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LIFTING THE CARTIER TRANSFORM
OF OGUS-VOLOGODSKY MODULO p"

Daxin Xu

Abstract. — Let W be the ring of the Witt vectors of a perfect field of characteristic p,
X a smooth formal scheme over W, X’ the base change of X by the Frobenius morphism
of W, X}, the reduction modulo p? of X’ and X the special fiber of X. We lift the Cartier
transform of Ogus-Vologodsky defined by ¥/, modulo p™. More precisely, we construct
a functor from the category of p™-torsion &x-modules with integrable p-connection
to the category of p™-torsion Ox-modules with integrable connection, each subject to
suitable nilpotence conditions. Our construction is based on Oyama’s reformulation of
the Cartier transform of Ogus-Vologodsky in characteristic p. If there exists a lifting
F : X — X’ of the relative Frobenius morphism of X, our functor is compatible with a
functor constructed by Shiho from F'. As an application, we give a new interpretation
of Faltings’ relative Fontaine modules and of the computation of their cohomology.

Résumé (Relevement de la transformée de Cartier d’Ogus-Vologodsky modulo p™)
Soient W I’anneau des vecteurs de Witt d’un corps parfait de caractéristique p > 0,
X un schéma formel lisse sur W, X’ le changement de base de X par '’endomorphisme
de Frobenius de W, X} la réduction modulo p? de X’ et X la fibre spéciale de X. On
reléve la transformée de Cartier d’Ogus-Vologodsky définie par ¥),. Plus précisément,
on construit un foncteur de la catégorie des 0x,-modules de p™-torsion & p-connexion
intégrable dans la catégorie des Ox-modules de p™-torsion a connexion intégrable,
chacune étant soumise a des conditions de nilpotence appropriées. S’il existe un re-
levement F' : X — X’ du morphisme de Frobenius relatif de X, notre foncteur est
compatible avec une construction « locale » de Shiho définie par F'. Comme applica-
tion de la transformée de Cartier modulo p™, on donne une nouvelle interprétation des
modules de Fontaine relatifs introduits par Faltings et du calcul de leur cohomologie.

(© Mémoires de la Société Mathématique de France 163, SMF 2019
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CHAPTER 1

INTRODUCTION

1.1. — In his seminal work [34], Simpson established a deep relation between com-
plex representations of the fundamental group of a projective complex manifold X
and Higgs modules on X, leading to a theory called nonabelian Hodge theory. Re-
call that a Higgs module on X is a coherent sheaf M together with an &x-linear
morphism 0 : M — M Q¢ Qk/c such that 6 A 8 = 0. (Simpson’s result uses, but
is much deeper than, the Riemann-Hilbert correspondence relating representations
of the fundamental group and modules with integrable connection.) In [14], Faltings
developed a partial p-adic analog of Simpson correspondence for p-adic local systems
on varieties over p-adic fields.

On the other hand, in [31], Ogus and Vologodsky constructed a version of non-
abelian Hodge theory in characteristic p. If X is a smooth scheme over a perfect
field k of characteristic p > 0, they established an equivalence, called Cartier trans-
form, between certain modules with integrable connection on X /k and certain Higgs
modules on X /k, depending on a lifting of X’ (the base change of X by the Frobe-
nius morphism of k) to W (k). They also constructed a canonical quasi-isomorphism
betweeen certain truncations of the de Rham complex of a module with integrable
connection and of the Higgs complex of its Cartier transform. This result generalizes
the Cartier isomorphism and the decomposition of the de Rham complex given by
Deligne-Illusie [11]; it is also an analog of a corresponding result in Simpson’s theory.

The relation between Faltings’ p-adic Simpson correspondence and the Cartier
transform is not yet understood. The first difficulty is to lift the Cartier transform
modulo p™. This is our main goal in the present article. Shiho [33] constructed a “local”
lifting of the Cartier transform modulo p™ under the assumption of a lifting of the
relative Frobenius morphism modulo p"*!. In [32], Oyama gave a new construction
of the Cartier transform of Ogus-Vologodsky as the inverse image by a morphism of
topoi. His work is inspired by Tsuji’s approach to the p-adic Simpson correspondence
([2] IV). In this article, we use Oyama topoi to “glue” Shiho’s functor and obtain a
lifting of the Cartier transform modulo p™ under the (only) assumption that X lifts
to a smooth formal scheme over W.
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2 CHAPTER 1. INTRODUCTION

1.2. — Shiho’s construction applies to modules with A-connection, a notion of in-
troduced by Deligne. Let f : X — S be a smooth morphism of schemes, M an
Ox-module and X € T'(S, Os). A A-connection on M relative to S is an f~!(Og)-lin-
ear morphism V : M — M Qg Qﬁ(/s such that V(zm) = zV(m) + Am ® d(z) for
every local sections = of Ox and m of M. 1-connections correspond to the classical
notion of connections, and 0-connections to Higgs fields. The integrability of A-con-
nections is defined in the same way as for connections. We denote by MIC(X/S)
(resp. A-MIC(X/S)) the category of &x-modules with integrable connection (resp.
A-connection) relative to S.

1.3. — In the following, if we use a gothic letter ¥ to denote an adic formal W-scheme,
the corresponding roman letter 7' will denote its special fiber. Let X be a smooth
formal scheme over W and n an integer > 1. We denote by 0 : W — W the Frobenius
automorphism of W, by X’ the base change of X by o and by X,, the reduction
of X modulo p™. In [33], Shiho constructed a “local” lifting modulo p™ of the Cartier
transform of Ogus-Vologodsky defined by X5, using a lifting Fy, 1 : Xp41 — X, of
the relative Frobenius morphism Fy , : X — X’ of X.

The image of the differential morphism dF, 1 : F;fH(Q%E,nH/Wn“) — Q%&LH/WH]

of F, 1 is contained in pQ;nH/WnH. Dividing by p, it induces an Oy _-linear mor-
phism

dFpi1/p: F:(Qé/n/wn) - Q;en/wn'
Shiho defined a functor (depending on F,, 1) ([33] 2.5)
(1.3.1) ®,, : p-MIC(X]/W,) — MIC(X,/W,)

(M'\V') — (Fy(M'),V),
where V : F¥(M') — Q%En/Wn ®ex, Fy¥(M’) is the integrable connection defined for
every local section e of M’ by
o dFy

(1.3.2) V(F;(e)) = (ld®TH)(F:(V'(e)))-

Shiho showed that the functor ®, induces an equivalence of categories between
the full subcategories of p-MIC(X!,/W,,) and of MIC(X,,/W,,) consisting of quasi-
nilpotent objects ([33] Thm. 3.1). When n = 1, Ogus and Vologodsky proved that the
functor ®; is compatible with the Cartier transform defined by X, ([31] Thm. 2.11;
[33] 1.12).

1.4. — The categories of connections and their analogs we will be studying can be
understood geometrically using the language of groupoids. Our groupoids will be
relatively affine and hence correspond to Hopf algebras. If (7, A) is a ringed topos,
a Hopf A-algebra is the data of a ring B of 7 together with five homomorphisms

d
A= B, §: B— B®, B (comultiplication),
dy
7w : B — A (counit), o : B — B (antipode),

MEMOIRES DE LA SMF 163



CHAPTER 1. INTRODUCTION 3

where the tensor product B ®4 B is taken on the left (resp. right) for the A-algebra
structure of B defined by ds (resp. d1), satisfying the compatibility conditions for
coalgebras (cf. 4.2, [4] IT 1.1.2).

A B-stratification on an A-module M is a B-linear isomorphism
(1.4.1) e:BRQAM S5 M®®a B,

where the tensor product is taken on the left (resp. right) for the A-algebra structure
defined by dy (resp. d;), satisfying 7*(¢) = idjs and a cocycle condition (cf. 5.4).

1.5. — A classical example of a Hopf algebra is given by the PD-envelope of the
diagonal immersion. Let ¥ be a smooth formal W-scheme, ¥? the product of two
copies of X over W. For any n > 1, we denote by Px, the PD-envelope of the diagonal
immersion X,, — X2 compatible with the canonical PD-structure on (W,,pW,)
and by Px the associated adic formal W-scheme. The Ox-bialgebra Op, of X,,, is
naturally equipped with a formal Hopf Ox-algebra structure (i.e., for every n > 1, a
Hopf O%,-algebra structure on Op, , which is compatible) (cf. 4.7, 5.10).

A quasi-nilpotent integrable connection relative to W,, on an 0%, -module M (cf.
5.3) is equivalent to an Op,-stratification on M ([5] 4.12). Following Shiho [33], we
give below an analogous description of p-connections; the relevant Hopf algebra is
constructed by dilatation (certain distinguished open subset of admissible blow-up)
in formal geometry.

1.6. — We define by dilatation an adic formal X2-scheme Ry satisfying the following
conditions (3.5).

(i) The canonical morphism Ry ; — X? factors through the diagonal immersion
X - X2

(ii) Let X — X2 be the morphism induced by the diagonal immersion. For any flat
formal W-scheme ) and any W-morphisms f : 2) — X2 and g : Y — X which fit into
the following commutative diagram

Y——9
QL l/f
X —— X2
there exists a unique W-morphism [’ : Q) — Ry lifting f.

We denote abusively by g, the direct image of O, via the morphism Rx ,ar —
Xsar (1). Using the universal property of Rx, we show that Or, is equipped with a
formal Hopf O'x-algebra structure (4.11).

The diagonal immersion X — X2 induces a closed immersion ¢ : X — Rz (3.5).
For any n > 1, we denote by T , the PD-envelope of ¢, : X, — Rx, compatible
with the canonical PD-structure on (W,,p W,,). The schemes {T% ,,},>1 form an adic
inductive system and we denote by Tx the associated adic formal W-scheme. By the

universal property of PD-envelope, the formal Hopf algebra structure on g, extends
to a formal Hopf O’x-algebra structure on the Ox-bialgebra O, of X,. (5.15).

SOCIETE MATHEMATIQUE DE FRANCE 2019



4 CHAPTER 1. INTRODUCTION

In ([33] Prop. 2.9), Shiho showed that for any n > 1 and any 0%,k -module M,
an Or, -stratification on M is equivalent to a quasi-nilpotent integrable p-connection
on M (cf. 5.17).

1.7. — Shiho’s local construction deals with modules with p-connection and connec-
tion, which is different to the (global) Cartier transform of Ogus-Vologodsky. We need
a fourth Hopf algebra, introduced by Oyama [32], and we will use it to define a notion
of stratification that will enable us to globalize Shiho’s construction.

For any k-scheme Y, we denote by Y the closed subscheme of Y defined by the
ideal sheaf of 0y consisting of the sections of &y whose pth power is zero. In (3.5),
4.9, we construct an adic formal X2-scheme Qx satisfying the following conditions.

(i) The canonical morphism Qz 1 — X? factors through the diagonal immersion
X - X2

(i) For any flat formal W-scheme 2 and any W-morphisms f : 2 — X2 and
g :Y — X which fit into the following commutative diagram

Y——9

s

X ——=3x2%

there exists a unique W-morphism f’: Q) — Qx lifting f.

We denote abusively by 0g,. the direct image of 0g, via the morphism Qx sar —
X,ar (1). It is also equipped with a formal Hopf 0x-algebra structure (4.11).

Let Px be the formal ¥2-scheme defined in 1.5, ¢ : ¥ — Px the canonical mor-
phism lifting the diagonal immersion X — X2 and _¢ the PD-ideal of Op, associated
to ¢;. For any local section of ¢, we have 2P = plzlPl = 0. Then we deduce a
closed immersion Py — X over X¥2. By the universal property of Qz, we obtain an
X¥2-morphism X : Py — Qx.

1.8. — The groupoids and Hopf algebras constructed above give a geometric inter-
pretation of Shiho’s functor ® and of a variation of ® which can be globalized. Let
F : X — X’ be a lifting of the relative Frobenius morphism F , of X. By the uni-
versal properties of Ry and of PD-envelopes, the morphism F? : ¥2 — X’? induce
morphisms ¥ : Qx — Ry (6.6) and ¢ : Px — Ty (6.8) above F? which fit into a
commutative diagram (6.9.1)

(1.8.1) P Ty
P
Q.’f qu

MEMOIRES DE LA SMF 163



CHAPTER 1. INTRODUCTION 5

where w : Txs — Ry (1.6) and X : Px — Qx (1.7) are independent of F. Moreover,
¢ and ¢ induce homomorphisms of formal Hopf algebras Or,, — Fy(0q,) and
Or,, — Fy(Opy). The above diagram induces a commutative diagram (6.9.2)

(1.8.2) { category of ﬁae/n-mOdlﬂeS} v {category of ﬁxn—modules}
with Og_,-stratification with &g . -stratification

w::i sz

{ category of 0%/ —modules} on {category of ﬁxn—modules}'
with Or,,-stratification with Op,-stratification

In ([33] 2.17), Shiho showed that the functor ¢¥ is compatible with the functor &,
defined by F' (1.3.1), via the equivalence between the category of modules with quasi-
nilpotent integrable connection (resp. p-connection) and the category of modules with
Op,-stratification (resp. Or, -stratification).

1.9. — Let us explain the Oyama sites & and & whose crystals corresponding to g,
and Og, stratification, and a morphism of topoi which will be used to lift the Cartier
transform and to globalize the funtor .

Let X be a scheme over k. An object of & (resp. &) is a triple (U, %, u) consisting
of an open subscheme U of X, a flat formal W-scheme ¥ and an affine k-morphism w :
T — U (resp. u: T — U (1.7)). Morphisms are defined in a natural way (cf. 7.1). We
denote by &’ Oyama’s category associated to the k-scheme X’. We denote by & (resp.
% ) the topos of sheaves of sets on & (resp. &) with respect to the Zarisiki topology
(7.8).

Let (U,%,u) be an object of &. The relative Frobenius morphism Fr/, : T — T’
factors through a k-morphism fr/, : T — T’'. We have a commutative diagram

(1.9.1) U = TC T
o

Fyk Fr/ Fr)
U/ u’ Z/ C T/,

where the vertical arrows denote the relative Frobenius morphisms. Then
(U',%,u" o fri) is an object of &’. We obtain a functor (9.1.2)

(1.9.2) pi&—&, (UTu) e (U, T, 0 frp).

The functor p is continuous and cocontinuous (9.3) and induces a morphism of
topoi (9.1.3)

(1.9.3) Cx/w:&— &

such that its inverse image functor is induced by the composition with p.

SOCIETE MATHEMATIQUE DE FRANCE 2019



6 CHAPTER 1. INTRODUCTION

1.10. — Let n be an integer > 1. The contravariant functor (U,%,u) — I'(%, 0z,)
defines a sheaf of rings on & (resp. &) that we denote by Og,, (resp. Og ). By def-
inition, we have C% w (0s',n) = Og . To give an Og ,-module (resp. Og,,-module)
# amounts to give the following data (8.2):

(i) For every object (U, %, u) of & (resp. &), an u4(0z,)-module .Z(y ) of Usar.
(ii) For every morphism f : (U1,%1,u1) — (Usz,%a,uz) of & (resp. &), an
u14%(Os, ,)-linear morphism

cyruix (O, ) ®(u2*(ﬁz2,n))\[} (y(UQ,fz)”Ul = FU,,51)
1

satisfying a cocycle condition for the composition of morphisms as in ([5] 5.1).

Following ([5] 6.1), we say that .# is a crystal if ¢y is an isomorphism for every
morphism f and that .# is quasi-coherent if .7 <) is a quasi-coherent u, (s, )-mod-
ule of U,a, for every object (U, T, u). We denote by €9 (0 ,,) (resp. €9°P (O 1))
the category of quasi-coherent crystals of O¢ ,-modules (resp. Og ,-modules).

The following are the main results of this article.

PROPOSITION 1.11 (8.10). — Let X be a smooth formal .#-scheme and X its spe-
cial fiber. There exists a canonical equivalence of categories between the category
€N (Og ) (resp. €I (Og 1)) and the category of quasi-coherent O, -modules with
O'r, -stratification (resp. Oq. -stratification) (1.4), 1.6, 1.7.

THEOREM 1.12 (9.12). — Let X be a smooth k-scheme. Then, for any n > 1, the
inverse image and the direct image functors of the morphism Cx,w (1.9.3) induce
equivalences of categories quasi-inverse to each other

(1.12.1) GO g1 ) 2 I (Og,m)-

The theorem is proved by fppf descent for quasi-coherent modules.

We call Cartier equivalence modulo p™ the equivalence of categories C% /W (1.12.1).
Indeed, given a smooth formal W-scheme X with special fiber X, Oyama proved 1.12
in the case n = 1 and showed that C% /w is compatible with the Cartier transform of
Ogus-Vologodsky defined by the lifting X%, of X’ (cf. [32] Section 1.5). In Section 12,
we reprove the later result in a different way (12.22).

The following result explains the relation between the Cartier equivalence C% /W
and Shiho’s construction, in the presence of a lifting of Frobenius.

PROPOSITION 1.13 (9.17). — Let X be a smooth formal W-scheme, X its special fiber,
F : X — X' alifting of the relative Frobenius morphism Fx , of X and 1;; the functor
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CHAPTER 1. INTRODUCTION 7

defined by F in (1.8.2). Then, the following diagram (1.11)

*
CX/W

(1.13.1) C(Opr ) ¢ (Ogn)

122 LZ I Lu
{ Ox: -modules } v { Ox, -modules }
with Og_,-stratification with g, -stratification

is commutative up to a functorial isomorphism. That is, for every crystal .#
of Ogr n-modules of &', we have a canonical functorial isomorphism

(1.13.2) e n () = v(Cx ) (A)).

In the diagram (1.13.1), while C§/W does not depend on models of X, 9 depends
on the lifting F' of the relative Frobenius morphism and the vertical functors p, and
v depend on the formal model X of X. The isomorphism 7nr depends also on F.
For different choice of liftings of Frobenius, nr can be related by an explicit formula
encorded in Oyama topos (9.22).

By 1.8, the equivalence of categories Cé}/w (1.12.1) is compatible with Shiho’s
functor ®,, defined by F' (1.3.1). In the case n = 1, an analogous relation between the
Cartier transform and ®; is shown in ([31] 2.11).

1.14. — In [15], Fontaine and Laffaille introduced the notion of Fontaine module to
study p-adic Galois representations. It is inspired by the work of Mazur ([27], [28])
and Ogus ([5], §8) on the Katz conjecture. Let ¢ : W — W be the Frobenius en-
domorphism and Ky = W[%] A Fontaine module is a triple (M, M*, »*) made of a
W-module of finite length M, a decreasing filtration {M®};cz such that M° = M,
MP = 0 and W-linear morphisms

1.14.1 L WRewM! > M, 0<i<p-1,
( ® , P

such that (pi|Mi+1 = po't! and Zf;ol @' (M?%) = M. The ¢%’s are called divided Frobe-
nius morphisms.

The main result of Fontaine-Laffaille is the construction of a fully faithful and exact
functor from the category of Fontaine modules of length < p — 2 to the category of
torsion Z,-representations of the Galois group Gk, of K¢ ([36] Thm. 2). Its essential
image consists of torsion crystalline representations of Gk, with weights < p — 2 (cf.
[8] 3.1.3.3).

Fontaine and Messing showed that there exists a natural Fontaine module struc-
ture on the crystalline cohomology of a smooth proper scheme & over W of relative
dimension < p — 1 ([16] I1.2.7). Then they deduced the degeneration of the Hodge to
de Rham spectral sequence of &,/ W,.

SOCIETE MATHEMATIQUE DE FRANCE 2019



8 CHAPTER 1. INTRODUCTION

1.15. — A generalization of Fontaine modules in a relative situation was proposed by
Faltings in [13]. Relative Fontaine modules can be viewed as an analog of variation
of Hodge structures on smooth formal schemes over W. Let X = Spf(R) be an affine
smooth formal scheme over W, X its special fiber and F' : X — X a o-lifting of the
absolute Frobenius morphism F'x of X. A Fontaine module over X with respect to F' is
a quadruple (M, V, M*, op.) made of a coherent, torsion &x-module M, an integrable
connection V on M, a decreasing exhaustive filtration M* on M of length at most
p — 1 satisfying Griffiths’ transversality, and a family of divided Frobenius morphisms
{¢%} asin (1.14.1) satisfying a compatibility condition between {¢%} and V (cf. [13]
2.c, 2.d).

Using the connection, Faltings glued the categories of Fontaine modules with re-
spect to different Frobenius liftings by a Taylor formula (cf. [13] Thm. 2.3). By gluing
local data, he defined Fontaine modules over a general smooth formal W-scheme X,
even if there is no lifting of Fx.

If X is the p-adic completion of a smooth, proper W-scheme X, Faltings associated
to each Fontaine module of length < p — 2 over X a representation of the étale
fundamental group of g, on a torsion Z,-module. Moreover, Faltings generalized
Fontaine-Messing’s result for the crystalline cohomology of a relative Fontaine module.

1.16. — Let X be a smooth formal W-scheme. As an application of their Cartier
transform [31], Ogus and Vologodsky proposed an interpretation of p-torsion Fontaine
modules over X ([31], 4.16). A p-torsion Fontaine module over X is a triple (M, V, M*)
as in 1.15 such that pM = 0 and equipped with a horizontal isomorphism

(1.16.1) b C;g(ﬂ*(Gr(M),ﬁ)) = (M, V),

where & is the Higgs field on Gr(M) induced by V and Griffiths’ transversality, and
m: X’ — X is the base change of the Frobenius morphism of k£ to X. Given a o-lifting
F :X — X of Fx, such a morphism ¢ is equivalent to a family of divided Frobenius
morphisms {¢p%} with respect to F' (1.15) (cf. 13.20).

By Griffiths’ transversality, the de Rham complex M ®¢, Q% Ik is equipped with
a decreasing filtration
(1.16.2) F' (M ®oy W% ) = M7 ®x U 1
Let £ be the length of the filtration M* (i.e., M® = M, M**! = 0) and d the relative
dimension of X over W.

(i) For any i, m, the canonical morphism H™ (F*™! (M ®g¢, Qk/k)) — H™(F(M®g,
0% /k)) is injective. The morphism ¢ (1.16._1) induces a family of divided Frobenius
morphisms on (H™(M ®gy Q}/k), {H™(F*)}i<p—1) which make it into a Fontaine
module over W (1.14).

(ii) The hypercohomology spectral sequence of the filtered de Rham complex
(M ®oy Q% k> F*) degenerates at E;.
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CHAPTER 1. INTRODUCTION 9

1.17. — For any n > 1, using the Cartier transform modulo p™, we reformulate Falt-
ings’ definition of p™-torsion Fontaine modules over X following Ogus-Vologodsky
(13.7). The Taylor formula used by Faltings to glue the data relative to different lift-
ings of Fx is naturally encoded in Oyama topos (13.22). Following Faltings’ strategy,
we prove the analog of the previous results (1.16(i-ii)) on the crystalline cohomology
of a p"-torsion Fontaine module over X (14.1).

1.18. — Section 2 contains the main notation and general conventions. In Section 3,
we recall the notion of dilatation in formal geometry. In Section 4, after recalling the
notions of Hopf algebras and groupoids, we present the constructions of groupoids
Rx and Qx (1.6), 1.7. In Section 5, we recall the notions of modules with integrable
A-connection (1.2) and of modules with stratification (1.4) and we discuss the rela-
tion between them. Following [33], we present the construction of Shiho’s functor ®,,
(1.3.1) in Section 6. In Section 7, we explain the Oyama topoi & and & (1.9) and
their fppf variants. Section 8 is devoted to the study of crystals in the Oyama topoi
(1.10). In Section 9, we study the morphism of topoi Cx,w (1.9.3) and prove our main
Results 1.12 and 1.13. We recall the construction of the Cartier transform of Ogus-
Vologodsky [31] in Section 10. Section 11 is devoted to several rings of differential
operators after Oyama and serves as a preparation for next section. In Section 12, we
compare the Cartier equivalence C% /w (1.12.1) and the Cartier transform of Ogus-
Vologodsky. In Section 13, we introduce a notion of relative Fontaine modules using
Oyama topoi (1.17). We compare it with Faltings’ definition [13] and Tsuji’s defini-
tion [35]. In Section 14, we construct a Fontaine module structure on the crystalline
cohomology of a relative Fontaine module.

After finishing this article, I learned from Arthur Ogus that Vadim Vologodsky
has skecthed a similar approach for lifting the Cartier transform in a short note (*)
without providing any detail.

A different approach to the formulation of a Cartier transform modulo p™ and its
relationship to Fontaine modules was taken in [26].
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CHAPTER 2

NOTATIONS AND CONVENTIONS

2.1. — In this article, p denotes a prime number, k a perfect field of characteristic p,
W the ring of Witt vectors of k and o : W — W the Frobenius automorphism of W.
For any integer n > 1, we set W,, = W /p" W and . = Spf(W).

2.2. — Let X be a scheme over k. We denote by F'x the absolute Frobenius morphism
of X and by Fxp: X — X' = X ®g, r, k the relative Frobenius morphism. Then we
have a commutative diagram

F
(2.2.1) x e x X

Noe

Speck LI Speck.

2.3. — Let X be a scheme over k. We denote by X the scheme theoretic image of Fx :
X — X ([22] 6.10.1 and 6.10.5). By (]22] 6.10.4), X is the closed subscheme of X
defined by the ideal sheaf of x consisting of the sections of Ox whose pth power is
zero. It is clear that the correspondence X — X is functorial. Note that the canonical
morphism X — X induces an isomorphism of the underlying topological spaces.

The relative Frobenius morphism Fy , : X — X' factors through X ’. We denote
the induced morphism by fx/,, : X — X '. By definition, the homomorphism Ox: —
Ix/kx(Ox) is injective, i.e., fx/ is scheme theoretically dominant ([22] 5.4.2).

IfY - X and Z — X are two morphisms of k-schemes, by functoriality, we have
a canonical morphism

Since X is affine if and only if X is affine (cf. [22] 2.3.5), we verify that (2.3.1) is an
affine morphism.

2.4. — In this article, we follow the conventions of [1] for adic rings ([1] 1.8.4) and adic
formal schemes ([1] 2.1.24). Note that these notions are stronger than those introduced
by Grothendieck in ([22] 0.7.1.9 and 10.4.2).
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12 CHAPTER 2. NOTATIONS AND CONVENTIONS

If X is an adic formal scheme such that p0yx is an ideal of definition of X, for any
integer n > 1, we denote the usual scheme (X, Ox/p"Cx) by X,,.

2.5. — We say that an adic formal .”-scheme X ([1] 2.2.7) is flat over .7 (or that
X is a flat formal .#-scheme) if the morphism €y — O induced by multiplication
by p is injective (i.e., if % is rig-pur in the sense of ([1] 2.10.1.4.2)). It is clear that the
above condition is equivalent to the fact that, for every affine open formal subscheme
U of X, the algebra T'(U, O%) is flat over W.

Let A be an adic W-algebra ([1] 1.8.4.5). Then A is flat over W if and only if
A, = A/p" A is flat over W, for all integers n > 1. Indeed, we only need to prove that
the condition is sufficient. Let a be an element of A such that pa = 0. For any integer
n = 1, by the flatness of A,, over W, the image of a in A,, is contained in p"~*A/p" A.
Since A is separated, we see that a = 0, i.e., A is flat over W. We deduce that an
adic formal .#-scheme X is flat over . if and only if %, is flat over .7, (2.4) for all
integers n > 1.
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CHAPTER 3

BLOW-UPS AND DILATATIONS

3.1. — Let A be an adic ring (2.4), J an ideal of definition of finite type of A. We put
X = Spec(A), X’ = Spec(A/J) and X = Spf(A). The formal scheme X is the comple-
tion of X along X’. For any A-module M, we denote by M the associated & x-module
and by M2 the completion of M along X’ ([1] 2.7.1), which is an #x-module.

Let a be an open ideal of finite type of A. We denote by alx the ideal sheaf
of Ox associated to the presheaf defined by U — aI'(U, O%). By ([1] 2.1.13), we have
ClA = aﬁx.

Let B be an adic ring, u : A — B an adic homomorphism ([1] 1.8.4.5) and f : Q)
Spf(B) — X = Spf(A) the associated morphism. In view of ([1] 2.5.11), we have
canonical functorial isomorphism

(3.1.1) f*(a®) S (a®a B)A.

o

Then, we deduce a canonical isomorphism
(3.1.2) f*(a®)O0y = (aB)~.

Indeed, by definition, f*(a®)0y is the image of the morphism f*(a®) — Oy =
f*(O%), which clearly factors through (aB)*. The isomorphism (3.1.2) follows from
the fact that a® = a0x and (aB)> = (aB)0y.

3.2. — Let X be an adic formal scheme, ¢ an ideal of definition of finite type of X
and &7 an open ideal of finite type of X ([1] 2.1.19). For any n > 1, we denote by X,
the usual scheme (X, 0x/_#™) and we set

(3.2.1) X, = Proj(P ™ Qo» Ox,)-

m=0

The sequence (%},) forms an adic inductive (%X,,)-system ([1] 2.2.13). We call its induc-
tive limit X’ the admissible blow-up of < in X ([1] 3.1.2). By ([1] 2.2.14, 2.3.13), ¥’ is
an adic formal ¥-scheme of finite type. Note that X is different from the blow-up

of X,, along (& + #")/ 7".
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14 CHAPTER 3. BLOW-UPS AND DILATATIONS

3.3. — Let X be a flat formal .#-scheme locally of finite type (2.5, [1] 2.3.13) and
&/ an open ideal of finite type of X containing p. Let ¢ : X’ — X be the admissible
blow-up of &7 in X. Then the ideal &/ 0% is invertible ([1] 3.1.4(i)), and X’ is flat
over .7 ([1] 3.1.4(ii)). We denote by X/, the maximal open formal subscheme of X’
on which

(3.3.1) (& Ox)| X (o1 /p) = (POx)|X (1)

and we call it the dilatation of </ with respect to p.

Note that X /) is the complement of Supp(%/ Ox /pOx/) in X' ([22] 0.5.2.2).
In view of ([1] 3.1.5 and 3.2.7), the above definition coincides with the notion of
dilatation of < with respect to p introduced in ([1] 3.2.3.4). We denote the restriction
of @ X — X to %(Qg/p) by

We set o7% = /P +pO’x the open ideal of X. If o7 is locally generated by {a1, ..., a,}
then 7% is locally generated by {p,a?,...,a2}.

3.4. — Keep the notation of 3.3 and assume moreover that X = Spf(A) is affine.
There exists an open ideal of finite type a of A containing p such that a® = & ([1]
2.1.10 and 2.1.13). Let X = Spec(A), Y = Spec(4/pA), ¢ : X’ — X be the blow-
up of @ in X and Y’ = ¢~ 1(Y); so X is the completion of X along Y. Then X’ is
canonically isomorphic to the completion of X’ along Y’ and ¢ is the extension of ¢
to the completions ([1] 3.1.3).

Let (a;)o<i<n be a finite set of generators of a such that ag = p. For any 0 < i < n,
let U; be the maximal open subset of X’ where a; generates a0x-. Since d0x: is
invertible, (U;)o<i<n form an open covering of X’. It is well known that U; is the
affine scheme associated to the A-algebra A; defined as follows:

ao ai] _ Alzo, i1, Tit1, - - Tn] A = Al
T (aj — aixj)j;&i ’ ! (A;;)ai -tor ’

Al = A[ ..
a; a;
where (A})q, -tor denotes the ideal of a;-torsion elements of A}. Let ﬁl be the separated
completion of A; for the p-adic topology and U, = Spf(gi). Then (ﬁi)osign form a
covering of X’; for any 0 < 7 < n, U; is the maximal open of X' where a; generates
the invertible ideal a® &% ([1] 3.1.7(ii)). The open formal subscheme X (., of X' is
equal to [70 = Spf(ﬁo). In particular, we see that, in the general setting of 3.3,
Y X /p) — X is affine ([1] 2.3.4).
Let A{x1,...,x,} denote the p-adic completion of the polynomial ring in n variables
Alzy,...,2,], which is flat over A[zq,...,z,] by ([1] 1.12.12). If A} is flat over W,
then we have Ay = Aj and deduce a canonical isomorphism ([1] 1.12.16(iv))

a1 an, A{zy,.. 20} ~ -
4.1 Ad—,. ..., —r=—" 1 A,
(3 ) { p ’ ’ p } (ai —pwi)1<i<n 0
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PROPOSITION 3.5. — Let X be a flat formal .7-scheme locally of finite type, i : T — X,
an immersion (not necessary closed). There exists a formal X-scheme 9 : X(p/p) — X
(resp. ¥ : %%T/p) — X) unique up to canonical isomorphisms satisfying the following
conditions:

(i) The canonical morphism (X(r/p))1 — X1 (resp. (%?T/p))l - (%%T/p))l - X1)
factors through the immersion T — X;.

(ii) Let P be a flat formal S -scheme, Y = P11 and f : Y — X an S -morphism.
Suppose that there exists a k-morphism g:Y — T (resp. g : Y — T) which fits into
the following diagram:

(3.5.1) Y —=9 (resp. ¥ ——9) )
A A B
T—X T—X.

Then there exists a unique .#’-morphism f' : Y — Xy (resp. f' Y — %%T/p))
such that f = Yo f'. If T — X and f are moreover closed immersion, then so is
oD = Xy

Proof. — Tt suffices to prove the existence. The uniqueness follows from (i) and the
universal property (ii). We first prove the case where T' — X is a closed immersion
and denote the associated ideal sheaf by 7.

In the first situation, we take X(7/,) to be the dilatation X(./,). Since p € <7,
the commutativity of the first diagram of (3.5.1) is equivalent to </ Oy = pOy. To
verify condition (ii), we can reduce to the case where X = Spf(A) is affine and then
to the case where ) = Spf(B) is affine and the morphism f is associated to an adic
homomorphism u : A — B. We take again the notation of 3.4. By (3.1.2), we have
(pB)® = (aB)”?. The open ideals of finite type pB and aB are complete by ([7] III
§2.12 Cor. 1 of Prop. 16) and separated as submodules of B. We deduce that pB = aB
by taking I'(2), —). Since B is flat over W, the homomorphism u extends uniquely to
an A-homomorphism Ay — B and then to an adic A-homomorphism w : AO — B
by p-adic completion. In the first situation, we take for f’ the morphism induced by w
which is uniquely determined by f. If u : A — B is moreover surjective, then so is w.

In the second situation, the commutativity of the second diagram of (3.5.1) means
the p-th power of every local section of &/ Oy /p0y is zero in Oy, which is equivalent
to the fact that @0y = pOy (3.3). We take .’{%T/p) to be the dilatation X1 /p).
Then condition (ii) in this situation follows from the first situation.

In general, let 4 be an open formal subscheme of X such that (7)) — 4 and that
T — il is a closed immersion and, let .7 be the open ideal of finite type associated
to T' — 4. We take X(r/p) (resp. %%T/p)) to be the dilatation (. /p) (resp. Uizt p))-
For any morphism f : ) — X as in (ii), by (3.5.1), the morphism f factors through
the open subscheme i of X. Then the assertion follows from the case where T' — X is
a closed immersion. O
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16 CHAPTER 3. BLOW-UPS AND DILATATIONS

REMARK 3.6. — The formal X-scheme X7/, (resp. %%T/p) is the same as the Higgs
envelope Rr(X) (resp. Qr (%)) introduced in ([32] page 6).

The next result shows that the constructions of 3.5 are compatible with étale
localization.

PROPOSITION 3.7 ([32] 1.1.3). — Let X, 9 be two flat formal .-schemes locally of
finite type, f : X — Y an étale S-morphism ([1] 2.4.5). Suppose that there exist a
k-scheme T and two immersions i : T — X1, j: T — 1 such that j = foi. Then f
induces canonical isomorphisms of the formal schemes

~ i ~ #
(3.7.1) Xy = Dayw), x(T/p) - QJ(T/p)'

Proof. — By the universal property (3.5), the composition X(7/,) — X — 2) induces
a canonical )-morphism v : X(7/,) — Y (7/p)- We consider the commutative diagram

(3.7.2) QDrpmh —T —%
‘*D(T/p) 2.

Since f : X — %) is étale, the composition of the top horizontal morphisms and
X1 — X lifts uniquely to a 2-morphism g : Y (r/,y — X. By (3.7.2) and the universal
property, g induces an X-morphism v : 97 /,) — X(1/p). The following diagram

(3.7.3) Dr/p) ——= X(r/p) ——>= D (1/p)
| |
xr—71 9

is commutative. By the universal property, we deduce that u o v = id.
We consider the diagram

(3.7.4) X(r/p) — D)

7

where the lower triangle is commutative. Since ¥; and g; factor through 7', we have
1 = (g ou);. Since f is étale and the square of (3.7.4) commutes, there exists one
and only one lifting of (X(7/))1 — X1 to a 2-morphism X7 /,) — X. We deduce that
Y = g ow, i.e., the diagram (3.7.4) commutes. Then we have 9 o v o u = 1. By the
universal property, we deduce that v o u = id. The first isomorphism follows.

