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MODULI SPACES OF FLAT TORI AND ELLIPTIC
HYPERGEOMETRIC FUNCTIONS

Sélim Ghazouani, Luc Pirio

Abstract. – In the genus one case, we make explicit some constructions of Veech
[80] on flat surfaces and generalize some geometric results of Thurston [77] about
moduli spaces of flat spheres as well as some equivalent ones but of an analytico-
cohomological nature of Deligne and Mostow [11], on the monodromy of Appell-
Lauricella hypergeometric functions.

In the dizygotic twin paper [20], we follow Thurston’s approach and study mod-
uli spaces of flat tori with cone singularities and prescribed holonomy by means of
geometrical methods relying on surgeries on flat surfaces. In the present memoir, we
study the same objects making use of analytical and cohomological methods, more in
the spirit of Deligne-Mostow’s paper.

Our starting point is an explicit formula for flat metrics with cone singularities on
elliptic curves, in terms of theta functions. From this, we deduce an explicit description
of Veech’s foliation: at the level of the Torelli space of n-marked elliptic curves, it is
given by an explicit affine first integral. From the preceding result, one determines
exactly which leaves of Veech’s foliation are closed subvarieties of the moduli space
M1,n of n-marked elliptic curves. We also give a local explicit expression, in terms of
hypergeometric elliptic integrals, for the Veech map by means of which is defined the
complex hyperbolic structure of a leaf.

Then we focus on the n = 2 case: in this situation, Veech’s foliation does not
depend on the values of the cone angles of the flat tori considered. Moreover, a leaf
which is a closed subvariety of M1,2 is actually algebraic and is isomorphic to a
modular curve Y1(N) for a certain integer N ≥ 2. In the considered situation, the
leaves of Veech’s foliation are CH1-curves. By specializing some results of Mano and
Watanabe [54], we make explicit the Schwarzian differential equation satisfied by the
CH1-developing map of any leaf and use this to prove that the metric completions
of the algebraic ones are complex hyperbolic conifolds which are obtained by adding
some of its cusps to Y1(N). Furthermore, we explicitly compute the conifold angle at
any cusp c ∈ X1(N), the latter being 0 (i.e., c is a usual cusp) exactly when it does
not belong to the metric completion of the considered algebraic leaf.
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In the last chapter of this memoir, we discuss various aspects of the objects previ-
ously considered, such as: some particular cases that we make explicit, some links with
classical hypergeometric functions in the simplest cases. We explain how to explicitly
compute the CH1-holonomy of any given algebraic leaf, which is important in order to
determine when the image of such a holonomy is a lattice in Aut(CH1) ' PSL(2,R).
Finally, we compute the hyperbolic volumes of some algebraic leaves of Veech’s folia-
tion and we use this to give an explicit formula for Veech’s volume of the moduli space
M1,2. In particular, we show that this volume is finite, as conjectured in [80].

The memoir ends with two appendices. The first consists in a short and easy
introduction to the notion of CH1-conifold. The second one is devoted to the Gauß-
Manin connection associated to our problem: we first give a general and detailed
abstract treatment then we consider the specific case of n-punctured elliptic curves,
which is made completely explicit when n = 2.

Résumé (Espaces de modules de tores plats et fonctions hypergéométriques elliptiques)
En genre 1, nous rendons explicites certaines constructions de Veech sur les sur-

faces plates et généralisons des résultats géométriques de Thurston [77] sur les espaces
de modules de sphères plates ainsi que des résultats équivalents de Deligne et Mos-
tow [11], d’une nature analytico-cohomologique, qui concernent la monodromie des
fonctions hypergéométriques d’Appell-Lauricella.

Dans le papier jumeau [20], nous reprenons l’approche de Thurston et étudions
les espaces de modules de tores plats avec des singularités coniques et à l’holonomie
prescrite via des méthodes géométriques obtenues au moyen d’opérations de chirurgie
faites sur les surfaces plates considérées. Dans le présent mémoire, nous étudions les
même objets mais en utilisant des méthodes analytiques et cohomologiques, davantage
dans l’esprit de l’article de Deligne et Mostow.

Notre point de départ est une formule explicite pour les métriques plates avec des
singularités coniques sur les courbes elliptiques, en termes de fonctions thêta. On
en déduit une description explicite du feuilletage de Veech: au niveau de l’espace de
Torelli des courbes elliptiques avec n points marqués, il est défini par une intégrale
première affine explicite. Cela nous permet de déterminer exactement quelles sont
les feuilles du feuilletage de Veech qui sont des sous-variétés fermées de l’espace de
module M1,n des courbes elliptiques avec n points marqués. Nous donnons aussi une
expression locale explicite, en termes d’intégrales hypergéométriques elliptiques, de
l’application de Veech qui permet de définir une structure hyperbolique complexe sur
une feuille donnée.

On se concentre alors sur le cas n = 2: dans cette situation, le feuilletage de Veech
ne dépend pas des valeurs des angles coniques des tores plats considérés. De plus, une
feuille qui est une sous-variété fermée deM1,2 est en fait algébrique et isomorphe à une
courbe modulaire Y1(N) pour un certain entier N ≥ 2. Dans le cas particulier consi-
déré, les feuilles du feuilletage de Veech sont des CH1-courbes. En spécialisant certains
résultats de Mano et [54], nous rendons explicite l’équation différentielle Schwarzienne
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que satisfait la CH1-développante d’une feuille et utilisons cela pour établir que les
complétions métriques des feuilles algébriques sont des conifoldes hyperboliques com-
plexes qui sont obtenues en rajoutant à Y1(N) certains de ses cusps. De plus, nous
calculons explicitement l’angle conifolde en chaque cusp c ∈ X1(N), cet angle étant
nul (i.e., c est un cusp au sens ordinaire) exactement quand il n’appartient pas à la
complétion métrique de la feuille algébrique considérée.

Dans le dernier chapitre de ce mémoire, nous discutons de plusieurs aspects des
objets considérés auparavant, tels que: certains cas particuliers qui sont explicités
encore davantage, certains liens avec les fonctions hypergéométriques classiques dans
les cas les plus simples. Nous expliquons comment calculer explicitement la CH1-ho-
lonomie d’une feuille algébrique donnée, ce qui est important en vue de déterminer
quand l’image d’une telle holonomie est un réseau de Aut(CH1) ' PSL(2,R). Enfin,
nous calculons le volume hyperbolique de certaines feuilles algébriques du feuilletage
de Veech et utilisons cela pour obtenir une formule explicite pour le volume de Veech
de l’espace de module M1,2. En particulier, nous montrons que ce volume est fini,
comme conjecturé par Veech dans [80].

Deux appendices viennent terminer ce mémoire. Le premier consiste en une intro-
duction courte et élémentaire à la notion de CH1-conifolde. Le second appendice est
dévolu à l’étude de la connexion de Gauß-Manin associée à notre problème: on en
donne tout d’abord un traitement général détaillé avant de considérer plus spécifi-
quement le cas des courbes elliptiques n-épointées, cas qui est rendu complètement
explicite lorsque n = 2.
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CHAPTER 1

INTRODUCTION

1.1. Previous works

1.1.1. – The classical hypergeometric series defined for |x|< 1 by

(1) F (a, b, c;x) =

+∞∑
n=0

(a)n(b)n
(c)n(1)n

xn

together with the hypergeometric differential equation it satisfies

(2) x(x− 1) · F ′′ +
(
c− (1 + a+ b)x

)
· F ′ − ab · F = 0

certainly constitutes one of the most beautiful and important parts of the theory of
special functions and of complex geometry of 19th century mathematics and has been
studied by many generations of mathematicians since its first appearance in the work
of Euler (see [30, Chap. I] for a historical account).

The link between the solutions of (2) and complex geometry is particularly well
illustrated by the following very famous results obtained by Schwarz in [71]: he proved
that when the parameters a, b and c are real and such that the three values |1 − c|,
|c− a− b| and |a− b| all are strictly less than 1, if F1 and F2 form a local basis of the
space of solutions of (2) at a point distinct from the three singularities 0, 1 and ∞
of the latter, then after analytic continuation, the associated (multivalued) Schwarz’s
map

S(a, b, c; ·) =
[
F1 : F2

]
: P1 \ {0, 1,∞}̃ −→ P1

actually takes values in CH1 ⊂ P1 and induces a conformal isomorphism from the
upper half-plane H ⊂ P1 \ {0, 1,∞} onto a hyperbolic triangle (1). Even if it is multi-
valued, S(a, b, c; ·) can be used to pull-back the standard complex hyperbolic structure
of CH1 and to endow P1 \{0, 1,∞} with a well-defined complete hyperbolic structure
with cone singularities of angles 2π|1 − c|, 2π|c − a − b| and 2π|a − b| at 0, 1 and ∞
respectively.

1. Actually, Schwarz has proved a more general result that covers not only the hyperbolic case
but the Euclidean and the spherical cases as well. See e.g., [30, Chap.III§3.1] for a modern and clear
exposition of the results of [71]
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2 CHAPTER 1. INTRODUCTION

It has been known very early (2) that the following hypergeometric integral

F (x) =

∫ 1

0

ta−1(1− t)c−a−1(1− xt)−bdt

is a solution of (2). More generally, for any x distinct from 0, 1 and ∞, any
1-cycle γ in P1 \ {0, 1, x,∞} and any determination of the multivalued function
ta−1(1− t)c−a−1(1− xt)−b along γ, the (locally well-defined) map

(3) Fγ(x) =

∫
γ

ta−1(1− t)c−a−1(1− xt)−bdt

is a solution of (2) and a basis of the space of solutions can be obtained by tak-
ing independent integration cycles (cf. [90] for a pleasant modern exposition of these
classical results).

1.1.2. – Formula (3) leads naturally to a multi-variable generalization, first consid-
ered by Pochammer, Appell and Lauricella, then studied by Picard and his student
Levavasseur (among others). We refer to [48, §1] for a more detailed overview of the
constructions and results considered in the present subsection and in the next one.

Let α = (αi)
n+2
i=0 be a fixed (n + 3)-tuple of non-integer real parameters strictly

bigger than −1 and such that
∑n+2
i=0 αi = −2, this numerical condition ensuring

that precisely n + 3 pairwise distinct singular points will be involved below. Given
a (n+ 3)-tuple x = (xi)

n+2
i=0 of distinct points on P1 and for a suitably chosen affine

coordinate t, one defines a multivalued holomorphic function of t by setting

Tαx (t) =

n+2∏
i=0

(t− xi)αi .

Then, for any 1-cycle γ supported in P1 \ {x} with {x} = {x0, . . . , xn+2} and any
choice of a determination of Tαx (t) along γ, one defines a hypergeometric integral as

(4) Fαγ (x) =

∫
γ

Tαx (t)dt =

∫
γ

n+2∏
i=0

(t− xi)αidt.

Since Tαx (t) depends holomorphically on x and since γ does not meet any of the xi’s,
Fαγ is holomorphic as well. In fact, it is natural to normalize the integrand by con-
sidering only (n + 3)-tuples x’s normalized such that x0 = 0, x1 = 1 and xn+2 = ∞.
This amounts to considering (4) as a multivalued function defined on the moduli
spaceM0,n+3 of projective equivalence classes of n+3 distinct points on P1. As in the
1-dimensional case, it can be proved that the hypergeometric integrals (4) are solu-
tions of a linear second-order differential system in n variables which can be seen as a

2. It seems that Legendre was the first to establish that

F (a, b, c;x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1(1− xt)−bdt

holds true when |x|< 1 if a and c verify 0 < a < c, cf. [15, p. 26].
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1.1. PREVIOUS WORKS 3

multidimensional generalization of Gauß hypergeometric equation (2). Moreover, one
obtains a basis of the space of solutions of this differential system by considering the
(germs of) holomorphic functions Fαγ0 , . . . , F

α
γn for some 1-cycles γ0, . . . , γn forming a

basis of a certain group of twisted homology.

1.1.3. – In this multidimensional context, the associated generalized Schwarz’s map
is the multivalued map

Fα =
[
Fαγi
]n
i=0

: M̃0,n+3 −→ Pn.

It can be proved that the monodromy of this multivalued function onM0,n+3 leaves
invariant a Hermitian form Hα on Cn+1 whose signature is (1, n) when all the αi’s
are assumed to belong to the interval ]−1, 0[.

In this case:

• Fα is an étale map with values into the image of {Hα > 0} in Pn; in affine co-
ordinates, this image is a complex ball hence a model of the complex hyperbolic
space CHn;

• the monodromy group Γα of Fα is the image of the monodromy representation
µα of the fundamental group of M0,n+3 in

PU
(
Cn+1, Hα

)
' PU(1, n) = Aut

(
CHn

)
.

As in the classical 1-dimensional case, these results imply that there is a natural
a priori non-complete complex hyperbolic structure on M0,n+3, obtained as the pull-
back of the standard one of CHn under the generalized Schwarz map Fα. We will
denote by M0,α the moduli space M0,n+3 endowed with this CHn-structure.

Several authors (Picard, Levavasseur, Terada, Deligne-Mostow) have studied
the case when the image of the monodromy Γα = Im(µα) is a discrete subgroup
of PU(1, n). In this case, the metric completion of M0,α is an orbifold isomorphic to
a quotient orbifold CHn/Γα. Deligne and Mostow have obtained very satisfactory re-
sults on this problem: in [11, 59] (completed in [60]) they gave an arithmetic criterion
on the αi’s, denoted by ΣINT, which is necessary and sufficient (up to a few known
cases) to ensure that the hypergeometric monodromy group Γα is discrete. Moreover,
they have determined all the α’s satisfying this criterion and have obtained a list of
94 complex hyperbolic orbifolds of dimension bigger than or equal to 2 constructed
via the theory of hypergeometric functions. Finally, they obtain that some of these
orbifolds are non-arithmetic.

1.1.4. – In [77], taking a different approach, Thurston obtains very similar results
to Deligne-Mostow’s. His approach is more topological and combinatorial and con-
cerns moduli spaces of flat Euclidean structures on P1 with n + 3 cone singularities.
For x ∈ M0,n+3, the metric mα

x = |Tαx (t)dt|2 defines a flat structure on P1 with
cone singularities at the xi’s. The bridge between the hypergeometric theory and
Thurston’s approach is made by the map x 7→ mα

x (see [45] where this bridge is
investigated).
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4 CHAPTER 1. INTRODUCTION

Using surgeries for flat structures on the sphere as well as Euclidean polygonal
representations of such objects, Thurston recovers Deligne-Mostow’s criterion as well
as the finite list of 94 complex hyperbolic orbifold quotients. More generally, he proves
that for any α = (αi)

n+2
i=0 ∈ ]−1, 0[

n+3 satisfying
∑n+2
i=0 αi = −2 (3) and not only for

the (necessarily rational) ones satisfying ΣINT, the metric completion M0,α carries
a complex hyperbolic conifold structure (see [77, 57] or [20] for this notion) which
extends the CHn-structure of the moduli space M0,α.

1.1.5. – In the very interesting (but long and hard-reading hence not so well-known)
paper [80], Veech generalizes some parts of the preceding constructions by Deligne-
Mostow and Thurston, the latter corresponding to the genus 0 case, to Riemann
surfaces of arbitrary genus g. All of Veech’s results considered below are discussed
and properly stated in the Introduction of [80], to which we refer the reader. The
third section of [20] may be a handy reference as well.

Veech’s starting point is a nice result by Troyanov [78] asserting that for any
α = (αi)

n
i=1 ∈ ]−1,∞[

n such that

(5)
n∑
i=1

αi = 2g − 2

and any genus g Riemann surface X with a n-tuple x = (xi)
n
i=1 of marked distinct

points on it, there exists a unique flat metric mα
X,x of area 1 on X with cone singular-

ities of angle θi = 2π(1 + αi) > 0 at xi for every i = 1, . . . , n, in the conformal class
associated to the complex structure of X. Equality (5) has to be assumed because,
thanks to the generalization to flat surfaces with cone singularities of the Gauß-Bonnet
theorem (see [78]), any flat structure with cone singularities has to satisfy it.
From this, Veech obtains a real analytic isomorphism

Teich g,n ' E
α
g,n(6) [

(X,x)
]
7→
[(
X,mα

X,x

)]
between the Teichmüller space Teich g,n of n-marked Riemann surfaces of genus g and
the space E

α
g,n of (isotopy classes of) flat Euclidean structures with n cone points of

angles θ1, . . . , θn on the marked surfaces of the same type.
Using (6) to identify the Teichmüller space with E

α
g,n, Veech constructs a real-

analytic map

(7) Hα
g,n : Teich g,n −→ U2g

which associates to (the isotopy class of) a n-marked Riemann surface (X,x) of genus g
the unitary linear holonomy (4) of the flat structure on X induced by mα

X,x.

3. In the realm of flat surfaces (here of genus 0) with cone singularities, this condition corresponds
to the (generalization of the) Gauß-Bonnet Theorem (see § 2.7.2.1 further).

4. See § 2.7.2.1 further for the notion of ‘linear holonomy’ of a flat surface.

MÉMOIRES DE LA SMF 164



1.1. PREVIOUS WORKS 5

The map (7) is a submersion and even though it is just real-analytic, Veech proves
that any level set

F
α
ρ =

(
Hα
g,n

)−1
(ρ)

is a complex submanifold of Teich g,n of complex dimension 2g−3+n if ρ ∈ Im(Hα
g,n) is

not trivial (5). For such a unitary character ρ and under the assumption that none of
the αi’s is an integer, Veech introduces a certain first cohomology space H1

ρ which
essentially encodes the translation parts of the Euclidean holonomies of the elements
of F

α
ρ viewed as isomorphism classes of flat surfaces (see § 4.4.1 for details). By this

means, he constructs a ‘complete holonomy map’

Holαρ : F
α
ρ −→ PH1

ρ ' P2g−3+n

and proves first that this map is a local biholomorphism, then that there is a Hermitian
form Hα

ρ on H1
ρ and that Holαρ maps F

α
ρ into the projectivization Xα

ρ ⊂ P2g−3+n of
the set {Hα

ρ > 0} ⊂ H1
ρ (compare with § 1.1.3).

By a long calculation, Veech determines explicitly the signature (p, q) of Hα
ρ and

shows that it does depend only on α. The most interesting case is when (p, q) =

(1, 2g − 3 + n). Indeed, in this case Holαρ takes its values into Xα
ρ ' CH2g−3+n which

is a Hermitian symmetric space, a Riemannian manifold in particular. By pull-back
under Holαρ which is étale, one endows the leaf F

α
ρ with a natural complex hyperbolic

structure.
One occurrence of this situation is when g = 0 and all the αi’s belong to the

interval ]−1, 0[: in this case there is only one leaf which is the whole Teichmüller
space Teich 0,n and as mentioned above, one recovers precisely the case studied by
Deligne-Mostow and Thurston.

1.1.6. – In addition to the genus 0 case, Veech shows that the complex hyperbolic
situation also occurs in another case, namely when

(8) g = 1 and all the αi’s are in ]−1, 0[ except one which lies in ]0, 1[.

In this case, the level-sets F
α
ρ ’s of the holonomy map Hα

g,n form a real-analytic
foliation F

α of Teich 1,n whose leaves carry natural CHn−1-structures.
A remarkable fact established by Veech [80, Thm. 0.7] is that the pure mapping

class group PMCG1,n leaves this foliation invariant (in the sense that the action
maps leaves onto leaves, possibly permuting them) and induces biholomorphisms be-
tween the leaves which preserve their respective complex hyperbolic structure (see
[80, Thm. 0.9]). Consequently, all the previous constructions pass to the quotient
by PMCG1,n. One finally obtains a foliation, denoted by Fα, on the quotient moduli

5. Note that a necessary condition for the trivial character 1 to belong to the image of Hα
g,n is

that all the αi’s are integers. In this text, we will always assume that it is not the case. However, it
is worth mentioning that the case when 1 ∈ Im(Hα

g,n) is very interesting: in this case, the associated
level-set F α

1 corresponds to a strata of abelian differentials (on Riemann surfaces of genus g and
with n zeros) and such objects have been the subject of many important works in recent years.
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space M1,n, by complex leaves carrying a (possibly orbifold, see § 5.4 further) com-
plex hyperbolic structure. Furthermore, it follows from (7) that the foliation Fα is
transversally symplectic, hence one can endow M1,n with a natural real-analytic vol-
ume form Ωα (see [80, (0).E]).

1.1.7. – At this point, interesting questions emerge very naturally:

1. Which are the leaves of Fα that are algebraic submanifolds of M1,n?

2. Given a leaf of Fα which is an algebraic submanifold of M1,n, what is its topol-
ogy? Considered with its CHn−1-structure, does it have finite volume?

3. Does the CHn−1-structure of an algebraic leaf extend to its metric completion
(possibly as a conifold complex hyperbolic structure)?

4. Which are the algebraic leaves of Fα whose holonomy representation of their
CHn−1-structure has a discrete image in PU(1, n− 1)?

5. Is it possible to construct new non-arithmetic complex hyperbolic lattices this
way?

6. Is the Ωα-volume of M1,n finite as conjectured by Veech in [80]?

In view of what has been done in the genus 0 case, one can distinguish two distinct
ways to address such questions. The first, à la Thurston, by using geometric arguments
relying on surgeries on flat surfaces. The second, à la Deligne-Mostow, through a more
analytical and cohomological reasoning.

Our work shows that both approaches are possible, relevant and fruitful. In [20],
we generalize Thurston’s approach whereas in the present text, we generalize that of
Deligne and Mostow to the genus 1 case.

1.2. Results

We give below a short review of the results contained in this memoir. All of them
are new, even if some (namely the first ones) are obtained by rather elementary con-
siderations. We present them below in decreasing order of generality, which essentially
corresponds to their order of appearance in the text.

Throughout the text, g and n will always refer respectively to the genus of the
considered surfaces and to the number of cone points they carry and it will always be
assumed that 2g − 2 + n > 0.
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1.2.1. – Our first results follow simply from a general remark leading to a natural
construction concerning Veech’s constructions, whichever the integers g and n are.

Let Σ be a flat surface with cone singularities whose isotopy class belongs to a
moduli space E

α
g,n ' Teich g,n for some n-tuple α as in § 1.1.5. Since the target space

of the associated linear holonomy character ρ : π1(Σ)→ U is abelian, the latter factors
through the abelianization of π1(Σ), namely the first homology group H1(Σ,Z). From
this simple remark, one deduces that the linear holonomy map (7) actually factors
through the quotient map from Teich g,n onto the associated Torelli space Tor g,n and
consequently, Veech’s foliation F

α on it admits a global first integral Tor g,n → U2g,
which will be denoted by hαg,n.

Let e : R2g → U2g be the group morphism (sk)2g
k=1 7→ (exp(2iπsk))2g

k=1.
Our second point is that, using classical geometric facts about simple closed curves

on surfaces, one can construct a lift H̃α
g,n : Teich g,n → R2g of Veech’s first integral (7).

These results can be summarized in the following

Proposition 1.2.1. – There are canonical real-analytic maps H̃α
g,n and hαg,n (in blue

below) making the following diagram commutative:

Teich g,n
H̃αg,n

//

H α
g,n

%%
��

R2g

e

��

Tor g,n
hαg,n

// U2g.

This result shows that it is more natural to study Veech’s foliation on the Torelli
space Tor g,n. Note that the latter is a nice complex variety without orbifold points.
Furthermore, the existence of the lift H̃α

g,n strongly suggests that the level-subsets of
Veech’s first integral Hα

g,n are not connected a priori.

1.2.2. – We now consider only the case of elliptic curves and specialize everything to
the case when g = 1.

First, by simple geometric considerations specific to this case, one verifies that the
lifted holonomy H̃α

1,n descends to the corresponding Torelli space. In other terms:
there exists a real-analytic map h̃α1,n : Tor 1,n → R2 which fits into the diagram above
and makes it commutative.

From now on, we no longer make abstract considerations but undertake the oppo-
site approach by expliciting everything as much as we can.

In the genus 0 case, the link between the ‘flat surfaces’ approach à la Thurston and
the ‘hypergeometric’ one à la Deligne-Mostow comes from the fact that there is an
explicit formula for a flat metric with cone singularities on the Riemann sphere (see
§ 1.1.4 above). The crucial point of the present text is that something equivalent can
be done in the g = 1 case.
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Assume that α1, . . . , αn are fixed real numbers bigger than −1 satisfying the Gauß-
Bonnet condition (5), that is such that

∑
i αi = 0 since g = 1.

For τ ∈ H, let Eτ = C/(Z ⊕ Zτ) be the associated elliptic curve. Then,
given z = (zi)

n
i=1 ∈ Cn such that [z1], . . . , [zn] are n distinct points on Eτ , Troyanov’s

theorem (cf. § 1.1.5) ensures that, up to normalization, there exists a unique flat
metric mα

τ,z on Eτ with a singularity of type |uαidu|2 at [zi] for i = 1, . . . , n.
One can give an explicit formula for this metric by means of theta functions:

Proposition 1.2.2. – Up to normalization, one has

mα
τ,z =

∣∣Tατ,z(u)du
∣∣2

where Tατ,z is the following multivalued holomorphic function on Eτ :

(9) Tατ,z(u) = exp
(
2iπa0u

) n∏
i=1

θ
(
u− zi, τ

)αi
where θ stands for Jacobi’s theta function (19) and a0 is given by

a0 = a0(τ, z) = −
=m
(∑n

i=1 αizi
)

=m(τ)
.

While the preceding formula is easy to establish (6), it is the key result on which
the rest of our memoir relies. Indeed, the ‘explicitness’ of the above formulae for Tατ,z
and a0 will propagate and this will allow us to make Veech’s constructions completely
explicit in the case of elliptic curves.

1.2.3. – Another key ingredient is that there exists a nice and explicit description
of the Torelli spaces of marked elliptic curves: this result, due to Nag [61], can be
summarized by saying that the parameters τ ∈ H and z ∈ Cn as above provide global
holomorphic coordinates on Tor 1,n for any n ≥ 1, if we normalize by assuming that
z1 = 0.

Using the coordinates (τ, z) on Tor 1,n, it is then easy to prove the

Proposition 1.2.3. – For (τ, z) ∈ Tor 1,n, one sets

a∞(τ, z) = a0(τ, z)τ +

n∑
i=1

αizi ∈ R.

1. The map

ξα : Tor 1,n −→ R2

(τ, z) 7−→
(
a0(τ, z), a∞(τ, z)

)
is a primitive (i.e., with connected fibers) first integral of Veech’s foliation on
the Torelli space.

6. It essentially amounts to verify that the monodromy of Tατ,z on the n-punctured elliptic curve
Eτ,z = Eτ \ {[z1], . . . , [zn]} is multiplicative and unitary.
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2. One has Im(ξα) = R2 if n ≥ 3 and Im(ξα) = R2 \ α1Z2 if n = 2.

3. For a = (a0, a∞) ∈ Im(ξα), the leaf F
α
a = (ξα)−1(a) in Tor 1,n is cut out by

(10) a0τ +

n∑
i=1

αizi = a∞.

4. Veech’s foliation F
α on Tor 1,n only depends on [α] ∈ P(Rn).

Point 1. above shows that each level-set F
α
ρ = (hα1,n)−1(ρ) of the linear holonomy

map hα1,n : Tor 1,n → U2 is a countable disjoint union of leaves F
α
a ’s. Point 2. answers

a question of [80]. Finally 3. makes the general and abstract result of Veech mentioned
in § 1.1.5 completely explicit in the g = 1 case.

1.2.4. – The pure mapping class group PMCG1,n does not act effectively on the
Torelli space. Indeed, Tor 1,n can be seen abstractly as the quotient of Teich 1,n by the
normal subgroup of the pure mapping class group formed by mapping classes which
act trivially on the homology of the model n-punctured 2-torus. The latter is called
the Torelli group and is denoted by Tor1,n.

Another key ingredient for what comes next is that the action of

Sp1,n(Z) := PMCG1,n
/

Tor1,n

on Tor 1,n can be made explicit using the coordinates (τ, z).

For instance, there is an isomorphism

Sp1,n(Z) ' SL2(Z) n
(
Z2
)n−1

with the SL2(Z)-part acting in the standard way, that is by fractional linear transfor-
mations, on the variable τ ∈ H.

It is then straightforward to determine, first which are the lifted holonomies
a ∈ Im(ξα) whose orbits under Sp1,n(Z) are discrete; then, for such a holonomy a,
what is the image Fαa = π( F

α
a ) ⊂M1,n of the leaf F

α
a by the quotient map

π : Tor 1,n −→M1,n = Tor 1,n/Sp1,n(Z).

A m-tuple ν = (νi)
n
i=1 ∈ Rm is said to be commensurable if there exists a real

constant λ 6= 0 such that λν = (λνi)
n
i=1 is rational, i.e., belongs to Qn.
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10 CHAPTER 1. INTRODUCTION

Theorem 1.2.4. – 1. Veech’s foliation Fα on M1,n admits algebraic leaves if and
only if α is commensurable.

2. The leaf Fαa is an algebraic subvariety of M1,n if and only if the (n + 2)-tuple
of real numbers (α, a) is commensurable.

Actually, under the assumption that α is commensurable, one can give an explicit
description of the algebraic leaves of Fα. The case when n = 2 is particular and will be
treated very carefully in § 1.2.6 below. But the consideration of the case when n = 3

already suggests what happens more generally and we will give a general description
of an algebraic leaf Fαa ⊂M1,3.

First, we remark that the SL2(Z)-part of Sp1,3(Z) acts in a natural way
on a ∈ Im(ξα) and that, if the corresponding leaf Fαa is algebraic, the latter has
a discrete orbit in R2 and the image Sa of its stabilizer in SL2(Z) is ‘big’ (i.e., of finite
index). Second we recall that the linear projection Tor 1,n → H, (τ, z) 7→ τ passes to
the quotient and induces the map M1,n →M1,1, which corresponds to forgetting the
last n− 1 points of a n-marked elliptic curve.

Theorem 1.2.5. – Assume that Fαa ⊂M1,3 is an algebraic leaf of Fα. Apart from a
finite number of exceptions, the following statements hold true.

1. There exists an integer Na such that Sa ' Γ1(Na);

2. The leaf Fαa is isomorphic to the total space of the elliptic modular surface
E1(Na) → Y1(Na) from which the union of a finite number of torsion multi-
sections has been removed.

This theorem, which applies to most algebraic leaves, can actually be made more
precise and explicit: for instance, there is exactly one algebraic leaf for each inte-
ger N > 0, one can give Na in terms of a and it is possible to list which are the
torsion multisections to be removed from E1(Na) in order to get the leaf Fαa (see
§ 4.2.4.7 further for more details and § 4.2.4.8 for an explicit example).

1.2.5. – From (10), it follows that (τ, z′) = (τ, z3, . . . , zn) forms a system of global co-
ordinates on any leaf F

α
a . For (τ, z′) ∈ F

α
a , we denote by (τ, z) the element of Tor 1,n

where z2 is obtained from (τ, z′) by solving the affine equation (10).
Our next result is about an explicit expression, in these coordinates, of the restric-

tion to F
α
a , denoted by V αa , of Veech’s full holonomy map Holαa of § 1.1.5 (7). From

Proposition 1.2.2, it follows immediately that for any (τ, z) ∈ F
α
a fixed,

ξ 7→
∫ ξ

Tατ,z(u)du

7. As a global holomorphic map, Veech’s map is only defined on the corresponding leaf in Teich1,n.
On F α

a ⊂ Tor1,n, it has to be considered as a global multivalued holomorphic function, except if
this leaf is simply connected (as when n = 2, a case such that F α

a ' H for any a).
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is ‘the’ developing map of the corresponding flat structure on the punctured elliptic
curve Eτ,z = Eτ \ {[z1], . . . , [zn]}. Consequently, there is a local analytic expres-
sion for V αa whose components are obtained by integrating a fixed determination
of the multivalued 1-form Tατ,z(u)du along certain 1-cycles in Eτ,z. Using some re-
sults of Mano and Watanabe [54], one can extend to our situation the analytico-
cohomological approach used in the genus 0 case by Deligne and Mostow in [11].
More precisely, for (τ, z) ∈ Tor 1,n, let L∨τ,z be the local system on Eτ,z whose lo-
cal sections are given by local determinations of Tατ,z. Following [54], one defines
some L∨τ,z-twisted 1-cycles γ0,γ2, . . . ,γn,γ∞ by taking regularizations of the relative
twisted 1-simplices obtained by considering certain determinations of Tατ,z along the
segments `0, `2, . . . , `n, `∞ on Eτ,z represented in Figure 1 below.

1
0

z2
z3

z4

z5

τ

ℓ0

ℓ2

ℓ3 ℓ4

ℓ5

ℓ∞

Figure 1. For • = 0, 2, . . . , n,∞, `• is the image in the n-punctured
elliptic curve Eτ,z of the segment ]0, z•[ (with z0 = 1, z∞ = τ and assuming
the normalization z1 = 0).

Using the fact that the γ•’s for • = 0, 2, . . . , n − 1,∞ induce a basis of the first
twisted homology group H1(Eτ,z, L

∨
τ,z) (cf § 3.2 further and also [54]) and can be

locally continuously extended on the Torelli space, one obtains the following result:

Proposition 1.2.6. – 1. The Veech map of F
α
a has a local analytic expression

V αa :
(
τ, z′

)
7→
[
F0(τ, z) : F3(τ, z) : · · · : Fn(τ, z) : F∞(τ, z)

]
where for • = 0, 3, . . . , n,∞, the component F• is the (locally defined) elliptic
hypergeomeric integral depending on (τ, z) ∈ Tor 1,n defined as

F• : (τ, z) 7−→
∫
γ•

Tατ,z(u)du.

2. The matrix of Veech’s Hermitian form Hα
a on Cn+1 (cf. § 1.1.5) in the coor-

dinates associated to the components F• of V αa considered in 1. above can be
obtained from the twisted intersection products γ• · γ∨◦ for • and ◦ ranging
in {0, 3, . . . , n,∞}, all of which can be explicitly computed (see § 3.4).
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1.2.6. – We now turn to the case of elliptic curves with two cone points. In this case
α = (α1, α2) is such that α2 = −α1, so one can take α1 ∈ ]0, 1[ as the main parameter
and consequently replace α by α1 in all the notation. For instance, Veech’s foliations
on Tor 1,2 and M1,2 will be denoted respectively by F

α1 and Fα1 from now on. It
follows from the fourth point of Proposition 1.2.3 that these foliations do not depend
on α1. In this case, the leaves of Fα1 , and in particular the algebraic ones, can be
described very precisely.

It is enlightening to make Proposition 1.2.3 more explicit in the case under scrutiny.
In this case, the rescaled first integral Ξ = (α1)−1ξα1 : Tor 1,2 −→ R2 is independent
of α1 and its image is Im(Ξ) = R2 \ Z2.

Denoting by Π the restriction to Tor 1,2 of the linear projection H × C → H onto
the first factor, one has the

Proposition 1.2.7. – 1. The following map is a (real analytic) isomorphism

(11) Π× Ξ : Tor 1,2
∼−→ H×

(
R2 \ Z2

)
.

2. The push-forward of Veech’s foliation F
α1 on Tor 1,2 by this map is the hori-

zontal foliation on the product H×
(
R2 \ Z2

)
.

3. By restriction, Π induces a biholomorphism between any leaf of F
α1 and

Poincaré half-plane H. In particular, the leaves of Veech’s foliation on the
Torelli space Tor 1,2 are topologically trivial.

Using this result, the description of the leaves of Veech’s foliation Fα1 on the
moduli space M1,2 follows easily. For any leaf F

α1

a of F
α1 , let πa : F

α1

a → Fα1
a be

the restriction to F
α1

a of the quotient map π : Tor 1,2 →M1,2.

Theorem 1.2.8. – For any leaf Fα1
a in M1,2, one of the following situations occurs:

1. either the quotient mapping πa is trivial, hence Fα1
a ' H; or

2. the quotient mapping πa is isomorphic to that of H by τ 7→ τ + 1, hence Fα1
a is

conformally isomorphic to an infinite cylinder; or

3. the leaf Fα1
a is algebraic. If N stands for the smallest positive integer such that

Na ∈ α1Z2, then N ≥ 2 and Fα1
a coincides with the image of

H/
Γ1(N)

−→M1,2(12) (
Eτ ,

[
1

N

])
7−→

(
Eτ , [0],

[
1

N

])
,

hence is isomorphic to the modular curve Y1(N) = H/Γ1(N).

We thus have described the conformal types of the leaves of Fα1 which are inde-
pendent from α1. We now want to go further and describe Veech’s complex hyperbolic
structures of the leaves and these depend on α1. Of course, our main interest will be
in the algebraic leaves of Veech’s foliation.
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1.2.7. – Let a = (a0, a∞) ∈ Im(ξα1) be fixed. The leaf F
α1

a in Tor 1,2 is cut out by
the following affine equation in the variables τ and z2 (cf. Proposition 1.2.3):

z2 = tτ =
1

α1

(
a0τ − a∞

)
.

For τ ∈ H, let Tα1
a (·, τ) be the multivalued holomorphic function defined by

Tα1
a (u, τ) = exp

(
2iπa0u

) θ(u, τ)α1

θ (u− tτ , τ)
α1
,

for u ∈ C distinct from 0 and t(τ) modulo Z⊕ τZ.
One considers the following two holomorphic functions of τ ∈ H:

(13) F0(τ) =

∫
[0,1]

Tα1
a (u, τ)du and F∞(τ) =

∫
[0,τ ]

Tα1
a (u, τ)du,

whose values at τ can be interpreted as two relative periods of the corresponding
element of F

α1

a , namely the flat torus (Eτ,z,m
α
τ,z).

Specializing the results of § 1.2.5, one obtains the

Proposition 1.2.9. – There exists a fractional transformation

z 7→ (Az +B)/(Cz +D),

and examples of such maps can be given explicitly (see § 4.4.5), so that

(14) V α1
a =

A · F0 +B · F∞
C · F0 +D · F∞

: H −→ P1

is a model of the Veech map of the leaf F
α1

a ' H which

1. takes values into the upper half-plane H;

2. is such that Veech’s complex hyperbolic structure of F
α1

a is the pull-back by V α1
a

of the standard one of H.

It follows that the Schwarzian differential equation characterizing Veech’s hyper-
bolic structure of F

α1

a (see Remark 2.7.1) can be obtained from the second-order
differential equation (Eα1

a ) on H satisfied by F0 and F∞. The definition (13) of these
two functions being explicit, one can compute (Eα1

a ) explicitly (cf. Appendix B.3).
In order to do so, we specialize some results of [54] and determine explicitly a

certain Gauß-Manin connection on F
α1

a . Let E a → F
α1

a ' H be the universal
2-punctured curve over F

α1

a whose fiber at τ ∈ H is the punctured elliptic curve
Eτ,tτ = Eτ \{[0], [tτ ]}. There is a line bundle La on E a whose restriction on any fiber
Eτ,tτ coincides with the line bundle Lτ on the latter defined by the multivalued func-
tion Tα1

a (·, τ). The push-forward of La onto F
α1

a is a local system of rank 2, denoted
by Ba, whose fiber at τ is nothing else than the first group of twisted cohomology
H1(Eτ,tτ , Lτ ) considered above in § 1.2.5.

One sets Ba = Ba ⊗ OH. We are interested in the Gauß-Manin connection ∇GMa :

Ba → Ba⊗Ω1
H whose flat sections are the sections of Ba. Following [54], one defines

two trivializing explicit global sections [ϕ0] and [ϕ1] of Ba.
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Proposition 1.2.10. – 1. In the basis ([ϕ0], [ϕ1]), the action of ∇GMa is written

∇GMa

(
[ϕ0]

[ϕ1]

)
= Ma ·

(
[ϕ0]

[ϕ1]

)
for a certain explicit matrix Ma of holomorphic 1-forms on H.

2. The differential equation on H with F0, F∞ as a basis of solutions is written(
Eα1
a

) ••
F −

(
2iπa2

0/α1

)
·
•
F + ϕa · F = 0

for an explicit global holomorphic function ϕa on H.

The interest of this result lies in the fact that everything is explicit. It will be our
main tool to study the CH1-structures of the algebraic leaves of Fα1 in M1,2.

1.2.8. – Let N ≥ 2 be fixed. For (k, l) ∈ Z2 \NZ2, let F
α1

k,l(N) be the leaf of Veech’s
foliation on Tor 1,2 cut out by z2 = (k/N)τ + l/N . It is isomorphic to H and its image
in M1,2 is precisely the image of the embedding (12). When endowed with Veech’s
CH1-structure, we denote this leaf by Y1(N)α1 to emphasize the fact that it is Y1(N)

but with a deformation of its usual hyperbolic structure (cf. Remark 5.3.4.(2)).
Under the assumption that α1 is rational, it follows from our main result in [20]

that for any N ≥ 2, Veech’s hyperbolic structure of Y1(N)α1 extends as a conifold
CH1-structure to its metric completion Y1(N)

α1 . The point is that using Proposi-
tion 1.2.10, one can recover this result without the rationality assumption on α1 and
precisely characterize this conifold structure.

Let X1(N) be the compactification of Y1(N) obtained by adding to it its set of
cusps C1(N) = P1(Q)/Γ1(N):

X1(N) = Y1(N) t C1(N).

For c ∈ C1(N), two situations can occur: either Y1(N)α1 is metrically complete in the
vicinity of c, or it is not. In the first case, c is a cusp in the classical sense (8) and will
be called a conifold point of angle 0.

To study the geometric structure of Y1(N)α1 near a cusp c ∈ C1(N), our ap-
proach consists in looking at the Schwarzian differential equation associated to Veech’s
CH1-structure on a small punctured neighborhood Uc of c in Y1(N).

First, one verifies that there exist k and l such that F
α1

k,l(N) → Y1(N)α1 is a
uniformization which sends [i∞] onto c. Then, since the functions F0, F∞ defined
in (13) (with the corresponding a, namely a = α1(k/N,−l/N)) are components of the
Veech map on F

α1

k,l(N), they can be viewed as the components of the developing map
of Veech’s hyperbolic structure of Y1(N)α1 . So, looking at the asymptotic behavior
of (Eαa ) when τ tends to i∞ while belonging to a vertical strip of width equal to that
of c, one obtains that the Schwarzian differential equation of the CH1-curve Y1(N)α1 is
Fuchsian at c and one can compute explicitly the two characteristic exponents at this
point.

8. I.e., (Y1(N)α1 , c) ' (H/(z 7→ z + 1), [i∞]) as germs of punctured hyperbolic surfaces.
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Then, since a cusp c ∈ C1(N) is a class modulo Γ1(N) of a rational element of the
boundary P1

R ' S1 of the closure H in P1, and is written c = [a/c] with a/c ∈ P1
Q, one

eventually gets the following result:

Theorem 1.2.11. – For any parameter α1 ∈ ]0, 1[:

1. Veech’s complex hyperbolic structure of Y1(N)α1 extends as a conifold structure
of the same type to the compactification X1(N). The latter, when endowed with
this conifold structure, will be denoted by X1(N)α1 ;

2. the conifold angle of X1(N)α1 at the cusp c = [a/c] ∈ C1(N) is

θc = θ(c) = 2π
c′(N − c′)

N · gcd(c′, N)
· α1

where c′ ∈ {0, . . . , N − 1} stands for the residue of c modulo N .

According to a classical result going back to Poincaré, a CH1-conifold structure
on a compact Riemann surface is completely characterized by its conifold points and
the conifold angles at these points. Thus the preceding theorem completely character-
izes Y1(N)α1 (or rather X1(N)α1) as a complex hyperbolic conifold. It can be seen as
the generalization, to the genus 1 case, of the result by Schwarz on the hypergeometric
equation, dating of 1873, mentioned in § 1.1.1.

Defining N∗ as the least common multiple of the integers c′(N − c′)/ gcd(c′, N)

when c′ ranges in {1, . . . , N − 1}, one deduces immediately from above the

Corollary 1.2.12. – A sufficient condition for X1(N)α1 to be an orbifold is that

α1 =
N

`N∗
for some ` ∈ N>0.

In this case, the image Γ1(N)α1 of the holonomy representation associated to
Veech’s CH1-structure on Y1(N)α1 is a non-cocompact lattice in PSL2(R).

The Γ1(N)α1 ’s with α1 ∈ ]0, 1[ form a real-analytic deformation of Γ1(N) =

Γ1(N)0 in PSL2(R). The problem of determining which of its elements are lattices
(or arithmetic lattices, etc.) is quite interesting but does not seem easy to solve.

An interesting case is when N is equal to a prime number p. It is well-known that
X1(p) is a smooth curve of genus (p− 5)(p− 7)/24 with p− 1 cusps.

Corollary 1.2.13. – 1. For k = 1, . . . , (p − 1)/2, the conifold angle of X1(p)α1

at [−p/k] is 2πk(1− k/p)α1. The (p− 1)/2 other cone angles are 0.

2. The hyperbolic volume (area) of Y1(p)α1 is finite and equal to

(15) Vol
(
Y1(p)α1

)
=
π

6

(
1− α1

)(
p2 − 1

)
.
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1.2.9. – The preceding corollary can be used to give a positive answer, in the case un-
der scrutiny, to a conjecture made by Veech about the volume of M1,2 (see Section E.
in the introduction of [80] or § 1.1.6 above).

For every leaf F
α1

a , we denote by gα1
a the Riemannian metric on H given by the

pull-back of the standard hyperbolic metric on Poincaré’s upper half-plane H by the
map (14). (9) The gα1

a ’s depend analytically on a hence can be glued together to give
rise to a smooth partial Riemannian metric (10) gα1 on the product H×(R2\Z2) which
is identified with Tor 1,2 by means of the isomorphism (11).

Let ds2
Euc be the Euclidean metric on R2. Since R2\Z2 can be considered as a global

transverse section to Veech’s foliation F
α1 (again thanks to Proposition 1.2.7), the

product gα1 ⊗ ds2
Euc defines a real analytic Riemannian metric on the whole Torelli

space Tor 1,2. The associated volume form will be denoted by Ωα1 and will be called
Veech’s volume form on Tor 1,2 (associated to α1).

As a particular case of a more general statement proved in [80], one gets that Ωα1 is
Sp1,2(Z)-invariant hence can be pushed-forward as a volume form (11) to the moduli
space M1,2, again denoted by Ωα1 . Then in the case under scrutiny, Veech’s volume
conjecture asserts that the Ωα1 -volume of M1,2 is finite.

For any N ≥ 2, denote by να1

N the measure on the algebraic leaf Y1(N)α1 of Veech’s
foliation on M1,2 induced by the associated hyperbolic structure. Then one defines a
measure δα1

N on M1,2, supported on Y1(N)α1 , by setting

δα1

N (A) = να1

N

(
A ∩ Y1(N)α1

)
for any measurable subset A ⊂M1,2.

For any N > 0, let δN be the measure on R2 defined as the sum of the dirac
masses at the points of the square lattice (1/N)Z2. As is well known, for any strictly
increasing sequence (Nk)k∈N, the measures N−2

k δNk strongly converge towards the
Lebesgue measure on R2. From this, one deduces that the measures p−2δα1

p tend
towards the one associated to Ωα1 on M1,2 when p tends to infinity among primes.
From this, we deduce that Veech’s volume conjecture indeed holds true in the case
under scrutiny. Better, using Corollary 1.2.13, we are able to give a simple closed
formula for the corresponding volume:

Theorem 1.2.14. – For any α1 ∈ ]0, 1[, Veech’s volume of M1,2 is finite and equal
to ∫

M1,2

Ωα1 = lim
p→+∞
p prime

1

p2
Vol
(
Y1(p)α1

)
=
π

6

(
1− α1

)
.

9. Note that if the map (14) is not canonically defined, it is up to post-composition by an element
of PSL2(R) = Isom+(H), hence gα1

a is well-defined for any a.
10. By a ‘partial Riemannian metric’ on Tor1,2, we mean a Riemannian metric only defined on a

proper subbundle of the tangent bundle of this space.
11. Strictly speaking, it is an ‘orbifold volume form’ on M1,2 but since this subtlety is irrelevant

in what concerns volume computations, we will not dwell on this further in what follows.
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1.3. Organization of the memoir

Since this text is quite long, we think that stating what we will do and where could
be helpful to the reader. We then make a few general comments which could also be
of help.

1.3.1. – In the first chapter of this memoir (namely the present one), we first take
some time in § 1.1 to display some elements about the historical and mathematical
background regarding the problem we are interested in. We then present our results
in § 1.2. Finally in § 1.4, we indicate some of our sources and discuss other works to
which the present one is related.

In Chapter 2, we first fix some notation then introduce some classical material.
Chapter 3 is about one of the main tools we use in this paper, namely twisted

(co)homology on Riemann surfaces. After sketching a general theory of what we call
‘generalized hypergeometric integrals,’ we give a detailed treatment of some results
obtained by Mano and Watanabe in [54] concerning the case of punctured elliptic
curves. The single novelty here is the explicit computation of the twisted intersection
product in § 3.4. Note also that what is for us the main hero of this text, namely
the multivalued function (9), is carefully introduced in § 3.2 where some of its main
properties are established.

We begin with two simple general remarks about some constructions of [80] in the
first section of Chapter 4. One of them leads to the conclusion that Veech’s foliation is
more naturally defined on the corresponding Torelli space. The relevance of this point
of view becomes clear when we start focusing on the genus 1 case in § 4.2. We then use
an explicit description of Tor 1,n obtained by Nag, as well as an explicit formula (in
terms of the function (9)) for a flat metric with cone singularity on an elliptic curve,
to make Veech’s foliation F

α on the Torelli space completely explicit. With that at
hand, it is not difficult to obtain some of our main results about Veech’s foliation, such
as Proposition 1.2.3, Theorem 1.2.4 or Theorem 1.2.5. Finally, in § 4.4, we turn to the
study of the Veech map which is used to define the geometric structure (a complex
hyperbolic structure under suitable assumptions on the considered cone angles) on
the leaves of Veech’s foliation. We show that locally, Veech’s map admits an analytic
description à la Deligne-Mostow in terms of elliptic hypergeometric integrals and we
relate Veech’s form to the twisted intersection product considered in § 3.4.

We specialize and make the previous results more precise in Chapter 5 where we
restrict ourselves to the case of flat elliptic curves with only two cone points. In this
case, we prove that the Torelli space is isomorphic to a product and that, up to this
isomorphism, Veech’s foliation identifies with the horizontal foliation. It is then not
difficult to describe the possible conformal types of the leaves of Veech’s foliation
(Theorem 1.2.8 above).

Using some results of Mano and Watanabe [54] and of Mano [51], we use the explicit
differential system satisfied by the two elliptic hypergeometric integrals which are
the components of Veech’s map in this case to look at Veech’s CH1-structure of an
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algebraic leaf Y1(N)α1 of Veech’s foliation on the moduli space M1,2 in the vicinity of
one of its cusps. From an easy analysis, one deduces Theorem 1.2.11, Corollary 1.2.12
and Corollary 1.2.13 stated above.

In Chapter 6, we eventually consider some particular questions or problems to
which the results previously obtained naturally lead. In § 6.1, we use a result by
Mano [52] to give an explicit example of an analytic degeneration of some elliptic hy-
pergeometric integrals towards usual hypergeometric functions. For N small (namely
N ≤ 5), the algebraic leaf Y1(N)α1 is of genus 0 with 3 or 4 punctures, hence the
associated elliptic hypergeometric integrals can be expressed in terms of classical (hy-
pergeometric or Heun’s) functions. This is quickly discussed in § 6.2. Section § 6.3
is computational and devoted to the determination of the hyperbolic holonomy of
the algebraic leaves Y1(N)α1 ’s. More precisely, we use some connection formulae in
twisted homology (due to Mano and presented at the very end of § 3) to describe a
general method to construct an explicit representation

π1

(
Y1(N)

)
= Γ1(N)→ PSL2(R)

corresponding to the CH1-holonomy of Y1(N)α1 . In § 6.4, we first establish for-
mula (15) then explain how to deduce from it a proof of Theorem 1.2.14. Finally,
in § 6.5, we explain why we think that the problem of determining the pairs (α1, N)

such that the CH1-holonomy of the algebraic leaf Y1(N)α1 of Veech’s foliation be a
Fuchsian group is important.

Two appendices conclude the text.
Appendix A introduces the notion of ‘complex hyperbolic conifold curve’. In the

1-dimensional case, everything is quite elementary. Some classical links with the theory
of Fuchsian second-order differential equations are recalled as well.

The second appendix, Appendix B, is considerably longer. It offers a detailed treat-
ment of the Gauß-Manin connection which is relevant to construct the differential
system satisfied by the elliptic hypergeometric integrals which are the components of
Veech’s map (see Proposition 1.2.6). After recalling some general results about the
theory in a twisted relative situation of dimension 1, we treat very explicitly the case
of 2-punctured elliptic curves over a leaf of Veech’s foliation on Tor 1,2 following [54].
All the results that we present are justified and made explicit. In the final part, we
use the Gauß-Manin connection to construct the second-order differential equation
(Eα1

a ) of Proposition 1.2.10.

1.3.2. – As suggested to us by the referee, since this memoir is quite long and contains
some kinds of digressions in several places, it should be helpful to the reader to have
a reading guide pointing to what he/she necessarily needs to look at in order to prove
the results stated in §1.2 above. Accordingly, we give below a description of the non-
essential parts which can be skipped at first reading and of the ones which have to be
looked at.

• The second chapter is used to introduce some notation and notions used through-
out this text hence it can be skipped at first reading.
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• The third chapter consists essentially in an exposition of the theory of the
twisted (co)homology groups relevant to deal with generalized hypergeomet-
ric integrals on Riemann surfaces and in particular on elliptic curves; hence it
can be skipped as well at first reading. However, in order to understand better
what is to come, it could be useful to give a look at the main result of this
chapter, namely Theorem 3.3.2.

