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HYDRODYNAMIC LIMIT
FOR AN ACTIVE EXCLUSION PROCESS

Clément Erignoux

Abstract. — Collective dynamics can be observed among many animal species, and
have given rise in the last decades to an active and interdisciplinary field of study. Such
behaviors are often modeled by active matter, in which each individual is self-driven
and tends to update its velocity depending on the one of its neighbors.

In a classical model introduced by Vicsek & al., as well as in numerous related active
matter models, a phase transition between chaotic behavior at high temperature and
global order at low temperature can be observed. Even though ample evidence of these
phase transitions has been obtained for collective dynamics, from a mathematical
standpoint, such active systems are not fully understood yet. Significant progress has
been achieved in the recent years under an assumption of mean-field interactions,
however to this day, few rigorous results have been obtained for models involving
purely local interactions.

In this paper, as a first step towards the mathematical understanding of active
microscopic dynamics, we describe a lattice active particle system, in which particles
interact locally to align their velocities. We obtain rigorously, using the formalism
developed for hydrodynamic limits of lattice gases, the scaling limit of this out-of-
equilibrium system. This article builds on the multi-type exclusion model introduced
by Quastel [35] by detailing his proof and incorporating several generalizations, adding
significant technical and phenomenological difficulties.

Résumé (Limite hydrodynamique pour un processus d’exclusion actif)

L’étude des dynamiques collectives, observables chez de nombreuses espéces ani-
males, a motivé dans les derniéres décennies un champ de recherche actif et trans-
disciplinaire. De tels comportements sont souvent modélisés par de la matiére active,
c’est-a-dire par des modéles dans lesquels chaque individu est caractérisé par une
vitesse propre qui tend & s’ajuster selon celle de ses voisins.

De nombreux modéles de matiére active sont liés & un modéle fondateur proposé en
1995 par Vicsek & al.. Ce dernier, ainsi que de nombreux modéles proches, présentent
une transition de phase entre un comportement chaotique & haute température, et un
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comportement global et cohérent & faible température. De nombreuses preuves numé-
riques de telles transitions de phase ont été obtenues dans le cadre des dynamiques
collectives. D’un point de vue mathématique, toutefois, ces systémes actifs sont encore
mal compris. Plusieurs résultats ont été obtenus récemment sous une approximation
de champ moyen, mais il n’y a encore & ce jour que peu d’études mathématiques de
modéles actifs faisant intervenir des interactions purement microscopiques.

Dans cet article, nous décrivons un systéme de particules actives sur réseau inter-
agissant localement pour aligner leurs vitesses. Comme premiére étape afin d’atteindre
une meilleure compréhension des modéles microscopiques de matiére active, nous ob-
tenons rigoureusement, & ’aide du formalisme des limites hydrodynamiques pour les
gaz sur réseau, la limite macroscopique de ce systéme hors-équilibre. Nous dévelop-
pons le travail réalisé par Quastel [35], en apportant une preuve plus détaillée et en
incorporant plusieurs généralisations posant de nombreuses difficultés techniques et
phénomeénologiques.
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CHAPTER 1

INTRODUCTION

1.1. Active matter and active exclusion process

Active matter systems, i.e., microscopic interacting particles models in which each
particle consumes energy to self-propel, have been the subject of intense scrutiny in
physics in the recent years. As explained thoroughly in Appendix A, active matter
exhibits a rich phenomenology. Its two most studied features are the emergence of
global polarization, first discovered with Vicsek’s seminal model [50], and the so-called
Motility Induced Phase Separation (MIPS, cf. [11]), which can be roughly described
as the particle’s tendency to cluster where they move more slowly. As detailed in
Appendix A, these two phenomena have been extensively studied by the physics
community in the last decade (e.g., [41] [42] [43] for alignment phase transition, [10]
[11] for MIPS).

By essence, active matter models are driven out-of-equilibrium at a microscopic
level, and although many are now well-understood from a physics standpoint, their
mathematical understanding to this day remains partial. Inspired by Vicsek’s original
model [50], significant mathematical progress has been achieved using analytical tools
for active alignment models submitted to mean-field or local-field interactions, i.e., for
which the particle’s interactions are locally averaged out over a large number of their
neighbors (e.g., [5], [16], [19]). However, in some cases, the local-field approximation
is not mathematically justified, and deriving exact results on models with purely
microscopic interactions can provide welcome insight for their phenomenological study

31].

Let us start by briefly describing a simplified version of the active exclusion process
studied in this article before giving some mathematical context. On a two-dimensional
periodic lattice, consider two-types of particles, denoted “+” and “—,” which move and
update their type according to their neighbors.

SOCIETE MATHEMATIQUE DE FRANCE 2021



2 CHAPTER 1. INTRODUCTION

— Each particle’s type is randomly updated by a Glauber dynamics depending on
its nearest neighbors.

— The motion of any particle is a random walk, weakly biased in one direction
depending on its type: the “+” particles will tend to move to the right, whereas
the “—” particles will tend to move to the left.

— The vertical displacement is symmetric regardless of the particle’s type.

To model hard-core interactions, an exclusion rule is imposed, i.e., two particles can-
not be present on the same site: a particle jump towards an occupied site will be can-
celed. This induces the congestion effects which can lead to MIPS, and one can there-
fore hope that this model encompasses both the alignment phase transition and MIPS
which are characteristic of many of the active models described in Appendix A. How-
ever, mathematically proving such phenomenology for our microscopic active model
is still out of reach.

In this article, as a first step towards this goal, we derive the hydrodynamic limit
for an extension of the model briefly described above. From a mathematical stand-
point, a first microscopic dynamics combining alignment and stirring was introduced
in [15], where De Masi et al. considered a lattice gas with two types of particles, in
which two neighboring particles can swap their positions, and can change type ac-
cording to the neighboring particles. They derived the hydrodynamic limit, as well
as the fluctuations, when the stirring dynamics is accelerated by a diffusive scaling,
w.r.t. the alignment dynamics. This scale separation is crucial to have both alignment
and stirring present in the hydrodynamic limit. Generally, the strategy to obtain the
hydrodynamic limit for a lattice gas depends significantly on the microscopic fea-
tures of the model, and must be adapted on a case-by-case basis to the considered
dynamics. For example, the exclusion rule in the active exclusion process makes it
non-gradient, thus the proof of its hydrodynamic limit is significantly more elaborate.
The end of this introduction is dedicated to putting in context the mathematical con-
tributions of this article and describing the difficulties occurring in the derivation of
the hydrodynamic limit of our model.

1.2. Hydrodynamics limits for non-gradients systems

The active exclusion process presented above belongs to a broad class of micro-
scopic lattice dynamics for which the instantaneous particle currents along any edge
cannot be written as a discrete gradient. This difficulty appears naturally in exclu-
sion systems, in particular for systems with multiple particle types, or for generalized
exclusion processes where only a fixed number k (k > 2) of particles can be present
at the same site. Such systems are called non-gradients. A considerable part of this
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1.3. MULTI-TYPE LATTICE GASES, AND CONTRIBUTIONS OF THIS ARTICLE 3

article is dedicated to solving the difficulties posed by the non-gradient nature the
active exclusion process.

The first proof for a non-gradient hydrodynamic limit was obtained by Varadhan in
[48], and Quastel [35] (cf. below). To illustrate the difficulty let us consider a general
diffusive particle system of size N in 1 dimension, evolving according to a Markov
generator Zn. Such a diffusive system must be rescaled in time by a factor N2,
therefore each jump in Zy should occur at rate N2. Denoting by 7, the state of
the system at the site z (e.g., number of particles, energy of the site), Zyn, is a
microscopic gradient,

INNe = N2 (Jo—1.0 — Joat1),
where j, ;+1 is the instantaneous current along the edge (z,z + 1), and the N2 comes
from the time-rescaling. This microscopic gradient balances out a first factor N, and
acts as a spatial derivative on a macroscopic level. In order to obtain a diffusive equa-
tion similar to the heat equation, one needs to absorb the second factor N in a second
spatial derivative. This is the main difficulty for non-gradient systems, for which the
instantaneous current j, ;+1 does not take the form of a microscopic gradient. The
purpose of the non-gradient method developed by Varadhan is to establish a so-called

microscopic fluctuation-dissipation relation

jx,m—H = _D(nm+1 - 7790) + zNgma

where Z g, is a small fluctuation which usually disappears in the macroscopic limit
according to Fick’s law for diffusive systems. Although the link to the macroscopic
fluctuation-dissipation relation (cf. Section 8.8, p. 140-141 in [45] for more detail on
this relation) is not apparent, the latter is indeed a consequence of the microscopic
identification above.

1.3. Multi-type lattice gases, and contributions of this article

The difficulties to derive the hydrodynamic limit of multi-type particle models
vary significantly depending on the specificities of each microscopic dynamics. Active
matter provides natural examples of multi-type particle systems, since each possible
velocity can be interpreted as a different type. When the particles evolve in a contin-
uous space domains, (e.g., [16], [17]) and in the absence of hard-core interactions, the
density of each type of particles can essentially be considered independently regard-
ing displacement, and the scaling limit usually decouples the velocity variable and the
space variable.

In the case of lattice gases, however, it becomes necessary to specify the way parti-
cles interact when they are on the same site. Dynamically speaking, multi-type models
often allow either

SOCIETE MATHEMATIQUE DE FRANCE 2021



4 CHAPTER 1. INTRODUCTION

— swapping particles with different types, as in [38] for a totally asymmetric system
with velocity flips.

— The coexistence on a same site of particles with different velocities, as in [13] or
[39] for a model closely related to the one investigated in this article with weak
driving forces, or in [21] for a zero-range model exhibiting MIPS-like behavior.

These simplifications allow to bypass the specific issues arising for diffusive systems
with complete exclusion between particles, since the latter often require the non-
gradient tools mentioned previously.

The first hydrodynamic limits for non-gradient microscopic systems were studied
by Varadhan and Quastel. They developed in [48] and [35] a general method to derive
the hydrodynamic limit for non-gradient systems with main requirement a sharp
estimate for the Markov generator’s spectral gap. Quastel also notably obtained in
[35] an explicit expression for the diffusion and conductivity matrices for the multi-
type exclusion process, as a function of the various particle densities and of the self-
diffusion coefficient ds(p) of a tagged particle for the equilibrium symmetric simple
exclusion process with density p. This result was then partially extended to the weakly
asymmetric case (in [36] as a step to obtain a large deviation principle for the empirical
measure of the symmetric simple exclusion process, and where the asymmetry does
not depend on the configuration, and in [25] for a weak asymmetry with a mean-field
dependency in the configuration), as well as a more elaborate dynamics with creation
and annihilation of particles [37].

In this article, we derive the hydrodynamic limit for an active matter lattice gas
with purely microscopic interactions. To do so, we generalize the results obtained by
Quastel [35] by incorporating many natural extensions, and apply in great detail the
non-gradient method for multi-type exclusion with a weak drift.

There are several reasons behind our choice to detail this difficult proof. First,
Quastel’s original article suffers from typos which are fixed in this paper, in particular
the spectral gap for the multi-type exclusion process is not uniform with respect to
the density and this required an adaptation of the original proof. Second, Quastel’s
proof relied significantly on the structure of the microscopic dynamics which could
be controlled by the symmetric exclusion. This played a crucial role in [35] to ensure
that the particle density does not reach 1, because when this is the case, the system
loses its mixing properties as represented by the decay of the spectral gap. When the
considered dynamics is a multi-type symmetric exclusion (identical for any particle
type, as in [35]), the macroscopic density for the total number of particles evolves
according to the heat equation, and density control at any given time is ensured by
the maximum principle. In our case, the limiting equation is not diffusive and a priori

MEMOIRES DE LA SMF 169



1.4. ACTIVE EXCLUSION PROCESS AND MAIN RESULT 5

estimates on the density are much harder to derive. Finally, [35] was one of the first
examples of hydrodynamic limit for non-gradient systems, and to make the proof
more accessible, we used the more recent formalism developed in [28], in which an
important upside is the clear identification of the orders of the estimates in the scaling
parameter N.

We extend the proof of the hydrodynamic limit for the multi-type exclusion process
[35] to the weakly asymmetric case when the particle types depend on a continuous
parameter. The hydrodynamic limit for lattice gases with K particle types takes the
form of K coupled partial differential equations. Extending it to a continuum of par-
ticle types therefore poses the issue of the well-posedness of the system. To solve this
issue, we therefore introduce an angular variable joint to the space variable. Although
the global outline of the proof remains similar, this induced numerous technical dif-
ficulties. In particular, as opposed to the previous examples, local equilibrium is not
characterized by a finite number of real-valued parameters (e.g., density, local mag-
netization), which required significant adaptation of the proof of the hydrodynamic
limit.

1.4. Active exclusion process and main result

The remainder of this section is dedicated to a short description of our model
and its hydrodynamic limit. For clarity’s sake, we first describe in more details the
simplified model with only two types of particles briefly presented above, and then
introduce the more general active exclusion process studied in this article. Precisely
describing the complete model, and rigorously stating its hydrodynamic limit, will be
the purpose of Section 2.

Description of a simplified process with two particle types. — For the clarity of nota-
tions, we describe and study our model in dimension d = 2. The simplified version
of the model can be considered as an active Ising model [43] with an ezclusion rule:
each site z of the periodic lattice T% of size N is either

— occupied by a particle of type “+” (g} = 1),

— occupied by a particle of type “=" (n; = 1),

— empty if 7 =n; =0.
Each site contains at most one particle, thus the pair (5,7, ) entirely determines the
state of any site z, and is either (1,0), (0,1) or (0,0). The initial configuration for
our particle system is chosen at local equilibrium and close to a smooth macroscopic
profile o = (i + ¢; : T2 — [0,1], where T? is the continuous domain [0, 1]? with
periodic boundary conditions, and (g (z/N) (resp. {; (z/N)) is the initial probability
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6 CHAPTER 1. INTRODUCTION

that the site z contains a “+” particle (resp. “—"). We denote by 7 the collection
((n;r’ n;))zeT?\j'

Each particle performs a random walk, which is symmetric in the direction i = 2,
and weakly asymmetric in the direction ¢ = 1. The asymmetry is tuned via a positive
parameter A, thus a “+” (resp. “—”) particle at site £ jumps towards z + e; at rate
14 A/N (resp. 1 — A\/N) and towards z — e; at rate 1 — A/N (resp. 1 + A\/N). If a
particle tries to jumps to an occupied site, the jump is canceled. In order to obtain a
macroscopic contribution of this displacement dynamics, it must be accelerated by a

factor NZ2.

Moreover, the type of the particle at site x is updated at random times, depending
on its nearest neighbors. Typically, to model collective motion, a “—” particle sur-
rounded by “+” particles will change type quickly, whereas a “—" particle surrounded
by “—" particles will change type slowly, to model the tendency of each individual to
mimic the behavior of its neighbors. Although they determine the shape of the last
term of the hydrodynamic limit, the microscopic details of this update dynamics are
technically not crucial to the proof of the hydrodynamic limit (in the scaling consid-
ered here), we therefore choose general, bounded flip rates ¢, 5(7) parametrized by an
inverse temperature 8 > 0 and depending only on the local configuration around z.

The complete dynamics can be split into three parts, namely the symmetric and
asymmetric contributions of the exclusion process, and the Glauber dynamics, evolv-
ing on different time scales. For this reason, each corresponding part in the Markov
generator has a different scaling in the parameter N: the two-type process is driven
by the generator

1
Ly = N? |:§Z+ ZWA] + Z°,
N
whose three elements we now define. Fix a function f of the configuration, we denote
by
e =y +n, €{0,1}

the total occupation state of the site x. The nearest-neighbor simple symmetric ex-
clusion process generator Z is

LE@) = Y D me (L=mess) (FGE7) = £(@)

z€eT? |z]|=1
A encompasses the weakly asymmetric part of the displacement process,

L@ = D D A = ng) (L= navse) (FATH0) = F@)

weT3, 6=+1
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1.4. ACTIVE EXCLUSION PROCESS AND MAIN RESULT 7

which is not a Markov generator because of its negative jump rates, but is well-defined
once added to the symmetric part of the exclusion process. Finally, 7% is the generator
which rules the local alignment of the angles

LEF@) = Y meca @) (F@) = F@)).

z€T%

In the identities above, §****

is the configuration where the states of z and = + z
have been swapped in 7, and 7j* is the configuration where the type of the particle at

site  has been changed.

Hydrodynamic limit. — Let us denote by p; (u) (resp. p; (u)) the macroscopic density
of “+” (resp.“—") particles, and by p;(u) = p; (u)+p; (u) the total density at any point
u in T2. Let us also denote by m;(u) = p; (u) — p; (u) the local average asymmetry.
Then, as a special case of our main result the pair (p;", p; ) is solution, in a weak
sense, to the partial differential system
(1.1)
{atpf =V [0(pe, p{)Vpe + ds(p) Vo] = 200w, [mus(pr, /1) + dalpe)p/ ] + T,
Oip; =V - [0(pt, o )V e + ds(pr) Vi | + 2000, [mus(pr, p7) — ds(pe)pr | — T

with initial profile

(1.2) po (w) = (*(u).
In the PDE (1.4), 0., denotes the partial derivative in the first space variable, dj is the

self-diffusion coeflicient for the SSEP in dimension 2 mentioned in the introduction,
the coefficients 0 and s are given by

P p*
(1.3) 2p.") = 21— du(p)) and s(p.p") = 21— o~ di(),
and T'; is the local creation rate of particles with type “+,” which can be written as
the expectation under a product measure of the microscopic creation rate. Although
it is not apparent, the coefficients 0, s, and d; satisfy a Stokes-Einstein relation in a
matrix form when the differential equation is written for the vector (p;, p; ), in the

sense that
<0(p, pH)+dip)  d(pp*) ) <p+(1 —pt) =t )
2(p,p7) 2(p,p”) +ds(p) —ptp=  p (1—p7)

_ (pﬂs(p, pt) +da(p)] p~s(p,p") )
pTs(p,p7) pls(p, p7) +ds(p)])
The second matrix above is the compressibility matrix, whose components are
Cov,+ ,-(n9", M), where both s; and sy take value in {4, —}.
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8 CHAPTER 1. INTRODUCTION

This simplified model is very close to the active Ising model (cf. Appendix A, and
[43]) with a weak driving force. The main difference is the exclusion rule: in the active
Ising model, there is no limit to the number of particles per site, and each particle’s
type is updated depending on the other particles present at the same site. In our
two-type model, the exclusion rule creates a strong constraint on the displacement
and therefore changes the form of the hydrodynamic limit, which is no longer the one
derived in [43].

Description of the active exclusion process. — We now describe the active exclusion
process considered in this article, which is in some form a generalization of the model
presented above. Indeed, although for technical reasons the proof of our main result
cannot be applied verbatim to a finite number of particle types, the overwhole scheme
is exremely similar, and under suitable assumptions on the initial profile, one can state
an analogous result in the case of a finite number of particle types as well. Since the
active exclusion process is thoroughly introduced in Section 2, we briefly describe it
here, and only give a heuristic formulation for our main result. Denoting

S =10, 2],

the periodic set of possible angles, the type of any particle is now a parameter 6 € S
representing the angular direction of its weak driving force. To compare with the
simplified model, the “4” particles correspond to the angle § = 0, whereas the “—"
particles correspond to the angular direction 6 = 7.

Any site is now either occupied by a particle with angle 6 (n, = 1, 6, = 6), or
empty (1, = 0, 8, = 0 by default). The initial configuration 77(0) of the system is
chosen at local equilibrium, close to a smooth macroscopic profile E: T2 x § — Ry,
where each site x is occupied by a particle with angle 6, € [0, 6 4+ df[ with probability
C(z/N,0)d0, and the site remains empty w.p. 1 — Is C(z/N, 6)df.

Our active exclusion process is driven by the Markov generator
1
Ly = N? [m sz] T+ 2°,

with three parts described below. Fix a function f of the configuration. The nearest-

neighbor simple symmetric exclusion process generator < is unchanged with respect
VA . .

to the two-type case, whereas £ is now given by

V@) = D Y 0hi(Ba)ne (1= navse,) (FG™F) — F(@))

2€T2, |2|=1
z=de;

where the asymmetry in the direction i for a particle with angle 6 is encoded by the
functions A;(6),
A1(0) = Acos(f) and A2(0) = Asin(h).
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1.4. ACTIVE EXCLUSION PROCESS AND MAIN RESULT 9

To fix ideas, the Glauber generator will be taken of the form
1@ = Y 1 [ eon0.®) (G - 1@) b0,
zeT%,

where 7% is the configuration where 6, has been set to #, and we choose alignment
rates similar to the Glauber dynamics of the XY model (cf. Appendix A). More
precisely, we consider

exp (ﬂ Zywx 77y Cos(ey - 0))
fs exp (ﬂ Zny 7y cos(0, — 0’)) d9”

which tends to align 6, with the 6,’s, for y a neighbor site of x. In the jump rates

A

Cx,,@(ev 77)

above, we take the value in [—m, 7] of the angle 6, — 6. The intensity A and the inverse
temperature 0 > 0 still tune the strength of the drift and the alignment.

As mentioned before, we settle for now for a heuristic formulation of the hydrody-
namic limit. Let us denote by p¢(u) the macroscopic density of particles with angle 6,
and by pi(u) = [, pf(u)d6 the total density at any point u in the periodic domain

T2 := [0,1]2. Let us also denote by €; the direction of the local average asymmetry

O () — ™ cos(6)
m”‘ﬂ””<m@>w

As expected from (1.1), the main result (cf. Theorem 2.3.3) of this article is that p! is
solution, in a weak sense, to the partial differential equation
(1.4)

+Fta
A2(0)

= A1(0)
0ol =V - [0(p, p) Vi + ds(pe) Vpl] — 2V - [5(pt7pf)AQt +ds(pe)p? ( ' )

with initial profile

ph(u) = C(u, 0).
In the PDE (1.4), d; is the self-diffusion coefficient for the SSEP in dimension 2
mentioned previously, the coefficients ? and s are given by (1.3) as in the two-type
case, and I'; is the local creation rate of particles with angles 6, which can be written
as the expectation under a product measure of the microscopic creation rate.

Before properly stating the hydrodynamic limit, let us recall the major difficulties
of the proof. The main challenge is the non-gradient nature of the model: the instan-
taneous current of particles with angle 6 between two neighboring sites = and = + ¢;
can be written

jz,a:+ei = 1{0129}7790(1 — Nate;) — 1{91+ei:9}77x+ei(1 = Nx)s
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10 CHAPTER 1. INTRODUCTION

which is not a discrete gradient. One also has to deal with the loss of ergodicity
at high densities, and with the asymmetry affecting the displacement of each par-
ticle, which drives the system out-of-equilibrium, and complicates the non-gradient
method. Finally, the non-linearity of the limiting equation also induces several diffi-
culties throughout the proof.

Model extensions. — Several design choices for the model have been made either to
simplify the notations, or to be coherent with the collective dynamics motivations (cf.
Appendix A). However, we present now some of the possible changes for which our
proof still holds with minimal adaptations.

— The model can easily be adapted to dimensions d > 2. The dimension 1, however,
exhibits very different behavior, since neighboring particles with opposite drifts
have pathological behavior and freeze the system due to the exclusion rule.

— The nearest neighbor jumps dynamics can be replaced by one with local and
irreducible transition function p(.). This involves minor adjustments of the lim-
iting equation, as solved by Quastel [35]. In this case, the total jump generator
must be split between a symmetric part scaled as N2, and an asymmetric part
scaled as N whose jumps can be decomposed as a succession of jumps from the
symmetric part. However, providing exact criteria for the validity of the exten-
sion to a more general jump kernel would be rather difficult, and such extensions
are best checked on a case-by-case basis. In the case of nearest-neighbor exclu-
sion, the drift functions can be replaced by any bounded function, and can also
involve a spatial dependency, as soon as \;(u, #) is a smooth C'! function of its
two variables u and 6.

— We chose for our alignment dynamics a jump process, however analogous re-
sults would hold for diffusive alignment. The jump rates can also be changed
to any local and bounded rates, provided they are smooth in the ,’s, and that
the overall realignment rate |, 5 Cz,5(0,7m)d0 only depends on the configuration 7
through the occupational variable 7,. The smoothness assumption in the last
two comments is there to make sure that the expectation of their microscopic
contribution under the grand-canonical measures is a Lipschitz-continuous func-

tion in the grand-canonical parameter.

1.5. Structure of the article

Section 2 is dedicated to the full description of the model, to introducing the
main notations, and the proper formulation of the hydrodynamic limit for the active
exclusion process.
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Section 3 is composed of three distinct parts. In Subsection 3.1 we characterize
local equilibrium for our process by introducing the set ¢#;(S) of parameters for the
grand-canonical measures of our process. We also give a topological setup for oM, (5),
for which some elementary properties are given in Appendix C. In Subsection 3.2,
we prove using classical tools that the entropy of the measure of our process with
respect to a reference product measure is of order N2. The last Subsection 3.3 tackles
the problem of irreducibility, which is specific to our model and is one of its major
difficulties. Its main result, Proposition 3.3.2, relies on a-priori density estimates, and
states that on a microscopic scale, large local clusters are seldom completely full,
which is necessary to ensure irreducibility on a microscopic level.

