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LIFTING THE CARTIER TRANSFORM
OF OGUS-VOLOGODSKY MODULO pn

Daxin Xu

Abstract. – Let W be the ring of the Witt vectors of a perfect field of characteristic p,
X a smooth formal scheme over W, X1 the base change of X by the Frobenius morphism
of W, X12 the reduction modulo p2 of X1 andX the special fiber of X. We lift the Cartier
transform of Ogus-Vologodsky defined by X12 modulo pn. More precisely, we construct
a functor from the category of pn-torsion OX1 -modules with integrable p-connection
to the category of pn-torsion OX-modules with integrable connection, each subject to
suitable nilpotence conditions. Our construction is based on Oyama’s reformulation of
the Cartier transform of Ogus-Vologodsky in characteristic p. If there exists a lifting
F : XÑ X1 of the relative Frobenius morphism of X, our functor is compatible with a
functor constructed by Shiho from F . As an application, we give a new interpretation
of Faltings’ relative Fontaine modules and of the computation of their cohomology.

Résumé (Relèvement de la transformée de Cartier d’Ogus-Vologodsky modulo pn)
Soient W l’anneau des vecteurs de Witt d’un corps parfait de caractéristique p ą 0,

X un schéma formel lisse sur W, X1 le changement de base de X par l’endomorphisme
de Frobenius de W, X12 la réduction modulo p2 de X1 et X la fibre spéciale de X. On
relève la transformée de Cartier d’Ogus-Vologodsky définie par X12. Plus précisément,
on construit un foncteur de la catégorie des OX1 -modules de pn-torsion à p-connexion
intégrable dans la catégorie des OX-modules de pn-torsion à connexion intégrable,
chacune étant soumise à des conditions de nilpotence appropriées. S’il existe un re-
lèvement F : X Ñ X1 du morphisme de Frobenius relatif de X, notre foncteur est
compatible avec une construction « locale » de Shiho définie par F . Comme applica-
tion de la transformée de Cartier modulo pn, on donne une nouvelle interprétation des
modules de Fontaine relatifs introduits par Faltings et du calcul de leur cohomologie.

© Mémoires de la Société Mathématique de France 163, SMF 2019
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CHAPTER 1

INTRODUCTION

1.1. – In his seminal work [34], Simpson established a deep relation between com-
plex representations of the fundamental group of a projective complex manifold X

and Higgs modules on X, leading to a theory called nonabelian Hodge theory. Re-
call that a Higgs module on X is a coherent sheaf M together with an OX -linear
morphism θ : M Ñ M bOX Ω1

X{C such that θ ^ θ “ 0. (Simpson’s result uses, but
is much deeper than, the Riemann-Hilbert correspondence relating representations
of the fundamental group and modules with integrable connection.) In [14], Faltings
developed a partial p-adic analog of Simpson correspondence for p-adic local systems
on varieties over p-adic fields.

On the other hand, in [31], Ogus and Vologodsky constructed a version of non-
abelian Hodge theory in characteristic p. If X is a smooth scheme over a perfect
field k of characteristic p ą 0, they established an equivalence, called Cartier trans-
form, between certain modules with integrable connection on X{k and certain Higgs
modules on X{k, depending on a lifting of X 1 (the base change of X by the Frobe-
nius morphism of k) to W2pkq. They also constructed a canonical quasi-isomorphism
betweeen certain truncations of the de Rham complex of a module with integrable
connection and of the Higgs complex of its Cartier transform. This result generalizes
the Cartier isomorphism and the decomposition of the de Rham complex given by
Deligne-Illusie [11]; it is also an analog of a corresponding result in Simpson’s theory.

The relation between Faltings’ p-adic Simpson correspondence and the Cartier
transform is not yet understood. The first difficulty is to lift the Cartier transform
modulo pn. This is our main goal in the present article. Shiho [33] constructed a “local”
lifting of the Cartier transform modulo pn under the assumption of a lifting of the
relative Frobenius morphism modulo pn`1. In [32], Oyama gave a new construction
of the Cartier transform of Ogus-Vologodsky as the inverse image by a morphism of
topoi. His work is inspired by Tsuji’s approach to the p-adic Simpson correspondence
([2] IV). In this article, we use Oyama topoi to “glue” Shiho’s functor and obtain a
lifting of the Cartier transform modulo pn under the (only) assumption that X lifts
to a smooth formal scheme over W.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2019



2 CHAPTER 1. INTRODUCTION

1.2. – Shiho’s construction applies to modules with λ-connection, a notion of in-
troduced by Deligne. Let f : X Ñ S be a smooth morphism of schemes, M an
OX -module and λ P ΓpS,OSq. A λ-connection on M relative to S is an f´1pOSq-lin-
ear morphism ∇ : M Ñ M bOX Ω1

X{S such that ∇pxmq “ x∇pmq ` λm b dpxq for
every local sections x of OX and m of M . 1-connections correspond to the classical
notion of connections, and 0-connections to Higgs fields. The integrability of λ-con-
nections is defined in the same way as for connections. We denote by MICpX{Sq

(resp. λ-MICpX{Sq) the category of OX -modules with integrable connection (resp.
λ-connection) relative to S.

1.3. – In the following, if we use a gothic letter T to denote an adic formal W-scheme,
the corresponding roman letter T will denote its special fiber. Let X be a smooth
formal scheme over W and n an integer ě 1. We denote by σ : W Ñ W the Frobenius
automorphism of W, by X1 the base change of X by σ and by Xn the reduction
of X modulo pn. In [33], Shiho constructed a “local” lifting modulo pn of the Cartier
transform of Ogus-Vologodsky defined by X12, using a lifting Fn`1 : Xn`1 Ñ X

1
n`1 of

the relative Frobenius morphism FX{k : X Ñ X 1 of X.
The image of the differential morphism dFn`1 : F˚n`1pΩ

1
X1n`1{Wn`1

q Ñ Ω1
Xn`1{Wn`1

of Fn`1 is contained in pΩ1
Xn`1{Wn`1

. Dividing by p, it induces an OXn -linear mor-
phism

dFn`1{p : F˚n pΩ
1
X1n{Wn

q Ñ Ω1
Xn{Wn

.

Shiho defined a functor (depending on Fn`1) ([33] 2.5)

Φn : p-MICpX1n{Wnq Ñ MICpXn{Wnq(1.3.1)
pM 1,∇1q ÞÑ pF˚n pM

1q,∇q,

where ∇ : F˚n pM
1q Ñ Ω1

Xn{Wn
bOXn F

˚
n pM

1q is the integrable connection defined for
every local section e of M 1 by

(1.3.2) ∇pF˚n peqq “ pidb
dFn`1

p
qpF˚n p∇1peqqq.

Shiho showed that the functor Φn induces an equivalence of categories between
the full subcategories of p-MICpX1n{Wnq and of MICpXn{Wnq consisting of quasi-
nilpotent objects ([33] Thm. 3.1). When n “ 1, Ogus and Vologodsky proved that the
functor Φ1 is compatible with the Cartier transform defined by X12 ([31] Thm. 2.11;
[33] 1.12).

1.4. – The categories of connections and their analogs we will be studying can be
understood geometrically using the language of groupoids. Our groupoids will be
relatively affine and hence correspond to Hopf algebras. If pT , Aq is a ringed topos,
a Hopf A-algebra is the data of a ring B of T together with five homomorphisms

A
d2
ÝÝÑ
d1

B, δ : B Ñ B bA B (comultiplication),

π : B Ñ A (counit), σ : B Ñ B (antipode),

MÉMOIRES DE LA SMF 163



CHAPTER 1. INTRODUCTION 3

where the tensor product B bA B is taken on the left (resp. right) for the A-algebra
structure of B defined by d2 (resp. d1), satisfying the compatibility conditions for
coalgebras (cf. 4.2, [4] II 1.1.2).

A B-stratification on an A-module M is a B-linear isomorphism

(1.4.1) ε : B bAM
„
ÝÑM bA B,

where the tensor product is taken on the left (resp. right) for the A-algebra structure
defined by d2 (resp. d1), satisfying π˚pεq “ idM and a cocycle condition (cf. 5.4).

1.5. – A classical example of a Hopf algebra is given by the PD-envelope of the
diagonal immersion. Let X be a smooth formal W-scheme, X2 the product of two
copies of X over W. For any n ě 1, we denote by PXn the PD-envelope of the diagonal
immersion Xn Ñ X2

n compatible with the canonical PD-structure on pWn, pWnq

and by PX the associated adic formal W-scheme. The OX-bialgebra OPX of Xzar is
naturally equipped with a formal Hopf OX-algebra structure (i.e., for every n ě 1, a
Hopf OXn -algebra structure on OPXn , which is compatible) (cf. 4.7, 5.10).

A quasi-nilpotent integrable connection relative to Wn on an OXn-module M (cf.
5.3) is equivalent to an OPX -stratification on M ([5] 4.12). Following Shiho [33], we
give below an analogous description of p-connections; the relevant Hopf algebra is
constructed by dilatation (certain distinguished open subset of admissible blow-up)
in formal geometry.

1.6. – We define by dilatation an adic formal X2-scheme RX satisfying the following
conditions (3.5).

(i) The canonical morphism RX,1 Ñ X2 factors through the diagonal immersion
X Ñ X2.

(ii) Let X Ñ X2 be the morphism induced by the diagonal immersion. For any flat
formal W-scheme Y and any W-morphisms f : YÑ X2 and g : Y Ñ X which fit into
the following commutative diagram

Y //

g

��

Y

f

��
X // X2,

there exists a unique W-morphism f 1 : YÑ RX lifting f .
We denote abusively by ORX the direct image of ORX via the morphism RX,zar Ñ

Xzar (i). Using the universal property of RX, we show that ORX is equipped with a
formal Hopf OX-algebra structure (4.11).

The diagonal immersion X Ñ X2 induces a closed immersion ι : X Ñ RX (3.5).
For any n ě 1, we denote by TX,n the PD-envelope of ιn : Xn Ñ RX,n compatible
with the canonical PD-structure on pWn, pWnq. The schemes tTX,nuně1 form an adic
inductive system and we denote by TX the associated adic formal W-scheme. By the
universal property of PD-envelope, the formal Hopf algebra structure on ORX extends
to a formal Hopf OX-algebra structure on the OX-bialgebra OTX of Xzar (5.15).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2019



4 CHAPTER 1. INTRODUCTION

In ([33] Prop. 2.9), Shiho showed that for any n ě 1 and any OXn -module M ,
an OTX -stratification on M is equivalent to a quasi-nilpotent integrable p-connection
on M (cf. 5.17).

1.7. – Shiho’s local construction deals with modules with p-connection and connec-
tion, which is different to the (global) Cartier transform of Ogus-Vologodsky. We need
a fourth Hopf algebra, introduced by Oyama [32], and we will use it to define a notion
of stratification that will enable us to globalize Shiho’s construction.

For any k-scheme Y , we denote by Y the closed subscheme of Y defined by the
ideal sheaf of OY consisting of the sections of OY whose pth power is zero. In (3.5),
4.9, we construct an adic formal X2-scheme QX satisfying the following conditions.

(i) The canonical morphism QX,1 Ñ X2 factors through the diagonal immersion
X Ñ X2.

(ii) For any flat formal W-scheme Y and any W-morphisms f : Y Ñ X2 and
g : Y Ñ X which fit into the following commutative diagram

Y //

g

��

Y

f

��
X // X2,

there exists a unique W-morphism f 1 : YÑ QX lifting f .

We denote abusively by OQX the direct image of OQX via the morphism QX,zar Ñ

Xzar (i). It is also equipped with a formal Hopf OX-algebra structure (4.11).

Let PX be the formal X2-scheme defined in 1.5, ι : X Ñ PX the canonical mor-
phism lifting the diagonal immersion XÑ X2 and J the PD-ideal of OPX associated
to ι1. For any local section of J , we have xp “ p!xrps “ 0. Then we deduce a
closed immersion PX Ñ X over X2. By the universal property of QX, we obtain an
X2-morphism λ : PX Ñ QX.

1.8. – The groupoids and Hopf algebras constructed above give a geometric inter-
pretation of Shiho’s functor Φ and of a variation of Φ which can be globalized. Let
F : X Ñ X1 be a lifting of the relative Frobenius morphism FX{k of X. By the uni-
versal properties of RX1 and of PD-envelopes, the morphism F 2 : X2 Ñ X12 induce
morphisms ψ : QX Ñ RX1 (6.6) and ϕ : PX Ñ TX1 (6.8) above F 2 which fit into a
commutative diagram (6.9.1)

(1.8.1) PX
ϕ //

λ

��

TX1

$

��
QX

ψ // RX1 ,

MÉMOIRES DE LA SMF 163



CHAPTER 1. INTRODUCTION 5

where $ : TX1 Ñ RX1 (1.6) and λ : PX Ñ QX (1.7) are independent of F . Moreover,
ψ and ϕ induce homomorphisms of formal Hopf algebras ORX1 Ñ F˚pOQXq and
OTX1 Ñ F˚pOPXq. The above diagram induces a commutative diagram (6.9.2)

(1.8.2)
!

category of OX1n -modules
with ORX1 -stratification

)

ψ˚n //

$˚n

��

!

category of OXn -modules
with OQX -stratification

)

λ˚n

��
!

category of OX1n -modules
with OTX1 -stratification

)

ϕ˚n //
!

category of OXn -modules
with OPX -stratification

)

.

In ([33] 2.17), Shiho showed that the functor ϕ˚n is compatible with the functor Φn
defined by F (1.3.1), via the equivalence between the category of modules with quasi-
nilpotent integrable connection (resp. p-connection) and the category of modules with
OPX -stratification (resp. OTX -stratification).

1.9. – Let us explain the Oyama sites E and E whose crystals corresponding to OQX
and ORX stratification, and a morphism of topoi which will be used to lift the Cartier
transform and to globalize the funtor ψ˚n.

Let X be a scheme over k. An object of E (resp. E ) is a triple pU,T, uq consisting
of an open subscheme U of X, a flat formal W-scheme T and an affine k-morphism u :

T Ñ U (resp. u : T Ñ U (1.7)). Morphisms are defined in a natural way (cf. 7.1). We
denote by E 1 Oyama’s category associated to the k-scheme X 1. We denote by rE (resp.
rE ) the topos of sheaves of sets on E (resp. E ) with respect to the Zarisiki topology
(7.8).

Let pU,T, uq be an object of E . The relative Frobenius morphism FT {k : T Ñ T 1

factors through a k-morphism fT {k : T Ñ T 1. We have a commutative diagram

(1.9.1) U

FU{k

��

T
uoo � � //

FT {k
��

T

FT {k

��

fT {k

xx
U 1 T 1

u1oo � � // T 1,

where the vertical arrows denote the relative Frobenius morphisms. Then
pU 1,T, u1 ˝ fT {kq is an object of E 1. We obtain a functor (9.1.2)

(1.9.2) ρ : E Ñ E 1, pU,T, uq ÞÑ pU 1,T, u1 ˝ fT {kq.

The functor ρ is continuous and cocontinuous (9.3) and induces a morphism of
topoi (9.1.3)

(1.9.3) CX{W : rE Ñ rE 1

such that its inverse image functor is induced by the composition with ρ.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2019



6 CHAPTER 1. INTRODUCTION

1.10. – Let n be an integer ě 1. The contravariant functor pU,T, uq ÞÑ ΓpT,OTnq
defines a sheaf of rings on E (resp. E ) that we denote by OE ,n (resp. OE ,n). By def-
inition, we have C˚X{WpOE 1,nq “ OE ,n. To give an OE ,n-module (resp. OE ,n-module)
F amounts to give the following data (8.2):

(i) For every object pU,T, uq of E (resp. E ), an u˚pOTnq-module FpU,Tq of Uzar.
(ii) For every morphism f : pU1,T1, u1q Ñ pU2,T2, u2q of E (resp. E ), an

u1˚pOT1,nq-linear morphism

cf : u1˚pOT1,n
q bpu2˚pOT2,n

qq|
U1

pFpU2,T2qq|U1
Ñ FpU1,T1q,

satisfying a cocycle condition for the composition of morphisms as in ([5] 5.1).

Following ([5] 6.1), we say that F is a crystal if cf is an isomorphism for every
morphism f and that F is quasi-coherent if FpU,Tq is a quasi-coherent u˚pOTnq-mod-
ule of Uzar for every object pU,T, uq. We denote by C qcohpOE ,nq (resp. C qcohpOE ,nq)
the category of quasi-coherent crystals of OE ,n-modules (resp. OE ,n-modules).

The following are the main results of this article.

Proposition 1.11 (8.10). – Let X be a smooth formal S -scheme and X its spe-
cial fiber. There exists a canonical equivalence of categories between the category
C qcohpOE ,nq (resp. C qcohpOE ,nq) and the category of quasi-coherent OXn-modules with
ORX-stratification (resp. OQX-stratification) (1.4), 1.6, 1.7.

Theorem 1.12 (9.12). – Let X be a smooth k-scheme. Then, for any n ě 1, the
inverse image and the direct image functors of the morphism CX{W (1.9.3) induce
equivalences of categories quasi-inverse to each other

(1.12.1) C qcohpOE 1,nq Õ C qcohpOE ,nq.

The theorem is proved by fppf descent for quasi-coherent modules.

We call Cartier equivalence modulo pn the equivalence of categories C˚X{W (1.12.1).
Indeed, given a smooth formal W-scheme X with special fiber X, Oyama proved 1.12
in the case n “ 1 and showed that C˚X{W is compatible with the Cartier transform of
Ogus-Vologodsky defined by the lifting X12 of X 1 (cf. [32] Section 1.5). In Section 12,
we reprove the later result in a different way (12.22).

The following result explains the relation between the Cartier equivalence C˚X{W

and Shiho’s construction, in the presence of a lifting of Frobenius.

Proposition 1.13 (9.17). – Let X be a smooth formal W-scheme, X its special fiber,
F : XÑ X1 a lifting of the relative Frobenius morphism FX{k of X and ψ˚n the functor
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CHAPTER 1. INTRODUCTION 7

defined by F in (1.8.2). Then, the following diagram (1.11)

(1.13.1) C pOE 1,nq
C˚
X{W //

µ o
��

C pOE ,nq

νo
��

!

OX1n -modules
with ORX1 -stratification

)

ψ˚n //
!

OXn -modules
with OQX -stratification

)

is commutative up to a functorial isomorphism. That is, for every crystal M

of OE 1,n-modules of rE 1, we have a canonical functorial isomorphism

(1.13.2) ηF : ψ˚npµpM qq
„
ÝÑ νpC˚X{WpM qq.

In the diagram (1.13.1), while C˚X{W does not depend on models of X, ψ˚n depends
on the lifting F of the relative Frobenius morphism and the vertical functors µ, and
ν depend on the formal model X of X. The isomorphism ηF depends also on F .
For different choice of liftings of Frobenius, ηF can be related by an explicit formula
encorded in Oyama topos (9.22).

By 1.8, the equivalence of categories C˚X{W (1.12.1) is compatible with Shiho’s
functor Φn defined by F (1.3.1). In the case n “ 1, an analogous relation between the
Cartier transform and Φ1 is shown in ([31] 2.11).

1.14. – In [15], Fontaine and Laffaille introduced the notion of Fontaine module to
study p-adic Galois representations. It is inspired by the work of Mazur ([27], [28])
and Ogus ([5], § 8) on the Katz conjecture. Let σ : W Ñ W be the Frobenius en-
domorphism and K0 “ Wr 1p s. A Fontaine module is a triple pM,M‚, ϕ‚q made of a
W-module of finite length M , a decreasing filtration tM iuiPZ such that M0 “ M ,
Mp “ 0 and W-linear morphisms

(1.14.1) ϕi : Wbσ,WM
i ÑM, 0 ď i ď p´ 1,

such that ϕi|Mi`1
“ pϕi`1 and

řp´1
i“0 ϕ

ipM iq “M . The ϕi’s are called divided Frobe-
nius morphisms.

The main result of Fontaine-Laffaille is the construction of a fully faithful and exact
functor from the category of Fontaine modules of length ď p ´ 2 to the category of
torsion Zp-representations of the Galois group GK0

of K0 ([36] Thm. 2). Its essential
image consists of torsion crystalline representations of GK0

with weights ď p´ 2 (cf.
[8] 3.1.3.3).

Fontaine and Messing showed that there exists a natural Fontaine module struc-
ture on the crystalline cohomology of a smooth proper scheme X over W of relative
dimension ď p´ 1 ([16] II.2.7). Then they deduced the degeneration of the Hodge to
de Rham spectral sequence of Xn{Wn.
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1.15. – A generalization of Fontaine modules in a relative situation was proposed by
Faltings in [13]. Relative Fontaine modules can be viewed as an analog of variation
of Hodge structures on smooth formal schemes over W. Let X “ SpfpRq be an affine
smooth formal scheme over W, X its special fiber and F : X Ñ X a σ-lifting of the
absolute Frobenius morphism FX of X. A Fontaine module over X with respect to F is
a quadruple pM,∇,M‚, ϕ‚Fq made of a coherent, torsion OX-module M , an integrable
connection ∇ on M , a decreasing exhaustive filtration M‚ on M of length at most
p´1 satisfying Griffiths’ transversality, and a family of divided Frobenius morphisms
tϕ‚F u as in (1.14.1) satisfying a compatibility condition between tϕ‚F u and ∇ (cf. [13]
2.c, 2.d).

Using the connection, Faltings glued the categories of Fontaine modules with re-
spect to different Frobenius liftings by a Taylor formula (cf. [13] Thm. 2.3). By gluing
local data, he defined Fontaine modules over a general smooth formal W-scheme X,
even if there is no lifting of FX .

If X is the p-adic completion of a smooth, proper W-scheme X , Faltings associated
to each Fontaine module of length ď p ´ 2 over X a representation of the étale
fundamental group of XK0

on a torsion Zp-module. Moreover, Faltings generalized
Fontaine-Messing’s result for the crystalline cohomology of a relative Fontaine module.

1.16. – Let X be a smooth formal W-scheme. As an application of their Cartier
transform [31], Ogus and Vologodsky proposed an interpretation of p-torsion Fontaine
modules over X ([31], 4.16). A p-torsion Fontaine module over X is a triple pM,∇,M‚q

as in 1.15 such that pM “ 0 and equipped with a horizontal isomorphism

(1.16.1) φ : C´1
X12
pπ˚pGrpMq, κqq

„
ÝÑ pM,∇q,

where κ is the Higgs field on GrpMq induced by ∇ and Griffiths’ transversality, and
π : X 1 Ñ X is the base change of the Frobenius morphism of k to X. Given a σ-lifting
F : X Ñ X of FX , such a morphism φ is equivalent to a family of divided Frobenius
morphisms tϕ‚F u with respect to F (1.15) (cf. 13.20).

By Griffiths’ transversality, the de Rham complex M bOX Ω‚X{k is equipped with
a decreasing filtration

(1.16.2) FipM bOX ΩqX{kq “M i´q bOX ΩqX{k.

Let ` be the length of the filtration M‚ (i.e., M0 “M,M ``1 “ 0) and d the relative
dimension of X over W.

(i) For any i,m, the canonical morphismHmpFi`1
pMbOXΩ‚X{kqq Ñ HmpFipMbOX

Ω‚X{kqq is injective. The morphism φ (1.16.1) induces a family of divided Frobenius
morphisms on pHmpM bOX Ω‚X{kq, tH

mpFiquiďp´1q which make it into a Fontaine
module over W (1.14).

(ii) The hypercohomology spectral sequence of the filtered de Rham complex
pM bOX Ω‚X{k,F

i
q degenerates at E1.
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1.17. – For any n ě 1, using the Cartier transform modulo pn, we reformulate Falt-
ings’ definition of pn-torsion Fontaine modules over X following Ogus-Vologodsky
(13.7). The Taylor formula used by Faltings to glue the data relative to different lift-
ings of FX is naturally encoded in Oyama topos (13.22). Following Faltings’ strategy,
we prove the analog of the previous results (1.16(i-ii)) on the crystalline cohomology
of a pn-torsion Fontaine module over X (14.1).

1.18. – Section 2 contains the main notation and general conventions. In Section 3,
we recall the notion of dilatation in formal geometry. In Section 4, after recalling the
notions of Hopf algebras and groupoids, we present the constructions of groupoids
RX and QX (1.6), 1.7. In Section 5, we recall the notions of modules with integrable
λ-connection (1.2) and of modules with stratification (1.4) and we discuss the rela-
tion between them. Following [33], we present the construction of Shiho’s functor Φn
(1.3.1) in Section 6. In Section 7, we explain the Oyama topoi rE and rE (1.9) and
their fppf variants. Section 8 is devoted to the study of crystals in the Oyama topoi
(1.10). In Section 9, we study the morphism of topoi CX{W (1.9.3) and prove our main
Results 1.12 and 1.13. We recall the construction of the Cartier transform of Ogus-
Vologodsky [31] in Section 10. Section 11 is devoted to several rings of differential
operators after Oyama and serves as a preparation for next section. In Section 12, we
compare the Cartier equivalence C˚X{W (1.12.1) and the Cartier transform of Ogus-
Vologodsky. In Section 13, we introduce a notion of relative Fontaine modules using
Oyama topoi (1.17). We compare it with Faltings’ definition [13] and Tsuji’s defini-
tion [35]. In Section 14, we construct a Fontaine module structure on the crystalline
cohomology of a relative Fontaine module.

After finishing this article, I learned from Arthur Ogus that Vadim Vologodsky
has skecthed a similar approach for lifting the Cartier transform in a short note (1)

without providing any detail.
A different approach to the formulation of a Cartier transform modulo pn and its

relationship to Fontaine modules was taken in [26].

Acknowledgement. – This article is a part of my thesis prepared at Université Paris-
Sud and IHÉS. I would like to express my great gratitude to my thesis advisor Ahmed
Abbes for leading me to this question and for his helpful comments on earlier versions
of this work. I would like to thank Arthur Ogus, Takeshi Tsuji and an anonymous
referee for their careful reading and suggestions.

1. Available at http://pages.uoregon.edu/vvologod/papers/p-adiccartier.pdf.
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CHAPTER 2

NOTATIONS AND CONVENTIONS

2.1. – In this article, p denotes a prime number, k a perfect field of characteristic p,
W the ring of Witt vectors of k and σ : W Ñ W the Frobenius automorphism of W.
For any integer n ě 1, we set Wn “ W {pn W and S “ SpfpWq.

2.2. – Let X be a scheme over k. We denote by FX the absolute Frobenius morphism
of X and by FX{k : X Ñ X 1 “ X bk,Fk k the relative Frobenius morphism. Then we
have a commutative diagram

(2.2.1) X
FX{k //

""

X 1 //

l

��

X

��
Spec k

Fk // Spec k.

2.3. – Let X be a scheme over k. We denote by X the scheme theoretic image of FX :

X Ñ X ([22] 6.10.1 and 6.10.5). By ([22] 6.10.4), X is the closed subscheme of X
defined by the ideal sheaf of OX consisting of the sections of OX whose pth power is
zero. It is clear that the correspondence X ÞÑ X is functorial. Note that the canonical
morphism X Ñ X induces an isomorphism of the underlying topological spaces.

The relative Frobenius morphism FX{k : X Ñ X 1 factors through X 1. We denote
the induced morphism by fX{k : X Ñ X 1. By definition, the homomorphism OX1 Ñ
fX{k˚pOXq is injective, i.e., fX{k is scheme theoretically dominant ([22] 5.4.2).

If Y Ñ X and Z Ñ X are two morphisms of k-schemes, by functoriality, we have
a canonical morphism

(2.3.1) Y ˆX Z Ñ Y ˆX Z.

Since X is affine if and only if X is affine (cf. [22] 2.3.5), we verify that (2.3.1) is an
affine morphism.

2.4. – In this article, we follow the conventions of [1] for adic rings ([1] 1.8.4) and adic
formal schemes ([1] 2.1.24). Note that these notions are stronger than those introduced
by Grothendieck in ([22] 0.7.1.9 and 10.4.2).
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If X is an adic formal scheme such that pOX is an ideal of definition of X, for any
integer n ě 1, we denote the usual scheme pX,OX{pnOXq by Xn.

2.5. – We say that an adic formal S -scheme X ([1] 2.2.7) is flat over S (or that
X is a flat formal S -scheme) if the morphism OX Ñ OX induced by multiplication
by p is injective (i.e., if OX is rig-pur in the sense of ([1] 2.10.1.4.2)). It is clear that the
above condition is equivalent to the fact that, for every affine open formal subscheme
U of X, the algebra ΓpU,OXq is flat over W.

Let A be an adic W-algebra ([1] 1.8.4.5). Then A is flat over W if and only if
An “ A{pnA is flat over Wn for all integers n ě 1. Indeed, we only need to prove that
the condition is sufficient. Let a be an element of A such that pa “ 0. For any integer
n ě 1, by the flatness of An over Wn, the image of a in An is contained in pn´1A{pnA.
Since A is separated, we see that a “ 0, i.e., A is flat over W. We deduce that an
adic formal S -scheme X is flat over S if and only if Xn is flat over Sn (2.4) for all
integers n ě 1.
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CHAPTER 3

BLOW-UPS AND DILATATIONS

3.1. – Let A be an adic ring (2.4), J an ideal of definition of finite type of A. We put
X “ SpecpAq, X 1 “ SpecpA{Jq and X “ SpfpAq. The formal scheme X is the comple-
tion of X along X 1. For any A-moduleM , we denote by ĂM the associated OX -module
and by M∆ the completion of ĂM along X 1 ([1] 2.7.1), which is an OX-module.

Let a be an open ideal of finite type of A. We denote by aOX the ideal sheaf
of OX associated to the presheaf defined by U ÞÑ aΓpU,OXq. By ([1] 2.1.13), we have
a∆ “ aOX.

Let B be an adic ring, u : AÑ B an adic homomorphism ([1] 1.8.4.5) and f : Y “

SpfpBq Ñ X “ SpfpAq the associated morphism. In view of ([1] 2.5.11), we have a
canonical functorial isomorphism

(3.1.1) f˚pa∆q
„
ÝÑ pabA Bq

∆.

Then, we deduce a canonical isomorphism

(3.1.2) f˚pa∆qOY
„
ÝÑ paBq∆.

Indeed, by definition, f˚pa∆qOY is the image of the morphism f˚pa∆q Ñ OY “

f˚pOXq, which clearly factors through paBq∆. The isomorphism (3.1.2) follows from
the fact that a∆ “ aOX and paBq∆ “ paBqOY.

3.2. – Let X be an adic formal scheme, J an ideal of definition of finite type of X
and A an open ideal of finite type of X ([1] 2.1.19). For any n ě 1, we denote by Xn
the usual scheme pX,OX{J nq and we set

(3.2.1) X1n “ Projp
à

mě0

A m bOX OXnq.

The sequence pX1nq forms an adic inductive pXnq-system ([1] 2.2.13). We call its induc-
tive limit X1 the admissible blow-up of A in X ([1] 3.1.2). By ([1] 2.2.14, 2.3.13), X1 is
an adic formal X-scheme of finite type. Note that X1n is different from the blow-up
of Xn along pA `J nq{J n.
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3.3. – Let X be a flat formal S -scheme locally of finite type (2.5, [1] 2.3.13) and
A an open ideal of finite type of X containing p. Let ϕ : X1 Ñ X be the admissible
blow-up of A in X. Then the ideal A OX1 is invertible ([1] 3.1.4(i)), and X1 is flat
over S ([1] 3.1.4(ii)). We denote by XpA {pq the maximal open formal subscheme of X1

on which

(3.3.1) pA OX1q|XpA {pq “ ppOX1q|XpA {pq

and we call it the dilatation of A with respect to p.
Note that XpA {pq is the complement of SupppA OX1{pOX1q in X1 ([22] 0.5.2.2).

In view of ([1] 3.1.5 and 3.2.7), the above definition coincides with the notion of
dilatation of A with respect to p introduced in ([1] 3.2.3.4). We denote the restriction
of ϕ : X1 Ñ X to XpA {pq by

(3.3.2) ψ : XpA {pq Ñ X.

We set A 7 “ A p`pOX the open ideal of X. If A is locally generated by ta1, . . . , anu

then A 7 is locally generated by tp, ap1, . . . , a
p
nu.

3.4. – Keep the notation of 3.3 and assume moreover that X “ SpfpAq is affine.
There exists an open ideal of finite type a of A containing p such that a∆ “ A ([1]
2.1.10 and 2.1.13). Let X “ SpecpAq, Y “ SpecpA{pAq, φ : X 1 Ñ X be the blow-
up of ra in X and Y 1 “ φ´1pY q; so X is the completion of X along Y . Then X1 is
canonically isomorphic to the completion of X 1 along Y 1 and ϕ is the extension of φ
to the completions ([1] 3.1.3).

Let paiq0ďiďn be a finite set of generators of a such that a0 “ p. For any 0 ď i ď n,
let Ui be the maximal open subset of X 1 where ai generates raOX1 . Since raOX1 is
invertible, pUiq0ďiďn form an open covering of X 1. It is well known that Ui is the
affine scheme associated to the A-algebra Ai defined as follows:

A1i “ A
”a0

ai
, . . . ,

an
ai

ı

“
Arx0, . . . , xi´1, xi`1, . . . , xns

paj ´ aixjqj‰i
, Ai “

A1i
pA1iqai -tor

,

where pA1iqai -tor denotes the ideal of ai-torsion elements of A1i. Let pAi be the separated
completion of Ai for the p-adic topology and pUi “ Spfp pAiq. Then ppUiq0ďiďn form a
covering of X1; for any 0 ď i ď n, pUi is the maximal open of X1 where ai generates
the invertible ideal a∆OX1 ([1] 3.1.7(ii)). The open formal subscheme XpA {pq of X1 is
equal to pU0 “ Spfp pA0q. In particular, we see that, in the general setting of 3.3,
ψ : XpA {pq Ñ X is affine ([1] 2.3.4).

LetAtx1, . . . , xnu denote the p-adic completion of the polynomial ring in n variables
Arx1, . . . , xns, which is flat over Arx1, . . . , xns by ([1] 1.12.12). If A10 is flat over W,
then we have A0 “ A10 and deduce a canonical isomorphism ([1] 1.12.16(iv))

(3.4.1) A
!a1

p
, . . . ,

an
p

)

“
Atx1, . . . , xnu

pai ´ pxiq1ďiďn

„
ÝÑ pA0.
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Proposition 3.5. – Let X be a flat formal S -scheme locally of finite type, i : T Ñ X1

an immersion (not necessary closed). There exists a formal X-scheme ψ : XpT {pq Ñ X

(resp. ψ : X7
pT {pq Ñ X) unique up to canonical isomorphisms satisfying the following

conditions:
(i) The canonical morphism pXpT {pqq1 Ñ X1 (resp. pX7

pT {pqq1 Ñ pX
7

pT {pqq1 Ñ X1)
factors through the immersion T Ñ X1.

(ii) Let Y be a flat formal S -scheme, Y “ Y1 and f : Y Ñ X an S -morphism.
Suppose that there exists a k-morphism g : Y Ñ T (resp. g : Y Ñ T ) which fits into
the following diagram:

(3.5.1) Y //

g

��

Y

f

��
T // X

( resp. Y //

g

��

Y

f

��
T // X.

q

Then there exists a unique S -morphism f 1 : Y Ñ XpT {pq (resp. f 1 : Y Ñ X
7

pT {pq)
such that f “ ψ ˝ f 1. If T Ñ X and f are moreover closed immersion, then so is
f 1 : YÑ XpT {pq.

Proof. – It suffices to prove the existence. The uniqueness follows from (i) and the
universal property (ii). We first prove the case where T Ñ X is a closed immersion
and denote the associated ideal sheaf by A .

In the first situation, we take XpT {pq to be the dilatation XpA {pq. Since p P A ,
the commutativity of the first diagram of (3.5.1) is equivalent to A OY “ pOY. To
verify condition (ii), we can reduce to the case where X “ SpfpAq is affine and then
to the case where Y “ SpfpBq is affine and the morphism f is associated to an adic
homomorphism u : A Ñ B. We take again the notation of 3.4. By (3.1.2), we have
ppBq∆ “ paBq∆. The open ideals of finite type pB and aB are complete by ([7] III
§ 2.12 Cor. 1 of Prop. 16) and separated as submodules of B. We deduce that pB “ aB
by taking ΓpY,´q. Since B is flat over W, the homomorphism u extends uniquely to
an A-homomorphism A0 Ñ B and then to an adic A-homomorphism w : pA0 Ñ B

by p-adic completion. In the first situation, we take for f 1 the morphism induced by w
which is uniquely determined by f . If u : AÑ B is moreover surjective, then so is w.

In the second situation, the commutativity of the second diagram of (3.5.1) means
the p-th power of every local section of A OY{pOY is zero in OY , which is equivalent
to the fact that A 7OY “ pOY (3.3). We take X7

pT {pq to be the dilatation XpA 7{pq.
Then condition (ii) in this situation follows from the first situation.

In general, let U be an open formal subscheme of X such that ipT q Ă U and that
T Ñ U is a closed immersion and, let A be the open ideal of finite type associated
to T Ñ U. We take XpT {pq (resp. X

7

pT {pq) to be the dilatation UpA {pq (resp. UpA 7{pq).
For any morphism f : Y Ñ X as in (ii), by (3.5.1), the morphism f factors through
the open subscheme U of X. Then the assertion follows from the case where T Ñ X is
a closed immersion.
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Remark 3.6. – The formal X-scheme XpT {pq (resp. X
7

pT {pq is the same as the Higgs

envelope rRT pXq (resp. rQT pXq) introduced in ([32] page 6).

The next result shows that the constructions of 3.5 are compatible with étale
localization.

Proposition 3.7 ([32] 1.1.3). – Let X, Y be two flat formal S -schemes locally of
finite type, f : X Ñ Y an étale S -morphism ([1] 2.4.5). Suppose that there exist a
k-scheme T and two immersions i : T Ñ X1, j : T Ñ Y1 such that j “ f ˝ i. Then f
induces canonical isomorphisms of the formal schemes

(3.7.1) XpT {pq
„
ÝÑ YpT {pq, X

7

pT {pq

„
ÝÑ Y

7

pT {pq.

Proof. – By the universal property (3.5), the composition XpT {pq Ñ X Ñ Y induces
a canonical Y-morphism u : XpT {pq Ñ YpT {pq. We consider the commutative diagram

(3.7.2) pYpT {pqq1 //

��

T // X1

��
YpT {pq // Y.

Since f : X Ñ Y is étale, the composition of the top horizontal morphisms and
X1 Ñ X lifts uniquely to a Y-morphism g : YpT {pq Ñ X. By (3.7.2) and the universal
property, g induces an X-morphism v : YpT {pq Ñ XpT {pq. The following diagram

(3.7.3) YpT {pq
v //

g

$$

XpT {pq
u //

��

YpT {pq

��
X

f // Y

is commutative. By the universal property, we deduce that u ˝ v “ id.
We consider the diagram

(3.7.4) XpT {pq
u //

ψ

��

YpT {pq

��

g

zz
X

f // Y,

where the lower triangle is commutative. Since ψ1 and g1 factor through T , we have
ψ1 “ pg ˝ uq1. Since f is étale and the square of (3.7.4) commutes, there exists one
and only one lifting of pXpT {pqq1 Ñ X1 to a Y-morphism XpT {pq Ñ X. We deduce that
ψ “ g ˝ u, i.e., the diagram (3.7.4) commutes. Then we have ψ ˝ v ˝ u “ ψ. By the
universal property, we deduce that v ˝ u “ id. The first isomorphism follows.

The second isomorphism can be verified in the same way.

The next result shows that the constructions of 3.5 are compatible with flat base
change.
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Proposition 3.8 ([32] 1.1.4). – Let X, Y be two flat formal S -schemes locally of
finite type, f : XÑ Y a flat S -morphism, T Ñ Y1 an immersion and S “ T ˆY X.
Then f induces canonical isomorphisms of formal schemes

(3.8.1) XpS{pq
„
ÝÑ YpT {pq ˆY X, X

7

pS{pq

„
ÝÑ Y

7

pT {pq ˆY X.