• The actual study of Veech’s foliation really starts in the fourth chapter, and
more precisely in § 4.2 in the genus 1 case. The two subsections § 4.2.5 and
§ 4.2.6 can be skipped at first reading.

We start to focus on the case of flat elliptic curves with two cone singularities
in section § 4.3. However, the subsections § 4.3.1 and § 4.3.2 can be left aside.
Veech’s map of a given leaf when g = 1 is the subject of § 4.4 whose main result
is Proposition 4.4.2 which can be admitted, in order not to dwell too much on
this part which is not crucial for the sequel.

• The fifth chapter is very important. Proposition 1.2.10, Theorem 1.2.11 and
Corollary 1.2.12 are proved in it. Subsection § 5.4 concerns some explicit exam-
ples: it is not crucial for the sequel hence can be skipped at first reading.

• Chapter 6 contains many digressions. At first reading, one can only focus on
section § 6.4 where we prove Corollary 1.2.13.

1.3.3. – We think that the length of this text and the originality of the results it offers
are worth commenting.

From our point of view, the two crucial technical results of this text on which all
the others rely are, first, the explicit global expression (9) in Proposition 1.2.2 and,
secondly, some explicit formulae, first for Veech’s map by means of elliptic hypergeo-
metric integrals, then for the differential equation (Eα1

a ) satisfied by its components
F0 and F∞ when n = 2 (cf. Proposition 1.2.10).

If the first aforementioned result follows easily from a constructive proof of Troy-
anov’s theorem (cf. the beginning of § 1.1.5) described by Kokotov in [46, §2.1], its
use to make Veech’s constructions of [80] explicit in the genus 1 case is completely
original although not difficult. Once one has the explicit formula (9) at hand, it is
rather easy to obtain the local expression for the Veech map in terms of elliptic hy-
pergeometric integrals. As for the classical (genus 0) hypergeometric integrals, the
relevant technology to study such integrals is that of twisted (co)homology.

In the case of punctured elliptic curves, this theory has been worked out by Mano
and Watanabe in [54] where they also give some explicit formulae for the correspond-
ing Gauß-Manin connection. It follows that, up to a few exceptions, the material we
present in Section 3 and in Appendix B is not new and should be attributed to them.
So it would have been possible to replace these lengthy parts of the present memoir
by some references to [54].

The reason why we have chosen to do otherwise is twofold. First, when we began to
work on the subject of this paper, we were not very familiar with the modern twisted
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(co)homological way to deal with hypergeometric functions. In order to understand
this theory better, we began to write down detailed notes. Because these were helpful
for our own understanding, we thought that they could be helpful to some readers as
well and decided to incorporate them in the text.

The second reason which prompted us to proceed that way is that the context
in which the results of [54] lie, namely the context of isomonodromic deformations
of linear differential systems with regular singular points on elliptic curves, is more
general than ours. More concretely, the authors in [54] deal with a parameter λ which
corresponds to a certain line bundle Oλ of degree 0 on the considered elliptic curves.
The case we consider here corresponds to the specialization λ = 0 which is equivalent
to Oλ being trivial. If the situation we are interested in is somehow the simplest one
of [54], some of the results of the latter, those about the Gauß-Manin connection in
particular, do not apply to the case λ = 0 in a straightforward manner. In order to fill
in the reader on some details which were not explicitly mentioned in [54], we worked
out this case carefully, which led to Appendix B.

1.4. Remarks, notes and references

This text being already very long, we think it is not a problem to add a few lines
mentioning other mathematical works to which the present one is or could be linked.

1.4.1. – As is well-known (or at least, as it must be clear after reading § 1.1), the
distinct approaches of Deligne-Mostow [11] on the one hand and of Thurston [77]
on the other hand, lead to the same results. As already said before, Thurston’s ap-
proach is more elementary than the hypergeometric one and basically relies on certain
surgeries (12) for flat surfaces (actually flat spheres).

In the present text, we extend the hypergeometric approach of Deligne and Mostow
in order to handle the elliptic case. The point is that Thurston’s approach, in terms
of flat surfaces, can be generalized to the genus 1 case as well.

In the ‘non-identical twin’ paper [20] (13), we introduce several surgeries for flat
surfaces (some of which are natural generalizations of the one implicitly used by
Thurston) which we use to generalize some statements of [77] to the case of flat tori
with cone singularities.

We believe that the important fact highlighted by our work is that both Thurston’s
geometric approach and Deligne-Mostow’s hypergeometric one can be generalized to
the genus 1 case. At the moment, we have written two separate texts, one for each

12. By ‘surgery’ we mean an operation which transforms a flat surface into a new one which is
obtained from the former by cutting along piecewise geodesic segments in it or by removing a part
of it with a piecewise geodesic boundary and then identifying certain isometric components of the
boundary of the flat surface with geodesic boundary obtained after the cutting operations (see [20,
§6] for more formal definitions).
13. We use this terminology since, if [20] has the same parents and is born at the same time as the

present text, both papers clearly do not share the same DNA hence are dizygotic twins.
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of these two approaches. In the genus 0 case, any one of these approaches suffices,
but we believe that this is specific to this case. Our credo is that the geometric
approach (à la Thurston) as well as the hypergeometric one (à la Deligne-Mostow)
are truly complementary. Each sheds a different light on the objects under study and
combining these two approaches should be powerful and even necessary in order to
better understand the case g = 1 with n ≥ 3. We plan to illustrate this in forthcoming
papers. For the time being, readers are just strongly encouraged to take a look at [20]
and compare its methods and results to those of the present text.

1.4.2. – The main mathematical objects studied in [11] are the monodromy groups
attached to the Appell-Lauricella hypergeometric functions which are the ones admit-
ting an Eulerian integral representation of the following form

(16) Fγ(x) =

∫
γ

n∏
i=1

(t− xi)αidt

with x ∈ Cn and where γ is a twisted 1-cycle supported in P1 \ {x} (cf. § 1.1.2).

In the present text we are interested in the functions which admit an integral
representation of the following form (cf. § 1.2.5 for some explanations)

(17) Fγ(τ, z) =

∫
γ

exp
(
2iπa0u

) n∏
i=1

θ(u− zi, τ)αi

with (τ, z) ∈ H × Cn and where γ stands for a twisted 1-cycle supported in the
punctured elliptic curve Eτ,z (cf. § 1.1.2). From our point of view, they are the direct
generalization of the Appell-Lauricella functions (16) to the genus 1 case. For this
reason, it seemed to us that the name elliptic hypergeometric functions was quite
adequate to describe them.

Here we have to mention that the Appell-Lauricella hypergeometric functions (16)
admit developpements in series similar to (1) (cf. [11, (I’)] for instance). Taking this as
their main feature and motivated by some questions arising in mathematical physics,
several people have developed a theory of ‘elliptic hypergeometric series’ which have
been quickly named ‘elliptic hypergeometric functions’ as well (see e.g., the survey
paper [73]). These share several other similarities with the classical hypergeometric
functions such as, for instance, integral representations. We do not know if our elliptic
hypergeometric functions are related to the ones considered by these authors, but we
doubt it.

Anyway, since it sounds very adequate and because we like it too much, we have
decided to use the expression ‘elliptic hypergeometric function’ in our paper as well.
Note that this terminology has already been used once in a context very similar to
the one we are dealing with in this text, see [35].
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1.4.3. – Note also that in the papers [51, 54], which we use in a crucial way, the
authors consider functions defined by integral representations of the form

(18) Fj,γ(τ, z, λ) =

∫
γ

exp
(
2iπa0u

) n∏
i=1

θ(u− zi, τ)αis(u− zj , λ)

for (τ, z) ∈ Tor 1,n, λ ∈ C \ Zτ and j = 1, . . . , n, where s(·, λ) stands for the function

s(u, λ) =
θ′(0)θ(u− λ)

θ(u)θ(λ)
.

Such functions were previously baptized ‘Riemann-Wirtinger integrals’ by Mano in
[51]. Since λs(u, λ)→ −1 when λ goes to 0, our elliptic hypergeometric functions (17)
can be seen as natural limits of renormalized Riemann-Wirtinger integrals. However,
if the functions (18) for j ∈ {1, . . . , n} fixed can be seen as translation periods of a
certain flat structure on Eτ (namely the one defined by the square of the modulus of
the integrand in (18)), the latter does not have finite volume hence is not of the type
which is of interest to us.

1.4.4. – One of the origins of the terminology ‘Riemann-Wirtinger integrals’ (see just
above) can be found in the little known paper of Wirtinger [87], dating back to 1902,
in which he gives an explicit expression for the uniformization of the hypergeometric
function (1) to the upper-half plane H. This paper has been followed by a whole
series of works by several authors [88, 5, 7, 67, 26, 27, 28, 64, 29] in which they study
particular cases of what we call here ‘elliptic hypergeometric integrals’ (see [37] for
an exposition of some of the results obtained by these authors).

The ‘uniformized approach’ to the study of the hypergeometric functions initiated
by Wirtinger does not seem to have generated much interest from 1910 until very
recently. Starting from 2007, Watanabe begins to work on this subject again. In the
series of papers [82, 83, 84, 85], he applies the modern approach relying on twisted
(co)homology to the Wirtinger integral (see [83] or § 3.1.7 below for details) and
recovers several classical results about Gauß hypergeometric function. There seems
to be some overlap with several results contained in the papers just aforementioned
(see Remark 6.3.4) but Watanabe was apparently not aware of them since [87] is the
only paper of that time he refers to.
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CHAPTER 2

NOTATION AND PRELIMINARY MATERIAL

We indicate below some notation for the objects considered in this text as well
as a few references. We have chosen to present this material in telegraphic style: we
believe that this presentation is the most useful to the reader.

2.1. Notation for punctured elliptic curves

— H stands for Poincaré’s upper half-plane: H =
{
u ∈ C

∣∣ =m(u) > 0
}

;

— D denotes the unit disk in the complex plane: D =
{
u ∈ C

∣∣ |u|< 1
}

;

— U denotes the boundary of D in C: U =
{
u ∈ C

∣∣ |u|= 1
}
' S1;

— τ stands for an a priori arbitrary element of H;

— Aτ = A+Aτ for any τ ∈ H and any subset A ⊂ C;
— Eτ = C/Zτ is the elliptic curve associated to the lattice Zτ for τ ∈ H;

— [0, 1[τ = [0, 1[ + [0, 1[τ is the standard fundamental parallelogram of Eτ ;

— z = (z1, . . . , zn) denotes a n-tuple of complex numbers: (zi)
n
i=1 ∈ Cn;

— [zi] ∈ Eτ stands for the class of zi ∈ C modulo Zτ when τ is given;

— most of the time z = (zi)
n
i=1 ∈ Cn will be assumed to be

— such that the [zi]’s are pairwise distinct,

— normalized up to a translation, that is z1 = 0;

— Eτ,z is the n-punctured elliptic curve Eτ \
{

[z1], . . . , [zn]
}
.

2.2. Notation and formulae for theta functions

Our main reference concerning theta functions and related material is Chan-
drasekharan’s book [8].

— q = exp(iπτ) ∈ D for τ ∈ H;
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— θ(·) = θ(·, τ) for τ ∈ H stands for Jacobi’s theta function defined by, for every
u ∈ C:

(19) θ(u) = θ(u, τ) = −i
∑
n∈Z

(−1)n exp
(
iπ
(
n+ 1/2

)2
τ + 2iπ

(
n+ 1/2

)
u
)

;

— for τ ∈ H, the following multiplicative functional relations hold true:

(20) θ(u+ 1) = −θ(u) and θ(u+ τ) = −q−1e−2iπu · θ(u) ;

— θ′(u) and
.
θ(u) stand for the derivative of θ w.r.t u and τ respectively;

— heat equation: for every u ∈ C, one has:
.
θ(u) = (4iπ)−1θ′′(u);

— by definition, the four Jabobi’s theta functions θ0, . . . , θ3 are

θ0(u) = θ(u, τ) θ1(u) = −θ
(
u− 1

2
, τ

)
θ2(u) = θ

(
u− τ

2
, τ
)
iq

1
4 e−iπz θ3(u) = −θ

(
u− 1 + τ

2
, τ

)
q

1
4 e−iπu ;

— functional equations for the θi’s: for every (u, τ) ∈ C×H, one has

θ1(u+ 1) = −θ1(u) θ1(u+ τ) = q−1e−2iπuθ1(u)

θ2(u+ 1) = θ2(u) θ2(u+ τ) = −q−1e−2iπuθ2(u)

θ3(u+ 1) = θ3(u) θ3(u+ τ) = q−1e−2iπuθ3(u) ;

— ρ(u) = θ′(u)/θ(u) denotes the logarithmic derivative of θ w.r.t.u;

— functional equations for ρ: for every τ ∈ H and every u ∈ C \ Zτ , one has

ρ(u+ 1) = ρ(u) and ρ(u+ τ) = ρ(u)− 2iπ ;

— ρ′(·) is Zτ -invariant hence can be seen as a rational function on Eτ ;

— for any z ∈ C \ Zτ , u 7→ ρ(u− z)− ρ(u) is Zτ -invariant hence can be seen as a
rational function on Eτ . As such, its polar divisor is [0] + [z].

2.3. Modular curves

A handy reference for the little we use on modular curves is the nice book [13] by
Diamond and Shurman.

— N stands for a (fixed) positive integer;

— Γ(N) and Γ1(N) are the classical congruence subgroups of level N :

Γ(N) =

{[
a b

c d

]
∈ SL2(Z)

∣∣∣ a ≡ d ≡ 1 and c ≡ b ≡ 0 mod N

}
;

Γ1(N) =

{[
a b

c d

]
∈ SL2(Z)

∣∣∣ a ≡ d ≡ 1 and c ≡ 0 mod N

}
;
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— Y (Γ) = H/Γ for Γ a congruence subgroup of SL2(Z);

— Y (N) = Y
(
Γ(N)

)
and Y1(N) = Y

(
Γ1(N)

)
;

— H? = H t P1
Q ⊂ P1 is the extended upper-half plane;

— X(Γ) = H?/Γ is the compactified modular curve associated to Γ;

— X(N) = X
(
Γ(N)

)
and X1(N) = X

(
Γ1(N)

)
.

— finally, we recall the definition of what is a Hauptmodul for a genus 0 congruence
group Γ ⊂ SL2(Z): it is a Γ-modular function on H which induces a generator
of the field of rational functions on X(Γ) = H/Γ ' P1, with a pole of the first
order with residue 1 at the cusp [i∞] ∈ X(Γ).

2.4. Teichmüller material

There are many good books about Teichmüller theory. A useful one considering
what we are doing in this text is [62] by Nag.

— g and n stand for non-negative integers such that 2g − 2 + n > 0;

— Sg (or just S for short) is a fixed compact orientable surface of genus g;

— Sg,n (or just S∗ for short) denotes either the n-punctured surface S\{s1, . . . , sn}
or the n-marked surface (S, s) where s = (si)

n
i=1 stands for a fixed n-tuple of

pairwise distinct points on S;

— Teich g,n is a shorthand for Teich (Sg, s), the Teichmüller space of a surface Sg,n
of genus g with n marked points;

— PMCGg,n denotes the pure mapping class group;

— Torg,n is the Torelli group: it is the kernel of the epimorphism of groups
PMCGg,n → Aut

(
H1(Sg,n,Z),∪

)
(where ∪ stands for the cup product);

— Tor g,n = Teich g,n/Torg,n is the associated Torelli space. We denote by pg,n :

Teich g,n → Tor g,n the associated quotient map;

— Mg,n = Teich g,n/PMCGg,n is the associated (Riemann) moduli space and πg,n :

Teich g,n →Mg,n denotes the associated quotient map.

2.5. Complex hyperbolic geometry

We will make practically no use of complex hyperbolic geometry in this text. How-
ever, in view of its conceptual importance to understand Veech’s constructions, we
settle basic definitions and facts below. For a reference, the reader can consult [23].

— 〈·, ·〉 = 〈·, ·〉1,n is the standard Hermitian form of signature (1, n) on Cn+1:
for z = (z0, . . . , zn) and w = (w0, . . . , wn) in Cn+1, one has

〈z, w〉 = 〈z, w〉1,n = z0w0 −
n∑
i=1

ziwi ;
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— V +
1,n = {z ∈ Cn+1 | 〈z, z〉1,n > 0 } ⊂ Cn+1 is the set of 〈·, ·〉-positive vectors;

— the complex hyperbolic space CHn is the projectivization of V +
1,n:

CHn = PV +
1,n ⊂ Pn ;

— in the affine coordinates (z0 = 1, z1, . . . , zn), the complex hyperbolic space CHn
identifies with the complex unit ball:

(21) CHn =

{
(zi)

n
i=1 ∈ Cn

∣∣∣ n∑
i=1

|zi|2< 1

}
;

— the complex hyperbolic metric ghyp is the Bergman metric of the unit complex
ball (21). For [z] ∈ CHn with z ∈ V+, it is given explicitly by

ghyp
[z] = − 4

〈z, z〉2
det

[
〈z, z〉 〈dz, z〉
〈z, dz〉 〈dz, dz〉

]
(and this makes sense since the RHS of this formula is invariant up to rescaling
of z hence it only depends on [z] ∈ CHn, see [58, §19]);

— PU(1, n) = PAut(Cn+1, 〈·, ·〉1,n) < PGLn+1(C) acts transitively on CHn and
coincides with its group of biholomorphisms Aut(CHn);

— being a Bergman metric, ghyp is invariant by Aut(CHn) = PU(1, n);

— (CHn, ghyp) is a non-compact complete Hermitian symmetric space of rank 1
with constant holomorphic sectional curvature;

— for n = 1 and z = (1, ζ) ∈ V+, one has ghyp
[z] = 4

(
1− |ζ|2

)−2|dζ|2, therefore CH1

coincides with Poincaré’s hyperbolic disk Dhyp hence with the real hyperbolic
plane RH2. In other terms, there are some identifications CH1 ' Dhyp ' H '
RH2 and Aut

(
CH1

)
= PU(1, 1) ' PSL2(R).

2.6. Flat bundles, local systems and representations of the fundamental group

In this section, we explain briefly why flat bundles, local systems and linear rep-
resentations of the fundamental group of a given complex variety, are actually the
same objects (see below for a precise statement). It is a classical result (cf. the first
two sections of [10, Chap. I] for instance) but since we will use it implicitly in several
places, it seemed appropriate to devote a few paragraphs to it.

In what follows, M stands for a fixed connected complex manifold.

2.6.1. The objects. – We describe below the three kinds of objects involved here as
well as some natural notions of equivalence up to which they have to be considered:
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2.6.1.1. – A locally constant sheaf onM is a sheaf for which, given any point m ∈M ,
there exists a neighborhood Um of m in M such that the restriction on Um of our
initial sheaf is a constant sheaf. Then a local system over M is a locally constant
sheaf H with fiber Cr, for a certain non-negative integer r called the rank of H
(which is well-defined since M is assumed to be connected).

Local systems will be considered up to isomorphisms of sheaves on M .

2.6.1.2. – Let E be a C-vector bundle over M , constantly identified with the locally
free sheaf E of its (local holomorphic) sections. A connection ∇ on E is a C-linear
map E → Ω1

M ⊗ E satisfying ‘Leibniz’s rule,’ that is ∇(fσ) = f∇(σ) + df ⊗σ for any
local sections f and σ of OM and E respectively.

Then one can construct the associated OM -linear curvature Θ : E → Ω2
M ⊗ E and

the bundle E (implicitly, ‘when endowed with ∇’) is said to be flat when the latter
vanishes identically.

Two vector bundles with connections (thus, in particular, two flat bundles) (E,∇)

and (E′,∇′) will be considered as equivalent if there exists a biholomorphism ϕ of M
such that ϕ∗(E′) = E and ϕ∗(∇′) = ∇.

2.6.1.3. – By definition, a rank r (linear) representation of the fundamental group
of M is the data of a base point m0 on M together with a group homomorphism
κ : π1(M,m0)→ GLr(C).

Such representations will be considered up to conjugation at the target. This implies
in particular that the choice of the base-point m0 no longer really matters.

2.6.2. The correspondences. – Our goal is to show that the objects described in the
preceding subsection are in correspondence. To do that, it is first necessary to recall
some basic facts about flat bundles.

2.6.2.1. – As above, let (E,∇) be a rank r > 0 fiber bundle with a connection
over M and consider an open domain U in M over which E can be trivialized:
there are sections σ1, . . . , σr ∈ E (U) such that for every u ∈ U , the σi(u)’s form
a basis of the fiber Eu of E at u. It follows that there exists a ‘connection matrix’
Ω = (ωij)

r
i,j=1 of holomorphic 1-forms on U such that for any i = 1, . . . , n, one has

∇(σi) =
∑r
j=1 ωij ⊗ σj on U . Then, up to the considered trivialization E |U ' ( OU )⊕r

over U , the curvature of ∇ identifies with the r × r matrix of holomorphic 2-forms
dΩ + Ω ∧ Ω.

We remind that a section σ of E is horizontal for ∇ if it belongs to its kernel, that
is if ∇(σ) ≡ 0. Up to the trivialization over U considered above, it is easily seen that
a horizontal section of ∇ identifies with a column vector of holomorphic functions λ
satisfying the following relation:

(22) dλ+ Ωλ = 0.
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2.6.2.2. – Now let H be a rank r local system on M as in § 2.6.1.1. We claim that
the locally free sheaf H = Om⊗CH is canonically endowed with a connection, which
is flat. Indeed, let h1, . . . , hr be r sections of H inducing a trivialization of the latter
over a domain U ⊂ M . Then one defines a C-linear first-order differential operator
by setting ∇H(σ) =

∑r
i=1 dσi ⊗ hi for any (local) section σ =

∑r
i=1 σihi of H

over U (where σi is a holomorphic function for any i). Since H is a local system, the
r-tuple h = (hi) of sections is well-defined up to the action of a matrix with constant
coefficients. From that, it follows that ∇H is canonically attached to H over U , thus
gives rise to a global connection ∇H : H → Ω1 ⊗ H . In the trivialization induced
by h, the connection matrix Ω (same terminology than in § 2.6.1.2) is trivial (i.e., has
all its coefficients equal to 0) hence ∇H is flat.

From the above discussion, we get a map

(23) H 7−→
(

H ,∇H
)

associating in a canonical way a flat bundle to any local system on M .
Conversely, let (E,∇) be a vector bundle on M and U a domain over which E

can be trivialized as in § 2.6.1.2. Then the complex vector space of horizontal sec-
tions over U identifies with the space of solutions of (22) seen as a linear differential
system in λ ∈ O(U)⊕r. According to a classical result of the theory of complex lin-
ear differential equations, (22) is completely integrable if and only if the connection
matrix satisfies dΩ + Ω ∧ Ω = 0, which is equivalent to the fact that the space of
solutions of (22) is a complex vector space of dimension r. More intrinsically, in terms
of the pair (E,∇), this translates into the fact that the latter is flat if and only if its
horizontal sections organize into a rank r local system on M , denoted by ker(∇).

We thus get a map
(
E,∇

)
7−→ ker(∇), associating in a canonical way a local

system to a flat bundle on M . It is easily seen as being the inverse of (23).

2.6.2.3. – Now, starting from a flat bundle (E,∇) over M , there is a standard way
to associate to it a linear representation as in § 2.6.1.3. Let m? be an arbitrary base-
point on M and let h? = (h1,?, . . . , hr,?) be a local basis of ker(∇) at this point.
Since each hi,? is a solution of a completely integrable linear differential system of
the form (22) in any trivialization of E , it has an analytic continuation hγi,? along any
(smooth) path γ in M starting at m∗ and hγ = (hγi,?)

r
i=1 is a local basis of ker(∇)

at the ending extremity of γ. When γ is a loop based at m?, hγ is a basis of the
space of ∇-horizontal sections at m? hence there exists a (monodromy) matrix Mγ ∈
GLr(C) such that hγ = Mγ · h. Since the analytic continuation hγ only depends on
the homotopy class of γ, the map γ 7→ Mγ induces a linear representation Mon∇ :

π1(M,m?) → GLr(C), [γ] 7→ Mγ , known as the ‘monodromy ’ (based at m?) of the
flat connection ∇.

Disregarding the choice of the base point, this gives us a canonical map

(24)
(
E,∇

)
7−→

[
Mon∇

]
associating the equivalence class of its monodromy to a flat bundle on M .
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2.6.2.4. – Finally, let κ : π1(M,m?) → GLr(C) be a linear representation for an
arbitrary point m? ∈ M . Let H̃κ = M̃ × Cr be the (total space of the) trivial
local system of rank r over the universal covering M̃ of M . Then π1(M,m?), viewed
as the deck transformation group of the covering M̃ → M , acts on H̃κ according
to c · (m̃, z) = (c · m̃, κ(c) · z) for c ∈ π1(M,m?) and (m̃, z) ∈ M̃ ×Cr. Quotienting by
this action, one gets Hκ = H̃κ/π1(M,m?) which is easily seen as the total space of a
well-defined rank r local system onM , again denoted by Hκ and called the suspension
of κ.

We thus have constructed a well-defined map

(25) κ 7→ Hκ

associating its suspension to a linear representation on M .
?

With some work, one can prove that the maps (23), (24) and (25) are compatible
with the distinct notions of equivalences described in § 2.6.1 and that they induce
bijections when considering the spaces of corresponding isomorphism classes:

Theorem 2.6.1. – The maps described above induce bijections (14) between the spaces
(of isomorphism classes) of the following objects on M :

— local systems;

— flat vector bundles;

— linear representations of the fundamental group.

2.7. Geometric (and in particular flat) structures (especially on surfaces)

In this section, we first describe very succinctly some basic notions of the theory
of geometric structures (modeled on homogeneous spaces) on manifolds, essentially
for the sake of completeness. Everything here is classical and well-known and can be
found with much more details in the literature on the subject, such as Thurston’s
book [76] or Goldman’s draft [25].

Next, we focus on the case when the base manifold has dimension 2 and when
the geometric structures considered on it are Euclidean (‘flat surfaces’) or hyperbolic.
The first case covers in particular the nowadays very popular subject of ‘translation
surfaces’ but is actually more general. Following Veech, we succinctly discuss the flat
surfaces with cone singularities that we consider in this text as well as some related
notions and results. For more details, we refer to [78, 80] or to Section 2 in our previous
paper [20].

14. Actually, more is true since these maps not only induce bijective correspondences but they
behave well with respect to some natural notions of morphisms, one for each kind of the considered
objects. Ultimately, the maps (23), (24) and (25) give rise to some equivalences between the categories
naturally attached to the three kinds of objects involved in this story. But since this is not relevant
for our purpose, we will not elaborate on this.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



32 CHAPTER 2. NOTATION AND PRELIMINARY MATERIAL

2.7.1. Geometric structures. – Here, M stands for a (connected) smooth manifold, G
for a Lie group and X for a manifold on which G acts transitively by real analytic
diffeomorphisms.

A X-chart on M is a pair (U, f) where U ⊂M is an open subset and f : U → X a
smooth map inducing a diffeomorphism from U onto f(U) ⊂ X. Another such chart
f̃ : Ũ → X is G-compatible with the first if there exists a locally constant map (15)

g = gU,Ũ : U ∩ Ũ → G such that f̃ = g · f on U ∩ Ũ . A (G,X)-atlas on M is a set
{(Ui, fi)}i∈I of G-equivalent X-charts such that M =

⋃
i Ui and a (G,X)-structure

is an equivalence class of such atlases.
Among many others, here are some classical examples of such geometric structures

together with their common names in mathematics:

— let k be the field of real or complex numbers. Then for (G,X) equal
to (PGLn+1(k), kPn) or to (Affn(k), kn), one gets (real or complex) projective
or affine structures on M respectively;

— for k = R or C, let kHn be the (real or complex) hyperbolic space of dimension n
and denote by Aut(kHn) its group of k-analytic isometries. It acts transitively
on kHn and a k-hyperbolic structure on M is a (Aut(kHn), kHn)-geometric
structure on it;

— for (G,X) = (Eucn,En) where Eucn = On(R) n Rn is the group of isometries
of the n-dimensional Euclidean space En, one gets Euclidean structures on M ;
in this case, M is also said to be a flat manifold.

When k = C, a k-projective or k-hyperbolic structure on M naturally induces a
structure of complex manifold on M . This is also true for 2-dimensional Euclidean
structures, under some natural assumptions on M (see § 2.7.2.1 below).

Assume that M is simply connected and carries a (G,X)-structure. Then it can
be proved (cf. [25, Prop. 5.2.1]) that the latter can be induced by only one global
(G,X)-chart f : M → X which is unique up to multiplication to the left by an element
of G. On the other hand, if there exists a non-trivial smooth covering π : M̃ → M ,
any (G,X)-structure on M induces (by pull-back under π) a geometric structure of
the same type on M̃ .

Combining both remarks in the preceding paragraph, one obtains that the
(G,X)-structure naturally induced on its universal covering M̃ by the one of M is
defined by a global (G,X)-chart

D : M̃ → X

such that for any γ ∈ π1(M), viewed as a deck transformation for π : M̃ →M , there
exists h(γ) ∈ G such that D

(
γ ·
)

= h(γ) ·D(·) on M̃ . By definition, such a D is called
a developing map (of the (G,X)-structure on M) and

h : π1(M)→ G,

15. That is, a map which is constant on any connected component of U ∩ Ũ .
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which is easily seen to be a group homomorphism, is known as the associated holonomy
representation. Then, according to [25, Theorem 5.2.2], if (D′, h′) is another such
developing pair, there exists g ∈ G such that

D′ = g ·D and h′ = Inng ◦ h,

where Inng ∈ Aut(G) stands for the inner conjugation by g.
By definition, the holonomy group of a holonomy representation h as above is the

subgroup Γ = h(π1(M)) < G. One also speaks of Γ as the holonomy group of the
considered (G,X)-structure onM , but this is a bit abusive since only the conjugation
class of Γ in G is well-defined by the considered geometric structure.

Assume that (G,X) = (Eucn,En). Then there is an epimorphism of groups ` :

Eucn → On(R) consisting in taking the linear part of the isometries of En. Then the
(or more rigorously ‘a’) linear holonomy associated to a Euclidean structure on M is
the group morphism obtained by composition:

` ◦ h : π1(M) −→ Eucn −→ On(R)

for a holonomy map h associated with the flat structure considered on M .

?

A flat manifold can also been defined in terms of Riemannian geometry, by means of
a Riemannian metric g with zero sectional curvature on M . From this point of view,
given m ∈ M , the holonomy representation of differential geometry π1(M,m) →
O(TmM) ' On(R) induced by parallel transport with respect to the Levi-Civita
connection of g is a holonomy representation in the sense above, for the Euclidean
structure naturally induced by g on M .

Finally, we have to mention that Euclidean structures are often considered up to
rescaling: given a Euclidean atlas {(Ui, fi)}i∈I on M , we will consider {(Ui, λfi)}i∈I
as defining the same flat structure if λ ∈ R∗ is constant.

2.7.2. The case of surfaces. – We now consider the case when M is an orientable and
oriented surface (that is, of real dimension 2). We use the notation S instead of M
from now on.

First we describe how the material of the preceding subsection simplify when spe-
cializing to this case. Then, following Veech [80], we generalize the notion of flat
surfaces by allowing some cone singularities and we briefly discuss this notion.

2.7.2.1. Flat surfaces. – Let Euc+
2 be the index 2 subgroup of Euc2 = Isom(E2)

formed by the orientation preserving isometries of the Euclidean plane. Assume that
S is a smooth surface endowed with a (Euc+

2 ,E2)-structure denoted by ES . If one
identifies E2 with the complex plane C in the standard way (that is via E2 3 (x, y) 7→
x + iy ∈ C), then Euc+

2 = SO2(R) n R2 identifies with the subgroup (isomorphic
to U n C) of complex affine transformations of the form z 7→ uz + τ with u ∈ U
(that is |u|= 1) and τ ∈ C. From this identification, two immediate but interesting
consequences follow:
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— the flat structure ES induces in a canonical way a C-affine structure on S, which
naturally induces a structure of Riemann surface on S. Moreover, if f : U → C is
an affine chart, then up to rescaling, f∗

(
|dz|2

)
is a local expression for the flat

Riemannian metric associated to ES on U ;
— the linear holonomy of ES can be seen as a group morphism

π1(S)→ U ⊂ C∗

defined up to inner conjugations. Since the target group U is abelian, such
conjugations act trivially, which allows us to forget about the choice of a base-
point. Consequently, the linear holonomy of ES corresponds to a unique and
well-defined unitary character

ρ = ρES : H1(S,Z) −→ U.

?

An easy consequence of the Gauß-Bonnet theorem gives that if S is smooth, com-
pact and carries a (positive) Euclidean structure, then necessarily g(S) = 1 hence it
is a torus. Thus, flat structures on compact surfaces of other genus will necessarily
have singularities. The singularities that will be allowed for flat surfaces are cone
singularities that we are now going to describe.

2.7.2.2. Cone singularities. – The map

π : R>0 × R −→ C∗, (r, ϕ) 7−→ r exp(iϕ)

is (a model of) the universal cover of the punctured Euclidean plane C∗ = E2 \ {0}.
We denote by Ẽ2

∗ this universal covering endowed with the pull-back under π of the
standard Euclidean structure of E2. This flat structure is easily seen as the one induced
by the flat metric written dr2 + r2dϕ2 in the coordinate system (r, ϕ).

For any positive real number θ distinct from 2π, the ‘translation’ Tθ : (r, ϕ) 7→
(r, ϕ + θ) leaves invariant the flat structure of Ẽ2

∗ (since it is a lift of the rotation of
angle θ which is an automorphism of E2 fixing the origin). It follows that the Euclidean
structure of Ẽ2

∗ factors through the action of Tθ. The quotient C∗θ = Ẽ2
∗/〈Tθ〉 carries a

flat structure which is not metrically complete. Its metric completion, denoted by Cθ,
is obtained by adjoining only one point to C∗θ , called its apex and denoted by 0. By
definition, Cθ (resp. C∗θ ) is the (punctured) Euclidean cone of angle θ. (16)

For any θ > 0, one can give a concrete model of C∗θ by means of an explicit
developing pair (Dθ, µθ) (see 2.7.1): one sets Dθ(w) = wθ for any w in C∗ and µθ
stands for the character associating eiθ to the class of a small positively oriented circle
around the origin in C∗. We see Dθ as a multivalued map from C∗ to C ' E2. Its
monodromy µθ leaves the standard Euclidean structure of C invariant. Consequently,
the pair (Dθ, µθ) defines a flat structure on C∗ and one immediately verifies that it
identifies with that of the punctured Euclidean cone C∗θ .

16. Note that everything works quite well for θ = 2π too but, as flat surfaces, C2π and C∗2π identify
naturally with E2 and E2

∗ respectively hence it is pointless to consider this case.
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Figure 2. The Euclidean cone Cθ of angle θ ∈ ]0, 2π[ embeds in E3

By computing the pull-back of the standard Euclidean metric |dz|2 on the target
space ofDθ, one gets the following characterization of the considered flat cone in terms
of the corresponding flat metric: C∗θ can alternatively be defined as the Euclidean
structure on C∗ associated to the metric∣∣zαdz∣∣2 with α = θ/(2π)− 1 ∈ ]−1, +∞[.

?

Assume now that S is a compact, smooth, orientable and oriented surface on which
n pairwise distinct points s1, . . . , sn have been specified. Then a flat structure on S∗ =

S \ {s1, . . . , sn} induced by a flat metric m, is said to have a cone singularity of cone
angle θk > 0 at sk if these two equivalent statements are satisfied (where θk and αk
are related by θk = 2π(αk + 1)):

— as punctured germs of flat surfaces, (S, sk) and (Cθk , 0) are isomorphic;

— there exists a complex coordinate z centered at sk on S such that m = |zαkdz|2
on a sufficiently small punctured neighborhood of sk;

In this case, αk > −1 is said to be the exponent of the flat metric at sk.

The flat structures considered in this memoir are those on compact surfaces such
as S above which admit cone singularities on it at a finite number of points. Rigorously,
we should refer to such geometric objects as flat surfaces with cone singularities but
we will use the shorter expression flat surfaces, being understood that any singularity
is of the conical type as above.
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2.7.2.3. Area and curvature. – Assume that S is compact, has genus g and car-
ries a flat structure with cone singularities at s1, . . . , sn with associated cone angles
θ1, . . . , θn and let m be the associated flat metric on S∗.

First we remark that, for any α ∈ R, if dσα stands for the area element associated
to the metric |zαdz|2 on C∗, then the area

∫
s<|z|<1

dσα for s ∈ ]0, 1[ has a finite
limit when s tends from above to 0 if and only if α > −1. It follows that the flat
blunted cone (C∗, |zαdz|2) is locally of finite area at its apex 0 if and only if α is
bigger than −1. Thus the fact that αk > −1 for any exponent of a flat structure
on S implies that its global area is finite. This gives a natural geometric reason for
requiring that all the αi’s be bigger than −1 in (4): it is the condition ensuring that
the flat structure induced on the Riemann sphere by the metric |

∏
i(t− xi)αidt|2 be

of finite total area.
The curvature κh of a smooth Riemannian metric h on S satisfies the Gauß-Bonnet

formula, namely
∫
S
κhdµh = 2πχ(S) = 2π(2 − 2g) where µh stands for the measure

naturally induced by h on S and g = g(S) for the genus of S. This classical relation
generalizes to the case of flat surfaces with conical singularities. One must see the
associated singular Riemannian metric as a metric whose curvature is concentrated
at its singular locus, and therefore see its curvature function as a linear combination
of Dirac masses at the cone points.

If S is assumed to be endowed with a flat structure with n cone points of associated
cone angles (resp. exponents) θ1, . . . , θn > 0 (resp. α1, . . . , αn > −1), the following
Gauß-Bonnet formula holds true:

(26)
n∑
k=1

(
2π − θk

)
= 2πχ(S) ⇐⇒

n∑
k=1

αk = 2g − 2.

We refer to [78, §3] or [80, §3] for proofs and more details on this.
Note that when g = 0, the second relation in (26) becomes

∑n
i=1 αi = −2, a rela-

tionship already encountered in § 1.1.2 above and for which we now have a geometric
interpretation in terms of flat surfaces.

2.7.2.4. Hyperbolic surfaces. – We now say a few words about the case of hyperbolic
surfaces, which is actually more classical than the case of flat surfaces.

Let S be a surface as above, but not necessarily assumed to be compact. Thanks
to the identifications mentioned in the very last point of section § 2.5, the notions
of (PSL2(R),RH2)-structure and of (PU(1, 1),CH1)-structure on S coincide hence we
will only the words of hyperbolic structure to designate such a geometric structure.

Since PU(1, 1) coincides with the group of holomorphic automorphisms of CH1, a
hyperbolic structure HypS on S naturally makes S a Riemann surface, that will be
denoted byX. If HypS is complete (in the sense of classical differential geometry), then
as a Riemann surface, X is uniformized by the disk D = CH1 and HypS coincides with
the canonical hyperbolic structure on S obtained by pushing-forward the standard one
of the disk D under the uniformization D→ X ' S.
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Remark 2.7.1. – It is classical (see [70, VIII.3] for a recent reference) that a
(PSL2(C),P1)-structure G on S can be described by means of ‘projectively equivalent’
global linear second-order differential equations on the associated Riemann surface X.
Moreover, given a holomorphic coordinate z on a open subset U ⊂ X, there exists a
unique ‘reduced’ linear ODE in z inducing the restriction of the projective structure G

on U (see A.2.2 in Appendix A): it is the Schwarzian differential equation associated
to G and to z.

Since the stabilizer of H ⊂ P1 in PSL2(C) is precisely PSL2(R), a hyperbolic struc-
tures HypS on S is a particular kind of projective structure hence the previous con-
structions apply. In particular, given a global holomorphic coordinate on the the uni-
formization X̃ of X, HypS can be uniquely characterized by a global Schwarzian dif-
ferential equation on X̃ invariant by the group of deck transformations of the universal
covering X̃ → X.

In this text, we will have to consider hyperbolic surfaces with certain singularities,
also of conical type. This notion can be introduced for hyperbolic surfaces in a very
similar way as the one with the same name presented in the preceding subsection in
the case of zero curvature. But in order not to make the present preliminary chapter
too long, we have preferred to discuss this in Appendix A.
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CHAPTER 3

TWISTED (CO)HOMOLOGY
AND INTEGRALS OF HYPERGEOMETRIC TYPE

It is well-known that a rigorous and relevant framework to deal with (generalized)
hypergeometric functions is that of twisted (co)homology. For the sake of complete-
ness, we give below a short review of this theory in the simplest 1-dimensional case.
All this material and its link with the theory of hypergeometric functions is exposed
in many modern references, such as [11, 40, 90, 3], to which we refer for proofs and
details.

After recalling some generalities, we focus on the case we will be interested in,
namely that of punctured elliptic curves. This case has been studied extensively by
Mano and Watanabe. Almost all the material presented below has been taken from
[54]. The unique exception is Proposition 3.4.1 in subsection § 3.4, where we compute
explicitly the twisted intersection product. While this result relies on simple compu-
tations, it is of importance for us since it will allow us to give an explicit expression
of the Veech form (cf. Proposition 4.4.3).

3.1. The case of Riemann surfaces: generalities

Interesting general references in arbitrary dimension are [3, 79]. The case corre-
sponding to the classical theory of hypergeometric functions is the one where the
ambient variety is a punctured projective line. It is treated in a very nice but informal
way in the fourth chapter of Yoshida’s love book [90]. A more detailed treatment is
given in the second section of Deligne-Mostow’s paper [11]. For arbitrary Riemann
surfaces, the reader can consult [35].

3.1.1. – Let µ be a multiplicative complex character on the fundamental group
of a (possibly non-closed) Riemann surface X, i.e., a group homomorphism
µ : π1(X)→ C∗ (note that since the target group is abelian, it is pointless to
specify a base-point and we will not be doing that in what follows). We will denote
by Lµ or just L ‘the’ local system associated to µ. We use the notation L∨µ , L∨ for
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short, to designate the dual local system which is the local system Lµ−1 associated
to the dual character µ−1.

Assume that T is a multivalued holomorphic function on X whose monodromy is
multiplicative and equal to µ−1: the analytic continuation along any loop γ : S1 → X

of a determination of T at γ(1) is µ(γ)−1 times this initial determination. Then T can
be seen as a global section of L∨. Conversely, assuming that T does not vanish on X,
one can define L as the line bundle, whose stalk at any point x of X is the 1-dimen-
sional complex vector space spanned by a (or equivalently by all the) determination(s)
of T−1 at x.

Assuming that T satisfies all the preceding assumptions, the logarithmic derivative
ω = (d log T ) = T−1dT of T is a global (univalued) holomorphic form on X. Then
one can define L more formally as the local system formed by the solutions of the
global differential equation dh+ ωh = 0 on X.

3.1.2. – For k = 0, 1, 2, a (L∨-)twisted k-simplex is the data of a k-simplex σ in X

together with a determination Tσ of T along σ. We will denote this object by σ⊗Tσ or,
more succinctly, by σ. A twisted k-chain is a finite linear combination with complex
coefficients of twisted k-simplices. By taking the restriction of Tσ to the corresponding
facet of ∂σ, one defines a boundary operator ∂ on twisted k-simplices which extends
to twisted k-chains by linearity. It satisfies ∂2 = 0, which allows to define the twisted
homology group Hk(X,L∨).

More generally, one defines a locally finite twisted k-chain as a possibly infinite
linear combination

∑
i∈I ci ·σi with complex coefficients of L∨-twisted k-simplices σi,

but such that there are only finitely many indices i ∈ I such that σi intersects non-
trivially any previously given compact subset of X. The boundary operator previously
defined extends to such chains and allows to define the groups of locally finite twisted
homology H lf

k (X,L∨) for k = 0, 1, 2.

3.1.3. – A (L-)twisted k-cochain is a map which associates a section of L over σ to
any k-simplex σ (or equivalently, it is a map which associates a complex number to
any L∨-twisted k-simplex σ ⊗ Tσ). The fact that such a section extends in a unique
way to any (k + 1)-simplex admitting σ as a face allows to define a coboundary
operator. The latter will satisfy all the expected properties in order to construct the
twisted cohomology groups Hk(X,L) for k = 0, 1, 2. Similarly, by considering twisted
k-cochains with compact support, one constructs the groups of twisted cohomology
with compact support Hk

c (X,L).

The (co)homology spaces considered above are dual to each other: for any
k = 0, 1, 2, there are natural dualities

(27) Hk

(
X,L∨

)∨ ' Hk
(
X,L

)
and H lf

k

(
X,L∨

)∨ ' Hk
c

(
X,L

)
.
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3.1.4. – A twisted k-chain being locally finite, there are natural maps Hk(X,L∨) →
H lf
k (X,L∨). We focus on the case when k = 1 which is the only one to be of interest

for our purpose. In many situations, when µ is sufficiently generic (the condition that
µ is not trivial actually is sufficient in our case), it turns out that the natural map
H1(X,L∨) → H lf

1 (X,L∨) is an isomorphism (see [44, Theorem1]). In this case, one
denotes the inverse map by

(28) Reg : H lf
1

(
X,L∨

)
−→ H1

(
X,L∨

)
and call it the regularization morphism. Note that it is canonical.

Assume that σ1, . . . ,σN are locally finite twisted 1-chains (or 1-simplices) in X

whose homology classes generate H lf
1 (X,L∨).

A regularization map is a map reg : σi 7→ reg(σi) such that:

(1) for every i = 1, . . . , n, reg(σi) is a L∨-twisted 1-chain which is no longer locally
finite but finite on X;

(2) reg is well-defined in homology and the induced map H lf
1 (X,L∨)→ H1(X,L∨)

coincides with the regularization morphism (28).

3.1.5. – Poincaré duality holds true for twisted (co)homology: for i = 0, 1, 2, there
are natural isomorphisms Hi(X,L) ' H lf

2−i(X,L
∨) (cf. [79, Theorem 1.1 p. 218] or

[3, §2.2.11] for instance). Combining the latter isomorphism with (27), one obtains a
non-degenerate bilinear pairing H1(X,L∨)⊗H lf

1 (X,L)→ C. When the regularization
morphism (28) exists, it matches the induced pairing

(29) H1

(
X,L∨

)
⊗H1

(
X,L

)
−→ C

which, in particular, is non-degenerate.

3.1.6. – Assume now that µ is unitary, i.e., Im(µ) ⊂ U. Then µ−1 coincides with the
conjugate morphism µ, thus the twisted homology groups H1(X,L∨) and H1(X,Lµ)

are equal. On the other hand, the map σ ⊗ Tσ → σ ⊗ Tσ defined on L∨-twisted
1-simplices induces a complex conjugation σ 7→ σ from H1(X,L∨) onto H1(X,L).
Using § 3.1.5, one gets the following non-degenerate Hermitian pairing

H1

(
X,L∨

)2 −→ C(30) (
σ1,σ2

)
7−→ σ1 · σ2

which in this situation is called the twisted intersection product.
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3.1.7. – Let η be a holomorphic 1-form on X. By setting

(31)
∫
σ

T · η =

∫
σ

Tσ · η

for any twisted 1-simplex σ = σ ⊗ Tσ, and by extending this map by linearity, one
defines a complex linear map

∫
T · η on the spaces of twisted 1-cycles. The value (31)

does not depend on σ but only on its (twisted) homology class. Consequently, the
preceding map factorizes and gives rise to a linear map∫

T · η : H1

(
X,L∨

)
−→ C

[σ] 7−→
∫
σ

T · η.

On the other hand, there is an exact sequence of sheaves 0 → L → Ω0
X(L)

d→
Ω1
X(L)→0 on X whose hypercohomology groups are proved to be isomorphic to the

simplicial ones Hk(X,L) (17). Then for any η as above, it can be verified that (31)
depends only on the associated class [T · η] in H1(X,L) and its value on σ is given
by means of the pairing (29): for η and σ as above, one has∫

σ

T · η =
〈[
T · η

]
, [σ]

〉
.

From this, one deduces a precise cohomological definition for what we call a gen-
eralized hypergeometric integral, that is an integral of the form

(32)
∫
γ

T · η

where η is a 1-form on X and γ a twisted 1-cycle (or a twisted homology class).

3.1.8. – Assume that T is a non-vanishing function as in § 3.1.1. Then using
ω = d log(T ), one defines a twisted covariant differential operator ∇ω on Ω•X by
setting ∇ω(η) = dη + ω ∧ η for any holomorphic form η on X. In this way one gets a
complex (Ω•X ,∇ω) called the twisted De Rham complex of X.

There is an exact sequence of sheaves on X

0 −→ L −→ Ω0
X
∇ω−→ Ω1

X−→0,

from which it follows that (Ω•X ,∇ω) is a resolution of L. Consequently (see e.g., [3,
§2.4.3 and §2.4.6]), the twisted simplicial cohomology groups of X are naturally iso-
morphic to the twisted hypercohomology groups Hk(Ω•X ,∇ω) for k = 0, 1, 2. The
main conceptual interest of using this twisted de Rham formalism is that it allows

17. Hypercohomology is used in this text as a conceptual black box and there is no need to be
familiar with it to follow any of our arguments. For recent references on the subject, the interested
reader can consult p. 445 of [32] for some basics or the eighth chapter of [81] for more details. The
single result about hypercohomology that we will use in the whole text is the so-called ‘(relative)
comparison theorem’ for which we refer to [10, II.§6] or to the more recent book [2].
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to construct what is called the associated Gauß-Manin connection which in turn can
be used to construct (and actually is essentially equivalent to) the linear differen-
tial system satisfied by the hypergeometric integrals (32). We will return to this in
Appendix B, where we will treat the case of 2-punctured elliptic curves very explicitly.

When X is affine (a punctured compact Riemann surface for instance), the hyper-
cohomology groups Hk(Ω•X ,∇ω) can be shown to be isomorphic to some particular
cohomology groups built from global holomorphic objects on X.

For instance, in the affine case, there are natural isomorphisms

(33) H1
(
X,L

)
' H1

(
Ω•X ,∇ω

)
'

H0
(
X,Ω1

X

)
∇ω
(
H0(X, OX)

) .
3.1.9. – Assume that X is a punctured compact Riemann surface, i.e., X = X \ Σ

where Σ is a non-empty finite subset of a compact Riemann surface X. If ω extends
to a rational 1-form on X (with poles on Σ), then one can consider the algebraic
twisted de Rham complex (Ω•X(∗Σ),∇ω). It is the subcomplex of (Ω•X ,∇ω) formed
by the restrictions to X of the rational forms on X with poles supported exclusively
on Σ. The (twisted) algebraic de Rham comparison theorem (cf. [3, §2.4.7]) asserts that
these two resolutions of L are quasi-isomorphic, i.e., their associated hypercohomology
groups Hk(Ω•X(∗Σ),∇ω) and Hk(Ω•X ,∇ω) are isomorphic.

Taking one step further, one gets that the singular L-twisted cohomology of X
can be described by means of global holomorphic objects on X which actually are
restrictions to X of some rational forms on the compact Riemann surface X. More
precisely, there is an isomorphism

(34) H1
(
X,L

)
'

H0
(
X,Ω1

X(∗Σ)
)

∇ω
(
H0
(
X, OX(∗Σ)

)) .
The interest of this isomorphism lies in the fact that it allows to describe the twisted

cohomology group H1
(
X,L

)
by means of rational 1-forms on X. For instance, this

is quite useful to simplify the computations involved in making the Gauß-Manin con-
nection mentioned in 3.1.8 explicit. Usually (for instance for classical hypergeometric
functions, see [3, §2.5]), one even uses a (stricly proper) subcomplex of (Ω•X(∗Σ),∇ω)

by considering rational forms on X with logarithmic poles on Σ. However, such a
simplification is not always possible. An example is precisely the case of punctured el-
liptic curves we are interested in, for which it is necessary to consider rational 1-forms
with poles of order 2 at (at least one of) the punctures in order to get an isomorphism
similar to (34), see § 3.3.2 below.

3.2. On punctured elliptic curves

We now specialize and make the theory described above explicit in the case of
punctured elliptic curves. This case has been treated very carefully in [54] to which
we refer for proofs and details. For some particular cases with few punctures, the
interested reader can consult [83, 34, 52, 53].
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More precisely, in the (sub-)sections below:

— we first introduce some notation and describe the relevant objects regarding the
case of a punctured elliptic curve (from § 3.2.1 to § 3.2.4);

— then we give a precise description of the twisted homology and cohomology
groups relevant for our purpose (in § 3.3.1 and in § 3.3.2 respectively);

— next we describe the associated twisted intersection product (in § 3.4);

— finally, we consider more specifically the case of 2-punctured elliptic curves (in
§ 3.5). In particular, in § 3.5.1, we discuss what happens when the punctures vary
(the connection formulae as well as the invariance of the twisted intersection
product under monodromy).

Note that in essentially all the sequel of this chapter, the considered n-punctured
elliptic curve will be assumed to be fixed. It is only in § 3.5.1 that we will allow
its modulus, namely the element τ of H, as well as the complex numbers z1, . . . , zn
parametrizing the punctures, to vary.

?

Starting from here and until § 3.5.2 (included), n ≥ 2 is a fixed integer and
α0, α1, α2, . . . , αn are fixed real parameters such that

(35) αi ∈ ]−1,∞[ for i = 1, . . . , n and
n∑
i=1

αi = 0.

Note that these conditions ensure that none of the αi’s is an integer, at the excep-
tion of α0 which, unlike the others αi’s, can be arbitrary.

