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p-ADIC HEIGHTS
AND
p-ADIC HODGE THEORY

Denis Benois

Abstract. — Using the theory of (¢, I')-modules and the formalism of Selmer complexes
we construct the p-adic height pairing for p-adic representations with coefficients in
an affinoid algebra over Q,. For p-adic representations that are potentially semistable
at p, we relate our contruction to universal norms and compare it to the p-adic height
pairings of Nekovafr and Perrin-Riou.

Résumé (Hauteurs p-adiques et théorie de Hodge p-adique). — En utilisant la théorie
des (p,T')-modules et le formalisme des complexes de Selmer nous construisons un
accouplement de hauteur p-adique pour les représentations p-adiques a coefficients
dans une algébre affinoide. Pour les représentations p-adiques potentiellement semi-
stables en p nous ferons le lien de notre construction avec les normes universelles et
les hauteurs p-adiques construites par Nekovar et Perrin-Riou.

(© Mémoires de la Société Mathématique de France 167, SMF 2021
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INTRODUCTION

0.1. Selmer complexes

0.1.1. — Let F be a number field. We denote by Sy and S the set of non-archimedean
and archimedean places of F' respectively. Fix a prime number p and denote by S,
the set of places q above p.

Let S be a finite set of non-archimedean places of F' containing S,. To simplify
notation, set ¥, = S\ S,. We denote by Gp g the Galois group of the maximal
algebraic extension Fs of F' unramified outside SUS,. For each q € S we denote by Fj
the completion of F' with respect to q and by G, the absolute Galois group of F,. We
will write I, for the inertia subgroup of G, and Fr, for the relative Frobenius over Fy.
Fix an extension of q to Fis and identify G, with the corresponding decomposition
group at q.

We denote by x : Gr,s — Z, the p-adic cyclotomic character and, for each q € Sy,
write Xq for the restriction of x to Gr,. If M is a topological Z,-module equipped
with a continuous linear action of G s (resp. Gr,) we denote by M (x) (resp. M (xq))
or alternatively by M (1) its Tate twist.

If G is a topological group and M is a topological G-module, we denote
by C*(G,M) the complex of continuous cochains of G with coeflicients in M.
If X = M* is a complex of topological G-modules, we denote by C*(G, X) the total
complex associated to the double complex C™(G, M™).

0.1.2. — Let A be a complete local noetherian ring with a finite residue field of char-
acteristic p. An admissible A|G,s|-module of finite type is a A[Gp s]-module T of
finite type over A and such that the map Gr s — Aut(T) is continuous (V.

Let X = T be a bounded complex of admissible A[GF s]-modules of finite type.
A local condition at q € S is a morphism of complexes

gq : US(X) = C*(Gr,, X).

1. In other words, T is a “big” Galois representation with coefficients in A in the sense of [60].
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2 INTRODUCTION

To each collection U*(X) = (U?

1(X), gq)qes of local conditions one can associate the

following diagram

(1) C*(Grs,X) — D C*(GF,, X)

qes
T(gq)

D U3 (X),

qes

where the upper row is the restriction map. The Selmer complex associated to the
local conditions U®(X) is defined as the mapping cone

S*(X,U*(X)) = cone [ C*(Gps,X) ® | PU(X) | — PC*(Gr,,X) | [-1].

qes qes

This notion was introduced by Nekovaf in [60], where the machinery of Selmer com-
plexes was developed in full generality.

0.1.3. — The most important example of local conditions is provided by Greenberg’s
local conditions [60, Section 7.8]. If q € S, we will denote by X, the restriction of X
to G, . For each q € S, we fix a complex M, of admissible A[GFr,]-modules of finite
type together with a morphism M, — X, and define

Ug(X) = C*(GF,, My) qes,.
For q € X, we consider the unramified local conditions
U (X) = G (Xq)

(see [60, Section 7.6] for the precise definition). In particular, if X = T'[0] is concen-
trated in degree 0, then

C2(X) = (Tf Fad, Tf)

where the terms are placed in degrees 0 and 1. To simplify notation, we will write
S*(X, M) for the Selmer complex associated to these conditions and RI'(X, M) for
the corresponding object of the derived category of A-modules of finite type.

0.1.4. — Let w4 denote the dualizing complex for A. The Grothendieck dualization
functor

X - D(X):=RHomy(X,wa4)
is an anti-involution on the bounded derived category of admissible A[G g, s]-mod-
ules of finite type [60, Section 4.3.2]. Consider the complex ©(X)(1) equipped with
Greenberg local conditions N = (Ng)qes, such that M and N are orthogonal to each
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0.1. SELMER COMPLEXES 3

other under the canonical duality X x ®(X)(1) — wa(1). In this case, the general
construction of cup products for cones gives a pairing

U: RI'(X,M)®% RIND(X)(1),N) = wa[-3]
(see [60, Section 6.3]). Nekovaf constructed the p-adic height pairing
p*el : RO(X, M) @5 RI(D(X)(1),N) — wa[—2]

as the composition of U with the Bockstein map® pfBxp : RINX,M) —
RI(X, M)[1]:

W (z,y) = Bx,m(x) Uy.
Passing to cohomology groups H*(X, M) := R'T'(X, M), we obtain a pairing

(2) B HY(X, M) ©4 HY(®(X)(1), N) = H(wa):

0.1.5. — The relationship of these constructions to traditional treatements is the fol-
lowing. Let A = Og be the ring of integers of a local field £/Q, and let T' be a
Galois stable Og-lattice of a p-adic Galois representation V with coefficients in E.
We consider T as a complex concentrated in degree 0. Then wy = Og[0] and D(T)
coincides with the classical dual T* = Homg, (T, Og). Each choice of orthogonal local
conditions provides

RS HY(T, M) ®4 HY(T*(1),N) — Og.

Assume, in addition, that V is semistable in the sense of p-adic Hodge theory at all
q € Sp. We say that V satisfies the Panchishkin condition at p if, for each q € S, there
exists a subrepresentation VqJr C V; such that all Hodge-Tate weights ®) of V;/ VqJr are
> 0. Set T, = TNVF, Tt = (T} )qes,- The cohomology group H'(T,T) is very
close to the Selmer group defined by Greenberg [36, 37] and therefore to the Bloch-
Kato Selmer group [30]. It can be shown [60, Theorem 11.3.9] that, under some mild
conditions, the pairing h$¢' coincides with the p-adic height pairing constructed by
Schneider [70], Perrin-Riou [63] and Nekovaf [58] using universal norms.

0.1.6. — More generally, assume that A is a Gorenstein ring and T is an admissible
module of finite type which is projective over A. Then w4 is quasi-isomorphic to A
and again ©(T) = T* where T* = Hom4 (T, A). Then (2) takes the form

(3) B3 . HY(T, M) ®4 H (T*(1), N) — A.

2. See [60, Section 11.1] or Section 3.2 below for the definition of the Bockstein map.
3. We call Hodge-Tate weights the jumps of the Hodge-Tate filtration on the associated de Rham
module. In particular, the Hodge-Tate weight of Qp(1) is —1.
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4 INTRODUCTION

Note that Nekovai’s construction has many advantages over the classical definitions.
In particular, it allows to study the variation of the p-adic heights in ordinary families
of p-adic representations (see [60, Section 0.16 and Chapter 11], for further discussion).

0.2. Selmer complexes and (¢, I')-modules

0.2.1. — In this paper, we study Selmer complexes associated to p-adic representations
with coefficients in an affinoid algebra and local conditions coming from the theory
of (¢, T')-modules. Namely, let A be a Q,-affinoid algebra. We will work in the category
Jifft[a’b] (A) of complexes of A-modules whose cohomologies are finitely generated over A
and concentrated in degrees [a, b] and in the corresponding derived category Qf[f bl (4).

Let 9}[;’&] (A) denote the category of [a, b]-bounded perfect complexes over A, i.e., the

full subcategory of @f[ta ’b](A) consisting of objects quasi-isomorphic to complexes of
finitely generated projective A-modules concentrated in degrees [a, b].

A p-adic representation of G g with coefficients in A is a finitely generated pro-
jective A-module V' equipped with a continuous A-linear action of Gpg. In [65],
Pottharst studied Selmer complexes associated to the diagrams of the form (1) in
this context. We will consider a slightly more general situation because, for the local
conditions Ug (V) that we have in mind, the maps g : Us(V) — C*(GF,,V) are not
defined on the level of complexes but only in the derived category @f[to 2 (4).

For each q € S, we denote by I'; the Galois group of the cyclotomic p-extension
of Fy. As before, we denote by V; the restriction of V' to the decomposition group at q.
The theory of (¢,I')-modules associates to V; a finitely generated projective module
DL& 4(V') over the Robba ring #Zr, 4 equipped with a semilinear Frobenius map ¢
and a continuous action of I'; which commute to each other [31, 19, 24, 48|. In [49],
Kedlaya, Pottharst and Xiao extended the results of Liu [52] about the cohomology
of (¢,T')-modules to the relative case. Their results play a key role in this paper.

Namely, to each (¢,I'y)-module D over %, 4 one can associate the Fontaine-Herr
complex C;wq (D) of D. The cohomology H*(D) of D is defined as the cohomology

of C2 . (D). If D = DIig,A(V)’ there exist isomorphisms H*(Dlig’A(V)) ~ H*(Fy,V),

but the complexes CP (DIig(V)) and C*(GF,,Vy) are not quasi-isomorphic. A
simple argument allows us to construct a complex K*(V;) together with quasi-

isomorphisms &, : C*(Gr,,V) — K*(Vy) and aq : Cp_, (Dl 4(Vy) — K*(Vq) @.

¥5Yq

4. This complex was first introduced in [10].
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0.2. SELMER COMPLEXES AND (¢, I')-MODULES 5

For each q € Sp,, we choose a (¢, I'q)-submodule D, of DL&A(Vq) that is a ZF, a-mod-

ule direct summand of D! (Vq) and set D = (Dg)qes,- Set

rig,A

KE(V)=| PcC@r,V) || PE (V)

LIS P qES,

and
U2 (v, D) = { G (Pa): 0 €Sy,
Clzr(‘/b‘l)7 lfqezp
For each q € S, we have morphisms

resq

fo i C*(Grs, V) 25 0GR, V) 55 K*(V,),
gq : Ug(V,D) = C3 ., (DL, 4 (Vi) =5 K*(Vy).

$sYq

If g € ¥,, we define the maps f; : C*(Grs,V) — C*(GF,,V) and gq : C3.(Vy) —

C*(GF,,V) exactly as in the case of Greenberg local conditions. Consider the diagram

C* (G5, V) T ko)

> grﬂ\
qes

@D Uz (V,D).

qes
We denote by S°(V,D) the Selmer complex associated to this diagram and
by RI'(V,D) the corresponding object in the derived category of A-modules. Mim-
icking the arguments of [65, Section 1E] we see that RI'(V, D) belongs to @f[?’g](A).
If, in addition, local conditions at all g € 3, can be represented by perfect complexes,
then RI'(V, D) belongs to @gl’ff](A) (see Section 3.1 for detail).

The functor
X — X*:= RHomy4 (X, A)

is an anti-involution on the derived category Zperi(A) of perfect complexes which can
be viewed as a simple analog of the Grothendieck duality ® in our context. For any
p-adic representation V' we have V* = Hom4(V, A). We equip V*(1) with orthogonal
local conditions D+ setting

D; = Homy,, , (DI, 4(Ve)/Dq, #r, a(xa)),  4ES,
The general machinery gives us a cup product pairing

U : RO(V,D) ®% RT(V*(1),D+) — A[-3].
V,D

SOCIETE MATHEMATIQUE DE FRANCE 2021



6 INTRODUCTION

If local conditions at all g € X, can be represented by perfect complexes, this pairing
gives a duality in 713 (A):

perf

RI'(V*(1),D%) ~ RHom, (RI(V, D), A)[-3]

(see Theorem 3.1.5 and Section 3.1.6).

0.3. p-adic height pairings

0.3.1. — The previous theory allows us to construct the p-adic height pairing exactly
in the same way as in the case of Greenberg local conditions. Let V' be a p-adic
representation with coefficients in A and V*(1) the Tate dual of V.

DEFINITION. — The p-adic height pairing associated to the data (V,D) is defined as
the morphism

hyp : RIO(V,D) ®% RI(V*(1),D4)
dv,p Uvp

—= RI(V,D)[1] ®% RT(V*(1),D*) — A[-2],

where éy,p denotes the Bockstein map.

The height pairing hSel D,m induces a pairing on cohomology groups
hp, @ H'(V,D) x H' (V*(1),D*) — A,
Applying the machinery of Selmer complexes, we obtain the following result (see

Theorem 3.2.4 below).

THEOREM 1. — We have a commutative diagram

sel

RI(V, D) % RI(V*(1), DY) — 2, A[_9]

S12 =
hsel

RI(V*(1),D*) @5 RI(V, D) — 2, 4[],

where s12(a ® b) = (—1)38(0)dee®p @ a. In particular, the pairing hp, is skew
symmetric.

MEMOIRES DE LA SMF 167



0.3. p-ADIC HEIGHT PAIRINGS 7

0.3.2. — Assume that A = E, where F is a finite extension of Q,. Fix a system D =

(Dg)qes, of submodules D, C D;rig(Vq) and consider tautological exact sequences

0— Dy — D, (V4) —» D, — 0, q € Sp,

rig

where Dg = DI

tig(Va)/Dg. Passing to duals, we have exact sequences

0= (Dy)"(xa) = Dfis(Vy (1)) = Dji(xa) = 0,
where (Dj)*(xq) = D; . Consider the following conditions on the data (V,D) (see
Section 5.1):

)
N1) H(F,,V) = H°(F,,V*(1)) = 0 for all q € Sp;
N2) HO(DQ) = HO(D;(Xq)) =0 for all g € 5.
For each data (V, D) satisfying these conditions we construct a pairing
¥p' ¢ H'(V,D)x H'(V*(1),D") — E,
which can be seen as a direct generalization of the p-adic height pairing, constructed
for representations satisfying the Panchishkin condition using universal norms [70,

58, 63]. The following theorem generalizes [60, Theorem 11.3.9] (see Theorem 5.2.2
below).

THEOREM II. — Let V be a p-adic representation of G s with coefficients in a finite
extension E of Qp. Assume that the family D = (Dq)qes, satisfies conditions N1-2).
Then

norm __ _hsel
v,.D — V,D,1*

0.3.3. — We denote by Dggr, Deris and Dy Fontaine’s classical functors [32, 33]. Let
V be a p-adic representation with coefficients in F/Q,. Assume that the restriction
of V to G'r, is potentially semistable for all q € Sy, and that V satisfies the following
condition:

S) Deis(V)?=1 = Dy (V*(1))9=1 = 0, Vq € Sp.
For each q € S, we fix a splitting wy : Dar(Vy)/Fil’Dar(Vyq) — Dar(Vy) of the
canonical projection Dggr(Vy) — Dar(Vy)/Fil’Dar(Vy) and set w = (wq)qes,- In
this situation, Nekovaf [58] constructed a p-adic height pairing

hyos® « Hi(V) x H(V*(1)) —» E

on the Bloch-Kato Selmer groups [17] of V' and V*(1), which is defined using the
Bloch-Kato exponential map and depends on the choice of splittings w.

Let g € S, and let L be a finite extension of Fy such that V; is semistable over L.
The semistable module Dy 1, (V4) is a finite dimensional vector space over the maximal

unramified subextension Lg of L, equipped with a Frobenius ¢, a monodromy N, and
an action of G p, = Gal(L/Fy).
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8 INTRODUCTION

DEFINITION. — Let q € S,. We say that a (p, N,Gr/F,)-submodule Dq of Dy /1,(Vy) is
a splitting submodule if
Dar/2(Ve) = Do, ® Fil'Dar/r(Va),  Dar =Dq®r, L
as L-vector spaces.
It is easy to see, that each splitting submodule D, defines a splitting of the Hodge

filtration of Dqr(V), which we denote by wp 4. For each family D = (Dg)qes, of
splitting submodules we construct a pairing

1 *

hyp s Hy(V)x Hiy(V*(1)) - E
using the theory of (¢,T)-modules and prove that
spl __ ; Hodge
hv.p = hvwp

(see Proposition 6.2.3). Let D4 denote the (¢,T'g)-submodule of DLg(Vq) associated
to Dy by Berger [15] and let D = (Dg)qes,. In the following theorem we compare
this pairing with previous constructions (see Theorem 6.3.3 and Corollary 6.3.4).

THEOREM III. — Assume that (V, D) satisfies conditions S) and N2). Then
i) H'(V,D) = Hi(V) and H'(V*(1),D*) = H}(V*(1));
ii) We have
VB =hp = —h¥b.
0.3.4. - If F = Q, we can relax condition N2). Namely, for each splitting submodule
D = D, of Dy /1,(V}), we construct a canonical filtration
(4) {0} € FL1Dyyy.(V) C FoDyty.(V) C FiDgyr.(V) C Dyt (V)

which is a direct generalization of the filtration constructed in [8] in the semistable
case. In particular, FoDg;/(V) = D, and the quotients My = groDyg (V) and
M, = grDg1,(V) are filtered Dieudonné modules such that

M$=P"" = My, Fil'M, = {0},
M=t = My, Fil®M; = M.

Let W = FiDg/1,(V)/F_1Dg /1, (V). We denote by Mo, M; and W the (¢, ', )-mod-
ules associated to My, M; and W respectively. The tautological exact sequence

0—-My—-W-—->M; -0
induces the coboundary map
6 : H'(M;) — H'(M).

We introduce the following conditions Fla-b) and F2a-b) which reflect the conjectural
behavior of V' at p in the presence of trivial zeros [8, 11, 38]

MEMOIRES DE LA SMF 167



0.3. p-ADIC HEIGHT PAIRINGS 9

F1a) Zeris(D], (V)/FiDL, (V)?=" = Zenis (D, (V*(1)))/FiD], (V*(1)))#=! = 0.
F1b) Zeris(F_1DJ, (V))?=! = Deyis(F_1 D], (V*(1)))#=L = 0.
F2a) The composed map
Bo.c : HO(My) ™ H' (M) ©% H! (M),
where the second arrow denotes the canonical projection on H!(Mj), is an
isomorphism.

F2b) The composed map
5 pr
So,y + HO(M1) =% H'(Mo) — H} (M),

where the second arrow denotes the canonical projection H} (M), is an iso-
morphism.

One expects that these conditions hold if V' is the p-adic realization of a pure motive
over Q of weight —1 (see Sections 0.4 and 4.3). Note that Fla-b) and F2a) imply S).

We show that, under conditions Fla) and F2a), there exists a canonically splitting
exact sequence

c
sply, p Sv,D

(5) 0 —— H(D') — HY(V,D) —= H}(V) ——0,

where D’ = D!__( V,)/D. We call H*(V, D) the extended Selmer group of V associated

rig
to D. Note that

dimg H°(D') = dimg My = dimg M;.
If, in addition, condition F2b) is satisfied, there exists another canonical splitting of
this sequence

0 1 1
0—— H(D') —=H (I/,D)f<ij(V)*>0.

SPI{/,D 5v,D

The following result is a simplified form of Theorem 7.2.4 below.

THEOREM IV. — Let V be a p-adic representation of Gq,s that is potentially
semistable at p and satisfies conditions Fla-b) and F2a-b). Then for all x € H}(V)
and y € H}(V*(l)) we have

WPp(,y) = —h¥n (57,5 (2), 0. 1) pe ()-

Assume now that, instead of Fla-b), the data (V, D) satisfies the following stronger

condition
F3) For alli € Z
Tost (D3, (V) /FIDL (V))?7F' = Zu(F_1DL (V)7 = 0.
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10 INTRODUCTION

By modifying the construction of Section 0.3.2, we define a pairing
vt Hp(V) x Hi(V*(1)) — E.
The following result is proved in Theorem 7.3.2.

THEOREM V. — Let V be a p-adic representation of Gq,s that is potentially semistable
at p and satisfies conditions F2a-b) and F3). Then

=
Theorems IV and V imply

COROLLARYVI. — Let V' be a p-adic representation of Gq,s that is potentially
semistable at p and satisfies conditions F2a-b) and F3). Then for all z € H}(V) and
y € Hy(V*(1)) we have

norm sel
h

V,D (z,y) = _hV,D(s{/,D(x)75{/*(1),DL(y))-

This generalizes [60, Theorem 11.4.6].

0.4. General remarks

0.4.1. — Assume that V is the p-adic realization of a pure motive M/F of weight
wt(M). Beilinson’s conjectures (in the formulation of Bloch and Kato) predict that

Hj(V)=0, if wt(M)=>0,

and therefore the pairings hy’p" and hs"ﬁﬁj are interesting only if wt(M) =
wt(M*(1)) = —1.

0.4.2. — Let M = h%(X)(m), where X is a smooth projective variety over F and
0 <4 < 2dim(X). The p-adic realization of M is V = H!(X)(m), where H}(X) de-
notes the p-adic étale cohomology of X. The Poincaré duality and the hard Lefschetz
theorem give a canonical isomorphism
(6) Hy(X)" ~ Hp (X) ().

o i+1 . I
Then wt(M) = —1 if ¢ is odd and m = ——. In this case, the representation V is self

dual and we have a canonical isomorphism V ~ V*(1) induced by (6). If, in addition,
X has good reduction at q € S, then Vj is crystalline and D,is(Vy)?= = 0 by a
result of Katz-Messing [46]. Therefore, conditions S) and N1-2) hold if X has good
reduction at all q € Sp,.
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0.4.3. — We continue to assume that V = H;(m), where X is a smooth projective
variety over F. For all ¢ € S, the representation V; is potentially semistable by the
main result of Tsuji [74]. Let L/Fy be a finite extension such that V; is semistable
over L. The module Dy, (V) is equipped with a monodromy N and a Frobenius
operator . The monodromy filtration 9Dy /r,(V;) on Dy /1 (V;) is an increasing
filtration defined by

MiDge/z(Vy) = Y ker(N*F1) nIm(NY).
k—Il=1i

It is expected that ¢ acts semisimply on Dg /1 (V) and the p-adic analog of the
monodromy-weight conjecture formulated by Jannsen [44] says that the absolute value
of eigenvalues of ¢ acting on gr¥ Dy, (Vq) is ptT*(M))/2_ Since

Dcris(vvq)wz1 C Dst/L(‘/q)NZO C SUI()DS»G/L(VI]),
conditions S) and N1) conjecturally always hold if wt(M) = —1.

On the other hand, condition N2) depends on the choice of Dy and does not hold
in general in the bad reduction case. If it holds, then hy’p" = hi’}?lD = —h?,‘ilD, and
composing this antisymmetric pairing with the isomorphism H}(V) ~ H};(V*(1)) we

get a symmetric pairing

(7) bv,p : Hf (V) x Hi(V) — E.

0.4.4. — We maintain previous notation and assumptions. Let wt(M) = —1. Assume,
in addition, that FF = Q and that V is semistable at p. Then conditions Fla-b)
and F2a) follow from the p-adic analog of the monodromy-weight conjecture and
therefore conjecturally always hold (see Proposition 4.3.7). The notion of splitting
submodule coincides with the one of regular submodule from [8, 64] and condition
F2b) is equivalent to the non-vanishing of the Z-invariant £ (V, D) introduced in
[8] (see Proposition 4.3.11). We also remark that condition F3) does not hold in
general. A simple counter-example is given by the representation V(E)®3(—1), where
V(E) is the p-adic representation associated to an elliptic curve E/Q having split
multiplicative reduction at p (see Remark 4.3.3 for more detail). We have two pairings

i}j‘D t Hi(V) x H}(V) — E,
b¥p : H'(V,D) x Hj(V,D") — E,

provided by hi}ﬂD and hi/e}D respectively and related by Theorem IV.
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0.5. p-adic L-functions

0.5.1. — We keep the hypotheses and notation of Section 0.4.4. Let V' be a semistable
representation associated to a motive M/Q of weight —1. It is expected (see [8, 21,
36, 37] and especially Perrin-Riou’s book [64]) that to each splitting submodule D
of V,, one can associate a p-adic L-function L,(M, D, s) interpolating special values
of the complex L-function L(M,s). Namely, let r and r, denote the orders of van-
ishing of L(M,s) and L,(M,D,s) at s = 0. Set L(")(M,0) = lir%s_’"L(M, s) and
L") (M, D,0) = liH(l) s~"L(M, D, s). Beilinson’s conjecture predicts that

r =dimq, Hf (V)
and -

L\ (M,0

( ? ) e Q*,
Roo (M) (M)

where Q. (M) is the Deligne period of M, and R, (M) is the determinant of the
archimedean height on some fixed basis. The conjectural interpolation property
of L(M, D, s) at s = 0 reads
L") (M, 0)

(8) L{ (M, D,0) = &(M, D)R,(M, D)m,

where R,(V, D) is the determinant of the p-adic height bi}le taken on the same basis,
and &(V, D) is some explicit Euler-like interpolation factor [64].
It is expected that if N2) holds (or equivalently My = M; = 0), then

(9) Tp =T,

and (9) and (8) can be seen as a p-adic version of Beilinson’s conjecture.

If condition N2) does not hold, we are in presence of extra-zeros. Generalizing the
Mazur-Tate-Teitelbaum conjecture (for modular forms) and Greenberg’s trivial zero
conjecture [38] (in the general ordinary case), it is natural to expect that

rp=T+e, e = dimq, H’(D').

Taking into account (5) and (8), we can write this conjectural equality in the form

(10) rp, = dimg, H'(V, D).

The natural general conjecture for the special value of L,(V, D, s) at s = 0 reads
L(M(V,0)

11 Lr+9)(V,D,0) = Z(V,D)6F(V,D)Ry(V, D) oo

( ) D ( ’ ) ) ( ) ) ( ) ) P( ) )ROO(M)QOO(M)v

where Z(V, D) is the .Z-invariant constructed in [8] (see also Section 4.3.9) and
&% (V, D) is obtained from &(V, D) by removing linear zero factors (see [8] for further
details). We remark that in (11), R, (V, D) is taken for the pairing bi}le and not for the

extended height pairing b%,e}D. The comparision between these two pairings is given by
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Theorem 7.2.4, but does not make appear the .Z-invariant. Formulas (10)—(11) can
be seen as the p-adic version of Beilinson’s conjecture in the presence of extra-zeros.
We refer the reader to [10] for the formulation of the analog of this conjecture in the
case wt(M) # —1.

0.5.2. — We illustrate previous remarks with p-adic representations arising from mod-
o0
ular forms. Let f = ) a,q" € Sp®¥(N) be a newform of even weight k for I'o(INV).

Fix a prime p and de%_o%ce by W the p-adic representation of Gq associated to f by
Deligne [25]. Its restriction to the decomposition group at p is potentially semistable
with Hodge-Tate weights (—k/2,k/2—1). It is crystalline if (N, p) = 1 and semistable
non-crystalline if p || N. In the second case, Dis(Wy) is a one-dimensional subspace
of Dg(Wy). In the both cases

(12) det(1 — X |Deris(Wy)) = 1 — a, X + 0(p)p* 1 X2,
where ¢ is the trivial Dirichlet character modulo N [69, 71].
Let M denote the motive associated to the central twist of f. Thus,
L(M,s)=L(f,s+ k/2).

Its p-adic realization is the central twist V; = W;(k/2) of Wy. The representation V;
is self dual. Fix an eigenvalue o of Frobenius acting on Dgis(Vy). We will always
assume ) that |al, > (1/p)*¥/?27!. One expects that the corresponding eigenspace
D, is one-dimensional (®). It is easy to see that under this assumption D, is a splitting
submodule of D (Vy), and we set

L(M7 Da,S) = Lp,a(fvs + k‘/?),

where L, o(f,s) is the classical p-adic L-function constructed in [1, 54, 56, 77]. As
before, we write r and 7, for the orders of vanishing of L(f,s) at s = k/2. Below we
consider separately the following cases 0.5.2.1 and 0.5.2.2.

0.5.2.1. — (p, N) = 1. The representation V; is crystalline and from (12) it follows
that Deyis(VF)?=! = 0. Therefore, V; satisfies S) and N2). The space D.is(Vy) is
two-dimensional and we have two possible choices of a. The values of the complex
and p-adic L-functions at s = k/2 are related by the formula

1\ LS k/2)
pa Qr

where Q; denotes Deligne’s period of f. Since |a| = p(*~1)/2, the Euler-like interpo-

(13) Lya(f.k/2) = (1 -

lation factor does not vanish.

5. We exclude the critical case |a|p, = (l/p)k/z_l.
6. This obviously holds in the semistable case. In the cristalline case, this follows from the con-

jectural semisimplicity of ¢ acting on Deyis(Vy).
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Assume first that 7 = 0. Then 7, = 0. By Kato [45], H}(Vy) = 0 and the p-adic
height pairing degenerates. Therefore, in this case, formula (8) reduces to (13).

If » > 1, the relation (13) says only that both L(f,s) and L, ,(f,s) vanish
at s = k/2, but does not contain information about special values. In this case, (8)
concides with the Mazur-Tate-Teitelbaum conjecture [56] in the nonexceptional case,
namely

) (1Y g n IR/

B = (1= 00 ) R B,

where Roo(f) and R,(f) are the determinants of the complex and the p-adic height
pairings computed in the same basis. If r = 1, this question is closely related to p-adic
analogues of the Gross-Zagier formula [59, 50, 62|. Here one of the key points is the
interpretation of the p-adic height pairing

bv,.p. : Hi(Vy) x H}(Vs) = E

in terms of universal norms, and therefore the ordinarity condition appears naturally
in [59, 62]. Kobayashi generalized Perrin-Riou’s formula [62] to non-ordinary modular
forms of higher weight (7.

Our theory provides a framework for working with universal norms in the com-
pletely general non-ordinary setting. In [18], combining the work of Kobayashi with
the methods of our paper, Biiyiikboduk, Pollack and Sasaki study the p-adic Gross-
Zagier formula in families and deduce from it a p-adic Gross-Zagier formula for the
critical slope stabilizations of modular forms.