Proof. – By 3.5, we can reduce to the case where T Ñ Y is a closed immersion. Let A
(resp. B) be the open ideal of finite type associated to the closed immersion T Ñ Y
(resp. S Ñ X). Put Z “ YpB{pq ˆY X. By the universal property, the morphism f

induces a Y-morphism XpA {pq Ñ YpB{pq and then an X-morphism u : XpA {pq Ñ Z.
Since f is flat, Z is flat over S . We have A OZ “ BOZ “ pOZ. By the universal

property, we deduce an X-morphism v : ZÑ XpA {pq. Since u, v are X-morphisms, we
deduce that u ˝ v “ id and v ˝ u “ id by the universal property as in the proof of 3.7.

The second isomorphism can be verified in the same way.
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CHAPTER 4

HOPF ALGEBRAS AND GROUPOIDS

4.1. – In this section, we review the notion of Hopf algebras and groupoids follow-
ing [4] and the construction of certain Hopf algebras used in [32].

Let pT , Aq be a ringed topos. For any A-bimodules (resp. A-bialgebras) M and
N of T , M bA N denotes the tensor product of the right A-module M and the left
A-module N , and we regard M bA N as an A-bimodule (resp. A-bialgebra) through
the left A-action on M and the right A-action on N .

Definition 4.2 ([4] II 1.1.2 and [32] 1.2.1). – Let pT , Aq be a ringed topos. A Hopf
A-algebra is the data of an A-bialgebra B and three ring homomorphisms
(4.2.1)
δ : B Ñ B bA B (comultiplication), π : B Ñ A (counit), σ : B Ñ B (antipode)

satisfying the following conditions.

(a) δ and π are A-bilinear and the following diagrams are commutative:

(4.2.2) B
δ //

δ

��

B bA B

δbidB

��
B bA B

idB bδ // B bA B bA B

B
δ //

δ

��

idB

&&

B bA B

π¨idB

��
B bA B

idB ¨π // B.

(b) σ is a homomorphism of A-algebras for the left (resp. right) A-action on the
source and the right (resp. left) A-action on the target, and satisfies σ2 “ idB ,
π ˝ σ “ π.

(c) The following diagrams are commutative:

(4.2.3) B
π //

δ

��

A

d1
��

B bA B
idB ¨σ // B

B
π //

δ

��

A

d2
��

B bA B
σ¨idB // B.

where d1 (resp. d2) is the structural homomorphism of the left (resp. right) A-alge-
bra B.
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Such a data is also called an affine groupoid of pT , Aq by Berthelot ([4] II 1.1.2).

Definition 4.3 ([4] II 1.1.6). – Let f : pT 1, A1q Ñ pT , Aq be a morphism of ringed
topoi, B a Hopf A-algebra and B1 a Hopf A1-algebra. A homomorphism of Hopf alge-
bras is an A-bilinear homomorphism B Ñ f˚pB

1q compatible with comultiplications,
counits and antipodes.

4.4. – Let pT , Aq be a ringed topos, M and N two A-bimodules. We denote
by Hom llpM,Nq (resp. Hom lrpM,Nq) the sheaf of A-linear homomorphisms from the
left A-module M to the left (resp. right) A-module N . We put M_ “ Hom llpM,Aq.
The actions of A on M induces a natural A-bimodule structure on M_. There exists
a canonical A-bilinear morphism

(4.4.1) M_ bA N
_ Ñ pM bA Nq

_

which sends ϕbψ to θ defined by θpmbnq “ ϕpmψpnqq for all local sections m of M
and n of N .

Let B be a Hopf A-algebra. By (4.4.1), we obtain a morphism

(4.4.2) B_ ˆB_ Ñ pB bA Bq
_ δ_
ÝÝÑ B_.

Letting π : B Ñ A be the unit element, the above morphism induces a non-
commutative ring structure on B_. The homomorphism π : B Ñ A induces a ring
homomorphism i : A “ A_ Ñ B_. In this way, we regard B_ as a non commutative
A-algebra.

A homomorphism of Hopf A-algebras ϕ : B Ñ C induces a homomorphism of A-al-
gebras ϕ_ : C_ Ñ B_.

4.5. – Let f : pT 1, A1q Ñ pT , Aq be a morphism of ringed topoi, pB, δB , σB , πBq a
Hopf A-algebra. Suppose that the left and the right A-algebra structures on B are
equal. Then pf˚pBq, f˚pδBq, f˚pπBq , f˚pσBqq form a Hopf A1-algebra.

Let pB1, δB1 , σB1 , πB1q be a Hopf A1-algebra and u : B Ñ f˚pB
1q a homomorphism

of Hopf algebras (4.3). By adjunction, we obtain homomorphisms of A1-algebras

(4.5.1) u7 : f˚pBq Ñ B1, ru : f˚pBq bA1 f
˚pBq Ñ B1 bA1 B

1

for the left A1-algebra structures on the targets. Then the diagrams

(4.5.2) f˚pBq
f˚pδBq //

u7

��

f˚pBq bA1 f
˚pBq

ru

��
B1

δB1 // B1 bA1 B1

f˚pBq
f˚pπBq //

u7

��

A1

B1
πB1 // A1

are commutative. The restriction of ru on f´1pB bA Bq is given by u7|f´1pBq
. In view

of (4.4) and (4.5.2), the homomorphism u7 induces a homomorphism of A1-algebras
pu7q_ : pB1q_ Ñ pf˚pBqq_.
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4.6. – In the following, we review the notion of formal groupoid. Let X be an adic for-
mal S -scheme. For any integer r ě 1, let Xr`1 be the fiber product of pr ` 1q-copies
of X over S . We consider X as an adic formal pXr`1q-scheme by the diagonal immer-
sion ∆prq : XÑ Xr`1.

We denote by τ : X2 Ñ X2 the morphism which exchanges the factors of X2, by
pi : X2 Ñ X (i “ 1, 2) the canonical projections and by pij : X3 Ñ X2 (1 ď i ă j ď 3)
be the projection whose composition with p1 (resp. p2) is the projection X3 Ñ X on
the i-th (resp. j-th) factor.

For any formal X2-schemes Y and Z, YˆXZ denotes the product of YÑ X2 p2
ÝÑ X

and Z Ñ X2 p1
ÝÑ X, and we regard Y ˆX Z as a formal X2-scheme by the projection

YˆX ZÑ X
2 ˆX X

2 “ X3 p13
ÝÝÑ X2.

Definition 4.7. – Let X be an adic formal S -scheme. A formal X-groupoid over S
is the data of an adic formal X2-scheme G and three adic S -morphisms (4.6)

(4.7.1) α : GˆX GÑ G, ι : XÑ G, η : GÑ G

satisfying the following conditions.
(i) α and ι are X2-morphisms and the following diagrams are commutative:

(4.7.2) GˆX GˆX G
idˆα //

αˆid

��

GˆX G

α

��
GˆX G

α // G

G
ιˆid //

idˆι

��

id

%%

GˆX G

α

��
GˆX G

α // G.

(ii) The morphism η is compatible with τ : X2 Ñ X2 and we have η2 “ idG,
η ˝ ι “ ι.

(iii) Let q1 (resp. q2) be the projection G Ñ X induced by p1 (resp. p2). The
following diagrams are commutative:

(4.7.3) G
q1 //

idˆη

��

X

ι

��
GˆX G

α // G

G
q2 //

ηˆid

��

X

ι

��
GˆX G

α // G.

(iv) The morphism of underlying topological spaces |G| Ñ |X2| factors through
∆ : |X| Ñ |X2|.

Let $ : Gzar Ñ Xzar be the morphism of topoi induced by Gzar Ñ X
2
zar and its

factorization through ∆. Then we have $˚pOGq “ q1˚pOGq “ q2˚pOGq. In this way,
we regard OG as an OX-bialgebra of Xzar. Then, the formal X-groupoid structure on G
induces a formal Hopf OX-algebra structure on OG, that is for every n ě 1, a Hopf
OXn -algebra structure on OGn which are compatible.
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Definition 4.8. – Let X,Y be two adic formal S -schemes, f : Y Ñ X an S -mor-
phism, pG, αG, ιG, ηGq a formal X-groupoid and pH, αH, ιH, ηHq a formal Y-groupoid.
A morphism of formal groupoids above f is an X2-morphism ϕ : H Ñ G compatible
with α’s, ι’s and η’s.

A morphism of formal groupoids ϕ : H Ñ G induces a homomorphism of formal
Hopf algebras OG Ñ f˚pOHq, that is for every n ě 1, OGn Ñ f˚pOHnq is a homomor-
phism of Hopf algebras.

4.9. – In the remainder of this section, X denotes a smooth formal S -scheme. We
put X “ X1. We denote by RXprq (resp. QXprq) the dilatation pXr`1qpX{pq (resp.
pXr`1q

7

pX{pq) with respect to the diagonal immersion X Ñ Xr`1 (3.5). By 3.5(i), the
canonical morphisms pRXprqq1 Ñ Xr`1 and pQXprqq1 Ñ pQXprqq1 Ñ Xr`1 factor
through the diagonal immersion X Ñ Xr`1.

To simplify the notation, we put RX “ RXp1q, QX “ QXp1q, RX “ ORX and
Q
X
“ OQX . Following Oyama [32], we will present the formal X-groupoid structure

on RX and QX.
Our notations are different to those of [32]. In ([32] 1.2), rRX (resp. rQX) denotes the

formal X2-scheme constructed by dilatation and RX (resp. QX) denotes its reduction
modulo p.

Proposition 4.10 ([32] 1.2.5 and 1.2.6). – Let r, r1 be two integers ě 1. There exists
canonical isomorphisms

(4.10.1) RXprq ˆX RXpr
1q
„
ÝÑ RXpr ` r

1q, QXprq ˆX QXpr
1q
„
ÝÑ QXpr ` r

1q,

where the projections RXprq Ñ X and QXprq Ñ X (resp. RXpr1q Ñ X and QXpr1q Ñ X)
are induced by the projection Xr`1 Ñ X on the last factor (resp. Xr

1
`1 Ñ X on the

first factor).

Proof. – By 4.9, we have a commutative diagram

pRXprqq1 ˆX pRXpr
1qq1 //

��

RXprq ˆX RXpr
1q

��
X // Xr`1 ˆX X

r1`1.

By the universality of RXpr ` r1q (3.5), we obtain an pXr`r
1
`1q-morphism

(4.10.2) ϕ : RXprq ˆX RXpr
1q Ñ RXpr ` r

1q.

On the other hand, by the universal property of RXprq and RXpr1q, the projection
Xr`r

1
`1 Ñ Xr`1 on the first (r`1)-factors (resp. Xr`r

1
`1 Ñ Xr

1
`1 on the last (r1`1)-

factors) induces a morphism RXpr ` r1q Ñ RXprq (resp. RXpr ` r1q Ñ RXpr
1q) and

hence an pXr`r
1
`1q-morphism

(4.10.3) ψ : RXpr ` r
1q Ñ RXprq ˆX RXpr

1q.
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The composition RXpr ` r1q
ψ
ÝÑ RXprq ˆX RXpr

1q
ϕ
ÝÑ RXpr ` r1q Ñ Xr`r

1
`1 is the

canonical morphism RXpr ` r
1q Ñ Xr`r

1
`1. By the universal property of RXpr ` r1q,

we have ϕ ˝ ψ “ id. Let q1 (resp. q2) denote the projection on the first (resp. second)
factor of RXprq ˆX RXpr1q. We consider the commutative diagram

(4.10.4) RXprq ˆX RXpr
1q

ϕ //

((

RXpr ` r
1q

ψ //

((��

RXprq ˆX RXpr
1q

q1

��
Xr`r

1
`1

((

RXprq

��
Xr`1.

By the universal property of RXprq, we see that q1 ˝ψ ˝ϕ is equal to q1. Similarly, we
verify that q2 ˝ ψ ˝ ϕ is equal to q2. Hence, we have ψ ˝ ϕ “ id.

Since X is reduced, we have X “ X. We have a canonical morphism

pQXprqq1 ˆX pQXpr
1qq1 Ñ pQXprqq1 ˆX pQXpr

1qq1

(2.3.1) and the following commutative diagram (4.9)

pQXprqq1 ˆX pQXpr
1qq1 // pQXprqq1 ˆX pQXpr1qq1 //

��

QXprq ˆX QXpr
1q

��
X // Xr`1 ˆX X

r1`1.

By the universal property of QXpr ` r1q (3.5), we obtain an pXr`r
1
`1q-morphism

(4.10.5) QXprq ˆX QXpr
1q Ñ QXpr ` r

1q.

By repeating the proof for RXpr ` r1q, we verify that the above morphism is an
isomorphism.

Proposition 4.11. – The formal X2-scheme RX (resp. QX) has a natural formal
X-groupoid structure.

Proof. – We follow the proof of ([32] 1.2.7) where the author proves the analogous
results for the X2-schemes RX,1 and QX,1. By 4.9, the morphism of the underlying
topological spaces |RX| Ñ |X2| (resp. |QX| Ñ |X2|) factors through the diagonal
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immersion |X| Ñ |X2|. We consider the following commutative diagram (4.9):

(4.11.1) pRXp2qq1
� � //

��

RXp2q

��
X3

p13
��

X // X2.

By the universal property of RX (3.5), we deduce an adic X2-morphism

(4.11.2) αR : RXp2q Ñ RX.

We identify RXp2q (resp. RXp3q) and RX ˆX RX (resp. RX ˆX RX ˆX RX) by 4.10.
The diagrams

RX ˆX RX ˆX RX
idˆαR//

��

RX ˆX RX
αR //

��

RX

��
X4 p124 // X3 p13 // X2

RX ˆX RX ˆX RX
αRˆid //

��

RX ˆX RX
αR //

��

RX

��
X4 p134 // X3 p13 // X2

are commutative and the compositions of the lower horizontal arrows coincide. By
the universal property of RX, we deduce that αR ˝ pidˆαRq “ αR ˝ pαR ˆ idq.

For any integer r ě 1, we consider the following commutative diagram:

(4.11.3) X

∆prq
��

X
- 


<<

// Xr`1.

By the universal property of RXprq, we deduce a Xr`1-morphism

(4.11.4) ιRprq : XÑ RXprq.

In view of 3.5, since X Ñ Xr`1 is an immersion, ιRprq is a closed immersion. When
r “ 1, the diagrams

RX
idˆιR //

��

RX ˆX RX
αR //

��

RX

��
X2

pp1,p2,p2q // X3 p13 // X2

RX
ιRˆid //

��

RX ˆX RX
αR //

��

RX

��
X2

pp1,p1,p2q // X3 p13 // X2
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are commutative and the compositions of the lower horizontal arrows are equal to idX2 .
By the universal property of RX, we deduce that αR ˝ pidˆιRq “ αR ˝ pιR ˆ idq “ id.

We consider the following commutative diagram (4.6):

(4.11.5) RX,1
� � //

��

RX

��
X2

τ

��
X // X2.

By the universal property of RX, we deduce an adic morphism

(4.11.6) ηR : RX Ñ RX.

Since τ ˝∆ “ ∆, we deduce that ηR ˝ ιR “ ιR by the universal property of RX. By
construction, ηR satisfies the condition 4.7(ii). The diagrams

(4.11.7) RX
idˆηR //

��

RX ˆX RX
αR //

��

RX

��
X2

pp1,p2,p1q // X3 p13 // X2

RX
q1 //

��

X
ιR //

��

RX

��
X2 p1 // X

∆ // X2

are commutative and the compositions of the lower horizontal arrows coincide. By
the universal property of RX, we deduce that αR ˝ pidˆηRq “ ιR ˝ q1. We prove the
equality αR ˝ pηR ˆ idq “ ιR ˝ q2 in the same way.

The proposition for Q
X

can be verified in exactly the same way using 4.9 and
4.10.

4.12. – We put Y “ SpfpWtT1, . . . , Tduq and we present local descriptions for RY

and Q
Y

(4.9). Put ξi “ 1 b Ti ´ Ti b 1 P OY2 . The ideal A , associated to the
diagonal closed immersion Y1 Ñ Y2, is generated by p, ξ1, ξ2, . . . , ξd. The algebra
W r1 b T1, . . . , 1 b Td, T1 b 1, . . . , Td b 1, x1, . . . , xds{pξi ´ pxiq1ďiďd is free over W.
Hence, we have an isomorphism of OY2 -algebras (3.4.1), 4.9

(4.12.1) OY2

!ξ1
p
, . . . ,

ξd
p

)

“
OY2tx1, . . . , xdu

pξi ´ pxiq1ďiďd

„
ÝÑ RY.

By 3.3, the ideal A 7 is generated by p, ξp1 , . . . , ξ
p
d . The algebra W r1 b T1, . . . , 1 b

Td, T1 b 1, . . . , Td b 1, x1, . . . , xds{pξ
p
i ´ pxiq1ďiďd is free over W. Hence, we have an

isomorphism of OY2-algebras (3.4.1)

(4.12.2) OY2

!ξp1
p
, . . . ,

ξpd
p

)

“
OY2tx1, . . . , xdu

pξpi ´ pxiq1ďiďd

„
ÝÑ Q

Y
.
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Lemma 4.13. – Let d be the relative dimension of X over S and pAdX the d-dimen-
sional affine space. Assume that there exists an étale S -morphism f : X Ñ Y “

SpfpWtT1, . . . , Tduq. Considering RX as a formal X-scheme via the morphism q1 :

RX Ñ X (resp. q2 : RX Ñ X), then f induces an isomorphism over X:

(4.13.1) λ : RX
„
ÝÑ pAdX,

such that λ˝ιR : XÑ pAdX is the closed immersion associated to the zero section of pAdX.

Proof. – We follow the proof of ([32] 1.1.8) and we first prove the assertions for Y.
Observe that q1 and q2 are affine. For any 1 ď i ď d, we have 1b Ti “ pp ξip q ` Ti b 1

in RY. By (4.12.1), we deduce the isomorphisms

(4.13.2) OYtx1, . . . , xdu
„
ÝÑ q1˚pRYq, OYtx1, . . . , xdu

„
ÝÑ q2˚pRYq

where xi is sent to ξi
p in both cases. The isomorphisms (4.13.1) for Y follows. We put

Y “ Y1 and we consider the following commutative diagram

(4.13.3) X2

idˆf

��
X

∆

;;

//

f1

��

XˆS Y

fˆid

��
Y

∆ // Y2,

where the square is Cartesian. By 3.7 and 3.8, we deduce an isomorphism

(4.13.4) RX
„
ÝÑ RY ˆY2 pXˆS Yq “ RY ˆq1,Y X.

Considering RX as a formal X-scheme via q1, the isomorphism (4.13.1) follows from
that of RY. The another isomorphism can be verified in the same way. In view of the
construction of ιR (4.11.4), the composition λ˝ιR corresponds to the zero section.

Corollary 4.14. – Keep assumptions of 4.13 and consider ξi
p ’s as sections of RX.

We have the following isomorphisms of OX-algebras

(4.14.1) OXtx1, . . . , xdu
„
ÝÑ q1˚pRXq, OXtx1, . . . , xdu

„
ÝÑ q2˚pRXq

where xi is sent to ξi
p in both cases.

4.15. – We putY “ SpfpWtT1, . . . , Tduq. By (4.12.2), we have following isomorphisms
(4.15.1)
OYtx1, . . . , xd, y1, . . . , ydu

pypi ´ pxiq1ďiďd

„
ÝÑ q1˚pQ

Y
q,

OYtx1, . . . , xd, y1, . . . , ydu

pypi ´ pxiq1ďiďd

„
ÝÑ q2˚pQ

Y
q

where xi is sent to
ξpi
p and yi is sent to ξi in both cases.
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Assume that there exists an étale S -morphism f : XÑ Y “ SpfpWtT1, . . . , Tduq.
We consider the ξi’s and

ξpi
p ’s as sections of Q

X
. By 3.7, 3.8 and (4.13.3), we deduce

the following isomorphisms
(4.15.2)
OXtx1, . . . , xd, y1, . . . , ydu

pypi ´ pxiq1ďiďd

„
ÝÑ q1˚pQ

X
q,

OXtx1, . . . , xd, y1, . . . , ydu

pypi ´ pxiq1ďiďd

„
ÝÑ q2˚pQ

X
q

where xi is sent to
ξpi
p and yi is sent to ξi in both cases.

4.16. – Let n be an integer ě 1. We describe the Hopf algebra structure of RX,n and
Q
X,n in terms of a system of local coordinates. Keep the assumption and notation of

4.13. The homomorphism OX2
n
Ñ OX2

n
bOXn OX2

n
induced by p13 : X3 Ñ X2 sends ξi

to 1b ξi ` ξi b 1. The homomorphism OX2
n
Ñ OX2

n
induced by τ : X2 Ñ X2, sends ξi

to ´ξi. In view of the proof of 4.11, we have following descriptions:

$

’

&

’

%

δ : RX,n Ñ RX,n bOXn RX,n
ξi
p ÞÑ 1b ξi

p `
ξi
p b 1

σ : RX,n Ñ RX,n
ξi
p ÞÑ ´

ξi
p

π : RX,n Ñ OXn
ξi
p ÞÑ 0

(4.16.1)

$

’

’

’

’

&

’

’

’

’

%

δ : Q
X,n Ñ Q

X,n bOXn Q
X,n ξi ÞÑ 1b ξi ` ξi b 1

ξpi
p ÞÑ 1b

ξpi
p `

řp´1
j“1

pp´1q!
j!pp´jq!ξ

j
i b ξ

p´j
i `

ξpi
p b 1

σ : Q
X,n Ñ Q

X,n ξi ÞÑ ´ξi,
ξpi
p ÞÑ

p´ξiq
p

p

π : Q
X,n Ñ OXn ξi ÞÑ 0,

ξpi
p ÞÑ 0

(4.16.2)
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CONNECTIONS AND STRATIFICATIONS

5.1. – Let S be a scheme, f : X Ñ S a smooth morphism, M an OX -module and
λ P ΓpS,OSq. We say (abusively) that a morphism of OX -modules u : M Ñ N is
OS-linear if it is f´1pOSq-linear. A λ-connection on M relative to S is an OS-linear
morphism

(5.1.1) ∇ : M ÑM bOX Ω1
X{S

such that for every local sections f of OX and e of M , we have ∇pfeq “ λeb dpfq `

f∇peq. We will simply call ∇ a λ-connection on M when there is no risk of confusion.
For any q ě 0, the morphism ∇ extends to a unique OS-linear morphism

(5.1.2) ∇q : M bOX ΩqX{S ÑM bOX Ωq`1
X{S ,

such that for every local sections ω of ΩqX{S and e of M , we have ∇qpe b ωq “

λebdpωq`∇peq^ω. The composition ∇1˝∇ is OX -linear. We say that ∇ is integrable
if ∇1 ˝∇ “ 0.

Let pM,∇q and pM 1,∇1q be two OX -modules with λ-connection. A morphism from
pM,∇q to pM 1,∇1q is an OX -linear morphism u : M Ñ M 1 such that pidbuq ˝∇ “
∇1 ˝ u.

Classically, 1-connections are called connections and integrable 0-connections are
called Higgs fields. A Higgs module is an OX -module equipped with a Higgs field.

We denote by MICpX{Sq (resp. λ-MICpX{Sq, resp. HIGpX{Sq) the category
of OX -modules with integrable connection (resp. λ-connection, resp. Higgs field)
relative to S.

Let pM,∇q be an object of λ-MICpX{Sq. We deduce that ∇q`1 ˝ ∇q “ 0 for all
q ě 0. Then we can associate to pM,∇q a λ-de Rham complex :

(5.1.3) M
∇
ÝÑM bOX Ω1

X{S
∇1
ÝÝÑM bOX Ω2

X{S
∇2
ÝÝÑ ¨ ¨ ¨ .

Classically, 0-de Rham complexes are called Dolbeault complexes in ([34] p. 24, [2]
I.2.3) or Higgs complexes in ([31] p. 2).
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5.2. – Let d, n be integers ě 1, S a pZ{pnZq-scheme, f : X Ñ AdS “ SpecpOSrT1, . . . , Tdsq

an étale S-morphism. For any 1 ď i ď d, we denote by ti the image of Ti in OX .
Let m be an integer ě 0 and pM,∇q an OX -module with integrable pm-connection
relative to S. There are OS-linear endomorphisms ∇B1 , . . . ,∇Bd of M such that for
every local section e of M , we have

(5.2.1) ∇peq “
d
ÿ

i“1

∇Bipeq b dti.

Since ∇ is integrable, we have ∇Bi ˝∇Bj “ ∇Bj ˝∇Bi for all 1 ď i, j ď d. Therefore,
for every multi-index I “ pi1, . . . , idq P Nd, the endomorphism ∇BI “

śd
j“1p∇Bj qij is

well-defined.
Following ([5] 4.10, [33] Definition 1.5), we say that pM,∇q is quasi-nilpotent with

respect to f if, for any open subscheme U of X and any section e P MpUq, there
exists a Zariski covering tUj Ñ UujPJ and a family of integers tNjujPJ such that
∇BI pe|Uj q “ 0 for all j P J and I P Nd with |I| ě Nj .

If f 1 : X Ñ AdS is another étale S-morphism, pM,∇q is quasi-nilpotent with respect
to f if and only if it is quasi-nilpotent with respect to f 1 ([5] 4.13, [33] Lemma 1.6).
Note that this result requires that pnOS “ 0 for some n ą 0.

Definition 5.3 ([5] 4.13; [33] Definition 1.8). – Let n be an integer ě 1, S a
pZ{pnZq-scheme, X a smooth S-scheme and pM,∇q an OX -module with integrable
pm-connection relative to S. We say that pM,∇q is quasi-nilpotent if for any point
x of X, there exists a Zariski neighborhood U of x in X and an étale S-mor-
phism f : U Ñ AdS such that pM,∇q|U is quasi-nilpotent with respect to f (5.2).

We denote by MICqn
pX{Sq (resp. λ-MICqn

pX{Sq) the full subcategory of MICpX{Sq

(resp. λ-MICpX{Sq) consisting of the quasi-nilpotent objects.

Definition 5.4. – Let pT , Aq be a ringed topos, pB, δ, π, σq a Hopf A-algebra (4.2)
and M an A-module. A B-stratification on M is a B-linear isomorphism ε : B bA
M

„
ÝÑM bA B (4.1) such that:
(i) π˚pεq “ idM .
(ii) (cocycle condition) The following diagram is commutative:

(5.4.1) B bA B bAM

idB bε

))

δ˚pεq // M bA B bA B

B bAM bA B.

εbidB

55

Given two A-modules with B-stratification pM1, ε1q and pM2, ε2q, a morphism from
pM1, ε1q to pM2, ε2q is an A-linear morphism f : M1 Ñ M2 compatible with ε1 and
ε2. The A-module M1 bAM2 has a canonical B-stratification

(5.4.2) B bAM1 bAM2
ε1bidM2
ÝÝÝÝÝÑM1 bA B bAM2

idM1
bε2

ÝÝÝÝÝÝÑM1 bAM2 bA B.
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The above stratification on the tensor product makes the category of A-modules with
B-stratification into a tensor category.

Let n be an integer ě 1, X an adic formal S -scheme, M an OXn -module and G
a formal X-groupoid over S (4.7). We call abusively OG-stratification on M instead
of OGn-stratification on M .

We have a simpler description of a stratification.

Lemma 5.5 ([32] 1.2.4). – Let pT , Aq be a ringed topos, B a Hopf A-algebra and
M an A-module. A B-stratification on M is equivalent to an A-linear morphism θ :

M ÑM bAB for the right A-action on the target satisfying the following conditions:
(i) The composition pidM bπq ˝ θ : M ÑM bA B ÑM is the identity morphism.
(ii) The following diagram is commutative

(5.5.1) M
θ //

θ

��

M bA B

θbidB

��
M bA B

idM bδ// M bA B bA B.

Let θ : M ÑM bAB be an A-linear morphism satisfying the conditions of 5.5 and

αpθq : B_ bAM ÑM, ϕbm “ pidbϕq
`

θpmq
˘

the associated A-linear morphism. In view of conditions (i-ii) of 5.5, the morphism αpθq

makes M into a left B_-module (cf. [32] Proof of 1.2.9 page 18 for details).

5.6. – Let f : pT 1, A1q Ñ pT , Aq be a morphism of ringed topoi, B a Hopf A-algebra
and B1 a Hopf A1-algebra. A homomorphism of Hopf algebras B Ñ f˚pB

1q (4.3)
induces a functor (5.4) (cf. [4] II 1.2.5):

! A-modules
with B-stratification

)

Ñ

! A1-modules
with B1-stratification

)

(5.6.1)

pM, εq ÞÑ pf˚pMq, f´1pεq bf´1pBq B
1q.

5.7. – In the remainder of this section, X denotes a smooth formal S -scheme. For any
integer n ě 1, we equip pWn, pWnq with the canonical PD-structure γn. We briefly
review the formal groupoid structure on the PD-envelope of the diagonal immersion
following [4].

Let r, n be integers ě 1. We denote by Xr`1
n the product of pr ` 1q-copies of Xn

over Sn (2.4) and by PXnprq the PD-envelope of the diagonal immersion Xn Ñ Xr`1
n

compatible with the PD-structure γn ([4] I 4.3.1). By extension of scalars ([5] 3.20.8,
[4] I 2.8.2), we have a canonical PD-isomorphism PXnprq ˆSn Sm

„
ÝÑ PXmprq for all

integers 1 ď m ă n. The inductive limit PXprq of the inductive system pPXnprqqně1 is
an adic affine formal pXr`1q-scheme ([1] 2.3.10). We drop prq from the notation when
r “ 1.
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5.8. – For a commutative ring A, we denote by Axx1, . . . , xdy the PD polynomial
ring in d variables ([4] I 1.5). If A is an adic ring such that pA is an ideal of the
definition, we denote by Axxx1, . . . , xdyy the p-adic completion of the PD polynomial
algebra Axx1, . . . , xdy.

5.9. – Assume that there exists an étale S -morphism XÑ pAdS “ SpfpWtT1, . . . , Tduq

and we set ti the image of Ti in OX for all 1 ď i ď d. We note ξi the section 1bti´tib1

of OX2 and also its image in OPX . By ([4] I 4.4.1 and 4.5.3), we deduce the following
PD-isomorphisms (5.8)

(5.9.1) OXxxx1, . . . , xdyy
„
ÝÑ q1˚pOPXq, OXxxx1, . . . , xdyy

„
ÝÑ q2˚pOPXq,

where q1, q2 : PX Ñ X are the canonical morphisms and xi is sent to ξi. In general,
we deduce that PX is flat over S (2.5).

For any integers r, r1 ě 1, by ([4] II 1.3.4 and 1.3.5), we deduce a canonical isomor-
phism of formal pXr`r

1
`1q-schemes

(5.9.2) PXprq ˆX PXpr
1q
„
ÝÑ PXpr ` r

1q.

Proposition 5.10. – The formal X2-scheme PX has a natural formal X-groupoid
structure.

Proof. – For any r ě 1, the diagonal immersion ∆prq : XÑ Xr`1 induces a canonical
pXr`1q-morphism ιP prq : X Ñ PXprq. Set X “ X1 and let J be the PD-ideal of OPX
associated to the closed immersionX Ñ PX . For any local section x of J , we have xp “
p!xrps “ 0. Hence, we have a closed immersion PX ãÑ X (2.3). Since X is reduced,
the composition X Ñ PX Ñ X is an isomorphism. We deduce an isomorphism:

(5.10.1) PX
„
ÝÑ X,

Hence the morphism of the underlying topological spaces |PX| Ñ |X2| factors through
∆ : |X| Ñ |X2|. The canonical morphism PXp2q Ñ X

3 p13
ÝÝÑ X2 is compatible with

ιP p2q and ∆. By the universal property of pPXnqně1, we deduce an X2-morphism αP :

PXp2q Ñ PX. Similary, by the universal property of pPXnqně1, the composition
PX Ñ X

2 τ
ÝÑ X2 (4.6) induces a morphism ηP : PX Ñ PX. By the universal property

of pPXnqně1, we verify that pαP , ιP , ηP q defines a formal X-groupoid structure on PX
(cf. the proof of 4.11).

To simplify the notations, we put PX “ OPX considered as a formal Hopf OX-al-
gebra by 5.10.

Proposition 5.11 ([5] 4.12). – Let n be an integer ě 1. There is a canonical equiv-
alence of categories between the category of OXn-modules with PX-stratification and
the category MICqn

pXn{Snq (5.3).

We now explain the relationships among the various groupoids and stratifications
we have constructed.
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Proposition 5.12. – Let QX be the formal X-groupoid defined in 4.11. We have a
canonical morphism of formal X-groupoids (5.10)

(5.12.1) λ : PX Ñ QX.

Proof. – The isomorphism PX » X (5.10.1) fits into a commutative diagram

(5.12.2) PX //

��

PX

��
X

∆ // X2.

By the universal property of QX (3.5), we deduce a canonical X2-morphism λ : PX Ñ QX.
We denote by pαP , ιP , ηP q (resp. pαQ, ιQ, ηQq) the formal groupoid structure on PX
(resp. QX). The diagrams
(5.12.3)

PX ˆX PX
λ2
//

��

QX ˆX QX
αQ //

��

QX

��
X3 X3 p13 // X2

PX ˆX PX
αP //

��

PX
λ //

��

QX

��
X3 p13 // X2 X2

are commutative and the compositions of the lower horizontal arrows coincide. By
the universal property of QX, we deduce that αQ ˝ λ2 “ λ ˝ αP . The composition
X

ιP
ÝÑ PX Ñ X2 is the diagonal immersion. By the universal property of QX, we

deduce that λ ˝ ιP “ ιQ. The following diagrams

(5.12.4) PX
ηP //

��

PX
λ //

��

QX

��
X2 τ // X2 X2

PX
λ //

��

QX
ηQ //

��

QX

��
X2 X2 τ // X2

are commutative and the compositions of the lower arrows coincide. By the universal
property of QX, we deduce that λ ˝ ηP “ ηQ ˝ λ. The proposition follows.

5.13. – We take again the notation of 4.9 for X. For any integers n, r ě 1, we de-
note by TX,nprq the PD-envelope of the closed immersion Xn ãÑ pRXprqqn (4.11.4)
compatible with the PD-structure γn. By extension of scalars ([4] I 2.8.2), we have
a canonical isomorphism of PD-schemes TX,nprq ˆSn

Sm
„
ÝÑ TX,mprq for all integers

1 ď m ă n. The inductive limit TXprq of the inductive system pTX,nprqqně1 is an adic
affine formal RXprq-scheme. We denote by

(5.13.1) $prq : TXprq Ñ RXprq

the canonical morphism. We set TX “ TXp1q and $ “ $p1q.
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5.14. – Let n, r, r1 be integers ě 1. We denote by JpRXprqqn the ideal of OpRXprqqn
associated to the closed immersion Xn Ñ pRXprqqn, which induces an isomorphism
on the underlying topological spaces. Via the pXr`r

1
`1

n q-isomorphism (4.10.1)

pRXprqqn ˆXn pRXpr
1qqn

„
ÝÑ pRXpr ` r

1qqn,

the ideal JpRXprqqn bOXn OpRXpr1qqn ` OpRXprqqn bOXn JpRXpr1qqn corresponds
to JpRXpr`r1qqn . In view of ([4] II 1.3.5), we deduce a canonical isomorphism of
PD-schemes

(5.14.1) λn : TX,nprq ˆXn TX,npr
1q
„
ÝÑ TX,npr ` r

1q,

where the projections TX,nprq Ñ Xn (resp. TX,npr1q Ñ Xn) is induced by the projec-
tion Xr`1

n Ñ Xn on the last factor (resp. Xr
1
`1

n Ñ Xn on the first factor). In view
of the construction of (5.14.1), the isomorphisms λm and λn are compatibles for all
integers 1 ď m ă n. We deduce a canonical isomorphism of formal pXr`r

1
`1q-schemes

(5.14.2) TXprq ˆX TXpr
1q
„
ÝÑ TXpr ` r

1q.

Proposition 5.15. – The formal X2-scheme TX has a natural formal X-groupoid
structure such that the morphism $ : TX Ñ RX (5.13.1) is a morphism of formal
X-groupoids (4.8, 4.11).

Proof. – Since the morphism of underlying topological spaces |RX| Ñ |X2| factors
through ∆ : |X| Ñ |X2|, the same holds for |TX|. The X2-morphism ιRprq : XÑ RXprq

(4.11.4) induces a canonical X2-morphism

(5.15.1) ιT prq : XÑ TX.

The composition of $p2q and αR (4.11.2)

(5.15.2) TXp2q Ñ RXp2q Ñ RX

is compatible with ιT p2q and ιR. By the universal property of pTX,nqně1, we deduce
an X2-morphism

(5.15.3) αT : TXp2q Ñ TX

compatible with αR. We identify TXp2q and TXˆXTX (resp. TXp3q and TXˆXTXˆXTX)
by 5.14. The diagrams

TX ˆX TX ˆX TX
idˆαT //

��

TX ˆX TX
αT //

��

TX

��
RX ˆX RX ˆX RX

idˆαR// RX ˆX RX
αR // RX

TX ˆX TX ˆX TX
αTˆid //

��

TX ˆX TX
αT //

��

TX

��
RX ˆX RX ˆX RX

αRˆid // RX ˆX RX
αR // RX
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are commutative and the compositions of the lower horizontal arrows coincide. By
the universal property of pTX,nqně1, we deduce that αT ˝ pidˆαT q “ αT ˝ pαT ˆ idq.
Since ηR ˝ ιR “ ιR (4.7)(ii)), by the universal property of pTX,nně1, the composition
TX Ñ RX

ηR
ÝÝÑ RX (4.11.6) induces a morphism

(5.15.4) ηT : TX Ñ TX.

By the universal property of pTX,nqně1, we verify that pαT , ιT , ηT q is a formal
X-groupoid structure on TX (cf. the proof of 4.11). In view of the proof, the mor-
phism $ is clearly a morphism of formal groupoids.

5.16. – In the following, we recall Shiho’s intepretation of integrable p-connections
in terms of TX-stratifications [33].

To simplify the notation, we set TX “ OTX considered as a formal Hopf OX-algebra
(4.7) and we present a local description for it. Assume that there exists an étale
S -morphism X Ñ pAdS “ SpfpWtT1, . . . , Tduq. We put ξi “ 1 b Ti ´ Ti ´ 1 and we
consider ξi

p as the section of RX (4.12) and of TX.
Let n be an integer ě 1. By 4.13 and 4.14, the closed immersion Xn Ñ RX,n

of smooth Sn-schemes is regular ([20] 17.12.1) and p ξ1p , . . . ,
ξd
p q is a regular sequence

which generates JRX,n (5.14). In view of ([4] I 4.5.1 and 4.5.2), we deduce the following
isomorphisms:

(5.16.1) OXnxx1, . . . , xdy
„
ÝÑ q1˚pOTX,nq OXnxx1, . . . , xdy

„
ÝÑ q2˚pOTX,nq,

where q1, q2 : TX,n Ñ Xn are the canonical projections and xi is sent to ξi
p in both

cases.
Then we deduce the following isomorphisms (5.8)

(5.16.2) OXxxx1, . . . , xdyy
„
ÝÑ q1˚pTXq OXxxx1, . . . , xdyy

„
ÝÑ q2˚pTXq,

where q1, q2 : TX Ñ X are the canonical projections and xi is send to ξi
p in both cases.

For any multi-index I “ pi1, i2, . . . , idq P Nd, we put p ξp q
rIs “

śd
j“1p

ξj
p q
rijs P TX.

Proposition 5.17 ([33] Prop. 2.9). – There is a canonical equivalence of cate-
gories between the category of OXn-modules with TX-stratification and the category
p-MICqn

pXn{Snq (5.3).