Section 4 proves a law of large numbers for our process. The so-called Replacement
Lemma stated in Subsection 4.1 relies on the usual one block (Subsection 4.2.1) and
two blocks (Subsection 4.4) estimates. However, even though we use the classical
strategy to prove both estimates, some technical adaptations are necessary to account
for the specificities of our model.

Section 5 acts as a preliminary to the non-gradient method. The first result of
this section is the comparison of the active exclusion process’s measure to that of
an equilibrium process without drift nor alignment (Subsection 5.1). We also prove,
adapting the classical methods, a compactness result for the sequence of measures of
our process, (Subsection 5.2) as well as an energy estimate (Subsection 5.3) necessary
to prove our main result.

The non-gradient estimates are obtained in Section 6. It is composed of a large
number of intermediate results which we do not describe in this introduction. The
application of the non-gradient method to the active exclusion process, however, re-
quires to overcome several issues which are specific to our model. One such difficulty
is solved in Subsection 6.3, where we estimate the contributions of microscopic full
clusters. In Subsections 6.6 and 6.7, we prove that for our well chosen diffusion and
conductivity coefficients, the total displacement currents can be replaced by the sum
of a gradient quantity and the drift term. For the sake of clarity, we use to do so
the modern formalism for hydrodynamic limits as presented in [28] rather than the
one used in [35]. We state in this section a convergence result at the core of the non-
gradient method (Theorem 6.6.4) whose proof is intricate and is postponed to the last
section.

All these results come together in Section 7, where we conclude the proof of the
hydrodynamic limit for our process. Some more specific work is necessary in order
to perform the second integration by parts, due to the delicate shape of the diffusive
part of our limiting differential equation.

Finally, Section 8 is dedicated to proving Theorem 6.6.4, following similar steps
as in [28]. To do so, we estimate in Subsection 8.1 the spectral gap of the active
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12 CHAPTER 1. INTRODUCTION

exclusion process on a subclass of functions. We then describe in Subsection 8.2 the
notion of germs of closed forms for the active exclusion process, and prove using
the spectral gap estimate a decomposition theorem for the set of germs of closed
forms. A difficulty of this model is that the spectral gap is not uniform in the density,
and decays faster as the density goes to 1. This issue is solved by cutting off large
densities (cf. Equation (8.2) and Lemma 8.2.9). Using the decomposition of closed
forms, Theorem 6.6.4 is derived in Subsection 8.5.
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CHAPTER 2

NOTATIONS AND MAIN THEOREM

We describe an interacting particle system, where a particle follows an exclusion
dynamics with a weak bias depending on an angle associated with this particle. At the
same time, each particle updates its angle according to the angles of the neighboring
particle. We study the macroscopic behavior of the corresponding 2-dimensional system
with a periodic boundary condition.

2.1. Main notations and introduction of the Markov generator

On the two dimensional discrete set
T3 ={1,...,N}?

with periodic boundary conditions, we define the occupation configuration n =
(M2)zerz, € {0, I}T?V where 7, € {0,1} is the number of particles at site z. With any
occupied site x € T%;, we associate an angle 6, € S representing the mean direction
of the velocity in the plane of the particle occupying the site. When the site x is
empty, we set the angle of the site to 6, = 0 by default.

DEFINITION 2.1.1 (Configurations, cylinder & angle-blind functions). — For any site
z € T%, we denote by 7, the pair (n,0,), and by 7 = () zer2, the complete
configuration. The set of all configurations will be denoted by

S = { 01a: 82)acr, € (10,1} x 8)™ | 6, =0 if . = 0}

Denote by Y, the set of infinite configurations above, where T%; is replaced by Z2.
We will call cylinder function any function f depending on the configuration only
through a finite set of vertices By C Z?, and C' w.r.t. each 0, for any z € By. The
set of cylinder functions on Z?2 will be denoted by C. Note that a cylinder function is
always bounded, and that any function f € C admits a natural image as a function
on X for any IV large enough. This is always the latter that we will consider, and we
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14 CHAPTER 2. NOTATIONS AND MAIN THEOREM

therefore abuse the notation and denote in the same way both f and its counterpart
on EN.

We will call angle-blind function any function depending on 7 only through the
occupation variables n = (ﬂx)zeﬂrfv . In other words, an angle-blind function depends
on the position of particles, but not on their angles. We denote by & the set of
angle-blind functions.

We will use on the discrete torus the notations | - | for the norm |z | = Zf=1| z; |

Let T be a fixed time, we now introduce the process (7(t))c[o,r) on X which is
central to our work. Our goal is to combine the two dynamics present in Viscek’s
model [50]: The first part of the process is the displacement dynamics, which rules the
motion of each particle. The moves occur at rates biased by the angle of the particle,
and follows the exclusion rule. Thus, for § = %1 the rate p,(de;, ) at which the
particle at site  moves to an empty site x + de;, letting e; = (1,0), e2 = (0,1) be the
canonical basis in Z?2, is given by

N 1+ Xcos(0,)/N if i=1,
Pz (561'7 77) = . . .
1+ Adsin(0,)/N if =2,
where A € R is a positive parameter which characterizes the strength of the asymme-
try. For convenience, we will denote throughout the proof

(2.1) A1(0) = Acos(f) and A2(0) = Asin(h).

The previous rates indicate that the motion of each particle is biased in a direction
given by its angle. The motion follows an exclusion rule, which means that if the
target site is already occupied, the jump is canceled. Note that in order to see the
symmetric and asymmetric contributions in the diffusive scaling limit, we must indeed
choose an asymmetry scaling as 1/N. Furthermore, in order for the system to exhibit
a macroscopic behavior in the limit N — 00, we need to accelerate the whole exclusion
process by N2, as discussed further later on.

The second part of the dynamic is the angle update process, which will be from now
on referred to as the Glauber part of the dynamics. A wide variety of choices is available
among discontinuous angle dynamics (jump process) and continuous angle dynamics
(diffusion). We choose here a Glauber jump process with inverse temperature § > 0
described more precisely below.

The generator of the complete Markov process is given by

(2.2) Ly = N?2° + 2°,
where

b, 1w
(2.3) T =2+ Nzé
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2.1. MAIN NOTATIONS AND INTRODUCTION OF THE MARKOV GENERATOR 15

is the generator for the displacement process (which two parts are defined below) and
7% is the generator of the Glauber dynamics. The process can therefore be decom-
posed into three distinct parts, with different scalings in N, namely the symmetric
part of the motion, with generator N2 Z, the asymmetric contribution to the displace-
ment generator N 7™ with parameter A > 0, and finally the angle-alignment with
generator 7% and inverse temperature 8 > 0, which are defined for any cylinder (and
therefore C* in the angular variables, cf. Definition 2.1.1) function f : ¥ — R, by

(2.4) LI = D D e (1= norz) (FG"F2) = @),
zeT% |2|=1
V@) = D D oXi(0a)ne (1= nose,) (FG"T) — (@),

z€T?3, 6==x1
Ni=1,2

@25  °f@H=3 /S e 5(0,7) (FT) - £(7)) do.

2
z€T%;

Note that Z* alone is not a Markov generator due to the negative jump rates, but
considering the complete displacement generator £ + N—! 2™ solves this issue for
any N large enough. In the expressions above, we denoted 7%®T? the configuration
where the occupation variables 7, and 7,4, at sites x and x + z have been exchanged
inn
ﬁa:+z if y=uz,
et ={n,  ify=a+z

My otherwise,

and %7 the configuration where the angle 6, in 7 has been updated to

7/7\@‘79 _ (ny>9) lfy:.’l,‘,
Y My otherwise.

For z,y € T%,, we write z ~ y iff |z — y| = 1. We choose for ¢, g the jump rates
exp (ﬂ Dy Ty €08(0y — 0))
Jsexp (ﬂ Dy My €0S(6y — 0’)) o’

which tend to align the angle in x with the neighboring particles according to XY-like

A

Cx,,@(ev 77)

jump rates (cf. Appendix A) with inverse temperature 3 > 0. Note that by construc-
tion, for any non-negative (3, fS ¢z,3(0,7)d0 = 1 and that the jump rates c; 5(6,7)
can be uniformly bounded from above and below by two positive constants depending
only on .

The process defined above will be referred to as active exclusion process.
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16 CHAPTER 2. NOTATIONS AND MAIN THEOREM

2.2. Measures associated with a smooth profile and definition of the Markov process

We now introduce the important measures and macroscopic quantities appearing
in the expression of the hydrodynamic limit. Let us denote by T? the continuous
periodic domain in dimension 2,

T2 = [0,1)°.

DEFINITION 2.2.1 (Density profile on T?). — We denote by c#4(S) the set of non-
negative measures @ on S with total mass @(S) in [0, 1]. We call density profile on the
torus any function

p: (u,dd) — p(u,db)
such that p(u,.) € oM(S) Yu € T?. For any density profile p on the torus, p(u,df)
represents the local density in u of particles with angle in df, and p(u) represents the
total density of particles in wu.

DEFINITION 2.2.2 (Measure associated with a density profile on the torus). — To any
density profile on the torus p, we associate ,ug , the product measure on X such that
the distribution of 7, is given for any = € T%, by

py (e =0) =1—p(z/N),
(2-6) w5 (e = 1) = p(z/N),
py (0, € df | n, =1) = p(z/N,df)/p(z/N),

and such that 7,7, are independent as soon as = # y.

In other words, under ,ull] the probability that a site x € T% is occupied is

p(z/N) = [4p(x/N,0)dd € [0,1]. Furthermore, the angle of an empty site is set
to 0 by default, and the angle of an occupied site z is distributed according to the
probability distribution p(z/N,-)/p(z/N).

2.2.1. Definition of the process. — Let EQ’T] := D([0,T],Xn) denote the space of
right-continuous and left-limited (cadlag) trajectories 77 : ¢ — 7(t). We will denote
by 771 the elements of EE&T]. For any initial measure v on X, any non-negative
drift A < N (to make the displacement operator Z + N1 7™ a Markov generator),

and any 3 > 0, we write P)*# for the measure on Egg’T]

starting from the measure
7(0) ~ v, and driven by the Markov generator Ly = Ly (), 3) described earlier. We
denote by E)# the expectation w.r.t. P)*?. In the case A = 3 = 0, there is no drift and
the angle of the particles are chosen uniformly in S. In this case, we will omit A and 8
in the previous notation and write P, for the measure and E, for the corresponding

expectation. Let us now define the initial measure from which we start our process.
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2.3. HYDRODYNAMIC LIMIT 17

Let Z € C(T? x S) be a continuous non-negative function on T? x S, which will define
the initial macroscopic state of our particle system. We assume that for any u € T2,

(2.7) C(u) = /SZ(U,a)de <1,

i.e., that the initial density is less than one initially everywhere on T2. This assumption
is crucial, because when the local density hits one, because of the exclusion rule, the
system loses most of its mixing properties. At density 1, mixing only comes from the
(slow, because of the scaling) Glauber dynamics, which is not sufficient to ensure that
local equilibrium is preserved.

We can now define the initial density profile on the torus p, by

(2.8) Po(u, do) = C(u, )do.

We start our process from a random configuration

(2.9) 0(0) ~ p = pf

fitting the profile p,,, according to Definition 2.2.2. Given this initial configuration,

we define the Markov process 7071 e EES’T] ~ Pl’:,f driven by the generator Ly

introduced in (2.2), starting from u?.

Topological setup. — Let us denote by ¢M(T? x S) the space of non-negative measures
on the continuous configuration space endowed with the weak topology, and

(2.10) oM™ =D ([0,T], HM(T? x S))

the space of right-continuous and left-limited trajectories of measures on T2 x S. Each
trajectory 7i%7) of the process admits a natural image in QM[O’T] through its empirical

. 1
N <,7[0,T}) =53 2 M(®8a/no, )

2
zeT,

measure

We further define the projection 7V, which associates to 71%7] the trajectory t —
7TiN (ﬁ[O’T]). We endow QM[O’T] with Skorohod’s metric defined in Appendix B.1, and
the set 2( QM[O’T]) of probability measures on W[O’T] with the weak topology. We
now define QV € P W[O’T]) the distribution of the trajectory of the empirical
measure 7V (71%71) of our process 7] ~ IP’;A’?

2.3. Hydrodynamic limit

2.3.1. Self-diffusion coefficient. — The hydrodynamic limit for our system involves the
diffusion coefficient of a tagged particle for symmetric simple exclusion process (SSEP)
in dimension 2. Let us briefly remind here its definition. On Z2, consider an infinite
equilibrium SSEP with density p and a tagged particle placed at time 0 at the origin.
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18 CHAPTER 2. NOTATIONS AND MAIN THEOREM

We keep track of the position X(t) = (X1(t),X2(t)) € Z? of the tracer particle
at time ¢ and denote by @} the measure of the process starting with measure p,
on Z?\ {0} and a particle at the origin.

DEFINITION 2.3.1 (Self-Diffusion coefficient). — The self-diffusion coeflicient d;(p) is
defined as the limiting variance of the tagged particle
Eq- (X1(t)?
di(p) = lim @O

t—o0o

The existence of this limit is a consequence of [29]. A variational formula for ds has
been obtained later by Spohn [44]. The regularity of the self-diffusion coefficient
was first investigated in [49], where Varadhan shows that the self-diffusion matrix is
Lipschitz-continuous in any dimension d > 3. Landim, Olla and Varadhan since then
proved in [32] that the self-diffusion coefficient is in fact of class C'* in any dimension.
The matter of self-diffusion being treated in full detail in Section 6, p. 199-240 of [30],
we do not develop it further here. We summarize in Appendix B.2 some useful results
on the matter.

Diffusion, conductivity and alignment coeﬁ%ients - Given a density profile on the
torus p(u, df), recall from Definition 2.2.1 that p(u) = [ p(u,dd) is the local density.
We introduce the coeflicients

3(0.7)(u,d6) = i%f”ﬂ—dAmeHmwwb

p(u,df)

&(p, B)(u, d0) = (1 — p(u) — ds(p(u))) 2 o(a) Lew>op

where d; is the self-diffusion coefficient described in the previous paragraph. We also

define Q(p), the vector representing the mean direction of the asymmetry under p,

- R cos(6")
@) = [ ptuar) (<)),
5 sin(6’)
as well as I'(p) the local creation and annihilation rate of particles with angle 6
L'(p)(u,db) = p(v)Eg(u,.) [co,s(0,7)] db — p(u, db),

where under Ej(, ), each site is occupied independently w.p. p(u), and the angle
of each particle is chosen according to the probability distribution p(u,-)/p(u). The
precise definition of E5(, .) is given just below in Definition 3.1.4.
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Weak solutions of the PDE. — In order to state the hydrodynamic limit of our system,
we need to describe the notion of weak solutions in our case, which is quite delicate
because of the angles. For any measure 7 € o#(T?x S) and any function H : T?x .S —
R integrable w.r.t. 7, we shorten <m, H> = [1, ¢ H(u,0)dn(du,dd).

DEFINITION 2.3.2 (Weak solution of the differential equation). — Any trajectory of
measures (7)o, 1] € J’Z[O’T] will be called a weak solution of the differential system

b, =V - [0(p1, B) Vi + ds(p) V5]

(2.11) oAV - {8000, 5O + P (1) (“’S“’)>

+T t)
sin(6) 20)

~

po(u, dd) = ((u, 8)do,

if the following four conditions are satisfied:

o~

(i) mo(du,dd) = C(u, 0)dudd

(ii) for any fixed time ¢ € [0,T], the measure m; is absolutely continuous in space
w.r.t. the Lebesgue measure on T2, i.e., there exists a density profile on the
torus (in the sense of Definition 2.2.1) p,, such that

m¢(du, df) = p,(u, db)du,

(iii) letting pi(u) = [gp;(u,db), p is in H'([0,T] x T?), i.e., there exists a fam-
ily of functions 9,,p; in L?([0,7] x T?) such that for any smooth function
G € C%'([0,T] x T?),

/[T] i pt(u)ﬁuiGt(u)dtduz—/ G1(u)0y, pt(u)dtdu
0,T]x T2

[0,T]xT2

(iv) for any function H € C121([0,T] x T? x S),

T
<mp,Hp> — <mg, Hy> = / <y, Oy Hy>dt
0

2

T

[ [z ( = O Hu(w,0)[3(01, B) — dl(p)B,] (1, d6) Dy, pr ()

0 JT2xS | ;=1
+ 03 Hy(u, 0)ds (pt) By (u, dO)

0., Hy(u,0) [258(p1, ) %(B,) + 27s(0)ds (1) 5] (u, d9>) +Hy(u, 0)T(5,) (u, d) | dud,

where the various coefficients are those defined just before, and the functions );

are defined in (2.1).
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Note that in this definition, the only quantity required to be in H' is the total
density p: indeed, the term d,(p;)V p, is rewritten as

ds(pr) VD, = V(ds(pe)B;) — di(p1)P,V pr,

and the first term in the right-hand side above allows another derivative to be applied
to the test function H, whereas the second term only involves the derivative of p as
wanted.

We are now ready to state our main theorem:

THEOREM 2.3.3. — The sequence (Q™) nyen defined at the end of Section 2.2 is weakly
relatively compact, and any of its limit points Q* is concentrated on trajectories
(m¢)eejo, ) which are solution of (2.11) in the sense of Definition 2.3.2.

REMARK 2.3.4 (Uniqueness of the weak solutions of Equation (2.11)). — One of the
reasons for our weak formulation of the scaling limit of the active exclusion process is
the lack of proof for the uniqueness of weak solutions of Equation (2.11). Several fea-
tures of Equation (2.11) make the uniqueness difficult to obtain: First, our differential
equation does not take the form of an autonomous differential equation: the variation
of p¢(u, ) involves the total density p, therefore the differential equation is in fact
a differential system operating on the vector (p:(u,0), pt(u)). Cross-diffusive systems
can exhibit pathological behavior when the diffusion matrix has negative eigenvalues,
but in our case, both eigenvalues are non-negative and this issue does not appear.

However, although cross-diffusive systems are quite well understood (cf. for example
[1]), our equation involves a drift term which factors in via the vector ﬁ(ﬁt) the
whole profile (p;(u,8))scs. One of the consequences of this drift term, which is the
main obstacle to prove uniqueness, is that even the uniqueness of the total density
pt(u) is not well established. Indeed, contrary to [35], in which the total density
evolves according to the heat equation, the total density in our case is driven by the
Burgers-like equation

Fipi(u) = Apy(u) = AV - (my(u)(1 = pi(w))),

where m is a quantity which depends on the whole profile (p;(u, 0))ges, and for which
uniqueness is hard to obtain.

2.4. Instantaneous currents

In order to get a grasp on the delicate points of the proof, and to introduce the
particle currents on which rely the proof of Theorem 2.3.3, we need a few more
notations.
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Throughout the proof, for any function ¢ : ¥y — R and z € T%, we will denote
by 7. : ¥nx — R the function which associates to a configuration 7 the value o(7,7),
where 7,77 € ¥ is the translation of the configuration 7 by a vector x:

(Twﬁ)y = ﬁw-&-yv Vy € T?V'
For any function
H:[0,T]xT*x S —R
(t,u,0) — Hi(u,0),
in C121([0,7] x T? x S), and any measure 7 on T? x S, let us denote
<m, Ht> = fT2XS Ht(u, G)dﬂ'(u, 0)
the integral of H with respect to the measure w. We consider the martingale MtH N
t
(2.12) MY = <aN Hy> — <alY, Hy> — / (0s + Ly)<mN , Hy>ds,
0
where 7r is the empirical measure of the process
'/T;V = ﬁ Z nz(s)(sz/N,Gw(s)-

2
zeTy,

The quadratic variation of this martingale can be explicitely computed, and is equal
to (cf. Appendix 1.5 of [28])

t
[MH*N]t:/ Ly(<al¥ H,>?) - 2<al Ho>Ly<al Hy>ds
0

= 2 S [ e s O H N, B D (o + 1,115

z€eT%
—Ne41(8)Hs((x + 1) /N, 0511(5)) L [n2(s)Hs(z /N, 0:(s))]

— Nz (8)Hs(2/N, 05(5)) L [nz41(s)Hs((x +1)/N, 0z 41(s))] ds |-

Because of the initial factor N—*, the contributions of the asymmetric and Glauber
parts of the dynamic can be crudely bounded respectively by CN~! and CN—2. By
computing the symmetric part, we finally obtain

[M7N], = O(1/N) + N2 > [/ [HQ(a:H/N 0.:(s)) + HZ(x — 1/N,0,(s))

zeT%
— 2HZ(z/N, 02(s))
+202(8) (1 = No41(8)) Hs (2/N, 05(3)) [Hs((z + 1) /N, 05(s)) — Hs(z/N, 02(s))]
4+ 20541(5)(1 = 12 (8)) Hy (@ + 1)/N, 8 1.(8)) [H, (& + 1)/N, 611 (5))
— Hy(z/N,0241(s))]-
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Because we assumed that H is a smooth function, the three lines above are of order

at most N~!, and therefore [MtH ’N]t vanishes as N goes to infinity. The martingale

thus vanishes uniformly in time, in probability under IP’A}{,'}.
o

Assume now that the function H takes the form
(2.13) H,(u,0) = Gs(u)w(0),

where G and w are respectively functions on [0,7] x T? and S. From now on, for any
function @ : S — R, any configuration 7§ and any x € T% we will shorten

77;13 = ©(02)15-
With these notations, recalling that
Ly=N?(Z+N12™) + 2,

we can write the generator part of the integral term of (2.12) as
(2.14)

/OTLN<7TS yHo>ds = N2/ EZTZ Gs(z/N) <N2[ﬁan( )+ N1 (s )) + 7592 (s)|ds

Let us introduce accordingly the three instantaneous currents in our active exclusion
process. Recall that 7, represents the translation of a function by z.

DEFINITION 2.4.1. — Given a site z € ']I‘ % each part of the generator Ly’s action
over N~ can be written

(2.15) Zmy = > (Te—e,di — 72Ji)  with  G7(M) = ng (1 —ne,) — 0%, (1 —m0)

™

s
Il
—

(2.16)
2
WA w . W [ WA w;
z Z (Tame,rd = Tor¥)  with  r2() = ng™ (1= ne,) + 022 (1= m0),

(2.17)

and
(2.18)

N /g co5(6,7)(w(6) — w(60))db.

For i € {1,2} we will at times write jy ... = 7.j; (vesp. ry . . = 7.7¢), which is
interpreted as the instantaneous current with intensity w in the direction i along the
edge (z,z + ¢;) of the symmetric (resp. weakly asymmetric) part of the process. The
last quantity 7,7 is the local alignment rate.
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When considering the time process (7(t)):c[o,7] Wwe will, for the sake of concision,
write j¥(t) for j¢(7(t)), and in the same fashion r¢(¢) instead of r¢(7(¢)), and v (¢)
instead of v*(7(t)). Finally, in the case where w = 1, we will denote by

Ji =Ji =m0 — Ne,

Performing a first integration by parts on the exclusion part of the right-hand side
of (2.14), we obtain thanks to Equations (2.15), (2.16) and (2.18)

T
(2.19) / Ly<mN, H,>ds
0

T 2
= % /O o lz (Nj;”(s) +r:’(s))8ui,NGs(z/N) + Gy(z/N)v“(s)| ds,

zeT% =1
where 0,,,n is the discrete partial derivative
(0u; NG)(z/N) = N [G((z + €;)/N) — G(z/N)].
The spatial averaging is of great importance throughout the proof of the hydrody-

namic limit, we need some convenient notation to represent this operation. For any
site € T% and any integer I, we denote by

Biz)={yeTX | lly—zll, <1}

the box of side length 2] + 1 around z. In the case where x = 0 is the origin, we will
simply write B; := B;(0). For any finite subset B C T%, |B| denotes the number of
sites in B. Given ¢ a function on Xy, we denote by

1
(2.20) o= 5 2 T
| Bi(z) |
YyEB(x)
the average of the function ¢ over Bj(x). In the case where ¢(7) = n§, (resp.
(M) = o), we will write 7,0 = (p)L (resp. 7,p;) for the empirical average of n“
(resp. i) over the box centered in z of side length 21 + 1.

We will also denote for any integer [ by p; the empirical angular density defined by
- 1
(2.21) pr=157 D Mo, € Mi(S),
1Bl j
z€B)
where oM;(S) is the set of non-negative measures on S with total mass in [0,1] (cf.

Definition 3.1.1 below). Finally, to simplify notations throughout the proof, we will
write e N instead of the integer part |eN|.
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CHAPTER 3

CANONICAL MEASURES, ENTROPY AND IRREDUCIBILITY

3.1. Definition of the canonical measures

Due to the presence of angles, the canonical product measures for the active exclu-
sion process are not parameterized by the local density a € [0, 1] like the SSEP, but
rather by a measure & on [0, 27] whose total mass [ &(df) is the local density.

DEFINITION 3.1.1 (Grand-canonical parameters). — Recall that T? is the 2-
dimensional continuous torus (R/Z)2, and let ¢#(S) be the set of non-negative
measures on S. We will call grand-canonical parameter any measure & € M(S)
with total mass a := [ a(df) < 1. We denote by

(3.1) Mi(S) ={ae MS)|ac01]},

the set of grand-canonical parameters.