The second isomorphism can be verified in the same way. O

The next result shows that the constructions of 3.5 are compatible with flat base
change.
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CHAPTER 3. BLOW-UPS AND DILATATIONS 17

PROPOSITION 3.8 ([32] 1.1.4). — Let X, 9 be two flat formal #-schemes locally of
finite type, f: X = a flat S-morphism, T — D1 an immersion and S =T xg9 X.
Then f induces canonical isomorphisms of formal schemes

(3.8.1) Xisp) = Dy X0 X0 Xigy) = Digypy X0 X
Proof. — By 3.5, we can reduce to the case where T' — %) is a closed immersion. Let .o/
(resp. &) be the open ideal of finite type associated to the closed immersion T — )
(resp. S — X). Put 3 = 9 (5/,) Xy X. By the universal property, the morphism f
induces a 9-morphism X(.//,) — 2 (z/p) and then an X-morphism u : X /) — 3.
Since f is flat, 3 is flat over .. We have &/ 035 = %05 = pC’3. By the universal
property, we deduce an X-morphism v : 3 — X (. ). Since u,v are X-morphisms, we
deduce that wov = id and v ou = id by the universal property as in the proof of 3.7.
The second isomorphism can be verified in the same way. O
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CHAPTER 4

HOPF ALGEBRAS AND GROUPOIDS

4.1. — In this section, we review the notion of Hopf algebras and groupoids follow-
ing [4] and the construction of certain Hopf algebras used in [32].

Let (7, A) be a ringed topos. For any A-bimodules (resp. A-bialgebras) M and
N of 7, M ®4 N denotes the tensor product of the right A-module M and the left
A-module N, and we regard M ® 4 N as an A-bimodule (resp. A-bialgebra) through
the left A-action on M and the right A-action on N.

DEFINITION 4.2 ([4] 1T 1.1.2 and [32] 1.2.1). — Let (.7, A) be a ringed topos. A Hopf
A-algebra is the data of an A-bialgebra B and three ring homomorphisms

(4.2.1)

0 : B— B®4y B (comultiplication), m: B — A (counit), o : B — B (antipode)
satisfying the following conditions.

(a) 6 and 7 are A-bilinear and the following diagrams are commutative:

(4.2.2) B d B®uB B—° - B®e.B
| | | e

§ Ridp 4 w-idp
Bo.B % Be,BosB B®isB 2" B

(b) o is a homomorphism of A-algebras for the left (resp. right) A-action on the
source and the right (resp. left) A-action on the target, and satisfies 02 = idp,
ToOo =T.

(¢) The following diagrams are commutative:

(4.2.3) B—" A B—" A
Lol

ldB e O'-idB
B®a B B B®aB B.

where d; (resp. dz) is the structural homomorphism of the left (resp. right) A-alge-
bra B.
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20 CHAPTER 4. HOPF ALGEBRAS AND GROUPOIDS

Such a data is also called an affine groupoid of (.7, A) by Berthelot ([4] IT 1.1.2).

DEFINITION 4.3 ([4] II 1.1.6). — Let f: (7', A’) — (7, A) be a morphism of ringed
topoi, B a Hopf A-algebra and B’ a Hopf A’-algebra. A homomorphism of Hopf alge-
bras is an A-bilinear homomorphism B — f,(B’) compatible with comultiplications,
counits and antipodes.

4.4. — Let (7,A) be a ringed topos, M and N two A-bimodules. We denote
by SHomy (M, N) (resp. Homy, (M, N)) the sheaf of A-linear homomorphisms from the
left A-module M to the left (resp. right) A-module N. We put MV = SHlomy (M, A).
The actions of A on M induces a natural A-bimodule structure on M Y. There exists
a canonical A-bilinear morphism

(4.4.1) MY ®aN" — (M®aN)"
which sends ¢ ® 1) to 0 defined by (m®n) = ¢(mi(n)) for all local sections m of M
and n of N.

Let B be a Hopf A-algebra. By (4.4.1), we obtain a morphism
(4.4.2) BY x B¥ - (B®4 B)” 15 BY.
Letting @ : B — A be the unit element, the above morphism induces a non-
commutative ring structure on BY. The homomorphism 7 : B — A induces a ring
homomorphism ¢ : A = AY — BVY. In this way, we regard BY as a non commutative
A-algebra.

A homomorphism of Hopf A-algebras ¢ : B — C induces a homomorphism of A-al-
gebras ¢V : CY — BVY.

4.5. — Let f : (9',A") > (Z,A) be a morphism of ringed topoi, (B,dp,05,75) a
Hopf A-algebra. Suppose that the left and the right A-algebra structures on B are
equal. Then (f*(B), f*(dp), f*(7B) , f*(op)) form a Hopf A’-algebra.

Let (B’,6p/,0p/, /) be a Hopf A’-algebra and u : B — f4(B’) a homomorphism
of Hopf algebras (4.3). By adjunction, we obtain homomorphisms of A’-algebras

(451) W ifB) =B, @ f*(B)®u f*(B) — B @x B
for the left A’-algebra structures on the targets. Then the diagrams
(4.5.2) rB) —C g yew frB) B
‘| A
B i B ®u B B
are commutative. The restriction of % on f~1(B ®4 B) is given by uﬁ|f71(B). In view

of (4.4) and (4.5.2), the homomorphism u* induces a homomorphism of A’-algebras

(wh)¥ = (B')Y — (f*(B))".
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CHAPTER 4. HOPF ALGEBRAS AND GROUPOIDS 21

4.6. — In the following, we review the notion of formal groupoid. Let X be an adic for-
mal .#-scheme. For any integer r > 1, let X" *! be the fiber product of (r + 1)-copies
of X over .. We consider X as an adic formal (X"!)-scheme by the diagonal immer-
sion A(r) : X — XL

We denote by 7 : ¥2 — X2 the morphism which exchanges the factors of X2, by
pi : X2 = X (i = 1,2) the canonical projections and by p;; : X3 — X% (1 <i<j <3)
be the projection whose composition with p; (resp. ps) is the projection X2 — X on
the -th (resp. j-th) factor.

For any formal ¥2-schemes ) and 3, 2) xx 3 denotes the product of  — %2 2% %
and 3 — %2 2% %, and we regard 9 xx 3 as a formal ¥2-scheme by the projection
Y xx3 > X% xx X7 = 25 25 x2,

DEFINITION 4.7. — Let X be an adic formal .-scheme. A formal X-groupoid over .
is the data of an adic formal X?-scheme ® and three adic .#-morphisms (4.6)
(4.7.1) a:BxxB -6, 1:X->6, n:&->086

satisfying the following conditions.

(i) @ and ¢ are ¥2-morphisms and the following diagrams are commutative:

id X« vxid

‘ J/ J/ ‘ L\ J/
axid o id x¢ [eY
B xx® " ® B xx 6 —"— 0.

(ii) The morphism 7 is compatible with 7 : X2 — X2 and we have 7% = idg,
not=_L.

(iii) Let g1 (resp. ¢2) be the projection & — X induced by p; (resp. p2). The
following diagrams are commutative:

q2

(4.7.3) 6 —" - x & x
idxnl lb nxidt J/L
Bxy® =6 G xyrB 2= B,

(iv) The morphism of underlying topological spaces |&| — |X?| factors through
A x| — %2

Let w : &, — X,ar be the morphism of topoi induced by &,,, — .’fﬁar and its
factorization through A. Then we have wy(0s) = 1+(0s) = g2+(0s). In this way,
we regard Og as an Ox-bialgebra of X,,,. Then, the formal X-groupoid structure on &
induces a formal Hopf Ox-algebra structure on Og, that is for every n > 1, a Hopf
O, -algebra structure on Oy, which are compatible.
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22 CHAPTER 4. HOPF ALGEBRAS AND GROUPOIDS

DEFINITION 4.8. — Let X,9) be two adic formal .¥-schemes, f : 3 — X an .-mor-
phism, (&, ae,ts,ns) a formal X-groupoid and ($), ag, Ly, ng) a formal YP-groupoid.
A morphism of formal groupoids above f is an X2-morphism ¢ : $ — & compatible
with a’s, ¢’s and 7n’s.

A morphism of formal groupoids ¢ : § — & induces a homomorphism of formal
Hopf algebras O0g — f(Og), that is for every n > 1, g, — f+(0g, ) is a homomor-
phism of Hopf algebras.

4.9. — In the remainder of this section, X denotes a smooth formal .7”-scheme. We
put X = X;. We denote by Rx(r) (resp. Qx(r)) the dilatation (X"*')x/,) (resp.
(%’““)?X/p)) with respect to the diagonal immersion X — X"*1 (3.5). By 3.5(i), the
canonical morphisms (Rx(r)); — X" ! and (Qx(r))1 — (Qx(r))1 — X" factor
through the diagonal immersion X — X" *!.

To simplify the notation, we put Rx = Rx(1), Qx = Qx(1), Rx = Ogr, and
Qx = Oq.. Following Oyama [32], we will present the formal X-groupoid structure
on Rx and Qx

Our notations are different to those of [32]. In ([32] 1.2), Rx (resp. Qx) denotes the
formal X2-scheme constructed by dilatation and Ry (resp. Qx) denotes its reduction
modulo p.

PROPOSITION 4.10 ([32] 1.2.5 and 1.2.6). — Let r, 7’ be two integers = 1. There exists
canonical isomorphisms

(4.10.1) Rx(T) Xx Rx(’r‘l) = R:{('I" + ’f'/), Qx(?‘) X x Q:{(’I"/) = Qx(T + ’I"/),

where the projections Rx(r) — X and Qx(r) — X (resp. Rx(r') — X and Qx(r') — X)
are induced by the projection X"t — X on the last factor (resp. X" 5 X on the
first factor).

Proof. — By 4.9, we have a commutative diagram

(Rx(r))1 xx (Rx(r'))1 — Rx(r) xx Rz (")

| |

’
X %r-&-l Xxxr +1.

By the universality of Rx(r + 7') (3.5), we obtain an (%X7+"'*+!)-morphism
(4.10.2) ¢ : Rx(r) xx Rx(r') — Rx(r +1').

On the other hand, by the universal property of Rx(r) and Rx(r’), the projection
X+ 271 on the first (r+1)-factors (resp. £ t1 — %™ *1 on the last (1’ +1)-

factors) induces a morphism Rx(r + r') — Rx(r) (resp. Rx(r +r') — Rx(r')) and
hence an (%7+" *1)-morphism

(4.10.3) P Re(r+71") = Re(r) xz Re(r').
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CHAPTER 4. HOPF ALGEBRAS AND GROUPOIDS 23

The composition Rx(r + ') 2, Rx(r) xx Rx(r') % Rx(r +r') — X771 is the
canonical morphism Rx(r + ') — X777 1. By the universal property of Rx(r + '),
we have p o1 = id. Let ¢; (resp. g2) denote the projection on the first (resp. second)
factor of Rx(r) xx Rx(r"). We consider the commutative diagram

(4.10.4) Rx(r) xx Re(r') —5= Re(r + ') —~ R (r) xx Rx(r)

xriri+l Rzx(r)

Iy

%'H—l

By the universal property of Rx(r), we see that ¢; oy o @ is equal to ¢;. Similarly, we
verify that g2 0¥ o ¢ is equal to g2. Hence, we have 9 o o = id.

Since X is reduced, we have X = X. We have a canonical morphism

(Qx(r)1 xx (Qx(r"))1 = (Qz(r))1 xx (Qx(r)1

(2.3.1) and the following commutative diagram (4.9)

(Qx (1)1 xx (Qx(r")1 —= (Qx(r))1 xx (Qx(r")1 —— Qx(r) xx Qx(r")

| |

X xr+1 X:{:{T +1’

By the universal property of Qx(r + ') (3.5), we obtain an (X" *1)-morphism

(4.10.5) Qx(r) xz Qx(r") = Qx(r +17).

By repeating the proof for Rx(r + r'), we verify that the above morphism is an
isomorphism. O

PROPOSITION 4.11. — The formal X%-scheme Ry (resp. Qx) has a natural formal
X-groupoid structure.

Proof. — We follow the proof of ([32] 1.2.7) where the author proves the analogous
results for the X2-schemes Ry 1 and Qx 1. By 4.9, the morphism of the underlying
topological spaces |Rx| — |X?| (resp. |@x| — |X?|) factors through the diagonal
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24 CHAPTER 4. HOPF ALGEBRAS AND GROUPOIDS

immersion |X| — |X?|. We consider the following commutative diagram (4.9):

(4.11.1) (Rx(2)1 & Rx(2)
3_\:[
X %2,

By the universal property of Rx (3.5), we deduce an adic X2-morphism
(4112) aR Rx(2) - Rx

We identify Rx(2) (resp. Rx(3)) and Rx xx Rx (resp. Rx xx Rx xx Rx) by 4.10.
The diagrams

id xagr aR
Rx xx Rx xx Rx — Rx x3x Rx —— Rx

| —

%4 D124 %3 P13 %2

aprXxid QR
Ry xx Ry Xy Ry —— Rx X3 Rx —— Rx

| —

£4 P134 %3 P13 %2

are commutative and the compositions of the lower horizontal arrows coincide. By
the universal property of Rx, we deduce that ag o (id xagr) = ar o (ag x id).

For any integer r > 1, we consider the following commutative diagram:
(4.11.3) X
/ lA(r)
X o oxr+l
By the universal property of Rx(r), we deduce a X" "!'-morphism
(4.11.4) tr(r) : X — Rx(r).

In view of 3.5, since X — X"*! is an immersion, tg(r) is a closed immersion. When
r = 1, the diagrams

id Xtg agr Lr xid aR
Ry —— Rx xx Rx ——= Ry Rx —— Rx xx Rx —— Rx

N

x2 :*:2 (p1,p1,p2) x?’ .’{2

P13

%2 (p1,p2,P2) %3
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are commutative and the compositions of the lower horizontal arrows are equal to idx2.
By the universal property of Rx, we deduce that ago (id xtg) = ago (tg xid) = id.

We consider the following commutative diagram (4.6):

(4.11.5) Rx1“— Rx
%2
X x2.

By the universal property of Rx, we deduce an adic morphism
(4116) R : R% i Rx

Since 7 0o A = A, we deduce that ng o tg = tg by the universal property of Rx. By
construction, ng satisfies the condition 4.7(ii). The diagrams

(4.11.7) Ry " Ry xx Ry —""~ Ry Ry —"-% "~ Ry

1 R T N

%2 (p1,p2,P1) x3 P13 x2 x2 P1 x A %2

are commutative and the compositions of the lower horizontal arrows coincide. By
the universal property of Rx, we deduce that ag o (id xng) = tg 0 ¢;. We prove the
equality ag o (ng x id) = tg 0 g2 in the same way.

The proposition for Qae can be verified in exactly the same way using 4.9 and
4.10. O

4.12. — We put @ = Spf(W{T1,...,Tq}) and we present local descriptions for R
and ng (4.9). Put § = 1®T; —T; ® 1 € Oy2. The ideal o7, associated to the
diagonal closed immersion ); — )2, is generated by p,&1,&,...,&q. The algebra
W1®T,.. ,10Ty,T1®1,..., Ty ®1,z1,...,24]/(& — pxi)1<i<a is free over W.
Hence, we have an isomorphism of Oy:-algebras (3.4.1), 4.9

&1 &d Op2{z1,..., 24} ~
412.1 O {SL, . S4) _ T2 Td) ~ g
( ) Y {p P} (& — pi)i1<i<d Ao

By 3.3, the ideal </* is generated by p, &7, ..., &5, The algebra W[1®Ty,...,1®
T, T1 ®1,..., Ty ®1,21,...,24] /() — pxi)1<i<a is free over W. Hence, we have an
isomorphism of Oy2-algebras (3.4.1)

g ﬁ _ ﬁgy{l’l,

...,:cd} ~
4122 O {SL, . Sdl _ T2 Bd) ~ g
( ) Y {p P } (€7 — pxi)1<i<a Oy
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LEMMA 4.13. — Let d be the relative dimension of X over . and Adx the d-dimen-
sional affine space. Assume that there exists an étale /-morphism f : X — 9 =
Spf(W{T1,...,T4}). Considering Rx as a formal X-scheme via the morphism q; :
Rx — X (resp. q2: Rx — X), then f induces an isomorphism over X:

(4.13.1) A: Ry 5> A%,
such that Aovg : X — f&% is the closed immersion associated to the zero section of 1&‘315
Proof. — We follow the proof of ([32] 1.1.8) and we first prove the assertions for ).

Observe that ¢; and g2 are affine. For any 1 < ¢ < d, we have 1QT; = p(%) +T;®1
in Ryg. By (4.12.1), we deduce the isomorphisms

(4.13.2) Op{xy, ... za} = qe(Ry),  Oplar,...,za} = qau( Ry)

where z; is sent to % in both cases. The isomorphisms (4.13.1) for 9 follows. We put
Y =92, and we consider the following commutative diagram

(4.13.3) x?
A Lid x f

X 2x59

fl‘/ ‘/ind

Y —=—9,
where the square is Cartesian. By 3.7 and 3.8, we deduce an isomorphism
(4.13.4) Rx = R@ X2 (36 X fD) = R@ Xq1,2 X.

Considering Ry as a formal X-scheme via ¢;, the isomorphism (4.13.1) follows from
that of Rg. The another isomorphism can be verified in the same way. In view of the
construction of tp (4.11.4), the composition Aotg corresponds to the zero section. [

COROLLARY 4.14. — Keep assumptions of 4.13 and consider % ’s as sections of Rx.
We have the following isomorphisms of Ox-algebras

(4.14.1) Ox{z1,...,2q4} = q1s(Rx), Oxf{z1,...,xq} — q2s(Rox)

i

where x; is sent to > in both cases.

4.15. — Weput ) = Spf(W{Ty,...,Ts}). By (4.12.2), we have following isomorphisms
(4.15.1)

ﬁ@{xla'“amdvyla"',yd} ~ ﬁ@{xla"'axd)yla"'ayd} ~
— qQ1 — Q2
(yf — PTi)1<i<d *(Q@)» (1/57 — PZi)1<i<d *(Q@)
where z; is sent to % and y; is sent to &; in both cases.
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Assume that there exists an étale .-morphism f : X — 9 = Spf(W{T1,...,T4}).

We consider the &;’s and %’s as sections of ¢),.. By 3.7, 3.8 and (4.13.3), we deduce
the following isomorphisms

(4.15.2)
ﬁ}f{ml)"'»xdaylw"ayd} ~ ﬁ%:{mlvﬂwxdaylv“'ayd} ~
—q1 —q2
(¥i — pTi)i<iza (L) (¥ — PTi)1<i<d «(Lx)

P
where x; is sent to %’ and y; is sent to &; in both cases.

4.16. — Let n be an integer > 1. We describe the Hopf algebra structure of Rz ,, and
Qae,n in terms of a system of local coordinates. Keep the assumption and notation of
4.13. The homomorphism Ox2 — Ox2 ®¢,, Ox2 induced by p13 : X3 — %? sends &;
to 1®¢; + & ® 1. The homomorphism O%: — Ox: induced by 7 : ¥?2 - %2 sends &
to —&;. In view of the proof of 4.11, we have following descriptions:

(4.16.1)

0: Raxn = Rxn®ox, Rxn %'—’1®%+%®1
o: R R Lo
T: Raxn— Oz, %HO

(4.16.2)

§: Qrn = Qrn Do, Qs i — 1 ®5§j &®1 - ;
FINN & p—1 (p=1)! ¢j p—i 4 &
- 1® p JFZ & ®§i + > ®1

& j=1 (j!(P)—pj)!
g: Q.’{,ng) Q.’{,n 57'}_)762’ p?i}_)%
T Qyn = Ox, & — 0, %HO
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CHAPTER 5

CONNECTIONS AND STRATIFICATIONS

5.1. — Let S be a scheme, f : X — S a smooth morphism, M an &x-module and
X e I'(S,0s). We say (abusively) that a morphism of &x-modules u : M — N is
Os-linear if it is f~1(O0g)-linear. A A-connection on M relative to S is an Og-linear
morphism

(5.1.1) V:M— M@y Qg

such that for every local sections f of Ox and e of M, we have V(fe) = de®d(f) +
fV(e). We will simply call V a A-connection on M when there is no risk of confusion.
For any ¢ > 0, the morphism V extends to a unique &g-linear morphism

(5.1.2) Vo M®oy O )5 — M ®oy Q4%

such that for every local sections w of Qg(/s and e of M, we have V(e ® w) =
de®d(w)+V(e) Aw. The composition V;0V is Ox-linear. We say that V is integrable
if VioV =0.

Let (M,V) and (M',V’) be two Ox-modules with A-connection. A morphism from
(M,V) to (M’',V') is an Ox-linear morphism w : M — M’ such that (ild®u) oV =
V' ou.

Classically, 1-connections are called connections and integrable 0-connections are
called Higgs fields. A Higgs module is an Ox-module equipped with a Higgs field.

We denote by MIC(X/S) (resp. A-MIC(X/S), resp. HIG(X/S)) the category
of Ox-modules with integrable connection (resp. A-connection, resp. Higgs field)
relative to S.

Let (M, V) be an object of A-MIC(X/S). We deduce that V41 0 V, = 0 for all
g = 0. Then we can associate to (M, V) a A-de Rham complex:

(5.1.3) M M@0y Qs V5 Moy D5 2 -+

Classically, 0-de Rham complexes are called Dolbeault complezes in ([34] p. 24, [2]
1.2.3) or Higgs complezes in ([31] p. 2).
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5.2. — Let d,n be integers > 1, S a (Z/p"Z)-scheme, f : X — A% = Spec(Os[Tx,...,T4))
an étale S-morphism. For any 1 < ¢ < d, we denote by ¢; the image of T; in Ox.
Let m be an integer > 0 and (M,V) an Ox-module with integrable p™-connection
relative to S. There are Og-linear endomorphisms Vg,,..., Vs, of M such that for
every local section e of M, we have

d
(5.2.1) V(e) = 2 Vo, (e) @ dt;.

Since V is integrable, we have V5, 0V, = V5, 0V, for all 1 < 4,5 < d. Therefore,
for every multi-index I = (iy,...,iq) € N¢, the endomorphism V,r = njzl(vaj)ij is
well-defined.

Following ([5] 4.10, [33] Definition 1.5), we say that (M, V) is quasi-nilpotent with
respect to f if, for any open subscheme U of X and any section e € M(U), there
exists a Zariski covering {U; — U},cs and a family of integers {N;} cs such that
V51(6|Uj) =0 for all j € J and I € N? with |I| > N;.

If f/: X — A% is another étale S-morphism, (M, V) is quasi-nilpotent with respect
to f if and only if it is quasi-nilpotent with respect to f’ ([5] 4.13, [33] Lemma 1.6).
Note that this result requires that p™ g = 0 for some n > 0.

DEFINITION 5.3 ([5] 4.13; [33] Definition 1.8). — Let n be an integer > 1, S a
(Z/p™Z)-scheme, X a smooth S-scheme and (M,V) an €x-module with integrable
p™-connection relative to S. We say that (M, V) is quasi-nilpotent if for any point
x of X, there exists a Zariski neighborhood U of z in X and an étale S-mor-
phism f:U — Agv such that (M, V)|U is quasi-nilpotent with respect to f (5.2).

We denote by MICY(X/S) (resp. A- MIC™(X/S)) the full subcategory of MIC(X/S)
(resp. A-MIC(X/S)) consisting of the quasi-nilpotent objects.

DEFINITION 5.4. — Let (7, A) be a ringed topos, (B,d,7,c) a Hopf A-algebra (4.2)
and M an A-module. A B-stratification on M is a B-linear isomorphism ¢ : B ®4
M = M ®a B (4.1) such that:

(i) 7*(e) = idp.
(ii) (cocycle condition) The following diagram is commutative:

5% (e)

(5.4.1) B4 B®a M M ®sB®4 B
B®aM®aB.

Given two A-modules with B-stratification (M1, e1) and (M, £2), a morphism from
(Mi,e1) to (Ms,es) is an A-linear morphism f : M; — My compatible with £; and
€9. The A-module M; ® 4 M has a canonical B-stratification
e1®idar, idp, ®e2

(5.4.2) B@A M1 ®A MQ M1 ®AB®A M2 Ml ®A M2 ®A B.
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The above stratification on the tensor product makes the category of A-modules with
B-stratification into a tensor category.

Let n be an integer > 1, X an adic formal .”-scheme, M an O _-module and &
a formal X-groupoid over . (4.7). We call abusively O -stratification on M instead
of g, -stratification on M.

We have a simpler description of a stratification.

LEMMA 5.5 ([32] 1.2.4). — Let (J,A) be a ringed topos, B a Hopf A-algebra and
M an A-module. A B-stratification on M is equivalent to an A-linear morphism 6 :
M — M ®a B for the right A-action on the target satisfying the following conditions:

(i) The composition (idpy ®m) 00 : M — M ®4 B — M is the identity morphism.

(ii) The following diagram is commutative

(5.5.1) M f

M®a B

0 1/9®id3

M®sBY 2 M®,Bo4sB.

Let 0 : M — M ®4 B be an A-linear morphism satisfying the conditions of 5.5 and
a(f): BYQ@aM —> M, o@m=(id®y)(8(m))

the associated A-linear morphism. In view of conditions (i-ii) of 5.5, the morphism «/(6)
makes M into a left BY-module (cf. [32] Proof of 1.2.9 page 18 for details).

5.6. — Let f: (J',A") > (7, A) be a morphism of ringed topoi, B a Hopf A-algebra
and B’ a Hopf A’-algebra. A homomorphism of Hopf algebras B — f.(B’) (4.3)
induces a functor (5.4) (cf. [4] IT 1.2.5):

(5.6.1) { A-modules } . { A’-modules }

with B-stratification with B’-stratification
<M76) — (f*(M)7f_1(€) ®f—1(B) Bl)

5.7. — In the remainder of this section, X denotes a smooth formal .¥’-scheme. For any
integer n > 1, we equip (W,,,pW,,) with the canonical PD-structure +,. We briefly
review the formal groupoid structure on the PD-envelope of the diagonal immersion
following [4].

Let r,n be integers > 1. We denote by X"*! the product of (r + 1)-copies of X,
over .%,, (2.4) and by Pk, (r) the PD-envelope of the diagonal immersion X,, — X7 *1
compatible with the PD-structure v, ([4] I 4.3.1). By extension of scalars ([5] 3.20.8,
[4] T 2.8.2), we have a canonical PD-isomorphism Py, (r) x.o, %, — Px, (r) for all
integers 1 < m < n. The inductive limit Px(r) of the inductive system (Px, (7))n>1 is
an adic affine formal (X"*1)-scheme ([1] 2.3.10). We drop (r) from the notation when
r=1
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5.8. — For a commutative ring A, we denote by A{x,...,z4) the PD polynomial
ring in d variables ([4] I 1.5). If A is an adic ring such that pA is an ideal of the
definition, we denote by A{z1,...,z4) the p-adic completion of the PD polynomial
algebra A{zy,...,z4).

5.9. — Assume that there exists an étale .#’-morphism X — Ady = Spf(W{T1,...,T4})
and we set t; the image of T; in Ox for all 1 < ¢ < d. We note &; the section 1®t; —t;®1
of Ox> and also its image in Op,. By ([4] I 4.4.1 and 4.5.3), we deduce the following
PD-isomorphisms (5.8)

(5.9.1) Oxla1,.. . xa) = Qx(Opy),  Oxlx1,.. . 20) = q2x(Opy),

where q1,q2 : Px — X are the canonical morphisms and z; is sent to £;. In general,
we deduce that Py is flat over .7 (2.5).

For any integers r,7’ > 1, by ([4] II 1.3.4 and 1.3.5), we deduce a canonical isomor-
phism of formal (%7+7'*+1)-schemes

(592) Px(’r‘) X x Px(’f'/) = Px('l’ + r’).

PROPOSITION 5.10. — The formal X2-scheme Px has a natural formal X-groupoid
structure.

Proof. — For any r > 1, the diagonal immersion A(r) : ¥ — X" ! induces a canonical
(X" *1)-morphism tp(r) : X — Px(r). Set X = X; and let J be the PD-ideal of Op,
associated to the closed immersion X — Py . For any local section z of J, we have P =
plz!Pl = 0. Hence, we have a closed immersion Px — X (2.3). Since X is reduced,
the composition X — Px — X is an isomorphism. We deduce an isomorphism:

(5.10.1) Px 5 X,

Hence the morphism of the underlying topological spaces |Px| — |X2| factors through
A : |%| — |%2|. The canonical morphism Px(2) — %3 212 %2 is compatible with
tp(2) and A. By the universal property of (Px, ),>1, we deduce an X2-morphism ap :
Px(2) — Px. Similary, by the universal property of (Px,)n,>1, the composition
Px — %2 5> %2 (4.6) induces a morphism 7p : Py — Px. By the universal property
of (Px, )n>1, we verify that (ap,tp,np) defines a formal X-groupoid structure on Py
(ct. the proof of 4.11). O

To simplify the notations, we put Pz = Op, considered as a formal Hopf Ox-al-
gebra by 5.10.

PROPOSITION 5.11 ([5] 4.12). — Let n be an integer = 1. There is a canonical equiv-
alence of categories between the category of Ox, -modules with Pyx-stratification and

the category MIC*™ (%X,,/%,,) (5.3).

We now explain the relationships among the various groupoids and stratifications
we have constructed.
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PROPOSITION 5.12. — Let Qx be the formal X-groupoid defined in 4.11. We have a
canonical morphism of formal X-groupoids (5.10)

(5.12.1) A Px i Q:{

Proof. — The isomorphism Px ~ X (5.10.1) fits into a commutative diagram

(5.12.2) Px —— Px

|,

X 2. 52

By the universal property of Qx (3.5), we deduce a canonical X?-morphism A : Py — Qx.
We denote by (ap,tp,np) (resp. (ag,tq,nq)) the formal groupoid structure on Px
(resp. Qz). The diagrams

(5.12.3)
PxXxPxL>Qx><xQxﬁ>Qx Px xx Px —X~ Py —2~ Qx
:{3 xg P13 %2 3':3 D13 3':2 :*:2

are commutative and the compositions of the lower horizontal arrows coincide. By
the universal property of Qx, we deduce that ag o A2 = X o ap. The composition
X 5 Py — X%? is the diagonal immersion. By the universal property of Qx, we
deduce that A otp = 1. The following diagrams

(5.12.4) Py o Py — 2 Qx Pr —2=Qx —2=Qx
X2 T X% ——=1x? X2 =% T x?

are commutative and the compositions of the lower arrows coincide. By the universal
property of Qx, we deduce that A onp = ng o A. The proposition follows. O

5.13. — We take again the notation of 4.9 for X. For any integers n,r > 1, we de-
note by Tx ,(r) the PD-envelope of the closed immersion X,, < (Rx(r)), (4.11.4)
compatible with the PD-structure 7,. By extension of scalars ([4] I 2.8.2), we have
a canonical isomorphism of PD-schemes T ,(r) X.o, -%m — Tx m(r) for all integers
1 <m < n. The inductive limit Tx () of the inductive system (T% ,(r))n>1 is an adic
affine formal Rx(r)-scheme. We denote by

(5.13.1) w(r) : Tx(r) — Rx(r)

the canonical morphism. We set Ty = Tx(1) and w = w(1).
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5.14. — Let n,r,’ be integers > 1. We denote by J(g,(r)), the ideal of O(g, (),
associated to the closed immersion X,, — (Rx(r)),, which induces an isomorphism
on the underlying topological spaces. Via the (%TT/“)—isomorphism (4.10.1)

(Rx(r))n xx, (Rx (")) — (Rx(r +7"))n,

the ideal Jgr, (), ®ox, ORx(r)n T ORx(r)n ®0x, J(Rx@)), Ccorresponds
to J(Rry(r4+r)),- In view of ([4] II 1.3.5), we deduce a canonical isomorphism of
PD-schemes

(5.14.1) At T (r) Xx, Tx,n(r') = Ty n(r + r'),

where the projections Tk (1) — X, (resp. Tx (') — %) is induced by the projec-
tion X7t — X,, on the last factor (resp. x;’“ — X, on the first factor). In view
of the construction of (5.14.1), the isomorphisms A, and A, are compatibles for all
integers 1 < m < n. We deduce a canonical isomorphism of formal (%T”/“)—schemes

(5.14.2) Tx(r) xx Tx(r') = Tx(r +1').

PROPOSITION 5.15. — The formal X%-scheme Tx has a natural formal X-groupoid
structure such that the morphism w : Tx — Rz (5.13.1) is a morphism of formal
X-groupoids (4.8, 4.11).

Proof. — Since the morphism of underlying topological spaces |Rx| — |X2| factors
through A : |X| — |X?|, the same holds for |T%|. The X?-morphism tg(r) : X — Rx(r)
(4.11.4) induces a canonical X2-morphism

(5151) LT(’I‘) X - Tx.
The composition of w(2) and ag (4.11.2)
(5.15.2) Tx(2) — Rx(2) — Rx

is compatible with ¢7(2) and tg. By the universal property of (Tx ,,)n>1, we deduce
an X2-morphism

compatible with aug. We identify T (2) and T x T (resp. Tx(3) and T X x T X xTx)
by 5.14. The diagrams

id XoaT

Ty xx Tx Xz Tx — =Ty xx Tx ——=Tx

T

Rx XxRx XxRxHRx XxRxARx

a xid ar
Te xxTx xgTx ——Tx xx Tx —— Tk

e b

Rx X};Rx X};RxHRx X};Rx&Rx
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are commutative and the compositions of the lower horizontal arrows coincide. By
the universal property of (T% n)n>1, we deduce that ar o (id xar) = ar o (ar x id).
Since nr o tg = tr (4.7)(ii)), by the universal property of (T nn>1, the composition
Ty — Rx -2 Ry (4.11.6) induces a morphism

(5154) nr: Tx - Tx

By the universal property of (Tx n)n>1, we verify that (ar,¢r,nr) is a formal
X-groupoid structure on T (cf. the proof of 4.11). In view of the proof, the mor-
phism w is clearly a morphism of formal groupoids. O

5.16. — In the following, we recall Shiho’s intepretation of integrable p-connections
in terms of §y-stratifications [33].

To simplify the notation, we set 5 = Or, considered as a formal Hopf Ox-algebra
(4.7) and we present a local description for it. Assume that there exists an étale
#-morphism X — Ad, = Spf(W{T1,...,Tq}). Weput §&, = 1®T; —T; — 1 and we
consider % as the section of R x (4.12) and of .

Let n be an integer > 1. By 4.13 and 4.14, the closed immersion X,, — Rx
of smooth .7,-schemes is regular ([20] 17.12.1) and (%, ce %‘i) is a regular sequence
which generates Jg, » (5.14). In view of ([4] I 4.5.1 and 4.5.2), we deduce the following
isomorphisms:

(5.16.1) Ox, (1, 23) = q4(Ory ) Ox,{x1,...,2q3) — q25(Or1s ),

where q1,q2 : T, — X, are the canonical projections and x; is sent to % in both
cases.
Then we deduce the following isomorphisms (5.8)

(5.16.2) Ox{x1,. ., xa) — qa(Tx) Ox{x1,. ., xa) = @u(Tx),
where q1,¢2 : Tx — X are the canonical projections and z; is send to % in both cases.
For any multi-index I = (iy, i, ...,iq) € N, we put (%)[I] = szl(%)[ ile Tk

PRrROPOSITION 5.17 ([33] Prop. 2.9). — There is a canonical equivalence of cate-
gories between the category of Ox, -modules with &y -stratification and the category
p-MIC™(%X,,/) (5.3).

