a link between our index and the heat kernel density
of (modified) Kodaira Laplacian. For a/ (t,z,z) in (5.56), define Tra/ (t,z,z) =
Zfﬂ(a;(t,x,x)es(mﬂ es(xz) )g as usual, where {es(z)}s an othonormal frame (of
T#%* X ® E,). (Similar notation and definition apply to the case of a, (t,z,z). )

To sum up from Corollary 4.8 and (5.56), there is a second form of McKean-Singer
type formula for the index in our case (cf. Corollary 4.8 for the first form).

COROLLARY 5.16 (McKean-Singer (II)). — We have

(5.57)
Z(—l)jdimHg (X,E) = lim J 2 t_e(Trazr(t,a:,:c) - Tra[(t,ac,x))dvx(:n).
iz m t—0+ X€:O

By this result we are now reduced to computing as(t, z, z) in the following section.
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CHAPTER 6

PROOFS OF THEOREMS 1.3 AND 1.10

We are in a position to prove the main results of this paper. A new ingredient
is the notion of “distance function” d (see (1.16) for the definition and Theorem 6.7
for its property). This function naturally appears when we compute as(t, z,z) in the
form of an integral (5.56). In the remaining part of this section we prove that this
“distance function” is equivalent to the ordinary distance function at least in the
strongly pseudoconvex case (Theorem 6.7).

Theorem 1.3 is proved in Theorem 6.1, Remark 6.2, Corollary 6.3 together with
Theorem 5.15; Theorem 1.10 proved in Theorem 6.4 and in (6.15).

In the same notations as before recall that X,, = {a: € X; the period of z is i—’;},

1 <4 < k with p|p, (all £) and p = p;. X, is open and dense in X. See the discussion
preceding Theorem 1.3 for more detail.

Let G;(t,x,y) be as in (5.38). (Notations set up in (5.38)—(5.43) will be useful in
what follows.) By the construction of G;(¢,x,y), it is clear that

(6.1)

Qp_q

N
1
2—2 i(tz,z) ~t "o (z) + "ot (2) +--- ast— 0T,

N
1
2—2 ., e C*(X,End (T** "X ®E)), s=n,n—1,....

at(z) are independent of choice of BRT trivialization charts (in view of Re-
mark 5.8). It is perhaps instructive to think of these as the data of the asymptotic
expansion associated with the “underlying Kodaira Laplacian” (cf. loc. cit. and Propo-
sition 5.1) regardless of the existence of a genuine “underlying space”.

Recall the asymptotic expansions of I'(¢,z,y) and e~ Oom (z,y) (they coincide by
Theorem 5.15), in which we have af (¢,z,y) (€ C*(R,; x X x X, (T***" X ® E)
(T*O+* X @ E)*)), s=n,n—1,..., cf. (5.56) or (5.42). By the construction, I'(¢, z,y)
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and as(t,z,y) of (5.56) depend on the choice of BRT charts. (The authors do not
know whether there exists a canonical choice of as(¢, z,y) in this respect.)
We are now ready to give a proof of the following.

THEOREM 6.1 (Cf. Theorem 1.3). — For every No € N with Ng = Ny(n) for some
No(n), there exist eg > 0, § > 0 and Cp, > 0 such that

(6.2)
No A No ‘
Z t_”‘”az_j (t,z,2) — prop, |m 2 t_"‘“aj;_j(x)
j=0 j=0

VeeX, (r=1,...,k), VO <t <.

—egd(z, X7, )2
Oy (et g
Proof. — For simplicity, we only prove Theorem 6.1 for » = 1. The proof for r > 1 is
similar.

As in the beginning of Section 5.2, there are BRT trivializations B; :=
(Dj,(2,0),95),5=1,...,N. We write

P P 5 §; n
Dj =U; x]-26;,28;[, Dj=Ujx]=5, 5[ (=C"xR),

with U; = {z€ C"; |2z| <v;},U; = {z€C; |2| <~;/2} for some §; > 0, Sj > 0,
Yi > 0.

Assume X = Dy U -+ U Dy. In the following we let 0; = 96; = ¢ (all §), ¢ satisty
(1.15) with 4[¢[ < 2.

It is easily verified that there is an £y > 0 such that (d(-,-) the ordinary distance
function on X)

(6.3)
R 1
éod((21,601), (22,01)) < |21 — 22| < gd((zlyel), (22,01)), V(21,01),(22,01) € Dy,
1
€0d((21,61), (22,61))* < hj(21,22) < gd((zl,gl)» (22,01))%, V¥ (21,01), (22,01) € Dj,

where h; 4 (z,w) is as in (5.19).

Recall that the modified distance d which is defined in (1.16). We are going to
compare d with (6.3).

Fix x¢ € X,,. Suppose z¢ € ﬁj for some j = 1,2,..., N and also suppose z¢ = (z,0)
on D;.

Some crucial remarks are in order.

i) For 0 < |u| < 2¢ the action of ™™ on ¢ is only moving along the “angle”
direction (due to the assumption that a BRT trivialization D; is valid here), i.e., the
z-coordinates of zog and e ™ oz are the same.
ii) Let a ug € [2¢, 2?” — 2(¢] be given. Assume that the action by e~%° on x still

belongs to ﬁj with a coordinate e *“° o xy = (Z,). Then it could happen that % # z
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because the orbit {e % o x4} for 2¢ < v < 2?” — 2¢ may partly lie outside of D;. We
will show in (6.4) below that indeed Z # z in this case.

Remark that the above ii) is basically the reason responsible for why the contribu-
tion of our distance function d enters, as seen shortly. The question about whether the
condition e %0 o € ﬁj of ii) is vacuous or not will be discussed below (equivalent
to whether J below is an empty set or not).

We shall now formulate the above ii) more precisely. If z¢ € f)j, we claim the
following.

Suppose e~ oy = (2,7) also belongs to ﬁj for some 0 € [2¢, 2?” —2¢].

(6.4) )

Then |z — 2] = €y d(xo, Xsing ) (> 0).
Proof of the claim. — By (%,7) € D; one has ¢ o (,7) = (%,0) equivalently e~ o
(2,0) = (£,7) (by the above i) as |fj] < % here). One sees (by (6.3) and isometry
of S action for the first inequality below)

(6.5)

|z — 2| = &9 d(eiﬁ o (Z,ﬁ),eiﬁ o(z,7)) =& d(ei7~7 o (e_ie °Zg),Zo)

> € inf {d(em oe *omg,m); Jul < g}

i0 A~ 2
S P
= é0 J(l”o, Xsing )
(see (1.16) for the definition of cf), as claimed. 0

Remark that a sharp result in this direction (6.4) is proved in Lemma 7.6.

We continue with the proof of the theorem. We need to estimate I'(t) = Z;v:1 H;(t)o
Q. for the first summation to the left of (6.2). By definition (see (5.42)) this is in
turn to estimate

1 " —iu —imu
(6.6) by ((e™™)y Hj)(t, 20, T0)e du
and sum over j =1,...,N.

We first assume that in (6.6), 2o = (2,0) in D; and zq ¢ D}, for any other k # j.

To work on (6.6) we shall divide [—m, 7] in (6.6) into two types.

The first type is to estimate 5 Sigc((e_i");Hj)(t,:Cg,mo)e_im“du. Note if
ue[-2¢,2¢] and e"™ o xy = (24,04), then (z,,0,) = (z,u) (by i) above (6.4)),
ie, e"™ o (2,0) = (z,u). Hence, by (5.38) the factor e"™” in H; is going to be
e and this is canceling off the term e "™* in the integral (6.6). By (5.19),
hi(z,2y) = hy(z,2z) =0 (also by (6.3)) and the factor e of Ap, 4+ in Hj of (5.38)
becomes 1. Finally we note that for o; in H; of (5.38), §,0;(0)d0 =1, I = [—%, %]
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To sum up, by (5.38) and (5.19) one obtains the following (o ¢ Dy for k # j)

1 (% . .
(6.7) —J ((eﬂ“);"Hj)(t,xo,xo)eﬂmudu
2T —2¢
~(t*”a:{(azo) +t= (Dol (2) + - ) ast— 0%,
where af (z), s =n,n—1,..., are as in (6.1).

For the second type suppose u € [2(, 2?” — 2(]. Note the action by e~* on x¢ may
change the z coordinate of zo by ii) above (6.4). We let J be the subset of those
u € [2¢, 277’ —2¢] = E that e oz = (2,,6,) belongs to D; (then z, # z by (6.4)),
and J’ be the complement of J in E. One finds, for some gy > 0,6 > 0 and Cy > 0
(independent of j, xp), that

1

— ((e™™)* H,)(t, o, zo)e ™“du
2w Le[zc,i,"zc] v

1 ) )
< 2 [ ezt we, w0y du
(6.8) 7 ey v |
1 . )
+ o ‘((e_m)ij)(t,xo,xo)e_m“| du
T JueJg’

—c0d(%0, Xsing )?

< Cot™"e ? , Vo<t <,

where the integral over J’ vanishes because the cut-off function o; in H; of (5.38)
gives o;(n(y)) = 0 for y = e ™omxy ¢ D; as o; = 0 outside D; (see lines above (5.38)),
and the second inequality arises from applying (6.3) and (6.4) to h(2,2,) in H; (see
(5.38) and (5.19)).

Is J an empty set? We remark that the top term in (6.8) is in general nonzero
(by combining (6.7) and Remark 1.7 for p = 1). Hence J # J in general. There is
a geometrical way to see the claim that for some open subset V of X, if zg € V,
then J # (. For simplicity assume X = X; u X5, i.e.,, p = 1 and py = 2. Choose
ye Xo. Let g = ¢ % e S'. Fix a neighborhood U < ﬁj of y in X. Since goy =y,
by continuity argument there are neighborhoods Ny, Ny of y, g in X, S! respectively
such that the action hox € U if (h,x) € Ny x N;. Choose Ny ¢ ﬁj, N, small and set
V = N1\ Xs. It follows that for these zg € V, J # (J since Ny < J. This result also
accounts for the necessity of the remark ii) above (6.4) and hence that of a certain

N

extra contribution (e.g., d) in estimates (6.8).

Suppose p = 1. Then (6.7) and (6.8), Definition 5.5 for ~ and Remark 5.6 (by noting
that dim X = 2n + 1, dimU; = 2n, My(m) = n+ 1, m = 4n = 23, Mi(m,£) = n
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for £ = 0) immediately lead to

T(t, 2o, x0) 2 t_””a xo)

(6.9)
—n+N, _ —c0d(20, Xsing )?
<CN0<t O+ Cot™ e t ), NQZN()(TL), VO <t<§.
Now adding t‘"+N°+1a:{7N071 to (6.9) and substracting it we improve t—"+o
by t~*+No+1l Hence the estimate (6.2) of the theorem for p = 1.
Suppose p > 1. Then one has an extra p—1 sectors in [—7, ] (obtained by shifting
the above first sector s = 1 by a common (s — 1)2?”):

(6.10) [(s — 1)2;” ¢ (s — 1)2;” o), [(s - 1%” +2<,s2§ ¢l s=1,....p

(s = p+ 1 identified with s = 1) over which the integrals correspond to types I (6.7)
and IT (6.8) respectively. One may check without difficulty that the version of the claim
(6.4) adapted to these sectors holds true as well. On each of these sectors, a simple
(linear) change of variable for w, which is to bring the intervals of the integration on

these sectors back to those in (6. 7) and (6 8), produces the extra numerical factor in

. P m(s=1)
sum (by e “™*dy in (6.6)) : > e = pdp|m as expressed in (6.2).
s=1

Finally, note that we have assumed zy = (2,0) € Dj. In this case the above
argument appears symmetrical in writing. This (assumption) is however not essential.
Since we shall also adopt a similar assumption in Section 7, we give an outline about
the asymmetrical situation (i.e., zg = (2,6), 8 # 0) of the argument. By going over
the same process, one sees the following. i) If z = (z,v), with 0 < v < 2 , the intervals
n (6.7), (6.8) shall be replaced by [—2¢ — v,2¢ — v], [2( — v, & — 2¢ — v] (thought
of as translated by a common —v) with the new integrals denoted by (6.7)’, (6.8)’,
respectively; i) [-2¢ — v,2¢ — v] 2 [—(, (] hence §o(u)du is still 1 in (6.7) ; iii) In
the proof of claim (6.5), ' should be replaced by e” Wlth v =17—w, (%0) by (,v)
and 0 € [2¢, =% Zr _92¢] by 6 € [2¢ — v, 2T — 2¢ — v] throughout (6.4) and (6.5). One can
check that the reasoning in (6.5) remams basically unchanged, and the conclusion of
(6.5) holds true as well in this modified case; iv) By the preceding ii) and iii), the
results corresponding to (6.7)’ and (6.8)’ hold true. Hence the asymmetrical situation
follows.

We have also assumed xq ¢ Dy, for k +# 4. This condition is unimportant if we take
the preceding asymmetrical situation into account (for zg € Dy, k # j in the general
case), and note that there is a hidden partition of unity in {H,};—1, . n~.

An alternative of the above is to use the kernel e~tClom (z,y) in place of T'(¢, z, y)

~+
and af (t,z,y). An advantage is that e *Ho.m (1, y) is independent of BRT charts, so
that for a given point xy we can take a covering of X by convenient BRT charts for
the previous special conditions to be satisfied (e.g., zo = (2,0), zo € D; for exactly
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one j etc.). By the asymptotic property between e‘tﬁ;m(a:,y) and I'(t,z,y) (5.55),
this also leads to Theorem 6.1. O

REMARK 6.2. — For the relation between a (¢, z, y)|y=z and a;(z) as stated in (1.18)
of Theorem 1.3, the method of the above proof works. By using (setting y = x below)

—itoy)

611)  af(tay) = —2 f — B (i) (e

(see (5.56)) with the same reasoning as (6.7), (6.8) and (6.10), one obtains (1.18)
for P, = id. For £ > 0, (1.18) follows using

22

(6.12) dpe™ T = —2t‘§(xt W2 = Ot %)
n (6.11) and by noting Remark 5.6 as in (6.9). Remark that if one extracts the
corresponding coefficients of t~° in (6.2) of Theorem 6.1 and uses the Result (6.2),

cod(=, alng)

the estimate appears to be e~ + O(t*) which is slightly weaker than above
(due to O(t™)).