We now define a topological setup on ¢} (S). Let us consider on C(9), the set of
continuously differentiable functions, the norm ||g||* = max(||g||.,|l¢'|l..), and let
B* be the unit ball in (C1(S),||-||").

DEFINITION 3.1.2. — We endow ¢#(S), the vector space of finite mass signed mea-
sures on S, with the norm

Il = s { [s@aae)],

and with the corresponding distance

d(@,a) = gseug;*{ /S 9(0)da(9) — /S g(e)da'(a)}.

We then endow M, (S) with the topology induced by ||| . |||. This distance is a gener-
alization of the Wasserstein distance to measures which are not probability measures.

REMARK 3.1.3. — As checked in Appendix C, this topology satisfies
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— for any cylinder function v, the application @ — Eg(v) is Lipschitz-continuous
(cf. Proposition C.2.1),

— any @ € M(S) is the limit of combinations of Dirac measures,
— if 0, — 0, then ||| dg, — do ||| — 0.

It is therefore the natural choice for our problem.

We now introduce the canonical measures of our process, which are translation-
invariant particular cases of measures associated with a density profile, introduced in
Definition 2.2.2.

DEFINITION 3.1.4 (Grand canonical measures). — Consider a translation invariant
density profile on the torus p, i.e., such that for any v € T2,

p(u, df) = a(do)

for some grand-canonical parameter & € oM, (S) independent of u. We will write ug
for the product measure ,ug , and Eg will denote the corresponding expectation. This
class of measures will be referred to as grand-canonical measures. Furthermore, for

any « € [0, 1], the measure ug associated with the uniform density profile on the torus
p(u,dd) = adf/2m,

where the angle of each particle is chosen uniformly in S, will be denoted by u%, and
the corresponding expectation will be denoted by E,.

Note that these measures are dependent on IV, but due to their translation invariant
nature, we will omit this in our notation.

REMARK 3.1.5. — For any density a € [0, 1], the measure p%, on ¥ is not invariant for
our dynamic, because although it is invariant for the symmetric part of the exclusion,
the weakly asymmetric part (as well as the Glauber part as soon as 8 # 0) breaks
this property. We will however prove in Section 3.2 that due to the scaling in IV, the
stationary distribution of our dynamics is locally close to .

DEFINITION 3.1.6 (Canonical measures). — Fix a positive integer I, an integer
K < (21+1)? and O = (64,...,0k) a family of K angles, taken up to reordering
of its coordinates, we shorten by K the pairs (K,Of), which we will refer to as
canonical states on B;. We will denote by K; the set of canonical states K on B;,

K, = {K = (K,0k) | K < (2 + 1)*}.

Since our process loses its fast mixing properties when there is only one or less empty
site (In which case mixing mainly comes from the Glauber dynamics, which is very
slow w.r.t. the displacement dynamics, cf. Section 3.3 below), we also introduce

(3.2) K ={KeK |K<(@2+1)?2-2},
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3.2. ENTROPY PRODUCTION AND LOCAL EQUILIBRIUM 27

the set of K for which the exclusion process on B; is irreducible. Furthermore, for any
fixed K € K;, we denote by

(3.3) ok = {ﬁ config. on By

K
> nubo, = Y 0, } )
k=1

z€B;

the set of configurations on B; with canonical state K in By.
Let uy,, denote the measure up, on By, for any density a € 10, 1[, we will denote

by p; 7 the conditioning of u7, ; to YK (which is therefore a measure on the set of
local configurations 7 € ({0,1} x S)5), and by E, 5 the corresponding expectation

B z(9) =Eii (9 | 7e=F).

These measures will be referred to as canonical measures of the process.

DEeFINITION 3.1.7. — Fix [ € N, we associate to any K e K; the grand-canonical
parameter

1 K
a}?,l = 2 Z&gk.
(20+1) P

When there is no ambiguity, we will drop the dependency in [ and simply write

Ozf{- af{,l.

The pertinent results regarding the metric space (M(S), ||| . |||) are regrouped in
Appendix C: The equivalence of ensembles is proved in Section C.1, the Lipschitz-
continuity of the expectation w.r.t. ug in the parameter & is proved in Section C.2,
and finally, the compactness of the set (cM1(S), ||| . |||) is proved in Section C.3.

3.2. Entropy production and local equilibrium

The proof of the replacement lemma is based on the control of the entropy production
of the process. The difficulty here is that the invariant measures of the process are not
known, and the decay of the relative entropy w.r.t. these measures cannot be computed
directly. Thus we consider approzimations of these measures, and for a fized non-
trivial density a € ]0,1[, our goal is to get an estimate of the entropy of the process’s
time average with respect to the reference measure p, introduced in Definition 3.1.4.

Let us fix a € ]0,1[, we are going to prove that regardless of the initial density
profile, the entropy of the active exclusion process w.r.t. the measure of a process
started from p}, and following a symmetric simple exclusion process can be controlled
by CN? for some constant C.
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The choice of p}, among the p,, o’ €]0,1[ is not important, since for any different
angle density o’ € ]0, 1], the relative entropy between the two product measures p?,
and p¥, is of order N? as well.

For some cylinder function h € C, and some edge a = (a1,a3) in ’]I‘?V or 72, we
denote by V, the gradient representing the transfer of a particle from site a; to site
as under the exclusion process

(3.4) Vaf() = 1ay (1 = 1a,) (f (1*%%) = f(7)) -

We will shorten this notation in the case where a = (0,e;) by writing V; := V(g )-
Before turning to the control of the entropy itself, we introduce an important quantity
in the context of hydrodynamic limits.

DEFINITION 3.2.1 (Dirichlet form of the symmetric dynamics). — Let h be a cylinder
function, we introduce the Dirichlet form of the process

(3.5) Da(h) = —Eg(hZh),

where € is the symmetric exclusion generator defined in Equation (2.4). It can be
rewritten thanks to the invariance of uz w.r.t. the symmetric exclusion process as

Do) = 1B | 3 V2 (Vare)?
z€eT?%, |2|=1
If there is no ambiguity, we will omit the dependency in @ of the Dirichlet form, and
simply denote it by &). The Dirichlet form is convex and non-negative. Furthermore,
any function f in its kernel is such that f(7) = f(7) for any pair (7,7’) of configura-
tions with the same number of particles K < N2 — 2 and the same family of angles.
For any non-negative function h, we also introduce the Dirichlet form

(3.6) D(h) = D(Vh),
which has the same properties as ).

We now investigate the entropy production of the active exclusion process. Let
PtN”\’ﬂ be the semi-group of the active exclusion process associated with the complete
generator Ly introduced in Equation (2.2), and pl¥ = u? PtN’)"ﬁ the measure of
the configuration at time ¢. Because we assume the initial profile to be continuous
(and therefore bounded), u” is absolutely continuous with respect to the product

measure y}, with density

N 3 . Tr/\m ]
zﬁ;<ﬁ>= I1 (1—1793)1 1CEQ/N)+nm2 ¢( éN,a)

(3.7)

z€T%
This, and the fact that the alignment rates c; g are bounded from above and be-
low uniformly in 6, guarantee that for any time ¢, ul¥ is also absolutely continuous
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w.r.t. . We therefore denote by f¥ = dul /u? the density of the measure at time ¢
w.r.t. the reference measure u},. We now prove the following estimate on the entropy
of the function f7.

PROPOSITION 3.2.2 (Control on the entropy and the Dirichlet form of f). — For
any density f w.r.t. p’, we denote by H(f) = E (f log f) the entropy of the density f.
Then, for any time t > 0, there exists a constant Ko = Ky(t, A, 3,() such that

1/t 1 [t
H (t/ f;Vds> < KoN? and D <t/ fsNds> < K.
0 0

Proof of Proposition 3.2.2. — The density f/ is solution to
{atftN = Lyt
o = dp" Jdus,

where L% is the adjoint of Ly in L2(u}). To clarify the proof, we divide it in a series

(3.8)

of steps.

3.2.1. Expression of the entropy production of the system. — The relative entropy of ul¥
with respect to the reference measure p, is given by

H(py | ph) =H(N) =E; (FN log £),

which is non-negative due to the convexity on [0,+oo[ of z — zlogz. According to
Equation (3.8), its time derivative is

(3.9) OH (f7) =By, (log SN Ly f}7) + G (L f)Y) -
The second term on the right-hand side is equal to
By (L f) =B £V LyT) =0,
since all constant functions are in the kernel of Ly. Equation (3.9) can be rewritten,
since L% is the adjoint of Ly in L?(u), as
OH (1) = By, (f I log fY)
Now thanks to the elementary inequality

(\/E - \/6)7

2
logb —loga < —
a

NG

we can control Ly log f~ by
2

7[/ ftj\]a
N

therefore, the definition of Ly yields

6tH(f£V)s—2N2D(f£V)+2NEz< fﬂﬁm\/ﬁ)wﬂfz( f#V%G\/E),
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where D is the Dirichlet form defined in Definition 3.2.1.

Integrating between the times 0 and ¢, we get
(3.10)

H 12w [ D () < B Ly [ B (Vi eva™ 4 205 ) as

Since the Dirichlet form of the symmetric exclusion process is non-negative, we now

t

focus on showing that the part of the entropy due to the weakly asymmetric part
and Glauber part do not grow too much in N, in order to get an upper bound on
the Dirichlet form D(f) and on the entropy H(uY | ul). From here, control over
the initial relative entropy should suffice to ensure that the measure of the active
exclusion process remains close to a product measure.

Bound on the entropy production of the asymmetric part of the dynamics. — by defi-
nition of the asymmetric dynamic,

o ( N fst)

| X M- )y @ (Vi ae - @)

z,5,0==+1

Despite the extra factor N, the jump rates of the weakly asymmetric dynamics are
not very different from symmetric exclusion process jump rates, which allows us to
estimate the quantity above in terms of the Dirichlet form. More precisely, thanks to
the elementary inequality

E(py) < vE(?)/2 +E(%*)/27,

which holds for any positive constant v, we can write with

o= = s (VI @ -\ @)

% = Xi(0:)4/ fY ()

and

that

o < N fsN>

< ¥ W + ;E* < o (1 = e, ) (\/ﬁ(ﬁx’”aei) - \/E(ﬁ)f)] '

z,i,0==+1

In right-hand side above, letting C = 4\? the first term can be bounded by C\ N? /27,
since the number of terms in the sum is 4N2, whereas the second sum of terms is
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vD(fN). We then let v = N to obtain the upper bound
(3.11) 2NE, < g™ ng> < CO\N? + N2D(fM).

Bound on the entropy production of the Glauber part of the dynamics. — thanks to
the elementary inequality ab < (a® + b2)/2, and since the jump rates c, s are less
than €84 /27, and 7, by 1

B (Ve i) =5 (Vi X e [ eston) (VG - i@ ) a

zeT%
e 1 3
< ]E* - N Ax,a _ N (=~ .
<=3 Q(Q/st (7°)d0 + 3 f! <n>)

z€T%,

Since E, (5= [ fN¥ (7™%)d6) = E, (fY), the expectation can be bounded from above
by 2, and we can therefore write, letting Cs = 2¢88 /1

(3.12) 2E* ( £y z‘\/ﬁ) < C5N?.

Bound on the Dirichlet form and on the entropy production. — at this point, we obtain
from (3.10), (3.11) and (3.12)

t
R | 1)+ N* [ D () ds < HGN | 13) +HCh + Co)N*.

By (3.7), there exists a constant K = K(E,a), such that for any N € N,
Hlog duN/duj;Hoo < KN?, and we can therefore estimate the relative entropy
of the initial measure u®¥ w.r.t. u’ by

(3.13) H(u™ | u) < KN,
We can therefore write
t
(3.14) O 1)+ [ N2D () < KN
0

where K(t) = K + t(C + Cp) is a positive constant. Since H(f) = E}(flog f) and
D(f) are both non-negative and convex, we can deduce from (3.14), that for some
time-dependent constant Ky = fot K (s)ds, we have

t t
(3.15) HC/ fSN> < KoN? and D <1/ fsNds> < K,.
0 0

This upper bound proves Proposition 3.2.2, and will be necessary in the next section
to apply the replacement Lemma 4.1.1 to the active exclusion process. O
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Before taking on the problem of irreducibility, we give a result that will be needed
several times throughout the proof, and comes from the entropy inequality. Let us

denote by 7%P=" the modified Glauber generator with uniform update of the angle
in S, (ie, 8 =0)
B=0 4/~ 1 o 7
2@ = Y g |GG - S@)a0
mJs
z€T%,
and denote in a similar fashion
(3.16) L1870 = N2 2P 4 %7,

which is the complete generator of the active exclusion process with random update
of the angles. Then, accordingly to our previous notations, ]P’f;’;o is the measure on the
trajectories started from p and driven by the generator Li,:O. We can now state the
following result.

ProrosSITION 3.2.3 (Comparison of Pf\ué and P:’;). — We endow Xy (resp. EES’T])
with the topology induced by the mapping ™ and the topology on M(T? x S) (resp.
W[O’T], cf. topological setup just before Section 2.3). There exists a constant Ko =
Ky(T, B, Z) > 0 such that for any bounded and measurable function X : EES’T] - R
and any A > 0,

1
520 [ (707)] = & (o s e (5 (2
where 71971 is the notation already introduced at the end of Section 2.2 for a trajectory
(M(t))tefo,1-
Proof of Proposition 3.2.3. — The proof of this proposition is rather straightforward
thanks to the entropy inequality. In a first step, we compare the same process starting
from p}. First note that for any function X : EE&T] — R, we can write

£ [x (707)] =53¢ (S @onx (7071 ).

This yields that
(3.17) E;\LN’B [X (ﬁ[O,T])] < % (H(HN | ) +logE,’)’f [exp (AX (ﬁ[O,T]))D .

In the entropy inequality above, Ef;](,@ is the expectation under the measure of the

process started from pu', whereas E:aﬂ is that of the process started from the stationary
measure [} .

By (3.13), the first term in the right-hand side above is less than K N2 /A for some
fixed constant K = K (E) Furthermore, the Radon-Nikodym derivative of the process
with alignment (8 > 0) w.r.t. the one without alignment (8 = 0) can be explicitly
computed. Given a cadlag trajectory 7l%7] ZE?]’T], consider 71,...,Tr the set of
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angle jumps between times 0 and 7', let us denote by x; the site at which the angle
changed at time 7, and by 6; = 0,,(7;) the new angle at site x;. Then, the density
between the measures with and without alignment is given by

R ~

-’ ~0,T]\ _ Ca,,8(05, (i) < 8BR
o @ =11 o)) ¢

Py Cz;,0 (617 77(7-1))

where R is the number of angle updates between times 0 and T'. To establish the esti-

i=1

mate above, we used that ¢, 5(6,7) can be uniformly bounded from above by € /27,
that ¢z 0(0,7) = 1/2m, and that regardless of the configuration and the inverse tem-
perature 3, each site updates its angle at rate 1(i.e., [, ¢z 3(0,7) = 1). We can now
estimate the second term in the right-hand side of Equation (3.17) by
1 A ]
1 log EN};O [eSﬂR exp (AX (n[O’T]))] .
Applying the Cauchy-Schwarz inequality yields that the quantity above is less than
1 2,0 2,0 ]
24 <log Eu:ﬁ [elGﬁR] + log ]EMZ& [exp (ZAX (n[O’T])ﬂ) .
Since the angle updates happen in each site at rate 1 except when the site is empty, we
can define on the same probability space as our process a family P, of i.i.d. Poisson
variable with mean 7', and such that R < ZmeTf\, P,. Thanks to the elementary
inequality
logE [61652“@% ] - T(e'% —1)N?,
we now only have to let

Ko(T, 5,() = 2K (Q) + T(e" ~ 1)
and replace A by 24 to conclude the proof of Proposition 3.2.3. O

3.3. Irreducibility and control on full clusters

Unlike the exclusion process with one type of particles, the multi-type exclusion
process is not irreducible when the number of particles is too large, namely when the
domain has less than one empty site. When all the sites are occupied for example, the
process is stuck in its current configuration, up to realignment, due to the exclusion
rule. At high density, we therefore lose the mizing properties we need to reach local
equilibrium. To illustrate this statement, consider a square macroscopic domain of
size eN, and on it a configuration with the bottom half filled with particles with angle 6,
and the top half filled with particles with angle 6’ # 0, and letting a finite number of
sites be empty, the mizing time of this setup is of order larger than N2 due to the
rigidity of the configuration. In order to reach equilibrium, an empty site needs to
“fetch” a particle and transport it in the other cluster, and so on, until the density is
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homogeneous for both types of particles. The scaling of our alignment dynamics, is,
furthermore, not sufficient to ensure sufficiently frequent realignment of the particles
to solve this issue.

In order to prove the scaling limit of a multi-type exclusion process, it is therefore
critical to bound the particle density away from 1. This issue was solved in [35] by
using the fact that the total density of the multi-type SSEP (the angle blind model)
follows the standard SSEP dynamics (with one specie). Thus the total density could be
controlled by the classical argument on the hydrodynamic limit for SSEP. In our case,
however, the total density does not follow the SSEP dynamics. In fact, it is not even
a Markov chain due to the asymmetric parts which depend on the angles. A different
argument is required to control the evolution of the total density, which is the purpose

of the subsection.

In the general setup where the number of types of particles in a domain B can
reach |B| (which will often be the case when particles take their angles in S), it is
known that the exclusion process with |B| — 1 particles is no longer irreducible, as a
consequence of a generalization of the n-puzzle (cf. Johnson & Story, 1879, see [27]).
We therefore need to consider only the local configurations with two empty sites, on
which the exclusion process is irreducible regardless of the number of types of particles,
as stated in the following lemma. For any integers a,b € Z, [a,b] = {a, ..., b} denotes
the segment of integers between a and b.

LEMMA 3.3.1 (Irreducibility of the displacement process with two empty sites). —
Consider a square domain B = By(x), and two configurations 7, 7 two configurations
with the same types and number of particles in B, i.e., such that

> nebe, = > muda.

zEB zeB
Further assume that the number of empty sites in n and 1’ is at least 2. Then, there
exists a sequence of configurations 1°,..., 0", such that n° = 7, 7™ = 7, and such

that for any k € [[0,n—1]], 7%+ is reached from §* by one allowed particle jump, i.e.,

Shtl _ (ﬁk)lk,ﬂ%-i-zk

n , and n’;k+Zk:1—n’;k:0 and |z | = 1.

Furthermore, there exists a constant C such that n < Cp?.

Proof of Lemma 3.3.1. — The proof of this statement is quite elementary. Fix a con-
figuration 7 € X on a rectangular domain B with two empty sites, and let a =
(a1, az) be an edge in T%,. We are first going to prove that %% can be reached from
7 using allowed particles jumps. Notice that according to the exclusion rule, we can
consider that any empty site is allowed to move freely by exchanging their place with
any site next to it.
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New position of the two empty sites

Initial positions of the two empty sites

Fi1GURE 1. Reaching 7%*'*2 from 7 .

We first bring ourselves back to a configuration described in Fig. 1, where the
two closest empty sites are brought next to the edge a. More precisely, we reach a
configuration where the two empty sites and the two sites a; and a5 are at the vertices
of a side-1 square. From here, we are able to invert the two particles in a; and as by a
circular motion of the four empty sites along the edges of the square, and then bring
back the empty sites along the paths that brought them next to a to their original

nai,

location. Doing so, one reaches exactly the configuration 7%*:%2 from 7} with allowed

particle jumps in B.

We deduce from this last statement that for any pair of configurations 77, ’ with the
same particles in B, )’ can be reached from 7 with jumps in B since the transition can
be decomposed along switches of nearest neighbor sites. The process is thus irreducible
on the sets with fixed numbers K of particles, as soon as K is smaller than |B| — 2.
Furthermore, this construction ensures that any two neighboring particles can be
switched with a number of particle exchanges of order p where we denoted by p the
size of the box. Since one needs to invert 2p pairs of particles at most to move one
particle to its final position in 77, this proves the last statement. U
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We now prove that large microscopic boxes are rarely fully occupied under the
dynamics. Let us denote by E, , the event

(3.18) Ep. = Z ny < | Bp(2)| =2 ¢,
yEBy ()

on which the box of size p around x contains at least two empty sites. When the site
x is the origin, we will simply write £, instead of E, . In order to ensure that full
clusters very rarely appear in the dynamics, we need the following lemma.

PROPOSITION 3.3.2 (Control on full clusters). — For any positive time T,

(3.19) lim lim Ef / Nz Z 1ge  (t)dt | =0.

p—oo N—oo ut
z€T%,

REMARK 3.3.3 (Scheme of the proof). — We first sketch the proof in a continuous
idealized setup to explain the general ideas before giving the rigorous proof. To prove
that the box of microscopic size p is not full, setting p’ = (2p+1)? the cardinal of By,
it is enough to prove thanks to the microscopic setting that

// pf/(u)dudt — 0,
[0,T] x T2 P00

where p;(u) denotes the macroscopic density in u at time ¢.
We expect the total density p to follow the partial differential equation
(3.20) Op=Ap—V - (m(1-p)),

where m is an a priori random quantity representing the local direction of the asym-
metry, which can be represented as the vector field which would satisfy at any time ¢
and for any smooth function H : T2 — R

H(u)my(u)du = lim % Z H(z)na (1) (cos(%(t))>.

T2 N—oo sin(0,(t))

Naturally, making sense of this quantity is not obvious, and it is not our purpose in
this paragraph. For now, we carry on with our heuristic presentation, and therefore
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assume that (3.20) holds true. We can therefore formally write, letting ¢(p) = 1/(1—p)

o [ otpodu= [ () (A= V- (me1 = pi))] du

= [ "0 [-(V0? 4 me1 = p) ]

(th)2
2

(3.21) <[00 |~ + T2 4 2, 1 - p?)

< [ llmil (0 = pPdu=2lml% [ olp)du

One could then apply Gronwall’s Lemma to obtain that for any time t,

$(pe)du < ™It [ (pg)du.
T2 T2

Furthermore, for any time ¢,

1 1-6
P(pt)du > */ Lipi>1-6} +/ Lip<i-sy = —— | Lpzi-sp+ 1
T2 0 T2 T2 ) T2

therefore, for any time t,

5 .
, < 2\|muwt/ _ ,
(3.22) /T sy S 7 [e [ oloo)du—1| =0

As a consequence, for any time ¢, we could therefore write

(3.23) // pf/ (w)dudt < T(1 — §)" + // 1o, >1-5}-
[0,T] T2 [0,T]x T2

The first term in the right-hand side vanishes for any fixed § as p’ — oo, whereas the

second becomes as small as needed letting 6 — 0.

Since our macroscopic density does not verify Equation (3.20), however, the oper-
ations above need to be performed in a microscopic setup. The derivation of Equa-
tion (3.22) is the purpose of Proposition 3.3.4. Two intermediate Lemmas 3.3.5 and
3.3.6 prove the microscopic equivalent of Equation (3.21).

Before giving the proof of Proposition 3.3.2, which is postponed to the end of the
subsection, we give first the following estimate.

PROPOSITION 3.3.4 (High density estimate). — Denote

1
PeN = 5N + 1 >

ly|<eN

the average density in a small mesoscopic box centered at 0. For any positive 0 < §’' <
1/2, and any time t > 0, we have the bound

. . 1
(3.24) hmsuphmsupEﬁ}é3 N2 Z Lo ponm>1-or/2y | < §'C,

e—0 N —o0 HJGT?\,
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where C' is a finite constant depending continuously on t, and also depending on the
asymmetry A, and the initial profile C.

Proof of Proposition 3.8.4. — For any small § > 0, let us denote by ¢s the application
d)é : [O,1+5/2] — R+
1
_—_—.
1+0—p

Note that all successive derivatives of order less than k of ¢5 are positive (and in-

p

creasing) functions, and all are bounded by Cj/§**! for some family of universal
constants (Ck)g>o0-

We now fix a C! function H : T? — R, and assume that Jp2 H(u)du = 1. For any
u € T2, we denote by H, the function

H,:v— H(u—v).

In order to simplify the notations, for any configuration 77 € X, and given its empir-

ical measure

. 1 zT—y
(3.25) PG = < Hos = o 3 1 (S ) o

yeT?,

, we shorten

In some cases, this quantity could be larger than 1, so that we need to take further
precautions. For any fixed 6 we will therefore assume that N is large enough for the
condition ) 5

w2 2 H@/N) <1+,

z€T%,

to hold, which is possible because we assumed that H is smooth and fm H(u)du = 1.
Note that this restriction to N large enough is not an issue, because in all what
follows, H will be fixed and N will go to co.

For N large enough, the density pY* (7)) is now in the domain of ¢s, we now write

1 N 1 _
(326)  OEW | 55 D ¢ (@) | =B | 55 Do Lwvos (2" (@) |

z€T?, z€T3,

where Ly is the generator of the complete process Ly = N2Z + NZ" + Z°. Our
goal is to apply Gronwall’s Lemma to the expectation in the left-hand side, therefore

we now need to estimate the right-hand side.