We recall the description of this equivalence in the local case (cf. [33] Prop. 2.9).
Suppose that there exists an étale .-morphism X — Ady = Spt(W{T1,...,T4}). We
take again the notation of 5.2 and 5.16. Let (M, V) be an 0% _-modules with quasi-
nilpotent integrable p-connection. The associated stratification € : Iy ®g, M —
M ®p, J% is defined, for every local section m of M by

1]
(5.17.1) e(l®m) = Z Vor(m) ® (f)) ;

IeNd
where the right hand side is a locally finite sum since V is quasi-nilpotent.
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LEMMA 5.18. — There ezists a canonical morphism of formal X-groupoids
Proof. — Recall (3.5) that we have a commutative diagram

Rx1—— Ry

|

X X2,
Since Ry is flat over W, the ideal (p) of Or, has a canonical PD-structure. By the
universal property of PD-envelope, we deduce a canonical ¥2-morphism ¢ : Ry — Px.
We denote by (ag,tr,nr) (resp. (ap,tp,np)) the formal groupoid structure on Ry
(resp. Px). By the universal property of (Px ,,)n>1, we verify that ¢ is a morphism of
formal X-groupoids (cf. the proof of 5.12). O

5.19. — Let s : Py — Rx be the homomorphism of formal Hopf algebras induced
by ¢. We present a local description of s. Suppose that there exists an étale .#’-mor-
phism X — &dy = Spf(W{T1,...,Ts}). We take again the notation of 4.14 and 5.9.
In view of the construction of ¢, for any multi-index I € N¢, we have

LI

5.19.1 ) = E-(2)
(519.) selh - 5 (8

We denote by Jgr (resp. Jp) the ideal sheaf of Ry (resp. Px) associated

to the closed immersion tr (resp. tp). Note that the p-adic valuation of I! is

<Zk>1[|ﬁj < [I|. By (5.19.1), we deduce that in general, s is injective and

s(Jp) < pJr. Then we have s(J}[f]) c p'Jh for any 1 < i < p — 1. By dividing
by p?, we obtain @-bilinear morphisms

(5.19.2) sJU S o vo<i<p-1l
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CHAPTER 6

LOCAL CONSTRUCTIONS OF SHIHO

In the section, we review Shiho’s local Cartier transform [33] (which depends on a
lifting of Frobenius) and explain how it can be understood in terms of the groupoids
Px,Tx,Rx and Qx

We denote by X a smooth formal .#-scheme, by X the special fiber of X, by X’ =
X X oo the base change of X by ¢ (2.1) and by 7 : X’ — X the canonical projection.

6.1. — Let n be an integer > 1. We assume that there exists an .¥#,,i-mor-
phism F,y1 : Xp41 — X, (2.4) whose reduction modulo p is the rela-
tive Frobenius morphism Fx,, of X (2.2) and we denote by F, the reduc-
tion modulo p™ of Fj, ;. The morphism F,.; induces an (ﬁxnﬂ)-linear mor-
. . 1 1 . . .
phism dF,.1 : F} (Q5 +1/5”n+1) — Q% ..., whose image is contained

in lexn+l/=5pn+1' By dividing by p, it induces an O, -linear morphism

an+1

(6.1.1) .

: Fﬁk(ﬂﬁe;@/yn) - %

Let (M', V') be an 0% -module with an integrable p-connection relative to .7},
(5.1). We denote by ¢, the composition
(6.1.2)
Gt B (R 1, ®0y, M) = F¥(Q% 15) @0, Fii (M) = Q%10 ®o, Fii(M),

an
f

i.e., the composition of =2+t ® id and the canonical isomorphism.

Shiho constructs a Wn—hnear morphism V : F¥(M') — an/yn ®ey, Fi(M') as
follows. For any local sections f of €y and e of M’, we put
(6.1.3) V(fE;(e)) = fCa(Fy(V'(e) +df ® (Fy(e)).

The morphism V is well-defined and is an integrable connection on F*(M’) relative
to .7, (cf. [33] page 805-806). Shiho defines a functor (cf. [33] 2.5)

(6.1.4) 3, : pMIC(X,/.S) — MIC(Xn/.%),
(M, V') — (F3(M'),V).
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The functor ®; sends quasi-nilpotent objects to quasi-nilpotent objects (cf. 6.2 below).
By dévissage ([33] 1.13), the same holds for ®,. It induces an equivalence of the
categories ([33] 3.1):

(6.1.5) ®,, : p-MIC™ (X],/.%,) — MICY™(X,,/).

Let (M',V’) be an object of p-MIC(%,,/.#,,) and (M,V) = &,(M',V’). In view
of (6.1.3), the adjunction morphism of idys ® A° (dF"“) (6.1.1) induce a W-linear
morphism of complexes (5.1.3)

(6.1.6) A M ®ﬁx% Q;:/n/yn — FX/k*(M ®ﬁxn Q.xn/yn)

Indeed, for local coordinates ti,...,tq of X], over .7, any local section of M’ ®g¢,,
Qge' /., Can be written as a sum of sections of the form m ® dt;, A --- A dt;,. Using
(6.1.3), one verifies that (6.1.6) is a morphism of complexes.

LEMMA 6.2. — Let (M',0) be a Higgs module on X'/k (5.1) and V the integrable
connection on M = F)"}/k(M’) constructed in 6.1. If (M’,0) is quasi-nilpotent (5.3),

then so is (M, V).

Proof. — The question being local, we can reduce to the case where there exists an
étale .S5-morphism Xy — Adyz = Spec(Wa[T1,...,Ty]). For any 1 < i < d, let t; be
the image of T; in Ox and t, = 7*(¢;) € Ox/. There exists a sectlon a; of Ox such
that d%(dt;) = tf_ldti + da; and an Ox-linear morphism 6; : M’ — M’ such that
for every local section e of M’, we have 6(e) = Z?Zl dt; ® 0;(e). We set 0; the dual
of dt;. Then we have

d

(6.2.1) Vo (F% (€)= 77 F5 (8 Z aa]FS’E/k ().

We denote by v : M - M ®¢, F% (Qk/k) the p-curvature associated to V ([25]

5.0). There exists Ox-linear endomorphisms v; : M — M for 1 < i < d such that
d
(6.2.2) Y = Z ¥ ® Fx(dt;).
i=1

Recall ([25] 5.2) that 9, and 9; commutes for 1 < 4,j < d. For any I = (i1,...,%q) €
N¢, we put 1 = ]_[j.l:l 1[}37 and 0; = HJ 1 O;J The pth iterate 6i(p) of ¢; is zero ([25]
5.0). Then we have

(6.2.3) b = (Va,)P.

By (6.2.1) and induction, one verifies that for any integer [ > 1, there exist elements
{a1,1 € Ox}1ena <1< such that for every local section e of M’, we have

(6.2.4) (Vo) (Fi (€)= D, arFx(0i(e)).

1<|I|<l
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Since the 1;’s are Ox-linear morphisms, if there exists an integer N such that
0r(e) =0 for all |I| = N, then Y1(Fy ) (e)) =0 for all [I| > N by (6.2.3) and (6.2.4).
We deduce that V is quasi-nilpotent. O

REMARK 6.3. — Given an Ox/-module M’, the Frobenius descent connection Vcan

on F;/k(M’) is defined for local sections m of M’ and f of Ox, by

(631) vcan(fF;/k(m)) =mQdf.

It is integrable and of p-curvature zero. Cartier descent states that the functor
M' — (F} /k(M "), Vean) induces an equivalence of categories between the category of
quasi-coherent Ox/-modules and the full subcategory of MICY" (X /k) consisting of
quasi-coherent objects whose p-curvature is zero ([25] 5.1). Considering 0x -modules
as Higgs modules with the zero Higgs field, by (6.1.3), we see that ®; is compatible
with Cartier descent.

6.4. — Let (M’,0) be a Higgs module on X’/k and ¢ an integer > 0. We suppose that
(M’,0) is nilpotent of level < £, i.e., there exists an increasing filtration of M’

(6.4.1) 0=NycNyc---cN,cNyy =M,
such that 0(N;) c N{_, ®s,, Q
on gri, (M’) is trivial.

We set (M, V) = &, (M’,0) and N; = ®,(N/,0|N!) for 0 < i < £+ 1. By (6.1.3),

we see that V induces an integrable connection on each graded piece gri; (M), with
zero p-curvature.

We have a filtration on the de Rham complex M ®g¢, Q5% Ik (resp. the Dolbeault
complex M’ ®g¢, Q},/k) defined by:

ﬁ(,/k for 1 < i < £+ 1. Then the induced Higgs field

Ni ®(jx Q;{/k} (resp. N’L’ ®@7X, Q;{I/k).
PROPOSITION 6.5. — The morphism of complezes (6.1.6) induces for everyi € [1,£0+1]
a quasi-isomorphism
(6.5.1) N; @y, Qi p = Fxjes(Ni @ U p)-
Proof. — We first consider the case where £ = 0, i.e., § is the zero Higgs field. We
follow a similar argument of ([30] 1.2) where Ogus shows an analogous result in
the level of cohomology of complexes. Then V is the Frobenius descent connection
on M = F;/k(M’). When M’ = O, the morphism on the cohomology induced by A
(6.1.6) is the Cartier isomorphism ([25] 7.2)
(6.5.2) Cxin o — T (Fxjiw (i 1))-

Since Fx, induces an isomorphism on the underlying topological spaces, we have an
isomorphism of complexes

(6.5.3) M ®¢,, Fx s (% i) — Fx/px(M Q¢ Q% /k)-
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Since Fx /(2% /k) is a complex of flat &x/,-modules whose cohomology sheaves are
also flat (6.5.2), the canonical morphism

(6.5.4) Ml@ﬁX/Qg(’/k — M'®p,, c%i(FX/k*(Q;{/k)) - o%i(M/@ﬁX/ FX/k*(QS(/k))
is an isomorphism. The assertion in the case £ = 0 follows.

We prove the general case by induction on i. The assertion for ¢ = 1 is already
proved. If the assertion is true for ¢ — 1, then the assertion for i follows by dévissage
from the induction hypothesis. O

In the remainder of this section, we suppose that there exists an .’-morphism F :
X — X' which lifts the relative Frobenius morphism F /, of X. We take again the
notation of Ry, Qx, Tx and Px (4.11, 5.15, 5.10).

PROPOSITION 6.6. — The morphism F induces a morphism of formal groupoids
above F' (4.8)

Proof. — First, we show that there exists a unique morphism ¢ : Qx1 — X’ which
fits into a commutative diagram

(6.6.2) Qx1 — Qx
g x?

where the bottom map is induced by the diagonal immersion. The problem being
local on X, we can assume that there exists an étale .”-morphism X — Ady =
Spf(W{T1,...,T4}). For any 1 < i < d, we put ¢; the image of T} in Ox, t; =
W*(tl) € ﬁxl, 5@ B 1®tl —t; ®1le ﬁxz and fé = 1®t; — t; ®1le ﬁx/z. LOC&Hy, there
is a section a; of Ox such that F*(t}) = t¥ + pa;. Then we have

(6.6.3) F¥(E) =10t - ®@1+p(1®ae —a; ®1)
=G+t -t!@1+p(1Qa; —a; ®1)

p—1 ) ‘
=&+ Z (?)5?(%@1)"_] +p(1®a; —a; ®1).
j=1

Since & = p- (%) in @y, the image of F?*(¢]) in @), is contained in p@,. Then
the existence and the uniqueness of g follow. By the universal property of Ry (3.5),
we deduce an ¥'?-morphism v : Qx — Rx. Using the universal property of Ry/, we

verify that 1) is a morphism of formal groupoids above F' (cf. the proof of 5.12). O
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6.7. — We denote the composition of ¥ : @x — Rx and A : Px — Qx (5.12.1) by
The morphism ¢ is a morphism of formal groupoids above F' (4.8).

LEMMA 6.8 ([33] 2.14). — The morphism ¢ induces a morphism of formal groupoids
above F

(681) (Y2 Px - Tx/.

Proof. — For any n > 1, by ¢povp = Foug (4.7)(ii)) and the universal property of Tk’ ,,
(5.13), ¢p, : Px, — Rxs, induces a PD-Ry/ ,-morphism ¢, : Px, — Tx/ . For any
1 < m < n, since ¢,, and ¢,, are compatible, we see that ¢,, and ¢, are compatible.
Hence we obtain a X’2-morphism ¢ : Py — Ty . It follows from 6.7 and the universal
property of (Tx’ nn>1 that ¢ is a morphism of formal groupoids above F. U

6.9. — We have a commutative diagram of formal groupoids

(6.9.1) P% T.’f’
| >
A w
P
Q.’{ Rx/,
where ¢, ¢, are induced by F'. By 5.6, we deduce a commutative diagram:
(6.9.2) { O%;,-modules } va { Ox,-modules }

with Ry -stratification with @ ,-stratification

w*‘/ J/)\*

{ Ox: -modules } on { 0%, -modules }
with & y/-stratification with Pg-stratification

6.10. — Let n be an integer > 1 and F,, (resp. Fj,+1) the reduction modulo p™ (resp.
p"*1) of F. In ([33] Prop. 2.17), Shiho shows that, through the equivalences of cate-
gories 5.11 and 5.17, the functor

O -modules } { O%x, -modules }

with & y/-stratification with Pg-stratification
(M,€) = (F:(M)ﬁpil(s) ®wl(93€/) Cy)f)

coincides with the functor induced by F,,;1 (6.1.5)

®,, : p-MIC™ (X!, /.7,) — MICY™(X,,/ ).

(6.10.1) : {

Indeed, if we write down a p-connection and the associated connection in terms of
local coordinates (as in (6.2.1)), then we can verify the compatibility between ¢,, and
®,, using Formula (6.6.3) (cf. [33] 2.17 for more details).
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CHAPTER 7

OYAMA TOPOI

In this section, X denotes a k-scheme. We explain two “crystalline like” topoi in-
troduced by Oyama [32] associated to X. When X admits a smooth lifting X to W,
crystals on these topoi (introduced in §8) are equivalent to modules with R x-strati-
fication and (resp. ¢),-stratification) discussed in 5, and are independent of the choice
of any lifting of X.

If we use a gothic letter ¥ to denote an adic formal .¥’-scheme, the corresponding
roman letter T will denote its special fiber ¥ Qw k.

DEFINITION 7.1 ([32] 1.3.1). — We define the category &(X /%) (resp. &(X /7)) ®
as follows.

(i) An object of &(X/.¥) is a triple (U, %, u) consisting of an open subscheme U
of X, a flat formal .-scheme ¥ (2.5) and an affine k-morphism » : T — U.

(ii) An object of £(X/.) is a triple (U, %, u) consisting of an open subscheme U
of X, a flat formal .’-scheme ¥ and an affine k-morphism u : T' — U, where
T is the closed subscheme of T" defined in 2.3.

(iii) Let (U1, %1,u1) and (Uz, T2, uz) be two objects of (X /%) (resp. £(X/.7)). A
morphism from (U1, %1, u1) to (Uz, T2, uz) consists of an .#-morphism f : T3 — T
and an X-morphism g : U; — Us such that gou; = ugo fs (resp. gous = ugofy),
where f; is the reduction modulo p of f. B

We denote an object (U, %,u) of & (resp. &) simply by (U, %), if there is no risk of
confusion.

To simplify the notation, we drop (X /.¥) in the notation & (X /.%) (resp. &(X /7))
and we write simply & (resp. &), if there is no risk of confusion. We put &’ = &(X’/.7)
(2.2).

1. In [32], the category &(X/.7) (resp. £(X/.7)) is denoted by HIG? (X /.7) (resp. CRISY (X /.¥)).
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LEMMA 7.2. — Let f : %1 — T3 be an S-morphism of flat formal #-schemes and
fs : T1 — T5 its special fiber.

(i) If fs is an isomorphism, then f is an isomorphism.

(ii) If fs is flat, then the morphism %1, — %5, induced by f (2.4) is flat for all
integers n = 1.

Proof. — We can reduce to the case where ; = Spf(B), T2 = Spf(A) are affine ([1]
2.1.37) and f is induced by an adic W-homomorphism v : A — B. For any integers
n > 1, we put A, = A/p"A, B, = B/p"B, gi"(A) = p"A/p"*1A and gr"(B) =
p"B/p" T B. Since A and B are flat over W, the canonical morphism of B;-modules

(7.2.1) Bi ®a, gr"(A) — g"(B)

is an isomorphism.

(i) If w induces an isomorphism A; — Bj, we deduce that u is an isomorphism by
(7.2.1) and ([7] 11T §2.8 Cor. 3 to Théo. 1).

(ii) If By is flat over A;, we deduce that B, is flat over A, for all integers n > 1
by (7.2.1) and the local criterion of flatness ([7] III §5.2 Théo. 1). O

7.3. — We say that a morphism (U1, %1,u1) — (U, Ta,us) of & (resp. &) is flat if
the special fiber 77 — T5 of the morphism ¥; — %5 is flat.

Let (Uy,%1,u1) — (U,%,u) be a flat morphism and (Us, T2,u2) — (U,%,u) a
morphism of & (resp. &). Their fiber product is represented by the fiber products
T2 = T1 X5 Ty (which is flat over . in view of 7.2(ii) and 2.5) and U1y = Uy xy Us
endowed with the affine morphism 77 xr 1o — U; xy Us (resp. composite mor-
phism T4 xp Tp — Ty xp Ty — Uy xy Us (2.3.1)) induced by uq, us and u.

DEFINITION 7.4. — (i) We say that a morphism f : (U1,%1) — (Uz,%2) of & is
Cartesian if the canonical morphism T} — T3 Xy, U; is an isomorphism.

(ii) We say that a morphism f : (Uy,%1,u1) — (U2, %o, us) of & is Cartesian if
Ty, — T5 is an open immersion and the canonical morphism T’y — T, xy, U; is an
isomorphism. (?)

If f:(Uy,%1) — (Ug,%3) is a Cartesian morphism of & (resp. &), Ty is an open
subscheme of T5 and f identifies ¥; with the open formal subscheme induced by %,
on T by 7.2(i).

A Cartesian morphism is clearly flat (7.3). By 7.3, the base change of a Cartesian
morphism of & (resp. &) is Cartesian. The composition of Cartesian morphisms of &
(resp. &) is clearly Cartesian.

2. The above definition of Cartesian morphism in & is equivalent to the original definition in ([32]

1.3.1), where Oyama requires the canonical morphism Tp — U} Xy1 T is an isomorphism

(2.3).

’
suiofry /i
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7.5. — Let (U,%,u) be an object of & (resp. &) and V an open subscheme of U.
Note that the canonical morphism 7" — T induces an isomorphism on the underlying
topological spaces. We denote by Ty the restriction of T to the open subset u~1(V)
of the topological space |T|. Then, we obtain an object (V, %y ) of & (resp. &) and a
Cartesian morphism (V, %y ) — (U, %) of & (resp. &).

Any morphism (U;,%1) — (Uz,%2) of & (resp. &) factors uniquely through the
Cartesian morphism (U1, (T2)v,) — (U2, %2). The category & (resp. &) is fibered
over the category Zar,x of open subschemes of X by the functor

(7.5.1) n:& — Zar)x (resp. & — Zar)x) (U,%)— U,

7.6. — Let (U,%) be an object of & (resp. &). By 7.5, we have a functor
(7.6.1) Q,s) : Zar;y — & (resp. &) Vi (V,%y).

Let f: (U1,%1) — (U2, %2) be a morphism of & (resp. &), 55 : Zar,y, — Zary,
the functor induced by composing with U; — Us. Then, the morphism f induces a
morphism of functors:

Br : aw,,s1) = QU2,%,) © -

Let .7 be a presheaf on & (resp. &). We denote by %y <) the presheaf .7 o )

on Zar ;. The morphism Sy induces a morphism of presheaves:

(7.6.2) D)y, — T wnT)-
It is clear that v;q = id. By construction, if f is a Cartesian morphism, then ¢ is an
isomorphism. If g : (U, %) — (Us, T3) is another morphism of & (resp. &), we verify

that vgor = vy © ]? (7g), Where j? denotes the localisation functor from the category
of presheaves on Zary, to the category of presheaves on Zar y, .

PROPOSITION 7.7. — A presheaf F on & (resp. &) is equivalent to the following data:
(i) For every object (U, %) of & (resp. &) a presheaf F 1y z) on Zary,
(ii) For every morphism f : (U1,%1) — (U2, %2) of & (resp. &) a morphism s :
F W5 |y, = FWr31)s
subject to the following conditions
(a) If f is the identity morphism of (U, %), then ~y; is the identity of F ).
(b) If f is a Cartesian morphism, then vy is an isomorphism.
(c) If f and g are two composable morphisms of & (resp. &), then we have Ygo5 =

Y 025 (Yg)-
Proof. — Let {ﬂ(mg), ¢} be a data as in the proposition. We associate to it a presheaf
on & (resp. &) as follows. Let (U, ¥) be an object of & (resp. &). We define .# (U, %) =
Zw,z)(U). For any morphism f : (V,3) — (U,%) of & (resp. &), we deduce a mor-
phism from ¢

(7.7.1) FZwx)(U) = Fum(V) = Frz V).
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In view of conditions (a) and (c), the correspondence

is a presheaf. In view of condition (b), the above construction is quasi-inverse to the
construction of 7.6. The assertion follows. ]

We call descent data associated to . the data {F <),7s} as in the proposition.

DEFINITION 7.8 ([32] 1.3.1). — Let (U, %, u) be an object of &(X /) (resp. &(X/.¥)).
We denote by Cov(U, %, u) the set of families of Cartesian morphisms {(U;, ¥, u;) —
(U, %, u)}ier such that {U; — U}ier is a Zariski covering.

7.9. — By 7.4, we see that the sets Cov(U, %) for (U, %) € Ob(&(X /7)) (resp. (U,%) €
Ob(&(X/.7))) form a pretopology ([3] II 1.3). We call the topology on & (X /.¥) (resp.
&(X /7)) associated to the pretopology defined by the Cov(U,%)’s Zariski topology.
We denote by &(X/.%) (resp. &(X/.%)) the topos of sheaves of sets on &(X/.%)
(resp. £(X /%)), equipped with the Zariski topology.

PROPOSITION 7.10. — Let .# be a presheaf on & (resp. &) and {F 1y z),7s} the asso-
ciated descent data (7.7). Then F is a sheaf for the Zariski topology, if and only if for
each object (U, %) of & (resp. &), the presheaf Fy ) (7.6) is a sheaf of the Zariski
topos U,y -

Proof. — Let (U,%) be an object of & (resp. &). The functor oy ) (7.6.1) sends
morphisms of Zar,; to Cartesian morphisms of & (resp. &) and commutes with
fibered products. It is clearly continuous for the Zariski topologies. Hence, if % is a
sheaf, then .7y ¢y is a sheaf of U, ([3] IIT 1.2).

Conversely, suppose that each presheaf .7y ) is a sheaf of Uy,,. Let {(U;, T;) —
(U,%)}ier be an element of Cov(U, %). In view of condition (b) of 7.7, we deduce that
the sequence

FU,%) - [[70,%) 3 [[ ZU0;,%)
iel i,5€l
is exact, where (Uij, Tij) = (U;, Ts) % u,5) (U, T;). Hence, .7 is a sheaf. O

7.11. — Recall that a family of morphisms of schemes {f; : T; — T} is called
an fppf covering if each morphism f; is flat and locally of finite presentation and if
T = User £i(ITi) (cf. [12] IV 6.3.2).

We say that a family of .#-morphisms of flat formal .-schemes {f; : ¥; —> T}ier is
an fppf covering if each morphism f; is locally of finite presentation ([1] 2.3.15) and if
its special fiber {T; — T'};c; is an fppf covering of schemes. By ([1] 2.3.16) and 7.2(ii),
a family of .”-morphisms of flat formal .#-schemes {¥; — T};cs is an fppf covering
if and only if the family {%; ,, — %, }icr is an fppf covering of schemes for all integers
n = 1.

Recall that an adic formal .#-scheme ¥ is flat over .% if and only if ¥, is flat
over %, for all integers n > 1 (2.5). Since fppf coverings of schemes are stable by
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base change and by composition, the same holds for fppf coverings of flat formal
-schemes.

DEFINITION 7.12. — Let (U,%,u) be an object of &(X/) (resp. £(X/.%)). We
denote by Coveppe(U, %, u) the set of families of flat morphisms {(U;,%;,u;) —
(U, %, u) }ier (7.3) such that {U; — U}y is a Zariski covering and that {¥; — T}y is
an fppf covering (7.11).

It is clear that Coveppe(U, ¥, u) contains Cov(U, %, u) (7.8).

7.13. — By 7.3 and 7.11, we see that the sets Coveppe(U, ¥) for (U, %) € Ob(8(X/.Y))
(resp. (U,%) € Ob(&(X/.¥))) form a pretopology ([3] II 1.3). We call fppf topology
the topology on &(X /) (resp. £(X/.”)) associated to the pretopology defined by
the sets Covipps(U, T). We denote by g(X/y)fppf (resp. E(X/y)fppf) the topos of
sheaves of sets on &(X /%) (resp. £(X /%)), equipped with the fppf topology.

7.14. — Let .# be a sheaf of g"fppf (resp. gfppf) and (U, %) an object of & (resp. &).
Since .7 is also a sheaf for the Zariski topology, the presheaf .75 ) (7.7) is a sheaf
of Uar.

Let {f : (U,3) — (U,%)} be an element of Coveype(U, %) and put (U, 3 xg 3) =
(U,3) xw,) (U,3). Since .Z is a sheaf for the fppf topology, we deduce an exact
sequence of U, (7.6.2)

(7.14.1) Fws) 5 Fws) 3 Fwsxes)-

7.15. — Let ¥ and Z be two categories, 2 (resp. @) the category of presheaves of
sets on € (resp. Z) and u : € — 2 a functor. We have a functor

(7.15.1) W9 >C  Goit(9)=You.

It admits a right adjoint ([3] I 5.1)

(7.15.2) )

Let ¢ and 2 be two sites®. If u : ¥ — 2 is a cocontinuous (resp. continuous)
functor and % (resp. ¢) is a sheaf on € (resp. &), then U, (.F) (resp. u*(¥)) is a
sheaf on 2 (resp. €) ([3] I1I 1.2, 2.2).

Let % (resp. Z) be the topos of the sheaves of sets on ¢ (resp. 2) and u: € — Z
a cocontinuous functor. Then u induces a morphism of topoi g : ¥ — & defined
by g« = Uy and g* = a o u*, where a is the sheafification functor (cf. [3] III 2.3).

3. We suppose that the site ¢ is small.
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7.16. — Note that the fppf topology on & (resp. &) is finer than the Zariski topology.
Equipped with the fppf topology on the source and the Zariski topology on the target,
the identical functors & — & and & — & are cocontinuous. By 7.15, they induce
morphisms of topoi

(7161) g gfppf - C;(:;a o éfppf - é

If .# is a sheaf of éN”fppf (resp. gfppf), o« (F) is equal to .Z. If 4 is a sheaf of &
(resp. & ), then 0*(¥) is the sheafification of ¢ with respect to the fppf topology.
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CHAPTER 8

CRYSTALS IN OYAMA TOPOI

In this section, we keep the notation in §7 and we study crystals in Oyama topoi
and explain their interpretations in terms of modules with stratification (8.10). Let n
an integer > 1.

8.1. — We define a presheaf of rings Og(x/9)n on &(X/7) (resp. Og(x/#)n
on &(X/¥)) (7.1) by
(8.1.1) (U,%) —»T(%, 0,).

For any object (U,%) of &(X /) (resp. £(X/.”)) and any element {(U;,%;) —
(U, %) }ier of Coveppe(U,T) (7.12), {Z;n, — Fpnlier is an fppf covering of schemes
(7.11). By fppf descent for quasi-coherent modules ([21] VIII 1.2), Os (x5 n (resp.

Og(x/9)n) is a sheaf for the fppf topology (7.13). Since the fppf topology is finer
than the Zariski topology, it is also a sheaf for the Zariski topology (7.9).

8.2. — For any object (U,%,u) of & (resp. &), we consider Oz as a sheaf of T,
(resp. T,,.). We have (7.10)

(Oen) ) =ux(Os,) (resp. (Ogn)w,3,u) = ux(0s,)).
A morphism f : (U;,%1,u1) — (Uz,%a,usz) of & (resp. &) induces a morphism of
ringed topoi

(8.2.1) Fo: (Ut pars 114 (O, ) = (U par, u2s Oz, ).

By 7.7 and 7.10 and a standard argument, an O ,-module of & (resp. Og n-module
of &) is equivalent to the following data:

(i) For every object (U, T, u) of & (resp. &), an u4(0x,)-module F(y <) of Uyar.
(ii) For every morphism f : (U1,%1,u1) — (U2,%3,uz) of & (resp. &), an
u14(0x, , )-linear morphism c; : f¥(F (v, 2,)) = F(w,,2.);
which is subject to the following conditions:

(a) If f is the identity morphism, then ¢, is the identity.
(b) If f is a Cartesian morphism, then ¢y is an isomorphism.
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(c) If f and g are two composable morphisms of & (resp. &), then we have cyof =
cp o fi(cq)-
We call the data {7 (y,5), ¢y} the linearized descent data associated to the Og ,,-mod-
ule (resp. Og n-module) F of & (resp. of &).
An Og ,-module (resp. Og ,-module) % of gofppf (resp. éfppf) gives rise to an
O n-module (resp. Og p-module) 0. (.F) of & (resp. é) (7.16.1). We can associate
to .7 a linearized descent data {.#(y <),cs} by that of oy (F).

DEFINITION 8.3 ([32] 1.3.3). — Let .# be an Og ,-module of & (resp. an O¢ n-module
of g‘}ppf, resp. an Og p-module of &, resp. an O n-module of éfppf).

(i) We say that # is quasi-coherent if for every object (U, %, u) of & (resp. &), the
uy(Og, )-module .7y <) of Ugar (8.2) is quasi-coherent ([22] 0.5.1.3).

(ii) We say that .# is a crystal or a crystal of Og ,-modules oféNB (resp. Og n-mod-
ules of gfppf, resp. Og n-modules of %, resp. Og n-modules of éfppf) if for every mor-
phism f : (U1,%1) — (Uz,%2) of & (resp. &), the canonical morphism cy (8.2) is an
isomorphism.

We denote by € (0s,) (resp. Cippt(Osn), resp. €(Og ), resp. Cippt(Os.n))
the category of crystals of 0 ,-modules of & (resp. O p,-modules of &ppe, resp.
Og n-modules of &, resp. Og n-modules of &g, ) and we use the notation 4" (—)

or Cgf‘g}h(—) to denote the full subcategory consisting of quasi-coherent crystals.

PROPOSITION 8.4. — A quasi-coherent O ,-module F ofé"~ (resp. Og n,-module ofﬁ)
is equivalent to

(i) For every object (U, %) of & (resp. &), a quasi-coherent Os, -module F(y =)
of T zar;

(ii) For every morphism f : (U1,%1) — (Uz,%2) of & (resp. &), an (O, ,)-linear
morphism of T1 sar:

(8.4.1) ¢t fo(Fwssa) = Fn,an)s

where f, denotes the morphism %y , — %9 ,; which are subject to similar conditions

(a-c) in 8.2.
The assertion follows from the following proposition.

PROPOSITION 8.5. — Let w: T — U be an affine morphism of schemes, i : T — & a
nilpotent closed immersion. We denote by v : (§,0g) — (U,usx(Og)) the morphism
of ringed topoi induced by u. Then, the inverse image and direct image functors of v
induce equivalences of categories quasi-inverse to each other between the category of
quasi-coherent O g--modules of & ., and the category of quasi-coherent us (O g )-mod-
ules of Uyar.

The proposition follows from 8.7 and 8.8.
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LEMMA 8.6. — We keep the assumption of 8.5. The restriction of the functor vy to
the category of quasi-coherent O g--modules is exact.

Proof. — The functor v, is left exact. Let .# — .4 be a surjection of quasi-coherent
O g-modules. To show that vy (.#) — vy (/) is surjective, it suffices to show that
for any affine open subscheme V of U, the morphism vy (.#)(V) — vy(A)(V) is
surjective. Since u is affine, the open subscheme &y, of & associated to the open
subset 41 (V) of T is affine. Since .#, .4 are quasi-coherent and &y is affine, the
morphism # () — A (& ) is surjective. Then the assertion follows. O

LEMMA 8.7. — We keep the assumption of 8.5. For any quasi-coherent O g -mod-
ule M, vi( M) is quasi-coherent and the adjunction morphism v* (v (M) — M is
an isomorphism.

Proof. — The question being local, we may assume that U is affine and so is & . Then
the quasi-coherent &' module ./ admits a presentation

(8.7.1) % 2 7 e M — 0.

The canonical morphism (v, (0g))® — v*(ﬁ(j;[ ) is clearly an isomorphism. Since
vy is exact (8.6), we obtain a presentation of vy (.#)

(v:(O5))®) — (vx(O )BT — vy (M) — 0.

The first assertion follows.

The exact sequence (8.7.1) induces a commutative diagram

(0 (v (Og))®T —— (v*(04(0g))®T ——v*(va(A)) —0

| |

ﬁ’?f ﬁgf M 0.

Since v, is exact and v* is right exact, horizontal arrows are exact. The first two
vertical arrows are isomorphisms. Then the second assertion follows. O

LEMMA 8.8. — We keep the assumption of 8.5. For any quasi-coherent uy (0 g)-mod-
ule N, v*(A) is quasi-coherent and the adjunction morphism A — v, (v*(A)) is
an isomorphism.

Proof. — The pull-back functor sends quasi-coherent objects to quasi-coherent objects
([22] 5.1.4).

The second assertion being local, we may assume that U is affine and that .4
admits a presentation:

(ux(09))® = (ux(0g)® — A -0
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Then we deduce a commutative diagram

(ux(0 )%’ (ux(Og)®" N 0

| |

(02 (V" (ux (0g)))® —— (04 (V" (ux(05))®" —— v4(V*(A)) —0.

Since v, is exact (8.6) and v* is right exact, the horizontal arrows are exact. The first
two vertical arrows are isomorphisms. Then the second assertion follows. O

PROPOSITION 8.9. — Let X be a k-scheme. The direct image functors o : éNDfppf - &
and oy : Egypp — & (7.16.1) induce equivalences of categories

(8.9.1) Gl (Opm) > " (Osn),  Cog (Osn) = M Op ).

Proof. — The functor o, sends quasi-coherent crystals of Og ,-modules of gfppf
(resp. Og n-modules of gfppf) to quasi-coherent crystals of O ,-modules of & (resp.
O n-modules of & ). The functors (8.9.1) are clearly fully faithful. It suffices to show
the essential surjectivity.

Let .# be a quasi-coherent crystal of O ,-modules of & and {Zw=),cr} the as-
sociated linearized descent data. We consider .#(y ) as an Oz, -module of T}, (8.4).
To show % is a sheaf for {ppf topology, we prove that, for any element {(U;,%;) —
(U, %) }ier of Covippe (U, T) (7.12), the sequence

(8.9.2) 0> I(T, Fug) — | [N Zw.sy) = [ [T @G P, s.0)
el i,5€l

is exact, where (Uyj, %ij) = (Us, Ti) ¥, (Uj,%;) (7.3). Then, we have

(8.9.3) Fw,sy = Fus), Fw,s, =5 (Fus))

where f; (resp. fi;) denotes the morphism ¥; — ¥ (resp. ;; — %). It suffices to show
that the sequence

(8.9.4) 0— Fus — Hfz* U,3:)) — H fige(Fw,; 3.,))
el i,5€l

is exact. The question being local, we can suppose that U is quasi-compact and quasi-
separated and so is T. Hence we can reduce to the case where the set I is finite. Note
that the schemes ¥;, and ¥, are quasi-compact and quasi-separated and that the
morphisms f; and f;; are quasi-compact. Then the exactness of (8.9.4) follows from
the fppf descent for quasi-coherent modules.

The assertion for quasi-coherent crystals of 0 ,-modules can be verified in the
same way. O

PROPOSITION 8.10. — Let X be a smooth formal #-scheme and X its special
fiber. There exists a canonical equivalence of temsor categories between the category
C(Op,n) (resp. €(0g.r)) and the category of Ox,-modules with R x-stratification
(resp. @)y -stratification) (4.11), 5.4.
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Proof. — The proof is standard. We briefly explain the construction following ([32]
1.3.4) where the author deals with the case n = 1.

The triple (X, X,id) (resp. (X,%X,X — X)) is an object of & (resp. &). By 4.9,
(X,Rx(r)) (resp. (X,Qx(r))) is an object of & (resp. &) for all integers r = 1. We
take again the notation of the proof of 4.11. We denote by g1, ¢z : (X, Rx) — (X, X)

the canonical morphisms. Let .Z be a crystal of O¢ ,-modules of &. We set ¢f to be
the O, -module .7 x x). Then we deduce isomorphisms of % x-modules of X, (8.2)

(8101) Cqy Eﬁk,n((’?) ;y(X,Rx) Cqo ag,n((’?) l»ﬁ‘(X,Rx).