0.5.2.2. — p || N. The representation V; is semistable non-crystalline. From (12) it
follows that Des(Vy) is one-dimensional and that ¢ acts on Dgis(Vy) as multiplica-
tion by a = p~*/2a,. By [51, Theorem 3|, a, = £p*/?~1, and therefore @ = +p~!. In
both cases, condition S) holds. The only possible choice for splitting submodule is to
take D = Dqis(Vy). Denote by D the (¢, I")-submodule of D! (V) associated to D.

rig
Set D' = DIig(Vf) /D. From the self-duality of V it follows that

D* ifa=p!
-1

0 N 0 * — ’
HOD) = HO(D" (x,) {0 o

The values of the complex and p-adic L-functions at s = k/2 are related by the
formula

(14) Ly(f, k/2) = <1 _ 1> L(f, k/2)

pa Qy

7. Work in progress. See [50] for the elliptic curve case.
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Ifa=—pt

, condition N2) holds and Theorem III applies. The situation is quite
similar to that we considered in Section 0.5.2.1 and we refer the reader to [27, 28] for

the p-adic Gross-Zagier formula in this context and further references.

0.5.2.8. — We discuss in more detail the case o = p~! which gives an archetypical

example of the failure of condition N2). In this case, conditions Fla-b), F2a) and F3)
hold. ® From [8, Formula (32), p. 1619] it follows that condition F2b) holds if and only
if the Fontaine-Mazur .Z-invariant g (f) [55] does not vanish. This is conjecturally
always true, but is proved only for elliptic curves [2].

Set I:T}(Vf) = H'(V;,D). Then the exact sequence (5) reads
0—— D* — 2% HN(Vy) —— HM(V;) ——0,  dimg D* = 1.
In this situation, we have the pairing by, p on the Bloch-Kato Selmer group H}(Vf)
induced by the pairing hi,pf{ p and the pairing
by, p : H}(V;) x H}(Vy) — E

on the extended Selmer group provided by h?,efl,D. If we assume, in addition,
that Zem(f) # 0, then we have the third pairing, induced by h%‘;r,%, which coincides

with hy, p by Theorem V. Moreover, by, p and 6va p are related by Theorem IV.

0.5.2.4. — The interpolation factor in (14) vanishes, and L,(f,s) has an extra-zero
at s = k/2. Conjectural formulas (10)—(11) reduce to the exceptional case of the
Magzur-Tate-Teitelbaum conjecture

(15) rp =dimp Hf(Vy) + 1,
LO(f,k/2)
1 LUt (f,k/2) = e
In the analytic rank zero case r = 0, formula (16) takes the form
L(f,k/2)

L,(f.k/2) = gFM(f)Tf’

It was proved by different methods by Greenberg and Stevens [39, 73] and Kato,
Kurihara and Tsuji (unpublished, but see [9, 23]). In particular, the validity of (15)
in this case is equivalent to the non-vanishing of Z\(f).

See also [3, 35, 43, 53] for further generalizations of the Greenberg-Stevens method

and some related results toward conjecture (11).

8. F2a) follows directly from the fact that V; is not crystalline.
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0.5.2.5. — Assume that r = 1. From [45] (see also [22] and [11]), it follows that in this
case ords—y/oLy,(f,s) > 2. For elliptic curves, a version of the Gross-Zagier formula
involving the #Z-invariant was proved by Venerucci [75]. Our theory of p-adic heights
allows to generalize the method of Venerucci to modular forms of higher weights (9.
In [12], K. Biiyiikboduk and the author prove the following result. Let 2% € H}(Vy)
denote the first layer of the Beilinson-Kato Euler system constructed in [45]. Let

37 =50 (") € Hy (V)

be the canonical lift of z)]z)’K under the splitting 5V, D defined in (5). Fix a basis b of
the one-dimensional space H°(D*(,)). Then

B Bv,.0 (80(8), 06(6) By, (D0(0),35%)
a7 Q- ELp(f, s)\szk/2 = det ,
bv,,p (3]?(,30(1))) bv;,p (3?K73?K>

where Q,, is some explicit “p-adic period” which depends on our choice of b (see [12,
Section 7.2| for the precise definition). The key new ingredient of the proof of this
formula is the interpretation of the height pairing in terms of universal norms which
leads to non-ordinary versions of Rubin-style formulae.

If Zem(f) # 0, formula (17) together with a standard argument (see, for example,
the proof of [58, Theorem 7.13]) give an expression for %Lp(f,s)‘ in terms

s=k/2
of Zrm(f) and the height f)fyD(zJ]?K, szK) (see [12, Corollary BJ).

0.5.2.6. — We maintain previous assumptions. Let f be the Coleman family of modu-
lar forms passing through f. Let V¢ be the big Galois representation associated to this
family which specializes to V; at the weight k. A two-variable version of the Bock-
stein map which takes into account the deformation in the weight direction, gives a
two-variable height pairing

f)f : ﬁ}c(Vf) X FI}(Vf) g 3/327

where J C E[[k — k, s]] is the ideal of power series in k — k and s those vanish at (k, 0)
[12, Section 4.3]. The specialization of ¢ at x = k coincides with the height pairing
bv,,p and its restriction to the central critical line s = (k — k)/2 coincides with
the central critical height pairing constructed using the Cassels-Tate pairings [12,
Section 3.3|. This pairing is closely related to the behavior of the two-variable p-adic
L-function L(f, s) at (k,k/2) and we refer the reader to op. cit. for further detail and
references.

9. Note that our results are weaker that the results of Venerucci, because the injectivity of the
p-adic Abel-Jacobi map is an open question in the higher weight case.
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0.6. The organization of this paper

This paper is very technical by the nature, and in Chapters 1-2 we assemble nec-
essary preliminaries. In Chapter 1, we recall the formalism of cup products. In Sec-
tion 1.1, to each complex A® equipped with a morphism ¢ : A®* — A® we associate
the complex T*(A®) = (A*® Rt N A®) and study cup products of these complexes.
These results are used in Sections 2.5-2.7. In Section 1.2, we recall the formalism of
cup products for cones following [60] (see also [61]). These results play a key role in
Chapter 3.

In Chapter 2, we consider local Galois representations with coefficients in an affi-
noid algebra. In Sections 2.1-2.2, we review the theory of (p,I')-modules over affinoid
algebras and its connection with p-adic representations and classical Fontaine’s func-
tors De,is and Dyt and Dgg. The reader familiar with (¢, I')-modules can skip them.
In Section 2.3, we review local duality for Galois representations. In Section 2.4, we
construct cup products for Fontaine-Herr complexes of (p,I')-modules and review
the computation of Galois cohomology in terms of these complexes. Sections 2.5—
2.7 are the central parts of the chapter. They contain the most part of results we
need to develop the theory of Selmer complexes with local conditions arising from
(¢,T')-modules. In Sections 2.5-2.6, we introduce the complex K*(V) which relates
the Fontaine-Herr complex to the complex of continuous cochains with coefficients
in V. Using results from Chapter 1, we prove some technical results about cup prod-
ucts of these complexes. These results are used to develop the duality theory for Selmer
complexes in Section 3.1. In Section 2.7, we compute the Bockstein map for Fontaine-
Herr complexes and for K*(V). These results are used in Section 3.2 to generalize
Nekovai’s construction of the p-adic height pairing. In particular, Proposition 2.6.4
plays a key role in the proof of Theorem 3.2.4 (Theorem I of this Introduction) which
asserts that the constructed p-adic height pairing is skew symmetric. In Section 2.8,
we review Iwasawa cohomology of (¢,I')-modules and prove some auxiliary results.
In Section 2.6, we review the definition and some properties of the Bloch-Kato group
H} of a (¢,T')-module. In particular, we review the canonical decomposition of H?!
of some “exceptional” isoclinic modules (¢, I')-modules into the direct sum of H } and
its canonical complement H!. These results are used in Chapter 7 to study p-adic
heights on extended Selmer groups.

Chapter 3 is the central part of the paper. It gathers the main constructions of
our theory. Selmer complexes RI'(V, D) are defined in Section 3.1. In Theorem 3.1.5,
we construct the cup products. Theorem 3.1.7 gives a sufficient condition that the
cup product be a duality. In Theorem 3.1.14 we prove that the cup product is skew
symmetric following the method of Nekovar. The p-adic height pairing is defined in
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Section 3.2. In Theorem 3.2.4 (Theorem I of this Introduction), we deduce that it is
skew symmetric from formal properties of cup products.

In the rest of the paper, we consider p-adic heights for p-adic representations with
coefficients in a p-adic field. In Chapter 4, we study splitting submodules of poten-
tially semistable representations. Sections 4.1-4.2 assembles technical results used to
construct the pairing hi}le. In Section 4.3, we assume that the ground field is Q,. We
construct the canonical filtration (4) and discuss in detail its properties. In particu-
lar, we show that conditions Fla-b) and F2a) follow from the semisimplicity of the
Frobenius operator and the monodromy-weight conjecture.

In Chapters 5-6 we construct the pairings vp and hi}?lD and prove Theorems II
and III.

In Chapter 7, we study extended Selmer groups and prove Theorems IV and V.
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CHAPTER 1

COMPLEXES AND PRODUCTS

1.1. The complex T*(A®)

1.1.1. - If R is a commutative ring, we write J¢ (R) for the category of complexes
of R-modules and #(R) for the subcategory of #(R) consisting of complexes
C* = (C™,dg.) such that H"(C®) are finitely generated over R for all n € Z.
We write Z(R) and Zg(R) for the corresponding derived categories and denote
by [-] : H(R) — P(R), (x € {0,ft}) the obvious functors. We will also consider the
subcategories Jf/ft[a’b] (R), (a < b) consisting of objects of J#(R) whose cohomologies
are concentrated in degrees [a,b]. A perfect complex of R-modules is one of the form

0_)Pa_)Pa+1_>"'_>Pb_>0a

where each P, is a finitely generated projective R-module. If R is noetherian, we denote
by _@I[:;’rbf](R) the full subcategory of Z¢(R) consisting of objects quasi-isomorphic to
perfect complexes concentrated in degrees [a, b].

If C* = (C™,d3e)nez is a complex of R-modules and m € Z, we will denote
by C*[m] the complex defined by C*[m]™ = C™*™ and Ay (@) = (=1)"dce (2).
We will often write d" or just simply d instead of di.. For each m, the truncation
T>mC*® of C* is the complex

0 — coker(d™™!) - c™t - o™t L.
Therefore
‘ 0, if 1 < m,
Hi(rsmC®) ={ nesm
H*'(C*), ifizm.
The tensor product A® ® B® of two complexes A® and B*® is defined by
(A. ®Bo>n — @ (Az ®Bn—i)
i€Z
d(a; ® bp—;) = dz; ® Yn—; + (—1)'a; ® by, a; € A*, b,_; € B"".
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We denote by s12 : A* ® B®* — B®* ® A® the transposition
s12(an @ by) = (=1)""by, ® ay, a, € A", b,, € B™.
It is easy to check that s is a morphism of complexes. We will also consider the map
sy ¢+ A*® B®* — B* ® A® given by
s’b(an ® bm) = by ® an,

which is not a morphism of complexes in general.

Recall that a homotopy h : f ~» g between two morphisms f,g : A®* — B® is
a family of maps h = (h® : A"*! — B") such that dh + hd = g — f. We will
sometimes write h instead of A™. A second order homotopy H : h ~» k between
homotopies h,k : f ~» g is a collection of maps H = (H™ : A"*2 — B") such
that Hd — dH =k — h.

If f; : AY > B} (i=1,2) and g; : AS — B3 (i = 1,2) are morphisms of complexes
and h : f1 ~ fo and k : g1 ~ go are homotopies between them, then the formula
(18) (h ®@k)1(Tn @ Ym) = MTn) ® 91(Ym) + (=1)" fo(2n) @ k(ym),

where x, € A7, ym € AT, defines a homotopy
(h®@k) : fi®g1~ f2® go.

1.1.2. — For the content of this subsection we refer the reader to [76, §3.1]. If
f : A®* — B® is a morphism of complexes, the cone of f is defined to be the complex

cone(f) = A*[1] ® B®,
with differentials
A" (@n11,bn) = (~d" (@ns1), F(@ns1) +d"(ba)-
We have a canonical distinguished triangle
A LB cone(f) — A°[1].
We say that a diagram of complexes of the form

(19) A e

[« %} > Q2
/
Ay ———— BS
2 fa 2

is commutative up to homotopy, if there exists a homotopy

h: faooay ~ azo fi.
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In this case, the formula
c(ar, a2, h)"(ant1,bn) = (01 (ant1), a2(bn) + A" (ant1))
defines a morphism of complexes
(20) c(ay, g, h) 1 cone(f1) — cone(fa).
Assume that, in addition to (19), we have a diagram

Ar I pe

/
AS ——F—— BS
2 ra 2

. /
]C1 RS R adNe]

together with homotopies

ko : ag ~~ o
and a second order homotopy
H: fooki+h ~kyofi+h.
Then the map
(21) (@n+1,00) = (—k1(ant1), k2(bn) + H(an41))

defines a homotopy c(ay, @z, h) ~ c(af, ah, h').

1.1.3. — Till the end of this section R is a commutative ring and all complexes are
complexes of R-modules. Let A®* = (A", d") be a complex equipped with a morphism
@ : A®* — A°. By definition, the total complex

T*(A®) = Tot (4° £=5 A°).
is given by T"(A®) = A"~! & A" with differentials
d"(an_1,a,) = (" tap_1 + (=1)"(¢ — 1)an,d"a,), (an_1,a,) € T"(A®).

If A®* and B® are two complexes equipped with morphisms ¢ : A®* — A® and
¥ : B* — B® and if  : A®* — B® is a morphism such that a o ¢ = ¥ o «, then
o induces a morphism T'(a) : T*(A®*) — T°*(B®). We will often write « instead
of T'(a) to simplify notation.

SOCIETE MATHEMATIQUE DE FRANCE 2021



22 CHAPTER 1. COMPLEXES AND PRODUCTS

LEMMA 1.1.4. — Let A®* and B® be two compleres equipped with morphisms
¢ : A* — A®* and ¢ : B* — B®, and let a; : A* — B® (i = 1,2) be two

morphisms such that
a;0p=1oq 1 =1,2.

If h : a; ~ as is a homotopy between a1 and as such that h o ¢ = ¥ o h, then
the collection of maps hr = (kI : T"T1(A®) — T™(B*)) defined by h(an,ant1) =
(h(an), h(an+1)) is a homotopy between T'(c1) and T(as).

Proof. — The proof of this lemma is a direct computation and is omitted here. O

In the remainder of this subsection we will consider triples (A3, A3, A%) of complexes
of R-modules equipped with the following structures:

A1) Morphisms ¢; : A? — A? (i =1,2,3).
A2) A morphism Uy : A} ® A5 — A3 which satisfies
Ua o (p1 ® p2) = p3 0 Ua.
PROPOSITION 1.1.5. — Assume that a triple (A7, ;) (1 < i< 3) satisfies conditions
A1-2). Then the map
Uk @ T*(A]) ® T*(43) — T*(43)

given by

(Zn-1,%n) Ul Um—1,m) = (2n Ua Ym-1 + (=1)"Zn—1 Ua ©2(Ym), Tn UA Um),
is a morphism of complezxes.
Proof. — This proposition is well known to the experts (compare, for example, to

[61, Proposition 3.1] ). It follows from a direct computation which we recall for the
convenience of the reader. Let (x,—1,2,) € T"(A}) and (Ym—1,Ym) € T™(A3). Then

d((xn—hxn) U£ (ym—laym)
= d(mn U Ym—1+ (=1)"@pn_1 Ua 302(ym)axn Ua ym) = (Zn+m> Zntm+1),

where

Zn4+m = dxn Ua Ym—1+ (_1)nxn Ua dym—l + (_1)mdxn—l Ua <P2(Z/m)
+ (=)™ g Ua d(p2(ym)) + (=1)" (03 = 1)(@n Ua Yim)
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and zp4m+1 = d(Tn U4 Ym ). On the other hand
U£ o d((ﬂ?n,l,l’n) ® (ymfhym))
= Uﬁ © ((dmn—l + (_1)n(<p1 - 1)5571, dxn) ® (ym—laym))
+ (=" Uﬁ o((Zn-1,2n) ® (dYm—1 + (=1)" (2 — 1)Ym, dym))
= (un+m7un+m+1)7
where
Unym = ATy Ug Ym—1 + (=1)"(d2n—1 + (=1)"(¢1 — 1)T5) U 02 (ym)
+ (_1)n$n U (dym—l + (_1)m(302 - 1)ym) + (_1)n+m—1xn_1 U WQ(dym)a

and Upyma1 = dTp U Ym + (—1)"z, Ua dy,,. Now the proposition follows from the
formula,

d(xn Ua ym) =dz, Ux Ym + (_1)nxn Ua dym
and the assumption A2) that reads ¢1(z,) Ua ©2(ym) = @3(zn U Ym)- O

PROPOSITION 1.1.6. — Let (A?, ¢;) and (B, ;) (1 < i < 3) be two triples of com-
plexes that satisfy conditions A1-2). Assume that they are equipped with morphisms

a; + A} — B},
such that c; 0 p; = ;0 for all1 < i < 3. Assume, in addition, that in the diagram

At@A; — 2 A3

a1 ®asz
/
Up

Bt®@By — . B3

a3

there exists a homotopy
h:asoUg~ Ugo(a; ®as)
such that h o (p1 ® @2) = 3 0 h. Then the collection hr of maps

np:o @ (A ® TT(AS)) — TH(B3)
m+n=k+1
defined by

h’;“((xn—la xn) by (ym—l & ym))
= (h(xn ® ym—l) + (_1)mh(xn—1 ® 902(ym))a h(xn 02 ym))v
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provides a homotopy hr : azo U ~ UL o (a; ® as) :
Ui
T*(A}) @ T*(A3) ———— T*(43)

a1 @asz as

iy

T*(B}) @ T*(BS) ————— T*(B}).
Proof. — Again, the proof is a routine computation. Let (x,_1,2,) € T™(A}) and
(Ym—1,Yym) € T™(AS3). We have

d((l'n—laxn) ® (ym—la ym)) = (dmn—l + (_1)n(901 - 1)xn,d1‘n) ® (ym—laym)
+ (—1)n(l‘n_1,:pn) ® (dym—l + (_1)m($02 - 1)ym,dym),

and therefore

hr o d((wn*hxn) ® (ymflaym)) = (a, b)7

where
a = h(dzn, ® ym-1) + (=1)"h((dzn—1 + (=1)" (1 — 1)Tn) @ ©2(ym))
+ (=" (h(@y ® (dym-1 + (=1)" (02 — 1)ym))
+ (=)™ (@01 ® @2(dym))
=hod(zp, ®Ym-1)+ (-1)"hod(zn_1 ® ©2(ym))
+ (=) (3 — 1) 0 h(@n @ Ym)
and

b=h(dz, Q@ Ym) + (—1)"h(zr @ dym) = h o d(zy, ® Ym)-

On the other hand

dohr((Tn-1,2Zn) ® (Ym-1,Ym))
= d(h(zn @ ym-1) + (=1)"h(@n-1 ® P2(Ym)), h(xn © Ym))
= (doh(zn @ ym—1) + (=1)"d 0 h(zn—1 © 2(Ym))
+ (=)™ (s = Dh(zn @ ym), d o h(@n @ ym)).
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Thus

(hrd + dhr)((Tn-1,%n) ® (Ym-1,Ym))
= ((hd + dh)(zn ® Ym-1)
+ (=1)"(hd + dh)(Tn—1 ® P2(ym)), (hd + dh) (T @ Yym))
= ((e1(zn) Up a2(ym-1) — a3(@n Ua Ym-1))
+ (=1)" (1 (®n—1) U p2(a2(ym))
— a3(@n-1Ua p2(Um)), a1(zn) Up a2(Ym) — @3(2n Ua Ym))
= (Up o (a1 ®@ ag) — ag o UL)(Tn—1,%n) ® (Ym—1,Um)),

and the proposition is proved.

PROPOSITION 1.1.7. — Let A? (1 < i < 4) be four complezes equipped with morphisms
i+ A? — A? and such that

a) The triples (A3, A3, AY) and (A}, A3, AS) satisfy Al1-2).

b) The complexzes A? (i =1,2) are equipped with morphisms 7; : A? — A? which

commute with morphisms p;:

2090@':90@'0%7 7/:1’2

c) There exists a morphism T34 : AY — A% such that

T34 003 = P4 0 T34.

d) The diagram

Ua
At@ Ay —2 g
5120(F1®T) T34

AS@ AT — 24 A8

commutes.
Let F; : T*(A3) — T*(A?) (i =1,2) and T34 : T*(A3) — T*(A]) be the mor-
phisms (which we denote again by the same letter) defined by

%(xn—lyxn) = (f%(xn—l)a z(xn))a %4(1'71—171%) = (%4(mn—1)7 %4(l‘n))
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Then in the diagram

To(AN) © T*(A3) 4 Te(A3)

8120(T1® F2) T34
hg
y /

T*(A3) ® T*(43) ———— T*(43)

the maps Fz4 0 UL and UL 0 8150 (71 ® %) are homotopic.

Proof. — Let (¢n—1,%n) € T"(A}) and (ym—1,Ym) € T™(AS). Then

(22> %4((1'”_1,%”) Uz (ym—17ym))
= (F34(2n Ua ym—1) + (=1)" Tza(2n-1 Ua p2(Ym)); F34(2n Ua Ym))

and
(23)
U% ©5120(7 ® Z3)((Tn-1,%n) ® (Ym—1,Ym))
= (=1)"" % (Ym—-1,Ym) Ua A1 (Tn-1,2n)
= (=1)""(Z(ym) Ua F1(Tn-1)
+ (=1)" % (Ym-1) Ua ¢1(Z1(2n)), Z2(Ym) Ua F1(xn))
= ((-1)" Zs4(2n-1Ya ym) + T34(1(21) Ua Ym—1), F34(Tn Ua Ym))-

Define

Wy @ (TMAD) @ TT(AS) — THA),
m+n=k+1

by
(24) hl}((l’n—laxn) & (ym—l ® ym)) = (_1)n71(%4(mn—1 UA ym—1)70)'
Then

(25)  dhg((Fn-1,%n) ® (Ym—1 ® Ym))

(-1)"d(T34(zp—1 Ua Ym—1),0)

(=) Y Fza(dzp_1 U Ym-1 + (=1)" 21 Ug dym_1),0)
(—1)" ' Faa(dzp—1 UA Ym-1) + Faa(Tn-1 Ua dym_1),0),
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and

(26)  hzd(zn-1,2n) ® (Ym-1 ® Ym))
=hz((dzn—1+ (=1)"(p1 = )Zn, dzn) ® (Ym-1,Ym)
+ (=1)"(@n-1,%n) ® (dym-1 + (=1)" (P2 = 1)Ym, dym))
= ((_1)”%4((15%_1 Ua ym—l) + %4(901(xn) Ua ym—l)
= J34(%n Ua Ym—1) — F34(Tn—1Ua dYpm—1)
— (=1)" Tsa(Tn-1Ua p2(ym)) + (=1)" Tza(Zn—1 Ua Ym), 0).
From (22)—(26) it follows that
UL 05120 (A ® F) — TsaoU) =dhg +had

and the proposition is proved. U

1.2. Products

1.2.1. — In this subsection, we review the construction of products for cones following
Nekovar [60] and Niziot [61]. We will work with the following data:
P1) Diagrams
A lior & =123
where A7, B? and C; are complexes of R-modules.
P2) Morphisms
Uag AI ® A; — A§
Up : B ® B — B3
Uc : C1®C5 — C5.
P3) A pair of homotopies h = (hy, hy)
hy : Ugo(fi® f2) ~ faoUy
hg : Uco (91 ®g2) ~ g3 oUp.

Define
(27) E? = cone (A; @ By 179, c;) [~1].
Thus

E'=A'®BreC] !
with d(an, by, crn_1) = (dan,db,, —fi(an) + gi(b,) — dep—1).
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PROPOSITION 1.2.2. — i) Given the data P1-3), for each r € R the formula
(@n, bns en—1) Urh (@ Uiy €1
(an Ua a3y, b Up by et Uc (7 fa(ar,) + (1= 1)g2(b7,))
+(=1)"(A =) fi(an) +rg1(bn)) Uc ¢y — (hy(an @ ay,) — hy(bn @ b7,)))
defines a morphism in J# (R)
Urn @ Bf ® E5 — E3.
ii) If r1,72 € R, then the map
k: B @ By — E3[-1],
given by
k((an; bn, n-1) ® (g, b, 1)) = (0,0, (=1)"(r1 — r2)en—1 Uc 1)

for all (an,bp,cn—1) € ET and (a,,,bl,,c._1) € EI, defines a homotopy

ms Ym>

k : Uri,h ~ Upy -
iii) If b = (h}, hy) is another pair of homotopies as in P3), and if a : hy ~ h}
and B : hg ~> h'g is a pair of second order homotopies, then the map

s : E} ® E5 — E3[-1]
s((@n, b, cn—1) ® (a’;n’ b:rw C;n—l)) = (0,0,a(a, ® a’;n) — B(bn, b;n))

defines a homotopy s : Upp ~» Uy pr.

Proof. — See [61, Proposition 3.1]. O

1.2.3. — Assume that, in addition to P1-3), we are given the following data:

T1) Morphisms of complexes

Ty A} = A3
Ip : B - B}
To : C — C7,

fori=1,2,3.
T2) Morphisms of complexes
Uy @ A3 ® A — A3
Uy : BS ® B} — B3
Uy : Cs@Ct — C3.
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T3) A pair of homotopies b’ = (A, hy)
Byt Ug o (f2® f1) ~ faolU)
hy = Ug o (g2 ® g1) ~ g3 o Ug.
T4) Homotopies
Ui : fioTa~ Tcofi
Vit gio I~ Jcogi,
fori=1,2,3.
T5) Homotopies
ta: U203120(9A®§A) ~ TpoUg
tp : UlBoslgo(yB(X)yB) ~ JgoUp
to : Ulcosuo(ﬂc(g)ﬂc) ~ T oUg.
T6) A second order homotopy Hy trivializing the boundary of the cube

Ua

A @ AS A3
1 2 3 T
f3
Ta®Ta
ta
f1®f2 ,
A3 @ a3 222 43
hy
f1®f2
f:
CcroCy ——C cs ’
(U1®U2)1
Tc®Ic ,
hf0812
Ct®Cs Cs,

Ugosia
ie., asystem Hf = (H})icz of maps H} : (A; ® Ap)* — Ci~? such that

dHf—Hfdz—tcO(f1®f2)—§cOhf+U30UA
+f30tA+h}0(8120(§A®9A)) — (U,CvOSlQ)O(U1®U2)1.

In this formula, (U; ® Us); denotes the homotopy defined by (18).
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T7) A second order homotopy H,, trivializing the boundary of the cube

UB

B} ® B3 B3
IB
gs
IB®IB
tp
91®g2 /
U'zos12
L] [ ] L]
Bl ® 32 B3
hg
91092
Uc gs
Cr ®C3 Cs
(Vi®V2)1
T ® I
c®Ic h’goslg

C ®Cy cs,

Up 0812
ie., a system Hy = (H.)icz of maps H! : (B; ® By)" — C§ ? such that
dHy — Hyd = —tco(91 ®g2) — Joohg+VzoUp

+93 OtB + h/g o (812 o (93 ® yB)) — (UIC o 812) o (V1 ® V2)1.

PROPOSITION 1.2.4. — i) Given the data P1-3) and T1-7), the formula
f%(aﬂ’u bn7 cnfl) = (yA(an)a yg(bn), yC(Cnfl) + Ul(a’n) - ‘/Z(bn))
defines morphisms of complexes
7, E} - E}, 1=1,2,3

such that, for any r € R, the diagram

E* @ E° L) B
1 ® Ly 3
$120(T1 Q@ T2) T3
U/17r h’

E3®E} — . E3

commutes up to homotopy.

Proof. — See |60, Proposition 1.3.6].
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1.2.5. Bockstein maps. — Assume that, in addition to P1-3), we are given the following
data:

B1) Morphisms of complexes
Bz, : Z7 — Z7[1], Z?=A B, C?, i=1,2.
B2) Homotopies

u; : fi[l]oBa,i ~ Beyio fi
v; ¢ gi[l] o B ~ Beio g

fori=1,2.
B3) Homotopies
hz : Uz[1]o (id ® Bz2) ~ Uz[1] o (821 ®id),

for Z* = A*,B*,C".

B4) A second order homotopy trivializing the boundary of the following diagram

Ba,1®id
A3 ® A3 - A1) ® A3
) UA[l]
id®Bas f11]® f2
f1®f2
Ay ® A3[1]
f1®f2(1]
Bo,1®id
CI ® 02. C,1
f1Q®uz
id®Bc,2
Ct ® Cs[1]

Uc[l]

B5) A second order homotopy trivializing the boundary of the cube

SOCIETE MATHEMATIQUE DE FRANCE 2021



32 CHAPTER 1. COMPLEXES AND PRODUCTS

Bp,1®id
B} ® B3 ° B:[1] ® B
UB[I]
1d®B5.2 91[1]®g2
hp -
91892
> . Usll] / .
B ® B3[1] B3[1]
91®92[1]
Be,1®id 1
Ct @ Cy o1 g3[1]
91Qu2
id®Bc,2
C? ® Cs[1] [1].

Ucl1]
PROPOSITION 1.2.6. — i) Given the data P1-3) and B1-5), the formula
BE,i(@n, by, cn_1) = (Ba,i(an), BB,i(bn), —Bc,i(cn-1) — ui(an) + vi(bn))
defines a morphism of complexes
B : B} — E}[1]
such that for any r € R the diagram

BE,1®id
Bt @By ———— E[1]® B3

lid@ﬂ&z Jur,h[l]
° ° Ur’h[l] °
B} @ E3[1] ———— E3[1]

commutes up to homotopy.
ii) Given the data P1-3), T1-7) and B1-5), for each r € R the diagram

BE,1®id Up,n[1] Tl
Bro By — 2% pel o By " B3] W pep
lsn J/id
Br,2®id ZN® % St

[
ES® E} ————— E3[1]® B} ———— E3[1] ® B} ———— E3[1]
is commutative up to a homotopy.