N,H)’

Since pYY*# does not depend on the angles of the particles, neither does ¢s (pw

and the contribution of the Glauber part 7% of the generator Ly in the right-hand
side above vanishes. The two other parts of the generator together yield the wanted
bound, and are treated in separate lemmas for the sake of clarity. As mentioned earlier,
these two lemmas are the microscopic equivalent of Equation (3.21).
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LEMMA 3.3.5 (Contribution of the symmetric part). — There exists a sequence
(en (6, H))nen depending only on 6 and H, vanishing as N — oo, and such that for
any configuration € L

(3.27)

05 (Paie, ) + 5
> Zos () @< - Y aGi )2 v )(pivﬁi—pz ) (3) + e (6, H).

z€T%, z€T3
i=1,2

LEMMA 3.3.6 (Contribution of the asymmetric part). — There exists a sequence
(cn (6, H))Nen depending only on § and H, vanishing as N — oo, and such that
for any configuration n € Xy

(3.28) Z:Zi s (p2°7) (@)

zGTz

cy {i o5 (inJ’rIéIi) ;r oy (pH) (Piv+1i pi“{)Q . 4,\2(;5(;\7(55,}1)} )+ ),
xeTi, =1

Proof of Lemma 8.3.5. — By definition of the symmetric part of the generator Z,

> Zos (@) = D Z (nymyee,=0} (D6 (02T (@VT)) = b5 (0277 ()] -

zeT% z,y€T%, i=1

We now develop the gradient of ¢ to the second order, to obtain that the right-hand
side above is equal to

) Zl{nymel_m[%( H @) (o () — pNH ()

xyéjl‘? =1

# B0 2D (e @) o (24 ) - 2 @)) |

Note that since the successive derivatives of order less than k of ¢s are uniformly
bounded on [0,1] by Cj/é*, the vanishing quantity o ((in,H(ﬁy,erei) _ in,H(ﬁ)f)

can be bounded uniformly in 7, z,y and ¢ (but not uniformly in §). Since H is a

e (552) - (3)]

smooth function,

| o @ ete) — o (@) | =

N2
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is of order N~3, the contributions of the second line above are therefore at most of
order N~2 and vanish in the limit N — oo. This yields

(3200 Y Zos (o)

xGT%
= > o5 (N @) > Zl{nm oy (P H @ vrery — pNH (@) + on (1),
zeT3, y€eT?, i=1

where oy (1) is less than a vanishing sequence (ck;)ven depending on § and H only.
Since for any z € T2, H, (v + z) = H,_.(v), the definition of pY-¥ yields

Lnymyse =03 (o2 T (@) — pp 7 (1))

= %(ﬁy — Ty+e;) (Hw/N (y Xfei> = Hayw (Jz\jf))
(e (2) v ()

1 y+e y+ei
N2l (Hw/N< N >_Hz+ei/N< N1>>'

Summing the quantity above over y, one obtains exactly pw e H pw +e —2pN-H_ This

is the discrete Laplacian in the variable = of p)Y** and a discrete integration by parts
allows us to rewrite the first term on the right-hand side of Equation (3.29) as

2
= 303 (5 (024) — @b (o)) (o4 — o).
zeT?, i=1

We now write

(5 (o22) = 5 (o2))

( 5 (pere ) + ¢g (pIzV’H))
i N,H N,H ,
= 2 (pm—Q—el in,H) +o0 (p:t—ﬂ—ei - p:]nv H) )

in which p)/ — pN# is of order 1/N because H is a smooth function, to finally
obtain that

(3.30)
2 95 (Prie; ) + b5
S Zas (o) »> 4 *> o )(pivﬁi—pz )" 1 on (1),
zeT?, €T3, i=1

where once again, the ox can be bounded by a vanishing sequence (cy)y depending
only on d, which completes the proof of Lemma 3.3.5 O
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Proof of Lemma 3.8.6. — This proof follows the exact same steps as for the previous
one. We first obtain by definition of 7™ and developing the discrete gradient of ¢
that

(3.31) ZEZ o5 (o)

xGTZ

2
1 N . . R
D5 2 2 (mdl)es (o7 @) (2 @) = o (i)
z,y€eT?, i=1
where ]Z)" is defined according to Equation (2.15) as
32 (@) = Ai(Bo)no(1 = 7me,) — XilBe, e, (1 — m0),

and oy (1) is less than a vanishing sequence depending only on § and H. Once again,
similar steps as in the previous case allow us to rewrite

(ryg) (2 @rrtes) — poH 7))

M) (1 yses) & MOy )y e (1~ (

ﬁ[ z/N (

1 y+e;
:ﬁ)\iwy)ny(l — Ny+e;) <Hz/N ( N > z/N >
i (

1 yt+e; Y
b i Ose e (=) (Hopn (D55 = Hopw (%)

1 y+e yte
=ﬁ)‘i(9y)77y(1_77y+6i) (HﬂC/N( N ) = Hogeun N ))

Y Y
M Opredmyred (=) (e () = Hopw ()
Summing once again by parts in x, we obtain that the second term in the right-hand
side of Equation (3.31) is

Do D ma)es (o2 @) (2 @) - piH (@)

z,y€eT?, i=1
N3 Z Z |:¢6 (pz-i-el ) ¢5( ( ))]
z€eT?, i=1
X GZW [M(Gy)ny(l — Nyte;)Hoye, /N (y X]ei> + Ai(Oyte )Myte; (1 —ny)Hy /N (i{)]
yein
(3.32)
= 81 + S,
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where
Z i[m GO RAOIDY {Aiwy)ny(l_nm)HMi/N<yj+vei>}
€Ty =1 yeT%

and

Sy = N3 Z Z {% (pm+e ) 5 (oY (7 ))} Z [)"'(ey+ei)77y+ei(1—ny)Hm/N (%)}

z€eT?, i=1 y€eT?,

These two terms are treated in the exact same fashion, we therefore only treat in full
detail the case of Sy, Sg will follow straightforwardly. First, we develop the difference

P (Piviez( )) — ¢% (pYH (7)) to the first order,

N,H N,HY _ N,H N,H N,H
¢:$ (p:c+ei) - ¢:$ (pm ) = ¢5 (px+el> (pm+ei ~ Pz ) (pm—&-el - px ) :
Once again, H being a smooth function, pivjji — pNH is of order 1/N, therefore
the o (pivfj — inH) is also a on(1/N), and the corresponding contribution in S;

vanishes in the limit N — oo. Recall that ¢§ is a positive function, we now apply
in S; the elementary inequality ab < a?/2 + b%/2 to

N,H N,H N,H
a = ¢:§l (perei) (p:l:+e1 - pz )

b= %\/Jg (pi\f_ﬁll) Z [)\i(ey-i-ei)ny-i-ei(l - ny)Hw/N (%)} :

yeTy

and

This yields

|-¢I/ (pz+e7_ 2
|S1]<on(1)+ Z ) (Pivfi PiV’H)

2
//(
pm+ez) Yy +e;
+ 2IN6 Z )‘ 77y(1 MNy+e; )Hz+e7/N( N )
yeT?,

The function H being non-negative, for any y, we can write

y+e; y+e;
Ai(ey)ny(l - 77y+ei)Ha:+ei/N ( N > < )\(1 - 77y+ei)Hm+ei/N < N ) .

Furthermore, since we assumed that fTQ H =1, and since H is smooth, we get that

1
Nz 2 Hon(w/N)=1+on(D),
yeT?,
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which yields

y+e
37 MO e e (D2 ) | <20 - 8) +ox (1)
yeT?,

This, combined with the previous bound, yields that

6 0EE) (e, 210

|Sl|<oN1)+Z |- w+el_px

el

)2
‘ 2N?2 e, J
zeTy
1:1,2

A similar bound can be achieved for Ss, this time developing the difference

N,H . N,H
05 (p21) = 0% (M) in plH imstead of p%,

" N,H 2 111 N,H
6(/%’ ) N,H N> A o5 (pz’ ) N,H\2
52| < on(1) + §T2 lQ (Xl o2 7) 4 S el
zely
i=1,2

Combining these two bounds with identities (3.31) and (3.32), we obtain that

1
N Z zm% (PiV’H)

zeT?,
oy (0272) + 0 () 2 X2y (o)
g N,H 5 \P
<Y 2 (245, =) 4 S = 2 o),
€T
i=1,2

where the oy (1) can be bounded by a vanishing sequence (¢y)n depending only on H
and 4. One easily obtains that for any non-negative § and any p € [0,1+ §/2],

(1 - )¢5 (p) < 2¢5(p),
thus concluding the proof of Lemma 3.3.6. U

We are now ready to apply Gronwall’s Lemma and complete the proof of Proposi-
tion 3.3.4. For that purpose, let us define

a(t) =B [ 3 3 05 (7 (0) |

z€T%,
according to the previous Lemmas 3.3.5, 3.3.6 and to Equation (3.26), there exists a

sequence ky = cy + ¢y depending only on § and H, verifying

kN — 0
N—o0

and such that
0, ®(t) < 4N2®(t) + k.
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Since ¢5 is bounded from below by 1/1 + §, ®(¢) also is, and therefore
9P (t) < (AN° + kn(1+6))@(2).

Gronwall’s Lemma therefore yields that for any non-negative t,

1 1 2
A, ) A, 5
BV | 3z 2o @ (2" 0) | SEQ | 5 Do 0 (20(0)) | e RO,
zeT%, z€T3,
where this time the right-hand side depends on the trajectory only through its initial
state 77(0).
Fix a small §' > 0. ¢s being a non-decreasing function bounded from below

by 1/1 + 6, one can write for any p € [0,1 + §/2]

1 1 1-4 1
9s(p) 2o ey ey 75 = (1+8)(0+0d) Lo>1-0y + 75

We apply this decomposition to the left-hand side of the inequality above, to obtain
that

1
A8 §
(333) ENN ﬁ l{piv’H(t)>1—5'}

zeT%,

(1+0)(6+¢") [ a1 N.H (A2 ke (140))t 1 -|
Sy B 2 b)) e g
zeT%,

Coming back to the Definition (3.25) of p*¥ for any smooth non-negative func-
tion H with integral equal to 1, taking the limsup N — oo, we thus obtain from

Equation (3.33)

1
. A8
(3.34) hmsupEMN N2 Z 1{p§vH(t)>1—5'}

N
—ee zeT%

< limsup LTOC+) [

1 ) 1
U [Ei’f = 3 & (027 (0) em_l}

! +
z€T%,

Fix a small ¢ > 0, and let us denote for any u,v € T?
1 1
H®(v) = @1[—5,%]2(”) and Hj(v) = @1[—5,%]2(” - u).
Recalling that p.n(t) is the empirical density in a box of size eN around the origin
at time ¢, we can then write

(QEN)Q N,H¢ N,H®

Tapen (t) = mpm =p" +on(1).
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At this point, we want to apply Equation (3.34) to H = H¢, which is an indicator
function, and thus need to be smoothed out. For that purpose, consider a sequence
(H;)ien of functions such that

— VieN, Vu € T?, Hf(u) > 0 and sqlr12p Hf = Sqlrl2p He =1/(2¢)%.

— VleN, Hf € C'(T?) and [, Hf (u)du = 1.

— Hf(u) # H*(u) = ¢ — 1/l < ||lul|, <e+1/L
The existence of such a sequence of functions is quite clear and is left to the reader.
In particular, the last condition imposes that

16¢
I 1=/ Lagwyzhewdu < =
T2

which is the area of the crown on which the two functions may differ. The sequence Hf
converges for any fixed ¢ towards H® in L!(T?). Furthermore, notice that for any
z € T%, since both the Hf’s and H® are bounded by 1/(2¢)2,

Hiaw (5) = Hiw () |
yely

16e 8
< (1E 4 ow ) (U7 + 17110) = 5+ o),

N,Hy N,H® 1
pz’ =Py ’ < %3 Ty
N 2

where the last line represents the proportion of sites of the discrete torus in the crown
around v = /N on which H /N and H; /N can be different. The last observation
yields that for any = € T3, we can write

: 8
rapen(t) = o2 (1) | < 5+ on (),

where the oy (1) can be chosen independent of 77 and z. Fix € > 0 and consider Ny
and [y such that for any N > Ny and any [ > [,

N,H® 8
rapen(t) = o2 (1) | < 5

For any such pair I, N, we therefore also have

Lrepen>1-072y < 1{p5”’f (t)>1_6/}.
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For any [, by our assumptions, Equation (3.34) holds for H = H} for any positive
d and ¢'. For any [ > Iy, we can therefore write

. 1
(3:35) lmsup Bl | 5 D Ly 1-5/2)

N —o0
zeT%,

. (1+5)(5+6/) A8 1 N,Hy ANt 1
< ~ 7/~ 7 ’ - ) R
= hfvnffop 1-¢ EN | 3z ;TQ 2 <p v (0)) € 146
rely

Recall that under ]P’z}f, the initial configuration 7(0) is distributed according to a
product measure fitting the initial profile { defined before (2.7). By law of large
number, and since ¢s is smooth on [0,1 + §/2], we therefore obtain for any v € T?

. N,Hf

timsup B3 (65 (%) (0))) = 05 (¢ HE (),

where | Nv| = (| Nv1], [Nvz]) € T% and “x” denotes the convolution operator on T2.
By dominated convergence theorem, we thus obtain

1 e
B e 2 0 (2 0) | —— [ 65 (¢ HE (@) dv.

. N—o0
zeTy%,

Since ¢ and satisfies (2.7), it is bounded away from 1 uniformly on T2, ¢ * Hf is
also bounded away from 1 uniformly in &, and therefore

s (¢ Hi(v)) < C7,

where C* = C*(() is a constant which does not depend on [, &, v or §. Letting now ¢
go to 0, we obtain from (3.35) and the limit above that for any € > 0 and any time ¢,

: 1 ¢’ 2t oo
lim sup E ~3 E Y pent)>1-67/2y | < -(e?rer - 1),
N —o0 " N 1-46
z€T%,
which concludes the proof of Proposition 3.3.4 since we assumed ¢’ < 1/2. O

With the estimate stated in Proposition 3.3.4, we are ready to prove Proposi-
tion 3.3.2.

Proof of Proposition 38.3.2. — First notice that in order to prove (3.19), it is sufficient

to prove it both for F}, , and F) , instead of Ej ,, where
Fpo= Z ny = | Bp(z)| p and F;?,a:: Z My = | Bp(z)| — 1
yEB, () yEBp(x)

We focus on the first case, the second is derived in the exact same fashion.
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Unlike in [35], the angle blind process’s macroscopic density does not evolve ac-
cording to the heat equation because of the weak drift. However, thanks to the bound
(3.15) on the entropy of the measure Y w.r.t. the reference measure p¥ and on the
Dirichlet form of the density £/, local equilibrium holds for the angle-blind process.
As a consequence, the replacement Lemma 4.1.1 holds for functions independent of
the angles (cf. for example [28], p. 77). One therefore obtains that to prove

T

(3.36) Jim Tim B /0 % > 1p,,(s)ds | =0,

zeT%,
one can replace 1g, () by its expectation under the product measure with parameter
TzPen (8), namely .

Erpen(s)(1F,.) = [Topen(s)]”
where p’ = (2p + 1)? is the number of sites in B,.
To prove Equation (3.36), it is therefore sufficient to prove that V¢ € [0, T7,

’

1
(3.37) lim limsup limsup EMY ~3 Z [Tepen(t)]? | = 0.
p'—00 0 N—oo b N T2
TelN
To prove the latter, since p.n(t) is at most 1, one only has to write, as outlined in
Equation (3.23),
1 v p a1
3z 2 [epen@®F | <=0 + B0 | 15 D Lrepnv>1-9) | »

ze'ﬂ‘?\f GEGT?\,

A,
Euﬁ

which holds for any positive §.

For any fixed § > 0, the first term on the right-hand side vanishes as p — o0,
whereas the second does not depend on p and we can therefore let § — 0 after N — oo,
then ¢ — 0, then p’ — oo. Since the right-hand side of Equation (3.24) vanishes
as &' = 2§ goes to 0, the left-hand side also does, and (3.37) holds for any ¢ thanks to
Proposition 3.3.4. This proves Equation (3.36), and the equivalent proposition with
F;/;,x instead of Fj, , is proved in the exact same fashion, thus concluding the proof of
Proposition 3.3.2. O
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CHAPTER 4

LAW OF LARGE NUMBERS
FOR THE EXCLUSION PROCESS WITH ANGLES

4.1. Replacement Lemma

Our goal in this section is to close the microscopic equations and to replace in the
definition of the martingale MV introduced in (2.12) any cylinder (in the sense
of Definition 2.1.1) function g(n) by its spatial average E;_, (g), where p.n is the
empirical angular density over a small macroscopic box of size eN. We use this section
to introduce mew useful notations. The proof of the main result of this section, the
Replacement Lemma 4.1.1, follows closely the usual strategy (c.f. Lemma 1.10 p.77
of [28]), however it requires several technical adaptations due to the nature of our
canonical and grand-canonical measure. In particular, we will need the topological
setup and the various results obtained in Section 3.

Consider a cylinder function g € C, and [ a positive integer. Recall from (2.20)
that (g)} is the average of the translations of g over a box of side 2/ + 1 centered at
the origin. Recall from Equation (2.21) and Definition 3.1.1 that the empirical angular
density p; over the box B; of side 2/ 4 1 is the measure on [0, 27]

N 1
1= T 206, -
7B ZU

r€B;
Define
(4.1) V(@) = (9(@))6 — Ep (9) and W (H) = 9(7) — Ez(9),
and for any smooth function G € C(T?), let
~ 1
(4.2) xXWN@,p) = 2 > G(z/N)7 W'
zeT%
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We first state that under the measure of active exclusion process, one can replace
the average of g over a small macroscopic box by its expectation w.r.t. the grand-

canonical measure with grand-canonical parameter p.y.

LEMMA 4.1.1 (Replacement Lemma). — For every § > 0, we have with the notation
(4.1)

limsuplimsupIP’ 2B / Nz Z T

e—0 N—oo 611‘2

VN (7 ‘dt>6}_0

The proof is postponed to Subsection 4.2, and requires the control of the full clusters
stated in Proposition 3.3.2. For now, we can deduce from this lemma the following
result, which will allow us to replace in (2.19) the currents by their spatial averages.

COROLLARY 4.1.2. — For every 6 > 0, and any continuous function
G:[0,T] xT? - R
(t,u) — Gi(u),
we get with the notation (4.2)

/ " XN (G, ()t

0

lim sup lim sup IP’/);](? l

e—0 N—oo

-1 -

Proof of Corollary 4.1.2. — Recall that ¢ — 0 after N — oo, which means that the
smoothness of G allows us to replace in the limit G(z/N) by its spatial average on a
box of size e, which is denoted by

1
GN(z/N) = ——— G(y/N).
@)= oy 2 Cw/N)
yEB:n(z)
More precisely, we can write, using notation (2.20) for the local averaging, and since
g is a cylinder, hence bounded, function,

T T
1
lim sup Gi(z/N)1pg9 dt = hm sup lim sup — GN(x/N)1yg dt
N2 ¢
0 0

N —o0 N—oo

zeT?, zeT%,
(4.3) = lim s(l)lp li]{]n sup/ Nz Z Gi(y/N){(g EN dt,
e— —00 y€T2

where the average (g)5" is defined in Equation (2.20).

As a consequence, T,g can be replaced by its average <g)§N . Note that

V@) = W@ + (95" -9,

Y
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and that the replacement Lemma 4.1.1 implies in particular that for any bounded
function G € C([0,T] x ’]I‘z)

lim sup lim sup PAﬁ / N2 E Gyi(z/N)r VN (((1))dt | > 5} =0.
e—0 N—
z€T%,

Therefore, thanks to equality (4.3), Corollary 4.1.2 follows directly from Lemma 4.1.1.
O

4.2. Proof of the replacement lemma

In order to prove the replacement Lemma 4.1.1, we will need the two lemmas below.
The first one states that the average of any cylinder function (g(7}))} over a large
microscopic box (a box of size [ which tends to infinity after N) can be replaced by its
expected value w.r.t. the grand-canonical measure whose parameter is the empirical
density Ez, (g).

The second states that the empirical angular density does not vary much between
a large microscopic box and a small macroscopic box. We state these two results,
namely the one and two-blocks estimates, in a quite general setup, because they are
necessary in several steps of the proof of the hydrodynamic limit.

LEMMA 4.2.1 (One-block estimate). — Consider a € |0,1[ and a density f w.r.t. the
translation invariant measure p’, (cf. Definition 8.1.4) satisfying

(i) There exists a constant K such that for any N

H(f) < KoN? and D(f) < K.

1
(4.4) lim lim E} fﬁ Z 1ge, | =0.

p—00 N— o0
zeT?,

Then, for any cylinder function g,

1
lim sup lim sup E, fﬁ Z V| =0,

l—o00 N—oo
zeT?,

where V' was defined in (4.1).
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LEMMA 4.2.2 (Two-block estimate). — For any a € 10, 1[ and any density f satisfying
conditions i) and it) of Lemma 4.2.1,

. . . « 1 ~ N
lim sup lim sup limsup sup EJ N2 Z | TotyPt — TPen |I|If ] =0,

l—oo e—0 N—oo yEBcn ze'ﬂ'?\,

where T,py s the local empirical angular density in the box of size k centered in z
introduced in (2.21).

The proofs of these two lemmas will be presented resp. in Section 4.3 and 4.4. For
now, let us show that they are sufficient to prove the replacement Lemma 4.1.1.

Proof of Lemma 4.1.1. — Lemma 4.1.1 follows from applying the two previous lemmas

1 T

where fN = dul /du?,, defined in Section 3. 2 is the density of the active exclusion pro-

to the density

cess at time ¢ started from p”V, and prove that Lemma 4.1.1 follows. Proposition (3.2.2)
proved that 7¥ satisfies condition ) of Lemma 4.2.1. Furthermore, ﬂ also satisfies
condition ii)
Jim i B (T Y 1 | =
z€T3,
thanks tz(\)r Proposition 3.3.2, thus the one-block and two-blocks estimates apply
to f=fr.

Now let us recall that we want to prove for any § > 0

lim sup hm sup IP”\ o / Nz Z Tz

e—0

VN @ ’dt>5 =0,

where
V@) = (9@ — Ep.n (9)-

Thanks to the Markov inequality, it is sufficient to prove that

lim sup hm Sup IEA o / Nz Z Te

e—0

VN (7 dt-l =0.
]

=N
We can now express the expectation above thanks to the mean density fp. Since T is
fixed, to obtain the replacement lemma it is enough to show that

N1
(4.5) lim sup lim sup E, fgﬁ Z Ta GZ)SN(ﬁ)‘ —o.

e—0 N—o0 IGT?\]
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l
T

For any function ¢(.) on the torus T%, recall that we denoted in (2.20) by (»(.))
the average of the function ¢ over a box centered in x of size [, and that 7,p; is the
empirical angular density in a box of size | centered in y defined in (2.21). Let us add
and subtract

eN 1

<<9(?])>6—Eﬁz(9)>0 = @2eNt1)2 Z {(214_11)2 Z Tyg — Eupl()}

r€EB:N z |<1

inside ‘ 6ZJEN(?]) ‘ We can then write thanks to the triangular inequality

‘6051\1 A)‘ <(zleN+%leN+ZlaN)( ),

where

l,eN 1 1
L T (2N +1)2 2 |7 20 +1)2 2. T

zEB:N ly—z|<l

is the difference between g and its local average,

l,eN 1 1
’ o —— ET P~ —_— —
2 (2eN + 1)2 Z -7 (9) (21 +1)2 Z w9

r€B:N ly—z |<I

is the difference between the local average of g and its expectation under the product
measure with parameter the local empirical angular density p;, and

LeN 1
S =GN 2 |Eral@) Bl

z€B:N
is the difference between the expectations of g under the empirical microscopic and
macroscopic empirical angular density p; and p; -

Let us consider the first term, N™2 > 7, Z4=N Al the terms in Zy°" correspond-
ing to the x’s in B, _; vanish, since they appear exactly once in both parts of the
sum. The number of remaining terms can be crudely bounded by 4¢ NI, and each term
takes the form 7,g/(2e N + 1)2. Hence, we have the upper bound

x l,eN Ki_.,
Ea fTN2 Z fZE <7E fTN2 ZTIK|9|
z€T3, zeT%

Since g is a bounded function, this expression can be bounded from above by

Bl (7)) = c(te,g1on 1),

which proves that

lim sup lim sup E}, ﬁ Z Ty lEN N =0.

e—0 N—o0 I€T2
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Now since

1
Z (25N+1)2 Z Tyg = Z Tz4,

zeT3, YEBen () zeT%

the two following terms can respectively be rewritten as

=N 1 . L[N 1
46 Ei|Ffram 2 w@ ™| =B Fram O 7 |Eale) — (9)b)

zeT%, zeT%,
and
* l N *
@) B fam X nh™ ) =B [ g O 1Ean() - Ean(9)]
z€T2 w€T2

The quantity (4.6) vanishes in the limit N — oo then | — oo thanks to the one-block
estimate stated in Lemma 4.2.1.

Finally, according to Definition 3.1.2, (4.7) also vanishes thanks to the two-block
estimate of Lemma 4.2.2 and the Lipschitz-continuity of the application

Uy (M9l -1I) =R
a— Ez(9),

which was proved in Proposition C.2.1. The Replacement Lemma 4.1.1 thus follows
from the one and two-blocks estimates. O

In the next two Sections 4.3 and 4.4, we prove the one-block and two-block esti-
mates. The strategy for these proofs follows closely these presented in [28], albeit it
requires some adjustments due to the measure-valued nature of the parameter of the
product measure g and the necessity to control the full clusters.