We recall the description of this equivalence in the local case (cf. [33] Prop. 2.9).
Suppose that there exists an étale S -morphism XÑ pAdS “ SpfpWtT1, . . . , Tduq. We
take again the notation of 5.2 and 5.16. Let pM,∇q be an OXn-modules with quasi-
nilpotent integrable p-connection. The associated stratification ε : TX bOX M

„
ÝÑ

M bOX TX is defined, for every local section m of M by

(5.17.1) εp1bmq “
ÿ

IPNd
∇BI pmq b

ˆ

ξ

p

˙rIs

,

where the right hand side is a locally finite sum since ∇ is quasi-nilpotent.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2019



36 CHAPTER 5. CONNECTIONS AND STRATIFICATIONS

Lemma 5.18. – There exists a canonical morphism of formal X-groupoids

(5.18.1) ς : RX Ñ PX.

Proof. – Recall (3.5) that we have a commutative diagram

RX,1 //

��

RX

��
X // X2.

Since RX is flat over W, the ideal ppq of ORX has a canonical PD-structure. By the
universal property of PD-envelope, we deduce a canonical X2-morphism ς : RX Ñ PX.
We denote by pαR, ιR, ηRq (resp. pαP , ιP , ηP q) the formal groupoid structure on RX
(resp. PX). By the universal property of pPX,nqně1, we verify that ς is a morphism of
formal X-groupoids (cf. the proof of 5.12).

5.19. – Let s : PX Ñ RX be the homomorphism of formal Hopf algebras induced
by ς. We present a local description of s. Suppose that there exists an étale S -mor-
phism X Ñ pAdS “ SpfpWtT1, . . . , Tduq. We take again the notation of 4.14 and 5.9.
In view of the construction of ς, for any multi-index I P Nd, we have

(5.19.1) spξrIsq “
p|I|

I!

´ξ

p

¯I

.

We denote by JR (resp. JP ) the ideal sheaf of RX (resp. PX) associated
to the closed immersion ιR (resp. ιP ). Note that the p-adic valuation of I! is
ď
ř

kě1t
|I|
pk

u ă |I|. By (5.19.1), we deduce that in general, s is injective and

spJP q Ă pJR. Then we have spJ risP q Ă piJ iR for any 1 ď i ď p ´ 1. By dividing
by pi, we obtain OX-bilinear morphisms

(5.19.2) si : J
ris
P Ñ J iR @ 0 ď i ď p´ 1.
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CHAPTER 6

LOCAL CONSTRUCTIONS OF SHIHO

In the section, we review Shiho’s local Cartier transform [33] (which depends on a
lifting of Frobenius) and explain how it can be understood in terms of the groupoids
PX, TX, RX and QX.

We denote by X a smooth formal S -scheme, by X the special fiber of X, by X1 “
XˆS ,σS the base change of X by σ (2.1) and by π : X1 Ñ X the canonical projection.

6.1. – Let n be an integer ě 1. We assume that there exists an Sn`1-mor-
phism Fn`1 : Xn`1 Ñ X1n`1 (2.4) whose reduction modulo p is the rela-
tive Frobenius morphism FX{k of X (2.2) and we denote by Fn the reduc-
tion modulo pn of Fn`1. The morphism Fn`1 induces an pOXn`1q-linear mor-
phism dFn`1 : F˚n`1pΩ

1
X1n`1{Sn`1

q Ñ Ω1
Xn`1{Sn`1

whose image is contained
in pΩ1

Xn`1{Sn`1
. By dividing by p, it induces an OXn -linear morphism

(6.1.1)
dFn`1

p
: F˚n pΩ

1
X1n{Sn

q Ñ Ω1
Xn{Sn

.

Let pM 1,∇1q be an OX1n -module with an integrable p-connection relative to Sn

(5.1). We denote by ζn the composition
(6.1.2)
ζn : F˚n pΩ

1
X1n{Sn

bOX1n
M 1q

„
ÝÑ F˚n pΩ

1
X1n{Sn

q bOXn F
˚
n pM

1q Ñ Ω1
Xn{Sn

bOXn F
˚
n pM

1q,

i.e., the composition of dFn`1

p b id and the canonical isomorphism.

Shiho constructs a Wn-linear morphism ∇ : F˚n pM
1q Ñ Ω1

Xn{Sn
bOXn F

˚
n pM

1q as
follows. For any local sections f of OXn and e of M 1, we put

(6.1.3) ∇pfF˚n peqq “ fζnpF
˚
n p∇1peqqq ` df b pF˚n peqq.

The morphism ∇ is well-defined and is an integrable connection on F˚n pM 1q relative
to Sn (cf. [33] page 805-806). Shiho defines a functor (cf. [33] 2.5)

Φn : p-MICpX1n{Snq Ñ MICpXn{Snq,(6.1.4)
pM 1,∇1q ÞÑ pF˚n pM

1q,∇q.
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The functor Φ1 sends quasi-nilpotent objects to quasi-nilpotent objects (cf. 6.2 below).
By dévissage ([33] 1.13), the same holds for Φn. It induces an equivalence of the
categories ([33] 3.1):

(6.1.5) Φn : p-MICqn
pX1n{Snq

„
ÝÑ MICqn

pXn{Snq.

Let pM 1,∇1q be an object of p-MICpX1n{Snq and pM,∇q “ ΦnpM
1,∇1q. In view

of (6.1.3), the adjunction morphism of idM b ^
‚ p

dFn`1

p q (6.1.1) induce a W-linear
morphism of complexes (5.1.3)

(6.1.6) λ : M 1 bOX1n
Ω‚X1n{Sn

Ñ FX{k˚pM bOXn Ω‚Xn{Sn
q.

Indeed, for local coordinates t1, . . . , td of X1n over Sn, any local section of M 1 bOX1n
Ωq
X1n{Sn

can be written as a sum of sections of the form m b dti1 ^ ¨ ¨ ¨ ^ dtiq . Using
(6.1.3), one verifies that (6.1.6) is a morphism of complexes.

Lemma 6.2. – Let pM 1, θq be a Higgs module on X 1{k (5.1) and ∇ the integrable
connection on M “ F˚X{kpM

1q constructed in 6.1. If pM 1, θq is quasi-nilpotent (5.3),
then so is pM,∇q.

Proof. – The question being local, we can reduce to the case where there exists an
étale S2-morphism X2 Ñ AdS2

“ SpecpW2rT1, . . . , Tdsq. For any 1 ď i ď d, let ti be
the image of Ti in OX and t1i “ π˚ptiq P OX1 . There exists a section ai of OX such
that dF2

p pdt
1
iq “ tp´1

i dti ` dai and an OX1 -linear morphism θi : M 1 Ñ M 1 such that
for every local section e of M 1, we have θpeq “

řd
i“1 dt

1
i b θipeq. We set Bi the dual

of dti. Then we have

(6.2.1) ∇BipF˚X{kpeqq “ tp´1
i F˚X{kpθipeqq `

d
ÿ

j“1

Baj
Bti

F˚X{kpθjpeqq.

We denote by ψ : M Ñ M bOX F˚XpΩ
1
X{kq the p-curvature associated to ∇ ([25]

5.0). There exists OX -linear endomorphisms ψi : M ÑM for 1 ď i ď d such that

(6.2.2) ψ “
d
ÿ

i“1

ψi b F
˚
Xpdtiq.

Recall ([25] 5.2) that ψi and ψj commutes for 1 ď i, j ď d. For any I “ pi1, . . . , idq P
Nd, we put ψI “

śd
j“1 ψ

ij
j and θI “

śd
j“1 θ

ij
j . The pth iterate Bppqi of Bi is zero ([25]

5.0). Then we have

(6.2.3) ψi “ p∇Biqp.

By (6.2.1) and induction, one verifies that for any integer l ě 1, there exist elements
tal,I P OXuIPNd,1ď|I|ďl such that for every local section e of M 1, we have

(6.2.4) p∇BiqlpF˚X{kpeqq “
ÿ

1ď|I|ďl

al,IF
˚
X{kpθIpeqq.
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Since the ψi’s are OX -linear morphisms, if there exists an integer N such that
θIpeq “ 0 for all |I| ě N , then ψIpF˚X{kpeqq “ 0 for all |I| ě N by (6.2.3) and (6.2.4).
We deduce that ∇ is quasi-nilpotent.

Remark 6.3. – Given an OX1 -module M 1, the Frobenius descent connection ∇can

on F˚X{kpM
1q is defined for local sections m of M 1 and f of OX , by

(6.3.1) ∇canpfF
˚
X{kpmqq “ mb df.

It is integrable and of p-curvature zero. Cartier descent states that the functor
M 1 ÞÑ pF˚X{kpM

1q,∇canq induces an equivalence of categories between the category of
quasi-coherent OX1 -modules and the full subcategory of MICqn

pX{kq consisting of
quasi-coherent objects whose p-curvature is zero ([25] 5.1). Considering OX1 -modules
as Higgs modules with the zero Higgs field, by (6.1.3), we see that Φ1 is compatible
with Cartier descent.

6.4. – Let pM 1, θq be a Higgs module on X 1{k and ` an integer ě 0. We suppose that
pM 1, θq is nilpotent of level ď `, i.e., there exists an increasing filtration of M 1:

(6.4.1) 0 “ N 10 Ă N 11 Ă ¨ ¨ ¨ Ă N 1` Ă N 1``1 “M 1,

such that θpN 1iq Ă N 1i´1 bOX1 Ω1
X1{k for 1 ď i ď ` ` 1. Then the induced Higgs field

on griN 1pM
1q is trivial.

We set pM,∇q “ Φ1pM
1, θq and Ni “ Φ1pN

1
i , θ|N

1
iq for 0 ď i ď ` ` 1. By (6.1.3),

we see that ∇ induces an integrable connection on each graded piece griN pMq, with
zero p-curvature.

We have a filtration on the de Rham complex M bOX Ω‚X{k (resp. the Dolbeault
complex M 1 bOX1 Ω‚X1{k) defined by:

Ni bOX Ω‚X{k (resp. N 1i bOX1 Ω‚X1{kq.

Proposition 6.5. – The morphism of complexes (6.1.6) induces for every i P r1, ``1s

a quasi-isomorphism

(6.5.1) N 1i bOX1 Ω‚X1{k Ñ FX{k˚pNi bOX Ω‚X{kq.

Proof. – We first consider the case where ` “ 0, i.e., θ is the zero Higgs field. We
follow a similar argument of ([30] 1.2) where Ogus shows an analogous result in
the level of cohomology of complexes. Then ∇ is the Frobenius descent connection
on M “ F˚X{kpM

1q. When M 1 “ OX1 , the morphism on the cohomology induced by λ
(6.1.6) is the Cartier isomorphism ([25] 7.2)

(6.5.2) C´1
X{k : ΩiX1{k

„
ÝÑ H

i
pFX{k˚pΩ

‚
X{kqq.

Since FX{k induces an isomorphism on the underlying topological spaces, we have an
isomorphism of complexes

(6.5.3) M 1 bOX1 FX{k˚pΩ
‚
X{kq

„
ÝÑ FX{k˚pM bOX Ω‚X{kq.
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Since FX{k˚pΩ‚X{kq is a complex of flat OX1 -modules whose cohomology sheaves are
also flat (6.5.2), the canonical morphism

(6.5.4) M 1bOX1 Ω
i
X1{k

„
ÝÑM 1bOX1 H

i
pFX{k˚pΩ

‚
X{kqq Ñ H

i
pM 1bOX1 FX{k˚pΩ

‚
X{kqq

is an isomorphism. The assertion in the case ` “ 0 follows.
We prove the general case by induction on i. The assertion for i “ 1 is already

proved. If the assertion is true for i´ 1, then the assertion for i follows by dévissage
from the induction hypothesis.

In the remainder of this section, we suppose that there exists an S -morphism F :

X Ñ X1 which lifts the relative Frobenius morphism FX{k of X. We take again the
notation of RX, QX, TX and PX (4.11, 5.15, 5.10).

Proposition 6.6. – The morphism F induces a morphism of formal groupoids
above F (4.8)

(6.6.1) ψ : QX Ñ RX1 .

Proof. – First, we show that there exists a unique morphism g : QX,1 Ñ X 1 which
fits into a commutative diagram

(6.6.2) QX,1 //

g

��

QX

��
X2

F 2

��
X 1

∆ // X12,

where the bottom map is induced by the diagonal immersion. The problem being
local on X, we can assume that there exists an étale S -morphism X Ñ pAdS “

SpfpWtT1, . . . , Tduq. For any 1 ď i ď d, we put ti the image of Ti in OX, t1i “
π˚ptiq P OX1 , ξi “ 1b ti ´ ti b 1 P OX2 and ξ1i “ 1b t1i ´ t

1
i b 1 P OX12 . Locally, there

is a section ai of OX such that F˚pt1iq “ tpi ` pai. Then we have

F 2˚pξ1iq “ 1b tpi ´ t
p
i b 1` pp1b ai ´ ai b 1q(6.6.3)

“ pξi ` ti b 1qp ´ tpi b 1` pp1b ai ´ ai b 1q

“ ξpi `
p´1
ÿ

j“1

ˆ

p

j

˙

ξji pti b 1qp´j ` pp1b ai ´ ai b 1q.

Since ξpi “ p ¨
` ξpi
p

˘

in Q
X
, the image of F 2˚pξ1iq in Q

X
is contained in pQ

X
. Then

the existence and the uniqueness of g follow. By the universal property of RX1 (3.5),
we deduce an X12-morphism ψ : QX Ñ RX1 . Using the universal property of RX1 , we
verify that ψ is a morphism of formal groupoids above F (cf. the proof of 5.12).
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6.7. – We denote the composition of ψ : QX Ñ RX1 and λ : PX Ñ QX (5.12.1) by

(6.7.1) φ : PX Ñ RX1 .

The morphism φ is a morphism of formal groupoids above F (4.8).

Lemma 6.8 ([33] 2.14). – The morphism φ induces a morphism of formal groupoids
above F

(6.8.1) ϕ : PX Ñ TX1 .

Proof. – For any n ě 1, by φ˝ιP “ F ˝ιR1 (4.7)(ii)) and the universal property of TX1,n
(5.13), φn : PXn Ñ RX1,n induces a PD-RX1,n-morphism ϕn : PXn Ñ TX1,n. For any
1 ď m ă n, since φm and φn are compatible, we see that ϕm and ϕn are compatible.
Hence we obtain a X12-morphism ϕ : PX Ñ TX1 . It follows from 6.7 and the universal
property of pTX1,nně1 that ϕ is a morphism of formal groupoids above F .

6.9. – We have a commutative diagram of formal groupoids

(6.9.1) PX
ϕ //

φ

&&
λ

��

TX1

$

��
QX

ψ // RX1 ,

where ϕ, φ, ψ are induced by F . By 5.6, we deduce a commutative diagram:

(6.9.2)
!

OX1n-modules
with RX1 -stratification

)

ψ˚n //

$˚n

��

!

OXn -modules
with Q

X
-stratification

)

λ˚n

��
!

OX1n-modules
with T X1 -stratification

)

ϕ˚n //
!

OXn-modules
with PX-stratification

)

.

6.10. – Let n be an integer ě 1 and Fn (resp. Fn`1) the reduction modulo pn (resp.
pn`1) of F . In ([33] Prop. 2.17), Shiho shows that, through the equivalences of cate-
gories 5.11 and 5.17, the functor

ϕ˚n :
! OX1n -modules

with T X1 -stratification

)

Ñ

! OXn-modules
with PX-stratification

)

(6.10.1)

pM, εq ÞÑ pF˚n pMq, ϕ
´1pεq bϕ´1p T X1 q

PXq

coincides with the functor induced by Fn`1 (6.1.5)

Φn : p-MICqn
pX1n{Snq

„
ÝÑ MICqn

pXn{Snq.

Indeed, if we write down a p-connection and the associated connection in terms of
local coordinates (as in (6.2.1)), then we can verify the compatibility between ϕn and
Φn using Formula (6.6.3) (cf. [33] 2.17 for more details).
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CHAPTER 7

OYAMA TOPOI

In this section, X denotes a k-scheme. We explain two “crystalline like” topoi in-
troduced by Oyama [32] associated to X. When X admits a smooth lifting X to W,
crystals on these topoi (introduced in § 8) are equivalent to modules with RX-strati-
fication and (resp. Q

X
-stratification) discussed in 5, and are independent of the choice

of any lifting of X.

If we use a gothic letter T to denote an adic formal S -scheme, the corresponding
roman letter T will denote its special fiber TbW k.

Definition 7.1 ([32] 1.3.1). – We define the category E pX{S q (resp. E pX{S q) (1)

as follows.

(i) An object of E pX{S q is a triple pU,T, uq consisting of an open subscheme U
of X, a flat formal S -scheme T (2.5) and an affine k-morphism u : T Ñ U .

(ii) An object of E pX{S q is a triple pU,T, uq consisting of an open subscheme U
of X, a flat formal S -scheme T and an affine k-morphism u : T Ñ U , where
T is the closed subscheme of T defined in 2.3.

(iii) Let pU1,T1, u1q and pU2,T2, u2q be two objects of E pX{S q (resp. E pX{S q). A
morphism from pU1,T1, u1q to pU2,T2, u2q consists of an S -morphism f : T1 Ñ T2

and an X-morphism g : U1 Ñ U2 such that g˝u1 “ u2˝fs (resp. g˝u1 “ u2˝fs),
where fs is the reduction modulo p of f .

We denote an object pU,T, uq of E (resp. E ) simply by pU,Tq, if there is no risk of
confusion.

To simplify the notation, we drop pX{S q in the notation E pX{S q (resp. E pX{S q)
and we write simply E (resp. E ), if there is no risk of confusion. We put E 1 “ E pX 1{S q

(2.2).

1. In [32], the category E pX{S q (resp. E pX{S q) is denoted by HIGγpX{S q (resp. CRISγpX{S q).
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Lemma 7.2. – Let f : T1 Ñ T2 be an S -morphism of flat formal S -schemes and
fs : T1 Ñ T2 its special fiber.

(i) If fs is an isomorphism, then f is an isomorphism.
(ii) If fs is flat, then the morphism T1,n Ñ T2,n induced by f (2.4) is flat for all

integers n ě 1.

Proof. – We can reduce to the case where T1 “ SpfpBq, T2 “ SpfpAq are affine ([1]
2.1.37) and f is induced by an adic W-homomorphism u : A Ñ B. For any integers
n ě 1, we put An “ A{pnA, Bn “ B{pnB, grnpAq “ pnA{pn`1A and grnpBq “

pnB{pn`1B. Since A and B are flat over W, the canonical morphism of B1-modules

(7.2.1) B1 bA1 grnpAq Ñ grnpBq

is an isomorphism.
(i) If u induces an isomorphism A1

„
ÝÑ B1, we deduce that u is an isomorphism by

(7.2.1) and ([7] III § 2.8 Cor. 3 to Théo. 1).
(ii) If B1 is flat over A1, we deduce that Bn is flat over An for all integers n ě 1

by (7.2.1) and the local criterion of flatness ([7] III § 5.2 Théo. 1).

7.3. – We say that a morphism pU1,T1, u1q Ñ pU2,T2, u2q of E (resp. E ) is flat if
the special fiber T1 Ñ T2 of the morphism T1 Ñ T2 is flat.

Let pU1,T1, u1q Ñ pU,T, uq be a flat morphism and pU2,T2, u2q Ñ pU,T, uq a
morphism of E (resp. E ). Their fiber product is represented by the fiber products
T12 “ T1 ˆT T2 (which is flat over S in view of 7.2(ii) and 2.5) and U12 “ U1 ˆU U2

endowed with the affine morphism T1 ˆT T2 Ñ U1 ˆU U2 (resp. composite mor-
phism T1 ˆT T2 Ñ T1 ˆT T2 Ñ U1 ˆU U2 (2.3.1)) induced by u1, u2 and u.

Definition 7.4. – (i) We say that a morphism f : pU1,T1q Ñ pU2,T2q of E is
Cartesian if the canonical morphism T1 Ñ T2 ˆU2

U1 is an isomorphism.
(ii) We say that a morphism f : pU1,T1, u1q Ñ pU2,T2, u2q of E is Cartesian if

T1 Ñ T2 is an open immersion and the canonical morphism T 1 Ñ T 2 ˆU2
U1 is an

isomorphism. (2)

If f : pU1,T1q Ñ pU2,T2q is a Cartesian morphism of E (resp. E ), T1 is an open
subscheme of T2 and f identifies T1 with the open formal subscheme induced by T2

on T1 by 7.2(i).
A Cartesian morphism is clearly flat (7.3). By 7.3, the base change of a Cartesian

morphism of E (resp. E ) is Cartesian. The composition of Cartesian morphisms of E
(resp. E ) is clearly Cartesian.

2. The above definition of Cartesian morphism in E is equivalent to the original definition in ([32]
1.3.1), where Oyama requires the canonical morphism T2 Ñ U 12 ˆU 11,u

1
1˝fT1{k

T1 is an isomorphism
(2.3).
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7.5. – Let pU,T, uq be an object of E (resp. E ) and V an open subscheme of U .
Note that the canonical morphism T Ñ T induces an isomorphism on the underlying
topological spaces. We denote by TV the restriction of T to the open subset u´1pV q

of the topological space |T |. Then, we obtain an object pV,TV q of E (resp. E ) and a
Cartesian morphism pV,TV q Ñ pU,Tq of E (resp. E ).

Any morphism pU1,T1q Ñ pU2,T2q of E (resp. E ) factors uniquely through the
Cartesian morphism pU1, pT2qU1

q Ñ pU2,T2q. The category E (resp. E ) is fibered
over the category Zar{X of open subschemes of X by the functor

π : E Ñ Zar{X presp. E Ñ Zar{Xq pU,Tq ÞÑ U,(7.5.1)

7.6. – Let pU,Tq be an object of E (resp. E ). By 7.5, we have a functor

(7.6.1) αpU,Tq : Zar{U Ñ E (resp. E ) V ÞÑ pV,TV q.

Let f : pU1,T1q Ñ pU2,T2q be a morphism of E (resp. E ), f : Zar{U1
Ñ Zar{U2

the functor induced by composing with U1 Ñ U2. Then, the morphism f induces a
morphism of functors:

βf : αpU1,T1q Ñ αpU2,T2q ˝ f .

Let F be a presheaf on E (resp. E ). We denote by FpU,Tq the presheaf F ˝αpU,Tq
on Zar{U . The morphism βf induces a morphism of presheaves:

(7.6.2) γf : FpU2,T2q|U1
Ñ FpU1,T1q.

It is clear that γid “ id. By construction, if f is a Cartesian morphism, then γf is an
isomorphism. If g : pU2,T2q Ñ pU3,T3q is another morphism of E (resp. E ), we verify
that γg˝f “ γf ˝ 

˚
f pγgq, where 

˚
f denotes the localisation functor from the category

of presheaves on Zar{U2
to the category of presheaves on Zar{U1

.

Proposition 7.7. – A presheaf F on E (resp. E ) is equivalent to the following data:

(i) For every object pU,Tq of E (resp. E ) a presheaf FpU,Tq on Zar{U ,
(ii) For every morphism f : pU1,T1q Ñ pU2,T2q of E (resp. E ) a morphism γf :

FpU2,T2q|U1
Ñ FpU1,T1q,

subject to the following conditions

(a) If f is the identity morphism of pU,Tq, then γf is the identity of FpU,Tq.
(b) If f is a Cartesian morphism, then γf is an isomorphism.
(c) If f and g are two composable morphisms of E (resp. E ), then we have γg˝f “

γf ˝ 
˚
f pγgq.

Proof. – Let tFpU,Tq, γfu be a data as in the proposition. We associate to it a presheaf
on E (resp. E ) as follows. Let pU,Tq be an object of E (resp. E ). We define F pU,Tq “
FpU,TqpUq. For any morphism f : pV,Zq Ñ pU,Tq of E (resp. E ), we deduce a mor-
phism from γf

(7.7.1) FpU,TqpUq Ñ FpU,TqpV q Ñ FpV,ZqpV q.
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In view of conditions (a) and (c), the correspondence

(7.7.2) pU,Tq ÞÑ FpU,TqpUq

is a presheaf. In view of condition (b), the above construction is quasi-inverse to the
construction of 7.6. The assertion follows.

We call descent data associated to F the data tFpU,Tq, γfu as in the proposition.

Definition 7.8 ([32] 1.3.1). – Let pU,T, uq be an object of E pX{S q (resp. E pX{S q).
We denote by CovpU,T, uq the set of families of Cartesian morphisms tpUi,Ti, uiq Ñ
pU,T, uquiPI such that tUi Ñ UuiPI is a Zariski covering.

7.9. – By 7.4, we see that the sets CovpU,Tq for pU,Tq P ObpE pX{S qq (resp. pU,Tq P
ObpE pX{S qq) form a pretopology ([3] II 1.3). We call the topology on E pX{S q (resp.
E pX{S q) associated to the pretopology defined by the CovpU,Tq’s Zariski topology.
We denote by rE pX{S q (resp. rE pX{S q) the topos of sheaves of sets on E pX{S q

(resp. E pX{S q), equipped with the Zariski topology.

Proposition 7.10. – Let F be a presheaf on E (resp. E ) and tFpU,Tq, γfu the asso-
ciated descent data (7.7). Then F is a sheaf for the Zariski topology, if and only if for
each object pU,Tq of E (resp. E ), the presheaf FpU,Tq (7.6) is a sheaf of the Zariski
topos Uzar.

Proof. – Let pU,Tq be an object of E (resp. E ). The functor αpU,Tq (7.6.1) sends
morphisms of Zar{U to Cartesian morphisms of E (resp. E ) and commutes with
fibered products. It is clearly continuous for the Zariski topologies. Hence, if F is a
sheaf, then FpU,Tq is a sheaf of Uzar ([3] III 1.2).

Conversely, suppose that each presheaf FpU,Tq is a sheaf of Uzar. Let tpUi,Tiq Ñ
pU,TquiPI be an element of CovpU,Tq. In view of condition (b) of 7.7, we deduce that
the sequence

F pU,Tq Ñ
ź

iPI

F pUi,Tiq Ñ
ź

i,jPI

F pUij ,Tijq

is exact, where pUij ,Tijq “ pUi,Tiq ˆpU,Tq pUj ,Tjq. Hence, F is a sheaf.

7.11. – Recall that a family of morphisms of schemes tfi : Ti Ñ T uiPI is called
an fppf covering if each morphism fi is flat and locally of finite presentation and if
|T | “

Ť

iPI fip|Ti|q (cf. [12] IV 6.3.2).
We say that a family of S -morphisms of flat formal S -schemes tfi : Ti Ñ TuiPI is

an fppf covering if each morphism fi is locally of finite presentation ([1] 2.3.15) and if
its special fiber tTi Ñ T uiPI is an fppf covering of schemes. By ([1] 2.3.16) and 7.2(ii),
a family of S -morphisms of flat formal S -schemes tTi Ñ TuiPI is an fppf covering
if and only if the family tTi,n Ñ TnuiPI is an fppf covering of schemes for all integers
n ě 1.

Recall that an adic formal S -scheme T is flat over S if and only if Tn is flat
over Sn for all integers n ě 1 (2.5). Since fppf coverings of schemes are stable by
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base change and by composition, the same holds for fppf coverings of flat formal
S -schemes.

Definition 7.12. – Let pU,T, uq be an object of E pX{S q (resp. E pX{S q). We
denote by CovfppfpU,T, uq the set of families of flat morphisms tpUi,Ti, uiq Ñ
pU,T, uquiPI (7.3) such that tUi Ñ UuiPI is a Zariski covering and that tTi Ñ TuiPI is
an fppf covering (7.11).

It is clear that CovfppfpU,T, uq contains CovpU,T, uq (7.8).

7.13. – By 7.3 and 7.11, we see that the sets CovfppfpU,Tq for pU,Tq P ObpE pX{S qq

(resp. pU,Tq P ObpE pX{S qq) form a pretopology ([3] II 1.3). We call fppf topology
the topology on E pX{S q (resp. E pX{S q) associated to the pretopology defined by
the sets CovfppfpU,Tq. We denote by rE pX{S qfppf (resp. rE pX{S qfppf) the topos of
sheaves of sets on E pX{S q (resp. E pX{S q), equipped with the fppf topology.

7.14. – Let F be a sheaf of rEfppf (resp. rE fppf) and pU,Tq an object of E (resp. E ).
Since F is also a sheaf for the Zariski topology, the presheaf FpU,Tq (7.7) is a sheaf
of Uzar.

Let tf : pU,Zq Ñ pU,Tqu be an element of CovfppfpU,Tq and put pU,Z ˆT Zq “
pU,Zq ˆpU,Tq pU,Zq. Since F is a sheaf for the fppf topology, we deduce an exact
sequence of Uzar (7.6.2)

(7.14.1) FpU,Tq
γf
ÝÑ FpU,Zq Ñ FpU,ZˆTZq.

7.15. – Let C and D be two categories, pC (resp. pD) the category of presheaves of
sets on C (resp. D) and u : C Ñ D a functor. We have a functor

(7.15.1) pu˚ : pD Ñ pC G ÞÑ pu˚pG q “ G ˝ u.

It admits a right adjoint ([3] I 5.1)

(7.15.2) pu˚ : pC Ñ pD .

Let C and D be two sites (3). If u : C Ñ D is a cocontinuous (resp. continuous)
functor and F (resp. G ) is a sheaf on C (resp. D), then pu˚pF q (resp. pu˚pG q) is a
sheaf on D (resp. C ) ([3] III 1.2, 2.2).

Let rC (resp. rD) be the topos of the sheaves of sets on C (resp. D) and u : C Ñ D

a cocontinuous functor. Then u induces a morphism of topoi g : rC Ñ rD defined
by g˚ “ pu˚ and g˚ “ a ˝ pu˚, where a is the sheafification functor (cf. [3] III 2.3).

3. We suppose that the site C is small.
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7.16. – Note that the fppf topology on E (resp. E ) is finer than the Zariski topology.
Equipped with the fppf topology on the source and the Zariski topology on the target,
the identical functors E Ñ E and E Ñ E are cocontinuous. By 7.15, they induce
morphisms of topoi

σ : rEfppf Ñ
rE , σ : rE fppf Ñ

rE .(7.16.1)

If F is a sheaf of rEfppf (resp. rE fppf), σ˚pF q is equal to F . If G is a sheaf of rE

(resp. rE ), then σ˚pG q is the sheafification of G with respect to the fppf topology.
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CRYSTALS IN OYAMA TOPOI

In this section, we keep the notation in § 7 and we study crystals in Oyama topoi
and explain their interpretations in terms of modules with stratification (8.10). Let n
an integer ě 1.

8.1. – We define a presheaf of rings OE pX{S q,n on E pX{S q (resp. OE pX{S q,n

on E pX{S q) (7.1) by

(8.1.1) pU,Tq ÞÑ ΓpT,OTnq.

For any object pU,Tq of E pX{S q (resp. E pX{S q) and any element tpUi,Tiq Ñ
pU,TquiPI of CovfppfpU,Tq (7.12), tTi,n Ñ TnuiPI is an fppf covering of schemes
(7.11). By fppf descent for quasi-coherent modules ([21] VIII 1.2), OE pX{S q,n (resp.
OE pX{S q,n) is a sheaf for the fppf topology (7.13). Since the fppf topology is finer
than the Zariski topology, it is also a sheaf for the Zariski topology (7.9).

8.2. – For any object pU,T, uq of E (resp. E ), we consider OTn as a sheaf of Tzar

(resp. T zar). We have (7.10)

pOE ,nqpU,T,uq “ u˚pOTnq (resp. pOE ,nqpU,T,uq “ u˚pOTnq).

A morphism f : pU1,T1, u1q Ñ pU2,T2, u2q of E (resp. E ) induces a morphism of
ringed topoi

(8.2.1) rfn : pU1,zar, u1˚pOT1,n
qq Ñ pU2,zar, u2˚pOT2,n

qq.

By 7.7 and 7.10 and a standard argument, an OE ,n-module of rE (resp. OE ,n-module
of rE ) is equivalent to the following data:

(i) For every object pU,T, uq of E (resp. E ), an u˚pOTnq-module FpU,Tq of Uzar.
(ii) For every morphism f : pU1,T1, u1q Ñ pU2,T2, u2q of E (resp. E ), an

u1˚pOT1,n
q-linear morphism cf : rf˚n pFpU2,T2qq Ñ FpU1,T1q,

which is subject to the following conditions:

(a) If f is the identity morphism, then cf is the identity.
(b) If f is a Cartesian morphism, then cf is an isomorphism.
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(c) If f and g are two composable morphisms of E (resp. E ), then we have cg˝f “
cf ˝ rf˚n pcgq.

We call the data tFpU,Tq, cfu the linearized descent data associated to the OE ,n-mod-
ule (resp. OE ,n-module) F of rE (resp. of rE ).

An OE ,n-module (resp. OE ,n-module) F of rEfppf (resp. rE fppf) gives rise to an
OE ,n-module (resp. OE ,n-module) σ˚pF q of rE (resp. rE ) (7.16.1). We can associate
to F a linearized descent data tFpU,Tq, cfu by that of σ˚pF q.

Definition 8.3 ([32] 1.3.3). – Let F be an OE ,n-module of rE (resp. an OE ,n-module
of rEfppf , resp. an OE ,n-module of rE , resp. an OE ,n-module of rE fppf).

(i) We say that F is quasi-coherent if for every object pU,T, uq of E (resp. E ), the
u˚pOTnq-module FpU,Tq of Uzar (8.2) is quasi-coherent ([22] 0.5.1.3).

(ii) We say that F is a crystal or a crystal of OE ,n-modules of rE (resp. OE ,n-mod-
ules of rEfppf , resp. OE ,n-modules of rE , resp. OE ,n-modules of rE fppf) if for every mor-
phism f : pU1,T1q Ñ pU2,T2q of E (resp. E ), the canonical morphism cf (8.2) is an
isomorphism.

We denote by C pOE ,nq (resp. CfppfpOE ,nq, resp. C pOE ,nq, resp. CfppfpOE ,nq)
the category of crystals of OE ,n-modules of rE (resp. OE ,n-modules of rEfppf , resp.
OE ,n-modules of rE , resp. OE ,n-modules of rE fppf) and we use the notation C qcohp´q

or C qcoh
fppf p´q to denote the full subcategory consisting of quasi-coherent crystals.

Proposition 8.4. – A quasi-coherent OE ,n-module F of rE (resp. OE ,n-module of rE )
is equivalent to

(i) For every object pU,Tq of E (resp. E ), a quasi-coherent OTn-module FpU,Tq

of Tn,zar;
(ii) For every morphism f : pU1,T1q Ñ pU2,T2q of E (resp. E ), an pOT1,n

q-linear
morphism of T1,zar:

(8.4.1) cf : f˚n pFpU2,T2qq Ñ FpU1,T1q,

where fn denotes the morphism T1,n Ñ T2,n; which are subject to similar conditions
(a-c) in 8.2.

The assertion follows from the following proposition.

Proposition 8.5. – Let u : T Ñ U be an affine morphism of schemes, i : T Ñ T a
nilpotent closed immersion. We denote by v : pT ,O T q Ñ pU, u˚pO T qq the morphism
of ringed topoi induced by u. Then, the inverse image and direct image functors of v
induce equivalences of categories quasi-inverse to each other between the category of
quasi-coherent O T -modules of T zar and the category of quasi-coherent u˚pO T q-mod-
ules of Uzar.

The proposition follows from 8.7 and 8.8.
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Lemma 8.6. – We keep the assumption of 8.5. The restriction of the functor v˚ to
the category of quasi-coherent O T -modules is exact.

Proof. – The functor v˚ is left exact. Let M Ñ N be a surjection of quasi-coherent
O T -modules. To show that v˚pM q Ñ v˚pN q is surjective, it suffices to show that
for any affine open subscheme V of U , the morphism v˚pM qpV q Ñ v˚pN qpV q is
surjective. Since u is affine, the open subscheme T V of T associated to the open
subset u´1pV q of T is affine. Since M , N are quasi-coherent and T V is affine, the
morphism M pT V q Ñ N pT V q is surjective. Then the assertion follows.

Lemma 8.7. – We keep the assumption of 8.5. For any quasi-coherent O T -mod-
ule M , v˚pM q is quasi-coherent and the adjunction morphism v˚pv˚pM qq Ñ M is
an isomorphism.

Proof. – The question being local, we may assume that U is affine and so is T . Then
the quasi-coherent O T module M admits a presentation

(8.7.1) O‘J
T
Ñ O‘I

T
Ñ M Ñ 0.

The canonical morphism pv˚pO T qq
‘I Ñ v˚pO

‘I
T
q is clearly an isomorphism. Since

v˚ is exact (8.6), we obtain a presentation of v˚pM q

pv˚pO T qq
‘J Ñ pv˚pO T qq

‘I Ñ v˚pM q Ñ 0.

The first assertion follows.
The exact sequence (8.7.1) induces a commutative diagram

pv˚pv˚pO T qqq
‘J //

��

pv˚pv˚pO T qqq
‘I //

��

v˚pv˚pM qq //

��

0

O‘J
T

// O‘I
T

//M // 0.

Since v˚ is exact and v˚ is right exact, horizontal arrows are exact. The first two
vertical arrows are isomorphisms. Then the second assertion follows.

Lemma 8.8. – We keep the assumption of 8.5. For any quasi-coherent u˚pO T q-mod-
ule N , v˚pN q is quasi-coherent and the adjunction morphism N Ñ v˚pv

˚pN qq is
an isomorphism.

Proof. – The pull-back functor sends quasi-coherent objects to quasi-coherent objects
([22] 5.1.4).

The second assertion being local, we may assume that U is affine and that N
admits a presentation:

pu˚pO T qq
‘J Ñ pu˚pO T qq

‘I Ñ N Ñ 0
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Then we deduce a commutative diagram

pu˚pO T qq
‘J //

��

pu˚pO T qq
‘I //

��

N //

��

0

pv˚pv
˚pu˚pO T qqqq

‘J // pv˚pv˚pu˚pO T qqqq
‘I // v˚pv˚pN qq // 0.

Since v˚ is exact (8.6) and v˚ is right exact, the horizontal arrows are exact. The first
two vertical arrows are isomorphisms. Then the second assertion follows.

Proposition 8.9. – Let X be a k-scheme. The direct image functors σ˚ : rEfppf Ñ
rE

and σ˚ : rE fppf Ñ
rE (7.16.1) induce equivalences of categories

(8.9.1) C qcoh
fppf pOE ,nq

„
ÝÑ C qcohpOE ,nq, C qcoh

fppf pOE ,nq
„
ÝÑ C qcohpOE ,nq.

Proof. – The functor σ˚ sends quasi-coherent crystals of OE ,n-modules of rEfppf

(resp. OE ,n-modules of rE fppf) to quasi-coherent crystals of OE ,n-modules of rE (resp.
OE ,n-modules of rE ). The functors (8.9.1) are clearly fully faithful. It suffices to show
the essential surjectivity.

Let F be a quasi-coherent crystal of OE ,n-modules of rE and tFpU,Tq, cfu the as-
sociated linearized descent data. We consider FpU,Tq as an OTn -module of Tzar (8.4).
To show F is a sheaf for fppf topology, we prove that, for any element tpUi,Tiq Ñ
pU,TquiPI of CovfppfpU,Tq (7.12), the sequence

(8.9.2) 0 Ñ ΓpT,FpU,Tqq Ñ
ź

iPI

ΓpTi,FpUi,Tiqq Ñ
ź

i,jPI

ΓpTij ,FpUij ,Tijqq

is exact, where pUij ,Tijq “ pUi,Tiq ˆpU,Tq pUj ,Tjq (7.3). Then, we have

(8.9.3) FpUi,Tiq » f˚i pFpU,Tqq, FpUij ,Tijq » f˚ijpFpU,Tqq,

where fi (resp. fij) denotes the morphism Ti Ñ T (resp. Tij Ñ T). It suffices to show
that the sequence

(8.9.4) 0 Ñ FpU,Tq Ñ
ź

iPI

fi˚pFpUi,Tiqq Ñ
ź

i,jPI

fij˚pFpUij ,Tijqq

is exact. The question being local, we can suppose that U is quasi-compact and quasi-
separated and so is T. Hence we can reduce to the case where the set I is finite. Note
that the schemes Ti,n and Tn are quasi-compact and quasi-separated and that the
morphisms fi and fij are quasi-compact. Then the exactness of (8.9.4) follows from
the fppf descent for quasi-coherent modules.