Proof. — See [60, Propositions 1.3.9 and 1.3.10].
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CHAPTER 2

COHOMOLOGY OF (¢,I'x)-MODULES

2.1. (¢,T'k)-modules

2.1.1. — Throughout this section, K denotes a finite extension of Q,. Let kx be the
residue field of K, O its ring of integers and K, the maximal unramified subfield
of K. We denote by K" the maximal unramified extension of K, and by o the absolute
Frobenius acting on K. Fix an algebraic closure K of K and set G = Gal(K/K).
Let C,, be the p-adic completion of K. We denote by v, : C, — RU {co} the p-adic

vp(2)
valuation on C, normalized so that v,(p) =1 and set |z|, = (%) "7 Write A(r, 1)
for the p-adic annulus

A(r,)={x e C, | r <|z|, < 1}.

Fix a system of primitive p™-th roots of unity € = ({p»)n>0 such that Cﬁnﬂ = (pn
for all n > 0. Let K¢ = |Jo" K({pn), Hx = Gal(K/K%°), 'x = (K%¥°/K) and
let xx : 'k — Zj, denote the cyclotomic character.

Recall the constructions of some of Fontaine’s rings of p-adic periods. Define

Et = lim Oc,/pOc, = {z = (vo,21,...,%n,...) | o] =z, Vie N}
T—xP
Let z = (zo,21,...) € E+. For each n, choose a lift %, € Oc¢, of x,. Then, for

all m > 0, the sequence :fcf,; converges to z(™ = lim,_, oo A= Oc,, which

n m-+n

does not depend on the choice of lifts. The ring f}+, equipped with the valuation
ve(z) = vp(2(®), is a complete local ring of characteristic p with residue field k.
Moreover, it is integrally closed in its field of fractions E = Fr(E™).

Let A = W(E) be the ring of Witt vectors with coefficients in E. Denote by [-] :
E — W(E) the Teichmiiller lift. Each u = (uo, u1,...) € A can be written in the form

oo

w="[u "

n=0
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Set # = [¢] — 1, Aap = Z,[[r]] and denote by Aq, the p-adic completion
of A§ [1/7]in A.

Let B = A [1/p], Bq, = Aq, [1/p] and let B denote the completion of the maximal
unramified extension of Bq, in B. All these rings are endowed with natural actions

of the Galois group G and the Frobenius operator ¢, and we set B = BHx. Note
that

y(m) = 1+ m)eD —1,  yelk

For any r > 0 define

Bt" = {x €eB| lim <UE(£L'k) + prk> = —|—oo}.
k—4o00 p-—l

Set Bl = BN B, B = Bk nB!", Bf = | | B"" and B = |  B".
r>0 r>0
Let L denote the maximal unramified subextension of K°/Q, and let ex =
[KY¢ : LY. It can be shown (see [19]) that there exists rx > 0 and 7x € B}{K
such that for all » > rx the ring Bk’" has the following explicit description

B}{ = {f(wK) = Zakw’;{ | ar € L and f is holomorphic
k
€ and bounded on A(p~t/exT, 1)} .

Note that, if K/Q, is unramified, L = K, and one can take mx = .
Define

BI{;,K = {f(ﬂ'K) = Z axm | ar € L and f is holomorphic on A(p~'/¢x7, 1)} .
kEZ

The rings BT’ and BTlr x are stable under I'r, and the Frobenius ¢ sends B " into

Bk’" and BIigT’K into BI{ZK. The ring

= J Blix
T2TK
is isomorphic to the Robba ring over L. Note that it is stable under I'x and . As

usual, we set
o0

t =log(1l+ ) :Z "+17r € Zq,-

Note that ¢(t) = pt and v(t) = xx (V)t, v € Tk
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To simplify notation, for each r > rx we set %g) = BL’;’ x- The ring ,%’%) is
equipped with a canonical Fréchet topology (see [13]). Let A be an affinoid algebra
over Q. Define

i)y = AB#y,  Axa= Tg}(%’g,)m

If the field K is clear from the context, we will often write %’X) instead of %’g’) 4 and

X4 instead of Zk 4.

DEFINITION. — i) A (¢,T'x)-module over %X) is a finitely gemerated projective
%X)-module D) equipped with the following structures:

a) A p-semilinear map
D™ — p® ®=%(AT) ‘%1(41”)
such that the induced linear map

* (pr) r (pr)
© : DM g 90%: HD()@)@X)‘%AP

25,

is an isomorphism of %ffr)—modules;
b) A semilinear continuous action of Tk on D™,
ii) D is a (¢, 'k )-module over Z4 if D = D) ® p(m Ha for some (¢,I'k)-module
A

D™ over %’X), with r > rk.

If D is a (¢,I'x)-module over Z4, we write D* = Homg, (D, A) for the dual
(¢, T')-module. Let Mf%’f denote the ®-category of (¢, I'x)-modules over Z4.

2.1.2. — A p-adic representation of G with coefficients in an affinoid Q,-algebra A
is a finitely generated projective A-module equipped with a continuous A-linear ac-
tion of Gg. Note that, as A is a noetherian ring, a finitely generated A-module is
projective if and only if it is flat. Let Rep 4(Gk) denote the ®-category of p-adic rep-
resentations with coefficients in A. The relationship between p-adic representations
and (o, 'k )-modules first appeared in the pioneering paper of Fontaine [31]. The key
result of this theory is the following theorem.

THEOREM 2.1.3 (Fontaine, Cherbonnier-Colmez, Kedlaya). — Let A be an affinoid
algebra over Q.

i) There exists a fully faithul functor

DT

,I
rig,A : RepA(GK) - M?%A’

which commutes with base change. More precisely, let 2" = Spm(A). For each x € X,

denote by m, the mazimal ideal of A associated to x and set E, = A/m,. If V
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(resp. D) is an object of Rep4(Gq,) (resp. of Mgg}, set Vo = V @4 Eg (resp.
D, =D ®y E,). Then the diagram

T
rlg A

RePA(GQ ) —— Méﬂ,
o en
Di‘g Bz n gl
Repj, (Gq,) —— MG

commutes, i.e. Drlg AV ) ~ Dng(v )-

ii) If E is a finite extension of Q,, then the essential image ofD g 18 the sub-

rig,
category of (o, 'k )-modules of slope 0 in the sense of Kedlaya [47].

Proof. — This follows from the main results of [31], [19] and [47]. See also [24]. O

REMARK 2.1.4. — Note that in general the essential image of Djig, 4 does not coincide
with the subcategory of étale modules. See [16, 49, 40] for further discussion.

2.2. Relation to p-adic Hodge theory

2.2.1. - In [31], Fontaine proposed to classify p-adic representations arising in p-adic
Hodge theory in terms of (¢,I'x)-modules (Fontaine’s program). More precisely, the
problem is to recover classical Fontaine’s functors Dgg (V'), Dst (V) and D,is(V) (see,
for example, [33]) from Djlg(V). The complete solution was obtained by Berger in
[13, 15]. His theory also allowed him to prove that each de Rham representation is
potentially semistable. In this subsection, we review some of results of Berger. See
also [22] for introduction and relation to the theory of p-adic differential equations.

Let E be a fixed finite extension of Q,.

DEFINITION. — i) A filtered module over K with coefficients in E is a free K ®q,
E-module M of finite rank equipped with a decreasing exhaustive filtration (Fil'M );cz.
We denote by MF g g the ®-category of such modules.

ii) A filtered (p, N)-module over K with coefficients in E is a free Ko ®q, E-mod-
ule M of finite rank equipped with the following structures:

a) An exzhaustive decreasing filtration (FiliMK)iez on Mg = M ®k, K;

b) A o-semilinear bijective operator ¢ : M — M;

c) A Ko ®q, E-linear operator N such that N ¢ = ppN.

iii) A filtered @-module over K with coefficients in E is a filtered (@, N)-module
such that N = 0.

We denote by MF?II\; the ®-category of filtered (p, N)-module over K with coeffi-
cients in E and by MF}'}E the category of filtered p-modules.
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iv) If L/K is a finite Galois extension and Grx = Gal(L/K), then a filtered
(o, N,Gr/K)-module is a filtered (¢, N)-module M over L equipped with a semi-
linear action of G x which commutes with ¢ and N and such that the filtration
(Fil'Mp)icz is stable under the action of Gp k-

v) We say that M is a filtered (¢, N, Gk )-module if M = K§*®r,M’, where M’ is a
filtered (¢, N, G,k )-module for some L/K. We denote by MF?}’%’GK the ®-category
of (¢, N, Gk )-modules.

Let K°((t)) denote the ring of formal Laurent power series with coefficients
in K°° equipped with the filtration Fil' K¥¢((t)) = t*K°[[t]] and the action of I'g
given by

v (Zakt’“> = > Ala)xx(F*, v eTk,

keZ kEZ
The ring Zk, ¢ can not be naturally embedded in E®q, K°((t)), but for any r > rx
there exists a I k-equivariant embedding i,, : %}QE — E®q, K°((t)) which sends 7
to Cpn et/?" —1. Let D be a (¢, T )-module over Zg g and let D = D™ ® pr) Hx.E
LK E

for some r > rg. Then

'k
Dansk(D) = (E ©q, K¥*((t)) &, D)

is a free £ ®q, K-module of finite rank equipped with a decreasing filtration

) ) T'x
Fil' Zan (D) = (E ®q, FIl'K¥((t)) @, DO) ",

which does not depend on the choice of r and n.

Let Zk gllog ] denote the ring of power series in variable log 7 with coefficients
in Zk r. Extend the actions of ¢ and I'x to Zk gllog7] setting

p(logm) = plog m + log (ﬁg?) ,

Y(log ) = log w + log <7(7:T)) , v€Tlk.

(Note that log(y(m)/nP) and log(7(m)/m) converge in Zk g.) Define a monodromy
operator N : Zk gllogn] — Zk glog 7| by

-1
voo (1o
P dlogm

For any (¢,I'x)-module D define

Dy (D) = (D @y, Zrc pllogm, 1/8)7, ¢ =log(1+ ),
gcris/K(D) = -@st(D)NZO = (D[l/t])PK
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Then Z4(D) is a free E ®q, Ko-module of finite rank equipped with natural actions
of ¢ and N such that Ny = ppN. Moreover, it is equipped with a canonical exhaus-
tive decreasing filtration induced by the embeddings i,,. If L/K is a finite extension
and D is a (¢, 'k )-module, the tensor product D = Z g ®%, , D has a natural
structure of a (¢, ' )-module, and we define

-@pst/K(D) = hi>n -@st/L(DL)'

L/K

Then Zps k(D) is a free E ®q, Kj'-module equipped with natural actions of ¢ and
N and a discrete action of Gg. Therefore, we have four functors

Dar/K Mf%,l:s — MFg £,
Dutyxc + MY, — MFRY,
Dostyxc + MG, — MFRIER,
Deris /K M%IEE — MF%E.
If the field K is fixed and understood from context, we will omit it and simply write
Dar, Dst, Ppss and Deyis.
THEOREM 2.2.2 (Berger). — Let V be a p-adic representation of Gx. Then

D, x(V)~ 9*/K(Dlig(v))7 x € {dR,st, pst, cris}.
Proof. — See [13]. O

For any (¢, x)-module over Zx g one has

kg K Deris/ k(D) < tkpgk, Ptk (D) < 1kpgK, Zar/k (D) < tkgy (D).

DEFINITION. — One says that D is de Rham (resp. semistable, resp. potentially
semistable, resp. crystalline) if

tkpg Ko Zar/ Kk (D) = tkg, (D)
(resp. rkE®KOQSt/K(D) = rkg, 5 (D), resp. rkE®KO.@pst/K(D) = rkg, (D), resp.
rkE'®Ko @cris/K(D) = rk%x,}; (D))

Let M%}E)St, M%’E’pst and M%’;Cm denote the categories of semistable, potentially
semistable and crystalline (p, I')-modules respectively. If D is de Rham, the jumps of

the filtration Fil‘ Z4g (D) will be called the Hodge-Tate weights of D.
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THEOREM 2.2.3 (Berger). — 1) The functors
Dy - MZE — MFZY

XK, E,8t
. »,T ¢,N,Gk
Dost = MGE . — MFLY
. »,r ®
‘@C“S . M%K,E,cris - MFK,E

are equivalences of ®-categories.
ii) Let D be a (p,I'k)-module. Then D is potentially semistable if and only if D is
de Rham.

Proof. — These results are proved in [15]. See Theorem A, Theorem II1.2.4 and The-
orem V.2.3 of op. cit.. O

2.3. Local Galois cohomology

2.3.1. — For the content of this section we refer the reader to [65]. Let V be a p-adic
representation of G with coefficients in an affinoid algebra A. Consider the complex
C*(Gk, V) of continuous cochains of G g with coefficients in A and the corresponding
object RT'(K, V) of 2(A). For the Tate module A(1), the base change (see [65, Proof
of Theorem 1.14]) and the classical computation of H2(K,Z,(1)) together give

>oRT(K, A(1)) ~ A[-2].
In particular, we have a canonical isomorphism
(28) invg @ H*(K,Z,(1)) ~ A.

Recall (see Section 0.2) that on the category Zperi(A) of perfect complexes we have
the contravariant dualization functor

(29) X — X* = RHomy (X, A).
The natural pairing V*(1) ® V' — A(1) induces a pairing
(30) RI(K,V*(1)) ®% RT(K,V*(1)) — m>2RI(K, A(1)) =~ A[-2].

The following theorem is a version of classical results on local Galois cohomology in

our context.

THEOREM 2.3.2 (Pottharst). — Let V' be a p-adic Galois representation with coeffi-
cients in an affinoid algebra A.

i) Finiteness. We have RI'(K,V) € 91[)%;22 (A).

ii) Euler-Poincaré characteristic. We have

2

S (~1)irkaHY(K,V) = —[K : Q] - tka(V).
=0
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iii) Duality. The pairing (30) induces an isomorphism
RI(K,V*(1)) ~ RI(K,V)*[-2] := RHom (RT(K, V), A)[~2].
Proof. — See [65, Corollary 1.2 and Theorem 1.14]. O

REMARK 2.3.3. — Theorem 2.3.2 is inspired by Nekovai’s duality theory for big Galois
representations [60, Chapters 2-5].

2.4. The complex C, -, (D)

24.1. — In this section we review the generalization of local Galois cohomology
to (¢,'k)-modules over a Robba ring. We keep previous notation and conventions.
Set Ax = Gal(K(¢,)/K). Then I'x = Ag x 'y, where I'}} is a pro-p-group iso-
morphic to Z,. Fix a topological generator yx of I'f. For each (¢, )-module D
over #4 = Xk, a define

C2, (D) : DAx 250, par
where the first term is placed in degree 0. If D’ and D" are two (g, 'k )-modules, we
will denote by

U, : C5,.(D)®C; (D") = C5 (D'®@D")

the bilinear map

Ty @ Vi (Ym) if z, € CI (D), ym € CI, (D"),

Uy (Zn @ Ym) = andn+m=0or 1,
0 ifn+m>2.

Consider the total complex

C* . (D) = Tot (c;K (D) L5 ¢, (D)) .

PVK

More explicitly,

Cs (D) : 0— DA% %, DAx g DAx 2, DAk g,

where do(z) = ((¢ — 1)z, (yx — 1) z) and di(z,y) = (yxk — 1)z — (¢ — 1) y. Note
that C3 (D) coincides with the complex of Fontaine-Herr [41, 42, 52]. We will write

H*(D) for the cohomology of C¢ (D). If D’ and D" are two (¢, I'x)-modules, the
cup product U, induces, by Proposition 1.1.5, a bilinear map

Upy C;,'YK (D,) ® C:D,’YK (DH) - C;,'YK (D, ® D”)'
Explicitly

Up,y ((xn—lyl'n) ® (ym—laym)) = (xn Uy Ym—1 + (_1)mwn—1 Uy ‘P(ym)awn Uy ym)a
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if (€n_1,2,) € C2_ (D)) = C2-X(D’) @ C7, (D') and (Ym—1,ym) € CT (D) =

PVK
C*H(D”) @ C*(D"). An easy computation gives the following formulas

@YK k(D) = CQ L, (D' ®D"),

{00 (D) ® CY
o ® Yo — To @ Yo,

(D) ® CL

PYK

€3 (D) = €}, (D' © D),

Zo ® (Yo,y1) — (Zo @ Yo, To @ Y1),

cl. (D)eC?

LP’YK PVK

{ (D//) Nyg)! (D/ ® D”),
(Zo,21) ® Yo — (Zo ® ©(¥0), T1 ® Yk (¥0)),

PyYK

cl. (D)eClL

‘P"/K

4p’yK(DN) - Ci 'YK( DH)7

(o, 1) ® (Yo, ¥1) — (1 @ Y (Yo) — 0 ® ©(y1)),

(D) ®C,
o ® Y1 — o D Y1,

<P YK <P YK (DN) 50 VYK (D/ DH)’

{Ci YK (DI) ® Cg TK (DH) - Ci YK (DI ® DH)’
1 ® yo — =1 @ Y (¢(y1))-

Here the zero components are omitted.

2.4.2. — For each (¢, )-module D we denote by

RI(K,D) =[G}, (D)]

PYYK

the corresponding object of the derived category Z(A). The cohomology of D is
defined by

HY (D) =R'T'(K,D) = H’(C’; 4k (D)), i>0.
There exists a canonical isomorphism in Z(A)
TRk : T52RIT(K, Za(xK)) ~ A[—2]

(see [42], [52], [49]). Therefore, for each D we have morphisms

(31) RI(K,D)®}5 RI(K,D*(xx)) = RI(K,D ® D*(xx))
QY. RI(K, Za(xx)) — 7o RI(K, Za(xK)) =~ A[-2].

The following theorem generalizes main results on the local Galois cohomology
o (¢,T')-modules.
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THEOREM 2.4.3 (Kedlaya-Pottharst-Xiao). — Let D be a (¢, 'x)-module over Zk a,
where A is an affinoid algebra.

i) Finiteness. We have RI'(K,D) € 72 (A).

perf
ii) Euler-Poincaré characteristic formula. We have

2

> (-1)'tkaH' (D) = —[K : Q] ks, , (D).
1=0

iii) Duality. The morphism (31) induces an isomorphism
RI(K,D*(xk)) ~ RI'(K,D)*[-2] := RHom4 (RI'(K,D), A)[-2].
In particular, we have cohomological pairings

U : HY(D)® H* Y (D*(xk)) — H*(Za(xx)) ~ A, i€ {0,1,2}.

iv) Comparision with Galois cohomology. Let V is a p-adic representation of Gx
with coefficients in A. There exist canonical (up to the choice of vk ) and functorial
isomorphisms

H'(K,V) = H'(D], (V)

which are compatible with cup-products. In particular, we have a commutative diagram

H(Ra(xx)) —s— A

AN

H*(K, A(xk)) —— 4,

where invg is the canonical isomorphism of the local class field theory (28).
Proof. — See [49, Theorem 4.4.5] and [65, Theorem 2.8]. O

REMARK 2.4.4. — The explicit construction of the isomorphism TR is given in [42]
and [7, Theorem 2.2.6].

2.5. The complex K* (V)
2.5.1. — In this section, we give the derived version of isomorphisms
H'(K,V) = H'(D], (V)

of Theorem 2.4.3 iv). We write C%_ (V) instead of C%_ (D!

PVK wm(( rig
tion. Let K be a finite extension of Q,. Let V' be a p-adic representation of Gx with

(V)) to simplify nota-

coefficients in an affinoid algebra A.
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In [13], Berger constructed, for each r > rk, a ring ]§T’T which is the comple-

tion of B'" with respect to Frechet topology. Set Brl A= BT ®q,A and B!

rig rig, A~

Bt
UT>TK Brlg 4- For each r > rg we have an exact sequence

e~
0—Q, — Bl == Bl -0

(see [14, Lemma 1.7]). Since the completed tensor product by an orthonormalizable
Banach space is exact in the category of Frechet spaces (see, for example, [4, proof of
Lemma 3.9] ), the sequence

O_>A_)B11;A T BLQPA_’O

is also exact. Passing to the direct limit we obtain an exact sequence

(32) 0—-A— BII& LB Bng,A — 0.

Set VI =V 4Bl

rig rig,
exact sequence

4 and consider the complex C*(G g, rlg) Then (32) induces an

0_)0.(GK) )_)C.(GKWVT

rig

vVi)—o.

rig

) £=5 C* (G,
Define
K*(V) = T*(C*(Gx, V) = Tot (C*(Gc, Vi) £=5 C* (G, V)

Consider the map
av i O3, (V) = C*(Gk, V)

defined by
av(zo) = To, To € CSK(V)
,Y"f(g) 1
ay(r1)(g) = %(iﬂl), T € CiK(V),

where g € Gk and 7y ~9) = g|F?<. It is easy to check that ay is a morphism of
complexes which commutes with . By fonctoriality, we obtain a morphism (which
we denote again by ay ):

L0t (V) = K*(V).

PVK
PROPOSITION 2.5.2. — The map ay : Cg ., (V) — K*(V) and the map
v : C*(Gk,V) — K*(V)
— (0,zy), z, € C"(Gk,V)

are quasi-isomorphisms.

Proof. — This is [11, Proposition 9]. O
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2.53. — If M and N are two Galois modules, the cup-product
Ue : C*(M)®C*(M) - C*(M ® N)
defined by

(zn Ue ym)(glaQQa s 7gn+m) = In(gla e 7gn) 029 (9192 t ’gn)ym(gn+17 e 7gn+m),

where z,, € C"(Gk, M) and y,, € C™(Gk, N), is a morphism of complexes. Let V'
and U be two Galois representations of Gx. Applying Proposition 1.1.5 to the com-

plexes C*(Gk, V;{g) and C*(Gk, Ujig) we obtain a morphism
Uk : K*(V)® K*(U) - K*(V®U).

The following proposition will not be used in the remainder of this paper, but we
state it here for completeness.

ProOPOSITION 2.5.4. — In the diagram

U4P«’YK

cs..(Vyecs, (U) Ce(VeU)
ay RQay A ayveU
K V)@ K*(U) —~ 2 K" (VaU)

the maps ay gy © Uy, 4 and Uk o (ay ® ay) are homotopic.
We need the following lemma.

LEMMA 2.5.5. — For any z € C} _(V), y € CJ _(U), let ¢z y € Cl(I‘?ODIig(V ®U))
denote the 1-cochain defined by

n—1 . ’yn _ ryi+1
B ewti) = k@e (K ) ez,
=0

and ¢ y(1) = czy(vx) = 0. Then
i) For each x € C,_, (V) andy € C)_ (U)
Ca (v 1)y = av (@) Ue au(y) — aveu(z Uy y).

i) Ifz € CQ (V) and y € C, _ (U) then
Clyx—1)zy = aveu(T Uy y) — ay(z) Ue ap (y).
iii) One has

d* (Cz,y) = —ay(z) Uc ay (y)-
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Proof of the lemma. — i) Note that I, is the profinite completion of the cyclic group
(vk), and an easy computation shows that the map ¢, ,, defined on (yx) by (33),

extends by continuity to a unique cochain on I'); which we denote again by ¢, ,

For any natural n # 0,1 one has

n—1

Ca -1y (V) = D7k (@) ® (Vi — Vi) (w)
=0
n—1 n—1
=D k(@) ® 7k () = Y k(@) © 1% ()
=0 i=0
= B @) ©9k0) - K@ o m()

= (gv(2) Ve gu (¥)) (7k) = (9veu (2 Uy 9)) (Vk)-

By continuity, this implies that ¢, (4, 1)y = av(z) U. ay(y) — aveu(z U, y), and i)
is proved.

ii) An easy induction proves the formula

m i+1 m—+1 m—+1
TK 1 m+1 Tk —1 Tk —
—1(z)® =2—F+(y) = T)® - TQ®
30 3 rklme-D0® =70 = @e E ) - e
Therefore
n—1 n i+l
n 7 7 Y — 7
Cln-nay(VK) = Y (VK" = 7ik)(@) ® ——=(v)
i=0 K~
n—1 n n—1 i+1
% % Tk — 1 i v -1
=Y (' =)@ @ E—) - D vk(k — () @ £ (y)
i=0 k=1 i=0 K~ 1
by (34) , Tk —1 Tk — n Tk — 1
-1 ® TRyY)— ) ®
(vk — (=) pom— 7K_l( y) — 7k (2) W{_1(.1/)
Tk 1 vk~ 1
= [(@®y) po— (y)
= (avgu(z Uy ¥)) (1K) — (av(z) Ue au(y)) (7k),

and ii) is proved.
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iii) One has

dlcx,y(’Y?(a VE) = ’Y;L(Cx,y('y}?) —Coy ('Y?{+m) + Cayy (V)

m—1 ) ’Yn+m _ ,yi+n+1
> e @ E—E—(y)
i=0

Tk —1
n+m—1 n+m i+1 n—1 n i+1
i Tk~ ~ Uk i Tk — VK
— ) ® Yy) + z)® Y
> oo B 0+ Yok s B )
n—1 n+m i+1 n—1 n i+1
i Tk~ Uk i Tk — VK
= - T) @ S—F—(y) + )@ ———(y
Sk e T 0+ Tk s B )
n—1 n n+m n m
i Tk — 'k Tk — 1 n VK —1
= )@ ——(y)=—"——(2)® Y
Srite) s I T =2 @) ek )
= —(av(z) Uec av () (VK> VK-
By continuity, d'c, , = —ay (z) U. ay(y), and the lemma is proved. O

Proof of Proposition 2.5.4. — Let

hy 0 C3 (V) ®C3, (U) = C*(Gk, Vi, ® UL [-1]
be the map defined by

b (eg) = {—cm ifzeCl (V),yeCl (U),
0 elsewhere.
From Lemma 2.5.5 it follows that h. defines a homotopy
hy : aygu 0 Uy ~ Ue o (ay ® ap).
By Proposition 1.1.6, h, induces a homotopy
hen @ avey ©Upy ~ Uk o (av @ ay).

The proposition is proved. O

2.6. Transpositions

2.6.1. — Let M be a continuous Gg-module. The complex C*(Gg, M) is equipped
with a transposition
jv,c . C.(GK,M) — C.(GK,M)
which is defined by
yV,c(xn)(glng) ey gn) = (_1)n(n+1)/29192 e gn(mn(gl_l) oo »grjl))

(see [60, Section 3.4.5.1] ). We will often write .7, instead of Zy .. The map 7, satisfies
the following properties (see [60, Section 3.4.5.3] ) :
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a) 7. is an involution, i.e., 72 = id.
b) 7. is functorially homotopic to the identity map.

c) Let s75 : C*(Gg,M ® N) —» C*(Ck,N ® M) denote the map induced by the
involution M @ N - N ® M given by x ® y — y ® x (see Section 1.1.1). Set
Fa = T, 0 8%5. Then for all z,, € C"(Gk, M) and y,, € C™(Gk, N) one has

F2(xn Uym) = (=1)""(Teym) U (Tetn),

i.e., the diagram
(35) C*(Gx,M)® C*(Gx,N) —=~ C*(Gx, M ® N)
C*(Gk,N) ® C*(Gx, M) —— C*(Gk, N & M)

commutes.

2.6.2. — There exists a homotopy
(36) a=(a") :id~ 7,
which is functorial in M ([60], Section 3.4.5.5). We remark, that from the discussion
in op. cit. it follows, that one can take a such that a® = a' = 0.
2.6.3. — Let V be a p-adic representation of Gx. We denote by J (v, or simply
by Jk, the transposition induced on the complex K*(V) by 7., thus

Tk v)(@n-1,%n) = (Te(Tn-1), Te(z4)).-

From Proposition 1.1.7 it follows that in the diagram

(37) K (V)@ K*(U) —~ L K*(VaU)

5120( Tk (v)® Tk (U)) / Tk (veUu)osis
T

K*(U)@K*(V) —=2 K (U®V)
the morphisms Tk (vguy 0 875 0 Uk and Uk o s12 0 (Tk(v) ® Tk () are homotopic.
PROPOSITION 2.6.4. — i) The diagram

C* (G, V) s Ko (V)

lﬂc L?K(v)

C* (G, V) s K*(V)
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is commutative. The map ak vy = (a, a) defines a homotopy ag vy : idgvy ~ Tk (v)
such that ag vy o &y = &y o a.

ii) We have a commutative diagram

e (V)X Ko(V)

PVK

Jid J{ﬁk
° v .
Co (V) —— K*(V).
Ifa : id ~ J, is a homotopy such that a® = a' = 0, then agwyoay =0.
Proof. — i) The first assertion follows from Lemma 1.1.6.
i) If z; € CL, (V) then ay (z1) € C'(GK,Vr]iLg) satisfies
Te(av (z1))(9) = —g(av(z1)(g™h)) =
—r(9) r(9)
) [ 1 _ Tk -1 _
7 ( — <a:1>> £ ) = (v (@) o)
Thus J.oay = ay. By functoriality, 7x oay = ay. Finally, the identity ax(vyoay =
0 follows directly from the definition of &y and the assumption that a® = a! =0. O

2.7. The Bockstein map

2.7.1. - Consider the completed group algebra A4 = A[[['%]] of T'% over A. Note

that Ay = A®z,A, where A = Z,[[['%]] is the classical Iwasawa algebra. Let

1

¢+ Ay — A4 denote the A-linear involution given by ¢(y) = v, v € I'%. We equip

A4 with the following structures:

a) The natural Galois action given by g(z) = gz, where g € Gk, x € A4 and g is
the image of g under canonical projection of G — I'%.

b) The A4-module structure A% given by the involution ¢, namely A xz = ¢(\)z
for A € A4, z € AY.