For similar estimates with regard to C' topology we have the following (cf. (6.12)
and Remark 5.6).

COROLLARY 6.3. — In the same notation as above, for any differential opera-
tor Pp:C®(X, T*** X ®F) - C*(X,T** "X ®E) of order { € N and every
No = Ny(n) for some Ny(n),

No No
(6.13) Pg( Z t_"“afl_j (t,2,2) = Prop,|m Z t_””a,f_j (a:))’
Jj=0 j=0
—egd(z, X7, )2
< O, (Mot f b T ) o<t <5, Yae X,

for some g9 > 0, 6 > 0 and Cy, > 0 independent of x.

Note the singular behavior ¢~ (in the term to the rightmost of (6.2)). So the
estimate (6.2) is not directly applicable to the proof of our local index theorem.

That is, computation involving as cannot be automatically reduced to computation
—€ ‘i(zvxsin )2
involving a, as soon as x (€ X,) approaches Xing. Intuitively ¢t~ "e e goes

to a kind of Dirac delta function (along Xgng) as t — 0 (apart from a factor of the
form t%, some 3 > 0). So after integrating (6.2) over X, a nonzero contribution due
to this term could appear or even blow up as ¢t — 0. A more precise analysis along
this line will be taken up in the study of trace integrals in Section 7.

Fortunately, the abovementioned singular behavior can be removed (t~" dropping
out completely) after taking the supertrace, so that the index density for our need
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does exist. (However, as far as the full kernel is concerned, a certain estimate such as
that in Theorem 6.1 is unavoidable as discussed in Remark 1.8).

We shall now take up this improvement on (6.2) under supertrace. We formulate
it as follows, whose proof is heavily based on the off-diagonal estimate obtained in
Theorem 5.10.

THEOREM 6.4 (Cf. Theorem 1.10). — With the notations above, for every No €
N, Ny = Ny(n) for some No(n), there exist €9 > 0, 6 > 0 and Cn, > 0 such that

(6.14)
~ o No ]
Tre tHem (g, 2) — Tre tHem (2, 2) — PrOp, |m Z gt (Tr afkj () —Tro,_; (x))
j=0
sgd(x,x;ng )2
<CN0<t*”+N°“+e* ? ), Vo<t<d, VzelX,,

The implication of Theorem 6.4 yields a link between the two identities arising
from Corollary 5.16 and Proposition 5.9 together with (5.22):

(6.15)
li t=(Traf(t — Traj (¢ d =Y (-1)dimH] (X,E
Jm )2 (Tray (t,2,2) — Tray (t,2,2) )dvx(a) 2, ()i B (X, )
li t(Tra, (z) — Tra, (z))d
Tim. L; (Tr o7 () - Tro (@) )dvx (@)
1 , .
= Q—J Tdy, (VT1 OX,Tl’OX) A chy, (VE E) A eI A wo(x).
T Jx

c0d(=, Xging )?

It follows that the two in (6.15) are equal because in (6.14), e~ 7 (£1)—0
in L' by Lebesgue’s dominated convergence theorem as t — 0% on X,,. We arrive now
at an index theorem for our class of CR manifolds.

COROLLARY 6.5 (Cf. Corollary 1.13). — We have

(6.16) i (—1Ydim H} (X, E)

7=0

1 1,0 x _m @0
= pcsp‘m% fx [Tdb (VI X TH0X) A chy, (VE,E) Ae ™2 A w0]2n+1 (z),
where [+ |ant+1 denotes the (2n + 1)-form part.

We turn now to the proof of Theorem 6.4.
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Proof of Theorem 6.4. — For simplicity, we only prove Theorem 6.4 for r = 1. The
proof for r > 1 is similar. Adopting the same notations as in the proof of Theorem 6.1
(e.g., Bj, Dj, Dj---), we shall follow a similar line of thought as in Theorem 6.1.

Fix g € X,. As et Tim (z,y) and T'(¢t,z,y) are asymptotically the same (Theo-
rem 5.15), we also break the desired estimate at x = z( into two types of integrals
corresponding to (6.7) and (6.8).

One integral is over I = [—2(,2(] and the other over I’, the complement of [
n [—m,m]. The first type gives rise to the first term to the right of (6.14) almost the
same way as (6.7).

The key of this proof lies in the second type which corresponds to (6.8). It is
estimated over I’, as in (6.17) below. (Here we rewrite H; in a convenient form, in
terms of lAzj,+, IA{J# of (5.39), reminiscent of an analogous relation Ap = e*h%KB,+
in (5.19).)

(6.17)
Ly

27 a

g Morg) o R L R
f e (e TR ) (8 w0, 0) — (¢ )3T K ) (8, 0, wo) ) du
uel’

We shall now show that there exist g > 0 and C > 0 (independent of () such
that (6.17) is bounded above by

_ c0d(z0, Xsing )2
t

(6.18) Ce

for small ¢t € R;. To see this we first note that for k£ > 0,
$2 2 $2

(6.19) e (%)’“ < Cpeec%

for some constant Cj, . independent of z and ¢ > 0. Write zg = (2, 6) and e ®ogy =
(2u,0,) in BRT coordinates. Since h; i (7o, e ox) is essentially h (2, 2,) & |2 —24/%,
we have

_ h(zq,e*omzq) 2, e

(6.20) e ¢ <e” T <e

2 4 2
€0d(#0,Xsing ) |z—2q |2
C1 7 —C1 z

e
for some constant ¢; > 0 by using (6.4) for d. By using the off-diagonal estimate of
Theorme 5.10 and by (5.19), (5.39) for linking b, with K,, one obtains the following
estimate from (6.20)

(6.21)

_ ﬂjy+(zo,e’i“oxo) (
t

‘ (€T )t z) — ()T R )t 20))

o 2040 Xeing )2 ozl |z — 2| %R
<e ™ T Z constants -e” ' ¢ (T

k=0
for (6.17). Now one readily obtains the bound (6.18) from (6.21) and (6.19).

+0(t))
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Combining the above estimates for integrals of the first type and second type (6.17),

god

we obtain (6.14) in the way similar to (6.9) (with t~™ dropping out of ¢~ "e~ "¢ ). O

In the remaining part of this section we give a geometric meaning for (i(x, X;ng)
(when X is strongly pseudoconvex). To this aim it is useful to use another equivalent

form of the function d, as follows (without any pseudoconvexity condition on X).

LEMMA 6.6. — There exists a small constant g > 0 (satisfying (1.15) at least) with
the following property. Fixz an € with 0 < ¢ < g9. For x € X define another “distance
function” ds by (for a fixed £)

. 2 2
dg(a:,Xgi;é) = inf {d(m,e_w ox); . <0< il + 6}
De De

.+ ). Then do(z, X51) is equivalent to d(z, X‘71). (Namely

sing sing

(Xt =X, uX

sing Pe41
idg < d < Cyeds for some constant Cy . independent of x).

We postpone the proof of the lemma until after Theorem 6.7.
For technical reasons we impose a pseudoconvex condition on X in the following
although the same result is expected to hold without this condition.

THEOREM 6.7. — With the notations above, assume that X is strongly pseudoconvex.
Then there is a constant C > 1 such that
1

C

Proof. — For simplicity, we assume that X = X; u X5, i.e., p = 1, po = 2, so that
Xsing = Xsling = X, (r = 1) by definition. For the general case, the proof is essentially

the same. Let f,g: X — [0, 40| be positive functions. We write f(x) ~ g(z) if there
is a constant C' > 1 such that

A2, Xiing) < d(, Xling) < Cd(z, X0, ), Vze X,

sing sing sing

1

59(@) < f(@) < Cyla),

for every z € X. By Lemma 6.6, for every (small and fixed) € > 0 we have
(6.22) d(z, Xsing) ~ inf {d(z,e P oz);m—e<O<T+e}.
Since Xis strongly pseudoconvex, it is well-known that (see [40]) there exists a CR
embedding:
$:X —CN,
z = (fi(z),.... fn(z))
with f; € Hy,, (X) for some m; e N (j = 1,...,N).

(6.23)

We assume that mq, ..., ms are odd numbers and ms,1, ..., my are even numbers.
By p =1 and py = 2 one sees that (cf. (1.35))
(6.24) z € Xging if and only if f1(z) =--- = fs(z) =0
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so that

(6.25) d(z, Xeing )* Z If;@)?, VzeX.
Now, by using the embedding Theorem (6.23) (together with (1.35)) we have

N
(6.26) d(xve_iﬂ O'T)Q ~ Z |f](x) - fj(e_m =4 Z |fj(z d(z Xsmg)2
j=1

and hence for every 1 —e < 0 <7+ ¢ (¢ > 0 small)

N
(6.27) d(@,e™0a)*~ ) |f;(a) = fi(e o o)’
j=1

> Z (1— e imif) Z |f(z d(, Xging )%

By (6.27) we conclude that
(6.28) inf {d(z,e P ox);m—e <O <T+e}~ dz, Xeing)-
Combining (6.22) and (6.28) we have proved the theorem. O

We give now:

proof of Lemma 6.6. — In the following we write d(z) = d(z, X% ') and da(z)

sing
dg(.’l} Xfmé) for a fixed ¢. For an illustration we assume X = X; u X, i.e., p1 = 1,
pe = 2, and z € X, (d2 =d =0 for z € Xs.) Write I for the complement
of I' = |lr—¢e,m+¢[ in [(,2mr — (] = K (where ( satisfies (1.15) and ¢ > 0 a
small constant to be specified, cf. the line above (6.35)). By definition dy > d (= dp)
(dy is to take inf over I’ while d over K, and I' ¢ K).

It remains to see czz < Cd for some C. Put
= inf {d(z,e™*
fsla) = ot {d(a, e o)}
for a set S. We claim that there exists a ¢, 1 > ¢ > 0,

(6.29) fi(z)=c

for all z € X;. Indeed for each z € X and for any 6 € I = [{,m —¢] U [7 +&,2m — (]
one sees = # e~ ox. So (6.29) follows by a compactness argument. Let M > 1 be an

upper bound of dy. We claim

o M

(6.30) do(z) < —d(z), zeX.
c

Note d(z) = fx(z) = min{f;(z), fr(z)} and dy = fr. Suppose fx(y) < fi(y).
Then fx(y) = fr(y), ie., d(y) = da(y) and (6.30) holds for these y (as M) If

fx(y) = fi(y) (for some y € X;), then fx(y) = fr(y), giving d(y) > ¢ by (6.29).
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For these y, (6.30) still holds. In any case we have proved (6.30) for z € X7, hence
forzeX (d=dy =0at z e Xy).

For another illustration, in the same notation as above except that say, X = X; u
Xo u Xy (i-e., p3 = 4). We are going to prove the lemma for the case ¢ = 2 (with
zeXy,asd=dy=0atz¢ X, for £ =2).

With the above I,I” and K, let J be the complement of J' = |5 —¢, % +¢[ U
132 — e, 3 +¢[in I.

It follows, similarly as (6.29), that there exists a co, 1 > ¢a > 0 such that
(6.31) fr(x) =co, VzelX.

Let {W,}, be the set of connected components of X4. Each y € X, is a fixed point
of the subgroup Zs = {1,€'% e, e!'7 } of S; write A; o (g) for all the eigenvalues of
the isotropy (and isometric) action of g € Zy on Ty X for y € W,. All of them are
independent of the choice of y € W,,. Let

Cy = max Aialg) =11} >0; ¢ = min Aialg) =1} > 0.
= mas (o)~ 1) L  (iale) 11

Let B = {z € X; dy(x) > (%\f + 1)%&@) > 0} (M =1 as above). Clearly B < X;
(zero distance for z € Xo U X4). We claim that
(6.32) BnX,=0.

To see (6.32) suppose otherwise. Let y,, € B and y,, — y € X4 as n — o0. Observe
that fx (yn) # fr (yn) for all n because the equality d(y,) = d2(y,) (note fx = d and
frr = dg) clearly contradicts the definition of B with y, € B.By K =I' v J' U J, we
are left with two possibilities for a y,

1) fK(yn) = fJ’(yn)
11) fK(yn) = fJ(yn)'

Suppose i). By examining the isotropy (and isometric) action of Z4 at y € X4, one

(6.33)

sees that both ratios below
d(yna e o yn) d(yn) B o yn)

R3m

d(yn,eﬁ%oyn)’ d(ynye 2 Oyn)

(6.34)

are bounded above by S—M + % asn » 1. Since I’ and J' are e-neighborhoods around 7

and {Z, 3} respectively, by choosing a sufficiently small e (say € < o) one sees from

(6.34)

/ 1
S (Yn) éC—Man, n > 1.
fJ’(yn) Cm 2
We claim that this contradicts y, € B. Note fx = d and frr = ds so that the
assmption i) fx(yn) = fr (yn) amounts to d(y,) = fr (y.) and (6.35) gives

” 1
(6.36) dalyn) (COm 10
d(yn) Cm 2

(6.35)
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By yn € B, (6.36) contradicts the definition of B.

Suppose ii) of (6.33). By (6.31), fs(z) = ¢, for all z € X hence by fx = d and ii)
of (6.33), one obtains d(y,) > ¢z, giving da(y,) = (%‘ff +1)M by using y,, € B, which
is absurd since dy < M by assumption. The claim (6.32) is proved by contradictions
in i) and ii) of (6.33).