The assertion for quasi-coherent crystals of OE ,n-modules can be verified in the
same way.

Proposition 8.10. – Let X be a smooth formal S -scheme and X its special
fiber. There exists a canonical equivalence of tensor categories between the category
C pOE ,nq (resp. C pOE ,nq) and the category of OXn-modules with RX-stratification
(resp. Q

X
-stratification) (4.11), 5.4.
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Proof. – The proof is standard. We briefly explain the construction following ([32]
1.3.4) where the author deals with the case n “ 1.

The triple pX,X, idq (resp. pX,X, X Ñ Xq) is an object of E (resp. E ). By 4.9,
pX,RXprqq (resp. pX,QXprqq) is an object of E (resp. E ) for all integers r ě 1. We
take again the notation of the proof of 4.11. We denote by q1, q2 : pX,RXq Ñ pX,Xq

the canonical morphisms. Let F be a crystal of OE ,n-modules of rE . We set F to be
the OXn -module FpX,Xq. Then we deduce isomorphisms of RX-modules of Xzar (8.2)

(8.10.1) cq1 : rq˚1,npF q
„
ÝÑ FpX,RXq cq2 : rq˚2,npF q

„
ÝÑ FpX,RXq.

We denote by ε the composition of cq2 and the inverse of cq1 . By a standard argument,
we can show that ε defines a RX-stratification on F . It is clear that the correspon-
dence F Ñ pF , εq is functorial and is compatible with tensor products (5.4).

Conversely, let F be an OXn -module with an RX-stratification ε : rq˚2,npF q
„
ÝÑ

rq˚1,npF q. Let pU,T, uq be an object of E such that U is affine. Since X is smooth over S
and T is affine, the k-morphism u : T Ñ U extends to a morphism ϕ : pU,Tq Ñ pX,Xq

of E . We define FpU,Tq to be the OTn -module rϕ˚npF q of Uzar. By a standard argue-
ment, we can show that this definition of FpU,Tq is independent of the choice of the
deformation T Ñ X of u : T Ñ U up to a canonical isomorphism which comes from
the stratification.

Let g : pU1,T1q Ñ pU2,T2q be a morphism of E such that U1 and U2 are affine.
There exists morphisms ϕ1 : pU1,T1q Ñ pX,Xq and ϕ2 : pU2,T2q Ñ pX,Xq of E .
Then there exists a unique morphism h : pU1,T1q Ñ pX,RXq such that q1 ˝ h “ ϕ1

and q2 ˝ h “ ϕ2 ˝ g. We deduce a canonical OT1,n -linear isomorphism of U1,zar

(8.10.2) cg : rg˚npFpU2,T2qq “
rh˚nprq

˚
2,npF qq

rh˚n pεq
ÝÝÝÑ
„

rh˚nprq
˚
1,npF qq “ FpU1,T1q.

By gluing the constructions for affine objects, we obtain an isomorphism cg for a
general morphism g of E . We deduce the cocycle properties for cg by the cocycle
condtion of ε.

Hence we obtain a linearized descent data tFpU,T,uq, cfu such that each mor-
phism cf is an isomorphism. Then, we get a crystal of OE ,n-modules F of rE by
8.2. The correspondence pF , εq ÞÑ F is clearly functorial and quasi-inverse to the
previous construction.

The assertion for crystals of OE ,n-modules can be verified in the same way.
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CHAPTER 9

CARTIER EQUIVALENCE

In this section, we show that the relative Frobenius morphism of X induces an
equivalence of topoi between rE fppf and rE 1fppf . Then we prove that this equivalence
globalizes Shiho’s local Cartier transform modulo pn explained in § 6.

9.1. – Let pU,T, uq be an object of E . We have a commutative diagram

(9.1.1) U

FU{k

��

T
uoo � � //

FT {k
��

T

FT {k

��

fT {k

xx
U 1 T 1

u1oo � � // T 1,

where the vertical arrows denote the relative Frobenius morphisms (2.2, 2.3). It is
clear that pU 1,T, u1 ˝ fT {kq is an object of E 1 (7.1). Moreover, the correspondence
pU,T, uq ÞÑ pU 1,T, u1 ˝ fT {kq is functorial. We denote by ρ the functor defined as
above:

(9.1.2) ρ : E Ñ E 1, pU,T, uq ÞÑ pU 1,T, u1 ˝ fT {kq.

We will show in 9.3(ii) that ρ is continuous and cocontinuous with respect to either
Zariski or fppf topology. By 7.15, the functor ρ (9.1.2) induces morphisms of topoi

CX{S : rE Ñ rE 1,(9.1.3)

CX{S ,fppf : rE fppf Ñ
rE 1fppf ,(9.1.4)

such that the pullback functor is induced by the composition with ρ. They fit into a
commutative diagram (7.16.1)

(9.1.5) rE fppf

CX{S ,fppf //

σ

��

rE 1fppf

σ1

��
rE

CX{S // rE 1.

One of the main results in this section is the following.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2019



56 CHAPTER 9. CARTIER EQUIVALENCE

Theorem 9.2 (cf. [32] 1.4.6). – For any smooth k-scheme X, the morphism CX{S ,fppf :
rE fppf Ñ

rE 1fppf is an equivalence of topoi.

The theorem follows from 9.3, 9.8 and 9.10.

Proposition 9.3 (cf. [32] 1.4.1). – (i) The functor ρ (9.1.2) is fully faithful.
(ii) Equipped with the Zariski topology (7.9) (resp. fppf topology (7.13)) on both

sides, the functor ρ is continuous and cocontinuous ([3] III 1.1, 2.1).

Lemma 9.4. – Let Y , Z be two k-schemes and g1, g2 : Y Ñ Z two k-morphisms. We
put hi “ g1i ˝ fY {k : Y Ñ Y 1 Ñ Z 1 (9.1.1) for i “ 1, 2. If h1 “ h2, then g1 “ g2.

Proof. – Let U be an affine open subscheme of Z. Since fY {k is a homeomorphism
and h1 “ h2, we have g´1

1 pUq “ g´1
2 pUq. Hence we can reduce to case where Z is

affine.
Since the morphism fY {k is scheme theoretically dominant (2.3), we deduce that

g11 “ g12 by ([22] 5.4.1). The functor X ÞÑ X 1 from the category of k-schemes to itself
is clearly faithful. Then the lemma follows.

Lemma 9.5. – Let pU,T, uq be an object of E and g : pV 1,Z, wq Ñ ρpU,T, uq a mor-
phism of E 1. Then there exist an object pV,Z, vq of E and a morphism f : pV,Z, vq Ñ

pU,T, uq of E such that g “ ρpfq. If g is Cartesian (resp. flat), so is f .

Proof. – Put V “ F´1
U{kpV

1q. Since the composition Z Ñ T
u1˝fT {k
ÝÝÝÝÝÑ U 1 factors through

V 1 Ă U 1, the composition Z Ñ T
u
ÝÑ U factors through V . We obtain a k-morphism v :

Z Ñ V such that w “ v1 ˝ fZ{k. Since fZ{k is separated, v1 is affine ([18] 1.6.2(v)) and
so is v. Hence, we get an object pV,Z, vq of E and a morphism f : pV,Z, vq Ñ pU,T, uq

of E such that g “ ρpfq.

9.6. – Proof of 9.3. (i) The functor ρ is clearly faithful. We prove its fullness.
Let pU1,T1, u1q, pU2,T2, u2q be two objects of E and g : ρpU1,T1, u1q Ñ ρpU2,T2, u2q

a morphism of E 1. Since U 11 Ă U 12 Ă U 1, we have U1 Ă U2 Ă U . It suffices to show
that the diagram

T 1

g
s //

u1

��

T 2

u2

��
U1

// U2

is commutative. It follows from 9.4 applied to the compositions T1
u1
ÝÑ U1 Ñ U2 and

T1 Ñ T2
u2
ÝÑ U2.

(ii) A family of morphisms tpUi,Tiq Ñ pU,TquiPI of E belongs to CovpU,Tq

(resp. CovfppfpU,Tq) if and only if, its image by ρ belongs to CovpρpU,Tqq (resp.
CovfppfpρpU,Tqq). The functor ρ sends flat morphisms to flat morphisms and it com-
mutes with the fibered product of a flat morphism and a morphism of E . Indeed, by
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functoriality, if T1 Ñ T and T2 Ñ T are two morphisms of k-schemes, the canon-
ical morphism fT1{k ˆ fT2{k : T1 ˆT T2 Ñ T1

1
ˆT 1 T2

1 is equal to the composition
T1ˆT T2 Ñ pT1 ˆT T2q

1 Ñ pT1ˆT T 2q
1 “ T1

1
ˆT 1 T2

1. Then the continuity of ρ follows
from ([3] III 1.6).

Let tpU 1i ,Tiq Ñ ρpU,TquiPI be an element of CovpρpU,Tqq (resp. CovfppfpρpU,Tqq).
By 9.5, there exists an element tpUi,Tiq Ñ pU,TquiPI of CovpU,Tq (resp. CovfppfpU,Tq)
mapping by ρ to the given element. Then, ρ is cocontinuous by ([3] III 2.1).

9.7. – To prove 9.2, we use (local) liftings of the Frobenius morphism to construct
fppf converings. Let X be an affine scheme and h : X Ñ Y “ SpecpkrT1, . . . , Tdsq an
étale morphism. By ([24] 3.2), the following diagram is Cartesian (2.2)

(9.7.1) X
FX //

h
��

l

X

h
��

Y
FY // Y.

We put Y “ SpfpWtT1, . . . , Tduq and we denote by FY : Y Ñ Y the affine mor-
phism defined by σ : W Ñ W and Ti ÞÑ T pi . Since X is étale over Y , there exists a
unique deformation X of X over Y up to a unique isomorphism. The formal scheme
X ˆY,FY Y is also a deformation of X “ X ˆY,FY Y over Y. Then we deduce a
Cartesian diagram

(9.7.2) X //

��
l

X

��
Y

FY // Y.

In particular, we obtain a morphism of finite type FX : X Ñ X above σ, which lifts
the absolute Frobenius morphism FX of X. We put X1 “ XˆS ,σ S . Then we obtain
an S -morphism of finite type FX{S : X Ñ X1 which lifts the relative Frobenius
morphism FX{k. Since X is smooth, the morphism FX{k : X Ñ X 1 is faithfully flat
(cf. [24] 3.2). Hence tFX{S : XÑ X1u is an fppf covering in the sense of 7.11.

Lemma 9.8. – Let pU 1,T, uq be an object of E 1, U “ F´1
X{kpU

1q. Suppose that U is
affine and that there exists an étale k-morphism U Ñ SpecpkrT1, . . . , Tdsq.

(i) There exists an object pU,Zq of E and an element tf : ρpU,Zq Ñ pU 1,Tqu

of CovfppfpU
1,Tq.

(ii) Let g : pU 11,T1q Ñ pU 1,Tq be a morphism of E 1. Then there exists a mor-
phism h : pU1,Z1q Ñ pU,Zq of E and an element tϕ : ρpU1,Z1q Ñ pU 11,T1qu
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of CovfppfpU
1
1,T1q such that the following diagram is Cartesian:

(9.8.1) ρpU1,Z1q
ϕ //

ρphq

��
l

pU 11,T1q

g

��
ρpU,Zq

f // pU 1,Tq.

If g is a Cartesian morphism so is h.

Proof. – (i) We follow the proof of ([32] 1.4.5). Let U be a smooth lifting of U over S
and F : U Ñ U1 a lifting of FU{k as in 9.7. Note that U 1 is affine. Since the mor-
phism u is affine, T and T are affine. Since U1 is smooth over S , there exists an
S -morphism τ : T Ñ U1 which lifts u. We consider the following commutative dia-
gram:

(9.8.2) T ˆU 1 U //

��

zz

TˆU1 U

��

{{
T //

u

��

T

��

U

FU{kzz

// U

F{{
U 1 // U1.

We set Z “ TˆU1 U, Z “ T ˆU 1 U and we denote the composition Z Ñ Z Ñ U by v.
Then we obtain an object pU,Z, vq of E . By (9.8.2), one verifies that the diagram

(9.8.3) Z //

fZ{k
��

T

u

��
Z 1

v1 // U 1

is commutative. Then, we obtain a morphism ρpU,Z, vq Ñ pU 1,T, uq of E 1. Since tF :

UÑ U1u is an fppf covering, tρpU,Z, vq Ñ pU 1,T, uqu is an element of CovfppfpU
1,Tq.

(ii) The morphism f is flat. We denote by pU 11,Z1q the fibered product
ρpU,Zq ˆpU 1,Tq pU

1
1,T1q in E . By applying 9.5 to the projection pU 11,Z1q Ñ ρpU,Zq,

we obtain the Cartesian diagram (9.8.1). Since ϕ is the base change of f , ϕ is an
element of CovfppfpU

1
1,T1q.

The following lemma is a complement of 9.8 and will be used in the proof of 9.13
below.

Lemma 9.9. – Let X be a k-scheme and pU 1,Tq an object of E 1, pU,Zq an object
of E and tρpU,Zq Ñ pU 1,Tqu an element of CovfppfpU

1,Tq. Then there exists an
object pU,Z ˆT Zq of E and two morphisms p1, p2 : pU,Z ˆT Zq Ñ pU,Zq such that
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ρpU,Z ˆT Zq “ ρpU,Zq ˆpU 1,Tq ρpU,Zq and that ρpp1q (resp. ρpp2q) is the projection
ρpU,Zq ˆpU 1,Tq ρpU,Zq Ñ ρpU,Zq on the first (resp. second) component.

Proof. – By applying 9.5 to the projection ρpU,Zq ˆpU 1,Tq ρpU,Zq Ñ ρpU,Zq

on the first component, we obtain an object pU,Z ˆT Zq of E and a mor-
phism p1 : pU,ZˆT Zq Ñ pU,Zq as in the proposition. The existence of p2 follows
from the fullness of ρ (9.3(i)).

We conclude Theorem 9.2 by a general result on topoi due to Oyama [32] which
we do not repeat the proof.

Proposition 9.10 ([32] 4.2.1). – Let C be a site, D a site whose topology is defined
by a pretopology and u : C Ñ D a functor. Assume that:

(i) u is fully faithful,
(ii) u is continuous and cocontinuous,
(iii) For every object V of D , there exists a covering of V in D of the form

tupUiq Ñ V uiPI where Ui is an object of C .

Then the morphism of topoi g : rC Ñ rD defined by g˚ “ pu˚ and g˚ “ pu˚ (7.15) is an
equivalence of topoi.

9.11. – Let F be a sheaf of rE 1 (resp. rE 1fppf), tFpU,Tq, γf,F u the descent data associated
to F (7.7) and tC˚pF qpU,Tq, γf,C˚pFqu the descent data associated to C˚X{S pF q (resp.
C˚X{S ,fppfpF q). Since ρ takes Cartesian morphisms to Cartesian morphisms (7.4), for
any object pU,Tq of E , we have

(9.11.1) C˚pF qpU,Tq “ πU˚pFρpU,Tqq

where πU denotes the equivalence of topoi U 1zar
„
ÝÑ Uzar. For any morphism

f : pU1,T1q Ñ pU2,T2q of E , we verify that

(9.11.2) γf,C˚pFq “ πU1˚pγρpfq,F q.

We verify that, by definition

(9.11.3) C˚X{S pOE 1,nq “ OE ,n (resp. C˚X{S ,fppfpOE 1,nq “ OE ,n).

The morphism CX{S (resp. CX{S ,fppf) is therefore underlying a morphism of
ringed topoi, which we denote also by

CX{S : prE ,OE ,nq Ñ p rE 1,OE 1,nq,(9.11.4)

(resp. CX{S ,fppf : prE fppf ,OE ,nq Ñ p rE 1fppf ,OE 1,nqq.(9.11.5)

Let F 1 be a quasi-coherent OE 1,n-module of rE 1. By (9.11.1), C˚X{S pF
1q is also

quasi-coherent. For any object pU,Tq of E , we have an equality of OTn -modules
of Tn,zar (9.11.1)

(9.11.6) pC˚X{S pF
1qqpU,Tq “ F 1

ρpU,Tq.
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Theorem 9.12 (cf. [32] 1.4.3 for n “ 1). – Let X be a smooth scheme over k. The
inverse image and the direct image functors of CX{S induce equivalences of categories
quasi-inverse to each other (8.3)

(9.12.1) C qcohpOE 1,nq Õ C qcohpOE ,nq.

The theorem follows from 8.9 and 9.13 below.

Proposition 9.13. – Let X be a smooth k-scheme. The inverse image and the direct
image functors of the morphism CX{S ,fppf (9.11.5) induce equivalences of categories
quasi-inverse to each other:

(9.13.1) C qcoh
fppf pOE 1,nq Õ C qcoh

fppf pOE ,nq.

Proof. – We write simply C for CX{S ,fppf . By 9.2, it suffices to show that the functors
C˚ and C˚ preserve quasi-coherent crystals. The assertion for C˚ follows from (9.11.1)
and (9.11.2).

Let F be a quasi-coherent crystal of OE ,n-modules of rE fppf and pU 1,T, uq an ob-
ject of E 1. We first show that pC˚pF qqpU 1,Tq is quasi-coherent. The statement is
local, therefore we may assume that U “ F´1

X{kpU
1q satisifies the condition of 9.8,

i.e., U is affine and there exists an étale k-morphism U Ñ Adk. Then, by 9.8(i)
and 9.9, there exist objects pU,Zq and pU,Z ˆT Zq of E , an element tf : ρpU,Zq Ñ

pU 1,Tqu of CovfppfpU
1,Tq and two morphisms p1, p2 : pU,ZˆT Zq Ñ pU,Zq such that

ρpU,Z ˆT Zq “ ρpU,Zq ˆpU 1,Tq ρpU,Zq and that ρpp1q and ρpp2q are the canonical
projections of ρpU,Zq ˆpU 1,Tq ρpU,Zq (9.9). In particular, the morphism Z ˆT Z Ñ Z
attached to p1 (resp. p2) is the projection on the first (resp. second) component.

Since the adjunction morphism C˚ C˚ Ñ id is an isomorphism (9.2), we have
(9.11.1)

(9.13.2) πU˚ppC˚pF qqρpU,Zqq “ FpU,Zq, πU˚ppC˚pF qqρpU,ZˆTZqq “ FpU,ZˆTZq.

By 8.4, we consider FpU,Zq (resp. FpU,ZˆTZq) as a quasi-coherent OZn -module of Zzar

(resp. pOpZˆTZqnq-module of pZˆTZqzar). Since F is a crystal, we have pOpZˆTZqnq-lin-
ear isomorphisms

(9.13.3) p˚2,npFpU,Zqq
cp2
ÝÝÑ
„

FpU,ZˆTZq

cp1
ÐÝÝ
„

p˚1,npFpU,Zqq.

We define ϕ : p˚2 pFpU,Zqq Ñ p˚1 pFpU,Zqq to be the composition of cp2 and the inverse
of cp1 . Thus, we obtain a effective descent datum pFpU,Zq, ϕq for the fppf covering
tfn : Zn Ñ Tnu. Therefore there exists a quasi-coherent OTn -module M of Tzar, a
canonical pOZnq-linear isomorphism

(9.13.4) f˚n pM q
„
ÝÑ FpU,Zq

and an exact sequence of Uzar

(9.13.5) 0 Ñ πU˚pu˚pM qq Ñ FpU,Zq Ñ FpU,ZˆTZq,

where FpU,Zq and FpU,ZˆTZq are now considered as sheaves of Uzar.
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On the other hand, since C˚pF q is a sheaf, there exists an exact sequence of U 1zar

(7.14.1)

(9.13.6) 0 Ñ pC˚pF qqpU 1,Tq Ñ pC˚pF qqρpU,Zq Ñ pC˚pF qqρpU,ZˆTZq.

By (9.13.2), we obtain an u˚pOTnq-linear isomorphism u˚pM q
„
ÝÑ pC˚pF qqpU 1,Tq

of U 1zar. In particular, pC˚pF qqpU 1,Tq is quasi-coherent. Hence C˚pF q is quasi-coherent.
Let g : pU 11,T1q Ñ pU 12,T2q be a morphism of E 1. We prove that the morphism

(8.4.1)

(9.13.7) cg : g˚npC˚pF qpU 12,T2qq Ñ C˚pF qpU 11,T1q

associated to C˚pF q is an isomorphism. Since the problem is Zariski local, we may
assume that U 12 satisfies the condition of 9.8. By 9.8(ii), there exists a morphism h :

pU1,Z1q Ñ pU2,Z2q of E , an element tf1 : ρpU1,Z1q Ñ pU 11,T1qu of CovfppfpU
1
1,T1q

and an element tf2 : ρpU2,Z2q Ñ pU 12,T2qu of CovfppfpU
1
2,T2q such that the following

diagram is Cartesian

(9.13.8) ρpU1,Z1q
f1 //

ρphq

��

pU 11,T1q

g

��
ρpU2,Z2q

f2 // pU 12,T2q.

By 9.9 and repeating the previous fppf descent argument, we have a canonical
isomorphism (9.13.4)

(9.13.9) f˚i,npC˚pF qpU 1i,Tiqq
„
ÝÑ FpUi,Ziq,

for i “ 1, 2. Furthermore, since F is a crystal, we have an isomorphism

(9.13.10) ch : h˚npFpU2,Z2qq
„
ÝÑ FpU1,Z1q.

In view of (9.11.2), (9.13.2), (9.13.8) and (9.13.9), the morphism

(9.13.11) f˚1,npcgq : f˚1,npg
˚
npC˚pF qpU 12,T2qqq Ñ f˚1,npC˚pF qpU 11,T1qq

is identical to ch (9.13.10) and hence is an isomorphism. Since f1,n : Z1,n Ñ T1,n is
faithfully flat, we deduce that cg is an isomorphism. The proposition follows.

Definition 9.14. – Let X be a smooth k-scheme. We call Cartier equivalence (mod-
ulo pn) the equivalence of categories (9.12.1)

(9.14.1) C˚X{S : C qcohpOE 1,nq
„
ÝÑ C qcohpOE ,nq.

The above equivalence depends only on X and is different from the Cartier trans-
form of Ogus-Vologodsky [31] which depends on a lifting ofX 1 to W2. We will compare
two constructions under the assumption that there exists a smooth lifting of X to W

in § 12.
To simplify the notation, we write C˚ for C˚X{S if there is no confusion.
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9.15. – The Cartier equivalence is compatible with localization with respect to an
open subscheme. More precisely, let U be an open subscheme of X. The category
E pU{S q (resp. E pU{S q) forms naturally a full subcategory of E pX{S q (resp.
E pX{S q). Equipped with the Zariski topologies on both sides, the canonical functor
E pU{S q Ñ E pX{S q (resp. E pU{S q Ñ E pX{S q) is continuous and cocontinuous.
It induces a morphism of topoi

(9.15.1) jU : rE pU{S q Ñ rE pX{S q (resp. j
U

: rE pU{S q Ñ rE pX{S qq

such that the inverse image functor is given by resctricting a sheaf of rE pX{S q

to E pU{S q (resp. rE pX{S q to E pU{S q). The above morphisms fit into a commutative
diagram

(9.15.2) rE pU{S q
CU{S //

j
U

��

rE pU 1{S q

jU1

��
rE pX{S q

CX{S // rE pX 1{S q.

Then we have a commutative diagram

(9.15.3) C pOE 1pX{S q,nq
C˚
X{S //

j˚U
��

C pOE pX{S q,nq

j˚
U

��
C pOE 1pU{S q,nq

C˚
U{S // C pOE pU{S q,nq.

9.16. – In the remainder of this section, X denotes a smooth formal S -scheme with
special fiber X. We set X1 “ X ˆS ,σ S (2.1) and we suppose that there exists an
S -morphism F : XÑ X1 which lifts the relative Frobenius morphism FX{k : X Ñ X 1

of X. We show that the Cartier equivalence C˚ (9.14.1) globalizes Shiho’s local con-
struction in § 6 defined by F .

The morphism F induces a morphism of E 1 that we denote also by

(9.16.1) F : ρpX,Xq “ pX 1,X, FX{kq Ñ pX 1,X1, idq

Recall that (6.6) the morphism F induces a morphism of formal groupoids
ψ : QX Ñ RX1 above F .

The following result explains the relation between the Cartier equivalence C˚ and
the functor ψ˚n induced by ψ (5.6).
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Proposition 9.17. – Keep the assumption of 9.16. The diagram (9.13):

(9.17.1) C pOE 1,nq
C˚ //

o
��

C pOE ,nq

o
��

!

OX1n -modules
with RX1 -stratification

)

ψ˚n //
!

OXn -modules
with Q

X
-stratification

)

,

where the vertical arrows are the equivalences of categories defined in 8.10, is 2-
commutative. That is, there exists a functorial isomorphism of OXn-modules, depend-
ing on F

(9.17.2) ηF : ψ˚npMpX1,X1qq
„
ÝÑ C˚pM qpX,Xq

compatible with the Q
X
-stratifications, for every crystal M of OE 1,n-modules of rE 1.

Proof. – Let M be a crystal of OE 1,n-modules of rE 1. By (9.11.1), we have

C˚pM qpX,Xq “ πX˚pMρpX,Xqq.(9.17.3)

Since M is a crystal, F (9.16.1) induces a functorial isomorphism of OXn -modules

(9.17.4) ηF : F˚n pMpX1,X1qq “ πX˚p rF
˚
n pMpX1,X1qqq

„
ÝÑ C˚pM qpX,Xq.

The composition QX,1 Ñ QX,1
1
Ñ X 1 (9.1.1) identifies with the morphism

g : QX,1 Ñ X 1 induced by F 2 : X2 Ñ X12 (6.6.2). Then, it follows from the proof
of 6.6 that ψ induces a morphism of E 1 that we denote also by

(9.17.5) ψ : ρpX,QXq Ñ pX 1, RX1q,

which fits into the following commutative diagrams

(9.17.6) ρpX,QXq
ψ //

ρpq1q

��

pX 1, RX1q

q11
��

ρpX,Xq
F // pX 1,X1q

ρpX,QXq
ψ //

ρpq2q

��

pX 1, RX1q

q12
��

ρpX,Xq
F // pX 1,X1q,

where q1, q2 (resp. q11, q12) are the canonical projections of pX,QXq to pX,Xq (resp.
pX 1, RX1q to pX 1,X1q). Hence, ψ (9.17.5) induces an isomorphism

(9.17.7) πX˚p rψ
˚
npMpX1,RX1 q

qq
„
ÝÑ C˚pM qpX,QXq.

Recall that the left vertical functor of (9.17.1) is given by M ÞÑ pMpX1,X1q, ε
1q

where ε1 is induced by isomorphisms rq1˚2,npMpX1,X1qq
„
ÝÑ MpX1,RX1 q

„
ÐÝ rq1˚1,npMpX1,X1qq.

By 5.6, we have

(9.17.8) ψ˚npMpX1,X1q, ε
1q “ pF˚n pMpX1,X1qq, πX˚p rψ

˚
npε

1qqq.

On the other hand, the OXn -module associated to C˚pM q is C˚pM qpX,Xq and the
associated Q

X
-stratification is induced by the isomorphisms rq˚2,npC

˚
pM qpX,Xqq

„
ÝÑ
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C˚pM qpX,QXq
„
ÐÝ rq˚1,npC

˚
pM qpX,Xqq. The proposition follows in view of (9.17.6),

(9.17.2) and (9.17.7).

9.18. – Keep the assumption of 9.16. Recall that the morphisms of formal
X-groupoids $1 : TX1 Ñ RX1 (5.13.1) and λ : PX Ñ QX (5.12.1) induce func-
tors

$1˚n :
!

OX1n -modules
with RX1 -stratification

)

Ñ

!

OX1n-modules
with T X1 -stratification

)

(9.18.1)

λ˚n :
!

OXn -modules
with Q

X
-stratification

)

Ñ

!

OXn -modules
with PX-stratification

)

.(9.18.2)

By 5.11, 5.17 and 8.10, they further induce functors

µ : C pOE 1,nq Ñ p-MICqn
pX1n{Snq,(9.18.3)

ν : C pOE ,nq Ñ MICqn
pXn{Snq.(9.18.4)

By (6.9.2), 6.10 and 9.17, the diagrams

(9.18.5) C pOE 1,nq
C˚ //

o
��

C pOE ,nq

o
��

!

OX1n-modules
with RX1 -stratification

)

ψ˚n //

$1˚n

��

!

OXn -modules
with Q

X
-stratification

)

λ˚n

��
!

OX1n-modules
with T X1 -stratification

)

ϕ˚n //

o

��

!

OXn -modules
with PX-stratification

)

o

��
p-MICqn

pX1n{Snq
Φn // MICqn

pXn{Snq,

where the functors ψ˚n, ϕ˚n and Φn are induced by F , are commutative up to a func-
torial isomorphism of MICqn

pXn{Snq. For every object M of C pOE 1,nq, we have a
functorial isomorphism

(9.18.6) ηF : ΦnpµpM qq
„
ÝÑ νpC˚pM qq.

We see that the Cartier equivalence C˚ (9.14.1) is compatible with Shiho’s functor Φn
(6.1.5).

In the remainder of this section, we will explain how to relate Shiho’s local con-
structions with respect to different liftings of Frobenius morphism using Cartier equiv-
alence.

Let F1, F2 : X Ñ X1 denote two liftings of the relative Frobenius morphism FX{k
of X.
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Lemma 9.19. – The morphisms F1, F2 induce a morphism of E 1

(9.19.1) ψ12 : ρpX,QXq Ñ pX 1, RX1q.

Proof. – The proof is similar to that of 6.6. By the universal property of RX1 , it
suffices to show that there exists a unique k-morphism g : QX,1 Ñ X 1 which fits into
a commutative diagram

(9.19.2) QX,1 //

g

��

QX

��
X2

pF1,F2q

��
X 1

∆ // X12.

The problem being local on X, we can assume that there exists an étale S -mor-
phism X Ñ pAdS “ SpfpWtT1, . . . , Tduq. We put ti the image of Ti in OX, ξi “
1 b ti ´ ti b 1, t1i “ π˚ptiq P OX1 and ξ1i “ 1 b t1i ´ t1i b 1 for all 1 ď i ď d. Locally,
there exists sections ai, bi of OX such that F˚1 pt

1
iq “ tpi ` pai, F

˚
2 pt

1
iq “ tpi ` pbi. By a

similar calculation of (6.6.3), we have

(9.19.3) pF1, F2q
˚pξ1iq “ ξpi `

p´1
ÿ

j“1

ˆ

p

j

˙

ξjkptk b 1qp´j ` pp1b bk ´ ak b 1q.

Since ξpi “ p ¨
` ξpi
p

˘

in Q
X
, the assertion follows.

9.20. – Keep the assumption of 9.19, we denote by α the composition

(9.20.1) α : pX 1,X, FX{kq “ ρpX,Xq
ρpιQq
ÝÝÝÑ ρpX,QXq

ψ12
ÝÝÑ pX 1, RX1q.

We set q11, q12 : pX 1, RX1q Ñ pX 1,X1q the canonical morphisms of E 1 and we have
q1i ˝ α “ Fi (9.16.1).

Considering RX1 as a formal Hopf OX1 -algebra of Xzar, α induces a W-homomor-
phism of Xzar:

(9.20.2) a : RX1 Ñ OX.

Equipped with the left (resp. right) OX1 -linear action on the source and the OX1 -linear
action induced by F1 (resp. F2) on the target, a is OX1 -linear.

Suppose that there exists an étale S -morphism X Ñ pAdS “ SpfpWtT1, . . . ,Tduq

and we take again the notation of the proof of 9.19. In view of (9.19.3), the homo-
morphism a is determined by

(9.20.3) a

ˆ

ξ1i
p

˙

“
F˚2 pt

1
iq ´ F

˚
1 pt

1
iq

p
@ 1 ď i ď d.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2019



66 CHAPTER 9. CARTIER EQUIVALENCE

9.21. – Let M be a crystal of OE 1,n-modules, M “ MpX1,X1q and ε1 : rq1˚2,npM q
„
ÝÑ

rq1˚1,npM q the associated RX1 -stratification (8.10). Recall (9.17) that the morphisms
F1 and F2 induce morphisms ψ1, ψ2 : ρpX,QXq Ñ pX 1, RX1q of E 1 respectively. We
associate to pM , ε1q two different OXn -modules with Q

X
-stratification

(9.21.1) pF˚1,npM q, πX˚p rψ
˚
1,npε

1qqq and pF˚2,npM q, πX˚p rψ
˚
2,npε

1qqq.

Let Φ1,n (resp. Φ2,n) be Shiho’s functor induced by F1 (resp. F2) (6.1.5). We
associate to M two different objects of MICqn

pXn{Snq (9.18.5)

(9.21.2) Φ1,npµpM qq and Φ2,npµpM qq,

whose underlying OXn -modules are F˚1,npM q and F˚2,npM q respectively.
The morphism α gives a natural way to glue Φ1,npµpM qq,Φ2,npµpM qq.

Proposition 9.22. – Keep the assumption of 9.21. The morphism α and the
RX1-stratification ε1 induce an isomorphism of OXn-modules with Q

X
-stratification:

(9.22.1) α˚pε1q : pF˚2,npM q, πX˚p rψ
˚
2,npε

1qqq
„
ÝÑ pF˚1,npM q, πX˚p rψ

˚
1,npε

1qqq,

such that ηF2
“ ηF1

˝ α˚pε1q (9.17.2).

Proof. – We denote by q1, q2 : pX,QXq Ñ pX,Xq the canonical morphisms
of E , by q11, q

1
2 : pX 1, RX1q Ñ pX 1,X1q the canonical morphisms of E 1 and

by q1ij : pX 1, RX1p2qq Ñ pX 1, RX1q the morphism induced by RX1p2q Ñ X13
p1ij
ÝÝÑ X12

and the universal property of RX for all 1 ď i ă j ď 3 (cf. (4.11.1)).
Since Fi “ q1i ˝ α for i “ 1, 2, the isomorphism ε1 : rq1˚2,npM q

„
ÝÑ rq1˚1,npM q induces

an isomorphism

(9.22.2) πX˚prα
˚
npε

1qq : rF˚2,npM q
„
ÝÑ rF˚1,npM q.

We write simply α˚pε1q for πX˚prα˚npε1qq. Then we have ηF2 “ ηF1 ˝α
˚pε1q. It remains

to show that the α˚pε1q is compatible with the Q
X
-stratifications on both sides.

The compositions of morphisms

X2 p1 // X
∆ // X2

pF1,F2q// X12
p12 // X1

X2
pF2,F2q// X12

p11 // X1

are equal. We deduce that the compositions of morphisms of E 1

ρpX,QXq
ρpq1q // ρpX,Xq

α // pX 1, RX1q
q12 // pX 1,X1q

ρpX,QXq
ψ2 // pX 1, RX1q

q11 // pX 1,X1q

are equal. In view of the isomorphism pX 1, RX1p2qq » pX 1, RX1qˆpX1,X1q pX 1, RX1q of E 1

(4.10.1), we obtain a morphism of E 1

(9.22.3) u : ρpX,QXq Ñ pX 1, RX1p2qq,
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such that α˝ρpq1q “ q112˝u and ψ2 “ q123˝u. Symmetrically, we construct a morphism
of E 1

(9.22.4) v : ρpX,QXq Ñ pX 1, RX1p2qq,

such that ψ1 “ q112 ˝ v and α ˝ ρpq2q “ q123 ˝ v. The compositions

X2 pι1,ι1,ι2q
ÝÝÝÝÝÝÑ X3 pF1,F2,F2q

ÝÝÝÝÝÝÝÑ X13
p113
ÝÝÑ X12

X2 pι1,ι2,ι2q
ÝÝÝÝÝÝÑ X3 pF1,F1,F2q

ÝÝÝÝÝÝÝÑ X13
p113
ÝÝÑ X12

are equal to pF1, F2q : X2 Ñ X12. By the universal property of RX1 (3.5), we deduce
that q113 ˝ u “ q113 ˝ v “ ψ12 (9.19), i.e., the compositions

(9.22.5) ρpX,QXq
u //
v
// pX 1, RX1p2qq

q113 // pX 1, RX1q

are equal to ψ12. By (9.17.6), we have rψ˚i,nprq
1˚
j,npM qq » rq˚j,np

rF˚i,npM qq for all i, j “
1, 2. By the cocycle condition rq1˚12,npε

1q˝rq1˚23,npε
1q “ rq1˚13,npε

1q, we deduce a commutative
diagram:

(9.22.6) rψ˚2,nprq
1˚
2,npM qq

rψ˚2,npε
1
q
//

rq˚2,nprα
˚
n pε

1
qq

��

rψ˚2,nprq
1˚
1,npM qq

rq˚1,nprα
˚
n pε

1
qq

��
rψ˚1,nprq

1˚
2,npM qq

rψ˚1,npε
1
q
// rψ˚1,nprq

1˚
1,npM qq.

That is the isomorphism α˚pε1q is compatible with the Q
X
-stratifications πX˚p rψ˚2,npε

1qq

and πX˚p rψ˚1,npε
1qq.

Corollary 9.23. – Keep the assumption of 9.21. The isomorphism (9.22.1) induces
an isomorphism of MICqn

pXn{Snq (9.21.2)

(9.23.1) α˚pε1q : Φ2,npµpM qq
„
ÝÑ Φ1,npµpM qq

such that ηF2
“ ηF1

˝ α˚pε1q (9.18.6).

It follows from (9.18.5) and 9.22.

Remark 9.24. – Given a lifting of the Frobenius morphism, Shiho’s functor
(6.1.4) applies to OX1n-modules with integrable p-connection. However, the isomor-
phism (9.23.1), which glues local constructions of Shiho, depends on the RX1 -strati-
fication on the OX1n -module MpX1,X1q.
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CARTIER TRANSFORM OF OGUS-VOLOGODSKY

For the convenience of the reader, we shall review the original construction of the
Cartier transform of Ogus-Vologodsky [31]. In particular, we shall clarify some details,
especially in regard to sheaf of affine functions on a torsor.

In this section, X denotes a scheme. Starting from 10.8, we will suppose that X is
smooth over k.

10.1. – Let E a locally free OX -module of finite type. We denote by SpEq (resp.
ΓpEq) the symmetric algebra (resp. PD-algebra) of E over OX ([23] I 4.2.2.6) and for
any integer n ě 0, by SnpEq (resp. ΓnpEq) its homogeneous part of degree n. There
exists a unique homomorphism of OX -algebras

(10.1.1) δ : SpEq Ñ SpEq bOX SpEq,

such that for every local section e of E, we have δpeq “ 1b e` eb 1. This homomor-
phisms makes SpEq into a Hopf commutative OX -algebra.

Let I (resp. J) be the ideal ‘ně1 SnpEq of SpEq (resp. PD-ideal ‘ně1ΓnpEq

of ΓpEq). We denote by pSpEq (resp. pΓpEq) the completion of SpEq (resp. ΓpEq) with
respect to the filtration tInuně1 (resp. PD-filtration tJ rnsuně1).

Let M be a pΓpEq-module. We say that M is quasi-nilpotent if for any open sub-
scheme U of X and any e PMpUq, there exists a Zariski covering tUi Ñ UuiPI and a
family of integers tNiuiPI such that for each i P I, e|Ui is annihilated by the ideal J rNis.
For any integer n ě 0, we say that M is nilpotent of level ď n if E is annihilated
by J rn`1s.