Let J4 denote the kernel of the augmentation map A4 — A. Then the element
X =log ' (xx(7))(y—1) (mod J3) € Ja/J}
does not depend on the choice of v € I'}; and we have an isomorphism of A-modules
04 A— Ja)J3,
04(a) = aX.
The action of Gx on the quotient Ay = A /J2 is given by
9(1) = 1+log(xx(9))X,  g€GCxk.
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We have an exact sequence of G g-modules
(38) 0—>A—0—K—>~K—>A—>O.

Let V be a p-adic representation of G with coefficients in A. Set VK =V ®a ‘Z}(
Then the sequence (38) induces an exact sequence of p-adic representations

0>V Vg -V =0
Therefore, we have an exact sequence of complexes
0— C*(Gk,V) — C*(Gk,Vg) — C*(Gk,V) = 0
which gives a distinguished triangle
(39) RI'(K,V) — RI'(K, ‘~/K) — RI'(K,V) — RI'(K,V)[1].

The map s : A — ELK that sends a to a (mod J3) induces a canonical non-

equivariant section sy : V — Vg of the projection Vx — V. Define a morphism

Bve : C*(Gk,V) — C*(Gk,V)[1] by
Bv.c(zy) = %(do sy — sy od)(zn), z, € C*(Gk,V).

We will write 3. instead of By if the representation V is clear from the context.

PROPOSITION 2.7.2. — i) The distinguished triangle (39) can be represented by the
following distinguished triangle of complexes

C*(Gk,V) — C*(Gk, Vk) — C*(Gk,V) Bre, C*(Gk,V)[1].

ii) For any x,, € C"(Gk,V) one has
ﬂV,c(xn) = _IOgXK Ue Ty

Proof. — See [60, Lemma 11.2.3]. O

2.7.3. — We will prove analogs of this proposition for the complexes C¢, . (D) and

K*(V). Let D be a (¢,T'x)-module with coefficients in A. Set D = D ®4 Al. The
splitting s induces a splitting of the exact sequence

(40) 0 D D¢ D 0
which we denote by sp. Define
(41) fp : C3 . (D) = CF L (D)],
OBp(z) = %(dosD —sp od)(z), reCy ., (D).
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PROPOSITION 2.7.4. — i) The map PBp induces the connecting maps H"(D) —

H"(D) of the long cohomology sequence associated to the short eract sequence
(40).

ii) For any x € C7, ,, (D) one has

ﬂD(l‘) = _(Oalog XK(/VK)) Ug@,’y z,
where (0,log xx (7x)) € C’ql,’,YK(Qp(O)).

Proof. — The first assertion follows directly from the definition of the connecting map.
Now, let x = (z,—1,7n) € CF (D). Then
(dsp—spd)(z)

= d(l’n,1 & 17'Tn & 1) - SD(('YK - 1)1/'”,1 + (_1)n(90 - l)xna (P)/K - l)xn)

= ("yK(l'n,1) VK —Tpn-1® 1+ (—1)"(90 - 1)$n ® 1a'7K(xn) RVK — Tn ® 1)

—((x = D(En-1) @1+ (-1)"(¢ —Dzn @ 1, (yx — 1)(2a) ® 1)

= (PYK(xn—l) ® (7K - 1)a'7K(xn) & ('71( - 1))
From vk = 1+ X log xx (vx) it follows that el - 1= —X log xx (7x) (mod J%)
and we obtain

B (z) = % (7 (nr), i (@) © (v — 1))

= —log xx (v&) (VK (Tn-1), 7K (24)) € C3 L (D).
On the other hand,

(0,log Xk (V) Uy (Tn—1,Tn) = log xx (7K ) (VK (Tn-1), YK (Tn))

and ii) is proved. O

The exact sequence

0 — C*(Gxk, V) = C*(Gk, (Vk)li,) = C*(Gk, V],) — 0,

rig
induces an exact sequence
(42) 0— K*(V) - K*(Vk) — K*(V) — 0.

Again, the splitting sy : V — Vi induces a splitting s : K*(V) — K*(Vk) of (42)
and we have a distinguished triangle of complexes

= Brv)
LAY

K*(V)—= K*(V)— K*(V) K*(V)[1].

We will often write B instead of B (v).
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PROPOSITION 2.7.5. — i) One has

Br(z) = —(0,log xx) Uk ©, =€ K"(V).

ii) The following diagrams commute

C(CrV) L e G, O () e )]
J&v J/&V[l] lav lav[l]
Ko (V) — 2 k([ Ko (V) — 25 ke (v)[).

Proof. — i) The proof is a routine computation. Let z = (z,,—1,2,) € K™(V), where
Tn_1 € C" Gk, Vr];g), zn € C"(Gk, V1 ). Since s commutes with ¢ one has

rig
(dskg — skd)z = ((dsy — syd)zpn—1, (dsy — syd)x,).
On the other hand,
((dSV - Svd)xn—l) (glag% s 7gn) = glmn—l(g% cee 7gn) ® (gl - 1)7

where g; denote the image of g3 € Gk in I'k. As in the proof of Proposition 2.7.4,
we can write g1 — 1 (mod J3) = X log Xk (g1). Therefore

(d oSy — Sy o d)xn—l(glag% cee agn) = log XK(gl)gl-Tn—l(g2a s 7gn) ®X.

and

(dosy —syod)xn(g1,92,---s9nsIn+1) =108 XK (91)91Zn-1(92, - - - Ins In+1) ® X.

Since (g — 1) = —X log Xk (¢1), we have

1
ﬁK('r)(gla7gn) = ;(dosK — SK Od)x(glag27"‘7gn)

= —log Xk (91)(91Zn—-1(92, - - -+ 9n,Gn)> 91%n-1(g2, - - - Gns In+1))-

On the other hand, (0,log xx) Uk (Zn—1,%n) = (2n, 2n+1), where

zi(91, 92, -+, 9i) = log xk (91)1%i(92, -, 9i),  i=m,n+1,
and i) is proved.

ii) The second statement follows from the compatibility of the Bockstein morphisms

Bes Bpt W) and fx with the maps ay and By. This can be also proved using i) and
rig

Propositions 2.7.2 and 2.7.4. O
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2.8. Iwasawa cohomology

2.8.1. — We keep previous notation and conventions. Set K., = (K°)2%, where
Ak = Gal(K(¢,)/K). Then Gal(Ko/K) ~ I') and we denote by K, the unique
subextension of K, of degree [K,, : K] = p™. Let E be a finite extension of Q,, and
let Of be its ring of integers. We denote by Ag, = Og[[I'%]] the Iwasawa algebra
of I'% with coefficients in &'5. The choice of a generator vk of '), fixes an isomorphism
App =~ Og[[X]] such that vk — X + 1. Let #% denote the algebra of formal power
series f(X) € E[[X]] that converge on the open unit disk A(0,1) = {z € C, | |z|, < 1}
and let
Hu(Tx) = {f(yx = 1) | f(X) € H#&}.

We consider Ag,, as a subring of #%(I'%). The involution ¢ : Ag, — Ag, extends
to #E(T'%). Let Al (resp. #p(I'%)") denote Ay, (resp. #%(I'%)) equipped with
the Ag,-module (resp. #%(T'%)-module) structure given by a* A = t(a)\.

Let V be a p-adic representation of G with coefficients in F. Fix a Og-lattice T'
of V stable under the action of Gx and set Indg k(1) = T ®¢, A, . We equip
Indg_/x (T) with the following structures:

a) The diagonal action of Gk, namely g(z ® A) = g(z) ® g\, for all g € Gk and
T®ME IndKoo/K(T),

b) The structure of Ag,-module given by a(z ® A\) = z ® Au(a) for all a € Ay,
and T & )\ S Inde/K(T)

Let RI'w (K, T) denote the class of the complex C*(Gk,Indg__/x(T)) in the derived
category 2(Ag,) of Agy-modules. The augmentation map Ag, — Cg induces an
isomorphism
Rl (K,T) ®%, Op~RI(K,T).
We write H{ (K,T) = RT1y(K,T) for the cohomology of RI',(K,T). From
Shapiro’s lemma it follows that
Hi (K, T) = lim H' (K., T)

(see, for example, [60, Sections 8.1-8.3]).

We review the Iwasawa cohomology of (¢,I'k)-modules [20, 49]. The map ¢ :

BL’; P BI{ZK equips BI{gTK with the structure of a free ¢ : BL’!; -module of
rank p. Define
Y BL’pTK — BT?TK P(z) = 190_1 o Tryt,pr e ().
g rig, K’ P Bl /P (Brig i)

Since Zk.q, = U BI{; K the operator 1 extends by linearity to an operator 1 :
7"27‘}( ’

%K,E — %K,E such that 1 o p = id.
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Let D be a (¢, 'x)-module over Zx p = #x ®q, E. If e1,e3,...,e4 is a base of D
over Zk,g, then p(e1), p(e2),...,¢(eq) is again a base of D, and we define

¥ : D — D,
d

d
(8 (Zamﬁ(@i)> = d(aies.
i=1

i=1
The action of '} on D?% extends to a natural action of 7% (I'%) and we consider
the complex of #%(I'% )-modules
Cp (D) : DAx YL pax,

where the terms are concentrated in degrees 1 and 2. Let RI't, (D) = [CF,(D)]
denote the class of Cf, (D) in the derived category 2(.#%(T'%)). We also consider
the complex C¢ . (Indg_ ,x(D)), where Indg_ k(D) = D ®p #5(T'%)", and set
RI(K,Indg__ k(D)) = [Cy -, (D)] .

PVK

THEOREM 2.8.2 (Pottharst). — Let D be a (¢,I'x)-module over Zx g. Then
i) The complezes Cp, (D) and Cy, ., (D) are quasi-isomorphic and therefore

RIy, (D) ~ RT(K,Indg_ k(D).

ii) The cohomology groups Hi (D) = R'T'1,, (D) are finitely-generated #7(I'%)-mod-
ules. Moreover, rk%E(p%)HIIW(D) = [K : Qplrkg, ;D and H{, (D) and HE (D)
are finite-dimensional E-vector spaces.

iii) We have an isomorphism
CL:J,'yK (IndKoo/K(D)) ®JfE(F?() E = CL;,"/K (D)
which induces the Hochschild-Serre exact sequences
0 — Hi,(D)pe — H(D) — Hif (D)% — 0.

iv) Let w = cone [ A5 (TY) — H5(T%)/#e(T%)] [—1], where HE(TY) is the field
of fractions of #%(T'%). Then the functor 9 = HomﬁaE(F?()(—,w) furnishes a duality

PRIty (D) ~ RI', (D" (xk))‘[2]-

v) If V is a p-adic representation of Gk, then there are canonical and functorial
isomorphisms

Rl (K, T)®%, #5(Tk)~RI(K,T®g, #5(Tk)") ~~RI(K, Indk, k(D (V).
Proof. — See [66, Theorem 2.6]. O

We will need the following lemma.
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LEMMA 2.8.3. — Let E be a finite extension of Q, and let D be a potentially semistable
(¢, T )-module over Zx g. Then

i) HY (D)gor ~ (DA%)¥71

ii) Assume that _

Dpst(D*(xK))?=P =0, Vi€l
Then HZ (D) = 0.
Proof. — 1) Consider the exact sequence
0 — D¥=1 —, D¥=1 £=1, p¥=0,

Since (DAx)"~' ~ H] (D) and, by [49, Theorem 3.1.1], D¥=0 is 75 (T'%)-tor-
sion free, we have H} (D)ior C (DAK)¢=1. On the other hand, D¥=! is a finitely
dimensional E-vector space (see, for example, [49, Lemma 4.3.5]) and therefore is
M3 (D% )-torsion. This proves the first statement.

ii) By Theorem 2.8.2 iv), HZ (D) and H{, (D*(xk))tor are dual to each other and
it is enough to show that D*(xx)?=! = 0. Since dimg D*(xx)?~! < oo, there exists
r such that D*(xx)?=' € D*(xx)(", and for n > 0 the map i, = ¢~ " : %}QE —
E ®q, K“°[[t]] gives an injection

D (xx)#= = D" (xx)") s, (B @q, K[1])
= Fil’ (Zar(D* (xk)) ®x @K (1)) -
Looking at the action of I'x on Fil° (Z4r(D*(xx)) ®x K°¥°((t))) and using the fact
that D*(xx)¥~! is finite-dimensional over E, it is easy to prove, that there exists a

finite extension L/K such that D*(x )%=, viewed as G-module, is isomorphic to a
finite direct sum of modules Q,(%), ¢ € Z. Therefore

D* (xx)*~" = (D*(xx)?~" ®q, Qu(~1))""* ©q, Qy (i)

as Gr-modules. Since

% — T % =p~ I
(D*(xx)*~" ®q, Qp(=1)) " € (D*(xK) @ ZLp[1/t, )" 7"
= st/L(D*(XK))“D:p_t =0,
we obtain that D*(xx)¥=! = 0, and the lemma is proved. O

2.9. The group H}(D)

2.9.1. — For the content of this section we refer the reader to [8, Sections 1.4-1.5].
Let D be a potentially semistable (p,I'x)-module over #Zx g, where E is a finite
extension of Q. As usual, we have the isomorphism

H'(D) ~ Exty, . (%#k g, D)
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which associates to each cocycle z = (a,b) € C ., (D) the extension

0—-D—-D, —-%kr—0
such that D, = D © %k ge with p(e) = e + a and yx(e) = e + b. We say that
[x] = class(z) € H'(D) is crystalline if
kB Ko (Zeris(D2)) = 1kEg Ko (Zeris(D)) + 1
and define
H;(D) = {[z] € H"(D) | cl(x) is crystalline}.
This definition agrees with the definition of Bloch and Kato [17]. Namely, if V is a

potentially semistable representation of G, then

H}(DL, (V) =~ H}(K,V)

rig
(see [8, Proposition 1.4.2]).

PROPOSITION 2.9.2. — Let D be a potentially semistable (¢,'i)-module over Zx .
Then

i) H'(D) = Fil’(Zpst(D))*=1N=0Cx and H}(D) is a E-subspace of H'(D) of

dimension
dimg H}(D) = dimg Zar(D) — dimg Fil’Z4r (D) + dimp H°(D).
ii) There exists an eract sequence
0 = HO(D) = Zeris(D) L= 41(K) ® Teis(D) — HH(D) — 0,
where tp (K) = .@dR(D)/FﬂO.@dR(D).
iii) H}(D*(XK)) is the orthogonal complement to H}(D) under the duality H* (D) x
HY(D* (xx)) — E.
iv) Let
0— D1 —-D— D2 — 0
be an exact sequence of potentially semistable (o, T'i)-modules. Assume that one of
the following conditions holds
a) D is crystalline;
b) Im((H°(D2) — H'(D1)) C H}(D1).
Then one has an exact sequence

0 — H°(D,) —» H°(D) — H°(D;y) — H}(Dl) — H}(D) — H}(Dg) — 0.

Proof. — This proposition is proved in Proposition 1.4.4, and Corollaries 1.4.6 and
1.4.10 of [8]. For an another approach to H} (D) and an alternative proof see [57,
Section 2]. O
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2.9.3. — In this subsection, we assume that K = Q,. We review the computation of
the cohomology of some isoclinic (¢, I'q,)-modules given in [8]. To simplify notation,
we write X, and I') instead of xq, and F%p respectively.

PROPOSITION 2.9.4. — Let D be a semistable (¢,I'q,)-module of rank d over Zq, .
such that Ds(D)?=' = P4 (D) and Fil’Zy (D) = % (D). Then

i) D is crystalline and H°(D) = Peyis(D).
ii) One has dimp H°(D) = d, dimg H'(D) = 2d and H*(D) = 0.
iii) The map

iD : gcris(D) @ gcris(D) - Hl(D)v

ip = cl(=z,log x,(7q,)y)

is an isomorphism of E-vector spaces. Let ip ¢ and ip . denote the restrictions of ip
to the first and the second summand respectively. Then Im(ip f) = H}(D) and we
have a decomposition

H'(D) = H;(D) & H, (D),
where H! (D) = Im(ip.c).
iv) Let D*(xp) be the Tate dual of D. Then
* =p~ 1 *
Dexis(D* (Xp))?™" = Zexis(D* (Xp))
and Fil° Dyis(D*(xp)) = 0. In particular, H*(D*(x,)) = 0. Let
[ ’ ]D : @cris(D*(Xp)) X @CTiS(D) —F

denote the canonical duality. Define a morphism

iD*(Xp) : 9criS(D*(Xp)) S2) -@cris(D*(Xp)) - Hl(D*(Xp))
by
iD*(Xp)(avﬂ) U iD(mvy) = [/va]D - [a? y]D

and denote by Im(ip«(y,),f) and Im(ip-(y,).c) the restrictions of ip«(y,) to the first
and the second summand respectively. Then Im(ip«(y,),f) = H}(D*(Xp)) and again
we have

H'(D*(xp)) = H}(D*(xp)) ® H: (D*(xp));
where H}(D*(xp)) = Im(iD*(X,,),c)-

Proof. — See [8, Proposition 1.5.9 and Section 1.5.10]. O
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LEMMA 2.9.5. — Let D be a semistable (p,I'q,)-module of rank d over %Zq, r such
that Z5(D)¥=! = 24 (D) and Fil’Zs(D) = Zx(D). Let w, = (0,logx»(1q,)) €
CL .. (E(0)). Then

©,7Q,
H!(D) = ker (U, : H'(D) — H*(D)),
H;(D*(xp)) = ker (Uu, : H'(D*(x)) = H*(D*(xp))) -
Proof. — This follows directly from the definition of the cup product. O
We also need the following result.

PROPOSITION 2.9.6. — Let D be a crystalline (¢,T'q,)-module over %Zq, r such

that Deris(D)?=P" " = Deris(D) and Fil° Deyis (D) = 0. Then
H,(D)rg = H(D).
Proof. — See [11, Proposition 4]. O
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CHAPTER 3

p-ADIC HEIGHT PAIRINGS I: SELMER COMPLEXES

3.1. Selmer complexes

3.1.1. - In this section, we construct p-adic height pairings using Nekovai’s formalism
of Selmer complexes. Let F' be a number field. We denote by S (resp. So) the set of
all non-archimedean (resp. archimedean) absolute values on F. Fix a prime number p
and a compatible system of p"-th roots of unity € = ({yn)n>1. Let S C Sy be a finite
subset containing the set S, of all ¢ € S such that q | p. We will write X, for the
complement of S, in S. Let G s denote the Galois group of the maximal algebraic
extension of F' unramified outside S U S,,. For each q € S, we fix a decomposition
group at q which we identify with Gp,. If ¢ € Sp, we denote by I'y = ', the
p-cyclotomic Galois group of Fy and fix a generator v, € I‘g.

3.1.2. — Let V be a p-adic representation of G g with coeflicients in a Q,-affinoid
algebra A. We will write V; for the restriction of V' to the decomposition group at g.
For each q € Sp, we fix a (p,T'y)-submodule Dg of DLg(Vq) that is a Zr, a-module

direct summand of D, ,(V;). Set D = (Dg)qes, and define

rig,A

C: . (D), ifgqesS,,
U2 (v, D) = | C5a D) A €S,
Co(Vy),  ifqe X,

where

Ca(Vg) - Vqlq SR Vq1q7 q € Xp,

and the terms are concentrated in degrees 0 and 1. In this section we consider these
complexes as objects in Jifft[O’Q] (A). Note that, if q € Sp, the objects RI'(F,,V) =
[C*(GF,, V)] and RT(Fy,D,) = [U3(V,D)] belong to 227 (A) by Theorems 2.3.2
and 2.4.3. On the other hand, if ¢ € ¥,, then, in general, the module V1 and the
complex Ug(V,D) are not quasi-isomorphic to a perfect complex of A-modules. We
discuss this in more detail in Sections 3.1.6-3.1.12 in relation with the duality theory

for Selmer complexes.
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First assume that q € ¥,. Then we have a canonical morphism
(43) 9q : Ug(V,D) = C*(GF,,V)
defined by
gq(z0) = o, if zg€ Uc?(V,D)
9q(x1)(Frg) = z1, if = € U;(V,D)
and the restriction map
(44) fq =184 : C*(GRs,V) — C*(GF,,V).

T

Now assume that q € S,. The inclusion Dy C Dy,

Ug(V,D) = C¢ (Dg) — Cg ,(Vg). We denote by
(45) 94 : Ug(V,D) = K*(Vq),  dlp

(V) induces a morphism

the composition of this morphism with the quasi-isomorphism ay, : C;W(Vq) ~
K*(Vy) constructed in Section 2.5 and by

(46) fa : C*(Grs,V) = K*(Vy), qalp

the composition of the restriction map resq : C*(Grys,V) — C*(GF,,V) with the
quasi-isomorphism &y, : C*(GF,,V) — K*(V;) constructed in Proposition 2.5.2. Set
K*(Vy) ifqe s,

Kalv)= {C'(GF V) ifqes,,

q b
and

K*(V) = DK(V)

qes

U*(V,D) = (PU; (V. D).
qes

We turn now to global Galois cohomology of V. By [65, Section 1], one has
C*(Grys, V) € 4, (4)
and the associated object of the derived category

RTs(V) := [C*(Grs, V)] € 217 (4).

perf

Therefore, we have a diagram in Jﬁ/ft[o’:ﬂ (A)

C*(Grys, V) —— K*(V)

|

U*(V,D),
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where f = (fq)qes and g = (gq)qes, and the corresponding diagram in @f[S,S] (4)
RI's(V) —— @RI(F,, V)
qes

T

@ RI(F,,V,D),
qes

where we set RI'(Fy,V,D) = [Ug(V,D)] for all q € S. The associated Selmer complex
is defined as

S*(V,D) = cone {C'(GRS,V) ®U*(V,D) EmiR K'(V)] [-1].

We set RT'(V, D) := [S*(V,D)] and write H*(V, D) for the cohomology of S*(V, D).
Since all complexes involved in this definition belong to . (A), it is easy to check
that S*(V, D) € "% (A). It, in addition, [C3(Vq)] € 2% (A) for all q € £,,, then
RI(V,D) € 201 (4).

Each element [z°°!] € H*(V, D) can be represented by a triple

(47) xsel = (CE, (ZIJ:), ()‘q))7
where, for each q € S,

z € CY(Grs,V), zi e U)(V,D), Aq € K7H(V),
d(z) = 0, d(zy) =0, fa(@) = gq(27) — d(Xq).
3.1.3. — The previous construction can be slightly generalized. Fix a finite subset

Y C ¥, and, for each q € X, a locally direct summand M of the A-module V; stable
under the action of Gr,. Let M = (My)qes. Define

Cs., (Dq), if g € .5,
U;v.DM) = (V) ifaen,\ T,
C*(Gp,,My), ifqgeX.
In short, we replace unramified conditions at all ¢ € 3 by Greenberg conditions defined
by the family of subrepresentations M = (M)qes. We denote by S.(V,D, M) the
associated Selmer complex and set RI'(V, D, M) := [S*(V, D, M)]. This construction

is a direct generalizaton of Selmer complexes considered in [60, Section 7.8] to the
non-ordinary setting.

Consider two important particular cases. If My = 0 for all g € X, we write S5, (V, D)
and RI's(V,D) for S*(V,D, M) and RI'(V,D, M) respectively. If My = V for all
q € %, we write S¥*(V, D) and RT'*(V, D) for S*(V,D, M) and RI'(V,D, M) respec-
tively. These complexes are derived analogs of the strict and relaxed Selmer groups
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in the sense of [67, Section 1.5]. Note that RI's (V,D) and RI'”»(V, D) are objects

of _@I[)%f’f] (A). See Section 3.1.6 for further remarks concerning these complexes.

3.1.4. — We construct cup products for our Selmer complexes RT'(V, D, M). Consider
the dual representation V*(1) of V. We equip V*(1) with the dual local conditions
setting

D;_ = HOIH(%A (DT (V)/qu%A(Xq))y vq € Spa

rig
‘Mql = Hom (V4/Mjy, A(xq))s Vg € X,
and denote by f;- and g; the morphisms (43)-(46) associated to (V*(1), D+, M*).
We also remark that the composition

9q®9:'

(48)  CL(Va) ® CL(Vy (1)) = C*(Gr,, V) ® C*(Gr,, V7(1)) = A[-2]
is the zero map [60, Lemma 7.5.2]. Consider the following data
1) The complexes A} = C*(Grs,V), B} = U*(V,D,M), and C} = K*(V)
equipped with the morphisms fi = (fy)qes : A} — C} and g1 = Py, :
Bt - 01 .
2) The complexes Ay = C*(Grs,V*(1)), BS = U*(V*(1),D+, M), and C§ =

K*(V*(1)) equipped with the morphisms fo = (fcf-)qeg : A3 — C35 and go =

D gy : BS = Cs;
qes

3) The complexes A3 = 752C°(Grg,A(1)), By = 0 and C§ = 752K°(A(1))
equipped with the map f3 : A3 — C3 given by

7520 (Grs, A()) 2225 Dy, 0% (G, , A1) — 752K (A(1))
q

and the zero map g3 : BS — C3.

4) The cup product Ug : A} ® A3 — A$ defined as the composition

Ua : C*(Grs, V) ® C*(Grs, V(1)) =5 C*(Grs,V @ V(1))
C.(GF7S,A*(1)) - T;QC.(GF,Sa A*(l))a

5) The zero cup product Ug : B} ® B3 — BS.
6) The cup product Uc : CF @ Cy — C3 defined as the composition

K*(V)® K*(V*(1)) LN K* VeV (1)) - K*(A(1)) — 722 K°*(A(1)).

7) The zero maps hy : A} ® Ay — C3[—1] and h, : B} ® B3 — C5[-1].
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THEOREM 3.1.5. — i) There exists a canonical, up to homotopy, quasi-isomorphism

rs : ES — A[-2].

il) The data 1-7) above satisfy conditions P1-3) of Section 1.2 and therefore define,
for each a € A and each quasi-isomorphism rg, the cup product

Uars @ S*(V,D,M)®4 S*(V*(1),D*, M*) — A[-3].

iii) The homotopy class of U, s does not depend on the choice of r € A and,
therefore, defines a pairing

(49) Uvp. @ RO(V,D, M) ®@% RI'(V*(1),D+, M+) — A[-3].

Proof. — 1) We repeat verbatim the argument of [60, Section 5.4.1]. For each q € S,
let i, denote the composition of the canonical isomorphism A ~ H?(Fy, A(1)) of the
local class field theory with the morphism 75,C*(GF,, A(1)) — K*(A4(1)). Then we
have a commutative diagram

(resq)q

752C% (G5, A1) =% @ 75, K*(Aq(1)) ——— E3

qes
(iq)qT isl\

® Al-2) —=—— A[-2],

qes

where ig = j o144, for some fixed qo € S and ¥ denotes the summation over q € S. By
global class field theory, ig is a quasi-isomorphism and, because A[—2] is concentrated
in degree 2, there exists a homotopy inverse rg of ig which is unique up to homotopy.

ii) We only need to show that condition P3) holds in our case. Note that Us = U,,
Up = 0 and Ug = Uk . From the definition of Uk it follows immediately that

(50) Uk o(f1 ® f2) = fz o Ue.

If g € S, (resp. if ¢ € ¥), from the orthogonality of Dé‘ and Dy (resp. from the
orthogonality of My and M") it follows that Uk o (g4 ® g5) = 0. If g € 5, \ &, we
have U o (g4 ® gj‘) = 0 by (48). Since g3 o Ug = 0, this gives

(51) Uc o(g1 ® g2) = g3 oUp = 0.

The equations (50) and (51) show that P3) holds with h; = hy = 0. We define U,
as the composition of the cup product constructed in Proposition 1.2.2 with rg. The
rest of the theorem follows from Proposition 1.2.2. O

SOCIETE MATHEMATIQUE DE FRANCE 2021



64 CHAPTER 3. p-ADIC HEIGHT PAIRINGS I: SELMER COMPLEXES

3.1.6. — In this subsection, we discuss the duality theory for Selmer complexes. Recall
that we have the anti-involution (29) on the category Zpers(A) given by )

X — X*=RHomyu (X, A).
The cup product Uy,p pr induces a map in @fﬁ; (A):
(52) RI(V*(1),D*, M*) — RHom4(RT(V,D, M), A)[-3].
For each q € S define
U2 (V,D, M) = cone (Uq'(v, D, M) 2, K'(Vq)) [~1]

and ﬁf(Fq, V,D,M) = [ﬁ;(V, D, M)} . From the orthogonality of g, and gql under
the cup product K*(V;) ® K*(V, (1)) — A[-2] it follows that we have a pairing

U (V,D, M) ® Us(V*(1),D, M*) — A[-2]
which gives rise to a morphism in 2% (A)
(53) RI(F,, V*(1),D*, M*) — RHom(RL(F,,V,D, M), A)[-2].

Let g € 3, \ . Denote by I, o the wild ramification subgroup of /;. Fix a topological
generator tq of I,/I" such that for any uniformizer w, of Fy
1/p" 1/p"
tQ(wq/p )= Cpan/p ) n =1,
where € = ((pn)n>1 is our fixed system of p”-th roots of unity. We also fix a lift
Fy € Gq/Iy of the Frobenius Frq. Define

)

Fq—1,tq—1 w w (1—tq,0q—1
( q q ) VIEI @qu ( q->Yq

Cr(Va) : Ve viv,

where 0y = Fq(1 +tq+ -+ tg“_l) and gq is the order of the residue field of F
modulo gq. We refer the reader to [60, Sections 7.1-7.6] for the proofs of the following
results. The complex C?,(V;) is quasi-isomorphic to C*(GF,, V). The natural inclusion
V1a < V1 induces a monomorphism of complexes C%,(V,) — Cg.(Vy). Let ajr(Vq) =

Ce.(V4)/Cs.(Vy). Then the natural projections induce a quasi-isomorphism

Fa—1

(54) 5;r(1/'q) ~ (Vf;”/(tq — )yl LT, VIs /(tq — 1)Vfé”)

where the terms are concentrated in degrees 1 and 2. We also remark that since g € X,
the group I;” acts on V' through a finite quotient H and we have a decomposition

(55) VeV @ Ig(V),

1. Note that the dualizaton functor is not defined on .@fbt (A).
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where Iy = ker(Z[H] — Z) is the augmentation ideal. In particular, the submodule
V1 is a direct factor of the projective A-module V' and therefore is projective itself.
From (55) we also get

(56) V*(1)la = Hom (Ve A)(1).
For the representation A(1) we have

(g5 '—1,0)
_

Ce(A(1)) : A1) A @ A1) L2 aq).