Remark 3.2.1. – We recall that the assumptions made on the αi’s for i = 1, . . . , n

admit the following geometric interpretations: the fact that they all are real numbers
bigger than −1 allows to consider flat structures of finite area on some surfaces of
genus 1 while the condition

∑n
i=1 αi = 2 · 1 − 2 = 0 can be seen as a ‘Gauß-Bonnet

constraint’ (see § 2.7.2.1 for more details).

However, it turns out that that many of the results presented in the present chapter
are actually valid in the more general case when the αi’s are allowed to take non-
integer complex values. In this more general context, which is no longer associated
to the study of some flat tori, the condition

∑n
i=1 αi = 0 still must be assumed and

understood as a necessity for exactly n punctures to be involved on the considered
elliptic curve. We refer to [54] for more details regarding this.
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3.2.1. The multivalued function Tα on a punctured elliptic curve. – For τ ∈ H
and z = (z1, z2, . . . , zn) ∈ Cn, one denotes by Eτ,z the punctured elliptic curve
Eτ \ {[zi] | i = 1, . . . , n}, where [zi] stands for the class of zi in Eτ . We will always
assume that the [zi]’s are pairwise distinct and that z has been normalized, meaning
that z1 = 0.

For τ and z as above, one considers the holomorphic multivalued function

(36) Tα(·, τ, z) : u 7−→ Tα(u; τ, z) = exp
(
2iπα0u

) n∏
k=1

θ
(
u− zk

)αk ,
of a complex variable u, where θ stands for the theta function θ(·, τ), cf. (19). Since
τ , z and the αi’s will stay fixed in this section, we will write Tα(·) or even just T (·)
instead of Tα(·, τ, z) to simplify notation.

Note that, since θ(·) = θ(·, τ) vanishes on Zτ = Z⊕Zτ as a function on C (for any
τ ∈ H), the branch locus of Tα is exactly the union of the translated lattices zk+Zτ ’s
for k = 1, . . . , n.

A straightforward computation gives

ω = d log T =
(
∂ log T/∂u

)
du = 2iπα0du+

n∑
k=1

αkρ(u− zk)du,

where ρ(·) stands for the logarithmic derivative of θ(·), see again (19). Using (35),
this can be rewritten as

(37) ω = 2iπα0du+

n∑
k=2

αk
(
ρ(u− zk)− ρ(u)

)
du.

Starting from 2 instead of 1 in the summation above forces to subtract ρ(u) at each
step. The advantage is that the functions (ρ(u−zk)−ρ(u)), k = 2, . . . , n which appear
in (37) are all rational on Eτ,z (cf. the last statement of § 2.2). This shows that ω is
a logarithmic rational 1-form on Eτ with poles exactly at the [zi]’s.

Clearly, T is nothing else than the pull back by the universal covering map C→ Eτ
of a solution of the differential operator

∇−ω : OEτ,z −→ Ω1
Eτ,z(38)

h 7−→ dh− ω · h,

hence can be considered as a multivalued holomorphic function on Eτ,z.
Since ω = d log T is a rational 1-form, the monodromy of log T is additive, hence

that of T is multiplicative. For this reason, it is not necessary to refer to a base point to
specify the monodromy of T . Thus the latter can be encoded by means of a morphism

(39) ρ : H1(Eτ,z,Z) −→ C∗

that we are going to give explicitly below.
Let us define L∨ρ , written L∨ for short, as the kernel of the differential operator (38).

It is the local system on Eτ,z the local sections of which are local determinations of T .
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We denote the dual local system by Lρ, or just by L in what follows if no confusion
can arise.

3.2.2. The monodromy of Tα. – Let ε > 0 and set ? = −ε(1 + i) ∈ C. Assuming ε
small enough, the rectilinear segment in C linking ? to ?+ 1 (resp. to ?+ τ) does not
meet

⋃n
i=1(zi +Zτ ) hence its image in Eτ , denoted by β0 (resp. by β∞), avoids the n

marked points [zi]’s. For i = 1, . . . , n, let βi stand for the image in Eτ,z of a positively
oriented circle centered at zi, of radius sufficiently small so that the supports of the
1-cycles β0, β1, · · · , βn, β∞ in Eτ,z are pairwise disjoint. (see Figure 3).

Eτ

Figure 3. In blue, the 1-cycles β•, • = 0, 1, . . . , n,∞ (the two cycles in
gray are the images in Eτ of the segments [0, 1] and [0, τ ]).

For • ∈ {0,∞, 1, . . . , n}, the analytic continuation of any determination T? of T at ?
along β• is equal to T? times a complex number ρ• = ρ(β•) which does not depend on ε
nor on the initially chosen determination T?. Moreover, since H1(Eτ,z,Z) is spanned
by the homology classes of the 1-cycles β• (which do not depend on ε if the latter
is sufficiently small), the n + 2 values ρ• completely characterize the monodromy
morphism (39).

For any k = 1, . . . , n, up to multiplication by an invertible germ of holomorphic
function, T (u) coincides with (u − zk)αk for u in the vicinity of zk. It follows imme-
diately that

ρk = exp
(
2iπαk

)
.

It is necessary to use different kinds of arguments in order to determine the values
ρ0 and ρ∞ which account for the monodromy coming from the global topology of Eτ .
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We will deal only with the monodromy along β∞ since the determination of the
monodromy along β0 relies on similar (and actually simpler) computations. For u close
to ?, using the functional Equation (20) satisfied by θ and because

∑n
i=1 αi = 0, the

following equalities hold true:

T (u+ τ) = e2iπα0(u+τ)
n∏
k=1

(
− q 1

4 e−2iπ(u−zk)θ(u− zk, τ)
)αk

=
(
− q 1

4

)∑
k αke2iπ(α0τ−

∑
k αk(u−zk))T (u)

= e2iπ(α0τ+
∑
k αkzk)T (u).

Setting

(40) α∞ = α0τ +

n∑
k=1

αkzk,

the preceding computation shows that

ρ∞ = exp
(
2iπα∞

)
.

By similar computations, one proves that ρ0 = exp
(
2iπα0

)
.

All the above computations can be summed up in the following

Lemma 3.2.2. – The monodromy of T is multiplicative and the values ρ• character-
izing the monodromy morphism (39) are given by

ρ• = exp
(
2iπα•

)
for • ∈ {0, 1, . . . , n,∞}, where α∞ is given by (40).

3.2.3. Construction of some twisted 1-cycles I. – Let τ ∈ H and z ∈ Cn be as above.
For i = 2, . . . , n, let z̃i be the element of zi+Zτ lying in the fundamental parallelogram
[0, 1[τ ⊂ C and denote by ˜̀

i the image of ]0, z̃i[ in Eτ,z. Then let us modify the ˜̀
i’s,

each in its respective relative homotopy class, in order to get locally finite 1-cycles `i
in Eτ,z which neither intersect nor have non-trivial self-intersection (cf. Figure 4 below
where, to simplify the notation, we have assumed that zi = z̃i for i = 2, . . . , n). (18)

Let ϕ : [0, 1] → R be a non-negative smooth function, such that ϕ(0) = ϕ(1) = 0

and such that ϕ > 0 on ]0, 1[. Define ˜̀
0 as the image of ]0, 1[ in Eτ . Let `0 be the

image in the latter tori of f : t 7→ t − iεϕ(t) with ε positive and sufficiently small so
that the bounded area delimited by the segment [0, 1] from above and by the image
of f from below does not contain any element Zτ -congruent to one of the zi’s. By a
similar construction but starting from the segment ]0, τ [, one constructs a locally finite
1-chain `∞ in Eτ,z (see Figure 4 below). We prefer to consider small deformations of

18. If the `i’s are not formally defined as a locally finite linear combinations of twisted 1-simplices,
a natural way to see them like this is by subdividing each segment ]0, z̃i[ into a countable union of
1-simplices overlapping only at their extremities. There is no canonical way to do this, but two locally
finite twisted 1-chains obtained by this construction are clearly homotopically equivalent.
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B

10

z2

z3

z4
z5

τ

ℓ0

ℓ2

ℓ3

ℓ4

ℓ5

ℓ∞

Figure 4. The locally finite 1-cycles `0, `2, . . . , `n and `∞.

the segments ]0, 1[ and ]0, τ [ to define `0 and `∞ in order to avoid any ambiguity if
some of the z̃i’s happen to be located on one (or on both) of these segments.

Let B be the branch cut in Eτ defined as the image of an embedding [0, 1]→ [0, 1[τ
sending 0 to 0 and 1 to z̃n which does not meet the `i’s except at their extremities z̃i’s
which all belong to B (cf. the dotted curve in red in Figure 4).

Denote by U the complement in Eτ of the topological closure of the union of `0, `∞
and B. Then U is a simply connected open set which is naturally identified to the
bounded open subset of C, that we will denote a bit abusively by the same way, the
boundary of which is the union of B with the 1-chains `0, `∞ and their respective
‘horizontal’ and ‘vertical’ translations 1 + `∞ and τ + `0.

Thus it makes sense to speak of a (global) determination of the function T defined in
(36) on U . Let TU stand for such a global determination on U . It extends continuously
to the topological boundary ∂U of U in C minus the n−1 + 4 points of

⋃n
i=1(zi+Zτ )

lying on ∂U . Then for any • ∈ {0, 2, . . . , n,∞}, the restriction T• of this continuous
extension to `• is well defined and one defines a locally finite L∨-twisted 1-chain
(cf. the footnote of the preceding page) by setting

`• = `• ⊗ T•.

The continuous extension of TU to U \
⋃n
i=1(zi + Zτ ) does not vanish. Hence for

any • as above, one defines a locally L-twisted 1-chain by setting:

l• = `• ⊗ (T•)
−1.

We let the reader verify that the `•’s as well as the l•’s actually are (twisted)
1-cycles. Therefore they induce twisted locally finite homology classes, respectively
in H lf

1 (Eτ,z, L
∨) and H lf

1 (Eτ,z, L). A bit abusively, we will denote these homology
classes by the same notation `• and l•. This will not cause any problem whatsoever.
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3.2.4. Construction of some twisted 1-cycles II. – Such as they are defined above, the
locally finite twisted 1-cycles `0, `2, . . . , `n and `∞ depend on some choices. Indeed,
except for `0 and `∞, the way the supports `i’s are chosen is anything but constructive.
Less important issues are the choices of a branch cut B and of a determination of T
on U , which have not been specified yet.

There is a way to remedy to this lack of determination by considering specific zi’s.
Let us say that these are in (very) nice position if

for every i = 1, . . . , n − 1, the principal argument of z̃i is (stricly) bigger
than that of z̃i+1.

Remark that when n = 2, the zi’s are always in very nice position.

When the zi’s are in very nice position, there is no need to modify the ˜̀
i’s considered

above since they already satisfy all the required properties. For the branch cut B,
we take the union of a small deformation of [0, z̃1] with the segments [z̃i, z̃i+1] for
i = 2, . . . , n− 1 (see Figure 5 just below). As to the choice of a determination of T

B

1
0

z2
z3

z4

z5

τ

ℓ0

ℓ2

ℓ3 ℓ4

ℓ5

ℓ∞

Figure 5. The 1-cycles `• for • = 0, 2, . . . , n,∞ and the branch cut B,
for points zi’s in very nice position.

on U , let us remark that θ(·, τ) takes positive real values on ]0, 1[ for any purely
imaginary modular parameter τ . If Log stands for the principal determination of the
logarithm, one can define θ(u− zi, τ)αi as exp(αiLog θ(u− zi, τ)) on the intersection
of the suitable translate of V with a disk centered at zi and of very small radius, for
any i = 1, . . . , n (remember the normalization z1 = 0). By analytic continuation, one
gets a global determination of this function on U . Now, since τ varies in the upper
half-plane which is simply connected, it is easy to perform analytic continuation with
respect to this parameter in order to obtain a determination of the θ(u − zi, τ)αi ’s,
hence of T on U for any τ in H.
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The `•’s as well as the chosen determination TU on U being well-defined in a unique
way, the same holds true for the twisted 1-cycles `•’s and, by extension, for the l•’s
(hence for the corresponding twisted homology classes as well).

Finally, by continuous deformation of the `i’s (cf. [11, Remark (3.6 )]), one con-
structs canonical twisted 1-cycles (and associated homology classes) `• and l• for
points zi’s only supposed to be in nice position (see the two pictures below).

B

10

z2 z3

z4

z5

τ

ℓ0

ℓ2 ℓ3
ℓ4

ℓ5

∞

B

10

z2

z4

z3

z5

τ

ℓ0

ℓ2

ℓ3

ℓ4

ℓ5

∞
ℓℓ

3.3. Description of the first twisted (co)homology groups

In this subsection, we follow [54] very closely and give explicit descriptions of the
(co)homology groups H1(Eτ,z, Lρ) and H1(Eτ,z, Lρ).

In what follows, we assume that the points zi’s are in nice position.
We will use the following notation in the lines below:
— latin letters such as i, j, k will stand for indices ranging from 1 to n;
— we will use symbols such as •, ◦ to designate indices ranging in {∞, 0, 1, . . . , n}.
For any • (belonging to {0, 1, 2, . . . , n,∞} according to our convention), recall that

ρ• = exp(2iπα•), with α∞ given by (40). (19) Given m elements •1, . . . , •m of the set
of indices {0, 1, 2, . . . , n,∞}, one sets:

(41) ρ•1...•m = ρ•1 · · · · ρ•m and d•1...•m = ρ•1...•m − 1.

3.3.1. The first twisted homology groupH1(Eτ,z, Lρ)

3.3.1.1. – Denote by V the bounded simply connected open subset of C whose bound-
ary is the topological closure of the union of the `•’s for • in {0, 2, . . . , n,∞} with the
two translated cycles 1 + `0 and τ + `∞. By analytic extension of the restriction of
the determination TU of T on U in the vicinity of 1 + τ , one gets a determination TV
of T on V . Considering now V as an open subset of Eτ,z, one defines a locally-finite
Lρ-twisted 2-chain (20) by setting

V = V ⊗ TV .

19. It could be useful for the reader to be aware of the relation between our α•’s and the corre-
sponding notation c• used in [51, 54]: one has αj = cj for j = 0, 1, . . . , n but α∞ = −c∞.
20. Strictly speaking, we do not define V as a locally-finite 2-chain but there is a natural way to

see it as such (by using similar arguments to those in footnote (18) above).
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This is not a cycle. Indeed, one verifies easily (cf. Figure 5) that the following
relation holds true:

∂V = `0 + ρ0`∞ − ρ∞`0 − `∞
+ (ρn − 1)`n + ρn(ρn−1 − 1)`n−1 + · · ·+ ρ3···n(ρ2 − 1)`2.

It follows that, in H lf
1 (Eτ,z, Lρ), one has

−d∞ · `0 + d0 · `∞ +

n∑
k=2

dk
ρ1···k

· `k = 0.

3.3.1.2. – In order to construct a regularization map, we fix ε > 0. The constructions
given below are all independent of ε (at the level of homology classes) if the latter is
supposed sufficiently small. Of course, we assume that it is the case in what follows.

For any k = 2, . . . , n, let σk : S1 → C be a positively oriented parametrization
of the circle centered at z̃k and of radius ε such that the point pk = σk(1) is on the
branch locus B, the latter being defined as in § 3.2.3 (see Figure 4). The image of ]0, 1[

by sk = σk(exp(2iπ·)) : [0, 1]→ C is included in U , hence s∗k(TU ) is well defined and
extends continuously to the closure [0, 1]. Denoting this extension by Tk, one defines
a twisted 1-simplex in Eτ,z by setting

sk = [0, 1]⊗ Tk.

3.3.1.3. – Let ϕ ∈ ]0, π[ be the principal argument of τ , set I0 = [0, ϕ], I1 = [ϕ, π],
I2 = [π, π + ϕ] and I3 = [ϕ+ π, 2π] and denote by σν0 the restriction of [0, 2π]→ S1,
t 7→ ε exp(it) to Iν for ν = 0, 1, 2, 3. We denote by mν the image of σν0 viewed as
a subset of Eτ,z. These are circular arcs the union of which is a circle of radius ε
centered at 0 in Eτ,z.

In order to specify a determination of T on each of themν ’s, we are going to use the
fact that each of them is also the image in Eτ of a suitable translation of σν0 , whose
image is included in U . More precisely, one sets σ̂ν0 (·) = σν0 (·) + xν for ν = 1, . . . , 3,
with x1 = 1, x2 = 1 + τ and x3 = τ .

For ν = 1, 2, 3, the image of the interior of Iν by σ̂ν0 is included in U . The restriction
of TU to this image extends continuously to Iν . Denoting these extensions by T νU , one
defines twisted 1-simplices in Eτ,z by setting

m1 = I1 ⊗
(
ρ−1

0 T 1
U

)
, m2 = I2 ⊗

(
ρ−1

0∞T
2
U

)
and m3 = I3 ⊗

(
ρ−1
∞ T 3

U

)
.

Since the image of σ0
0 meets the branch cut B, one cannot proceed as above in this

particular case. We use the fact that p0 = σ0
0(0) = ε belongs to U . Sincem0 ⊂ Eτ,z, the

germ of (σ0
0)∗TU at 0 ∈ I0 extends to the whole simplex I0. Denoting this extension

by T 0
U , one defines a twisted 1-simplex in Eτ,z by setting

m0 = I0 ⊗ T 0
U .
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3.3.1.4. – For k = 2, . . . , n, let `εk be the rectilinear segment linking p0 to pk in C:
`εk = [p0, pk]. Setting p∞ = σ0

0(ϕ) = ετ and deforming the two segments [p0, 1− p0] =

[ε, 1 − ε] and [p∞, τ − p∞] = [ετ, (1 − ε)τ ] by means of a function ϕ as in 3.2.3, one
constructs two 1-simplices in U , denoted by `ε0 and `ε∞ respectively.

For ε small enough, the `•’s, • = 0, 2, . . . , n,∞, are pairwise disjoint and included
in U , hence one defines twisted 1-simplices in Eτ,z by setting

`ε• = `ε• ⊗
(
TU |`ε•

)
.

The 1-simplices `ε• for • = 0, 2, . . . , n,∞, sk for k = 2, . . . , n andmν for ν = 0, 1, 2, 3

are pictured in blue in Figure 6 below (in the case when n = 3).

U

B

1

s3s2

τ
1 +

ℓǫ
0

ℓǫ
2

ℓǫ
3

ℓǫ
∞

p∞

p0

p2
p3

Figure 6.

3.3.1.5. – Using the twisted 1-simplices constructed above, one defines Lρ-twisted
1-chains in Eτ,z by setting

γ∞ =
1

d1

[
m0 +m1 +m2 +m3

]
+ `ε∞ −

ρ∞
d1

[
m3 +m0 + ρ1

(
m1 +m2

)]
,

γ0 =
1

d1

[
m0 + ρ1

(
m1 +m2 +m3

)]
+ `ε0 −

ρ0

d1

[
m2 +m3 +m0 + ρ1m

1
]

(21)(42)

and γk =
1

d1

[
m0 + ρ1

(
m1 +m2 +m3

)]
+ `εk −

1

dk
sk for k = 2, . . . , n.

By straightforward computations (similar to the one in [3, Example 2.1] for in-
stance), one verifies that the γ•’s actually are 1-cycles hence define twisted homology
classes in H1(Eτ,z, Lρ). We will again use γ• to designate the corresponding twisted

21. Note that there is a typo in the formula for γ0 in [54]. With the notation from this article, the
numerator of the coefficient of the term (m0 + e2π

√
−1c1m1) appearing in the definition of γ0 page

3877 should be 1− e2π
√
−1c0 and not 1− e−2π

√
−1c0 .
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homology classes. It is clear that they do not depend on ε. In particular, this justifies
that ε does not appear in the notation γ•.

When the zi’s are in nice position, the following proposition holds true:

Proposition 3.3.1 (Mano-Watanabe [54]). – 1. The map reg : `• 7→ reg(`•) = γ•
is a regularization map: at the homological level, it induces the isomorphism
H lf

1 (Eτ,z, Lρ) ' H1(Eτ,z, Lρ).

2. The homology classes γ∞,γ0,γ2, . . . ,γn satisfy the following relation:

(43) − d∞ γ0 + d0γ∞ +

n∑
k=2

dk
ρ1...k

γk = 0.

3. The twisted homology group H1(Eτ,z, Lρ) is of dimension n and admits

γ =
(
γ∞,γ0, γ3, . . . ,γn

)
as a basis.

Since T does not vanish on Eτ,z, all the preceding constructions can be done with
replacing T by its inverse T−1. The regularizations γ∨• = reg(l•) of the L∨ρ -twisted
1-cycles l• described at the end of § 3.2.3 are defined by the same formulae as (42)
but with replacing ρ• by ρ−1

• for • = 0, 2, . . . , n,∞. Then

γ∨ =
(
γ∨∞,γ

∨
0 , γ

∨
3 , . . . ,γ

∨
n

)
is a basis of H1(Eτ,z, L

∨
ρ ).

3.3.2. The first cohomology group H1(Eτ,z, Lρ). – In [54], the authors give a very
detailed treatment of the material described above in § 3.1.9 in the case of a punctured
elliptic curve. In particular, they show that in this case, it is not possible to use only
logarithmic differential forms to describe H1(Eτ,z, Lρ).

We continue to use the previous notation. In [54, Proposition 2.4], the authors
prove that H1(Eτ,z, Lρ) is isomorphic to the quotient of H0(Eτ,z,Ω

1
Eτ,z

) by the image
by ∇ω of the space of holomorphic functions on Eτ,z (cf. (33)). Then they give a direct
proof of the twisted algebraic de Rham comparison theorem (cf. [54, Proposition 2.5],
see also § 3.1.9 above) which asserts that one can consider only rational objects on Eτ
(but with poles at the [zi]’s).

Viewing Z =
∑n
i=1[zi] as a divisor on Eτ , one has

(44) H1
(
Eτ,z, Lρ

)
'

H0
(
Eτ ,Ω

1
Eτ

(∗Z)
)

∇ω
(
H0
(
Eτ , OEτ (∗Z)

))
(recall that, with our notation, H0(Eτ , OEτ (∗Z)) (resp. H0(Eτ ,Ω

1
Eτ

(∗Z))) stands for
the space of rational functions (resp. 1-forms) on Eτ with poles only at the [zi]’s.
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We now consider the non-reduced divisor Z ′ = Z + [0] = 2[0] +
∑n
k=2[zk]. There is

a natural map from the space H0(Eτ ,Ω
1
Eτ

(Z ′)) of rational 1-forms on Eτ with poles
at most Z ′ to the right hand quotient space of (44):

(45) H0
(
Eτ ,Ω

1
Eτ

(
Z ′
))
−→

H0
(
Eτ ,Ω

1
Eτ

(∗Z)
)

∇ω
(
H0
(
Eτ , OEτ (∗Z)

)) .
One of the main results of [54] is Theorem 2.7 which says that the preceding map

is surjective with a kernel of dimension 1.

It is not difficult to see that, as a vector space, H0
(
Eτ ,Ω

1
Eτ

(
Z ′
))

is spanned by

ϕ0 = du,

ϕ1 = ρ′(u)du

and ϕj =
(
ρ(u− zj)− ρ(u)

)
du for j = 2, . . . , n.

Remark that all these forms are logarithmic on Eτ (i.e., have at most poles of the
first order), at the exception of ϕ1 which has a pole of order 2 at the origin.

On the other hand, 1 is holomorphic on Eτ and, according to (37), one has: (22)

(46) ∇ω(1) = ω = 2iπα0 · ϕ0 +

n∑
j=2

αj · ϕj .

One then deduces the following description of the cohomology group we are inter-
ested in:

Theorem 3.3.2. – 1. Up to the isomorphisms (44) and (45), the space
H1(Eτ,z, Lρ) is identified with the space spanned by the rational 1-forms
ϕm for m = 0, 1, 2, . . . , n, modulo the relation 0 = 2iπα0 ϕ0 +

∑
k=2 αk ϕk, i.e.,:

H1
(
Eτ,z, Lρ

)
'

⊕n
m=0 C · ϕm〈

2iπα0 ϕ0 +
∑
k=2 αk ϕk

〉 .
2. In particular when n = 2, up to the preceding isomorphism, the respective

classes [ϕ0] and [ϕ1] of du and ρ′(u)du form a basis of H1(Eτ,z, Lρ).

22. Even if we are interested only in the case when λ = 0, we mention here that the general formula
given in [54, Remark 2.8] is not correct. Setting, as in [54], s(u) = s(u;λ) = θ′(0, τ)θ(u−λ)/(θ(u)θ(λ))
for u, λ ∈ C \ Zτ , the correct formula when λ 6= 0 is

∇ω(1) =
[
2iπα0 − α1ρ(λ) +

n∑
j=2

αj
(
s(zj)− ρ(zj)

)]
· ϕ0 + λ(α1 − 1) · ϕ1 − λ

n∑
j=2

αj s(zj) · ϕj .
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3.4. The twisted intersection product

It follows from Lemma 3.2.2 that the monodromy character ρ is unitary if and only
if the quantity α∞ defined in (40) is real. Starting from now on, we assume that it is
indeed the case.

Since ρ is unitary, the constructions of § 3.1.6 apply. We want to make them com-
pletely explicit. More precisely, we want to express the intersection product (30) in the
basis γ, i.e., we want to compute the coefficients of the following intersection matrix:

Iρ =
(
γ◦ · γ•

)
◦,•=∞,0,3,...,n.

Since ρ is unitary, ρ−1 = ρ, hence for any •, γ• is the regularization of the lo-
cally finite L-twisted 1-cycle l• and consequently γ◦ · γ• = γ◦ · l• for every ◦, •
in {∞, 0, 2, 3, . . . , n}. Using the method explained in [40], it is just a computational
task to determine these twisted intersection numbers.

Assuming that the zi’s are in nice position, one has the

Proposition 3.4.1. – For i = 2, . . . , n, j = 2, . . . , i − 1 and k = i + 1, . . . , n, one
has:

γ∞ · l∞ =
d∞d1∞

d1ρ∞
γi · l∞ = −ρ1d∞

ρ∞d1

γ∞ · l0 =
1− ρ0 + ρ0∞ − ρ1∞

ρ0d1
γi · l0 = −ρ1d0

ρ0d1

γ∞ · li =
d∞
d1

γj · li = −ρ1

d1

γ0 · l∞ =
ρ1 − ρ1∞ − ρ0 + ρ01∞

ρ∞d1
γi · li = − d1i

d1di

γ0 · l0 =
d0

d1

(
1− ρ1

ρ0

)
γk · li = − 1

d1

γ0 · li =
d0

d1
.

Proof. – Let σ (resp. σ̃) stand for the class in H1(Eτ,z, L
∨) (resp. in H lf

1 (Eτ,z, L))
of a twisted 1-simplex, denoted somewhat abusively by the same notation. Denote
respectively by σ and σ̃ the supports of these twisted cycles and let Tσ and Tσ̃ be the
two determinations of T along σ and σ̃ respectively, such that

σ = σ ⊗ Tσ and σ̃ = σ̃ ⊗
(
Tσ̃
)−1

.

Since the intersection number σ · σ̃ depends only on the associated twisted ho-
motopy classes and because σ is a compact subset of Eτ,z, one can assume that the
topological 1-cycles σ and σ̃ are smooth and intersect transversally in a finite number
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of points. As explained in [40], σ · σ̃ is equal to the sum of the local intersection num-
bers at the intersection points of the supports σ and σ̃ of the two considered twisted
1-simplices. In other terms, one has

σ · σ̃ =
∑

x∈σ∩σ̃

〈
σ · σ̃

〉
x
,

where for any intersection point x of σ and σ̃, the twisted local intersection num-
ber 〈σ, σ̃〉x is defined as the product of the usual topological local intersection number
〈σ, σ̃〉x ∈ Z with the complex ratio Tσ(x)/Tσ̃(x), i.e.,〈

σ · σ̃
〉
x

=
〈
σ ⊗ Tσ, σ̃ ⊗ T−1

σ̃

〉
x

=
〈
σ, σ̃

〉
x
· Tσ(x)Tσ̃(x)−1 ∈ C.

With the preceding result at hand, determining all the intersection numbers of the
proposition is just a computational task. We will detail only one case below. The
others can be computed in a similar way. (23)

As an example, let us detail the computation of γ∞ · l∞. The picture below is
helpful for this. On it, the 1-cycle γ∞ has been drawn in blue whereas the locally
finite 1-cycle l∞ is pictured in green.

0

B

B + τ

τ

x1

x2

y1

y2

l′
∞

γi
∞

γǫ
∞

γf
∞

The picture shows that l∞ does not meet γε∞ and intersects γi∞ and γf∞ at the
points x1, x2 and y1, y2 respectively.

23. Some of these computations can be considered as classical since they already appear in the
existing literature, such as the one of γi · li for i = 2, . . . , n, which follows immediately from the
computations given p. 294 of [40] (see also [3, §2.3.3]).
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It follows that

γ∞ · l∞ = γi∞ · l∞ + γf∞ · l∞

=

2∑
k=1

〈
γi∞ · l∞

〉
xk

+

2∑
k=1

〈
γf∞ · l∞

〉
yk

=
1

d1

2∑
k=1

〈
mk · l∞

〉
xk
− ρ1∞

d1

2∑
k=1

〈
mk · l∞

〉
yk
,(47)

the last equality coming from the formula for γi∞ and γf∞ and from the fact that
xk, yk ∈ mk for k = 1, 2.

The topological intersection numbers are the following:〈
m1 · l∞

〉
x1

=
〈
m1 · l∞

〉
y1

= −1 and
〈
m2 · l∞

〉
x2

=
〈
m2 · l∞

〉
y2

= 1.

It is then easy to compute the four intersection numbers appearing in (3.4):

— let ζ1 stand for x1 or y1. The determination of T associated to l∞ at ζ1 is the
same as the one associated to m1 at this point. It follows that

〈m1 · l∞〉ζ1 = 〈m1 · l∞
〉
ζ1

= −1 ;

— let ζ2 stand for x2 or y2. The determination of T associated to l∞ at ζ2 is ρ∞
times the one associated to m2 at this point. It follows that

〈m2 · l∞〉ζ2 = 〈m2 · l∞
〉
ζ2
· ρ−1
∞ = ρ−1

∞ .

From all the preceding considerations, it follows that

γ∞ · l∞ =
1

d1

[
− 1 + ρ−1

∞

]
− ρ1∞

d1

[
− 1 + ρ−1

∞

]
=
d∞d1∞

ρ∞d1
.

3.5. The particular case n = 2

In this case, the complete intersection matrix is

Iρ =
(
γ◦ · l•

)
◦,•=0,∞,2 =


d∞d1∞
d1ρ∞

γ∞ · l0 d∞
d1

γ0 · l∞ d0
d1

(
1− ρ1

ρ0

)
d0
d1

−ρ1d∞ρ∞d1
−ρ1d0ρ0d1

0


with

γ∞ · l0 = − 1

d1
+
ρ−1

0

d1
+
ρ∞
d1
− ρ1ρ∞ρ

−1
0

d1

and γ0 · l∞ = −ρ1

d1
+
ρ0ρ1

d1
+
ρ1ρ
−1
∞

d1
− ρ0ρ

−1
∞

d1
.

The linear relation between the twisted 1-cycles γ0,γ∞ and γ2 is

(1− ρ∞)γ0 − (1− ρ0)γ∞ = (1− ρ2)γ2.
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Thus, since ρ2 6= 1, one can express γ2 in function of γ0 and γ∞ as follows:

(48) γ2 = −ρ1
d∞
d1
γ0 + ρ1

d0

d1
γ∞.

The intersection matrix relative to the basis (γ0,γ∞) and (l 0, l∞) is

Iρ =

[
γ∞

γ0

]
·
[
l∞ l0

]
=

 d∞d1∞
d1ρ∞

−1+ρ−1
0 +ρ∞−ρ1ρ∞ρ−1

0

d1
−ρ1+ρ0ρ1+ρ1ρ

−1
∞ −ρ0ρ

−1
∞

d1
d0
d1

(
1− ρ1

ρ0

)  .
By a direct computation, one verifies that the determinant of this anti-Hermitian

matrix is always equal to 1, hence this matrix is invertible. Then one can consider

(49) Hρ =
(
2iIρ

)−1
=

1

2i

[
d0
d1

(
1− ρ1

ρ0

)
ρ0−1−ρ0ρ∞+ρ1ρ∞

ρ0d1
ρ0−ρ1−ρ0ρ1ρ∞+ρ1ρ∞

ρ∞d1
d∞d1∞
d1ρ∞

]
.

This matrix is Hermitian and its determinant is −1/4 < 0. It follows that the
signature of the Hermitian form associated to Hρ is (1, 1), as expected.

We do not compute the signature in the general case, as formulae become quite
intricate and depend not only on the number of marked points but also on the values
of the αi’s. The interested reader can consult [80, §14] where he will find formulae for
the signature of this Hermitian form in the general case.

3.5.1. Some connection formulae. – We now let the parameters τ and z vary. More
precisely, let f : [0, 1]→ H×Cn, s 7→ (τ(s), z(s)) be a smooth path in the correspond-
ing parameter space: for every s ∈ [0, 1], z1(s) = 0 and z1(s), . . . , zn(s) are pairwise
distinct modulo Zτ(s). For s ∈ [0, 1], let ρs be the corresponding monodromy mor-
phism (namely, the one corresponding to the monodromy of T (·, τ(s), z(s))) viewed
as a multivalued holomorphic function on Eτ(s),z(s) and denote by Ls = Lρs the
associated local system on this elliptic curve.

Since the Eτ(s),z(s)’s form a topologically trivial family of n-punctured elliptic
curves over [0, 1], the corresponding twisted homology groups H1(Eτ(s),z(s), Ls) orga-
nize themselves into a local system on [0, 1] (cf. Example 2.5.13 in [14]), which is nec-
essarily trivial (since this interval is contractile). If in addition the zi(0)’s are in very
nice position, then the twisted 1-cycles γ0

• (for • = ∞, 0, 3, . . . , n) are well-defined
and can be smoothly deformed along f . One obtains a deformation parametrized
by s ∈ [0, 1]

γs =
(
γs•
)
•=∞,0,3,...,n

of the initial γ0’s, such that the map γ0
• 7→ γ1

• induces an isomorphism denoted
by f∗ between the corresponding twisted homology spaces H1(Eτ(0),z(0), L0) and
H1(Eτ(1),z(1), L1). It only depends on the homotopy class of f . Similarly, one con-
structs an analytic deformation ls = (ls∞, . . . , l

s
n

)
, s ∈ [0, 1].

Let us suppose furthermore that the zi(1)’s also are in very nice position. Then
let γ′ = (γ′•)•=∞,0,3,...,n be the nice basis of H1(Eτ(1),z(1), L1) constructed in § 3.3.1.2.
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The matrix of f∗ : H1(Eτ(0),z(0), L0) ' H1(Eτ(1),z(1), L1) expressed in the nice bases
γ0 and γ′ is nothing else than the n× n matrix Mf such that

(50) tγ′ = Mf · tγ1.

Such a relation is called a connection formula. In the particular case when f is
a loop, one has (τ ′, z′) = (τ, z) and such a formula appears as nothing else than a
monodromy formula.

One verifies easily that the twisted intersection product is constant up to small
deformations. In particular, for any •, ◦ in {∞, 0, 2, . . . , n}, the twisted intersection
number γs• · l

s
◦ does not depend on s ∈ [0, 1], thus tγ1 · l1 = Iρ0 . Combining this

with (50), it follows that the following matricial relation holds true:

Iρ1 = Mf · Iρ0 · tMf .

In what follows, we give several natural connection formulae in the case when n = 2.
All these are particular cases of the formulae given in [51, §6] for n ≥ 2 arbitrary.
Note that the reader will not find rigorous proofs of these formulae in [51] but rather
some pictures explaining what is going on. However, with the help of these pictures
and using similar arguments than those of [11, Proposition (9.2)], it is not too difficult
to give rigorous proofs of the formulae below. Since it is rather long, it is left to the
motivated reader.

In what follows, the modular parameter τ ∈ H is fixed as well as z = (z1, z2) which
is a pair of points of C which are not congruent modulo Zτ . As remarked before, z1, z2

are in very nice position, hence the twisted 1-cycles γ•, • = ∞, 0, 2 are well-defined.
To remain close to [51], we will not write that z1 is 0 in the lines below, even if one
can suppose that z1 as been normalized in this way.

3.5.1.1. Half-twist formula “z1 ←→ z2”. – We first deal with the connection formula
associated to the (homotopy class of a) half-twist exchanging z1 and z2 with z2 passing
above z1 as pictured in red in Figure 7 below. This case is the one treated at the
bottom of p. 15 of [51]. (24)

Setting z′ = (z2, z1), there is a linear isomorphism HTwistρ from H1(Eτ,z, Lρ) onto
H1(Eτ,z′ , Lρ′) with ρ′ = RHTwist(ρ) where

RHTwist : (ρ∞, ρ0, ρ1) 7−→
(
ρ∞, ρ0, ρ

−1
1

)
.

Setting tγ = t(γ∞,γ0,γ2) and l = (l∞, l0, l2) with analogous notation for γ′ and
l′ one has tγ′ = HTwistρ · tγ and l ′ = l · tHTwistρ with

(51) HTwistρ =

1 0 d∞
ρ1

0 1 d0
ρ1

0 0 − 1
ρ1

 .

24. Note that there is a typo in the formula for the half-twist in page 15 of [51]. With the formula
given there, relation (52) does not hold true.
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z1

z2 = z
′

1

Figure 7. Half-twist in the direct sense exchanging z1 and z2.

Verification: one should have Iρ′ = γ′ · l ′ = HTwistρ · γ · l · tHTwistρ = HTwistρ ·
Iρ · tHTwistρ and, indeed, one verifies that the following relation holds true:

(52) Iρ′ = HTwistρ · Iρ · tHTwistρ.

3.5.1.2. First horizontal translation formula “z1 −→ z1 + 1”. – We now consider the
connection formula associated to the path

fHTrans1 : [0, 1] −→ H× C2, s 7−→
(
τ, z1 + s, z2

)
.

We define ρ̃ = RHTrans1(ρ) with

RHTrans1 : (ρ∞, ρ0, ρ1) 7−→ (ρ∞ρ
−1
1 , ρ0, ρ1).

We set z̃ = (z1 + 1, z2) = fHTrans1(1). The path fHTrans1 gives us a linear isomor-
phism from H1(Eτ,z, Lρ) onto H1(Eτ,z̃, Lρ̃) which will be denoted by HTrans1ρ.

The corresponding connection matrix is

HTrans1ρ =


1
ρ1
− d∞
ρ0ρ1

0

0 1
ρ0

0

0 1
ρ0

1
ρ1

 .
One verifies that the following relation is satisfied:

(53) Iρ̃ = HTrans1ρ · Iρ · tHTrans1ρ.

3.5.1.3. Second horizontal translation formula “z2 −→ z2 + 1”. – We now consider
the connection formula associated to the path

fHTrans2 : [0, 1] −→ H× C2, s 7−→
(
τ, z1, z2 + s

)
.

We define ρ′′ = RHTwist ◦RHTrans ◦RHTwist(ρ), that is

ρ′′ =
(
ρ′′∞, ρ

′′
0 , ρ
′′
1

)
=
(
ρ∞ρ1, ρ0, ρ1

)
.
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We set z′′ = (z1, z2 + 1) = fHTrans2(1). The map fHTrans2 gives us a linear isomor-
phism from H1(Eτ,z, Lρ) onto H1(Eτ,z′′ , Lρ′′), which will be denoted by HTrans2ρ.

The corresponding connection matrix is

HTrans2ρ = HTwistρ̃′ ·HTrans1ρ′ ·HTwistρ

with ρ̃′ = RHTrans ◦RHTwist(ρ). Explicitly, one has

HTrans2ρ =

ρ1
ρ1∞d1
ρ0

−d1(ρ01∞+ρ∞−ρ0)
ρ0

0 1+d0ρ1 −d0d1(ρ01+1)
ρ0ρ1

0 −ρ1ρ0
ρ0d1+1
ρ0

 .
We verify that the following relation is satisfied:

Iρ′′ = HTrans2ρ · Iρ · tHTrans2ρ.

The matrix HT2 of the isomorphism HTrans2ρ expressed in the basis (γ∞,γ0) and
(γ′′∞,γ

′′
0) is more involved. But since this formula will be used later (in Lemma 6.3.3),

we give it explicitly below:
(54)

HT2ρ =

 (ρ01∞−ρ0ρ01∞+ρ∞−ρ0∞+ρ0
2)ρ1

ρ0

(ρ10∞ρ∞−ρ01∞+ρ1∞−2 ρ∞+ρ0+ρ∞
2−ρ0∞)ρ1

ρ0

− (ρ0−1)2(ρ01+1)
ρ0

−ρ01∞+2 ρ01−ρ1+ρ0ρ01∞−ρ0ρ01−ρ∞+ρ0∞+2−ρ0
ρ0

 .
This matrix satisfies the following relation: Iρ′′ = HT2ρ · Iρ · tHT2ρ.

3.5.1.4. First vertical translation formula “z1 −→ z1 + τ ”. – We now consider the
connection formula associated to the path

fVTrans1 : [0, 1] −→ H× C2, s 7−→
(
τ, z1 + sτ, z2

)
.

We define ρ̂ = RVTrans1(ρ) where RVTrans1 stands for the following map:

RVTrans1 : (ρ∞, ρ0, ρ1) 7−→ (ρ∞, ρ0ρ1, ρ1).

We set ẑ = (z1 + τ, z2) = fVTrans1(1). The map fVTrans1 gives us a linear isomor-
phism from H1(Eτ,z, Lρ) onto H1(Eτ,ẑ, Lρ̂) which will be denoted by VTrans1ρ.

The corresponding connection matrix is

VTrans1ρ =


1
ρ∞

0 0

−d0ρ1ρ∞
ρ1 0

ρ1
ρ∞

0 ρ1

 .
One verifies that the following relation is satisfied:

(55) Iρ̂ = VTrans1ρ · Iρ · tVTrans1ρ.
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3.5.1.5. Second vertical translation formula “z2 → z2 + τ ”. – We finally consider the
connection formula associated to the path

fVTrans2 : [0, 1] −→ H× C2, s 7−→
(
τ, z1, z2 + sτ

)
.

We define ρ∗ = RHTwist ◦RVTrans ◦RHTwist ◦ (ρ), that is

ρ∗ =
(
ρ∗∞, ρ

∗
0, ρ
∗
1

)
=
(
ρ∞, ρ0ρ

−1
1 , ρ1

)
.

We set z∗ = (z1, z2 + τ) = fVTrans2(1). The map fVTrans2 gives us a linear isomor-
phism VTrans2ρ from H1(Eτ,z, Lρ) onto H1(Eτ,z∗ , Lρ∗).

The corresponding connection matrix is

VTrans2ρ =


1 0 0

− d1
ρ1ρ∞

1
ρ1

d1
ρ21ρ∞

− 1
ρ∞

0 1
ρ1ρ∞

 .
One verifies that the following relation is satisfied:

(56) Iρ∗ = VTrans2ρ · Iρ · tVTrans2ρ.

The matrix VT2ρ of the isomorphism VTrans2ρ expressed in the basis (γ∞,γ0)

and (γ∗∞,γ
∗
0) is quite simple compared to (54). It is

(57) VT2ρ =

[
1 0

ρ0−ρ1
ρ1ρ∞

1
ρ1ρ∞

]
.

This matrix satisfies the following relation: Iρ∗ = VT2ρ · Iρ · tVT2ρ.

3.5.2. Normalization in the case when ρ0 = 1. – If we assume that ρ0 = 1, then (49)
simplifies and one has:

Hρ = (2i)−1

[
0 ρ∞

− 1
ρ∞

d∞d1∞
d1ρ∞

]
.

Then setting

Zρ =
√

2

[
ρ∞ −d1∞d1
0 1

]
,

one verifies that

H =

[
0 −i
i 0

]
= tZρ ·Hρ · Zρ.

The point of considering H instead of Hρ is clear: the automorphism group of the
former is SL2(R), hence, in particular, does not depend on ρ.

This normalization will be used later in § 6.3.5.
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CHAPTER 4

AN EXPLICIT EXPRESSION FOR VEECH’S MAP
AND SOME CONSEQUENCES

4.1. Some general considerations about Veech’s foliation

In this subsection, we make general remarks about Veech’s foliation in the general
case when none of the exponents is an integer.

In what follows, g ≥ 0 and n ≥ 2 stand for integers such that 2g − 2 + n > 0 and
α = (αi)

n
i=1 for a n-tuple of reals with αi ∈ ]−1,∞[ \ Z for i = 1, . . . , n.

In [80], Veech defines the isoholonomic foliation F
α on the Teichmüller space by

means of a real analytic map Hα
g,n : Teich g,n → U2g. The point is that this map

descends to the Torelli space Tor g,n and even on this quotient, it is probably not a
primitive (that is, with connected fibers) first integral of the foliations formed by its
level-sets (this is proved below only when g = 1). It is what we explain below.

4.1.1. – Let (S, (sk)nk=1) be a reference model for n-marked smooth, compact and
oriented surfaces of genus g. We fix a base point s0 ∈ S∗ = S \ {sk}nk=1. One can find
a natural ‘symplectic basis’ (Ai, Bi, Ck), i = 1, . . . , g, k = 1, . . . , n of π1(S∗, s0) such
that the latter group is isomorphic to

π1(g, n) =

〈
A1, . . . , Ag, B1, . . . , Bg, C1, . . . , Cn

∣∣∣ g∏
i=1

[Ai, Bi] = Cn · · ·C1

〉
,

see Figure 8 just below (case g = n = 2).

4.1.2. – We recall Veech’s definition of the space E
α
g,n: it is the space of isotopy classes

of flat structures on S with cone singularity of type |uαkdu|2 (or equivalently, with
cone angle 2π(1+αk)) at sk for k = 1, . . . , n. Since a flat structure of this type induces
a natural conformal structure on S, there is a natural map

(58) E
α
g,n −→ Teich g,n,
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S

A1

A2

B1

B2

C1

C2

Figure 8. The base-point s0 is the black dot, s1, s2 are the red ones.

which turns out to be a real analytic (25) diffeomorphism. We need to describe the
inverse map of (58). To this end we are going to use a somehow old-fashioned definition
of the Teichmüller space that will be useful for our purpose.

Let (X,x) = (X, (x1, . . . , xn)) be a n-marked Riemann surface of genus g. Con-
sidering a point over it in Teich g,n amounts to specify a marking of its fundamental
group, that is a class, up to inner automorphisms, of isomorphisms

ψ : π1(g, n) ' π1(X∗, x0)

for any x0 ∈ X∗ = X \ {xk}nk=1 (see e.g., [75, §2] or [1, 86] (26)).
Finally, we denote by mα

X,x the unique flat metric of area 1 in the conformal class
corresponding to the complex structure of X, with a cone singularity of exponent αk
at xk for every k (cf. Troyanov’s theorem mentioned in § 1.1.5). With these notations,
the inverse of (58) is written(

X,x, ψ
)
7−→

(
X,x, ψ,mα

X,x

)
.

4.1.3. – Since mα
X,x induces a smooth flat structure on X∗, its linear holonomy along

any loop γ in X∗ (cf. § 2.7.2.1 for a definition), is a complex number of modulus 1,
noted by holαX,x(γ). Of course, this number actually only depends on the homotopy
class of γ in X∗. With this formalism at hand, it is easy to describe the map con-
structed in [80] in order to define the foliation F

α on the Teichmüller space: it is the
map which associates to (X,x, ψ) the holonomy character induced by mα

X,x.
Note that, since the cone angles are fixed, for every k = 1, . . . , n, one has

holαX,x
(
ψ(Ck)

)
= exp

(
2iπαk

)
∈ U.

25. The space E αg,n carries a natural intrinsic real analytic structure, cf. [80].
26. The definition of a point of the Teichmüller space (of a closed surface and without marked

points) by means of a marking of the fundamental group follows from a result attributed to Dehn
by Weil in [86], whereas in [75], Teichmüller refers for this to the paper [49] by Mangler.
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Consequently, there is a well-defined map

χαg,n : Teich g,n −→ Homα (π1(g, n),U)(59) (
X,x, ψ

)
7−→ holαX,x ◦ ψ,

the exponent α in the formula of the target space meaning that one considers only
unitary characters on π1(g, n) which map Ck to exp(2iπαk) for every k.

4.1.4. – Let H1(g, n) be the abelianization of π1(g, n): it is the Z-module generated
by the Ai’s, the Bj ’s and the Ck’s up to the relation

∑n
k=1 Ck = 0. We denote by ai, bi

and ck the corresponding homology classes. We take H1(g, n) as a model for the first
homology group of n-punctured genus g Riemann surfaces.

S

a1
a2

b1

b2

c1

c2

Figure 9. A model for the homology of the punctured surface S∗.

The Torelli space Tor g,n can be defined as the set of triples (X,x, φ) where
(X,x) is a marked Riemann surface as above and φ an isomorphism from H1(g, n)

onto H1(X∗,Z). Moreover, the projection from the Teichmüller space onto the Torelli
space is given by

pg,n : Teich g,n −→ Tor g,n(
X,x, ψ

)
7−→

(
X,x, [ψ]

)
where [ψ] stands for the isomorphism in homology induced by ψ.

4.1.5. – Now, the key (but obvious) point is that the holonomy holα(X,x)(γ) for
γ ∈ π1(X∗) does not depend on the base point but only on the (base-point) free
homology class [γ] ∈ H1(X∗,Z). Since U is commutative, any unitary representa-
tion of π1(g, n) factors through π1(g, n)ab = H1(g, n), thus there is a natural map
Homα (π1(g, n),U)→ Homα (H1(g, n),U). Since µ ∈ Homα(π1(g, n),U) is completely
determined by its values on the Ai’s and the Bi’s (it verifies µ(Ck) = exp(2iπαk)

for k = 1, . . . , n), the space Homα(π1(g, n),U) is naturally isomorphic to U2g. This
applies verbatim to Homα(H1(g, n),U) as well. It follows that these two spaces of
unitary characters are both naturally isomorphic to U2g.
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From the preceding discussion, it follows that one can define a map Tor g,n →
Homα(H1(g, n),U) which makes the following square diagram commutative:

(60) Teich g,n
χαg,n

//

pg,n

��

Homα (π1(g, n),U)

��

U2g

Tor g,n // Homα (H1(g, n),U) U2g.

Both maps with values into U2g given by the two lines of the preceding diagram
will be called the linear holonomy maps. We will use the (slightly abusive) notation
Hα
g,n : Teich g,n → U2g for the first (which is nothing but χαg,n once the target space

of (59) is identified with U2g) and the second will be denoted by

(61) hαg,n : Tor g,n −→ U2g.

Since pg,n is the universal covering map of the Torelli space which is a complex
manifold, the maps Hα

g,n and hαg,n enjoy the same local analytic properties. Then from
[80, Theorem 0.3], one deduces immediately the

Corollary 4.1.1. – Assuming that none of the αi’s is an integer, the linear holon-
omy map hαg,n is a real analytic submersion. Its level sets are complex submanifolds
of the Torelli space Tor g,n, of complex dimension 2g − 3 + n. (27)

This implies that the foliation constructed by Veech on Teich g,n in [80] actually
is the pull-back of a foliation defined on Tor g,n. We will also call the latter Veech’s
foliation and will denote it the same way, that is by F

α.

4.1.6. – We now show that Veech’s linear holonomy map χαg,n : Teich g,n → U2g

actually admits a canonical lift to R2g. To this end, we use elementary arguments
(which can be found in [55], p. 488-489).

Let (X,x) be as above and consider a smooth simple closed curve γ in X∗. If `
stands for its length for the flat metric mα

X,x, there exists a `-periodic smooth map
g : R→ X∗ which induces an isomorphism of flat circles R/`Z ' γ (i.e., the pull-back
of mα

X,x by g coincides with the Euclidean metric on R). For any t ∈ R, g′(t) is a unit
tangent vector at g(t) ∈ γ, thus there exists a unique other tangent vector at this point,
noted by g(t)⊥, such that (g′(t), g(t)⊥) form a direct orthonormal basis of Tg(t)X∗.
Then there exists a smooth function w : [0, `] → R such that g′′(t) = w(t) · g(t)⊥

for any t ∈ [0, `] and one defines the total angular curvature of the loop γ in the flat
surface (X,mα

X,x) as the real number

κ(γ) = καX,x(γ) =

∫ `

0

w(t)dt.

27. Actually, the statement is valid for any α but on the complement of the preimage under the
linear holonomy map of the trivial character on H1(g, n). Note that the latter does not belong
to Im(hαg,n) (so its preimage is empty) as soon as at least one of the αk’s is not an integer.
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There is a nice geometric interpretation of this number as a sum of the oriented
interior angles of the triangles of a given Delaunay triangulation of X which meet γ
(see [55, §6]). In particular, one obtains that κ(γ) only depends on the free isotopy
class of γ and that exp(2iπκ(γ)) is nothing else but the linear holonomy of (X,mα

X,x)

along γ, that is:

(62) exp
(
2iπκ(γ)

)
= holαX,x(γ).

Let γ̃ be another simple curve in the free homotopy class 〈γ〉 of γ. According to a
classical result of the theory of surfaces (see [16]), γ̃ and γ actually are isotopic, hence
κ(γ) = κ(γ̃). Consequently, the following definition makes sense:

(63) καX,x
(
〈γ〉
)

= καX,x(γ).