We denote by € the composition of c,, and the inverse of ¢y, . By a standard argument,
we can show that ¢ defines a R y-stratification on f. It is clear that the correspon-
dence .# — (f,¢) is functorial and is compatible with tensor products (5.4).

Conversely, let ¢f be an Ox,-module with an R x-stratification ¢ : g3, (¢f) —
qi o (F)- Let (U, T, u) be an object of & such that U is affine. Since X is smooth over .#
and ¥ is affine, the k-morphism v : T — U extends to a morphism ¢ : (U, %) — (X, X)
of &. We define .7y ) to be the Og -module ¢} (#) of Usar. By a standard argue-
ment, we can show that this definition of .7 <) is independent of the choice of the
deformation ¥ — X of u : T'— U up to a canonical isomorphism which comes from
the stratification.

Let g : (U1,%1) — (Us2,%2) be a morphism of & such that U; and U, are affine.
There exists morphisms ¢1 : (U1,%1) — (X,X) and ¢ : (Uz,%2) — (X, %) of &.
Then there exists a unique morphism h : (U1, %1) — (X, Rx) such that ¢g; o h = ¢y
and g3 o h = @5 0 g. We deduce a canonical ﬁgl,n—linear isomorphism of Uj 4,

~ BE(e) ~
(810.2) ¢ TE(Fnm) = hi@a(F) D W@ () = Fw, sz

By gluing the constructions for affine objects, we obtain an isomorphism c, for a
general morphism g of &. We deduce the cocycle properties for ¢, by the cocycle
condtion of ¢.

Hence we obtain a linearized descent data {.#y,z u),cs} such that each mor-
phism c; is an isomorphism. Then, we get a crystal of Og ,-modules # of & by
8.2. The correspondence (of,e) — Z is clearly functorial and quasi-inverse to the
previous construction.

The assertion for crystals of ¢ ,-modules can be verified in the same way. O
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CHAPTER 9

CARTIER EQUIVALENCE

In this section, we show that the relative Frobenius morphism of X induces an
equivalence of topoi between &', ¢ and &’ppf. Then we prove that this equivalence
globalizes Shiho’s local Cartier transform modulo p™ explained in §6.

9.1. — Let (U,%,u) be an object of &. We have a commutative diagram

(9.1.1) U = TC T
=

Fyk Fr/ Fr)
U u’ T C T,

where the vertical arrows denote the relative Frobenius morphisms (2.2, 2.3). It is
clear that (U',%,u’ o fr);) is an object of & (7.1). Moreover, the correspondence
(U, %,u) — (U, %,u o fry,) is functorial. We denote by p the functor defined as
above:

(9.1.2) p:&— & (U,%,u) » (U, %4 o fru).

We will show in 9.3(ii) that p is continuous and cocontinuous with respect to either
Zariski or fppf topology. By 7.15, the functor p (9.1.2) induces morphisms of topoi

(9.1.3) Cx/y: & — &,

(9.1.4) Cx/.7,tppf * Etppt = Stopts

such that the pullback functor is induced by the composition with p. They fit into a
commutative diagram (7.16.1)

~ Cx />, tppf ~
(915> éfppf gf/ppf
P LA )

One of the main results in this section is the following.
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THEOREM 9.2 (cf. [32] 1.4.6). — For any smooth k-scheme X, the morphism Cx o tpf :

Etppt — f’ppf is an equivalence of topoi.
The theorem follows from 9.3, 9.8 and 9.10.

PROPOSITION 9.3 (cf. [32] 1.4.1). — (i) The functor p (9.1.2) is fully faithful.
(ii) Fquipped with the Zariski topology (7.9) (resp. fopf topology (7.13)) on both
sides, the functor p is continuous and cocontinuous ([3] III 1.1, 2.1).

LEMMA 9.4. — Let Y, Z be two k-schemes and g1,92 : Y — Z two k-morphisms. We
put hy = gjo fy: Y — Y' - Z' (9.1.1) fori=1,2. If hy = ha, then g1 = ga.

Proof. — Let U be an affine open subscheme of Z. Since fy, is a homeomorphism
and hy; = hy, we have g7 '(U) = g5 '(U). Hence we can reduce to case where Z is
affine.

Since the morphism fy ) is scheme theoretically dominant (2.3), we deduce that
g1 = g5 by (|22] 5.4.1). The functor X — X’ from the category of k-schemes to itself
is clearly faithful. Then the lemma follows. O

LEMMA 9.5. — Let (U, %, u) be an object of & and g : (V',3,w) — p(U,%,u) a mor-
phism of &'. Then there exist an object (V,3,v) of & and a morphism f : (V,3,v) —
(U,%,u) of & such that g = p(f). If g is Cartesian (resp. flat), so is f.

uw’ofrk
—_

Proof. — Put V = F; /1k (V"). Since the composition Z — T U’ factors through

V' < U’, the composition Z — T % U factors through V. We obtain a k-morphism v :
Z — V such that w = v’ o fz ;. Since fy; is separated, v’ is affine ([18] 1.6.2(v)) and
so is v. Hence, we get an object (V, 3,v) of & and a morphism f : (V,3,v) — (U, %, u)
of & such that g = p(f). O

9.6. — Proof of 9.8. (i) The functor p is clearly faithful. We prove its fullness.
Let (U1, %1,u1), (U, %2, us) be two objects of & and g : p(U1,%1,u1) — p(Ua, Ta, uz)
a morphism of &’. Since U] < U} < U’, we have U; < Uy < U. It suffices to show
that the diagram

9,
I1 — Iz

U1*>U2

is commutative. It follows from 9.4 applied to the compositions 7} 2, U; — Uy and
T —>T 22, Us.

(ii) A family of morphisms {(U;,%;) — (U,%)}ier of & belongs to Cov(U,%)
(resp. Coveppe(U, %)) if and only if, its image by p belongs to Cov(p(U, %)) (resp.
Covippt(p(U, ¥))). The functor p sends flat morphisms to flat morphisms and it com-
mutes with the fibered product of a flat morphism and a morphism of &. Indeed, by
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functoriality, if 7Ty — T and T, — T are two morphisms of k-schemes, the canon-
ical morphism fr, /5 X fr i @ T1 X7 T2 — Q’ X Q’ is equal to the composition
Ty 7Ty — (Ty xr Tz) — (Ty xr Ty) = Ti' x Ty'. Then the continuity of p follows
from ([3] III 1.6).

Let {(U/,%;) — p(U,%)}ier be an element of Cov(p(U, X)) (resp. Coveppe(p(U, X))).
By 9.5, there exists an element {(U;, ;) — (U, ) }ier of Cov(U, ) (resp. Covipps (U, %))
mapping by p to the given element. Then, p is cocontinuous by ([3] III 2.1). O

9.7. — To prove 9.2, we use (local) liftings of the Frobenius morphism to construct
fppf converings. Let X be an affine scheme and h : X — Y = Spec(k[T1,...,Tq]) an
étale morphism. By ([24] 3.2), the following diagram is Cartesian (2.2)

(9.7.1) x = x
h | lh

Y v, Y.

We put 9 = Spf(W{Ty,...,T4}) and we denote by Fy : Y — 2 the affine mor-
phism defined by ¢ : W — W and T; — T7. Since X is étale over Y, there exists a
unique deformation X of X over ) up to a unique isomorphism. The formal scheme

X X9, Fy Q) is also a deformation of X = X xy p, Y over 2. Then we deduce a
Cartesian diagram

(9.7.2) X——x

| o |
92 9.

In particular, we obtain a morphism of finite type Fx : ¥ — X above o, which lifts
the absolute Frobenius morphism Fx of X. We put ¥ = X x o, .. Then we obtain
an .-morphism of finite type Fy,» : X — X' which lifts the relative Frobenius
morphism F'x ;. Since X is smooth, the morphism Fy, : X — X' is faithfully flat
(cf. [24] 3.2). Hence {F%, s : X — X'} is an fppf covering in the sense of 7.11.

LEMMA 9.8. — Let (U',%,u) be an object of &', U = F};/lk(U’) Suppose that U is
affine and that there exists an étale k-morphism U — Spec(k[T1,...,Ty]).

(i) There exists an object (U,3) of & and an element {f : p(U,3) — (U',%)}
of Covippe (U, %).

(ii) Let g : (U7,%1) — (U, %) be a morphism of &'. Then there exists a mor-
phism h : (U1,31) — (U,3) of & and an element {¢ : p(U1,31) — (U],%1)}
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of Covippe (U7, %1) such that the following diagram is Cartesian:

(9.8.1) p(U1,31) —— (U}, %1)
p(h)‘/ O 1/9
o(U,3) —— ", %).

If g is a Cartesian morphism so is h.

Proof. — (i) We follow the proof of ([32] 1.4.5). Let 4 be a smooth lifting of U over .
and F' : 4 — U a lifting of Fyy/, as in 9.7. Note that U’ is affine. Since the mor-
phism u is affine, T' and ¥ are affine. Since Y’ is smooth over .7, there exists an
.#-morphism 7 : ¥ — ' which lifts u. We consider the following commutative dia-
gram:

(982) T Xy U < Xy U
T L T
u U 1
U’ o

Weset 3 =% xy U, Z =T xy: U and we denote the composition Z — Z — U by v.
Then we obtain an object (U, 3,v) of &. By (9.8.2), one verifies that the diagram

(9.8.3) Z—=T

Wt

z v
is commutative. Then, we obtain a morphism p(U, 3,v) — (U’, %, u) of &’. Since {F :
U — '} is an fppf covering, {p(U, 3,v) — (U’, T, u)} is an element of Cove,ps(U’, T).
(ii) The morphism f is flat. We denote by (Uj,31) the fibered product
p(U,3) xw =) (Uj,%1) in &. By applying 9.5 to the projection (U, 31) — p(U, 3),
we obtain the Cartesian diagram (9.8.1). Since ¢ is the base change of f, ¢ is an
element of Covipps(U1,%1). O

The following lemma is a complement of 9.8 and will be used in the proof of 9.13
below.

LEMMA 9.9. — Let X be a k-scheme and (U',%) an object of &', (U,3) an object
of & and {p(U,3) — (U',%)} an element of Coveppe(U’,%). Then there exists an
object (U,3 x5 3) of & and two morphisms p1,p2 : (U,3 x5 3) — (U, 3) such that

MEMOIRES DE LA SMF 163



CHAPTER 9. CARTIER EQUIVALENCE 59

p(U,3 xx 3) = p(U,3) Xz p(U,3) and that p(p1) (resp. p(pz)) is the projection
p(U,3) xwz) p(U,3) — p(U,3) on the first (resp. second) component.

Proof. — By applying 9.5 to the projection p(U,3) x5 p(U,3) — p(U,3)
on the first component, we obtain an object (U,3 xg 3) of &£ and a mor-
phism p; : (U,3 x5 3) — (U,3) as in the proposition. The existence of py follows
from the fullness of p (9.3(Q)). O

We conclude Theorem 9.2 by a general result on topoi due to Oyama [32] which
we do not repeat the proof.

PROPOSITION 9.10 ([32] 4.2.1). — Let € be a site, 2 a site whose topology is defined
by a pretopology and u : € — 2 a functor. Assume that:

(1) u is fully faithful,
(ii) w is continuous and cocontinuous,
(iii) For every object V of 2, there exists a covering of V in & of the form
{u(U;) = V}ier where U; is an object of €.
Then the morphism of topoi g : € —  defined by g* = 4* and gy = tis (7.15) is an

equivalence of topoi.

9.11. — Let .7 be a sheaf of & (resp. %;pf), {7 %), 7,7} the descent data associated

to .7 (7.7) and {C*(F)(v,x), 7,0 (#)} the descent data associated to C?{/y (&) (resp.
CX ). tpopi(F))- Since p takes Cartesian morphisms to Cartesian morphisms (7.4), for
any object (U, %) of &, we have

(9.11.1) C*(F)w,z) = Tus(Fpu,z))

where 7y denotes the equivalence of topoi U,,, —> U,. For any morphism
f:(U1,%1) — (U, %) of &, we verify that

(9.11.2) Vr,c%(F) = Tk (Vo(f),7)-
We verify that, by definition
(9.11.3) C}k(/y(ﬁg/’n) =0sn (resp. C‘ﬂ;(/y,fppf(ﬁg/’n) = ﬁg,n).

The morphism Cx, s (resp. Cx/» p) is therefore underlying a morphism of
ringed topoi, which we denote also by

(9.11.4) Cx/o 1 (8,080) = (&, 08 ),
(9.11.5) (resp. Cx/y,fppf : (éfppf? Og.n) = (gf/ppb Og'n))-

Let .#’ be a quasi-coherent O ,-module of &'. By (9.11.1), ;}/y,(ﬁ’) is also
quasi-coherent. For any object (U,%) of &, we have an equality of fx -modules
of Ty gar (9.11.1)

(9.11.6) (Cxr (FNws) = Tpw.s):
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THEOREM 9.12 (cf. [32] 1.4.3 for n = 1). — Let X be a smooth scheme over k. The
inverse image and the direct image functors of Cx ;s induce equivalences of categories
quasi-inverse to each other (8.3)

(9.12.1) I (Gp ) 2 G (Op ).
The theorem follows from 8.9 and 9.13 below.

PROPOSITION 9.13. — Let X be a smooth k-scheme. The inverse image and the direct
image functors of the morphism Cx ;s g (9.11.5) induce equivalences of categories
quasi-inverse to each other:

(9.13.1) Gt (Osr.n) 2 Gt (Os,m).-

Proof. — We write simply C for Cx /o gpe- By 9.2, it suffices to show that the functors
C* and C, preserve quasi-coherent crystals. The assertion for C* follows from (9.11.1)
and (9.11.2).

Let .# be a quasi-coherent crystal of O¢ ,-modules of Efppf and (U’,%,u) an ob-
ject of &’. We first show that (Cy(%))w ) is quasi-coherent. The statement is
local, therefore we may assume that U = F ;}k(U ") satisifies the condition of 9.8,
i.e., U is affine and there exists an étale k-morphism U — Aﬁ. Then, by 9.8(i)
and 9.9, there exist objects (U,3) and (U,3 xg 3) of &, an element {f : p(U,3) —
(U, %)} of Covippe(U’,¥) and two morphisms pi,ps : (U,3 x<x 3) — (U, 3) such that
p(U,3 xx 3) = p(U,3) xw:z) p(U,3) and that p(p1) and p(p2) are the canonical
projections of p(U, 3) x ) p(U,3) (9.9). In particular, the morphism 3 xz 3 — 3
attached to p; (resp. p2) is the projection on the first (resp. second) component.

Since the adjunction morphism C* C, — id is an isomorphism (9.2), we have
(9.11.1)

(913.2) 7 ((Cs(F))pw,3)) = F(w,3) U ((Ca(F)) p(v,3x53)) = F(U,3x53)-

By 8.4, we consider .7y 3) (resp. #(,3x+3)) s a quasi-coherent 0’3, -module of Z,,,
(resp. (0(3x3), )-module of (Zx7Z),a,). Since .7 is a crystal, we have (&3 3),, )-lin-
ear isomorphisms

(9.13.3) p;,n(ﬂ(Uﬁ)) %2* 9(U,3x:3) ei*lpik,n(y(U,S))'

We define ¢ : p5(F(v,3)) — pi(Fw,3)) to be the composition of c,, and the inverse
of ¢,,. Thus, we obtain a effective descent datum (#(y 3, ) for the fppf covering
{fn : 3n — %n}. Therefore there exists a quasi-coherent Ox, -module .# of T,,;, a
canonical (€5, )-linear isomorphism

(9-13.4) falt) = Fws3)

and an exact sequence of U,

(9.13.5) 0— WU*(U*(/%)) — 5\(U’3) — g\(U,st?;)v

where .7y 3) and .# (3. 3) are now considered as sheaves of Uya;.
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On the other hand, since C,(.%) is a sheaf, there exists an exact sequence of U},
(7.14.1)

(9.13.6) 0= (Cu(F))wrm) = (Ca(F))pw,3) = (Ca(F))p(v.3x53)-

By (9.13.2), we obtain an u4(0g,)-linear isomorphism uy(.#) — (Ci(F))w 5
of U, .. In particular, (Cx(.#)) (v <) is quasi-coherent. Hence C,(.%) is quasi-coherent.

Let g : (U{,%1) — (U},%3) be a morphism of &’. We prove that the morphism
(8.4.1)

(9.13.7) g 9n(Cs(F)wy.30)) = Cu(F) w130

associated to Cy (%) is an isomorphism. Since the problem is Zariski local, we may
assume that U satisfies the condition of 9.8. By 9.8(ii), there exists a morphism 5 :
(U1,31) = (Uz,32) of &, an element {f; : p(U1,31) — (U1, %1)} of Coveppt(Ur,%1)
and an element {f2 : p(Usz, 32) — (U3, T2)} of Coveyps(Us, T2) such that the following
diagram is Cartesian

(9.13.8) p(U1,31) — (U1, %1)
p(h)J/ 1/9
p(Us, 35) —L= (U3, Ta).

By 9.9 and repeating the previous fppf descent argument, we have a canonical
isomorphism (9.13.4)

(9.13.9) 10 (Ca(F)wrzn) = P35

for ¢ = 1,2. Furthermore, since .# is a crystal, we have an isomorphism

(9.13.10) ch  hy(F(ws,32) = Fwi30)

In view of (9.11.2), (9.13.2), (9.13.8) and (9.13.9), the morphism

(9.13.11) finleg) + fn(9n(Cx(F)wy52))) = fin(Ca(F)wy50)

is identical to ¢; (9.13.10) and hence is an isomorphism. Since fi1, : 31, — T1,, is
faithfully flat, we deduce that c, is an isomorphism. The proposition follows. O

DEFINITION 9.14. — Let X be a smooth k-scheme. We call Cartier equivalence (mod-
ulo p™) the equivalence of categories (9.12.1)

(9.14.1) Cf)k(/y : SOﬂth(ﬁo@’,n) — %th(ﬁﬁm)'

The above equivalence depends only on X and is different from the Cartier trans-
form of Ogus-Vologodsky [31] which depends on a lifting of X’ to W5. We will compare
two constructions under the assumption that there exists a smooth lifting of X to W
in §12.

To simplify the notation, we write C* for C% X/ if there is no confusion.
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9.15. — The Cartier equivalence is compatible with localization with respect to an
open subscheme. More precisely, let U be an open subscheme of X. The category
EWU/S) (resp. £(U/S)) forms naturally a full subcategory of &(X/) (resp.
&(X /). Equipped with the Zariski topologies on both sides, the canonical functor
EU/S) > E(X/S) (resp. £(U/)S) — E(X/.Y)) is continuous and cocontinuous.
It induces a morphism of topoi

(9.15.1) ju:EULS) > EX)S)  (resp. j,, : EU)S) — E(X/)F))

such that the inverse image functor is given by resctricting a sheaf of & (X/S)
to &(U/S) (resp. &(X /7)) to £(U/)). The above morphisms fit into a commutative
diagram

~ Cys ~
(9.15.2) EU/S) LWy
Iy J/ l/jul
~ Cx/s S
&(x/) B(x')7).
Then we have a commutative diagram
C%/r
(9.15.3) C(Os(x) 7)) — C(Og(x)7)n)
it L Lji
C*

U/

C(Osiv)s)ym) — C(Osw)s)m)-

9.16. — In the remainder of this section, X denotes a smooth formal .#-scheme with
special fiber X. We set X' = X x», . (2.1) and we suppose that there exists an
-morphism F : X — X' which lifts the relative Frobenius morphism F , : X — X’
of X. We show that the Cartier equivalence C* (9.14.1) globalizes Shiho’s local con-
struction in § 6 defined by F'.

The morphism F' induces a morphism of &’ that we denote also by
(9.16.1) F:p(X,%X) = (X" %, Fx,) — (X', ¥,id)

Recall that (6.6) the morphism F induces a morphism of formal groupoids
’(/} . Qx i R:{/ above F'.

The following result explains the relation between the Cartier equivalence C* and
the functor ¢ induced by ¢ (5.6).
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PROPOSITION 9.17. — Keep the assumption of 9.16. The diagram (9.13):

(9.17.1) C(Osr.n) S ¢ (Ogn)

zt l/z
{ Ox: -modules } o { O%,-modules }7
with Ry -stratification with @),.-stratification

where the wvertical arrows are the equivalences of categories defined in 8.10, is 2-
commutative. That is, there exists a functorial isomorphism of Ox, -modules, depend-
ing on F

(9.17.2) nF Yy (M x %) = CF (M) (x %)
compatible with the Qx—stmtiﬁcations, for every crystal A of Og ,-modules of &

Proof. — Let .# be a crystal of Og ,-modules of & By (9.11.1), we have

(9.17.3) CH (M) (x,x) = Txs(My(x %))
Since . is a crystal, F' (9.16.1) induces a functorial isomorphism of & -modules
(9.17.4) e (Mx ) = T (B (M x0 20))) = CH(Al ) (x )

The composition Qx1 — Qx1' — X’ (9.1.1) identifies with the morphism

g:Qx1 — X' induced by F? : X2 — X2 (6.6.2). Then, it follows from the proof
of 6.6 that v induces a morphism of &’ that we denote also by

(9175) ’(/} : p(X» Q}f) - (leRx’)v

which fits into the following commutative diagrams

(9.17.6) p(X,Qx) —~ (X", Rx)  p(X,Qx) —— (X', Rx)
plq1) l/ J/q'l p(q2) l J/qlz
p(X, %) ——= (X', x') p(X, %) — = (X', %),

where q1,g2 (resp. q},g5) are the canonical projections of (X,Qx) to (X,X) (resp.
(X',Rx/) to (X', X")). Hence, 9 (9.17.5) induces an isomorphism
(9.17.7) WX*(Jz(//f(X/,Rx,))) - C*(//f)(X Qx):
Recall that the left vertical functor of (9.17.1) is given by .# > (#(x: x:),€’)
*

where ¢’ is induced by isomorphisms §5%, (#(x/ x)) — M (x',Ry) < (///(X/ x))-

By 5.6, we have
(9.17.8) E (M0 20),€") = (FF (M x0 2, Txcx(DE(E)))
On the other hand, the 0% -module associated to C*(.#) is C*(.#)x,x) and the

associated ), -stratification is induced by the isomorphisms g3, (C*(.Z)x,x)) —
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C*( M) (x,0x) — @i n(C*(A)(x,x))- The proposition follows in view of (9.17.6),
(9.17.2) and (9 17.7). O

9.18. — Keep the assumption of 9.16. Recall that the morphisms of formal
X-groupoids w’ : Ty — Rz (5.13.1) and A : Px — Qx (5.12.1) induce func-
tors

(9.18.1) o' { ﬁx/n—modules } N { ﬁ’xfn—modules }
" \yith Ry -stratification with & y/-stratification

(9.18.2) A { Ox,,-modules } N { Ox.,,-modules }
" lwith Qx—stratiﬁcation with Py-stratification

By 5.11, 5.17 and 8.10, they further induce functors
(9.18.3) p: 6 (Og ) — p-MICH™(X] /.,),
(9.18.4) v:6(0gn) — MIC™(X,/7,).
By (6.9.2), 6.10 and 9.17, the diagrams

(9.18.5) C(Opn) S C(Opn)

zt Lz
{ O -modules } L { Ox, -modules }

with Ry -stratification with @),.-stratification

Ik )\*
n

wn

{ Ox; -modules } on { 0%, -modules }
with &/ y/-stratification with Pg-stratification
? 2

p-MIC™ (X7, /.72)

MIC*™ (%X, /%),

where the functors %, ¢* and ®,, are induced by F', are commutative up to a func-
torial isomorphism of MIC%(%,,/.#,,). For every object .# of €(Cg ), we have a
functorial isomorphism

(9.18.6) F P (p( M) = v(C*(A)).

We see that the Cartier equivalence C* (9.14.1) is compatible with Shiho’s functor ®,,
(6.1.5).

In the remainder of this section, we will explain how to relate Shiho’s local con-
structions with respect to different liftings of Frobenius morphism using Cartier equiv-
alence.

Let F1,Fy : X — X' denote two liftings of the relative Frobenius morphism F
of X.
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LEMMA 9.19. — The morphisms Fy, F5 induce a morphism of &’

(9.19.1) P12 p(X,Qx) — (X', Rx).

Proof. — The proof is similar to that of 6.6. By the universal property of Rz, it
suffices to show that there exists a unique k-morphism g : Qx 1 — X’ which fits into
a commutative diagram

(9.19.2) Qzx1 — Qx
g x2
l(Fl,Fz)

b *A> x/Q-

The problem being local on X, we can assume that there exists an étale .-mor-
phism ¥ — A%, — Spf(W{Ty,...,T4}). We put t; the image of T; in Ox, & =
1®t; —t;®1, ¢, =7*(t;) € Ox and & = 1®1t, — ¢, ®1 for all 1 < i < d. Locally,
there exists sections a;, b; of Ox such that Fj*(t)) = t¥ + pa;, F5(t;) = t¥ + pb;. By a
similar calculation of (6.6.3), we have

(9193) (Fl,FQ z fp + Z ( >£k tk®1)p J +p(1®bk 7ak®1)

Since &’ =p- (%) in @), the assertion follows. O

9.20. — Keep the assumption of 9.19, we denote by « the composition

(9.20.1) o (X%, Fxp) = p(X,%) 22 5(X,Qx) Y2 (X', Ry
We set ¢1,q¢5 : (X',Rx) — (X',X’) the canonical morphisms of &’ and we have
¢ioa=F; (9.16.1).

Considering Ry as a formal Hopf Ox/-algebra of X,.., o induces a W-homomor-
phism of X,.,:
Equipped with the left (resp. right) @y -linear action on the source and the &-linear
action induced by Fj (resp. F») on the target, a is Ox/-linear.

Suppose that there exists an étale .-morphism X — &ép = Spf(W{T1,...,T4})
and we take again the notation of the proof of 9.19. In view of (9.19.3), the homo-
morphism ¢ is determined by

N OFE(E) — FE(
(9.20.3) a(%) _w V1<i<d
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~

9.21. — Let .# be a crystal of Og: ,-modules, M = M (x/ x) and €’ : G5", (M) —
31", (M) the associated Rz -stratification (8.10). Recall (9.17) that the morphisms
F; and F5 induce morphisms 91,9 : p(X,Qx) — (X', Rx/) of &' respectively. We
associate to (M, ') two different 0%, -modules with (), -stratification

(9-21.1) (Fitn (M), mx (WF n(€))) and  (F5, (M), mxs (95, (<))

Let ®;, (resp. ®3,) be Shiho’s functor induced by F; (resp. F:) (6.1.5). We
associate to .# two different objects of MIC™*(%,,/.7,,) (9.18.5)

(9.21.2) Py n(p(A)) and  @gn(u(A)),

whose underlying 0%, -modules are F}", (c#) and Fy, (M) respectively.
The morphism « gives a natural way to glue @1 ,,(u(A4)), @20 (u(A)).

ProproSITION 9.22. — Keep the assumption of 9.21. The morphism o« and the
Rox:-stratification €' induce an isomorphism of Ox, -modules with Qae -stratification.:

(9-22.1) ¥ (&) (B (M), Txa($5,(€)) = (B (M), mxa (B0 (€)),
such that ng, = np, o a*(e’) (9.17.2).

Proof. — We denote by ¢1,92 : (X,Qx) — (X,X) the canonical morphisms
of & by q¢i,¢5 : (X',Rx)) — (X',X’) the canonical morphisms of &’ and
by q;; : (X', Rx/(2)) — (X', Rx/) the morphism induced by Rx/(2) — X' B, g2
and the universal property of Rx for all 1 < ¢ < j <3 (cf. (4.11.1)).

Since F; = ¢j o a for i = 1,2, the isomorphism ¢’ : §5%, (M) — 3%, (M) induces
an isomorphism

(9.22.2) mxx (5 () : B (M) = FY L (M)
We write simply a*(g’) for mx4(&%(¢')). Then we have g, = np, o a®(¢’). It remains
to show that the a*(¢’) is compatible with the ¢),.-stratifications on both sides.

The compositions of morphisms

’

P1 P2

A %2 (F1,F2)

x? X X X’

(F2,F2)

U
p
xQ %xﬁ Tt

%/
are equal. We deduce that the compositions of morphisms of &’

(1) [ / l2 / /
p(X,Qx) Z p(X, %) —~ (X', Rer) —— (X', %)

p(X,Qx) —2= (X', Re) —= (X', %)

are equal. In view of the isomorphism (X', Rx/(2)) ~ (X', Rx/) X (x7 %) (X', Rx:) of &’
(4.10.1), we obtain a morphism of &”

(9.22.3) u: p(X,Qx) — (X', Ry/(2),
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such that aop(g1) = ¢j,0u and 92 = ¢4 0ou. Symmetrically, we construct a morphism
of &

(9.22.4) vip(X,Qx) — (X', Rx/(2)),
such that 1; = ¢j, 0v and @ o p(g2) = ¢53 © v. The compositions

%2 (e1,1,L2) %3 (F1,F3,F3) %3 Pis x72

%2 (e1,L2,2) %3 (F1,F1,F3) %3 Pis x72

are equal to (Fy, Fy) : X2 — X'2. By the universal property of Ry (3.5), we deduce
that ¢i5 0 u = gj5 o v = 112 (9.19), i.e., the compositions

0
(9.22.5) p(X,Qx) —= (X', Rx/(2)) —= (X', Rx)
are equal to ¢12. By (9.17.6), we have 1}1* (@7 (eM) =~ qF, (F* (M) for all i, =
1,2. By the cocycle condition ¢i% ,, (¢')0gs% ,,(¢') = @1, (¢'), we deduce a commutative
diagram:

T (A J);"(E,) T (%
(9-22.6) ¥ n (@55 (M) V3 (@50 (M))

!ﬁ,n(&f(s’))i l@fn(&ff('s'))

T~k ~T’"(€,) T (nrx

1 n (B3 (M) i n (@5 (M))-
That is the isomorphism a*(¢’) is compatible with the ¢),.-stratifications 7 x (Jé"n(s' )
and x4 (Y7, (€'))- O

COROLLARY 9.23. — Keep the assumption of 9.21. The isomorphism (9.22.1) induces
an isomorphism of MIC*(%X,,/.%,,) (9.21.2)

(9.23.1) 0F(E') : Do (1)) > By (0 ))
such that np, = np, o a*(e’) (9.18.6).
It follows from (9.18.5) and 9.22.

REMARK 9.24. — Given a lifting of the Frobenius morphism, Shiho’s functor
(6.1.4) applies to Ox: -modules with integrable p-connection. However, the isomor-
phism (9.23.1), which glues local constructions of Shiho, depends on the R x/-strati-
fication on the &% -module . x: x:.
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CHAPTER 10

CARTIER TRANSFORM OF OGUS-VOLOGODSKY

For the convenience of the reader, we shall review the original construction of the
Cartier transform of Ogus-Vologodsky [31]. In particular, we shall clarify some details,
especially in regard to sheaf of affine functions on a torsor.

In this section, X denotes a scheme. Starting from 10.8, we will suppose that X is
smooth over k.

10.1. — Let E a locally free Ox-module of finite type. We denote by S(E) (resp.
I'(E)) the symmetric algebra (resp. PD-algebra) of E over Ox ([23] I 4.2.2.6) and for
any integer n = 0, by S"(E) (resp. I',(F)) its homogeneous part of degree n. There
exists a unique homomorphism of Ox-algebras

(10.1.1) 0:S(F) - S(F) ®ey S(E),
such that for every local section e of E, we have §(e) = 1®e + e® 1. This homomor-
phisms makes S(F) into a Hopf commutative €x-algebra.

Let I (resp. J) be the ideal @,>1S"(E) of S(E) (resp. PD-ideal @®,>1T'(F)
of I'(E)). We denote by §(E) (resp. f(E)) the completion of S(E) (resp. I'(E)) with
respect to the filtration {I"},>; (resp. PD-filtration {J[™}, ;).

Let M be a f(E)—module. We say that M is quasi-nilpotent if for any open sub-
scheme U of X and any e € M (U), there exists a Zariski covering {U; — U};cr and a
family of integers {V; };cr such that for each i € I, el is annihilated by the ideal JVil.

For any integer n > 0, we say that M is m’lpotentz of level < n if E is annihilated
by Jn+1],

10.2. — Weset Q = SHlom g, (E, Ox). The pairing EQe,  — Ox induces a canonical
morphism
(10.2.1) I (E) ®ey S™T(Q) — S™(Q)

which is perfect if m = 0 ([5] A.10). If we equip I'(E) with the topology defined
by the PD-filtration {J["} and S(Q) with the discrete topology, the &'x-linear mor-
phism I'(E) ®g, S(Q) — S(Q) is continuous. It extends by continuity to an action
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of I'(E) on S(Q):
(10.2.2) L(E) ®cy S(Q) — S(Q).

We have an increasing exhaustive filtration of I'(E)-submodules {D<n S" (V) }nx0
of S(€2) such that (P,, ,, S™(£2) is nilpotent of level < n. Then S(Q2) is quasi-nilpotent.
The above morphism induces an O'x-linear isomorphism

(10.2.3) [(E) =lim( @ Tw(E

n m<n

~ hm SHom g, (—D S™(Q), Ox)

m<n

= C’G}/ﬂm/ﬁx( ( ),ﬁx).

We equip Homg, (S(R2), Ox) with the Ox-algebra structure induced by the Hopf
algebra S(Q) (4.4). The above isomorphism is an isomorphism of €x-algebras.

10.3. — Let f : Y — X be a morphism of schemes. We put Ey = f*(E) and
Qy = f*(Q). By the universal property of the symmetric algebra, we have a canonical
isomorphism of Oy -algebras

(10.3.1) I (Sex () = Sey (Qy).

Since Sg, () is a direct sum of locally free Ox-modules of finite type, by duality
(10.2.3), we deduce a canonical isomorphism of &y -algebras

(10.3.2) Lo, (By) ~ Hom g, (Seoy (Qy), Oy )
~ f*(Home, (Sox (), Ox))
.f (Fﬁx( ))

10.4. — Let .Z be an E-torsor of X,,,. An affine function on £ is a morphism
f % — Ox of X,,, satistying the following equivalent conditions ([2] I1.4.7):

(i) For every open subscheme U of X and every s € .Z(U), the morphism:
(10.4.1) EU)—- o), t— f(s+1t)— f(s)

is Ox (U)-linear.
(ii) There exists a section wy € Q(X), called the linear term of f, such that for
every open subscheme U of X and all se Z(U) and ¢t € E(U), we have

(10.4.2) fls+1t) = f(s) +wys(t).

The condition (i) is clearly local for the Zariski topology on X. We denote by .# the
subsheaf of Sflemy, (£, 0x) consisting of affine functions on .#; in other words, for
any open subscheme U of X, .% (U) is the set of affine functions on % = It is naturally
endowed with an &x-module structure. We call .% the sheaf of affine functions on Z.
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We have a canonical Ox-linear morphism ¢ : 0x — % whose image consists of
constant functions. The “linear term” defines an Ox-linear morphism w : F — Q.
One verifies that the sequence

(10.4.3) 0-0x5>F 500
is exact. By ([23] T 4.3.1.7), the above sequence induces, for any integer n > 1, an
exact sequence:
(10.4.4) 0—S"(F) > S"(F) - S"(Q) — 0.
The Ox-modules (S"(.%))n>0 form a inductive system. We denote its inductive limit
by
(10.4.5) o = lim 8" (%),
n=0

which is naturally endowed with a structure of an O'x-algebra. For any integer n > 0,
the canonical morphism S"(.#) — & is injective. By letting N, (&) = S" (%) for all
n = 0, we obtain an increasing exhaustive filtration of 7.

There exists a unique homomorphism of O'x-algebras

(10.4.6) pid —S(0) o, A,

such that for every local section m of %, we have u(m) = 1 ® m + w(m) ® 1. For
n = 0, we have

(10.4.7) u(Na()) = @ S'(Q) ®N;().
i+j=n
By construction, the following diagram is commutative

m

(10.4.8) of S(Q) Qpy

| o

S(92) ®oy 7 P S(Q) @0y S(Q) Boy .

10.5. — By (10.2.3) and (10.4.6), we have an Ox-linear morphism:
(10.5.1) L(E)Qo, & — o
u®a — (4®id)(u(a)).

By (10.4.8), the above morphism makes 7 into a f(E)—module. The action of F
on % is given by w (10.4.3) and duality. By (10.4.7), we see that 7 is quasi-nilpotent
and that for any n > 0, N,,(#) is a I'(F)-submodule of &7 and is nilpotent of level < n.