Granting the claim (6.32) we have B ¢ X; U X, (which is open in X). Since
for € I and x € X; U X (in particular for x € B) x # e~ oz, by compactness there
exists a ¢3, 1 > ¢3 > 0 satisfying (as in (6.29))

(6.37) fr(z) = c3

for all z € B. One asserts that

(6.38) dy(z) < (f—M + 1)%&(@, Vz e B.

m 2C3
The argument is similar. By fx = I’IliAIl{f[,f]/}, a)A fKA(z) = Jip(x) orb) fx(x) = fr(x).
a) If fx(z) = fr(z), then by fx = d and f; = da, d(z) = da(z); b) if fx(z) = fi(2),

then by (6.37) and fx = d, % > 1 (for z € B). In both cases a) and b), (6.38) holds
(by M > 1 an upper bound of dy and é, é > 1).

Finally, Since the same inequalily of (6.38) holds for all = outside B by definition
of B (with dy =d=0for ze Xou X4), the equivalence between d and ds (for all
z € X) is proved.

The proof for the general case clearly flows from the similar pattern as above
(although tedious). We shall omit the detail. O
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CHAPTER 7

TRACE INTEGRALS AND PROOF OF THEOREM 1.14

7.1. A setup, including a comparison with recent developments

There is a vast literature about heat kernels on manifolds. A comparison between
the previous results and those of ours in the present paper shall now be discussed
before we proceed further. A concise account of the (ordinary) heat kernel in diversified
aspects is given in Richardson [59] and references therein. A generalization of the
heat kernel to orbit spaces of a group I' (of isometries) acting on a manifold M
dates back to the seminal work of H. Donnelly in late '70s [21], [22]. Among others,
Donnelly calculated the asymptotic expansion of the trace of the ordinary heat kernel
on M restricted to I'-invariant functions (here I'-action is assumed to be properly
discontinous on M). Briining and Heintze in ’84 [11] studied the equivariant trace
with T' replaced by a compact group G of isometries (including the trace restricted
to G-invariant eigenfunctions). A similar study (of trace) into the orbifold case has
been made recently in [59] and [23]. In all of these works the asymptotic expansion
of the (ordinary) heat kernel is more or less regarded as known. The questions or
techniques come down partly to that used in Donnelly [21] where the contributions
to the trace integral are shown to be essentially supported on the fixed point set of
the group action.

In a closely related direction some authors consider the case of Riemannian foli-
ations. In this regard, if the orbits of a group acting by isometries are of the same
dimension, this forms an example of a Riemannian foliation. For a Riemannian foli-
ation, one is usually restricted to the space of basic functions which are constant on
leaves of the foliation. Similar ideas apply to give basic forms. The basic Laplacian
and basic heat kernel Kp(t,z,y) can then be defined. Over decades there has been
much study into the existence part of the basic heat kernel Kg(t,z,y), which is finally
proven in great generality by E. Park and K. Richardson in '96 [56]. Another proof
on the existence is found in '98 [58], which gives a specific formula for Kg(t,z,y) and
allows them to obtain an asymptotic formula for Kpg(t,z,z). We denote the trace
integral (on basic functions) by Tre ' (which is ) e~**= for certain eigenvalues
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with multiplicities). In [59] and [58] the trace integral is also denoted by Kpg(t) which
will be avoided here due to a possible confusion. We shall dwell upon this important
point after the next paragraph.

Let’s first pause for a moment for comparison. For the part of the trace integral,
the basic technique based on Donnelly is also employed here so that the extra contri-
butions, if exist, are expected to be supported on the (lower dimensional) strata. One
of our features, however, is Lemma 7.6 which leads to a precise information about
the Gaussianlike term of the heat kernel and facilitates our ensuing asymptotic ex-
pansion (of the trace integral) in explicit expressions essentially based only on the
data given by the ordinary (Kodaira) heat kernel (hence computable in a sense, cf.
Remarks 7.25, 1.9). In the process we also need to sum over the group elements (Sub-
sections 7.2, 7.3) and patch up these local sums over X (Subsections 7.4, 7.5). For
the part of the asymptotic exrpansion, our present heat kernel by its very definition
is similar to the K above. Yet objects beyond the basic forms, allowing a gener-
alization in the equivariant sense, indexed by m(€ Z) in our notation (with m = 0
corresponding to the case for Kg), with bundle-values, are considered here. Since we
allow CR nonKéhler case, suitable Spin® structure in our CR version need be devised
and equipped here in order for the rescaling technique of Getzler and our discovery
of the off-diagonal estimate (Theorem 5.10) to go through. In this regard, it is not
obvious at all (to us) whether the existence theory in the Riemannian case as above
can be directly applied to our case. Indeed, besides the need of the Spin® structure,
our proof of the heat kernel is heavily based on the feature of the group action on
CR manifolds, encoded by the BRT trivialization (Subsection 2.4), through the use
of the adjoint version of the original equation (Subsection 1.6). Above all, it lies in
the following how our approach distinguishes itself from those of others.

Notably, a seeming inconsistency could occur. That is, a discovery in the works [59]
and [58] reveals that the so obtained asymptotic expansion for Kpg(t,z,z) cannot be
integrated (over z) to give the asymptotics of the trace (integral). This perhaps takes
one by surprise. See p. 2304 of [59] and remark in p. 379 of [58]. Despite this, the work
[59] manages to prove an asymptotic expansion for the trace integral (on basic func-
tions) by using the work [11] (rather than by integrating the asymptotics of Kg(t, z, )
obtained therein). In this way, some nontrivial logarithmic terms are to appear un-
less they are proved to be vanishing. A conjecture has thus been introduced by K.
Richardson in 10 [59, Conjecture 2.5] to the effect that in the Riemannian setting as
above, for the (special) case of the isometric group action on a compact manifold, the
logarithmic terms in the asympototic expansion of the trace integral Tr e **5 must
vanish and under a mild assumption (on orientation), there shall be no fractional
powers in ¢ (except possibly an overall fractional power in t). It is worth mentioning
that the works [58] and [59] discuss a number of interesting examples pertinent to
the aforementioned peculiar phenomenon. Despite that the seeming inconsistency is
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consistent with examples by explicit computations, it remains conceptually unclear
how this phenomenon comes about.

Our present work affirms the above conjecture of Richardson (with extension to
the S'-equivariant case) in the special case of CR manifolds studied here (see Theo-
rems 7.20, 1.14). One key point for all of this lies in (1.4) with ¢-dependent coefficients
in t powers, which is regarded as the asymptotic expansion one shall be dealing with
in this paper, rather than a classical looking one (1.3) (which is similar in nature
to those proposed and studied in [58], [59]). See also our Remarks 1.6, 1.7 and 1.8,
which are closely related to the above singular behavior of a classical formulation of
asymptotic expansion. Put simply, the formulation (1.3) of an asymptotic expansion
leads to certain discontinuities of the t-coefficients along the strata (cf. [58, (4.7)] for
a concrete example). A remedy for (1.3) by (1.4) is mainly made via the introduction
of a “distance function” (see Theorem 1.3). Eventually, in this work we can restore the
trace integral as the integration of our (unconventional) asymptotic expansion of the
relevant heat kernel (see Definition 5.5 for the meaning of our asymptotic expansion).
Thus, our trace integral and our asymptotic expansion of the heat kernel jointly clar-
ify (with our class of manifolds) the somewhat undesirable phenomenon which is as
mentioned above.

To go from the trace integral to the index theorem (thought of as a supertrace
integral) is usually not immediate. To the knowledge of the authors, the argument
for the proof of index theorems by using trace integrals remains unclarified (cf. Re-
mark 7.26). Completely new ideas might be required; see [13], [12] for very interesting
ideas. In the present paper, we couldn’t make our understanding of the (transversal)
heat kernel (for our class of CR manifolds) complete without employing the rescaling
technique of Getzler and the off-diagonal estimate (Theorem 5.10) adapted to our
setting. These results explore in depth the non-Gaussian terms of our (transversal)
heat kernel, in contrast to the Gaussianlike term explored in the trace integral here.
With these two parts together, our approach studies the meaningful separate aspects
of the heat kernel in an unified manner, hence results in an (local) index theorem and
the trace integral. These point to the differences between our approaches/results and
those of the recent development.

We turn now to our proof of the trace integral. The line of thought in the proof
involves four stages.

In the first stage while the proof in the beginning echoes that in last section, we
shall make use of Lemma 6.6 and Theorem 6.7 to handle the distance function d.
(Here we assume the strongly pseudoconvex condition on X.) After this initial step,
we shall take a different approach that supersedes the previous one, which is more
quantitative in nature without the strongly pseudoconvex condition on X (hence
without using Lemma 6.6 and Theorem 6.7). This approach is partly based on the
differential geometric information of the various isotropy actions associated with the
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fixed point sets (strata) of the S* action. This allows us to learn more precise details
about the heat kernel of Kohn Laplacian, hence to refine the computation in (7.13)
which is basically qualitative. (See (7.13) for a kind of Dirac delta functions associated
with the strata.) Remark that one key point here is the notion of type which is initially
designed for the need of computation. In the fourth stage it is attached to the S*
stratification closely.

In the second, third and fourth stages, the treatment goes in line with that in the
first stage and is mostly technical so as to integrate the results obtained in the first
stage in a well organized manner. The non unique way (subject to choice of BRT triv-
ializations) of giving the asymptotic expansion of et Tim (t,z,y) (cf. Theorem 6.1)
leaves us the freedom of choosing convenient BRT charts to work out some compu-
tations. The salient fact that e~tTo.m (t,z,y) is an intrinsic object (yet not directly
computable), thus is independent of choice of BRT trivializations, is essential to giving
intrinsic meanings to some BRT-dependent computations (cf. the contrast between
Propositions 7.16 and 7.18 on 7s-terms). This conceptual understanding turns out to
be crucial to our final result. The extension of the previous notion “type” to the St
stratification is the last conceptual step for the completion of the proof.

As before, X (dimX = 2n + 1) is a compact connected CR manifold with a
transversal CR locally free S' action. To proceed with the proof of Theorem 1.14,
assume

(7.1) X=X,uX,,u--uXp,
where
EY)
(7.2) Xp, = | Xpuirys (501 = 1),
y=1

as a disjoint union of (connected) submanifolds X (Xp,, being the fixed point set

Pe(y)

j 2T

of an isometry e '#¢, is a submanifold (possibly disconnected)).

Write ey, for the (real) codimension of X, .,

confusion, we may drop v and write e, for e,(,). Recall that Xfi;é = Xp, UXp, U ee.

We follow the notations in Subsection 5.2 and the beginning of the last sec-
tion. Thus Bj = (Dj,(z,Q),cpj) (] = 1,2,"' ,N) with Dj = Uj X ]72(53',2(%[,
U; = {z € C" |z| <;} and similarly D; = U; x ]—%, %[, U, = {zeC™ 2| <X
Welet 6; =9; =¢,j=1,2,...,N and assume X = Dy u---uDy. As before, we
assume that ¢ > 0 satisfies (1.15).

in X. When there is no danger of

7.2. Local angular integral

Recall that ﬁj,Jr(:c,y) bF,(x,y) of (5.39) (to be given below); a} (t,z,y) involves a

77,8

certain integral over [0, 27] (cf. (5.43)), s = n,n—1,.... One key step is the following
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local version. That is, the (trace) integral of the form
(7.3)

(J) 2” +€ Pk (e TRow) o) —iu —imu
Iy = I" (pe, 9) = i ((e™™)y Trb (@, x)e dvx (z)du.

The trace “Tr” here is actually well defined despite a slight abuse of notation about

((e_w);’;bjs)(m, x) at the second variable (see the line above (2.2)).

Recall that the expressions in (5.39) (to be used in what follows):
(7.4)
hy+ (@,y) = 6;(0)hy+ (z,w)6;(n) € CZ(Dy), @ =(2,0), y=(w,n)
I;jfs(ac,y) =X;j (m)e_m“”f(z)_imeb;fs(z,w)em“of(w)“m"Tj (w)oj(n), s=nn—1,...
with suitable cut-off functions x;, 7;, 0; and &; defined there.
There will be cases for the Result (7.3). We need some preparations and notations.

For I; = I;(ps, g) of (7.3), take a point zo € Suppg N X,,, then zg € szm , for a
ve €{1,...,s0}. Locally at o there are higher dimensional strata
(75) Xpil("/i1> =X2 Xpiz(wz) 22 Xi"7f(%f) =2 Xpif+1(%‘f+1> = Xpl("rz)
passing through zo where i1 = 1 < iy < -+ < iy <ipy1 =€, € {1,2,...,0—1,¢}.

Here (to be useful later) p;, [ps, - - - |pi;[pe (by Remark 1.17 similarly). We claim that
the strata in (7.5) are uniquely determined by zo. Fix £ € {1,...,k}, where k € N is
introduced in (7.1). We first show that the decomposition

Se
(76) XPZ = U ng(,y)a (S€=1 = 1)a
y=1

is a disjoint union of connected components. We write Ym = Ufle A, as a disjoint
union of connected components. Below the set difference A\B is also denoted as A—B.
Then we have

(1.7) Xp =(AN\Kp, — X5) )0 (AN (K = X)) U+ 0 (AN (K, = Xp,) )-

Since X,, — Xp, < Ujse(Xp, 0 Xp,), Xp, — Xp, is a submanifold of X, of real
codimension> 2 (see Remark 7.22). We conclude that A,\(X,, — X),) is connected,

for every v =1, ..., s, and thus the decomposition (7.7) is the same as the decomposi-
tion (7.2) and hence s, = s¢. We may assume that A\ (X,, — Xp,) = X, (), for every
v =12,. . Then A, eV (Xp, — Xp,) = sz(v)v for every v = 1,..., s,.

We have proved that the decomp051t10n (7.6) is a disjoint union of connected com-
ponents. Hence, for every p, < pe, there is at most one connected component of Ypu
containing sz('ye)' Thus, the strata in (7.5) are uniquely determined as claimed.