4.1.7. – Now assume that a base point x0 ∈ X∗ has been fixed. By the preceding
construction, one can attach a real number κX,x(〈γ〉) to each element [γ] ∈ π1(X∗, x0)

which is representable by a simple loop γ. If η stands for an inner automorphism
of π1(X∗, x0), a classical result of the topology of surfaces ensures that γ and η(γ)

are freely homotopic, i.e., 〈γ〉 = 〈η(γ)〉.
We now have explicited everything needed to construct a lift of Veech’s linear

holonomy map. Let (X,x, ψ) ' (X,x,mα
X,x, ψ) be a point of Teich g,n ' E

α
g,n. Then

for any element D of {Ak, Bk | k = 1, . . . , g} ⊂ π1(g, n), we denote by Dψ ‘the image
ofD by Ψ,’ that is the conjugacy class in the fundamental group ofX∗ of the homotopy
class of the simple closed curve D.

By the preceding discussion, it follows that the map

H̃α
g,n : Teich g,n −→ R2g(64) (

X,x, ψ
)
7−→

(
κ
(
Aψ1
)
, . . . , κ

(
Aψg
)
, κ
(
Bψ1
)
, . . . , κ

(
Bψg
))

is well-defined. This map is named the lifted holonomy map.

It is easy (left to the reader) to verify that it enjoys the following properties:

1. it is a lift of Hα
g,n to R2g: if e : R2g → U2g is the universal covering, then

Hα
g,n = e ◦ H̃α

g,n ;

2. it is real analytic.

The first point follows at once from (62) and the second is an immediate consequence
of the first combined with the obvious fact that H̃α

g,n is continuous.

We would like to warn the reader that the terminology ‘lifted holonomy’ that we
use to designate H̃α

g,n can be misleading. Indeed, the latter map is not a holonomy in
a natural sense. This will be made clear later on when considering the genus 1 case,
see Example 4.2.2 below.
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4.1.8. – From the lines above, it follows that H̃α
g,n is a real analytic first integral for

Veech’s foliation on Teich g,n which could enjoy better properties than Hα
g,n (such as

having connected fibers for instance). Note that, among the lifts of the latter which
are continuous, it is unique up to translation by an element of 2πZ2g.

For a ∈ R2g, one defines F
α
a as the inverse image of a by the lifted holonomy map

in the Teichmüller space:

(65) F
α
a =

(
H̃α
g,n

)−1
(a) ⊂ Teich g,n.

In particular, for ρ = e(a) ∈ U2g, one has

(66) F
α
ρ =

(
Hα
g,n

)−1
(ρ) =

⋃
m∈Z2g

F
α
a+2πm ⊂ Teich g,n

hence it is natural to expect that any level-set F
α
ρ has a countable set of connected

components. We will prove below that it indeed holds true when g = 1, by making
the lifted holonomy map completely explicit in this case (see Remark 4.2.5.(2)). We
conjecture that it is also true when g ≥ 2 but it is not proved yet.

In the sequel of the memoir, we will use the following notation:

1. for any ρ ∈ U2 (resp. a ∈ R2), we will use the same notation F
α
ρ (resp. F

α
a ) to

denote the ‘leaf’ defined just above either in the Teichmüller space, or its image
by the natural projection pg,n in the Torelli space;

2. the leaves F
α
ρ and F

α
a , either in Teich g,n or in Tor g,n, organize themself in

a real-analytic foliation, the so-called Veech’s foliation, which will be denoted
by F

α;

3. if using the same notation to denote some objects either in the Teichmüller
space or in the Torelli space will not cause any problem whatsoever in what
follows, we will use another notation for the corresponding objets in the moduli
spaceMg,n: we will replace the calligraphic letter F by the other one F to mean
that we are considering the projection inMg,n of the objects defined just above;

4. more precisely, for ρ ∈ U2 (resp. a ∈ R2), Fαρ (resp.Fαa ) will stand for
the image in Mg,n of the leaf F

α
ρ (resp. F

α
a ) by the natural projection

πg,n : Teich g,n →Mg,n. As proved by Veech (cf. Theorem0.9 in [80]), the foli-
ation F

α on Teich g,n is globally invariant by PMCGg,n. Since the latter acts
by biholomorphisms on the Teichmüller space, F

α descends to a foliation (in
the orbifold sense, see the remark below) on the moduli space Mg,n, denoted
accordingly by Fα that we call Veech’s foliation again.

Remark 4.1.2. – Rigorously, Fα is not exactly a foliation as the moduli spaceMg,n is
not a manifold itself. Nonetheless, it is a foliation away from the orbifold locus of Mg,n

and this moduli space is completely partitioned by the pushforwards of leaves of F
α

which can themselves be orbifolds when intersected with the orbifold locus of Mg,n.
For this reason, we will sometimes refer to Fα as an ‘orbifoliation’ even though this
is not standard terminology.
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4.2. An explicit description of Veech’s foliation when g = 1

We now focus on the case when g = 1, with n ≥ 2 arbitrary.
The first particular and interesting feature of this special case is that it is possible

to define a ‘lifted holonomy map’ on the Torelli space Tor 1,n (we don’t know if this
is possible in genus g ≥ 2).

Then, when dealing with elliptic curves, all the rather abstract considerations of the
preceding subsection can be made completely explicit. The reason for this is twofold:
first, there is a nice explicit description of the Torelli space Tor 1,n due to Nag; second,
on tori, one can give an explicit formula for a metric inducing a flat structure with
cone singularities in terms of theta functions.

4.2.1. – Our goal here is to construct abstractly a lift to R2 of the map
hα1,n : Tor 1,n → U2. Our construction is based on the following crucial result:

Lemma 4.2.1. – On a punctured torus, two simple closed curves which are homolo-
gous are actually isotopic.

Proof. – Let Σ stand for a finite subset of T = R2/Z2. We consider two simple closed
curves a and b in T ∗ = T \ Σ, assumed to be homologous.

We need first to treat the case when Σ is empty. Since π1(T ) = Z2 is abelian, it
coincides with its abelianization, namely H1(T,Z). From this, it follows that a and
b are homotopic. Then a classical result from the theory of surfaces [16] allows to
conclude that these two curves are isotopic.

We now consider the case when Σ is not empty which is the one of interest for us.
The hypothesis implies that a and b are a fortiori homologous in T . From above, it
follows that they are isotopic through an isotopy I : [0, 1]× S1 → T . We can assume
that this isotopy is minimal in the sense that the numberm of couples (t, θ) ∈ [0, 1]×S1

such that I(t, θ) ∈ Σ is minimal.
We denote by (t1, θ1), . . . , (tm, θm) the elements of I−1(Σ). For any i = 1, . . . ,m,

we set si = I(ti, θi) ∈ Σ and define ε(i) ∈ {±1} as follows: ε(i) = 1 if (∂I/∂θ, ∂I/∂t)

form a direct basis of the tangent space of T at si; otherwise, we set ε(i) = −1.
Therefore we have

[b] = [a] +

m∑
i=1

ε(i)[δsi ]

in H1(T ∗,Z), where δs stands for a small circle turning around s counterclockwise for
any s ∈ Σ. If i and i′ are two indices such that si = si′ then ε(i) and ε(i′) must be
equal. Indeed otherwise these two crossings could be canceled, which would contradict
the minimality of m. Since [b] = [a] by assumption, we have

∑m
i=1 ε(i)[δsi ] = 0. This

relation is necessarily an integer multiple of
∑
s∈Σ[δs]. Remark that the latter can be

canceled by modifying I: a simple closed curve on T ∗ cuts T open to a cylinder and
we can find an isotopy consisting of going along this cylinder crossing every puncture
once in the same direction. Post-composing I by such an isotopy the appropriate
number of time allows to cancel all the remaining crossings. The lemma follows.
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With this lemma at hand, one can proceed as in § 4.1.7 and construct a real analytic
map h̃α1,n : Tor 1,n → R2 making the following diagram commutative:

Tor 1,n

h̃α1,n
//

hα1,n ++

R2

e(·)
��

U2.

Note that the lift of hα1,n to R2 is unique, up translation by an element of 2πZ2,
as soon as one demands that it is continuous. We have just proved that such a ‘lifted
holonomy’ exists on the Torelli space of punctured elliptic curves. We will give an
explicit and particularly simple expression for it in § 4.2.3 below.

To conclude these generalities, we would like to warn the reader that the termi-
nology ‘lifted holonomy’ we use to designate h̃α1,n is misleading. Let E∗τ be a n-punc-
tured elliptic curve. With the notation from § 4.1.4, the homology classes a1, b1 and
c1, . . . , cn−1 are representable by closed simple curves and span freely H1(E∗τ ,Z). Us-
ing (63), one can construct a lift Tor 1,n → Hom(H1(1, n),R) of the map Tor 1,n →
Homα(H1(1, n),U) in (60). If the latter is indeed a (linear) holonomy map, this is not
the case for the former. Indeed, this additive character on H1(1, n) is not geometric in
a meaningful sense: as the example below shows, its value on c1 + · · ·+ cn−1 a priori
differs from −κ(cn).

Example 4.2.2. – Let τ ∈ H be arbitrary. Consider a disk D in ]0, 1[τ ⊂ Eτ and a
kite K ⊂ D, whose exterior angles are ϑ1, θ2, θ3 ∈ ]0, 2π[ (see Figure 4.2.2 below).

0
1

τ

D

K

ϑ1

ϑ1

θ2

θ3

Figure 10.

Consider Eτ with its non-singular canonical flat structure. Removing the interior
of K and gluing pairwise the edges of its boundary which are of the same length,
one ends up with a flat torus Eτ,K with three cone singularities, of cone angles θ1 =
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2ϑ1 ∈ ]0, 4π[ and θ2, θ3 ∈ ]0, 2π[ (in the language of [20, §6], we have performed a
‘Kite surgery’ on the flat torus Eτ in order to construct Eτ,K).

Let a1 and b1 be the loops in Eτ,K which correspond to the images in Eτ of the
two segments [0, 1] and [0, τ ] respectively. With the same meaning for c1, c2 and c3 as
above, one can see (Eτ,K , a1, b1, c1, c2, c3) as a point in Tor 1,3. If c stands for the loop
given by the boundary of D oriented in the direct order, then c = c1 + c2 + c3, hence
c = 0 in H1(E∗τ,K ,Z). But clearly, computing the total angular curvature of c depends
only on the flat geometry along ∂D, hence can be performed in the flat tori Eτ . One
gets κ(c) = 2π 6= 0 although c is trivial in homology. This shows that κ does not
induce a real character on H1(1, 3) = π1(1, 3)ab in a natural way.

To summarize the discussion above: what we have constructed is a natural lift
to R2 of the map hα1,n : Tor 1,n → U2 but not a lift to Hom(H1(1, n),R) of the genuine
holonomy map Tor 1,n → Homα(H1(1, n),U) in diagram (60).

4.2.2. The Torelli space of punctured elliptic curves. – For (g, n) arbitrary, the Torelli
group Torg,n is defined as the subgroup of the pure mapping class group PMCGg,n

which acts trivially on the first homology group of fixed n-punctured model sur-
face Sg,n. (28) It is known that it acts holomorphically, properly, discontinuously and
without any fixed point on the Teichmüller space (cf. §2.8.3 in [62]). Consequently,
the Torelli space Tor g,n = Teichg,n/Torg,n is a complex manifold (in particular, it
has no orbifold point).

The action of the pure mapping class group PMCGg,n on the Torelli space is not
effective and its kernel is precisely the Torelli group. We denote by Spg,n(Z) the
quotient PMCGg,n/Torg,n. It is isomorphic to the group of automorphisms of the
first homology group of a n-punctured genus g surface which leaves the cup-product
invariant. (29) Another way to consider this group is to see it as the (orbifold) deck
group of the cover Tor g,n →Mg,n.

?

We know turn on the case when g = 1 we are interested in.
In [61], the author shows that, setting z1 = 0, one has an identification

Tor 1,n =
{

(τ, z2, . . . , zn) ∈ H× Cn−1
∣∣∣ zi − zj 6∈ Zτ for i, j = 1, . . . , n, i 6= j

}
.

Moreover there is a universal curve

E 1,n −→ Tor 1,n,

28. Beware that several kinds of Torelli groups have been considered in the literature, especially
in geometric topology (see e.g., [69] where this is carefully explained). The Torelli group we are
considering in this text is known as the ‘small Torelli group’. It can be seen as the deck transformation
group of the cover Teichg,n → Torg,n or as the fundamental group of the Torelli space.
29. We are not aware of any other proof of this result than the one given in the unpublished

thesis [4].
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whose fiber over (τ, z) = (τ, (z2, . . . , zn)) is the elliptic curve Eτ = C/Zτ . It has n
global sections σi : Tor 1,n → E 1,n, i = 1, . . . , n, defined by σi(τ, z) = [zi] ∈ Eτ for
every (τ, z) in the Torelli space.

From [61], one deduces (30) that there is an isomorphism

Sp1,n(Z) ' SL2(Z) n
(
Z2
)n−1

where the semi-direct product is given by(
M ′,

(
k′, l′

))
·
(
M,
(
k, l
))

=
(
M ′M,%(M) ·

(
k′, l′

)
+
(
k, l
))

for M,M ′ ∈ SL2(Z) and (k, l) =
(
(ki, li)

)n
i=2

, (k′, l′) =
(
(k′i, l

′
i)
)n
i=2
∈
(
Z2
)n−1, with

(67) % (M) =

[
d b

c a

]
and M ·

(
k, l
)

=
((
aki + bli, cki + dli

))n
i=2

if M =
[
a b
c d

]
∈ SL2(Z).

Moreover, one has(
M, (k, l)

)−1
=

(
M−1,

((
aki − bli,−cki + dli

)n
i=2

))
.

The action of
(
M, (k, l)

)
∈ SL2(Z) n

(
Z2
)n−1 on the Torelli space is given by

(68)
(
M,
(
k, l
))
· (τ, z) =

(
aτ + b

cτ + d
,
z2 + k2 + l2τ

cτ + d
, . . . ,

zn + kn + lnτ

cτ + d

)
for (τ, z) = (τ, z2, . . . , zn) ∈ Tor 1,n.

The epimorphism of groups SL2(Z) n
(
Z2
)n−1 → SL2(Z) is compatible with the

natural projection

µ = µ1,n : Tor 1,n −→ Tor 1,1 = H.
(τ, (zi)

n
i=1) 7−→ τ

In other terms, there is a surjective morphism in the category of analytic G-spaces:

(69) Tor 1,n
UU

µ
// H ZZ

SL2(Z) n
(
Z2
)n−1

// SL2(Z).

30. Nag’s results actually concern the mapping class group MCG1,n for which permutations of
the marked points are allowed. It is easy to deduce what we claim for Sp1,n(Z) and its action on
the Torelli space, from Nag’s structure theorem (namely Theorem 4.3 of [61]) for what he calls the
‘Torelli modular group’.
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4.2.3. Flat metrics with cone singularities on elliptic curves. – As in the genus 0 case,
there is a general explicit formula for the flat metrics on elliptic curves we are inter-
ested in. We fix n > 1 and α = (αi)

n
i=1 ∈ ]−1,∞[ such that

∑
i αi = 0.

For any elliptic curve Eτ = C/Zτ , we will denote by u the usual complex coordi-
nates on C = Ẽτ . Let τ be fixed in H and assume that z = (z1, . . . zn) is a n-tuple
of complex numbers, which are pairwise distinct modulo Zτ . If one defines a0 as the
real number

(70) a0 = −
=m
(∑n

i=1 αizi
)

=m(τ)
,

then =m(a0τ +
∑
i αizi) = 0, hence the constant

(71) a∞ = a0τ +

n∑
i=1

αizi

(see (40) above) is a real number as well.
Considering (τ, z) ∈ Tor 1,n as a fixed parameter, we recall the definition of the

function Tα introduced in § 3.2: it is the function of the variable u defined by

Tατ,z(u) = Tα(u, τ, z) = e2iπa0u
n∏
i=1

θ(u− zi, τ)αi .

We see this function as a holomorphic multivalued function on the n-punctured
elliptic curves Eτ,z. From Lemma 3.2.2, we know that the monodromy of Tατ,z is
multiplicative and is given by the character ρ whose characteristic values are

ρ0 = e2iπa0 , ρk = e2iπαk for k = 1, . . . , n and ρ∞ = e2iπa∞ .

Since a0, a∞ and the αk’s are real, ρ is unitary. Thus for any (τ, z) ∈ Tor 1,n, it
follows from Lemma 3.2.2 that

mα
τ,z =

∣∣Tατ,z(u)du
∣∣2

defines a flat metric on Eτ,z.
Moreover, seen as an intrinsic object on Eτ , the theta function θ(·) is a section of

a line bundle on it, with a single zero at the origin, which is simple. This implies that
up to multiplication by a positive constant, one has

mα
τ,z ∼

∣∣(u− zk)αkdu
∣∣2

on a neighborhood of zk, for k = 1, . . . , n. This shows that the flat structure in-
duced by mα

τ,z on Eτ,z has cone singularities with exponent αk at [zk] for every
k = 1, . . . , n. We remind the reader that assuming that (τ, z) ∈ Tor implies that
z = (z1, . . . , zn) ∈ Cn has been normalized such that z1 = 0.

It follows from Troyanov’s theorem that considering Tor 1,n as the quotient of
the space E

α
1,n of isotopy classes of flat tori by the Torelli group Tor1,n amounts to

associating the triplet (τ, z,mα
τ,z) to any (τ, z) ∈ Tor 1,n.

Any element (τ, z) ∈ Tor 1,n comes with a well-defined system of generators
of H1(Eτ,z,Z). Denote by ζ a fixed complex number with positive real and imaginary
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parts (for instance ζ = 1 + i) and let ε > 0 be very small. For k = 1, . . . , n, let γεk be a
positively oriented small circle centered at [zk] in Eτ , of radius ε. Let γε0 (resp. γε∞) be
the loop in Eτ,z defined as the image of [0, 1] 3 t 7→ t−εζ (resp. of [0, 1] 3 t 7→ t·τ−εζ)
by the canonical projection. For ε sufficiently small, the homology classes of the γε•’s
for • = 0, 1, . . . , n,∞ do not depend on ε. We just denote by γ• the associated
homology classes. These generate H1(Eτ,z,Z) and

∑n
k=1 γn = 0 is the unique linear

relation they satisfy (see Figure 11 below).
It is quite obvious that the linear holonomies of the flat surface (Eτ,z,m

α
τ,z) along

γ0 and γ∞ are respectively

ρ0 = ρ0(τ, z) = exp
(
2iπa0

)
and ρ∞ = ρ∞(τ, z) = exp

(
2iπa∞

)
.

1

τ

γ1

γ4

γ2

γ3

γ0

γ∞

Figure 11.

It follows that one has the following explicit expression for the linear holonomy
map (61) (to make the notation simpler, we do not specify the subscripts 1, n every-
where starting from now):

hα : Tor 1,n −→ U2

(τ, z) 7−→
(
ρ0(τ, z), ρ∞(τ, z)

)
.

This map is the composition with the exponential map e(·) = exp(2iπ·) of

ξα : Tor 1,n −→ R2(72)

(τ, z) 7−→
(
a0(τ, z), a∞(τ, z)

)
.

where a0(τ, z) and a∞(τ, z) are defined in (70) and (71) respectively.

Remark 4.2.3. – The map ξα defined above is then a real-analytic lift of hα to R2.
We do not know if it coincides with the lifted holonomy map h̃α constructed in § 4.1.7.
But since the former differs from the latter up to translation by an element of 2πZ2,
this will be irrelevant for our purpose.
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With the material introduced so far, one can make some of the general results
obtained by Veech in [80] in the case when g = 1 completely explicit.

Since we are mainly interested in the case when the leaves of Veech’s foliation
carry a complex hyperbolic structure, we will assume from now on that (8) holds
true. Moreover, there is no loss of generality in assuming that the αi’s are presented
in decreasing order. Hence, from now on, one assumes that

(73) − 1 < αn ≤ αn−1 ≤ · · · ≤ α2 < 0 < α1 < 1.

Proposition 4.2.4 (Explicit description of F
α on the Torelli space). –

(i) The map ξα is a primitive first integral of Veech’s foliation on Tor 1,n.

(ii) For any a = (a0, a∞) ∈ Im(ξα), the leaf F
α
a = (ξα)−1(a) is the complex subva-

riety of Tor 1,n cut out by the affine equation

(74) a0τ +

n∑
k=2

αkzk = a∞.

(iii) The image of ξα is R2 if n ≥ 3 and R2 \ α1Z2 if n = 2:

Im
(
ξα
)

=

{
R2 \ α1Z2 if n = 2;

R2 if n ≥ 3.

(iv) Veech’s foliation F
α is invariant by Sp1,n(Z) ' SL2(Z) n

(
Z2
)n−1.

More precisely, one has

g−1
(

F
α
a

)
= F

α
g•a

for any a = (a0, a∞) ∈ Im(ξα) and any g =
(
M, (k, l)

)
∈ SL2(Z)n (Z2)n−1, for

the action • of this group on R2 given explicitly by

(75)
(
M,
(
k, l
))
•
(
a0, a∞

)
=

(
a0a− a∞c+

n∑
i=2

αili, −a0b+ a∞d−
n∑
i=2

αiki

)
if M =

[
a b
c d

]
∈ SL2(Z) and (k, l) =

(
(ki, li)

)n
i=2
∈
(
Z2
)n−2.

Proof. – The fact that ξα is a first integral for F
α has been established in the dis-

cussion preceding the proposition. The fact that it is primitive follows from (ii) since
any equation of the form (74) cuts out a connected subset of Tor 1,n.

Considering the formulae (70) and (71), the proof of (ii) is straightforward.
To prove (iii), remark that Tor 1,n is nothing else but H × Cn−1 minus the union

of the complex hypersurfaces Σp,qi,j cut out by

(76) zi − zj + p+ qτ = 0,

for (p, q) ∈ Z2 and i, j such that 1 ≤ i < j ≤ n (remember that z1 = 0 according to
our normalization). For (a0, a∞) ∈ R2, (74) has no solution in Tor 1,n if and only if it
cuts out one of the hypersurfaces Σp,qi,j . As a consequence, the linear parts (in (τ, z))
of the affine equations (74) and (76) should be proportional. Since all the αi’s are
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negative for i ≥ 2 according to our assumption (73), this is clearly impossible if
n ≥ 3. Consequently, one has Im(ξα) = R2 when n ≥ 3.

When n = 2, the Equations (73) reduce to the following one: qτ + z2 + p = 0 with
(p, q) ∈ Z2. Such an equation is proportional to an equation of the form a0τ +α2z2−
a∞ = 0 if and only if (a0, a∞) ∈ α2Z2. Since α1 = −α2 when n = 2, one obtains that
Im(ξα) = R2 \ α1Z2 in this case.

Finally, the fact that F
α is invariant by the suitable quotient of the pure mapping

class group has been proved in greater generality by Veech. In the particular case
we are considering, this can be verified by direct and explicit computations by using
the material of § 4.2.2. In particular, formula (75) for the action of SL2(Z) n (Z2)n−1

on R2 follows easily from (68).

Remark 4.2.5. – (1). The description of the image of the map ξα given in (iii) allows
us to answer (in the particular case when g = 1) a question raised implicitly by Veech
(see the sentence just after Proposition 7.10 in [80]).

(2). From Remark 4.2.3 and from the above proposition, it follows that the phe-
nomenon evoked at the end of § 4.1.8 indeed occurs when g = 1: in this case, any level
subset F

α
ρ of the linear holonomy map (61), which is called a ‘leaf ’ by Veech in [80],

actually has a countable set of connected components, cf. (66).

From the explicit and elementary description of Veech’s foliation on Tor 1,n given
above, one easily deduces the following result.

Corollary 4.2.6. – Veech’s foliation F
α depends only on [αi]

n
i=1 ∈ P(Rn).

In particular, when n = 2, Veech’s foliation does not depend on α.

The preceding statement concerns only F
α viewed as a real-analytic foliation

of Tor 1,n. If its leaves do depend only on α up to a scaling factor, it does not apply
to the complex hyperbolic structures they carry: they do not depend only on [α] but
on α as well (see Theorem 1.2.11 when n = 2 for instance).

?

From 4.2.4, it shouldn’t be too difficult to deduce the fundamental group of any
leaf of Veech’s foliation in the Torelli space Tor 1,n. For instance, in the case when
n = 2, any leaf F

α
a is isomorphic to H (see §4.3 for some details) thus is simply

connected hence there is nothing to say.
An appealing question is to describe the topology of the leaves of Veech’s foliation

in the Teichmuller space Teich 1,n when n ≥ 3. For any leaf F
α
a of Veech’s foliation

on Tor 1,n, it would be interesting to know the answers to the following questions:

1. does the inclusion of this leaf in the Torelli space induce an injective morphism
π1( F

α
a )→ π1( Tor1,n) of the corresponding fundamental groups?

2. is any connected component of the preimage of F
α
a in Teich 1,n simply con-

nected?
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4.2.4. Algebraic leaves of Veech’s foliation. – Using Proposition 4.2.4, it is easy to
determine and to describe the algebraic leaves of Veech’s foliation on M1,n.

Since the case n = 2 is particular and because we are going to focus on it in the
sequel, we leave it aside for now and assume n ≥ 3 until subsection § 4.3.

4.2.4.1. – For a = (a0, a∞) ∈ R2, let Fαa be the corresponding leaf of Veech’s folia-
tion Fα on M1,n: it is the image of F

α
a ⊂ Tor 1,n by the action of SL2(Z) n (Z2)n−1.

The question we are interested in is twofold: first, we want to determine the lifted
holonomies a’s such that Fαa is an algebraic subvariety of the moduli space; secondly,
we would like to give a description of such leaves.

A preliminary remark is in order: on the moduli space M1,n, Veech’s foliation is
not truly a foliation but an orbifoliation (cf. Remark 4.1.2). Consequently, from a
rigorous point of view, the algebraic leaves of Fα, if any, are a priori algebraic sub-
orbifolds of M1,n. However, this subtlety, if important for what concerns the complex
hyperbolic structure on the algebraic leaves, is not really relevant for what interests
us here, namely their topological/geometric description. For this reason, we will not
consider this point further and will abusively speak only of subvarieties and not of
suborbifolds in the lines below.

4.2.4.2. – For a = (a0, a∞) ∈ R2, we denote its orbit under SL2(Z) n (Z2)n−1 by:

[a] =
[
a0, a∞

]
=
(

SL2(Z) n
(
Z2
)n−1

)
• a ⊂ R2.

The following point is crucial for all that is to come:

Proposition 4.2.7. – A necessary and sufficient condition for the leaf Fαa to be an
analytic subvariety of M1,n is that the orbit [a] be a discrete subset of R2.

Proof. – Veech’s foliation on the Torelli space admits the map ξα : Tor 1,n −→ R2

defined in (72) as a first integral and this map

1. is a submersion;

2. has connected fibers: (ξα)−1(a) is connected for any a ∈ Im(ξα);

3. is equivariant with respect to the action of SL2(Z) n (Z2)n−1.

These facts taken together imply that two level subsets (ξα)−1(a) and (ξα)−1(a′)

project onto the same leaf of Veech foliation in Mg,n if and only if a and a′ belong to
the same orbit under the action of SL2(Z) n (Z2)n−1.

Recall that we want to characterize the case when Fαa is a properly embedded
suborbifold. Because the projection Tor 1,n −→ Mg,n is an orbifold covering, Fαa is
properly embedded in Mg,n if and only if its pre-image in Tor 1,n is closed. But the
preimage of Fαa is nothing but the union of the level subsets (ξα)−1(b) for b ranging
over the orbit of a. Because ξα is a submersion, this set is closed if and only if the
orbit of a is discrete. This terminates the proof of the proposition.
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From the preceding proposition, it follows that determining the closed leaves of Fα

amounts to determine the elements a of Im(ξα) whose orbit [a] is a discrete subset
of R2.

From (75), one gets easily Id n (Z2)n−1 • a = a+ Z(α)2 where Z(α) stands for the
Z-submodule of R spanned by the αi’s:

Z(α) =

n∑
i=1

αiZ ⊂ R.

Thus a necessary condition for [a] to be discrete is that the αi’s all are commensurable,
i.e., there exists a non-zero real constant λ such that λαi ∈ Q for i = 1, . . . , n.

Assuming that α is commensurable, let λ be the positive real number such that
Z(α) = λZ. Thus one has

(77)
([

1 0
0 1

]
n
(
Z2
)n−1

)
• a = a+ λZ2.

We denote by Zn−1
l the subgroup of (Zn−1)2 formed by pairs (k, l) ∈ (Zn−1)2 with

k = 0. Setting a = (a0, a∞), it follows immediately from (75) that([
1 1
Z 0

]
,Zn−1
l

)
• a =

(
a0 + a∞Z + Z(α), a∞

)
.

It follows that if [a] is discrete then a∞Z+Z(α) = a∞Z+λZ is discrete in R which
implies that a∞ ∈ λQ. Using a similar argument, one obtains that a0 ∈ λQ is also a
necessary condition for the orbit [a] to be discrete in R2.

At this point, we have proved that in order for the leaf Fαa to be a closed analytic
subvariety of M1,n, it is necessary that (α, a) = (α1, . . . , αn, a0, a∞) be commensu-
rable. We are going to see that this condition is also sufficient and actually implies
the algebraicity of the considered leaf.

4.2.4.3. – We assume that (α, a) is commensurable. Our goal now is to prove that
the leaf Fαa is an algebraic subvariety of M1,n. We will give a detailed proof of this
fact only in the case when n = 3. The general case when n ≥ 3 can be treated in the
exact same way but we leave the verification to the reader.

As above, let λ > 0 be such that λZ = Z(α) (note that λ is uniquely characterized
by this equality). Since the two foliations F

α and F
α/λ coincide (more precisely,

from (74), it follows that F
α
b = F

α/λ
b/λ for every b ∈ R2), there is no loss in generality

in assuming that λ = 1 or equivalently, that

(78)


• one has α1 = p1 and αi = −pi for i = 2, . . . , n, for some positive integers
p1, . . . , pn such that p1 −

∑n
k=2 pk = 0 and gcd(p2, . . . , pn) = 1;

• a is rational, i.e., a ∈ Q2.

In what follows, we assume that these assumptions hold true.
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4.2.4.4. – To show that [a] is discrete when a is rational, we first determine a normal
form for a representative of such an orbit.

Proposition 4.2.8. – 1. For a ∈ Q2, let N be the smallest positive integer such
that Na ∈ Z2.

(a) One has [a] =
[
0,−1/N

]
.

(b) If N = 1 (that is, if a ∈ Z2), then [a] =
[
0, 0
]
.

2. The orbit [a] is discrete in R2 if and only if (α, a) is commensurable.

Proof. – For a ∈ Q2, one can write a0 = p0/q and a∞ = p∞/q for some integers
p0, p∞ and q > 0 such that gcd(p0, p∞, q) = 1. Let p be the greatest common divisor
of p0 and p∞: p = gcd(p0, p∞).

Recall that Γ(2) is the subroup of SL2(Z) formed by the matrices which are con-
gruent to the identity matrix modulo 2 (cf. § 2.3). We see it here as a subgroup
of Sp1,n(Z) by means of the composed injective group morphism Γ(2) ↪→ SL2(Z) ↪→
SL2(Z) n (Z2)n−1 = Sp1,n(Z). As an intermediary step of our proof, we use the fol-
lowing technical result (for a proof of which, we refer to the one of Lemma 3 in [56]):
the Γ(2)-orbit Γ(2) • a of a, hence the whole Sp1,n(Z)-orbit [a], contains one of the
three following elements(

p/q, 0
)
,

(
p/q, p/q

)
or

(
0, p/q

)
.

Since [
0 −1

1 0

]
•
(
p

q
, 0

)
=

[
1 0

−1 1

]
•
(
p

q
,
p

q

)
=

(
0,
p

q

)
,

it follows that (0, p/q) ∈ SL2(Z) • a ⊂ [a].
Because gcd(p0, p∞, q) = gcd(p, q) = 1, there exist two integers d and k such that

dp− kq = 1. From the relation([
1 1− d
−1 d

]
,
(
k, 0
))
•
(

0,
p

q

)
=

(
p

q
,
dp− kq

q

)
=

(
p

q
,

1

q

)
,

one deduces that (p/q, 1/q) ∈ [a]. Since (p, q, 1) = 1, it follows from the arguments
above that (0, 1/q) ∈ SL2(Z) • (p/q, 1/q). This implies that (0, 1/q) belongs to [a],
hence the same holds true for (0,−1/q) = (−Id) • (0, 1/q).

Since qa = (p0, p∞) ∈ Z2 one has N ≤ q where N stands for the integer defined
in the statement of the proposition. On the other hand, since gcd(p0, p∞, q) = 1,
there exists u0, u∞, v ∈ Z such that u0p0 + u∞p∞ + vq = 1. Since Na ∈ Z2, one has
u0Na0 + u∞Na∞ = N(1 − vq)/q ∈ Z, which implies that q divides N . This shows
that q = N , thus that 1.(a) holds true.

When a ∈ Z2, the fact that (0, 0) ∈ [a] follows immediately from (77) (recall that
we have assumed that λ = 1), which proves 1.(b).

Finally, using (75), it is easy to verify that all the orbits [0, 0] and [0,−1/N ] with
N ≥ 2 are discrete subsets of R2. Assertion 2. follows immediately.
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From the preceding proposition, it follows that the leaves of Veech’s foliation Fα

which are closed analytic subvarieties of M1,3 are exactly the ones associated to the
following ‘lifted holonomies’

(79) (0, 0) and (0,−1/N) with N ≥ 2.

We will use the following notation for the corresponding leaves:

(80) Fα0 = Fα(0,0) and FαN = Fα(0,−1/N).

Let p1, p2 and p3 be the positive integers such that αi = p1 and αi = −pi for i = 2, 3

(remember our simplifying assumption (78)). The leaves in the Torelli space which
correspond to the ‘lifted holonomies’ (79) are the following:

F
α
0 = F

α
(0,0) =

{(
τ, z2, z3

)
∈ Tor 1,3

∣∣ p2z2 + p3z3 = 0
}

and F
α
N = F

α
(0,1/N) =

{(
τ, z2, z3

)
∈ Tor 1,3

∣∣ p2z2 + p3z3 =
1

N

}
.(81)

Note that the preceding leaves are (possibly orbifold) coverings of the leaves (80):
for any N 6= 1, the image of F

α
N by the quotient map Tor 1,3 →M1,3 is FαN .

It is well-known that Riemann’s moduli spaces Mg,n are quasi-projective vari-
eties (31). Consequently, it follows from GAGA that any closed analytic subvariety
of Mg,n is actually algebraic. Combined with the observations given above in this
subsection, one gets that the leaves in (80) are exactly the ones of Fα which are
analytic (or algebraic) subvarieties of M1,3.

4.2.4.5. Algebraic leaves of Veech’s foliation on M1,n. – It is not difficult to verify
(and it is left to the reader) that the arguments of the previous subsection apply in
order to get the following characterization and description of the algebraic leaves of
Veech’s foliation on M1,n (this moreover holds true even without assuming that (78)
is satisfied anymore):

Proposition 4.2.9. – 1. Let a ∈ R2. The following assertions are equivalent:

• (α, a) is commensurable, i.e., [α1 : · · · : αn : a0 : a∞] ∈ P(Qn+2);

• the leaf Fαa is a closed analytic subvariety of M1,n;

• the leaf Fαa is a closed algebraic subvariety of M1,n.

2. Veech’s foliation F
α on M1,n admits algebraic leaves if and only if α is com-

mensurable.

31. See [42]. There is a subtlety here since this statement actually concerns the coarse moduli
space Mg,n associated to the orbifold Mg,n. However, since it does not make any difference for our
purpose, we will not mention this point anywhere else.
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3. When α is commensurable, let λ be the biggest positive real number such that
αi = λpi for some coprime integers p1, . . . , pn.

Then for each non-negative (positive when n = 2) integer N distinct from 1,
the image FαN in M1,n of the subvariety of Tor 1,n cut out (in Nag’s coordi-
nates, cf. § 4.2.2) by the equation

∑n
i=2 pizi = 0 if N = 0 or

∑n
i=2 pizi = 1/N

otherwise, is an algebraic leaf of Veech’s foliation.

These leaves are pairwise distinct and constitute the whole set of algebraic
leaves of Veech’s foliation.

4.2.4.6. Description of the leaf Fα0 when n = 3. – We are going to consider carefully
the case of the leaf Fα0 . We will deal with the case of FαN with N ≥ 2 more succinctly
in the next subsection.

In what follows, we set p = (p1, p2, p3). Remember that p2 and p3 determine p1

since the latter is the sum of the two former: p1 = p2 + p3. Note that according to
(78), one has gcd(p1, p2, p3) = gcd(p2, p3) = 1.

Consider the affine map from H× C to H× C2 defined for any (τ, ξ) ∈ H× C by

U0(τ, ξ) =
(
τ, p3ξ,−p2ξ

)
.

Let Up be the inverse image of Tor 1,3 ⊂ H× C2 by U0. One verifies easily that

(82) Up =

{
(τ, ξ) ∈ H× C

∣∣∣ ξ 6∈ ( 1

p1
Zτ ∪

1

p2
Zτ ∪

1

p3
Zτ
)}

and, by restriction, U0 induces a global holomorphic isomorphism

(83) U0 : Up ' F
α
0 ⊂ Tor 1,3.

Let Fix(0) be the subgroup of Sp1,3(Z) which leaves F
α
0 globally invariant. It is

nothing else than the subgroup of g ∈ SL2(Z) n (Z2)2 such that g • (0, 0) = (0, 0).
From (75), it is clear that g = (M, (k2, l2), (k3, l3)) is of this kind if and only if
p2l2 + p3l3 = p2k2 + p3k3 = 0. It follows that

SL2(Z) n Z2 ' Fix(0),

where the injection Z2 ↪→
(
Z2
)2 is given by (k, l) 7→

(
p3(k, l),−p2(k, l)

)
.

By pull-back under U0, one obtains immediately that the corresponding action
of SL2(Z) n Z2 on Up is given by

(84)
([

a b
c d

]
,
(
k, l
))
·
(
τ, ξ
)

=

(
aτ + b

cτ + d
,
ξ + k + lτ

cτ + d

)
.

For any subgroup Γ in SL2(Z), one sets

(85) M1,3(Γ) = Tor 1,3

/(
Γ n

(
Z2
)2)

.

It is an orbifold covering ofM1,3 which is finite hence algebraic if Γ has finite index
in SL2(Z). In this case, the image Fα0 (Γ) of F

α
0 in M1,3(Γ) is algebraic if and only

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



82 CHAPTER 4. AN EXPLICIT EXPRESSION FOR VEECH’S MAP

if Fα0 is an algebraic subvariety of M1,3. We are going to use this equivalence for a
group Γp which satisfies the following properties:

(P1) it is a subgroup of finite index of Γ
(
lcm(p1, p2, p3)

)
; and

(P2) it acts without fixed point on H.

For instance, setting

Mp =

{
4 if p2 = p3;

lcm(p1, p2, p3) otherwise,

one can take for Γp the congruence subgroup of level Mp:

Γp = Γ
(
Mp

)
(the case when p2 = p3 is special: this equality implies that p2 = p3 = 1 since
gcd(p2, p3) = 1. Consequently Γ(lcm(p1, p2, p3)) = Γ(2) and this group contains −Id

hence does not act effectively on H).
For the sake of brevity, we will write M for Mp in what follows.
Since M ≥ 3 in every case, Γp satisfies the properties (P1) and (P2) stated above.

Consequently, the quotient of H × C by the action (84) is the total space of the
(non-compact) modular elliptic surface of level M : (32)

(86) E p := E (M) −→ Y (M).

According to [72, §5], E p comes with M2 sections of M -torsion forming an abelian
group S( E p) isomorphic to (Z/MZ)2. For any divisor m of M , one denotes by E p[m]

the union of the images of the elements of order m of S( E p):

E p[m] =
⋃

σ∈S( E p)
m·σ=0

σ
(
Y (M)

)
⊂ E p.

We are almost ready to state our result about the leaf Fα0 . To simplify the notation,
we denote respectively byM1,3(p) and Fα0 (p) the intermediary moduli spaceM1,3(Γp)

(see (85)) and the image of the leaf F
α
0 inside.

The map U0 induces an isomorphism

Up

/(
Γp n Z2

)
' Fα0 (p).

Using (82) and (84), it is then easy to deduce the

Proposition 4.2.10. – The map (83) induces an embedding

E p \
(

E p[p1] ∪ E p[p2] ∪ E p[p3]
)
↪−→M1,3(p)

which is algebraic and whose image is the leaf Fα0 (p).

32. See [72] for a reference. Note that we do not use the most basic construction of the theory of
modular elliptic surfaces, namely that (86) can be compactified over X(Mp) by adding as fibers
over the cusps some generalized elliptic curves (cf. also [43, §8]).
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In short, this result says that the inverse image of Fα0 in a certain finite covering
of M1,3 is an elliptic modular surface from which the images of some torsion sections
have been removed. There is no difficulty to deduce from it a description of Fα0 itself.
But since SL2(Z) has elliptic points and contains −Id, the latter is not as nice as the
description of Fα0 (p) given above.

Corollary 4.2.11. – 1. The projection Tor 1,3 → H induces a dominant rational
map Fα0 → Y (1) = H/SL2(Z) ' C whose fibers are punctured projective lines.

2. The fiber of the previous map over any point j(τ) distinct from 0 and 1728

(the two elliptic points of Y (1)) is the quotient of the punctured elliptic curve
Eτ \

(
Eτ [p1] ∪ Eτ [p2] ∪ Eτ [p3]

)
by the elliptic involution.

(Note: both fibers over 0 and 1728 of Fα0 → Y (1) could have been described in a
similar but more involved way than the fibers considered in the second point of this
corollary; we let the interested reader elaborate on that).

To end this subsection, we would like to make the particular case when p2 = p3 = 1

more explicit (note that this condition is equivalent to α2 = α3). It is more convenient
to describe the inverse image Fα0 (Γ(2)) of Fα0 in M1,3(Γ(2)): it is the bundle over
the modular curve Y (2) = P1 \ {0, 1,∞} (33), whose fiber over λ ∈ C \ {0, 1} is the
4-punctured projective line P1 \ {0, 1, λ,∞}. As an algebraic variety, Fα0 (Γ(2)) is then
isomorphic to the moduli space M0,5. Actually, there is more: in § 4.2.5, we will see
that, endowed with Veech’s complex hyperbolic structure, Fα0 (Γ(2)) can be identified
with a Picard/Deligne-Mostow/Thurston moduli space.

4.2.4.7. Description of the leaf FαN when n = 3. – We now consider succinctly the
case of the leaf FαN when N is a fixed integer bigger than or equal to 2. One proceeds
as for Fα0 .

Since F
α
N is cut out by p2z2 + p3z3 = 1/N in the Torelli space (see (81)), one gets

that, by restriction, the affine map

ξ 7→
(
p3ξ +

1

Np2
,−p2ξ

)
induces a global holomorphic parametrization of FαN by an open subset Up,N of H×C
which is not difficult to describe explicitly.

The stabilizer Fix(N) of (0,−1/N) for the action • is easily seen to be the image
of the injective morphism of groups

Γ1(N) n Z2 7−→ SL2(Z) n
(
Z2
)2([

a b

c d

]
,
(
k, l
))
7−→

([
a b

c d

]
,
(
k2, l2

)
,
(
k3, l3

))
with(
k2, l2

)
= q2

(
d− 1

N
,
c

N

)
+ p3

(
k, l
)

and
(
k3, l3

)
= q3

(
d− 1

N
,
c

N

)
− p2

(
k, l
)
,

33. The fact that Y (2) identifies with P1 \{0, 1,∞} is classical, cf. [8, VII] or [90, §4.2] for instance.
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where (q2, q3) stands for a (fixed) pair of integers such that q2p2 + q3p3 = 1.

Embedding Γ1(Np2) n Z2 into Fix(N) by setting(
k2, l2

)
=

(
d− 1

Np2
,
c

Np2

)
+ p3

(
k, l
)

and
(
k3, l3

)
= −p2

(
k, l
)
,

one verifies that the induced action of Γ1(Np2)nZ2 on (τ, ξ) ∈ Up,N is the usual one
(i.e., is given by (84)). Consequently, when Np2 ≥ 3 (i.e., except when p2 = p3 = 1

and N = 2, this case being special and to be treated separately), the inclusion Up,N ⊂
H× C induces an algebraic embedding

FαN
(
Γ1(Np2)

)
' Up,N

/
Γ1(Np2)nZ2 ⊂ E 1(Np2)→ Y1(Np2),

where E 1(Np2) stands for the total space of the elliptic modular surface associated
to Γ1(Np2). Moreover, it can be easily seen that the complement of FαN

(
Γ1(Np2)

)
in E 1(Np2) is the union of some torsion sections.

Proposition 4.2.12. – 1. For a certain congruence group Γp,N (which can be ex-
plicited), the inverse image of FαN in the intermediary moduli space M1,3(Γp,N )

is algebraic and isomorphic to the total space of the modular elliptic surface
E (Γp,N ) from which the union of some torsion sections have been removed.

2. For N ≥ 3, the leaf FαN is an algebraic subvariety of M1,3 isomorphic to the
total space of the modular elliptic surface E 1(N)→ Y1(N) from which the union
of certain torsion multi-sections have been removed.

3. The leaf Fα2 is a bundle in punctured projective lines over Y1(2).

Here again, the dichotomy between the cases when N = 2 and N ≥ 3 comes from
the fact that −Id belongs to Γ1(2) whereas it is not the case for N ≥ 3.

4.2.4.8. – We think that considering an explicit example will be quite enlightening.

We assume that p2 = p3 = 1 (which is equivalent to α2 = α3) and we fix N ≥ 2.
The preimage FαN (2N) of FαN in M1,2(Γ(2N)) admits a nice description.

Let E (2N) → Y (2N) be the modular elliptic curve associated to Γ(2N). We
fix a ‘base point’ τ0 ∈ H. Then for any integers k, l, (k + lτ0)/2N defines a point
of 2N -torsion of Eτ0 which belongs to exactly one of the (2N)2 2N -torsion sections
of E (2N)→ Y (2N). We denote the latter section by [(k + lτ)/2N ].

Then FαN (2N) is isomorphic to the complement in E (2N) of the union of [0] and
[1/N ] with the translation by [1/2N ] of the four sections of 2-torsion:

FαN (2N) ' E (2N) \

[0] ∪ [ 1

N

]
∪

( ⋃
k,l=0,1

[ 1

2N
+
k + lτ

2

]) .

(See also Figure 12 below).
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 1

τ

[τ ]

Y (2N)

Eτ

[

0
]

[

1
2N

]

[

1+N

2N

]

[

1+Nτ

2N

]

[ 1+N(1+τ)
2N

]

[

1
N

]

Figure 12. The covering FαN (2N) of the leaf FαN is the total space of
the modular surface E (2N)→ Y (2N) with the six sections [0], [1/N ] and
[(1 +N(k + lτ))/2N ] for k, l = 0, 1 removed.

4.2.5. Some algebraic leaves in M1,3 related with some Picard/Deligne-Mostow’s orb-
ifolds. – In the n = 3 case, assume that α = (α1, α2, α3) is such that α2 = α3 =

−α1/2. Then the leaf Fα0 formed of flat tori with 3 cone singularities is related to a
moduli space of flat spheres with five cone points.

Indeed, the equation of F
α
0 in the Torelli space is z2 + z3 = 0. It follows that

an element Eτ,z of this leaf is a flat structure on Eτ with a cone point of angle
θ1 = 2π(α1 + 1) at the origin and two equal cone angles θ2 = θ3 = π(2 − α1)

at [z2] and [z3] = [−z2]. This flat structure is invariant by the elliptic involution
ι : [z] 7→ [−z] = −[z] on Eτ hence can be pushed-forward by ℘ : Eτ → Eτ/〈ι〉 ' P1.
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The flat structure thus obtained on P1 has three cone points of angle π at the image
of the three 2-torsion points of Eτ by ℘, one cone point of angle θ1/2 = π(α1 + 1)

at ℘(0) =∞ and one cone point of angle π(2− α1) at ℘(z2) = ℘(z3).

At a more global level, this shows that when α2 = α3, the leaf Fα0 ⊂ M1,3 admits
a special automorphism of order 2 which induces a biholomorphism

Fα0 −→M0,θ(α)

onto the moduli space of flat spheres with five cone points M0,θ(α) with associated
angle datum

θ(α) =
(
π, π, π, π(1 + α1), π(2− α1)

)
.

Moreover, it is easy to verify that the preceding map is compatible with the
CH2-structures carried by each of these two moduli spaces of flat surfaces.

The 5-tuple µ(α) = (µ1(α), . . . , µ5(α)) ∈ ]0, 1[
5 corresponding to the angle datum

θ(α) in Deligne-Mostow’s notation from [11] is given by

µ(α) =
(1

2
,

1

2
,

1

2
,

1− α1

2
,
α1

2

)
.

Then looking at the table page 86 in [11], it follows easily that the metric com-
pletion of M0,θ(α) is a complex hyperbolic orbifold exactly for two values of α1,
namely α1 = 1/3 and α1 = 2/3. It follows that the image of the holonomy of Veech’s
CH2-structure of the leaf Fα0 is a lattice in PU(1, 2) exactly when α1 is equal to ei-
ther of these two values. Note that the two corresponding lattices are isomorphic,
arithmetic and not cocompact.

4.2.6. Towards a description of the metric completion of an algebraic leaf of Veech’s fo-
liation. – We consider here how to describe the metric completion of an algebraic leaf
of Veech’s foliation when it is endowed with the metric associated to the Veech com-
plex hyperbolic structure it carries. This is a natural question in view of Thurston’s
results [77] in the genus 0 case.

4.2.6.1. – In [20], we have generalized the approach initiated by Thurston which
relies on surgeries on flat surfaces to the genus 1 case. From the main result in this
paper, it follows that, if α is assumed to be rational, then the metric completion FαN
of an algebraic leaf FαN of Veech’s foliation on M1,n:

1. carries a complex hyperbolic conifold structure of finite volume which extends
Veech’s hyperbolic structure of FαN ;

2. the completion FαN is obtained by adding to FαN some (covering of some) strata
of flat tori and of flat spheres obtained as particular degenerations of flat tori
whose moduli space is FN .
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The strata mentioned in 2. which parametrize flat tori with n′ < n cone points are
obtained by making several cone points collide hence are called C-strata (C stands
here for ‘colliding’). The others parametrizing flat spheres with n′′ ≤ n+1 cone points
are obtained by pinching an essential simple curve on some element of FN hence are
called P -strata (P stands here for ‘pinching’). (34)

We would like to draw the reader’s attention to the use of the word ‘leaf’ in the
present text as well as in the two papers [80, 20]:

— in [80], Veech calls a ‘leaf’ the inverse image

F
α
ρ = (χα1,n)−1(ρ) ⊂ Teich 1,n

by the linear holonomy map (59), of some non-trivial element ρ of
Homα(π1(1, n),U) ' U2 (see § 4.1.8). He uses the same term (and we use
here and in [20] the notation Fαρ ) to designate the image of such a level subset
in the moduli space M1,n. This terminology is not quite mathematically correct
since such a subset is not connected (see Remark 4.2.5.(2));

— in contrast, in this memoir a leaf is defined as an inverse image

F
α
a =

(
H̃α

1,n

)−1
(a) ⊂ Teich 1,n

for some a ∈ R2 (see (65)) and is connected (as it follows from Proposition 4.2.4).
We recall that we use the notation Fαa (resp. the same notation F

α
a ) to denote

the image of this leaf in the moduli spaceM1,n (resp. in the Torelli space Tor 1,n).

In [20], our main results concern the leaves in M1,n, in Veech’s sense, which are
algebraic. Such a leaf Fαρ is not necessarily irreducible. On the other hand, it follows
from § 4.2.4 that the FαN ’s (see Proposition 4.2.9) are exactly the irreducible algebraic
leaves of Veech’s foliation on M1,n. But it is not completely clear yet which are the
connected components of an algebraic ‘leaf’ Fαρ ⊂ M1,n in terms of the irreducible
leaves FαN considered in the present paper (for instance, the answer depends on α

already in the n = 2 case, see § 4.3.1 below).
It follows that the methods developed in [20] to list the strata which must be

added to Fαρ in order to get its metric completion do not apply in an effective way
to any of the irreducible leaves FαN ’s considered here. An interesting feature of the
analytic approach to Veech’s foliation developed above is that it suggests an explicit
and effective way to describe FαN for any N given.

4.2.6.2. – In the n = 2 case, one can give a complete and explicit description of
the metric completion of any leaf FαN ⊂M1,2, see § 5.3.4 further. In particular, using
the results of [20], it follows that the metric completion of a leaf FαN is obtained by
adjoining to it a finite number of P -strata which, in this case, are moduli spaces of
flat spheres with three cone points M0,θ for some angle data θ = (θ1, θ2, θ3) ∈ ]0, 2π[

3

which can be explicitly given.

34. See [20, §10.1] where this terminology is introduced.
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4.2.6.3. – We now say a few words about the n = 3 case. We take N ≥ 4 in order
to avoid any pathological case. Let E 1(N) → Y1(N) be the modular elliptic surface
associated to Γ1(N). Then, as proven in § 4.2.4.7, there exists a finite number of torsion
multi-sections Σ(1), . . . ,Σ(s) ⊂ E 1(N) such that FαN is isomorphic to E 1(N)\Σ with
Σ = Σ(1) ∪ · · · ∪ Σ(s). By restriction, one gets a surjective map

νN : FαN = E 1(N) \ Σ→ Y1(N)

which is relevant to describe the first strata (namely the ones of complex codimen-
sion 1) which must be attached to FαN along the inductive process described in [20,
§7.1] giving FαN at the end.