The canonical isomorphism invp, : H?(Fy, A(1)) — A has the following description
in terms of this complex:

(57 {H?(O&(A(lm —4

rRe=u=wx.

Now we can formulate the following result which is a more precise version of [65,
Theorem 1.16] in our context.

THEOREM 3.1.7. — i) For all q € XUS, the map (53) is an isomorphism in Qgi’rzf](A).
i) Let q € $,\X. If the A-module V14 /(t,—1)V1a is projective, then the A-modules
Vi, V(1) and V*(1)1a /(tq — 1)V*(1)I5 are projectives and the map (53) is an
. L 10,2]
isomorphism in 7, (A).
iit) If, for all ¢ € 3, \ %, the A-module V14 /(t, — 1)V5 is projective, then the

duality map (52) is an isomorphism in @I[)Oef’f](A) :

RI(V*(1),D, M+) ~ RI(V,D, M)*[-3].

Proof. — i) For q € ¥, the assertion i) is proved in [60, Section 6.7] in the context of
admissible modules. Recall that it follows directly from the local duality for p-adic
representations. Mimicking this proof and using Theorem 2.3.2 we obtain that (53)
is an isomorphism for q € 3. The same proof applies to the case q € S, if we
use Theorem 2.4.3 instead Theorem 2.3.2. Namely, consider the tautological exact
sequence
0—-Dy— Diig(‘/q) —Dgq — 0,

where ]NDq = Dlig(Vq)/Dq. Applying the functor RT'(Fy, —) to this sequence, we obtain
a distinguished triangle

RI(F,,D,) — RI(F,, D, (V;)) — RI(F,Dg) — RI(Fy, Dy)[1],

and therefore ﬁf(Fq, V,D) ~ RI'(Fy, ﬁq) From the definition of Dd‘ we have Dé— ~
f);(x). Using Theorem 2.4.3, we obtain that

RF(qufo) ~ RI'(Fy, f);(X))
~ RHom 4 (RI(F,,D,), A)[-2] ~ RHom 4 (RT(F,, V, D), A)[—2]
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and therefore (53) holds for q € .Sj,.

ii) Assume that V4 /(t,—1)V14 is projective. Then the tautological exact sequence
0— (tq — NVl vl & VI;U/(tq —1)Vi o0

splits and (tq — 1)VI T is projective as direct summand of the projective module V! a.
The same argument applied to the exact sequence

(58) 0— Vi - VI B2 — 1)V o0

shows that Vs is projective. Dualizing the sequence (58) and taking into account
(56) and the fact that I, acts trivially on Q,(1) we get the sequence

0— (tg — HV*(1)1d — V*Q)Td — (VIa)" (1) — 0.
This sequence is split exact because the sequence (58) splits. Therefore
(59) VIR /(tg = DV = (Vi) (1),
Since V' is projective, V*(1)%a /(t, — 1)V*(1)!a is projective. This also implies the
projectivity of V*(1)%a .
Now we show that (53) is an isomorphism. Consider the following diagram

in 21%2(4).

perf

0 —— [Co(VF(1)] — RI(Fy, V*(1)) —— RI(Fy, V*(1)) —— 0

l/\ \LM lv
0 —— RI(Fy, V)*[~2] —— RI(F,, V)*[-2] — [C (V)] [-2] — 0,

where we write ﬁf(Fq, V)= ﬁf(Fq, V,D, M) to simplify notation. The upper row
is exact by the definition of ﬁf(Fq, V*(1)). The exactness of the bottom row follows
from the definition of ﬁf(Fq, V) and the exactness of the dualization functor. The
middle vertical map p is induced by the local duality and is an isomorphism by
Theorem 2.3.2.

We show that v is an isomorphism. This will imply that A is an isomorphism. From
(59) it follows that

qqFrq—1
—

RI(Fy, V* (1)) = [<v’q>*<1> <v’q>*<1>]

®e ! Frq—1

& |y Bl iy = e

(Note that all involved modules are projective.) Using (57) it is easy to check that
this isomorphism coincides with v and ii) is proved.

iii) Repeating the arguments of [60] (see the proofs of Proposition 6.3.3 and Theo-
rem 6.3.4 of op. cit.) it is easy to show that if RT'(F,, V,D) and RT'(F,, V*(1),D') are
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perfect and (53) holds for all g € S, then (52) is an isomorphism. Now the statement
follows from i) and ii). O

COROLLARY 3.1.8. — Let WD(V}) denote the Weil-Deligne representation associated
to Vy equipped with the canonical monodromy Ny : WD(Vy) — WD(V;). Assume that
for all q € £, \ X, the A-module WD(Vy)/NyWD(Vy) is projective. Then the duality

map (52) is an isomorphism.

Proof. — We remark that Grothendieck’s monodromy theorem holds for representa-
tions with coefficients in an affinoid algebra [S, Lemma 7.8.14]. Let F,/F, be a finite
extension such that the action of the inertia subgroup I él of G Fy on V4 factors through
the p-part Tk (p) of its tame quotient Tk . Recall that WD(V;) = Vg as A-module and
that the monodromy N, is defined as the derivative of the action of Tk (p) on V; at 1.
The decomposition (55) is compatible with the action of Gr, and therefore with the

monodromy N,. Thus, V14 /N, (VI;U> is a direct summand of WD(V,)/NyWD(V,).

From the definition of Ny it follows that for m > 0
ty |VI§U = exp(mNy).

Since exp(mNg)—1 = mNy Ry, where Ry = 14+mNy/2!+(mNy)?/3!+- - - is invertible,
we have

(tg = DV = N(V1T)
and
VG - )V = VI8 N (VIG).
To simplify notation, set W = VIa'/ (tq" — 1)V, Since tq" acts trivially on W, we
have
W=, —1)WaeW, W =0+tg+- -+t HW.

Assume that WD(V,)/N,WD(V,) is projective. Then W = Vi’ /N, (VI?T) is projec-
tive. Since

VI3 [(ty = )V = W/(tg — )W = W’
and W' is a direct summand of W, the A-module V7’4 /(t, —1)V14 is projective. Now
the corollary follows from Theorem 3.1.7 iii). O

REMARK 3.1.9. — From (55) it follows that V/a = Viw and therefore

(60) VI (tg - 1)V ~ Vg,
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3.1.10. — Let f be a primitive eigenform of level N and weight £ > 2. Fix a prime
number p such that (p, N) = 1 and denote by W, the p-adic Galois representation
associated to f by Deligne. Let o and [ denote the roots of the Hecke polynomial
of f at p. We will assume that a # (3. Note that this is known in the case k = 2 and
conjectured to be true in general. Let f,(z) = f(2) — Bf(pz) denote the stabilization
of f with respect to . Assume that at least one of the following conditions holds:

a) fo is non-f-critical.

b) HX(Q,ad(W;)) = 0.
This means that f, is decent in the sense of [4]. Denote by z( the point on the
Coleman-Mazur eigencurve which corresponds to f,. Taking a sufficiently small affine
neighborhood U = Spm(A) of zg, we can associate to U a canonical p-adic Galois
representation Wy over A. Consider the representation V. = Wy (v), where ¢ is a
continuous Galois character unramified outside p with values in A*.

PROPOSITION 3.1.11. — There exists an affine neighborhood U of xog such that the
module VI;lU/(tcl — 1)VI;U is free and therefore Theorem 3.1.7 applies.

Proof. — For Hida families, this is proved in [29, Proposition 2.2.5], and we follow the
same arguments with slight modifications. For any point « € U, we denote by A, and
Wy, the localizations of A and Wy at x and set W, = Wy ,/m, Wy ... In particular,
Wy = Wy,. We also denote by # the p-adic representation Wy ® 4 Fr(A), where
Fr(A) is the field of fractions of A.

From [4, Theorem 2.16 and Proposition 4.11] it follows that the eigencurve is
smooth at xy. Moreover, shrinking U and extending scalars if necessary, one can
assume that A ~ R[X]/(X® — u), where B(xo,7) = Spm(R) is a closed ball of center
zo in the weight space and u € R is a local parameter at zg which does not vanish
on B(zg,r) \ {zo}. This implies that A ~ E{X}. In particular, A is a principal ideal
domain. Now we can use the arguments of [29, Proposition 2.2.4] to show that

(61) dim 71, = dim(Wq,)1 for any q|N.

q

Namely, we have
dim#7, =2 <& q [N <& dim(Wy,)r, =2
and
dim(Wgo)r, =0 = dim#7, =0

(note that dim %7, < dim(W,,);, by general reasons). Therefore it is sufficient to

show that dim %7, > 1 if dim(W,,);, > 1. By [4, Lemma 2.7], each classical point

q
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x € U corresponds to a p-stabilized newform of level N. Therefore the tame conductor
a(W,) of W, is equal to N and we have

(62) wp(N) = a(W,) = dim W, — dim (W,),_ + /0 (dim W, — dim(Ww)Iéu)) du

where (Iéu))u>0 denote the higher ramification groups (in particular, I3’ = Uofgu)) .
u>

Since I’ acts on Wy through a finite quotient, from (55) it follows that
dim(We) ;) = dim(Ww)Iéu) = dim(”//)f‘gu) = dim(¥) ;cw for all u > 0.
q q

In particular, dim(Wx)Im) does not depend on the choice of x. Thus dim(Wm)I(u) =
q q
dim(Wy, ) ;) for all u > 0, and from the conductor formula (62) we obtain that
q

(63) dim (W), = dim(Wa,)s, > 1

for all classical points = € U. By (60), we have #7, =~ Wty — D)WL Let
h = det(1 — tq[# %7 ). Then (63) implies that h(z) = 0 at all classical points 2 € U
and therefore h = 0. This shows that dim #;, > 1 and proves formula (61).

Now we can finish the proof of the proposition. As in [29, Proposition 2.2.5], we
have

dim(WzO) > dim ((WU,zo)Iq /mzo (WU7I0)Iq ) > dim(W)[q .
From (61) it follows that

dim (Wu,a0)1, /Mo (Woeo)1,) = dim(#)y,.

Since A, is a discrete valuation ring, this implies that (Wy 4,) 1, 1s free over Ag,. Re—
placing U by a smaller neighborhood if necessary, we obtain that WU o /(tq — 1)WUq

is free. Since the character ¢ is unramified outside p, the module Vs [(tq — NV s
also free and the proposition is proved. O

REMARK 3.1.12. — In the situation of Proposition 3.1.11, assume that for all | N the
following conditions hold:

a) If f is Steinberg at q, then v, (Frq) is not a Weil number of weight —k or 2 — k;
b) If f is not Steinberg at g, then 9., (Fry) is not a Weil number of weight 1 — k.

From the purity of p-adic representations associated to modular forms it follows that
in this case, the complex RI'(Qq,V;) is locally acyclic at zo (see, for example, [60,
Proposition 12.7.13.3]).

2) In higher dimension, the situation is more complicated. See [68] for some related
results.
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3.1.13. — Equip the complexes A}, B? and C; with the transpositions given by
9A1 = yV,ca

yBl = @idcwﬁ(Dq) D @ idCur(Vq) &) @qu,c ,

qeSy qeEX,\X qeX
T, = @ Tk, | ® @ Hge | >
9ESp g€,

Tay = F+(1),e6

(64) T, = @idom(Dql) o P de,, vy | @ @%@,c ;

q9ESy qeET,\2 qeT

Te, = @«%K(v;u)) @ @7vq*(1),c ,

qup qEEp
Tas = Ta@1),er
Ip, = id,

Te,

D Tk | @ | B Taqy,.e

qESp qu,,

THEOREM 3.1.14. — i) The data (64) satisfy conditions T1-T) of Section 1.2.

ii) We have a commutative diagram

RI(V,D, M) ®% RI(V*(1), D+, ML) — Y2 A[-3]

J l_

Uy (1),pL
RI(V*(1), D+, M+) ®% RI(V,D, M) — A[-3).

Proof. — i) We check conditions T3-7) taking Uy = U., Uz = 0 and Uy, = Uk . From
(50) and (51) it follows that T3) holds if we take h’; = hj = 0. To check condition T4)
we remark that, by Proposition 2.6.4,i) we have f; o J4 = J¢ o f; and we can take
U; = 0. The existence of a homotopy V; follows from Proposition 2.6.4 ii) and [60],
Proposition 7.7.3. Note that again we can set V; = 0.

We prove the existence of homotopies t4, tp and tc satisfying T5). From the
commutativity of the diagram (35), it follows that U.0s120(T4® T4) = Ta0U. and we
can take t4 = 0. Since Uy = Up = 0, we can take tg = 0. We construct tc as a system
of homotopies (tc,q)qes such that toq : Uc 0812 0 (G, e ® Fir(1),.¢) ¥ TA(1)q,e © Ue
for g € ¥y and tgq : Uk 05120 (gK(Vq) ® yK(V(l)q)) ~ 9K(A(1)q) oUgk for g € 5p.
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As before, from (35) it follows that for ¢ € ¥, one can take tcq = 0. If g € S,, by
Proposition 1.1.7 we can set

(65> tC,q(('rnflzmn) ® (ymfl ® ym)) = (—1)"(?14(1)5“6(1'”,1 Ue ymfl)a 0)
for (zn—1,2,) € K™(Vy) and (Ym—1,ym) € K™(V*(1)q) (see (24)). This proves T5).
From (65) it follows that tc o (f1 ® f2) = 0 and it is easy to see that T6) and T7) hold
if we take Hy = Hy = 0.

ii) For each Galois module X, we denote by ax : id ~» Jx . the homotopy (36).
Recall that we can take ax such that a$ = a’ = 0. Consider the following homotopies

kAlzaV :idwyAI’ OIIAI,
kp, = @ OUq(V,D,M) (&) @an sid ~ 9}31 on Bl"
(66) qESUS,\S qex
kcl = @ AK(Vy) ©® @ ay, 2 id ~» 901-, on Cl.
q€Sp LIS

We will denote by ka,, kB, kc, the homotopies on A3, B3 and C3 defined by the
analogous formulas. From Proposition 2.6.4, ii) it follows that

foka, =kc,of, froka,=kc,of",
gok31 :kC'1 g, gJ_osz :kc2ogJ',

By (20), these data induce transpositions Z3° and 9‘531(1) on S*(V,D,M) and
S*(V*(1),Dt, M+), and the formula (21) of Subsection 1.1.2 defines homotopies

ke :oid ~ Z3°! and kf/‘?l(l) Did - ﬂ‘ﬁil(l). By Proposition 1.2.4, the following
diagram commutes up to homotopy:
Ua,r
S*(V,D, M) ®4 5*(V*(1),D*, M*) ——=—— A[-3]

Jsm(ﬂée‘@ﬂsﬂm) J=

Ul—a,rs
S*(V*(1),DY, ML) ®4 S*(V,D, M) A[-3].

Now the theorem follows from the fact that the map (k' ® k%}’l(l))l, given by (18),
furnishes a homotopy between id and 75! ® ﬂ‘ﬁ?;l(l), O

3.2. p-adic height pairings

3.2.1. - We keep notation and conventions of the previous subsection. Let F<°¢ =

UF'(¢pn) denote the cyclotomic p-extension of F. The Galois group I'r = Gal(F°/F)
n=1

decomposes into the direct sum I'r = Ap x I'% of the group Ap = Gal(F({,)/F) and
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a p-procyclic group I'%. We denote by x : I'r — Z;, the cyclotomic character and
by x4 the restriction of x to I'g, g € S.

Consider the completed group algebra A4 = A[[['%]]. As in Section 2.7, we equip
A4 with the involution ¢ : Ay — A4 such that «(y) = v~ !, v € I'%. Fix a generator
vp of T%. Set A% = AYy/(JZ), where J4 is the augmentation ideal of A[[['%]]. We

have an exact sequence
(67) 0— A% A A0,

where 0z (a) = aX, and X = log~'(x(y#))(yF — 1) does not depend on the choice
of vr € T'%. For each p-adic representation V with coefficients in A4, (67) induces an
exact sequence

(68) 0>V —>Ve—V =0,

where Vp = g} ®4 V. As in Section 2.7, passing to continuous Galois cohomology,
we obtain a distinguished triangle

. . 7 . Bv,e .
C (GF,S, V) - C (GF,S,VF) —C (GF75,V) L C (Gpws,V)[l].
For each q € S, we have the local analog of the sequence (68) studied in Section 2.7
O—>V—>‘~/Fq -V —0.

The inclusion T') < I'}, induces a commutative diagram of G r,-modules

0 v, Ve, v, 0
J Or ‘i J/
0 Vq (VF)q Vq 0,

where the vertical middle arrow is an isomorphism by the five lemma. Taking into
account Proposition 2.7.2, we see that the exact sequence (68) induces a distinguished
triangle

Bvyg,e

C*(Gp,,V) — C'(qu71~/p) — C*(GF,,V) ——= C*(GE,,V)[1],
where By, .(r) = —log xq Uz.
Let Dy be a (¢,I'g)-submodule of D!

rig

(Vy) and let f)F,q = A% ®a Dg. As in
Section 2.7, we have an exact sequence

69 0D, —Dp, — D, =0
q »q q
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which sits in the diagram

Taking into account Proposition 2.7.4, we obtain that (69) induces the distingushed

triangle
. . ~ . fp .
Cap,'yq (Dq) - Cgo,'yq (DF,q) - Ccp,'yq (Dq) — Cgp,'yq (Dq)[l]a
where fBp, () = —(0,log xq(7q)) U z. Finally, replacing in the exact sequence (42)

1% by (‘71:‘)5', and taking into account Proposition 2.7.5 we obtain the distinguished
triangle

. o (T . Prva)  1-e
K*(Vg) = K*((Vr)q) — K*(Vq) — K (Va)[1],
where ﬁK(Vq)(x) = —(0,1log xq) U .
If g € ¥,, we construct the Bockstein map for Ug(V,D, M) following [60], Sec-

tion 11.2.4. Namely, if q € X, then Ug(V,D, M) = C*(GF,, My) and the exact se-
quence

(70) 0— My — Mpgq — My —0
gives rise to a map B, . : C*(GF,, My) — C*(Gr,, M,). If g € £,\X, then (Vp)ls =

Vi ® Z}ﬂ and we denote by s : VI — (Vp)%s the section given by s(z) = z ® 1.
There exists a distingushed triangle
By ur

Coe(Va) = Car(Vi)g) = Co(Va) —5 2 (Vo) 1],

where Sy, ur 1 Co(Vyq) — Cop(Vy) is given by

1
Bl e (@) = 5 (45— sd)(@) = —log Xq(Frg)2.
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PROPOSITION 3.2.2. — In addition to (64), equip the complezes A?, B? and C? (1 <
i < 3) with the Bockstein maps given by

/BAl = BV,C?

ﬁBl = @/BDq S @ ﬁVq,ur ;
9€Sp 9€X,

Be, = | BBrwv | @ | DB |
9€SH LIS

ﬂA2 = ﬂV*(l),ca

ﬂBz = @ﬂDj— D @ ﬁVq*(l),ur )

qesp qEEP

Bc, = @ﬂk(v;u)) ® @5\/;(1),(; ,

9€Sp qex,
/BAg = ﬂA(l),ca
/BBg = 07

Be, = @ﬂK(Au)q) @ @ﬂA(l)q,C

qeSy qex,

Then these data satisfy conditions B1-5) of Section 1.2.

Proof. — We check B2-5) for our Bockstein maps. For each q € X,, Nekovar con-
structed homotopies

Vv,q * 9q © /BVq,ur M ﬂVq,c ©9q,

Vye(1),q ¢ Gq © By (1),ur ~ By (1), © 9

From Proposition 2.7.5, ii) it follows that for all q € .S,

gq© 5Dq = ﬂK(Vq) ©4gq

9q ©fBp, = Br(ve)) © 9q-
Set vy,q = vy«1),q = 0 for all ¢ € S,. Then condition B2) holds for u; = 0 and
v; = (Vi,q)qes-

In B3), we can set hg = 0 because Ug = 0. The existence of a homotopy h4

between Ua[l] o (id ® Ba,2) and Ua[l] o (84,1 ® id) is proved in [60], Section 11.2.6

and the same method allows to construct ho. Namely, we construct a system ho =
(hc,q)qes of homotopies such that heg : Uc[l] o (Id ® By (1),c) ~ Ue[l] o (By, e ®id)
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for ¢ € ¥p and heq @ Uk[1] o (id ® Br(vy)) ~ Uk[l] o (Bk(v,) ®id) for q € Sp.
For q € ¥,, the construction of hc 4 is the same as those of h4. Now, let q € S,.
By Proposition 2.7.5, one has B v,)(z) = —(0,log xq) Ux =. Consider the following
diagram, where z; = (0,log x4)

(71)

id

K*(Vy) @a K*(V5 (1)) K*(Vy) @a K*(V5 (1))

K*(Ve) 84 A®a K*(Vy (1) ———— A®@a K*(Vy) @4 K* (V¥ (1)
1d®(—zq)®id (—2zq)®id®id

s12®id
=

K*(Vy) @a K*(A)[1] @4 K*(Vy (1)) K*(A)[1] @4 K*(Vy) ®a K*(Vy (1))

Ugr ®id Ugr ®id
K (V)] @4 K* (Vi (1) —— S K*(Vo)[1] @4 K* (V7 (1))

Uk Uk

id

Ko (Vg @ Vg ()] K (Vg @ Vg (W)

The first, second and fourth squares of this diagram are commutative. From Propo-
sition 1.1.7 (see also (37)) it follows that the diagram

K*(Vy) @ K*(A)[1] 222707 peeay1] @ K*(Vy)

luK JU,{

K* (Vo)1) 7 K* (Vo)1)

is commutative up to some homotopy k1 : Tk o Ug ~ Uk 0 812 0 (T ® Tk ). Since
T2 = id, we have a homotopy

T ok : UKWyKOUKOSuO(yK@yK).

By [60], Section 3.4.5.5 (see also Section 2.6.2), for any topological G r,-module M
there exists a functorial homotopy a : id ~ 7. By Proposition 2.6.4, a induces a
homotopy between id : K*(V;) — K*(Vy) and Jx : K*(V;) — K*(V,) which we
denote by ak. Let (ax ® ax)1 : id ~ Tk ® Tk denote the homotopy between the
maps id and Tx ® Tk : K*(V;) @ K*(Q,)[1] — K*(Vy) ® K*(Q,)[1] given by (18).
Then
dlag o Tx oUg 08120 (T ® Tk)) + (ax 0 T oUg 0 8120 (T ® Tk)) d
= (Ix —id) oUg 05120 (T @ Tk ),

SOCIETE MATHEMATIQUE DE FRANCE 2021



76 CHAPTER 3. p-ADIC HEIGHT PAIRINGS I: SELMER COMPLEXES

and
d(Ug osi20(ax ®ar)1) + (Uk osiz0 (ax ® ak)1) = Uk 0 s12 0 (Tx ® Tx —id).
Therefore the formula
(72) ky=ag o ITxoUg 08120 (T ® Tx)+ Uk 08120 (ag ® ax)1
defines a homotopy
ky : Uk 0812 ~ Jx oUgk 0812 0 (T ® Tk ).
Then k¢, = FK o k1 — ko defines a homotopy
kc,q 1 Uk ~ Uk 0512

and we proved that the third square of the diagram (71) commutes up to a homotopy.
We define the homotopy

he,g + Uk(1] o (id ® Bx vy (1)),e) ~ Uk[l] o (B (v,) ®id)
by
(73) he,qg = Uk o (ko,q ®id) o (id ® (—z4) ® id).
This proves B3).
Since u; = ug = hy = 0, condition B4) reads
(74) dK; — Kyd = —hc o (f1 ® fa) + f3[1] o ha

for some second order homotopy K. It is proved in [60], Section 11.2.6, that if g € £,
then

(75) ho,g o (f1 ® fa) = resq o ha.

Assume that q € S,. Recall (see [60], Section 11.2.6) that the homotopy h4 is given
by

(76) ha =U.o0(ka®id) o (id® (—2) ® id),
where z = log x and
(77) ka=—ao(Us08120(7.® T.))— (TooU.0s12)0(a®a).
From (24), it follows that for all z € C"(Gpgs,V) and y € C"(Gp,g,V*(1)) we have
(78) (k1 ®id) o (id ® (—24) ®id) o (f1 ® fa)(z @ y)
= (k1 ®1d)((0, —log xq) ® (0,24) ® (0,4))
= k1((0, —log xq) @ (0,24)) @ (0,34) = 0,
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where x4 = resq(z), yq = resq(y). On the other hand, comparing (72) and (77) we see
that

(79) (k2 ®id) 0 (id ® (—2q) ®id) o (f1 ® f2)(z ® Y)

= k2((0, —log xq) ® (0,z4)) ® (0,yq)

= —(0,resq(ka(—2®))) ® (0,yq)-
From (78), (79), (73) and (77) we obtain that
(80)  hogo(f1® fo)(x®y) = (0,resq(ka(—2® z))) Uk (0,q)

= (0,resq(ka(—2®x)) Us y) = (0,resq(ha(zr ® y))).
From (80) and (75) it follows that hc o (f1 ® f2) = f3[l] o ha and therefore we can
set Ky = 0in (74). Thus, B4) is proved.
It remains to check BS5). Since v; = v = hy = 0, this condition reads

(81)  dKy— Kyd = —~hco (g1 ®g2)+Ucp o (v1 ® g2) — U © (91 ® v2)

for some second order homotopy K,. Write K, = (K q)qes. For q € X, Nekovar
proved that the g-component of the right hand side of (81) is equal to zero. For q € S,
we have vy 4 = vaq = 0 and he,, 0 (91 ® g2) = 0 because of orthogonality of D and
D+, and again we can set K, 4 = 0. To sum up, condition (81) holds for K; = 0. The
proposition is proved. O

3.2.3. — The exact sequences (68), (69) and (70) give rise to a distinguished triangle
RI(V,D, M) — R (V, Dp, My) — RT(V, D, M) 222, RT(V, D, M)[1]
DEFINITION. — The p-adic height pairing associated to the data (V,D, M) is defined

as the morphism

Beh 4 : ROV, D, M) @5 RO(V*(1), D4, Mty 202,

= RI(V,D, M)[1] ®§ RT(V*(1), D4, M) =222 A2,

where Uy.p pr is the pairing (49).

The height pairing h%}ﬂD u induces a pairing
(82) hpaa @ H'(V,D,M)®4 H (V*(1),DF, M+) — A.
THEOREM 3.2.4. — The diagram

sel

hV,D,M

RI(V,D, M) ®% RI(V*(1),D+, ML) A[-2]

812 =
hsel

RI(V*(1), DY, MY) @4 RI(V, D, M) 227 41 ]
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is commutative. In particular, the pairing hs‘le 1 18 skew-symmetric.

Proof. — From Propositions 1.2.6 and 3.2.2 it follows, that the diagram

sel
V,D,M

h
S*(V,D,M)®4 §*(V*(1),D*, M*) ————— Ej

s120( TR TP (1)) =
hsel

v*(1),bt,mL

S*(V*(1), D4, M*) @4 §*(V, D, M) — 2222,

is commutative up to homotopy. Now the theorem follows from the fact, that
(7' @ ﬂ‘f‘f}(l)) is homotopic to the identity map (see the proof of Theorem 3.1.14).
O
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CHAPTER 4

SPLITTING SUBMODULES

4.1. Splitting submodules

4.1.1. — Let K be a finite extension of Q,, and let V be a potentially semistable
representation of Gk with coefficients in a finite extension E of Q,. For each finite
extension L/K we set D,/ (V) = (B, ® V)C, where * € {cris, st,dR} and write
D.(V) =D,/ (V) if L = K. We will use the same convention for the functors Z, .

Fix a finite Galois extension L/K such that the restriction of V' to G, is semistable.
Then Dy, (V) is a free filtered (¢, N, Gk )-module over E®q, Lo and Dgg (V) =
Dgi/(V)®L, L. A (o, N,G 1, k)-submodule of Dy /1,(V) is a free E ®q, Lo-subspace
D of Dg;/1,(V') stable under the action of ¢, N and G, k-

DEFINITION. — We say that a (¢, N, G k)-submodule D of Dy /1 (V) is a splitting
submodule if

Dar/(V) = D & Fil’Dar,(V), D =D®p, L
as E ®q, L-modules.

From this definition it follows that if D is a splitting submodule, then
D+ = Hompgq, ,(Dst/(V)/D, Dy (E(1))

is a splitting submodule of Dy /7, (V*(1)).
In Subsections 4.1-4.2 we will always assume that V satisfies the following condi-

tion:
S) Dcris(Vv)L'oz1 = Dcris(‘/*(l))q’:1 =0.

One expects that this condition always holds for representations associated to pure
motives of weight —1 (see Section 0.4). Namely, consider the Deligne-Jannsen mono-

dromy filtration (DﬁiDst/L(V)) on Dy /1,(V) given by

i€Z
(83) MDDy (V)= Y ker(N¥) nIm(N')
k—l=1i
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(see [44]). Denote by (grimDst / L(V))i cz its quotients. Assume for simplicity that
E = Q. Set h=[Lo: Qp] and g = p". Then ® = " acts Lo-linearly on Dy (V).

LEMMA 4.1.2. — Assume that ® acts semisimply on Dy /1, (V) and that the absolute
value of eigenvalues of ® acting on gr?ﬂDst/L (V) is q=Y/2_ Then condition S) holds.

Proof. — From our assumptions it follows that Dy /7, (V)*=*N9MDy; /1, (V) = 0. Since
D.is(V) C DSt/L(V)NZO C MoDy; /1 (V), this implies that
Dcris(‘/)('oz1 C Dst/L(Vv)q):1 N Dcris(V) =0.