The canonical S(Q2)-linear isomorphism Qé(g) /6% = Q®py S(Q) induces an iso-
morphism
(10.5.2) 0oy — Aoy .
We denote the universal x-derivation by

(10.5.3) dgg c ol — Q@ﬁx .
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For any local section m of .7, we have d(m) = w(m) ® 1.

10.6. — Let s € Z(X) and let p; : & — Ox be the associated splitting of the exact
sequence (10.4.3). The morphism Q — % deduced from id —c o ps; extends to an
isomorphism of Ox-algebras

(10.6.1) ¥ S(Q) = o,

which is compatible with the filtrations (Dg; <, S*(92)), and (N, (%)), The diagram
(10.1.1)

(10.6.2) S(Q) o

id @y
S(©) @ox S() — S(2) ®ox &
is commutative. Hence the isomorphism v is compatible with the f‘(E)—module struc-

tures (10.2).

10.7. — Let f : Y — X be a morphism of schemes and . an E-torsor of X,,..
For Ox-modules, we will use the notation f~! to denote the inverse image in the
sense of abelian sheaves and will keep the notation f* for the inverse image in the
sense of modules. The affine inverse image of £ under f, denoted by f* (%), is
the f*(E)-torsor of Y,,, deduced from the f~!(E)-torsor f*(.#) by extending its
structural group by the canonical homomorphism f~1(E) — f*(E),

(10.7.1) fH(2) = £*(2) AP fH(B);
in other words, the quotient of f*(.%) x f*(E) by the diagonal action of f~1(E) ([17]

IT1 1.4.6).

We denote by % the sheaf of affine functions on .# (10.4) and by .#* the sheaf of
affine functions on f(.%). Let | : £ — Ox be an affine morphism, w € Q(X) its lin-
ear term and v’ = f*(w) € f*(Q)(Y). Endowing Oy with the structure of f*(E)-ob-
ject defined by w’ (2] I1.4.8), there exists a unique f*(FE)-equivariant morphism I’ :
fT (&) — Oy that fits into the commutative diagram

l

(10.7.2) (L) ——= f1(Ox)
[H(2) oy,

where the vertical arrows are the canonical morphisms ([17] III 1.3.6). The morphism [’
is therefore affine, with linear term w’. The resulting correspondence [ — I’ induces
an Ox-linear morphism

(10.7.3) Nt T — fo(FT)
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Its adjoint morphism is an Oy-linear isomorphism ([2] 11.4.13.4)

(10.7.4) A f5ZF) > FT
which fits into a commutative diagram
(10.7.5) 0——= Oy —— f*(F) —— f*(Q) ——0
N
0 Oy Ft f*(Q) ——o.

In particular, the isomorphism A is compatible with actions of f*(fﬁx (E)) =~
Py (£*(B)) (10.3.2).

10.8. — In the remainder of this section, X denotes a smooth scheme over k. We de-
note by Crys(X/k) the crystalline site of X over k equipped with the PD-ideal 0,
by (X/k)ays the crystalline topos of X over k and by Ox/, the structure ring
of (X /k)crys defined for every object (U,T') of Crys(X/k), by (U,T) — I'(T, Or).

Let E be a crystal of locally free 0'x /,-modules of finite type on Crys(X /k) and &
an E-torsor of (X /k)crys. For any object (U, T') of Crys(X /k), L (y,r) is an Ey,r)-tor-
sor of T, ([4] 111 3.5.1). We define .7y, 1y to be the sheaf of affine functions on %y 7y
of Tar (10.4).

Let g : (U1,T1) — (Us,T5>) be a morphism of Crys(X/k) and 3, : |U1|(= |T1]) —
|Uz|(= |T3|) the morphism of underlying topological spaces. The transition morphism
of . associated to g ([5] 5.1)

(10.8.1) ¢g Iy (Lusmy) = L)

is 5, ' (E,,1y))-equivariant. By ([17] III 1.4.6(iii)), we obtain an E(y, r,)-equivariant
isomorphism

(10.8.2) 15 (L w,.m)) = Loy 1)
By (10.7.4), we deduce an Orp,-linear isomorphism ([2] IT 4.14.2)
(10.8.3) Vg :g*(g(Uz,Tz)) — y(Uth)'

In view of the compatibility conditions of ¢, (10.8.1) and ([2] II 4.15), the data
{Fw,r),7g} satisfy the compatibility conditions of ([S] 5.1). Hence, they define a
crystal of O/ -modules that we denote by .7 and call the crystal of affine functions
on ZL.

We denote by </ the crystal of Oy ;-algebras li—1>nn> o S"(.Z). It admits a increasing
filtration of crystals of Ox,-modules N, (&) = S"(F).

10.9. — Let (U,T,d) be an object of Crys(X/k) and Jr the PD-ideal associated to
the closed immersion i : U — T. For any local section a of Jr, we have a? = 0 and
hence an isomorphism U — T'. We denote by @7, the composition (2.2)

!
(10.9.1) orp: T—U —— X
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The morphism ¢y, is equal to the relative Frobenius morphism Fy .
If g: (U1, Th) — (Uz,Tz) is a morphism of Crys(X /k), then @7,k 09 = o1, k-

Let M’ be an Ox/-module. There exists a canonical isomorphism
(10.9.2) Cq :g*((p}’iz/k(M’)) = (p}‘il/k(M’).

The data {goi/k(M’),Eg} defines a crystal of Ox /-modules that we denote by .Z.
Then the Ox-module with integrable connection associated to .# ([5] 6.8) is F;/k (M)
and the Frobenius descent connection V¢u, (6.3.1) ([31] 1.1).

10.10. — We denote by Crys(X/W;) the crystalline site of X over Wy equipped
with the PD-structure o (5.7). Let (U, T, 8) be an object of Crys(X/W3) and T the
reduction modulo p of T'. Since § and 7, are compatible ([5] 3.16), (U,T’,d) induces
an object (U, T,§) of Crys(X/k).

Let Tx i (resp. Tx//;) be the &x-dual of Qk/k (resp. Q}X,/k) Suppose we are given
a smooth lifting X’ of X’ /k over Wy. Let (U, T, 6) be an object of Crys(X/W3) such
that T is flat over Wa, T the reduction modulo p of T and V an open subscheme
of T. Then (U, T) is an object of Crys(X/k). We denote by V the open subscheme
of T associated to V and by %% o (V) the set of Wo-morphisms V — X' which

make the following diagram commute (10.9)

(10.10.1) V——V
|
X ——X".
The functor V +— 2%, . (V) defines a sheaf for the Zariski topology on T'. The sheaf

f)?,’w/k is a torsor under the Or-module SHom 4, (f:,"i/k(ﬂﬁ(,/k),pﬁ’f) = @7 (Txok)-

ProposITION 10.11 ([31] Thm. 1.1). — Suppose we are given a smooth lifting X' of X'
over Wy. Let Tx 1)), be the crystal of Ox j,-modules associated to the Ox:-module T x. .
(10.9). Then, there exists a unique Tx p-torsor Lz, of (X /k)erys satisfying following
conditions:

(i) For every object (U,T) of Crys(X /k) admitting a flat lifting (U,T) in Crys(X/ W),
the abelian sheaf $~,’(U’T) of Tyar 18 the sheaf L5, (10.10).

YPT/k

(ii) For every morphism g : (U, T1) — (Us, T3) of flat objects in Crys(X/W3) and

any lifting F:Ty—>X'e L5 o (T), the transition morphism
L1
Cq t Jg (f)?,’(UQ,TQ)) — XY’,(Ul,Tl) satisfies

(10.11.1) g (F)) =Fog: Ty — X'
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10.12. — We denote by 9}7, the crystal of affine functions on %%, and by /%, the
quasi-coherent crystal of Ox -algebras associated to F3, (10.8). We put Az, =

%§,7(X,X). There exists an integrable connection V4 on ¢#3,. By (10.3.2) and 10.5,

% is a quasi-nilpotent F'§ Ik (T(T x//))-module. The p-curvature
Vi Az — Az ox F;;/k(Qﬁ(’/k)
of V 4 is equal to the universal Ox-derivation (10.5.3) (cf. [31] Prop. 1.5)
d: ﬂj\{/ - chg/ ®ﬁx F;/k(gﬁ(’/k)

~

10.13. — A Higgs field (5.1) on an Ox-module E relative to k is equivalent to an
S(T x)-module structure on E, which extends its &'x-module structure (cf. [31] 5.1).
Let Ix be the ideal ®p>0S™(Tx k) of S(Tx ;). For any integer n > 0, we say that
a Higgs module E over X relative to k is nilpotent of level < n, if E is annihilated
by I?;’l as an S(Tx ;)-module.

We call PD-Higgs module on X relative to k a f‘(TX/k)—module E, and we say that
the structure morphism 1) : f(TX/k) — SHom g, (E,E) is the PD-Higgs field on E.
For any local section & of f‘(TX/k), we set e = ¥(§).

Let n be an integer > 1. We denote by HIG., (X /k) the category of f‘(TX/k)-modules
and by HIGS" (X /k) (vesp. HIGZ (X /k)) the full subcategory of HIG., (X /k) consisting
of quasi-nilpotent objects (resp. nilpotent objects of level < n) (10.1).

Since S"(Tx /) ~ I'"(Tx ;) for all 0 < n < p — 1, a nilpotent Higgs module of
level < p — 1 induces naturally a nilpotent PD-Higgs module of level < p — 1.

10.14. — Let (Ey,%1) and (B2, 12) be two objects of HIGT" (X /k) and 0 a local section
of Tx /. We define a PD-Higgs field ¥ on E; ®e, E2 by ([31] 2.7.1)

(10.14.1) Yot = Y, P1,00 @y o0
i+j=n
Let m,n be two integers, (E1,%1) an object of HIG] (X /k) and (Ez,2) an object
of HIGY' (X /k). There exists a unique PD-Higgs field 1 on ¢Hem ¢, (E1, E2) defined,
for every local sections h of ¢Hem s, (E1, E2) and 0 of Tx by (cf. [31] page 31)

(10.14.2) Yom(h) = Do (=)o o ohoty oy VI=1.
itj=l

10.15. — We denote by Dy the ring of PD-differential operators on X relative to k
([5], §4). Let 0 be a local section of T x ;, considered as a derivation of Ox over k and
hence as a PD-differential operator of order < 1. The pth iterate 0 of ¢ is again a
derivation of Ox over k ([25] 5.0.2, [5] 4.5). We denote by 0” the pth power of 0in Dx /4,
which is an operator of order < p. The p-curvature morphism ¢ : F'%(Tx /) — Dx i
defined by F(0) — 0 — (P), induces an isomorphism of &'x:-algebras ([6] 2.2.3; [31]
Thm. 2.1)

(10.15.1) S(Tx k) = Fx ks (Zx /i)-
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The above morphism makes Fx 4 (Dx /i) into an Azumaya algebra over S(Tx/ ;) of
rank p??, where d is the dimension of X over k.

10.16. — We denote by D}(/k the tensor product

(10.16.1) Dx/k ®S(TX,/k)f(TX//k)

via the morphism S(Tx//x) — Fx/ks(Dx/r) induced by the p-curvature morphism
(10.15.1). To give a left D}/k—module is equivalent to give an Ox-module M with
integrable connection V and a homomorphism

(10.16.2) ¥ D(Txip) = Fxjrs(Endoy (M, V)

which extends the Higgs field S(Tx//x) — Fx k«(Endoy (M, V)) given by the p-cur-
vature of V (10.15.1) (cf. [31] page 32).

10.17. — There exists an isomorphism F;’;/k(f‘(TX//k)) = f‘(F;/k(TX,/k)) (10.3.2).
Let M be a left D}/k—module and n an integer > 0. We say that M is quasi-nilpotent
(resp. nilpotent of level < n) if M is quasi-nilpotent (resp. nilpotent of level < n) as
a T(F} , (Txk))-module (10.1).

We denote by MIC, (X /k) the category of left D}/k—modules and by MICZ" (X /k)
(resp. MIC’(X/k)) the full subcategory of MIC, (X /k) consisting of quasi-nilpotent
objects (resp. nilpotent objects of level < n).

Let (M,V) be an Ox-module with integrable connection whose p-curvature is
nilpotent of level < p—1 ([25] 5.6). Since S" (T x//;) ~ I'n(Tx//;) forall0 <n < p—1,
(M, V) induces naturally an object of MICg_l(X/k).

10.18. — Let (M1, Vy,%1) and (Ma, V2,v2) be two objects of MICS"(X /k). There
exists a canonical integrable connection V on M ®¢, M2 (|25] 1.1.1). The morphisms
11 and 1y induce an action ¥ of F;’;/k(f(TX//k)) on My ®egy Ms as in (10.14.1). Then
we obtain an object (M1 ®g, M2,V,v) of MICT" (X /k).

Let m,n be two integers and (M;,V1,91) an object of MICT'(X/k) and
(Mg, V2,12) an object of MICT(X/k). There exists an integrable connection V
on the Ox-module ¢Hom s, (My, My) defined, for every local sections ¢ of T, and

h of &Hem g, (My, My) by ([25] 1.1.2)
(10.18.1) Va(h) = Vgﬁ oh—ho Vlﬁ.

The morphisms 1), and 9, induce an action of f(TX,/k) on Fx s (Hem g, (M1, Mz))
defined by the same formula as (10.14.2). These data make cHom,, (M, M3) into an
object of MICT ™" (X /k) ([31] 2.1).

10.19. — By 10.12, the Ox-algebra ¢#3, (10.12) is equipped with a quasi-

nilpotent left D} /k-module structure. Moreover, we have an exhaustive filtration
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{Nn(Az:) nz0 of left D}/k—submodules of A
level <n (10.8). We define (¢Z5,)" to be
(10.19.1) (Az)" = Homeo, (HAz, Ox) ~lim Jlomg, (Nn(Az1), Ox)-
n=0
By 10.17 and 10.18, we see that (c#%,)" is an object of MIC,, (X /k).
The involution morphism Ty, — Tx/, defined by x — —z, induces a homomor-
phism

3 such that Nn(Q%y(,) is nilpotent of

THEOREM 10.20 ([31] 2.8). — Suppose we are given a smooth lifting X' of X' over Ws.
(i) The left D}/k—module (Az)" is a splitting module for the Azumaya algebra

FX/k*(D:)Y(/k) over f(TX’/k)

(ii) The functors (10.19.2)
(10.20.1)  Cg, : MIC,(X/k) = HIG,(X'/k) E — L*(WD}M(((%%)V,E))
(10.202)  C3l: HIG, (X'/K) = MIC,(X/k) B (Az)’ g, ) ()
are equivalences of categories quasi-inverse to each other. Furthermore, they induce
equivalences of tensor categories between MICT" (X /k) and HIGS"(X'/k) (10.14),
10.18.

(iii) Let (E,V,v) be an object of MIC,(X/k) and (E',0') = C4/(E,V,¢). A

lifting F of the relative Frobenius morphism Fx . induces a natural isomorphism

A~

of F)’?/k(F(TX//k))-modules
(10.20.3) N s (B, ) S Ff (B, ~0).
We call C%, (resp. C};) Cartier transform (resp. inverse Cartier transform).

THEOREM 10.21 ([31] 2.17). — Suppose we are given a smooth lifting X' of X'
over Wo. Let (M',0") be a nilpotent Higgs module on X'/k of level £ < p (10.13)
and (M,V) = C; (M',8'). Then, the lifting X' induces an isomorphism in the de-
rived category D(Ox)

(10.21.1) Tep—t(M' ®c,, Uy i) = Fx s (T<p—e(M Q65 Qx 1)),

where M' ®¢ ., Q%,/k is the Dolbeault complex of (M',0"), M Q¢ Q;(/k 18 the de
Rham complex of (M,V) and 7-. denotes the truncation of a complez.

We will give a partial generalization of this result for certain p™-torsion crystals
(cf. 14.1, 14.19).
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CHAPTER 11

PRELUDE ON RINGS OF DIFFERENTIAL OPERATORS

The purpose of this section is to review the description of crystals of Oyama site
in term of modules of rings of differential rings introduced in § 10 following Oyama.
It serves as a preparation for Section 12.

In this section, X denotes a smooth scheme over k. From 11.11 on, suppose we are
given a smooth formal .-scheme X with special fiber X.

11.1. — Let n > 1 be an integer. We denote by Px (resp. P%) the PD-envelope (resp.
the n'® PD-neighborhood) of the diagonal immersion A : X — X? with respect to the
zero PD-ideal of k ([5] 3.31). We put (Px = Op, and Px = Opp and we consider
them as sheaves of X,.;. By 5.10, Px is equipped with a Hopf 0x-algebra structure
(6, m,0) (4.2).

In the first part of this section, we study the Ox-algebra (Px)V (4.4) of hyper
PD-differential operators of X relative to k.

Assume that there exists an étale k-morphism X — A¢ = Spec(k[T1, ..., Ty]). We
set t; the image of T; in Ox and §; = 1 ®t; —t; ® 1. We consider the ;’s as sections
of Px. Regarding Px as a left (resp. right) x-algebra, we have an isomorphism
of PD-Ox-algebras ([4] 1 4.5.3)

(1111) ﬁx<.’]31,...,xd>; @X,
where z; is sent to &;. The homomorphism of PD-algebras 6 : Px — Px Qey Px
([4] T1.7.1) sends &; to & ®1 4+ 1®¢;. For any o € N¢, we set £l = Hfi[o”]. Then we
deduce that
(11.1.2) s(eledy = Z ¢lBl @ gla=h],

BeN? B<a
The left (resp. right) &x-module P% is free with a basis {¢[*] |a| < n} ([4] T 4.5.3).
11.2. — Let U be a open subscheme of X2 such that A(X) = U and that X — U is a
closed immersion. The canonical morphism Px — X2 factors through an affine mor-
phism Px — U. We denote by Z the scheme theoretic image of Px — U ([22] 6.10.1

and 6.10.5). Note that the morphisms X — Px and Px — Z induce isomorphisms
between the underlying topological spaces. Hence we regard &z as an Ox-bialgebra
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of X,.r. We obtain an injective homomorphism of J-bialgbras 07z — Px and we
consider 07 as a subalgebra of Px.

LEMMA 11.3. — The scheme Z defined in 11.2 is independent of the choice of U up
to canonical isomorphisms.

Proof. — Let U; and U, be two open subscheme of X2 such that A(X) < U; and
that X — U; is a closed immersion ¢ = 1,2 and Z; (resp. Z») the scheme theoretic
image of Px in U; (resp. Uy). We can suppose that U; < Us. The image of |Z;| and
|Px| in |Uy| (resp. |Usz|) are equal. Then the composition Zy — U; — Us is a closed
immersion. By (|22] 6.10.3), we deduce a canonical isomorphism Z; — Zs. O

LEMMA 11.4. — Assume that X is separated and that there exists an étale k-mor-
phism X — Ag.

(i) The left (resp. right) Ox-module Oy is free with a basis {¢l*),a € {0,1,...,p — 1}%}
(11.1.1).

(ii) The Oz-module Px is free with a basis {£P1], T e N4},

Proof. — (i) Tt is clear that ¢ contains ¢ for all a € {0,...,p — 1}4. It suffices
to show that ¢y is contained in the Ox-submodule of Px generated by {£[*,
aef{0,1,...,p—1}4}.

The question being local, we suppose that X is quasi-compact. Let J be the ideal
sheaf associated to the diagonal closed immersion X — X? and w : Px — X2 the
canonical morphism. By 11.3, we consider Z as the scheme theoretic image of w.
The ideal J being of finite type, we suppose that J is generated by m elements

T1,.., Ty of J(X?) for some integer m > d. Since Op, is a PD-algebra, the im-
age of z¥,... 2P in w,(Op,) are zero. Put N = (p — 1)m. Then the image of the

ideal JN*! in @, (Op, ) is zero, i.e., the morphism @ factors through the N*! order in-
finitesimal neighborhood Yy = Spec(&x2/JN*1) of the diagonal immersion X — X2.
Then we obtain a homomorphism

(11.4.1) Oy, — Px,

whose image is 0z. Recall ([5] 2.2) that, the left (resp. right) &x-module Oy, is
free with a basis {¢!,|I| < N}. For any element I = (i1,...,iq) € N, if one of the
components 3, is > p, then the image of &l in Py is zero. Then the assertion follows.

(ii) The assertion follows from (i) and the local description of Px (11.1.1). O

11.5. — The p-curvature morphism ¢’ : S(Tx//,) — Fx ks (Dx/)) induces an isomor-
phism between S(Tx/,) and the center Zx , of Dx/; (10.15.1). It makes D, into
an S(T x//,)-module of finite type. Let Ix: be the ideal ®y,>1 S™ (T x//x) of S(Tx//x).-

We denote by ¥ the two-side ideal of Dy /i generated by ¢(Ix/) and by D x/k the
completion of D, with respect to the filtration {F " V1

m=1
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The completion ﬁX/k is equal to the (Ix/)-adic completion for the S(T x//,)-mod-
ule Dx ;. Then we obtain an isomorphism of §(TX//k)—algebras

(11.5.2) g(TX'/k) ®s(T s ) Dx/k — f)X/lc~

11.6. — Recall that Dy, is defined as li_n)ln>1(f/3?()v, where (Py)" = Hemg, (P, Ox).
Then we have a canonical homomorphism of &x-algebras:

(11.6.1) Dx/x — (Px)"
For any integer n > 0 and any open subscheme U of X, we define
(11.6.2) F"(Px)(U) = {ae Px(U)ula) =0 Yue F"TH(U)}.

Then F"(Px) is a left Ox-submodule of Px. We set (F"(Px))" = Hom g, (F"(Px),
Ox).

11.7. — Suppose that there exists an étale k-morphism X — A¢ = Spec(k[t1,...,t4])-

Let t; be the image of T; in Ox and 0; € Tx (X) the dual of dt; that we consider
?:1 é‘;j for
all I = (iy,...,iq) € N% Any local section of Dx/r can be written as a finite sum

> ardl. The p-curvature morphism ¢’ sends J; to ¢¥ and the ideal ¥ is generated

as a PD-differential operator. For 4,7, 0; and d; commute. We set 07 = [|

by {07,...,04} over Dx/;. Then, any local section of ]3X/k can be written as an
infinite sum:

(11.7.1) Yl ard'  withas e Ox.
IeNd

Since ¢/(0"%) = 0P8 for B € N?, the above section can be rewritten as

(11.7.2) > bos0% - (") with by € Ox.
a€e{0,...,p—1}4,eNd

For any I,J € N%, the image of ¢ in (Px)¥ (11.6.1) satisfies o/ (¢[71) = &7 ;.

LEMMA 11.8. — (i) For any n = 0, the sheaf F"(Px) is an Oz-submodule of Px
(11.2).

(ii) With the assumption and notation of 11.4, F"(Px) is a free Oz-module with
basis {€PT]|I] < n}.

Proof. — (i) The question being local, we take again the assumption of 11.4. Since
the ideal ¥ is generated by {o%,...,d%}, a local section a = Y., byl of Py is
annihilated by ¥ if and only if by = 0 for all I € N¢ — {0,...,p — 1}¢. By 11.4(i),
FO(Px) is equal to the subsheaf €7 of Px. Then the assertion follows.

(ii) The ideal F" T is generated by the set of PD-differential operators {oPl, 1] =
n + 1} over Dx ;. Then the assertion follows from 11.4(ii) and the duality between
o7 and €M1, O
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11.9. — For any n > 0, since F"( Py ) is locally a direct summand of 2, the canon-
ical morphism (Px)¥ — (F"(Px))" is surjective. By (11.1.2), 11.4(i) and 11.8(ii),
the homomorphism 6 : Px — Px Ry Lx (11.1) sends F*(PLx) to F*(Px) ey
F"(Px). In view of (4.4), the Ox-algebra (Px )" induces an Ox-algebra structure

on (F"(Px))".

PRrROPOSITION 11.10 (Berthelot W). — (i) For any integer n > 1, the homomor-

phism (11.6.1) induces a canonical isomorphism of Ox-algebras DX/k/p%nJrl —

(F"(Px))"-

(if) The homomorphism (11.6.1) induces a canonical isomorphism of Ox -algebras
Dy — (Px)".

Proof. — (i) Since G acts trivially on F*"(Px), we obtain a homomor-
phism Dx/k/&/vn+1 — (F"(Px))". In view of the local description of """
and of F"(Px) (11.8(ii)), this homomorphism is an isomorphism.

(ii) We have a canonical isomorphism (Px)" = Hem g, (lim _ F*(Px), Ox) ~
lim(F"(¢Px))". Then the assertion follows from (i). O

11.11. — In the remainder of this section, suppose that there exists a smooth formal
-scheme X with special fiber X. We put (Rx 1 = Rzx/pRx and Qy ; = Qs /POy
(4.9). We review the Oyama’s description of f‘(T x/k), D% i, in terms of rings of dif-
ferential operators associated to Hopf algebras J2x 1, Qs 1

Recall that the left and the right @'x-algebra structures of JRx ; are equal (4.9).
We denote by ¢1,¢2 : @x,1 — X the canonical morphisms. Suppose that there exists
an étale .-morphism X — &dy = Spf(W{T1,...,T4}). We set t; the image of T;
in O and §; = 1®t; — t; ® 1. We take again the notation of 4.14 and of 4.15 and
we denote by (; the element % of JRx 1 and by n; the element % of Qx,l' We have
isomorphisms of Ox-algebras (4.14), 4.15

(11.11.1) Oxlz1,..., x4l = Rz 1, i =
(11.11.2)
ﬁX[xlr"7xday17'"ayd]/(m11)7"'7xs)L)qj*(Qx71)7 xi'_)é-ia Yi =15 .7:172

1. We learn the proof of a local version of (ii) from a talk note given by Berthelot on Cartier
transform.
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By 4.16, we have the following description of the Hopf algebra structures on Ry ;
and Q) ([32] 1.2.9)

(11.11.3)
§: Rx1— Rx1®ox Rx1 G 10G+HGR1
o: Rx1— Raxa CGi— —G
T Rx1— Ox G—0
9: Q%,l - Qx,l ®ox Qae71 §Ei—1®6G+&6®1
— — | y —a
n = 1®@mn; + Z?:i jgz()pj;jggg &7 +n®l
o: Qae,1 - QaeJ &> =&y M > —
W:ng—’ﬁX §&—0,m,—0

ProPOSITION 11.12 ([32] 1.2.12). — The Hopf Ox-algebra Rx 1 is canonically iso-
morphism to S(Qﬁf/k) (10.1) and the Ox-algebra (Rx1)” (4.4) is canonically iso-

morphic to f‘(TX/k) (10.1).

11.13. — In the following, we study the Ox-algebra ({), ;)" Suppose first that there
exists an .-morphism F' : X — X’ which lifts the relative Frobenius morphism F
of X. We denote by 9 (resp. Z) the fiber product of F? : X2 — X2 and Ry — X2
(resp. the diagonal immersion X’ — X'2) and by S the fiber product of Fxp: X — X'
and Ryx/1 — X' (4.9). The morphism Fy, : X — X’ and the diagonal immersion
A : X — ¥? induce a closed immersion X < Z. We have a commutative diagram:

(11.13.1) S Y Rxia
NN
0 Dy Ra
|
X Z X'
NN
X2 F? X7,

where Y = 9); is equal to Rx/1 X x/ Z and the left square is Cartesian.

Let 4 be an open formal subscheme of X2 such that diagonal immersion X — X2
factors through a closed immersion X — {f and put ' = U x o ,.7. Let .& (resp. .&#’)
be the ideal associated to the diagonal immersion X — il (resp. X’ — ). For any
local section x of ., we have zP € .#'0y. Since Z is defined by .#'0y and X is
reduced, the closed immersion X < Z induces an isomorphism X —» Z. Then, the
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closed immersion ¥ — Y factors through S — Y. By the universal property of Qx
(3.5), we deduce an X2-morphism

(11.13.2) v:Y — Qx.
The composition Qx — %2 £ %2 induces a morphism of formal groupoids above F’
(6.6.1):

By (11.13.1) and the universal property of Ry (3.5), we deduce that the composition
Yov:% — Qx — Ry is the canonical morphism

(11.13.4) 9 = Ry xx2 X2 — Ry,
11.14. — Keep the assumption and notation of 11.13. The morphism v (11.13.2)
induces a morphism S — Qx,; which makes the following diagram commutes

%1

(11.14.1) S Qx,1 Ry 1
X X'

N

X% ——— X",

Let g be the canonical morphism S — X. Since Ry/1 — X' is affine, we have an
isomorphism X/k(ﬁ/x' 1) = g+(0s) (|22] 9.3.2). Then the morphism S — Qx 1
induces an Ox-bilinear homomorphism

With the assumption and notation of 11.11, v sends &; to 0 and 7; to F;/k( 1) ([32]
1.2.14). Hence, v is independent of the choice of the lifting F': X — X’ of Fx,, and
can be defined for a general smooth formal .¥-scheme X even if the relative Frobenius
morphism cannot be lifted over .&.

By (11.11.3), v is compatible with Hopf &'x-algebras structures. By taking &'x-du-
als, we obtain a homomorphism of &x-algebras (10.3.2), 11.12

(11.14.3) v R (C(Txon)) = (D)

The morphism 1); induces a homomorphism of Hopf algebras sp : Rx1 —
Fx k(@ 1) (4.3). By adjunction, we obtain a homomorphism of &x-algebras

(11.14.4) st Fp(Rarn) = Qg

for the left &x-algebra structure on Qae .- The composition v o s is the identical
homomorphism.
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Recall that we have a canonical morphism of formal X-groupoids Px — Qx (5.12.1).
Then we obtain a homomorphism of Hopf &x-algebras (4.3):

(11.14.5) u: @y — Px.

With the assumption and notation of 11.11, u sends &; to & and n; to —fi[p] (11.1.1)
([32] 1.2.14).

By taking duals (4.4 and 11.10(ii)), « induces a homomorphism of &'x-algebras
(11.14.6) u” Dy = (Qy )"

LEMMA 11.15 ([32] 1.2.15). — Let o : FX/k(ﬂ?/gg’l) — F)”;/k(ﬁ%’l) be the involution
homomorphism defined in (11.11.3).

(i) The restriction of u” and (o ov)Y to FX/k

(S(TX//k)) coincide.
(ii) The images of any local sections of u" (DX/k) and of (o ov)Y (F)}/lk(f‘(TX//k)))

commute in (Qy ;)"

PROPOSITION 11.16 ([32] 1.2.13). — The homomorphisms (c ov)¥ and u" induce an
isomorphism of X/k( (TX//k))-algebms (10.16)

(11.16.1) DYy — (Qxy)”

PROPOSITION 11.17 ([32] 1.2.10). — Let X be a smooth formal .#-scheme, X its
special fiber. There exists a canonical equivalence of tensor categories between
HIGS" (X /k) (10.13) (resp. MICS"(X /k) (10.17)) and the category of Ox-modules
with R x-stratification (resp. §y-stratification) (4.11), 5.4.

Proof. — We briefly recall here the main construction of the equivalence which will be
used in the following and refer to [32] for details.

Let (M,e) be an Ox-module with JRx-stratification and 6 : M — M ®s, Rx1
the Ox-linear morphism defined by 8(m) = (1 ® m) (5.5). By 5.5 and 11.12, we
deduce a f(T x /k)—module 9 structure on M. To show that v is quasi-nilpotent, we
suppose that there exists an étale .-morphism X — &éﬂ We take again notation of
11.11. For any I € N%, we set ol/] = H?:1 0][-i’] € f(TX/k). The action of o1 on M is
given by the composition

1d®o[1]
(11.17.1) Yo 2 M —2= M ®py Rxy —

Since Ry, is isomorphic to a polynomial algebra over Ox (11.11), for any local
section m of M and any point x of X, there exists a neighborhood U of = such that
9(m)|U is a section of M(U) ®g¢ () Rx,1(U) and can be written as a finite sum:

(11.17.2) e1@m) =0(m) = Y Yan(m)®¢.

IeNd
Hence, (M, ) is quasi-nilpotent (10.1).
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Let (M,e) be an Ox-module with (), -stratification and 6 : M — M ®oy Oy,
the morphism induced by . By 5.5 and 11.16, we associate to it a D}(/k-module
(M,V,4) (10.16). We take again the assumption and notation of the proof of 11.16.
For I € {0,...,p—1}% J € N¢ the action of the local section 8I®F)";/k(6’[‘7 ) of DY
on M is given by the composition

id @w(af®F;§/k(a'm))
M

(11.17.3) V@I O'()[)a/[J] M M®ﬁx Q%,l

Since Q%,l is of finite type over a polynomial algebra over &x (11.11), for any local
section m of M and any point z of X, there exists a neighborhood U of z such that
9(m)|U is a section of M(U) ®gy ) Uy ,(U) and can be written as a finite sum (cf.
[32] page 25)

1
(11.17.4) (1 ®m) = 6(m) = > (—1)|J‘F(Val o Yarn)(m) ® Eln?
Ie{0,...,p—1}4,JeNd ’
Hence (M, V, ) is quasi-nilpotent (10.17). O

We deduce from 8.10 and 11.17 the following equivalences.

COROLLARY 11.18. — Let X be a smooth formal .-scheme, X its special fiber, éo and
éa the Oyama topoi of X (7.9) and Op 1, Og,1 the p-torsion structure rings ofé? and

& respectively (8.1). We denote by C(Og1) (resp. €(Og 1)) the category of crystals

of Og 1-modules ofc? (resp. Og 1-modules of%) (8.3). Then, we have equivalences of
tensor categories

(11.18.1) HIGI" (X /k) ~ € (0s,1), MICI" (X /k) ~ € (Og 1)-
The following result is an analog of 10.20(iii) for Cariter equivalence.

COROLLARY 11.19. — Let Cx /o : % — & be the morphism of topoi associated
to X (9.11.4), A" a crystal of Og 1-modules of &' (8.3), (M',0) the associated
f(TX,/k)—module (11.18) and (V, %) the D}/k -module structure on (Ci/y(////))(x,x)-
Then a lifting F' : X — X' of the relative Frobenius morphism Fx , of X induces a
functorial isomorphism of X/k(l"(TX//k))—modules:

(11.19.1) e (FRp(M,0)) = (Cx o (A1) (x,2), %),

where ¢ denotes the involution homomorphism X/k( (Txik)) — FX/k( (Tx/x))
(10.19.2).

Proof. — We take again the notation of 11.14. By 4.5, 11.12 and 11.16, the homomor-
phism sgr (11.14.4) induces a homomorphism of &x-algebras:

(11.19.2) (%)Y : DY = F o (CD(Txo )
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Since the composition v o siﬂ is the identity (11.14), the composition (11.14.3)

(s5) " N
D}(/k = F;/k(F(TX'/k))

is the involution homomorphism ¢ : F;/k(f(TX//k)) — F)":,/k(f‘(TX//k)) (10.19.2).
Let € be the associated R/ -stratification on M’. Recall 9.17 that the morphism F'
induces a functorial isomorphism of &’x-modules compatible with ¢),.-stratifications:

(11.19.4) e+ (Fxp (M), s5(e)) = (Cx o (A)) (x,2)-

In view of 11.17, the associated D}/k—module structure on F)”;/k (M) in the left hand

~ (oov)Y

(11.19.3) F3 (T (Txon))

side is give by F)"}/k(H) via (siﬂ)V that we denote by (Vg,¢r). Then we obtain a
functorial isomorphism of D jy-modules

(11.19.5) nr : (Fy (M), Vi, ¢r) = (Cx 0 (A")) (x x)-

In view of (11.19.3), we have an equality of F)”;/k (T(T x//k))-modules

(11.19.6) (F% (M), %) = (Fg (M, 0)).
This concludes the proof. O
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CHAPTER 12

COMPARISON WITH THE CARTIER TRANSFORM
OF OGUS-VOLOGODSKY

In this section, we compare the Cartier equivalence modulo p and the Cartier trans-
form of Ogus-Vologodsky. Our approach is different to that of Oyama. We interpret
the Cartier equivalence as an admissibility condition & la Fontaine for a pair of crystals
(12.17) and use it to compare with Cartier transform (12.22).

Let X be a smooth formal .%-scheme, X its special fiber and Tx ;, the Ox-dual of
the 0x-module of differential forms Q%{/k' Weset ¥ =XQv .

12.1. — We first interpret the Cartier descent in the context of Cartier equivalence
(12.3).