Indeed, by elementary analytic considerations, it is not difficult to see that the
C-strata of codimension 1 which must be added to FαN are precisely the multi-
sections Σ(i) for i = 1, . . . , s, which are horizontal for νN . It is then rather easy
to see that each Σ(i) is a non-ramified cover of a certain algebraic leaf F(i) = F

α(i)
N(i)

of Veech’s foliation on M1,2, for a certain integer N(i) ≥ 0 and a certain 2-tuple
α(i) = (α1(i),−α1(i)) with α1(i) ∈ ]0, 1[. Moreover, all these objects (namely N(i),
α(i) as well as the cover Σ(i)→ F(i)) can be determined explicitly.

At the moment, we do not have as nice and precise descriptions of the P -strata
of codimension 1 which must be added to FαN as the one we have for the C-strata.
What seems likely is that these P -strata, which are (coverings of) moduli spaces of
flat spheres with 4 cone points, are vertical with respect to νN . More precisely, we
believe that they are vertical fibers at some cusps of a certain extension of νN over a
partial completion of Y1(N) contained in X1(N).

Thanks to some classical works by Kodaira and Shioda [43, 72], it is known that
νN : E 1(N) → Y1(N) admits a compactification νN : E 1(N) → X1(N) obtained
by gluing some generalized elliptic curves as vertical fibers over the cusps of Y1(N).
Note that such compactified modular surfaces (but for the level N congruence group
Γ(N)) have been used by Livné in his thesis [47] (see also [12, §16]) to construct
some non-arithmetic lattices in PU(1, 2). This fact prompts us to believe that it
might be possible to construct the metric completion of FαN from E 1(N) by means
of geometric operations similar to the ones used by Livné. This could provide a nice
way to investigate further the topology and the complex analytic geometry of the
CH2-conifold FαN .

We hope to return to this in some future works.

4.3. Veech’s foliation for flat tori with two cone singularities

We now specialize in the particular case when g = 1 and n = 2. More precisely,
below:

1. we show that Tor 1,2 is naturally isomorphic to a product and that up to this
isomorphism, Veech’s foliation identifies with the horizontal foliation (Proposi-
tion 4.3.1);
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2. then we specialize Proposition 4.2.4 and deduce from that a precise description
(as Riemann surfaces) of the leaves of Veech’s foliation on M1,2 (Corollary 4.3.3
and Corollary 4.3.4).

?

Remark that for g = 1 and n = 2, the 2-tuple α = (α1, α2) ∈ ]−1,+∞[
2 is

necessarily such that

(87) α1 = −α2 ∈ ]0, 1[.

Since Veech’s foliation does depend only on [α1 : α2] and in view of our Hypothe-
sis (87), one obtains that F

α does not depend on α (Corollary 4.2.6).

4.3.0.1. – In the case under study, it is relevant to consider the rescaled first integral

Ξ =
(
α1

)−1
ξα : Tor 1,2 −→ R2

which is independent of α. Indeed, for (τ, z2) ∈ Tor 1,2, one has

Ξ(τ, z2) =

(
=m(z2)

=m(τ)
,
=m(z2)

=m(τ)
· τ − z2

)
.

Moreover, it follows immediately from the third point of Proposition 4.2.4 that
the image of Ξ is exactly R2 \ Z2. We denote by Π1 the restriction to Tor 1,2 of the
projection H× C→ H onto the first factor.

Proposition 4.3.1. – 1. The following map is a real analytic diffeomorphism

(88) Π1 × Ξ : Tor 1,2 −→ H×
(
R2 \ Z2

)
.

2. The push-forward of Veech’s foliation F
α by this map is the horizontal foliation

on the product H× (R2 \ Z2).

3. By restriction, the projection Π1 induces a biholomorphism between any leaf
of F

α and Poincaré’s upper half-plane H. In particular, the leaves of Veech’s
foliation on Tor 1,2 are topologically trivial.

Proof. – The proof is straightforward and left to the reader.

Since Veech’s foliation does not depend on α, we will drop the exponent α in the
notation of the rest of this section. We will also identify Tor 1,2 with H × (R2 \ Z2)

by means of the diffeomorphism (88). The corresponding action of SL2(Z) n Z2 on
H× (R2 \ Z2) is given by(

M,
(
k, l
))
◦
(
τ,
(
r0, r∞

))
=
(
M · τ,

(
r0 + l, r∞ − k

)
· %(M)

)
for any

(
M, (k, l)

)
∈ SL2(Z) n Z2 and any

(
τ, (r0, r∞)

)
∈ H× (R2 \ Z2). (35)

35. We remind that %(M) is the matrix obtained from M by exchanging the antidiagonal coeffi-
cients, see (67).
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The preceding proposition shows that, on the Torelli space, Veech’s foliation is
trivial from a topological point of view. It is really more interesting to look at F,
which is by definition the push-forward of F by the natural quotient map

(89) µ : Tor 1,2 −→M1,2.

For a ‘rescaled lifted holonomy’ r = (r0, r∞) ∈ R2 \ Z2, one sets

[r] =
(
SL2(Z) n Z2

)
◦ r ⊂ R2,

F r = Ξ−1(r) =
{(
τ, z2

)
∈ Tor 1,2

∣∣ r0τ − z2 = r∞

}
⊂ Tor 1,2

and Fr = µ
(

F r

)
⊂M1,2.

(Note that the correspondence with the notation from § 4.2.4 is obtained via r ↔ a

with a = α1r, i.e., a0 = α1r0 and a∞ = α1r∞.)

4.3.0.2. – It turns out that when g = 1 and n = 2, one can give a complete and
explicit description of all the leaves of Veech’s foliation on M1,2 and in particular of
the algebraic ones.

For r ∈ R2, one denotes by Stab(r) its stabilizer for the action ◦:

Stab(r) =
{
g ∈ SL2(Z) n Z2

∣∣ g ◦ r = r
}

and one sets:
δ(r) = dimQ

〈
r0, r∞, 1

〉
∈
{

1, 2, 3
}
.

The following facts are easy to establish:

— δ(r) does depend only on [r], i.e., δ(r) = δ(r′) if r′ ∈ [r]; in fact

δ(r) = dimQ
〈
[r]
〉
;

— one has δ(r) = 1 if and only if r ∈ Q2;

— one has δ(r) = 2 if and only if there exists a triplet (u0, u∞, u1) ∈ Z3, unique
up to multiplication by −1, such that

(90) u0r0 + u∞r∞ = u1 and gcd(u0, u∞, u1) = 1.

Proposition 4.3.2. – Let r be an element of R2.

1. If δ(r) = 3 then Stab(r) is trivial.

2. If δ(r) = 2 then Stab(r) is isomorphic to Z.
3. If δ(r) = 1 then r ∈ Q2 and Stab(r) is isomorphic to the congruence subgroup

Γ1(N) where N is the smallest integer such that Nr ∈ Z2.

4. For any positive integer N , the stabilizer of (0, 1/N) in SL2(Z)nZ2 is the image
of the following injective morphism of groups

Γ1(N) −→ SL2(Z) n Z2[
a b

c d

]
7−→

([
a b

c d

]
,
(d− 1

N
,
c

N

))
.
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Proof. – For r = (r0, r∞) ∈ R2 and g =
( [

a b
c d

]
, (k, l)

)
∈ SL2(Z) n Z2, one has

g ◦ r = r ⇐⇒

[
a− 1 −c
−b d− 1

]
·

[
r0

r∞

]
=

[
−l
k

]
.(91)

We first consider the case when r 6∈ Q2. If δ(r) = 3 it is easy to deduce from the
preceding equivalence that Stab(r) is trivial. Assume that δ(r) = 2 and let u(r) =

(u0, u∞, u1) ∈ Z3 be such that (90) holds true. We denote by u the greatest common
divisor of u0 and u∞: u = gcd(u0, u∞) ∈ N>0.

We denote by 1 the identity element (Id, (0, 0)) of SL2(Z) n Z2. The equality
g ◦ r = r is equivalent to the fact that (a − 1,−c,−l) and (−b, d − 1, k) are inte-
ger multiples of u(r). From this remark, one deduces easily that in this case, any
g ∈ Stab(r) is written g = 1 + λ

uX(u) for some λ ∈ Z, where X(u) stands for the
following element of SL2(Z) n Z2:

(92) X(u) =

([
u0u∞ u2

0

−u2
∞ −u0u∞

]
,
(
u0u1, u∞u1

))
.

Then a short (but a bit laborious hence left to the reader) computation shows that
the map

Z −→ Stab(r)

λ 7−→ 1 +
λ

u
X(u).

is an isomorphism of groups. This proves the second point of the proposition.

Finally, we consider the case when r ∈ Q2. Let N be the integer as in the statement
of the proposition. Then [r] = [0, 1/N ] according to Proposition 4.2.8, hence 3. follows
from 4. For r = (0, 1/N), (91) is equivalent to the fact that the integers c, d, k and l
verify c = lN and d− 1 = kN . The fourth point of the proposition follows easily.

4.3.0.3. – With the preceding proposition at hand, it is not difficult to determine
the conformal types of the leaves of Veech’s foliation F on M1,2 (as abstract complex
orbifolds of dimension 1, not as embedded subsets of M1,2).

Corollary 4.3.3. – Let r be an element of Im(Ξ) = R2 \ Z2.

1. If δ(r) = 3 then µ induces an isomorphism F r = H ' Fr.

2. If δ(r) = 2 then the leaf Fr is isomorphic to the infinite cylinder C/Z.

3. If δ(r) = 1 then the leaf Fr is isomorphic (as a complex orbicurve) to the
modular curve Y1(N) = H/Γ1(N) where N is the smallest positive integer such
that Nr ∈ Z2.
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Proof. – Since any leaf F r is simply connected, one has Fr = µ( F r) ' F r/Stab(r)

(the latter being an isomorphism of orbifolds if Stab(r) has fixed points on F r).
Let S(r) be the image of Stab(r) by the epimorphism SL2(Z)nZ2 → SL2(Z). The

restriction of (69) to F r gives an isomorphism of G-analytic spaces

(93) F rWW
// H ZZ

Stab(r) // S(r).

This implies that (as complex orbifolds if S(r) has fixed points on H) one has

Fr ' H/S(r).

If δ(r) = 3 then S(r) is trivial by Proposition 4.3.2, hence 1. follows.
If δ(r) = 2, it follows from the second point of Proposition 4.3.2 that S(r) coincides

with the infinite cyclic group spanned by Id +M(u) ∈ SL2(Z) where M(u) stands for
the matrix component of the element X(u) defined in (92). Since Tr(Id + M(u)) =

2 + Tr(M(u)) = 2, this generator is parabolic, hence the action of S(r) on the up-
per half-plane is conjugated to the action of the group generated by the translation
τ 7→ τ + 1. It follows that Fr is isomorphic to the infinite cylinder.

The fact that δ(r) = 1 means that r ∈ Q2 \ Z2. In this case, let N be the inte-
ger defined in the third point of the proposition. Then (0, 1/N) ∈ [r] according to
Proposition 4.2.8, hence Fr = F(0,1/N). From the fourth point of Proposition 4.3.2, it
follows that S(0, 1/N) = Γ1(N). Consequently, one has Fr ' H/Γ1(N) = Y1(N).

For any integer N greater than or equal to 2, one sets

(94) FN = F(0,1/N) ⊂M1,2.

From the preceding results, we deduce the following very precise description of the
algebraic leaves of Veech’s foliation on M1,2:

Corollary 4.3.4. – 1. The leaves of F which are closed analytic sub-orbifolds
of M1,2 are exactly the FN ’s for N ∈ N≥2;

2. For any integer N ≥ 2, the leaf FN is algebraic, isomorphic to the modular
curve Y1(N) and is the image of the following embedding:

Y1(N) ↪−→M1,2(95) [(
Eτ , [1/N ]

)]
7−→

[(
Eτ , [0], [1/N ]

)]
.

Note that the modular curve Y1(N) (hence the leaf FN ) has orbifold points only
for N = 2, 3 (cf. [13, Figure 3.3]).

The (orbi-)leaves FN of Veech’s foliation on M1,2 are clearly the most interesting
ones. This is true at the topological level already. In the next sections we will go
further by taking into account the parameter α. Our goal will be to study Veech’s
hyperbolic structures on the algebraic leaf FN for any N ≥ 2 as far as we can.
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4.3.1. A remark about the ‘leaves’ Fθ(M) considered in [20]. – From the description of
the leaves of Veech’s foliation given above, it is possible to give an explicit example
of the non-connectedness phenomenon mentioned in [20].

4.3.1.1. – We first recall some notation from [20] for (g = 1 and) n ≥ 1 arbitrary. We
consider a fixed α = (α1, . . . , αn) satisfying (73) and we denote by θ = (θ1, . . . , θn) the
associated angles datum. For ρ ∈ Homα(π1(1, n),U), let F

α
ρ ⊂ E

α
1,n ' Teich 1,n be

the preimage of ρ under Veech’s linear holonomy map χα1,n (see § 4.1.3 above).
If [ρ] stands for the orbit of ρ under the action of PMCG1,n, then Fα[ρ] is the notation

used in [20] for the image of F
α
ρ into M1,n.

We now assume that the image Im(ρ) of ρ in U is finite. From our results above,
it follows that Fα[ρ] is an algebraic subvariety of M1,n. Moreover, α is necessarily
rational, hence Gθ = 〈eiθ1 , . . . , eiθn〉 is a finite subgroup of the group U∞ of roots of
unity. If ωρ stands for a generator of Im(ρ) ⊂ U∞, one denotes by M = Mθ(ρ) the
smallest positive integer such that Gθ = 〈ωMρ 〉. Now in [20, §10], it is proved that the
leaf Fα[ρ] is uniquely determined by this integer M (remember that θ is fixed) and the
corresponding notation for it is Fθ(M).

In [20], using certain surgeries on flat surfaces, we prove several results about the
geometric structure of an arbitrary algebraic leaf Fθ(M). However, the geometrical
methods used to establish these results, if quite relevant to answer some questions, do
not allow to answer some other, equally fundamental ones, such as the connectedness
of a given leaf Fθ(M).

Using the results presented in the preceding subsections, it is easy to answer this
question when n = 2. We stick to this case in what follows.

4.3.1.2. – Assume that α1 ∈ ]0, 1[ is rational and let N be an integer bigger than or
equal to 2. The following statement follows from the very definition of the algebraic
leaf Fα1

N ' Y1(N) given in the preceding subsection:

Lemma 4.3.5. – The image of the linear holonomy of any flat surface belonging to
the leaf Fα1

N is the finite subgroup of U generated by exp(2iπα1/N).

Assume that α1 = p/q where p, q are two relatively prime positive integers. In this
case, the corresponding angles datum is

θ =
(
2π(1− α1), 2π(1 + α1)

)
=

(
2π
(q − p

q

)
, 2π
(q + p

q

))
.

From the preceding lemma, one immediately deduces that for any M > 0, the
connected components of the leaf Fθ(M) considered in [20] are exactly the leaves Fα1

N ’s
considered above in (94), for any integer N ≥ 2 such that

M =
N

gcd(N, p)
.

One first deduces that Fθ(M) is actually empty if and only if p = M = 1. For
convenience, we set F0 = Fα1

0 = Y1(0) = ∅ in the lines below.
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Then from the discussion above, one immediately deduces the:

Corollary 4.3.6. – Let M be a fixed positive integer.

1. One has:
Fθ(M) =

⊔
k∈N∗, k|p

gcd(p/k,M)=1

Fα1

kM .

2. When gcd(p,M) = 1, one has Fθ(M) =
⊔
k|p F

α1

kM .

3. On the contrary, if p divides M then Fθ(M) = Fα1

pM ' Y1(pM).

This result gives an explicit description of the connected components of the alge-
braic leaves Fθ(M) for any positive integer M . Note that it depends in a subtle way
of the arithmetic properties of the parameters α1 and M . We illustrate this fact with
two concrete examples below.

4.3.1.3. – We first deal with the case when α1 = 1/q for an integer q≥ 2. In this case,
one has p = 1, θ = (2π(q− 1)/q, 2π(q+ 1)/q), hence Fθ(1) = ∅ and the third point of
the preceding corollary gives us that for any M ≥ 2, one has

Fθ(M) = Fα1

M ' Y1(M).

4.3.1.4. – We then consider the case when α1 = 2/q where q ≥ 3 stands for an odd
integer. In this case p = 2 and θ = 2π((q − 2)/q, (q + 2)/q).

From Corollary 4.3.6, one gets that for any M ≥ 1, one has

Fθ(M) =


Fα1

2 ' Y1(2) if M = 1;

Fα1

2M ' Y1(2M) if M is even;

Fα1

M t F
α1

2M ' Y1(M) t Y1(2M) if M > 1 is odd.

To conclude this subsection, we mention that we find the question of determining
geometrically the FN ’s which are the connected components of a given ‘leaf’ Fθ(M)

quite interesting. As already said above, the answer depends on the arithmetic of θ
in a rather subtle way. Hence it could be difficult to discriminate these connected
components solely by means of geometrical methods.

4.3.2. An aside: a connection with Painlevé theory. – The leaves of Veech’s foliation
on the Torelli space are cut out by the affine equations (74). The fact that the latter
have real coefficients reflects the fact that Veech’s foliation is transversely real ana-
lytic (but not holomorphic) on Tor 1,n. A natural way to get a holomorphic object is
by allowing the coefficients a0 and a∞ to take any complex value (the αi’s staying
fixed). Performing this complexification, one obtains a 2-dimensional complex family
of hypersurfaces in Tor 1,n that are nothing else than the solutions of the second-order
linear differential system

(96)
∂2τ

∂z2
i

= 0 and αi
∂τ

∂zj
− αj

∂τ

∂zi
= 0 for i, j = 2, . . . , n, i 6= j.
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Using the explicit formula given above, it is not difficult to verify that (96) is invari-
ant by the action of the mapping class group. This implies that it can be pushed-down
onto M1,n and gives rise to a (no longer linear) second-order holomorphic differen-
tial system on this moduli space, denoted by Dα. The integral varieties of Dα form
a complex 2-dimensional family of 1-codimensional locally analytic subsets of M1,n

which can be seen as a kind of complexification of Veech’s foliation.
If the preceding construction seems natural, one could have some doubt concerning

its interest. What shows that it is actually relevant is the consideration of the simplest
case when n = 2. In this situation, (96) reduces to the second order differential equa-
tion d2τ/dz2

2 = 0. In order to avoid considering orbifold points, it is more convenient
to look at the push-forward modulo the action of Γ(2) n Z2 < Sp1,n(Z).

From [8, Chap.VII], it comes easily that

Tor 1,2/Γ(2)nZ2 '
(
P1 \ {0, 1,∞}

)
× C

and that the quotient map is given by

ν : Tor 1,2 −→
(
P1 \ {0, 1,∞}

)
× C

(τ, z2) 7−→
(
λ(τ),

℘(z2)− e1

e2 − e1

)
.

Here ℘ : Eτ → P1 is the Weierstrass ℘-function associated to the lattice Zτ , one has
ei = ℘(ωi) for i = 1, 2, 3 where ω1 = 1/2, ω2 = τ/2 and ω3 = ω1 +ω2 = (1 + τ)/2 and
λ : τ 7→ (e3 − e1)/(e2 − e1) stands for the classical elliptic modular lambda function
(the usual Hauptmodul for Γ(2)).

As already known by Picard [65, Chap.V, §17] (see [50] for a modern proof), the
push-forward of d2τ/dz2

2 = 0 by ν is the following non-linear second order differential
equation

(PPVI)
d2X

dλ2
=

1

2

(
1

X
+

1

X − 1
+

1

X − λ

)(
dX

dλ

)2

−
(

1

λ
+

1

λ− 1
+

1

X − λ

)
· dX
dλ

+
1

2

X(X − 1)

λ(λ− 1)(X − λ)
.

This equation, now known as Painlevé-Picard equation, was first considered by
Picard in [65]. The name of Painlevé is associated to it since it is a particular case
(actually the simplest case) of the sixth-Painlevé equation. (36)

For r = (r0, r∞) ∈ R2 \ Z2, the image of the leaf F r in (P1 \ {0, 1,∞}) × C
is parametrized by τ 7→ (λ(τ), (℘(r0τ − r∞) − e1)/(e2 − e1)), hence the leaves of
Veech’s foliation can be considered as particular solutions of (PPVI). The leaves Fr
with r ∈ Q2 are precisely the algebraic solutions of (PPVI), a fact already known to
Picard (see [65, p. 300]).

36. Actually, the sixth Painlevé equation has not been discovered by Painlevé himself (due to some
mistakes in some of its computations) but by his student R. Fuchs in 1905.
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The existence of this link between the theory of Veech’s foliations and the theory
of Painlevé equations is not so surprising. Indeed, both domains are related to the
notion of isomonodromic (or isoholonomic) deformation. But this leads to interesting
questions such as the following ones:

1. Is there a geometric characterization of the leaves FN , N ∈ N≥2 of Veech’s
foliation among the solutions of (PPVI)?

2. Given α = (α1, α2) as in (87), is it possible to obtain the hyperbolic structures
constructed by Veech on the leaves of Fα within the framework of (PPVI)?
Moreover, does the general solution of (PPVI) carry a hyperbolic or more gen-
erally, a geometric structure which specializes to Veech’s hyperbolic structure
on a leaf of Fα? (37)

3. For n ≥ 2 arbitrary, is there a nice formula for the push-forward Dα of the
differential system (96) onto a suitable quotient of Tor 1,n? If yes, does such a
push-forward enjoy a generalization for differential systems in several variables
of the Painlevé property?

4.4. An analytic expression for the Veech map when g = 1

In this section, we will be dealing with the general case when (g = 1 and) n ≥ 2.
Our goal here is to get an explicit local analytic expression for the Veech map.

After having recalled the definition of this map, we define another map by adapt-
ing/generalizing to our context the approach developed in the genus 0 case by Deligne
and Mostow. We show that, after some identifications, these two maps are identical.
Although all this is not really necessary to our purpose (which is to study Veech’s
hyperbolic structure on a leaf F

α
a ⊂ M1,n), we believe that it is worth considering,

since it shows how the constructions of the famous papers [80] and [11] are related in
the genus 1 case.

Our aim here is to study Veech’s hyperbolic structure on a leaf F
α
a of Veech’s

foliation in the Torelli space Tor 1,n as extensively as we can. We denote here by F̃
α
a

its preimage in the Teichmüller space Teich 1,n. Veech constructs a holomorphic map

(97) Ṽ αa : F̃
α
a −→ CHn−1

and the hyperbolic structure he considers on F̃
α
a is just the one obtained by pull-back

under this map (which is étale according to [80, Section 10]). To study this hyperbolic
structure, we are going to give an explicit analytic expression for Ṽ αa , or more precisely,
for its push-forward by the (restriction to F̃

α
a of the) projection Teich 1,n → Tor 1,n

which is a multivalued holomorphic function on F
α
a that will be denoted by V αa .

37. The solutions of the second-order ODE (PPVI) form a holomorphic foliation by curves on the
projectivized tangent bundle of the surface of initial conditions. The question asked here is: do the
leaves of this foliation carry geometric structures which vary nicely (transversely) and specialize to
Veech’s hyperbolic structure on any leaf of Veech’s foliation?
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We recall and fix some notation that will be used in the sequel.
In what follows, a = (a0, a∞) stands for a fixed element of R2 \ α1Z2 if n = 2 or

of R2 if n ≥ 3. We denote by ρa the linear holonomy map shared by the elements
of F

α
a ⊂ Tor 1,n: we recall that it is the element of H1(Eτ,z,U) defined for any

n-punctured torus Eτ,z by the following relations:

(98) ρa,0 = e2iπa0 , ρa,k = e2iπαk for k = 1, . . . , n and ρa,∞ = e2iπa∞

(see § 3.2.2 where all the corresponding notation are fixed).
Note that ρa can also be seen as an element of Homα(π1(Eτ,z),U). Considering

the latter as a C-valued morphism, one gets a 1-dimensional π1(Eτ,z)-module that
will be denoted by Cαa . Finally, for any (τ, z) ∈ F

α
a , the function Tατ,z(·) = Tα(·, τ, z)

defined in (36) is a multivalued function on Eτ,z whose monodromy is multiplicative
and given by (98). One denotes by Lατ,z the local system on Eτ,z defined as the kernel
of the connection (38) on OEτ,z . Note that the representation of π1(Eτ,z) associated
to Lατ,z is precisely Cαa .

4.4.1. The original Veech map. – We first recall Veech’s abstract definition of the
map (97). We refer to the ninth and tenth sections of [80] for proofs and details.

4.4.1.1. – Let (Eτ,z,m
α
τ,z, ψ) be a point of E

α
1,n ' Teich 1,n (see § 4.1). We fix x ∈ Eτ,z

as well as a determination D at x of the developing map on Eτ,z associated with
the flat structure induced by mα

τ,z. For any loop c based at x in Eτ,z, one denotes
by M c(D) the germ at x obtained after the analytic continuation of D along c. Then
one has M c(D) = ρ(c)D + µD(c) with ρ(c) ∈ U and µD(c) ∈ C.

One verifies that the affine map mc : z 7→ ρ(c)z + µD(c) only depends on the
pointed homotopy class of c and one gets this way the (full) holonomy representation
of the flat surface (Eτ,z,m

α
τ,z):

π1

(
Eτ,z, x

)
−→ Isom+(C) ' Un C

[c] 7−→ mc : z 7→ ρ(c)z + µD(c).

Now assume that (Eτ,z,m
α
τ,z, ψ) belongs to F̃

α

a . Then the map [c] 7→ ρ(c) is nothing
else than the linear holonomy map χα1,n(Eτ,z,m

α
τ,z, ψ) (cf. (59)) and will be denoted

by ρa in what follows (which is justified by the fact that it only depends on a).
Let µa be the complex-valued map on π1(Eτ,z, x) which associates 1 − ρa(c) to any
homology class [c]. The translation part of the holonomy [c] 7→ µD(c) can be seen
as a complex map on the fundamental group of the punctured torus Eτ,z at x which
satisfies the following properties:

1. for any two homotopy classes [c1], [c2] ∈ π1(Eτ,z, x), one has:

µD(c1c2) = ρa(c1)µD(c2) + µD(c1)

and µD(c1c2c
−1
1 ) = ρa(c1)µD(c2) + µD(c1)µa(c2) ;
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2. if D̃ = κD + ` is another germ of the developing map at x, with κ ∈ C∗ and
` ∈ C, then one has the following relation between µD and µD̃:

µD̃ = κµD + `µa.

Now remember that considering (Eτ,z,m
α
τ,z, ψ) as a point of Teich 1,n means that

the third component ψ stands for an isomorphism π1(1, n) ' π1(Eτ,z, x) well defined
up to inner automorphisms.

Consider then the composition

µτ,z = µD ◦ ψ : π1(1, n)→ C.

It is an element of the following space of 1-cocycles for the π1(1, n)-module, denoted
by Cαa , associated to the unitary character ρa:

Z1
(
π1(1, n),Cρa

)
=
{
µ : π1(1, n)→ C

∣∣ µ(γγ′) = ρa(γ)µ(γ′) + µ(γ) ∀γ, γ′
}
.

One denotes again by µa the map γ 7→ 1−ρa(γ) on π1(1, n). From the properties 1.
and 2. satisfied by µD and from the fact that ψ is canonically defined up to inner
isomorphisms, it follows that the class of µτ,z in the projectivization of the first
cohomology group

H1
(
π1(1, n),Cαa

)
= Z1

(
π1(1, n),Cαa

)/
Cµa,

is well defined. Then one defines the Veech map Ṽ αa as the map

(99) F̃
α

a
// PH1

(
π1(1, n),Cαa

)
(
Eτ,z,m

α
τ,z, ψ

) � //
[
µτ,z

]
.

In [80, §10], Veech proves the following result:

Theorem 4.4.1. – The map Ṽ αa is a local biholomorphism.

Actually, Veech proves more. Under the assumption that at least one of the αi’s is
not an integer, there is a projective bundle PH1 over Homα(π1(1, n),U), the fiber of
which at ρ is PH1(π1(1, n),Cρ). Then Veech proves that the Ṽ αa ’s considered above
are just the restrictions of a global real-analytic immersion

Ṽ α : Teich 1,n −→ PH1.

An algebraic-geometry inclined reader may see the preceding result as a kind of
local Torelli theorem for flat surfaces: once the cone angles have been fixed, a flat
surface is locally determined by its complete holonomy representation.

A differential geometer may rather see this preceding result as a particular occur-
rence of the Ehresmann-Thurston’s theorem which asserts essentially the same thing
but in the more general context of geometric structures on manifolds (see [24] for a nice
general account of this point of view or the more complete book in preparation [25]).
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4.4.2. Deligne-Mostow’s version. – We now adapt and apply the constructions and
results of the third section of [11] to the genus 1 case we are considering here.

Let
π : E 1,n −→ Tor 1,n

be the universal elliptic curve: for (τ, z) = (τ, z2, . . . , zn) ∈ Tor 1,n, the fiber of π
over (τ, z) is nothing else than the n-punctured elliptic curve Eτ,z.

For any (τ, z) ∈ F
α
a , we remind the reader that Lατ,z stands for the local system

on Eτ,z which admits the multivalued holomorphic function Tατ,z(u) = Tα(u, τ, z)

defined in (36) as a section. All these local systems can be glued together over the leaf
F
α
a : there exists a local system Lαa over E

α
a = π−1( F

α
a ) ⊂ E 1,n whose restriction

along Eτ,z is Lατ,z for any (τ, z) ∈ F
α
a (see §B.2 in Appendix B for a detailed proof).

Since the restriction of π to E
α
a is a topologically locally trivial fibration, the

spaces of twisted cohomology H1(Eτ,z, L
α
τ,z)’s organize themselves into a local system

R1π∗(L
α
a ) on F

α
a . We will be interested in its projectivization:

Bαa = PR1π∗
(
Lαa
)
.

It is a flat projective bundle whose fiber Bατ,z at any point (τ, z) of F
α
a is just

PH1(Eτ,z, L
α
τ,z). Its flat structure is of course the one induced by the local system

R1π∗(L
α
a ). For (τ, z) ∈ F

α
a , let ωατ,z be the (projectivization of the) twisted cohomol-

ogy class defined by Tατ,z(u)du in cohomology:

ωατ,z =
[
Tατ,z(u)du

]
∈ Bατ,z.

As in the genus 0 case (see [11, Lemma (3.5)], it can be proved that the class ωατ,z is
never trivial hence induces a global holomorphic section ωαa of Bαa over the leaf F

α
a .

Denote (a bit abusively) by F̃
α
a a connected component of the inverse image of F

α
a

in the Teichmüller space Teich 1,n. From the fact that an element of F̃
α
a is a n-punc-

tured flat torus endowed with a marking of its fundamental group, one deduces that
the pull-back B̃αa of Bαa by F̃

α
a → F

α
a can be trivialized (38). Consequently, the choice

of any element in F̃
α
a over a fixed point (τ0, z0) ∈ F

α
a gives rise to an isomorphism

(100) B̃αa ' F̃
α
a ×Bατ0,z0 .

It follows that the section ωαa of Bαa on F
α
a gives rise to a holomorphic map

(101) Ṽ α,DMa : F̃
α

a −→ Bατ0,z0 = PH1
(
Eτ0,z0 , L

α
τ0,z0

)
.

We remark now that the results of [11, p. 23] generalize verbatim to the genus 1 case
which we are considering here. In particular, for any (local) horizontal basis (Ci)

n
i=1 of

the twisted homology with coefficients in Lαa on F
α
a , (
∫
Ci
·)ni=1 forms a local horizontal

38. This can be proven rigorously by using the isomorphisms (103) and [ψ∗] considered in § 4.4.3.1
below. Details are left to the reader.
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system of projective coordinates on Bαa . Generalizing the first paragraph of the proof
of [11, Lemma (3.5)] to our case, it follows that(

γ0,γ3, . . . ,γn,γ∞
)

is such a basis, where the γ•’s are the twisted cycles defined in (42).
As a direct consequence, it follows that the push-forward V α,DMa of Ṽ α,DMa onto the

leaf F
α
a in the Torelli space Tor 1,n (which is a multivalued holomorphic function)

admits the following local analytic expression whose components are expressed in
terms of elliptic hypergeometric integrals:

V α,DMa : F
α
a −→ Pn−1

(τ, z) 7−→

[∫
γ•

Tα(u, τ, z)du

]
•=0,3,...,n,∞

.(102)

4.4.3. Comparison of Ṽ αa and Ṽ α,DMa . – We intend here to prove that Veech’s and
Deligne-Mostow’s maps coincide, up to some natural identifications.

4.4.3.1. – At first sight, the two abstractly defined maps (99) and (101) do not seem
to have the same target space. It turns out that they actually do, but up to some
natural isomorphisms.

Indeed, for any (τ, z) ∈ F
α
a , since Lατ,z is ‘the’ local system on Eτ,z associated to

the π1(Eτ,z)-module Cαa , there is a natural morphism

(103) H1
(
π1(Eτ,z),Cαa

)
−→ H1

(
Eτ,z, L

α
τ,z

)
.

Since Eτ,z is uniformized by the unit disk D which is contractible, it follows that the
preceding map is an isomorphism (see [22, §2.1] for instance).

On the other hand, for any (Eτ,z,m
α
τ,z, ψ) ∈ F̃

α
a , the (class of) map(s) ψ :

π1(1, n) ' π1(Eτ,z) induces a well defined isomorphism

[ψ∗] : H1
(
π1(Eτ,z),Cαa

)
' H1

(
π1(1, n),Cαa

)
.

Then, up to the isomorphism (103), one can see the lift of (τ, z) 7→ [µτ,z] ◦ [ψ∗] as a
global section of B̃αa over F̃

α
a . Then using (100), one eventually obtains that Veech’s

map Ṽ αa can be seen as a map with the same source and target space as the Deligne-
Mostow map Ṽ α,DMa .

4.4.3.2. – Comparing the two maps (99) and (101) is not difficult and relies on some
arguments elaborated by Veech. In [80], to prove that (99) is indeed a holomorphic
immersion, he explains how to get a local analytic expression for this map. It is then
easy to relate this expression to (102) and eventually get the

Proposition 4.4.2. – The two maps Ṽ αa and Ṽ α,DMa coincide. In particular, (102)
is also a local analytic expression for the push-forward V αa of Veech’s map on F

α
a .
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Proof. – We first review some material from the tenth and eleventh sections of [80]
to which the reader may refer for some details and proofs.

Remember that for (τ, z) in F
α
a , one sees Eτ,z as a flat torus with n cone singu-

larities, the flat structure being the one induced by the singular metric mα
a (τ, z) =

|Tα(u, τ, z)du|2. Given such an element (τ ′, z′), there exists a geodesic polygonation
T = T τ ′,z′ of Eτ ′,z′ whose set of vertices is exactly the set of cone singularities of this
flat surface (for instance, one can consider its Delaunay decomposition (39)). Moreover,
the set of points (τ, z) ∈ F

α
a such that the associated flat surface admits a geodesic

triangulation T τ,z combinatorially equivalent to T is open (according to [80, §5]),
hence contains an open domain U T ⊂ F

α
a to which the considered base-point (τ ′, z′)

belongs.
As explained in [80, §10], by removing the interior of some edges (the same edges

for every point (τ, z) in U T ), one obtains a piecewise geodesic graph Γτ,z ⊂ Eτ,z
formed by n + 1 edges of T τ,z such that Qτ,z = Eτ \ Γτ,z is homeomorphic to the
open disk D ⊂ C. Then one considers the length metric on Qτ,z associated to the
restriction of the flat structure of Eτ,z. The metric completion Qτ,z for this intrinsic
metric is isomorphic to the closed disk D. Moreover, the latter carries a flat structure
with (geodesic) boundary, whose singularities are 2n + 2 cone points v1, . . . , v2n+2

located on the boundary circle ∂D. One can and will assume that the vi’s are cyclically
enumerated in the trigonometric order, v1 being chosen arbitrarily. For i = 1, . . . , 2n+

2, let Ii be the circular arc on ∂D whose endpoints are vi and vi+1 (with v2n+3 = v1

by convention).
The developing map Dτ,z of the flat structure on Qτ,z ' D extends continuously

to Qτ,z ' D. For every i, this extension maps Ii onto the segment [ζi, ζi+1] in the
Euclidean plane E2 ' C, where we have set for i = 1, . . . , 2n+ 1:

ζi = ζi(τ, z) = Dτ,z(vi).

There exists an involution θ without fixed point on the set {1, . . . , 2n+2} such that the
flat torus Eτ,z is obtained from the flat closed disk D ' Qτ,z by gluing isometrically
the ‘flat arcs’ Ii ' [ζi, ζi+1] and Iθi ' [ζθi, ζθ(i+1)]. Let J be a subset of {1, . . . , 2n+2}
such that J ∩ θJ = ∅. Then J has cardinality n+ 1 and if one sets

ξj = ξj(τ, z) = ζj+1 − ζj
for every j ∈ J , then these complex numbers satisfy a linear relation which depends
only on T , θ and on the linear holonomy ρa (cf. [80, §11]).

Consequently the ξj ’s are the components of a map

(104) U T → Pn−1 : (τ, z) 7→
[
ξj(τ, z)

]
j∈J

which it is nothing else than a local holomorphic expression of V αa on U T (see [80,
§10]).

39. The ‘Delaunay decomposition’ of a compact flat surface is a canonical polygonation by Eu-
clidean polygons inscribed in circles (see [55, §4] or [6] for some details).
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It it then easy to relate (104) to (102). Indeed Tατ,z admits a global determination
on the complement of Γτ,z since the latter is simply connected. The crucial but easy
point is that the developing map Dτ,z considered above is a primitive of the global
holomorphic 1-form

ωτ,z = Tατ,z(u)du

on Qτ,z. Once one is aware of this, it follows immediately that for every j ∈ J ,
ξj(τ, z) can be written as

∫
ej
ωτ,z where ej stands for the edge of T τ,z in Eτ which

corresponds to the ‘flat circular arc’ Ij . In other terms: ξj(τ, z) is equal to the integral
along ej of a determination of the multivalued 1-form ωτ,z.

Then for every j ∈ J , setting ej = reg(ej) ∈ H1(Eτ,z, L
α
τ,z) where reg is the

regularization map considered in § 3.1.4 (see also 1. in Proposition 3.3.1), one obtains:

ξj(τ, z) =

∫
ej

ωτ,z =

∫
ej

Tα(u, τ, z)du.

It is not difficult to see that (ej)j∈J is a basis of H1(Eτ,z, L
α
τ,z) for every (τ, z) ∈

U T . Even better, it follows from [11, Remark (3.6)] that (
∫
ej
·)j∈J constitutes a

horizontal system of projective coordinates on Bαa over U T . Since two such systems of
projective coordinates are related by a constant projective transformation when both
are horizontal, it follows that (104) coincides with (102) up to a constant projective
transformation. The proposition is proved.

We continue to use the notation introduced in the previous proof.
Let ν be the Hermitian form on the target space Pn−1 of (102) which corresponds to
the one considered by Veech in [80]. For (τ, z) ∈ F

α
a , the wedge-product

ητ,z = ωατ,z ∧ ωατ,z =
∣∣Tατ,z(u)

∣∣2du ∧ du
does not depend on the determination of Tατ,z(u) (thanks to Lemma 3.2.2) and extends
to an integrable positive 2-form on Eτ,z. Moreover according to [80, §12], setting
ξ(τ, z) =

(
ξj(τ, z)

)
j∈J ∈ CJ , one has

(105) ν
(
ξ(τ, z)

)
=
i

2

∫
Eτ

ητ,z > 0

for a certain Hermitian form ν, called by us the Veech Hermitian form, whose signature
is (1, n− 1) if one assumes

α1 ∈ ]0, 1[ and αk ∈ ]−1, 0[ for k = 2, . . . , n

(see [80,Example 0.10]). Assuming that these conditions hold true, V αa takes values in
the domain P{ν > 0 } of Pn−1 which, thanks to the signature (1, n− 1) of ν, is easily
seen to be a complex ball, that is a model of CHn−1. By definition, Veech’s complex
hyperbolic structure on the leaf F

α
a is obtained by pull-back under V αa (which is

étale, cf. Theorem 4.4.1) of the natural one on the target space CHn−1 ' P{ν > 0 }.
What makes the elliptic-hypergeometric definition of V αa à la Deligne-Mostow in-

teresting is that it allows to make everything explicit. Indeed, in addition to the local
explicit expression (102) obtained above, the use of twisted-(co)homology also allows
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to give an explicit expression for Veech’s hyperbolic Hermitian form on the target
space. This is precisely what we do in the next subsection in the case when n = 2.

4.4.4. An explicit expression for the Veech form. – Since we are going to focus only on
the n = 2 case in the sequel, we only consider this case in the next result. However,
the proof given hereafter generalizes in a straightforward way to the general case when
n ≥ 2.

Proposition 4.4.3. – The Hermitian form of signature (1, 1) on the target space
of (102) which corresponds to Veech’s form is the one given by

Z 7−→ Z ·Hρa · tZ

for Z = (z∞, z0) ∈ C2, where Hρa stands for the matrix defined in (49).

Note that the arguments of [90, Chap. IV, §7] apply to our situation. Consequently,
the Hermitian form associated to Hρa is invariant by the hyperbolic holonomy of
the corresponding leaf Fαa of Veech’s foliation. In the classical hypergeometric case
(i.e., when g = 0), this is sufficient to characterize the Veech form and get the corre-
sponding result. However, in the genus 1 case, since some leaves of Veech’s foliation Fα

on the moduli space M1,2 (such as the generic ones, see Corollary 4.3.3) are simply
connected, there is no holonomy whatsoever to consider hence such a proof is not
possible.

The proof of Proposition 4.4.3 which we give below is a direct generalization of the
one of Proposition 1.11 in [48] to our case. Remark that although elementary, this
proof is long and computational. It would be interesting to give a more conceptual
proof of this result.

Proof. – We continue to use the notation introduced in the proof of Proposition 4.4.2.
Let ν be the Hermitian form on the target space Pn−1 of (102) which corresponds to
the one considered by Veech in [80].

For (τ, z) ∈ F
α
a , we want to compute ν

(
ξ(τ, z)

)
= i

2

∫
Eτ
ητ,z > 0 in terms of the

two components of the map (102).
The complementary set Qτ,z = Eτ,z \ γτ,z of the union of the supports of the three

1-cycles γ0, γ2 and γ∞ in Eτ is homeomorphic to a disk. Its boundary in the metric
completion Qτ,z (defined as in the proof of Proposition 4.4.2) is

∂Qτ,z = γ0 + γ′∞ − γ′0 − γ∞ + γ′2 − γ2

where the six elements in this sum are the boundary segments defined in the figure
below.

Let Φ = Φτ,z be a primitive of ω = ωατ,z on Qτ,z. For any symbol • ∈ {0, 2,∞} we
will denote by ω• and ω′• the restriction of ω to γ• and γ′• respectively. We will use
similar notation for ω and for Φ as well, being aware that Φ′• has nothing to do with
a derivative but refers to the restriction of Φ on γ′•.
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Since d(Φ · ω) = ητ,z, it follows from Stokes theorem that

−2iν
(
ξ(τ, z)

)
=

∫
∂γcτ,z

Φ · ω =

∫
γ0

Φ0 · ω0 −
∫
γ′0

Φ′0 · ω′0(106)

+

∫
γ′∞

Φ′∞ · ω′∞ −
∫
γ∞

Φ∞ · ω∞

+

∫
γ′2

Φ′2 · ω′2 −
∫
γ2

Φ2 · ω2.

v1

v2

v3
v4

v5

v6

γ
0

γ
∞

γ
′

0

γ
2

γ
′

∞

γ
′

2

Figure 13. The closed disk Qτ,z and its boundary

For any • ∈ {0, 2,∞}, both segments γ• and γ′• identify to γ• ⊂ Eτ,z, hence there
is a natural identification between them. Given ζ ∈ γ•, we will denote by ζ ′ the
corresponding point on γ′•. Up to these correspondences, one has

ω′0 = ρ∞ω0, ω′2 = ρ2ω2 and ω′∞ = ρ0ω∞.

It follows that for every ζ ′ in γ′0, in γ
′
2 and in γ′∞, one has respectively

Φ′0(ζ ′) = F 0 + ρ0F
∞ − ρ∞F 0 +

∫ ζ′

v4

ω′0 = (1− ρ∞)F 0 + ρ0F
∞ + ρ∞

∫ ζ

v1

ω0,

Φ′2(ζ ′) = F 2 − ρ2F
2 +

∫ ζ′

v5

ω′2 = (1− ρ2)F 2 + ρ2

∫ ζ

v1

ω2(107)

and Φ′∞(ζ ′) = F 0 +

∫ ζ′

v2

ω′∞ = F 0 + ρ0

∫ ζ

v5

ω∞

with

F 0 = Φ(v2)− Φ(v1) =

∫ v2

v1

ω =

∫
γ0

Tα(u, τ, z)du,

F 2 = Φ(v6)− Φ(v1) =

∫ v6

v1

ω =

∫
γ2

Tα(u, τ, z)du(108)
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and F∞ = Φ(v4)− Φ(v5) =

∫ v5

v4

ω =

∫
γ∞

Tα(u, τ, z)du.

Since ρ0 = ρ−1
0 , it follows from (107) that for every ζ ∈ γ0, one has(

Φ0 · ω0

)
(ζ)−

(
Φ′0 · ω′0

)
(ζ ′) = Φ(ζ) · ω0 −

[
(1− ρ∞)F0 + ρ0F∞ + ρ∞Φ(ζ)

]
· ρ−1
∞ ω0

=

[
d∞
ρ∞

F0 −
ρ0

ρ∞
F∞

]
· ω0(ζ).

Similarly, since ρ2 = ρ−1
2 , it follows from (107) that for every ζ ∈ γ2, one has(

Φ2 · ω2

)
(ζ)−

(
Φ′2 · ω′2

)
(ζ ′) = Φ(ζ) · ω2 −

[
(1− ρ2)F2 + ρ2Φ(ζ)

]
· ρ−1

2 ω2

=

[
d2

ρ2
F2

]
· ω2(ζ).

Finally, since ρ∞ = ρ−1
∞ , it follows from (107) that for every ζ ∈ γ∞, one has

(
Φ∞ · ω∞

)
(ζ)−

(
Φ′∞ · ω′∞

)
(ζ ′) = Φ(ζ) · ω∞ −

[
F0 + ρ0

∫ ζ

v5

ω∞

]
· ρ−1

0 ω∞

=

[
(1− ρ2)F2 +

∫ ζ

v5

ω∞

]
· ω∞ −

[
F0 + ρ0

∫ ζ

v5

ω∞

]
· ρ−1

0 ω∞

=

[
(1− ρ2)F2 −

1

ρ0
F0

]
· ω∞(ζ).

From the three relations above, one deduces that

(109)
∫
γ•

Φ · ω −
∫
γ′•

Φ · ω =


d∞ρ

−1
∞ F0F 0 − ρ0ρ

−1
∞ F∞F 0 for • = 0 ;

d2ρ
−1
2 F2F 2 for • = 2 ;

−d2F2F∞ − ρ−1
0 F0F∞ for • =∞.

Injecting these computation in (106) and using the relations

d2F2 = d∞F0 − d0F∞ and
1

ρ2
F 2 =

d∞
ρ∞d2

F 0 −
d0

ρ0d2
F∞,

one gets

−2iν
(
ξ(τ, z)

)
=

d∞
ρ∞

F0F 0 −
ρ0

ρ∞
F∞F 0 + d2F2F∞ +

1

ρ0
F0F∞ −

d2

ρ2
F2F 2

=
d∞
ρ∞

F0F 0 −
ρ0

ρ∞
F∞F 0 +

(
d∞F0 − d0F∞

)
F∞ +

1

ρ0
F0F∞

−
(
d∞F0 − d0F∞

)( d∞
ρ∞d2

F 0 −
d0

ρ0d2
F∞

)
= 2i tF ·H · F,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020
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where F and H stand respectively for the matrices

F =

[
F∞

F0

]
and H =

1

2i

−d0

(
1 + d0

ρ0d2

)
d∞ + 1

ρ0
+ d∞d0

ρ0d2

− ρ0
ρ∞

+ d0d∞
ρ∞d2

d∞
ρ∞

(
1− d∞

d2

)  .
Because ρ2 = ρ−1

1 , one verifies that

H =
1

2i

 d0
d1

(
1− ρ1

ρ0

)
1−ρ−1

0 −ρ∞+ρ1ρ∞ρ
−1
0

d1
ρ1−ρ0ρ1−ρ1ρ−1

∞ +ρ0ρ
−1
∞

d1
d∞d1∞
ρ∞d1

 = Hρ.

Finally, it follows from (108) that F∞ and F0 are nothing else than the components
of the map (102) and the proposition follows.

4.4.5. A normalized version of Veech’s map (when n = 2 and ρ0 = 1). – According to

§ 3.5.2, when n = 2 and ρ0 = 1, setting X =

[
−d1∞d1 1

ρ∞ 0

]
, one has

X ·Hρ · tX =

[
0 i

2

− i
2 0

]
.

Consequently, setting F = (F∞, F0) and

G =
(
G∞, G0

)
=
(
F∞, F0

)
·X−1 =

(
F0,

1

ρ∞
F∞ +

d1∞

ρ∞d1
F0

)
,

one obtains that

=m
(
G∞G0

)
= G ·

[
0 i

2

− i
2 0

]
· tG = F ·Hρ · tF = ν > 0,

which implies that the imaginary part of the ratio G0/G∞ is positive.
It follows that the map

(110) G =
G0

G∞
=

1

ρ∞

F∞
F0

+
d1∞

ρ∞d1

is a normalized version of Veech’s map, with values into the upper half-plane.

A note, which will be interesting later on in Remark 5.3.4.(2), concerns the case
when ρ∞ = exp(−2iπα1/N), where N ≥ 2 stands for a fixed integer. If one lets
α1 converge to 0+, then for any τ ∈ H, F0(τ) and F∞(τ) tend towards 1 and τ

respectively. As limα1→0+ ρ∞ = 1 and limα1→0+ d1∞/(ρ∞d1) = (N − 1)/N , it follows
that, in some sense to be made precise, the map G tends to the translation τ 7→
τ + (N − 1)/N when α1 degenerates to 0.
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CHAPTER 5

FLAT TORI WITH TWO CONE POINTS

From now on, we focus on the first nontrivial case, namely g = 1 and n = 2. We
fix α = (α1, α2) with α1 = −α2 ∈ ]0, 1[. Since it is fixed, we will often omit α or α1

in the notation. We want to study the hyperbolic structure on the leaves of Veech’s
foliation at the level of the moduli spaceM1,α 'M1,2. We will only consider the most
interesting leaves, namely the algebraic ones.

The main objective of this chapter is to prove Corollary 5.3.3 which gives a quite
explicit description of the metric completion of an algebraic leaf of Veech’s foliation
on M1,2.

5.1. Some notation

In what follows, N stands for an integer bigger than 1.

5.1.1. – For any (a0, a∞) ∈ R2 \ α1Z2, we set

r =
(
r0, r∞

)
=

1

α1

(
a0, a∞

)
∈ R2 \ Z2

and we denote by F
α1

r (or just by F r for short) the leaf (ξα)−1(a0, a∞) = Ξ−1(r) of
Veech’s foliation in the Torelli space. This is the subset of Tor 1,2 cut out by any one
of the following two (equivalent) equations:

a0τ + α2z2 = a∞ or z2 = r0τ − r∞.

We remind the reader that Fα1

[r] (or just Fr for short) stands for the corresponding
leaf in the moduli space of elliptic curves with two marked points:

Fr = F[r] = π1,2

(
F r

)
⊂M1,2.
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5.1.2. – From a geometric point of view, the most interesting leaves clearly are the
leaves Fr with r ∈ Q2 \ Z2. Indeed, these are exactly the ones which are algebraic
subvarieties (we should say ‘suborbifolds’) of M1,2 and there is such a leaf for each
integer N ≥ 2 (see Corollary 4.3.4), which is

FN = Fα1

N = F(0,−1/N).

An equation of the corresponding leaf F N = F (0,−1/N) in Tor 1,2 is

(111) z2 =
1

N
.

It induces a natural identification H ' F N which is compatible with the action
of Γ1(N) ' Stab( F (0,−1/N)) (see (93)) hence induces an identification

(112) Y1(N) ' FN .

To make some computations simpler, it will be useful later to consider other iden-
tifications between FN and the modular curve Y1(N) (see §5.1.4 just below). How-
ever (112) will be the preferred one. For this reason, we will use the (somewhat
abusive) notation

Y1(N) = FN
(
and Y1(N)α1 = Fα1

N

)
(the second one to emphasize the fact that Y1(N) is endowed with the CH1-struc-
ture corresponding to Veech’s on Fα1

N ) in order to distinguish (112) from the other
identifications between Y1(N) and FN that we will consider below.

5.1.3. – For any c ∈ P1(Q) = Q ∪ {i∞} ⊂ ∂H, one denotes by [c] the associated cusp
of Y1(N) = FN . Then the set of cusps

C1(N) =
{

[c]
∣∣ c ∈ P1(Q)

}
is finite and

X1(N) = Y1(N) t C1(N)

is a compact smooth algebraic curve (see [13, Chapter I] for instance).