4.3. Proof of Lemma 4.2.1: The one-block estimate

The usual strategy to prove the one block estimate is to project the estimated quan-
tity on sets with fized number of particles, on which the density of f should be constant
thanks to the bound on the Dirichlet form.

To prove the one-block estimate, thanks to the translation invariance of u}, it is
sufficient to control the limit as N goes to oo, then | — oo of

1 _
B | fom 2o =V | =EL(VD),

2
zeTy,
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where f = N72 Z’]T?\, 7. f is the average over the periodic domain of the translations
of the density f. Furthermore, define s, a fixed integer such that g is measurable
w.r.t. (7z)zeB,, - We introduce for I larger than s,

o ~\[l—s
V = {g@) " ~Eplg) = V +or(D),
where the 01(l) vanishes uniformly in 7 as | — oco. Proving the one block estimate

—~1 —~1
for © instead of 9 is therefore sufficient, and %) depends on the configuration only
through the sites in B;.

We first eliminate the configurations in which the box B is almost full. Notice that

the average /G\Zjl is bounded because g is a cylinder function. We can therefore write
EL(VF) < EL(V 16 ) + C@)EL (e,
where FE; is the event on which at least two sites are empty in B, defined after
Equation (3.18), and Ef is its complementary event. The second term in the right-
hand side vanishes by definition of f, because f verifies (4.4), and it is therefore
sufficient to prove that
lim sup lim sup E}, (@l 1z f) =0.
l—o0 N—oo
Furthermore, the convexity of the Dirichlet form and the entropy yield that condi-
tion (i) of the one-block estimate is also satisfied by f. Since ’G\Zjll g, depends on 7 only
through the 7),’s in the cube B; we can replace the density f in the formula above by
its conditional expectation f,, defined, for any configuration 7' on B; by

f1@) =EL(f | fe =7,, © € By).
For any function f depending only on sites in B; let Ef ; be the expectation with

respect to the product measure u}, over B;. With the previous notations, and in order
to prove the one-block estimate, it is sufficient to prove that

—~ _
lim sup lim sup E7, ; (GU 1Ezfl) <0.

l—oo N—o00

In order to proceed, we need to estimate the Dirichlet form and the entropy of f,
thanks to that of f, and prove the following lemma

LEMMA 4.3.1. — We have the following bounds
(4.8) Dy (f) <CU)N~? and H(f)) <C(l).

Proof of Lemma 4.3.1. — Estimate on the Dirichlet form of f,. — We denote by L,y
the symmetric part of the exclusion generator corresponding to the transfer of a
particle between x and y

Loy f@) = (ne —my) (fF @) — F (@),
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and by D®Y the part of the Dirichlet form of the exclusion process corresponding

to Ly y

D= (f) = ~Es (VI ZouV/T) -
With this notation, we have
Y. D™U(f)

|z—y|=1
where D is the Dirichlet form introduced in Equation (3.6). We denote in a similar
fashion the Dirichlet form restricted to the box of size [ for any function & depending
only on the sites in B; by

DPY(h) = —E7, (\/Ezzw,yx/ﬁ) :

Since the conditioning f — f; is an expectation, and since the Dirichlet elements D;"?
are convex, the inequality

DyY(f) < D™¥(f)
follows from Jensen’s inequality. We deduce from the previous inequality, by summing
over all edges (z,y) € Bj, thanks to the translation invariance of f, that

> D(f)=202+1 ZDO% ~ @ p ),
(z,y)€B; N

where D; is the Dirichlet form of the process restricted to the particle transfers with
both the start and end site in B;. Up to this point, we have proved that for any
function f such that D(f) < D(f) < Ky, we have as wanted

(4.9) Dy(f,) < C1())N~2

Estimate on the entropy of f,. — Recall that we defined the entropy H(f) =
EX(flog f) and that we already established H(f) < KoN2. Let us partition T?%
in ¢ := | N/(2l + 1)|? square boxes B! := Bj(z1),...,B?:= Bj(z,), and B¢"!, which
contains all the site that weren’t part of any of the boxes. We can thus write

q+1

T = |_|Bi.

We denote by 7 the configuration restricted to B’ and by {1 the complementary
configuration to 7°. In other words, for any ¢ € [[1,q + 1]|, we split any configuration
on the torus 7 into 7" and £'. We define for any i € [[1,¢]] the densities on the 7’s

R@) =, (F@,&))7).
Let us denote by ¢ the product density w.r.t. u* with the same marginals as f, defined
by
S +1
o(@) = FL VFL @) T G,
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elementary entropy computations yield that
g+1

H(F) =, (/o) + 31 (F1),

where H,(f) = H(fp’ | ¢uk). Since by construction f is translation invariant, for
any i =1,...,q, we can write H(ﬁ) = H(?;) =H (?l), therefore in particular, the
previous bound also yields, thanks to the non-negativity of the entropy, that

H(f) 2 ¢H (f,) -
Since q is of order N?2/I2, this rewrites

(410) a() < o

and proves Equation (4.8). O

S C2(l)7

Thanks to Lemma (4.3.1) we now reduced the proof of Lemma 4.2.1 to

—~1
(4.11) lim sup lim sup sup ol (GZ) 1Ezf> =0.
l=oo N—oo Dy(f)<Ci()N~?
H(f)<C2()

Since the set of measures with density w.r.t. p’ such that H(f) < Cy(l) is weakly
compact, to prove the one block estimate of Lemma 4.2.1, it is sufficient to show that
—~1
limsup sup Ej, (GU lELf> .

oo Dy(f)=0
H(f)<Cx(1)

Before using the equivalence of ensembles, we need to project the limit above over
all sets with fixed number of particles Elf{ defined in Equation (3.3). Recall from
Definition 3.1.6 the projection of the grand-canonical measures on the sets with fixed
number of particles. For any density f w.r.t. p’, such that D;(f) = 0, thanks to
Section 3.3 and the presence of the indicator function, f is constant on Ef? for any
K € K;. We therefore denote, for any such f, by f (I? ) the value of f on the set Ef? .
Shortening fI?eKL for the sum ZKS(WH)Q feles .. feKeS’ we can write thanks to the
indicator functions 1g,, for any f satisfying D;(f) =0,

—~1 ~ —~1 =
(412 B (V10) = [ 5@ 2(Tas (F).
KEK[
where K was defined in (3.2).
~ - —~1 —~1
Since fffeKz FIE)dp (EIK) =landE, » (GZ)> <supgci, B i <GU>,We obtain

—~1 —~1
lim sup lim sup sup .l (62) 1E,f> < limsup sup E, » (GU> :
l—oo  N—oo D, (f)<Cy(l)N~2 =00 Rek,
H(f)<C2(1)
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2k

Bl

FIcURE 1. Construction of the B*

To conclude the proof of Equation (4.11) and the one-block estimate, it is therefore
sufficient to prove that the right-hand side above vanishes.

For any K € K, recall that & 7 € M1(S) is the grand-canonical parameter

1 K
Qg = =3 > 00, € Mi(S).

I7¢ 2
(214+1) Pt
Since the expectation E, » conditions the process to having K particles with an-

gles Ok in By, by definition of @l, letting I’ = [ — s, we can write

1
’El,l? <GU>‘<EZK 2l/+1 Z Tzg — EO‘K )

x€By

Let k be an integer that will go to infinity after [, and let us divide B; according

to Figure 1 into g boxes B!,..., B9, each of size (2k + 1)2, with ¢ = Lzzllcj'_lljz let

k' =k — s,, B"" denotes the box of size (2k’ + 1) centered inside B*, and Let B® =
By — Jj_, B", the number of sites in BY is bounded for some constant C' := C(g)
by Ckl.
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With these notations, the triangular inequality yields

1
El,l? Ea?(g) (2l'+1 2 Z Tzg

T€EB)
| B
< | By | Z:]Elf( Ea

)

1
aA(g) W Z Tzg
EB/z

R g |Bm| Z Tz9
(teB”’

)

Since the distribution of the quantity inside the expectation does not depend on 4,

the quantity above can be rewritten

(2K +1)2 k
q (2l/ I 1)2 El,[? E&f((g) 2]4?/ Z Tz 9 + 0 7 .
———— rEB,
—1

Because g is a cylinder function, and since k goes to oo after [, the quantity inside
absolute values is a local function for any fixed k. Letting [ go to oo, the equivalence
of ensembles stated in Proposition C.1.1 allows us to replace the expectation above,
uniformly in K , by

Eak\ Eaf{\( ) 2k/+1 Z ng
CEGBk/

Finally, since J,c{Q %, K € K} C oM1(S), where o}, (S) is the set of angle density
profiles introduced in Definition 3.1.1,

—~1

limsup sup E, z(V)< sup Ea||Eal9) - o713 Z =91 |,
l—oo  ReK, ae M, (S) 2k ) TEB,,

whose right-hand side vanishes as & — oo by the law of large numbers, thus concluding
the proof of the one-block estimate.

4.4. Proof of Lemma 4.2.2: The two-block estimate

This section follows the usual strategy for the two-block estimate, with small adap-
tations to the topological setup on the space of parameters oM (S) introduced in Def-
tnation 3.1.2.
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Our goal is to show that for any density f satisfying conditions i) and #) in
Lemma 4.2.1,

. . . 1 N R
lim sup limsup limsup sup EJ N2 Z I TotyPt — TPen |IIf | = 0.

l—oo e—0 N—oo yEBcn zET?\,

The previous expectation can be bounded from above by triangle inequality by

Z (Tz-&-yﬁl — Tot201)
zEB:N

1 1
E | — —_— + o(l/eN).
(o S Ir) ot
zely
In this way, we reduce the proof to comparing average densities in two boxes of size [
distant of less than 2e N. Let us extract in the sum inside the integral the terms in 2’s
such that |y — 2’| < 2I, the number of such terms is at most (41 + 1)2, and this

quantity is bounded from above by

« 1 1 . N
Ea ﬁZ;m E%: (TetyPt — Tatzp1) |||f | +0(l/eN).
z eN
|y—z|>21

zely
This separation was performed in order to obtain independent empirical measures
To+yP1 and T4 .. Regarding the expectation above, notice that we now only require
to bound each term in the sum in z. In order to prove the two-block estimate, it is

thus sufficient to show that

1 ~ —~
lim sup lim sup lim sup sup E' | = g Il TotyPl — Tep1 ||If | = 0.
N2
l—o0 e—=0 N—oo 2i<|y|<2eN T2
N

As in the proof of the one-block estimate, the expectation above can be rewritten
E, (Il myor — 21 [I1)

where f = N~2 Zzeﬂl‘f\, 7. f is the average of the density f. We can also introduce

the cutoff functions 1g, in the expectation above, thanks to f satisfying (4.4) and

l| 7yp1 — p1 ||| being a bounded quantity.

Let B,; be the set B; U 7,B;, the quantity under the expectation above is mea-
surable with respect to the sites in B, ;. Before going further, let us denote, for any
configuration 7 € X, 11 the configuration restricted to B; and 72 the configuration
restricted to y + B; = 7,B;. We also denote by 7 the configuration (11,72) on By .
Let us finally write u,; for the projection of the product measure y}, on B, ;, and
E, . the expectation with respect to the latter.

With these notations, the expectation above can be replaced by

E (Il o = pu 11E fy ) »
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0
Bla ﬁl

FIGURE 2.

where for any density f, f,; is its conditional expectation with respect to the sigma-
field generated by (7z)zcB

Y,

Fya() =E% (f [ B, =),
which is well-defined because the two boxes B; and 7,B; are disjoint, thanks to the
condition |y | > 21.

As in the proof of the one-block estimate, we now need to estimate the Dirichlet
form of ?y,l in terms of that of f, on which we have some control. For that purpose,
let us introduce with the notations of the previous section

Diy(h) = —Eyi(hZoyh) — > Eyu(hZo.h)— Y Eyi(hZe:h)

z,2€B; T,z€y+DB;
|z—2z|=1 |z—z|=1
— 0 1 2
(4.13) = DY, + D}, - D},

the Dirichlet form corresponding to particle transfers inside the two boxes, and al-
lowing a particle to transfer from the center of one box to the center of the other,
according to Figure 2. The work of the previous section allows us to write that

_Ey:l(?y,l sz,Z?y,l) < Dm’z(?)a
which implies, if D (f) < Cj that

(20 +1)2

(414) Dll,y (?y,l) + Dlz,y (?y,l) < 2C0 N2 ’

by translation invariance of puz and f. We now only need to estimate the third
term D?,y' Let us consider a path 9 = 0,z1,...,2x = y of minimal length, such
that |z; — 2,41 | = 1 for any ¢ € {0,...,k — 1}. For any such path, we have k < 4eN,
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since |y| < 2eN, and we can write

DY,(F) < ~E(Fo,F) = 5E2 [Im0 — ny | (FG*¥) ~ F@)?]

where 7%Y here is the state where the sites in 0 and y are inverted regardless of the
occupation of either site. Since 79 — 71, vanishes whenever both sites 0 and y are
occupied or both are empty, we can for example assume that 779 = 1 and n, = 0. For

any configuration 7)° = 7, we let for any i € {1,...,k}
ﬁi _ (ﬁi-])ibi—lywi

Thanks to the elementary inequality

k k
> | <k 4
j=1

and by definition of the sequence (7%);—o.., (which yields in particular 7° = % and
n* = %), the previous equation yields
k-1

E, [no(1—ny)(F@™Y) = F@)*] < kY EL [mo(1 =) (F@*) = F@))7]

=0
_ kaE ek [F@) - Fa)

Since p, is invariant through any change of variable 77 — %, and since we can easily
derive the same kind of inequalities with 7, (1 — n9) instead of 79(1 — n,), we obtain
that

(4.15) DYY(F) <k Z D+ (F) = k2N 72D (f) < 16D (f),

thanks to the translation invariance of f. Finally, Equations (4.13), (4.14) and (4.15)
yield

(21 + 1)2
N2

(416) Dl,y(?y,l) < 200 + 16005 5

which vanishes as N — oo then € — 0. A bound on the entropy analogous to (4.8) is
straightforward to obtain. Finally, to prove the two-block estimate, as in the proof of
the one-block estimate, we can get back to proving that

(4.17)

limsuplimsuplimsup  sup sup Ey: (||| yor — pi I|11E,f) = 0.
l—o00 e—=0 N-—oo 2i<|y|<2eN Dy, (f)<2Co (2L+21)2 +160ye?

Any density satisfying the bound D, ,(f) < 2C) (2l+1 +16Cye? is ultimately constant
on any set with fixed number of particles and angles in the set B, ; with at least two
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empty sites. More precisely, denote

1
n _ 1)
aye(M) = ESIE EB% B7h 0,
xr 1VUTy Dy

the empirical canonical state of the configuration in B; UT,B;, and denote by f() the
conditional expectation of f w.r.t. the canonical state of the configuration in B;UT, B,
defined for any K on B; U 1,B; by

FR) =K, (f [ay.0(@) = az)
We can now write for any |y| > 21

By (I 7ypr — 20 |12, f)

< [ Bgyu (i =5 1) FRYR + Ey (15

Kyt

1= F@e@)|)

< swp B (Il mdi =l + By (1m | £ = F@e@) )
KeKyl,l

where we shortened y; = (21 + 1)eq, K,; denotes the set of canonical parameters
on BiUTyB;, and Ex  (.) = E5(- | @y,e() = @g). By compactness of the set of
densities w.r.t. p, on B; U7, B, the supremum over all densities satisfying D; ,(f) <
2Cy %721)2+160062 of the second term above vanishes uniformly in |y| > 2l as N — oo
and then ¢ — 0, whereas the first term does not depend on y. To prove (4.17), it is
therefore sufficient to prove that

limsup sup Eg ([l g0 —pu|ll) =
l—o0 KeKyll

which follows from the equivalence of ensembles.

SOCIETE MATHEMATIQUE DE FRANCE 2021






CHAPTER 5

PRELIMINARIES TO THE NON-GRADIENT METHOD

The main focus of Sections 5 and 6 is the symmetric part of the displacement pro-
cess, whose contribution to the hydrodynamic limit requires the non-gradient method.
Before engaging in the proof of the non-gradient estimates, however, we regroup sev-
eral results which will be needed throughout the proof.

5.1. Comparison with an equilibrium measure

In this section, we prove a result that will be used several times throughout the
proof, and which allows to control the exponential moments of a functional X by a
variational formula involving the equilibrium measure u),. This control is analogous
to the so called sector condition for asymmetric processes, which ensures that the
mizing due to the symmetric part of the gemerator is sufficient to balance out the
shocks provoked by the antisymmetric part.

REMARK 5.1.1. — [Non-stationarity of ), for the weakly asymmetric process| It has
already been pointed out that Z is self-adjoint w.r.t. any product measure ug, which

$P=0 However, Z%°=° is self-adjoint w.r.t. pl due

is not in general the case of Z
to the uniformity in 6 of that measure. Asymmetric generators are usually “almost”
anti-self-adjoint, in the sense that one could expect ™" = — ™. This identity is
for example true for the TASEP, for which the asymmetry is constant and does not
depend on each particle.

It is not true in our case however, due to the exclusion rule and the dependency of
the asymmetry in the angle of the particle. To clarify this statement, see the adjoint
operator as a time-reversal, and consider a configuration with two columns of particles
wanting to cross each other. This configuration would be stuck under .°ZWA, however,
under the time-reversed dynamics EZM*, it starts to move. This illustrates that in our

model, the asymmetric generator Z™ is not anti-self-adjoint.
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Let us denote accordingly to the previous notation (2.15) and recalling the defini-
tion of the Als (2.1), for i = 1,2
G = Xi(00)m0(1 = 7e,) = Ai(Be, e, (1 — o).

Elementary computations yield accordingly that the adjoint in L2(u%) of 7™ is in
fact given by

(5.1) L =™ 42 >0 > g
z€T?, i=1,2

This identity will be necessary to prove the following result, which compares the
measure of the process with drift to the measure p,.

LEMMA 5.1.2. — Recall the topology on X introduced in Proposition 3.2.3, and fix a
bounded measurable function

X : ¥y x[0,T]—=R
(@, t) — Xe (7).
For any v > 0, we have

]- A0 2 ~
——log K. |exp | YIV / X:(n(t))dt
,}/NQ B [ < 0 t( ( ))

or 2 1 T . 1
<25 Lty {Ez (07X, (7) - D(<P)} ,
Y Jo ©® 2

v

where the supremum in the right-hand side is taken on the densities w.r.t. pu},.
Proof of Lemma 5.1.2. — Let us denote by Pt)"X the modified semi-group
¢
P = exp [ / L%+ 'yNQXsds] :
0

where L%:o is the alignment-free generator introduced in (3.16) and let us denote in
this section by <.,.>, the inner product in L?(u}). For any i = 1, 2, and any H,
and T > 0, the Feynman-Kac formula yields

(5.2) EX°

54

T
exp <7N2 / Xtm(t))dt)] _ 1, PMX15, < <PMX1 P12,
0

by definition of P},

d _ o
(5.3) %<Pﬁ’x1, P 1>, = <P, (570 + 170 + 2yN2X,) P 1>,
where M* stands for the adjoint in L?(u?) of M. By definition of L}ﬁ\f:o’ we have

LA = N2gF 4 N 4 29070,
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We now work to control the weakly asymmetric contribution in the right-hand side
of Equation (5.3), which does not vanish in our case, as a consequence of Remark 5.1.1.
For that purpose, consider a function ¢ € L?(u}), identity (5.1) yields

<o, (L™ + LNz =2 ) Y E; [sozrzj?i} :
2€T?, i=1,2

Recall the definition of V, f given in Equation (3.4). A change of variable 7] — 7%%T¢
on the second part of 7, ]Z’\Z yields that for any x

E;(‘pQiji)\i) = _EZ(Ai(ez)Va:,erel-(pQ) = _EZ [)‘i(ew) (30(7/7\w7x+ei) + (P) Vm,erei‘P] ,
therefore applying the elementary inequality ab < a?/2 + b2/2, to
Ai(0o)

a:\/ﬁvww e; and b= ——%- peete + )
ates P N (¢(@ )+ ¢)

we obtain (since A;(6) is either Acos(f) or Asin(#) and is less than A)

<o (™ + ) p>q
N * 2 )‘2 * ~r.,T+e; 2
< S Y B [(Vewra] + o TS m e + 7).
€Ty, i=1,2 €T, i=1,2
Since (¢(7%*+) + )? is less than 22 (7%*T¢) + 2¢?, we finally obtain that,
<@, N(Z™ + T ") o> < —=N2E% [p ] + 4N2N2E [¢?] .
In particular, applying this identity to ¢ = Pt>"X17 we deduce from Equation (5.3)

that

d _
Z<PM1LPM1>, < <P, [27N2Xt +N2Z 4220 4 4)\2N2] PM 1>,

A

(v (1) + 4N2N?) < PM¥1, PP X 1> o+ 2< P, 2977 P Y1,

where v,,(t) is the largest eigenvalue of the self-adjoint operator N>Z + 2yN2X,. It is
not hard to see that the second term above is non-positive. Indeed, for any function
¢ on Xy, by definition of Z%7=" (cf. Equation (2.5))

<0 2 gm0 = X B (nee) |5 [ ola00 - o))

zeT?%,

LyE (nx [;ﬁ [3 w(n“’e)dﬁ—w(ﬁ)r) <o.

zeT?%,

To establish the last identity, we only used that under p}, the angles are chosen
uniformly, and therefore EY, (n.¢(02)) = EZ(n.)(1/27) [ ¢(0")d6’. We thus obtain

that
d
%<P37X1,P37X1>a < (vy(t) + 402N?) <PM¥1, PP X 1>,
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and Gronwall’s inequality therefore yields that
T
<Pp*1,Pp¥1>, < exp <4T>\2N2 + / uv(t)dt) :
0
This, combined with (5.2), allows us to write

1 A0 o [T
5.4 logE . |exp [ vV / X, dt
( ) 'YNQ wk [ < 0 t

The variational formula for the largest eigenvalue of the self-adjoint operator
N2(Z + 2vX;) yields that

2 T
LR [T,
y o 2yN?

1
() =N? sup 3 (UL + 20 X0%) = 2V sup {15 (Xip) — 1D(0) .
¥, B ($2)=1 ¢

where the second supremum is taken over all densities ¢ w.r.t. p}, which together
with (5.4) concludes the proof of Lemma 5.1.2. To prove the last identity, one only
has to note that the supremum must be achieved by functions ¥ of constant sign, so
that we can let ¢ = /7). O

5.2. Relative compactness of the sequence of measures

We prove in this section that the sequence (Q™)nen, defined in Equation (B.4),
is relatively compact for the weak topology. It follows from two properties stated in
Proposition 5.2.1 below. The first one ensures that the fized-time marginals are con-
trolled, whereas the second ensures that the time-fluctuations of the process’s measure
are not too wide.

Given a function H : T?xS — R, we already introduced in the outline of Section 2.4
the notation

<m,H> = / H(u,6)r(du,db).
T2xS

The following result yields sufficient conditions for the weak relative compactness of
the sequence (QV)y. Recall from Equation (2.10) the definition of the set of trajec-
tories (JVZ[O’T].

PROPOSITION 5.2.1 (Characterization of the relative compactness on 2( JV[[O’T])). -

Let PN be a sequence of probability measures on the set of trajectories Q]VZ[O’T] defined
in (2.10), such that

(1) There exists some Ag > 0 such that for any A > Ay,

limsup PV | sup <m,,1> > A| =0.
N—oo s€[0,T]
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(2) For any H € C*}(T? x S), ¢ >0,

lim lim sup P sup | <my,H>—<my, H>|>¢ | =0.
6—0 N oo |t—t' |<6
o<t t<T

Then, the sequence (PN)nen is relatively compact for the weak topology.

Since this proposition is, with minor adjustments, found in [3] (cf. Theorem 13.2,
page 139), we do not give its proof, and refer the reader to the latter. For now, our
focus is the case of the active exclusion process, for which both of these conditions are
realized. The strategy of the proof follows closely that of Theorem 6.1, page 180 of
[28], but requires two adjustments. First, our system is driven out of equilibrium by
the drift, and we therefore need to use the Lemma 5.1.2 stated in the previous section
to carry out the proof. The second adaptation comes from the presence of the angles,
and since most of the proof is given for a test function H(u,0) = G(u)w(0), we need
to extend it in the general case where H cannot be decomposed in this fashion.

PROPOSITION 5.2.2 (Compactness of (QV)yen). — The sequence (Q)nen defined
in Equation (B.4) of probabilities on the trajectories of the active exclusion process

satisfies conditions (1) and (2) above, and is therefore relatively compact.

Proof of Proposition 5.2.2. — The first condition does not require any work since the
active exclusion process only allows one particle per site and we can thus choose
Ay = 1. Regarding the second condition, recall that

¢
(5.5) <7riY,H>—<7r,fV,H>:/LN<7riv,H>ds+MtH—Mt€I,

t/
where M¥ is a martingale with quadratic variation of order N~2. For more details,
we refer the reader to Appendix A of [28]. First, Doob’s inequality yields uniformly
in § the crude bound

(5.6) EL (sup | M — M ) < 2B} < sup | M |> < C(H)N~',
<6 0<t<T

where Eil\é is the expectation w.r.t. the measure levﬁ introduced just after Defini-

tion 3.1.4 of the complete process Hl>77 started from the initial measure p'V.