From now on, our smooth function g(z) will be chosen to be of good support(see
Definition 7.7 below for the meaning of good support), Thus Definition 7.1 below is
independent of choice of point zg. Fix a 4, 41 < i < if. We say
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DEFINITION 7.1. — i) The type 7(I:) of I(pe, g) at g is

T(It) = (il(%l)’ i2(’7i2)’ s vif('yif)v if+1<'7if+1>)
where i1 = ;, =1 and i741 = £ always. The length I(7(I;,zo)) of the type is f + 1.
I;(pe, g) is said to be of simple type if in 7(Iy, z0), (i1,%2,...,45+1) = (1,2,...,£—1,0).
ii) Two given types

T(It(pflagl)) = (il(’Yh)’iQ(ryiz)? ce. ’if1+1(’)/if1+1))
T(It(pess 92)) = (j1(7§‘1)7j2(73‘2)7 s 7jf2+1(7;'f2+1))

are said to be in the same class provided a) fi1 = fo := f, {1 = €2, 41 = j1,12 = J2,- - -,
if = jr and b) the codimensions of the corresponding strata coincide: €01 (ve,) =
€2(vy,) Cin(riy) = Cir(v},)r Cialrip) = Cha(v),)r 0 Cip(vip) = ejf(’Y}f)'

iii) As above I; = I;(ps,g), suppose Suppg n X,, = &, equivalently Suppg <
Ue ! Xp, - We say 7(1I}) is of trivial type.

In the final subsection, the notion of “type” will be naturally extended to each
connected submanifold X, . in the strata. By this, the influence of the geometry of
the S! stratification on the heat kernel trace integral will become more evident.

Most numerical results in what follows will only depend on the equivalence classes
of types. But for the sake of notational convenience, we assume I; to be of simple
type or trivial type in the proposition below. In the following proposition, ii) and
Case a) of iii) are basically of trivial type; i) and Case b) of iii) are of simple type.
The modification to the general type is basically only complicated in notation and
will be treated later.

PROPOSITION 7.2. — Suppose xg € ﬁj. Then there exist a neighborhood Q (€ 15])
of zo and an & > 0 (depending on x) such that for every Q c Q, every g(x) € C*(Q)
we have the following for I of (7.3) with any e <&

i) £ =1. For z = (2,v) € D; write 2(z) = z and (z) = v.

Iy =e v 277 J_ef 2)Trb} (2, 2)7j(2)0; (v + ) dvx (z)dip.

In particular, I is a constant independent of t. (Note it is b;fs instead of l;;’s here;
the same can be said with (7.8) below.)

ii) Suppose e e o To ¢ bj (here £ =2,3,...,k). Then I, = 0.

iii) Suppose e ' o g € Dj (here £ =2,3,...,k).

Case a) xo € | JiZ, ' X,, .. Then I ~ O(t®) ast — 0*.

Case b) zo ¢ qu 'x Xp,_, and xo e X
(ee = eq(y,) for some v, =1,...,5;)

Pecvy & Xpe- Take local coordinates

Y= (yla"'yy2n+1) = (Q,Y) with g = (yl 7yez) and Y = (yez+17'-'7y2n+1)
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defined on Q0 such that
Xp nQ={yeQyi ==y, =0}.

Assume (possibly after shrinking Q about zo) Q = ;e k}(ij(w N Q) (for some

v; =1,...,8;) which is seen to be (by assumption of simple type)

,,,,,

pf(’vz) U Pe—q(vg_g) Q)

Write ep_qy1 — es—q for the codimension of Xp, .., in Ypefq where py = Pu(v,)
forp=L—q+1 and p = £ — q respectively. If y = (z,0) (in BRT coordinates), write
2(y) for z and if y = (0,Y), write Y for (0,Y) and 2(Y) for z(y). Similar notation
for (Y) etc.

Then (er = eq(y,))

wagtz+¢>

)

J’_...’

where the first coefficient bwl is given by
2

) ep _2mip, " 2w, —(er—q+1—€r—q)
(7.8) b e, =mze 7 ||eP@ -1 X
5 1

o | [ T G )G )e 0 ) +udes, (V)

Pe(vy)
pi( ¢)

In particular, for s = n (cf.dimX = 2n + 1), (7.8) for b;])ei simplifies by using
Trb;, (2,2) = (2m) ™"

Proof. — Write z¢ = (29, 6p). For simplicity, assume 0y = 0 without loss of generality
(cf. the last three paragraphs of the proof of Theorem 6.1 for a similar situation).
Note that the existence of Q and € in the statement above will be obvious from the
proof below and we shall not refer to them explicitly.

To see i), we note that e "% =idon X (because it is so on X, by definition
which is dense (and open) in X). For z = (z,v) lying in the BRT neighborhood
D; and for u = %’T + ¢ such that e”™ oz = ei’E oz lies in D; (o D;), one has

Ry (z,e  Wox)
+ie ot

et**ox = (z,vFe€) by construction of BRT charts D;. In thiscasee™ ¢ =1
since izj,+(:v,e_i“ oz) = 0 by hj+(z,2) = 0 of (7.4). The same reasoning applies
to ((45'_"“)”"IHA)+ )(x,x) to reach Trb} (z,2). Now choose a neighborhood © € D;
of zo then a small € > 0 (depending on zg) such that e** o z lies in D; for z € Q.
As g € CP(Q), we can apply the above argument for these 2 by making ¢ = u — 27”
(|| <€) so that e"™ oz =e ™ ox = (2,v + %). In (7.4) one thus has § = v, w = 2
and 1 = v + 1. By these remarks, i) of the proposition follows from (7.3) and (7.4).
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~ 2w ~
For ii) of the proposition, with zo € D; yet e ‘?¢ ozq ¢ D;, by continuity of S* ac-
tion there exist a neighborhood Q (€ D,) of zp and an £ > 0 such that e"™ oz ¢ D;

forreQandue ]i—’; —¢, 2™ 4 ¢[. Hence for these € 2, b; ; (z,e” i oz) = 0 because

& Pe
of the cut-off function 7; (of compact support in U; ¢ D;) involved in b; , (see (7.4)),
giving I = 0 in (7.3).

For case a) of iii), the assumption gives zy € X, qge{1,2,...,£ —1}. Further,

_j2m . o _em o~ e )
by assumption e "7¢ o2y € D; we write e ‘2 oy = (2o, 00) with )00‘ < % We claim

—q)

Zo # 2. The line of argument is slightly different from that in (6.4). Suppose Zy = 2.
vy 421 L o~ ~

Then by €% o (e “7¢ ozg) = € o (2),6p) = (20,0) = (20,0) = z¢ (recall that §y = 0

in the beginning of the proof). Hence,

(7.9) — —bp=m , meZl

by assumption zg € X,,_ . But ‘50‘ < % and ( is assumed to satisfy (1.15), so the
above equality is absurd, proving the claim Zy # 2o by contradiction.

Now that 2z # 2o, there exists a neighborhood Q of g and an £ > 0 (dependent
on zg) such that for z € Q and 0 € ]— — g, p7 + e[, writing e oz = (%,6) and
z = (2,0) one has |2 — z| > § |2 — 20| = 6 by using continuity of S* action at z = z,
and 6 = i—j. From the property of ﬁj,Jr(a:,y) (which is essentially |z — w|?, cf. (5.19)
and (5.39)) one sees that I of (7.3) gives

(7. 10)
Pe De T hj g (ze Mo .
f HEE ()R T b7 ) (2, w)e ™ du (2)du = O(FF),

as t — 0+ (for g € CL(Q)) simply because the exponential term in (7.10) decays
rapidly if |2 — z| = ¢ here, proving case a) of iii) of the proposition.

To prove case b) of iii), we first give an estimate under an additional assumption
that X is strongly pseudoconvex, then we will drop this assumption and carry out
some refined computations to complete the proof.

_ 2mi

Since zg is a fixed point of e~ ¢ by assumption, by continuity of S action there
exist an open subset 2 of o and a small constant 0 < & < % such that e @ oz e D;
for zx € Q and 6 € ]i—j — &, i—: + ¢[. We assume that Q is small, say contained in the

BRT chart D;, and satisfies the local coordinates of case b) of iii). For z = (z,v) € Q
and He]— —g, +5[ write e~ oz = (2,7) € D;.
We claim that there exists a positive continuous function f;(z) such that

(7.11) hj 4 (2,2) = fi(z)d(z, Xp,)?, Vzeq,

where h; ; is as in (7.4) (cf. (5.19)). (Here is the only place where we use the assump-
tion that X is strongly pseudoconvex.)
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Granting the claim (7.11), with the local coordinates in iii), suppose y(zg) =

_ . . d(y,Xp[)Q
Y (z¢) = 0. Rewrite the quotient T Ptt [5ea) as
(7.12) d(y, Xp,)® = fa@) (w1 |* + - + [ye,[*)s Vy e,

where f5(y) is a positive continuous function.

With (7.11) and (7.12), we estimate iLj’+ below and have the following (see (7.4)
or (5.39) and note g(z) € C° (), Q small).

(7.13)
Pl pg te J 4 (z,e”"oz) .
I = f ‘ ((e _W) Trb; ) (x, z)e” ™ dvx (z)du
1 [%te N@dXp,)? 4
<o [1 [ st M eyt e o ()
s
1 2"+6 f1(y)f2(y)(\y1\2+ +ve, [ . ‘
= % J g y e (( —zu) Trb )( )e—zmudvx(y)du

ept1

~ci‘j)%et%’Z +cij)€l+1t 2 +...ast— 0F,
: e

where the last step is obtained by a change-of-variable (rescaling u; by +/tys,

i=1,...e5,ep=>1as€>2 )andc(,)ceRlsmdependentoft(k—e—’v’ ekl ).

We are left with the proof of the claim (7.11). Part of the argument echos
that for (6.4). We first estimate |z —2|>. Without any danger of confusion we
omit “o” in what follows. By (z,0) = e®z and (Z,0) = e%(e"¥x), |z — 2] is equiv-
alent to d(e™z,e(e~z)) (cf. (6. 3)) which is the same as d(z,e (e (e"¥2))).
As (2,0),(z,v) € ﬁj, one has 9,v < 2 By choosing ¢, € to be (much) less than the
g0 of Lemma 6.6, one sees d(z, e~ (¢ (e~"z))) > dy(z Xfmé) of Lemma 6.6. By the
same lemma

(7.14) dy(z, X51)  is equivalent to  d(z, X51).

sing sing

As |z — 2]? is also equivalent to hj +(z,2) of (7.11) (cf. (6.3)) and (7.14) is equivalent
to d(x stmé) by Theorem 6.7 with our assumption X is strongly pseudoconvex, we

have now shown

(7.15) hji(2,2) = c-d(z, X\ 1)?

sing

for some constant ¢ > 0. In view that Xfm; Xp, UXp,,, - and the assmption that

To € X,,, one sees, possibly after shrinking Q, d(z Xfm;) =d(z,Xp,) = d(z,X,,).

Hence we have reached (7.11) from (7.15), as desired.

Following (7.13) we shall now make some accurate computations for case b) of iii)
of this propostion.
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Henceforward we do not assume that X is strongly pseudoconvex; we will not use
Lemma 6.6 and Theorem 6.7 as used above.

Write i—’; = w and u = ¥ + w. In coordinates of case b) of iii), in view of (7.13) one
seeks to identify, among others,

(7.16) e P (VE,Y), e ™ (VEg,Y)

t—0+ t ’

where we have rescaled § — /7, and we omit “o” for the e ** € S' action.

Since the fixed point set of an isometry is totally geodesic, we assume Y to be a
system of geodesic coordinates at Y = 0 of Ype, as (9,Y) the geodesic coordinates
at (0,0) of X. We choose Y = 0 in (7.16) to simplify the notation. Expressed in BRT
coordinates, (v/t§],0) = (z0,v0) and e~ (1/t§,0) = (21, v1) (by continuity of S* action,
for ¢ small e~ (1/t,0) € D; since e~*(0,0) = (0,0)).

One sees e~ %(/t9,0) = e~ (21,v1) = (21,v1 + ) for |¢| < e. By (7.4) one sees

(7.17) hj+ (V§,0), e~ (\/t§,0)) is now reduced to h; 1 (20, 21),

which is independent of ¥ for u in the e-neighborhood of w.

Namely h;; ((+v/£5,0),e " (+/§,0)) = h;j . ((+/19,0),e ™ (+/1§,0)) for u in the
e-neighborhood of w.

Now zo = (0,0) is a fixed point of e (w = i—’;) One can see that T, X under the
isotropy action induced by e ™" decomposes as an orthogonal direct sum of eigenspaces
(where N (S/M) denotes the normal bundle of a submanifold S in an ambient manifold
M with N,(5/M) the fiber of N(S/M) at p, and X, = mem for some v, =
1,2, ., 0=1,2,...,¢)

Tmoymv Zo (Ypi/ypi—l )v Nﬂﬂo (Ymﬂ/ypefz) B Nzo( sz/yp)
associated with eigenvalues
(7.18) 1,eiwPe1 giwPe—2 WP respectively.

For instance, assume ¢ = 2 and take g = e . Set g =2 (e N). On Ny, (X o/ X p),
g # id and g9 = id. Hence v € N,,(X,,/X,) is rotated by the angle 27" which is wp.

The goal in what follows is to prove the claim that for ¢ = 1,...,¢ — 1,
(7.19)

lim iLj,-‘r ((\/E?L 0)7 e ™ (\/Eg7 O))

) 2, . . - L
t—0+ t = |elwl72—q - 1| ||y||2 for ye Na:g (X£7q+1/Xg,q)

or equivalently, in the notation above (see (7.17))

hj+ (20,2 ; . . — —
(7.20) lim_ % — |eiwpema — 1|2 19112 (for § € Nuy(Xe—gqi1/Xe—q))s
t—0
where || - || denotes the norm with respect to the metric tensor of X at xg.

Our proof of claim (7.19) is based on the following sequence of lemmas.
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LEMMA 7.3. — With the notation above, for § € Ny (X ¢—g1+1/Xe—q) we have

2 P —iw -
lim dX((\/EyvO)’ € (\/%y,())) _ |eiwp£7q _ 1‘2 HQH{

t—0+ t

where dx denotes the distance on X.