Note that our assumptions are invariant under passing to the dual representation,
and therefore we also get De.is(V*(1))?=1 = 0. 0

4.13. — If D is a splitting submodule, we denote by D the (¢,I'x)-submodule

of Diig(V) associated to D by Theorem 2.2.3. The natural embedding D — Diig(V)
induces a map H'(D) — H (D! (V)) 5 H!(K,V). Passing to duals, we obtain a

rig

map H'(K,V*(1)) — H'(D*(x)).

PROPOSITION 4.1.4. — Assume that V satisfies condition S). Let D be a splitting
submodule. Then

i) Hi(K,V*(1)) — H}(D*(x)) is the zero map.
ii) Im(H'(D) — HY(K,V)) = H{(K,V) and the map H;(D) — H(K,V) is an
isomorphism.

iii) If, in addition, Fil’(Dg/r(V)/D)?=1N=0-Crix = 0, then H'(D) = H}(K,V).

Proof. — i) By Proposition 2.9.2 we have a commutative diagram
(84) Hlio(VF (1)) —— Hy(D* (X))
L

H}(K,V*(1)) —— H}(D*(x)),

where we set

Hy(V* (1)) = coker (Dcm(V) L2220, Do (V) & mm)
and
Hg,i (D" (x)) = coker <9ms(D*(x)) U222, Gia(D* (1)) ® tD*(X)(K)>

to simplify notation.
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Since Deyis(V*(1))?=! = 0, the map 1 — ¢ : Dgis(V*(1)) — Deis(V*(1)) is
an isomorphism and HY;(V*(1)) = ty«)(K). On the other hand, all Hodge-Tate
weights of D*(x) are > 0 and tp-(,)(K) = 0. Hence

Hgis(D*(x)) = coker(l — ¢ | Zeis(D*(x)))
and the upper map in (84) is zero because it is induced by the canonical projection
of ty+1)(K) on tp«(y (K). This proves i).
Now we prove ii). Using i) together with the orthogonality property of H} we
obtain that the map

Homp(H'(K,V)/H};(K,V),E) — Homg(H"(D)/H}(D), E),

induced by H'(D) — H'(K,V), is zero. This implies that the image of H!(D) is
H'(K,V) is contained in H}(K,V). Finally one has a diagram

H(::lris (D) Hélris (V)

H}D) —— HHK,V).

From S) it follows that the top arrow can be identified with the natural map tp(K) —
ty (K) which is an isomorphism by the definition of a splitting submodule.

iii) Taking into account ii), we only need to prove that the natural map H!(D) —
H(K,V) is injective. This follows from the exact sequence

0—»D-D} (V)»D -0, D'=D[(V)/D
and the fact that H°(D’) = FilO(DSt/L (V)/D)$=LN=0.G/x = 0 (see Proposi-
tion 2.9.2, 1)). O

4.2. The canonical splitting

4.2.1. — Let
Y 0-V*(1)—-Y,—-E—0
be an extension of E by V*(1).

Passing to (p, 'k )-modules, we obtain an extension

0 — Dl (V*(1)) = DL (Y,) » %Zx,5 — 0.

rig

By duality, we have exact sequences
0-E(1)—-Y/(1)—-V -0
and

0 — Zk,5(x) — DI, (¥, (1)) —» Dl

(V) —o.
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We denote by [y] the class of y in Extyg, (E,V*(1)) = H'(K,V*(1)). Assume
that y is crystalline, i.e., that [y] € H}(K, V*(1)). Let D be a splitting submodule
of Dg; /1, (V). Consider the commutative diagram

(V*(1)) —— DL (Y,) —— Zx5 —— 0

L1 F

pr(y): 0———=D"(x) —— Dy(x) —— Zx.g —0,

y: 0— Dl

where D, is the inverse image of D in D!

rig(Yy*(l)). The class of pr(y) in H*(D*(x)) is

the image of [y] under the map

Ext'(%k,5, D},

(V*(1))) — Bxt' (Zx,5,D*(x))
which coincides with the map

HY(K,V*(1)) = H (D!

rig

(V*(1))) = H'(D*(x)

after the identification of Extl(f%’K’ E,—) with the cohomology group H!(—). Since
we are assuming that [y] € H}(K,V*(1)), by Proposition 4.1.4 i), we obtain that
[pr(y)] = 0. Thus the sequence pr(y) splits.

4.2.2. — We will construct a canonical splitting of pr(y) using the idea of Nekovar
[58]. Since dimg Dyis(Yy) = dimpg De,is(V*(1)) + 1, the sequence

0 - Dcris(V*(l)) - Dcris(Yy) i Dcris(E) - 0

is exact by the dimension argument. From D.;s(V*(1))?=! = 0 and the snake lemma
it follows that Dcris(Yy)‘P:1 = Dis(E) and we obtain a canonical ¢-equivariant
morphism of Ky-vector spaces Deyis(E) — Deris(Y,). By linearity, this map extends
to a (o, N, G, k)-equivariant morphism of Lo-vector spaces Dy /1, (E) — Dy, (Yy).
Therefore we have a canonical splitting

Dst/L(Yy) > Dst/L(V*(l)) D Dst/L(E)
of the sequence
0— Dst/L(V*(l)) - Dst/L(Yy) - Dst/L(E) —0

in the category of (¢, N, G,/ k )-modules. This splitting induces a (¢, N, G,k )-equiv-
ariant isomorphism

(85) Doty (D (X)) = Zseyr(D* (X)) ® Dety(E).

Moreover, since all Hodge-Tate weights of D* () are positive, we have

Fil'Dar, (D} (x)) = Fil' Yar,.(D* (x)) & Fil' Zar1.(E)
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and therefore the isomorphism

Dar/L(Dy(X)) = Zar/(D*(x)) ® Zar/L(E)
is compatible with filtrations. Thus, we obtain that (85) is an isomorphism in the
category of filtered (o, N, G,k )-modules. This gives a canonical splitting

pr(y) : OED*(X)%DZ(X);M@K,E%O

of the extension pr(y). Passing to duals, we obtain a splitting

SD,y
(86) 0 —— Zr.5(X) D, D 0.
Taking cohomology, we get a splitting
(87) 0 — H}(K,E(1)) — H}(D,) “— H}(D) —— 0.

Our constructions can be summarized in the diagram

Sy

0 — H}(K, E(1)) —— H}(D,) *——— H}(D) —— 0

0 —— H{(K,E(1)) —— H}(K,Y; (1)) —— H}(K,V) —— 0.

Here the vertical maps are isomorphisms by Proposition 4.1.4 and the five lemma.

REMARK 4.2.3. — Assume that H°(D*(x)) = 0. Then each crystalline extension
of D by Zk(x) splits uniquely. This follows from Proposition 2.9.2 i) which im-
plies that H}(D*(x)) = 0 and from the fact that various splittings are parametrized
by H®(D*(x))-

4.3. Filtration associated to a splitting submodule

4.3.1. — In this subsection, we assume that K = Q,. Let V be a potentially semistable
representation of Gq, with coefficients in a finite extension E of Q,. As before, we fix a
finite Galois extension L/Q, such that V' is semistable over L and denote by Dy /1,(V')
the semistable module of the restriction of V' to Gr. Let G ,q, = Gal(L/Q,). To each
splitting submodule D of Dy /1, (V) we associate a canonical filtration on Dy, (V)
which is a direct generalization of the filtration constructed by Greenberg [38] in the
ordinary case and in [8] in the semistable case.

Let D be a splitting submodule of Dy /1, (V). Set D' = Dy, (V)/D. Then Fil’D’ =
D’ and we define

M, = (D/)W:I,N:O,GL/QP ®Qp L.
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Recall that D+ = Hompggq, Lo (Dst/r(V)/D,Dst/r(E(1)) and that in the tautological
exact sequence
0— D* — Dy (V*(1)) = (D) =0
we have
(DY) ~D* = Hompgq, Lo (D; Dst/r(E(1)).
For the filtered (p, N, G ,/q,)-module D* we have Fil’D* = D* and we define

My = ((D)#=2¥ =602 g, L)

From Lemma 4.4.2 ii) it follows that M; can be seen as a submodule of D’ and
that M can be seen as a submodule of (D1)’. Clearly we have

tkpgq, Lo (M1) = dimp(D')?=" =000 - rkpg 1, (Mo) = dimp(D*)#=HV=0Cr/ar,

We have canonical projections prp, : Dy (V) — D" and pry,, : D — M. Define
a five-step filtration

{0} = F_oDy (V) C F_1Dg (V) C FoDg/r(V)
C FiDg (V) C FoDg (V) = Dy (V)
by
ker(pry,) ifi=—1,
FiDg (V) =< D if i =0,
pro (M) ifi=1.
Set W = FiDyg/1,(V)/F_1Dg,(V). These data can be represented by the diagram

0——D—— Dy (V)22 s D ——0

-

0 My w M, 0.

We denote by (griDSt/L(V))j:_2 the quotients of the filtration (F;Dg,r,(V))Z _,.
Thus, My = groDy/(V) and M; = gryDg (V). By Theorem 2.2.3, the filtra-

2
tion (FiDst/L(V))?_ , induces a filtration (FiDLg(V)) on the (¢,I'q,)-module
== i=—2 ?
D!, (V) such that

rig
DL (FDL, (V) = FDg/r(V), -2<i<2.

Note that D = FyD[, (V). We set My = gr,D, (V), M; = gr; D] (V) and W =

FlDiig(V) /F_lDLg(V). We have a tautological exact sequence

(88) 0—M, %W LM, —o.

MEMOIRES DE LA SMF 167



4.3. FILTRATION ASSOCIATED TO A SPLITTING SUBMODULE 85

By construction, Mg and M are crystalline (p,I'q,)-modules such that

Deris/q, (Mo) = Mo, Deris)Q, (M1) = M;.
Since
ME=P = My, Fil’ M, = 0,
M=t = My, Fil°M; = M;,

the structure of modules My and M, is given by Proposition 2.9.4. In particular, we
have canonical decompositions

(pry,pr.) (prs,pr,)
H'(Mo) 27 H}Mo) @ H:(Mo), H'My) 2 H}(My) @ HE(M,).

The exact sequence (88) induces the cobondary map &, : H°(M;) — H(M,).
Passing to cohomology in the dual exact sequence

(89) 0 — Mi(x) = W"(x) = Mg(x) — 0,
we obtain the coboundary map &5 : H°(Mp(x)) — H'(M;(x))-
4.3.2. — We keep previous notation and denote by (F;Dg;/r(V*(1)))-2<i<2 the fil-

tration on Dy /1, (V*(1)) associated to D*. This filtration is dual to the filtration
FiDg; (V). In particular,

(90) F_iD, (V*(1))*(x) ~ D] (V)/FiD}, (V),
(91) Dl (V*(1))/FD (V*(1)) ~ (F_DL, (V)" (x),

and the sequence (88) for (V*(1), D) coincides with (89).
We consider the following conditions on (V, D) :

Fla) Zeyis(DL._(V)/F DI (V))¢=! = D(D]

rig rig rig

F1b) Devis(F_1DI. (V)?=! = Dois(F_1 D1 (V*(1)))¢=! = 0.

rig rig

(V*(1))/FiDl, (V*(1))#=" = 0.

rig

F2a) The composed map
Bo.c : HO(My) ™ H'(My) 7% H (M),
where the second arrow denotes the canonical projection on H!(M), is an
isomorphism.
F2b) The composed map
5 pr
8o,s + HO(My) == H'(Mo) — Hj(Mo),
where the second arrow denotes the canonical projection H} (My), is an iso-
morphism.
F3) For all i € Z
Zpst (D3 (V)/FiD} (V))*™"" = Zpue(F1 D},

rig rig

(V)¢ = 0.
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We expect that conditions Fla-b) and F2a-b) hold for p-adic representations arising
from pure motives over Q of weight —1 (see Sections 4.3.4-4.3.11). On the other hand,
it is easy to give an example of a motive for which condition F3) does not hold (see
Remark 4.3.3.5) below.

REMARKS 4.3.3. — 1) Since for any potentially semistable (¢,I'q,)-module X one
has HO(X) = Fil°Zu;(X)?=! and the Hodge-Tate weights of DI, (V)/FD!. (V)

rig rig
and Diig( 1))/F,DI._(V*(1)) are > 0, condition Fla) is equivalent to

rig

V*(
H(D! (V)/FDL,(V)) = H (D], (V*(1)))/FiD],(V*(1))) = 0.

rig rig rig
2) All conditions introduced above are preserved under duality.
3) From (90)—(91) it follows that F3) implies Fla-b).

4) Fla-b) and F2a) imply condition S) introduced in Section 4.1 (see Proposi-
tion 4.3.13 iv) below).

5) We give a simple example of a p-adic representation arising from a motive of
weight —1 which does not satisfy condition F3). Let V' (E) be the p-adic representation
associated to an elliptic curve E/Q having split multiplicative reduction at p. The
restriction of V(E) to the decomposition group at p sits in an exact sequence

0— Qp(l) = Vp(E) — Qp — 0.

Then Dy (V,(E)) is generated by two vectors e, and eg such that N(eg) = eq,
v(ea) = plea, pleg) = eg and Deis(Qp(1)) = Qpen. Let W = V(E)®3(—1). Then
D (W,) = Dg(V,(E))®3[1], where [1] denotes the ®-multiplication by the canonical
generator of Dgyis(Qp(—1)).

It is easy to see that the Q,-vector space generated by the vectors
do = (ea ®ea ®ey)[l], di = (6,3 ® eq ® eq)(1],
dy = (ea ®ep @ €a)[l], do = (ea ® €a ® €g)[1]

is a splitting submodule of Dy (W,). Since ¢(dy) = p~2do and ¢(d;) = p~'d; for

1 < ¢ <3, wehave F_1Dg(W),) = Qpdo. An easy computation shows that F; D (WW},)

is the six-dimensional subspace generated by (d;)1<i<3 and (d; )1<;<3, where

df = (ea®ep®ep)[l], di =(es®@ea®@es)[l], di = (es®es®eq)[l].

Thus, Dg(W,)/F1Dst (W) ~ Dst(Q,) and F_1Dg(W,) ~ Deis(Q,(2)) and condi-
tion F3) fails.

4) If V is semistable over Q,, and the linear map ¢ : Dg (V) — Dg (V) is semisim-
ple at 1 and p~!, the filtration F;D4 (V) coincides with the filtration defined in [8,
Section 2.1.4] (see Proposition 4.3.5 below).
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4.3.4. — In the next two sections we show that conditions Fla-b) and F2a) hold
if the Frobenius operator acts semisimply on Dy /7, (V) and V satisfies the p-adic
monodromy-weight conjecture. To simplify the exposition, we assume that the coeffi-
cient field £ = Q,.

Let W be a finite-dimensional vector space over a vector space K. If f is a linear
operator on W, then for each field extension K’'/K we denote by the same letter f
the linear extension of f to Wi, = W @k K'. If o € K’, we say that f is semisimple
at « if

Wi = (f — a)Wgr @ WL
Note that f is semisimple if and only if it is semisimple at all its eigenvalues. Let

0—-Wi —-W —>Wy—0

be an exact sequence of K-vector spaces equipped with compatible linear actions of f.
If the action of f on W is semisimple at a € K, then the actions of f on W; and Wy
are semisimple at a and the sequence

(92) 0— W= s wi=> L wf=> -0

is exact.
Let G be a finite group acting on W. Then W decomposes canonically into the
direct sum W = W& @ WO, where W° = {w € W|Trg(w) = 0}. If

0—-W, —-W —>Wy—0
is an exact sequence of K[G]-modules, then the induced sequence of G-invariants
(93) 0->WE ->WE->WwF -0

is exact. In particular, the inertia subgroup I q, acts on the splitting submodule D
and we have
D = D't/e» @ D°.

PROPOSITION 4.3.5. — Let V' be a potentially semistable representation of Gq, and
let L/Q, be a finite Galois extension such that V' becomes semistable over L. Assume
that ¢ : Dy (V) — Dy (V) is semisimple at 1 and p~ L. Then
i) The filtration (FiDst/L(V))?:72 is explicitly given by
DO + <(1 _p—lsa—l)DGL/Qp +N(DGL/Qp)) ®Qp Lo 2f@ = -1,
FiDg (V) = { D ifi=0,
D+ (Dayyn (V)= 6ma A N-H(DP=) ) @q, Lo ifi=1.

ii) We have

DG/ e=p"" Dst/L(V)GL/QpW:l N N-Y(D)
Mo = <N<DG/=)> ®q, Lo, M = ( DO ®q, Lo
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iii) Condition Fla) holds.

Proof. — i) Since ¢ is semisimple at 1, from the definition of M; and properties (92)—
(93) it follows that

FiDy1(V) = D+ (D (V)*~144/% A N71(D)) @aq, Lo
=D+ (Day (V)= e n NY D)) g, Lo.
Let D' be the orthogonal complement of D under the canonical pairing
[, ] 5 Dayr(V) x Dyeyp(V(1)) = Deyyn(Qp(1))

and let (FiDst/L(V*(l)))?=_2 denote the associated filtration. Then F_1Dg /1, (V) is
the orthogonal complement of F1Dg;,r,(V*(1)) under [, | and we have

1
F_iDy1(V) = (D* + (Do (V(1)#760/% 0 N=H(DY)) @4, Lo)
€L
=DnN (Nl(Dl)l + (Dst/L(V*(l))*”:l’GL/% ®q, Lo) ) .

If f € N"Y(D*) and © € Dgr(V), then f(Nz) = (Nf)(z), where Nf € D*. This
implies that N~!(D+)+ = N(D). Since N(D) C D, we get

L
(94)  F_1Dy,(V)=N(D)+Dn (Dst/L(V*(l))‘P:LGL/Qp ®q, Lo) .
From Lemma 4.4.7 we have that
i
(95) (Dst/L(V*(l))gozl’G”QP Qq, LO)
= ((1 - P_ISO_I)Dst/L(V)G”QP) ®q, Lo + Dy (V)°.

Set X =DnN ((1 — p_lcp_l)DSt/L(V)GL/QP> ®q, Lo- Since X is an Lo-vector space
equipped with a semilinear action of Gal(Ly/Qp), by Hilbert’s Theorem 90

X =X @q, Ly = (DG”QP n ((1 —p”w’l)Dst/L(V)G”QP)) ®q, Lo-

I we have

Since ¢ is semisimple at p~
DE/% 1 (1= p~ ™Dy (V)90 ) = (1= p~ o) DSH/9s.,
Together with (94) and (95) this gives
FoDyyp(V) = ((1-p' D ) @q, Lo+ N(D) + D°.
Write
(96) D= (DGL/% ®aq, L0> @ DO
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and
DCr/ay — DOria,e=1 g ((1 _ <p)DGL/Q,,) '
Then N(D°) € D° and
N (DOrar) = N (DSware=t) & ((1 - p~lp )N (DSrare=1)).
Therefore
(97) F-1Dyyr(V) = ((1=p~'¢™)DE/% )@q, Lo+ N (DH/ar 97 ) @q, Lo+D°

and i) is proved.

ii) From the definition of M; and the semisimplicity of ¢ at 1 if follows immediately

that G
Dy (V)92 /= A N~Y(D
M1=< s/1(V) ( >> oq. Lo,

DCGL/qp:p=1

1

Using (97), the decomposition (96) and the semisimplicity of ¢ at p~* we have

DCr/ap

Mo = ((1 _pflgofl)DGL/Qp) +N (DGL/Qpr‘PZI)

®q, Lo

DGL/QI,,SDZP_l

N (DGL/Qp"Fl) R

and ii) is proved.
iii) The statement iii) follows from ii). The proof repeats verbatim the proof of the
property D2) from [8, Lemma 2.1.5]. O

43.6. — Set h = [Lo : Qp], ¢ = p" and ® = ¢". Then ® is an Lo-linear operator
on Dy /1 (V). Let M; Dy /1, (V') denote the Deligne-Jannsen monodromy filtration (83).
By [26, Section 1.6], the monodromy N induces an isomorphism

—m
(98) N grimDst/L(V) - grg—ﬁ1Dst/L(V)-

PROPOSITION 4.3.7. — i) Assume that ® : Dy, (V) — Dy, (V) is semisimple at 1

1 -1

and q—". Then ¢ is semisimple at 1 and p

ii) If, in addition, for all i € Z the absolute value of eigenvalues of ® acting
on gr?tDSt/L(V) is ¢=V/2 then conditions Fla-b), F2a) and S) hold.

Proof. — 1) This is a particular case of Proposition 4.4.5.

ii) The proof will be divided into several steps.

a) From the semisimplicity of ¢ and Proposition 4.3.5 iii) it follows that Fla) holds.
Next, S) holds by Lemma 4.1.2. Since S) implies F1b), we only need to show that F2a)
holds.
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b) From the semisimplicity of ® and our assumption about the action of ®
on gri"Dg(V), it follows that the canonical inclusions induce isomorphisms

_ _ —1
Dst/L(V)(ILl =~ grflmDst/L(V), Dst/L(V)qu ~ gr?Tlet/L(V)-
Using (98), we see that the operator N induces an isomorphism

N : Dy (V)*=! = Dy 1, (V)*=4

Since Dst/L(‘/)W:1 - Dst/L(‘/)(}:1 and N(Dst/L(VyP:l) c Dst/L(V)LPZIfl? the map
N : Dy, (V)#=' = Dy (V)#=P s injective. Let y € Dy, (V)#=P . Then there
exists # € Dyy/1,(V)®=" such that N(z) = y. Set z = ¢(x) — . Then

N(2) = N(p()) - N(z) = ppN(2) - N(z) = 0

and therefore 2 € Dy, 1,(V)®=%¥=0 = {0}. This implies that z € Dy, (V)?~! and
we proved that the map
-1

N : Dst/L(V)(‘D:l — Dst/L(V)‘P:p

is an isomorphism of Q,-vector spaces. Taking G ,q, -invariants, we also get an iso-
morphism (which we denote by the same letter N)

(99) N : Dyyyp (V)49 970 o Dy (V) Fr/ae=r
¢) From Proposition 4.3.13, we have
M, = (N—l(D) N Dst/L(V)GL/Qv"Fl/DGL/QP’*":1) ®q, Lo,
M, = (DGL/Q""pzpil/N(DGL/QP’@:l)) ®q, Lo
The isomorphism (99) shows that the monodromy map N induces an isomorphism

N:M1—>M0.

d) Recall (see Section 4.3.1) that we set W = F1 Dy, ,(V)/F_1Dg (V) and denote
by My, M; and W the (¢,I'q,)-modules associated to My, M; and W respectively.
Set e = dimy, My = dimy, M;. We have a commutative diagram

0 My w M,y 0

N

M.

Then

HO (W) = Wwh=0¢=1 — p1e=! =
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and the coboundary map &y : H°(M;) — H'(M)y) is injective. Since dimg H°(M;) =
dimg H}(My) = e, we only need to show that ITm(dy) N Hj(My) = 0. For each
semistable (¢, I')-module A we denote by Cg(A) the complex

0— Zu(A) L (Zu(A)/FiI’ T4 (A)) @ Zut(A) @ Zer(A) 2 T (A),

g9(z) = (& (mod Fil’Z(A)), (¢ — 1)(2), N(z)), h(z,y,2) = N(y) — (pp — 1)(2).

We refer to [8, Sections 1.4-1.5] for the proofs of the following facts. The cohomol-
ogy group H°(Cy(A)) is canonically isomorphic to H°(A). The group H!(Cys(A)) is
canonically isomorphic to the subgroup HZ(A) of H!(A) classifying semistable ex-
tensions. One has HL (M) = H' (M) and the subgroups H} (Mp) and H}(M,) have
the following description in terms of Cy(A)

H;(My) = {cl(z,0,0)|z € My},
H}! (M) = {cl(0,0,2)|z € My}.

We have a commutative diagram

HOM,) — > H'(M)

]

A
H®(Cs (M) — H*(Cs(Mo)),
where Ay is induced by the exact sequence
0 - Cst(MO) i st(w) - St(Ml) - 0

Let z € H°(M;) = M{~'. By the snake lemma, W¥=! ~ M?~"' and we denote
by y € W¥=! the lift of z under this isomorphism. It is easy to check that Aq(z) =
cl(y,0, N(z)). This implies that if Ag(z) € H}(MO) then N(z) = 0. Since N is an
isomorphism, this implies that x = 0. The proposition is proved. O

REMARK 4.3.8. — Assume that V is the p-adic realization of a pure motive M over Q.
The p-adic version of the Grothendieck semisimplicity conjecture says that & acts
semisimply on Dg /7, (V). If, in addition, M is of weight —1, the p-adic monodromy
conjecture of Deligne-Jannsen [44] asserts that the absolute value of eigenvalues of ®
acting on gr¥*Dy, (V) is qi_Tl. Therefore conjecturally conditions Fla-b) and F2a)
always hold in this case.
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4.3.9. — We continue to assume that V is potentially semistable at p. If, in addition,
condition F2a) holds, we have a diagram

Mg, f

-@cris(MO) — H}f (MO)

+ s
Ky | ! prj

HO(‘NIl) >, H'(M,)

| XCJ \L
Ke | pre
4

7;Mo,c

-@cris(MO) EE— Hcl (MO)a

where in, , and im, , are the canonical isomorphisms defined in Proposition 2.9.4
and k. and k¢ are the unique maps making the resulting diagram commute.

DEFINITION. — The determinant
(100) ZL(V,D) =detg (kg ok, | Deris(M1))

is called the £ -invariant associated to V and D.

REMARK 4.3.10. — This is a generalization of the .#-invariant defined in [§]
in the semistable case. Note that in op. cit. we assume that V is the restric-
tion to Gq, of a global Galois representation satisfying the additional condition
H}(V) = H}(V*(l)) = 0, but the definition of .Z(V, D) in the semistable case is
purely local and does not use this assumption. We expect that .Z(V, D) # 0 if V is
associated to a pure motive of weight —1 (see Section 0.4).

The next proposition follows immediately from definitions.

PROPOSITION 4.3.11. — Assume that condition F2a) holds. Then F2b) holds if and
only if £(V,D) # 0.

4.3.12. - Now we come back to the general setting described in Section 4.3.1 and

summarize below some properties of the filtration FiDLg(V).

PROPOSITION 4.3.13. — Let D be a regular submodule of Dy, (V). Then
i) If (V, D) satisfies F2a), then tk(My) = rk(M;) and H*(W) =0

ii) If (V, D) satisties Fla), then
H}(FLDf,(V)) = H'(F.D[,(V)),
H}(FD],,(V)) = H}(Qy, V).
iii) If (V, D) satisfies Fla) and F2a), then we have exact sequences

(101) 0— H°(M;) —» H'(Mg) — Hf (W) — 0
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and
(102) 0— H°(M;) —» H' (D) - H;(Qp, V) — 0.
iv) If (V, D) satisfies Fla-b) and F2a), then the representation V satisfies S), namely
D.yis (V)= = Deris(V*(1))#=! = 0.

Proof. — i) From F2a) and the fact that dimg H°(M;) = rk(M;) and dimg H!(M,) =
rk(Mj) (see Proposition 2.9.4) we obtain that rk(Mg) = rk(M;).

By Proposition 2.9.4, iv), H°(Mj) = 0, and we have an exact sequence
0 — HO(W) — HO(M;) 2% H'(M).

By F2a), the map dy is injective and therefore H°(W) = 0.
ii) By Fla) together with Proposition 2.9.2 and the Euler-Poincaré characteristic
formula, we have

dimp H'(F_1D],,(V)) — dimg H}(F_,D} (V)
= dimp H((F_1D};,(V))*(x)) = dimp H* (D], (V*(1))/ iDL (V*(1)))) =

and therefore H}(F_;Df; (V)) = H'(F_,D},

(V). Since H(Df,(V )/Fang(V))=

rig
the exact sequence

0— D

rig

(V) - Dl (V) - DI (vV)/FDl (V) -0

rig rig

induces, by Proposition 2.9.2 iv), an exact sequence
(V)) - Hf( rlg(V)) - Hf(Drlg( )/FlDrlg(V)) -
On the other hand, since

@dR(Drlg( )/FlDrlg(V)) Fllong(DT ( )/Fl l‘lg(V))

rig

0 — H}(F,D};

rig

by Proposition 2.9.2, i) we have
dimp Hj (Dl (V)/FiD],,(V)) = dimp H(D[,(V)/FiD],,(V)) = 0,
and therefore H}(FiDJ,(V)) = H}D/ (V) = H}(Q,, V).

rig rig
iii) To prove the exacteness of (101), we only need to show that the image of the map

a @ H'(Mp) — H'(W), induced by the exact sequence (88), coincides with H(W).
By F2a), Im(dp) N Hf(Mo) = {0}, and therefore the map H;(Mo) — H}(W) is
injective. Set e = rk(Mj) = rk(M;). Since

dimg H;(W) = dimp tw(Q,) — H*(W) = e = dimg H}(M,),
we obtain that H}(Mo) = H;(W). On the other hand, the exact sequence

0 — HO(M;) 2 HY(M,) & HY(W)
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shows that dimgIm(a) = dimg H'(My) — dimg H°(M,) = e = dimg H}(My).
Therefore Im(a) = H} (M) = H} (W), and the exacteness of (101) is proved.
Since H(W) = 0 and H}(F_1D[, (V)) = H'(F_1 D] (V)),

Yig by Proposition 2.9.2

rig
iV) we have an exact sequence

0— H'(F1D,(V)) = H}(FiD],,(V)) = H{(W) =0,
which shows that H}(FlDLg(V)) is the inverse image of H}(W) under the map

H 1(FlDLg(V)) — H'(W). Therefore we have the following commutative diagram
with exact rows:

HO(Ml) — HO(Ml)

0—— HY(F_,D,

rig

k

0 —— HY(F_,D (V)) —— H}FD]

rig rig

(V)) —— HY(D) ——— H'(My) —— 0

(V) —— H}(W) ——0

0 0.