Regarding the integral part of (5.5), we first assume like earlier that H takes the
form

H(u,0) = G(uw)w(0),
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where G and w are both C? functions. When this is not the case, an application of
the periodic Weierstrass Theorem will yield the wanted result. Then, following the

same justification as in Section 2.4 we can write

t
/ LN<7r ,H>ds
t

’

= %/ Z (Z [Nj? 4+ 1¥](8)0u, nG(x/N) —i—Tm’y“’(s)G(:v/N)) ,

z€T%,
where the instantaneous currents j%, 7 and * were introduced in Definition 2.4.1.

The weakly asymmetric and Glauber contributions are easy to control, since both
jump rates r* and 7 can be bounded by a same constant K, and we can therefore

write

t
/ (szJrgc) 7l 7H>ds<K/ ds— > |G(z/N) |—|—Z|3u“NG (z/N) |
t/

CEET2 i=1

SN K(t—1') / |Gu)|+2|8ulG (u) | du,

i=1

which vanishes as soon as [t/ — t| < § in the limit § — 0. Finally,

QN sup |<my,H>—<m, H>| > ¢
[t—t"|<8
0<t’ t<T

/ N2Z<nN H>ds

[t—t' |<8
0<t' t<T

<P o

)
|

sup
|t—t'|<6
Lo<t',t<T

+P00 | sup [ M- M >e/3J.

t
+Po7 / (stw" + szG) <z, H>ds

)
|

[t—t" |<S
Lo<t',t<T

The second line of the right-hand side vanishes in the limit N — oo then § — 0
thanks to the computation above, whereas the third line also vanishes thanks to
Markov’s inequality and Equation (5.6). Finally, the first term vanishes accordingly
to Lemma 5.2.3 below and the Markov inequality, thus completing the proof in the
case where H(u,0) = G(u)w(f). The general case is derived just after the proof of
Lemma 5.2.3.
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LEMMA 5.2.3. — For any function H(u,0) = G(u)w(0) € C*°(T? x S),

(5.7) hm limsupEM? | sup N2 Z<nl¥ H>ds| | = 0.
—0 N-oo w | t'—t|<8
0<t' t<T

Proof of Lemma 5.2.3. — The proof of this lemma follows, with minor adjustments
to account for the drift, the proof given in [28]. First, we get rid of the supremum
and come back to the reference measure with fixed parameter a € |0, 1] thanks to
Lemma 5.1.2 of Section 5.1. Let us denote

t
(5.8) g(t) = / N2Z<nlN H>ds.
0

We now compare the measure of the active exclusion process to that of the process
started from equilibrium (¥ = p¥), and with no alignment (8 = 0), according to
Proposition 3.2.3 with A = RN? and

X (A[O T] sup / N2Z<rN H>ds sup | g(t) —g(t') |.
\t—t|<6 [t'—t|<8
0<t/ t<T 0<t/,¢<T

This yields that for some constant Ky > 0, the expectation in Equation (5.7) is
bounded from above for any positive R by

BN? lKONQ—HogE’\*Oexp RN? sup lg(t) —g(t) | J .
¢'—t]<5
0<t' t<T

(5.9)

We therefore reduce the proof of Lemma 5.2.3 to showing that

5.10 lim lim sup ———— lo EMO exp | R(O)N? sup t) —g(t =0,
(5:10)  Jim lim sup 7y log L (%) |t/—t|§6|g() 9(t) |
o<t t<T

where R(d) goes to oo as § goes to 0.

Let p and ¢ be two strictly increasing functions such that (0) = p(0) = 0 and
Y(400) = +00, with 9 continuous, we denote

lg(t) —g(t") |> ,
I = d d I
/[O,T]x[o,ﬂ"‘”( oo —tp )@

the Garsia-Rodemich-Rumsey inequality [24] yields that

)
4]
(5.11) w9t~ g(t)| <8 [ v () p(du).
|t/ —t|<6§ 0 u
0<t' t<T
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Given any positive a, we choose p(u) = v/u and 9 (u) = exp(u/a) — 1, hence ¢! (u) =
alog(1l + u). An integration by parts yields for any § < e~2 that

o (Al ° AI\ du
o (i) =e foe (142) 50

o8I
= aVdlog (1+41572) —|—a/
0

> Jud
u3+41u\/a u

s
2
< aVélog (14 4I572) + /—d
a g ( )+a ; \/Eu
:a\/g[log(52+4l)—2log5+4]
<aVé —bgélog(52+41)—4log6}

(5.12) < aV/§ [~4log§log (8% + 4I) — 4logd] ,

since by assumption —log(d) > 2. From Equations (5.11) and (5.12) we deduce that

log E,’)f exp | RN? sup |g(t) —g(t')|
|t —t|<5
o<t t<T

<log Ef;:zo exp (—32aRN2\/510g5 [1 + log (52 +4I + 1)])

holds for any a > 0. For § < 1, Let us choose a = —(32RN?/5logd)~! > 0, we can
write for the second term of (5.9) the upper bound

1 2,0 2 ' 1 2
logEexp | RN* sup |g(t)—g(t) || £ == [1+1og(1+6°+4Ez(I))].
RN2 ny |t/_t|S5| ( RN2 [ ( )]

0<t’ t<T

By definition,

ftt, N2Z<nN H>du ‘
I= / exp dt'dt — T?.
[0,7)x[0,T] ay/[t =]

Let us assume, purely for convenience, that T > 1/2, for ¢ sufficiently small, we have
4T% —1-462 > 0, and the quantity inside the limit in Equation (5.10) can be estimated
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by

(5.13)

log B,  exp | RN? sup |g(t) — g(t))|
RN? Ha |t/ —t|<6

o<t t<T

ft€N2$<7r£],H>ds‘ ) -|-|
dt'dt| | .

[1 + log 4R {/ exp
o o, mx (0,1 ay/|t —t]

< 1

~ RN? [
If T < 1/2, we simply carry out a constant term in the log above, which does not
alter the proof.

Let us take a look at the two constants a and R. Noting the first bound on
the entropy mentioned earlier, in order to keep the first term of (5.9) in check,
R = R(6) must simply grow to oco. Furthermore, we previously obtained that
a = —(RN?32v/61ogd)~!, we can choose a = N~2, thus R = (—1/32V/3logd)~",
which is non-negative, and goes to oo as § — 0. Therefore, the second term above
can be rewritten

1 A0 * N _
log/ 4F;" exp —_ JY ie (8)0u; NG(z/N)ds | dt'dt
RN? o.Txl07] ° |t —t[/2 %:‘2 e
TEIN

i=1,2

In order to estimate the expectation above, we can get rid of the absolute value, since
elel < e* 4 e~ *, and since the function G is taken in a symmetric class of functions.
Furthermore, Lemma 5.1.2, applied with v = 1 yields that the second term in the
right-hand side of (5.13) is less than

_ 4/
(5.14) exp [(’52” [AN°N? + vy (G, w)] | dtdt’,

1 og /
RN? [0,7]x[0,T]

where vy (G,w) is the largest eigenvalue in L?(u) of the self-adjoint operator

2N .
N*T + o —¢pe Z Jazte,Oui, NG(@/N),
z€TA
i=1,2

which can be rewritten as the variational formula

2N * W
(5:15) v(Gyw) = 5§ s 3 QuwGla/NE (fiare) = N?DI) ¢

zeT%
i=1,2
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where the supremum is taken on all densities f w.r.t. u. In order to prove that the
eigenvalue above is of order N2, we now want to transform

N o
v —¢]\2 > 0w NG(&/N)EL (£ 04e,) -

|t/
2
zeT%,
~x,r+e;

For any density f, and i = 1,2, since j .. @
E;, (figote,) Ous, NG(2/N) = — *E* [(F@™"F) = )iz avte,] Oui nG(z/N)
2
i intd 5} 2 ~r,rt+e;\ __
<16 (U8 (Vi) - V7))
;¢ O, NG(x/N))2EL (\/}”x+ +f) )

) = —7.j¢, we can write

4 (

Since (j;),m+ei)2 < ||W||Zo lnz"]z+ei:07 and since [\/?(Aw z+el) \/ﬂ <2f(pm o) 4+ 2f,
we obtain the upper bound

N * W N ||w||io N3C 2
m Z auuNG(m/N)]Ea (f.]w,z-l—ei) S W (f) + s | —t |1/2 ||6U1G||oo

zeT%,

which holds for any positive C. We now set C = |t/ —t|~1/2 ||w||f>O /N so that the
Dirichlet form contributions in the variational Formula (5.15) cancel out. We finally
obtain that for some positive constant C; = C1(G,w), independent of N,

C1N?
Tt=t
which yields that (5.14) vanishes in the limit N — oo and § — 0, since R = R() goes
to oo as ¢ goes to 0. Finally, we have proved thanks to Equation (5.13) that

vN(G,w) <

lim lim su lo IE)‘O exp | RN? su 1) —g(t =0,
Jim Tim sup RN2 g P |t’ftI|)§5 lg(t) —g(t) |
0<t' t<T
which concludes the proof of Lemma (5.2.3). O

In order to complete the proof of Proposition 5.2.2, we still have to consider the
case when H does not take a product form G(u)w(0). In this case, since H is smooth
it can be approximated by a trigonometric polynomial in u;, us and 6. Each term of
the approximation is then of the form G(u)w(#), and the previous result can therefore
be applied. More precisely, consider a smooth function H, and for any a > 0, there
exists a finite family (pf};)o<i,jk<m, of coefficients such that

sup | H(u,0) — Z p”kuluﬁk <a.
ueTs ig.ke[0,M]
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Let us now fix an € > 0, and let us take a = £/4. Then, considering the corresponding
family Pijx(u,8) = pf,uiuyf® we have that

(5.16) |<m),H>—<m)y,H> |

<|<nll —=a H- > P>+ Y <ol —al P>
4,J,k<Mqo 4,5,] SMaq
Since we allow at most 1 particle per site, and since H — El k<M P;j, is smaller
than e/4, the first term of the right-hand side above is less than ¢/2. From this,
we deduce that for the left-hand side to be greater than e, one of the terms
| <7r£’y, P> — <7r,fv, P> | must be larger than 5/2M2. This yields that

QN | sup |<my,H>—<m,H>|>¢
| s—t|<6
o<t t<T

N 8
< E Q sup | <my, Pijp> — <my, Pijp>| > 3
;s |t —t|<5 2Ma
i,j k< M t|<
0<t/ t<T

Since « is fixed, we can now take the limit N — oo then § — 0, in which the right-
hand side vanishes since all functions are decorrelated in u and 6. The result thus
holds for any smooth function H, thus completing the proof of Proposition 5.2.2. [

We now prove that in the limit, the empirical measure of our process admits at
any fixed time a density w.r.t. the Lebesgue measure on T2.

LEMMA 5.2.4. — Any limit point Q* of the sequence QY is concentrated on measures
T E W[O’T] with time marginals absolutely continuous w.r.t. the Lebesgue measure
on T2,

Q" (m, m¢(du,dl) = p,(u,db)du, Vte[0,T]) =1.

Proof of Lemma 5.2.4. — For any smooth function H € C(T?) configuration 7 in Xy

and any corresponding empirical measure 7%, we have
N 1 1
| <n¥ B> | = |5 3 H@/Nme| < w5 Y 1 H@/N)|.
zeT% zeT?,

The right-hand side above converges as N goes to oo towards [, | H(u) |du. Since for
any fixed function H, the application

m— sup |<m, H>|
0<t<T
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is continuous, any limit point Q* of (Q~ )y is concentrated on trajectories m such
that

sup | <m, H>| < / | H(u) |du,
0<t<T T2

for any smooth function H on T?, and therefore is absolutely continuous w.r.t. the
Lebesgue measure on T2. O

5.3. Regularity of the density and energy estimate

In this section we prove that the macroscopic particle density is regular enough
for the weak hydrodynamic limit (2.11) to be well defined, i.e., that criterion i) of
Definition 2.3.2 is satisfied. The proof follows the same strategy as in [28], we give it
for exhaustivity.

Due to the non-constant diffusion coefficients, the second derivative in Equa-
tion (2.11) cannot be applied to the test function, and we need, according to
condition #i¢) of Definition 2.3.2, to prove that the macroscopic profiles of our particle
system are such that Vp is well-defined. We can now state the following result.

THEOREM 5.3.1. — Any limit point Q* of the measure sequence (QN)n is concen-
trated on trajectories with p;(u) € Hy = W12([0,T] x T?). In other words, Q*-a.s.,
there exists functions O,,pi(u) in L%([0,T) x T?) such that for any smooth function
H € C%1([0,T] x T2)

(5.17) // pt(u) Oy, Hy(u)dudt = — // Hi(u)0y, pt(uw) dudt.
[0,7]xT? [0,7]xT?

~

Furthermore, there exists a constant K = K(T,\, 8,() such that for any limit point
Q" of (QV), and for any i,

(5.18) Eg- <//[0 - [8uipt(u)]2dudt> < K.

In particular, any such limit point Q* is concentrated on measures satisfying condition
1it) of Definition 2.3.2.

The proof is postponed to the end of this section. The usual argument to prove
this result is Riesz representation theorem, that yields that if

1/2
// pt(w) 0y, Hy(u)dudt < C’</ H2>
[0,T]x T2 [0,T]xT?

for any H, there exists a function 8y, p € L%([0, T]|x T?) such that (5.17) holds. For that
purpose, we need the estimate given in Lemma 5.3.2 below. Fix a direction ¢ € {1, 2},
for any = € T%, shorten z, = = + ke;, k € {0,...,eN}. Following the strategy of
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the energy estimate of [28], and recalling that 7,psn is the empirical particle density
in Bsn(z), we let

Wi i(e, 6, H,n) N2 Z H(z/N) ( [TeteNe,PSN — PSN] — (x/N))
m€T2

Note that to emphasize that this quantity does not depend on the angles, we denote
its third variable as 1 instead of 7.

LEMMA 5.3.2. — Let {H',l € N} be a dense sequence in the separable algebra
C%1([0,T] x T?) endowed with the norm ||H||_ + Z?:l ||0u,H|| - For any i =1,2,
there exists a positive constant K = K (T, \, 8,() such that for any k > 1 and € > 0,

T
limsuplimsup]Ez}f,3 <max/ W i(e, 6, Hf,n(t))dt) < K.

§—0 N—oo 1<i<k 0

Proof of Lemma 5.83.2. — By the replacement Lemma 4.1.1, it is sufficient to show the
result above without the limit in §, and with Wi ;(e, H, n) instead of Wy ;, where

Woses o) = 7 3 B/ (e —nad = 1/ )

zeT?,
eN—-1
= 2 HEMN) e Y [N, =) — H/N)].
z€T%, k=0

Applying Proposition 3.2.3 to A = N? and

X(ﬁ[O’T] = max/ WNl(e Ht, (¢))dt,

1<i<k

the contribution of the Glauber dynamics and the initial measure can be compared
to the case 8 = 0 started from u,,

A8
BN <1IEla<Xk/ WNl e, HL,n(t ))dt)

T —_—
< Ko(T,B3,¢) + ]\:;-—2 (IOg E)\ 0 |f’Xp (N 1rgla<xk/ WN,i(Ea Hi{?ﬁ(t))dt>‘|> :

The max can be taken out of the log in the second term because for any finite family
(u;), we have

exp (max ul) Z exp u;

lim sup N 2 log (Z u; N) < mathsupN 2loguNl

N—oo 1 N—oo
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Furthermore, we apply Lemma 5.1.2 to v = 1, and X; = WN,i(S,Ht,n), to obtain
that

1 T
ng Ef;’zo lexp (NQ/ WN,i(E,thﬁ(t))dt>]
0

< 2TA? + ;/OT dtst;p {2EZ (WWN,i(EyHtan)) -D (‘P)} )

where the supremum is taken over all densities w.r.t. u). Letting
K(T, ), 3,C) = Ko(T, 8,C) + 2T A2,

to prove Lemma 5.3.2 it is therefore sufficient to show that the second term on the
right-hand side of the inequality above is non-positive in the limit N — oo. This
will be implied by Lemma 5.3.3 below, since the time integral is now only applied
to H. O

LEMMA 5.3.3. — For any H € C*(T?), and ¢ > 0,

lim sup sup {21[*12‘y (WNJ'(E,H, n)cp) - D(go)} <0,

N—oco ¢

where the supremum is taken over the densities ¢ w.r.t. the product measure u,.

Proof of Lemma 5.8.3. — The proof of this lemma follows the exact same steps as the
treatment of equation (7.3), p.106 in [28], we do not detail it: since 7,,,, — 7., appear-
ing in the expression of Wy ;(e, H,7) can be rewritten 0, ., (1 — Nz, ) — N2, (1 = Naysy )

the proof of the lemma is just a matter of performing changes of variables

7 — n¥T+1 and using the elementary inequality

b2
ab(c —d) < a®(c+d) + 5(\/5— Vd)?,
which holds for any positive ¢, d, to

a=H@/N), b=ne (1 =1), Na(1=1apyy), €= /@[ *1), and d = /o
in the first term of WNJ'(E, H,n). O

Lemma 5.3.2 allows us to complete the proof of Theorem 5.3.1.

Proof of Theorem 5.3.1. — Recall that we defined in Section 2.2 IP’I’\L}?, the measure
on the space D([0,T],Xy) of the active exclusion process 7)(s) started with the mea-
sure ¥, and QY is the measure on the corresponding measure space W[O’T]. Let us
introduce

ps(u) = (20) 721552 (u).
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Since T,psn = %<m,g@5(x/N — )> for any weak limit point Q* of (QY),
Lemma 5.3.2 yields

Hl
limsupEq- | max // (v (<7rt,<p5(u +ee; —)> — <m, ps(u — )>) — Hl(u)dudt | <K.
§—0 1<k JJpo,rpxr2 - €

Since thanks to Lemma 5.2.4 any limit point Q* of (Q%) is concentrated on trajec-
tories absolutely continuous w.r.t. the Lebesgue measure on T2, letting § then & go
to 0, by dominated convergence, we obtain that

Eg- (max // [0, Hi (u)py(u) — H,f(u)2] dudt) <K,
[0,T]x T2

1<i<k

where p;(u) is the density of the measure [gm;(du,df) w.r.t. the Lebesgue mea-
sure on T2. By monotone convergence, and since the sequence (H;) is dense in
C%1([0,T] x T?), we therefore obtain

(5.19) Eq- (szp //[O . [0, Hy (u)py(u) — Hy(u)?] dudt) <K,

where the supremum is taken over all functions H € C%!(]0,7] x T?). Given a limit
point Q*, let us denote by € the event on which the quantity inside parenthesis above
is finite:

€= {Sgp //[O’T]erz [0, Hy (w)pe(u) — Hy(u)?] dudt < OO} ;

and denote by ¢ the elements of €. Then, thanks to the L' bound we just obtained,
we have that Q*(&) = 1.
Define on C%1([0,7] x T?) the linear operator

s = [ /MW B, Hy(w)pu () dudt,

then Equation (5.19) yields that for any & € £, there exists a constant K(£) such
that for any positive constant r, rf;(H) — 2 [[ H*> < K(£), i.e.,

1
Letting r = (/K (§)/ [[ H?, and Cy = 24/K(£), we obtain that for any function

H e ¢%'([0,T] x T?),
1/2
fl(H) = CO(g) (//[0 T)xT? H2> )

The functional f; can then be extended to a bounded linear functional in
L2([0,T] x T?). The conclusion then follows from Riesz’s representation theorem. [
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CHAPTER 6

NON-GRADIENT ESTIMATES

6.1. Replacement of the symmetric current by a macroscopic gradient

In this section, we focus on the complete exclusion process, and replace the cur-
rent j¥ by a quantity of the form 7.,h—h+ L f, with f a function of the configuration
with infinite support. We then show that the perturbation Zf is of the same order
as the weakly asymmetric contribution, and they both contribute to the drift term of
Equation (2.11). To obtain the non gradient estimates, we use the formalism devel-
oped in [28] rather than that of [35]. This changes the proof substantially, with the
upside that the orders in N, as well as the studied quantities, are clearly identified at
any given point of the proof.

One of the challenges in proving the non-gradient hydrodynamic limit is to re-
place the local particle currents j by the gradient of a function of the empirical
measure. Recall that we already defined in Equation (2.21) the empirical angular

density p, € M, (S),
Pl = 2l +1 Z 77z59w7

and we denote by p; the empirical dens1ty

z€B;
Let

z€B;

be the average of n“ over a box of side 2{+ 1. Flnally, for any function ¢ on Xy, recall
that 8; is the discrete derivative

Oip=Te,p— ¢
(for example, d;n5 = ns. —ng).
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The usual strategy in the proof of the non-gradient hydrodynamic limit is to show
that for some coefficients 9%, 9: [0,1] x R — R*,

Ji + 0% (pen, pEn) 0ipEn + 0 (pen, PEN) Gipen
vanishes as N — oo. More precisely, the quantity above is in the range of the genera-
tor Z, which is usually sufficient when the functions of the form Zf are negligible. In
our case, however, due to the addition of a weak drift, the usual martingale estimate
does not yield that Zf is negligible, but that Z°f = (Z + N-1Z")f is negligi-
ble, therefore this perturbation can be integrated to the drift part, which is done in
Section 6.7.

For this replacement, we will need further notations similar to the ones introduced
in Section 4.1. In our case, the diffusion coefficient 3 (p, p*) is in fact the self-diffusion
coefficient ds(p), therefore we will from now on simply write d,(p) for the diffusion
coefficient relative to p. Note that it depends on the configuration only through the
empirical density, and not on the particle angles. For any positive integer [, and any
cylinder function f, let us thus denote

pr’EN (n) - -71 + d (pEN) JZIOEN +0 (p€N7 peN) iPeN — zfa

where 9 : [0,1] x R — R™ is the diffusion coefficient given in (1.3).
We introduce for any smooth function G € C?(T?)

(6.1) b eial(eRy) Z G(z/N)r, VN,

wET2
Our goal throughout this section is to prove that under the measure of our process,
X lf ’jf,N(G,rA]) vanishes for any smooth function G, i.e., that the microscopic currents
can be replaced by a macroscopic average of the gradients up to a perturbation Zf
that will be dealt with later on.

The sum contains N? terms, and the normalization is only 1/N, therefore an or-
der N has to be gained, and this is the major difficulty of the non-gradient dynamics.
To prove this statement, we decompose X Zf ’If,N (G, n) into distinct vanishing parts. We
already introduced in Equation (3.18) the set

Epo= Z my <[Bp| =2,
ly—=|<p
such that at least two sites are empty in a vicinity of x of size p. The cutoff func-
tions 1p, , are crucial in order to control the local variations of the measure of the
process with the Dirichlet form.
We set for any integer !

1

(6.2) p;* = @+1)2 Z Nylp,, and P =pf —p" = 2l—|— @+1)2 Z N1
TEB; zE€B;
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where E  is the complementary event of Ej, ..

We are now ready to split X f }f,N into 4 vanishing parts. Let us denote by
Wy = WD) =i~ G0~ (2 —(2)5)
the difference between j¢ — Zf and their local average, and by
Wy = WP (H) = du (per) 3.5

the mesoscopic contributions of full clusters, where p:;7 was defined in Equation (6.2)
above. Let us also introduce

Wy = WP (A) = dy (pen) ip2il — ds (p1) 3:p2 + 0 (penv, ) Sipen — D (1, p7) Sipr
where [, = [—p—1and I’ = [—1, which is the difference between the cutoff microscopic

and macroscopic gradients. Note that the cutoff functions are not needed for the total
density p, because the gradients will vanish on full configurations. Finally, we set

(6:3)  Wa= WHLT@) = () +ds (1) 5"+ (o1, ) iprr — (Zf)g ™,

the microscopic difference between currents and gradients, taking into consideration
the perturbation Z f For any smooth function G € C?(T?), we also introduce

v =Y5(G.7) Z G(a/N)r, W, Yo =YiN"(G,7) Z G(z/N)r, W,
zeTz ze'ﬂ‘2
. 1 1
Vs = YNGR = 5 Y Cla/NmWs Ya=Y[["(C.7) =5 Y Gla/N)m: .
zeT?, z€T%

By construction,
4
x5V G H) =Y v(G,).
We can now state the main result of this section.

THEOREM 6.1.1. — Let G be a smooth function in C12([0,T] x T?), T > 0, and
i € {1,2}. For any cylinder function f,

T
(6.4) lignsupli]{[nsupEz}f (‘/ Yifcl’l(Gt,ﬁ(t))dt ) =0.
— 00 — 00 0
Furthermore,
(6.5) lim limsuplimsup Ey " / YEN’p (Ge,n(t))dt| ] =0
P—0 0 N—oo

For any integer p > 1,

l—oo e—0 N—oo

T
(6.6) lim sup lim sup lim sup E7 e (' /0 )’i{’3€N’p(Gt, 7(t))dt

)-o
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Finally,

f P—=® | .06 N—ooo

(6.7) inf lim limsup lim sup By A (

/W”@w»>=m

where the infimum in f is taken over the set C of cylinder functions.

The core of this section is dedicated to proving these four estimates. The proof of
Equation (6.4) is immediate and is sketched in Section 6.2.