Our goal in this section is to study the hyperbolic structure, denoted by hypα1

1,N ,
of the leaf Y1(N)α1 = Fα1

N of Veech’s foliation Fα1 on M1,2 in the vicinity of any
one of its cusps. More precisely, we want to prove that hypα1

1,N extends as a conifold
CH1-structure at such a cusp c and give a closed formula for the associated cone angle
which will be denoted by

θN (c) ∈ [0,+∞[. (40)

40. By convention, a complex hyperbolic conifold point of cone angle 0 is nothing else than a usual
cusp for a hyperbolic surface (see A.1.1. in Appendix A for more details).
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5.1.4. – With this aim in mind, it will be more convenient to deal with the ramified
cover Y (N) over Y1(N) associated to the principal congruence subgroup Γ(N). In
order to do so, we consider the subgroup

G(N) = Γ(N) o Z2 C SL2(Z) o Z2

and we denote the associated quotient map by

(113) pN1,2 : Tor 1,2 → Tor 1,2/G(N) =:M1,2(N).

Then from (111), one deduces an identification between the ‘level N modular curve
Y (N) = H/Γ(N)’ and the corresponding leaf in M1,2(N):

(114) Y (N) ' pN1,2( F N ) =: FN .

As above, we will consider this identification as the preferred one and for this
reason, it will be indicated by means of the equality symbol. In other terms, we have
fixed identifications

Y1(N)α1 = Fα1

N (or Y1(N) = FN for short);

and Y (N)α1 = Fα1

N (or Y (N) = FN for short).

One denotes by C(N) the set of cusps of Y (N). Then

X(N) = Y (N) t C(N)

is a compact smooth algebraic curve. The complex hyperbolic structure on Y (N)

corresponding to Veech’s (up to the identification (114)) will be denoted by hypα1

N .
Under the assumption that it extends as a conifold structure at c ∈ C(N), we will
denote by ϑN (c) the associated cone angle.

5.1.5. – The natural quotient map Y (N)→ Y1(N) (coming from the fact that Γ(N) is
a subgroup of Γ1(N)) induces an algebraic cover

(115) X(N) −→ X1(N)

which is ramified at the cusps of X1(N). More precisely, at a cusp c ∈ C(N), a local
analytic model for this cover is z 7→ zN/wc where wc stands for the width of c, the
latter being now seen as a cusp of X1(N). (41)

It follows that, for any c ∈ C(N), hypα1

1,N extends as a CH1-conifold structure at c
now considered as a cusp of Y1(N)α1 if and only if the same holds true, at c, for the
corresponding complex hyperbolic structure hypα1

N on Y (N)α1 . In this case, one has
the following relation between the corresponding cone angles:

(116) θN (c) =
wc
N
ϑN (c).

In order to get explicit results, it is necessary to have a closed explicit formula for
the width of a cusp.

41. We recall that wc divides N for any c ∈ C(N) hence the map z 7→ zN/wc is holomorphic.
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Lemma 5.1.1. – Assume that c = [−a′/c′] ∈ C1(N) with a′, c′ ∈ Z coprime. Then

wc =
N

gcd(c′, N)
.

Proof. – The set of cusps of X(N) can be identified with the set of classes ± [ ac ] of
the points [ ac ] ∈ (Z/NZ)2 of order N . To c = [−a′/c′] is associated ± [ ac ] where a and
c stand for the residue modulo N of a′ and c′ respectively (cf. [13, §3.8]). It follows
that gcd(c′, N) = gcd(c,N).

On the other hand, according to [63, §1], the ramification degree of the covering
X(N)→ X1(N) at ± [ ac ] viewed as a cusp of X1(N) is gcd(c,N). Since the width of
any cusp of X(N) is N , it follows that wc = N/gcd(c′, N).

5.2. Auxiliary leaves

For any (m,n) ∈ Z2 \NZ2 with gcd(m,n,N) = 1, one sets

F m,n = F (m/N,−n/N).

This is the leaf of Veech’s foliation on Tor 1,2 cut out by

z2 = τm/N + n/N.

The latter equation induces a natural identification

H ∼−→ F m,n ⊂ Tor 1,2(117)

τ 7−→
(
τ,
m

N
τ +

n

N

)
,

which is compatible with the action of Γ(N)CΓ1(N) ' Stab( F m,n) (cf. (93)), hence
induces a well-defined identification

(118) Y (N) ' pN1,2( F m,n) =: Fm,n ⊂M1,2(N).

For any s ∈ P1(Q) = Q ∪ {i∞} ⊂ ∂H, one denotes by [s] the associated cusp
of Y (N) and by [s]m,n the corresponding cusp for Fm,n relatively to the identifica-
tion (118). Then if one denotes by

Cm,n =
{

[s]m,n | s ∈ P1(Q)
}

the set of cusps of Fm,n ' Y (N), one gets a compactification

X(N) ' Xm,n := Fm,n t Cm,n
where the identification with X(N) is the natural extension of (118). One will de-
note by hypα1

m,n the complex hyperbolic structure on X(N) corresponding to Veech’s
on Fm,n up to the preceding identification.

Since (0,−1/N) is a representative for the orbit of (m/N,−n/N) under the action
of SL2(Z) o Z2 (cf. Proposition 4.2.8), all the leaves Fm,n are isomorphic to

F0,1 = FN = Y (N)
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(where the first equality comes from the very definition of F0,1 whereas the second
one refers to the preferred identification (114)).

What makes considering the whole bunch of leaves Fm,n interesting for us is that
the natural identifications (118) do depend on (m,n) (even if Fm,n coincides with F0,1

as a subset of M1,2(N), as it can happen). We will see that, for any cusp [s] = [s]0,1
of Y (N) = F0,1, there is a leaf Fm,n such that

[s]0,1 =
[
i∞
]
m,n

.

Since the hyperbolic structures of F0,1 and of Fm,n coincide, this implies that

the study of the hyperbolic structure hypα1

N = hypα1
0,1 of Y (N) = F0,1 in

the vicinity of its cusps amounts to the study of the hyperbolic structures
hypα1

m,n of the leaves Fm,n, only in the vicinity of the cusps [i∞]m,n.

We want to make the above considerations as explicit as we can. Let c be a cusp
of FN distinct from [i∞]. There exist a′, c′ ∈ Z with c′ 6= 0 and gcd(a′, c′) = 1 such
that

c =
[
− a′/c′

]
=
[
− a′/c′

]
0,1
.

Since a′ and c′ are coprime, there exist d′ and b′ in Z such that a′d′ − b′c′ = 1.
Then one considers the following element of SL2(Z) o Z2:

(119) Ma′,c′ =

([
d′ b′

c′ a′

]
,
(
− ba′/Nc,−bc′/Nc

))
.

It induces an automorphism of the intermediary moduli spaceM1,2(N) (defined above
in (113)), denoted somewhat abusively by the same notation Ma′,c′ . This automor-
phism leaves the corresponding intermediary Veech foliation invariant and is compat-
ible with the hyperbolic structure on the leaves.

Setting a = a′ − ba′/Nc and c = c′ − bc′/Nc, one verifies that

Ma′,c′ •
(

0,− 1

N

)
=
( c
N
,− a

N

)
,

where • stands for the action (75). Thus Ma′,c′ induces an isomorphism Y (N) =

F0,1
∼→ Fc,a which extends to an isomorphism between the compactifications X(N) =

X0,1
∼→ Xc,a, such that

Ma′,c′

([
− a′/c′

])
=
[
i∞
]
c,a
.

Moreover, Ma′,c′ induces an isomorphism between the CH1-structures hypα1
0,1 and

hypα1
c,a of F0,1 = Y (N) and Fc,a respectively. In particular, one deduces the following

result:

Proposition 5.2.1. – Let a′ and c′ be two coprime integers and denote by a and c
respectively their residues modulo N in {0, . . . , N − 1}.

1. There is an isomorphism of pointed curves carrying a CH1-structure(
Y (N),

[
− a′/c′

])
'
(
Fc,a,

[
i∞
]
c,a

)
.
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2. The two following assertions are equivalent:

— hypα1

N extends as a conifold CH1-structure to X(N);

— for every a, c ∈ {0, . . . , N − 1} with gcd(a, c,N) = 1, hypα1
c,a extends as a

conifold CH1-structure in the vicinity of the cusp [i∞]c,a of Fc,a.

3. When the two equivalent assertions of 2. are satisfied, the conifold angle
ϑ(−a′/c′) of hypαN at the cusp [−a′/c′] of Y (N) is equal to the conifold angle
ϑc,a(i∞) of hypα1

c,a at the cusp [i∞] of Fc,a.

5.3. Mano’s differential system for algebraic leaves

We will now focus on the auxiliary algebraic leaves of Veech’s foliation considered
in Section 5.2. The arguments and results used below are taken from [54, 51] (see also
Appendix B).

5.3.1. – We fix m,n ∈ {0, . . . , N − 1} such that (m,n) 6= 0. For any τ ∈ H, one sets:

t = tτ =
m

N
τ +

n

N
.

Hence, correspondingly, one has

a0 =
m

N
α1, a∞ = − n

N
α1

and

T (u) = Tα(u, τ) = e2iπmN α1u

(
θ(u)

θ
(
u− tτ

))α1

.

In order to make the connection with the results in [51], we recall the following
notation introduced there:

θm,n(u) = θm,n(u, τ) = e−iπ
m2

N2 τ−2iπmN

(
u+ n

N

)
θ
(
u+

m

N
τ +

n

N
, τ
)
.

Then setting

Tm,n(u) =

(
θ(u)

θm,n(u)

)α1

,

one verifies that, when the determinations of T (u) and of Tm,n(u) are fixed, up to
the change of variable u → −u, these two functions coincide up to multiplication by
a non-vanishing complex function of τ . This can be written a little abusively

(120) T (u) = λ(τ)Tm,n(−u)

where λ stands for the aforementioned holomorphic function which depends only on τ
(and on the integers m,n and N) but not on u.
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5.3.2. – Since it takes values in a projective space, the Veech map stays unchanged if
all its components are multiplied by the same non-vanishing function of τ . From (120)
and in view of the local expression (102) for Veech’s map in terms of elliptic hyper-
geometric integrals, it follows that the holomorphic map

V = Vm,n : F
α1

m,n ' H −→ P1

τ 7−→
[
V0(τ) : V∞(τ)

]
,

whose two components are given by

V0(τ) =

∫
γ0

Tm,n(u)du and V∞(τ) =

∫
γ∞

Tm,n(u)du,

for any τ ∈ H, is nothing else than another expression for Veech’s map on F m,n ' H.

We introduce two other holomorphic functions of τ ∈ H defined by

W0(τ) =

∫
γ0

Tm,n(u)ρ′(u)du and W∞(τ) =

∫
γ∞

Tm,n(u)ρ′(u)du

(we recall that ρ denotes the logarithmic derivative of θ w.r.t.u, cf. § 2.2).

The two maps τ 7→ γ• for • = 0,∞ form a basis of the space of local sections of the
local system on F m,n whose fibers are the twisted homology groups H1(Eτ,t, Lτ,t)’s
(see B.3 in Appendix B). Then it follows from [54, 51] (see also B.3.5 below) that the
functions V0, V∞,W0 and W∞ satisfy the following differential system

d

dτ

[
V0 V∞

W0 W∞

]
= Mm,n

[
V0 V∞

W0 W∞

]
on H ' F m,n, with

Mm,n =

[
Am,n Bm,n

Cm,n Dm,n

]
(121)

=

 α1

( •
θm,n
θm,n

−
•
θ′

θ′

)
α1−1
2iπ

2iπα1

( ••
θ m,n
θm,n

−
( •
θm,n
θm,n

)2

−
••
θ ′

θ′ +
( •
θ′

θ′

)2
)
−α1

( •
θm,n
θm,n

−
•
θ′

θ′

)
 .

The trace of this matrix vanishes and the upper-left coefficient Bm,n is constant.
Consequently, it follows from a classical result of the theory of linear differential
equations (cf. Lemma 6.1.1 of [36, §3.6.1] for instance or Lemma A.2.2 in Appendix A)
that V0 and V∞ form a basis of the space of solutions of the associated second order
linear differential equation

V •• +
(

det
(
Mm,n

)
−A•m,n

)
V = 0,

where the superscript • indicates the derivative with respect to the variable τ .
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Since

A•m,n = α1

••θm,n
θm,n

−

 •θm,n
θm,n

2

−
••
θ ′

θ′
+

 •θ′
θ′

2


and

det
(
Mm,n

)
= −(α1)2

 •θm,n
θm,n

−
•
θ′

θ′

2

− α1(α1 − 1)

••θm,n
θm,n

−

 •θm,n
θm,n

2

−
••
θ ′

θ′
+

 •θ′
θ′

2
 ,

this differential equation can be written more explicitly

(122) V •• − (α1)2


 •θm,n
θm,n

−
•
θ′

θ′

2

+

••
θm,n
θm,n

−

( •
θm,n
θm,n

)2

−
••
θ ′

θ′
+

( •
θ′

θ′

)2
 · V = 0.

5.3.3. – By a direct computation (left to the reader), one verifies that the matrix (121)
and consequently the coefficients of the preceding second order differential equation
are invariant by the translation τ 7→ τ +N . It follows that the restriction of (122) to
the vertical strip of width N

HN =
{
τ ∈ H

∣∣ 0 ≤ Re(τ) < N
}

can be pushed-forward to a differential equation of the same type on a punctured
open neighborhood U∗ of the cusp [i∞] in Y (N).

Let x be the local holomorphic coordinate on Y (N) centered at [i∞] and related
to the variable τ through the formula

x = exp
(
2iπτ/N

)
.

Then v(x) = V (τ(x)) satisfies a second order differential equation

(123) v′′(x) + Pm,n(x) · v′(x) +Qm,n(x) · v(x) = 0

whose coefficients Pm,n and Qm,n are holomorphic on (C∗, 0).
In [51], Mano establishes the following limits when τ ∈ HN tends to i∞:

•
θ′

θ′
−→ iπ

4

••
θ ′

θ′
−

 •θ′
θ′

 −→ 0

•
θm,n
θm,n

−→ iπ

(
m

N
− 1

2

)2
••
θm,n
θm,n

−

( •
θm,n
θm,n

)2

−→ 0.

It follows that the coefficient of V in (122) tends to

−
[
α1 · iπ

(
m2

N2
− m

N

)]2

MÉMOIRES DE LA SMF 164



5.3. MANO’S DIFFERENTIAL SYSTEM FOR ALGEBRAIC LEAVES 115

as τ goes to i∞ in HN . This implies that the functions Pm,n and Qm,n in (123)
actually extend meromorphically across the origin.

Since for x ∈ C \ [0,+∞[ sufficiently close to the origin, one has

v′(x) = V •
(
τ(x)

)
·
(

N

2iπx

)
and v′′(x) = V ••

(
τ(x)

)
·
(

N

2iπx

)2

− V •
(
τ(x)

)( N

2iπx2

)
,

one gets that the asymptotic expansion of (123) at the origin is written

v′′(x) +
1

x
· v′(x) +

(
−
[
m(m−N)

2N
α1

]2

· 1

x2
+O

(
1

x

))
· v(x) = 0.

In particular, this shows that the origin is a regular singular point for (123) and
the associated characteristic (or indicial) equation is

s(s− 1) + s−
[
m(m−N)

2N
α1

]2

= s2 −
[
m(m−N)

2N
α1

]2

= 0

(see Appendix A.2 for the notions considered in this sentence).

Thus the two associated characteristic exponents are

s+ =
m(N −m)

2N
α1 and s− =

m(m−N)

2N
α1 = −s+,

hence the corresponding index is

ν = νNm,n = s+ − s− = 2s+ =
m(N −m)

N
α1.

We now have everything in hand to get the result we were looking for.

Proposition 5.3.1. – Veech’s CH1-structure on Fm,n extends to a conifold complex
hyperbolic structure at the cusp [i∞]m,n. The associated conifold angle is

ϑN
(
[i∞]m,n

)
= 2πm

(
1− m

N

)
α1.

In particular, [i∞]m,n is a cusp for Veech’s hyperbolic structure on Fm,n (that is,
the associated conifold angle is equal to 0) if and only if m = 0.

Proof. – In view of the results and computations above, this is an immediate conse-
quence of Proposition A.2.3. of Appendix A.

Combining the preceding result with Proposition 5.2.1, one gets the
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Corollary 5.3.2. – Veech’s hyperbolic structure hypα1

N on Y (N)α1 = FN = F0,1

extends to a CH1-conifold structure on the modular compactification X(N) of Y (N).
For any coprime a′, c′ ∈ Z, the conifold angle at the cusp c = [−a′/c′] ∈ C(N)

of X(N) is equal to
ϑN
(
c
)

= ϑN
(
c
)

= 2πc
(

1− c

N

)
α1,

where c stands for the residue of c′ modulo N : c = c′ −
⌊
c′

N

⌋
∈
{

0, . . . , N − 1
}
.

5.3.4. – We remind the reader of the following classical description of the cusps
of F0,1 = Y (N) (cf. [13, §3.8] for instance): the set of cusps C(N) of Y (N) is in
bijection with the set of N -order points of the additive group

(
Z/NZ

)2, up to multi-
plication by −1, the bijection being given by(

Z/NZ
)2

[N ]/± −→ C(N)

±
(
a, c
)
7−→

[
− a′/c′

]
where a′ and c′ are relatively prime and congruent to a and c modulo N respectively.
From the preceding corollary, it follows that the conifold angle associated to the cusp
corresponding to ±(a, c) with c ∈ {0, . . . , N − 1} is

ϑN
(
± (a, c)

)
= ϑN

(
c
)

= 2π
c(N − c)

N
α1.

Note that since −(a, c) = (N − a,N − c) in
(
Z/NZ)2 and because ϑN (c) = ϑN (N − c),

this formula makes sense.
Using the preceding corollary, it is easy to describe the metric completion Y (N)

of Y (N) = F0,1, the latter being endowed with Veech’s CH1-structure. From the
preceding results, it follows that this metric completion is the union of the inter-
mediary leaf Y (N) = F0,1 with the subset of its cusps of the form [−a′/c′] with c′

not a multiple of N . Such cusps correspond to classes ±(a, c) ⊂
(
Z/NZ

)2
[N ] with

c ∈ {1, . . . , N−1}. The cusps [−a′/c′] with c′ ∈ NZ are cusps in the classical sense for
the CH1-conifold Y (N). The number of these genuine cusps is then equal to φ(N) (42).

At this point, it is easy to give an explicit description of the metric completion of
the leaf Y1(N)α1 = Fα1

N of Veech’s foliation on M1,2:

Corollary 5.3.3. – Veech’s CH1-structure on Y1(N)α1 extends to a conifold com-
plex hyperbolic structure on the modular compactification X1(N)α1 .

For any coprime a′, c′ ∈ Z, the conifold angle at c = [−a′/c′] ∈ C1(N) is equal to

(124) θN
(
c
)

= θN
(
c
)

= 2π
c(N − c)

N gcd(c,N)
α1

where c ∈
{

0, . . . , N − 1
}
stands for the residue of c′ modulo N .

Proof. – This follows at once from (116), Lemma 5.1.1 and Corollary 5.3.2.

42. Here φ stands for Euler’s totient function.
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We will denote by X(N)α1 the modular compactification X1(N) of Y1(N) endowed
with the conifold extension of Veech’s CH1-structure of Y1(N)α1 given by this corol-
lary.

To conclude this subsection and before dealing with some concrete cases, we would
like to add two remarks.

Remark 5.3.4. – (1). First, it is to be understood that the preceding corollary com-
pletely characterizes Veech’s complex hyperbolic structure of the leaf Y1(N)α1 = Fα1

N

since the latter is completely determined by the conformal structure of Fα1

N (which is
the one of Y1(N)) together with the cone angles at the conifold points, as it follows
from a classical result (cf. Picard-Heins’ theorem in Appendix A).

(2). Since the conifold angles (124) depend linearly on α1, the family of Y1(N)α1 ’s
for α1 ∈ [0, 1[ is a real-analytic deformation of the usual modular curve Y1(N), if
one sees it as Y1(N)0 (as it is natural to do). An analytic way to see this is by
considering the pull-back h̃yp

α1

1,N of Veech’s hyperbolic structure hypα1

1,N on Y1(N)α1

to its universal covering. By identifying the latter with H, we see that h̃yp
α1

1,N is nothing
else than the pull-back of the standard hyperbolic structure of the upper half-plane by
the normalized Veech’s map considered in § 4.4.5. By their very definition (41), it is
clear that the coefficients d1, d1∞ and ρ∞ appearing in (110) depend real-analytically
on α1. Considering the formulae (13), one gets that the same holds true for the two
functions Fα1

• (τ) =
∫
γ•
θ(u, τ)α1θ(u− 1/N, τ)−α1du (for • = 0,∞) of τ ∈ H (43) and

that these extend continuously at α1 = 0 with F 0
0 ≡ 1 and F 0

∞ = IdH. Thus for N fixed,
one gets a continuous family, parametrized by α1 ∈ [0, 1[, of étale maps G

α1

N from H to
itself with G

0
N being a translation (cf. the last paragraph of § 4.4.5). Denoting by hyp0

the standard hyperbolic structure on H, it follows that the h̃yp
α1

1,N = ( G
α1

N )∗(hyp0)’s
for α1 ∈ [0, 1[ form a continuous deformation of ( G

0
N )∗(hyp0) = hyp0.

Finally, note that the preceding results refine and generalize (the specialization to
the case when g = 1 and n = 2 of) the main result of [20]. In this article, we prove
that when α is rational, Veech’s hyperbolic structure of an algebraic leaf of Veech’s
foliation extends as a conifold structure of the same type to the metric completion of
this leaf. Not only our results above give a more precise and explicit version of this
result in the case under scrutiny, but they also show that the same statements hold
true even without assuming that α is rational. This assumption appears to be crucial
to make effective the geometric methods à la Thurston used in [20].

43. This also follows from the fact that both Fα1
0 and Fα1∞ are solutions of a second-order linear

differential equation whose coefficients depend real analytically on α1.
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5.4. Some explicit examples

To illustrate the results obtained above, we first treat explicitly the cases of Y1(N)

for N = 2, 3, 4. These cases are related to ‘classical hypergeometry’ and will be in-
vestigated further in Section 6.2. Then we consider the case of Y1(5) then eventually
that of Y1(p) for p an arbitrary prime number bigger than or equal to 5.

In what follows, the parameter α1 ∈ ]0, 1[ is fixed once and for all. A useful reference
for the elementary results on modular curves used below is [13], especially sections
§3.7 and §3.8 therein.

5.4.1. The case of Y1(2). – The congruence subgroup Γ1(2) has two cusps (namely
[i∞] and [0]) and one elliptic point of order 2. Consequently, Y1(2)α1 is a genuine
orbi-leaf of Veech (orbi-)foliation on M1,2. It is the Riemann sphere punctured at two
points, say 0 and ∞, with one orbifold point of weight 2, say at 1. The corresponding
conifold angles of the associated Veech’s CH1-structure are given in Table 1 below in
which the cusps are seen as points of X1(2) = P1.

Table 1. The cusps and the associated conifold angles of Y1(2)
α1 .

Cusps of Y1(2)α1 0 1 ∞
Conifold angles πα1 π 0

It follows that Y1(2)α1 is a CH1-orbifold precisely when α1 = 2/m for an integer
m ≥ 3.

5.4.2. The case of Y1(3). – This case is very similar to the preceding one: Γ1(3) has
two cusps and one elliptic point, but of order 3. Hence Y1(3)α1 is an orbi-leaf of Veech’s
(orbi-)foliation. It is P1 punctured at three points, say 0, 1 and ∞, with one orbifold
point of weight 3, say at 1. The corresponding conifold angles are given in the table
below.

Table 2. The cusps and the associated conifold angles of Y1(3)
α1 .

Cusps of Y1(3)α1 0 1 ∞
Conifold angles (4π/3)α1 2π/3 0

Thus Y1(3)α1 is a CH1-orbifold if and only if α1 = 3/(2m) with m ∈ N≥2.
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5.4.3. The case of Y1(4). – The group Γ1(4) has three cusps and no elliptic point.
Hence Y1(4)α1 is the thrice-punctured sphere P1 \ {0, 1,∞}. The corresponding coni-
fold angles are given in the table below.

Table 3. The cusps and the associated conifold angles of Y1(4)
α1 .

Cusps of Y1(4)α1 0 1 ∞
Conifold angles (3π/2)α1 πα1 0

Thus Y1(4)α1 is a CH1-orbifold if and only if α1 = 4/(3m) with m ∈ N≥2.

?

The three cases considered above are very particular since they are the only alge-
braic leaves of Veech’s foliation onM1,2 which are isomorphic to the thrice-punctured
sphere, hence whose hyperbolic structure can be uniformized by means of Gauß hy-
pergeometric functions. We will return to this later on, in Section § 6.2.

5.4.4. The case of Y1(5). – The modular curve Y (5) is of genus 0 and has twelve
cusps. Some representatives of these cusps are given in the first row of Table 4 below,
the associated conifold angles of Y (5)α1 = Fα1

0,1 (we use here the notation from § 5.2)
are given in the second row.

Table 4. The cusps and the associated conifold angles of Y (5)α1 .

Cusp c i∞ 0 1 -1 2 -2 1
2 − 1

2
3
2 − 3

2 − 5
2 − 2

5
ϑ5(c)
2πα1

0 4
5

4
5

4
5

4
5

4
5

6
5

6
5

6
5

6
5

6
5 0

Since Γ1(5) is obtained by adjoining τ 7→ τ + 1 to Γ(5), it follows that among
those of Table 4, 0, 1/2, 2/5 and i∞ form a complete set of representatives of the
cusps of Γ1(5). Moreover, it can be verified that the quotient map X(5) 7−→ X1(5),
which is a ramified covering of degree 5, ramifies at order 5 at the two cusps [2/5]X(5)

and [i∞]X(5) and is étale at the ten others cusps of X(5). It follows that the conifold
angles of Veech’s complex hyperbolic structure on Y1(5)α1 are 0, 0, 12

5 πα1 and 8
5πα1

at [i∞]X1(5), [2/5]X1(5), [1/2]X1(5) and [0]X1(5) respectively.

The map H? → P1, τ 7→ q−1
∏
n≥1(1 − qn)−5

(
n
5

)
(with q = e2iπτ and where ( )

stands for Legendre’s symbol) is known to be a Hauptmodul for Γ1(5) which sends
i∞, 2/5, 0 and 1/2 onto 0, ∞, (11− 5

√
5)/2 and (11 + 5

√
5)/2 respectively.
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Table 5. The cusps and the associated conifold angles of Y1(5)
α1 .

Cusp in H? i∞ 0 1
2

2
5

Cusp in X1(5) ' P1 0 11−5
√

5
2

11+5
√

5
2 ∞

Conifold angle 0 8
5πα1

12
5 πα1 0

5.4.5. The case of Y1(p) with p prime. – Now let p be a prime integer bigger than 3.
It is known that Γ1(p) has genus (p − 5)(p − 7)/24, no elliptic point and p − 1

cusps, among which (p− 1)/2 have width 1, the (p− 1)/2 other ones having width p.
Combining the formalism of Section 5.2 with Proposition 5.3.1, one easily verifies that
the two following assertions hold true:

— the cusps of width 1 of Y1(p)α1 = F0,1 correspond to the cusps [i∞]0,k
of the leaves F0,k (associated to the equation z2 = k/p in Tor 1,2) for
k = 1, . . . , (p− 1)/2, thus the associated conifold angles are all 0;

— the cusps of width p correspond to the cusps [i∞]k,0 of the leaves Fk,0 (associated
to the equation z2 = kτ/p in the Torelli space) for k = 1, . . . , (p − 1)/2. For
any such k, the associated cusp is [−p/k] and the associated conifold angle is
2πk(1− k/p)α1.
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CHAPTER 6

SOME EXPLICIT COMPUTATIONS AND A PROOF
OF VEECH’S VOLUME CONJECTURE WHEN g = 1 AND n = 2

6.1. Examples of explicit degenerations towards flat spheres

The main question investigated above is that of the metric completion of the closed
(actually algebraic) leaves of Veech’s foliation on M1,2.

In [20], under the supplementary hypothesis that α is rational (but then in arbitrary
dimension), the same question has been investigated by geometrical methods. In the
particular case when Veech’s foliation Fα1 is of (complex) dimension 1, our results in
[20] show that, in terms of (equivalence classes of) flat surfaces, the metric completion
of an algebraic leaf Fα1

N in M1,2 is obtained by attaching to it a finite number of
points corresponding to flat spheres with three cone singularities, whose associated
cone angles can be determined by geometric arguments.

Using some formulae of [52], one can recover the result just mentioned but in an
explicit analytic form. We treat succinctly below the case of the cusp [i∞] of the leaf
F(1/N,0) ' Y1(N) associated to the equation z2 = τ/N in Tor 1,2, for any integer N
bigger than or equal to 2. Details are left to the reader in this particular case as well
as in the general case (i.e., at any other cusp of Y1(N)).

Let α1 be fixed in ]0, 1[. We consider the flat metricmτ = mα1
τ = |ωτ |2 on Eτ,τ/N =

Eτ \ {[0], [τ/N ]} with cone singularities at [0] and at [τ/N ] where for any τ ∈ H, ωτ
stands for the following (multivalued) 1-form on Eτ,τ/N :

ωτ (u) = e
2iπα1
N u

[
θ(u)

θ
(
u− τ/N

)]α1

du.

The map which associates the class of the flat torus (Eτ,τ/N ,mτ ) in Mα
1,2 to any

τ ∈ H uniformizes the leaf F(1/N,0) of Veech’s foliation. Studying the latter in the
vicinity of the cusp [i∞] is equivalent to studying the (Eτ,τ/N ,mτ )’s when τ goes
to i∞ in a vertical strip of width 1 in Poincaré’s upper half-plane.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



122 CHAPTER 6. SOME EXPLICIT COMPUTATIONS

First, we perform the change of variables u − τ/N = −v. Then up to a non-zero
constant which does not depend on v, we have

ωτ (v) = e−
2iπα1
N v

[
θ
(
− v + τ/N

)
θ(v)

]α1

dv.

We want to look at the degeneration of mτ when τ → i∞ ∈ ∂H. To this end,
one sets q = exp(2iπτ). Then using the natural isomorphism Eτ = C∗/qZ induced by
v 7→ x = exp(2iπv), one sees that Eτ converges towards the degenerated elliptic curve
C∗/0Z = C∗ as τ goes to i∞. Moreover, for any fixed τ ∈ H, since dv = (2iπx)−1dx,
the 1-form ωτ writes as follows in the variable x:

ωτ (x) = (2iπ)−1x−
α1
N −1θ

(
τ/N − v

)α1
θ(v)−α1dx.

Then, from the classical formula

θ(v, τ) = 2 sin(πv) · q1/8
+∞∏
n=1

(
1− qn

)(
1− xqn

)(
1− x−1qn

)
,

it follows that
θ(τ/N − v)

θ(v)
=

sin (πτ/N − πv)

sin(πv)
·ΘN (x, q),

with

ΘN (x, q) =

+∞∏
n=1

(
1− x−1qn+1/N

)(
1− xqn−1/N

)(
1− xqn

)(
1− x−1qn

) .

An important fact concerning the latter function is that, as a function of the
variable x, ΘN (·, q) tends uniformly towards 1 on any compact set when q → 0, that
is as τ goes to i∞, for τ varying in any fixed vertical strip.

On the other hand, we have

sin (πτ/N − πv)

sin(πv)
=
eiπ(τ/N−v) − e−iπ(τ/N−v)

eiπv − e−iπv

=
q

1
2N x−1/2 − q− 1

2N x1/2

x1/2 − x−1/2
= q−

1
2N
q

1
N − x
x− 1

hence, up to multiplication by a nonzero constant that does not depend on x and ‘up
to multi-valuedness,’ one has

ωτ (x) = x
−α1
N −1

[
x− q1/N

x− 1

]α1

ΘN (x, q)α1dx.

For τ → i∞, one obtains as limit the following multivalued 1-form

(125) ωi∞(x) = xα1
N−1
N −1

(
x− 1

)−α1
dx
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on P1 \ {0, 1,∞}. The associated flat metric mi∞ = |ωi∞|2 defines a singular flat
structure of bounded area on P1, with 3 cone singular points at 0, 1 and ∞, the cone
angles of which are respectively

(126) θ0 = 2π

(
1− 1

N

)
α1, θ1 = 2π(1− α1) and θ∞ =

2π

N
α1.

We verify that there exists a positive function λ(τ) such that

lim
τ→i∞

∫
Eτ

λ(τ)|ωτ |2=

∫
P1

|ωi∞|2> 0.

This shows that the CH1-structure of F(1/N,0) is not complete at the cusp [i∞] and
that the (equivalence class of the) flat sphere with three cone singularities of angles
as in (126) belongs to the metric completion of the considered leaf in the vicinity
of this cusp. When α1 is assumed to be in Q, the metric completion at this cusp is
obtained by adding this flat sphere and nothing else, as is proved in [20]. The previous
analytical considerations show in an explicit manner that this still holds true even
without assuming α1 to be rational.

More generally, let c = [−a/c] ∈ X1(N) be a cusp which must be added to Y1(N)α1

in order to get its metric completion. From [20], we know that when α1 is rational,
this cusp can be interpreted geometrically as a moduli spaceM0,3(θ) of flat structures
on P1 with three cone points. The associated angle datum θ ∈ ]0, 2π[

3 depends on α1,
on N and on c. It would be interesting to get a general explicit formula for θ in
function of N, a, c and α1 and to verify that this geometric interpretation still holds
true without assuming that α1 is rational.

While we have answered a particular case of this question, the latter is still open
in full generality.

6.2. When N is small: relations with classical special functions

Exactly three of the leaves of Veech’s foliation on M1,2 give rise to a hyperbolic
conifold of genus 0 with 3 conifold points: the leaves FN = Y1(N)α1 for N = 2, 3, 4, see
§ 5.4 above. Since any such hyperbolic conifold can be uniformized by a classical hy-
pergeometric differential equation (as is known from the fundamental work of Schwarz
recalled in the Introduction), there must be some formulae expressing the Veech map
of any one of these three leaves in terms of classical hypergeometric functions. We
consider only the case when N = 2 in § 6.2.1.

Since both Y1(5) and Y1(6) are P1 with four cusps, the leaves F5 and F6 correspond
to CH1-conifold structures with four cone points on the Riemann sphere. Since any
such structure can be uniformized by means of a Heun’s differential equation, one
deduces that the Veech map of these two leaves can be expressed in terms of Heun
functions. We just say a few words about this in § 6.2.3.
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6.2.1. The leaf Y1(2)α1 and classical hypergeometric functions. – It turns out that
the case when N = 2 can be handled very explicitly by specializing a classical result
of Wirtinger. The modular lambda function λ : τ 7→ θ1(τ)4/θ3(τ)4 is a Hauptmodul
for Γ(2): it corresponds to the quotient H → Y (2) = P1 \ {0, 1,∞}. Furthermore, it
induces a correspondence between the cusps [i∞], [0], [1] and the points 0, 1 and ∞
of X(2) = P1 respectively (cf. [8, Chap.VII.§8] if needed).

6.2.1.1. –Specializing a formula obtained by Wirtinger in [87] (see also (1.3) in [82]
with α = (α1 + 1)/2, β = 1/2 and γ = 1), one obtains the following formula:
(127)

F

(
α1 + 1

2
,

1

2
, 1;λ(τ)

)
=

2 cos
(
πα1

2

)
θ3(τ)2

(
1− λ(τ)

)−α1
4

(1− e2iπα1)(1− e−2iπα1)

∫
P(0, 12 )

θ(u, τ)α1

θ1(u, τ)α1
du,

where for any τ ∈ H, the integration in the left hand-side is performed along the
Pochammer cycle P(0, 1/2) constructed from the segment [0, 1/2] in Eτ (see Figure 14
below).

0

τ

11/2

Figure 14. The Pochammer contour P(0, 1/2) in Eτ (in blue)

For every τ , the flat metric on Eτ with cone points at [0] and [1/2] associated
to the corresponding point of the leaf of equation z2 = 1/2 in Tor 1,2 is given
by |Tα1(u, τ)du|2 up to normalization, with

Tα1(u, τ) =
(
− θ(u)/θ(u− 1/2)

)α1
=
(
θ(u)/θ1(u)

)α1
.

Equation (127) can be written out

(128) F

(
α1 + 1

2
,

1

2
, 1;λ(τ)

)
= Λα1 (τ)

∫
γ2

Tα1(u, τ)du,

where Λα1 (τ) is a function of τ and α1 (easy to make explicit with the help of (127))
and where γ2 stands for the element of the twisted homology group H1(Eτ,1/2, Lτ,1/2)

obtained after regularizing the twisted 1-simplex `2 defined in § 3.2.3.
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More generally, for any τ and any twisted cycle γ, there is a formula

(129) Fγ

(
α1 + 1

2
,

1

2
, 1;λ(τ)

)
= Λα1(τ)

∫
γ

Tα1(u, τ)du,

where Fγ((α1 + 1)/2, 1/2, 1; ·) is a solution of the hypergeometric differential Equa-
tion (2) for the corresponding parameters. An important point is that the func-
tion Λα1 (τ) in such a formula is independent of the considered twisted cycle. It follows
that the map

τ 7−→

[
F

(
α1 + 1

2
,

1

2
, 1;λ(τ)

)
:
d

dε
xεF

(
α1 + 1

2
+ ε,

1

2
+ ε, 1 + ε;λ(τ)

)
ε=0

]
(whose components form a basis of the associated hypergeometric differential equa-
tion, see [90, Chap.III§3]) is nothing else than an expression of the Veech map
V α1

0,1/2 : H ' F
α1

2 → P1 in terms of classical hypergeometric functions. As an imme-
diate consequence, one gets that the corresponding conifold structure on P1 is given
by the ‘classical hypergeometric Schwarz’s map’ S((α1 + 1)/2, 1/2, 1; ·). It follows
that the cone angles at the cusps 0, 1 and ∞ of X(2) = P1 are respectively 0, πα1

and πα1.
Note that this is consistent with our results in § 5.4.1: the lambda modular function

satisfies λ(τ + 1) = λ(τ)/(λ(τ)− 1) for every τ ∈ H (cf. [8]). Thus µ = µ(λ) =

4(λ− 1)/λ2 is invariant by Γ(2) and by τ 7→ τ + 1, hence is a Hauptmodul for Γ1(2).
Veech’s hyperbolic conifold structure on X1(2) is the push-forward by µ of the one
just considered on X(2). Moreover, µ is étale at 0, 1 and ∞, ramifies at the order 2
at λ = 2 and one has µ(0) = ∞, µ(1) = µ(∞) = 0 and µ(2) = 1. It follows that the
conifold angles at the cusps 0, 1 and ∞ of Fα1

2 = X1(2)α1 ' P1 are πα1, π and 0 in
perfect accordance with the results given in Table 1.

6.2.1.2. – Actually, there is a slightly less explicit but much more geometric approach
of the N = 2 case. Indeed, for every τ ∈ H, the flat metricmα1

τ on Eτ with cone points
at [0] and [1/2] of respective angles 2π(α1 + 1) and 2π(α1 − 1) is invariant by the
elliptic involution (the metric |Tα1(u, τ)du|2 is easily seen to be invariant by u 7→ −u).
Consequently, mα1

τ can be pushed-forward by the quotient map ν : Eτ → Eτ/ι ' P1

and gives rise to a flat metric on the Riemann sphere. In the variable u, for the map ν,
it is convenient to take the map induced by

u 7−→ ℘(1/2)− ℘(τ/2)

℘(u)− ℘(τ/2)
.

Since ν ramifies at the second order exactly at the 2-torsion points of Eτ , it follows
that the push-forward metric ν∗(mα1

τ ) is ‘the’ flat metric on P1 with four cone points
at 0, 1,∞ and λ(τ)−1 = ν((1 + τ)/2) whose associated cone angles are respectively
π(1 + α1), π(1− α1), π and π.

Consequently, in the usual affine coordinate x on P1, one has

(130) ν∗
(
mα1
τ

)
= εα1(τ)

∣∣∣xα1−1
2 (1− x)−

α1+1
2

(
1− λ(τ)x

)− 1
2 dx

∣∣∣2
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for some positive function εα1 which does not depend on x but only on τ . From (130),
one deduces immediately that a formula such as (129) holds true for any twisted
cycle γ on Eτ . Then one can conclude in the same way as at the end of the preceding
paragraph.

6.2.2. About the N = 3 case. – The hyperbolic conifold Y1(3)α1 is P1 with three
cone points whose conifold angles are 2π(2α1/3), 2π/3 and 0. This CH1-structure is
induced by the hypergeometric equation (2) with a = (1 + α1)/3, b = (1− α1)/3 and
c = 1. On the other hand, the Veech map of F

α1

3 ' H admits as its components the
hypergeometric integrals

∫
γ•
θ(u)

α1θ(u− 1/3)
−α1du with • = 0,∞.

Since δ(τ) = (η(τ)/η(3τ))12 is a Hauptmodul for Γ1(3) (see case 3B in Table 3
of [9]), there exists a function ∆α1(τ) depending only on α1 and on τ , as well as a
twisted cycle β on Eτ such that a formula of the form

(131) F

(
1 + α1

3
,

1− α1

3
, 1; δ(τ)

)
= ∆α1(τ)

∫
β

θ(u, τ)α1

θ
(
u− 1

3 , τ
)α1

du

holds true for every τ ∈ H and every α1 ∈ ]0, 1[ (compare with (127)).

It would be nice to give explicit formulae for ∆α1 and β. Note that a similar
question can be asked in the case when N = 4.

6.2.3. A few words about the case when N = 5. – Since Y1(5)α1 is a four punctured
sphere, its CH1-structure can be recovered by means of the famous Heun equation
Heun (c, θ1, θ2, θ3, θ4, p). As is well-known, it is a Fuchsian second-order linear differ-
ential equation with four simple poles on P1. It depends on 6 parameters: the first, c,
is the cross-ratio of the four singularities; the next 4 parameters θ1, . . . , θ4 are the an-
gles corresponding to the exponents of the considered equation at the singular points;
finally, p is the so-called ‘accessory parameter’ which is the most mysterious one.

In the case of Y1(5)α1 , c is equal to ω = (11− 5
√

5)/(11 + 5
√

5), hence only depends
on the conformal type of Y1(5). The angles θi’s are precisely the conifold angles θα1

i

of Veech’s hyperbolic structure on Y1(5) (cf. Table 5).
It would be interesting to find an expression for the accessory parameter pα1 of the

Heun equation associated to Y1(5)α1 in terms of α1. Indeed, in this case it might be
possible to express the Schwarz map associated to any Heun equation of the form

Heun
(
ω, θα1

1 , θα1
2 , θα1

3 , θα1
4 , pα1

)
as the ratio of two elliptic hypergeometric integrals. Since the monodromy of such in-
tegrals can be explicitly determined (cf. § 6.3 below), this could be a way to determine
explicitly the monodromy of a new class of Heun equations.

To conclude this section, note that this approach should also work when N = 6

since Y1(6) is also of genus 0 with four cusps.
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6.3. Holonomy of the algebraic leaves

We fix an integer N ≥ 2.

6.3.1. – By definition, for α1 ∈ ]0, 1[, the holonomy of the leaf Y1(N)α1 is the holon-
omy of the complex hyperbolic structure it carries. It is a morphism of groups (well
defined up to conjugation) which will be denoted by

(132) Hα1

N : Γ1(N) ' π1

(
Y1(N)α1

)
−→ PSL2(R) ' PU(1, 1). (44)

Its image will be denoted by

Γ1(N)α1 = Im
(
Hα1

N

)
⊂ PSL2(R)

and will be called the holonomy group of Y1(N)α1 .
It follows from some results in [53] that the CH1-structure of Y1(N)α1 is induced

by a Fuchsian second-order differential equation (45). This directly links our research
to very classical works about the monodromy of Fuchsian differential equations. In
our situation, the general problem considered by Poincaré at the very beginning of
[68] is twofold and can be stated as follows:

(P1) for α1 and N given, determine the holonomy group Γ1(N)α1 ;

(P2) find all the parameters α1 and N such that Γ1(N)α1 is Fuchsian.

To these two problems, we would like to add a third one, namely

(P3) among the parameters α1 and N such that Γ1(N)α1 is Fuchsian, determine the
ones for which this group is arithmetic.

We think that these problems are important, for two reasons.
The first is that having a complete answer to them would make it possible to develop

an inductive approach similar to the one followed by Mostow in [60] in order to answer
the fourth and fifth questions of § 1.1.7 in the Introduction. The second reason is that
these problems can be stated in terms of ‘elliptic hypergeometric functions’; and
establishing a theory of ‘elliptic hypergeometric integrals’ as complete as the classical
theory requires to solve these problems as well.

For more details on this, we refer to section § 6.5 at the end of this chapter.

6.3.2. – It is easy to deduce from the results obtained above a vast class of parameters
α1 for which Γ1(N)α1 is a discrete subgroup of PSL2(R).

44. Since Y1(N) has orbifold points when N = 2, 3, it is necessary to consider instead the orbifold
fundamental group π1(Y1(N)α1 )orb in these two cases. We will keep this in mind in what follows
and will commit the abuse of always speaking of the usual fundamental group.
45. To be precise, the differential equation considered in Theorem 3.1 of [53] is defined on the

cover Y (N) of Y1(N) but it is easily seen that it can be pushed forward onto Y1(N).
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6.3.2.1. – It follows from Poincaré’s uniformization theorem that the holonomy
group Γ1(N)α1 is Fuchsian as soon as Y1(N)α1 is an orbifold, that is as soon as for
any cusp c of Y1(N)α1 , the associated conifold angle θα1

N (c) is an integral part of 2π.
Now it has been shown above (see (124)) that for such a cusp c, one has

θα1

N (c) = 2π
c(N − c)

N gcd(c,N)
α1

for a certain integer c ∈ {0, . . . , N − 1} depending on c. Then, defining N∗ as

N∗ = lcm

({
c(N − c)
gcd(c,N)

∣∣∣∣ c = 1, . . . , N − 1

})
,

we get the

Corollary 6.3.1. – If α1 = N
N∗` with ` ∈ N>0, then Γ1(N)α1 is Fuchsian.

6.3.2.2. – It is more than likely that the preceding result only gives a partial answer to
(P2). Indeed, it is well-known that there exist triangle subgroups of PSL2(R) which
are not of ‘orbifold type’ (i.e., not all the angles of ‘the’ corresponding hyperbolic
triangle are integral parts of π) but such that the CH1-holonomy of the associated
P1 with three conifold points is Fuchsian, see [31, p. 572], [41, Theorem 2.3] or [60,
Theorem 3.7] (46).

The situation is probably similar for the holonomy groups Γ1(N)α1 : for N fixed,
there are certainly more parameters α1 whose associated holonomy group is discrete
than those given by Corollary 6.3.1 as they correspond to the cases when X1(N)α1 is
a CH1-orbifold.

A complete answer to (P2) would be very interesting but, for the moment, we do
not see how this problem can be attacked in full generality. An inherent difficulty with
this problem is that there is no known explicit finite type representation of Γ1(N) as
a group for N arbitrary, except when N = p for a prime number p and, even in this
case, the known set of generators of Γ1(p) is quite complicated, see [19] (47). Note that
this is in sharp contrast with the corresponding situation in the genus 0 case, where
the ambient space is always M0,4 ' P1 \ {0, 1,∞} whose topology, if not trivial, is
particularly simple.

6.3.3. – According to a well-known result of Takeuchi [74, Theorem 3], there only
exist a finite number of triangle subgroups of PU(1, 1) which are arithmetic. It is
natural to expect that a similar situation does occur among the groups Γ1(N)α1

which are discrete. However, we are not aware of any conceptual approaches to tackle
such a question as (P3) for the moment. For instance, determining the holonomy
groups of Corollary 6.3.1 which are arithmetic when N ≥ 5 seems out of reach for

46. Beware that two cases have been forgotten in reference [60].
47. Actually the results contained in [19] concern the Γ(p)’s for p prime but they straightforwardly

apply to the Γ1(p)’s since Γ1(N) = 〈Γ(N), τ 7→ τ + 1〉 for any N).

MÉMOIRES DE LA SMF 164



6.3. HOLONOMY OF THE ALGEBRAIC LEAVES 129

now. (48) Here again, the main reason being the inherent complexity of the congruence
subgroups Γ1(N) as a whole.

The situation is not as bad for (P1), at least if one considers the problem for a fixed
N and from a computational perspective. Indeed, we have now at our disposal integral
representations for the components of the developing map of Y1(N)α1 and this can
be used, as in the classical hypergeometric case (see for instance [90, Chap.IV. §5]),
to determine the corresponding holonomy group Γ1(N)α1 explicitly. More precisely,
it follows from our results in § 4.4 that, setting TN (u, τ) = θ(u, τ)α1/θ(u− 1/N, τ)α1 ,
the map

VN : τ 7−→

[
V∞N (τ)

V 0
N (τ)

]
=

∫γ∞ TN (u, τ)du∫
γ0
TN (u, τ)du


is the developing map of the lift of Veech’s hyperbolic structure on Y1(N)α1

to its universal covering F N ' H. Consequently, to any projective transform
τ̂ = (aτ + b)/(cτ + d) corresponding to an element g =

[
a b
c d

]
∈ Γ1(N) will cor-

respond a matrix M(g) such that FN (τ̂) = M(g) · FN (τ) for every τ ∈ H. Since
Γ1(N) ' π1(Y1(N)α1), the map g 7→ M(g) induces the holonomy representation
(132) (up to a suitable conjugation which can be determined explicitly from § 3.5.2,
see also § 4.4.5).

Using Mano’s connection formulae presented in § 3.5.1, it is essentially a computa-
tional task to determine explicitly M(g) from g if the latter is given. This is what we
explain in § 6.3.4. Then, once a finite set of explicit generators g1, . . . , g` of Γ1(N) is
known, one can compute the matrices M(g1), . . . ,M(g`) which generate Γ1(N)α1

(modulo conjugation) and then study this group, via explicit matrix computations
for instance.

6.3.4. Some explicit connection formulae. – Let α1 ∈ ]0, 1[ be fixed. Below, we use the
formulae of § 3.5.1 to obtain some lemmata which can be used to compute explicitly
the image of a given element of Γ1(N) in Γ1(N)α1 . We end by illustrating our method
with two explicit computations in § 6.3.5.4

6.3.4.1. – For a = (a0, a∞) ∈ R2 \ α1Z2, one sets r = α−1
1 (a0, a∞) ∈ R2 \ Z2 and

(133) ωa(u, τ) = exp
(
2iπa0u

)
θ(u, τ)α1 θ

(
u− (r0τ − r∞), τ

)−α1
du.

As seen before (cf. Proposition 4.4.2), the map

Fa : H −→ C2(134)

τ 7−→ Fa(τ) =

[
F∞a (τ)

F 0
a (τ)

]
=

∫γ∞ ωa(u, τ)∫
γ0
ωa(u, τ)


48. Note however that since Γ1(N)α1 are triangle subgroups of PSL2(R) for N = 2, 3, 4 (see § 6.2),

the three problems (P1),(P2) and (P3) can be completely solved in these cases.
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can be seen as an affine lift of the Veech map V α1
a : F a → CH1 of the leaf

F a =
{

(τ, z2) ∈ Tor 1,2

∣∣ a0τ − α1z2 = a∞
}
' H

of Veech’s foliation on the Torelli space Tor 1,2.
In order to determine the hyperbolic holonomy of an algebraic leaf Y1(N)α1 it is

necessary to establish some connection formulae for the function Fa. By this, we mean
two slightly distinct things:

— first, given a modular transformation τ̂ = (mτ+n)/(pτ+q), we want to express
Fa(τ̂) in terms of Fâ(τ) for a certain â (which is easy to determine explicitly);

— second, we want to relate Fa(τ) and Fa′′(τ) for any τ , when a and a′′ are
congruent modulo α1Z2.

Connection formulae of the first type will be said to be of modular type whereas
those of the second type will be called of translation type.

6.3.4.2. Connection formulae of modular type. – Consider the following two elements
of SL2(Z) whose classes generate the modular group:

T =

[
1 1

0 1

]
and S =

[
0 1

−1 0

]
.

For a = (a0, a∞) ∈ R2 \ α1Z2, one sets

a′ =
(
a0, a∞ − a0

)
and ã =

(
a∞,−a0

)
.

Then the restriction of T (resp. of S) to F a′ (resp. to F ã) induces an isomor-
phism from this leaf onto F a. Moreover, it follows from [80, Theorem0.7] that both
isomorphisms are compatible with the CH1-structures of these leaves. The point is
that in order to determine the holonomy of any leaf Y1(N)α1 , we need to make this
completely explicit.

Each of the two matrices T and S induces an automorphism of the Torelli
space Tor 1,n that will be denoted slightly abusively by the same letter. In the
natural affine coordinates (τ, z2) on the Torelli space (see § 4.2.2 above), these two
automorphisms are written

T (τ, z2) =
(
τ + 1, z2

)
and S(τ, z2) =

(
− 1/τ,−z2/τ

)
.

We recall that ρ = ρ(a) stands for

(ρ0, ρ∞) =
(
ρ0(a), ρ∞(a)

)
=
(

exp(2iπa0), exp(2iπa∞)
)

with corresponding notation for ρ′ and ρ̃, that is

ρ′ = ρ(a′) =
(
ρ′0, ρ

′
∞
)

=
(
ρ0, ρ∞ρ

−1
0

)
and ρ̃ = ρ(ã) =

(
ρ̃0, ρ̃∞

)
=
(
ρ∞, ρ

−1
0

)
.