Proof. — On T{g,0)X the action induced by e~ ™ rotates the tangent vector § by the
angle wpy_,. Hence the lemma follows from the well known fact that in a Riemannian
manifold (M, g), if a, b in M are the images of A, B in T, M by the exponential map
at p € M, then as (a,b) — (p,p)

: dM(a’ b)
(7.21) lim ———— — 1,
|A— Bl
where || - || is g at p (cf. [39, Proposition 9.10]). O

SUBLEMMA 7.4. — Suppose N is a Riemannian submanifold of a Riemannian mani-
fold M. Then the respective distance functions on M and on N are infinitesimally the
same. More precisely, suppose in N, p, # qp for alln e N, and p,,q, — p asn — ©
for a given point p € N. Then lim,, % = 1. Moreover, suppose tn ar (TeSP.
tn,n) in Tp, M are the unit tangent vectors along which the minimal geodesics in M

(resp. N) join p, and q,. Then lim, (t, pr — tn,n) = 0.

Proof. — Suppose the special case p, = p for all n. Let v, be a geodesic (with unit
speed) of N joining p and ¢, and 3, = exp, ' (vn) < T, M. Write 1,,(t) for the length
of (part of) B, (with the parameter going from 0 to t) measured with the metric
gij = 1+ O(|z|?) in geodesic coordinates (at p). Write ||v|| for the Euclidean norm
of a vector v € T, M expressed in geodesic coordinates. Given a curve 3(t) < T, M,

B(0) = p, 3(0) # 0, one sees the length function I(t) = Sé /< B(t), B(t) >, dt satisfies

%‘ = O(t) < Ct for a (locally bounded) quantity C which depends only,

apart from (3, on the local geometry at p (uniformly). Clearly this implies the lemma
if ¢, is assumed to approach p along a given geodesic v of N. If ¢, approaches p
along different geodesics 7, since these geodesics can be uniformly controlled by the
local geometry around p, the same results hold as well. For the general case where

pn are different, the similar argument using the control by local geometry implies

A (Pryqn) —dN (Pn;qn) <
dn (Prsgn) <C

can be proved similarly. O

(drr(Pns gn))- The assertion about the unit tangent vectors

SUBLEMMA 7.5. — Let N be a differentiable manifold equipped with two Riemannian

metrics g and h, and p € N. Assume that g(p) = h(p). Suppose that in N, p, # qn
dg(anQn)

for all n € N such that lim, p,, = lim, g, = p. Then lim,,_,
d. denotes the (metric-dependent) distance function on N.
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Proof. — The result is local; assume N — R™ as an open subset. By comparison to
a fixed Euclidean metric, we assume g is Euclidean inherited from R™. By reasoning
similar to the previous sublemma, it is seen that for n >> 1, dj,(pn, ¢n) is basically
(1 + Cmax{|lpn — pll, llgn. — Pl|})dg(Pn,qn) (where || - || denotes the Euclidean norm)
with a uniform bound C'. The assertion follows. O

The last lemma (as our main lemma) is as follows. (This lemma can be viewed as
a sharp version of the important claim (6.4) in the proof of Theorem 6.1, which bears
upon the reason why our distance function d arises.)

LEMMA 7.6. — In the previous notation, write p = (z (p),@( )) and q¢ = (2(q),0(q))

n (2,0) coordinates on the BRT chart D; = Uj x |— g, 2[ We omit the subscript j
in what follows. Let S = S op be the Sl-orbit of p and N(S/X) be the normal
bundle of S in X identified with the orthogonal complement of T'S in TX‘S. Suppose
Dn # qn for all m and p,,q, — p € X as n — o such that D, = exp;{}p(pn),
A, = exp)_(’lp(qn) € N,(S/X). In the case where p, # p and g, # p (for alln), suppose
that the angle at p given by the vectors D,, and A,, are bounded away from 0 asn — 0.
Then (see (4.1) for the metric on U giving dy below)

: dx (Pn, qn)
7.22 lim —————————
(722) % Gy (pa). 2(02))
In particular z(p,) # 2(q,) for n large.

=1.

Proof. — In this proof we take the same notation U = Uj seated as an embedded
submanifold of X with § = 0. As in (the proof of) Sublemma 7.4, we first assume
pn = p for all n. By applying the S! isometries we assume p = (2(p),0) € U.
By using the construction of our rigid metric on X (cf. (2.5) and (4.1)) it may
be assumed that at p, N,(S/X) = T,U. To see this, by the geometrical interpre-
tation of BRT transformations in (the proof of) Proposition 4.2 one can adjust
the BRT coordinates such that d¢(p) = 0 (similar to the well known fact that
for a hermitian metric A of a holomorphic line bundle L on a complex manifold,
at any given point p one has dh(p) = 0 up to a change of local frames of L).
This gives T)'D = {az +1 ¢( 2)57=1,2,...,n} = {a%j;j: 1,2,...,n} (and
T'OD = TO1ID) (cf. loc. cit.). It easily follows N,(S/X) = T,U as claimed. A word
of caution is in order. The (intrinsic) geometrical interpretation for BRT charts (cf.
loc. cit. and remarks after (4.1)) shows that the asserted (7.22) is independent of
choice of BRT coordinates (on that particular BRT neighborhood). On the other
hand, U considered as an embedded submanifold of X as done above does depend
on the choice of BRT coordinates.

The first reduction step is as follows. U is endowed with another (Riemannian)
metric inherited, as a submanifold, from that of X. This is different from the metric
originally defined (on U, cf. (4.1)), yet the two metrics coincide at p as can be seen
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above. By Sublemma 7.5 it is enough to prove (7.22) with this inherited metric.
Without the danger of confusion we shall adopt the same notation dy (-, -) for the new
distance function in what follows.

Fix an n and set ¢ = g, ¢¥@ oq = (2(q),0) € U. Put A = exp)_(lp(q),
B = exp}}p(q’) e T, X, so ||A]| = dx(p,q),||B|| = dx(p,q') (where T, X is equipped

with the Euclidean metric || - || in geodesic coordinates). We are going to prove,
as n — o,
- |14]]
(7.23) lim = = 1.
1Bl

One has dx(p,q’)/du(p,q') — 1 by Sublemma 7.4. Hence, to prove (7.22) for this
special case p, = p is the same as to prove dx(p,q)/dx(p,q') — 1 which is (7.23)
above.

To see (7.23) (hence (7.22)), we first argue (7.24) below. Let L < T, X be the line
determined by A, B, i.e., L = {A+t(B — A);t € R}. Then

(7.24) L is approximately orthogonal to A and to B (when n is large).

Note that A € N,(S/X) = T,U from the condition of the lemma, and that B is
nearly lying on T,U (with a small angle between B and T,U) by using Sublemma 7.4
on tangents. Let T'; = {e? o q}oef0,60(q)] = X (0(g) = 0, say) joining ¢ and ¢’ and
= exp;(:}pf‘l < T, X joining A and B. Recall that the vector field T" induced by the
S' action is orthogonal to U at p as mentioned above, hence T,;T'y L T,;U approx-
imately (as n >> 1). On the other hand, by T,§ L T, U and I'y ~ S (as n » 1),
one sees by A € T,U that TaI' L T,,U approximately (as vector subspaces in T, X).
In sum, if ¢,q’ are close to p (so T,U close to T,U), then T4I' L T,U, TgT' L T,U
approximately (cf. the foliation argument below); for this we write I' L A, B approx-
imately. We are ready to prove (7.24). Pulling back the S* foliation locally around p
via expy , in the same way as I' was obtained from I'1, there is a foliation of around
p in T, X in which (part of) I lies as a leaf. Write p € T'y (< exp}}pS) € of. Asmn > 1,
the line L determined by A, B € T tends to the tangent line (= T,5) to I'g at p
(since the leaf T of f tends to the leaf I'y). Hence by using the uniform continuity
for & around p, L is close to lines L tangent to leaves I of  if I’ are nearby I'y
and L nearby T,S. In particular, L is close to the tangent lines T4I', TgI" (as n > 1).
Now that I' 1 A, B approximately as just shown, giving readily T4 1 A, TgI' 1 B
approximately, this in turn yields L 1 A, B approximately (n » 1), proving (7.24).

For ¢’ close to p, by simple Euclidean geometry (on T,X), ||A — B|| is rather
small in comparison to ||A|| and ||B|| by using L L A, B approximately (7.24), i.e.,
[|A—B|| = o(||4]|), o(||B||)- By using law of cosines, one can obtain (7.23), yielding the
special case p, = p of the lemma. As this step appears crucial and will be instrumental
to the general case, we prefer to supply some details as follows.
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Take a triangle with vertices T; (i = 1,2,3), angles «; at T; and §; the length of
the side facing T;. Suppose az < a3 and both ~ 7. Set az = § —«, 0 < a « 1.
Let D sit on the line L; determined by 75 and T3 such that the line Ly determined
by T1 and D is perpendicular to L;. Assume first that D sits between T and Tj3.
Then §; = d3sin + d2 sin O where 61,62 (with 61 + 02 = a;) are angles given by Lo
and the two sides at T7. Thus g—; < 2sinog (g—g < 1by as < ag). If D sits outside the
triangle, then é; = d3sina — d2 sin 3, 03 = o — a1, so g—; < sin a. One obtains g—; -0

if both a; — 0 and @ — 0. By 62 = §3 + 0% — 20263 cos oz, one has

1 o 26
(1—22 = (22 -22(1—cosay) < (2)? <sina + 2sina;
(53 (53 (53 53
giving g—; — 1 if both ap, a3 ~ § (hence o, 1 ~ 0). As said, this yields (7.23).

We draw some consequences in order for the general case. If oy — 0 (by
ag, a3 — 7/2), then the two sides at a; are close to each other, i.e., lim(A/||A| —
B/||B]|) = 0 (as ¢ — p). One sees that if C' = exp&lp(q’) € T,U, then by using (7.23)
and Sublemma 7.4 on tangents via B,

(7.25) a) T [[A[[/[|C]| =1, b) lim(A/[|A]| = C/[|C]]) = 0.

We are ready to prove the general case p, # p. Write D = exp;(}p(pn),
F= expaﬁlp(p;) in the same way as A = exp;;p(qn),C = exp,}’lp(q;) above. With
D, F in place of A, C in (7.25) one has the same results for D, F:

(7.26) a) im ||D[|/||F[| =1, b) lm(D/[[D[| — F/|[F[]) = 0.

In view of (7.21) one has ||D — Al||/dx (pn,qn) — L, ||F — C||/dv(p,,q,) — 1.
Hence to prove (7.22), i.e., dx(pn,qn)/dv(p,,q,) — 1, is the same as to show
lim ||D — A||/||F — C|| = 1. This is intuitively clear by (7.25), (7.26) (which alludes
to A~ C and D ~ F') provided that the angle given by the two vectors D and A at p
(hence by F' and C at p, cf. b) of (7.25) and (7.26)) is not approaching zero. This is
precisely the condition given in the lemma. For the rigor of this argument one may
use law of cosines without difficulty. Hence the lemma follows. O

Proof of claim (7.20). — By combining Lemma 7.6 and Lemma 7.3 we can finish the
proof of the claim (7.20) provided that h;(z1, 22) = d%]j (21, 22). But this is a standard
fact for the heat kernels of Dirac and Laplacian type (see [5, Theorem 2.29]); see also
the famous result of S. R. S. Varadhan[63] for a generalization in this regard. O

Proof of Proposition 7.2 resumed. — We are now ready to prove case b) of iii) of
Proposition 7.2. To work on the integral I; of (7.3) we are going to refine the com-
putation contained in (7.13). Indeed, case b) of iii) can be obtained if one notes the
following a) — €) (part of them similar to the proof of i) of this proposition):

a) Sio e~ dg = V7.

% = Jal
Wt

h
) using (7.19) (with ¢ = 1,2,...,£ —1) for e~ in (7.3);
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) change of variable u = ¢ + i—: in (7.3);

§) in (7.3), by rescaling § — /1, IA);CS((\/EQ,Y),e*W o (+v/t9,Y)) replacing
bf (z,e7 o z), tends to b, ((0,Y),e7 0 (0,Y)) = b7 ,((0,Y),e7™ 0 (0,Y)) be-
cause (0,Y) € X,,. But |1 being small (< €), e o (0,Y) does not change the
2((0,Y)) (= 2(Y)) coordinate in D, giving IA);-CS((O, Y),e"%0(0,Y)) = b;s(z(Y), z2(Y))
(up to cut-off functions);

€) ast — 0, 0;(n) = 0j(0(e™ 0 (0,Y))) = 0;(0(e"™ 0 (0,Y))) = 0;(0(Y) + ).
With n = 6 + ¢ and u = ¢ + 27/p, in (7.3) and (7.4), a cancelation occurs for the
three exponentials there; eventually a numerical factor e~*2™™/P¢ is pulled out. And
instead of TrIA);rS in I; of (7.3), we are reduced to x;Trb;, (no “hat” on b}, here) as
put down in this proposition.

The formula for the coefficient bij )ﬂ of (7.8) follows from «) — €) above.

’2

Finally, for s = n, it is well-known that (dropping j here) Tr b (z, z) in the integral
(7.8) being the leading coefficient term in the asymptotic expansion of the (Spin®)
Kodaira heat kernel, is constant in z and equals (47)~" - (tk(AT***(U))) = (27)™
([36, (a) of Theorem 4.4.1], cf. [5, Theorem 2.41]). O

7.3. Global angular integral

To work out the global version (i.e., the integration on [0,2n]) it is natural to
consider not only (an e-neighborhood of) 27/p, but also all their multiples s27/py,
s € N, s < pg. The analysis will thus partly depend on whether s27/p, = s'27/py for
some s, s’, pg, per or not. One needs a systematic control of the behavior in this regard.
Further, since the result will appear as a sum over these e-neighborhoods, to organize
this sum in a manageable way is also desirable. We shall now mainly deal with these
issues in this subsection.