Since the right column of this diagram is exact, the five lemma gives the exacte-
ness of the middle column. Now the exacteness of (102) follows from the fact
that H}(FyD; (V) = H}Q,, V) by ii).

iv) First prove that Z.,is(W) = Zeris(Mg). The exact sequence (88) gives an exact
sequence

0 = Deris(Mo) % Deris (W) L5 Dyis (M)

and we have immediately the inclusion Ze;is(Mg) C Zeris(W). Thus, it is enough
to check that dimpg Zeis(W) = dimg Zeis(Mp). Assume that dimp Peis(W) >
dimp Peris(Mp). Then there exists © € Peyis(W) such that m = B(x) # 0. Since
© acts trivially on Z.is(M;) = MI;QP, #q,,em is a (p,I'q,)-submodule of My, and
there exists a submodule X C W which sits in the following commutative diagram
with exact rows:

0 Mo X %prEm —0
0 M, \\% M, 0.
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Since Deris(W) = (W[1/t])1e | there exists n > 0 such that "z € X, and therefore
Z € Deris(X). This implies that X is crystalline, and by Proposition 2.9.2 iv) we have

a commutative diagram

Em ——— HH(M)

HO(M,) 2 H' (M).

Thus, Im(dp) N Hj(My) # {0} and condition F2a) is violated. This proves
that gcris(w) = chis(MO)~

Now we can finish the proof. Taking invariants, we have Z.s(W)¥=! =
Deris(M)#=1 = 0. By F1b),
Dexis(F1DL (V)?=" = Deris (D, (V) / FADL, (V)= = 0,
and, applying the functor Z..;s(—)%~! to the exact sequences
0— FDf,

0— F_,D! (V) — F,D},

rig rig

(V) - Dl (V) - DI (v)/ADL (V) -0,

(V) = W —0,

we obtain that Deis(V)¥™! C Zers(W)?=! = 0. The same argument shows
that Deis(V*(1))?=! = 0. O

4.3.14. — Assume that (V, D) satisfies conditions Fla-b). The tautological exact se-
quence

0—-D— D!

rig

(V) - D' —o0.
induces the coboundary map
d : H'(D') — H' (D).

Since HO(DLg(V)/FlDIig(V)) = 0, we have that H°(D’) = H°(M;), and the exact

sequence (102) shows that the sequence
(103) 0— H(D') 2 H'(D) — H}(Q,, V) — 0

is also exact.

PROPOSITION 4.3.15. — Let V' be a p-adic representation of Gq, which satisfies con-
ditions F2b) and F3). Then

H'(D) = Hy, (D)rg, & do (H*(D")).
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* o=p°
Proof. — Since Zpgt ((F_lDIig(V)> (X)) =0 for all 4 € Z, by Lemma 2.8.3 we
have HEW(F,lDIig (V)) = 0. Then the tautological exact sequence

0— F_iD} (V) - D — My — 0

induces an exact sequence

0 — H{, (F-1D[,(V)) — H,(D) — H}, (M) — 0.

Since Hllw(Mo)FOQP = H%(M;) = 0 by Proposition 4.3.13, the snake lemma gives an
exact sequence

(104) 0 HL,(FyD,(V)rg, — i, D)y, — Hi, (Mo)

rig — 0.

FD
Qp
The Hochschild-Serre exact sequence

0 — Hi, (F1Df (V) — H'(F1D,(V)) = HE (F4Df (V)& — 0

rig rig rig
together with the fact that

dimp HE, (F_1D],

0
FQp

(V))F@r = dimp HE, (F_1D}, (V))ro

rig Qp

= dimp H* ((F_1D}, (V)" (1) =0

rig

imply that HL (F_,D! (VDrg, = HY(F_;D!._(V)). On the other hand,

rig rig

Hy, (Mo)ro, = H, (M)

0
qu

by Proposition 2.9.6. Therefore, the sequence (104) reads

0 — H'(F_,D};,(V)) — Hi, (D)ra, — H;(Mo) — 0

and we have a commutative diagram

(105) 0 —— HY(F_,D!_(V)) —— H} (D)rg, — H}(My) ——0

rig w

I |

0 —— HY(F_;D}, (V)) —— HY(D) ——— H'(Mo) —— 0.

Since HO(DIig(V)/FlDJr (V)) = 0, the exact sequence

rig
0— M; — D’ — DI (V)/FD (V) =0
gives H°(M;) = H°(D’) and we have a commutative diagram

(106) HY(D') —2 . H'(D)

|

HO(Ml)(i> H'(My).
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Finally, from F2b) it follows that H!(Mo) N &y (H°(M;1)) = {0}, and the dimension
argument shows that
(107) H'(Mo) = H; (M) @ 6o (H°(My)) -

Now, the proposition follows from (107) and the diagrams (105) and (106). O

4.4. Appendix. Some semilinear algebra

4.4.1. — In this section we assemble auxiliary results used in Section 4.3. They are
certainly known to experts, but we give detailed proofs for completeness.

Let Ly be a finite unramified extension of Q,. We denote by o the absolute Frobe-
nius automorphism on Lg. Let W be a finite dimensional Lg-vector space equipped
with a o-semilinear bijective operator ¢ : W — W. For each extension E/Q,, de-
note by the same letter ¢ the operator on F ®q, W induced by ¢ by extension
of scalars. Note that W is a free F ®q, Lo-module and that ¢ acts on E ®q, Lo
by p(a ®q, b) = a ®q, o(b).

LEMMA 4.4.2. — Let L/ Lo be a field extension and let ¢ : Ly®q, W — Ly®q, W be
the Lj-linear map induced by ¢ by extension of scalars. Then

i) For each a € E, the natural map
v Ly®q, W — Ly®r, W, (a®q, ) =a®L, =

induces an injection
(Lo ®q, W)™ — Ly ®r, W.

ii) For any a € Q,, the natural map
Lo ®q, W= - W
18 injective.
Proof. — Set d = dimp,, W. Let {v;}1<;<a be a basis of W over Lo and {6;}1<i<n be

a basis of Ly over Q. Then {6;v;}1<i<n,1<j<a i a basis of Lo ®q, W over Lg. Let

c) = (Cgi))lgj,kgd be the matrix of ¢° in the basis {v;}1¢j<q, i€,

d
o’ (vy) = Zcﬁ)vk, 1<j<h.
k=1
Assume that
R d
xr = Zzaij ®Qp (91'7]]‘) S keI‘(L), a;; € L6
i=14=1
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If, in addition, ¢(z) = az, then

x) = ZZaij ®q, ¥ (0:)p*(v;) € ker(¢) forall 0 <s<h—1.

i=1j=1
Set

=Y aie’(0:), 1<j<d.
Then
Zx(s) “)_p0, 1<j<d

Since det(C(®)) # 0, this 1mphes that :rg-s) =0forall<j<dand 0 <s<<h—1.
Therefore for each 1 < j < d we have

Zaiﬂﬂs(@i) =0, 0<s<h-1.

Since det(¢®(6;)1<s,i<n) # 0 by the linear independence of automorphisms, we get
a;;j =0forall 1 <j<dand1l<i<h. Thus z =0 and i) is proved.

ii) Take Ly = Lo (with the trivial action of ¢). Since o € Q,, we have
(Lo ®q, W)¥=* = Lo ®q, W¥=* and by i) the map Ly ®q, W¥=* — W is in-
jective. This proves ii). Note that the usual proof of this statement uses Artin’s trick
(see Lemma 4.4.3 below). O

LEMMA 4.4.3. — Let U be an Lg-subspace of W stable under the action of ¢ and
let a € Q. Then

(Lo ®q, WP=*)NU = Lo ®q, U*~".
In particular,

(Lo ®q, WP=*)NU # {0} = W*=*nU # {0}.

Proof. — First note that Lo®q, W¥~™* C W and Ly®q, U¥~* C W by Lemma 4.4.2.
Fix a Q,-basis {w;}¥_; of U¥=* and complete it to a basis {w;}?; of W¥=%. We
prove the lemma by contradiction. Assume that there exist a nonzero element

x—Zal@)wl L0®Q wWe= "‘)ﬂU

such that = ¢ Lg ®q, U~ In the set of elements with this property we choose a
“shortest” element which we denote again by x. Note that m > k and that we can
assume that a,, = 1. Then

o(z) = aZU(ai) Qw; € (Lo Rq, W‘P:D‘) NnU,
i=1
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and therefore

a lp(z) -z = Z_j (0(ai) = a;) ® w; € (Lo ®q, W¥™*) NU.

i=1

By the choice of z, we have o '¢(z) —x € Lo®q, U?=*. This implies that o(a;) = a;
for all k +1 <4 < m. Thus a; € Q, for all K+ 1 < ¢ < m. Therefore

k m
xr =9+ 1, xO:ZaiQ@wieLo ®Qp ULP:OL, xr1 = Z ai®wi€W“”:a.
=1 i=k+1

Thus 21 = ¢ —x9 € UNW¥=* = U¥=% and by the construction of the basis {w;}]
we get that 1 = 0. The lemma is proved. O

44.4. — Let h = [Lo : Q,) and ® = ¢". We consider ¢ as a linear map on the
Q,-vector space W and ® as a Lg-linear map on the Lo-vector space W.

PROPOSITION 4.4.5. — i) Let L be a finite extension of Ly and o € Lj. Assume
that ® is semisimple at o”*. Then ¢ is semisimple at .

ii) @ is semisimple if and only if ¢ is semisimple.

Proof. — 1) We prove i) by contradiction. Assume that ¢ is not semisimple at . Then
there exists a nonzero vector y = (¢ — @)z such that ¢(y) = ay. Set

h—1
z= Zo/g@hii*ly = (® - a") ().
i=0

Then z = ha 1z # 0 and ®(z) = a"z. The map

(108) L W®q, Ly — W g, Ly, Lz ®q, a) =T ®L, a

is compatible with the action of ®. Since ¢ is injective by Lemma 4.4.2, +(2) # 0 and
1(z) € (& — W N we=e",

This proves i).

ii) From i) it follows that ¢ is semisimple if ® is. Now we show that the converse
holds. If ¢ is semisimple, there exist an extension L{/Lo and a basis {w;}1<i<dn
of W®q, Ly over Lj such that ¢(w;) = Ajw;, A; € Ly for all i. Since the map (108) is
surjective, one can find a subsystem {v; }1<;<a 0of {w; }1<i<dn such that {¢(v;)}1<ica is
a basis of W ®,, Lj. Since the map ¢ is compatible with @, this proves that the matrix
of @ in this basis is diagonal. O
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4.4.6. — Let G be a finite group sitting in an exact sequence of the form
0—1—G5 Gal(Ly/Q,) — 0.
We write Tr; for the trace operator Tr; = Y g. Assume that W is equipped with

gel
a semilinear action of G wia the projection 7 which commutes with the operator ¢.

Then I acts Ly-linearly on W and we have

wW=wleow’ Ww°={zecW|Tr;(z)=0}
Moreover, from Hilbert’s Theorem 90 for GL,, we have
(109) Wl =Lo®q, WE.

We denote by W* the dual space W* = Homp, (W, Lo) equipped with the semilinear
action of ¢ given by

(ehw) =cf(e~ (w)), feW ,weW.
For any W we denote by W([1] the space W equipped with the operator oy 1] = p~Llo.
The canonical duality gives a pairing of Lg-vector spaces

[, ] WxW*1] = Loll], [z, f]= f(=).
We equip W*[1] with the natural action of G given by
(9) (@) =9f(g"'x), ge€G, zeW, feWl]

If Y is a Lg-subspace of W*[1], we denote by Y the orthogonal complement of Y
in W with respect to the pairing [, ].

LEMMA 4.4.7. — For any a € Qp we have
* =« 1 — —
(Lo ®q, W*1]¥=*9)" = ((a —p "¢ W) ®q, Lo + W".
Proof. — The pairing [, | induces non-degenerate pairings
[ ] WEx W) — Lo[1],
[, e : WEx W19 — Q,[1].

From (109) it follows that [, ]r is induced from [, ] by extension of scalars. Since
(a — p~te Y)W is the orthogonal complement of W*[1]#=*¢ under [, ]g, this
implies the lemma. O
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CHAPTER 5

p-ADIC HEIGHT PAIRINGS II: UNIVERSAL NORMS

5.1. The pairing hy?p"

5.1.1. — In this section, we construct the pairing hy?p", which is a direct general-

ization of the pairing constructed in [70] [63] and [58, Section 6]. Let V is a p-adic
representation of G g with coefficients in a finite extension E of Q,. We fix a system
D = (Dg)qes, of submodules D, C Diig(Vq) and denote by D+ = (Dg)qes, the
orthogonal complement of D. We have tautological exact sequences

OHDQHDIig(‘/q)_)D:]HOa qESpv

where Df1 = Diig(Vq) /Dy. Passing to duals, we have exact sequences

0 — (D})*(xq) = D (Vi (1)) — D; (xq) — 0,
where (Dy)*(xq) = Dj‘. If the contrary is not explicitly stated, in this section we will
assume that the following conditions hold

N1) HO(F,,V) = H(F,,V*(1)) = 0 for all q € Sy;
N2) HO(D}) = H(D;(xq)) = 0 for all g € S,

As we noticed in Section 0.4, if V' is the p-adic realization of a pure motive of weight —1
condition N1) conjecturally always holds. Condition N2) means that the p-adic L-func-
tion L(V, D, s) conjecturally associated to D has no extra-zeros at s = 0. From N2), it
follows immediately that H'(D,) injects into H'(F,, V). By our definition of Selmer
complexes we have

H(EV) ) o o B EY)

(110)  H'(V.D) = ker | H3(V) = @ v 7D, )’

qET, vES)y

and the same formula holds for V*(1) if we replace D4 by D . Recall that each element
of H'(V, D) can be written as the class [°!] of a triple z°¢! = (z, (z]), (Aq)) (see (47)).
The isomorphism (110) identifies [2°¢'] with the corresponding global cohomology class

[z] € Hg(V).
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5.1.2. — Let [y*°'] = [(y, (¥), (uq))] € H'(V*(1),D") and let Y, be the associated
extention
0—-V*(1) —-Y,—-E—0.
Passing to duals, we have an exact sequence
0—-E(1)—Y/ (1) -V 0.
For each q € S, this sequence induces an exact sequence of (¢, I'y)-modules
0= Zr,,5(xe) = D (Y (1)a) = Disy (V) = 0.
Consider the commutative diagram

1

0—— HY(F,,E(1)) —— H'(D,,) —* HY(D,) X\ H2(F,, E(1))

A

0 —— H(Fy, E(1)) —— H'(Fy, Y, (1) —— H'(F,,V) —% H2(F,, E(1))

I resq T resq T resg T
51

0 ——— HY(E(1)) ——— H§(Yy (1)) ——— H§(V) ——— H3(B(1)),

where Dy ,, denotes the inverse image of Dy in Diig(%).

In the following lemma we do not assume that condition N2) holds.

LEMMA 5.1.3. — Assume that V is a p-adic representation satisfying condition N1).
Let [z] = [(z, (z]), (A))] € H'(V, D) and let xq = resq(z). Then

i) If q 1 p, then H}(Fq, E(1)) =0 and

H}(Fy, Y, (1)) = Hp(Fy, V).

ii) For each q € S, one has 0y, . ([zq]) = 6p 4 ([zF]) = 0.

iii) &3 ([z]) = 0.

iv) The sequence

0— H'(B(1),Z(x)) — H'(Y,;(1),Dy) - H'(V,D) =0,
where Z(x) = (#F,,5(Xq))qes,, i5 eract.
Proof. — i) If q { p, then E(1) is unramified at q, H*(Fy"/F,, E(1)) = 0 and
Hy(Fy, E(1)) = H' (Fy"/Fq, E(1)) = E(1)/(Frq — 1)E(1) = 0.

Since [y] is unramified at q, the sequence

0—EQ1) - Y (1) - Vi—0
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is exact. Passing to the associated long exact cohomology sequence of Gal(Fq‘“r /Fq)
and taking into account that

HY(Fy*/Fy, E(1)) = H*(F}" | Fq, E(1)) = 0

we obtain that H'(Fy"/F,, Y, (1)) = H'(F;*/F,,V's). This proves i).
i) For each q € S, we have gq([z]) = [,]. From the orthogonality of Dq and D
it follows that
5]13(:1:;') = —x: U y(T =0.
Therefore, &y, ,([x4]) = 0p 4([27]) = 0 for each q € S,,.
iii) Let q € . Since [z4] € H}(Fy, V), from i) it follows that again dy,q([z4]) = 0.
As the localization map

— PH*(F,,EQ

veES
is injective, we obtain that &i,(z) = 0.

iv) First prove the surjectivity of = : H'(Y,(1),D,) — H'(V,D). We remark
that H'(Y,;(1),D,) C Hg(Y, (1)) and therefore each element of H'(Y,*(1),D,) is
completely defined by its global cohomology component. For each q € ¥, we denote
by

Sy,q - H}(quv)ﬁ (Fq7Yy (1))
the inverse of the isomorphism i). Let [2°'] = [(x, (z), (A\q))] € H'(V,D). By ii),
&y ([z]) = 0, and there exists [a] € H§(Y, (1)) such that m([a]) = [z]. For each q € 3,
set [aq] = resy([a]). Since [zf] € H}(Fy, V), there exists [bf] € H'(Fy, E(1)) such
that

[aq] = sy,q([z4]) + [b4].

The localization map H(E(1)) — @ H'(F,, E(1)) is surjective, and there exists
9€X,

[b] € H§(E(1)) such that res,([b]) = [b] for each q € . Then [a] — [b] € H§(Y, (1))
defines a class [Z 5][z] € H'(Y,/(1),D,) such that m([Z SGI]) = [x]. Thus, the map 7 is
surjective.

Finally, from i) we have

H'(E(1), Z(x)) = ker | H§(E(1)) » @ H'(Fy, E(1)) |,
4€T,

and it is easy to see that H!(E(1),%(x)) coincides with the kernel of 7. The lemma
is proved. U
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5.14. - Let log, : Q; — Q) denote the p-adic logarithm normalized by log,(p) = 0.
For each finite place q we define an homomorphism ¢, : Fy — Q, by

') — {1ogp<NFq/Q,,<x>>, ifqlp,
q\x) = .
log,, |zlq, if q1p,

where Np, /q, denotes the norm map. By linearity, {; can be extended to a map
£y : F}®g,E — E, and the isomorphism F;®z, E = H'(Fy, E(1)) allows to consider
¢4 as a map H'(Fy, E(1)) — E which we denote again by /.

From the product formula

INE/Q(@)]oo [ ] l2lq =1
C[GSf

and the fact that Np/q(z) = [[Nr,/q,(z) it follows that
alp

(111) > ty(x)=0, VzeF*
q€Sy

We set Ay q = Op([To]] and Ap q = Agy q[1/p].

LEMMA 5.1.5. — Let V be a p-adic representation of Gp s that satisfies N1-2) and
let [y*°'] € H(V*(1),D1). For each q € S, the following diagram is commutative
with exact rows and columns

(112) 0 0

H(L]) @, Hiy(Fo, E(1)) —— H'(Fy, E(1)) —— E

pry,
HL, (Dyy) v H(D,,)

7Tlll;v,q D4
HL, (Dy) H'(Dy) —— 0

H?(Fy, E(1)) ————— H*(F,, E(1)).
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Proof. — The exacteness of the left column is clear. The exactness of the right column
follows from the fact that the diagram

inqu n

H*(Fyn,E(1)) ——E

coresl \id
inveg,n—-1

H?*(Fy,-1,E(1)) — E
is commutative, and therefore
HY (Fy,E(1)) ~ H*(F,,E(1)) ~ E.
The diagram (112) is clearly commutative. Now, we prove that the projection map
H}, (Dg) — H'(Dy) is surjective. We have an exact sequence

0 — H}\, (Dg)ro — H'(Dg) — HE,(Dg)™s — 0,

and therefore it is enough to show that H, I2W(Dq)1“§ = 0. Consider the exact sequence

0 — HE,(Dg)™s — HE,(Dg) = HE,(Dy) — HE,(Dg)rg — 0.

Since H, (D) is a finite-dimensional E-vector space, we have
dimp HE,(Dg)™s = dimp HE,(Dg)ro = dimp H*(D,) = dimp H°(D}(x)) = 0.

Thus, the map H{, (Dq) — H'(Dy) is surjective. To prove the exactness of the first
row, we remark that the sequence

HL, (Fy, E(1)) — H'\(Fy, B(1)) <5 B

is known to be exact (see, for example, [60, Section 11.3.5]), and that the image of
the projection /' (I'0) @4 , H,, (Fy, E(1)) — H'(Fy, E(1)) coincides with the image
of the projection Hy, (Fy, E(1)) — H'(Fy, E(1)). O

5.1.6. — By Lemma 5.1.5, for each q € S, we have the following commutative diagram
with exact rows, where the map pr, is surjective
(113)

Iw
T™D,q

Hllw(Dq,y) Hllw(Dq) 4>H2(Fq>E(1))

Jprq,y iprq J:
61

0—— HY(F,,E(1)) — H'(D,,,) —*— HY{(D,) —— H?(F,, E(1))

R T

0 —— H'(Fy, B(1)) —— H'(Fy, Y, (1)) —— H'(F,, V).
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Let [z*] = [(z,(z]),(Nq))] € H'(V,D). By Lemma 5.1.3 ii), for each q € S,

we have 6Dq([az;r]) = 0, and therefore there exists [z[%] € H{, (Dg,) such
that pr, o gy ([x ) = . By Lemma 5.1.3 iv), there exists a lift [7 %] =

(@ @), (N ))] € Hl(Yy*( )7Dy) of [z*!]. Note that resq([Z]) = gq.4(1Z])
in H'(F,,Y;(1)). For each q € S, we set

(114) [ug] = (7] — proy ([rg7y]) = resq([Z] = ga.y 0 Prg , ([23%)).

Then 74([ug]) = 0, and therefore [u4] € H'(Fy, E(1)).

DEFINITION. — Let V' be a p-adic representation of G s equipped with a family D =
(Dq)qes, of (p,Tq)-modules satisfying conditions N1-2). The p-adic height pairing
hy’p" associated to these data is defined to be the map

Yo" Hl(V D) x Hl(V*(l) Dl) — E,
hx‘q/?ll‘)m([ sel sel Z g

qES,

REMARKS 5.1.7. — 1) If [z°] € H!(Y,;(1),D,) is another lift of [z°!], then from

(111) and the fact that [Z,F] = [Z] = sy q([z]]) for all g € %, it follows that the

definition of h?/‘frDm([:csel], ly sel]) does not depend on the choice of the lift [Z,].
2) Tt is not indispensable to take [Z 5] in H'(Y,"(1),Dy). If [Z] € HL(Y,*(1)) is
such that m([Z]) = [z], we can again define [u4] by (114). For q € ¥, we set

[uq] = resq([Z] — gq,y © Sy,q([x;r]))»

where s, 4 : Hj(Fy, V) = H(Fy, Y, (1)) denotes the isomorphism from Lemma 5.1.3 1).

Note that again [u4] € H'(Fy, E(1)). Then
1 (. ) = Yt () -

qes

3) The map hy’p" is bilinear. This can be shown directly, but follows from Theo-
rem 5.2.2 below.

5.2. Comparision with h3Sp,

5.2.1. — In this subsection we compare hy’p" with the p-adic height pairing con-
structed in Subsection 3.2. We take ¥ =) and denote by

hy¥p. : H'(V,D) x HY(V*(1),Dt) - E

the associated height pairing (82).
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THEOREM 5.2.2. — Let V be a p-adic representation of G g with coefficients in a
finite extension E of Q,. Assume that the family D = (Dgq)qes, satisfies conditions
N1-2). Then hy’np" is a bilinear map and

norm __ _hsel
v,.D — V,D,1*

Proof. — The proof repeats the arguments of [60, Sections 11.3.9-11.3.12], where this
statement is proved in the case of p-adic height pairings arising from Greenberg’s local
conditions. We remark that in this case our definition of hy?p" differs from Nekovéi’s
h2°™ by a sign.

Let [z°°'] € HY(V,D) and [y*®'] € H'(V*(1),D*). We use the notation of Sec-
tion 3.1 and denote by f; and gq the morphisms defined by (43)—(46). As before, to
simplify notation we set 4 = fq(z) and yq = qu(y) We represent [z°¢!] and [y*°!] by
cocycles 2°! = (z, (z7), (Aq)) € S*(V, D) and y**' = (y, (v ), (1q)) € S'(V*(1),D),
where

r € CYGrs,V), zi e U, (V,D), Aq € KJ(V),
y € CY(Grs,V* (1)), yg € Ug(V*(1),Dh), pq € Kq(V*(1))
and for all g € S
dr =0, dy =0,
d:z;;lIr =0, dyqy =0,
ga(xq) = fa(@) + dAq, 95 () = fa (2) + dug-

For simplicity, we will use the same notation for the resulting maps on cohomologies,

namely
fo=resq : Hy(V) — HY(F,,V), gq: H' (D) — H(F;,V), q€S,.
This agrees with the notation used in Section 5.1. Also, we will write fg, and gq,, for

the maps f, and g, associated to the data (Y, (1),Dy).
By Propositions 2.7.2, 2.7.4 and 2.7.5 we have

(115) Byp(@*) = (2 Uz, (—wg Uz}), (24 U ) € S3(V, D),
where
(116) z=logx € C'(Grs, E(0)),

B 0, if ge X,

- {<o,1og xa(1)) € Ch o, (E(0), ifqe s,

b = IOqu € CI(GanE(O))v if qec Epv
0,108 xq) € KY(E(0),), ifq€S,.

SOCIETE MATHEMATIQUE DE FRANCE 2021



108 CHAPTER 5. p-ADIC HEIGHT PAIRINGS II: UNIVERSAL NORMS

Let [Z] € H5(Y, (1)) be a lift of [2] € H§(V). The diagram (113) shows, that there
exist unique cohomology classes

@] € H'(Dq,y), q€ 5y,

[Z] € Hp(Fy, Y, (1), q€%,

represented by cocycles T € C'(Grs,Y, (1)), & € C, v (Dqy) (if 9 € Sp), and
T} € CL(Y,;(1)q) (if g € Xp) such that

gqy([ ]) fqy([ ])7 quPUEP'

) = fou(@) + d)\q for some )\q € KQ(Y; (1)), we obtain a cocycle Z5¢ =
)) € SH(Yy (1), Dy).

Since gq,4(Z
A

(ia( )(q

LEMMA 5.2.3. — Suppose that for each q € S, we are given a 1-cocycle &, € C’¢ %( ay)
such that fp, ,([§q]) = 0. Then By-q)p, (T S‘31) is homologous to a cocycle of the form

(@ (ba), (7)) € S*(¥; (1), Dy),

where
5= {0, if q € 3y,

wq U (&q —A+) eC’w%( ay)s  fq€ Sy
Proof. — By (115), we have

Bv; )., (F) = (—2 UZ, (—wg UT), (29 U Aq)-
If q € X, we have wq = 0 and w, UZ,” =0, If g € S, we have
by = wa U (& — T7) = —wg UTH + wy U &
Since fp, , ([£4]) = 0, there exists vq € O}, +s (Daq,y) such that wqU&q = dvg. Therefore,
/BY «(1),0, (@ )= (-2uU%, (bq), (2q U )‘q + 94(vq))) — d(0, (v4),0)

and we can set @ = —z UZ and ¢4 = zq U Xq + gq(vq) for all g € Sp,. The lemma is
proved. O

For each q € S, we have the canonical isomorphism of local class field theory
invg, : H*(Fy, E(1)) 5 E.
Let kq : F;(/X\)E — H'(F,, E(1)) denote the Kummer map. Then
inv, (108 Xq U q(2)) = 08, (Ni /q, (2)) = fa(q(z))
([72, Chapitre 14], see also [6, Corollaire 1.1.3]) and therefore
(117) invr, (log xq U [b]) = £4([b]), for all [b] € H'(F,, E(1)).
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LEMMA 5.2.4. — Assume that By.p([z°¢!]) € H?(V,D) is represented by a 2-cocycle
e = (a, (bq), (cq)) of the form e = n(€), where

&= (@ (by), (&) € S2(Y;(1),Dy)

is also a 2-cocycle and 7 : S*(Y,(1),D,) — S*(V,D) denotes the canonical projec-
tion. Then

[Bvp(z*N] U [y*] = Z inv g, ([gq,4( ) U qu'(O‘y) + 9q(bq) U pal),
qa€S,
where o, € C°(Gr,s,Yy) is an element that maps to 1 € C°(Grgs,E) = E and
satisfies doy, = y. If, in addition,
by €03, (B(L)g),  Va€S,
then

[Brp (@) U [y = > invp, (b)),

qeS,
where we identify [by] € H*(%#r, 5(xq)) with an element of H*(Fy, E(1)) using The-
orem 2.4.5.

Proof. — The proof of this lemma is purely formal and follows verbatim the proof of
[60, Lemma 11.3.11]. O

Now we can proof Theorem 5.2.2. Take & = pr, , (x1%,). Then [uq] = [Z,7] — [£,]
coincides with the cohomology class (114) used in the definition of h{?H". Since the
map

CL; Yq (IIlqu oo/ Fyq (Dq y)) - Cq; 'yq( q, y)
factors through C¢, ( a,y), Where Dq y =Dy, y®A 7y from the distinguished triangle

BDgq.y

RF(quDq,y) - RF(an ﬁqy) - RF(Fme,y) —_— RF(qu D, y)[ ]

it follows that Bp, , ([£4]) = 0. In addition, [ue] € H'(Fy, %F, £(Xq)) and adding a
coboundary to uq we can assume that uq € Cjwq (E(1)). Combining Lemma 5.2.3
and Lemma 5.2.4 we have

W (2] ™)) = [Bvn ()] U ™) = 3 invr, (b))

qeS,
= — Z anF [’U)q U Uq Z anF log Xq [ ])
qeS) q€Sp
_ qu([uq]) — norm([ sel] [ sel] O
qESy

SOCIETE MATHEMATIQUE DE FRANCE 2021






CHAPTER 6

p-ADIC HEIGHT PAIRINGS III:
SPLITTING OF LOCAL EXTENSIONS

6.1. The pairing h?}?lD

6.1.1. — Let F be a finite extension of Q. We keep notation of Chapters 3-5. In
particular, we fix a finite set .S of places of F' such that S, C S and denote by Gr,s
the Galois group of the maximal algebraic extension of F' which is unramified outside
S U S For each topological G s-module M, we write H(M) for the continuous
cohomology of G g with coefficients in M.