To save space, in what follows we will denote by Ha the matrix Hρ(a) (cf. (49)). We
recall that it is the matrix of Veech’s form on the target space of the map Fa defined
in (134) above.
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To state our result concerning connection formulae of modular type, we will assume
that

(135)
(
a0,−a∞

)
∈ α1 [0, 1[

2
.

This condition can be interpreted geometrically as follows: (135) is equivalent to
the fact that, for any τ ∈ H, the point (a0τ − a∞)/α1, which is a singular point
of the multivalued holomorphic 1-form ωa(u, τ), see (133), belongs to the standard
fundamental domain [0, 1[τ = [0, 1[ + [0, 1[τ ⊂ C of Eτ .

Remark that this condition is not really restrictive. Indeed, considering the ac-
tion (75), it follows easily that for any a ∈ R2 \ α1Z2, there exists a∗ in the same
(SL2(Z) n Z2)-orbit (hence such that F a ' F a∗) which satisfies (135).

Lemma 6.3.2. – Assume that condition (135) holds true.

1. For every τ ∈ H, one has

Fa(τ + 1) = Ta · Fa′(τ)

with

(136) Ta =

[
1 ρ∞/ρ0

0 1

]
.

2. There exists a function τ 7→ σa(τ) such that for every τ ∈ H, one has

Fa(−1/τ) = σa(τ)
(
Sa · Fã(τ)

)
with

(137) Sa =

[
1− ρ∞ ρ−1

0

−ρ0 0

]
.

The following notation will be convenient in the proof below: for • = 0,∞ and
τ ∈ H, we denote by γ•(τ) the twisted 1-cycle constructed in Section 3.3.1 with
τ seen as a point of F a: the ambient torus is Eτ which is punctured at [0] and
[z2] with z2 = α−1

1 (a0τ − a∞). And for any superscript ?, we will write γ?•(τ) for
the corresponding cycle when a has been replaced by a?. For instance, γ′0(τ) is the
twisted cycle on the torus Eτ , punctured at [0] and [z′2] with z′2 = (a′0τ − a′∞)/α1 =

r0τ + (r0 − r∞), obtained by the regularization of ]0, 1[.

Proof. – We first treat the case of the transformation τ 7→ τ + 1 that will be used
later to deal with the second one.

On the one hand, one has

(138) ωa(u, τ + 1) = ωa′(u, τ).

On the other hand, the map associated to Eτ → Eτ+1 lifts to the identity in the
variable u. Consequently, one has (see Figure 15 below)

(139) γ∞(τ + 1) = γ′∞(τ) + ρ′∞γ
′
0(τ) and γ0(τ + 1) = γ′0(τ).
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1

z2z
′

2

0

τ
1 + 

ℓ0(τ + 1) = ℓ
′

0
(τ)

ρ
′

∞
ℓ
′

0
(τ)

ℓ∞
(τ

+ 1)

ℓ
′ ∞
(τ
)

τ

Figure 15. Relations between the locally-finite twisted 1-simplices
`0(τ + 1), `∞(τ + 1), `′0(τ) and `′∞(τ) which give (139) after regulariza-
tion (cf. § 3.3.1.2). The point z2 has been assumed to be of the form
ετ + 1/N with N = 2 and ε > 0 small (i.e., the pictured case corresponds
to a = (ε,−1/2)).

The two relations F∞a (τ + 1) = F∞a′ (τ) + (ρ∞/ρ0) · F 0
a′(τ) and F 0

a (τ + 1) = F 0
a′(τ)

then follow immediately from (138) and (139).
Note that the following relation holds true

Ha′ = tTa ·Ha · Ta,

which is coherent with the fact that T induces an isomorphism between the CH1-struc-
ture of the leaves F a′ and F a of Veech’s foliation on the Torelli space.

We now turn to the case of S. Considering the principal determination of the square
root, one has

θ
(
− u

τ
,−1

τ

)
= i ·

√
τ

i
· e iπu

2

τ · θ(u, τ)

for every τ ∈ H and every u ∈ C (see [8, (8.5)]).
By a direct computation (see also [51, Prop. 6.1]), one gets

ωa
(
− u/τ,−1/τ

)
= σa(τ) · ωã(u, τ)(140)

with σa(τ) = −τ−1 exp
(
− iπ(a0 + a∞τ)2/(α1τ)

)
.

Now one needs to determine the action of S∗ on the twisted 1-cycles γ̃∞ and γ̃0.
To this end, one remarks that the following matrix decomposition holds true

(141)

[
0 1

−1 0

]
=

[
1 1

0 1

][
1 0

−1 1

][
1 1

0 1

]
.
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This relation will allow us to express the action of S∗ as a composition of three maps
of translation type considered in the first point of the lemma. More explicitly, from
the decomposition (141) we get that the isomorphism between F ã and F a induced
by the restriction of S factorizes as follows

(142) F ã

[
0 1
−1 0

]
55

[ 1 1
0 1 ]

// F a?

[
1 0
−1 1

]
// F a′

[ 1 1
0 1 ]

// F a,

where a? = (a∞, a∞ − a0).
From what has been done before, we get that, in the suitable corresponding basis,

the matrices of the linear transformations on the twisted 1-cycles associated to the
first and the last isomorphisms in (142) are Ta and Ta? respectively.

By an analysis completely similar and symmetric to the one we did to treat the
first case, one gets that the isomorphism between F a? and F a′ in the middle of (142)
induces the following transformation for the corresponding twisted 1-cycles:[

γ′∞
(

τ
1−τ

)
γ′0
(

τ
1−τ

) ] =

[
1 0

−ρ′0 1

][
γ?∞(τ)

γ?0(τ)

]
.

From (142) and the formula just above, it follows that for every τ ∈ H ' F ã, the
action of S on twisted 1-cycles is given by[

γ∞(−1/τ)

γ0(−1/τ)

]
=

[
1 ρ∞

ρ0

0 1

][
1 0

−ρ0 1

][
1

ρ?∞
ρ?0

0 1

][
γ̃∞(τ)

γ̃0(τ)

]
that is by [

γ∞(−1/τ)

γ0(−1/τ)

]
=

[
1− ρ∞ ρ−1

0

−ρ0 0

][
γ̃∞(τ)

γ̃0(τ)

]
.(143)

The second part of the lemma thus follows by combining (140) with (143).

6.3.4.3. Connection formulae of translation type. – Since our main interest is in the
algebraic leaves of F

α1 , we will establish connection formulae of translation type only
for the maps Fa’s associated to such leaves. The general case is not more difficult but
is not of interest to us.

Let N be a fixed integer strictly bigger than 1. One sets

µ = e
2iπ
N α1 .

For m,n ∈ Z2 with (m,n,N) = 1, remember the notation F m,n of Section 5.2:

F m,n = F (m/N,−n/N) =

{(
τ, z2

)
∈ Tor1,2

∣∣ z2 = (m/N)τ + n/N

}
.
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The lifted holonomy associated to this leaf of Veech’s foliation is

am,n =
(m
N
α1,−

n

N
α1

)
whose associated linear holonomy is given by

ρm,n =
(
ρm,n0 , ρm,n1 , ρm,n∞

)
=
(
µm, µN , µ−n

)
=
(
e

2iπm
N α1 , e2iπα1 , e−

2iπn
N α1

)
.

From now on, we use the notation ωm,n and Fm,n for ωam,n and Fam,n respectively:
for τ ∈ H, one has

Fm,n(τ) =

[∫
γ∞

ωm,n(u, τ)∫
γ0
ωm,n(u, τ)

]
with ωm,n(u, τ) =

e
2iπmα1

N θ(u, τ)α1

θ
(
u−

(
mτ+n
N

)
, τ
)α1

du.(144)

Then, using the notation from Section 3.4, one sets (see (49)):

Hm,n = Hρm,n =
1

2i

[
(µm−1)(1−µN−m)

µN−1
1−µ−m−µ−n+µN−m−n

µN−1
µN−µN+m−µN+n+µm+n

µN−1
(µn−1)(1−µN−n)

µN−1

]
.

It is the matrix of Veech’s Hermitian form in the basis (F∞m,n, F
0
m,n).

In the lemma below, we use the notation from § 3.5.1.

Lemma 6.3.3. – 1. For any τ ∈ H, one has

Fm,n−N (τ) = Bm,n · Fm,n(τ)

with Bm,n = µ−
N
2 ·HT2ρm,n ;

2. There exists a function τ 7→ ηm,n(τ) such that for every τ ∈ H, one has:

Fm−N,n(τ) = ηm,n(τ)Am,n · Fm,n(τ)

with Am,n = µ−
N
2 −n ·VT2ρm,n .

Proof. – The relation ωm,n−N = µ−N/2ωm,n follows easily from the quasi-periodicity
property (20) of θ. On the other hand, one can write Fm,n−N = 〈ωm,n−N ,γm,n−N 〉
with tγm,n−N = (γ∞m,n−N ,γ

0
m,n−N ). From §3.5.1, it follows that γm,n−N = HT2ρm,n ·

γm,n where HT2ρm,n stands for the 2× 2 matrix HT2ρ defined in (54) with ρ = ρm,n.
The first connection formula follows immediately.

From (20) again, one deduces that the following relation holds true: ωm−N,n =

µ−
N
2 −n exp(iπτα1(1− 2m/N))ωm,n. On the other hand, one has γm−N,n = VT2ρm,n ·

γm,n. Setting ηm,n(τ) = eiπτα1(1−2m/N), the second formula follows.

Note that what is actually interesting in the preceding lemma is that the matrices
Bm,n and Am,n can be explicited.
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Indeed, one has Bm,n = (µ−
N
2 βi,jm,n)2

i,j=1 with

β1,1
m,n = µ2N−n − µ2N+m−n + µN+m + µN−m−n − µN−n,

β1,2
m,n = µ2N−m−n + µ2N−2n − µ2N−n − 2µN−m−n + µN + µN−m−2n − µN−n,

β2,1
m,n = −µN+2m − µm + 2µN+m + 2− µN − µ−m and

β2,2
m,n = −µN+m − µN−m + µN+m−n − µN−n + 2µN + 2µ−m + µ−n − µ−m−n − 1.

(Verification: the relation tBm,n ·Hm,n−N ·Bm,n = Hm,n indeed holds true.)
The matrix Am,n is considerably simpler. One has:

Am,n = µ−
N
2 −n

[
1 0

µn(µm−N − 1) µn−N

]
.

(Verification: the relation tAm,n ·Hm−N,n ·Am,n = Hm,n indeed holds true.)

6.3.5. Effective computation of the holonomy of Y1(N)α1 . – We now explain how the
connection formulae that we have just established can be used to compute the holon-
omy group Γ1(N)α1 of Y1(N)α1 in an effective way.

6.3.5.1. – As a concrete model for this ‘hyperbolic conicurve,’ we choose the quo-
tient of the leaf F 0,1 (cut out by z2 = 1/N in the Torelli space) by its stabilizer.
Actually, we will use the natural isomorphism H ' F 0,1 to see Y1(N)α1 as the stan-
dard modular curve H/Γ1(N). From this point of view, the developing map of the
associated CH1-conifold structure is nothing else than the map F0,1 considered above
(cf. (144) with m = 0 and n = 1). It follows that the CH1-holonomy of Y1(N)α1

can be determined through the connection formulae satisfied by F0,1. Note that the
corresponding Hermitian matrix H0,1 simplifies and has a relatively simple expression
(cf. also § 3.5.2):

H0,1 =
1

2i

[
0 µ−1

−µ (µ−1)(1−µN−1)
µN−1

]
.

6.3.5.2. – Let g · τ = (pτ + q)/(rτ + s) be the image of τ ∈ H by an element
g = [ p qr s ] of Γ1(N). From the two Lemmas 6.3.2 and 6.3.3, it follows that there exists
a matrix Λ′(g) ∈ Aut(H0,1) as well as a non-vanishing function λg(τ) such that

(145) F0,1(g · τ) = λg(τ) Λ′(g) · F0,1(τ).

Moreover, one can require Λ′(g) to have coefficients in R(µ). The map
Λ′ : g 7→ Λ′(g) is a representation of Γ1(N) in Aut(H0,1) ∩ PSL2(R(µ)).

Then, conjugating this representation by the matrix

Z =
√

2

[
µ−1 −µ

N−1−1
µN−1

0 1

]
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(cf. § 3.5.2), one gets a normalized representation of Γ1(N) in PSL2(R)

Λ = Λα1

N : Γ1(N) −→ PSL2(R)(146)

g 7−→ Λ(g) = Z−1 · Λ′(g) · Z

for the considered CH1-holonomy. It is a deformation of the standard inclusion of
the projectivization Γ1(N) of Γ1(N) as a subgroup of PSL2(Z) ⊂ PSL2(R) which is
analytic with respect to the parameter α1 ∈ ]0, 1[.

6.3.5.3. – We now explain how to compute Λ(g) explicitly for g = [ p q
m n ] ∈ Γ1(N).

Writing g as a word in T = [ 1 1
0 1 ] and S =

[
0 1
−1 0

]
, one can use Lemma 6.3.2 to get

that

(147) F0,1

(
aτ + b

cτ + d

)
= M(g) · Fm,n(τ),

where M(g) is a product (which can be made explicit) of the matrices Ta′ and Sa′′
(see formulae (136) and (137) respectively) for some a′ and a′′ easy to determine.

Next, the fact that g belongs to Γ1(N) implies in particular that m = m′N and
n = 1 +n′N for some integers m′, n′. One can then use Lemma 6.3.3 and construct a
function λg(τ) and a matrix N(g) which is a product of m′ (resp. n′) matrices of the
type VT2m̂,n̂ (resp. HT2m̃,ñ), for some (m̂, n̂)’s and (m̃, ñ)’s, which are easy to make
explicit, such that

(148) Fm,n(τ) = λg(τ)N(g) · F0,1(τ).

Then setting Λ′(g) = M(g) ·N(g), one gets (145) from (147) and (148).

In the next subsection, we illustrate the method just described by computing ex-
plicitly the image by Λ of two simple elements of Γ1(N).

Remark 6.3.4. – We have described above an algorithmic method to compute Λ(g)

when g is given. It would be interesting to have a closed formula for Λ(g) in terms
of the coefficients of g. Such formulae have been obtained by Graf [27, 28] and more
recently (and independently) by Watanabe [82, 85] in the very similar case of the
‘complete elliptic hypergeometric integrals’ which are the hypergeometric integrals as-
sociated to Γ(2) of the following form∫

γ

θ(u, τ)β0θ1(u, τ)β1θ2(u, τ)β2θ3(u, τ)β3du,

where γ stands for a twisted cycle supported in Eτ \ Eτ [2] (the βi’s being fixed real
parameters summing up to 0).
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6.3.5.4. Two explicit computations (N arbitrary). – We consider the two following
elements of Γ1(N):

T =

[
1 1

0 1

]
and UN =

[
1 0

−N 1

]
.

We want to compute their respective images by Λ in SL2(R).

The case of T is very easy to deal with. From the first point of Lemma 6.3.2, one
has

Λ′(T ) =

[
1 ρ0,1

∞ /ρ0,1
0

0 1

]
=

[
1 µ−1

0 1

]
.

After conjugation by Z, one gets

Λ(T ) = Z−1 · Λ′(T ) · Z =

[
1 1

0 1

]
∈ PSL2(R).

To deal with UN , we recall that S =
[

0 1
−1 0

]
and we begin with writing

UN = S · TN · S−1.

In what follows, we write =τ to designate an equality which holds true up to
multiplication by a function depending on τ .

Then, for any τ ∈ H ' F 0,1, setting τ ′ = −1/τ , one has

F0,1

(
τ

1−Nτ

)
= F0,1

(
−1

τ ′ +N

)
=τ S0,1 · F−1,0(τ ′ +N)

=τ S0,1 · T−1,0 · F−1,−1(τ ′ +N − 1)

=τ S0,1 · T−1,0 · · ·T−1,−N+1 · F−1,−N (τ ′)

=τ S0,1 · T−1,0 · · ·T−1,N−1 ·B−1,0 · F−1,0(τ ′)

=τ S0,1 · T−1,0 · · ·T−1,N−1 ·B−1,0 ·
(
S1,0

)−1 · F0,1(τ).

It follows that

Λ′(UN ) = S0,1 · T−1,0 · · ·T1,−N+1 ·B−1,0 ·
(
S0,1

)−1

= S0,1 ·

[
1 µ

0 1

][
1 µ2

0 1

]
· · ·

[
1 µN

0 1

]
·B−1,0 ·

(
S0,1

)−1

= S0,1 ·

[
1 µ(1−µN )

(1−µ)

0 1

]
·B−1,0 ·

(
S0,1

)−1
.
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Since

S0,1 =

[
1− µ−1 1

−1 0

]

and B−1,0 = µ1−N/2

[
µ2N−1 − µ2N−2 + µN−2 + µN − µN−1 µ2N − µN

− (µ−1)2(µN−1+1)
µ2 µN−1 − µN + 1

]
,

an explicit computation gives

Λ′(UN ) =µ
N
2 ·

[
1 (1−µ)2

µ2

µ2(1−µ−N )
1−µ 1− µ− µ−N + 2µ1−N

]
.

(
Remark: for α1 → 0, one has µ→ 1 hence Λ′(UN )→ [ 1 0

−N 1
], as expected.)

One deduces the following explicit expression for Λ(UN ) = Z−1Λ′(UN )Z:

Λ(UN ) = µ
N
2

 1+µ2−µN−µ2−N

(µ−1)(µN−1)
λ(UN )

(µ−1)(µN−1)2µ
µ (µ−N−1)

µ−1 −−3µN+1+6µ+µ2−N+µ2+N+µN−2−3µ1−N+µ−N−2µ2

(µ−1)(µN−1)


with

λ(UN ) = −1− 5µN+1 − 2µ4 − µ2+2N − µ2N + 2µN − 2µ3+N + µ2+N

+ µ4−N − µ2 + µN+4 + µ2−N − 3µ3−N + 2µ+ 3µ1+2N + 5µ3.(
Remark: one has Λ∗(UN ) = µ−

1
2 Λ(UN ) ∈ SL2(R).

)
A necessary condition for the CH1-holonomy of Y1(N)α1 to be discrete is that

Λ∗(UN ) together with the fixed parabolic element Λ(T ) = [ 1 1
0 1 ] generates a discrete

subgroup of PSL2(R). There are many papers dealing with this problem. For instance,
in [21], Gilman and Maskit give an explicit algorithm to answer this question. However,
if this algorithm can be used quite effectively to solve any given explicit case, the
complexity of Λ∗(UN ) seems to make its use too involved to describe precisely the set
of parameters α1 ∈ ]0, 1[ and N ∈ N≥2 so that 〈Λ∗(UN ), [ 1 1

0 1 ]〉 be a lattice in SL2(R).

6.4. Volumes

We recall that Y1(N)α1 stands for the modular curve Y1(N) endowed with the pull-
back under Veech’s map of the standard hyperbolic structure of CH1. In particular,
the curvature of the metric which is considered on Y1(N)α1 is constant and equal
to −1. We denote by Vol(Y1(N)α1) the corresponding volume (the ‘hyperbolic area’
would be more accurate) of Y1(N)α1 .
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6.4.1. – According to the version for compact hyperbolic surfaces with cone singular-
ities of Gauß-Bonnet’s Theorem (cf. Theorem A.1 in Appendix A) and in view of our
results in §5.3.4, one has (49)

(149) Vol
(
Y1(N)α1

)
= 2π

[
2g1(N)− 2 +

∑
c∈C1(N)

(
1− θN (c)

2π

)]
,

where
— g1(N) stands for the genus of the compactified modular curve X1(N);
— for any c ∈ C1(N), θN (c) denotes the conifold angle of X1(N)α1 at c.
Since θN (c) depends linearly on α1 for every c (cf. (124)), it follows that

Vol
(
Y1(N)α1

)
= A(N) +B(N)α1

for two arithmetic constants A(N), B(N) depending only on N .
We recall that the following closed formula

g1(N) = g
(
X1(N)

)
= 1 +

N2

24

∏
p|N

(
1− p−2

)
− 1

4

∑
0<d|N

φ(d)φ(N/d)

holds true for any N ≥ 5, with g1(M) = 0 for M = 1, . . . , 4 (see [39]).
On the other hand, we are not aware of any general closed formula, in terms of N ,

for a set of representatives [−ai/ci] with i = 1, . . . , |C1(N)| of the set of cusps C1(N)

of Y1(N). Consequently, obtaining closed formulae for A(N) and B(N) in terms
of N does not seem easy in general. However, for any given N , there are algorith-
mic methods determining explicitly such a set of representatives. Then determining
Vol(Y1(N)α1) reduces to a computational task once N has been given.

6.4.2. – Since the two values A(N) and B(N) depend heavily on the arithmetic prop-
erties of N , one can expect to be able to say more about them when N is simple from
this point of view, for instance when N is prime.

Let p be a prime number bigger than or equal to 5. Then

g1(p) =
1

24
(p− 5)(p− 7)

and there is an explicit description of the conifold points and of the associated conifold
angles of X1(p)α1 (see § 5.4.5).

In the case under scrutiny, formula (149) specializes to

Vol
(
Y1(p)α1

)
= 2π

(
2g1(p)− 2 + (p− 1)

)
− 2πα1

(p−1)/2∑
k=1

k
(

1− k

p

)
and after a simple computation, one obtains the nice formula

(150) Vol
(
Y1(p)α1

)
=
π

6

(
p2 − 1

)
(1− α1) .

49. Actually, formula (149) is only valid when N ≥ 4. Indeed, Y1(N) has an orbifold point when
N = 2, 3 and it has to be taken into account when computing Vol(Y1(N)α1 ) in these two cases.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



140 CHAPTER 6. SOME EXPLICIT COMPUTATIONS

6.4.3. – Even if it only concerns the algebraic leaves Y1(p)α1 of Veech’s foliation
associated to prime numbers, the preceding formula can be used to determine Veech’s
volume of the moduli space M1,2, defined as

Volα1
(
M1,2

)
=

∫
M1,2

Ωα1

(cf. § 1.1.6 and § 1.2.9 for a few words about Veech’s volume form Ωα1).
We first review more carefully than in the Introduction the construction of Veech’s

volume form Ωα1 then present an easy proof of Theorem 1.2.14. The latter relies on
the following intuitive fact that the Euclidean volume (i.e., the area) of a nice open set
U ⊂ R2 can be well approximated by counting the number of elements of U ∩(1/p)Z2,
as soon as p is a sufficiently big prime number. For instance, for any parallelogram
P of the Euclidean plane R2, if dσ = dr0 ∧ dr∞ stands for the standard Euclidean
volume form on R2, then

(151) Area(P ) =

∫
P

dσ = lim
p→+∞

p−2#
(
U ∩ (1/p)Z2

)
.

(Remark that it is not necessary to only consider prime numbers to ensure that the
aforementioned facts hold true. But restricting to primes is sufficient for our purpose,
namely for computing Veech’s volume of the moduli space M1,2.)

6.4.3.1. – Since we assume that α1 ∈ ]0, 1[ is fixed, when we refer to the volume of
a subset of M1,2 below, it is always relatively to Veech’s volume form Ωα1 .

Let M∗1,2 stand for the set of non-orbifold points of M1,2. It is a dense open-subset
whose complementary set has measure zero. Consequently one can consider only the
volume of M∗1,2. This is what we do from now on.

Let [m∗] be a point in M∗1,2 and consider a lift m∗ = (τ∗, z∗) in Tor 1,2 over it. One
defines a germ of real-analytic map V α1 : ( Tor 1,2,m

∗)→ H at m by setting

V α1(τ, z) = V α1

ξα1 (τ,z)(τ)

for any (τ, z) sufficiently close to m∗, where ξα1 is the map considered in Proposi-
tion 1.2.3 and V α1

ξα1 (τ,z) stands for the map (14) with a = ξα1(τ, z). (Note that such
a V α1 is not canonically defined but this will not cause any problem hence we will
not dwell on this in what follows.)

The pull-back under V α1 of the volume form dζ ∧ dζ/(2i|=m(ζ)|2) inducing the
standard hyperbolic structure on H is a (germ of) smooth (1, 1)-form at m∗, denoted
by ωα1 , whose restriction along any leaf of Veech’s foliation F

α1 close to m∗ locally
induces Veech’s hyperbolic structure of this leaf (as it follows from the second point
of Proposition 1.2.10).

Setting v∗ = V α1(m∗) and r∗ = Ξ(m∗), one obtains a germ of real analytic diffeo-
morphism

ϕα1
m∗ = V α1 × Ξ :

(
Tor 1,2,m

∗) −→ (
H×

(
R2 \ Z2

)
,
(
v∗, r∗

))
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such that the pull-back under it of the horizontal foliation on H×
(
R2 \Z2

)
, with all

the horizontal upper-half planes endowed with the standard hyperbolic structure, is
exactly (the germ at m∗ of) Veech’s foliation F

α1 with Veech’s hyperbolic structures
on the leaves. (Beware that the germ ϕα1

m∗ is quite distinct from that of the global
diffeomorphism (11) at m∗.)

For ε > 0, let Dε stand for the hyperbolic disk of radius ε centered at v∗ in H
and denote by Sε the Euclidean square r∗+] − ε, ε[2⊂ R2. If ε is chosen sufficiently
small, U εm∗ = (ϕα1

m∗)
−1(Dε×Sε) ⊂ Tor 1,2 is well defined and (U εm∗ , ϕ

α1
m∗) is a foliated

chart for Veech’s foliation F
α1 at m∗. Since [m∗] is not an orbifold point, it induces

a foliated chart at [m∗] for Veech’s foliation Fα1 on the moduli spaceM1,2, which will
be denoted in the same way.

Up to ϕα1
m∗ , for any prime p, we have U εm∗∩Y1(p)α

1 ' Dε×(Sε∩(1/p)Z2). Therefore,
from (151), it follows that the volume of U εm∗ is given by

Volα1
(
U εm∗

)
=

∫
Uε
m∗

Ωα1 = lim
p→+∞
p prime

1

p2
να1
p

(
U εm∗ ∩ Y1(p)α1

)
,

where να1
p stands for the volume (i.e., the area) on Y1(p)α1 , the latter being endowed

with Veech’s hyperbolic structure.

6.4.3.2. – Now let (Ui)i∈N be a family of open subsets of M∗1,2 such that
— each Ui is the domain U εim∗i of a foliated chart as above;
— one has

⋃
i∈N Ui =M1,2;

— the Ui’s are pairwise disjoint.
(We let the reader verify that such a family of open subsets indeed exists.)

From these assumptions and considering what has been established in the preceding
paragraph, we get that

(152) Volα1
(
M1,2

)
=
∑
i∈N

Volα1
(
Ui
)

=
∑
i∈N

lim
p→+∞

1

p2
να1
p

(
Ui ∩ Y1(p)α1

)
,

where (here as in any formula below) p ranges over prime numbers.
Our main concern now consists in interchanging the sum and the limit in the last

term of the preceding equality.
To this end, for any I ∈ N, one considers the partial sum

I∑
i=0

Volα1
(
Ui
)

=

I∑
i=0

lim
p→+∞

1

p2
να1
p

(
Ui ∩ Y1(p)α1

)
.

The summation being finite, we can interchange the sum and the limit to obtain
I∑
i=1

Volα1
(
Ui
)

= lim
p→+∞

1

p2
να1
p

((
∪Ii=1 Ui

)
∩ Y1(p)α1

)
.

From (150), it follows that for any prime p, one has

να1
p

((
∪Ii=1 Ui

)
∩ Y1(p)α1

)
≤ να1

p

(
Y1(p)α1

)
=
π

6
(1− α1)(p2 − 1)
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from which it follows that
I∑
i=1

Volα1
(
Ui
)
≤ lim
p→+∞

1

p2
· π

6
(1− α1)(p2 − 1) =

π

6
(1− α1).

The integer I being arbitrary, we conclude that

Volα1
(
M1,2

)
≤ π

6
(1− α1).

Since the volume of M1,2 is finite, and because the quantities

p−2να1
p

(
Y1(p)α1

)
are uniformly bounded (precisely by the RHS of the preceding inequality), it is
straightforward that one can interchange the sum and the limit in (152) and get
that

Volα1
(
M1,2

)
=
π

6

(
1− α1

)
.

This proves Theorem 1.2.14 in the Introduction.

6.5. Some concluding comments about the quest of complex hyperbolic lattices and its
relation with 1-dimensional hypergeometry

We would like to conclude this text with a few lines intended first to put it in
perspective and secondly to explain what we think is the first interesting problem
that can be formulated in the light of our results.

We begin with explaining why the 1-dimensional case could be the key to a natural
strategy in order to find new non-arithmetic lattices in PU(1, n), one of the major
problems in complex hyperbolic geometry nowadays. Then we discuss more carefully
what is known regarding this question in dimension 1, stressing the similarities as well
as the differences between the classical case when (g, n) = (0, 4) and the elliptic one
(g, n) = (1, 2) considered here.

?

We will use the following notation: given a manifold M carrying a CHn-struc-
ture, one denotes by Γ(M) its holonomy group, namely the image of the associated
holonomy representation π1(M)→ PU(1, n).

6.5.0.1. – As already mentioned in the Introduction, an interesting (but certainly
challenging) problem suggested by Veech’s results is the following:

(
P1,n

)
determine all the pairs (α,F) where
− α = (αi)

n
i=1 ∈ R>0 × ]−1, 0[

n−1 is a n-tuple summing up to 0;
− F is an algebraic leaf of Veech’s foliation Fα on M1,n,

such that the holonomy group ΓαF = Γ(F) of the CHn−1-structure
of F is a lattice in PU(1, n− 1).
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6.5.0.2. – The corresponding question in genus 0 was the subject of Deligne-Mostow’s
paper [11], where the considered subgroups Γβ of PU(1, n) (for β = (βk)n+3

k=1 ∈
]−1, 0[

n+3 summing up to −2 in this case) were not defined as holonomy groups
(of some complex hyperbolic structures on M0,n+2) but as the monodromy groups of
the (generalized) Schwarz’s map Sβ associated to some differential systems ( E

β) of
‘hypergeometric type’ (see § 1.1.2 and [48]). As is well-known, choosing this point of
view, Deligne and Mostow were able to find new complex hyperbolic lattices, some of
them even being non-arithmetic (see [11, (14.4)]).

But the complete answer to the aforementioned problem in genus 0, that is (cf. [60,
p. 556])(

P0,n+3

) determining all the (n+ 3)-tuples β as above whose associated
hypergeometric monodromy group Γβ ⊂ PU(1, n) is discrete,

was obtained by Mostow in [60] through an approach that can be described as induc-
tive, and is based on two facts which can be formulated as follows (the 0 appearing
as a lower index refers to the genus 0 case):
(a0) Denote by M0,β the moduli space M0,n+3 endowed with the CHn-structure on

it associated to the (n + 3)-tuple β. Then the metric completion of M0,β is
obtained by adding to it some moduli spaces of flat spheres M0,β′ obtained
by degeneration, for some (n′ + 3)-tuples β′ which can be explicitly computed
from β, with n′ < n.

(b0) A necessary condition for Γβ = Γ(M0,β) to be discrete is that the corresponding
statement holds true for Γβ

′
, for any β′ associated to a stratumM0,β′ appearing

in the metric completion of M0,β. (50)

These two facts allow Mostow to proceed inductively and somehow to reduce the
question to the determination of all the 4-tuples β such that Γβ ⊂ PU(1, 1) is discrete,
a problem about hyperbolic triangle groups that he was able to solve completely, see
[60, Theorem 3.8]. Using this, he obtained a complete solution to (P0,n+3) for any n.
In particular for n > 1, in addition to the 94 cases satisfying ΣINT (see [59, 77, 18]),
there is an explicit list of ten such β’s (see [60, §5.1]).

6.5.0.3. – The results of the present text together with those of [20] show that
Mostow’s inductive strategy in the genus 0 case which has been sketched above could
generalize to the genus case 1 as well. Indeed, given α as above, the algebraic leaves of
Veech’s foliation on M1,n are precisely the FαN ’s described in Proposition 4.2.9. So for
each n ≥ 2, (P1,n) breaks down into the following sub-problems, one for each N ≥ 2

(with N = 0 also allowed when n ≥ 3):

(
PN1,n

) determining all the n-tuples α as above such that the holono-
my group ΓαN = Γ(FαN ) of the CHn−1-structure of the algebraic
leaf FαN of Veech’s foliation on M1,n be a lattice in PU(1, n− 1).

50. See Lemma 2.4 in [60] for an explicit statement and a proof.
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One of the main results of [20] being that any algebraic leaf of Fα has a finite volume
with respect to the complex hyperbolic structure it carries, it is only necessary to deal
with the discreteness of ΓαN . Another important result of [20] is that the following fact,
similar to (a0) stated above about the genus 0 case, holds true in the genus 1 case
(see also § 4.2.6.1):

(a1) The metric completion F
α

N of an algebraic leaf FαN of Veech’s foliation on M1,n

is obtained by adding to it some covers Σ0,β′ of some moduli spacesM0,β′ of flat
spheres obtained by degeneration, for some (n′ + 3)-tuples β′ with n′ ≤ n + 1,
as well as some covers Σα

′

N ′ of some algebraic leaves Fα
′

N ′ ⊂ M1,m where α′ is a
m-tuple with m < n. Moreover, all the β′’s and the (α′, N ′)’s associated to a
stratum appearing in the boundary of F

α

N can be explicitly computed from the
pair (α, N).

Note that since Σ0,β′ is a cover of M0,β′ , both spaces share the same complex hyper-
bolic holonomy group and similarly for Σα

′

N ′ and F
α′

N ′ as well: one has

Γ
(
Σ0,β′

)
= Γ

(
M0,β′

)
= Γβ

′
and Γ

(
Σα
′

N ′
)

= Γ
(
Fα
′

N ′
)

= Γα
′

N ′ .

Then, taking for granted that the following holds true (as it is very reasonable to do):

(b1) a necessary condition for ΓαN to be discrete is that the corresponding statement
holds true for Γβ

′
and Γα

′

N , for any β′ or any pair (α′, N ′) associated to a
stratum appearing in the metric completion of FαN ,

it comes that Mostow’s inductive method should generalize and apply to the genus 1
case as well, hence the initial case (g, n) = (1, 2) appears as being essential from this
perspective.

6.5.0.4. – In addition to its importance with regard to the genus 1 cases of higher
dimension, another fact makes the problem (P1,2) quite important according to us,
namely its similarity with the corresponding 1-dimensional case in genus 0.

We now review again, mostly in ‘hypergeometric terms,’ this very classical case
(which goes back to Gauß and Schwarz, see the beginning of the Introduction) before
presenting the genus 1 case in a very similar way. The 0 appearing as a lower index
in the labeling below refers to the genus 0 case.

(10) We fix a 4-tuple β ∈ ]−1, 0[
4 such that β1 + · · ·+ β4 = −2.

(20) Then the moduli space M0,β of flat spheres with 4 cone points of cone angles
2π(1 + βk) for k = 1, . . . , 4, identifies with M0,4 ' P1 \ {0, 1,∞}.

(30) Identifying P1 \ {0, 1,∞} with M0,4 amounts to associating to a point
x ∈ P1 \ {0, 1,∞} the 4-marked sphere (P1, (uk)4

k=1) with u1 = 0, u2 = 1,
u3 = x and u4 =∞.

(40) Identifying P1 \ {0, 1,∞} to M0,β corresponds to associating to x in the former
space the flat sphere

(
P1,mβx

)
with mβx standing for the flat metric

∣∣ωβx ∣∣2 on P1,
where ωβx =

∏3
k=1(t− uk)βkdt is a multivalued 1-form on the Riemann sphere.
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(50) To the flat sphere
(
P1,mβx

)
are associated some twisted periods which can be

written as hypergeometric integrals
∫
γ
ωβx where γ is an element of a suitable

twisted homology space.

(60) Letting now x vary, one obtains some (multivalued) hypergeometric functions

Fβγ (x) =

∫
γ

ωβx =

∫
γ

3∏
k=1

(t− uk)βkdt

on P1 \ {0, 1,∞} 'M0,β.

(70) Any function Fβγ satisfies the hypergeometric differential equation(
E a,b,c

)
: F ′′ +

c− (1 + a+ b)x

x(1− x)
F ′ − ab

x(1− x)
F = 0,

which is Fuchsian on P1, with regular singularities at 0, 1 and ∞.
Here the parameters a, b and c are expressed in terms of the βk’s (and con-

versely, these parameters determine β). (51)

(80) Since ( E a,b,c) is a linear second-order ODE, the space of its solutions is (lo-
cally) of complex dimension 2 hence one can consider the associated multivalued
Schwarz’s map Sβ =

[
Fβγ0

, Fβγ1

]
with values in P1, where (γ0,γ1) is a basis of

the associated twisted homology space.

(90) Up to some choices and normalizations, Sβ has values in the upper half-plane
H ⊂ P1 and induces a biholomorphism between Poincaré’s half-plane in P1 \
{0, 1,∞} 'M0,4 and a hyperbolic triangle Tβ ⊂ H.

(100) The monodromy Γβ of Sβ is a subgroup of index 2 in the subgroup of real
analytic isometries of H spanned by the three hyperbolic reflections associated
to the geodesic boundaries of Tβ. Consequently, the ‘hypergeometric group’ Γβ is
a subgroup of Aut(H) = PSL2(R).

(110) All the 4-tuples β such that Γβ is discrete in PSL2(R) are known: see [11, §14.3]
if the criterion INT is satisfied and [60, Theorem 3.8] if not.

6.5.0.5. – Almost all of the above points admit analogues in the case when
(g, n) = (1, 2) (the 1 appearing as a lower index in the labeling below now refers to
the genus 1 case).

(11) We choose a 2-tuple α = (α1, α2) ∈ ]−1, 0[× ]0, 1[ such that α1 + α2 = 0: thus
α2 = −α1 and we only have to consider α1. We denote by M1,α the moduli
space M1,2 viewed as the moduli space of flat tori with 2 cone points of cone
angles 2π(1 + α1) and 2π(1− α1).

(21) For any integer N ≥ 2, there is an algebraic moduli space Fα1

N ⊂ M1,α which
identifies naturally with the modular curve Y1(N) = H/Γ1(N).

51. Explicitly, one has a = β1 + 1, b = −β3 and c = 2 + β1 + β2.
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(31) For any N ≥ 2 fixed, the embedding of Y1(N) into M1,2 amounts to associating
to [τ ] ∈ Y1(N) the 2-marked elliptic curve

(
Eτ , ([0], [τ ])

)
.

(41) The embedding of Y1(N) into M1,α amounts to associating to [τ ] ∈ Y1(N)

the flat elliptic curve
(
Eτ ,m

α1
τ

)
with mα1

τ standing for the flat metric |ωα1
τ |2

on Eτ , where ωα1
τ = θ(u, τ)α1θ

(
u− 1/N, τ

)−α1
du is a multivalued 1-form on

this elliptic curve.
(51) To the flat torus (Eτ ,m

α1
τ ) are associated some twisted periods which can be

written as elliptic hypergeometric integrals
∫
γ
ωα1
τ where γ is an element of a

suitable twisted homology group.

(61) Passing to the universal covering Y1(N )̃ ' H and now letting τ vary in it, one
obtains some (univalued) elliptic hypergeometric functions

Φα1
γ (τ) =

∫
γ

ωα1
τ =

∫
γ

θ(u, τ)α1θ
(
u− 1/N, τ

)−α1
du

on H.
(71) Any function Φα1

γ satisfies the ‘elliptic hypergeometric differential equation’(
E
α1

N

)
:
••
Φ + Pα1

N (τ)
•
Φ +Qα1

N (τ) Φ = 0

which is the pull-back of a Fuchsian differential equation of Y1(N), with regular
singular points at the cusps of this modular curve.

Here Pα1

N and Qα1

N stand for some functions of τ , which depend only on the
pair (α1, N) and which admit explicit rational expressions in terms of the theta
function θ(·, τ) and of its partial derivatives.

(81) Since ( E
α1

N ) is a linear second-order ODE, the space of its solutions is of com-
plex dimension 2 hence one can consider the associated Schwarz’s map Sα1

N =[
Φα1
γ0
,Φα1
γ1

]
with values in P1, where (γ0,γ1) is a basis of the associated twisted

homology group.
The Schwarz’s map Sα1

N coincides with Veech’s map (cf. Section § 4.4) as it
follows from Proposition 4.4.2 together with Corollary B.3.5.

(91) Up to some choices and normalizations, Sα1

N has values in H ⊂ P1.
(101) The monodromy Γα1

N of Sα1

N is a subgroup of Aut(H) = PSL2(R). This
‘elliptic hypergeometric group’ can also be described as the CH1-holonomy
group Γ1(N)α1 of the leaf Fα1

N (cf. section § 6.3).
(111) It is known that Γα1

N is discrete in PSL2(R) for some pairs (α1, N), see Corol-
lary 6.3.1 or § 5.4 for some explicit examples.

The previous discussion about what we call ‘1-dimensional hypergeometry’ is sum-
marized in Table 6 below.

Note that (P1,2) can be stated a bit more explicitly as problem

(P2)
determine all the pairs (α1, N) with α1 ∈ ]0, 1[

and N ≥ 2 such that Γα1

N is a lattice in PSL2(R),
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already considered in § 6.3. Together with the two related problems (P1) and (P3)
considered there, (P2) seems to be of fundamental importance, first because of the
possibility that solving it could allow to tackle inductively the higher dimensional
cases (P1,n) with n ≥ 2, but also from an historical point of view, since it would
allow to end an elliptic version of the classical 1-dimensional hypergeometric saga
told through the points (10) to (110) above, which started more than a century ago
with Gauß and Schwarz, to come to an end quite more recently, in the third section
of [60].

Table 6. Classical versus elliptic 1-dimensional hypergeometry

Classical case (g = 0) Elliptic case (g = 1)

β = (βk)4
k=1 ∈ ]−1, 0[

4 with
∑
k βk = −2 α1 ∈ ]0, 1[ and N ≥ 2

M0,β 'M0,4 ' P1 \
{

0, 1,∞
}

Fα1

N ' Y1(N) = H/Γ1(N)

x  
(
P1, (0, 1, x,∞)

)
τ  

(
Eτ , (0, 1/N)

)
ωβx =

∏3
k=1(t− uk)βkdt ωα1

τ = θ(u,τ)α1

θ
(
u−1/N,τ

)α1 du

Fβγ (x) =
∫
γ

∏3
k=1(t− uk)βkdt Φα1

γ (τ) =
∫
γ

θ(u,τ)α1

θ
(
u−1/N,τ

)α1 du(
E a,b,c

)
: F ′′ + c−(1+a+b)x

x(1−x) F ′ − ab
x(1−x)F = 0

(
E
α1

N

)
:
••
Φ + Pα1

N (τ)
•
Φ +Qα1

N (τ)Φ = 0

Sβ :M0,4̃ −→ H Sα1

N : Y1(N )̃ ' H −→ H

All the β’s such that Γβ is a
lattice in PSL2(R) are known

For some pairs (α1, N),
Γα1

N < PSL2(R) is a lattice
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APPENDIX A
1-DIMENSIONAL COMPLEX HYPERBOLIC CONIFOLDS

We define and state a few basic results concerning CH1-conifolds below. The general
notion of conifolds is rather abstract (see [77, 57] or [20, AppendixB]) but greatly
simplifies in the case under scrutiny.

We denote by D the unit disk in the complex plane. As the upper half-plane H, it
is a model of the complex hyperbolic space CH1.

A.1. Basics. – The map f : H → D∗, w 7→ eiw is (a model of) the universal cover of
the punctured disk D∗ = D \ {0}. We denote by D̃∗ the upper-half plane endowed
with the pull-back under f of the standard hyperbolic structure on D.

A.1.1. CH1-cones. – For any θ ∈ ]0,+∞[, the translation tθ : w 7→ w + θ leaves
invariant the complex hyperbolic structure of D̃∗ (since it is a lift of the rotation
z 7→ eiθz which is an automorphism of D fixing the origin). It follows that the complex
hyperbolic structure of D̃∗ factors through the action of tθ. The quotient C∗θ = D̃∗/〈tθ〉
carries a hyperbolic structure which is not metrically complete. Its metric completion,
denoted by Cθ, is obtained by adjoining only one point to C∗θ, called the apex and
denoted by 0. By definition, Cθ (resp. C∗θ) is the (punctured) CH1-cone of angle θ.

It will be convenient to also consider the case when θ = 0. By convention, we define
C∗0 as H/〈τ 7→ τ + 1〉 when H is endowed with its standard hyperbolic structure. It
is nothing else than D∗ but now endowed with the hyperbolic structure given by
the uniformization (and by restriction from the standard one of D). Note that C∗0 is
nothing else than a neighborhood of what is classically called a cusp in the theory of
Riemann surfaces.

As is well-known (see § 2.7.1), a CH1-structure on an orientable smooth surface Σ

can be seen geometrically as a (class for a certain equivalence relation of a) pair (D,µ)

where µ : π1(Σ) → Aut(CH1) is a representation (the holonomy representation) and
D : Σ̃→ CH1 a µ-equivariant étale map (the developing map). With this formalism,
it is easy to give concrete models of the CH1-cones defined above.

For any θ > 0, one defines Dθ(z) = zθ, and µθ stands for the character associat-
ing eiθ to the class of a small positively oriented circle around the origin in D. We
see Dθ as a multivalued map from D to itself. Its monodromy µθ leaves the stan-
dard hyperbolic structure of D invariant. Consequently, the pair (Dθ, µθ) defines a
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CH1-structure on D∗ and one verifies promptly that it identifies with that of the
punctured CH1-cone C∗θ. To define C∗0 this way, one can take D0(z) = log(z)/(2iπ)

as a developing map and as holonomy representation, we take the parabolic element
µ0 : x 7→ x + 1 of the automorphism group of Im(D0) = H (µ0 is nothing else than
the monodromy of D0).

By computing the pull-backs of the standard hyperbolic metric on their target space
under the elementary developing maps considered just above, one gets the following
characterization of the CH1-cones in terms of the corresponding hyperbolic metrics:
C∗0 and C∗θ for any θ > 0 can respectively be defined as the hyperbolic structure on D∗
associated to the metrics

ds0 =
|dz|
|z|log|z|

and dsθ = 2θ
|z|θ−1|dz|
1− |z|2θ

.

Note that for any positive integer k, C2π/k is the orbifold quotient of D by
z 7→ e2iπ/kz. In particular, C2π and C∗2π are nothing else than D and D∗ respectively,
hence most of the time it will be assumed that θ 6= 2π.

One verifies that among all the CH1-cones, the one of angle 0 is characterized
geometrically by the fact that the associated holonomy is parabolic, or metrically, by
the fact that C∗0 is complete. Finally, we mention that the area of the C∗θ is locally
finite at the apex 0 for any θ ≥ 0.

A.1.2. CH1-conifold structures. – Let S be a smooth oriented surface and let (si)
n
i=1 be

a n-tuple of pairwise distinct points on it. One sets S∗ = S \ {si}. A CH1-structure
on S∗ naturally induces a conformal structure or, equivalently, a structure of Riemann
surface on S∗. When endowed with this structure, we will denote S∗ by X∗ and si
by xi for every i = 1, . . . , n.

We will say that the hyperbolic structure on X∗ extends as (or just is for short)
a CH1-conifold (structure) on X if, for every puncture xi, there exists θi ≥ 0 and
a germ of pointed biholomorphism (X∗, xi) ' (C∗θ, 0) which is compatible with the
CH1-structures on the source and on the target. In this case, each puncture xi will be
called a conifold point and θi will be the associated conifold (or cone) angle. Remark
that our definition differs from the classical one since we allow some cone angles θi to
vanish. The punctures with conifold angle 0 are just cusps of X.

Note that when the considered hyperbolic structure on X∗ is conifold then its
metric completion (for the distance induced by the CH1-structure) is obtained by
adding to X∗ the set of conifold points of positive cone angles.

An important question is the existence (and possibly the uniqueness) of such
conifold structures when X is assumed to be compact. In this case, as soon as the
genus g of X and the number n of punctures verify 2g − 2 + n > 0, it follows from
Poincaré-Koebe uniformization theorem that there exists a Fuchsian group Γ such that
H/Γ ' X∗ as Riemann surfaces with cusps (and Γ is essentially unique). Actually, this
theorem generalizes to any CH1-orbifold structures on X (see e.g., Theorem IV.9.12
in [17] for a precise statement). It implies in particular that such a structure, when it
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exists, is uniquely characterized by the conformal type of X∗ and by the cone angles
at the orbifold points.

It turns out that the preceding corollary of Poincaré’s uniformization theorem
generalizes to the class of compact CH1-conifolds. Indeed, long before Troyanov proved
his theorem (recalled in § 1.1.5) concerning the existence and the uniqueness of a
flat structure with cone singularities on a surface (we could call such a structure a
‘E2-conifold structure’), Picard had established the corresponding result for compact
complex hyperbolic conifolds of dimension 1:

Theorem A.1.2. – Assume that 2g − 2 + n > 0 and let (X, (xi)
n
i=1) be a compact

n-marked Riemann surface of genus g. Let (θi)
n
i=1 ∈ [0,∞[

n be an angle datum.

1. The following two assertions are equivalent:

— there exists a hyperbolic conifold structure on X with a cone singularity of
angle θi at xi, for i = 1, . . . , n;

— the θi’s are such that the following inequality is satisfied:

(153) 2π
(
2g − 2 + n

)
−

n∑
i=1

θi > 0.

2. When the two preceding conditions are satisfied, then the corresponding conifold
hyperbolic metric on X is unique (if normalized in such a way that its curvature
be -1) and the area of X with respect to it is equal to the LHS of (153).

Actually, the preceding theorem has been obtained by Picard at the end of the
19th century under the assumption that θi > 0 for every i (see [66] and the references
therein). For the extension to the case when some hyperbolic cusps are allowed (i.e.,
when some of the angles θi vanish), we refer to [33, Chap.II] although it is quite likely
that this generalization was already known to Poincaré.

A.2. Second order differential equations and CH1-conifold structures. – Given a
CH1-structure on a punctured Riemann surface X∗, the question is to verify whether
it actually extends as a conifold structure at the punctures. This can be achieved by
looking at the associated Schwarzian differential equation.

We detail below some aspects of the theory of second order differential equations
which are needed for this. Most of the material presented below is very classical and
well-known (the reader can consult [89, 70] among the huge amount of references
which address the subject).
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A.2.1. – Since we are concerned by a local phenomenon, we will work locally and
assume that X∗ = D∗. In this case, the considered CH1-structure on X∗, which
we will denote by X∗ for convenience, is characterized by the data of its developing
map D : X∗ → CH1 alone. Let x be the usual coordinates on D. Although D is a
multivalued function of x, its monodromy lies in Aut(CH1) hence is projective. It
follows that the Schwarzian derivative of D with respect to x, defined as{

D,x
}

=

(
D′′(x)

D′(x)

)′
− 1

2

(
D′′(x)

D′(x)

)2

=
D′′′(x)

D′(x)
− 3

2

(
D′′(x)

D′(x)

)2

,

is non-longer multivalued. In other words, there exists a holomorphic function Q

on X∗ such that the following Schwarzian differential equation holds true:

(SX∗)
{
D,x

}
= Q(x).

It turns out that the property for X∗ to extend as a CH1-conifold at the origin can
be deduced from this differential equation as we will explain below.

Note that, since any function of the form (aD + b)/(cD + d) with
[
a b
c d

]
∈ SL2(C)

satisfies (SX∗), this differential equation (or, in other terms, the function Q) alone
does not characterizes X∗. This CH1-structure is characterized by the data of an
explicit model U of CH1 as a domain in P1 (for instance U = D or U = H) and by a
Aut(U)-orbit of U -(multi)valued solutions of (SX∗).

A.2.2. – We now recall some very classical material about Fuchsian differential equa-
tions (see [89, 36, 70] among many references).

As is well-known, given R ∈ O(X∗), the Schwarzian differential equation

(SR)
{
S, x

}
= R(x)

is associated to the class of second-order differential equations of the form

(Ep,q) F ′′ + pF ′ + qF = 0

for any function p, q ∈ O(X∗) such that R = 2(q − p′/2 − p/4). Given two such
functions p and q, the solutions of (SR) are the functions of the form F1/F2 for any
basis (F1, F2) of the space of solutions of (Ep,q).

In what follows, we fix such an equation (Ep,q) and will work with it. The reason for
doing so is twofold: first, it is easier to deal with such a linear equation than with (SR)

which involves a non-linear Schwarzian derivative. Secondly, it is through some second-
order linear differential equations that we are studying Veech’s CH1-structures on the
algebraic leaves of Veech’s foliation on M1,2 in this text (see § 5.3 for more details).

We recall that (Ep,q) (resp. (SR)) is Fuchsian (at the origin) if p, q are (resp. R is)
meromorphic at this point with p(x) = O(x−1) and q(x) = O(x−2) (resp. R(x) =

O(x−2)) for x close to 0 in D∗. In this case, defining p0 and q0 as the complex numbers
such that p(x) = p0x

−1 + O0(1) and q(x) = q0x
−2 + O0(x−1), one can construct the

quadratic equation
s(s− 1) + sp0 + q0 = 0,
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which is called the characteristic equation of (Ep,q). Its two roots ν+ and ν− (we
assume that <e(ν+) ≥ <e(ν−)) are the two characteristic exponents of this equation
and their difference ν = ν+ − ν− is the associated projective index (52). The latter can
also be defined as the complex number such that R(x) = 1−ν2

2 x−2 + O(x−1) in the
vicinity of the origin, which shows that it is actually associated to the Schwarzian
equation (SR) rather than to (Ep,q).