Equation (6.5) is quite delicate, and requires both the control on full clusters de-
rived in Equation (3.19) and the energy estimate (5.18). It is proved in Section 6.3,
in which the main challenge, as in the control of full clusters, is to carry out the
macroscopic estimate (5.18) in a microscopic setup.

The proof of Equation (6.6) is given in Section 6.4. This limit is the non-gradient
counterpart of the two-block estimate stated in Lemma 4.2.2. It follows closely
the replacement of local gradients by their macroscopic counterparts performed in
Lemma 3.1, p.156 of [28], but needs some technical adaptation due to the presence
of the cutoff functions.

The last limit (6.7) requires the tools developed by Varadhan and Quastel [48]
[35] for the hydrodynamic limit for non-gradient systems, and therefore requires more
work. It is the non-gradient counterpart of the one-block estimate of Lemma 4.2.1.
However, if the latter was essentially a consequence of the law of large numbers, (6.7)
is analogous to the central limit theorem, where the gradient term plays the role
of —E(j%). The limit (6.7) is the focus of Sections 6.5-6.6.

Finally, Section 6.7, and in particular Lemma 6.7.4, is dedicated to the integration
of the contribution Zf to the drift part of the scaling limit.

These four estimates are sufficient to allow the replacement of currents by macro-
scopic averages of gradients, up to a perturbation Zf.

COROLLARY 6.1.2. — Let G be a smooth function in C*2([0,T] x T?), and T > 0,
and consider Xi’j’]f,N introduced in (6.1). Then for i € {1,2}

e—0 N—o0

(6.8) 1r}fhmsuphmsupE)‘ﬁ H/ Xf’aN (G, 7(t))dt

Proof of Corollary 6.1.2. — Since
4
X[V @.0) =Y (@),

this corollary follows immediately from the triangular inequality, and Theorem 6.1.1
above, taking the limits N — oo, then € — 0 then [ — oo, then p — oo, and finally
the infimums over the local functions f. O
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6.2. Replacement of the currents and Zf by their local average

In this paragraph, we prove Equation (6.4), i.e., that for any < = 1,2, any function
G € CY2([0,T] x T?), and any cylinder function f,
) o

GNa/N) = ——— Y Gy,

2 1
(l+ ) yE'JT?v,|y—z|§l

T
lim sup lim sup Ei}g <| / Y1(Ge, (t))dt
0

w00 N—oo

We set

an integration by parts yields that, shortening I’ =1 —1

1 "
N Z G(z/N) Jz,otes — 211+1 Z Jy y+e;

z€T%, |y—z |<UV

"N w C(@)?
N Z ( (x/N) - G" (a:/N)) I8 ppes < (N)l .

I€T2
since the difference G(z/N) — GV (z/N) is a discrete Laplacian, and is therefore of
order 12/N?, and the currents J# ote, are bounded. By the same reasoning, letting
ly =1 — sy, we obtain a similar bound on the difference

/ 2
LY G (- gy Y ) < TG0

21 1
z€TZ, (27 +1) ly—z |<ls

since Zf is a bounded function (this last statement comes from the fact that f is,
and depends only on a finite number of sites). These two bounds finally yield that for
some constant K = C(G) + C'(G, f),

KI?
|Y1G77)|<T

which immediately yields Equation (6.4) for any cylinder function f.

6.3. Estimation of the gradients on full clusters

We now prove that Equation (6.5) holds. Our goal is to bound Y:év’p(G, 7(s))
thanks to the control of full clusters functions obtained in (3.19), and to the energy
estimate (5.18). For the sake of clarity, we drop the various dependencies, and simply

write

Yy =Y
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YeN+ Hzon
YeN-1+ +Zenst
YeN -2+ Hzeno
Yo |+ JB 2
\B&—N
92—5N+ +22—5N
Yr=ent He1oen
Y—eN|+ HRZoeN
BEN(_ei)
FIGURE 1. Definition of the yi’s and z’s.
By definition of Y5 and p:3 (6.2),
Y2(G, 1) Z G(z/N)7o (ds (pen) 0ip2x)
z€T2
1 1
= — G(z/N d —_— “1pe
v 2 O e o LM VI BZ )
x N en(ei)
s Y ),
25N +1 yeBon
and we can rewrite it by summation by parts as
1
(6.9) Z Wi, o el 2. G/N)myds(pen)
*(2eN +1)2
zeTz YyEBen(z—e;)
- Y G ).
yEB.N ()

Most of the terms in the parenthesis above cancel out, since the boxes B.y(z — €;)
and By (z) overlap except on the two sides (cf. Figure 1).
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For any k € [—eN,eN], we let according to Figure 1
yr = —(eN + 1)e; + keyr and 2, =eNe; + keyr,
where i/ # ¢ is the second direction on the torus, which are defined so that
BsN(_ei)\BsN = {y—sNa cee >y€N} and BsN\BsN(_ei) = {Z—sNa ) ZEN}'
We thus obtain from (6.9)
(6.10)

(G, Z LR 25N +1 <

zGTz
X+ zg
- G < N > ds(Tz+zkpaN)~

We can now rewrite the quantity inside the parenthesis as the sum over k of

T+ T+ 2z T+ z
[G< Nyk> _G< N kﬂ ds(Tz-HlkaN)_G( N k) [ds (Tot 2 PeN) = ds(Toty, PeN)] -

Since y, and z; are distant of 2e N 4 1, the first term in the decomposition above
can be bounded in absolute value uniformly in « and k by (2¢e N + 1) ||04,G||, /N.
Let C(G,w) = ||04; G|l @]l ||ds|| o the corresponding contribution in (6.10) is

> 6 (T dutrarpen)

k=—eN

1y s e () se (2 )
c@N+12 | N N )| & atuPen)
“”ETN<ku - <lldsl,

<(2eN+1)||8.,G|| /N
and can therefore be bounded by

C(G Z Lo

z€T%,

Furthermore, since ds is C* on [0, 1], it is Lipschitz-continuous on [0, 1] with Lip-
schitz constant ¢, we let C'(G,w) = c||G||, ||w||y /2. We can now write thanks to
the previous considerations that

eN

C'(G,w) 1 | Taty PeN = Tat 2 Pen |
l ) 1 . yr Me x+z, Me )
Z Ea T N2 2 (2eN +1) 2 1. e
x€T2 ZET?\, k=—eN

|Y2|S

For any positive v, we have the elementary bound

2

1 |Tx+ykp5N - T15+ka6N| <A1 1 (Tw-f—ykpeN - Tx+2kpeN)
E¢ <7vlg; + - 3
P,z € p,x /7 €

)
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and finally, for any positive =,

eN 2
C+ 'yC C’ 1 (Tx—(5N+1)e-p5N - Tz+sNe</)sN)
Vel <=2 g+ m 2 = :
z€T2 /YN xGT%\, (ZEN + 1)k:—€N €
(6.11)
C + '70 Tw (eN+1)e;PeN — Tx+eNe; psN)
2 1z N2 D3 - :
zGTz zETz

Recall that we want to prove (6.5), i.e.,

P—0 0 N—oo

T
lim lim sup lim sup Ei}? </ | Y2(Gt,1(2)) | dt) =0.
0

The contribution of the first term in the bound for | Y2 | in Equation (6.11) vanishes
for any v as IV then p goes to co, thanks to Proposition 3.3.2.

Furthermore, we can replace T,_(cN41)e; PeN DY To—eNe; Pen in (6.11) since the dif-
ference between these two quantities is of order 1/N and vanishes in the limit N — oo.
This replacement allows us to work only with quantities that can be expressed in terms
of the empirical measure of the process. Equation (6.5) therefore holds according to
Lemma 6.3.1 below, letting v go to oo after N — oo then ¢ — 0 then p — oco. O

LEMMA 6.3.1. — There exists a positive constant K such that

T—EIN €4 rTeNe; t
limsuplimsupE A8 / ~ Z (To—en paN()eTJrN pen ( )) < K.

€70 N—oo T€T?,
Proof of Lemma 6.3.1. — This lemma states that the difference of macroscopic densi-
ties between two points distant from 2¢ is also of order €, and is a consequence of the
energy estimate (5.18). We are going to prove this macroscopic estimate in the topo-
logical setup of the space of cadlag trajectories of measures on T? x S . Recall from
Section 5.2 that o}(T? x S) is the space of non-negative measures on the continuous
configuration space,

MO = D ([0,T], M(T? x S))
is the space of right-continuous, left-limit trajectories on the set of measures on T? x 3,
and that Q" is the distribution on W[O’T] of the process’s empirical measure 77¥. We
have proved in Proposition 5.2.2 that the sequence (Q)y¢n is relatively compact
for the weak topology. Let A. = [¢,¢]? C T? be the cube of size €, and (¢:)c>0 be a
family of localizing functions on T?

1
pe(.) = wlf\g (),
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he = Vi@e(.,v)
lo] < S ~ 1/4€®
—|v|<e / \
—|v|>e+e® [ Co
Fel0) / Ny
/- 1/4¢7 I\ ‘
[ \
N \ ‘/ : \
‘ ‘ / \ e 3 e+ e’
| | —(e+¢€%) —¢ —e3 \ [ wi
\ |
r} \ \ /
/ \ o ug \
—(e+ 63) —e € e+e2 \ /
| J
(A) ‘\\\ /
(B)

FIGURE 2. (A) Representations of @.(-,v) depending on the value of v.
(B) Representation of he(-,v) = V°@.(:,v) depending on the value of v.

we then have )
(2eN) N
oPeN () = < , Pel. N)>.
TPN() (2€N+1)2 Ty (p(+$/ )
We define the mesoscopic gradient
Vip() =M e( —eei) — (- +eei)),
represented in Figure 2b. Note that V¢, is at most of order ¢~2 since ¢, is of
order e2. We can rewrite the left-hand side in Lemma 6.3.1 as

T
1
(6.12) Egv / joe] 3 <m, Vige(. + z/N)>2dt | +on(1).
0 zeT?,
Furthermore, since for any two sites x,z’ € T? distant from less than 1/N,
1
| <7, Vipe(.+x/N)>— <my, Vip (. + 2/ /N)>| < C(s)ﬁ,

we can replace the sum above by the integral over the continuous torus.

However, regarding the weak topology on M (T? x S), it will be convenient later
on to consider smooth functions instead of ¢.. We therefore introduce for any € a

function @, represented in Figure 2a verifying
— e = . on A, and on T?\A_, .s.

— I#elloe = llpellso-
— @ is in C1(T?).
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Since . and ¢, coincide everywhere except on A, .3\A., and since ||@.|| = (2¢) 2
we can write for any z € T%,

| <m¥ @e(+ x/N)> — <y, @ (. + x/N)> | < <, Ia,, A (- +2/N)>

1
(2)?

<4exe3

< Cé,
for some positive constant C. This bound immediately yields
| <m¥ Vi (. +a/N)>— <m,Vige(.+ z/N)> | < Ce,
which allows us to replace in Equation (6.12), in the limit N — oo then € — 0, ¢,
by e.
To prove Lemma, 6.3.1 it is therefore sufficient to prove that

(6.13) lim sup lim sup Eg~ // <, he (. +u)>2dudt | < K,
[0,T]x T2

e—0 N —o0

where h. = V;@,, is a continuous bounded function, represented in Figure 2b. Let
us denote by II the subset of MO

I = {ﬂ' e MO | sup <my, 1> < 1}

t€[0,T]

of trajectories with mass less than one at all times, which is compact w.r.t. Skorohod’s
topology introduced in Section 5.2.

Consider a weakly convergent subsequence QQn, — @, in order to substitute Q*
to QY in the limit above, we want to prove that for any fixed € > 0, the application

I.:m— // <7, he(. + u)>2dudt
[0,T] T2

is bounded, and continuous on II w.r.t. Skorohod’s topology.

Note that this application is bounded on II by construction, we now prove the
following lemma.

LEMMA 6.3.2. — Fiz e > 0, the application I, is continuous on (II,d), where d is the
Skorohod metric defined in Equation (B.3).

Proof of Lemma 6.3.2. — For any two trajectories m and 7’ in II, and some continuous
strictly increasing function « from [0, T into itself, such that ko = 0 and kK = T, we
can write

I(n) - I.(n') = // du<my + 7, he (- +u)><m, — Tp, + T, — 7t, he (- + u)>dt.
[0,T]xT?
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The first factor <m; + m, he(. + u)> can be crudely controlled by 2||A.||,,, which
yields

(6.14) | I(m) — I(n') |

< 2||he| o // | <7} — Ty, he (- + u)> + <my, — T4, he (- + u)> | dudt.
[0,T]xT?

Note that by definition of ||x||, one easily gets that for any t € [0,T], |t — k| <
T(el*ll — 1), therefore, x; — t uniformly on [0, 7] as ||x|| — 0. Let us fix = € II, and
assume that d(m,7") — 0 for some sequence of trajectories (7"),, € IIV, there exists
a sequence (k" )nen such that [|s"|| — 0 and lim, o SUP;cpo, 1) 0(7¢', Ty ) = 0. This
last statement yields in particular that for any ¢ € [0,T], 6(7}, mxr) — O, therefore
for any t € [0, 7], and for any u € T?,

lim <7’ — men, he(. 4+ u)> =0,

n—oo
since h.(. + u) is a continuous bounded function, and ¢ is a metric of the weak
convergence. Furthermore, since ) converges uniformly towards ¢ on [0, 7] and since

(0,77

t — m; is weakly continuous almost everywhere on [0, T] by definition of M "', we

also have that for almost every (t,u) € [0,T] x T?,

lim <m.n — 74, he(. +u)> = 0.

n—oo

Since 7 and the 7™’s are in II, both of these quantities are crudely bounded in absolute
value by 2||h.|| ., which is naturally integrable on [0, 7] x T2. One finally obtains by
dominated convergence, from (6.14) applied to 7/ = 7™ and k = k", that

| L(x) - L(x")| — 0.

n—oo

Lemma 6.3.2 is complete. O

We have now proved that the application I. is continuous for any fixed e, therefore
the left-hand side of (6.13) is less than

hmsupsupEQ* // du<my, he(. + u)>2dt
e—0 0,T]x T2

where the supremum is taken over all limit points Q* of the sequence Q. Since
by definition h. = V;%. does not depend on 6, we drop the dependency of 7 on 6
and consider simply for any u € T?, p(t,u) = [¢p,(u,dd), where p,(u,dd) is the
density of (-, df) w.r.t. the Lebesgue measure T2, which exists Q*-a.s. according to
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@E,i(.,u)
—|v|<e /

I

—Jv|>e+ed o
' 1/4e2 +0.(1)

—(e+e®) —¢ —e e e e+él

FI1GURE 3. Representation of ®. ;(-,v) depending on v.

Lemma 5.2.4. We can write

(6.15) Eq- (// du<m, he (. +u)>2dt>
[0,T]x T2
2
=Eg- (// </ p(t,v)Vige (v + u)dv) dudt) .
[0,7]xT2 \JveT?

We can now express V@, as a gradient, by writing
w;
Vi3 (u) = Oy, Vi@ (ve; + upey)dv = 0y, e i,
—1/2
where ¢/ # i still denotes the second direction on the torus.

Furthermore, ®. ;, represented in Figure 3, is in C?(T?) because @, is C*, and the
various integrals can be freely swapped since all quantities are bounded at any fixed €.
Since Q*-a.s. p € W12([0,T] x T?) according to Theorem 5.3.1, the right-hand side
in Equation (6.15) is therefore equal to

2
(6.16) Eg- (// </ O, (v +u)oy,p(t, v)dv) dudt) .
[0,7]xT2 \JveT?

In order to conclude, we adapt the proof of Young’s Inequality, and apply Cauchy-
Schwarz inequality to f = (‘I>57i(v—|—u))1/2 and g = (<I>w-(v—i—u))1/2 Ou,; p(t,v), to
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finally obtain that

Eq- (// du<my, he(. + u)>2dt)
[0,T]x T2
< Egq- (// || @il [/ @, i (v + u) (O, p(t,v)) dv] dudt)
[0,T]x T2 veT?2
= ||®eilf} Eq- (// (3uip(t,u))2dudt> ,
[0,T]x T2

where the last identity was obtained by integrating first w.r.t. u, then w.r.t. v. Since
|[®c,i|l; =1+ 0:(1), Lemma 6.3.1 follows from Equation (5.18). O

6.4. Replacement of the macroscopic gradients by their local counterparts

We now prove Equation (6.6), i.e., that the macroscopic average of the gradients
can be replaced by a local average. To simplify the notations, throughout this section,

X . 1L,eN
we drop the various dependencies of Y, 5

Recall that 7°°=°
of the angles, where each angle is updated uniformly in S,

0y = 5 [ UED=IDy,

z€T?

and simply denote it by Yj.

stands for the modified Glauber generator without alignment

and
B=0 __ ar2¢D G,B=0
Ly =N7"+ % .
Recall that Pz’*o is the measure on the trajectories starting from the equilibrium

measure 4, and driven by the generator L’?\,:O, and that the expectation w.r.t. the
latter is denoted by E/’)LO. We first apply Proposition 3.2.3 to the positive functional

/ Y3 Gt)

letting A = yN?, and obtain that for some constant Ko = Ko (T, 3, Z),

Ei’NB ( exp <'yN2 >‘| .

Letting 7 go to oo after N, to prove (6.6) it is therefore enough to show that for any

-
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T T
/ Y3 (Gy, 7(t))dt / Y3(Gy, 7(t))dt
0 0

Ky
> <7+W10gE>\0

integer p > 1
(6.17)

lim lim sup lim sup lim sup
Y7X |50 e—0 N—o00

T
g log B | v

exp (’yN 2
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We now get rid of the absolute value by using both of the elementary inequalities
el < e 4 e

and
im su oglan + S max im su ogan, im su (0]

Both of these imply that the limit in Equation (6.6) is bounded up by the maximum

of the limits of
T
exp (VNQ/ YS(Gtaﬁ(t))dt>]
0

1 g -
NE logIEf;’;0 lexp (—’yNz/ Yg(Gt,n(t))dt>] .
0

Since —Y3(G,n) = Y3(—G,n), and since the identity above must be true for any

log ]E;\LLO

1
YN?2

and

function G, to obtain the wanted result it is sufficient to show that for any ~ and any
G € CY2([0,T] x T?)

(6.18)
lim lim sup lim sup lim sup —— logE lexp <7N / Y3 (G, (¢ ))dt)] <0
T7X 5o e—0 N—oo N

We now get back to a variational problem, since Lemma 5.1.2 yields

1 T _
N log [eXp <7N 2 / Y3(Gt777(t))dt>]
Y 0

2TX2 1 (T . 1
< + f/ sup {Ea (7Y3(Gy, 7)) — D(w)} :
v YJo ¢ 2

The first term in the right-hand side above vanishes as v goes to co. Furthermore, the

time integral is now only applied to the function G, therefore to obtain Equation (6.6),
it is sufficient to prove that for any v and any function G € C?(T?),
(6.19) lim sup lim sup lim sup sup {2vE}, (¢Y5(G, 7)) — D(¢)} < 0.

l—oo e—0 N—oo ¢

Since this must be true for any G and any 7, we can safely assume that v = 1/2,
and Equation (6.19) follows from Lemma 6.4.1 below. Thus this completes the proof
of (6.6).

In order to avoid repeating a similar proof twice, we forget for the moment
that ¢ (p, p*) = ds(p) only depends on the total particle density, and present the
proof of the following lemma in the most difficult case where the gradient is on p“P
and where the diffusion coefficient depends on both p and p“. We simply assume
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throughout this proof that the diffusion coefficient 9 is a uniformly continuous
function of p and p“ on the set

{(a,aw) € [0,1] X [—||w||o » ||w||s] such that |a,| < ||w||ooa}.

LEMMA 6.4.1. — Let us fir 1 <14, j < 2, we shorten
D = (pk, p;) and vy = d;py,".

For any G € C?*(T?)
(6.20)

1
lim sup lim sup lim sup sup Z [G(m/N)E; (@Tx(cf/)eNvaN - C@mp))} —D(p) p <0,
l—o0 e—0 N—oo ¢ o N
zeTy,
where as before I, =1 —p — 1, and the supremum is taken over all probability den-
sities with respect to u’,. The same result is true for the gradients vy, = 0;px instead
of 8;p’", 0 instead of 0¥, and I' =1 — 1 instead of l,.

Proof of Lemma 6.4.1. — The difficulty of this lemma comes from the extra factor N,
which prevents us from using directly the replacement Lemma 4.1.1. We hence need
to get some precise control over each term to ensure that they are small enough. We
start by splitting in two parts the quantity in Lemma 6.4.1 by noticing that

(6.21) Denven — v, = Den(Ven —v1,) + (Den — Di)vi,-

Both terms are treated in the same fashion due to the continuity of the diffusion
coefficients (which follows directly from their explicit expression). More precisely,
we intend to show that the difference between the average over a microscopic and
macroscopic box is of order 1/N, and hence yields the extra factor N needed to use
the replacement lemma. Let us thus consider the first term appearing in the lemma,
namely

1

N]EZ ® Z G(z/N)Tz Den (ven — v1,)

z€T%,
Recall that we denoted B; = {z € T%,, |z | <}, and | B; | = (2 + 1)2. Since both v,y
and vy, are merely spatial averages of the gradients d;(n§ 1g,), a first summation by
parts yields that the quantity above is equal to

1, 1
~Eile > 08 elp, ..., —1516,.) |7 — Y., GW/N)7yDen
N | Bew |

z€T?3, |y—z |<eN

D G(y/Nm@END.

p||y*$|§%
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o=l S R NP
By
e B PO W N S
0: e; ]
o Tein

F1GURE 4. Change of variable 7 — T;7,7.

Now let S, (7) denote the quantity inside braces, i.e.,

—_

SM=rg X CUNmDy -5 X CNn Dy,

|y—z |<eN | B, |

|y—z ‘Slp
We are now going to prove that

(6.22)

. . . 1
lim sup lim sup lim sup sup ¢ —

* W w 1
P e Nevoo NEa ¥ Z Sfr(nx-'reilEp,aH—ei — Nz 1Ep,m) - §D(90) <0.

2
z€T%,

In order to transfer the gradient appearing in the expression above on ¢ and S,
we need the specific change of variable represented in Figure 4. For any direction
i € {1,2}, let i’ # i be the second direction on the torus. Given z in the torus, we
denote for any k € [[—p, p] (see Figure 1),

yr =& —pe; +key € Bp(x) and zp =2+ (p+ 1)e; + ke € Byp(x + €;).
Given these, we denote, for any configuration 7, by
T ,T4ei\Y—p,z—p)\Yr%p
Ti,p(n) = (((ﬁm * )y ) ) ’

the configuration where the sites x and z + e; have been swapped, as well as the
boundary sites y; and zg.

By construction, we have

M55, . (Tiph) = 05 ye, 1E, e, ()
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The first term in the left-hand side of (6.22) can be rewritten as

7E* ( Z S 77w+e, Ep ate; n;)]'Epm)>

z€T3,
= SE; T e (0850 - 05
(6.23) =% > E (n:lEp, [ (Ti) (Sa(Tp0) = Sz) + (e (TipM) = ¢) Ss]) -
zeT%

We are going to show that the contribution of the first term of the right-hand side
n (6.23) vanishes in the limit N — oo, whereas the second term can be controlled
with the Dirichlet form D(p). Recall that S, is defined as

Loy G(y/N)rysaeN—% S G/N) Do

Sx() =
| Be | |y—z |<eN o | ly—z|<lp

Since the only dependency of S, in 7 lies in 0., which is the diffusion coefficient
evaluated in the macroscopic empirical density p.n, in order to control the first term
in the right-hand side of (6.23), we can write

620) ST =55 Y C/N) [Doy(Toi) — Do ()]
|y—z |<eN

|1| S G/N)ry [Den (T2 ) — Den(@)] -
|y—z |<lp

Recall that 7, D.n (M) = 0¥ (Typen, Typ¥y)- Since it depends on the configuration
through an average over B.n(y), 7y D.n(7) is invariant under any exchange of a
pair of sites with both ends in B:n(y). We deduce from this remark that for any
|y — x| <1p, the quantity

Ty [ Den (T7,1) — Den ()]

vanishes, since all the exchanges happen between sites at a distance at most p of z,
and therefore at a distance at most p + [, of y. This yields that the second term in
the right-hand side of (6.24) vanishes.

We now consider the first term in the right-hand side of (6.24). For the same reason
as before, for any y in Bey—p—1(z), all the exchanges in 77, have both ends in By (y),
and 7, [ Dy (T o) — Den ()] vanishes. We can finally rewrite (6.24) as
(6.25)
1 o N

B
| =N | YEBN (x)\Ben—p—1()
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We now take a closer look at each of the remaining term. By definition, the configura-
tion T},7) can be obtained from 7 by inverting 2p + 2 pair of sites in 7). Furthermore,
fix a y in the sum above, and consider any inversion 7?**2 with z; € Bcy(y) and
22 ¢ B.n(y), we wan write by definition of p.ny and p¢y

Z1,Z2)

| Typen (7

21,22)

— Typen(M) | < and |7, p¢n (77 — Typen (M) ] <

1
| Ben |
By assumption, ?“(«, a,,) is uniformly continuous on the set
{(@,0) €10,1] x [~ lwllo [l stuch that |y | < |lwll,, .
We deduce from this that
7y (Den(@%2) = Den (@) = on (1),

therefore
|7y (Den (L5, = Den @) | < on (1),
where this time oy (1) stands for a constant depending on p which vanishes as N — oo.
We inject the latter identity in Equation (6.25), to obtain that
P e on(n) = o)
where the last oy (1) depends on p and ¢, but vanishes as N — oco. This allows us

to get back to Equation (6.23), in which the first term in the right-hand side can be
rewritten

Sz(zfpﬁ) — 5 =

3 L (1, (T (ST — S2)

zeT?%,

zpn ) (1) = ON(1)7
zeT%,

since p}, is invariant under the change of variable T} pn, and therefore E}, ( (T, pn))

Ex(p) = 1.