Let & and & be the Oyama topoi of X (7.9) and s 1, Og 1 the p-torsion structure
rings of & and % respectively (8.1). We keep the conventions and notation of § 7-8. A
morphism g : (U1, %1,u1) — (Ua, %2, uz2) of & (resp. &) induces a morphism of ringed
topoi (8.2.1)

(1211) £~Is : (Ulaul*(ﬁTl)) - (U27u2*(ﬁT2))'
If we equip & (resp. &) with the Zariski topology, the functor (7.5.1)
(12.1.2) n:& — Zar)x (resp. m:& — Zar)x) (U, %) —->U

is cocontinuous. Since m commutes with the fibered product of a flat morphism and a
morphism (7.3), one verifies that 7 is also continuous ([3] III 1.6). By 7.15, it induces
a morphism of topoi that we denote by

(12.1.3) v:E — X,ar (resp. v : % — Xyar)

such that the inverse image functor is induced by the composition with 7. Moreover,
one verifies that the above morphisms fit into a commutative diagram

~ C ~
(12.1.4) iy
v‘/ l/v’
Fx/k
Kpar —> X;ar'
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Let .# be a sheaf of X,,,. For any object (U,¥) of & (resp. &), we have
() ws) = §|U. For any morphism f : (U1, %1) — (Uz2,%3) of & (resp. &), the
transition morphism ~y; of v*(.#) (7.6.2) is the canonical isomorphism

(12.1.5) U Tl )y, = Pl

12.2. — For any object (U,%,u) of &, the morphism u : T — U induces a canonical,
functorial homomorphism

(12.2.1) v (Ox)(U,%,u) = Ox(U) = Os1(U, T, u) = us(Or)(U).
Then the morphism of topoi v : & — X, underlies a morphism of ringed topoi
(12.2.2) v:(&,081) — (Xgar, Ox).

For any object (U, %, u) of &, we have a morphism u’ o fr, : T — U’ (9.1.1) and
hence a canonical, functorial homomorphism

(1223) U*( ;/k(ﬁX’))(U, g, u) = ﬁx/(U’) — ﬁéJ(U, 5, u) = (U/OfT/k)*(ﬁT)(U/).

The composition of morphisms Fx/, o v : & — X,ar — X, underlies a morphism of
ringed topoi

(12.2.4) p: (&, 0s,1) — (X,

zar? ﬁX,)'
By (12.1.4), the morphisms p and v’ fit into a commutative diagram

Cx/»

(12.2.5) (&, 0p.1) (&', 06:1)

(X!, Ox).

zar?
PROPOSITION 12.3. — Let Mod(Ox/) be the category of Ox/-modules and let \ be
the functor

(12.3.1) A:Mod(Ox/) - MICY(X/k) M+ (F% (M), Vean, 0),

where MIC?Y (X /k) denotes the category of nilpotent D}/k -modules of level < 0 (10.17).

Then, the following diagram is commutative up to a canonical isomorphism

(12.3.2) Mod(Ox:) —2~ MICY (X /k)
V/*L J/
C;k(/y
¢ (Os,1) ¢ (0s,1),

where the right vertical arrow is given by (11.18).

The proposition follows from Lemmas 12.5, 12.6 below.
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12.4. — Let M be an Ox-module and .# = v*(M) (12.2.2). For any object (U, %, u)
of &, we set u*(M) = M| ®oy u4(O7). Recall (12.1) that we have (v*(M))w,s) =
M, . In view of 7.10 and (12.2.1), we deduce that .#(y <) = u*(M). For any mor-
phism g : (U1,%1,u1) — (U2, %2, uz) of &, in view of (12.1.5), the transition mor-
phism ¢, : g¥ (4 (v, z,)) = # v, 5, is the canonical isomorphism (12.1.1)

(12.4.1) 95 (3 (M) = uy (M),

Hence ./ is a crystal of O¢ ;-modules of &. If M is moreover quasi-coherent, then so
is . (8.3). In this case, for any object (U, %, u) of &, the &r-module .# <) of Tyar
(8.4) is u*(M|U)

LEMMA 12.5. — Under the assumption of 12.4, the f‘(TX/k)-module associated to M
(11.18) is the Ox-module M equipped with the zero PD-Higgs field (10.13).

Proof. — The underlying &'x-module is .#(x,x) = M. The reduction modulo p of the
two canonical morphisms gqi, ¢z : Rx — X are equal. By (12.4.1), the R x-stratifica-
tion on M associated to .Z (8.10)

€: G5 (M) = i (M)
is the identity morphism. In view of (11.17.1) and (11.17.2), the PD-Higgs field asso-

ciated to ¢ is zero. O

LEMMA 12.6. — Let M’ be an Ox -module and .# = p*(M'). Then A is a crystal
of Og 1-modules of & and the D, -module associated to M is (F)”}/k(M'),Vcan,O)

X/k
(11.18), where Vcan denotes the Frobenius descent connection on Fg , (M') (6.3.1).

X /k

Proof. — We set 4" = v'*(M') (12.2.5). Then .# = C’;(/y(//’) is a crystal by 12.4.
For any object (U, %, u) of &, we put ¢/, = ' o frp,: T — T’ — U’'. Then we have
p(U,%,u) = (U, %, 1) (9.1.2) and (9.11.1)

(12.6.1) ;‘(/y(////)(U,Q,u) = TUx (///(/U/,;(,(ﬁT/k)) = TUx (QZ:}/;C(M/))

The morphism ¢, associated to the object (X,X) of & is Fx/,. Then we have
Mx %) = F;’;/k (M'"). There exists a commutative diagram

q2

(12.6.2) Qx.1 X
]
q1 Fx /x
X oo X'

The morphisms ¢1, g2 : (X, Q%) — (X, X) of & induce isomorphisms (12.4.1), 12.6.1
1265, o T A(FL (M) > (@, (M),
Cqy ﬁ,s(F)ﬂE/k(M/)) — WX*(¢Z;,1/1¢(M/))’
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The (), -stratification & on F;'/k (M') associated to the crystal .# (8.10) is given by

the composition of cg, and the inverse of ¢4, . In view of (12.6.2), for any local section
m’ of M’, we have

(12.6.4) e(1® F% ), (m') = F§ ) (m') ® 1.
Let (F;/k (M'"),V,9) be the D}/k—module associated to (F)”;/k (M"),¢e) (11.17). In view

of (12.6.4), (11.17.3) and (11.17.4), we deduce that V and ¢ annihilate the subsheaf
F);/lk (M) of F)";/k(M’). Hence V is the Frobenius descent connection and ¢ = 0. O
12.7. — To compare the Cartier equivalence and the Cartier transform, we recon-
struct the crystal ¢Zx, (10.12) as a crystal in Oyama topos & (cf. 12.15 and 12.27)
which allows us to compare Cartier transform and Cartier equivalence. Compared to
Oyama’s approach for this construction ([32] 1.5.2), our approach use certain torsor
of liftings in Oyama topoi and is close the original construction of Ogus-Vologodsky.

Let (U, %, u) be an object of &, W an open subscheme of T' and 205 the open sub-
scheme of T, associated to W. We define Zx v,z ) (W) to be the set of .#5-morphisms
2o — X5 which make the following diagram commutes

(12.7.1) W 2,

" |

U*>X*>.’£2

The functor W +— Zx (v,z,u)(W) defines a sheaf of T;,,. Since X is smooth over .7,
such morphisms exist locally. The sheaf Zx (y,5,.) is a torsor under the Or-module

%mﬁxz (U* (Qllj/k)a pﬁfz) — U*(TU/k) of Tyar-

12.8. — Let g : (V,3,v) — (U,%,u) be a morphism of & and gs; : Z — T (resp.
92 : 32 — %) the reduction of the morphism 3 — ¥. For &p-modules, we will use
the notation g; ! to denote the inverse image in the sense of abelian sheaves and will
keep the notation ¢g* for the inverse image in the sense of modules. By adjunction,
the isomorphism g (u*(Tyx)) — v*(Ty ;) induces an Op-linear morphism:

T U*(TU/k:) — gs*(v*(Tv/k)).
We have a canonical T-equivariant morphism %Zx (u,z,u) — gs+(%x,(v,30)) of Thar

defined for every local section h : 2y — X3 of Zx (v,xu) by

(12.8.1) Rx (U5 0) = 9sx(Zx,(v,3,0)) h—ho 92|g2_1(m2)~
By adjunction, we obtain a g; !(u*(Ty /k))-equivariant morphism of Z,,:

(12.8.2) Vg 1 95 (Zx, (Ut ) = B, (V.3,0)-

By ([17] IIT 1.4.6(iii)), we deduce a v*(Ty ;)-equivariant isomorphism of Z,,, (10.7):

(12.8.3) 95 (Rx,vs ) — Rx,(V,3,0)-
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One verifies that the data {us(Zx, v,z u)), 7y} satisfy the compatibility conditions
of 7.7. Then it defines a sheaf of & that we denote by Zx (7.10). We set Tx,, =
v*(Tx) (12.2.2), 12.5. In view of 12.7 and (12.8.2), Zx is a Jx ,-torsor of .

PROPOSITION 12.9. — (i) There exists a quasi-coherent crystal Fx of Og 1-modules
of & such that:

(a) For every object (U, %, u) of &, Fx =) (8.4) is the sheaf of affine functions on
the u*(Ty ) -torsor Zx (w,z,u) of Tyar (10.4).

(b) For every morphism g : (V,3) — (U,%) of &, any affine function [
Rz, w,.sw) — Or and any section h € Zx =) (T), the transition mor-
phism cq 1 g¥ (% w,3)) = Fx,(v,3) (8.4) sends g¥(l) to an affine function
U %x7(v737v) - ﬁz such that

(12.9.1) U'(hogs) =g¥((h)) e O.
(if) We have an exact sequence of crystals (12.2.2):
(12.9.2) 0— Os1 — Fx — v (Qx ) = 0.

Proof. — (i) For any object (U, %, u) of &, we define F% <) as in (i). Recall (10.4.3)
that we have an exact sequence of Op-modules of T,

(12.9.3) 0— Or 5 Fx s — U*(Qllj/k) — 0.

For any morphism g : (V,3) — (U,%) of &, by (10.7.4) and (12.8.3), we obtain an
O z-linear isomorphism

(12.9.4) ¢ 95 (Fx,wm) = Fx,v3)

which fits into a commutative diagram (10.7.5)

(12.9.5) 0 ——=g¥(0r) —= g¥(Fx,wx) — = g5 (u*(Qy),)) —=0
LZ Cgt l/l
0 Oy 93;7(\/,3) Yy (Q%//k) ——-0.

In view of the compatibility conditions of v, (12.8.2) and ([2] II 4.15), the data
{Fx,,3), cq} satisfy the compatibility conditions of 8.2. Hence, they define a quasi-

coherent crystal of ¢ ;-modules of & that we denote by Z#x. The equality (12.9.1)
follows from (10.7.2) and (12.8.1).

The assertion (ii) follows from 12.4 and the diagram (12.9.5). O

12.10. — We denote by #x the quasi-coherent crystal of ¢ ;-algebras lim e, (F)

of &. We set Fx = Fx,x,x) and Bx = PBx (x,x)- Then we obtain an R x-strati-
fication € ¢ on ¢f » (resp. € g3 on Byx) and a f(TX/k)—module structure 9 ¢ on of
(resp. 1 g on Bx). On the other hand, ¢ 5 being the sheaf of affine functions on the
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Tx p-torsor Zx (x,x), of x (resp. Bx) is equipped by 10.5 with a f‘(TX/k)—module
structure that we denote by kg (resp. k g).

In the following, we show that 1) ¢ and x g are different by a sign (12.12).

Recall that we have an exact sequence (12.9.3)

(12.10.1) 0—Ox —> Fx = xp — 0.

The element idx, : X2 — X2 of Zx (x,x)(X) induces a canonical splitting
(12.10.2) sid: F x — Ox ® Uy s I (I(id), w(1)).

Then it induces an isomorphism of &x-algebras

(12.10.3) Bx — S(Qx )

By 10.6, the isomorphism siq (12.10.2) (resp. (12.10.3)) is compatible with the action
kg (resp. k g) and the canonical action of I'(Tx /) on Ox @ Qk/k (resp. S(Qk/k))
(10.2).

PROPOSITION 12.11. — Assume that there exists an étale . -morphism X — &dy, =
Spf(W{T1,...,Tq}). We take again the notation of 11.11.
(i) If 1 is a section of of x such that w(l) =0 (12.10.2), then e y(1®1) =1 ®1.
(if) For 1 <i<d, let l; be the section of of x such that l;(id) = 0 and w(l;) = dt;.
Then E(y(].@lz) = lz®1 - 1®<z

Proof. — Assertion (i) follows from 12.5 and 12.9(ii).
(if) We denote by g5 : Rx1 — X the canonical morphism. The canonical morphisms
01,2,92,2 * Rx 2 — X2 € Zx (X Ry q.)(Rx,1) induce two splittings of of x (x r,) (12.9.3)

(1211.1)  sq, : gou(Fx,(x,Rx)) — Rx1 ® (Rx1 Qox Uxpp) [ (flar),w(f)),
(12.11.2)  sg, : gox(Fx,(x,Rx)) — Rx1 ® (Rx1 Qo Uxp) [ (fla2),w(f))-

We identify Rx 1@ (Rx1®0x Qﬁ(/k) with R x 1 ®ey of x by ido%x,l ®siq (12.10.2).
In view of (12.9.1) and (12.9.5), the morphism s,, is inverse to ¢« (cq,) for ¢ = 1,2.
Then, the R x-stratification € on o7 5 is given by the composition of the inverse of s,
and sg, .

We denote by f the local section sq’zl(l ® l;) of qsx(Fx,(x,Rx))- Then we have
f(g2) = 0 and w(f) = 1 ®dt;. To show the assertion, it suffices to prove that f(q1) =
—(; ® 1. The morphisms g1, g2 are induced by two homomorphisms

(12.11.3) 11: 0%, = Rxon t2: Ox, = Rz o,

such that ¢1 is equal to 12 modulo p. Then they define a Wo-derivation
(12.11.4) D=1;—11:0% —pRxs

We denote by

(12.11.5) ¢ Rax1 ®ox Uy = PRx2
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the (Rx 1-linear morphism associated to D. Then we have

P(1®dt;) =1t —t;®1 =P<§j) €EpRxa-

Identifying SHoem g, (Rx1 oy Q}X/k,pc%x’g) — Rx1®cx Txi, we consider ¢ as
a section of ¢¥(Tx ). Then we have g2 = q1 + ¢ € Zx 4, (Rx,1) and we deduce that
(10.4(ii))

flar) = fla2 — ¢) = —w(f)(¢) = ~G®L.
Then the proposition follows. O

COROLLARY 12.12. — The f‘(TX/k)-actions Vg and kg on fx (resp. P g and k g

on Bx) satisfy v g = *(kg) (resp. v g = *(kg)), where ¢ : f‘(TX/k) — f‘(TX/k)
denotes the involution homomorphism (10.19.2).

Proof. — The question being local, we take again the assumptions and notation of
12.11. Let 0; € Tx/x(X) be the dual of dt;. In view of (11.17.2) and 12.11(ii), the
action of ¢ ¢ 5, on ¢ x sends I; to —1. We equip Ox @Qﬁ(/k (resp. S(Qﬁf/k)) with the

canonical action of f(TX/k) (10.2). The isomorphism siq (12.10.2) (resp. (12.10.3))
sends I; to dt; and induces an isomorphism of f(T x/k)-modules

(1212.1)  (Fxty) — F(Ox ®Qx ) (vesp. ((Bx,¥g) = (S Q% )
Then the assertion follows from 12.10. O

COROLLARY 12.13. — We denote by e}, (resp. £z) the R x-stratification on Rx ;1 as-
sociated to the f‘(TX/k)—actz'on kg (resp. ¥ g) on Bx via the isomorphisms of Ox -al-
gebras Bx — S(Q ) — R, (11.12), 12.10.3:

(i) For any local section r of Rx1, we have ef(1Q@1) = &(r) (11.11).

(ii) For any local section r of Rx 1, we have ex(6(r)) =r®1.

Proof. — The question being local, we take again the assumption and the notation
of 12.11. Then for 1 < i < d, l; is sent to ¢; by the isomorphism Bz — Rx1-
Since EE, € and § are homomorphisms, it suffices to verify the assertion for the local
sections (;. By 12.11(ii) and 12.12(i), we have

(12.13.1) er(l®G) =GR®1-1®, (1®G) =GR1I+1®¢
Then, the assertion (i) follows from 11.11. The assertion (ii) follows from the relations
er(0(G) =er(1®G+G®1) = ((GO1-1®G) +1®G =GO L O

With the above preparation, we can interpret a key calculation in Oyama’s paper
in the following forms.
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PROPOSITION 12.14 ([32] 1.5.3). — Let M be a quasi-nilpotent f‘(TX/k)—module, € the
associated Ry -stratification on M (11.17). We denote by My the underlying Ox -mod-
ule of M equipped with the f(TX/k)-module structure defined by the zero PD-Higgs
field. Then the stratification € : Rx1 Qox M — M Qe Rx1 induces two isomor-
phisms of f‘(TX/k)—modules (10.14.2)

(1) (£X7¢$) ®ﬁx MO = M@ﬁx ($x7¢$)a
(ii) (B 3) Qox (M) — Mooy (Bx,%3)-

Proof. — We take again the notation of 12.13. To simplify the notation, we write R
for (Rx 1. The R x-stratification on My is the identity morphism id peas @ R ey
M — R®ep M (cf. the proof of 12.5). We denote by 6y (resp. 0) the morphism M —
M ®py R defined by m — m ® 1 (resp. m — ¢(1 ® m)) for every local section m
of M.

(i) Since the action 1) g on By is compatible with the ring structure of By, it
suffices to show that § : My — M ® (Bx, ¥ g) is f‘(TX/k)—equivariant. In view of
(5.4.2), it suffices to prove that the following diagram is commutative

0o

(12.14.1) M M ®o, R

0 1/9®id;/e,,
I®id 5 idy ®eg
M®oy R—>MQ®py R®0x R—=M Q6 R®cx R-
By condition (ii) of 5.5, the composition
(12.14.2)
0®id 5 idy ®egy

0
M —=MQsx R—M®@cx RQ6x K —MRQsx R Rox R
in the above diagram is equal to the composition
(12.14.3)

idar ®6 idy e
M*9>M®ﬁx ﬁm)MC@ﬁx R Roy ﬁLRM(@ﬁX R Roy R

By 12.13(ii), the above composition is equal to the composition

. 0Qid o
(12.14.4) M2 M@0y R M oy R oy R-

The assertion follows.

(ii) By 12.12(i), it suffices to show that the morphism (B, k) ®oxy M — Mo Qe
(Bx,k3) is f‘(TX/k)—equivariant. Similarly to (i), by (5.4.2), it suffices to prove that
the following diagram is commutative

(12.14.5) M

M Qs R
0 L9®idﬁ

0o®id g idy ®ef;

M@y R—M®ox RRPox R—MQcy R Qox K-
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By condition (ii) of 5.5, the composition

0®id
(12.14.6) M- M&s, R—LM®s, RO, R

in the above diagram is equal to the composition

id 1
(12.14.7) M~ M@y R M@0y R®ox R
The assertion follows from 12.13(i). O

12.15. — The counterpart of the crystal @y, (10.12) in Oyama topos % is defined by
applying Cartier equivalence C% J7 t0 B

Let Cx /s : & — & be the morphism of topoi (9.1.3). We put Ry = C}“(/y(ﬂx/)
(12.8). For any object (U, T, u) of &, we set ¢/, = u'o fry : T — T’ — U’ so we have
p(U,%,u) = (U, %, ¢rp) (9-1.2). By 9.1, the descent data of the sheaf Zy of & is
{u*(%x/’(U/x@T/k)),’yp(g)} (77, 12.7, 128)

We put Z 5 = Cx,»(Fx) and By = Cx,,(Bx). For any object (U, %,u) of &,
we have (9.11.6)

(12151) ﬁx,(U,T,u) = yxl7(U/,rI7¢T/k)7
The linearised descent data of the quasi-coherent crystal of Og i-modules & 5 (resp.
Og 1-algebras By) of & is {Fxr (1, 5.61)) Cola)} (T€SP- {Bxr (U T.670) Cp(g)}) (9:1),
8.2, 12.9.

We set of . = Fx (x,x) and By = PBx(x,x) By 11.18, these Ox-modules
are equipped with D} Ik -module structures that we denote by (V FY 07) (resp.
(Vg %g). We will show that o8, is isomorphic to the algebra ¢#x, (10.12)
introduced by Ogus-Vologodsky (12.26).

Bx (s ) = B (U T brn)-

12.16. — We interpret the Cartier equivalence as an admissible isomorphism & la
Fontaine for a pair of crystals with respect to the period ring ﬁx

Let .#' be a crystal of O/ 1-modules of éaw’, (M, 65,) the associated f(TX,/k)-mod—
ule, .45 = v*(M') (124), A& = C%,,(#4') and (N,Vy,9¥n) the associated

D}(/k—module. By 11.18, 12.5 and 12.14(i), we have an isomorphism of crystals
of Og 1-modules of &”
(12.16.1) By ®@>g,71 //6 = A ®ﬁg,11 By

Applying C% 5 We obtain an isomorphism of crystals of 0 ;-modules of % :
(12.16.2) By R0, Cx ) (Mo) = N R, , By
By 12.3, we deduce an isomorphism of D7, ¥ /k—modules

(12.16.3) A: By ®ox Fx (M) = N oy By
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where the DV ,-action on the left hand side is induced by (V 3,7 g) on 3, and
(Vean,0) on F;/k( ') (10.18), that we still denote by (V g,% g); and the D}(/k-action
on the right hand side is induced by (Vy,%¥n) on N and (V g, g), that we denote
by (Vtom wtot)- -

The f‘(TX//k)—module structures ¢ 3 on B, and 6y on M’ define a f‘(TX//k)—mod—
ule structure on ﬁx ®ey, M’ (10.14), that we denote by 6io¢. On the other hand,
the zero PD-Higgs field on N and the action of 1) 3 on ﬁx define a f‘(TX//k)—module
structure on N Qg ﬁx, that we still denote by 'L/)ﬁ.

THEOREM 12.17. — Let .4’ be a crystal of Og 1-modules of &, (M',0) the associ-
ated F(TX//k) -module, N = Cx/;ﬁ(////) and (N,Vy,¥n) the associated D, Xk -mod-
ule. Then, the isomorphism (12.16.3)

(1217.1) X (By By, M',(V 3,9 3),0t0t) — (N @y Bas (Viot Yrot), ¥ 3)

is compatible with the DX/k-actions and the f(TX//k)-actions defined on both sides in
12.16.

Proof. — We only need to prove the compatibility of the f(TX//k)—actions. Let
e By Qo M' = M' ®p,, By be the Ry-stratification on M’ (12.14), and
Y g the f‘(TX//k)—action on By defined in 12.10. The question is local. Since the
Cartier equivalence is compatible with localisation (9.15.3), we can suppose that
there exists a lifting F' : X — X’ of the relative Frobenius morphism Fx/, of X.
Then it induces a morphism F : (X', X, Fx,) — (X', X’) of &”. The isomorphisms
(12.16.1), (12.16.2) and the transition morphisms 1 associated to F' (9.17.4) induce
a commutative diagram

F)ﬂ}/k(('@%’ R0, ///6)()(’736’)) X/k((//// R0, e@x') X! x'))

- l LW

(Bx ®0,,1 Cx ) (M) (x %) (N ®0s, Bx)(x,x)-

Then we deduce a commutative diagram

F¥ ()
(12.17.2) F (B @0y M) ———— F} (M’ ®0,, Bx')
WFL l/np
By ®oy M’ A N ®ox By

By 11.19, the isomorphism np : F3 /k((ﬁxl) = By underlies an isomorphism

of FX/k( (Tx+/x))-modules
(12.17.3) F (B, " (b @) = (B, ¥ )-
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~

By 12.14(ii), the isomorphism F)";/k(s') is compatible with actions of F;/k(F(TX//k)):
(12.17.4)

FXi(€) : Fxp(Bx @0y M, g @1d+1d @ (0ar1)) = FX (M @0, B 1d @ ).
Then the assertion follows from (12.17.2), (12.17.3) and (12.17.4). O

REMARK 12.18. — In ([31], 2.23), Ogus and Vologodsky showed a similar result for
certain filtered PD-Higgs modules.

Let (H,0) (resp. (H,V,v)) be a f(TX/k)—module (resp. a D}/k—module). We define
its ['(Tx ;) invariants (resp. D’YX/k invariants) by
(12.18.1)

H = Jlamip,(0x,0),H)  (rvesp. HY = Flampy, (0x,d,0), H)).

We can recover the Cartier equivalence by taking f(T x//k) invariants (resp. D;’( Ik
invariants) for the isomorphism (12.17.1).

PROPOSITION 12.19. — Keep the notation of 12.16 and suppose that .#' is quasi-
coherent. The isomorphism (12.17.1) induces

(i) a canonical isomorphism of D}/k—modules
(By oy M,V 3,9 3)" = (N,Vn,¥n);
(ii) a canonical isomorphism of IA‘(TX//k)—modules
(M',001) = (N ®py Byt g)! Y rorveer).
The assertion follows from 12.20 and 12.21.

LEMMA 12.20. — Keep the notation of 12.16.
(i) The actions (V g, g) of D'YX/k and Oror of T(Txij1) on By ®e,, M' commute
with each other.
(ii) The actions (Viot, Ytot) Of D}/k and ) g of T(Tx: ;) on N ®ey ﬁx commute
with each other. B
Proof. — (i) By the Formula (10.14.1), one verifies that the action 1 g of lA“(TX//k) c
D}/k and the action 6ot of f(TX,/k) on ﬁx ®ey, M’ commute with each other. For
any local sections D of T, & of f‘(TX,/k), b of igx and m of M’, by 10.14.1, we
have
V 3.0(brot,e'(b@m)) =V 3 p(¥36(b) ®m +V 3 p(b) ®bOrr e (m)
=9 3e(Vap®)®@m+V g pb) @0 e (m)
= Gtot,g/(V%)’D(b ® m))

Since D'YX/k is generated by Ty, and f(TX,/k), the assertion follows.
Assertion (ii) follows from (i) and 12.17. O
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LEMMA 12.21. — Keep the notation of 12.16 and suppose that .#' is quasi-coherent.
The canonical homomorphism of crystals Og1 — Py induces an isomorphism
of Ox-modules (resp. Ox/-modules)

N = (N®oy By)¥2,  (resp. M 5 (B ®ay, M)V 2V,

Proof. — The assertion in lemma being local, we may assume that there exists a lifting
F : X — X' of the relative Frobenius morphism F, of X. By 11.19 and (12.12.1),

we have isomorphisms of F' ( (Tx+/x))-modules

Xk
nE : F§/k(c73x' 6y M',0* (¢ 3) ®id) = (N ®g BV 3)
S(Qﬁ(/k) ®ox F;/k<M/) F% 1 (Bx @y, M, (Y o) ®id),

where S(Q /k) is equipped with the canonical action of F(T x/k)- A local section u
of S(Q2 X/k) R« X/k(M ) can be written as a finite sum

(12.21.1) u= ) w®u,
i=0

with u,; € X/k(M’) and w; € S'(Q). In view of the perfect pairing T; (Tx/k) ox
SZ(Qk/k) — Ox (10.2.1) for ¢ > 1, the action of I‘(TX/k) on v is trivial if and only if
u; = 0 for ¢ > 1, i.e., u belongs to the submodule F)”;/k(M’) of F)";/k( " ®ex S(Q).
The first isomorphism follows.

Equipped with the Frobenius descent connection V¢, on F§ Ik (M), we have an in-
jection of DX/k modules ( X/k(M') Vean; 0) = (B ®e,, M',V 2,1 3) and a canon-
ical Ox-linear isomorphism ([25] 5.1)

(12.21.2) 2, ;/k(M/)(vcan,O).
In view of the first isomorphism, we deduce that (8, ®a,, M’ )(Vﬁ’wﬁ) is contained

in the image of F'§; Ik (M') in (B, ®g,, M'. Then the second isomorphism follows from
(12.21.2). O

Now we use the above results to compare the Cartier equivalence C% 5 and the
Cartier transform of Ogus-Vologodsky.

THEOREM 12.22. — Let X be a smooth formal .#-scheme and X its special fiber. The
following diagram is commutative up to a canonical isomorphism

Cx/o%

(12.22.1) CIN(Op ) —= €I (Og 1)

LZ 14
C A

MIC® (X /k) —— HIG® (X /k),
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where Cx 4 is the direct image functor of the morphism of topoi Cx ;o (9.12), which
depends only on X, and the vertical functors are equivalences of categories (11.18)
and depend on X.

REMARK 12.23. — The top (resp. lower) horizontal functor in the above diagram
depends only on X (resp. X5). However, the vertical functors (11.18.1) are constructed
by a formal model X of X. A natural question is: do vertical equivalences depend only
on a lifting of X over the quotient of W by a power of p?

12.24. — Recall that Ogus and Vologodsky constructed a torsor Zx; of (X /k)crys
(10.11), the crystal of affine functions #x; on Zx; of (X /k)crys and the quasi-coherent
crystal of Ox ,-algebras o7y, associated to Fy; (10.12). We put 0735/2 = Fx,(X,X)
and ¢Ax; = x, (x,x), which are equipped with D}(/k-module structures (10.19).
The Cartier transform is defined by (10.20(ii))

(12.24.1)

Cy, : MICT (X /k) 5> HIG®(X'/k), N — J*(Slomp

X/k

((Ax,)", N)).

12.25. — Let (U, T, ) be an object of Crys(X/k) such that there exists a flat formal
#-scheme ¥ with special fiber T'. Recall (10.9) that the morphism U — T induces an
isomorphism U — T. Then we obtain an object (U, %) of &. The morphism OT/k

T/k

T — X' (10.9.1) is the same as the composition T’ SN IR'Y (12.15). Moreover,
the w;/k(TX//k)—torsor Zxt o0 Of Trar (10.10) is the same as the qb;i/k(TU//k)—torsor
Rxr (U, %, brp) Of Toar (12.8). Recall that Fx; 1) is the sheaf of affine functions

on Zx; op,- By (12.15.1), we deduce a canonical isomorphism of &7-modules

(12.25.1) Tz, ) — Lx,vT)

Let g : (U1,T1,61) — (Us,Ts,62) be a morphism of Crys(X /k). Suppose that there
exists an .“-morphism g : ¥ — T of flat formal .-schemes with special fiber
g : T1 — T. Then we obtain a morphism g : (U1, %1) — (Uz, %) of &. In view of
10.11(ii), the transition morphism of the crystal of O ;-modules .Z ;. of & associated
to g (12.9.4), 12.15

(12.25.2) cg: 9 (Fx,n52) — L (vr,50)

is compatible with the transition morphism of the crystal #y, of Ox ,-modules as-
sociated to g

(12.25.3) Cg . g*(yx§7(U2,Tz)) ; gx'z,(UhTﬂ'

Applying above facts to projections from the PD-envelop of diagonal immersion
(X, Px) to (X, X), we deduce the following lemma.

LEMMA 12.26. — The isomorphism 0?36'2 = ix (12.25.1) is compatible with the
actions of Dy .
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COROLLARY 12.27. — The isomorphism 5}736/2 = ix induces a canonical isomor-
phism of Ox-algebras Ax; — B, compatible with the actions of D}/k.

Proof. — By 12.26, we obtain an isomorphism 0%3% S ﬁx compatible with actions
of Dx ;. By 10.5 and (10.3.2), the &x-module ix (resp. Ox-algebra ﬁx) is equipped

~

with a F)”;/k(F(TX//k))—module structure that we denote by ¥ g (resp. ¥ g). By 10.12
and the following lemma, the isomorphism Q%x/z = ﬁx is compatible with actions

of F)”;/k (f(TX//k)). Then the assertion follows. O

LEMMA 12.28. — Two F)”;/k(f‘(TX//k))-module structures ¢ ¢ and ¥ g on of . (12.15)

(resp. ¥ g and ¥ g on B, coincide.
Proof. — It suffices to show the assertion for E% We have ﬁx = T/ (X' X, Fx )"
The question being local, we can reduce to case where there exists an .¥-mor-

phism F': X — X’ which lifts the relative Frobenius morphism Fx/, of X. Then we
obtain a morphism F': (X', X, Fx ;) — (X', X’) of &’ and an isomorphism (12.9.4)

(12.28.1) nr Py p(Fx) = Fx

Let 1 4 be the f‘(TX/ Jk)-module structure on ¢y, induced by the crystal Fx.
By 11.19, the isomorphism ng : F)”}/k(éfx/) = ix underlies an isomorphism

~

of F;/k (C(Tx//x))-modules
(12.28.2) Me i g Fa*(5) > (F b g)-

On the other hand, regarding ¢ 5, as a sheaf of affine functions, the f‘(T X'/ )-action
on ¢f x defined in 10.5 is equal to t* (¢ g) (12.12). By 10.7, nr induces an isomorphism

of F'g (f‘(TX//k ))-modules

(12.28.3) e Fxp(Fxn (0 g7) = (F 50 0 9)-

The assertion follows. O

12.29. — Proof of 12.22. Let .# be a quasi-coherent crystal of ﬁﬁ,l—mgdules of &, N
the associated D}(/k—module, M'" = Cx )7y () and M’ the associated I'(T x5 )-mod-
ule. By 9.12, we have a canonical isomorphism C;/y (') = N . The D}/k—module
structure (Vﬁx’wﬁx) on B, induces a D;’(/k—module structure on its dual By
(10.18). By (12.24.1) and 12.27, we have a canonical isomorphism of I'(T x/ )-mod-
ules

(12.29.1) Cxy(N) = *(SHompy  (ByN)),

X /k

where the f‘(T x'/k)-action on the right hand side is given by that of ig’; The canon-
ical morphism

(12.29.2) Som g, (Ox, By ®6x N) — Flomg, (B, N)
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sends a local section ¢ of Flom g, (Ox, By ®cx N) to x : By — N defined for every
local section f of ﬁ; by

(12.29.3) x(f) = (f ®idn)(p(1)).

Since ﬁx is locally a direct sum of free Ox-modules of finite type (12.17.3), the
morphism (12.29.2) is an isomorphism. We equip Ox the D}/k—module structure
(d,0). By (10.18.1) and (10.14.2), one verifies that a local section ¢ : Ox — B, ®ay
N is D} Ji-equivariant if and only if x (12.29.3) is D} si-equivariant. Then we deduce
an isomorphism

(12.29.4) Fampy, ((Ox,d,0), By @y N) = Flompy (Bys N)-

In view of (10.14.2), the above isomorphism induces an isomorphism of IA“(TX//k)-mod—
ules (12.16)
(12295)  (Slomny, , (Ox, By ®ox N),bg.) > *(Tomsy, (B, V).

Then the assertion follows from 12.19(ii) and (12.29.1). O
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CHAPTER 13

FONTAINE MODULES

Inspired by the work of Fontaine-Laffaille [15], Faltings introduced a notion of
Fontaine module on a smooth scheme over W [13]. In this section, we propose a new
definition of Fontaine module using Cartier equivalence (13.7). Compared to Faltings’
original definition, our definition avoids the choice of (local) liftings of Frobenius to
talk about “divided Frobenius structures” (13.15) and encodes them in the Cartier
equivalence. We also show the compatibility between various definitions in (13.20,
13.22, 13.30).

Let X denote a smooth formal .#-scheme and X its special fiber.

DEFINITION 13.1. — Let n be an integer > 1. We define the category of filtered mod-
ules with quasi-nilpotent integrable connection MICg(%,,/.7;,) as follows. A filtered
module with quasi-nilpotent integrable connection is a triple (M, V, M*) consisting of
an object (M, V) of MIC%"(X,,/.#,,) and a decreasing filtration {M};cz

(13.1.1) MMM =M=M"'=-..
satisfying Griffiths’ transversality
(13.1.2) VM) c M ' ®@Q% /50 Viz0.

Given two objects (M1, V1, M?) and (Ma, V2, M3) of MICy(X,,/-%,), & morphism
from (M;, V1, M?) to (Ma, Va, M3) is a horizontal O -linear morphism f : My — My
compatible with the filtrations.

For any ¢ > 0, we denote by MICk(%,,/.%,) the full subcategory of MICE(%,/-%,)
consisting of objects with length < ¢ (i.e., the filtration satisfies M**! = 0).