10.2. – We set Ω “ HomOX pE,OXq. The pairing EbOX Ω Ñ OX induces a canonical
morphism

(10.2.1) ΓnpEq bOX Sm`npΩq Ñ SmpΩq

which is perfect if m “ 0 ([5] A.10). If we equip ΓpEq with the topology defined
by the PD-filtration tJ rnsu and SpΩq with the discrete topology, the OX -linear mor-
phism ΓpEq bOX SpΩq Ñ SpΩq is continuous. It extends by continuity to an action
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of pΓpEq on SpΩq:

(10.2.2) pΓpEq bOX SpΩq Ñ SpΩq.

We have an increasing exhaustive filtration of pΓpEq-submodules t
À

mďn SmpΩquně0

of SpΩq such that
À

mďn SmpΩq is nilpotent of level ď n. Then SpΩq is quasi-nilpotent.
The above morphism induces an OX -linear isomorphism

pΓpEq “ lim
ÐÝ
n

p
à

mďn

ΓmpEqq(10.2.3)

» lim
ÐÝ
n

HomOX p
à

mďn

SmpΩq,OXq

“ HomOX pSpΩq,OXq.

We equip HomOX pSpΩq,OXq with the OX -algebra structure induced by the Hopf
algebra SpΩq (4.4). The above isomorphism is an isomorphism of OX -algebras.

10.3. – Let f : Y Ñ X be a morphism of schemes. We put EY “ f˚pEq and
ΩY “ f˚pΩq. By the universal property of the symmetric algebra, we have a canonical
isomorphism of OY -algebras

(10.3.1) f˚pSOX pΩqq
„
ÝÑ SOY pΩY q.

Since SOX pΩq is a direct sum of locally free OX -modules of finite type, by duality
(10.2.3), we deduce a canonical isomorphism of OY -algebras

pΓOY pEY q » HomOY pSOY pΩY q,OY q(10.3.2)

» f˚pHomOX pSOX pΩq,OXqq

» f˚ppΓOX pEqq.

10.4. – Let L be an E-torsor of Xzar. An affine function on L is a morphism
f : L Ñ OX of Xzar satisfying the following equivalent conditions ([2] II.4.7):

(i) For every open subscheme U of X and every s P L pUq, the morphism:

(10.4.1) EpUq Ñ OpUq, t ÞÑ fps` tq ´ fpsq

is OXpUq-linear.
(ii) There exists a section ωf P ΩpXq, called the linear term of f , such that for

every open subscheme U of X and all s P L pUq and t P EpUq, we have

(10.4.2) fps` tq “ fpsq ` ωf ptq.

The condition (i) is clearly local for the Zariski topology on X. We denote by F the
subsheaf of HomXzar

pL ,OXq consisting of affine functions on L ; in other words, for
any open subscheme U of X, F pUq is the set of affine functions on L |U

. It is naturally
endowed with an OX -module structure. We call F the sheaf of affine functions on L .
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We have a canonical OX -linear morphism c : OX Ñ F whose image consists of
constant functions. The “linear term” defines an OX -linear morphism ω : F Ñ Ω.
One verifies that the sequence

(10.4.3) 0 Ñ OX
c
ÝÑ F

ω
ÝÑ Ω Ñ 0

is exact. By ([23] I 4.3.1.7), the above sequence induces, for any integer n ě 1, an
exact sequence:

(10.4.4) 0 Ñ Sn´1
pF q Ñ SnpF q Ñ SnpΩq Ñ 0.

The OX -modules pSnpF qqně0 form a inductive system. We denote its inductive limit
by

(10.4.5) A “ lim
ÝÑ
ně0

SnpF q,

which is naturally endowed with a structure of an OX -algebra. For any integer n ě 0,
the canonical morphism SnpF q Ñ A is injective. By letting NnpA q “ SnpF q for all
n ě 0, we obtain an increasing exhaustive filtration of A .

There exists a unique homomorphism of OX -algebras

(10.4.6) µ : A Ñ SpΩq bOX A ,

such that for every local section m of F , we have µpmq “ 1 b m ` ωpmq b 1. For
n ě 0, we have

(10.4.7) µpNnpA qq Ă
à

i`j“n

SipΩq bNjpA q.

By construction, the following diagram is commutative

(10.4.8) A
µ //

µ

��

SpΩq bOX A

δbid

��
SpΩq bOX A

idbµ // SpΩq bOX SpΩq bOX A .

10.5. – By (10.2.3) and (10.4.6), we have an OX -linear morphism:
pΓpEq bOX A Ñ A(10.5.1)

ub a ÞÑ pub idqpµpaqq.

By (10.4.8), the above morphism makes A into a pΓpEq-module. The action of E
on F is given by ω (10.4.3) and duality. By (10.4.7), we see that A is quasi-nilpotent
and that for any n ě 0,NnpA q is a pΓpEq-submodule of A and is nilpotent of level ď n.

The canonical SpΩq-linear isomorphism Ω1
SpΩq{OX

„
ÝÑ Ω bOX SpΩq induces an iso-

morphism

(10.5.2) Ω1
A {OX

„
ÝÑ ΩbOX A .

We denote the universal OX -derivation by

(10.5.3) dA : A Ñ ΩbOX A .
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For any local section m of F , we have dA pmq “ ωpmq b 1.

10.6. – Let s P L pXq and let ρs : F Ñ OX be the associated splitting of the exact
sequence (10.4.3). The morphism Ω Ñ F deduced from id´c ˝ ρs extends to an
isomorphism of OX -algebras

(10.6.1) ψ : SpΩq
„
ÝÑ A ,

which is compatible with the filtrations p
À

0ďiďn SipΩqqn and pNnpA qqn. The diagram
(10.1.1)

(10.6.2) SpΩq
ψ //

δ

��

A

µ

��
SpΩq bOX SpΩq

idbψ // SpΩq bOX A

is commutative. Hence the isomorphism ψ is compatible with the pΓpEq-module struc-
tures (10.2).

10.7. – Let f : Y Ñ X be a morphism of schemes and L an E-torsor of Xzar.
For OX -modules, we will use the notation f´1 to denote the inverse image in the
sense of abelian sheaves and will keep the notation f˚ for the inverse image in the
sense of modules. The affine inverse image of L under f , denoted by f`pL q, is
the f˚pEq-torsor of Yzar deduced from the f´1pEq-torsor f˚pL q by extending its
structural group by the canonical homomorphism f´1pEq Ñ f˚pEq,

(10.7.1) f`pL q “ f˚pL q ^f
´1
pEq f˚pEq;

in other words, the quotient of f˚pL qˆf˚pEq by the diagonal action of f´1pEq ([17]
III 1.4.6).

We denote by F the sheaf of affine functions on L (10.4) and by F` the sheaf of
affine functions on f`pL q. Let l : L Ñ OX be an affine morphism, ω P ΩpXq its lin-
ear term and ω1 “ f˚pωq P f˚pΩqpY q. Endowing OY with the structure of f˚pEq-ob-
ject defined by ω1 ([2] II.4.8), there exists a unique f˚pEq-equivariant morphism l1 :

f`pL q Ñ OY that fits into the commutative diagram

(10.7.2) f˚pL q
l //

��

f´1pOXq

��
f`pL q

l1 // OY ,

where the vertical arrows are the canonical morphisms ([17] III 1.3.6). The morphism l1

is therefore affine, with linear term ω1. The resulting correspondence l ÞÑ l1 induces
an OX -linear morphism

(10.7.3) λ7 : F Ñ f˚pF
`q.
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Its adjoint morphism is an OY -linear isomorphism ([2] II.4.13.4)

(10.7.4) λ : f˚pF q
„
ÝÑ F`

which fits into a commutative diagram

(10.7.5) 0 // OY

��

// f˚pF q //

λ

��

f˚pΩq

��

// 0

0 // OY // F` // f˚pΩq // 0.

In particular, the isomorphism λ is compatible with actions of f˚ppΓOX pEqq »
pΓOY pf

˚pEqq (10.3.2).

10.8. – In the remainder of this section, X denotes a smooth scheme over k. We de-
note by CryspX{kq the crystalline site of X over k equipped with the PD-ideal 0,
by pX{kqcrys the crystalline topos of X over k and by OX{k the structure ring
of pX{kqcrys defined for every object pU, T q of CryspX{kq, by pU, T q ÞÑ ΓpT,OT q.

Let E be a crystal of locally free OX{k-modules of finite type on CryspX{kq and L
an E-torsor of pX{kqcrys. For any object pU, T q of CryspX{kq, LpU,T q is an EpU,T q-tor-
sor of Tzar ([4] III 3.5.1). We define FpU,T q to be the sheaf of affine functions on LpU,T q

of Tzar (10.4).
Let g : pU1, T1q Ñ pU2, T2q be a morphism of CryspX{kq and g : |U1|p“ |T1|q Ñ

|U2|p“ |T2|q the morphism of underlying topological spaces. The transition morphism
of L associated to g ([5] 5.1)

(10.8.1) cg : ´1
g pLpU2,T2qq Ñ LpU1,T1q

is ´1
g pEpU2,T2qq-equivariant. By ([17] III 1.4.6(iii)), we obtain an EpU1,T1q-equivariant

isomorphism

(10.8.2) `g pLpU2,T2qq
„
ÝÑ LpU1,T1q.

By (10.7.4), we deduce an OT1 -linear isomorphism ([2] II 4.14.2)

(10.8.3) γg : g˚pFpU2,T2qq
„
ÝÑ FpU1,T1q.

In view of the compatibility conditions of cg (10.8.1) and ([2] II 4.15), the data
tFpU,T q, γgu satisfy the compatibility conditions of ([5] 5.1). Hence, they define a
crystal of OX{k-modules that we denote by F and call the crystal of affine functions
on L .

We denote by A the crystal of OX{k-algebras lim
ÝÑně0

SnpF q. It admits a increasing
filtration of crystals of OX{k-modules NnpA q “ SnpF q.

10.9. – Let pU, T, δq be an object of CryspX{kq and JT the PD-ideal associated to
the closed immersion i : U Ñ T . For any local section a of JT , we have ap “ 0 and
hence an isomorphism U

„
ÝÑ T . We denote by ϕT {k the composition (2.2)

(10.9.1) ϕT {k : T
fT {k // U 1 // X 1.
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The morphism ϕX{k is equal to the relative Frobenius morphism FX{k.
If g : pU1, T1q Ñ pU2, T2q is a morphism of CryspX{kq, then ϕT2{k ˝ g “ ϕT1{k.

Let M 1 be an OX1 -module. There exists a canonical isomorphism

(10.9.2) rcg : g˚pϕ˚T2{k
pM 1qq

„
ÝÑ ϕ˚T1{k

pM 1q.

The data tϕ˚T {kpM
1q,rcgu defines a crystal of OX{k-modules that we denote by M .

Then the OX -module with integrable connection associated to M ([5] 6.8) is F˚X{kpM
1q

and the Frobenius descent connection ∇can (6.3.1) ([31] 1.1).

10.10. – We denote by CryspX{W2q the crystalline site of X over W2 equipped
with the PD-structure γ2 (5.7). Let pU, rT , δq be an object of CryspX{W2q and T the
reduction modulo p of rT . Since δ and γ2 are compatible ([5] 3.16), pU, rT , δq induces
an object pU, T, δ̄q of CryspX{kq.

Let TX{k (resp. TX1{k) be the OX -dual of Ω1
X{k (resp. Ω1

X1{k). Suppose we are given

a smooth lifting rX 1 of X 1{k over W2. Let pU, rT , δq be an object of CryspX{W2q such
that rT is flat over W2, T the reduction modulo p of rT and V an open subscheme
of T . Then pU, T q is an object of CryspX{kq. We denote by rV the open subscheme
of rT associated to V and by L

ĂX1,ϕT {k
pV q the set of W2-morphisms rV Ñ rX 1 which

make the following diagram commute (10.9)

(10.10.1) V //

ϕT {k|
V

��

rV

��
X 1 // rX 1.

The functor V ÞÑ L
ĂX1,ϕT {k

pV q defines a sheaf for the Zariski topology on T . The sheaf

L
ĂX1,ϕT {k

is a torsor under the OT -module HomOT pf
˚
T {kpΩ

1
X1{kq, pO rT q

„
ÝÑ ϕ˚T {kpTX1{kq.

Proposition 10.11 ([31] Thm. 1.1). – Suppose we are given a smooth lifting rX 1 of X 1

over W2. Let TX1{k be the crystal of OX{k-modules associated to the OX1-module TX1{k
(10.9). Then, there exists a unique TX1{k-torsor L

ĂX1
of pX{kqcrys satisfying following

conditions:

(i) For every object pU, T q of CryspX{kq admitting a flat lifting pU, rT q in CryspX{W2q,
the abelian sheaf L

ĂX1,pU,T q
of Tzar is the sheaf L

ĂX1,ϕT {k
(10.10).

(ii) For every morphism rg : pU1, rT1q Ñ pU2, rT2q of flat objects in CryspX{W2q and
any lifting rF : rT2 Ñ rX 1 P L

ĂX1,ϕT2{k
pT2q, the transition morphism

cg : ´1
g pLĂX1,pU2,T2q

q Ñ L
ĂX1,pU1,T1q

satisfies

(10.11.1) cgp
´1
g p

rF qq “ rF ˝ rg : rT1 Ñ rX 1.
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10.12. – We denote by F
ĂX1

the crystal of affine functions on L
ĂX1

and by A
ĂX1

the
quasi-coherent crystal of OX{k-algebras associated to F

ĂX1
(10.8). We put A

ĂX1
“

A
ĂX1,pX,Xq

. There exists an integrable connection ∇A on A
ĂX1
. By (10.3.2) and 10.5,

A
ĂX1

is a quasi-nilpotent F˚X{kppΓpTX1{kqq-module. The p-curvature

ψ : A
ĂX1
Ñ A

ĂX1
bOX F

˚
X{kpΩ

1
X1{kq

of ∇A is equal to the universal OX -derivation (10.5.3) (cf. [31] Prop. 1.5)

d : A
ĂX1
Ñ A

ĂX1
bOX F

˚
X{kpΩ

1
X1{kq.

10.13. – A Higgs field (5.1) on an OX -module E relative to k is equivalent to an
SpTX{kq-module structure on E, which extends its OX -module structure (cf. [31] 5.1).
Let IX be the ideal ‘mą0 SmpTX{kq of SpTX{kq. For any integer n ě 0, we say that
a Higgs module E over X relative to k is nilpotent of level ď n, if E is annihilated
by In`1

X as an SpTX{kq-module.
We call PD-Higgs module on X relative to k a pΓpTX{kq-module E, and we say that

the structure morphism ψ : pΓpTX{kq Ñ HomOX pE,Eq is the PD-Higgs field on E.
For any local section ξ of pΓpTX{kq, we set ψξ “ ψpξq.

Let n be an integerě 1. We denote by HIGγpX{kq the category of pΓpTX{kq-modules
and by HIGqn

γ pX{kq (resp. HIGn
γ pX{kq) the full subcategory of HIGγpX{kq consisting

of quasi-nilpotent objects (resp. nilpotent objects of level ď n) (10.1).
Since SnpTX{kq » ΓnpTX{kq for all 0 ď n ď p ´ 1, a nilpotent Higgs module of

level ď p´ 1 induces naturally a nilpotent PD-Higgs module of level ď p´ 1.

10.14. – Let pE1, ψ1q and pE2, ψ2q be two objects of HIGqn
γ pX{kq and B a local section

of TX{k. We define a PD-Higgs field ψ on E1 bOX E2 by ([31] 2.7.1)

(10.14.1) ψBrns “
ÿ

i`j“n

ψ1,Bris b ψ2,Brjs .

Let m,n be two integers, pE1, ψ1q an object of HIGn
γ pX{kq and pE2, ψ2q an object

of HIGm
γ pX{kq. There exists a unique PD-Higgs field ψ on HomOX pE1, E2q defined,

for every local sections h of HomOX pE1, E2q and B of TX{k by (cf. [31] page 31)

(10.14.2) ψBrlsphq “
ÿ

i`j“l

p´1qiψ2,Bris ˝ h ˝ ψ1,Brjs @ l ě 1.

10.15. – We denote by DX{k the ring of PD-differential operators on X relative to k
([5], § 4). Let B be a local section of TX{k considered as a derivation of OX over k and
hence as a PD-differential operator of order ď 1. The pth iterate Bppq of B is again a
derivation of OX over k ([25] 5.0.2, [5] 4.5). We denote by Bp the pth power of B in DX{k,
which is an operator of order ď p. The p-curvature morphism c : F˚XpTX{kq Ñ DX{k

defined by F˚XpBq ÞÑ Bp´Bppq, induces an isomorphism of OX1 -algebras ([6] 2.2.3; [31]
Thm. 2.1)

(10.15.1) SpTX1{kq
„
ÝÑ FX{k˚pZX{kq.
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The above morphism makes FX{k˚pDX{kq into an Azumaya algebra over SpTX1{kq of
rank p2d, where d is the dimension of X over k.

10.16. – We denote by Dγ
X{k the tensor product

(10.16.1) DX{k bSpTX1{kq
pΓpTX1{kq

via the morphism SpTX1{kq Ñ FX{k˚pDX{kq induced by the p-curvature morphism
(10.15.1). To give a left Dγ

X{k-module is equivalent to give an OX -module M with
integrable connection ∇ and a homomorphism

(10.16.2) ψ : pΓpTX1{kq Ñ FX{k˚p EndOX pM,∇qq

which extends the Higgs field SpTX1{kq Ñ FX{k˚p EndOX pM,∇qq given by the p-cur-
vature of ∇ (10.15.1) (cf. [31] page 32).

10.17. – There exists an isomorphism F˚X{kp
pΓpTX1{kqq

„
ÝÑ pΓpF˚X{kpTX1{kqq (10.3.2).

Let M be a left Dγ
X{k-module and n an integer ě 0. We say that M is quasi-nilpotent

(resp. nilpotent of level ď n) if M is quasi-nilpotent (resp. nilpotent of level ď n) as
a pΓpF˚X{kpTX1{kqq-module (10.1).

We denote by MICγpX{kq the category of left Dγ
X{k-modules and by MICqn

γ pX{kq

(resp. MICnγ pX{kq) the full subcategory of MICγpX{kq consisting of quasi-nilpotent
objects (resp. nilpotent objects of level ď n).

Let pM,∇q be an OX -module with integrable connection whose p-curvature is
nilpotent of level ď p´1 ([25] 5.6). Since SnpTX1{kq » ΓnpTX1{kq for all 0 ď n ď p´1,
pM,∇q induces naturally an object of MICp´1

γ pX{kq.

10.18. – Let pM1,∇1, ψ1q and pM2,∇2, ψ2q be two objects of MICqn
γ pX{kq. There

exists a canonical integrable connection ∇ onM1bOXM2 ([25] 1.1.1). The morphisms
ψ1 and ψ2 induce an action ψ of F˚X{kppΓpTX1{kqq onM1bOXM2 as in (10.14.1). Then
we obtain an object pM1 bOX M2,∇, ψq of MICqn

γ pX{kq.
Let m,n be two integers and pM1,∇1, ψ1q an object of MICmγ pX{kq and

pM2,∇2, ψ2q an object of MICnγ pX{kq. There exists an integrable connection ∇
on the OX -module HomOX pM1,M2q defined, for every local sections B of TX{k and
h of HomOX pM1,M2q by ([25] 1.1.2)

(10.18.1) ∇Bphq “ ∇2,B ˝ h´ h ˝∇1,B.

The morphisms ψ1 and ψ2 induce an action of pΓpTX1{kq on FX{k˚pHomOX pM1,M2qq

defined by the same formula as (10.14.2). These data make HomOX pM1,M2q into an
object of MICm`nγ pX{kq ([31] 2.1).

10.19. – By 10.12, the OX -algebra A
ĂX1

(10.12) is equipped with a quasi-
nilpotent left Dγ

X{k-module structure. Moreover, we have an exhaustive filtration
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tNnpA
ĂX1
quně0 of left Dγ

X{k-submodules of A
ĂX1

such that NnpA
ĂX1
q is nilpotent of

level ď n (10.8). We define pA
ĂX1
q_ to be

(10.19.1) pA
ĂX1
q_ “ HomOX pA

ĂX1
,OXq » lim

ÐÝ
ně0

HomOX pNnpA
ĂX1
q,OXq.

By 10.17 and 10.18, we see that pA
ĂX1
q_ is an object of MICγpX{kq.

The involution morphism TX{k Ñ TX{k defined by x ÞÑ ´x, induces a homomor-
phism

(10.19.2) ι : pΓpTX1{kq Ñ pΓpTX1{kq.

Theorem 10.20 ([31] 2.8). – Suppose we are given a smooth lifting rX 1 of X 1 over W2.
(i) The left Dγ

X{k-module pA
ĂX1
q_ is a splitting module for the Azumaya algebra

FX{k˚pD
γ
X{kq over pΓpTX1{kq.

(ii) The functors (10.19.2)

C
ĂX1

: MICγpX{kq
„
ÝÑ HIGγpX

1{kq E ÞÑ ι˚pHomDγ
X{k
ppA

ĂX1
q_, Eqq(10.20.1)

C´1
ĂX1

: HIGγpX
1{kq

„
ÝÑ MICγpX{kq E1 ÞÑ pA

ĂX1
q_ b

pΓpTX1{kq
ι˚pE1q(10.20.2)

are equivalences of categories quasi-inverse to each other. Furthermore, they induce
equivalences of tensor categories between MICqn

γ pX{kq and HIGqn
γ pX

1{kq (10.14),
10.18.

(iii) Let pE,∇, ψq be an object of MICγpX{kq and pE1, θ1q “ C
ĂX1
pE,∇, ψq. A

lifting rF of the relative Frobenius morphism FX{k induces a natural isomorphism
of F˚X{kppΓpTX1{kqq-modules

(10.20.3) η
rF : pE,ψq

„
ÝÑ F˚X{kpE

1,´θ1q.

We call C
ĂX1

(resp. C´1
ĂX1
) Cartier transform (resp. inverse Cartier transform).

Theorem 10.21 ([31] 2.17). – Suppose we are given a smooth lifting rX 1 of X 1

over W2. Let pM 1, θ1q be a nilpotent Higgs module on X 1{k of level ` ă p (10.13)
and pM,∇q “ C´1

ĂX1
pM 1, θ1q. Then, the lifting rX 1 induces an isomorphism in the de-

rived category DpOX1q

(10.21.1) τăp´`pM
1 bOX1 Ω‚X1{kq

„
ÝÑ FX{k˚pτăp´`pM bOX Ω‚X{kqq,

where M 1 bOX1 Ω‚X1{k is the Dolbeault complex of pM 1, θ1q, M bOX Ω‚X{k is the de
Rham complex of pM,∇q and τă‚ denotes the truncation of a complex.

We will give a partial generalization of this result for certain pn-torsion crystals
(cf. 14.1, 14.19).
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CHAPTER 11

PRELUDE ON RINGS OF DIFFERENTIAL OPERATORS

The purpose of this section is to review the description of crystals of Oyama site
in term of modules of rings of differential rings introduced in § 10 following Oyama.
It serves as a preparation for Section 12.

In this section, X denotes a smooth scheme over k. From 11.11 on, suppose we are
given a smooth formal S -scheme X with special fiber X.

11.1. – Let n ě 1 be an integer. We denote by PX (resp. PnX) the PD-envelope (resp.
the nth PD-neighborhood) of the diagonal immersion ∆ : X Ñ X2 with respect to the
zero PD-ideal of k ([5] 3.31). We put PX “ OPX and P

n
X “ OPnX and we consider

them as sheaves of Xzar. By 5.10, PX is equipped with a Hopf OX -algebra structure
pδ, π, σq (4.2).

In the first part of this section, we study the OX -algebra pPXq
_ (4.4) of hyper

PD-differential operators of X relative to k.
Assume that there exists an étale k-morphism X Ñ Adk “ SpecpkrT1, . . . , Tdsq. We

set ti the image of Ti in OX and ξi “ 1b ti ´ ti b 1. We consider the ξi’s as sections
of PX . Regarding PX as a left (resp. right) OX -algebra, we have an isomorphism
of PD-OX -algebras ([4] I 4.5.3)

(11.1.1) OXxx1, . . . , xdy
„
ÝÑ PX ,

where xi is sent to ξi. The homomorphism of PD-algebras δ : PX Ñ PX bOX PX

([4] I 1.7.1) sends ξi to ξib 1` 1b ξi. For any α P Nd, we set ξrαs “
ś

ξ
rαis
i . Then we

deduce that

(11.1.2) δpξrαsq “
ÿ

βPNd,βďα

ξrβs b ξrα´βs.

The left (resp. right) OX -module P
n
X is free with a basis tξrαs, |α| ď nu ([4] I 4.5.3).

11.2. – Let U be a open subscheme of X2 such that ∆pXq Ă U and that X Ñ U is a
closed immersion. The canonical morphism PX Ñ X2 factors through an affine mor-
phism PX Ñ U . We denote by Z the scheme theoretic image of PX Ñ U ([22] 6.10.1
and 6.10.5). Note that the morphisms X Ñ PX and PX Ñ Z induce isomorphisms
between the underlying topological spaces. Hence we regard OZ as an OX -bialgebra
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of Xzar. We obtain an injective homomorphism of O-bialgbras OZ Ñ PX and we
consider OZ as a subalgebra of PX .

Lemma 11.3. – The scheme Z defined in 11.2 is independent of the choice of U up
to canonical isomorphisms.

Proof. – Let U1 and U2 be two open subscheme of X2 such that ∆pXq Ă Ui and
that X Ñ Ui is a closed immersion i “ 1, 2 and Z1 (resp. Z2) the scheme theoretic
image of PX in U1 (resp. U2). We can suppose that U1 Ă U2. The image of |Z1| and
|PX| in |U1| (resp. |U2|) are equal. Then the composition Z2 Ñ U1 Ñ U2 is a closed
immersion. By ([22] 6.10.3), we deduce a canonical isomorphism Z1

„
ÝÑ Z2.

Lemma 11.4. – Assume that X is separated and that there exists an étale k-mor-
phism X Ñ Adk.

(i) The left (resp. right) OX-module OZ is free with a basis tξrαs, α P t0, 1, . . . , p´ 1udu

(11.1.1).
(ii) The OZ-module PX is free with a basis tξrpIs, I P Ndu.

Proof. – (i) It is clear that OZ contains ξrαs for all α P t0, . . . , p ´ 1ud. It suffices
to show that OZ is contained in the OX -submodule of PX generated by tξrαs,
α P t0, 1, . . . , p´ 1udu.

The question being local, we suppose that X is quasi-compact. Let J be the ideal
sheaf associated to the diagonal closed immersion X Ñ X2 and $ : PX Ñ X2 the
canonical morphism. By 11.3, we consider Z as the scheme theoretic image of $.
The ideal J being of finite type, we suppose that J is generated by m elements
x1, . . . , xm of JpX2q for some integer m ě d. Since OPX is a PD-algebra, the im-
age of xp1, . . . , x

p
m in $˚pOPX q are zero. Put N “ pp ´ 1qm. Then the image of the

ideal JN`1 in $˚pOPX q is zero, i.e., the morphism $ factors through the N th order in-
finitesimal neighborhood YN “ SpecpOX2{JN`1q of the diagonal immersion X Ñ X2.
Then we obtain a homomorphism

(11.4.1) OYN Ñ PX ,

whose image is OZ . Recall ([5] 2.2) that, the left (resp. right) OX -module OYN is
free with a basis tξI , |I| ď Nu. For any element I “ pi1, . . . , idq P Nd, if one of the
components ij is ě p, then the image of ξI in PX is zero. Then the assertion follows.

(ii) The assertion follows from (i) and the local description of PX (11.1.1).

11.5. – The p-curvature morphism c1 : SpTX1{kq Ñ FX{k˚pDX{kq induces an isomor-
phism between SpTX1{kq and the center ZX{k of DX{k (10.15.1). It makes DX{k into
an SpTX1{kq-module of finite type. Let IX1 be the ideal ‘mě1 SmpTX1{kq of SpTX1{kq.
We denote by K the two-side ideal of DX{k generated by c1pIX1q and by pDX{k the
completion of DX{k with respect to the filtration tK

m
umě1:

(11.5.1) pDX{k “ lim
ÐÝ
mě1

DX{k {K
m
.
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The completion pDX{k is equal to the pIX1q-adic completion for the SpTX1{kq-mod-
ule DX{k. Then we obtain an isomorphism of pSpTX1{kq-algebras

(11.5.2) pSpTX1{kq bSpTX1{kq
DX{k

„
ÝÑ pDX{k.

11.6. – Recall that DX{k is defined as lim
ÝÑně1

pP
n
Xq
_, where pP

n
Xq
_ “ HomOX pP

n
X ,OXq.

Then we have a canonical homomorphism of OX -algebras:

(11.6.1) DX{k Ñ pPXq
_.

For any integer n ě 0 and any open subscheme U of X, we define

(11.6.2) FnpPXqpUq “ ta P PXpUq|upaq “ 0 @u P K
n`1

pUqu.

Then FnpPXq is a left OX -submodule of PX . We set pFnpPXqq
_ “ HomOX pF

n
pPXq,

OXq.

11.7. – Suppose that there exists an étale k-morphism X Ñ Adk “ Specpkrt1, . . . , tdsq.
Let ti be the image of Ti in OX and Bi P TX{kpXq the dual of dti that we consider
as a PD-differential operator. For i, j, Bi and Bj commute. We set BI “

śd
j“1 B

ij
j for

all I “ pi1, . . . , idq P Nd. Any local section of DX{k can be written as a finite sum
ř

I aIB
I . The p-curvature morphism c1 sends B1i to B

p
i and the ideal K is generated

by tBp1 , . . . , B
p
du over DX{k. Then, any local section of pDX{k can be written as an

infinite sum:

(11.7.1)
ÿ

IPNd
aIB

I with aI P OX .

Since c1pB1βq “ Bpβ for β P Nd, the above section can be rewritten as

(11.7.2)
ÿ

αPt0,...,p´1ud,βPNd
bα,βB

α ¨ c1pB1βq with bα,β P OX .

For any I, J P Nd, the image of BI in pPXq
_ (11.6.1) satisfies BIpξrJsq “ δI,J .

Lemma 11.8. – (i) For any n ě 0, the sheaf FnpPXq is an OZ-submodule of PX

(11.2).
(ii) With the assumption and notation of 11.4, FnpPXq is a free OZ-module with

basis tξrpIs, |I| ď nu.

Proof. – (i) The question being local, we take again the assumption of 11.4. Since
the ideal K is generated by tBp1 , . . . , B

p
du, a local section a “

ř

I bIξ
rIs of PX is

annihilated by K if and only if bI “ 0 for all I P Nd ´ t0, . . . , p ´ 1ud. By 11.4(i),
F0
pPXq is equal to the subsheaf OZ of PX . Then the assertion follows.
(ii) The ideal K

n`1 is generated by the set of PD-differential operators tBpI , |I| “
n ` 1u over DX{k. Then the assertion follows from 11.4(ii) and the duality between
BI and ξrIs.
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11.9. – For any n ě 0, since FnpPXq is locally a direct summand of PX , the canon-
ical morphism pPXq

_ Ñ pFnpPXqq
_ is surjective. By (11.1.2), 11.4(i) and 11.8(ii),

the homomorphism δ : PX Ñ PX bOX PX (11.1) sends FnpPXq to FnpPXqbOX

FnpPXq. In view of (4.4), the OX -algebra pPXq
_ induces an OX -algebra structure

on pFnpPXqq
_.

Proposition 11.10 (Berthelot (1)). – (i) For any integer n ě 1, the homomor-
phism (11.6.1) induces a canonical isomorphism of OX-algebras DX{k {K

n`1 „
ÝÑ

pFnpPXqq
_.

(ii) The homomorphism (11.6.1) induces a canonical isomorphism of OX-algebras
pDX{k

„
ÝÑ pPXq

_.

Proof. – (i) Since K
n`1 acts trivially on FnpPXq, we obtain a homomor-

phism DX{k {K
n`1

Ñ pFnpPXqq
_. In view of the local description of K

n`1

and of FnpPXq (11.8(ii)), this homomorphism is an isomorphism.

(ii) We have a canonical isomorphism pPXq
_ “ HomOX plimÝÑně0

FnpPXq,OXq »

lim
ÐÝ
pFnpPXqq

_. Then the assertion follows from (i).

11.11. – In the remainder of this section, suppose that there exists a smooth formal
S -scheme X with special fiber X. We put RX,1 “ RX{pRX and Q

X,1 “ Q
X
{pQ

X

(4.9). We review the Oyama’s description of pΓpTX{kq,D
γ
X{k in terms of rings of dif-

ferential operators associated to Hopf algebras RX,1, Q
X,1.

Recall that the left and the right OX -algebra structures of RX,1 are equal (4.9).
We denote by q1, q2 : QX,1 Ñ X the canonical morphisms. Suppose that there exists
an étale S -morphism X Ñ pAdS “ SpfpWtT1, . . . , Tduq. We set ti the image of Ti
in OX and ξi “ 1 b ti ´ ti b 1. We take again the notation of 4.14 and of 4.15 and
we denote by ζi the element ξi

p of RX,1 and by ηi the element ξpi
p of Q

X,1. We have
isomorphisms of OX -algebras (4.14), 4.15

OX rx1, . . . , xds
„
ÝÑ RX,1, xi ÞÑ ζi;(11.11.1)

OX rx1, . . . , xd, y1, . . . , yds{px
p
1, . . . , x

p
dq

„
ÝÑ qj˚pQ

X,1q, xi ÞÑ ξi, yi ÞÑ ηi j “ 1, 2.

(11.11.2)

1. We learn the proof of a local version of (ii) from a talk note given by Berthelot on Cartier
transform.
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By 4.16, we have the following description of the Hopf algebra structures on RX,1

and Q
X,1 ([32] 1.2.9)

$

’

&

’

%

δ : RX,1 Ñ RX,1 bOX RX,1 ζi ÞÑ 1b ζi ` ζi b 1

σ : RX,1 Ñ RX,1 ζi ÞÑ ´ζi

π : RX,1 Ñ OX ζi ÞÑ 0

(11.11.3)

$

’

’

’

’

&

’

’

’

’

%

δ : Q
X,1 Ñ Q

X,1 bOX Q
X,1 ξi ÞÑ 1b ξi ` ξi b 1

ηi ÞÑ 1b ηi `
řp´1
j“1

pp´1q!
j!pp´jq!ξ

j
i b ξ

p´j
i ` ηi b 1

σ : Q
X,1 Ñ Q

X,1 ξi ÞÑ ´ξi, ηi ÞÑ ´ηi

π : Q
X,1 Ñ OX ξi ÞÑ 0, ηi ÞÑ 0

Proposition 11.12 ([32] 1.2.12). – The Hopf OX-algebra RX,1 is canonically iso-
morphism to SpΩ1

X{kq (10.1) and the OX-algebra pRX,1q
_ (4.4) is canonically iso-

morphic to pΓpTX{kq (10.1).

11.13. – In the following, we study the OX -algebra pQ
X,1q

_. Suppose first that there
exists an S -morphism F : XÑ X1 which lifts the relative Frobenius morphism FX{k
of X. We denote by Y (resp. Z) the fiber product of F 2 : X2 Ñ X12 and RX1 Ñ X12

(resp. the diagonal immersionX 1 Ñ X12) and by S the fiber product of FX{k : X Ñ X 1

and RX1,1 Ñ X 1 (4.9). The morphism FX{k : X Ñ X 1 and the diagonal immersion
∆ : X Ñ X2 induce a closed immersion X ãÑ Z. We have a commutative diagram:

(11.13.1) S

��

//

l

Y

��

//

��

RX1,1

��

""
Y //

��

RX1

��

X // Z

��

// X 1

""
X2 F 2

// X12,

where Y “ Y1 is equal to RX1,1 ˆX1 Z and the left square is Cartesian.

Let U be an open formal subscheme of X2 such that diagonal immersion X Ñ X2

factors through a closed immersion X Ñ U and put U1 “ UˆS ,σS . Let I (resp. I 1)
be the ideal associated to the diagonal immersion X Ñ U (resp. X 1 Ñ U1). For any
local section x of I , we have xp P I 1OU. Since Z is defined by I 1OU and X is
reduced, the closed immersion X ãÑ Z induces an isomorphism X

„
ÝÑ Z. Then, the
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closed immersion Y Ñ Y factors through S Ñ Y . By the universal property of QX
(3.5), we deduce an X2-morphism

(11.13.2) ν : YÑ QX.

The composition QX Ñ X2 F 2

ÝÝÑ X12 induces a morphism of formal groupoids above F
(6.6.1):

(11.13.3) ψ : QX Ñ RX1 .

By (11.13.1) and the universal property of RX1 (3.5), we deduce that the composition
ψ ˝ ν : YÑ QX Ñ RX1 is the canonical morphism

(11.13.4) Y “ RX1 ˆX12 X
2 Ñ RX1 .

11.14. – Keep the assumption and notation of 11.13. The morphism ν (11.13.2)
induces a morphism S Ñ QX,1 which makes the following diagram commutes

(11.14.1) S //

��

QX,1
ψ1 //

��

RX1,1

��
X

!!

// X 1

��
X2 // X 12.

Let g be the canonical morphism S Ñ X. Since RX1,1 Ñ X 1 is affine, we have an
isomorphism F˚X{kpRX1,1q

„
ÝÑ g˚pOSq ([22] 9.3.2). Then the morphism S Ñ QX,1

induces an OX -bilinear homomorphism

(11.14.2) v : Q
X,1 Ñ F˚X{kpRX1,1q.

With the assumption and notation of 11.11, v sends ξi to 0 and ηi to F˚X{kpζ
1
iq ([32]

1.2.14). Hence, v is independent of the choice of the lifting F : X Ñ X1 of FX{k, and
can be defined for a general smooth formal S -scheme X even if the relative Frobenius
morphism cannot be lifted over S .

By (11.11.3), v is compatible with Hopf OX -algebras structures. By taking OX -du-
als, we obtain a homomorphism of OX -algebras (10.3.2), 11.12

(11.14.3) v_ : F˚X{kp
pΓpTX1{kqq Ñ pQ

X,1q
_.

The morphism ψ1 induces a homomorphism of Hopf algebras sF : RX1,1 Ñ

FX{k˚pQ
X,1q (4.3). By adjunction, we obtain a homomorphism of OX -algebras

(11.14.4) s7F : F˚X{kpRX1,1q Ñ Q
X,1

for the left OX -algebra structure on Q
X,1. The composition v ˝ sF is the identical

homomorphism.

MÉMOIRES DE LA SMF 163



CHAPTER 11. PRELUDE ON RINGS OF DIFFERENTIAL OPERATORS 85

Recall that we have a canonical morphism of formal X-groupoids PX Ñ QX (5.12.1).
Then we obtain a homomorphism of Hopf OX -algebras (4.3):

(11.14.5) u : Q
X,1 Ñ PX .

With the assumption and notation of 11.11, u sends ξi to ξi and ηi to ´ξ
rps
i (11.1.1)

([32] 1.2.14).
By taking duals (4.4 and 11.10(ii)), u induces a homomorphism of OX -algebras

(11.14.6) u_ : pDX{k Ñ pQ
X,1q

_.

Lemma 11.15 ([32] 1.2.15). – Let σ : F˚X{kpRX,1q Ñ F˚X{kpRX,1q be the involution
homomorphism defined in (11.11.3).

(i) The restriction of u_ and pσ ˝ vq_ to F´1
X{kp

pSpTX1{kqq coincide.

(ii) The images of any local sections of u_ppDX{kq and of pσ ˝ vq_pF´1
X{kp

pΓpTX1{kqqq

commute in pQ
X,1q

_.

Proposition 11.16 ([32] 1.2.13). – The homomorphisms pσ ˝ vq_ and u_ induce an
isomorphism of F˚X{kppΓpTX1{kqq-algebras (10.16)

(11.16.1) Dγ
X{k

„
ÝÑ pQ

X,1q
_.

Proposition 11.17 ([32] 1.2.10). – Let X be a smooth formal S -scheme, X its
special fiber. There exists a canonical equivalence of tensor categories between
HIGqn

γ pX{kq (10.13) (resp. MICqn
γ pX{kq (10.17)) and the category of OX-modules

with RX-stratification (resp. Q
X
-stratification) (4.11), 5.4.