Let V be a p-adic representation of Gy g with coefficients in a finite extension £/Q,
which is potentially semistable at all q | p. Following Bloch and Kato, for each q € S
we define the subgroup H}c (Fy,V) of H'(F,,V) by

H}(Fq,V) _ {ker(Hl(Fq,V) — Hl(Fq,V(X)QP Buis)) ifq|p,

ker(H'(Fy, V) — H'(F", V) it q1p.
The Bloch-Kato Selmer group [17] of V is defined as

HY(F,,V)
Hi(V)=ker | HY(V) - P51
s (V) = ker | Hg(V) EPSH}(Pq,V)

In this section, we assume that, for all ¢ € S, the representation V; satisfies condi-
tion S) of Section 4.1, namely that

S) Dcris(vvq)cpz1 = Dcris(vq*

(1))¢=1 =0 for all q € S,,.

As we noticed in Section 0.4, this condition conjecturally always holds if V is the
p-adic realization of a pure motive of weight —1. For each q | p, we fix a splitting
(¢, N,GF,)-submodule Dy of Dy (V) (see Section 4.1). We will associate to these
data a pairing

WPy cHi(V) x H{(V*(1)) - E
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112 CHAPTER 6. p-ADIC HEIGHT PAIRINGS III: SPLITTING OF LOCAL EXTENSIONS

and compare it with the height pairing constructed in [58, Section 4] using the expo-
nential map and splitting of the Hodge filtration.
Let [y] € H;(V*(1)). Fix a representative y € C*(GF,s,V*(1)) of y and consider
the corresponding extension of Galois representations
(118) 0—-V*(1)—-Y,—E—0.
Passing to duals, we obtain an extension
0— E() =Y/ (1) -V —o.

From S), it follows that H2(V) = 0, and the associated long exact sequence of global
Galois cohomology reads

1
0 — Hg(E(1)) — Hg(Y, (1)) — Hg(V) N, HYE() - -
Also, for each place q € S we have the long exact sequence of local Galois cohomology

1
6V,q

H°(F,,V) — H'(Fy,EQ1)) —» H'(F,,Y,; (1)) —» H'(F,,V) —5 H*(Fy, E(1)) — - --

The following results, which can be seen as an analog of Lemma 5.1.3, are well known
but we recall them for the reader’s convenience.

LEMMA 6.1.2. — Let V be a p-adic representation of G g that is potentially semistable
at all q € S, and satisfies condition S). Assume that [y] € H} (V*(1)). Then

i) 63, ([z]) =0 for allz € H}(V);

ii) There exists an exact sequence
0— H{(EQ1)) — H{ (Y, (1)) — H; (V) — 0.

Proof. — i) For any z € C'(GFp,s,V), let 24 = resq(z) € C'(Gp,, V) denote the local-
ization of x at q. If [z] € H}(V), then for each q one has &y, ,([z4]) = —[z4] U [yq] = 0
because H}(Fq,V) and H}(Fq,V*(l)) are orthogonal to each other under the cup

product. Since the map HZ(E(1)) — @ H?(Fy, E(1)) is injective and the localiza-
qesS
tion commutes with cup products, this shows that {,([z]) = 0.

ii) This is a particular case of [34, Proposition II, 2.2.3]. O

6.1.3. — Let [z] € H;(V) and [y] € H;(V*(1)). In Section 4.2, for each q € S, we
constructed the canonical splitting (87) which sits in the diagram

Sy.q
0—— H}(Fq, E(l) —— H}(Dq,y) —_— H}(Dq) —0

Fe

0 —— H(Fy, E(1)) —— H}(Fy, Y, (1)) —— H}(Fy, V) —— 0.
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By Lemma 6.1.2 ii), we can lift [z] € H} (V) to an element [Z] € H} (Y, (1)). Let [Z4] =
resq ([Z]) € H}(Fy, Y, (1)). If g € Sy, we denote by [Z]] the unique element of H}(D,)
such that gq([Z{]) = [zq].

DEFINITION. — The p-adic height pairing associated to splitting submodules
D = (Dq)qes, is defined to be the map

WPy« Hy(V) x HY(V*(1)) = E
given by
REp (el ) = D e ([8q] = gaw © 54.0([E]) -

qeS,

REMARKS 6.1.4. — 1) For each q € X, denote by s, 4 : H}(Fq,V) = H}(Fq,Yy*(l))
the isomorphism constructed in Lemma 5.1.3, i) and by g4 : H}(Fcl7 V) — HY(F,,V)
and gq, @ Hj(Fy, Y, (1) — H'(F,,Y; (1)) the canonical embeddings. Let [Z}] €
H}(Fy, V) be the unique element such that gq([z{]) = [z4]. From the product formula
(111) it follows, that hﬁ}?lD can be defined by
WPl ) = D _ta ([Za] = ga © sya((E)
qes

where [Z] € H(V) is an arbitrary lift of [z].

2) The pairing h?ﬁ:lD is a bilinear skew-symmetric map. This can be shown directly,
but follows from the interpretation of hi}?lD in terms of Nekovai’s height pairing (see
Proposition 6.2.3 below).

6.2. Comparison with Nekovar’s height pairing

6.2.1. — We relate the pairing hi’fv’ij to the p-adic height pairing constructed by Nekovar
in [58, Section 4]. First recall Nekovai’s construction. If [y] € H }(V*(l)), the extension
(118) is crystalline at all q € S, and therefore the sequence

0— DcriS(Vq*(l)) — Deris(Yy,q) = Deris(£(0)g) — 0
is exact. Since Deyis(V;*(1))#=" = 0, we have an isomorphism of vector spaces
Dcris(E(O)q) = Dcris(Yy,q)wzly

which can be extended by linearity to a map D4r(E(0)q) — Dar(Yy,q). Passing
to duals, we obtain a Fy-linear map Dgr(Y,;(1)) — Dar(E(1)q) which defines a
splitting sqr,q of the exact sequence

SdR,q
0—— DdR(E(l)q) E— DdR(Y;,q(]-)) E— DdR(Vq) — 0.
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Fix a splitting wq : Dar(Vy)/Fil’Dar (V) — Dar(Vy) of the canonical projection
(119) prar.v, : Dar(Vy) = Dar(Vy)/Fil’Dar (Vy).

We have a commutative diagram

s

Y9
0——: Hl(Fq,E(l)) e H}(Fq,Yy*(l)) —_— H}(Fq,V) ——0

EXPyy (1) | ~ €XPvy | ~
Dar(Y, (1)) D4r(Vy)
Fil’Dyr (Y, (1)) Fil’Dag (V)
prdR,V;yq(l) wq

Du (Y 4(1)) ¢ Dar(Va).
Then the map sy, : Hj(Fy,V) — H(Fy,Y, (1)) defined by
Syq = eXPy (1) °PLdR,Y;, (1) © SdR,q © Wq © exp\_,q1
gives a splitting of the top row of the diagram, which depends only on the choice of w,
and [y].
DEFINITION (Nekovéar). — The p-adic height pairing associated to a family w = (wq)qes,
of splitting wq of the projections (119) is defined to be the map
Hodge *
hyow® + Hy(V)x Hi(V*(1)) - E

given by

By (2], W) = D _ta ([Zq] = 534 (lza))) »
qalp
where [T] € H}(Yy*(l)) is a lift of [x] € H}(V) and [Z4] denotes its localization at q.

In [58], it is proved that hsffge is a E-bilinear map.

6.2.2. — Now, let Dy be a splitting submodule of Dy ,1,(V;). We have
(120) Dur,r(Vy) = Dy, ® Fil’Dyar/1(Vq),  Dgr = Dy ®r, L.

Set Dg r, = (Dq)L)GFq . Since the decomposition (120) is compatible with the Galois
action, taking Galois invariants we have

Dar(Vq) = Dy,r, ® Fil’Dyr(Vy).

This decomposition defines a splitting of the projection (119) which we will denote
by wpq-
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PROPOSITION 6.2.3. — Let V be a p-adic representation of Gr g such that for each
q € Sy the restriction of V to the decomposition group at q is potentially semistable
and satisfies condition S). Let (Dg)qes, be a family of splitting submodules and let

wp = (Wp,q)qes, be the associated system of splittings. Then
1 Hod
Wy p = hyos’.

Viwp

We need the following auxiliary result. As before, we denote by D4 the (¢, I')-mod-
ule associated to Dy.

LEMMA 6.2.4. — The following diagram
SD Y
Par(Dq) —— Zar(Dq,y)
Dar(Va) = Dar (¥ 4(1),

where the vertical maps are induced by the canonical inclusions of corresponding
(,Tq)-modules and sp, y is the map induced by the splitting (86), is commutative.

Proof of the lemma. — The proof is an easy exercice and is omitted here. O

Proof of Proposition 6.2.3. — From the functoriality of the exponential map and
Proposition 4.1.4 it follows that the diagram

€XPp
(121) Par(Dg) ————— H}(Dy)

o)

Py,
Dyr (Vy) /Fil°Dar (Vy) —— H}(Fy,V)

is commutative. The same holds if we replace V; and D, by Yy"‘,q(l) and D, respec-
tively. Consider the diagram

SD Y
(122) Par(Dq) —— Zar(Dayy)
_Dar(Ve) Dar(Yy(1))
Fil’Dgr (V;) Fil’Dyr (Y;,(1))’
le,q TprdR,yy*yq(l)
SdR,q

Dar(Vy) ———— Dar(Y, (1))

From the definition of wp 4, it follows that the composition of vertical maps in

the left (resp. right) colomn is induced by the inclusion Dy C Diig(Vq) (resp.
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by Dy, c D! (Y, ;(1))) and therefore the diagram (122) is commutative by

rig
Lemma 6.2.4. From the commutativity of (121) and (122) and the definition of s, q
and s}, it follows now that s, 4 = s}, for all ¢ € S), and the proposition is
proved. U

6.3. Comparision with h3?p"

6.3.1. — In this section, we compare the pairing hsVIle with the pairing hy’p" con-

structed in Chapter 5. Let V' be a p-adic representation of G s that is potentially
semistable at all q € S,. Fix a system (Dg)qes, of splitting submodules and denote
by (Dgq)qes, the system of (¢,I'y)-submodules of Diig(Vq) associated to (Dg)qes,
by Theorem 2.2.3. We will assume, that (V, D) satisfies condition S) of Section 6.1
and condition N2) of Section 5.1. Note that S) implies N1). We also remark, that
from Proposition 2.9.2 i) and the fact that the Hodge-Tate weights of Dy /7,(Vy)/Dy
and Dg/r(V; (1)) /DqL are positive, it follows that, under our assumptions, N2) is

equivalent to the following condition
N2*) For each q € S,
(Dat/ (V) /Do) N 06850 = (D (Vi (1)) D)7~ N0 Grm = g,
where L is a finite extension of Fy such that V; (respectively V;*(1)) is semistable
over L.

The following statement is known ([65, 11]), but we prove it here for completeness.

PROPOSITION 6.3.2. — Assume that V is a p-adic representation satisfying conditions
S) and N2%). Then
i) H(F,, V) = HNDy) = H'(D,) and H}(F,,V*(1)) = H}(DZ) = H\(D}) for
all g € Sp.
ii) H}(V) ~ HY(V,D) and H}(V*(l)) ~ HY(V*(1),D4).
Proof. — i) The first statement follows from N2) and Proposition 4.1.4 iii).
ii) Note that by i)
HY(F, V), ifqeXx,,
R'T(F,,V,D) = F(Fa, V), g€,
H'(D,), ifqe S,.
By definition, the group H!(V, D) is the kernel of the morphism

HWV)e | B H}(F, V)| e | PH'D,) | - PH(F,,V)

qe€y qeSy qes
given by
([z]; lvalaes) = ([zq] — gq([val))aes,  [xq] = resq([z]),
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where gq denotes the canonical inclusion H}(Fy,V) — H'(Fy, V) if q € ¥, and the
map H'(Dy) — H'(F,,V) if q € S,. In the both cases, g, is injective and, in addition,
for each q € S, we have H'(D,) = H(Fy,V) by i). This implies that H'(V,D) =
H}(V). The same argument shows that H'(V*(1),D+) = H{(V*(1)). O

THEOREM 6.3.3. — Let V be a p-adic representation such that Vg is potentially

semistable for each q € Sy, and let (Dg)qes, be a family of splitting submodules.

Assume that (V, D) satisfies conditions S) and N2¥). Then
norm __ hspl
v,.D = Ny p-

where D = (Dg)qes, denotes the family of (p,T'q)-modules associated to D = (Dg)q4es, -

Proof. — First note that in our case the element [iqﬂ, defined in Section 6.1.3, coincides
with [a:q*] Comparing the definitions of hy’p" and h?}le we see that it is enough to

show that £q (pr, ,([z1%]) — sqy([zF])) = 0 for all q € S,. The splitting s, of the

exact sequence
0— H}(anE(l)) - H}(Dq,y) - Hl(Dq) -0
(see (87)) gives an isomorphism
H}, (D )re = Hiy, (Dy)re © Hh, (%5, £(:))re = H'(Dg) © Hh, (Fy, E())rs.
Since mp q (prqy([:cg“’y]) - sqy([:c;r])) = 0, from this decomposition it follows that
prq,y([wq]) - sq,y([x;_]) € Hllw(quE(l))I‘g = ker(ﬂq),

and the theorem is proved. O

COROLLARY 6.3.4. — If (V, D) satisfies conditions S) and N2%¥), then

se norm spl
hV,lD,l =yp = _h’VI'jD
coincide.
Proof. — This follows from Theorems 5.2.2 and 6.3.3. U
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CHAPTER 7

p-ADIC HEIGHT PAIRINGS IV: EXTENDED SELMER GROUPS

7.1. Extended Selmer groups

7.1.1. — Let FF = Q. Let V be a p-adic representation of Gq,s that is po-
tentially semistable at p. We fix a splitting submodule D, of V, which we
will denote simply by D. In Section 4.3, we associated to D a canonical fil-
tration (FiDT (Vp)) _._,- Recall that FDI (V,) = D, where D is the

rig —2<i< rig
(p,T'q,)-module associated to D. We maintain the notation of Section 4.3 and
set Mo = D/F_,D}, (V;), My = FiD},(V,)/D and W = F,D[, (V,)/F_1D[ (V,).
The exact sequence

0—-My—-W-—->M; -0

induces the coboundary map dp : H°(M;) — H'(M,). Note that if V satisfies con-
ditions N1-2) of Section 5.1 we have Mg = M = 0. We first describe the structure of
the Selmer group H!(V, D). Recall the following conditions introduced in Section 4.3

Fla) HO(D, (V,)/FiD (V;)) = H* (D}, (V;(1)))/FiD},, (Vi (1)) = 0.

F2a) The composed map
do.e + HO(My) 2 H'(Mo) 2 H(My),

where the second arrow denotes the canonical projection on H!(M), is an
isomorphism.

Let pp,r andpp . denote the composed maps
(123 pps @ H'(D) — H'(Mo) —5 H} (M),
pp.c : H'(D) — H'(Mp) =% H}(M).

Note that H°(M;) = H°(D'), where D’ = D},

(Vp)/D.
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PROPOSITION 7.1.2. — Let V be a p-adic representation of Gq,s which is potentially
semistable at p. Assume that the restriction of V to the decomposition group at p
satisfies conditions Fla) and F2a). Then

i) There exists an exact sequence

(124) 0— H'(D') 2 HY(V,D) - HYV) — 0.

ii) The map
sply,p : H'(V,D) — H(D'),
[(z, (@3), Aa))] = dg¢ 0 P e ([27])

defines a canonical splitting of (124).

Proof. — The first statement follows directly from the definition of Selmer complexes
and the exact sequence (103). See also [11, Proposition 11]|. The second statement
follows immediately from the definition of sply . O

DEFINITION. — If the data (V, D) satisfy conditions Fla) and F2a), we call H'(V, D)
the extended Selmer group associated to (V, D).

From Proposition 7.1.2 it follows that we have a decomposition
H'(V,D) ~ H{(V) ® H (D),
and we denote by
syp : Hj(V) — H'(V,D)
the injection induced by this splitting.

If, in addition, (V, D) satisfies F2b), we have another natural splitting of (124),
namely

splf,, : H'(V,D) — H(D'),
[(z, (23), Aa))] = G5 7 © oo ([23])
and we denote by
sip : H{(V) = H'(V,D)

the resulting injection.
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7.2. Comparision with hi}le

7.2.1. — Assume that, in addition to Fla) and F2a), (V, D) satisfies condition
F2b) The map
So,s + HO(M,) 2% H'(Mo) ~% H}H(My),

where the second arrow denotes the canonical projection on H}(MO), is an

isomorphism (see Section 4.3).
Define a bilinear map

(s o,y + Hj(Mo) x Hy(Mi(x,)) — E

as the composition

(85 1>id) .
HE(Mo) x HE(M; (xp)) ——— HO(My) x H}(M; (xp)) —— HY(%q,.5(x»))

-
E.
LEMMA 7.2.2. — For allz € H}(MO) and y € H}(MT(XP)) we have
(@95 = ~lings (), ®) 5.5 (@),
where [, My @ Zeris(M5(Xp)) X Deris(M1) — E denotes the canonical duality and

M (xp)f ¢ Deris(M7(Xp)) — H}(M{(Xp)) is the isomorphism constructed in Propo-
sition 2.9.4.

Proof. — Recall that for each z € H'(Zq,,£(xp)) we have inv, (w,Uz) = £,(2), where
wp = (0,log xp(7q,)). Therefore, using Proposition 2.9.4, we obtain

(@, 9)p s = €a, (05 ;(z) Uy) = invy(w, U sy () Uy)
= —invp(im, (8y 1 (2)) Uy))
= —invp(in, (05 £ (2)) Ui (x,),7 © vt (.7 (¥))
= _[iﬁlf(xp),f(y)v‘50_,]10(37)]M1~ [

7.2.3. — Assume that (V, D) satisfies conditions Fla-b) and F2a-b). Then condition S)
holds by Proposition 4.3.13 iv) and the height pairing h?}?lD is defined.

THEOREM 7.2.4. — Let V' be a p-adic representation of Gq,s that is potentially
semistable at p and satisfies conditions Fla-b) and F2a-b). Then for all [z%¢'] =
(@, (23, (A))] € H'(V, D) and [y)] = [(y, (v} ), (1a))] € H'(V*(1), D) we have

o (2], [y™']) = —hep (el [v]) + (ep.s (25 ), o p (5 D)

where the map pp y and pp. 5 are defined in (123).
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Proof. — The proof is the same as that of [60, Theorem 11.4.6] with some modifica-
tions. Recall that we have a split exact sequence

5v,D
0—— H'(D') —— HY(V,D) ¥—— H{(V) ——0.

Let [¢°] = [(z, (¢}), (Ag))] € H'(V, D). Then sy.p([z*]) = [(x, &), (Xq))] , where

(125) 5:; = x;‘ — 0p 0 ((56’2 ° PD,c ([m;])) .
Since HO(Mo) = 0, H2(F_1DI,,(V,)) = 0 and H}(F_,D},,(V;)) = H'(F_1D[ (1})),
we have a commutative diagram with exact rows

0 —— HY(F_1DJ,(V,)) —— H}(D) —— H:(My) —— 0

rig

| L]

0 —— HY(F_;D},(V,)) —— HY(D) —— H'(My) —— 0.

The image of [Z;}] € H'(D) in H'(M,) is equal to
pp.s([23]) + pp.c([2]) = Do © (d5¢ © pp e ([27]))
= pp.s([2;]) = d0.5 (§5.¢ © P .c ([27])) € H} (M),

and therefore [Z,7] € H;(D). Consider the following diagram with exact rows and

columns
(126) 0 0
H'(D)) ————— H°(D')
80 80
0—— HY(Qy,E(1)) ——— H'(D,) ————= H'(D) —— 0
J= 9p,y 9p

0 —— HY(Q,, E(1)) —— HY(Q,, Y, (1)) —— H'(Q,, V),

where s, ;, is the canonical splitting constructed in Section 4.2. Recall that by Propo-

sition 4.3.13 iii), Im(g,) = H;(Qp, V). Let [Z] € H;(Y, (1)) be any lift of [z] and

let [Z,] € H'(Qp,Y, (1)) denote its localization at p. Then by definition, we have
hifle([x]a [y]) = £ ([Ep] —9p,y © sy,p(ﬁ;])) .

The diagram (126) shows that there exists a unique element [Z}] € H'(D,) such

that g, ([Z}]) = [Zp] and 7p ([Z]]) = [z;]. Therefore, there exists a lift [Z5']
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of [z°°!] of the form [z°!] = [(Z, §q+,:\\q)]. Recall that
Byop, () = (—2 UT, (—wg UTE), (24 UA,)) € S2(Y;(1), D),
where z, wy and z, are defined in (116). Set
(127) [tp] = =05, © pp ¢ ([2}]) € HO (M) = H*(D').
Then

pp,£([F5]) + P, (Bo([tp]) = P, s ([F3]) + bo¢ ([t]) = 0.
Thus, the image of [Z]] + Oo([t,]) under the projection H'(D) — H'(My) lies
in H!(Mj). We have a commutative diagram

0—— HI(F_ang(Vp)) —— HY(D) —— H*(My) —— 0

lUwP lUwP J/Uwp

0 —— H2(F_;D}, (V,)) —— H*(D) —— H*(Mp) —— 0

{o0}.
By Lemma 2.9.5, H! (M) = ker (Uw, : H'(M;) — H2(My)) , and we have
[wp] U ([Z] + 8o([tp])) =0 in H*(D).
Set [&] = sy, ([Z]) + Oo([tp]) € H' (Dy). Then
Bp, ([6]) = —[wp] U[§] =0

Now we can use Lemma 5.2.3 and write

~

By; .o, () = @, (b), ()],
where
/5 =wp U (& — )—wpU(SyP(NZ)_A+)+wpU80(tp)~
Let oy € C°(Gq,s,Y,) be an element that maps to 1 € C°(Gq,s, E) = E and satisfies
day, = y. The first formula of Lemma 5.2.4 reads

(128) hsel pl(lz sel], [ysel]) = inVQp ([gp,y(/l;p) U f;_ (ay) + gp(bp) U .Up]) .
Set up, = sy,(%}) — 2. Then u, € C} ., (E(1)) and u, U oy = up,. Thus
(129) 1g9.4(bp) U £ () + 95 (By) U )

= [wp U up] + [gp,y(wp U do(tp)) U pr (ay) + gp(bp) U Np]-
By (117), we have

invq, [wp Uy = {q, [up] = —hi}?lD([x], [y)),
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and from (128)—(129) we get

(130) h¥p([e*], [y*)
= _h?,lj_)([w]v [?j]) + inVQp ([gp,y(wp U 8O(tp)) U f;_ (ay) + gp(bp) U MP]) :
We compute the second term on the right hand side of this formula. Since

9py(80([tp])) = O, there exists t, € DIig(Yy*(l)p) such that ¢, + t, under the

projection D! (Y, (1)) — Dj, and we can assume that

Bo(tp) = do(tp) = (¢ — (&), (vp — 1)(E))-
Therefore
Iy (Wp UBo(tp)) = 2p U gpy (do(2p)) € KL (V) C K2 (Y, (1)),
9p(bp) U ptp = 2, U g (dt,) Uy € K2 (V) C K2 (Y, (1))
Thus,
invq, ([gp,y(wp U do(tp)) U f (ay) + gp(bp) U pp))
= invq, (2p U gpy(dEy) U £ (ay) + 2 U gp(mp(diy)) U prp])
= —invq, ([2p U gp,y (B) U dfy () + 2, U gp(Ep) U dpsp])
(131) = —invq, ([2 Utp U (f; (1) + duy)])

= —inv, ([, Ut,U gp(y;)])
= —inv, ([wp Ut, Uy,])

= _EQ:D ([tp U y;—]) :

Now we remark that £q, ([t, Uy,l]) = £q, ([t U pp ¢ (y;]) and, taking into account
(127), we have

(132) ta, (It V1) = —ta, (%) 0 oo, (121 U oo s(I53))
S (0 W 1=3)) I
The theorem follows from (130)—(132). O

COROLLARY 7.2.5. — Under conditions of Theorem 7.2.4, for all [z] € H}(V) and
[y] € H;(V*(1)) we have

hi/p:lD([x]’ [y]) — _h%/(ilD(‘g{/,D([x])’s{/*(l):DL([y])).

Proof. — Set [(z, (zF),\q)] = 5{,7]3([:0]). Then pp f([z;]) = 0 and the formula follows
from Theorem 7.2.4. O
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7.3. The pairing hy?5" for extended Selmer groups
7.3.1. — Recall condition F3) introduced in Section 4.3

F3) Forallt € Z

Tost(Dliy (Vy) /FiD, (V)P = Tt (FL1 D], (V) #F = 0.
Clearly, F3) implies Fla-b). In this section, we generalize the construction of the height
pairing hy?p" to the case when V satisfies conditions F3), F2a) and F2b).

Let [y] € H;(V*(1)) and let Y,, denote the associated extention (118). As before,

we denote by D, the inverse image of D in D! (Y, (1)p). Since the representation V,

rig
satisfies condition S), the exact sequence (86) have a canonical splitting sp .

In the diagram (113), the maps g, and g, , are no more injective and we replace
it by the diagram (126). Let [z] € H;(V) and let sy,p([z]) = [(z, (Z), (Aq))]. Then

[77] is the unique element of H}(D) such that g,([Z;}]) = [z,]. Its explicit form is

given by (125), but we do not use it here. Let
H'(Qq, Y, (1))
H(Qq, Y, (1))

be an arbitrary lift of [z]. (Note that by Lemma 6.1.2, we can even take [Z] €
H}(Yy*(l))) As easy diagram chase (already used in the proof of Theorem 7.2.4)
)

[Z] € ker (Hé(Yy*(l)) —

shows there exists a unique [Z] € H'(D,) such that g,,([Z}]) = res,([Z]
in Hl(Qp,Yy*(l)) and 7p ([Z;]) = [Z]].

We have the following diagram which can be seen as an analog of the diagram
(112) in our situation

H(TQ,) ®rpq, Hiy(Qp E(1)) —— H(Qp, E(1)) ——— E

PIp 4

"}, (D,) HY(D,) 2 OHY(D')
H}, (D) HY(D) 2 OH(D')
0 0
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From Proposition 4.3.15 it follows that there exist a unique [t,] € H°(D’) (explicitly
given by (127) and [z]% ] € H{, (D,) such that

2]+ Oo((te]) = prp o iy ([3]) -
Set
(133) [up] =[] + do([tp]) — pro, ([2p%]) -
Then [u,] € H'(Qp, E(1)).
DEFINITION. — Let V' be a p-adic representation that is potentially semistable at p
and satisfies conditions F2a-b) and F3). We define the height pairing

Vot Hi(V) x Hi(V*(1)) - E

by

vip (2] [y]) = Lq, ([up])-

It is easy to see that " ([z], [y]) does not depend on the choice of the lift [xi,wy] .
The following result generalizes [60, Theorem 11.4.6].

THEOREM 7.3.2. — Let V be a p-adic representation of Gq,s that is potentially
semistable at p and satisfies conditions F2a-b) and F3). Then

i) BPE" = hiYp;
ii) For all [¢*] = [(z,(27), ()] € H'(V,D) and [y*'] = [(y, (y7), (1a))] €
HY(V*(1),D1) we have

W ([, [y*']) = —hV5" (2], [y) + (ep.s ([23 ), pos 5 (3 D) -

Proof. — i) Recall that in the definition of h}’" we can take [Z] € H} (Y, (1)). Com-

paring the definitions of hy’p" and hi}:lD, we see that it is enough to prove that

[up] = (syp([Tp] — [T 1)) € ker({q,),

where [u,] is defined by (133) and s, , denotes the splitting (87). Since the restriction
of gpy to H(Qy, E(1)) is the identity map, we have

[up] = g,y ([up]) = [@p] = gp.y ([235)),

and it is enough to check that

(134) gp,y([x;‘ffy]) —9py © Sy,p([zg;_]) € ker(ZQp)-
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First remark that the canonical splitting (86) induces splittings s;‘j‘;j and s, in the
diagram

Iw
Py

0 —— H},(%q,.5(x)) — H},(Dy) “— H{,(D) —— 0

w

J/ \LprDyy \LPTD
Sp,y

0—— HY(Q,, E(1)) —— HY(D,) “““% HY(D) —— 0.

Write [z1% ] in the form

2y’
[p] = sy, (™) + 0™, "™ € HL (D), b € H. (%Zq,.5(xp))-

By the definition of [x]",], we have
PrD,y([xLV,Z]) = sypla) +b,
where b € ker({q,) = Hl(Qp,E(l))Fon and
a=0([ty)) + 5p.4([7,]) € H'(D).
Since gp,y(8y,p(00([tp])) = 0, we have

gp,y(prD,y([xLV,Vy])) =b+gpy(syp(a)) =b+ gpyy(sy,p([ig_])),
and (134) is checked.
ii) The second statement follows from i) and Theorem 7.2.4. O
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Using the theory of (¢, I')-modules and the formalism of Selmer complexes we
construct the p-adic height pairing for p-adic representations with coefficients
in an affinoid algebra over Q,. For p-adic representations that are potentially
semistable at p, we relate our contruction to universal norms and compare it
to the p-adic height pairings of Nekovafr and Perrin-Riou.

En utilisant la théorie des (p,I')-modules et le formalisme des complexes
de Selmer nous construisons un accouplement de hauteur p-adique pour les
représentations p-adiques & coefficients dans une algébre affinoide. Pour les
représentations p-adiques potentiellement semistables en p nous ferons le lien
de notre construction avec les normes universelles et les hauteurs p-adiques
construites par Nekovdr et Perrin-Riou.
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