13.2. — Let £ be an integer > 0, (M, V, M*) an object of MICk(%,/.%;,). We consider
the Ox, -linear morphism

14

£
(13.2.1) g PM->PM
i=1 i=0
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106 CHAPTER 13. FONTAINE MODULES

defined for every local section m; of M* by g(m;) = (m;, —pm;) in M1 @ M*. We
set

(13.2.2) M = Coker(g).
For any 0 < j < ¢, we denote by (—); the composition M’ — @fzo M — M and
by M7 the canonical image of PJ_, M* in M. We obtain a decreasing filtration

~

(13.2.3) McMtc...cM*=M.

We consider the W ,-linear morphism

4 4
(13.2.4) h: @M — (M) ®or, U, ).
i=0 i=0
defined by
(13.2.5) Wy =V:iM > M7 ® QO p, forl<i<i,
hlyo =PV M > M°®p, Q% /-

LEMMA 13.3. — The W, -linear morphism h induces a quasi-nilpotent integrable
p-connection V on M such that for any —£ < i < —1, we have

(13.3.1) VL)« M @0, %,/
Proof. — It follows from the definition that the composition
(13.3.2) EM S PM S (PM)Qox, %, 0, = M0y, O, /0,
i=1 i=0 i=0
is zero. Hence the morphism h induces a W,,-linear morphism
(13.3.3) ViM—M®s,, O, 0.
We show that V is a p-connection. The restriction of h to M9 is the p-connection pV.

Hence the restriction of V to M0 is a p-connection. Let f be a local section of Oy, i
an integer € [1,¢] and m a local section of M*. The morphism h sends fm € M?* to

(13.3.4) V(fm)=fV(im)+m®@df e M ' @ Q% /5 .
Note that we have (m);_; = (pm);. Then we deduce that
(13.3.5) V(f(m):) = fV((m)s) + p(m); @ df.

The assertion follows. The integrability of V implies easily that of V.

It is clear from the definition that V satisfies the condition (13.3.1). Since M is
p"-torsion, the restriction of V to M is quasi-nilpotent. In view of (13.3.1), we deduce
that V is quasi-nilpotent. O
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13.4. — Let e3; . be the &x-stratification on M associated to V (5.17). We present

its local description. Suppose that there exists an étale .¥-morphism X — Ady =
Spf(W{T1,...,Tq}). We take again the notation of 5.2 and of 5.16. For any 0 < i < ¢,
any local section m of M® and any I € N, in view of (13.2.5), we have

= N ) Va(m))iy H0<i<|If;
(13.4.1) Vor ((m)s) —{ P4 (F ar (m))o if 1] > .
By (5.17.1), we deduce that
(13.4.2) . .
1@ m) = Y (Var(m), ® (i) oS P (), @ (i) .

[1]<i |I]>i

PROPOSITION 13.5. — Suppose that £ < p — 1. There exists an R x-stratification Exf
on M, which induces the above I x-stratification 5 . via the functor (9.18.1).

Proof. — Let €p; be the Pyg-stratification on M and 6y : M — M ®g, Py the
morphism defined by 0y;(m) = ep(1 ® m). We denote by Jp the PD-ideal of Px.
By flatness of Jz[;] over Ox (5.9), M* ®ox, Jl[gj is a submodule of M ®g, Pz for
any 4,7 = 0. By ([29] 3.1.3) and Griffiths’ transversality, we have

13.5.1 OuM)c N Mi®s. JE vo<i<e
( ) xn YP
j=0

We denote the target by (M ®¢,, Px)' and the induced morphism by 64, : M* —
(M ®or, Px)'. Let s : Px — Rx be the homomorphism defined in 5.19, and for

allj <p—1,s: Jg] — R the induced morphism (5.19.2). For any j < i, we have
a canonical morphism

(13.5.2) (-); ®s: MY @y, JE 7 - Mo, Rx.

For any 0 < 5/ < j < 4, by flatness of J [*] over Ox (5.9), we have the intersection
in M®f773€n c@x

M ®ﬁxn Jl[j*j] A Mj/ ®ﬁxn Jl[j*j/] = MI ®ﬁxn Jl[jij/]'

— pi=i'si=7" (5.19.2), we deduce that the morphisms (13.5.2) are
compatible gnd they induce an Ox-linear morphism

(13.5.3) u' (M ®oy, Px)' — M ®sy, Rz

By construction, we have u1| (

. Z_j
Since s | =31

= pu'*t!. Then the morphism
M®oy Pyt P p

¢ ¢
Puloby : PM > MQs, Rx
i=0

=0
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induces an Ox-linear morphism
(13.5.4) 05 : M — M®py, Rx.

We will show that the above morphism satisfies the conditions of 5.5 and hence
induces an <R x-stratification. To do this, we can reduce to the case where there exists
an étale .#-morphism X — 1&‘} = Spf(W{T1,...,T4}). We take again the notation of
5.11. For any 0 < i < ¢, any local section m of M?, we have

(13.5.5) Oir(m) = 3 Vam) @ e Y Mi @y, JE).
j=0

IeNd

17—
The p-adic valuation of I! is less than Zkzll‘pik”. Ifi<p-—1and|I| =1, % is an

[1]—i

element of Z,. By (5.19.1), we have s(¢[1) = pT(g)I. Then we deduce that

I I|—i d
(13.5.6) O5((m);) = Y ;!(va,(m))i_Il@(f) LY (Vaf(m))()@(f;) .

[T]<i p |I|>i

It is clear that 67; verifies condition (i) of 5.5. By (13.5.6) and the local description
(4.16) of 0 : Rz, = Rx,n Qox, Rxn, We deduce that

I J
05 ®id g (057 ((m)i) = > 1'!1ﬂ(v91+J(m))i1||J®<§) ®<§)

P

\1|+17)<i p
[T+|7]—i I 7
p £ £
+ Z R (ngu(m)) @() ® ()
1J! 0
[T|+|J|>4 nJ! p p
= id gy ®3(O7((m):))-

By 5.5, we obtain an (R x-stratification € 37 on M. By comparing (13.4.2) and (13.5.6),
€y extends € ~ O

MT

13.6. — By 8.10, we associate to (]\7, e77) a crystal of Og ,-modules of & that we
denote by M.

We put X' = X x o ,.% (2.1) and we denote by 7 : ¥’ — X the canonical morphism.
In view of 3.8 and 4.11, the morphism 7 induces a morg\}}ism of formal groupoids 7g :
Ry ~ Rx X » % — Rx above 7 (4.8). We denote by .#" the crystal of Og: ,-modules
of & associated to the Ox: -module with (R x -stratification (n* (M), nh(ezr)) (5.6).
The 0% -module with integrable p-connection associated to M (9.18.3) is the inverse
image of (1\7, V) by = ([33] page 6).

The previous construction is clearly functorial and it defines a functor (8.3)
(13.6.1) MICY N(%,/S) — €(Osn)

(M,V,M*) — A
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DEFINITION 13.7. — (i) A (p"-torsion) Fontaine module over X is a quadruple
(M,V,M?*, ) consisting of an object (M,V,M?*) of MIC%_I(%n/Yn) with quasi-
coherent Oy, -module M*, and a morphism of MIC®(X,,/.%,)

(13.7.1) @ :v(CH(A)) — (M,V)
where C* is the Cartier equivalence (9.14.1) and v : €(0g ) — MICY (X, /.7,) is
defined in (9.18.4).

(ii) We say that a Fontaine module is strongly divisible if ¢ (13.7.1) is an isomor-
phism.

(iii) Given two Fontaine modules (M;, V1, M7, 1) and (Ms, Vo, M3, @2), a mor-
phism from (M7, V1, M}, ¢1) to (M2, Va, My, @) is a morphism f : (M,V,, M}) —
(M, Va, M3) of MICE ™ *(X,,/.%,) such that the following diagram commutes

(13.7.2) v(C* (M) 22~ (M1, V1)

V(C*(f/))J/ l/f

v(CH (M) == (M2, V),
where f': /ZZ’ — /Z/\; is the Og/ p-linear morphism induced by f (13.6.1).

We denote by MFy,,(X) the category of Fontaine modules over X and by MF (%)
the full subcategory of MF, (%) of strongly divisible Fontaine modules (M, V,M?*, ¢)
such that M is coherent.

REMARK 13.8. — In the p-torsion case, given an object (M,V, M*) of MICk(X /k),
M = gr(M) and V is the Higgs field on gr(M) induced by V and Griffiths’ transver-
sality which is of length < ¢. In ([31] 4.16), using their Cartier transform C;; (10.20),
Ogus and Vologodsky define a p-torsion Fontaine module as an object (M,V,M*)
of MICffl (X /k) together with a horizontal isomorphism

(13.8.1) @: c;g (7*(Gr(M),0)) = (M, V).

By 12.22, our Definition 13.7 is compatible with theirs.

13.9. — In the remainder of this section, we compare Definition 13.7 with Faltings’
definition [13] and Tsuji’s definition (in a broader context) [35]. We will formulate
their definitions using the notion of (proto-)T-crystals, the crystalline counterpart
of filtered modules with quasi-nilpotent integrable connection (13.1), introduced by
Ogus [29].

Let n be an integer and & a smooth scheme over .#,. We denote by Crys( /)
(resp. (X/-Fn)erys) the crystalline site (resp. topos) of X over .7, by Oy, the
structural sheaf and by Jg;, s, its PD-ideal.
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DEFINITION 13.10 ([29] 2.1.2 and 3.1). — (i) Let (U, T') be an object of Crys(eX/ ),
Jr the PD-ideal of U in T' and M an Op-module. We say that a decreasing filtration
{M%} ez, of M by Or-submodules is G-transversal to Jr if for any i € Z, we have

(13.10.1) JrM o M= JM M g 4

In particular, we see that such a filtration is Jp-saturated, i.e., Jq[f]Mj < M7 for all
120,7.

(i) Let .# be a crystal of Og;, 5, -modules. We say that a decreasing filtration
{ M }icz, of M by Og,5,-submodules of .4 is G-transversal to Jg ., if for every
object T' of Crys(cX/-#), the filtration {.#}}icz of A1 is G-transversal to J g, 7.

LEMMA 13.11 ([29] 3.1.1). — Let .# be a crystal of Oy, -modules endowed with
a filtration { M "*}icz G-transversal to Jg,s,. For any morphism f : To — T
of Crys(l/), via the transition isomorphism f*(Mr,) — Mr,, M7, coincides
with
(13.11.1) > I Im(f () - £ ().
i1 +ig=i

THEOREM 13.12 ([29] 3.1.2, 3.2.3). — Let Y be a smooth .7, -scheme, ¢ : X — Y
a closed %, -immersion and ) the PD-envelope of v compatible with . Let .4 be a
quasi-coherent crystal of Og, s, -modules, M = M g and V : M — M ®g,, Q%%/Yn
the associated quasi-nilpotent integrable connection on M (as an O9y-module) ([5]
6.6). Then the evaluation of sheaves of (X/Fn)erys 0n o) induces an equivalence of
following sets of data:

(i) A decreasing filtration {.#*};cz, by quasi-coherent O g/, -modules on A which
is G-transversal to Jg; o, .

(ii) A decreasing filtration {M},cz by quasi-coherent O g-modules on M which is
G-transversal to Jg, 5, o and which satisfies Griffiths’ transversality i.e., V(M) <
M1 ®eoy Q%}//ﬂ’n for all 3.

We briefly review the construction of the data (i) from the data (ii) and we refer to
[29] for more details. Let {M; };c7 be a filtration as in (ii). Let (1) be the PD-envelope
of the immersion X 5 Y 2 Y X ¢ Y compatible with v, p1,p2 : D) — 2D
the canonical projections and ¢ : p5 (M) = pi(M) the O g )-stratification induced
by V. We define a filtration {A;}iez on p¥ (M) by the Formula (13.11.1) for j = 1,2.
By Griffiths’ transversality, one verifies that the isomorphism ¢ : pi (M) — p¥ (M)
induces for any 4, an isomorphism ([29] 3.1.3)

(13.12.1) Al =5 AL
Given an object T' of Crys(&l/%,), there exists locally a morphism r: T — )
of Crys(X/%,). Using the Formula (13.11.1), we obtain a filtration {.Z}}cz

on r*(M) = r. Using the fact that ¢ is a filtered isomorphism, one verifies that
the filtration {.#%};cz on . is independent of the choice of r up to isomorphisms
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which come from the stratification and is well-defined. Then we obtain a filtration
{M"}icz, of M by quasi-coherent Oy -modules. By ([29] 2.2.1.2, 2.3.1), one verifies
that {.#"}icz is G-transversal to Jg,.5, .

DEFINITION 13.13 ([29] 3.2.1, 3.2.3). — (i) A proto-T-crystal is a pair (A, (M ")icz)
consisting of a quasi-coherent crystal .# with a filtration {.#*};c; G-transversal
to ch/yn .
(ii) A proto-T-crystal (#,.#*) is called T-crystal if for m > 0 and i, the canonical
morphism
My @6y (Og/p"O%) > My ®6y (Og/p™ Og)

is injective.

We say a proto-T-crystal has length < £ if .# = .#° and the evaluation of (./Z");cz
at ¢l has length < ¢ as in (13.1).

13.14. — Let Y be a smooth formal .-scheme, Y its special fiber and ¢ : X — 9
a closed .“-immersion. For any n > 1, we denote by ©, the PD-envelope of ¢,
compatible with v, by Jop, the PD-ideal of Oy, .

Recall that o denotes the Frobenius endomorphism of W. We suppose that there
exists a o-morphism Fy : Q) — 9 lifting the Frobenius morphism Fy : Y — Y. For
any n > 1, the 0y, -linear morphism d% (6.1.1) induces by adjunction a semi-linear
morphism with respect to Fy that we abusively denote by

dF;

(13.14.1) 7@ QY g = Fye(Q 0) = o

Since D, is equal to the PD-envelope of the immersion X — 2),, compatible with ~,
the morphism Fjy induces a o-morphism Fyp : ® — D lifting the Frobenius morphism
of ;. We denote by ¢g, the homomorphism 05, = Fg5'(0p,) — Op, induced
by Fo. Since o, (Jo,) = 0, we deduce that for any 0 < r < p, we have pp_(JI")
p" Oy, . Since ®,, is flat over .7, ([4] I 4.5.1), dividing o by p”, we obtain a
semi-linear morphism with respect to Fp

n+r

(13.14.2) Pp, el - 0p, YO<r<p-Ll

DEFINITION 13.15 ([13] II ¢), [35], 2.1.7). — (i) Let (.#,.#*) be a proto-T-crystal
over X,/.%, of length < p (13.13), (M = .#%,,V) the associated quasi-coherent
Os,-module with integrable connection and M*® the associated filtration (13.12).
A family of divided Frobenius morphisms on (.4 ,.#*) with respect to (¢, Fy) is a
family of semi-linear morphisms {¢§, : M" — M}, ., with respect to Fyp satisfying
the following conditions:

() @hp|M™1 = ppptt

(b) For any integers r, s > 0 such that r + s < p and any local sections a of Jg], x
of M*, we have

,Vr <p—1 (in particular, <p53~f = p'ply for i > 0).

P " (az) = 0, (a)phn(2)-
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(c) The following diagram commutes for all < p (13.14.1):

V|
r Mr r—1 1
(13.15.1) M ———— M Q0 %y
O wa@d’?
M v M 0l
oy, by, 17,

(ii) A Fontaine module over X with respect to (1, Fy) is a pair of a proto-T-crystal
(M, M*) over X/, of length < p for some integer n > 1, together with a family
of divided Frobenius morphisms with respect to (¢, Fy). We can equivalently write
such a data as a quadruple 9t = (M, V, M*, ¢3,) given by the evaluation of (.#, #*)
at D (13.12).

(iii) A morphism between two Fontaine modules 9T and 91 is a morphism of crystals
compatible with the filtrations and the divided Frobenius morphisms.

We denote by MFy,(X; ¢, Fy) the category of Fontaine modules over X with re-
spect to (¢, Fiy). The quadruple (Op,, Vo, , Jﬁ[D.T]L’ ¢%..) is an object of MFyig (X; ¢, Fy).
Let M = (M,M*,V,pg3;) be an object of MFyi,(%;¢, Fy). Since M is an
On-module, the de Rham complexe M ®g¢,, Q'@n e is concentrated on X. By Grif-
fith’s transversality, for any r < p—1, we have a subcomplex (M"~?®g,, Q%n/yn)q>0
of the de Rham complex M ®g,, . Q*Eﬂn/fn' By (13.15.1), the divided Frobenius mor-

phisms {¢3;} and % induce a W-linear morphism of complexes
(13.15.2) (M7 @0y, Uy 50) Qaw W — M ®py Oy 1.

13.16. — Let 9 = (M, M*,Vr, p3y) be a p™-torsion object of MFyg(X;¢,9). We
define the 0p-module M as the quotient of @, F(M") by the Op, -submodule
generated by local sections of the following forms:

(i) 1®z)r—1 — (1Qpx), forallz e M",r <p,
(i) (pp,(a)@1)s — (1®ax), s forallaeJ%l,meMﬂr)O,r—i—s<p,

where (—), denotes the canonical inclusion FX(M") — @, FZ(M"). In view of
condition (d) of 13.15, the morphisms {¢}; }r<p induce an Ogp-linear morphism

(13.16.1) o+ M — M.

DEFINITION 13.17. — We say that an object 9t of MFy,;(X; ¢, Fiy) is strongly divisible
if gy is an isomorphism.

13.18. — In the case X = %) and ¢ = id, we have ©,, = X,,. We write simply
MFy,;(%; Fx) for MFyi.(%;id, Fx) and we denote by MF(X; Fx) the full subcat-
egory of MFy,,(X; Fx) of strongly divisible objects whose underlying ¢x-modules
are coherent.
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Let M = (M,V,M*, pg;) be an object of MFy;,(X; F'). The condition (i-b) of
13.15 and the relation (ii) of 13.16 are empty and we have N = F3¥ (]\7) (13.2.2).

13.19. — Suppose that there exists a o-lifting Fx : X — X of the Frobenius mor-
phism Fx. The morphism F induces an .-morphism F' : ¥ — X’. Let (M, V, M*) be
an object of MICE" (%X,/5,). By (9.18.6) and 13.6, the morphism F' induces a func-
torial isomorphism of MIC* (%,,/.7,):

(13.19.1) (7 (M,V)) = v(C*(.A7)),

where ®,, is Shiho’s functor (6.1.4) defined by F. The underlying Oz -module

of @, (7*(M,V)) is F5(M) (6.1.4). We denote the connection on F¥ (M) by V.
Given a horizontal morphism ¢ : Z/(C*(ﬁ)) — (M, V), we obtain a horizontal

morphism ¢ and a family of morphisms {% : M* — M}f:_ol:

(13.19.2) or = ponp : (FE(M),Vp) - (M, V),
(13.19.3) i M BT 2R g

For i > 0, we set @}i = p'¢%. Then we obtain a functor
(13.19.4) Ap : MFpi(X) > MFy,(%; Fx) (M,V,M*,p) — (M,V,M*, 0}%).

Conversely, a family of divided Frobenius morphisms {¢% : M* — M};<,_1 satis-
fying (i-a,c) of 13.15 induces an 0%, -linear morphism ¢p : F;E“(M) — M (13.16.1).
Then we obtain a morphism ¢ : C*(/Zlv’)(x’x) — M by composing with 7];1. We
define a functor

(13.19.5) xr : MFyig(X; Fx) > MFy,;(X) (M,V,M*, %) — (M,V,M*, o).

PROPOSITION 13.20. — The functors Ap (13.19.4) and xr (13.19.5) are well-defined.
They induce equivalences of categories quasi-inverse to each other and preserve the
strong divisibility condition (13.7), 13.17.

Proof. — Let (M,V,M?*,¢) be an object of MF4,s(X). It follows from the definition
of M that the morphisms {p%} satisfy condition (i-b) of 13.15. We show that they

also satisfy condition (i-c). Recall 6.1 that for any local sections m of M and f of Ox,,
we have (6.1.3)

(13.20.1) Ve (fFE(m) = fC(FE(V(m))) + FE(m) ® df,
where ( denotes the composition

id ®dFx /p
) —2xE,

F;(M®ﬁxn Q;en/yn) — F;(M) ®ﬁxn F;(Q.‘}fn/yn F;(M) ®ﬁxn Q.’l{n/yn‘

For any 0 < i < p — 1 and any local section m of M?, we denote by (V(m));—1

the image of V(m) via M*~! ®ey, Q — M@@xn Q forl<i<p-1

1 1
Xn/n Xn/Fn
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and by (V(m))_1 the image of pV(m) in M@gxn Q% ., for i =0.1In view of the
definition of V (13.3), we have V((m);) = (V(m));_1 and

(13.20.2) V(eh(m)) = or @A(Vr(FE(m))  (13.19.3)
= pr ®Id(C(FE(V((m);))))  (13.20.1)
o ® %«Wm))iq)
dFx

— il —= m)).
=¢r ® p(V( )

The commutativity of (13.15.1) follows. The functor (13.19.4) is well-defined and
preserves the strong divisibility conditions.

Conversely, let (M,V, M*, %) be an object of MFy,;.(X; Fx). In view of (13.20.2),
the associated morphism ¢p : F§ (1\7 ) — M is compatible with the connections Vg
and V. Via np' (13.19.1), we obtain a morphism ¢ : V(C*(/Z/v’)) — (M,V)as (13.7.1).
Hence the functor xr (13.19.5) is well-defined and is clearly quasi-inverse to Ap. [

REMARK 13.21. — In particular, we see that the notion of Fontaine module over .
(13.7) is compatible with the notion of Fontaine modules over W introduced by
Fontaine and Laffaille (cf. [15] 1.2 or [36] 2.2.1).

13.22. — Let F, F3 : X — X’ be two liftings of the relative Frobenius morphism F'x
of X and let F; x = 7o F; : X - X. In ([13] proof of Thm. 2.3), Faltings proposed a
Taylor formula to construct an equivalence of categories between MFy;. (X; F5 x) and
MPFyig(%; F1 x). We will show that this Taylor Formula (13.22.6) is naturally encoded
in the Cartier equivalence.

We present an explicit description of the equivalence of categories

(13221) )\F2 OXF, : MFbig(%; Fl’x) = MFbig(%; Fg’x).

In particular, we will see that Faltings’ construction coincides with the above equiv-
alence.
The morphisms F; and F, induce a morphism of & (9.20.1)

(13.22.2) a:p(X,%) - (X', Rer).

Let (M, V, M*) be an object of MICE™ ' (%,,/.%,). Recall that the morphism « induces
a functorial isomorphism of MIC*(%,,/.%,) (9.23.1)

(13.22.3) o (th(eg)) + (Ffx(M), Vi) = (Fix(M),Vr),

such that ng, = nr, 0 a*(7h(e57)) (9-22). In view of the proof of 13.20, a family of
divided Frobenius morphisms {@%j }i<p—1 is equivalent to a horizontal morphism ¢,
(13.19.2) for j = 1,2. Then the functor (13.22.1) is given by

(13.22.4) MF i (X; Fy x) — MFyip(X; Fo x)
(M,V,M*,0F,) = (M,V,M*,¢p, o a*(1%(e5)))-
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Let us describe the isomorphism (13.22.3) in terms of a system of local coordinates.
Assume that there exists an étale .-morphism f : X — Ad, = Spt(W{T1,...,T4})
and put t; the image of T; in Ox and & = 1 ®t; —t; ® 1 € Ox2. Let i be an integer
€ [0,p — 1], m an element of M* and (m); its image in M. We have (13.5.6)
(13.22.5)

[1]—i

I I

[I<i [I]>i p

Recall that the morphism a : X — Ry (13.22.2) induces a homomorphism
’ * A AL )
a: Ryx — Ox (9.20.2) which sends % to L2t Fix(t) (9.20.3). We deduce that

(13.22.6)
Fro(t) — FFo()\!
o (rh(eg)) (1 ®p, (m)s) = ) ( ’X()p 2! )) (F@“}“(v(7 (M),
=i g
Fiet) — Fiz@)\' o pll-

' ”Z>( P ) Qg (Vor(m))o,

where

Fix® = Fie®\' 5 Foaelty) = Fix(t)\" .
( p ) _n< p ) V1= (i1, ia) € N

Jj=1

We review some basic properties about Fontaine modules. The following result is
fisrt showed in [13] and we refer to [29] for another approach.

ProposITION 13.23 ([13] 2.1; [29] 5.3.3). — Suppose that there exists a o-lifting
Fx : X — X of the Frobenius morphism. Let (M,V,M?*, ) be an object of MF(X; Fx)
(13.18).

(i) Then each M" is locally a direct sum of sheaves of the form Ox,; each mor-
phism M* — M1 locally split. In particular, (M,V,M*) forms a T-crystal (13.13).

(if) Any morphism of MF(X; Fx) is strictly compatible with the filtrations ([9]
1.1.5).

(iii) The category MF(X; Fx) is abelian.
Then we deduce the corresponding statement for (global) Fontaine modules.

COROLLARY 13.24. — (i) For every object (M,V,M?*,¢) of MF(X), (M,V,M?*)
forms a T-crystal.

(ii) Any morphism of MF (X) is strictly compatible with the filtrations.
(iii) The category MF(X) is abelian.
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Proof. — Assertions (i) and (ii) being local, they follow from 13.20 and 13.23.

For any morphism f : (M1, V1, M7, 1) — (M2, Va2, My, p3) of p"-torsion objects
of MF(X), we denote by (L,Vy) and (N,Vy) the kernel and the cokernel of f
in MICY™(X,,/.%;,). We denote by L* (resp. N*) the filtration on L (resp. N) induced
by M7 (resp. M3) ([9] 1.1.8). Since f is strictly compabitlbe, for any i < p, we have
f(M}) = f(My) n M} ([9] 1.1.11) and an exact sequence 0 — L° — M} — M4 —
N? — 0. By the snake lemma, we deduce an exact sequence

0—L— M — M, — N —0.
Then we deduce a commutative diagram

0 ——= v(C*(L")) —= v(C*(M])) —= v(C*(M})) — v(C*(ANT)) —=0

Sﬁlll ZJ/SDQ,

0 (L,VL) (Mq,Vh1) (M2, V) (N,Vn) 0.
Hence we can define Ker(f) and Coker(f) in MF(X). We deduce that the category
MF (%) is abelian. O

13.25. — In the following, we compare categories MF (X; ¢, Fy) with respect to dif-
ferent choice of data (v : X — 9, Fy) following Tsuji [35].

Let (¢1 : X — D1, Fy,) and (12 : X — 9o, Fy,) be two data as in 13.14 and
suppose that there exists a smooth .-morphism g : 9o — 21 compatible with
t1,t2 and the Frobenius morphisms Fy, and Fy,. Then g induces a PD-morphism
gp : ®2 — ®; compatible with Fi5, and Fp,. Note that gp induces an isomorphism
on the underlying topological spaces.

LEMMA 13.26 ([35] 2.2.2). — Let x be a point of X,, and let t1,...,tq be a family of
local sections of Oy, in a neighborhood of 13(x) such that {dty,...,dts} form a basis

of Ql@z D1 and that '5(t;) = 0 (the existence follows from the fact that 1 is a
closed immersion). Then there exists an Oy, ,, o-PD-isomorphism
(13.26.1) Op, v alT1,..., Ta) = O, o

which sends T; to t;.

PROPOSITION 13.27 ([35] Proof of 2.2.1). — Keep the assumption of 18.25. The mor-
phism g : Yo — Y1 induces equivalences of categories quasi-inverse to each other:
g* : MFyig(%; 01, Fy, ) — MFpig(X; 12, Fy,),

(13.27.1)
g+ MFbig(X; 12, Fy,) — MFbig(X; 01, Fy, ).

We present the construction of pull-back functor and we refer to [35] for the con-
struction of the push-forward functor. Let 9 = (My, Vi, M7, ) be a p"-torsion
object of MFyie(X; 1, Fy, ) and (.4 ,.#*) the associated proto-T-crystal.

The evaluation (My, Va, M3) of (A, #*) at D3 is given by My = Oy, , ®ﬁ©1’n M,

and for r e Z, M} = Im(Jg;]n Ry,  Mi* — M) (13.11).

r1=20,r14+ro=r

MEMOIRES DE LA SMF 163



CHAPTER 13. FONTAINE MODULES 117

The connection Vs, : My — Ms ®oy, . 912)2 )T is defined, for any local sections
a of Op,, and m of M, by

(13.27.2) Va(a®@m) =a-g*(Vi(m)) + m® Vs, (a).

Let = be a point of X. With the notation and assumption of 13.26, for any I =
(it,...,iq) € N%, we set T = [T?_ 7). In view of 13.15(i-c) and (13.26.1), My,
can be written as a direct sum of Op, , ;-modules M3, = @ -, M{,° T, For
any r < p, we deduce that the semi-linear morphisms

r ro . 7lr1] r
Pr, @@V g, ®op,  M* > My, ritry=71,0<r<p-1

are compatible and induce a family of divided Frobenius morphisms with respect
to F Do+

(13.27.3) oy M5 — M.

Conditions 13.15(i a-c) follow from those of ¢} and of @5, .

REMARK 13.28. — By (13.27.2), the morphism ¢ induces a morphism of de Rham
complexes

(13.28.1) M ®oy, , Uy, 19, = M2 @0y, Uy, /7,

For any r < p — 1, we have a commutative diagram (13.15.2)

(13.28.2) (M7~ ®6y, , Q'mm/yn) Qow W —— M ®,ﬁ%yn Q.%,n/&”n

| |

(Mgi. ®6’Q_)2m, Qé)z,n/yn) @U,W W —— M, ®ﬁ@2,n Q;D2"/y"

LEMMA 13.29 ([35] 2.3.2). — The functor g* (13.27.1) sends strongly divisible objects
to strongly divisible objects (13.17).

Proof. — The canonical morphisms Op, , ®¢,, ~M{ — Mj induce an Oy, -linear
morphism (13.16)

(13.29.1) uy : gl (M) — g*(M).

In view of condition 13.16(ii), the above morphism is surjective. We have a commu-
tative diagram:

(13.29.2) g5 (M) — Lo g% (M)
QE(VJ&m)L L%*(m)
95 (M) =—= Mo.

If pgy is an isomorphism, then u, is an isomorphism and so is g (gr). The lemma
follows. O
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In the end, we construct a natural functor from MFy;z(X) to the category of
Fontaine modules with respect to the diagonal immersion and two liftings of Frobenius
morphism on X.

PropoSITION 13.30. — Suppose that X is separated over .. Take again the notation
of 13.22 and let A : ¥ — X2 be the diagonal immersion, q1,qs : X2 — X the canonical
projections and Fx» = (Fy x, Fy x) : X2 — X2. Then the diagram

A
(13.30.1) MF i, (X) ——~ MFpi(X; Fy x)

AFQ L J/q;k
*

MPF i (X; Fax) —2> MFp,(X; A, Fxe)

is commutative up to a canonical isomorphism.

Proof. — Let M = (M,V,M?*,¢) be a Fontaine module over X and ¢p, = ¢ o np, :
Fre(M) — M (13.19.2) for 4 = 1,2. Then we have A, (M) = (M,V,M*, ¢F,) €
MFyi.(X; F; x). We denote abusively by ¢; the composition Px — X2 2, % and we
set 9M; = qz*(>‘E (gﬁ)) = (ql*(M),VZ,AZ.,QO;ml) € MFbig(}:;AaF&”)'

Let £ : ¢ (M) = ¢f (M) be the Px-stratification on M. By 13.12, it is a filtered
isomorphism with respect to the filtrations A3 and A}. It remains to show that ¢ is
compatible with the divided Frobenius morphisms ¢g, on both sides.

~

Since ¢ : C*(.A4’ )(x,x) — M is a horizontal morphism, the following diagram
commutes

(13.30.2) g5 (C* (M) (x,x) — C* (M) (x,py) ~—— @} (C* (M) (x 2))
a¥ () Lqi"(w)

g3 (M) = qi (M).

We have ¢r, = nr, o ¢ and the following commutative diagrams:
(13.30.3)

~  a¥(nry) ~ ~  af(nr) ~

@ (F3 (M) —— a5 (C*(A") (x %)) qf (Ff' x (M) —— ¢f (C*(A") (x x))
3 () Fe)
a¥ (ory) qu ? a4 (ory) l/ql ?
g5 (M), qi (M).
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The filtered isomorphism € : A5 — A$ induces an isomorphism & : 5)\?; = {D\ﬂ (13.16).
In the diagrams

(13.30.4)
0§ (F§ £ (M) ——= C* (") (x,pe) —— af (Fi 5 (M)
e
af (ory) N, d 0, ¥ (pry)
Lvmz (2) Py 1/
g5 (M) : gi (M)

the left-hand side diagram and the right-hand side diagram are commutative (13.29.2).

To prove the assertion, it suffices to show that diagram (2) is commutative. By
(13.30.2) and (13.30.3), the outer diagram of (13.30.4) commutes. Since ug, is surjec-
tive (13.29.1), it suffices to prove the following lemma. O

LEMMA 13.31. — Diagram (1) of (13.30.4) is commutative.

Proof. — Recall (9.19) that Fy, Fy induce a .-morphism Qx — Rzx/. We denote the
composition p(X, Px) — p(X,Qx) — (X', Rx/) of morphisms of &’ (9.1.2) by f. It
fits into the following commutative diagram:

p(X, %) 22 (X, Py) 22 (X, %)

le | fl | lF

(X/’x/) & (X/7Rx,) L) (Xl7%/)_

Hence the composition g3 (F2*3€(.7\7)) = qf(Ff‘x(M)) of the upper arrows of dia-

gram (1) coincides with the pull-back of the R x-stratification €37 on M (13.5) via

the composition Py 4, Rz ™% Ry (13.6):

(13.31.1)  f*(nhles) s Px®py (Rx ®or M) > Pr®g, (M®cy, Rox)-
To show the lemma, we may suppose that there exists an étale morphism X — &fiy

and we take again the notation of 13.22. For 1 < k < d, we set Fj*(t},) = t} + paj, and
Fi(t),) =t} + pbi. By (9.19.3), the homomorphism Ry — P induced by f sends

(13.31.2) (%) — zp = 'fk + 2 Sk (tr®@1)P ™7 + (1®by, —ar ®1).

For any multi-index I = (iy,...,4q), we set 2zl = Hk:l z,i’“. Let ¢ be an integer
€ [0,p — 1], m a local section of M* and (m); its image in M. By (13.22.5) and
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(13.31.2), the isomorphism (13.31.1) sends

(13.31.3)
ZI pul i I
1®(1®g, (m)i) = >, F®((Vor(m)ioin®q, 1)+ ) Vo1 (m)o®q, 1)
[T]<i |I]>1
The Px-linear morphism ug, (resp. ug,) (13.29.1) sends

(13.31.4)

18(184, (m);) = (18kp, (1@,m));,  (tesp. 1((m);®p, 1) = (10, (M@, 1)),
where (—=); : Fp_(A%) — 937 denotes the canonical morphism for j = 1, 2.

On the other hand the 1somorph1sm £: Ab =5 Al sends 1®@m to Y, Var (m) @€
Hence the isomorphism € : My ~> My in diagram (1) sends

(13.31.5) (1®r,, (1®4m)), = Y (1@, (Vor(m) ®, £&1)),.

I

With the notation of 13.14, the divided Frobenius morphisms on (0p, ,J 1[;33 ) satisfies
(13.31.6)
[I|—i I
- i iy _ P z .
@Pxn(é-k)_pzkaV1<k<d7 @Pxn(f )_ I ) vz<p7‘l‘>l

By conditions (i) and (ii) of 13.16, we deduce that

I .
(5 ®pr (Vor(m)®1)),—p if 1] <4,

m . )
(= ®Fp, (Var(m)®@1))o if I > i.
By comparing (13.31.3), (13.31.4), (13.31.5) and (13.31.7), the assertion follows. [

(13.31.7) (1®p,, (Vor(m)@EM)); = {
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CHAPTER 14

THE FONTAINE MODULE STRUCTURE
ON THE CRYSTALLINE COHOMOLOGY
OF A FONTAINE MODULE

To illustrates our definition of Fontaine modules, we reprove the following result
of Faltings on the crystalline cohomology of a Fontaine module.

THEOREM 14.1 ([13] IV 4.1). — Let X be a smooth proper formal . -scheme of relative
dimension d and (M,V,M?*,¢) a p"-torsion object of MF(X) (13.7) of length < £ <
p—1 (i.e., M'*' = 0). We denote by F* the subcomplex M*~* ®ox, Q;En/-?n of the
de Rham compler M ®c, Q% /5. -

(i) Let m be an integer such that min{m,d} + ¢ <p —1 and i an integer <p — 1.
Then the canonical morphism H™(F*) — H™ (M ®¢», Q% o, ) is injective.