Proof. – We briefly recall here the main construction of the equivalence which will be
used in the following and refer to [32] for details.

Let pM, εq be an OX -module with RX-stratification and θ : M Ñ M bOX RX,1

the OX -linear morphism defined by θpmq “ εp1 b mq (5.5). By 5.5 and 11.12, we
deduce a pΓpTX{kq-module ψ structure on M . To show that ψ is quasi-nilpotent, we
suppose that there exists an étale S -morphism XÑ pAdS . We take again notation of
11.11. For any I P Nd, we set BrIs “

śd
j“1 B

rijs
j P pΓpTX{kq. The action of BrIs on M is

given by the composition

(11.17.1) ψBrIs : M
θ // M bOX RX,1

idbBrIs// M.

Since RX,1 is isomorphic to a polynomial algebra over OX (11.11), for any local
section m of M and any point x of X, there exists a neighborhood U of x such that
θpmq|U

is a section of MpUq bOXpUq RX,1pUq and can be written as a finite sum:

(11.17.2) εp1bmq “ θpmq “
ÿ

IPNd
ψBrIspmq b ζ

I .

Hence, pM,ψq is quasi-nilpotent (10.1).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2019



86 CHAPTER 11. PRELUDE ON RINGS OF DIFFERENTIAL OPERATORS

Let pM, εq be an OX -module with Q
X
-stratification and θ : M Ñ M bOX Q

X,1

the morphism induced by ε. By 5.5 and 11.16, we associate to it a Dγ
X{k-module

pM,∇, ψq (10.16). We take again the assumption and notation of the proof of 11.16.
For I P t0, . . . , p´1ud, J P Nd, the action of the local section BI bF˚X{kpB

1rJsq of Dγ
X{k

on M is given by the composition

(11.17.3) ∇BI ˝ ψB1rJs : M
θ // M bOX Q

X,1

idbwpBIbF˚
X{k

pB
1rJs
qq
// M.

Since Q
X,1 is of finite type over a polynomial algebra over OX (11.11), for any local

section m of M and any point x of X, there exists a neighborhood U of x such that
θpmq|U

is a section of MpUq bOXpUq Q
X,1pUq and can be written as a finite sum (cf.

[32] page 25)

(11.17.4) εp1bmq “ θpmq “
ÿ

IPt0,...,p´1ud,JPNd
p´1q|J|

1

I!
p∇BI ˝ ψB1rJsqpmq b ξIηJ .

Hence pM,∇, ψq is quasi-nilpotent (10.17).

We deduce from 8.10 and 11.17 the following equivalences.

Corollary 11.18. – Let X be a smooth formal S -scheme, X its special fiber, rE and
rE the Oyama topoi of X (7.9) and OE ,1, OE ,1 the p-torsion structure rings of rE and
rE respectively (8.1). We denote by C pOE ,1q (resp. C pOE ,1q) the category of crystals
of OE ,1-modules of rE (resp. OE ,1-modules of rE ) (8.3). Then, we have equivalences of
tensor categories

(11.18.1) HIGqn
γ pX{kq » C pOE ,1q, MICqn

γ pX{kq » C pOE ,1q.

The following result is an analog of 10.20(iii) for Cariter equivalence.

Corollary 11.19. – Let CX{S : rE Ñ rE 1 be the morphism of topoi associated
to X (9.11.4), M 1 a crystal of OE 1,1-modules of rE 1 (8.3), pM 1, θq the associated
pΓpTX1{kq-module (11.18) and p∇, ψq the Dγ

X{k-module structure on pC˚X{S pM
1qqpX,Xq.

Then a lifting F : X Ñ X1 of the relative Frobenius morphism FX{k of X induces a
functorial isomorphism of F˚X{kppΓpTX1{kqq-modules:

(11.19.1) ηF : ι˚pF˚X{kpM
1, θqq

„
ÝÑ ppC˚X{S pM

1qqpX,Xq, ψq,

where ι denotes the involution homomorphism F˚X{kp
pΓpTX1{kqq Ñ F˚X{kp

pΓpTX1{kqq

(10.19.2).

Proof. – We take again the notation of 11.14. By 4.5, 11.12 and 11.16, the homomor-
phism s7F (11.14.4) induces a homomorphism of OX -algebras:

(11.19.2) ps7F q
_ : Dγ

X{k Ñ F˚X{kp
pΓpTX1{kqq.
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Since the composition v ˝ s7F is the identity (11.14), the composition (11.14.3)

(11.19.3) F˚X{kp
pΓpTX1{kqq

pσ˝vq_

ÝÝÝÝÑ Dγ
X{k

ps7F q
_

ÝÝÝÝÑ F˚X{kp
pΓpTX1{kqq

is the involution homomorphism ι : F˚X{kp
pΓpTX1{kqq Ñ F˚X{kp

pΓpTX1{kqq (10.19.2).
Let ε be the associated RX1 -stratification onM 1. Recall 9.17 that the morphism F

induces a functorial isomorphism of OX -modules compatible with Q
X
-stratifications:

(11.19.4) ηF : pF˚X{kpM
1q, s˚F pεqq

„
ÝÑ pC˚X{S pM

1qqpX,Xq.

In view of 11.17, the associated Dγ
X{k-module structure on F˚X{kpM

1q in the left hand

side is give by F˚X{kpθq via ps7F q
_ that we denote by p∇F , ψF q. Then we obtain a

functorial isomorphism of Dγ
X{k-modules

(11.19.5) ηF : pF˚X{kpM
1q,∇F , ψF q

„
ÝÑ pC˚X{S pM

1qqpX,Xq.

In view of (11.19.3), we have an equality of F˚X{kppΓpTX1{kqq-modules

(11.19.6) pF˚X{kpM
1q, ψF q “ ι˚pF˚X{kpM

1, θqq.

This concludes the proof.
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CHAPTER 12

COMPARISON WITH THE CARTIER TRANSFORM
OF OGUS-VOLOGODSKY

In this section, we compare the Cartier equivalence modulo p and the Cartier trans-
form of Ogus-Vologodsky. Our approach is different to that of Oyama. We interpret
the Cartier equivalence as an admissibility condition à la Fontaine for a pair of crystals
(12.17) and use it to compare with Cartier transform (12.22).

Let X be a smooth formal S -scheme, X its special fiber and TX{k the OX -dual of
the OX -module of differential forms Ω1

X{k. We set X1 “ XbS ,σ S .

12.1. – We first interpret the Cartier descent in the context of Cartier equivalence
(12.3).

Let rE and rE be the Oyama topoi of X (7.9) and OE ,1, OE ,1 the p-torsion structure
rings of rE and rE respectively (8.1). We keep the conventions and notation of § 7-8. A
morphism g : pU1,T1, u1q Ñ pU2,T2, u2q of E (resp. E ) induces a morphism of ringed
topoi (8.2.1)

(12.1.1) rgs : pU1, u1˚pOT1
qq Ñ pU2, u2˚pOT2

qq.

If we equip E (resp. E ) with the Zariski topology, the functor (7.5.1)

(12.1.2) π : E Ñ Zar{X (resp. π : E Ñ Zar{Xq pU,Tq Ñ U

is cocontinuous. Since π commutes with the fibered product of a flat morphism and a
morphism (7.3), one verifies that π is also continuous ([3] III 1.6). By 7.15, it induces
a morphism of topoi that we denote by

(12.1.3) v : rE Ñ Xzar (resp. v : rE Ñ Xzarq

such that the inverse image functor is induced by the composition with π. Moreover,
one verifies that the above morphisms fit into a commutative diagram

(12.1.4) rE
CX{S //

v

��

rE 1

v1

��
Xzar

FX{k // X 1zar.
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Let F be a sheaf of Xzar. For any object pU,Tq of E (resp. E ), we have
pv˚pF qqpU,Tq “ F |U

. For any morphism f : pU1,T1q Ñ pU2,T2q of E (resp. E ), the
transition morphism γf of v˚pF q (7.6.2) is the canonical isomorphism

(12.1.5) γf : pF |U2
q|U1

„
ÝÑ F |U1

.

12.2. – For any object pU,T, uq of E , the morphism u : T Ñ U induces a canonical,
functorial homomorphism

(12.2.1) v˚pOXqpU,T, uq “ OXpUq Ñ OE ,1pU,T, uq “ u˚pOT qpUq.

Then the morphism of topoi v : rE Ñ Xzar underlies a morphism of ringed topoi

(12.2.2) ν : p rE ,OE ,1q Ñ pXzar,OXq.

For any object pU,T, uq of E , we have a morphism u1 ˝ fT {k : T Ñ U 1 (9.1.1) and
hence a canonical, functorial homomorphism

(12.2.3) v˚pF˚X{kpOX1qqpU,T, uq “ OX1pU
1q Ñ OE ,1pU,T, uq “ pu

1 ˝ fT {kq˚pOT qpU
1q.

The composition of morphisms FX{k ˝ v : rE Ñ Xzar Ñ X 1zar underlies a morphism of
ringed topoi

(12.2.4) µ : prE ,OE ,1q Ñ pX 1zar,OX1q.

By (12.1.4), the morphisms µ and ν1 fit into a commutative diagram

(12.2.5) prE ,OE ,1q
CX{S //

µ
&&

p rE 1,OE 1,1q

ν1xx
pX 1zar,OX1q.

Proposition 12.3. – Let ModpOX1q be the category of OX1-modules and let λ be
the functor

(12.3.1) λ : ModpOX1q Ñ MIC0
γpX{kq M 1 ÞÑ pF˚X{kpM

1q,∇can, 0q,

where MIC0
γpX{kq denotes the category of nilpotent Dγ

X{k-modules of level ď 0 (10.17).
Then, the following diagram is commutative up to a canonical isomorphism

(12.3.2) ModpOX1q
λ //

ν1˚

��

MIC0
γpX{kq

��
C pOE 1,1q

C˚
X{S // C pOE ,1q,

where the right vertical arrow is given by (11.18).

The proposition follows from Lemmas 12.5, 12.6 below.
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12.4. – Let M be an OX -module and M “ ν˚pMq (12.2.2). For any object pU,T, uq
of E , we set ru˚pMq “ M |U

bOU u˚pOT q. Recall (12.1) that we have pv˚pMqqpU,Tq “
M |U

. In view of 7.10 and (12.2.1), we deduce that MpU,T,uq “ ru˚pMq. For any mor-
phism g : pU1,T1, u1q Ñ pU2,T2, u2q of E , in view of (12.1.5), the transition mor-
phism cg : rg˚s pMpU2,T2qq ÑMpU1,T1q is the canonical isomorphism (12.1.1)

(12.4.1) rg˚s pru
˚
2 pMqq

„
ÝÑ ru˚1 pMq.

Hence M is a crystal of OE ,1-modules of rE . If M is moreover quasi-coherent, then so
is M (8.3). In this case, for any object pU,T, uq of E , the OT -module MpU,Tq of Tzar

(8.4) is u˚pM |U q.

Lemma 12.5. – Under the assumption of 12.4, the pΓpTX{kq-module associated to M
(11.18) is the OX-module M equipped with the zero PD-Higgs field (10.13).

Proof. – The underlying OX -module is MpX,Xq “M . The reduction modulo p of the
two canonical morphisms q1, q2 : RX Ñ X are equal. By (12.4.1), the RX-stratifica-
tion on M associated to M (8.10)

ε : rq˚2,spMq
„
ÝÑ rq˚1,spMq

is the identity morphism. In view of (11.17.1) and (11.17.2), the PD-Higgs field asso-
ciated to ε is zero.

Lemma 12.6. – Let M 1 be an OX1-module and M “ µ˚pM 1q. Then M is a crystal
of OE ,1-modules of rE and the Dγ

X{k-module associated to M is pF˚X{kpM
1q,∇can, 0q

(11.18), where ∇can denotes the Frobenius descent connection on F˚X{kpM
1q (6.3.1).

Proof. – We set M 1 “ ν1˚pM 1q (12.2.5). Then M “ C˚X{S pM
1q is a crystal by 12.4.

For any object pU,T, uq of E , we put φT {k “ u1 ˝ fT {k : T Ñ T 1 Ñ U 1. Then we have
ρpU,T, uq “ pU 1,T, φT {kq (9.1.2) and (9.11.1)

(12.6.1) C˚X{S pM
1qpU,T,uq “ πU˚pM

1
pU 1,T,φT {kq

q “ πU˚prφ
˚
T {kpM

1qq.

The morphism φX{k associated to the object pX,Xq of E is FX{k. Then we have
MpX,Xq “ F˚X{kpM

1q. There exists a commutative diagram

(12.6.2) QX,1
q2 //

q1

��

φQX,1{k

((

X

FX{k

��
X

FX{k // X 1.

The morphisms q1, q2 : pX,QXq Ñ pX,Xq of E induce isomorphisms (12.4.1), 12.6.1

cq1 : rq˚1,spF
˚
X{kpM

1qq
„
ÝÑ πX˚prφ

˚
QX,1{k

pM 1qq,

cq2 : rq˚2,spF
˚
X{kpM

1qq
„
ÝÑ πX˚prφ

˚
QX,1{k

pM 1qq.
(12.6.3)
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The Q
X
-stratification ε on F˚X{kpM

1q associated to the crystal M (8.10) is given by
the composition of cq2 and the inverse of cq1 . In view of (12.6.2), for any local section
m1 of M 1, we have

(12.6.4) εp1b F˚X{kpm
1qq “ F˚X{kpm

1q b 1.

Let pF˚X{kpM
1q,∇, ψq be the Dγ

X{k-module associated to pF˚X{kpM
1q, εq (11.17). In view

of (12.6.4), (11.17.3) and (11.17.4), we deduce that ∇ and ψ annihilate the subsheaf
F´1
X{kpM

1q of F˚X{kpM
1q. Hence ∇ is the Frobenius descent connection and ψ “ 0.

12.7. – To compare the Cartier equivalence and the Cartier transform, we recon-
struct the crystal AX12

(10.12) as a crystal in Oyama topos rE (cf. 12.15 and 12.27)
which allows us to compare Cartier transform and Cartier equivalence. Compared to
Oyama’s approach for this construction ([32] 1.5.2), our approach use certain torsor
of liftings in Oyama topoi and is close the original construction of Ogus-Vologodsky.

Let pU,T, uq be an object of E , W an open subscheme of T and W2 the open sub-
scheme of T2 associated toW . We define RX,pU,T,uqpW q to be the set of S2-morphisms
W2 Ñ X2 which make the following diagram commutes

(12.7.1) W //

u|
W

��

W2

��
U // X // X2.

The functor W ÞÑ RX,pU,T,uqpW q defines a sheaf of Tzar. Since X is smooth over S ,
such morphisms exist locally. The sheaf RX,pU,T,uq is a torsor under the OT -module
HomOT2

pu˚pΩ1
U{kq, pOT2

q
„
ÝÑ u˚pTU{kq of Tzar.

12.8. – Let g : pV,Z, vq Ñ pU,T, uq be a morphism of E and gs : Z Ñ T (resp.
g2 : Z2 Ñ T2) the reduction of the morphism Z Ñ T. For OT -modules, we will use
the notation g´1

s to denote the inverse image in the sense of abelian sheaves and will
keep the notation g˚s for the inverse image in the sense of modules. By adjunction,
the isomorphism g˚s pu

˚pTU{kqq
„
ÝÑ v˚pTV {kq induces an OT -linear morphism:

τ : u˚pTU{kq Ñ gs˚pv
˚pTV {kqq.

We have a canonical τ -equivariant morphism RX,pU,T,uq Ñ gs˚pRX,pV,Z,vqq of Tzar

defined for every local section h :W2 Ñ X2 of RX,pU,T,uq by

(12.8.1) RX,pU,T,uq Ñ gs˚pRX,pV,Z,vqq h ÞÑ h ˝ g2|g´1
2 pW2q

.

By adjunction, we obtain a g´1
s pu

˚pTU{kqq-equivariant morphism of Zzar:

(12.8.2) γg : g˚s pRX,pU,T,uqq Ñ RX,pV,Z,vq.

By ([17] III 1.4.6(iii)), we deduce a v˚pTV {kq-equivariant isomorphism of Zzar (10.7):

(12.8.3) g`s pRX,pU,T,uqq
„
ÝÑ RX,pV,Z,vq.
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One verifies that the data tu˚pRX,pU,T,uqq, γgu satisfy the compatibility conditions
of 7.7. Then it defines a sheaf of rE that we denote by RX (7.10). We set TX{k “

ν˚pTX{kq (12.2.2), 12.5. In view of 12.7 and (12.8.2), RX is a TX{k-torsor of rE .

Proposition 12.9. – (i) There exists a quasi-coherent crystal FX of OE ,1-modules
of rE such that:

(a) For every object pU,T, uq of E , FX,pU,Tq (8.4) is the sheaf of affine functions on
the u˚pTU{kq-torsor RX,pU,T,uq of Tzar (10.4).

(b) For every morphism g : pV,Zq Ñ pU,Tq of E , any affine function l :

RX,pU,T,uq Ñ OT and any section h P RX,pU,T,uqpT q, the transition mor-
phism cg : g˚s pFX,pU,Tqq

„
ÝÑ FX,pV,Zq (8.4) sends g˚s plq to an affine function

l1 : RX,pV,Z,vq Ñ OZ such that

(12.9.1) l1ph ˝ g2q “ g˚s plphqq P OZ .

(ii) We have an exact sequence of crystals (12.2.2):

(12.9.2) 0 Ñ OE ,1 Ñ FX Ñ ν˚pΩ1
X{kq Ñ 0.

Proof. – (i) For any object pU,T, uq of E , we define FX,pU,Tq as in (i). Recall (10.4.3)
that we have an exact sequence of OT -modules of Tzar

(12.9.3) 0 Ñ OT
c
ÝÑ FX,pU,Tq

ω
ÝÑ u˚pΩ1

U{kq Ñ 0.

For any morphism g : pV,Zq Ñ pU,Tq of E , by (10.7.4) and (12.8.3), we obtain an
OZ-linear isomorphism

(12.9.4) cg : g˚s pFX,pU,Tqq
„
ÝÑ FX,pV,Zq

which fits into a commutative diagram (10.7.5)

(12.9.5) 0 // g˚s pOT q //

o

��

g˚s pFX,pU,Tqq
ω //

cg

��

g˚s pu
˚pΩ1

U{kqq
//

o
��

0

0 // OZ // FX,pV,Zq
ω // v˚pΩ1

V {kq
// 0.

In view of the compatibility conditions of γg (12.8.2) and ([2] II 4.15), the data
tFX,pU,Tq, cgu satisfy the compatibility conditions of 8.2. Hence, they define a quasi-
coherent crystal of OE ,1-modules of rE that we denote by FX. The equality (12.9.1)
follows from (10.7.2) and (12.8.1).

The assertion (ii) follows from 12.4 and the diagram (12.9.5).

12.10. – We denote by BX the quasi-coherent crystal of OE ,1-algebras lim
ÝÑně1

SnOE ,1
pF q

of rE . We set F X “ FX,pX,Xq and BX “ BX,pX,Xq. Then we obtain an RX-strati-
fication εF on F X (resp. εB on BX) and a pΓpTX{kq-module structure ψF on F X

(resp. ψB on BX). On the other hand, F X being the sheaf of affine functions on the
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TX{k-torsor RX,pX,Xq, F X (resp. BX) is equipped by 10.5 with a pΓpTX{kq-module
structure that we denote by κF (resp. κB).

In the following, we show that ψF and κF are different by a sign (12.12).
Recall that we have an exact sequence (12.9.3)

(12.10.1) 0 Ñ OX Ñ F X Ñ Ω1
X{k Ñ 0.

The element idX2
: X2 Ñ X2 of RX,pX,XqpXq induces a canonical splitting

(12.10.2) sid : F X
„
ÝÑ OX ‘ Ω1

X{k, l ÞÑ plpidq, ωplqq.

Then it induces an isomorphism of OX -algebras

(12.10.3) BX
„
ÝÑ SpΩ1

X{kq.

By 10.6, the isomorphism sid (12.10.2) (resp. (12.10.3)) is compatible with the action
κF (resp. κB) and the canonical action of pΓpTX{kq on OX ‘ Ω1

X{k (resp. SpΩ1
X{kq)

(10.2).

Proposition 12.11. – Assume that there exists an étale S -morphism X Ñ pAdS “

SpfpWtT1, . . . , Tduq. We take again the notation of 11.11.
(i) If l is a section of F X such that ωplq “ 0 (12.10.2), then εF p1b lq “ l b 1.
(ii) For 1 ď i ď d, let li be the section of F X such that lipidq “ 0 and ωpliq “ dti.

Then εF p1b liq “ li b 1´ 1b ζi.

Proof. – Assertion (i) follows from 12.5 and 12.9(ii).
(ii) We denote by qs : RX,1 Ñ X the canonical morphism. The canonical morphisms

q1,2, q2,2 : RX,2 Ñ X2 P RX,pX,RX,qsqpRX,1q induce two splittings of F X,pX,RXq
(12.9.3)

sq1 : qs˚pFX,pX,RXqq
„
ÝÑ RX,1 ‘ pRX,1 bOX Ω1

X{kq f ÞÑ pfpq1q, ωpfqq,(12.11.1)

sq2 : qs˚pFX,pX,RXqq
„
ÝÑ RX,1 ‘ pRX,1 bOX Ω1

X{kq f ÞÑ pfpq2q, ωpfqq.(12.11.2)

We identify RX,1‘pRX,1bOX Ω1
X{kq with RX,1bOX F X by id RX,1

bsid (12.10.2).
In view of (12.9.1) and (12.9.5), the morphism sqi is inverse to qs˚pcqiq for i “ 1, 2.
Then, the RX-stratification ε on F X is given by the composition of the inverse of sq2
and sq1 .

We denote by f the local section s´1
q2 p1 b liq of qs˚pFX,pX,RXqq. Then we have

fpq2q “ 0 and ωpfq “ 1b dti. To show the assertion, it suffices to prove that fpq1q “

´ζi b 1. The morphisms q1, q2 are induced by two homomorphisms

(12.11.3) ι1 : OX2
Ñ RX,2, ι2 : OX2

Ñ RX,2,

such that ι1 is equal to ι2 modulo p. Then they define a W2-derivation

(12.11.4) D “ ι2 ´ ι1 : OX2
Ñ pRX,2.

We denote by

(12.11.5) φ : RX,1 bOX Ω1
X{k Ñ pRX,2
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the RX,1-linear morphism associated to D. Then we have

φp1b dtiq “ 1b ti ´ ti b 1 “ p

ˆ

ξi
p

˙

P pRX,2.

Identifying HomOX pRX,1 bOX Ω1
X{k, pRX,2q

„
ÝÑ RX,1 bOX TX{k, we consider φ as

a section of q˚s pTX{kq. Then we have q2 “ q1 ` φ P RX,qspRX,1q and we deduce that
(10.4(ii))

fpq1q “ fpq2 ´ φq “ ´ωpfqpφq “ ´ζi b 1.

Then the proposition follows.

Corollary 12.12. – The pΓpTX{kq-actions ψF and κF on F X (resp. ψB and κB

on BX) satisfy ψF “ ι˚pκF q (resp. ψB “ ι˚pκBq), where ι : pΓpTX{kq Ñ pΓpTX{kq

denotes the involution homomorphism (10.19.2).

Proof. – The question being local, we take again the assumptions and notation of
12.11. Let Bi P TX{kpXq be the dual of dti. In view of (11.17.2) and 12.11(ii), the
action of ψF ,Bi on F X sends li to ´1. We equip OX ‘Ω1

X{k (resp. SpΩ1
X{kq) with the

canonical action of pΓpTX{kq (10.2). The isomorphism sid (12.10.2) (resp. (12.10.3))
sends li to dti and induces an isomorphism of pΓpTX{kq-modules

(12.12.1) pF X, ψF q
„
ÝÑ ι˚pOX ‘ Ω1

X{kq (resp. ppBX, ψBq
„
ÝÑ ι˚pSpΩ1

X{kqqq.

Then the assertion follows from 12.10.

Corollary 12.13. – We denote by ε`R (resp. ε´R) the RX-stratification on RX,1 as-
sociated to the pΓpTX{kq-action κB (resp. ψB) on BX via the isomorphisms of OX-al-
gebras BX

„
ÝÑ SpΩ1

X{kq
„
ÝÑ RX,1 (11.12), 12.10.3:

(i) For any local section r of RX,1, we have ε`Rp1b rq “ δprq (11.11).
(ii) For any local section r of RX,1, we have ε´Rpδprqq “ r b 1.

Proof. – The question being local, we take again the assumption and the notation
of 12.11. Then for 1 ď i ď d, li is sent to ζi by the isomorphism BX

„
ÝÑ RX,1.

Since ε`R, ε
´
R and δ are homomorphisms, it suffices to verify the assertion for the local

sections ζi. By 12.11(ii) and 12.12(i), we have

(12.13.1) ε´Rp1b ζiq “ ζi b 1´ 1b ζi, ε`Rp1b ζiq “ ζi b 1` 1b ζi

Then, the assertion (i) follows from 11.11. The assertion (ii) follows from the relations

ε´Rpδpζiqq “ ε´Rp1b ζi ` ζi b 1q “ pζi b 1´ 1b ζiq ` 1b ζi “ ζi b 1.

With the above preparation, we can interpret a key calculation in Oyama’s paper
in the following forms.
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Proposition 12.14 ([32] 1.5.3). – Let M be a quasi-nilpotent pΓpTX{kq-module, ε the
associated RX-stratification onM (11.17). We denote byM0 the underlying OX-mod-
ule of M equipped with the pΓpTX{kq-module structure defined by the zero PD-Higgs
field. Then the stratification ε : RX,1 bOX M Ñ M bOX RX,1 induces two isomor-
phisms of pΓpTX{kq-modules (10.14.2)

(i) pBX, ψBq bOX M0
„
ÝÑ M bOX pBX, ψBq,

(ii) pBX, ψBq bOX ι
˚pMq

„
ÝÑ M0 bOX pBX, ψBq.

Proof. – We take again the notation of 12.13. To simplify the notation, we write R

for RX,1. The RX-stratification on M0 is the identity morphism id RbM : R bOX

M Ñ RbOXM (cf. the proof of 12.5). We denote by θ0 (resp. θ) the morphismM Ñ

M bOX R defined by m ÞÑ m b 1 (resp. m ÞÑ εp1 bmq) for every local section m

of M .
(i) Since the action ψB on BX is compatible with the ring structure of BX, it

suffices to show that θ : M0 Ñ M b pBX, ψBq is pΓpTX{kq-equivariant. In view of
(5.4.2), it suffices to prove that the following diagram is commutative

(12.14.1) M

θ

��

θ0 // M bOX R

θbid R

��
M bOX R

θbid R // M bOX R bOX R
idM bε

´
R// M bOX R bOX R .

By condition (ii) of 5.5, the composition
(12.14.2)

M
θ // M bOX R

θbid R // M bOX R bOX R
idM bε

´
R// M bOX R bOX R

in the above diagram is equal to the composition
(12.14.3)

M
θ // M bOX R

idM bδ// M bOX R bOX R
idM bε

´
R// M bOX R bOX R .

By 12.13(ii), the above composition is equal to the composition

(12.14.4) M
θ0
ÝÑM bOX R

θbid R
ÝÝÝÝÑM bOX R bOX R .

The assertion follows.
(ii) By 12.12(i), it suffices to show that the morphism pBX, κqbOX M ÑM0bOX

pBX, κBq is pΓpTX{kq-equivariant. Similarly to (i), by (5.4.2), it suffices to prove that
the following diagram is commutative

(12.14.5) M

θ

��

θ // M bOX R

θbid R

��
M bOX R

θ0bid R// M bOX R bOX R
idM bε

`
R// M bOX R bOX R .
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By condition (ii) of 5.5, the composition

(12.14.6) M
θ // M bOX R

θbid R // M bOX R bOX R

in the above diagram is equal to the composition

(12.14.7) M
θ // M bOX R

idM bδ// M bOX R bOX R .

The assertion follows from 12.13(i).

12.15. – The counterpart of the crystal AX12 (10.12) in Oyama topos rE is defined by
applying Cartier equivalence C˚X{S to BX1 .

Let CX{S : rE Ñ rE 1 be the morphism of topoi (9.1.3). We put RX “ C˚X{S pRX1q

(12.8). For any object pU,T, uq of E , we set φT {k “ u1˝fT {k : T Ñ T 1 Ñ U 1 so we have
ρpU,T, uq “ pU 1,T, φT {kq (9.1.2). By 9.1, the descent data of the sheaf RX of rE is
tu˚pRX1,pU 1,T,φT {kqq, γρpgqu (7.7, 12.7, 12.8).

We put FX “ C˚X{S pFX1q and BX “ C˚X{S pBX1q. For any object pU,T, uq of E ,
we have (9.11.6)

(12.15.1) FX,pU,T,uq “ FX1,pU 1,T,φT {kq, BX,pU,T,uq “ BX1,pU 1,T,φT {kq.

The linearised descent data of the quasi-coherent crystal of OE ,1-modules FX (resp.
OE ,1-algebras BX) of rE is tFX1,pU 1,T,φT {kq, cρpgqu (resp. tBX1,pU 1,T,φT {kq, cρpgqu) (9.1),
8.2, 12.9.

We set F
X
“ FX,pX,Xq and B

X
“ BX,pX,Xq. By 11.18, these OX -modules

are equipped with Dγ
X{k-module structures that we denote by p∇F , ψF q (resp.

p∇B, ψBq). We will show that B
X

is isomorphic to the algebra AX12
(10.12)

introduced by Ogus-Vologodsky (12.26).

12.16. – We interpret the Cartier equivalence as an admissible isomorphism à la
Fontaine for a pair of crystals with respect to the period ring B

X
.

Let M 1 be a crystal of OE 1,1-modules of rE 1, pM 1, θ1M q the associated pΓpTX1{kq-mod-
ule, M 1

0 “ ν˚pM 1q (12.4), N “ C˚X{S pM
1q and pN,∇N , ψN q the associated

Dγ
X{k-module. By 11.18, 12.5 and 12.14(i), we have an isomorphism of crystals

of OE 1,1-modules of rE 1

(12.16.1) BX1 bOE 1,1
M 1

0
„
ÝÑM 1 bOE 1,1

BX1 .

Applying C˚X{S , we obtain an isomorphism of crystals of OE ,1-modules of rE :

(12.16.2) BX bOE ,1 C˚X{S pM
1
0q

„
ÝÑ N bOE ,1 BX.

By 12.3, we deduce an isomorphism of Dγ
X{k-modules

(12.16.3) λ : B
X
bOX F

˚
X{kpM

1q
„
ÝÑ N bOX B

X
,
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where the Dγ
X{k-action on the left hand side is induced by p∇B, ψBq on B

X
and

p∇can, 0q on F˚X{kpM
1q (10.18), that we still denote by p∇B, ψBq; and the Dγ

X{k-action
on the right hand side is induced by p∇N , ψN q on N and p∇B, ψBq, that we denote
by p∇tot, ψtotq.

The pΓpTX1{kq-module structures ψB on B
X
and θM 1 onM 1 define a pΓpTX1{kq-mod-

ule structure on B
X
bOX1 M

1 (10.14), that we denote by θtot. On the other hand,
the zero PD-Higgs field on N and the action of ψB on B

X
define a pΓpTX1{kq-module

structure on N bOX B
X
, that we still denote by ψB.

Theorem 12.17. – Let M 1 be a crystal of OE 1,1-modules of rE 1, pM 1, θ1M q the associ-
ated pΓpTX1{kq-module, N “ C˚X{S pM

1q and pN,∇N , ψN q the associated Dγ
X{k-mod-

ule. Then, the isomorphism (12.16.3)

(12.17.1) λ : pB
X
bOX1 M

1, p∇B, ψBq, θtotq
„
ÝÑ pN bOX B

X
, p∇tot, ψtotq, ψBq

is compatible with the Dγ
X{k-actions and the pΓpTX1{kq-actions defined on both sides in

12.16.

Proof. – We only need to prove the compatibility of the pΓpTX1{kq-actions. Let
ε1 : BX1 bOX1 M

1 „ÝÑM 1 bOX1 BX1 be the RX1 -stratification on M 1 (12.14), and
ψB1 the pΓpTX1{kq-action on BX1 defined in 12.10. The question is local. Since the
Cartier equivalence is compatible with localisation (9.15.3), we can suppose that
there exists a lifting F : X Ñ X1 of the relative Frobenius morphism FX{k of X.
Then it induces a morphism F : pX 1,X, FX{kq Ñ pX 1,X1q of E 1. The isomorphisms
(12.16.1), (12.16.2) and the transition morphisms ηF associated to F (9.17.4) induce
a commutative diagram

F˚X{kppBX1 bOE 1,1
M 1

0qpX1,X1qq
„ //

ηF

��

F˚X{kppM
1 bOE 1,1

BX1qpX1,X1qq

ηF

��
pBX bOE ,1 C˚X{S pM

1
0qqpX,Xq

„ // pN bOE ,1 BXqpX,Xq.

Then we deduce a commutative diagram

(12.17.2) F˚X{kpBX1 bOX1 M
1q

F˚
X{k

pε1q
//

ηF

��

F˚X{kpM
1 bOX1 BX1q

ηF

��
B
X
bOX1 M

1 λ // N bOX B
X
.

By 11.19, the isomorphism ηF : F˚X{kpBX1q
„
ÝÑ B

X
underlies an isomorphism

of F˚X{kppΓpTX1{kqq-modules

(12.17.3) F˚X{kpBX1 , ι
˚pψB1qq

„
ÝÑ pB

X
, ψBq.
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By 12.14(ii), the isomorphism F˚X{kpε
1q is compatible with actions of F˚X{kppΓpTX1{kqq:

(12.17.4)
F˚X{kpε

1q : F˚X{kpBX1 bOX1 M
1, ψB1 b id` idbι˚pθM 1qq

„
ÝÑ F˚X{kpM

1 bOX1 BX1 , idbψB1q.

Then the assertion follows from (12.17.2), (12.17.3) and (12.17.4).

Remark 12.18. – In ([31], 2.23), Ogus and Vologodsky showed a similar result for
certain filtered PD-Higgs modules.

Let pH, θq (resp. pH,∇, ψq) be a pΓpTX{kq-module (resp. a Dγ
X{k-module). We define

its pΓpTX{kq invariants (resp. Dγ
X{k invariants) by

(12.18.1)
Hθ “ Hom

pΓpTX{kq
ppOX , 0q, Hq (resp. Hp∇,ψq “ HomDγ

X{k
ppOX , d, 0q, Hqq.

We can recover the Cartier equivalence by taking pΓpTX1{kq invariants (resp. Dγ
X{k

invariants) for the isomorphism (12.17.1).

Proposition 12.19. – Keep the notation of 12.16 and suppose that M 1 is quasi-
coherent. The isomorphism (12.17.1) induces
(i) a canonical isomorphism of Dγ

X{k-modules

pB
X
bOX1 M

1,∇B, ψBq
θtot „

ÝÑ pN,∇N , ψN q;

(ii) a canonical isomorphism of pΓpTX1{kq-modules

pM 1, θM 1q
„
ÝÑ pN bOX B

X
, ψBq

p∇tot,ψtotq.

The assertion follows from 12.20 and 12.21.

Lemma 12.20. – Keep the notation of 12.16.
(i) The actions p∇B, ψBq of Dγ

X{k and θtot of pΓpTX1{kq on B
X
bOX1 M

1 commute
with each other.

(ii) The actions p∇tot, ψtotq of Dγ
X{k and ψB of pΓpTX1{kq on N bOX B

X
commute

with each other.

Proof. – (i) By the Formula (10.14.1), one verifies that the action ψB of pΓpTX1{kq Ă
Dγ
X{k and the action θtot of pΓpTX1{kq on B

X
bOX1 M

1 commute with each other. For

any local sections D of TX{k, ξ1 of pΓpTX1{kq, b of B
X

and m of M 1, by 10.14.1, we
have

∇B,Dpθtot,ξ1pbbmqq “ ∇B,DpψB,ξ1pbqq bm`∇B,Dpbq b θM 1,ξ1pmq

“ ψB,ξ1p∇B,Dpbqq bm`∇B,Dpbq b θM 1,ξ1pmq

“ θtot,ξ1p∇B,Dpbbmqq.

Since Dγ
X{k is generated by TX{k and pΓpTX1{kq, the assertion follows.

Assertion (ii) follows from (i) and 12.17.
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Lemma 12.21. – Keep the notation of 12.16 and suppose that M 1 is quasi-coherent.
The canonical homomorphism of crystals OE ,1 Ñ BX induces an isomorphism
of OX-modules (resp. OX1-modules)

N
„
ÝÑ pN bOX B

X
q
ψB , (resp. M 1 „ÝÑ pB

X
bOX1 M

1q
p∇B,ψBqq.

Proof. – The assertion in lemma being local, we may assume that there exists a lifting
F : X Ñ X1 of the relative Frobenius morphism FX{k of X. By 11.19 and (12.12.1),
we have isomorphisms of F˚X{kppΓpTX1{kqq-modules

ηF : F˚X{kpBX1 bOX1 M
1, ι˚pψB1q b idq

„
ÝÑ pN bOX B

X
, ψBq

SpΩ1
X{kq bOX F

˚
X{kpM

1q
„
ÝÑ F˚X{kpBX1 bOX1 M

1, ι˚pψB1q b idq,

where SpΩ1
X{kq is equipped with the canonical action of pΓpTX{kq. A local section u

of SpΩ1
X{kq bOX F

˚
X{kpM

1q can be written as a finite sum

(12.21.1) u “
m
ÿ

i“0

ωi b ui,

with ui P F
˚
X{kpM

1q and ωi P SipΩq. In view of the perfect pairing ΓipTX{kq bOX

SipΩ1
X{kq Ñ OX (10.2.1) for i ě 1, the action of pΓpTX{kq on u is trivial if and only if

ui “ 0 for i ě 1, i.e., u belongs to the submodule F˚X{kpM
1q of F˚X{kpM

1q bOX SpΩq.
The first isomorphism follows.

Equipped with the Frobenius descent connection ∇can on F˚X{kpM
1q, we have an in-

jection of Dγ
X{k-modules pF˚X{kpM

1q,∇can, 0q Ñ pB
X
bOX1M

1,∇B, ψBq and a canon-
ical OX1 -linear isomorphism ([25] 5.1)

(12.21.2) M 1 „ÝÑ F˚X{kpM
1qp∇can,0q.

In view of the first isomorphism, we deduce that pB
X
bOX1 M

1q
p∇B,ψBq is contained

in the image of F˚X{kpM
1q in B

X
bOX1M

1. Then the second isomorphism follows from
(12.21.2).

Now we use the above results to compare the Cartier equivalence C˚X{S and the
Cartier transform of Ogus-Vologodsky.

Theorem 12.22. – Let X be a smooth formal S -scheme and X its special fiber. The
following diagram is commutative up to a canonical isomorphism

(12.22.1) C qcohpOE ,1q

o
��

CX{S˚ // C qcohpOE 1,1q

o
��

MICqn
γ pX{kq

CX12 // HIGqn
γ pX{kq,
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where CX{S˚ is the direct image functor of the morphism of topoi CX{S (9.12), which
depends only on X, and the vertical functors are equivalences of categories (11.18)
and depend on X.

Remark 12.23. – The top (resp. lower) horizontal functor in the above diagram
depends only on X (resp. X12). However, the vertical functors (11.18.1) are constructed
by a formal model X of X. A natural question is: do vertical equivalences depend only
on a lifting of X over the quotient of W by a power of p?

12.24. – Recall that Ogus and Vologodsky constructed a torsor LX12 of pX{kqcrys

(10.11), the crystal of affine functions FX12 on LX12 of pX{kqcrys and the quasi-coherent
crystal of OX{k-algebras AX12 associated to FX12 (10.12). We put F X12

“ FX12,pX,Xq
and AX12

“ AX12,pX,Xq, which are equipped with Dγ
X{k-module structures (10.19).