It is known that one can give a normal form of a solution of (SR) in terms of ν :
generically (and this will be referred to as the standard case), there is a local invertible
change of coordinate x 7→ y = y(x) at the origin so that yν provides a solution of (SR)

on a punctured neighborhood of 0. Another case is possible only when ν = n ∈ N.
In this case, known as the logarithmic case, a solution of (SR) could be of the form
y−n + log(y). These results (which are simple consequences of Frobenius theorem
for Fuchsian second-order differential equations, see for instance [89, §2.5]) (53) are
summarized in Table 7.

Table 7.

Case
Index ν ν 6∈ N ν = n ∈ N∗ ν = 0

Standard yν yn −−

Logarithmic −− y−n + log y log y

We will use this result to determine when the CH1-structure X∗ extends as a
conifold structure at the origin by means of some analytical considerations about the
associated Schwarzian differential equation (SX∗). Before turning to this, we would
like to state another very classical (and elementary) result about Fuchsian differential
systems and equations that we use several times in this text (for instance in § 5.3
above or in B.3.5 below).

Let

(S ) Z ′ = M · Z

be a meromorphic linear 2×2 differential system on (C, 0):M = (Mi,j)
2
i,j=1 is a matrix

of (germs of) meromorphic functions at the origin and the unknown Z = t(F,G) is a
2 × 1 matrix whose coefficients F and G are (germs of) holomorphic functions at a
point x0 ∈ (C, 0) distinct from 0.

52. Note that ν is actually only defined up to sign in full generality.
53. See also [70, Théorème IX.1.1] for the sketch of a more direct proof.
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Lemma A.2.2. – Assume that M1,2 does not vanish identically. Then:

1. the space of first components F of solutions Z = t(F,G) of ( S ) coincides with
the space of solutions of the second-order differential equation

( E S ) F ′′ + pF ′ + q F = 0,

with

p = −Tr(M)− M ′12

M12
and q = det(M)−M ′11 +M11

M ′12

M12
;

2. the differential equation ( E S ) is Fuchsian if and only if M has a pole of order at
most 1 at the origin. In this case, the characteristic exponents of ( E S ) coincide
with the eigenvalues of the residue matrix of M at 0.

Proof. – This is a classical result which can be proved by straightforward computa-
tions (see e.g., [36, Lemma 6.1.1, §3.6.1] for the first part).

A.2.3. – We now return to the general problem mentioned in A.2.1.
We first consider the models of CH1-cones considered in A.1. By some easy com-

putations, one gets that {
Ds(x), x

}
=

1− s2

2x2

for any s ≥ 0 (we recall that D0(x) = log(x) and Ds(x) = xs for s > 0).
It follows that a necessary condition for the origin to be a conifold point for the

CH1-structure X∗ is that the Schwarzian differential equation (SX∗) must be Fuchsian
at this point, i.e., that Q(x) = O(x−2) in the vicinity of 0.

A natural guess at this point would be that the preceding condition is also sufficient.
It turns out that it is the case indeed:

Proposition A.2.3. – The two following assertions are equivalent:

1. the CH1-structure X∗ extends as a conifold structure at the origin;

2. the Schwarzian differential equation (SX∗) is Fuchsian.

Proving this result is not difficult. We provide a proof below for the sake of com-
pleteness. We will denote the monodromy operator acting on (germs at the origin of)
multivalued holomorphic functions on (D∗, 0) by M0.

We will need the following

Lemma A.2.3. – For any positive integer n and any Moebius transformation
g ∈ PGL2(C), the multivalued map D(x) = g(x−n+log(x)) is not the developing map
of a CH1-structure on a punctured open neighborhood of the origin in C.
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Proof. – The monodromy around the origin of such a (multivalued) function D is
projective. Let T0 stand for the matrix associated to it. On the one hand, T0 is
parabolic with g(0) ∈ P1 as its unique fixed point. On the other hand, the image
of any punctured small open neighborhood of the origin by D is a punctured open
neighborhood of g(0). These two facts imply that there does not exist a model U
of CH1 in P1 (as an open domain) such that D takes values in U and T0 ∈ Aut(U).
This shows in particular that D can not be the developing map of a CH1-structure
on any punctured open neighborhood of 0 ∈ C.

Proof of Proposition A.2.3. – According to the discussion which precedes the propo-
sition, 1. implies 2., hence the only thing remaining to be proven is the converse
implication. We assume that (SX∗) is Fuchsian and let ν be its index. We will con-
sider the different cases of Table 7 separately.

We assume first that ν is not an integer. Then there exists a local change of coordi-
nates x 7→ y = y(x) fixing the origin such that yν is a solution of (SX∗). Consequently,
the developing map D : X∗ → D of X∗ can be written D = (ayν + b)/(cyν + d) for
some complex numbers a, b, c, d such that ad− bc = 1.

Clearly, b/d ∈ D, hence up to post-composition by an element of Aut(D) = PU(1, 1)

sending b/d onto 0, one can assume that b = 0. By assumption, the monodromy of D
belongs to PU(1, 1). Since it has necessarily the origin as a fixed point, it follows that
this monodromy is given by

M0(D) = e2iπµD

for a certain real number µ. On the other hand, one has

M0(D) =
aM0(yν)

cM0(yν) + d
=

ae2iπνyν

ce2iπνyν + d
.

From the two preceding expressions for M0(D) and since a 6= 0, one deduces that
the relations

e2iπµ aY
cY+d = ae2iπνY

ce2iπνY+d ⇐⇒ e2iπµ
(
ce2iπνY + d

)
= e2iπν

(
cY + d

)
hold true as rational/polynomial identities in Y . Because e2iπν 6= 1 by assumption,
it follows that c = 0 and ν ∈ R+ \ N. Consequently, one has D(x) = ỹ(x)ν for a
certain multiple ỹ of y. It is a local biholomorphism which induces an isomorphism
of CH1-structures X∗ ' C∗2πν . This proves 1. in this case.

Assume now that ν = 0. Then log(y)/(2iπ) is a solution of (SX∗) for a certain
local coordinate y fixing the origin. In this case, it is more convenient to take H
as the target space of the developing map D of X∗. Since the monodromy of D is
parabolic, one can assume that its fixed point is i∞, which implies that D can be
written D = a log(y)/(2iπ) + b with a, b ∈ C and a 6= 0. Setting β = exp(2iπb/a) 6= 0

and replacing y by βy, one can assume that b = 0.
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Moreover, since D has monodromy in PSL2(R), a must be real and positive. Com-
puting the pull-back under D of the hyperbolic metric of H, one gets

D∗

(
|dz|∣∣=m(z)

∣∣
)

=
|dD|∣∣=m(D)

∣∣ =

a
2π
|dy|
|y|

a
2π

∣∣<e
(

log(y)
)∣∣ =

|dy|
|y|log|y|

,

which shows that y induces an isomorphism of CH1-structures X∗ ' C∗0.
We now consider the case when ν = n ∈ N∗ and yn is a solution of (SX∗) for a

certain local coordinate y = y(x) fixing the origin. As above, one can assume that the
developing map D of X∗ is written D = ayn/(cyn + d). In this case, the monodromy
argument used previously does not apply but one can conclude directly by remarking
that since n is an integer, there exists another local coordinate ỹ at the origin such
that the relation ayn/(cyn + d) = ỹn holds true identically. This shows that X∗ is
isomorphic to C∗2πn.

Finally, the last case of Table 6, namely the logarithmic case with ν ∈ N∗, does
not occur according to Lemma A.2.3., hence we are done.
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THE GAUSS-MANIN CONNECTION

ASSOCIATED TO VEECH’S MAP

Many properties of the hypergeometric function F (a, b, c; ·) hence of the associated
CH1-valued multivalued Schwarz map S(a, b, c; ·) can be deduced from the hypergeo-
metric differential equation (2).

Let F
α
a be a leaf of Veech’s foliation in the Torelli space Tor 1,n. As shown in § 4.4.3,

Veech’s map V αa : F
α
a → CHn−1 has an expression V αa = [v•] whose components

v• =
∫
γ•
Tαa (u)du, with • = ∞, 0, 3, . . . , n are elliptic hypergeometric integrals. A

very natural approach to the study of V αa is by first constructing the differential
system satisfied by these.

Something very similar has been done in the papers [51] and [54] but in the more
general context of isomonodromic deformations of linear differential systems on punc-
tured elliptic curves. The results of these two papers can be specialized to the case
we are interested in, but this requires a little work in order to be made completely
explicit. This is what we do in this appendix.

We first introduce the Gauß-Manin connection in a general context and then spe-
cialize and make everything explicit in the case of punctured elliptic curves.

B.1. Basics on Gauß-Manin. – In this subsection, we present general facts relative to
the construction of the Gauß-Manin connection ∇GM . We first define it analytically
in B.1.2. Then we explain how it can be computed by means of relative differential
forms, see B.1.3. We conclude in B.1.4 by stating the comparison theorem which
asserts that, under reasonable hypotheses, one can construct∇GM by considering only
algebraic relative differential forms.

The material presented below is well-known hence no proof is given. Classical
references are the paper [38] by Katz and Oda and the book [10] by Deligne.

Another more recent and useful reference is the book [2] by André and Baldassarri,
in particular the third chapter. Note that the general strategy followed in this book
goes by ‘dévissage’ and reduces the proofs of most of the main results to a particular
ideal case, called an ‘elementary coordinatized fibration’ by the authors (cf. [2, Chap. 3,
Definition 1.3]). We think it is worth mentioning that the specific case of punctured
elliptic curves we are interested in is precisely of this kind, see Remark B.2.4 below.
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B.1.1. – Let π : X −→ S be a family of Riemann surfaces over a complex manifold S.
This means that π is a holomorphic morphism whose fibersXs = π−1(s), s ∈ S, all are
(possibly non-compact) Riemann surfaces. We assume that π is smooth and as nice
as needed to make everything we say below work well (e.g., the map π is a submersion
with connected fibers).

Let Ω be a holomorphic 1-form on X and for any s ∈ S, denote by ωs its restriction
to the fiber Xs: ωs = Ω|Xs . Then one defines differential covariant operators by setting

∇(η) = dη + Ω ∧ η
(
resp. ∇s(η) = dη + ωs ∧ η

)
for any (germ of) differential form η on X (resp. on Xs, for any s ∈ S).

The associated kernels

L = Ker
(
∇ : O X → Ω1

X

)
and Ls = Ker

(
∇s : OXs → Ω1

Xs

)
are local systems on X and Xs respectively, such that L|Xs= Ls for any s ∈ S.

B.1.2. – Let B be the first derived direct image of L by π:

B = R1π∗(L).

It is the sheaf on S the stalk of which at s ∈ S is the first group of twisted
cohomology H1(Xs, Ls). We assume that π : X → S and Ω are such that B is a local
system on S, of finite rank denoted by r. Then, tensoring by the structure sheaf of S,
one obtains

B = B ⊗C OS .

It is a locally free sheaf of rank r on S. Moreover, there exists a unique connection
on B whose kernel is B. The latter is known as the Gauß-Manin connection and will
be denoted by

∇GM : B→ B⊗ Ω1
S .

We have thus given an analytic definition of the Gauß-Manin connection in the
relative twisted context. Note that this definition, although rather direct, is not con-
structive at all. We will deal with this below.

B.1.3. – We recall that the sheaves Ω•X/S of relative differential forms on X are the
ones characterized by requiring that the following short sequences of O X -sheaves are
exact:

0 // π∗Ω•S
// Ω•X

// Ω•X/S
// 0 .

More concretely, let s1, . . . , sn stand for local holomorphic coordinates on a small
open subset U ⊂ S and let z be a vertical local coordinate on an open subset
Ũ ⊂ π−1(U) étale over U . Then there are natural isomorphisms

(154) Ω0
X/S |Ũ ' OŨ and Ω1

X/S |Ũ ' OŨ · dz.
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For any local section η of Ω•X , we denote by ηX/S the section of Ω•X/S it induces.
With the above notation, assuming that η is a holomorphic 1-form on Ũ , then the
local isomorphism (154) identifies ηX/S with η − η(∂z)dz.

Since the exterior derivative d commutes with the pull-back under π, one obtains
the relative de Rham complex (Ω•X/S , d). One verifies easily that the connection ∇Ω

on Ω•X induces a connection ∇X/S on the relative de Rham complex, so that any
square of O X -sheaves as below is commutative:

Ω•X
//

∇

��

Ω•X/S
//

∇ X/S

��

0

Ω•+1
X

// Ω•+1
X/S

// 0.

In the local coordinates (s1, . . . , sn, z) considered above, writing Ω = ω + ϕdz for
a holomorphic function ϕ and a 1-form ω such that ω(∂z) = 0 (i.e., ω = Ω X/S with
the notation introduced above), it follows that ∇X/S satisfies

(155) ∇X/S(f) =

n∑
i=1

(
∂f/∂si

)
dsi + ω f

for any holomorphic function f on Ũ and is characterized by this property.
By definition, (Ω•X/S ,∇X/S) is the relative twisted de Rham complex associated

to π and Ω. Under some natural assumptions, the direct images π∗Ω•X/S are coherent
sheaves of OS-modules and ∇X/S gives rise to a connection on S

π∗
(
∇X/S

)
: π∗( O X ) −→ π∗

(
Ω1

X/S

)
.

Note that π∗( O X ) is nothing else than O X seen as a OS-module by means of π.
For this reason, we will abusively write down the preceding connection as

(156) ∇X/S : O X −→ π∗
(
Ω1

X/S

)
.

B.1.4. – On the other hand, the map

U 7−→ H1
(
π−1(U),

(
Ω•X/S ,∇X/S

)
|U
)

defines a presheaf (of hypercohomology groups) on S. The associated sheaf is denoted
by R1π∗(Ω

•
X/S ,∇). Its stalk at any s ∈ S coincides with H1(Xs, (Ω

•
Xs
, ωs)) hence is

naturally isomorphic to H1(Xs, Ls) (see § 3.1.8).
It follows that one has a natural isomorphism

B ' R1π∗
(
Ω•X/S ,∇

)
.

We make the supplementary assumption that π is affine (this implies in particular
that the fibers Xs can no more be assumed to be compact). Then it follows (see
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[2, Chapt.III,§2.7]) that R1π∗
(
Ω•X/S ,∇

)
hence B identifies with the cokernel of the

connection π∗
(
∇X/S

)
, denoted by ∇X/S for short, see (156).

In other terms, one has a natural isomorphism of OS-sheaves

(157) B '
π∗Ω

1
X/S

∇X/S

(
O X

) .
For a local section ηX/S of Ω1

X/S , we denote by [ηX/S ] its class in B, or equiva-
lently, its class modulo ∇X/S( O X ).

By means of the latter isomorphism, one can give an effective description of the
action of the Gauß-Manin connection. Let ν be a vector field over the open subset
U ⊂ S (i.e., an element of Γ(U, TS)). Then

∇GMν =
〈
∇GM (·), ν

〉
is a derivation of the OU -module Γ(U, B). An element of this space of sections is
represented by the class [ηX/S ] (that is ηX/S modulo ∇X/S O(Ũ)) of a relative 1-form
ηX/S ∈ Γ(Ũ,Ω1

X/S). Let η̃ be a section of Ω1
X over Ũ such that η̃X/S = ηX/S . Then,

for any lift ν̃ of ν over Ũ , one has

∇GMν
(
[ηX/S ]

)
=
[
∇ν̃(η̃) X/S

]
.

Finally, we mention that when not only π but also S is supposed to be affine (as
will hold true in the case we will be interested in, cf. B.3 below), then there is a
more elementary description of the RHS of the isomorphism (157). Indeed, in this
case, according to [2, p.117], B identifies with the OS-module attached to the first
cohomology group of the complex of global sections

O( X )→ Ω1
X/S( X )→ Ω2

X/S( X )→ · · · .

If additionally S is assumed to be of dimension 1, then Ω2
X/S is trivial, hence one

obtains the following generalization of (33) in the relative case:

(158) B ' OS ⊗C
H0
(

X ,Ω1
X/S

)
∇X/S

(
H0
(

X , O X

)) .
B.1.5. – Assume that the fibers Xs’s are punctured Riemann surfaces and that X

can be compactified in the vertical direction into a family π : X → S of compact
Riemann surfaces. The original map π is the restriction of π to X which is nothing
else than the complement of a divisor Z in X .

Instead of considering holomorphic (relative) differential forms on X as above, one
can make the same constructions using rational (relative) differential forms on X with
poles on Z . More concretely, one makes all the constructions sketched above starting
from the sheaves of O

X
(∗Z )-modules Ω•

X
(∗Z ) on X .

A fundamental result of the field, due to Deligne in its full generality, is that the
twisted comparison theorem mentioned in § 3.1.9 can be generalized to the relative

MÉMOIRES DE LA SMF 164



APPENDIX B. THE GAUSS-MANIN CONNECTION 161

setting, at least when Z is a relative divisor with normal crossing over S (see [10,
Théorème 6.13] or [2, Chap.4, Theorem 3.1] for precise statements).

In the particular case of relative dimension 1, this gives the following version of the
isomorphism (157):

B '
π∗Ω

1
X/S(∗Z )

∇X/S

(
O X (∗Z )

) .
When S is also assumed affine, one gets the following generalization of (34):

(159) B ' OS ⊗C
H0
(

X ,Ω1
X/S(∗Z )

)
∇X/S

(
H0
(

X , O X (∗Z )
)) .

B.1.6. – We now explain how the material introduced above can be used to construct
differential systems satisfied by generalized hypergeometric integrals.

Let B̌ be the dual of B = R1π∗(L). It is the local system on S whose fiber B̌s
at s is the twisted homology group H1(Xs, L

∨
s ). Let ∇̌GM be the dual Gauß-Manin

connection on the associated sheaf B̌ = OS ⊗ B̌. We recall that, by definition, it is
the connection whose local horizontal sections (whose ‘solutions’ for short) define the
local system B̌. It can also be characterized by the following property: for any local
sections b and β̌ of B and B̌ respectively, with the same definition domain, one has

(160) d
〈
b, β̌
〉

=
〈
∇GM (b), β̌

〉
+
〈
b, ∇̌GM

(
β̌
)〉
.

B.1.7. – We use again the notation from B.1.1. Let T be a global (but multivalued)
function on X satisfying ∇̌(T ) = dT − ΩT = 0. For any s ∈ S, one denotes its
restriction to Xs by Ts. Let I be the local holomorphic function defined on a small
open subset U ⊂ S as the following generalized hypergeometric integral depending
holomorphically on s:

(161) I(s) =

∫
γs

Ts · ηs.

Here the γs’s stand for L∨s -twisted 1-cycles which depend analytically on s ∈ U
and s 7→ ηs is a holomorphic ‘section of Ω1

X over U ,’ i.e., ηs ∈ Ω1(Xs) for every
s ∈ U and the dependency with respect to s is holomorphic. As explained in § 3.1.7,
the value I(s) actually depends only on the twisted homology classes [γs] and on the
class [ηsX/S ] of ηs in H0(Xs,Ω

1
Xs

)/∇s( O(Xs)).
In other terms, for every s ∈ U , one has

(162) I(s) =
〈[
γs
]
,
[
ηsX/S

]〉
.

To simplify the discussion, assume now that S is affine and of dimension 1 (as
it will be the case in B.3 below). Now s has to be understood as a global holomor-
phic coordinate on U = S. Setting σ = ∂/∂s, one denotes the associated derivation
by ∇GMσ (·) =

〈
∇GM (·), σ

〉
. We define ∇̌GMσ similarly.
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In most cases, the twisted 1-cycles γs’s appearing in such an integral are locally
obtained by topological deformations. In this case, it is well known (cf. [11, Re-
mark (3.6)]) that s 7→ [γs] is a section of B̌ hence belongs to the kernel of ∇̌GM ,
i.e., ∇̌GM (γs) ≡ 0.

Let σ̃ be a fixed lift of σ over U . Then from (160) and (162), it follows that

I ′(s) =
d

ds

∫
γs

Ts · ηs =
d

ds

〈[
γs
]
,
[
ηsX/S

]〉
=
〈

[γs], ∇GMσ
[
ηsX/S

]〉
=

∫
γs

Ts · ∇σ̃
(
ηs
)

for every s ∈ U . More generally, for any integer n, one has

(163) I(n)(s) =
〈

[γσ],
(
∇GMσ

)n [
ηsX/S

]〉
=

∫
γs

Ts · ∇nσ̃
(
ηs
)
,

where ∇nσ stands for the n-th iterate of ∇σ̃ acting on the sheaf of 1-forms on X .

To make the notation simpler, if µ is a section of Ω1
X , we will denote the sec-

tion [µX/S ] of H0( X ,Ω1
X/S)/∇X/S(H0( X , O X )) that it induces just by [µ] below.

By hypothesis, the twisted cohomology groups H1(Xs, Ls) are all of the same finite
dimensionN > 0. It follows that there is a non-trivial O(U)-linear relation between the
classes of the ∇kσ

(
ηs
)
’s for k = 0, . . . , N , i.e., there exists a non-trivial (N + 1)-tuple

(A0, . . . , AN ) ∈ O(U)N+1 such that the following relation

A0(s) ·
[
ηs
]

+A1(s)
[
∇σ
(
ηs
)]

+ · · ·+AN (s)
[
∇Nσ

(
ηs
)]

= 0

holds true for every s ∈ U . Since the value of the k-th derivative I(k) at s actually
depends only on the class of ∇kσ(ηs) (see (163)), one obtains that the function I

satisfies the following linear differential equation on U :

A0 · I +A1 · I ′ + · · ·+AN · I(N) = 0.

Note that the function I defined in (161) is not the only solution of this differential
equation. Indeed, it is quite clear that this equation is also satisfied by any function
of the form s 7→

∫
βs
Ts · ηs as soon as s 7→ βs is a local section of B̌.

B.2. The Gauß-Manin connection on a leaf of Veech’s foliation. – We are now going to
specialize the material presented in the preceding subsections to the case of punctured
elliptic curves we are interested in.

In what follows, as before, α1, . . . , αn stand for fixed real numbers bigger than −1

that sum up to 0.
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B.2.1.– The map (τ, z1 = 0, z2, . . . , zn, zn+1) 7→ (τ, z1 = 0, z2, . . . , zn) that forgets the
last variable zn+1 induces a projection from Tor 1,n+1 onto Tor 1,n. For our purpose, it
will be convenient to see this space rather as a kind of covering space of the ‘universal
curve’ over the target Torelli space. For this reason, we will write u instead of zn+1

and take this variable as the first one.
In other terms, we consider

CTor 1,n =
{(
u, τ, z

)
∈ C× Tor 1,n

∣∣ u ∈ C \
n⋃
i=1

(
zi + Zτ

)}
' Tor 1,n+1

and the corresponding projection CTor 1,n → Tor 1,n : (u, τ, z)→ (τ, z).
We define two automorphisms of CTor 1,n by setting

T1(u, τ, z) =
(
u+ 1, τ, z

)
and Tτ (u, τ, z) =

(
u+ τ, τ, z

)
for any element (u, τ, z) of this space.

The group spanned by T1 and Tτ is isomorphic to Z2 and acts discontinuously
without fixed points on CTor 1,n. The associated quotient, denoted by E 1,n, is nothing
but the universal n-punctured elliptic curve over Tor 1,n. This terminology is justified
by the fact that the projection onto Tor 1,n factorizes and gives rise to a fibration

π : E 1,n −→ Tor 1,n

the fiber of which at (τ, z) ∈ Tor 1,n is the n-punctured elliptic curve Eτ,z.
There is a partial vertical compactification

π : E 1,n −→ Tor 1,n

whose fiber at (τ, z) is the unpunctured elliptic curve Eτ . The latter extends π, is
smooth and proper and comes with n canonical sections (k = 1, . . . , n):

[k]1,n : Tor 1,n −→ E 1,n(
τ, z) 7−→ [zk] ∈ Eτ .

In particular, because of the normalization z1 = 0, [1]1,n is nothing else but the zero
section [0]1,n which associates [0] ∈ Eτ to (τ, z), i.e., [1]1,n = [0]1,n.

B.2.2.– Recall the expression (36) for the function T considered in Section 3:

T (u, τ, z) = exp
(
2iπα0u

) n∏
k=1

θ
(
u− zk, τ

)αk .
Contrary to §3 where τ and z were assumed to be fixed and only u was allowed

to vary, we want now all the variables u, τ and z to be free. In other terms, we now
see T as a multivalued holomorphic function on CTor 1,n.

Let Ω stand for the total logarithmic derivative of T on CTor 1,n:

Ω = dlog T = (∂ log T/∂u)du+ (∂ log T/∂τ)dτ +

n∑
j=2

(∂ log T/∂zj)dzj .
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A straightforward computation shows that

(164) Ω = ω +

n∑
k=1

αk

[
η(u− zk)dτ − ρ(u− zk)dzk

]
,

where

— ω = (2iπα0 + δ)du stands for the logarithmic total derivative of T with respect
to the single variable u (thus δ =

∑n
k=1 αkρ(u − zk) see (37) in Section 3) but

now considered as a holomorphic 1-form on CTor 1,n;

— we have set for any (u, τ, z) ∈ CTor 1,n:

η(u) = η(u, τ) = ∂ log θ(u, τ)/∂τ =
1

4iπ

θ′′(u, τ)

θ(u, τ)
.

After easy computations, one deduces from the functional equations (20) that for
every τ ∈ H and every u ∈ C \ Zτ , one has:

ρ(u+ 1) = ρ(u) η(u+ 1) = η(u)(165)

ρ(u+ τ) = ρ(u)− 2iπ η(u+ τ) = η(u)− ρ(u) + iπ.(166)

In Section 3, we have shown that when τ is assumed to be fixed, ω is Zτ -invariant.
It follows that, on CTor 1,n, one has:

(167) T∗1(ω) = ω and T∗τ (ω) = ω +
(
2iπα0 + δ

)
dτ.

We set

ω̃ = Ω− ω =

n∑
k=1

αk η
(
u− zk

)
dτ −

n∑
k=1

αk ρ
(
u− zk

)
dzk.

It follows immediately from (165) that T∗1(ω̃) = ω̃. With (167), this gives us

(168) T∗1
(
Ω
)

= Ω.

On the other hand, using (166) and the fact that
∑n
k=1 αk = 0, one has

T∗τ
(
ω̃
)

= ω̃ − δdτ + 2iπ

n∑
k=1

αkdzk.

Combining the latter equation with (167), one eventually obtains

(169) T∗τ (Ω) = Ω + 2iπ
(
α0dτ +

n∑
k=2

αkdzk

)
.
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B.2.3.– The fact that Ω is not Tτ -invariant prevents this 1-form from descending
onto E 1,n. However, given the obstruction T∗τ (Ω)−Ω explicited just above, it will no
longer be the case over a leaf of Veech’s foliation on the Torelli space.

More precisely, let a = (a0, a∞) ∈ R2 be such that the leaf F a = F (a0,a∞) of
Veech’s foliation on Tor 1,n is not empty. Remember that this leaf is cut out by the
equation

(170) a0τ +

n∑
j=2

αjzj = a∞.

Let E a and CTora stand for the restrictions of E 1,n and CTor 1,n over F a respec-
tively. Clearly, CTora is invariant by T1 and Tτ . Moreover, from (170), it follows that
a0dτ +

∑n
j=2 αjdzj = 0 when restricting to F a.

Thus, denoting by Ωa the restriction of Ω to CTora, it follows from (168) and (169)
that

T∗1
(
Ωa
)

= Ωa and T∗τ
(
Ωa
)

= Ωa.

This means that Ωa descends to E a as a holomorphic 1-form. We denote again its
push-forward onto E a by Ωa.

Looking at (164), it is quite clear that for any (τ, z) ∈ F a, one has

(171) Ωa|Eτ,z = ωa(·, τ, z),

where the right-hand side is the rational 1-form (37) on Eτ,z = π−1(τ, z).
With the help of Ωa we are going to make the same constructions as in Section 3

but in a relative setting, over the leaf F a.

B.2.4.– We now specialize the constructions and results of B.1 by taking

X = E a, S = F a and Ω = Ωa.

The covariant operator ∇Ωa : η 7→ dη + Ωa ∧ η induces an integrable connection
on Ω•E a . Its kernel La is a local system of rank 1 on E a. Moreover, it follows imme-
diately from (171) that given (τ, z) in F a, its restriction to Eτ,z = π−1(τ, z) coincides
with the local system Lω(·,τ,z) associated to the 1-form ω(·, τ, z) on Eτ,z constructed
in § 3.2, denoted here by Lτ,z for simplicity.

On the leaf F a ⊂ Tor 1,n, one considers the local system Ba = R1π∗(La) whose
stalk at (τ, z) is nothing else than H1(Eτ,z, Lτ,z). The associated sheaf Ba = O F a

⊗C
Ba is locally free and of rank n according to Theorem 3.3.2.

We are interested in the Gauß-Manin connection

∇GMa : Ba → Ba ⊗ Ω1
F a

which we would like to make explicit.
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Let E a and [k]a (for k = 1, . . . , n) stand for the restrictions of E 1,n and of [k]1,n
over F a. For any k = 1, . . . , n, the image of F a by [k]a is a divisor in E a, denoted
by Z[k]a. Consider their union

Za =

n⋃
k=1

Z[k]a.

It is a relative divisor in E a with simple normal crossing (the Z[k]a’s are smooth and
pairwise disjoint!), hence Deligne’s comparison theorem of B.1.5 applies: there is an
isomorphism of O F a

-sheaves

(172) Ba ' O F a
⊗C

H0
(

E a,Ω
1
E a/F a

(∗Za)
)

∇ E a/F a

(
H0
(

E a, O E a(∗Za)
)) .

Remark B.2.4. – Actually, the geometrical picture we have can be summarized by
the following commutative diagram

E a
� � //

πa

$$

E a

πa

��

Za? _oo

zz

F a

where the two horizontal arrows are complementary inclusions. Since the restriction
of πa to Za is obviously an étale covering, this means that πa : E a → F a is precisely
what is called an ‘elementary fibration’ in [2]. Even better, quotienting by the elliptic
involution over F a

(54), one sees that πa factorizes through the relative projective line
P1

F a
→ F a. In the terminology of [2], this means that the elementary fibration πa

can be ‘coordinatized’.

B.2.5.– At this point, we use Theorem 3.3.2 to obtain a relative version of it. We
consider the horizontal non-reduced divisor supported on Za:

Z
′
a = Za + Z[0]a = 2Z[0]a +

n∑
k=2

Z[k]a.

For dimensional reasons, it follows immediately from Theorem 3.3.2 that

Ba ' O F a
⊗C

H0
(

E a,Ω
1
E a/F a

( Z
′
a)
)

∇ E a/F a

(
H0
(

E a, O E a( Z
′
a)
)) .

Recall the 1-forms

ϕ0 = du, ϕ1 = ρ′(u, τ, z)du and ϕk =
(
ρ(u− zk, τ)− ρ(u, τ)

)
du

54. That the elliptic involution over F a exists follows imediatly from the fact that for any elliptic
curve E, the elliptic involution is the unique order 2 automorphism of E fixing the origin.

MÉMOIRES DE LA SMF 164



APPENDIX B. THE GAUSS-MANIN CONNECTION 167

(with k = 2, . . . , n) considered in § 3.3.2. We now consider them with (τ, z) varying
in F a. Then these appear as elements of H0( E a,Ω

1
E a/F a

( Z
′
a)). Moreover, they span

this space and if [ϕ0], . . . , [ϕn] stand for their associated classes up to the image
of H0( E a, O E a( Z

′
a)) by ∇ E a/F a

, it follows from Theorem 3.3.2 that [ϕ0], . . . , [ϕn−1]

form a basis of Ba over O F a
. In other terms, one has

Ba ' O F a
⊗

(
n−1⊕
i=0

C[ϕi]

)
.

From the preceding trivialization, one deduces that

∇GMa


[ϕ0]
...

[ϕn−1]

 = Ma


[ϕ0]
...

[ϕn−1]


for a certain matrixMa ∈ GLn(Ω1

F a
) which completely characterizes the Gauß-Manin

connection. We explain below how Ma can be explicitly computed.

B.2.6.– Knowing ∇GMa is equivalent to knowing the action of any O F a
-derivation

∇GMa,σ =
〈
∇GMa , σ

〉
: Ba −→ Ba

for any vector field σ on F a. Since τ and z2, . . . , zn−1 are global affine coordinates
on F a, T F a is a locally free O F a

-module with (∂/∂τ, ∂/∂z2, . . . , ∂/∂zn−2) as a
basis. It follows that the Gauß-Manin connection we are interested in is completely
determined by the n ‘Gauß-Manin derivations’

(173) ∇GMτ := ∇GMa,∂/∂τ and ∇GMzi := ∇GMa,∂/∂zi for i = 2, . . . , n− 1.

Let U be a non-empty open sub-domain of F a and set Ũ = π−1(U).
For η̃ ∈ Γ(Ũ ,Ω1

E a
), we recall the following notation:

— η̃ E a/F a
stands for the class of η in Γ(Ũ ,Ω1

E a/F a
).

— [η̃ E a/F a
] stands for the class of η E a/F a

modulo the image of ∇ E a/F a
.

Let µ be a section of π∗Ω1
E a/F a

over U . To compute ∇GMξ (µ) with ξ = τ or ξ = zi

with i ∈ {2, . . . , n − 1}, we first consider a relative 1-form η E a/F a
over Ũ such that

[η E a/F a
] = µ (here we use the isomorphism (172)).

In the coordinates u, τ, z = (z2, . . . , zn−1) on E a, one can write explicitly

η E a/F a
= N(u, τ, z)du

for a holomorphic function N such that for any (τ, z) ∈ U , the map u 7→ N(u, τ, z) is
a rational function on Eτ , with poles at [0] and [z2], . . . , [zn] exactly, where

zn =
1

αn

(
a∞ − a0τ −

n−1∑
k=2

αkzk

)
.
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Consider the following 1-form

Ξ = du+
ρ(u, τ)

2iπ
dτ

which is easily seen to be invariant by T1 and Tτ .

Then one defines

(174) η̃ = N · Ξ = N(u, τ, z)
(
du+

ρ(u, τ)

2iπ
dτ
)
.

Using the fact that N(u, τ, z) is Zτ -invariant with respect to u when (τ, z) ∈ U is
fixed, one easily verifies that the 1-form η̃ just defined is invariant by T1 and Tτ hence
descends to a section of π∗Ω1

E a
over U , again denoted by η̃. (55)

The vector fields

(175) ζτ =
∂

∂τ
− ρ

2iπ

∂

∂u
and ζi =

∂

∂zi
for i = 2, . . . , n− 1

all are invariant by T1 and by Tτ hence descend to rational vector fields on E a with
poles along Za, all denoted by the same notation. Clearly, one has π∗(ζτ ) = ∂/∂τ

and π∗(ζi) = ∂/∂zi for i = 2, . . . , n− 1.

We now have at our disposal everything we need to compute the actions of the
derivations (173) on µ ∈ Γ(U, π∗Ω

1
E a/F a

): for ? ∈ {τ, z2, . . . , zn−1}, one has

∇GM? µ =
[〈
∇η̃, ζ?

〉
E a/F a

]
=
[〈
dη̃ + Ωa ∧ η̃, ζ?

〉
E a/F a

]
and the right hand side can be explicitly computed with the help of the explicit
formulae (164), (174) and (175).

We will not make the computations of the ∇GM? [ϕk] explicit in the general case
but only in the case when n = 2 just below.

B.3. The Gauß-Manin connection for elliptic curves with two cone points. – One spe-
cializes now in the case when n = 2. Then the leaf F a is isomorphic to H, hence the
O F a

-module of derivations on F a is O F a
·(∂/∂τ). Thus in this case, the Gauß-Manin

connection is completely determined by ∇GMτ .

We will use below the following convention about the partial derivatives of a func-
tion N holomorphic in the variables u and τ : we will denote by Nu or N ′ (resp. Nτ
or
•
N) the partial derivative of N with respect to u (resp. to τ). The notation N ′ will

be used to mean that we consider N as a function of u with τ fixed (and vice versa

for
•
N).

55. More conceptually, the map N(u, τ, z)du 7→ N(u, τ, z)(du+ (2iπ)−1ρ(u, τ)dτ) can be seen as a
splitting of the epimorphism of sheaves Ω1

E a
→ Ω1

E a/ F a
.
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B.3.1.– As in B.2.6, let η be a section of π∗Ω1
E a/F a

over a small open subset
U ⊂ F a ' H. It is written

η = N(u, τ)du

for a holomorphic function N which, for any τ ∈ U , is rational on Eτ , with poles
at [0] and [t] exactly, with

t = tτ =
a0

α1
τ − a∞

α1
.

Then one has (with η̃ = N · Ξ = N(u, τ)(du+ (2iπ)−1ρ(u, τ)dτ)):

∇aη̃ = ∇a
(
N · Ξ

)
= dN ∧ Ξ +N · ∇aΞ

and since 〈Ξ, ζτ 〉 = 0 (see (175) for a definition of ζτ ), it follows that〈
∇aη̃, ζτ

〉
=
〈
dN, ζτ

〉
· Ξ +N ·

〈
dΞ, ζτ

〉
+N ·

〈
Ωa ∧ Ξ, ζτ

〉
.(176)

Easy computations give 〈
dN, ζτ

〉
= Nτ − (2iπ)−1ρ ·Nu,〈

dΞ, ζτ
〉

= −(2iπ)−1ρu · Ξ
and

〈
Ωa ∧ Ξ, ζτ

〉
=
(
Ωτ − (2iπ)−1ρ · Ωu

)
· Ξ.

Injecting these into (176) and since Ξ E a/F a
= du, one finally gets

(177)
〈
∇aη̃, ζτ

〉
E a/F a

= Nτdu+ ΩτNdu− (2iπ)−1∇ E a/F a

(
ρN

)
,

where ∇ E a/F a
(·) = du(·) + Ωudu ∧ · stands for the vertical covariant derivation

∇ E a/F a
: O E a/F a

−→ Ω1
E a/F a

F = F (u, τ) 7−→ Fudu+ F Ωu du.

It follows from (177) that the differential operator

∇̃τ : Ω1
E a/F a

−→ Ω1
E a/F a

Ndu 7−→ Nτdu+ ΩτNdu−
1

2iπ
∇ E a/F a

(
ρN

)
(178)

is a π−1 O F a
-derivation which is nothing else than a lift of the Gauß-Manin derivation

∇GMτ we are interested in. The fact that ∇̃τ is explicit will allow us to determine
explicitly the action of ∇GMτ below.

Remark B.3.1. – It is interesting to compare our formula (178) for ∇̃τ to the cor-
responding one in [54], namely the specialization when λ = 0 of the one for the
differential operator ∇τ given just before Proposition 4.1 page 3878 in [54]. The latter
is not completely explicit since in order to compute ∇τN du with N as above it is
necessary to introduce a deformation N(u, τ, λ) of N = N(u, τ) which is meromor-
phic with respect to λ. However such deformations ϕi(u, τ, λ)du are explicitly given
for the Ni = ϕi(u, τ, 0)du’s (cf. [54, p. 3875]), hence Mano and Watanabe’s formula

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



170 APPENDIX B. THE GAUSS-MANIN CONNECTION

can be used to effectively determine the Gauß-Manin connection. Note that our argu-
ments above show that ∇̃τ is a lift of the Gauß-Manin derivation ∇GMτ indeed. The
corresponding statement is not justified in [54] and is implicitly left to the reader.

Finally, it is fair to mention a notable feature of Mano-Watanabe’s operator ∇τ
that our ∇̃τ does not share: for i ∈ {0, 1, 2}, ∇τNi is a rational 1-form on Eτ , with
polar divisor ≤ 2[0]+ [tτ ], hence can be written as a linear combination in N0, N1 and
N2. This is not the case for the ∇̃τNi’s. For instance, ∇̃τN1 has a pole of order four
at [0] (see also B.3.3 below).

B.3.2. Some explicit formulae. – In the case under study, we have

T (u, τ) = e2iπa0uθ(u)α1 · θ(u− t)−α1

(with t = (a0/α1)τ − (a∞/α1)) hence

Ω = d log T = Ωudu+ Ωτdτ

with

Ωu = ∂ log T/∂u = 2iπa0 + α1

(
ρ(u)− ρ(u− t)

)
(179)

and Ωτ = ∂ log T/∂τ =
α1

4iπ

(
θ′′(u)

θ(u)
− θ′′(u− t)

θ(u− t)

)
+ a0ρ(u− t).

For i = 0, 1, 2, one writes ϕi = Ni(u)du with

N0(u) = 1, N1(u) = ρ′(u) and N2(u) = ρ(u− t)− ρ(u).

The following functions will appear in our computations below:

P (u) = P (u, τ) =
θ′′(u)

θ(u)
− θ′′(u− t)

θ(u− t)
− 2
(
ρ(u)− ρ(u− t)

)
· ρ(u)

and µ(u) = µ(u, τ) = −1

2

(
θ′′′(u)

θ(u)
− θ′′(u)θ′(u)

θ(u)2

)
.

Lemma B.3.2.1. – For any fixed τ ∈ H, P (u) is Zτ -invariant and one has

(180) P =

[
ρ′(t) + ρ(t)2 − θ′′′

θ′

]
·N0 + 2 ·N1 + 2ρ(t) ·N2

as an elliptic function of u.

Proof. – Using (20) and (165), one verifies easily that for τ fixed, P (·, τ) is Zτ -in-
variant and, viewed as a rational function on Eτ , its polar divisor is 2[0] + [t]. By
straightforward computations, one verifies that P (·) has the same polar part as the
right-hand-side of (180). By evaluating at one point (for instance at u = 0), the lemma
follows.

By straightforward computations, one verifies that the following holds true:
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Lemma B.3.2.2. – For τ ∈ H fixed, the meromorphic function

u 7→ µ(u) + ρ(u)ρ′(u)

is an elliptic function, i.e., is Zτ -invariant in the variable u.

B.3.3. Computation of ∇GMτ [ϕ
0
]. – Since N0 is constant, the partial derivatives

∂N0/∂u and ∂N0/∂τ both vanish. Then from (177), it follows

∇̃τϕ0 =

[
Ωτ −

1

2iπ

(
ρu + Ωu · ρ

)]
du

=

[
α1

4iπ

(
θ′′(u)

θ(u)
− θ′′(u− t)

θ(u− t)

)
+ a0ρ(u− t)

− 1

2iπ

(
ρ′(u) +

(
2iπ

a0

α1
+ α1

(
ρ(u)− ρ(u− t)

))
· ρ(u)

)]
du

=
a0

α1
du− 1

2iπ
ρ′(u)du+

α1

4iπ
P (u)du.

It follows from Lemma B.3.2.1. that

∇̃τϕ0 =
α1

4iπ

(
ρ′(t) + ρ(t)2 − θ′′′

θ′

)
· ϕ0 +

α1 − 1

2iπ
· ϕ1 +

(
a0 +

α1

2iπ
ρ(t)

)
· ϕ2

thus in (twisted) cohomology, because 2iπa0[ϕ0] = α1[ϕ2] (cf. (46)), one deduces that
the following relation holds true:
(181)

∇GMτ [ϕ0] =

(
2iπ

a2
0

α1
+ a0ρ(t) +

α1

4iπ

(
ρ′(t) + ρ(t)2 − θ′′′

θ′

))
[ϕ0] +

α1 − 1

2iπ
[ϕ1].

B.3.4. Computation of∇GMτ [ϕ1]. – From (177), it follows

∇̃τϕ2 = ∇̃τ
(
ρ′du

)
=

[
•
ρ′ + Ωτ ρ

′ − 1

2iπ

(
ρ · ρ′′ + (ρ′)2 + Ωu · ρρ′

)]
du.

By construction, for any τ ∈ H fixed, the right-hand-side is a rational 1-form
on Eτ . It follows from [54] that there exist three ‘constants depending on τ ,’ Ai(τ)

with i = 0, 1, 2 and a rational function Φ(·) = Φ(·, τ) depending on τ , all to be
determined, such that

∇̃τϕ2 = A0(τ) · ϕ0 +A1(τ) · ϕ1 +A2(τ) · ϕ2 −
1

2iπ
∇ E a/F a

Φ.
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Using (179) and the following formulae

ρ(u) = θ′(u)/θ(u)

ρ′(u) = θ′′(u)/θ(u)−
(
θ′(u)/θ(u)

)2
ρ′′(u) = θ′′′(u)/θ(u)− 3θ′′(u)θ′(u)/θ(u)2 + 2

(
θ′(u)/θ(u)

)3
and

•
ρ′(u) =

1

4iπ

[
θ(4)(u)

θ(u)
−
(
θ′′(u)

θ(u)

)2

− 2
θ′′′(u)θ′(u)

θ(u)2
+ 2

θ′′(u)θ′(u)2

θ(u)3

]

one verifies by lengthy but straightforward computations, that one has

A0(τ) = −a0µ(t)− α1

4iπ

(
µ′(t) + 2ρ(t)µ(t)− 3µ′(0)

)
;

A1(τ) = −a0ρ(t)− α1

4iπ

(
ρ′(t) + ρ(t)2 − θ′′′

θ′

)
;

A2(τ) = a0ρ
′(t)− α1

2iπ
µ(t)

and Φ(u) = µ(u) + ρ(u)ρ′(u).

Since Φ(u) is rational according to Lemma B.3.2.2., one has [∇ E a/F a
Φ] = 0 in

(twisted) cohomology and because 2iπa0[ϕ0] = α1[ϕ2], one obtains that

∇GMτ [ϕ1] =

(
A0(τ) + 2iπ

a0

α1
A2(τ)

)
· [ϕ0] +A1(τ) · [ϕ1]

uniformly with respect to τ ∈ H, that is, more explicitly

∇GMτ [ϕ1] =

(
2iπ

a2
0

α1
ρ′(t)− 2a0µ(t)− α1

4iπ

(
µ′(t) + 2ρ(t)µ(t)− 3µ′(0)

))
· [ϕ0]

−
(
a0ρ(t) +

α1

4iπ

(
ρ′(t) + ρ(t)2 − θ′′′

θ′

))
· [ϕ1].(182)

B.3.5. The Gauß-Manin connection ∇GM and the differential equation satisfied by the
components of Veech’s map. – From (181) and (182), one deduces the

Theorem B.3.5. – The action of the Gauß-Manin derivation ∇GMτ in the basis
formed by [ϕ0] and [ϕ1] is given by

(183) ∇GMτ

(
[ϕ0]

[ϕ1]

)
=

(
M00 M01

M10 M11

)
·

(
[ϕ0]

[ϕ1]

)
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with

M00 = 2iπ
a2

0

α1
+ a0ρ(t) +

α1

4iπ

(
ρ′(t) + ρ(t)2 − θ′′′

θ′

)
;

M01 =
α1 − 1

2iπ
;

M10 = 2iπ
a2

0

α1
ρ′(t)− 2a0µ(t)− α1

4iπ

(
µ′(t) + 2ρ(t)µ(t)− 3µ′(0)

)
and M11 = −a0ρ(t)− α1

4iπ

(
ρ′(t) + ρ(t)2 − θ′′′

θ′

)
.

Consequently, according to B.1.5, for any horizontal family of twisted 1-cycles
τ 7→ γ(τ), if one sets

F0(τ) =

∫
γ(τ)

T (u, τ)du and F1(τ) =

∫
γ(τ)

T (u, τ)ρ′(u, τ)du

then F = t(F0, F1) satisfies the differential system

(184)
•
F = dF/dτ = M F

where M = M(τ) is the 2× 2 matrix appearing in (183).
At this point, we recall the definition of Veech’s map: it is the map

V : F a ' H −→ P1, τ 7−→ V (τ) =

[
v0(τ)

v∞(τ)

]
(185)

with for every τ ∈ H:

v0(τ) =

∫
γ0

T (u, τ)du and v∞(τ) =

∫
γ∞

T (u, τ)du.

Then applying Lemma 6.1.1 of [36, §3.6.1] (see also Lemma A.2.2. above) to the
differential system (184), one obtains the

Corollary B.3.5. – The components v0 and v∞ of Veech’s map of the leaf F a form
a basis of the space of solutions of the following linear differential equation

(186)
••
v −

(
2iπa2

0/α1

) •
v +

(
detM(τ) +

•
M11

)
v = 0.

The coefficient of
•
v in (186) being constant, the functions

ṽ?(τ) = exp
(
− iπ(a2

0/α1) · τ
)
v?(τ) with ? = 0,∞

satisfy a linear second order differential equation in reduced form and can be taken
as the components of Veech’s map (185).

From our point of view, the second-order Fuchsian differential equation (186) is for
elliptic curves with two punctures what Gauß hypergeometric differential equation (2)
is for P1 with four punctures.
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Finally, in the case when a = (a0, a∞) = α1(m/N,−n/N) with N ≥ 2 and
(m,n) ∈ {0, . . . , N − 1}2 \ {(0, 0)}, we have t = (m/N)τ + (n/N), thus

T (u) = e
2iπm
N α1θ(u)α1θ

(
u− (m/N)τ − n/N

)−α1
.

Specializing Theorem B.3.5. and Corollary B.3.5. to this case, we let the readers
verify that one recovers (the special case of) Mano’s differential system considered
in § 5.3.
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∫
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∇GMa , 165
∇GMτ , ∇GMzi , 167
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Nτ ,
•
N , 168

∇̃τ , 169
Ω, 164
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ωa, 129
ωατ,z , 99
P0,n+3, 143
P1,n, 142
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π1(g, n), 63
πg,n, 27
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ψ, 64
r, 90, 107
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[r], 90
ρ, 45

ρa, ρa,•, 97
ρ•1...•m , 50
ρ0, ρ•, ρ∞, 47
% (M), 72
ρ′, ρ̃, 130
ρ(u), 26
S, S∗, 27
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σ, 40
σ ⊗ Tσ , 40
Sp1,n(Z), 72
Stab(r), 90
T1, Tτ , 163
Tα(·), 45
Tατ,z , 73
Tα(·, τ, z), 45
Teichg,n, 64
θm,n(·), 112
θN (·), 108
ϑN (·), 109
Tm,n, 112
Torg,n, 65
Torg,n, 27
tτ , 112
U, 25
UN , 137
Vm,n, 113
VN , V

0
N , V

∞
N , 129

Volα1
(
M1,2

)
, 140

Vol(Y1(N)α1 ), 138
Ṽ α, 98
Ṽ αa , 96, 98
Ṽ α,DMa , 99
X∗, 64
X1(N)α1 , 117
X , 158
Ξ, 89, 168
ξα, 74
X(N), X1(N), 27
(X,x), (X, (x1, . . . , xn)), 64
Y1(N)α1 , 108
Y (N), Y1(N), 27
Z(α), 78
ζτ , 168
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In the genus one case, we make explicit some constructions of Veech [80] on flat surfaces and
generalize some geometric results of Thurston [77] about moduli spaces of flat spheres as well
as some equivalent ones but of an analytico-cohomological nature of Deligne and Mostow
[11], on the monodromy of Appell-Lauricella hypergeometric functions.

In the dizygotic twin paper [20], we follow Thurston’s approach and study moduli
spaces of flat tori with cone singularities and prescribed holonomy by means of geometrical
methods relying on surgeries on flat surfaces. In the present memoir, we study the same
objects making use of analytical and cohomological methods, more in the spirit of Deligne-
Mostow’s paper.

Our starting point is an explicit formula for flat metrics with cone singularities on
elliptic curves, in terms of theta functions. From this, we deduce an explicit description of
Veech’s foliation: at the level of the Torelli space of n-marked elliptic curves, it is given by an
explicit affine first integral. From the preceding result, one determines exactly which leaves
of Veech’s foliation are closed subvarieties of the moduli space M1,n of n-marked elliptic
curves. We also give a local explicit expression, in terms of hypergeometric elliptic integrals,
for the Veech map by means of which is defined the complex hyperbolic structure of a leaf.

Then we focus on the n = 2 case: in this situation, Veech’s foliation does not depend
on the values of the cone angles of the flat tori considered. Moreover, a leaf which is a
closed subvariety of M1,2 is actually algebraic and is isomorphic to a modular curve Y1(N)

for a certain integer N ≥ 2. In the considered situation, the leaves of Veech’s foliation are
CH1-curves. By specializing some results of Mano and Watanabe [54], we make explicit the
Schwarzian differential equation satisfied by the CH1-developing map of any leaf and use this
to prove that the metric completions of the algebraic ones are complex hyperbolic conifolds
which are obtained by adding some of its cusps to Y1(N). Furthermore, we explicitly compute
the conifold angle at any cusp c ∈ X1(N), the latter being 0 (i.e., c is a usual cusp) exactly
when it does not belong to the metric completion of the considered algebraic leaf.

In the last chapter, we discuss various aspects of the objects previously considered, such
as: some particular cases that we make explicit, some links with classical hypergeometric
functions in the simplest cases. We explain how to explicitly compute the CH1-holonomy of
any given algebraic leaf, which is important in order to determine when the image of such a
holonomy is a lattice in Aut(CH1) ' PSL(2,R). Finally, we compute the hyperbolic volumes
of some algebraic leaves of Veech’s foliation and we use this to give an explicit formula for
Veech’s volume of the moduli space M1,2. In particular, we show that this volume is finite,
as conjectured in [80].

The memoir ends with two appendices. The first consists in a short and easy
introduction to the notion of CH1-conifold. The second one is devoted to the Gauß-Manin
connection associated to our problem: we first give a general and detailed abstract treatment
then we consider the specific case of n-punctured elliptic curves, which is made completely
explicit when n = 2.
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