(ii) Let m be an integer such that min{m,d—1}+¢ < p—2 and i an integer < p—1.
The isomorphism ¢ induces a family of semi-linear morphisms ¢y : H™(F') —
H™(M Qox,, %, )5,) (with respect to o). Then the data

(H™(M ®6x, O, /5,)s H"(F)) 2y, (d57)7)
form an object of MF () (13.21).

(iii) In the spectral sequence of the filtered de Rham complex (M Q¢ Q%n/yn’ F)
([9] 1.4.5)

(14.1.1) ED® = H(grp(M ®6x, V%, /5,) = T (M Q0. 0%, /5.),
the differential morphism dy® vanishes for min{r + s,d — 1} + £ <p — 2.

The data (0%, ,d) defines a Fontaine module of length 0 over X. By 14.1(iii), we
deduce that:

COROLLARY 14.2 ([16] 2.8; [13] IV 4.1). — Ifd < p—1, the Hodge to de Rham spectral
sequence of X,/ degenerates at E;.

We defer the proof of the theorem to 14.18 and we begin with some preparations
on crystalline cohomology of T-cyrstals (13.13) following Ogus [29].
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14.3. — Let ¢ : 0 — ¥ a closed immersion of smooth .#,-schemes and & the
PD-envelope of ¢ compatible with v. Let (.#, #*) a T-crystal of (/% )arys (13.13)
and (M, V) (resp. M*) the associated & g-module with integrable connection (resp.
filtration) (13.12). Since M* satisfy Griffiths’ transversality, it induces a filtration on
the de Rham complex M ®g¢.,, ny/yn defined for every i € Z and q € Z>( by

(14.3.1) F'(M ®g, Q) =M"1®s,9 .
Since M is an & g-module, the de Rham complex M ®ﬁyﬂ"y /S is concentrated on &Y.
Ogus showed that the above subcomplex computes the crystalline cohomology

of A*.

THEOREM 14.4 ([29] 6.1.1). — We keep the above notation and we denote by gy,
the canonical morphism of topoi (X/7n)erys = Ngar-

(i) There exists an isomorphism in the derived category D( X ar, W)
(14.4.1) Rugz, (M) = M5 ®c, Ny,

(ii) For every i, there exists an isomorphism in D(Nyar, Wy) compatible with
(14.4.1)

(14.4.2) Rug) (M) = F (Mg @0,y 5,).

COROLLARY 14.5 ([29] 6.1.7). — Let ¢; : X — Y, and 13 : b — Y, be two closed
S-immersions of & into smooth .7, -schemes, i, Lo the PD-envelopes of i1, Lo
compatible with v and f : Yy — Y, an S -morphism such that 1y = f o1. Then the
morphisms of complexes induced by f

My, Roy, Ny g, — Mg, Q0 Xy 5,
Fi (Mg, @y, Xy ) = F( Mo, ®0,, Oy 1), Viel,
are quasi-isomorphisms and compatible with (14.4.1) and (14.4.2).

14.6. — We suppose that ¢ is separated over .#, and we take a Zariski covering
U = {U;}ier of & consisting of affine schemes. For any integer r > 0 and any element
J = (jo,J1s---,4r) of I"™', we denote by U’ the intersection ();_, Uj,, by U, the
product {U;,}7_, over W,, and by P; the PD-envelope of the diagonal immersion
U’ — Uj; compatible with ~. Note that U’ and P; are also affine. Then we obtain
two compatible simplicial objects:

d -

(14.6.1) l_lz‘eI Ui <:>S |_|Je12 U’ e — UJe13 u’...
_d —2

(14.6.2) Llies Ui —= Userr U == Uyeps Us -+,
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where d, s denote the faces and degeneracy morphisms. Then the faces and degeneracy
morphisms of (14.6.2) induce a simplicial object compatible with (14.6.1):

d
d e —
(14.6.3) |—|'iEIUiSSL'JEIQPJSLL]EI?’PJ...

Let (A, #°) be a T-crystal of (/% )crys- We associate to (A4, .#*) a bicomplex
C5, () and for any i € Z, a bicomplex F*(C3,*(.#))) by setting

(14.6.4) Cy(M)= P TU, Mp, 6y, y,0.), T80
J6]r+1

(14.6.5) F(Cy' () = @ TWU, 45" ®oy, Uy,y0), 15820,
Jelr+1

the horizontal differential morphism 0]*° is the alternating sum of the resctriction
morphisms induced by the faces morphisms (14.6.3) and the vertical differential mor-
phism 05° is given by the connection on .Zp,.

PROPOSITION 14.7 ([13] IV a)). — There exist canonical isomorphisms of cohomology
groups:
(14.7.1) H* () n)exys, A ) — H* (Tot(C3" (A)))

H*((H/ S n)erys, #*) = H*(Tot(F* (C3* (A)))), Vi€ L.

Proof. — Let e be the final object of (X/#5)arys. An open subscheme U of X defines
a subobject U of e by

e(V,T) itV cU,
%) otherwise.

U, T) = {

Moreover, there exists a canonical equivalence of topoi ([4] IV 3.1.2)
(1472) (gc/y")crys /fj = (U/yn)crysa

which identifies the localisation morphism with respect to U and the functoriality
morphism induced by U — X. Then, the morphisms {U — e}ze[ form a covering
in (X/p)erys- With the notation of 14.6, we have [ [, ; U U, By cohomological
descent, we have a spectral sequence ([10] 5.3.3.2, [3] Vbls 2.5.5)

(14.7.3) B = P H (U ) S)exysr MNUT) = T (). exysr M),

Jelr+1

whose differential morphism d}** : E7"® — Ej*"* is the alternating sum of the mor-

phisms induced by the faces morphisms of (14.6.1).

On the other hand, we calculate H®(Tot(C3,"(.#))) by filtering this bicomplex by
rows ([19] 0.11.3.2). By 14.4(i), the vertical cohomology of C3,°(.#) is isomorphic to
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a direct sum of crystalline cohomology groups
(14.7.4) H® = Ker dy°/ Im(ag,s—l)
D H((U?)S)erys: AU

Jelr+1

12

Recall that we have a spectral sequence ([37] 5.6.1)
(14.7.5) E]"® = Hp® = H'™"*(Tot(Cy,° (A))),

whose differential morphism d)** : E["* — E™"*® is induced by the morphism of
complexes

(14.7.6) o Ch (M) — C:;l,.(%)_

In view of 14.5 and 14.6, the morphism d}"° coincides with d;”* (14.7.3). Then the
assertion for .# follows.

Using 14.4(ii) and 14.5, one verifies the assertion for .#* in the same way. O

14.8. — We consider the injective &g/, -linear morphism
p—1 ) p—1 )
(14.8.1) g P> P A
i=1 i=0
defined for every local section m of .Z® by g(m) = (m, —pm) in .4~ ® .#*. We set

A 4 = Coker(g). For any r, s € Z, the morphism ¢ induces an injective morphism
(14.8.2)

p—1 ) p—1 )
D D T, 4, ®oy, W,5,) > D D TU,Mp" ®oy, U,y ,)
i=1 Jelr+1 =0 JeI+1

compatible with the differential morphisms and hence an injective morphism of bi-
complexes:

(14.8.3) go : Zé F'(Cy (A)) — péa F'(Cy*(A)).
i=1 1=0

We denote its quotient by C3,°(Az). By 14.7, the crystalline cohomology groups
of A 4 are canonically isomorphic to cohomology groups of Tot(C3," (A #)).

14.9. — Let X be a smooth and separated formal .#-scheme. In the following, we
will use 14.7 to construct a Fontaine module structure on the crystalline cohomology
of an object of MF(X) (13.7). For this purpose, we first show how to associate an
object of MFy,s(X) to a Fontaine module with respect to a family of Frobenius liftings
(13.15).

Suppose that there exist m + 1 liftings Fi,..., Fj,1+1 of the relative Frobenius
morphism Fy /, of X. We set 7 : X’ — X the canonical morphism, Fygm+1 = ™o
(F,...,Fpy1) : Xm0 — X™+1 and A : X — X™*! the diagonal closed immersion.
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For 1 < i < m + 1, the projection ¢; : X™*! — X on the i-th component induces a
functor (13.27.1)

q;k . MFbig(}:; Fi,.’{) - MFbig(X; A, Fxm+1).
By composing with the functor Ag, (13.19.4), we obtain a functor
(1491) q:‘ o )\Fi : MFbig(.’{) i MFbig(%; A, Fj{m+1).

We denote by Px(m) the PD-envelope of the diagonal immersion A compatible
with v (5.7) and by Fp, () : Px(m) — Px(m) the lifting of Frobenius morphism
induced by Fygm+1 : X™F1 — X™+1 We denote abusively the composition Px(m) —
xmtl L % by g,

PROPOSITION 14.10. — Let n be an integer > 1, M = (M,V,M*,¢) a p"-torsion
Fontaine module over X, .4 the crystal of O, s, -modules associated to (M,V) and
{4} the filtration on A associated to {M*} (13.12). Then there exists a functor

(14101) MFbig(X) - MFbig(Z{; A, Fxm+1)
(M7 v’ M.a ‘p) = (%Px(m)’ VPBE(m)’ %ng(mﬁ QOIDX(m))v
which is isomorphic to the functor ¢f o Ap, (14.9.1) via the transition morphism

(14.10.2) Cq. 1 @i (M) = Mpy(m)-

Proof. — It suffices to show that the divided Frobenius morphisms ¢3; constructed
by ¢ o Ap, (14.9.1) are compatible via g; (14.10.2). We can reduce to the case m = 1.
In this case, the proposition follows from 13.30. O

14.11. — In the rest of this section, we suppose that X is a smooth proper formal
#-scheme of relative dimension d. Let n an integer > 1, (M,V, M*,¢) a p"-torsion
object of MF(X) of length ¢ < p (i.e.,, M* # 0, M**' = 0) and (A4, .#*) the

associated T-crystal (13.24). We write simply HZ,  (—) for the crystalline cohomology
groups H* ((Xn/%n)erys, —)-

LEMMA 14.12. — Keep the notation of 14.8 and of 14.11. The morphism ¢ induces
W -linear morphisms of bicomplexes

(14.12.1) b F(CRN (M) @oow W — Cp (M), VO<i<p-—1,
(14.12.2) Ve 1 Cy (A y) @ow W — C3° (),

which are functorial in (M,V,M?*,¢) € MF(X). In particular, we obtain for m > 0,
W -linear morphisms

(14.12.3) ot HI (M) Qew W — HIL (M), YO<i<p-—1,
(14.12.4) ™ HE (Ay) ®oow W — HIL ().
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Proof. — We take a Zariski covering % = {i;};cr of X consisting of affine formal
schemes and for each i € I a lifting F; : 4; — Y of the relative Frobenius mor-
phism of §; ;. For any integer r > 0 and J = (jo,...,j,) € I""!, we denote by U/
the intersection (;_,4;,, by t; the product of (r + 1)-copies of 4’ and by P; the
PD-envelope of the diagonal closed immersion 7 — 31;. Note that Py is equal to the
PD-envelope of the immersion of £/ in the product of {il;,}I_, over .#. We denote
by Fy, : $f; — by the morphism induced by {F},}?_, and by Fp, : P; — Py the lifting
of the Frobenius morphism induced by Fy,. By 14.10, we associate to (M,V,M*, ¢)
a family of divided Frobenius morphisms with respect to (U7 — L, Fy,):

(14.12.5) ©p, 1 Mp, — Mp, Vi<p-—1.
For any r,s > 0, in view of (13.15.2) and (13.28.2), the W-linear morphism

i—s dF; i—s
C—D Yp, ®/\s< pUJ>: @ I—‘(L[J“%PJ ®ﬁu.},n jiJ,n/‘yn)C@U’Vvvv

Jelr+1 Jelr+1
s
- (‘D il wax ®6’uJ QuJ,n/yn)

Jelr+1

is compatible with differential morphisms 0}'*, d5'* of F*(C3,° (.#)), C3," (.4) respec-
tively (14.6). Then we obtain a W-linear morphism of bicomplexes

(14.12.6) Pt FH O (M) ®oow W — C° ().

By condition (i-a) of 13.15, we see that the composition (14.8.3)

(14.12.7)

B F (O3 (M) @y W 25 @) F (O () @iy W 2 €3 ()

vanishes. Then we obtain a W-linear morphism of bicomplexes
(14.12.8) Yo C (M) @ow W — O3 ().

It is clear that the above constructions are functorial.
By 14.7 and 14.8, we obtain morphisms of cohomology groups (14.12.3) and
(14.12.4). O

PROPOSITION 14.13. — If pM = 0 and min{m,d — 1} + £ < p — 2, the morphism ™
(14.12.4) is an isomorphism.

Proof. — We use Hy"*(—) to denote the vertical cohomology of a bicomplex. Recall
(14.7.5) that we have two spectral sequences:

(14.13.1) E7° =HP®(C5 (Ay)) = H'°(Tot(C3° (Air)))
(14.13.2) E7® = Hp*(C3)° () = H' ™ (Tot(C3)° (A))).

The morphism of bicomplexes ¢ induces a k-linear morphism of spectral sequences
E'®, 1k — E. Then it is enough to prove that for every r > 0 and s satisfying
min{s,d — 1} + £ < p — 2, the induced morphism

(14.13.3) H*(C3" (An)) Qo k — H{(C° ()
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is an isomorphism. Since .Z i 1s p-torsion, we have A 5 = @z o er'(A)@® . 4P For
any s > 0, weset A} = V-2 gr' (.4 ) ®.#P~1*. Since 4’ is affine, C}°(A_4) can
be written as a dlrect sum

@ F(ﬂ.]’Aj/‘;,PJ ®ﬁu.],1 Qfl(]yl/k)'
Jelr+1
Recall (14.12.6) that the divided Frobenius morphisms ¢% : .#p — #p, and the
semi-linear morphism A (dF ) Qg i — ¥, induce a k-linear morphism
J,1 J,1

w;’,g : P(uJ7A;/[s,PJ ®ﬁu‘,y1 u‘jyl/k) ®U’k k — F(ﬂJ’ '%PJ ®ﬁu1,1 Qfl]J/k)

and that the morphism ¢5° (14.12.2) is defined by a direct sum of morphisms
D rer+ e

Then the assertion follows from the following lemma. O

LEMMA 14.14. — For any r >0, J € I"*1, the morphism of complexes
(14.14.1) 95y T A, b ®ou,, i) ok k= DWW, Mp, @0y, U, 1)

induces an isomorphism on the m-th cohomology group for any integer m satisfying
min{m,d — 1} + £ <p — 2.

Proof. — In view of (13.28.2) and (14.5), we can reduce to the case where r = 0, J € I.
To simplify the notation, we write U for {7, F' for the lifting of Frobenius Fy : 4 — §{’,
U the special fiber of 4 and M (resp. M?) for My = M|U (resp. ¢ = M'|U).
We set gr(M) = @5:0 M?¢/M*+1. By Griffiths’ transversality, V induces a Higgs
field on gr(M):
0 : gr(M) — gr(M) ®ox Ui
The source of (14.14.1) can be written as

p—2—s
(14.14.2) @ gr' (M) ® MP~'"°) ®gy, Q) i) Qo K,

which is equal to
(14.14.3) (U, gr(M) ®oy Q1) @0k k ifs<p—-1-¢
The differential morphism of the source is induced by 6 for s <p—1— /.
Since pM = 0, we have (M,V) = (gr(M),0) (13.8). The isomorphism ¢ and the
lifting F' induce an isomorphism of MIC(%,,/.7,) (13.19.2)
(14.14.4) or : ®1((gr(M),0) ok k)— (M, V).

Recall (13.20) that ¢ induces a family of divided Frobenius morphisms ¢%. The
morphism ¢, (14.14.1), which is induced by ¢}, coincides with the composition
of morphism of complexes (6.5.1) induced by ®; and the isomorphism of de Rham
complexes induced by ¢

(14.14.5) (gr(M) ®ay Uy ) R k — M @, Uy

in degrees < p — 1 — £. Then the lemma follows from 6.5. U
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REMARK 14.15. — Suppose that pM = 0. Let gr(M) = @fzo M?/M**! and 6 the
Higgs field on gr(M) induced by V and Griffiths’ transversality. By 14.4 and a similar
argument of 14.14, we deduce for m < p — 2 — £, an isomorphism

(14.15.1) Heys (M) — H™ (gr(M) @ Q% i)-

PROPOSITION 14.16. — (i) Ifd < p—1—4¢, the morphism ¢¥™ (14.12.4) is an isomor-
phism for all m.

(ii) If d > p—1—4, the morphism ™ (14.12.4) is an isomorphism for m+£ < p—3,
and is a monomorphism for m + £ = p — 2.

Proof. — We prove it by induction on n. In the case n = 1, i.e., M is p-torsion, it follows
from 14.13. Suppose that the proposition is true for n — 1. By 13.24, the quadruple
(pM, V‘pM,pM‘, <p|pc*(//7)) is a subobject of (M, V, M*, ) in MF(X) and we denote

its quotient by (M,V, M.,E). If .7 and .Z" denote the crystal of 0%, /v, -modules
and the filtration associated to (M, V, M.) (13.12), we have an exact sequence:

(14.16.1) O ptli > M > -0 Vi<p—1.

By the snake lemma, we have a commutative diagram:

(14.16.2) 0 0 0
0 —— @V pll' — @ p ' Ap.a 0
0 —— @ M —— @ A A 0
0—— @ W —— @y M ——hfg—0

0 0 0.

Since 9y, is functorial in MF(X), the assertion follows by dévissage from the induction
hypothesis. O

PROPOSITION 14.17. — (i) Let m be an integer such that min{m,d — 1} <p—2— ¢,
the exact sequence (14.8)

p—1 ) p—1 )
0->PMLS DM~ Ay —0
i=1 =0
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induces an exact sequence of cohomology groups

(14.17.1) 0— @ HOy (A @ H () — H (A y) — 0.

(ii) If m + £ = p — 2, morphism Y™ (14.12.4) 18 an isomorphism.

Proof. — We prove the proposition by induction on m. The case m = —1 is trivial.
Suppose that the assertion is true for m — 1 and we will prove it for m. By hypothesis
of induction, we have an exact sequence (which automatically exists for m = 0)

(14.17.2) 0— @ Hey o (A @ HO (A7) — HG (Ag).

Since .#, .#* are coherent, by 14.4, we see that the cohomology groups in the above
sequence are finite type W,,-modules. By 14.16, we have the following inequalities on
the length of W,,-modules

p—1
= Z lan Hgys Z lgW Crys )
=0

Then we deduce the surjectivity of the last arrow of (14.17.2), and that the above
inequality is an equality. The assertion (i) follows. The assertion (ii) follows from 14.16
and the equality (14.17.3). O

14.18. — Proof of 14.1. Assertion (i) follows from 14.4 and 14.17.

We take for ¢fp"* the morphism (14.12.3). Then assertion (ii) follows from (i), 14.16
and 14.17.

Note that the complex F* = 0 if i > d+£. For any r, s satisfying min{r+s,d—1}+£ <
p — 2, we deduce from (i) that

(14.18.1) H™* (g5 (M ®p, U, /) — HH(F")HF(F7H).

Then assertion (iii) follows by comparing the W,,-length of E]"* and of E""*. O
REMARK 14.19. — Using the comparison isomorphism between the de Rham and the
Dolbeault complexes (10.21), Ogus and Vologodsky proved 14.1 for p-torsion Fontaine
modules (13.8) ([31] 4.17). More precisely, let (M,V,M*, ) be a p-torsion object

of MF(X) of length ¢ and 6 the Higgs field on gr(M) induced by V and Griffiths’
transversality. By 10.21, the isomorphism (10.21.1) induces via (13.8.1)

¢ : Cyy (7*(Gr(M),0)) = (M, V),

for m < p—1—/, an isomorphism:

(14.19.1) H™ (gr(M) ® Q% /i) ®o,k k ->Hm(M®QX/k)
By (14.15.1), we obtain for m < p — 2 — ¢, an isomorphism
(14.19.2) crys(A//[) ®0 k k = szs(%)
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The above isomorphism is an analog of the isomorphism ¢™ (14.12.4), 14.13 and
allows us to deduce 14.1 for p-torsion objects. We don’t know whether these two
isomorphisms coincide or not.

Theorem 14.1 provides a generalization of Ogus-Vologodsky’s Result (10.21)
for p™-torsion Fontaine modules. However, we don’t know how to generalize 10.21 for
the Cartier equivalence modulo p™.

MEMOIRES DE LA SMF 163



(1]

2]

3]

[4]

[5]

[6]

7]

8]

9]

[10]

BIBLIOGRAPHY

A. ABBES — Eléments de géométrie rigide. Volume I, Progress in Math., vol. 286,
Birkh&user, 2010.

A. ABBES, M. GRos & T. TsuJi — The p-adic Simpson correspondence, Annals
of Math. Studies, vol. 193, Princeton Univ. Press, 2016.

M. ARTIN, A. GROTHENDIECK & J.-L. VERDIER (eds.) — Théorie des topos et
cohomologie étale des schémas, (SGA /), Tome 1, Lecture Notes in Math., vol. 269,
Springer, 1972; Tome 2, Lecture Notes in Math., vol. 270, Springer, 1972; Tome 3,
Lecture Notes in Math., vol. 305, Springer, 1973.

P. BERTHELOT — Cohomologie cristalline des schémas de caractéristique p > 0,
Lecture Notes in Math., vol. 407, Springer, 1974.

P. BERTHELOT & A. OGUS — Notes on crystalline cohomology, Princeton Univ.
Press, N.J.; University of Tokyo Press, Tokyo, 1978.

R. BEZRUKAVNIKOV, I. MIRKOVIC & D. RUMYNIN — “Localization of modules
for a semisimple Lie algebra in prime characteristic’, Ann. of Math. 167 (2008),
p. 945-991.

N. BOURBAKI — Algébre commutative, chapitres 1-9, Hermann, 1985.

C. BREUIL & W. MESSING — “Torsion étale and crystalline cohomologies”,
Astérisque 279 (2002), p. 81-124.

P. DELIGNE — “Théorie de Hodge. II?, Inst. Hautes Etudes Sci. Publ. Math. 40
(1971), p. 5-57.

, “Théorie de Hodge. III”, Inst. Hautes Etudes Sci. Publ. Math. 44 (1974),

p. 5-T77.

[11] P. DELIGNE & L. ILLUSIE — “Relévements modulo p? et décomposition du com-

plexe de de Rham”, Invent. math. 89 (1987), p. 247-270.

[12] M. DEMAZURE & A. GROTHENDIECK (eds.) — Schémas en groupes. I: Propriétés

générales des schémas en groupes, vol. 151, Springer, 1970, Séminaire de Géométrie
Algébrique du Bois-Marie 1962-1964 (SGA 3).

SOCIETE MATHEMATIQUE DE FRANCE 2019


http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#1
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#2
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#3
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#4
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#5
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#6
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#7
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#8
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#9
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#10
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#11
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#12

132 BIBLIOGRAPHY

[13] G. FALTINGS — “Crystalline cohomology and p-adic Galois-representations”, in
Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns
Hopkins Univ. Press, Baltimore, MD, 1989, p. 25-80.

[14] —, “A p-adic Simpson correspondence”’, Adv. Math. 198 (2005), p. 847—-862.

[15] J.-M. FONTAINE & G. LAFFAILLE — “Construction de représentations p-adiques”,
Ann. Sci. Ecole Norm. Sup. 15 (1982), p. 547-608.

[16] J.-M. FONTAINE & W. MESSING — “p-adic periods and p-adic étale cohomol-
ogy”, in Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985),
Contemp. Math., vol. 67, Amer. Math. Soc., 1987, p. 179-207.

[17] J. GirRAUD — Cohomologie non abélienne, Grundl. math. Wiss., vol. 179, Springer,
1971.

[18] A. GROTHENDIECK — “Eléments de géométrie algébrique. II. Etude globale élé-
mentaire de quelques classes de morphismes”, Inst. Hautes Etudes Sci. Publ. Math.
8 (1961).

[19] — | “Eléments de géométrie algébrique. ITI. Etude cohomologique des fais-
ceaux cohérents. I”, Inst. Hautes Etudes Sci. Publ. Math. 11 (1961).

[20] , “Eléments de géométrie algébrique. IV. Etude locale des schémas et des

morphismes de schémas. IV”, Inst. Hautes Etudes Sci. Publ. Math. 32 (1967).

[21] , Revétements étales et groupe fondamental, (SGA 1), Lecture Notes in

Math., vol. 224, Springer, 1971.

[22] A. GROTHENDIECK & J. A. DIEUDONNE — Eléments de géométrie algébrique. I,
Grundl. math. Wiss., vol. 166, Springer, 1971.

[23] L. ILLUSIE — Compleze cotangent et déformations. I, Lecture Notes in Math.,
vol. 239, Springer, 1971.

[24] , “Frobenius et dégénérescence de Hodge”, in Introduction & la théorie de

Hodge, Panor. Syntheéses, vol. 3, Soc. Math. France, 1996, p. 113-168.

[25] N. M. KATZ —“Nilpotent connections and the monodromy theorem: Applications
of a result of Turrittin”, Inst. Hautes Etudes Sci. Publ. Math. 39 (1970), p. 175—
232.

[26] G. LAN, M. SHENG & K. Zuo - “Semistable Higgs bundles, periodic Higgs
bundles and representations of algebraic fundamental groups”, to appear in J.
Europ. Math. Soc. doi:10.4171/JEMS/897.

[27] B. MAZUR — “Frobenius and the Hodge filtration”, Bull. Amer. Math. Soc. 78
(1972), p. 653-667.

MEMOIRES DE LA SMF 163


http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#13
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#14
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#15
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#16
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#17
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#18
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#19
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#20
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#21
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#22
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#23
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#24
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#25
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#26
doi:10.4171/JEMS/897
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#27

BIBLIOGRAPHY 133

[28] , “Frobenius and the Hodge filtration (estimates)”, Ann. of Math. 98

(1973), p. 58-95.

[29] A. OGgus — “F-crystals, Griffiths transversality, and the Hodge decomposition”,
Astérisque 221 (1994), p. 183.

[30] , “Higgs cohomology, p-curvature, and the Cartier isomorphism”, Compos.

Math. 140 (2004), p. 145-164.

[31] A. OGgus & V. VOLOGODSKY — “Nonabelian Hodge theory in characteristic p”,
Publ. Math. Inst. Hautes Etudes Sci. 106 (2007), p. 1-138.

[32] H. OvyamA - “PD Higgs crystals and Higgs cohomology in characteristics p”,
J. Algebraic Geom. 26 (2017), p. 735-802.

[33] A. SHIHO — “Notes on generalizations of local Ogus-Vologodsky correspondence”,
J. Math. Sci. Univ. Tokyo 22 (2015), p. 793-875.

[34] C. T. SiMpPsoN — “Higgs bundles and local systems”, Inst. Hautes Etudes Sci.
Publ. Math. 75 (1992), p. 5-95.

[35] T. TsuJi — “Syntomic complexes and p-adic vanishing cycles”, J. reine angew.
Math. 472 (1996), p. 69-138.

[36] N. WACH — “Représentations cristallines de torsion”, Compos. math. 108 (1997),
p- 185-240.

[37] C. A. WEIBEL — An introduction to homological algebra, Cambridge Studies in
Advanced Math., vol. 38, Cambridge Univ. Press, 1994.

SOCIETE MATHEMATIQUE DE FRANCE 2019


http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#28
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#29
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#30
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#31
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#32
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#33
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#34
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#35
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#36
http://smf.emath.fr/Publications/Panoramas/163/html/smf_pano_163_138.html#37




162.

161.
160.

159.
158.
157.

156.

155.

154.
153.

152.

151.
150.

149.
148.

147.
146.

145.

144.

143.

142.
140/141.

138/139.
137.
136.

135.
134.
133.
132.

Série MEMOIRES DE LA S.M.E

2019

J.-H. CHIENG, C.-Y. HSIAO & I-H. TSAIl — Heat kernel asymptotics, local index theorem and
trace integrals for Cauchy-Riemann manifolds with S1 action

F. JAUBERTEAU, Y. ROLLIN & S. TAPIE — Discrete geometry and isotropic surfaces

P. VIDOTTO - Ergodic properties of some negatively curved manifolds with infinite measure

2018

L. POSITSELSKI — Weakly curved A -algebras over a topological local ring

T. LUPU — Poisson ensembles of loops of one-dimensional diffusions

M. SPITZWECK — A commutative P-spectrum representing motivic cohomology over
Dedekind domains

C. SABBAH - Irregular Hodge Theory

2017

Y. DING — Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité
local-global

G. MASSUYEAU, V. TURAEV - Brackets in the Pontryagin algebras of manifolds

M.P. GUALDANI, S. MISCHLER, C. MOUHOT - Factorization of non-symmetric operators
and exponential H-theorem

M. MACULAN - Diophantine applications of geometric invariant theory

T. SCHOENEBERG — Semisimple Lie algebras and their classification over p-adic fields

P.G. LEFLOCH , Y. MA — The mathematical validity of the f(R) theory of modified gravity

2016

R. BEUZART-PLESSIS — La conjecture locale de Gross-Prasad pour les représentations
tempérées des groupes unitaires
M. MOKHTAR-KHARROUBI — Compactness properties of perturbed sub-stochastic
Co-semigroups on L' (1) with applications to discreteness and spectral gaps
Y. CHITOUR, P. KOKKONEN — Rolling of manifolds and controllability in dimension three
N. KARALIOLIOS — Global aspects of the reducibility of quasiperiodic cocycles in compact Lie
groups
V. BONNAILLIE-NOEL, M. DAUGE, N. POPOFF — Ground state energy of the magnetic
Laplacian on corner domains
P. AUSCHER, S. STAHLHUT - Functional calculus for first order systems of Dirac type and
boundary value problems

2015

R. DANCHIN, P.B. MUCHA - Critical functional framework and maximal regularity in action
on systems of incompressible flows

J. AYOUB — Motifs des variétés analytiques rigides

Y. LU, B. TEXIER — A stability criterion for high-frequency oscillations

2014

T. MOCHIZUKI — Holonomic D-modules with Betti structures
P. SEIDEL — Abstract analogues of flux as symplectic invariants
J. SIOSTRAND — Weyl! law for semi-classical resonances with randomly perturbed potentials

2013

L. PRELLI — Microlocalization of subanalytic sheaves

P. BERGER — Persistence of stratification of normally expanded laminations

L. DESIDERI — Probléme de Plateau, équations fuchsiennes et probléme de Riemann Hilbert
X. BRESSAUD, N. FOURNIER — One-dimensional general forest fire processes



130/131

129.
128.

127.
125/126.
124.

123.
122.
121.
120.

119.
118.
117.
116.

115.
114.
113.
112.

111.
110.
109.
108.

107.
106.
105.

104.

103.
101/102.

100.

2012

Y. NAKKAJIMA — Weight filtration and slope filtration on the rigid cohomology of a variety in
characteristic p > 0

W. A STEINMETZ-ZIKESCH — Algébres de Lie de dimension infinie et théorie de la descente
D. DOLGOPYAT — Repulsion from resonances

2011

B. LE STUM — The overconvergent site

J. BERTIN, M. ROMAGNY - Champs de Hurwitz

G. HENNIART, B. LEMAIRE — Changement de base et induction automorphe pour GL,, en
caractéristique non nulle

2010

C.-H. HSIAO - Projections in several complex variables

H. DE THELIN, G. VIGNY - Entropy of meromorphic maps and dynamics of birational maps
M. REES — A Fundamental Domain for V3

H. CHEN - Convergence des polygones de Harder-Narasimhan

2009

B. DEMANGE — Uncertainty principles associated to non-degenerate quadratic forms

A. SIEGEL, J. M. THUSWALDNER - Topological properties of Rauzy fractals

D. HAFNER - Creation of fermions by rotating charged black holes

P. BOYER - Faisceaux pervers des cycles évanescents des variétés de Drinfeld et groupes de
cohomologie du modéle de Deligne-Carayol

2008

R. ZHAO, K. ZHU — Theory of Bergman Spaces in the Unit Ball of C™

M. ENOCK - Measured quantum groupoids in action

J. FASEL — Groupes de Chow orientés

O. BRINON - Représentations p-adiques cristallines et de de Rham dans le cas relatif

2007

A. DJAMENT - Foncteurs en grassmanniennes, filtration de Krull et cohomologie des foncteurs
S. SZABO — Nahm transform for integrable connections on the Riemann sphere
F. LESIEUR — Measured quantum groupoids
J. GASQUI, H. GOLDSCHMIDT - Infinitesimal isospectral deformations of the Grassmannian
of 3-planes in RS

2006

I. GALLAGHER, L. SAINT-RAYMOND - Mathematical study of the betaplane model :
Equatorial waves and convergence results

N. BERGERON - Propriétés de Lefschetz automorphes pour les groupes unitaires et
orthogonaux

B. HELFFER, F. NIER — Quantitative analysis of metastability in reversible diffusion processes
via a Witten complex approach: the case with boundary

A. FEDOTOV, F. KLOPP — Weakly resonant tunneling interactions for adiabatic quasi-periodic
Schrédinger operators

2005
J. DESERTI, D. CERVEAU - Feuilletages et actions de groupes sur les espaces projectifs
L. ROBBIANO, C. ZUILY - Strichartz estimates for Schrédinger equations with variable

coefficients
J.-M. DESHOUILLERS, K. KAWADA, T.D. WOOLEY — On Sums of Sixteen Biquadrates



Meémoires de 1a S.M.F.

Instructions aux auteurs / Instructions to Authors

Les Mémoires de la SMF publient, en fran-
cais ou en anglais, des articles longs de
recherche ou des monographies de la plus
grande qualité qui font au moins 80 pages.
Les Mémoires sont le supplément du Bulletin
de la SMF et couvrent I’ensemble des mathé-
matiques. Son comité de rédaction est com-
mun avec celui du Bulletin.

Le manuscrit doit étre envoyé au format pdf
au comité de rédaction, & ’adresse électro-
nique memoires@smf.emath.fr Les articles
acceptés doivent étre composés en HTEX avec
la classe smfart ou smfbook, disponible sur
le site de la SMF http://smf.emath.fr/ ou
avec toute classe standard.

In the Mémoires of the SMF are published,
in French or in English, long research arti-
cles or monographs of the highest mathemat-
ical quality, that are at least 80 pages long.
Articles in all areas of mathematics are con-
sidered. The Mémoires are the supplement of
the Bulletin of the SMF. They share the same
editorial board.

The manuscript must be sent in pdf format
to the editorial board to the email address
memoires@smf.emath.fr. The accepted ar-
ticles must be composed in ETEX with the
smfart or the smfbook class available on
the SMF website http://smf. emath. fr/
or with any standard class.



http://smf.emath.fr/
http://smf.emath.fr/

Let W be the ring of the Witt vectors of a perfect field of characteristic p,
X a smooth formal scheme over W, X’ the base change of X by the
Frobenius morphism of W, X, the reduction modulo p? of X’ and X
the special fiber of X. We lift the Cartier transform of Ogus-Vologodsky
defined by X, modulo p™. More precisely, we construct a functor from
the category of p"-torsion Ox-modules with integrable p-connection to the
category of p™-torsion Ox-modules with integrable connection, each subject
to suitable nilpotence conditions. QOur construction is based on Oyama’s
reformulation of the Cartier transform of Ogus-Vologodsky in characteristic p.
If there exists a lifting F' : X — X’ of the relative Frobenius morphism of X,
our functor is compatible with a functor constructed by Shiho from F. As an
application, we give a new interpretation of Faltings’ relative Fontaine modules
and of the computation of their cohomology.

Soient W l'anneau des vecteurs de Witt d’un corps parfait de caractéristique
p > 0, X un schéma formel lisse sur W, X' le changement de base de X par
U’endomorphisme de Frobenius de W, X} la réduction modulo p? de X' et X
la fibre spéciale de X. On reléeve la transformée de Cartier d’Ogus-Vologodsky
définie par X4. Plus précisément, on construit un foncteur de la catégorie
des Ox-modules de p™-torsion a p-connexion intégrable dans la catégorie des
O'x-modules de p™-torsion & connezion intégrable, chacune étant soumise a des
conditions de nilpotence appropriées. S’il existe un relevement F : X — X’
du morphisme de Frobenius relatif de X, notre foncteur est compatible avec
une construction «locale» de Shiho définie par F. Comme application de
la transformée de Cartier modulo p™, on donne une nouvelle interprétation
des modules de Fontaine relatifs introduits par Faltings et du calcul de leur
cohomologie.
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