The Cartier transform is defined by (10.20(ii))
(12.24.1)

CX12 : MICqn
γ pX{kq

„
ÝÑ HIGqn

γ pX
1{kq, N ÞÑ ι˚pHomDγ

X{k
ppAX12

q_, Nqq.

12.25. – Let pU, T, δq be an object of CryspX{kq such that there exists a flat formal
S -scheme T with special fiber T . Recall (10.9) that the morphism U Ñ T induces an
isomorphism U

„
ÝÑ T . Then we obtain an object pU,Tq of E . The morphism ϕT {k :

T Ñ X 1 (10.9.1) is the same as the composition T
φT {k
ÝÝÝÑ U 1 Ñ X 1 (12.15). Moreover,

the ϕ˚T {kpTX1{kq-torsor LX12,ϕT {k of Tzar (10.10) is the same as the φ˚T {kpTU 1{kq-torsor
RX1,pU 1,T,φT {kq of Tzar (12.8). Recall that FX12,pU,T q is the sheaf of affine functions
on LX12,ϕT {k . By (12.15.1), we deduce a canonical isomorphism of OT -modules

(12.25.1) FX12,pU,T q
„
ÝÑ FX,pU,Tq.

Let g : pU1, T1, δ1q Ñ pU2, T2, δ2q be a morphism of CryspX{kq. Suppose that there
exists an S -morphism g : T1 Ñ T2 of flat formal S -schemes with special fiber
g : T1 Ñ T2. Then we obtain a morphism g : pU1,T1q Ñ pU2,T2q of E . In view of
10.11(ii), the transition morphism of the crystal of OE ,1-modules FX of rE associated
to g (12.9.4), 12.15

(12.25.2) cg : g˚pFX,pU2,T2q
q
„
ÝÑ FX,pU1,T1q

is compatible with the transition morphism of the crystal FX12 of OX{k-modules as-
sociated to g

(12.25.3) cg : g˚pFX12,pU2,T2qq
„
ÝÑ FX12,pU1,T1q.

Applying above facts to projections from the PD-envelop of diagonal immersion
pX,PXq to pX,Xq, we deduce the following lemma.

Lemma 12.26. – The isomorphism F X12

„
ÝÑ F

X
(12.25.1) is compatible with the

actions of DX{k.
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Corollary 12.27. – The isomorphism F X12

„
ÝÑ F

X
induces a canonical isomor-

phism of OX-algebras AX12

„
ÝÑ B

X
compatible with the actions of Dγ

X{k.

Proof. – By 12.26, we obtain an isomorphism AX12

„
ÝÑ B

X
compatible with actions

of DX{k. By 10.5 and (10.3.2), the OX -module F
X
(resp. OX -algebra B

X
) is equipped

with a F˚X{kppΓpTX1{kqq-module structure that we denote by ϑF (resp. ϑB). By 10.12
and the following lemma, the isomorphism AX12

„
ÝÑ B

X
is compatible with actions

of F˚X{kppΓpTX1{kqq. Then the assertion follows.

Lemma 12.28. – Two F˚X{kppΓpTX1{kqq-module structures ψF and ϑF on F
X
(12.15)

(resp. ψB and ϑF on B
X
) coincide.

Proof. – It suffices to show the assertion for F
X
. We have F

X
“ FX1,pX1,X,FX{kq.

The question being local, we can reduce to case where there exists an S -mor-
phism F : X Ñ X1 which lifts the relative Frobenius morphism FX{k of X. Then we
obtain a morphism F : pX 1,X, FX{kq Ñ pX 1,X1q of E 1 and an isomorphism (12.9.4)

(12.28.1) ηF : F˚X{kpF X1q
„
ÝÑ F X.

Let ψF 1 be the pΓpTX1{kq-module structure on F X1 induced by the crystal FX1 .
By 11.19, the isomorphism ηF : F˚X{kpF X1q

„
ÝÑ F

X
underlies an isomorphism

of F˚X{kppΓpTX1{kqq-modules

(12.28.2) ηF : F˚X{kpF X1 , ι
˚pψF 1qq

„
ÝÑ pF

X
, ψF q.

On the other hand, regarding F X1 as a sheaf of affine functions, the pΓpTX1{kq-action
on F X1 defined in 10.5 is equal to ι˚pψF 1q (12.12). By 10.7, ηF induces an isomorphism
of F˚X{kppΓpTX1{kqq-modules

(12.28.3) ηF : F˚X{kpF X1 , ι
˚pψF 1qq

„
ÝÑ pF

X
, ϑF q.

The assertion follows.

12.29. – Proof of 12.22. Let N be a quasi-coherent crystal of OE ,1-modules of rE , N
the associated Dγ

X{k-module, M 1 “ CX{S˚pN q andM 1 the associated pΓpTX1{kq-mod-
ule. By 9.12, we have a canonical isomorphism C˚X{S pM

1q
„
ÝÑ N . The Dγ

X{k-module
structure p∇B

X
, ψB

X
q on B

X
induces a Dγ

X{k-module structure on its dual B
_

X

(10.18). By (12.24.1) and 12.27, we have a canonical isomorphism of pΓpTX1{kq-mod-
ules

CX12pNq
„
ÝÑ ι˚pHomDγ

X{k
pB

_

X
, Nqq,(12.29.1)

where the pΓpTX1{kq-action on the right hand side is given by that of B
_

X
. The canon-

ical morphism

(12.29.2) HomOX pOX , B
X
bOX Nq Ñ HomOX pB

_

X
, Nq
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sends a local section ϕ of HomOX pOX , B
X
bOX Nq to χ : B

_

X
Ñ N defined for every

local section f of B
_

X
by

(12.29.3) χpfq “ pf b idN qpϕp1qq.

Since B
X

is locally a direct sum of free OX -modules of finite type (12.17.3), the
morphism (12.29.2) is an isomorphism. We equip OX the Dγ

X{k-module structure
pd, 0q. By (10.18.1) and (10.14.2), one verifies that a local section ϕ : OX Ñ B

X
bOX

N is Dγ
X{k-equivariant if and only if χ (12.29.3) is Dγ

X{k-equivariant. Then we deduce
an isomorphism

(12.29.4) HomDγ
X{k
ppOX , d, 0q, B

X
bOX Nq

„
ÝÑ HomDγ

X{k
pB

_

X
, Nq.

In view of (10.14.2), the above isomorphism induces an isomorphism of pΓpTX1{kq-mod-
ules (12.16)

(12.29.5) pHomDγ
X{k
pOX , B

X
bOX Nq, ψB

X
q
„
ÝÑ ι˚pHomDγ

X{k
pB

_

X
, Nqq.

Then the assertion follows from 12.19(ii) and (12.29.1).
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CHAPTER 13

FONTAINE MODULES

Inspired by the work of Fontaine-Laffaille [15], Faltings introduced a notion of
Fontaine module on a smooth scheme over W [13]. In this section, we propose a new
definition of Fontaine module using Cartier equivalence (13.7). Compared to Faltings’
original definition, our definition avoids the choice of (local) liftings of Frobenius to
talk about “divided Frobenius structures” (13.15) and encodes them in the Cartier
equivalence. We also show the compatibility between various definitions in (13.20,
13.22, 13.30).

Let X denote a smooth formal S -scheme and X its special fiber.

Definition 13.1. – Let n be an integer ě 1. We define the category of filtered mod-
ules with quasi-nilpotent integrable connection MICFpXn{Snq as follows. A filtered
module with quasi-nilpotent integrable connection is a triple pM,∇,M‚q consisting of
an object pM,∇q of MICqn

pXn{Snq and a decreasing filtration tM iuiPZ

(13.1.1) ¨ ¨ ¨ ĎM2 ĎM1 ĎM0 “M “M´1 “ ¨ ¨ ¨

satisfying Griffiths’ transversality

(13.1.2) ∇pM iq ĂM i´1 b Ω1
Xn{Sn

@ i ě 0.

Given two objects pM1,∇1,M
‚
1 q and pM2,∇2,M

‚
2 q of MICFpXn{Snq, a morphism

from pM1,∇1,M
‚
1 q to pM2,∇2,M

‚
2 q is a horizontal OXn -linear morphism f : M1 ÑM2

compatible with the filtrations.

For any ` ě 0, we denote by MIC`FpXn{Snq the full subcategory of MICFpXn{Snq

consisting of objects with length ď ` (i.e., the filtration satisfies M ``1 “ 0).

13.2. – Let ` be an integer ě 0, pM,∇,M‚q an object of MIC`FpXn{Snq. We consider
the OXn -linear morphism

(13.2.1) g :
à̀

i“1

M i Ñ
à̀

i“0

M i

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2019



106 CHAPTER 13. FONTAINE MODULES

defined for every local section mi of M i by gpmiq “ pmi,´pmiq in M i´1 ‘M i. We
set

(13.2.2) ĂM “ Cokerpgq.

For any 0 ď j ď `, we denote by p´qj the composition M j Ñ
À`

i“0M
i Ñ ĂM and

by ĂM´j the canonical image of
Àj

i“0M
i in ĂM . We obtain a decreasing filtration

(13.2.3) ĂM0 Ď ĂM´1 Ď ¨ ¨ ¨ Ď ĂM´` “ ĂM.

We consider the Wn-linear morphism

(13.2.4) h :
à̀

i“0

M i Ñ
`
à̀

i“0

M i
˘

bOXn Ω1
Xn{Sn

defined by

h|Mi
“ ∇ : M i ÑM i´1 bOXn Ω1

Xn{Sn
, for 1 ď i ď `,(13.2.5)

h|M0
“ p∇ : M0 ÑM0 bOXn Ω1

Xn{Sn
.

Lemma 13.3. – The Wn-linear morphism h induces a quasi-nilpotent integrable
p-connection r∇ on ĂM such that for any ´` ď i ď ´1, we have

(13.3.1) r∇pĂM iq Ă ĂM i`1 bOXn Ω1
Xn{Sn

.

Proof. – It follows from the definition that the composition

(13.3.2)
à̀

i“1

M i g
ÝÑ

à̀

i“0

M i h
ÝÑ

`
à̀

i“0

M i
˘

bOXn Ω1
Xn{Sn

Ñ ĂM bOXn Ω1
Xn{Sn

is zero. Hence the morphism h induces a Wn-linear morphism

(13.3.3) r∇ : ĂM Ñ ĂM bOXn Ω1
Xn{Sn

.

We show that r∇ is a p-connection. The restriction of h to M0 is the p-connection p∇.
Hence the restriction of r∇ to ĂM0 is a p-connection. Let f be a local section of OX, i
an integer P r1, `s and m a local section of M i. The morphism h sends fm PM i to

(13.3.4) ∇pfmq “ f∇pmq `mb df PM i´1 b Ω1
Xn{Sn

.

Note that we have pmqi´1 “ ppmqi. Then we deduce that

(13.3.5) r∇pfpmqiq “ f r∇ppmqiq ` ppmqi b df.

The assertion follows. The integrability of ∇ implies easily that of r∇.

It is clear from the definition that r∇ satisfies the condition (13.3.1). Since M is
pn-torsion, the restriction of r∇ to ĂM0 is quasi-nilpotent. In view of (13.3.1), we deduce
that r∇ is quasi-nilpotent.
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13.4. – Let ε
ĂM,T

be the TX-stratification on ĂM associated to r∇ (5.17). We present

its local description. Suppose that there exists an étale S -morphism X Ñ pAdS “

SpfpWtT1, . . . , Tduq. We take again the notation of 5.2 and of 5.16. For any 0 ď i ď `,
any local section m of M i and any I P N, in view of (13.2.5), we have

(13.4.1) r∇BI ppmqiq “

#

p∇BI pmqqi´|I| if 0 ď i ď |I|;

p|I|´ip∇BI pmqq0 if |I| ą i.

By (5.17.1), we deduce that
(13.4.2)

ε
ĂM,T

p1b pmqiq “
ÿ

|I|ďi

`

∇BI pmq
˘

i´|I|
b

ˆ

ξ

p

˙rIs

`
ÿ

|I|ąi

p|I|´i
`

∇BI pmq
˘

0
b

ˆ

ξ

p

˙rIs

.

Proposition 13.5. – Suppose that ` ď p´ 1. There exists an RX-stratification εĂM
on ĂM , which induces the above TX-stratification εĂM,T

via the functor (9.18.1).

Proof. – Let εM be the PX-stratification on M and θM : M Ñ M bOX PX the
morphism defined by θM pmq “ εM p1 bmq. We denote by JP the PD-ideal of PX.
By flatness of J r‚sP over OX (5.9), M i bOXn J

rjs
P is a submodule of M bOXn PX for

any i, j ě 0. By ([29] 3.1.3) and Griffiths’ transversality, we have

(13.5.1) θM pM
iq Ă

i
ÿ

j“0

M j bOXn J
ri´js
P , @ 0 ď i ď `.

We denote the target by pM bOXn PXq
i and the induced morphism by θiM : M i Ñ

pM bOXn PXq
i. Let s : PX Ñ RX be the homomorphism defined in 5.19, and for

all j ď p´ 1, sj : J
rjs
P Ñ RX the induced morphism (5.19.2). For any j ď i, we have

a canonical morphism

(13.5.2) p´qj b s
i´j : M j bOXn J

ri´js
P Ñ ĂM bOXn RX.

For any 0 ď j1 ă j ď i, by flatness of J r‚sP over OX (5.9), we have the intersection
in M bOXn PX

M j bOXn J
ri´js
P XM j1 bOXn J

ri´j1s
P “M j bOXn J

ri´j1s
P .

Since si´j |Jri´j1sP

“ pj´j
1

si´j
1

(5.19.2), we deduce that the morphisms (13.5.2) are
compatible and they induce an OX-linear morphism

(13.5.3) ui : pM bOXn PXq
i Ñ ĂM bOXn RX.

By construction, we have ui|pMbOXn
PXq

i`1
“ pui`1. Then the morphism

à̀

i“0

ui ˝ θiM :
à̀

i“0

M i Ñ ĂM bOXn RX
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induces an OX-linear morphism

(13.5.4) θ
ĂM

: ĂM Ñ ĂM bOXn RX.

We will show that the above morphism satisfies the conditions of 5.5 and hence
induces an RX-stratification. To do this, we can reduce to the case where there exists
an étale S -morphism XÑ pAdS “ SpfpWtT1, . . . , Tduq. We take again the notation of
5.11. For any 0 ď i ď `, any local section m of M i, we have

(13.5.5) θiM pmq “
ÿ

IPNd
∇BI pmq b ξrIs P

i
ÿ

j“0

M j bOXn J
ri´js
P .

The p-adic valuation of I! is less than
ř

kě1t
|I|
pk

u. If i ď p´ 1 and |I| ě i, p
|I|´i

I! is an

element of Zp. By (5.19.1), we have sipξrIsq “ p|I|´i

I! p
ξ
p q
I . Then we deduce that

(13.5.6) θ
ĂM
ppmqiq “

ÿ

|I|ďi

1

I!

`

∇BI pmq
˘

i´|I|
b

ˆ

ξ

p

˙I

`
ÿ

|I|ąi

p|I|´i

I!

`

∇BI pmq
˘

0
b

ˆ

ξ

p

˙I

.

It is clear that θ
ĂM

verifies condition (i) of 5.5. By (13.5.6) and the local description
(4.16) of δ : RX,n Ñ RX,n bOXn RX,n, we deduce that

θ
ĂM
b id R pθĂM ppmqiqq “

ÿ

|I|`|J|ďi

1

I!J !

`

∇BI`J pmq
˘

i´|I|´|J|
b

ˆ

ξ

p

˙I

b

ˆ

ξ

p

˙J

`
ÿ

|I|`|J|ąi

p|I|`|J|´i

I!J !

`

∇BI`J pmq
˘

0
b

ˆ

ξ

p

˙I

b

ˆ

ξ

p

˙J

“ id
ĂM
bδpθ

ĂM
ppmqiqq.

By 5.5, we obtain an RX-stratification εĂM on ĂM . By comparing (13.4.2) and (13.5.6),
εM extends ε

ĂM ,T
.

13.6. – By 8.10, we associate to pĂM, ε
ĂM
q a crystal of OE ,n-modules of rE that we

denote by ĂM .
We put X1 “ XˆS ,σS (2.1) and we denote by π : X1 Ñ X the canonical morphism.

In view of 3.8 and 4.11, the morphism π induces a morphism of formal groupoids πR :

RX1 » RXˆS ,σS Ñ RX above π (4.8). We denote by ĂM 1 the crystal of OE 1,n-modules
of rE 1 associated to the OX1n -module with RX1 -stratification pπ˚pĂMq, π˚RpεĂM qq (5.6).
The OX1n -module with integrable p-connection associated to ĂM 1 (9.18.3) is the inverse
image of pĂM, r∇q by π ([33] page 6).

The previous construction is clearly functorial and it defines a functor (8.3)

MICp´1
F pXn{Snq Ñ C pOE 1,nq(13.6.1)

pM,∇,M‚q ÞÑ ĂM 1.
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Definition 13.7. – (i) A (pn-torsion) Fontaine module over X is a quadruple
pM,∇,M‚, ϕq consisting of an object pM,∇,M‚q of MICp´1

F pXn{Snq with quasi-
coherent OXn -module M i, and a morphism of MICqn

pXn{Snq

(13.7.1) ϕ : νpC˚p ĂM 1qq Ñ pM,∇q

where C˚ is the Cartier equivalence (9.14.1) and ν : C pOE ,nq Ñ MICqn
pXn{Snq is

defined in (9.18.4).

(ii) We say that a Fontaine module is strongly divisible if ϕ (13.7.1) is an isomor-
phism.

(iii) Given two Fontaine modules pM1,∇1,M
‚
1 , ϕ1q and pM2,∇2,M

‚
2 , ϕ2q, a mor-

phism from pM1,∇1, M
‚
1 , ϕ1q to pM2,∇2,M

‚
2 , ϕ2q is a morphism f : pM1,∇1,M

‚
1 q Ñ

pM2,∇2,M
‚
2 q of MICp´1

F pXn{Snq such that the following diagram commutes

(13.7.2) νpC˚p ĂM 1
1qq

ϕ1 //

νpC˚p rf 1qq
��

pM1,∇1q

f

��
νpC˚p ĂM 1

2qq
ϕ2 // pM2,∇2q,

where rf 1 : ĂM 1
1 Ñ

ĂM 1
2 is the OE 1,n-linear morphism induced by f (13.6.1).

We denote by MFbigpXq the category of Fontaine modules over X and by MFpXq

the full subcategory of MFbigpXq of strongly divisible Fontaine modules pM,∇,M‚, ϕq

such that M is coherent.

Remark 13.8. – In the p-torsion case, given an object pM,∇,M‚q of MIC`FpX{kq,
ĂM “ grpMq and r∇ is the Higgs field on grpMq induced by ∇ and Griffiths’ transver-
sality which is of length ď `. In ([31] 4.16), using their Cartier transform C´1

X12
(10.20),

Ogus and Vologodsky define a p-torsion Fontaine module as an object pM,∇,M‚q

of MICp´1
F pX{kq together with a horizontal isomorphism

(13.8.1) ϕ : C´1
X12
pπ˚pGrpMq, θqq

„
ÝÑ pM,∇q.

By 12.22, our Definition 13.7 is compatible with theirs.

13.9. – In the remainder of this section, we compare Definition 13.7 with Faltings’
definition [13] and Tsuji’s definition (in a broader context) [35]. We will formulate
their definitions using the notion of (proto-)T-crystals, the crystalline counterpart
of filtered modules with quasi-nilpotent integrable connection (13.1), introduced by
Ogus [29].

Let n be an integer and X a smooth scheme over Sn. We denote by CryspX{Snq

(resp. pX{Snqcrys) the crystalline site (resp. topos) of X over Sn, by O X{Sn
the

structural sheaf and by JX{Sn
its PD-ideal.
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Definition 13.10 ([29] 2.1.2 and 3.1). – (i) Let pU, T q be an object of CryspX{Snq,
JT the PD-ideal of U in T and M an OT -module. We say that a decreasing filtration
tM iuiPZ of M by OT -submodules is G-transversal to JT if for any i P Z, we have

(13.10.1) JTM XM i “ J
r1s
T M i´1 ` J

r2s
T M i´2 ` ¨ ¨ ¨

In particular, we see that such a filtration is JT -saturated, i.e., J
ris
T M j ĂM i`j for all

i ě 0, j.
(ii) Let M be a crystal of O X{Sn

-modules. We say that a decreasing filtration
tM iuiPZ of M by O X{Sn

-submodules of M is G-transversal to JX{Sn
if for every

object T of CryspX{Snq, the filtration tM i
T uiPZ of MT is G-transversal to JX{Sn,T .

Lemma 13.11 ([29] 3.1.1). – Let M be a crystal of O X{Sn
-modules endowed with

a filtration tM iuiPZ G-transversal to JX{Sn
. For any morphism f : T2 Ñ T1

of CryspX{Snq, via the transition isomorphism f˚pMT1
q
„
ÝÑ MT2

, M i
T2

coincides
with

(13.11.1)
ÿ

i1`i2“i

J
ri1s
T2

Impf˚pM i2
T1
q Ñ f˚pMT1qq.

Theorem 13.12 ([29] 3.1.2, 3.2.3). – Let Y be a smooth Sn-scheme, ι : X Ñ Y

a closed Sn-immersion and D the PD-envelope of ι compatible with γ. Let M be a
quasi-coherent crystal of O X{Sn

-modules, M “ M D and ∇ : M Ñ M bO Y
Ω1

Y {Sn

the associated quasi-nilpotent integrable connection on M (as an O Y -module) ([5]
6.6). Then the evaluation of sheaves of pX{Snqcrys on D induces an equivalence of
following sets of data:

(i) A decreasing filtration tM iuiPZ by quasi-coherent O X{Sn
-modules on M which

is G-transversal to JX{Sn
.

(ii) A decreasing filtration tM iuiPZ by quasi-coherent O D-modules on M which is
G-transversal to JX{Sn,D and which satisfies Griffiths’ transversality i.e., ∇pM iq Ă

M i´1 bO Y
Ω1

Y {Sn
for all i.

We briefly review the construction of the data (i) from the data (ii) and we refer to
[29] for more details. Let tMiuiPZ be a filtration as in (ii). Let Dp1q be the PD-envelope
of the immersion X

ι
ÝÑ Y

∆
ÝÑ Y ˆSn

Y compatible with γ, p1, p2 : Dp1q Ñ D

the canonical projections and ε : p˚2 pMq
„
ÝÑ p˚1 pMq the O Dp1q-stratification induced

by ∇. We define a filtration tAijuiPZ on p˚j pMq by the Formula (13.11.1) for j “ 1, 2.
By Griffiths’ transversality, one verifies that the isomorphism ε : p˚2 pMq

„
ÝÑ p˚1 pMq

induces for any i, an isomorphism ([29] 3.1.3)

(13.12.1) Ai2
„
ÝÑ Ai1.

Given an object T of CryspX{Snq, there exists locally a morphism r : T Ñ D

of CryspX{Snq. Using the Formula (13.11.1), we obtain a filtration tM i
T uiPZ

on r˚pMq „
ÝÑ MT . Using the fact that ε is a filtered isomorphism, one verifies that

the filtration tM i
T uiPZ on MT is independent of the choice of r up to isomorphisms
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which come from the stratification and is well-defined. Then we obtain a filtration
tM iuiPZ of M by quasi-coherent O X{Sn

-modules. By ([29] 2.2.1.2, 2.3.1), one verifies
that tM iuiPZ is G-transversal to JX{Sn

.

Definition 13.13 ([29] 3.2.1, 3.2.3). – (i) A proto-T-crystal is a pair pM , pM iqiPZq

consisting of a quasi-coherent crystal M with a filtration tM iuiPZ G-transversal
to JX{Sn

.
(ii) A proto-T-crystal pM ,M ‚q is called T-crystal if for m ą 0 and i, the canonical

morphism
M i

X bO X
pO X {p

mO X q ÑM X bO X
pO X {p

mO X q

is injective.

We say a proto-T-crystal has length ď ` if M “ M 0 and the evaluation of pM iqiPZ
at X has length ď ` as in (13.1).

13.14. – Let Y be a smooth formal S -scheme, Y its special fiber and ι : X ãÑ Y

a closed S -immersion. For any n ě 1, we denote by Dn the PD-envelope of ιn
compatible with γ, by JDn the PD-ideal of ODn .

Recall that σ denotes the Frobenius endomorphism of W. We suppose that there
exists a σ-morphism FY : Y Ñ Y lifting the Frobenius morphism FY : Y Ñ Y . For
any n ě 1, the OYn -linear morphism dFY

p (6.1.1) induces by adjunction a semi-linear
morphism with respect to FY that we abusively denote by

(13.14.1)
dFY
p

: Ω1
Yn{Sn

Ñ FY˚pΩ
1
Yn{Sn

q “ Ω1
Yn{Sn

.

Since Dn is equal to the PD-envelope of the immersion X Ñ Yn compatible with γ,
the morphism FY induces a σ-morphism FD : DÑ D lifting the Frobenius morphism
of D1. We denote by ϕDn the homomorphism ODn “ F´1

D pODnq Ñ ODn induced
by FD. Since ϕD1

pJD1
q “ 0, we deduce that for any 0 ď r ă p, we have ϕDnpJ rrsq Ă

prODn . Since Dn is flat over Sn ([4] I 4.5.1), dividing ϕDn`r by pr, we obtain a
semi-linear morphism with respect to FD

(13.14.2) ϕrDn : J
rrs
Dn
Ñ ODn @ 0 ď r ď p´ 1.

Definition 13.15 ([13] II c), [35], 2.1.7). – (i) Let pM ,M ‚q be a proto-T-crystal
over Xn{Sn of length ă p (13.13), pM “ MXn ,∇q the associated quasi-coherent
ODn-module with integrable connection and M‚ the associated filtration (13.12).
A family of divided Frobenius morphisms on pM ,M ‚q with respect to pι, FYq is a
family of semi-linear morphisms tϕrM : Mr Ñ Murăp with respect to FD satisfying
the following conditions:

(a) ϕrM|M
r`1 “ pϕr`1

M ,@ r ă p´ 1 (in particular, ϕ´iM “ piϕ0
M for i ą 0).

(b) For any integers r, s ě 0 such that r ` s ă p and any local sections a of J rrsD , x
of Ms, we have

ϕr`sM paxq “ ϕrDnpaqϕ
s
Mpxq.
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(c) The following diagram commutes for all r ă p (13.14.1):

(13.15.1) Mr
∇|

Mr //

ϕrM

��

Mr´1 bOYn Ω1
Yn{Sn

ϕr´1
M

b
dFY
p

��
M

∇ // M bOYn Ω1
Yn{Sn

.

(ii) A Fontaine module over X with respect to pι, FYq is a pair of a proto-T-crystal
pM ,M ‚q over Xn{Sn of length ă p for some integer n ě 1, together with a family
of divided Frobenius morphisms with respect to pι, FYq. We can equivalently write
such a data as a quadrupleM “ pM,∇,M‚, ϕ‚Mq given by the evaluation of pM ,M ‚q

at D (13.12).
(iii) A morphism between two Fontaine modulesM and N is a morphism of crystals

compatible with the filtrations and the divided Frobenius morphisms.

We denote by MFbigpX; ι, FYq the category of Fontaine modules over X with re-
spect to pι, FYq. The quadruple pODn ,∇Dn , J

r‚s

Dn
, ϕ‚Dnq is an object of MFbigpX; ι, FYq.

Let M “ pM,M‚,∇M , ϕ‚Mq be an object of MFbigpX; ι, FYq. Since M is an
OD-module, the de Rham complexe M bOYn Ω‚Yn{Sn

is concentrated on X. By Grif-
fith’s transversality, for any r ď p´1, we have a subcomplex pMr´qbOYn Ωq

Yn{Sn
qqě0

of the de Rham complex M bOYn Ω‚Yn{Sn
. By (13.15.1), the divided Frobenius mor-

phisms tϕ‚Mu and
dFY
p induce a W-linear morphism of complexes

(13.15.2) pMr´‚ bOYn Ω‚Yn{Sn
q bσ,W W ÑM bOYn Ω‚Yn{Sn

.

13.16. – Let M “ pM,M‚,∇M , ϕ‚Mq be a pn-torsion object of MFbigpX; ι,Yq. We
define the OD-module ĂM as the quotient of ‘răpF˚DpM

rq by the ODn -submodule
generated by local sections of the following forms:

(i) p1b xqr´1 ´ p1b pxqr for all x PMr, r ă p,

(ii) pϕrDnpaq b xqs ´ p1b axqr`s for all a P J rrsDn , x PM
s, r ě 0, r ` s ă p,

where p´qr denotes the canonical inclusion F˚DpM
rq Ñ ‘răpF

˚
DpM

rq. In view of
condition (d) of 13.15, the morphisms tϕrMurăp induce an OD-linear morphism

(13.16.1) ϕM : ĂMÑM.

Definition 13.17. – We say that an objectM of MFbigpX; ι, FYq is strongly divisible
if ϕM is an isomorphism.

13.18. – In the case X “ Y and ι “ id, we have Dn “ Xn. We write simply
MFbigpX;FXq for MFbigpX; id, FXq and we denote by MFpX;FXq the full subcat-
egory of MFbigpX;FXq of strongly divisible objects whose underlying OX-modules
are coherent.
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Let M “ pM,∇,M‚, ϕ‚Mq be an object of MFbigpX;FXq. The condition (i-b) of
13.15 and the relation (ii) of 13.16 are empty and we have ĂM “ F˚Xp

ĂMq (13.2.2).

13.19. – Suppose that there exists a σ-lifting FX : X Ñ X of the Frobenius mor-
phism FX . The morphism FX induces an S -morphism F : XÑ X1. Let pM,∇,M‚q be
an object of MICqn

F pXn{Snq. By (9.18.6) and 13.6, the morphism F induces a func-
torial isomorphism of MICqn

pXn{Snq:

(13.19.1) ηF : Φnpπ
˚pĂM, r∇qq „ÝÑ νpC˚p ĂM 1qq,

where Φn is Shiho’s functor (6.1.4) defined by F . The underlying OXn-module
of Φnpπ

˚pĂM, r∇qq is F˚XpĂMq (6.1.4). We denote the connection on F˚XpĂMq by ∇F .
Given a horizontal morphism ϕ : νpC˚p ĂM 1qq Ñ pM,∇q, we obtain a horizontal

morphism ϕF and a family of morphisms tϕiF : M i ÑMup´1
i“0 :

ϕF “ ϕ ˝ ηF : pF˚Xp
ĂMq,∇F q Ñ pM,∇q,(13.19.2)

ϕiF : M i p´qiÝÝÝÑ ĂM
ϕF
ÝÝÑM.(13.19.3)

For i ą 0, we set ϕ´iF “ piϕ0
F . Then we obtain a functor

(13.19.4) λF : MFbigpXq ÑMFbigpX;FXq pM,∇,M‚, ϕq ÞÑ pM,∇,M‚, ϕ‚F q.

Conversely, a family of divided Frobenius morphisms tϕiF : M i Ñ Muiďp´1 satis-
fying (i-a,c) of 13.15 induces an OXn -linear morphism ϕF : F˚Xp

ĂMq Ñ M (13.16.1).
Then we obtain a morphism ϕ : C˚p ĂM 1qpX,Xq Ñ M by composing with η´1

F . We
define a functor

χF : MFbigpX;FXq ÑMFbigpXq pM,∇,M‚, ϕ‚F q ÞÑ pM,∇,M‚, ϕq.(13.19.5)

Proposition 13.20. – The functors λF (13.19.4) and χF (13.19.5) are well-defined.
They induce equivalences of categories quasi-inverse to each other and preserve the
strong divisibility condition (13.7), 13.17.

Proof. – Let pM,∇,M‚, ϕq be an object of MFbigpXq. It follows from the definition
of ĂM that the morphisms tϕ‚F u satisfy condition (i-b) of 13.15. We show that they
also satisfy condition (i-c). Recall 6.1 that for any local sections m of ĂM and f of OXn ,
we have (6.1.3)

(13.20.1) ∇F pfF˚Xpmqq “ fζ
`

F˚Xp
r∇pmqq

˘

` F˚Xpmq b df,

where ζ denotes the composition

F˚Xp
ĂM bOXn Ω1

Xn{Sn
q
„
ÝÑ F˚Xp

ĂMqbOXn F
˚
XpΩ

1
Xn{Sn

q
idbdFX{p
ÝÝÝÝÝÝÑ F˚Xp

ĂMqbOXn Ω1
Xn{Sn

.

For any 0 ď i ď p ´ 1 and any local section m of M i, we denote by p∇pmqqi´1

the image of ∇pmq via M i´1 bOXn Ω1
Xn{Sn

Ñ ĂM bOXn Ω1
Xn{Sn

for 1 ď i ď p ´ 1
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and by p∇pmqq´1 the image of p∇pmq in ĂM bOXn Ω1
Xn{Sn

for i “ 0. In view of the

definition of r∇ (13.3), we have r∇ppmqiq “ p∇pmqqi´1 and

∇pϕiF pmqq “ ϕF b idp∇F pF˚Xppmqiqqq (13.19.3)(13.20.2)

“ ϕF b idpζpF˚Xp
r∇ppmqiqqqq (13.20.1)

“ ϕF b
dFX
p
pp∇pmqqi´1q

“ ϕi´1
F b

dFX
p
p∇pmqq.

The commutativity of (13.15.1) follows. The functor (13.19.4) is well-defined and
preserves the strong divisibility conditions.

Conversely, let pM,∇,M‚, ϕ‚F q be an object of MFbigpX;FXq. In view of (13.20.2),
the associated morphism ϕF : F˚Xp

ĂMq Ñ M is compatible with the connections ∇F
and ∇. Via η´1

F (13.19.1), we obtain a morphism ϕ : νpC˚p ĂM 1qq Ñ pM,∇q as (13.7.1).
Hence the functor χF (13.19.5) is well-defined and is clearly quasi-inverse to λF .

Remark 13.21. – In particular, we see that the notion of Fontaine module over S
(13.7) is compatible with the notion of Fontaine modules over W introduced by
Fontaine and Laffaille (cf. [15] 1.2 or [36] 2.2.1).

13.22. – Let F1, F2 : XÑ X1 be two liftings of the relative Frobenius morphism FX{k
of X and let Fi,X “ π ˝ Fi : XÑ X. In ([13] proof of Thm. 2.3), Faltings proposed a
Taylor formula to construct an equivalence of categories between MFbigpX;F2,Xq and
MFbigpX;F1,Xq. We will show that this Taylor Formula (13.22.6) is naturally encoded
in the Cartier equivalence.

We present an explicit description of the equivalence of categories

(13.22.1) λF2
˝ χF1

: MFbigpX;F1,Xq
„
ÝÑMFbigpX;F2,Xq.

In particular, we will see that Faltings’ construction coincides with the above equiv-
alence.

The morphisms F1 and F2 induce a morphism of E 1 (9.20.1)

(13.22.2) α : ρpX,Xq Ñ pX 1, RX1q.

Let pM,∇,M‚q be an object of MICp´1
F pXn{Snq. Recall that the morphism α induces

a functorial isomorphism of MICqn
pXn{Snq (9.23.1)

(13.22.3) α˚pπ˚RpεĂM qq : pF˚2,Xp
ĂMq,∇F2q

„
ÝÑ pF˚1,Xp

ĂMq,∇F1q,

such that ηF2
“ ηF1

˝ α˚pπ˚RpεĂM qq (9.22). In view of the proof of 13.20, a family of
divided Frobenius morphisms tϕiFjuiďp´1 is equivalent to a horizontal morphism ϕFj
(13.19.2) for j “ 1, 2. Then the functor (13.22.1) is given by

MFbigpX;F1,Xq ÑMFbigpX;F2,Xq(13.22.4)

pM,∇,M‚, ϕF1
q ÞÑ pM,∇,M‚, ϕF1

˝ α˚pπ˚RpεĂM qqq.
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Let us describe the isomorphism (13.22.3) in terms of a system of local coordinates.
Assume that there exists an étale S -morphism f : X Ñ pAdS “ SpfpWtT1, . . . , Tduq

and put ti the image of Ti in OX and ξi “ 1 b ti ´ ti b 1 P OX2 . Let i be an integer
P r0, p´ 1s, m an element of M i and pmqi its image in ĂM . We have (13.5.6)
(13.22.5)

ε
ĂM
p1b pmqiq “

ÿ

|I|ďi

1

|I|!

`

∇BI pmq
˘

i´|I|
b

ˆ

ξ

p

˙I

`
ÿ

|I|ąi

p|I|´i

|I|!

`

∇BI pmq
˘

0
b

ˆ

ξ

p

˙I

.

Recall that the morphism α : X Ñ RX1 (13.22.2) induces a homomorphism

a : RX1 Ñ OX (9.20.2) which sends ξ1i
p to

F˚2,Xptiq´F
˚
1,Xptiq

p (9.20.3). We deduce that

α˚pπ˚RpεĂM qqp1bF2 pmqiq “
ÿ

|I|ďi

ˆ

F˚2,Xptq ´ F
˚
1,Xptq

p

˙I
â

F1

1

|I|!

`

∇BI pmq
˘

i´|I|

(13.22.6)

`
ÿ

|I|ąi

ˆ

F˚2,Xptq ´ F
˚
1,Xptq

p

˙I
â

F1

p|I|´i

|I|!

`

∇BI pmq
˘

0
,

where
ˆ

F˚2,Xptq ´ F
˚
1,Xptq

p

˙I

“

d
ź

j“1

ˆ

F˚2,Xptjq ´ F
˚
1,Xptjq

p

˙ij

@ I “ pi1, . . . , idq P Nd.

We review some basic properties about Fontaine modules. The following result is
fisrt showed in [13] and we refer to [29] for another approach.

Proposition 13.23 ([13] 2.1; [29] 5.3.3). – Suppose that there exists a σ-lifting
FX : XÑ X of the Frobenius morphism. Let pM,∇,M‚, ϕq be an object of MFpX;FXq

(13.18).

(i) Then each M i is locally a direct sum of sheaves of the form OXn ; each mor-
phism M i ÑM i´1 locally split. In particular, pM,∇,M‚q forms a T-crystal (13.13).

(ii) Any morphism of MFpX;FXq is strictly compatible with the filtrations ([9]
1.1.5).

(iii) The category MFpX;FXq is abelian.

Then we deduce the corresponding statement for (global) Fontaine modules.

Corollary 13.24. – (i) For every object pM,∇,M‚, ϕq of MFpXq, pM,∇,M‚q

forms a T-crystal.

(ii) Any morphism of MFpXq is strictly compatible with the filtrations.

(iii) The category MFpXq is abelian.
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Proof. – Assertions (i) and (ii) being local, they follow from 13.20 and 13.23.
For any morphism f : pM1,∇1,M

‚
1 , ϕ1q Ñ pM2,∇2,M

‚
2 , ϕ2q of pn-torsion objects

of MFpXq, we denote by pL,∇Lq and pN,∇N q the kernel and the cokernel of f
in MICqn

pXn{Snq. We denote by L‚ (resp. N‚) the filtration on L (resp. N) induced
by M‚

1 (resp. M‚
2 ) ([9] 1.1.8). Since f is strictly compabitlbe, for any i ă p, we have

fpM i
1q “ fpM1q XM i

2 ([9] 1.1.11) and an exact sequence 0 Ñ Li Ñ M i
1 Ñ M i

2 Ñ

N i Ñ 0. By the snake lemma, we deduce an exact sequence

0 Ñ rLÑ ĂM1 Ñ ĂM2 Ñ rN Ñ 0.

Then we deduce a commutative diagram

0 // νpC˚p ĂL 1qq // νpC˚p ĂM 1
1qq

oϕ1

��

// νpC˚p ĂM 1
2qq

//

o ϕ2

��

νpC˚p ĂN 1qq // 0

0 // pL,∇Lq // pM1,∇1q // pM2,∇2q // pN,∇N q // 0.