There are minor duplication and perhaps discrepancy in notation between this
subsection and the preceding one. But, it would have appeared cumbersome if we had
set up this generality right in the preceding subsection (as the resulting proof would
have become much less illuminating).

Recall that the S'-period of X denoted by 27" > i—’; > > 12)—: with plpg, 1 < €<k
(cf. Remark 1.17) and the stratum X, (the set of points of period i—’;) is a disjoint

union of connected submanifolds | J; He<se Xp, (re)
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DEFINITION 7.7. — Fix a smooth function g # 0 on X. We say that g is of good
support if the following conditions are satisfied.

U Xpi,,) Y Xpimmm)’

1) Suppg - Xpil(’ml) v Xpi2(%'2) v
1=141 <ip <---<ip1q <Kk,
ii) Suppngpls(w s g, Vs, 1<s<t+1,

iii) X 2X

)
Piy(viy) 7 XplZ(’Yiz) Pit(viy) ™

(7.27)

2X

Pigp1(viyq)’

where the number k appearing in i) is introduced in (7.1),

Since the decomposition (7.6) is a disjoint union of connected components, it is
clear that given any zq € X there exists a neighborhood 2 3 zy such that every
nontrivial g(z) € C§°(Q) is of good support in the sense above.

DEFINITION 7.8. — Let g(z) be a smooth function on X of good support in the sense
above, (7.27). Let ¢ € N. We define a number i(c, g) = i(c) associated with ¢ and g as
follows:
i) i(c,g) := £ = 2 if the following is satisfied a) ¢ | py, £ = i for some s, 2 < s <
t+1andb) c/p;, forall s <s.
ii) i(c,g) :=1if ¢| p (p = piy ). This is independent of g.
iii) i(c,g) := 0 if ¢ } p;, for each s with 1 < s <t + 1.

It is easily seen that p;)|p;, for each i, with i(c) < is < 441 if i(c) # o0. Indeed,
Di, [Pis| -+ - [Pir,, (cf. Remark 1.17 for a similar case).
By the above definition, one sees

s 27h

LEMMA 7.9. — Letx € Supp g, i(c) # w0 and h € N with (h,c) = 1. Thene ™ *"c ox =z
if and only if x € Ypi(c)'

Let h € N with (h,¢) = 1 and h < c¢. We consider the integral similar to (7.3)
for i(c) # oo:

h
It = I(j) pz(c) )

(7.28)

f f S I%I)“ TETY b ) (2, @) ™ dux (x)du.

The above extends to the case i(c) = o simply by formally setting It(j)(pi(c):w, g, %)
to be the integral to the right of (7.28).

DEFINITION 7.10. — i) Set i(c) of Definition 7.8 to be £. Assume ¢ # 0. Define
the type 7(I;(Pi(c), 9, %)) to be 7(I;(pe, g)) where 7(I;(pe,g)) is given in i) of
Definition 7.1.

ii) The notions of simple type and class are defined similarly. (Note there is no
trivial type for £ # o0.)
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iii) If i(c) = oo, then Suppg N X, = J where X, is the fixed point set of a =
e~127/c ¢ §1 (whether X, is empty or not depends on ¢). In this case we define
it to be the trivial type (cf. iii) of Definition 7.1).

REMARK 7.11. — The notion of type concerns only the local stratificaton (of the
S1 action) at zo around which 2 > Suppg is a small neighborhood. Thus, with a
small open subset 2 © X one may associate the type 7(€2) without referring to any
kind of integral. In the fourth subsection, we will basically adopt this viewpoint for
our purpose.

First, one examines the case i(c, g) = o0, which turns out to be inessential.

LEMMA 7.12. — Let ¢ € N. There ezists a (finite) covering of BRT trivializations on X
with the following property. For any smooth function g of small compact support (cf.
Definition 7.7), suppose i(c,g) = 0 and xo with g(zg) # 0, given. Then there exist a
small open set Q 3 xg and a small € > 0 such that for any x € CL(Q), if one replaces
g by xg in the integral I of (7.28), this I; with any 0 < & < &, equals 0, or O(t®)
ast— 0%,

Proof. — By the definition of i(c, g) = oo, if the fixed point set X, of a = e~*27/¢ is
empty, one chooses a covering of BRT trivializations {D,}; (cf. lines above Subsec-
tion 7.2) such that D; n a®(D;) = & for all j and h with (h,¢) = 1. In this case
the remaining argument by using the continuity of the S* action, is almost the same
as ii) of Proposition 7.2, yielding I; = 0. If X, is not empty, one chooses any (finite)
covering of BRT trivializations (such as the one given prior to Subsection 7.2). Then

h'o xo € D; for some D; 3 z if the choice of g is such

it may occur the extra case a
that zq is very near X,. In this case the remaining argument is essentially similar to

Case a) of iii) of Proposition 7.2, giving rise to I; = O(t*) ast — 0. O

To compute I; of (7.28), we assume the simple type condition for I (when it is
not of trivial type) as given in Definition 7.10. Combining Lemma 7.12 we have the
following corollary, as a generalization of Proposition 7.2.

COROLLARY 7.13. — Notations and the simple type condition as above. Assume that
the covering by BRT trivializations satisfies Lemma 7.12. Let ce N, xg € X, 3 xg
an open subset and g € C° () (of good support as above). Then the e > 0 (in I) and
Q can be chosen to satisfy the following.

a) The same results (for computing I; = It(j)(pi(c),g, 1) of (7.28)) hold true as
in Proposition 7.2 provided that one adopts the replacement of e~*2™/P =27/
by €27/ in i), ii) and iii) of the statement, and £ (not the one in i—’;) by i(c)
in Cases a), b) of iii) throughout (so pr_q — Di(c)—qr € — €i(c)s€l—gt1 —
€i(c)—q+1,€l—q = €i(c)—q N Yo = Vi(e), Xe = Xi(e)y Xe—q = Xi(e)—q €lc. in
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Case b)). Note that after the replacement, i(c) = oo in Case a) and i(c) # o© in
Case b), of 4ii).

b) More generally, for h € N, (h,c) = 1 and h < ¢, with the replacement = 2 _,
(and £ not the one in i—j by i(c) in Cases a), b) of iii)), the same results (for

computing I; = It(j)(pi(c),g, %) of (7.28)) hold true as well.

27rh

Proof of Corollary 7.13. — One sees that with the replacement of i—’; by 27” or @,
the condition on ¢ (in Definition 7.8) renders the argument in proof of Proposition 7.2

essentially unchanged. For instance, with (7.9) replaced by Q’Th 50 = pf%, taking
—q

¢ smaller does the JOb Further with substitution of £ (not in ) by i(c), the distinct

=T pe— P/zz

eigenvalues {1, ¢’ &7 e’ & ..e Pep} of the isotropy actlon (of e~ 0 at xo) (cf.
(7.18)) are changed to {1,6 .e*E" P} (of e7**%" at z0) (which
remain distinct). O

Let ¢ € N and g a smooth function on X of good support as above, with i(c) (=
i(c,g)) in Definition 7.8. We are going to associate certain numerical factors. For a
contrast, we will give them for cases of the simple type and the general type separately
(ct. Definitions 7.1 and 7.10).

For the simple type, the numerical factor d. = d. 4,mm is set to be

(7.29)
i) i(c) =1
if c>1, de(=degm) = Z ef%hm; ifec=1,d.:=1
heN,h<c,(h,c)=1
i) 00 >i(c) =2

de (= degm) = (y/m)eite) 2 e

_.27h
(] c m

€i(c)—q+17Ci(c)—q

heN,h<c,(h,c)=1 Hz(c) Dei2mhpyo g _ 1
iii) i(c) = o
de (=degm) = 1.

REMARK 7.14. — For the general type, the d; g m for i(c) > 2 should be modified as
follows.
In notation of Definition 7.10, let it be given

F(TuBi0 9 ) = (1308200 )s -7 0 )1 ()

where iy = 7;, = 1,i5.1 = i(c) # 0, say. (In the previous Definition 7.1, iz = £.
Here we have if11 = i(c).)

. . . _2mi d
One sees that the eigenvalues of the isotropy action of e~ "¢ " (at g € X, )
pl(c)(’vi(c))
are:
;2mh ;2mh j27h o
(7.30) e P ette Pin ' Pir ]
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27

(becagse by writing le’%hlz (e 7 ) if h/c = j/pe with £ = i(c), the eigenvalues
are \J where \ = eWPiu eWPiz, w = i—’;, cf. (7.18)) with multiplicities (where
€ir(vi,) = 0)

(7.31)

€in(vi) ~ Cin(viy)r oo Cig(vip) ~ Cipr(vip_y) Cile)(vie) ~ Ciglmi,)r AMX = €i(e)(y(cy)-

Write, for 1 <r < f,

(7.32) Ap 1= ei2zhpi7“; my = eirﬂ(%rﬂ) — €i(i,) (With if+1 = Z(C))

Numerical factors d. for the general type. — Given 7(I;) = (i1(7i,),%2(Viz),-- -5
ig(Vi;)sipe1(7ig,,)) of general type, Iy = Ii(pe, g, %) with i(¢) = ¢, the numerical
factors d. similar to (7.29) are defined as follows.

If ¢ is of i(c) = 1 or oo, then d. is the same as d. in i), iii) of (7.29). For ¢ with
o > i(c) = 2,

(7.33)

0 > Z(C) (= i(C, g)) = 2, dc = (\/E)ei(c)(wi@)) Z €

i r
heN,h<c,(h,c)=1 Hrle |)‘T - 1|m

s 2mh
17771

where we recall that e;() and that 7(Q) is introduced in

Remark 7.11.

= codim X,

Yi(e)) ©)(ri(e))

Note that the Q (3 Supp g) is chosen to be small enough so that there is no mixing
of types. The factor d. of (7.33) is well defined.

We turn now to the global version (over the entire [0,27]) of the integral I (of
(7.3) or (7.28)).

Let
(7.34)
. . 1 by 4 (weT o) i A —ima
Jog = 98] = 8nla@) = 51 [ a0 T (@ a)e o o),

where g(z) € C () with Q satisfying Proposition 7.2. We assume g(z) is of good
support in the sense of Definition 7.7.

We are going to compute SSW Jstdu, a [0,27]-integral version of the integral I
in (7.3).

To this aim, the main tool is the corollary below which is a reformulation of Corol-
lary 7.13. But prior to this, let’s write, for zy € X, g(z) € C(Q) with Q a small
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neighborhood at zg,

(7.35)

(=1,

IZE:‘/(ZJ)),S (: I§;’(j(1g)’svm<g)) (Z(Y) = Z(.’E) below; b_;:s = b;:s,m without “hat” over lt)
1 €

=5 | | s ). ) 0) + i, (V)
™ —€ X”("fl) ()

e=1, ;0 =10 = 500 = 50 ()

7+

de = de g.m () cf. (7.33), also written as dc g m,; with I = 1O (iger)ss”

The proof of the previous results in the case of simple type remains basically un-
changed for the case of general type. With the numerical factor d. introduced in (7.29)
and (7.33), one sees the following.

COROLLARY 7.15. — Notations as above with the general type 7(I;) allowed (cf. Defi-
nitions 7.1 and 7.10). Assume that the covering by BRT trivializations {D;}; satisfies
Lemma 7.12. Let ce N and zo € X. For an e, write pi := UheN,h<c,(h,c)=1]¥ —e[,
2:h +e forc>1 and Ay := |—¢,¢[ for c = 1. Write Q c X for an open subset with
zo € Q. Then the e > 0 and Q can be chosen to satisfy the following. (Recall that with

respect to {D;}; we write J(Jt) = Js(,jt) (g) for any given g € C°(Q) of good support in

the sense of Definition 7. 7.)’

i) Suppose xo € Xp. Then

if i(c) =1, JJ@M:@@Q;

if i(c) =2 (giving i(c) = oo here), f Js(’jt)du =0 or ~O(t®) (ast—0%).

The £ = 2 in the following ii) and i) is such that o € X,, (so xo € Koy for
some yg).

i) Assume e~ 25" oz ¢ Dj (giving i(c) = ). Then Suc Jg?du =0.

iii) Assume e " o zg € Dj. Then (ast — 0%)

if i(c)=€+1 (giving i(c) = o here), f Js(’jt)du =0 or ~O(t%);

g oasie <t | afa dd ) VRO o,

c

if ile) =1, fJ$M=m$@,

c

. . +,0j
where we note de = de,g.m,1 i (7.35) with I = Ii(cgj(zmc))ws.
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We are now ready to compute So s,tdu.
Let p. be as in Corollary 7.15 (with a given g(z) of good support).

={c€N' i(c,g) = 1},
={ceN; w0 >=i(c,g) =2 and c| p; for some ¢, 2 < ¢ <k}
A=A uhy with Ay = [ pe, Aa=|Jns N =1[0,27]\A.

ceS ceS2

(7.36)

By using (7.36) and corollaries above one has the following.