Hence we can define Kerpfq and Cokerpfq in MFpXq. We deduce that the category
MFpXq is abelian.

13.25. – In the following, we compare categories MFpX; ι, FYq with respect to dif-
ferent choice of data pι : XÑ Y, FYq following Tsuji [35].

Let pι1 : X Ñ Y1, FY1
q and pι2 : X Ñ Y2, FY2

q be two data as in 13.14 and
suppose that there exists a smooth S -morphism g : Y2 Ñ Y1 compatible with
ι1, ι2 and the Frobenius morphisms FY1 and FY2 . Then g induces a PD-morphism
gD : D2 Ñ D1 compatible with FD2

and FD1
. Note that gD induces an isomorphism

on the underlying topological spaces.

Lemma 13.26 ([35] 2.2.2). – Let x be a point of Xn and let t1, . . . , td be a family of
local sections of OY2,n in a neighborhood of ι2pxq such that tdt1, . . . , dtdu form a basis
of Ω1

Y2,n{Y1,n,x
and that ι˚2 ptiq “ 0 (the existence follows from the fact that ι1 is a

closed immersion). Then there exists an OD1,n,x-PD-isomorphism

(13.26.1) OD1,n,xxT1, . . . , Tdy
„
ÝÑ OD2,n,x,

which sends Ti to ti.

Proposition 13.27 ([35] Proof of 2.2.1). – Keep the assumption of 13.25. The mor-
phism g : Y2 Ñ Y1 induces equivalences of categories quasi-inverse to each other:

g˚ : MFbigpX; ι1, FY1q ÑMFbigpX; ι2, FY2q,

g˚ : MFbigpX; ι2, FY2q ÑMFbigpX; ι1, FY1q.
(13.27.1)

We present the construction of pull-back functor and we refer to [35] for the con-
struction of the push-forward functor. Let M “ pM1,∇1,M

‚
1 , ϕ

‚
1q be a pn-torsion

object of MFbigpX; ι1, FY1q and pM ,M ‚q the associated proto-T-crystal.
The evaluation pM2,∇2,M

‚
2 q of pM ,M ‚q at D2 is given byM2 “ OD2,nbOD1,n

M1

and for r P Z, Mr
2 “

ř

r1ě0,r1`r2“r
ImpJ

rr1s
D2,n

bOD1,n
Mr2

1 ÑM2q (13.11).
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The connection ∇2 : M2 Ñ M2 bOY2,n
Ω1
Y2,n{Sn

is defined, for any local sections
a of OD2,n and m of M , by

(13.27.2) ∇2pabmq “ a ¨ g˚p∇1pmqq `mb∇D2,npaq.

Let x be a point of X. With the notation and assumption of 13.26, for any I “
pi1, . . . , idq P Nd, we set T rIs “

śd
j“1 T

rijs
j . In view of 13.15(i-c) and (13.26.1), Mr

2,x

can be written as a direct sum of OD1,n,x-modules Mr
2,x “

À

|I|“sM
r´s
1,x ¨ T rIs. For

any r ă p, we deduce that the semi-linear morphisms

ϕr1JD2,n
b ϕr21 : J

rr1s
D2,n

bOD1,n
Mr2

1 ÑM2, r1 ` r2 “ r, 0 ď r1 ď p´ 1

are compatible and induce a family of divided Frobenius morphisms with respect
to FD2 :

(13.27.3) ϕr2 : Mr
2 ÑM2.

Conditions 13.15(i a-c) follow from those of ϕ‚1 and of ϕ‚D2,n
.

Remark 13.28. – By (13.27.2), the morphism g induces a morphism of de Rham
complexes

(13.28.1) M1 bOY1,n
Ω‚Y1,n{Sn

ÑM2 bOY2,n
Ω‚Y2,n{Sn

.

For any r ď p´ 1, we have a commutative diagram (13.15.2)

(13.28.2) pMr´‚
1 bOY1,n

Ω‚Y1,n{Sn
q bσ,W W //

��

M1 bOY1,n
Ω‚Y1,n{Sn

��
pMr´‚

2 bOY2,n
Ω‚Y2,n{Sn

q bσ,W W // M2 bOY2,n
Ω‚Y2,n{Sn

.

Lemma 13.29 ([35] 2.3.2). – The functor g˚ (13.27.1) sends strongly divisible objects
to strongly divisible objects (13.17).

Proof. – The canonical morphisms OD2,n bOD1,n
Mr

1 Ñ Mr
2 induce an ODn -linear

morphism (13.16)

(13.29.1) ug : g˚Dp
ĂMq Ñ Čg˚pMq.

In view of condition 13.16(ii), the above morphism is surjective. We have a commu-
tative diagram:

(13.29.2) g˚Dp
ĂMq

ug // //

g˚DpϕMq

��

Čg˚pMq

ϕg˚pMq

��
g˚DpM1q M2.

If ϕM is an isomorphism, then ug is an isomorphism and so is ϕg˚pMq. The lemma
follows.
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In the end, we construct a natural functor from MFbigpXq to the category of
Fontaine modules with respect to the diagonal immersion and two liftings of Frobenius
morphism on X.

Proposition 13.30. – Suppose that X is separated over S . Take again the notation
of 13.22 and let ∆ : XÑ X2 be the diagonal immersion, q1, q2 : X2 Ñ X the canonical
projections and FX2 “ pF1,X, F2,Xq : X2 Ñ X2. Then the diagram

(13.30.1) MFbigpXq
λF1 //

λF2

��

MFbigpX;F1,Xq

q˚1
��

MFbigpX;F2,Xq
q˚2 //MFbigpX; ∆, FX2q

is commutative up to a canonical isomorphism.

Proof. – Let M “ pM,∇,M‚, ϕq be a Fontaine module over X and ϕFi “ ϕ ˝ ηFi :

F˚i,Xp
ĂMq Ñ M (13.19.2) for i “ 1, 2. Then we have λFipMq “ pM,∇,M‚, ϕFiq P

MFbigpX;Fi,Xq. We denote abusively by qi the composition PX Ñ X2 qi
ÝÑ X and we

set Mi “ q˚i pλFipMqq “ pq
˚
i pMq,∇i, A‚i , ϕ‚Mi

q PMFbigpX; ∆, FX2q.

Let ε : q˚2 pMq
„
ÝÑ q˚1 pMq be the PX-stratification on M . By 13.12, it is a filtered

isomorphism with respect to the filtrations A‚2 and A‚1. It remains to show that ε is
compatible with the divided Frobenius morphisms ϕ‚Mi

on both sides.

Since ϕ : C˚p ĂM 1qpX,Xq Ñ M is a horizontal morphism, the following diagram
commutes

(13.30.2) q˚2 pC
˚
p ĂM 1qpX,Xqq

„ //

q˚2 pϕq

��

C˚p ĂM 1qpX,PXq q˚1 pC
˚
p ĂM 1qpX,Xqq

q˚1 pϕq

��

„oo

q˚2 pMq
ε

„
// q˚1 pMq.

We have ϕFi “ ηFi ˝ ϕ and the following commutative diagrams:
(13.30.3)

q˚2 pF
˚
2,Xp

ĂMqq
q˚2 pηF2

q

„
//

q˚2 pϕF2
q ((

q˚2 pC
˚
p ĂM 1qpX,Xqq

q˚2 pϕq

��
q˚2 pMq,

q˚1 pF
˚
1,Xp

ĂMqq
q˚1 pηF1

q

„
//

q˚1 pϕF1
q ((

q˚1 pC
˚
p ĂM 1qpX,Xqq

q˚1 pϕq

��
q˚1 pMq.
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The filtered isomorphism ε : A‚2
„
ÝÑ A‚1 induces an isomorphism rε : ĄM2

„
ÝÑĄM1 (13.16).

In the diagrams
(13.30.4)

q˚2 pF
˚
2,Xp

ĂMqq
„ //

uq2����
q˚2 pϕF2

q

##

C˚p ĂM 1qpX,PXq

p1q

q˚1 pF
˚
1,Xp

ĂMqq
„oo

uq1 ����
q˚1 pϕF1

q

{{

ĄM2
rε //

ϕM2

��
p2q

ĄM1

ϕM1

��
q˚2 pMq

ε // q˚1 pMq

the left-hand side diagram and the right-hand side diagram are commutative (13.29.2).
To prove the assertion, it suffices to show that diagram (2) is commutative. By

(13.30.2) and (13.30.3), the outer diagram of (13.30.4) commutes. Since uqi is surjec-
tive (13.29.1), it suffices to prove the following lemma.

Lemma 13.31. – Diagram (1) of (13.30.4) is commutative.

Proof. – Recall (9.19) that F1, F2 induce a S -morphism QX Ñ RX1 . We denote the
composition ρpX,PXq Ñ ρpX,QXq Ñ pX 1, RX1q of morphisms of E 1 (9.1.2) by f . It
fits into the following commutative diagram:

ρpX,Xq

F2

��

ρpX,PXq

f

��

ρpq2qoo ρpq1q // ρpX,Xq

F1

��
pX 1,X1q pX 1, RX1q

q12oo q11 // pX 1,X1q.

Hence the composition q˚2 pF
˚
2,Xp

ĂMqq
„
ÝÑ q˚1 pF

˚
1,Xp

ĂMqq of the upper arrows of dia-
gram (1) coincides with the pull-back of the RX-stratification εĂM on ĂM (13.5) via

the composition PX
f
ÝÑ RX1

πR
ÝÝÑ RX (13.6):

(13.31.1) f˚pπ˚RpεĂM qq : PX bRX
pRX bOX

ĂMq
„
ÝÑ PX bRX

pĂM bOXn RXq.

To show the lemma, we may suppose that there exists an étale morphism XÑ pAdS
and we take again the notation of 13.22. For 1 ď k ď d, we set F˚1 pt

1
kq “ tpk` pak and

F˚2 pt
1
kq “ tpk ` pbk. By (9.19.3), the homomorphism RX1 Ñ PX induced by f sends

(13.31.2)
ˆ

ξ1k
p

˙

ÞÑ zk “ pp´ 1q!ξ
rps
k `

p´1
ÿ

j“1

pp´ 1q!

j!pp´ jq!
ξjkptk b 1qp´j `p1b bk ´ ak b 1q.

For any multi-index I “ pi1, . . . , idq, we set zI “
śd
k“1 z

ik
k . Let i be an integer

P r0, p ´ 1s, m a local section of M i and pmqi its image in ĂM . By (13.22.5) and
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(13.31.2), the isomorphism (13.31.1) sends
(13.31.3)

1bp1bq2 pmqiq ÞÑ
ÿ

|I|ďi

zI

I!
b
`

p∇BI pmqqi´|I|bq1 1
˘

`
ÿ

|I|ąi

p|I|´izI

I!
b
`

p∇BI pmqq0bq1 1
˘

.

The PX-linear morphism uq2 (resp. uq1) (13.29.1) sends
(13.31.4)
1bp1bq2 pmqiq ÞÑ

`

1bFPX p1bq2mq
˘

i
(resp. 1bppmqibq1 1q ÞÑ

`

1bFPX pmbq1 1q
˘

i
,

where p´qi : F˚PXpA
i
jq Ñ

ĄMj denotes the canonical morphism for j “ 1, 2.
On the other hand, the isomorphism ε : Ai2

„
ÝÑ Ai1 sends 1bm to

ř

I ∇BI pmqbξrIs.
Hence the isomorphism rε : ĄM2

„
ÝÑĄM1 in diagram (1) sends

(13.31.5)
`

1bFPX p1bq2 mq
˘

i
ÞÑ

ÿ

I

`

1bFPX p∇BI pmq bq1 ξ
rIsq

˘

i
.

With the notation of 13.14, the divided Frobenius morphisms on pOPXn , J
r‚s

PXn
q satisfies

(13.31.6)

ϕPXn pξkq “ pzk, @ 1 ď k ď d, ϕiPXn pξ
rIsq “

p|I|´izI

I!
, @ i ă p, |I| ě i.

By conditions (i) and (ii) of 13.16, we deduce that

(13.31.7) p1bFPX p∇BI pmqb ξ
rIsqqi “

#

p z
I

I! bFPX
p∇BI pmq b 1qqi´|I| if |I| ď i,

p
p|I|´izI

I! bFPX
p∇BI pmq b 1qq0 if |I| ą i.

By comparing (13.31.3), (13.31.4), (13.31.5) and (13.31.7), the assertion follows.
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CHAPTER 14

THE FONTAINE MODULE STRUCTURE
ON THE CRYSTALLINE COHOMOLOGY

OF A FONTAINE MODULE

To illustrates our definition of Fontaine modules, we reprove the following result
of Faltings on the crystalline cohomology of a Fontaine module.

Theorem 14.1 ([13] IV 4.1). – Let X be a smooth proper formal S -scheme of relative
dimension d and pM,∇,M‚, ϕq a pn-torsion object of MFpXq (13.7) of length ď ` ď

p ´ 1 (i.e., M ``1 “ 0). We denote by Fi the subcomplex M i´‚ bOXn Ω‚Xn{Sn
of the

de Rham complex M bOXn Ω‚Xn{Sn
.

(i) Let m be an integer such that mintm, du ` ` ď p´ 1 and i an integer ď p´ 1.
Then the canonical morphism HmpFiq Ñ HmpM bOXn Ω‚Xn{Sn

q is injective.
(ii) Let m be an integer such that mintm, d´1u`` ď p´2 and i an integer ď p´1.

The isomorphism ϕ induces a family of semi-linear morphisms φm,iH : HmpFiq Ñ
HmpM bOXn Ω‚Xn{Sn

q (with respect to σ). Then the data

pHmpM bOXn Ω‚Xn{Sn
q, pHmpFiqqp´1

i“0 , pφ
m,i
H q

p´1
i“0 q

form an object of MFpS q (13.21).
(iii) In the spectral sequence of the filtered de Rham complex pM bOXn Ω‚Xn{Sn

,Fiq

([9] 1.4.5)

(14.1.1) Er,s1 “ Hr`spgrrF pM bOXn Ω‚Xn{Sn
qq ñ Hr`spM bOXn Ω‚Xn{Sn

q,

the differential morphism dr,s1 vanishes for mintr ` s, d´ 1u ` ` ď p´ 2.

The data pOXn , dq defines a Fontaine module of length 0 over X. By 14.1(iii), we
deduce that:

Corollary 14.2 ([16] 2.8; [13] IV 4.1). – If d ď p´1, the Hodge to de Rham spectral
sequence of Xn{Sn degenerates at E1.

We defer the proof of the theorem to 14.18 and we begin with some preparations
on crystalline cohomology of T-cyrstals (13.13) following Ogus [29].
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14.3. – Let ι : X Ñ Y a closed immersion of smooth Sn-schemes and D the
PD-envelope of ι compatible with γ. Let pM ,M ‚q a T-crystal of pX{Snqcrys (13.13)
and pM,∇q (resp. M‚) the associated O D-module with integrable connection (resp.
filtration) (13.12). Since M‚ satisfy Griffiths’ transversality, it induces a filtration on
the de Rham complex M bO Y

Ω‚Y {Sn
defined for every i P Z and q P Zě0 by

(14.3.1) FipM bO Y
Ωq

Y {Sn
q “M i´q bO Y

Ωq
Y {Sn

.

SinceM is an O D-module, the de Rham complexMbO Y
Ω‚Y {Sn

is concentrated on X .
Ogus showed that the above subcomplex computes the crystalline cohomology

of M i.

Theorem 14.4 ([29] 6.1.1). – We keep the above notation and we denote by uX{Sn

the canonical morphism of topoi pX{Snqcrys Ñ X zar.
(i) There exists an isomorphism in the derived category DpX zar,Wnq

(14.4.1) RuX{Sn˚pM q
„
ÝÑM D bO Y

Ω‚Y {Sn
.

(ii) For every i, there exists an isomorphism in DpX zar,Wnq compatible with
(14.4.1)

(14.4.2) RuX{Sn˚pM
iq

„
ÝÑ FipM D bO Y

Ω‚Y {Sn
q.

Corollary 14.5 ([29] 6.1.7). – Let ι1 : X Ñ Y 1 and ι2 : X Ñ Y 2 be two closed
Sn-immersions of X into smooth Sn-schemes, D1, D2 the PD-envelopes of ι1, ι2
compatible with γ and f : Y 2 Ñ Y 1 an Sn-morphism such that ι2 “ f ˝ ι1. Then the
morphisms of complexes induced by f

M D1
bO Y1

Ω‚Y1{Sn
Ñ M D2

bO Y2
Ω‚Y2{Sn

,

FipM D1
bO Y1

Ω‚Y1{Sn
q Ñ FipM D2

bO Y2
Ω‚Y2{Sn

q, @ i P Z,

are quasi-isomorphisms and compatible with (14.4.1) and (14.4.2).

14.6. – We suppose that X is separated over Sn and we take a Zariski covering
U “ tUiuiPI of X consisting of affine schemes. For any integer r ě 0 and any element
J “ pj0, j1, . . . , jrq of Ir`1, we denote by UJ the intersection

Şr
i“0 Uji , by UJ the

product tUjiuri“0 over Wn and by PJ the PD-envelope of the diagonal immersion
UJ Ñ UJ compatible with γ. Note that UJ and PJ are also affine. Then we obtain
two compatible simplicial objects:

Ů

iPI Ui
s
//
Ů

JPI2 U
J

doooo //
s
//
Ů

JPI3 U
J ¨ ¨ ¨

doo
oooo(14.6.1)

Ů

iPI Ui
s
//
Ů

JPI2 UJ
doooo //

s
//
Ů

JPI3 UJ ¨ ¨ ¨ ,
doo

oooo(14.6.2)
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where d, s denote the faces and degeneracy morphisms. Then the faces and degeneracy
morphisms of (14.6.2) induce a simplicial object compatible with (14.6.1):

(14.6.3)
Ů

iPI Ui
s
//
Ů

JPI2 PJ
doo oo //

s
//
Ů

JPI3 PJ ¨ ¨ ¨ .

doo
oooo

Let pM ,M ‚q be a T-crystal of pX{Snqcrys. We associate to pM ,M ‚q a bicomplex
C‚,‚U pM q and for any i P Z, a bicomplex Fi

`

C‚,‚U pM q
˘

) by setting

Cr,sU pM q “
à

JPIr`1

ΓpUJ ,MPJ bOUJ
ΩsUJ {Sn

q, r, s ě 0(14.6.4)

Fi
`

Cr,sU pM q
˘

“
à

JPIr`1

ΓpUJ ,M i´s
PJ

bOUJ
ΩsUJ {Sn

q, r, s ě 0,(14.6.5)

the horizontal differential morphism B
r,s
1 is the alternating sum of the resctriction

morphisms induced by the faces morphisms (14.6.3) and the vertical differential mor-
phism B

r,s
2 is given by the connection on MPJ .

Proposition 14.7 ([13] IV a)). – There exist canonical isomorphisms of cohomology
groups:

H‚ppX{Snqcrys,M q
„
ÝÑ H‚pTotpC‚,‚U pM qqq(14.7.1)

H‚ppX{Snqcrys,M
iq

„
ÝÑ H‚pTotpFi

`

C‚,‚U pM q
˘

qq, @i P Z.

Proof. – Let e be the final object of pX{Snqcrys. An open subscheme U of X defines
a subobject rU of e by

rUpV, T q “

#

epV, T q if V Ă U,

H otherwise.

Moreover, there exists a canonical equivalence of topoi ([4] IV 3.1.2)

(14.7.2) pX{Snqcrys { rU

„
ÝÑ pU{Snqcrys,

which identifies the localisation morphism with respect to rU and the functoriality
morphism induced by U Ñ X. Then, the morphisms trUi Ñ euiPI form a covering
in pX{Snqcrys. With the notation of 14.6, we have

ś

jPJ
rUj “ ĂUJ . By cohomological

descent, we have a spectral sequence ([10] 5.3.3.2, [3] Vbis 2.5.5)

(14.7.3) Er,s1 “
à

JPIr`1

Hs
ppUJ{Snqcrys,M |ĂUJq ñ Hr`s

ppX{Snqcrys,M q,

whose differential morphism dr,s1 : Er,s1 Ñ Er`1,s
1 is the alternating sum of the mor-

phisms induced by the faces morphisms of (14.6.1).
On the other hand, we calculate H‚pTotpC‚,‚U pM qqq by filtering this bicomplex by

rows ([19] 0.11.3.2). By 14.4(i), the vertical cohomology of C‚,‚U pM q is isomorphic to
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a direct sum of crystalline cohomology groups

Hr,s
I “ Ker Br,s2 { ImpBr,s´1

2 q(14.7.4)

»
à

JPIr`1

Hs
ppUJ{Snqcrys,M |ĂUJq.

Recall that we have a spectral sequence ([37] 5.6.1)

(14.7.5) E1r,s1 “ Hr,s
I ñ Hr`s

pTotpC‚,‚U pM qqq,

whose differential morphism d1r,s1 : E1r,s1 Ñ E1r`1,s
1 is induced by the morphism of

complexes

(14.7.6) B
r,‚
1 : Cr,‚U pM q Ñ Cr`1,‚

U pM q.

In view of 14.5 and 14.6, the morphism d1r,s1 coincides with dr,s1 (14.7.3). Then the
assertion for M follows.

Using 14.4(ii) and 14.5, one verifies the assertion for M i in the same way.

14.8. – We consider the injective O X{Sn
-linear morphism

(14.8.1) g :
p´1
à

i“1

M i Ñ

p´1
à

i“0

M i

defined for every local section m of M i by gpmq “ pm,´pmq in M i´1 ‘M i. We set
ΛM “ Cokerpgq. For any r, s P Z, the morphism g induces an injective morphism
(14.8.2)

p´1
à

i“1

à

JPIr`1

ΓpUJ ,M i´s
PJ

bOUJ
ΩsUJ {Sn

q Ñ

p´1
à

i“0

à

JPIr`1

ΓpUJ ,M i´s
PJ

bOUJ
ΩsUJ {Sn

q

compatible with the differential morphisms and hence an injective morphism of bi-
complexes:

(14.8.3) gC :
p´1
à

i“1

Fi
`

C‚,‚U pM q
˘

Ñ

p´1
à

i“0

Fi
`

C‚,‚U pM q
˘

.

We denote its quotient by C‚,‚U pΛM q. By 14.7, the crystalline cohomology groups
of ΛM are canonically isomorphic to cohomology groups of TotpC‚,‚U pΛM qq.

14.9. – Let X be a smooth and separated formal S -scheme. In the following, we
will use 14.7 to construct a Fontaine module structure on the crystalline cohomology
of an object of MFpXq (13.7). For this purpose, we first show how to associate an
object of MFbigpXq to a Fontaine module with respect to a family of Frobenius liftings
(13.15).

Suppose that there exist m ` 1 liftings F1, . . . , Fm`1 of the relative Frobenius
morphism FX{k of X. We set π : X1 Ñ X the canonical morphism, FXm`1 “ πm`1 ˝

pF1, . . . , Fm`1q : Xm`1 Ñ Xm`1 and ∆ : X Ñ Xm`1 the diagonal closed immersion.
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For 1 ď i ď m ` 1, the projection qi : Xm`1 Ñ X on the i-th component induces a
functor (13.27.1)

q˚i : MFbigpX;Fi,Xq ÑMFbigpX; ∆, FXm`1q.

By composing with the functor λFi (13.19.4), we obtain a functor

(14.9.1) q˚i ˝ λFi : MFbigpXq ÑMFbigpX; ∆, FXm`1q.

We denote by PXpmq the PD-envelope of the diagonal immersion ∆ compatible
with γ (5.7) and by FPXpmq : PXpmq Ñ PXpmq the lifting of Frobenius morphism
induced by FXm`1 : Xm`1 Ñ Xm`1. We denote abusively the composition PXpmq Ñ
Xm`1 qi

ÝÑ X by qi.

Proposition 14.10. – Let n be an integer ě 1, M “ pM,∇,M‚, ϕq a pn-torsion
Fontaine module over X, M the crystal of OXn{Sn

-modules associated to pM,∇q and
tM iu the filtration on M associated to tM iu (13.12). Then there exists a functor

MFbigpXq ÑMFbigpX; ∆, FXm`1q(14.10.1)

pM,∇,M‚, ϕq ÞÑ pMPXpmq,∇PXpmq,M
‚
PXpmq

, ϕ‚PXpmqq,

which is isomorphic to the functor q˚i ˝ λFi (14.9.1) via the transition morphism

(14.10.2) cqi : q˚i pMq
„
ÝÑMPXpmq.

Proof. – It suffices to show that the divided Frobenius morphisms ϕ‚Mi
constructed

by q˚i ˝λFi (14.9.1) are compatible via qi (14.10.2). We can reduce to the case m “ 1.
In this case, the proposition follows from 13.30.

14.11. – In the rest of this section, we suppose that X is a smooth proper formal
S -scheme of relative dimension d. Let n an integer ě 1, pM,∇,M‚, ϕq a pn-torsion
object of MFpXq of length ` ă p (i.e., M ` ‰ 0, M ``1 “ 0) and pM ,M ‚q the
associated T-crystal (13.24). We write simply H‚crysp´q for the crystalline cohomology
groups H‚ppXn{Snqcrys,´q.

Lemma 14.12. – Keep the notation of 14.8 and of 14.11. The morphism ϕ induces
W-linear morphisms of bicomplexes

φiC : Fi
`

C‚,‚U pM q
˘

bσ,W W Ñ C‚,‚U pM q, @ 0 ď i ď p´ 1,(14.12.1)

ψC : C‚,‚U pΛM q bσ,W W Ñ C‚,‚U pM q,(14.12.2)

which are functorial in pM,∇,M‚, ϕq P MFpXq. In particular, we obtain for m ě 0,
W-linear morphisms

φm,iH : Hm
cryspM

iq bσ,W W Ñ Hm
cryspM q, @ 0 ď i ď p´ 1,(14.12.3)

ψm : Hm
cryspΛM q bσ,W W Ñ Hm

cryspM q.(14.12.4)
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Proof. – We take a Zariski covering U “ tUiuiPI of X consisting of affine formal
schemes and for each i P I a lifting Fi : Ui Ñ U1i of the relative Frobenius mor-
phism of Ui,1. For any integer r ě 0 and J “ pj0, . . . , jrq P I

r`1, we denote by UJ

the intersection
Şr
i“0 Uji , by UJ the product of pr ` 1q-copies of UJ and by PJ the

PD-envelope of the diagonal closed immersion UJ Ñ UJ . Note that PJ is equal to the
PD-envelope of the immersion of UJ in the product of tUjiuri“0 over S . We denote
by FUJ : UJ Ñ UJ the morphism induced by tFjiuni“0 and by FPJ : PJ Ñ PJ the lifting
of the Frobenius morphism induced by FUJ . By 14.10, we associate to pM,∇,M‚, ϕq

a family of divided Frobenius morphisms with respect to pUJ Ñ UJ , FUJ q:

(14.12.5) ϕiPJ : M i
PJ Ñ MPJ @ i ď p´ 1.

For any r, s ě 0, in view of (13.15.2) and (13.28.2), the W-linear morphism
à

JPIr`1

ϕi´sPJ
b^s

ˆ

dFUJ
p

˙

:
à

JPIr`1

ΓpUJ ,M i´s
PJ

bOUJ,n
ΩsUJ,n{Sn

q bσ,W W

Ñ
à

JPIr`1

ΓpUJ ,MPJ bOUJ,n
ΩsUJ,n{Sn

q

is compatible with differential morphisms B‚,‚1 , B‚,‚2 of Fi
`

C‚,‚U pM q
˘

, C‚,‚U pM q respec-
tively (14.6). Then we obtain a W-linear morphism of bicomplexes

(14.12.6) φiC : Fi
`

C‚,‚U pM q
˘

bσ,W W Ñ C‚,‚U pM q.

By condition (i-a) of 13.15, we see that the composition (14.8.3)
(14.12.7)

Àp´1
i“1 Fi

`

C‚,‚U pM q
˘

bσ,W W
gC //Àp´1

i“0 Fi
`

C‚,‚U pM q
˘

bσ,W W
‘φiC // C‚,‚U pM q

vanishes. Then we obtain a W-linear morphism of bicomplexes

(14.12.8) ψC : C‚,‚U pΛM q bσ,W W Ñ C‚,‚U pM q.

It is clear that the above constructions are functorial.
By 14.7 and 14.8, we obtain morphisms of cohomology groups (14.12.3) and

(14.12.4).

Proposition 14.13. – If pM “ 0 and mintm, d´ 1u ` ` ď p´ 2, the morphism ψm

(14.12.4) is an isomorphism.

Proof. – We use Hr,s
I p´q to denote the vertical cohomology of a bicomplex. Recall

(14.7.5) that we have two spectral sequences:

E1r,s1 “ Hr,s
I pC

‚,‚
U pΛM qq ñ Hr`s

pTotpC‚,‚U pΛM qqq(14.13.1)

Er,s1 “ Hr,s
I pC

‚,‚
U pM qq ñ Hr`s

pTotpC‚,‚U pM qqq.(14.13.2)

The morphism of bicomplexes ψC induces a k-linear morphism of spectral sequences
E1bσ,kk Ñ E. Then it is enough to prove that for every r ě 0 and s satisfying
mints, d´ 1u ` ` ď p´ 2, the induced morphism

(14.13.3) Hr,s
I pC

‚,‚
U pΛM qq bσ,k k Ñ Hr,s

I pC
‚,‚
U pM qq
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is an isomorphism. Since M is p-torsion, we have ΛM “
Àp´2

i“0 gripM q ‘M p´1. For
any s ě 0, we set Λ´sM “

Àp´2
i“0 gri´spM q‘M p´1´s. Since UJ is affine, Cr,sU pΛM q can

be written as a direct sum
à

JPIr`1

ΓpUJ ,Λ´sM ,PJ
bOUJ,1

ΩsUJ,1{kq.

Recall (14.12.6) that the divided Frobenius morphisms ϕiPJ : M i
PJ
Ñ MPJ and the

semi-linear morphism ^sp
dFU
p q : ΩsUJ,1{k Ñ ΩsUJ,1{k induce a k-linear morphism

ψr,sJ,C : ΓpUJ ,Λ´sM ,PJ
bOUJ,1

ΩsUJ,1{kq bσ,k k Ñ ΓpUJ ,MPJ bOUJ,1
ΩsUJ,1{kq

and that the morphism ψr,sC (14.12.2) is defined by a direct sum of morphisms
À

JPIr`1 ψ
r,s
J,C .

Then the assertion follows from the following lemma.

Lemma 14.14. – For any r ě 0, J P Ir`1, the morphism of complexes

(14.14.1) ψr,‚J,C : ΓpUJ ,Λ´‚M ,PJ
bOUJ,1

Ω‚UJ,1{kq bσ,k k Ñ ΓpUJ ,MPJ bOUJ,1
Ω‚UJ,1{kq

induces an isomorphism on the m-th cohomology group for any integer m satisfying
mintm, d´ 1u ` ` ď p´ 2.

Proof. – In view of (13.28.2) and (14.5), we can reduce to the case where r “ 0, J P I.
To simplify the notation, we write U for UJ , F for the lifting of Frobenius FJ : UÑ U1,
U the special fiber of U and M (resp. M i) for MU “M |U (resp. M i

U “M i|U).
We set grpMq “

À`
i“0M

i{M i`1. By Griffiths’ transversality, ∇ induces a Higgs
field on grpMq:

θ : grpMq Ñ grpMq bOX Ω1
X{k.

The source of (14.14.1) can be written as

(14.14.2) ΓpU, p
p´2´s
à

i“0

gripMq ‘Mp´1´sq bOU ΩsU{kq bσ,k k,

which is equal to

(14.14.3) ΓpU, grpMq bOU ΩsU{kq bσ,k k if s ď p´ 1´ `.

The differential morphism of the source is induced by θ for s ď p´ 1´ `.
Since pM “ 0, we have pĂM, r∇q “ pgrpMq, θq (13.8). The isomorphism ϕ and the

lifting F induce an isomorphism of MICpXn{Snq (13.19.2)

(14.14.4) ϕF : Φ1

`

pgrpMq, θq bσ,k k
˘ „
ÝÑ pM,∇q.

Recall (13.20) that ϕF induces a family of divided Frobenius morphisms ϕ‚F . The
morphism ψr,‚J,C (14.14.1), which is induced by ϕ‚F , coincides with the composition
of morphism of complexes (6.5.1) induced by Φ1 and the isomorphism of de Rham
complexes induced by ϕF
(14.14.5) pgrpMq bOU Ω‚U{kq bσ,k k ÑM bOU Ω‚U{k

in degrees ď p´ 1´ `. Then the lemma follows from 6.5.
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Remark 14.15. – Suppose that pM “ 0. Let grpMq “
À`

i“0M
i{M i`1 and θ the

Higgs field on grpMq induced by ∇ and Griffiths’ transversality. By 14.4 and a similar
argument of 14.14, we deduce for m ď p´ 2´ `, an isomorphism

(14.15.1) Hm
cryspΛM q

„
ÝÑ HmpgrpMq b Ω‚X{kq.

Proposition 14.16. – (i) If d ď p´1´ `, the morphism ψm (14.12.4) is an isomor-
phism for all m.

(ii) If d ą p´1´`, the morphism ψm (14.12.4) is an isomorphism for m`` ď p´3,
and is a monomorphism for m` ` “ p´ 2.

Proof. – We prove it by induction on n. In the case n “ 1, i.e.,M is p-torsion, it follows
from 14.13. Suppose that the proposition is true for n ´ 1. By 13.24, the quadruple
ppM,∇|pM , pM

‚, ϕ|pC˚p ĂM 1q
q is a subobject of pM,∇,M‚, ϕq in MFpXq and we denote

its quotient by pM,∇,M‚
, ϕq. If M and M

‚
denote the crystal of OXn{Sn

-modules
and the filtration associated to pM,∇,M‚

q (13.12), we have an exact sequence:

(14.16.1) 0 Ñ pM i Ñ M i Ñ M
i
Ñ 0 @ i ď p´ 1.

By the snake lemma, we have a commutative diagram:

(14.16.2) 0

��

0

��

0

��
0 //Àp´1

i“1 pM
i //

��

Àp´1
i“0 pM

i //

��

ΛpM //

��

0

0 //Àp´1
i“1 M i //

��

Àp´1
i“0 M i //

��

ΛM
//

��

0

0 //Àp´1
i“1 M

i //

��

Àp´1
i“0 M

i //

��

ΛM
//

��

0

0 0 0.

Since ψm is functorial in MFpXq, the assertion follows by dévissage from the induction
hypothesis.

Proposition 14.17. – (i) Let m be an integer such that mintm, d´ 1u ď p´ 2´ `,
the exact sequence (14.8)

0 Ñ
p´1
à

i“1

M i g
ÝÑ

p´1
à

i“0

M i Ñ ΛM Ñ 0
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induces an exact sequence of cohomology groups

(14.17.1) 0 Ñ
p´1
à

i“1

Hm
cryspM

iq Ñ

p´1
à

i“0

Hm
cryspM

iq Ñ Hm
cryspΛM q Ñ 0.

(ii) If m` ` “ p´ 2, morphism ψm (14.12.4) is an isomorphism.

Proof. – We prove the proposition by induction on m. The case m “ ´1 is trivial.
Suppose that the assertion is true for m´1 and we will prove it for m. By hypothesis
of induction, we have an exact sequence (which automatically exists for m “ 0)

(14.17.2) 0 Ñ
p´1
à

i“1

Hm
cryspM

iq Ñ

p´1
à

i“0

Hm
cryspM

iq Ñ Hm
cryspΛM q.

Since M ,M i are coherent, by 14.4, we see that the cohomology groups in the above
sequence are finite type Wn-modules. By 14.16, we have the following inequalities on
the length of Wn-modules

lgWn
Hm

cryspΛM q ď lgWn
Hm

cryspM q(14.17.3)

“

p´1
ÿ

i“0

lgWn
Hm

cryspM
iq ´

p´1
ÿ

i“1

lgWn
Hm

cryspM
iq.

Then we deduce the surjectivity of the last arrow of (14.17.2), and that the above
inequality is an equality. The assertion (i) follows. The assertion (ii) follows from 14.16
and the equality (14.17.3).

14.18. – Proof of 14.1. Assertion (i) follows from 14.4 and 14.17.
We take for φm,iH the morphism (14.12.3). Then assertion (ii) follows from (i), 14.16

and 14.17.
Note that the complex Fi “ 0 if i ą d``. For any r, s satisfying mintr`s, d´1u`` ď

p´ 2, we deduce from (i) that

(14.18.1) Hr`spgrrFpM bOXn Ω‚Xn{Sn
qq

„
ÝÑ Hr`spFrq{Hr`spFr`1

q.

Then assertion (iii) follows by comparing the Wn-length of Er,s1 and of Er`s.

Remark 14.19. – Using the comparison isomorphism between the de Rham and the
Dolbeault complexes (10.21), Ogus and Vologodsky proved 14.1 for p-torsion Fontaine
modules (13.8) ([31] 4.17). More precisely, let pM,∇,M‚, ϕq be a p-torsion object
of MFpXq of length ` and θ the Higgs field on grpMq induced by ∇ and Griffiths’
transversality. By 10.21, the isomorphism (10.21.1) induces via (13.8.1)

ϕ : C´1
X12
pπ˚pGrpMq, θqq

„
ÝÑ pM,∇q,

for m ď p´ 1´ `, an isomorphism:

(14.19.1) HmpgrpMq b Ω‚X{kq bσ,k k
„
ÝÑ HmpM b Ω‚X{kq.

By (14.15.1), we obtain for m ď p´ 2´ `, an isomorphism

(14.19.2) Hm
cryspΛM q bσ,k k

„
ÝÑ Hm

cryspM q.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2019



130 CHAPTER 14. THE FONTAINE MODULE STRUCTURE

The above isomorphism is an analog of the isomorphism ψm (14.12.4), 14.13 and
allows us to deduce 14.1 for p-torsion objects. We don’t know whether these two
isomorphisms coincide or not.

Theorem 14.1 provides a generalization of Ogus-Vologodsky’s Result (10.21)
for pn-torsion Fontaine modules. However, we don’t know how to generalize 10.21 for
the Cartier equivalence modulo pn.
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Let W be the ring of the Witt vectors of a perfect field of characteristic p,
X a smooth formal scheme over W, X1 the base change of X by the
Frobenius morphism of W, X12 the reduction modulo p2 of X1 and X
the special fiber of X. We lift the Cartier transform of Ogus-Vologodsky
defined by X12 modulo pn. More precisely, we construct a functor from
the category of pn-torsion OX1-modules with integrable p-connection to the
category of pn-torsion OX-modules with integrable connection, each subject
to suitable nilpotence conditions. Our construction is based on Oyama’s
reformulation of the Cartier transform of Ogus-Vologodsky in characteristic p.
If there exists a lifting F : X Ñ X1 of the relative Frobenius morphism of X,
our functor is compatible with a functor constructed by Shiho from F . As an
application, we give a new interpretation of Faltings’ relative Fontaine modules
and of the computation of their cohomology.

Soient W l’anneau des vecteurs de Witt d’un corps parfait de caractéristique
p ą 0, X un schéma formel lisse sur W, X1 le changement de base de X par
l’endomorphisme de Frobenius de W, X12 la réduction modulo p2 de X1 et X
la fibre spéciale de X. On relève la transformée de Cartier d’Ogus-Vologodsky
définie par X12. Plus précisément, on construit un foncteur de la catégorie
des OX1-modules de pn-torsion à p-connexion intégrable dans la catégorie des
OX-modules de pn-torsion à connexion intégrable, chacune étant soumise à des
conditions de nilpotence appropriées. S’il existe un relèvement F : X Ñ X1

du morphisme de Frobenius relatif de X, notre foncteur est compatible avec
une construction « locale » de Shiho définie par F . Comme application de
la transformée de Cartier modulo pn, on donne une nouvelle interprétation
des modules de Fontaine relatifs introduits par Faltings et du calcul de leur
cohomologie.
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