PROPOSITION 7.16. — Let xg € X. Then we can find {Ij] }]K:1 a finite covering of X
by BRT charts that satisfy Lemma 7.12 and € > 0 (for Ay, Ay in i), ii), resp. below)
and an open set Q of xg, such that for every g(x) € CL(Q) of good support in the
sense of Definition 7.7), and every s =n,n —1,..., one has the following.

i) {4, Js(’jt)du = ( 1 e_n?m)l;gj), for every j € {1,2,...,K}.

i)

Case a) If zp € X, SA2 Js(,jt)du ~ 0 or O(t*) (as t — 0F), for every j €

{1,2,...,K}.
Case b) Ifxg € X,, with £ > 2

| s (% @B, EO O ) 4 0) (as t - 07),

2 c
2<i(c)<L

for every j € {1,2,...,K}, where dc = de g m,1,I = Ij(cg%z{( )ss? cf. (7.33)
and (7.35).
iii) For every s = n,n —1,... and every j € {1,2,..., K}, write SN (9)du :=

néjt)( ). Then, for every P € N, there are constants C > 0 and ¢; > 0 whzch are

dependent on {D }J 1, Q, P and independent of g and t, such that

Z Z tsn(ﬂ)

j=1ls=—n

(7.37)

< C’tPHf lg(z)|dvx (z), for every 0 <t < c;.
b's

Proof. — The action by e~ * with § € N is fixed point free on X. Each point in X has

a distinguished neighborhood Q) such that if z € ) and 6 € N,e®ozx¢ Q by using

continuity of the S! action. By compactness, we can take a finite covering {lA)J }f{: ; of

BRT charts satisfying Lemma 7.12 (as there are only finitely many c¢ here), such that

there exist an € > 0 (for Ay, A in i), ii), resp.) and an open set 2 of z( (small enough)

w1thQCD1 andeD =gifj>2 andifzreQand € N, thene_wo:v¢D1
To see i), by i) and iii) of Corollary 7.15 it suffices to note >, ;)_;dc

2 7rqm

f; e by (7.29). Case a) of ii) follows directly from i) of loc. cit. whereas
Case b) from iii) of loc. cit. by writing SA Jspdu = 22@-(6)@5#0 Jsidu +

Zz(c)2€+1 Slic Jsxtdu
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To see iii), For every j € {1,2,...,K}, let H;(t) be the operator constructed in
(5.40) with respect to the BRT charts {D; }I<,. Note that z € Q and 6 € N, we have

e Wox¢ D;. From this observation, it is easy to see that
(7.38) H(t,z,e ™ ox) = O(t™), for every u e N and every y € Q.

From (7.38), we get (7.37). O

7.4. Patching up angular integrals over X ; proof for the simple type

We are going to study the main issue
(7.39) f Traf (t,z,z)dvx (),
X

where we recall that (by (5.43))

(7.40)
af(t,z,y) (= al,(t,2,y)) (b, =b],,.)

(z,e " ¥oy) )
ZJ - (B (e, s =myn—Ln—2,....

For this, one would like to patch up those integrals So S f ) du of the last subsection
over j. However, a} (¢,z,y) is not canonically defined by our method and is in fact
dependent on the choice of BRT charts. A direct study of it appears inefficient (unless
one sticks to a fixed covering of BRT charts).

It turns out to be more effective if instead, one studies its equivalence (cf. (5.56)
in the asymptotic sense):

(7.41) JX Tre~tTim (z,z)dvx ()

~+
in which e *He.m (1, 9) is of course independent of choice of BRT charts.

Suppose an s = n,n—1, ... are given. Assume that the BRT covering {ﬁj }; satisfies
Proposition 7.16 in which by using compactness, one can find a (finite) covering {Q4 }o
of X, Q, € D; if D; nQ, # &, and an ¢ > 0 such that the conclusion i), i) and iii) of
that proposition hold with each of these 2, and this €. As indicated in Proposition 7.2,
whenever necessary, one can shrink the size of Q, without changing ¢. For p = £,
we assume (possibly after shrinking €, and using compactness) for each «, j, and for
some (possibly big) m > 1,

(7.42)  f-coordinates of Q,, D; lie inside of [—p, p], [~mp, mp] respectively.
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Let {ga(z)}o be a partition of unity subordinate to this covering (i.e., Supp g, € Q4).
We further assume each g, is of good support in the sense of Definition 7.7. One sees
that as t — 07

(7.43) JX o (@) Tr et Tbim (2, 2)dvx () ~3 L WJs(ft)(ga(a:))du,

j s=n,n—1,...

where the term to the right is computed with respect to any given BRT covering
of X, including but not restricted to, the previous {Dj };. Hence at each stage of
the computation we may choose convenient BRT charts for the need (as far as the
asymptotic expansion as ¢ — 07 is concerned).

By Proposition 7.16, (7.43) is reduced to computing Ilgjs)(ga) (see (7.35)) (for a
fixed gq)- ’

Henceforth, in the following we fix an (arbitrarily given) «. As aforementioned, we
are free to reset the BRT charts {D;}; (with certain cut-off functions). To do so, we
make the following definition for convenience.

DEFINITION 7.17. — Fix an o € X. {D;}; (D; c D; etc. notations as in the beginning
of this section) a (finite) covering of X, is said to be a covering by distinguished BRT
charts at xo provided that xo € D; for some j and zg ¢ Dy, for all k # j.

Now, we can further assume that for the above fixed a and for an z € Q,, {D;}; is
distinguished at x in the sense of Definition 7.17. In fact we can assume a little more
that Q, € f)jo and Qu N Dy = & for k # jo; namely {f?j }; is distinguished at z for
each z € ,. Also, we assume that (7.42) is satisfied.

We shall now choose the cut-off function o;,, in notation of (7.35), that satisfies
(see lines above (5.38))

mp P
(4 [ odu= | oydu=1, Swpa < J-ppl
—mp -p

and choose xj, =1, so 7;, = 1, on Q, (see loc. cit.).

With the above setup, some simplifications for (7.43) occur. Firstly,

~ 21 .
(7.45) Lga@)Tre*tDb,m(x,w)dw(x)~ >t f 9 (g (2))du.

s=n,n—1,...
We are reduced, by Proposition 7.16, to computing the integrals in (7.35).

Secondly, in notation of (7.35) there is an angular integral
&
(7.46) J 050 (V) + w)du.
—€

For a fixed Y € Q,, 0(Y) € [—p,p] by (7.42), and for u going through [—¢,e] =
[—2p,2p] of (7.46), one sees that 8(Y) + u covers [—p, p], it follows from (7.44) that
the angular integral (7.46) is 1.
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Thirdly, by the above condition on yx;, and 7j, one obtains, with (7.46) = 1, the
following for (7.35).

(7.47)
L a(@) (= 17 (g — j (O)Teb, ,(2(Y), 2(V)dvg,  (Y)
Yo v,

Pem)
=15s=nmn—-1,...).

Finally, recall that a7 (x) is as in our main Result Theorem 1.3 (cf. Theorem 6.1)
defined in (6.1) which is independent of choice of BRT charts and cut-off functions
(cf. Remarks 1.6 and 5.8). Indeed one sees, for = € Q,,

L

(7.48) o Vioss

(2(2), 2(2)) = o

“ 4
—~
8
S~—
[
Q
o
3
—
B

by (6.1) and the choice of distinguished BRT charts here.

In sum, since the above applies to each Q, in the covering {Q,},, by (7.47) and
(7.48) we have reached the following invariant expressions (independent of choice of
BRT coverings)

(7.49)
(k=0=1) Sy, .(90)(= Sk, s (9a))

= 5,719 (gq) = go(Y)Tra) (Y, Y)dvg ()

(7e),s 5e ’ Pe(vp)
Pe(vg)
+ +
SZ('YZ) 5( X e("fﬁ)’ )
EZ v = L Trof,, (Y, Y)dvypew)(Y).
(] Pe(vp)

Now (7.43) and (7.45) can be given, by using (7.49) and Proposition 7.16, as follows.

First, we classify the set {Q2,}, by writing
(7.50)
x(a) (= x(Q)) =2 if Qqn X, # J and for any ' >4, Qun X, = &, 1<L,l <k

Note d. below (with a specific ¢) is given without ambiguity (cf. (7.33)) by the
local nature of €, and g,.

ProrosiTiON 7.18. — With the notation above and in terms of the functions of
(7.49), let o and any m € N be given. Then we have, as t — 0%, for g, with
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Supp 9o € Q4 such that x(a) = ¢,

(7.51)
f ga(iL‘)TI‘e_tﬁ;r,m (.I:,CL‘)d’Ux((E) ~ Z t_sAs(ga) where As(ga) is given by
X s=n,n—1,...
P i2mgm
As(ga) = (D3¢ ) S%4(00)
qg=1
+ Z (dcs;,(_c)('“(c))’s(ga)\/zei(C)(’Yi(c)) _’,_O(\/Eei(c)("’i(c))ﬁ_l))
2<i(e)<t
+ 15(9a),

where i(c) = i(c,ga), de = degomi,] = S (go) by (7.35) and (7.33),

i(e)(Vi(ey)»s
and 15(ga) (which equals 3, ngt)(ga) in notation of Proposition 7.16 and distin-
guished BRT charts at xo) satisfies the following estimate: For every P € N, there
are constants C > 0, ¢; > 0, where C, ¢; depend on P and are independent of g,
and t, such that

P
Z tsns,t (ga)

S=—n

< C'tPHJ |ga(2)|dvx (z), for every 0 <t < c;.
b'e

In the remaining of this subsection, to streamline the argument we assume the
simplest case that

i) each X,,, 1 <<k, is connected

Ppe>
ii) X :Yp Qym Qyps'” Qypk'
(We postpone the general case to the next subsection.) One sees p|ps| - - - |px.

Hence all types reduce to simple types (cf. Definition 7.10).

In this case, the argument ~y, in £(vp) will henceforth be dropped throughout the
remaining of this subsection.

It will take a bit more work to sum (7.51) over a. The numerical factor d. (cf.
(7.29)) in this simplified case satisfies the following. For smooth functions g, g’ of
good support (Definition 7.7), if i(c,g) = i(c,¢’) (< ), then de g m = deg/m. It is
useful to set, for g = g, with x(a) = £ in ii) below (x(a) as in (7.50)),

i2mwgm

p
1) Dl,g (: Dl,g,m) = Z dc,g,m = 2 e ;
(7.52) c,i(c,g)=1 q=1
ii)(k=€0>2) Dyy(=Dipgm) = Z degm-
c,i(c,g)=¢

Suppose a, B € [ Jys, x (). As said above, one sees Dy, = Dyg, for 1 <€ <k
(because i(c, go) = £ if and only if i(c, gg) = £ here). We write
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DEFINITION 7.19. = Dy (= Dysm) := Dyg, (= Dig,.m) for any o with x(a) = ¢,
1<l<k.

By using (7.51) of Proposition 7.18 and Definition 7.19, one sees, for a € x~1(£),

aex (o), JX ga(x)’ﬁe_tﬁ;’“(x,x)dvx(ﬂ?) ~ Z £

s=n,n—1,...

7778,15(904) + Dlsf,s(ga) + Z (ch;r,s(ga)\/ieZ + O(\/Zeﬁ_l)) +--

c,i(c)=2
(7.53) ) (deSf (ga)VE OV

c,i(c)=¢

=Dt (n_s,t(ga) + D15 (9a) + (D255, (gu)VE” + O(VE™ ™)) +

S

+ (DeSE, (g VE +OWET)).
Combining (7.50) and (7.53) yields the following as t — 0" (where {a}, = x (1)U
X2 uxTB3) )
(7.54)

JX Tre ™! (o, 2)dvx (@) (= Z JX ga (@) Tre ™ Dim (2,2)dvx ()
~ X (Y Disile)

s=n,n—1,... aex—1(1)

+(( D) DiST(ge)+ (Y DaST(ga)VE" +O(WE

aex—1(2) aex~1(2)

+ (( Z Dlsis(ga)) + ( Z Dzsis(ga)\/iez 4 O(\/282+1))

aex1(3) aex—1(3)

+ (Y] DS ga)VET + OWETT)) + o+ Y0 salga))-

aex™1(3)

es+1

)

We rearrange (7.54) as (only keeping terms in leading order)
(7.55)

Zt—sx(zn_s,t<ga>+( D DiSi(ga)+ D, DiSi(9a)

aex~1(1) aex~1(2)

+ > DiS{(ga) +--.)

aex™1(3)

N DaSH(ga)VET )

aex—1(2)

FOY DaSLVET )+ (Y )

aex—1(3) aex—1(4)
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+(( Y DsS{(ga)VE™" +--)

aex—1(3)
+( Y DsSf gV + )+ (D] ...)+...)+...)
aex~*(4) aex—1(5)

which equals (by (7.49) and S/ (gs) = 0 for a € x ™' (¢') with ¢’ < ),

St x (YUnsalga) + DiSt, + (D285 VE +O(VE )
(756) s=n,n—1- a
+ (DsSFNVE +O(WE ) +-0) +)

For s = n, we have SZn = L (2m)"vol(X,,) (see iii) of Proposition 7.2).

For the term given by the sum »_ 75 +(go) in (7.56), by Proposition 7.18 we obtain
that for every P € N, there are constants C' > 0, ¢; > 0, where C, ¢; depend on P
and are independent of g, and ¢, such that

Z Z t ns/tga

a s'=—n

<CtP+1ZJ |90 (z)|dvx (z), for every 0 <t < c;.

By the definition of asymptotic expansion (cf. Definition 5.5), the term »._ 7s+(g9a)
becomes immaterial to the exact form of the asymptotic expansion.

Further, the asymptotic expansion of (7.39) basically follows from that of
SXTre_tDIM(x,x)de(x).

We have now proved (part of) the main result of this section.

THEOREM 7.20 (Cf. Theorem 1.14). — Suppose X = X, 2 X,, 2+ 2 Xp, = Xp,
with each stratum X,, a connected submanifold. Let aj(t,:c,y) (= ai,.(t z,y)),
s=n,n—1,..., be as in (5.56). Write ex for the (real) codimension of X,, (which is
an even number, cf. Remark 7.22 below). (Recall that the numerical factors Dy, are
as given in Definition 7.19 and the integrals SZ (= S/, ) in (7.49) with subscripts

l,s,m

simplified in the present case.) Then the following holds.
i) Ast — 01,
J Tre=tim (z,z)dvx (z)
X
(7.57) ~ Dlym((27r)71(27rt)7nvol(X) + t7”+15fn_1 + t7"+25in_2 + .- )
).

In particular, by pdy Zq 1€ —Hram _ p forp | m and 0 otherwise, one has Dy, = p
ifp|m. If po | m (thus p | m too), then D1, Da > 0.

ii) In the asymptotic expansion (7.57), all the coefficients of t/ for j being half-
integral, vanish. Hence, the remaining term in (7.57) is O(t_"*'%z“).

eg+1
2

+ (2m)~ (DD, L vol(Xp, )t 4 ot
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iii) As a consequence of (7.56) and ii)

(7.58) J Traf,,(t, =, z)dvx (x) ~ Dy mST, —I—Dg,mS;fSte72 —&-O(t%“rl), as t — 0F.
X

The similar results hold true for the case §, Tre_tﬁb_vm(a:,a:)dvx(x) and
§x Trag,,(t,z,z))dvx (z) as well.

Proof. — It remains to prove ii) of the theorem. Recall that the last two paragraphs
of the proof of Proposition 7.2, especially the item §) there. In the present case, by
scaling (§ — v/t§j) and using (7.19), it reduces to computing the expansion (in v/t) of

a) bl (Vt§,Y),e ™o (Vi§,Y))

(7.59) b do ()

for a fixed wu.
Write g, (z) = e~ oz and

B;S((\/Eg’Y% e Mo (\/ZZL Y)) = (Ej,s o (id,gu))((\/%ﬂ,Y), (\/i?%Y»

By 4) mentioned above, g,(0,Y) is only away from (0,Y) by a small difference
(< €) in their #-coordinates, hence by continuity, g, ((v/t9,Y)) lies in an O(2¢)-small
neighborhood of (0,Y) (as t — 0"), giving that the Taylor expansion of IA)LS(a:,y),
z=(t9,Y),y =e ™oz, around z = y = (0,Y) =Y = 0 can be done in terms of
integral powers of v/t; where ¢; is in . Hence the coefficients of the t/ for j being
half-integral must involve an odd power of some variable ¢; in 4. Since § sits in an
even dimensional space (cf. i) of Remark 7.22 below), dvx () is of integral power in ¢.
With a), b) of (7.59), by using i) the claim (7.19), ii) Siow e’@?ﬁ?d@i = 0 for an odd
number n and iii) for a polynomial P(z), S;C/\/E e P(z)dx ~ O(t®) (as t — 0%), our
assertion about the asymptotic expansion in ii) of the theorem follows. O

REMARK 7.21. — One may think of the second line in (7.57) as the main terms which
remind one of the close relation between the Kodaira Laplacian and Kohn Laplacian
(ct. Proposition 5.1). However, one key point in this paper is the idea that if the
S action is locally free (but not globally free) on X, then this relation cannot be
altogether extended to their heat kernels. In this regard the correction terms exist,
and consist in the third line of (7.57) linked up with the higher strata of the (locally
free) S! action beyond the principal stratum.

REMARK 7.22. — i) Let us prove that e, the codimension of X,,,, is even. X, is S*
invariant; 7X,, = (RT+ n TX,,) ® RT|,  where RT" is the line subbundle of TX
Py

generated by 0/06 such that RT ® RT+ = TX. In a BRT chart U x Je, e[ we denote

U x {0} (c X) by U. Write (RTL N TXPZ)‘[} < = E. For any given p € U, with
Xy,

P = p x {0}, one may choose a BRT coordinate such that E; T,;ff (see the proof of
Lemma, 7.6 where T3U = IRTﬂﬁ). Without loss of generality we may assume p € X, .
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Write g = €?2™/P¢ (€ S') which is CR and an isometry with the fixed point set X,,.
By dgoJ = Jodg = J on E5 with J the complex structure of TI;U, Ej is invariant
under J. It follows E is of even dimension, so X, is of odd dimension, i.e., e, is
even. ii) For 1 < ¢ < k we can write X,,, — M,, for a complex manifold M,,,
as an S! fiber bundle. The quantities af(x) are S! invariant by construction (see
(7.47)-(7.49)), hence descend to M,,. One sees S}Ebs (= SZS) = %Sﬁ%s(Sﬁpw =
SMM Tr o dvy,, ). Here, the metric on My, (cf. dvyy,,) is defined in a way similar to
that given in (4.1). This suggests a question of how the heat kernels (for the locally
free S! action) of the present paper may be connected with (certain suitably defined)
heat kernels in the orbifold base X /S!. In a certain Riemannian setting, some work

in a similar direction has been done (cf. [59, Theorems 3.5, 3.6]).

7.5. Types for S stratifications; proof for the general type

Lastly, to modify the above reasoning to the case beyond the simple type is es-
sentially not difficult. Suppose, say, X,, has several connected components Y; such
that the simple type condition is assumed along each component Y;. Then, clearly the
above argument applies to the individual Y; and the result is just to sum up over 1.
Without assuming the simple type condition on Y;, say, inside some Y; the next stra-
tum X, has seated several components Z; or some components Z; are seated even
outside of each Y;. Then by localization argument along each Z; just as done above,
one repeats the pattern similarly. The process continues.

We are now motivated to transplant the notion of “type,” “class” in Definition 7.1
for the integral I of (7.3) into the geometry of the stratification of the S action.

For a connected component Xpe(w < Xp,, ve €{1,...,5;}, contained in the higher
dimensional connected components of the strata
(X :)ypimil) 2 Xpimiz) = Ypifm}n 2 YPiHl(wa) = yﬁe(m’
where i3 = 1 < iy < - < iy < ipp1 =L € {1,2,,...,0 —1,¢}, we define its type
T(Xpe(m) by
(7.60) T(Xpyyy) = TER)) 1= (1(Vir)s 2 (Viz ) -+ 8 (Vig )y i 41 (Vi 1)),

i1 = v, = 81 = 1;iy41 = £. One has p;, |pi, |- |pi;,, (cf. Remark 1.17 for a similar
case).

The notions such as simple type, class and length (1) are defined similarly, cf.
Definition 7.1. (No definition of trivial type is given here. See iii) of Definition 7.23
below in which i(c, [T]) = o corresponds to the trivial type, cf. iii) of Definition 7.10.)

Recall that if M < N is a finite disjoint union of submanifolds Mj, then the
dimension of M is max;{dimg M;} and the codimension of M is dimg N — dimg M.

The following definition, which is bit tedious yet bears a great similarity as previ-
ously, is set up for the immediate use in the general situation.
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DEFINITION 7.23. — i) Write vp = {[7]; 7 = 7(X,,.,,,), 7% = 1,2, ..., s¢} for the set of

) of connected components X, in X,

equivalence classes of types 7 = 7(X, ttre)

Pe(vy)

ii) Write (similar to (7.49), (7.48))

SZ('YZ),S (: S)Jgpz(w),s,m) = Jﬁ ’I‘I'Ot (Y Y)d Ux (Y) (O[: = a;:m)

Pe(vy)
Xpl(w)

associated with X, .
ve)

iii) Let [7] = [(31(vi, ) 92(Vin), -+ >0 (Vig)si5+1(7i,,1))] be given. If ¢ | p1, define
i(c,[7]) = 1. (Hence it is independent of [7].) If ¢ } p1 and ¢ | py, £ = is for some
8,2 < s < f+1, such that ¢ / iy for all s < s. Then i(c,[7]) := € = 2. If ¢ | p;,
for 1 <s<t+1,i(e[1]) := 00o. We may write i(c) for i(c, [7]).

iv) For i(c,[7]) = 2, define the numerical factors d , ;] correspondingly as in
(7.33). For i(c) = 1, define d, ,, [r] = d. (which is independent of 7) as in (7.29).

v) For a given [7], if i(¢) = 1, then define the weight factors D; as in (7.52) (which
is independent of 7) and if i(c) # 1,0, define Dy -1 (= Dy []) = Zc,i(c):e dem,[r]-

vi) Write €; (7] = €;,(;,) With 7(€(ve)) = (i1(Yir), -+ 3q(Vig)s -5 p41(Yipsy ) for
the codimension of X, (,, ). Obviously, e;, ;] < €j,[;] < ---. For [T] € vp, write
€[r] = €isralripyy)r 1€ Celye):

vii) Write e = min [11e,, €[] (= min, ;-)—2 e[;] by vi) above) and for £ > 2

2<t<k

vp = {[7¢] € ve; ¢ = (1,£(7¢)) of length two such that e,,,) = e, i.e., e[z,] = e} < vy.

Of course, it is not ruled out that for some values of ¢, 7y could be an empty set.
Intuitively, one thinks of e as the minimal codimension among those connected com-
ponents X, such that if X, 2 Xpiyy» then Xp = X the principal stratum.

viii) For a fixed [r] € v in 1), write (see (7.60) for 7(£(ve)) = 7(Xp, )

Z[HLS = Z SZW s°
Ye, [T(€(7e))]=[k]

1<ve<se

For the case of general type, we can obtain results corresponding to (7.54), (7.55)
and (7.56) (yet complicated in expressions here). We are content with summarizing
the final result as follows.

J TretTom (z,z)dvx ()
X

Z (D151+S+ Z D2 a1 Z{al. \[ [ra] (\/Ze[ﬁzH'l))

s=n,n—1-- [k2]evs

+ Z D3 [53 Z[n?’], \[ [r3] + O(\/Ee['is]+1)) L. )

[H3]EI/3

(7.61)

The following main result of this subsection parallels Theorem 7.20 in the last
subsection. By comparison, to collect the coefficients for the next leading order in ¢
t in (7.61) here, we have a slightly more complicated summation (regarded as
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part of corrections as indicated in Remark 7.21) in the formula below. Note that the
conversion to the stated form of Theorem 1.14 is nothing but a direct consequence of
an examination (slightly tedious) of the various definitions here.

THEOREM 7.24 (Cf. Theorem 1.14). — Notations as in Theorem 7.20 without assum-
ing the conditions of connectedness and simple-type there. The weight factors Dy, (1],

the integrals SZEW) s (= €+(w) sm)s & Te etc. are just given above. One has the follow-
ing.
i) Ast — 0T,
J Tre=tTim (z,z)dvx ()
X
(7.62) ~ D1 ((2m) 7 (2mt) "vol(X) + ¢S TS o)
—_n+ e —n4 &ttt
+ T Z Dy (7 217]n) + O 72)
[%{]Eﬁg
2<t<k

(where recall that Zpz,),, = (2m)~("+D ye,1<vess,  VOl(X ) > 0 in the locally

Pe(vy)
codim Po(vg) =e

Jree case of the S* action). If pg | m (thus p1 | m too), then D1 m, Dy [+

0] > 0.
ii) In the asymptotic expansion (7.62), all the coefficients of t/ for j being half-

integral, vanish.

iii) As a consequence of (7.61) and %),

(7.63) J Tral,,(t,z,2)dvx (z) ~ D1mSi, +t2( Y DymizZ(2,,s) + O3 ™)
X N .
[Telede

2<U<k

(where Z[‘f'e],s = Z e, 1Sve<se S;(w)ys)'

codim =e
Pe(vp)

The similar results hold for §, Tr e’tﬁb_,m(x, z))dvx (x) and §y Trag,,(t, z,z)dvx (z).

REMARK 7.25. — The quantities involved above are computable in the sense that
they are basically reduced to those involved in the (ordinary) Kodaira heat kernel
by ii) of Definition 7.23, cf. Remark 1.9.

REMARK 7.26. — It is not obvious how one can compute the supertrace integral, hence
our index Theorem 6.4, Corollary 6.5 solely by techniques similar to those derived in
(7.62), partly because here we are not using the off-diagonal estimate of Theorem 5.10
which is partly based on a cancelation result in Berenzin integral (see the proof of
that theorem). These results (of estimate and cancelation) appear to lie beyond what
the geometry of the stratifications can reveal as done in this Section 7.
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Among the transversally elliptic operators initiated by Atiyah and Singer,
Kohn’s [J, operator on CR manifolds with S' action is a natural one of
geometric significance for complex analysts. Our first main result establishes
an asymptotic expansion for the heat kernel of such an operator with values
in its Fourier components, which involves a contribution in terms of a distance
function from lower dimensional strata of the S!'-action. Our second main
result computes a local index density, in terms of tangential characteristic
forms, on such manifolds including Sasakian manifolds of interest in String
Theory, by showing that certain non-trivial contributions from strata in the
heat kernel expansion will eventually cancel out by applying Getzler’s rescaling
technique to off-diagonal estimates. This leads to a local result which can be
thought of as a type of local index theorem on these CR manifolds. We give
examples of these CR manifolds, some of which arise from Brieskorn manifolds.
Moreover in some cases, we can reinterpret Kawasaki’s Hirzebruch-Riemann-
Roch formula for a complex orbifold equipped with an orbifold holomorphic
line bundle, as an index theorem obtained by a single integral over a smooth CR
manifold. We achieve this without use of equivariant cohomology method and
our method can naturally drop the contributions arising from lower dimensional
strata as done in previous works.

Le laplacien de Kohn sur une variété de Cauchy-Riemann (CR) avec action
transverse d’un cercle est un exemple important pour l’analyse complexe d’un
opérateur transversalement elliptique. Nous établissons ici un développement
asymptotique du noyau de la chaleur de ses coefficients de Fourier, qui inclut
une contribution des strates singuliéres de l’action du cercle. Nous calculons
ensuite une densité d’indice locale pour ces opérateurs en montrant, & ’aide de
techniques dues a Getzler, que certaines contributions des strates singuliéres
non-triviales dans le développement du noyau de la chaleur s’annulent ici. Ce
résultat, que l’on peut interpréter comme un théoréme d’indice local sur ces
variétés CR, s’applique notamment auzx variétés de Sasaki qui sont importantes
en théorie des cordes. Nous donnons également des exemples concrets de
telles variétés CR, issues notamment des variétés de Brieskorn. De plus, nous
pouvons réinterpréter dans certains cas la version du théoréme de Hirzebruch-
Riemann-Roch pour un orbifold complexe muni d’un fibré orbifold en droites
complexes due a Kawasaki comme une formule d’indice. Notre méthode évite
le recours a la cohomologie équivariante et les annulations des termes issus des
strates singuliéres surviennent naturellement.
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