We now work on the contribution of the second part of (6.23), namely

(6.26) EL (N7 n¥lp,. Se(®) ¢ (T5F) — @] |

zeT%

that we wish to estimate by the Dirichlet form D(y). The elementary bound

Ac? 2 g2 2
—_ < — - —
ed(a—1b) <= (\/54—\/5) +2A(\F \/B) ,
which holds for any positive constant A, applied to

ach(T»zpﬁ), b=¢, c=n,S;andd=1g,,

’L7
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yields that the quantity above (6.26) can be bounded from above for any positive A
by
(6.27)

1 (A, L 2

¥ 5 5 (5 0250 (VB () + VB + gl (VB (T20) - V')

zeT%,

Since we already established that S, (T7,7) = Sz + (¢N) 'on(1), since 7% can be
bounded by C(w) >0, and since 1g, , < 1g,,, , the sum above is less than

628 27 3 B8 + e 3 B (e, (VE(TE) - vB)) +on().
z€T%, z€T%

According to Section 3.3, on the event E,; , on which there are two empty sites
in Bj,1, there exists a sequence of allowed jumps permitting to reach T 7 from 7.
However, this sequence is random, which we avoid by crudely bounding

1Ep+1,w < Z (1 =n2)(1 = n2,),
21,22€Bp 1

since the right-hand side only vanishes when there are less than one empty site in B, .
Given two fixed empty sites z; and 2, there exists an integer n,(z1, 22) bounded by a
constant C,, and a sequence of edges ((@m,bm))me[o,n,] Such that

n=n0),  TEn=n(ny), and 7(m + 1) = f(m)*m*" ¥m € [0,n, — 1],
where a,, and b, are neighboring sites in Bpy1(x) and n,,, (7(m)) =1 —m,, ((m)) = 1.

We can therefore write

E; (15, (V@ (T50) — v@)?)
< ¥ E <n 3 1p,, (Vo (ilm + 1) - ﬂ(ﬁ(m»)?)
m=0

21,22€Bp 11
< KpDnpr1(9),

since 7)(m + 1) is reached from 7(m) by an allowed particle jump, where Dy ,1+1(¢) is
the contribution of edges in Bpt1 in D(yp).

The sum in the second term of (6.28) can therefore be bounded by C; D (¢), where
Cyp=(2p+ 1)2K,,. Finally, (6.26) can be bounded, for any positive A by

A02 * 2 CP
N GZTQ ]Ea(SOSz) QAND( )+ON(]')
TN

We can now set A = Cj /N, to obtain that
* W x A C(paw) * 2 1
L | N7 Y L, 8@ [0 (TH0) — o] | < =55 D EalpS) + 5D (@) +on(D).

z€T% z€T%
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The first term in the right-hand side above vanishes as a consequence of the two-
block estimate stated in Lemma 4.2.1, since the diffusion coefficients are continuous
according to their explicit expression. This concludes the proof of Equation (6.22).

The contribution of the second part of Equation (6.21) is treated in a similar
fashion. Denoting by

R 1
S, (M) =

B, | Z G(y/N)(ty Den — Ty D).

Ply—z <,

As before, the corresponding contribution in the left-hand side of (6.20) can be written
as

1 ~
—5 2 EL (0 1s, . (0(T5,0) — ¢) 52) .
z€T%,
since this time, S, is invariant under the action of 7}, by definition of /,,, whereas the
second term can be controlled in the limit N — oo as well by D(p)/2. This completes
the proof of Lemma 6.4.1 in the case where ), = * (pk, p) and v, = 8;p; .

In the case where )y = 0 (pk, pY) and v = &;py, the proof is easier and no longer
requires indicator functions, since unlike §;7%, §;1, vanishes when there is no empty
site. We do not give a detailed proof, which would be an easier version of the previous
case. We will instead just give a brief outline and the equivalent quantities to the
previous ones. The same summation by parts allows us to rewrite

1 " 1.
NG(JT/N)EQ (‘PTz(of()eNUsN - cC/)lUlp)) = NEO( ¥ Z (Sz + 83) (Nate; —M2) |
zeT?%,
where
1 1
S, = >, GW/N)ryDen — i Y, GW/N)Ty Den,
|BEN | ‘ |Bl' | ,
y—z|<eN ly—z|<i
and
. 1
Sy(0) = W Z G(y/N)(1y Den — Ty Dy)-
[y—z <V

We can now rewrite Nyye;, — Nz = Nate; (1 — Mz) — Nx(1 — Nzte,), to obtain that the
quantity above is
= 3 B (1:(1— mase) (S5 + SL)g) (7775) = (S, + SL)g)
N a \Mz Nz+e; T z)¥P) N T z)¥) -
zeT%,
The gradients of S, and S, still vanish, whereas the average of the gradients

~r,r+e;

o(n ) — ¢ can be controlled by the sum of a vanishing term and the Dirichlet
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form of ¢, since this time the jump rates 7;(1 — nz4e,) are already present. This
concludes the proof of Lemma 6.4.1. O

6.5. Projection on non-full sets and reduction to a variance problem

We now prove the limit (6.7), which states that in a local average, the current can
be replaced by gradients, up to a perturbation Zf. Following the exact same steps
as in Section 6.4, up until the statement of Lemma 6.4.1, where we reduced the proof
of Equation (6.6) to (6.19), we reduce the proof of Equation (6.7) to the variational
formula
(6.29) mf lim lim sup lim sup sup {E} (¢Y4(G,7)) — D(p)} <0,

P70 500 N—oo
where we shortened

I A 1 1
Yi(G,7) = Y/{"(G.0) = 5 Y Gla/N)m Wy”,
z€T%,

and GZUf ¥ was introduced in Equation (6.3). Since this step is performed in the exact
same way as in the beginning of Section 6.4, we do not detail them here and refer the
reader to the latter. To simplify notations, we shorten

W, = WP

for the local average of the difference between gradients and currents in the direction 1.

We will now work to get an estimate of the largest eigenvalue of the small per-
turbation Z + Y of Z. The strategy is close to the one used in the one-block es-
timate of Section 4.3. To do so, we break down the process on finite boxes with a
fixed number of particles, where the generator Z has a positive spectral gap. In or-
der to introduce this restriction, we adopt once again the notations introduced in
Section 4.3, which we briefly recall here. Let B; = [—[,{]> be the box of size I,
K = (K,{6,,...,0k}) be some particle number and angles. Recall that K; is the set
of K’s such that K < (21 + 1), and denote by & # the grand-canonical parameter

af{:(m_'_lgz%kewl( )

Recall that we already defined in (3.3)
={nezn| m=az}
the set of configurations with K particles in B; with angles 6’s. Also recall that u,  is

the canonical measure p%( . | Elf{ ) conditioned to particle configurations of the
form K in B;.
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We denote for any site z ¢* = 7_5¢, and by gof P the density induced by ¢* on EZR .
It can be defined for any configuration Zon B; by

. o~ En@®|hie =0
@l,R(C): < % ml II? *
Ez (" | =K)

Let us now get back to the quantity of interest,
(6.30)

EL (o¥a(G,7) = 1 3 G/NIE: (om %)) =+ 3 Gla/N)E; (W)

xETZ z€T%,

Because 622)5 only depends on the vertices in B;, we can replace the expectation
under uy, by the integral over K; of the expectation under u, . More precisely, let us
denote

ma(dR) = B, (971505 )

the infinitesimal probability of being on the set Elf( under the measure with density ¢”
w.r.t. pg,. Thanks to (6.30), letting Ej , be the conditional expectation of Ej, w.r.t.
the sites inside of B;j, we can write

EL (o¥a(G0) = 1 3 Gla/NIE;, (W)
z€T%,

(6.31) :% > G/N) [ E

xe?l‘?\, KekK;

=)

(Wher 2 ) ma(dR).

Let us now decompose in a similar fashion the Dirichlet form. For ¢ some density
with respect to ug, let D, p be the Dirichlet form on EZK

Dz Z E, [nw1—ny (\/—y )]

z,yeB;
z—y|=1

We have with the same tools as in the proof of Lemma 4.2.1

(6.32) Y /A Dig (ﬁf{) me(dK) < (21 + 1)2D(y).
zeT% Keky
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From the previous considerations, we can localize the quantity inside braces in
Equation (6.29), which is bounded above thanks to (6.31) and (6.32) by

(6.33)

EL(¢Ya(G, 7)) — D(p)

- ~/I?GK1 mm(df()< (m/N)ElK(GZz)lwl K) (2l +1)" ZDZK( ff()>

2
zeTy

< Ky Z sup [ﬁE 7 (GZUlwig) -D, % (‘pfl?ﬂ

ceT?, KeKi '

< K1 Z sup sup [7\? E, (%)ﬁd)) -D % (w)} ;

z€T?, Kek, ¥

since [z, me(dK) = 1, where
=@20+1)"% and sy =G(z/N)(2l+1)?

and the supremum is taken over all densities ¢ with respect to y; ».

We now wish to exclude in the supremum over K above the configurations with one
or less empty sites since on the corresponding sets, the exclusion process is not irre-
ducible as investigated in Section 3.3. First note that for any K such that K = | By |,
GZe)ﬁ vanishes. Indeed, thanks to our cutoff functions 1g,, and since I goes to oo be-
fore p, in that case, the currents, the gradients as well as the Zf’s in GMﬁ all vanish
as well as D, ¢ ().

We now consider the case where K = | B;| — 1, i.e., when there is one empty site
in B;. We state the corresponding estimate as a separate lemma for the sake of clarity.

LEMMA 6.5.1. — There ezxists a constant C = C(G,w, f) such that for any K such
that K = |Bl|_1;

o (W9) < De )+

Proof of Lemma 6.5.1. — First note that all the gradients §;n“'? vanish in the expres-
sion of 622)2 due to the cutoff functions. We can therefore write, for any configuration

with one or less empty site, that

1 1 _
%l = 751 L 1\9 o (U 'z zt+e; ) T 787, 1.9 ;
i (2l' + 1)2 Z (]ac,w+ei + Rlz,z+ 1) (2lf + 1)2 gzlf

r€EB/

where we denoted by 0z the value on Elf( of 9 (pi, p’), which does not depend on the

configuration, and f = Y 7. f. The quantity we want to estimate can therefore

Z‘EBlf
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be rewritten

%El,f? (%iip)

Ko K2 n
7]]3 x,x+e - E, z ’
(2[/ + 1)2 1L,K w EEB: jm ,x+e; + DK] + z) N(2lf + 1)2 IL,K (wzlf)

zE€By/

where Z; is the generator of the symmetric exclusion process restricted to jumps with
both ends in B;. Since k2, (21’ + 1)2, and (2lf + 1)? are of order (2] + 1)?, and since

the sign of f is arbitrary, to prove Lemma 6.5.1 it is sufficient to prove that for any
A > 0, we have both

1 w . D g ®)  ACWw)
NEI,IA{ w Z (Jz,erei + D[?Jm,a:+ei) < 24 + N2
(634) ZEEBl/

1 — _DzW) ac
and NEZ,I? (w %lf) < lé{A + N(2f)

A

The two inequalities above are proved in the same way. We treat in detail the
second, which is the most delicate, and simply sketch the adaptations to obtain the
first. Using the elementary inequality

2 2

ya b

6.35 b< —+ —
(6.35) @b St o

which holds for any positive 7, we first write

EZ,I? (,l/) ‘O’Zl?) = Z ]Elj{' (wvx,z+z?)

z,x+2E€B;

1 —
Y > E z (Vaot:9Vezt:f)

z,x+2€B;

1
S D (L S TG SN
z,x+2€B;
1 T A~

_%D A(w)—I_EEl,I? Z nw( nw+z)(f Axx+z f+\/> xx+z

z,x+2€B;

One only has now to carefully account for the order of the different quantities in
the second term. Since f is a bounded local function, by definition of £, it is invari-
ant under particle jumps with both ends outside of its domain. There hence exists
a constant C(f) such that for any = and = + 2z, f — f(7®**) < C(f). In partic-

ular, the constant C(f) does not depend on I. We can also crudely bound 7, by 1
and (v + (%% %))2 by 21 + 9(7%%F#). These bounds and a change of variable
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7 — N®**Z finally yield that for any positive v,
Tp cf)
E gz (Wif) < 5D I?(T/’)"FWEM? Z (2 =10 — Mos2)¥

z,x+2€B;
Furthermore, since there is only one empty site in B;,

Z (2_77y_77y+ei):|Bl—l|_ Z 77y+|7-eiBl—1|_ Z nyg27

|y [<i-1 yEBI—1 YETe, Bi—1

<1 <1

therefore, since v is a probability density, and setting v = N/A proves the second
identity of (6.34).

The second identity is obtained in the same way, since

1 . . 1
NEE | ¥ 2 (are +0g0nere) | = 5 Do By (@0) +02)Vyyret),
r€EBy |y |<l—1

we also obtain

1 » .
NEE (Y 2 (Fare +0RTere)
IEBl/
2
ol (wlloe + 110]o0)
S §Dlj€ (w) + 2,-), El,l? Z (2 — Nz — 77z+ei)¢

z,x+e;€B;

The last estimate, in turn, yields the first inequality in (6.34), which concludes the
proof of Lemma 6.5.1. O

In the limit N — oo then I — oo, Lemma 6.5.1 yields, since «; vanishes as | — oo,
and since all quantities vanish when K = | B, |, that

s Y s sw[TR g (W) - Dg ()] o

T2 KEKl
€N k> B -1

We can therefore restrict the supremum over K to those satisfying K < |B;| — 2.
Recall that we denoted in Equation (3.2) by K; the set of such K, the left-hand side
of (6.29) is bounded by

(6.36) 1nf hm lim sup lim sup k1 Z sup sup [N LR (%)iw) - le( (w)] ,

w00 N—ooo a:e']l’Q KG]KL P

where the supremum is taken over all densities ¢ w.r.t. u, ». On all the sets Elf(
considered, Z; is invertible and the supremum over 1) is a variational formula for the
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largest eigenvalue of the operator Z; + kg OZz)i /N. Proposition B.4.1 then allows us to
bound the quantity whose limit is taken in (6.36) by

K1 KZ%

-1
i K',QN
o)

B,z (Wh(-20)7 )

limsup sup
N—oo ReR, 1 — 2y

<IGIE, (@ +1)? sup By ¢ (Wi(-2) ' W) -

Kek,;

To obtain the last mequahty, we denoted by ~; the spectral gap of the local genera-
tor Zy, is finite, and x1 k3 = ||G||%, (204 1)2.
In order to obtain 1nequahty (6.29), and conclude the proof of Equation (6.7), it is

therefore sufficient to prove the following result.

PROPOSITION 6.5.2 (Estimate of the local covariance). — Recall that ). is the local

average of the difference between currents and gradients up to L f, namely
1 N , l
Wi = (3¢)0 + ds (1) 8:p" +0 (1, 07) Gipr = (L)
where 0 is given by Equation (1.3). Recall that ]Kl only takes into account configura-
tions with two empty sites in B;. Then,

(6.37) 1nf lim lim sup sup (20 + 1)2E (%)ﬁ(—%l)_l(’wé) =0

P70 lsoo ReK,

6.6. Limiting variance and diffusion coefficients

In Section 6.5, we reduced the proof of (6.7), and that of Theorem 6.1.1, to esti-
mating a local variance. In this section, we introduce the limiting variance <->5 and
investigate its properties and the structure of a set of functions with mean 0 w.r.t.
any canonical measures, equipped with <->>5. The presence of indicator functions

P and the necessity for a uniform estimate in the canonical state K € ]Kl

in 8;ng
makes this section fairly technical, however, most of the results come from elemen-
tary linear algebra. The main results of this section is Proposition 6.6.7, which is
the main ingredient to prove Proposition 6.5.2, and therefore concludes the proof of

Theorem 6.1.1.

To prove Proposition 6.5.2, we are now going to investigate the limit as I — oo and
a, — @ (cf Definition 3.1.2) of

(6.33) %Em )t Y . S ne| = <a,

(2l + 1 Z‘EBlw IEBZVJ
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where 1 is supported by B, and Iy =1 — sy — 1 is chosen such that EweBl TP 1S
P

measurable w.r.t. sites in B;. There are therefore two important steps to prove (6.37):

— prove that the limit (6.38) is well-defined for any function v in a convenient
class of functions containing at least the currents, the gradients and ZC. This
is done in Definitions 6.6.1, 6.6.2, and Theorem 6.6.4 below.

— Prove that, shortening Ez(w) = Ez(w(bo)|no = 1) and letting
(6.39) 2(@) = Ea(w)(1 - dy(a)),
we have
(6.40) }Ielfaph—{go stép <ji +ds(a)di(ng' 1e,) +0(Q)ding — Lf>a =

which is done below in Proposition 6.6.9.

We introduce a class of local functions with mean 0 w.r.t. any pp . When there
are less than one empty site in the domain B, we require these functions to vanish in
order to avoid classifying the irreducible subsets of ¥ when there is only one empty
site. Recall that we already introduced in Definition 3.1.6 the sets K; and ]Kl. We now
define
(6.41)

Co = {we C ‘ E, z@®)=0 VK € K,, and Y)r =0 VK € K,, \sz}.
S

In particular, any function v € Cy has mean zero w.r.t. any canonical measure. Note
that ¢ € Cy, and any @ € M,(S), conditioning w.r.t. the canonical state of the

configuration in B; , we obtain in particular that Ez(¢) = 0. Further define

Sap )

(642) 1% = {fe C| @ =)+ > neln), pee S Ve ZZ},

€72
of functions whose only dependency in the 6,’s is a linear combination of the w(6y).
Note that since we only consider local functions, this set is well-defined.
Denote

(6.43) o=0CoNT".

Note that &y and Cy are stable by the symmetric exclusion generator Z. Further
note that by construction, 8;(nylg,) € & .

Recall that for any function ® on S, 5 = ®(0p)n0(1—7e,)—P (e, )ne, (1—10) denotes
the symmetric current associated with ® (we also shortened j; = j! = n9 — 7¢,). We
define J* the set of linear combinations of currents spanning any smooth angular

functions,

(6.44) J= {4, for ey, @, €CY(S) ),
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and let

(6.45) JY = J NTY = {j“’b = 3" @i + b, a,bERQ}.
i=1,2

We now have all the notations needed to introduce the limiting variance <->5. In
order to be able to estimate concisely the drift term later on, and to solve a technical
issue, we need a rather general result. In particular, we give two distinct constructions
for € f>5 depending on the nature of the function f. Fix @ € o¢#;(S). Although it
is not clear at this point that those two definitions actually coincide, this difficutly
is adressed by Theorem 6.6.4 below, which states that the object <<~>>}a/ % is a semi

norm, and that for any function to which both Definitions 6.6.1 and 6.6.1 apply, the
two definitions actually coincide.

DEFINITION 6.6.1 (Definition of <->>5 on J* + Z(). — For any ®;, ®; € C*(S) and
for any local function g € C, we define

® o =0 2
(6.46) < +j3* + Lg>a= Y Ea (770(1 —7e,) [@i(eo) + 8, (70 — zg)] > :
i=1,2
where ¥, = ZZEZQ Txg, which is not a priori well-defined, but whose gradient

Eg(ﬁo’ei) — 34 is, because g is a local function. For any function ¢ € To+ I+ ZC,
define

(6.47) <, Lg+ i +j9>a = —Ea <¢ [z:g + > (znd + x2ng>2)]>,
TrEeZ2

which once again is well-defined because any ¢ € &y + J* + ZC is a local function
with mean-0 w.r.t. any ug, therefore the expectation above only involves a finite
number of non-0 contributions. In particular, an elementary computation yields that
for any g € C, and j € J*

<Zg+j, Lg+j>a=<Zg+j>a,

where the left hand-side is given by (6.47) and the right-hand side by (6.46).
DEFINITION 6.6.2 (Definition of <->>5 on ). — For any ¢ € &, define

(6.48) LY>z = sup {2<<1/) , Tg+>s— <2y +j>>a},

T
jes

where T%, &'y and J“ were defined in (6.43) and (6.45), and the two terms inside

braces are respectively given by (6.46) and (6.47).

For ¢y € ¢ and j&' + j32 + Zg € J* + ZC, we also define

LY+ Lg+i 475328 = KLg+iT +j32>a+<p>a+2<h, Lg+jT +j5>5,
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where the three terms in the right-hand side are respectively given by (6.46), (6.48)
and (6.47).

These definitions allow us to finally define on & ‘6) +J*+ ZC abilinear form <-, >4
by letting <1, 9>>5 = <>5 for any ¢ € & + J* + ZC, by polarization identity
on J¢% and (J* + ZC)?, and by (6.47) on T x (J* + Z0).

REMARK 6.6.3. — We will see in the proof of Theorem 6.6.4 below that this definition
coincides with Definition 6.6.1 for any v € &y N {J* + £C} C J¥ + ZT*, since in
this case the supremum in (6.48) is reached for f = Zg + j itself.

For any cylinder function 1, recall that s, is the smallest fixed integer such that 1) is
measurable with respect to o7 s and let [, = [— sy —1 for any integer [ large enough.
The following result justifies the definitions above, and states that <> defined for
any ¥ € ¢ + J* + ZC is the limit of (6.38).

THEOREM 6.6.4. — Fiz @ € oM,(S), and a sequence (IA(l)leN such that I?l € ]Kl and
Il @z, —alll = 0, where & € M1(S) is the grand-canonical parameter defined in
(3.1.7).

The bilinear form <., ->5 introduced in Definition 6.6.2 is a semi-inner product
on Iy +J*+ ZC, and, for any functions ¥, p € Iy +J* + ZC,

(6.49) llirgo ﬁﬂzl,fﬁ (—-Z, 1) Z Tz Z T | = LY, o>5.
‘”eBl«p z€B,,

Furthermore, for any ¥, € o + J* + ZC, the application & — <, o>>5 is

continuous in @, and the convergence above is uniform in &@. In particular, for any

ve Jg+J+ 20,

(6.50)

lim sup ;E P (—izl_l) Z T . Z Y| =  sup <KLY>5.

I,K ~
I=o0 Kek, (2l + 1)2 zEBy, zEBy, BEH(5)

The proof of Theorem 6.6.4 is the purpose of Section 8, and is postponed for now.
It requires many adaptations because of the angles, but follows the global strategy
presented in [28]. Let us explicitly write the dependency in p and f of GZUi = GZHf ’Il]
appearing in Proposition 6.5.2, and define for any @ € ¢#;(S)

(6.51) VI (@) = j¢ + ds(a)ding? +0(@)dm0 + Lf € T o +J* + LC.

Recall that Iy =1 — sy — 1, where sy is also the size of the support of 6Z)Zf’p (since we
can safely increase s, in order to have sy = sq)s ) and define
P

Q=@+ - Y (RV)E) ad Q=Y [(mV,)@E) - (V)@

ZEBlf EeBlf
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For h a cylinder function measurable w.r.t. sites in B, define &), z(h) =
E, z(h(=Zy)h). For & — @, the variational formula for the variance yields

lKl(GZZ)fl( zfl)%f;5> _SUP{ (hcwfl> - cy)l’f(l(h)}

E gz |b Y. (V)@ |- é@l,f(l(h)

:EEBLf

1

1 1
+SI}1LP{(2l+1) E, &, (h Q2)—c5/),f<,(h)}

1
< J—
=5 @+ 1)2

3 (=gt f (A Foy
< @ik | G L%f”%p““)gﬁ%w
1 1
o o B (400~ 19,0
1 1
#oup{ G e (192) ~ 3 D)}

Since the discrepancies in Q1 = (21 + 1)2%% - EzEBlf GU{p(ﬁl) occur only in
By_1 \ By, letting v = 1/(21 + 1), Lemma 8.3.2 below yields that the second term
above is less than

Cr|Bi—i\ By, | 2L+ 1)~ =0(07?).
The last term multiplied by (2 + 1)? vanishes as well thanks to Lemma 8.3.2 and
because the diffusion coefficients d; and 0 are continuous in &. Furthermore, as in

Lemma 8.3.2, both of these convergences are uniform in IA{Z and @. We can therefore
apply Theorem 6.6.4 to the first term to obtain that for any f € C,

lim sup(2l+1)2Elf(<GZ/)fl( )" 1%{g)g sup <UL (@)>s,
l—o0 R ? ’ ac My (S)

therefore to prove Proposition 6.5.2, and thus Equation (6.7), it is sufficient to prove

(6.52) inf lim sup <<GU »(@)>5 = 0.
fFECP=0ge i, (5)

This estimate is proved later on in Proposition 6.6.9, and requires to understand the
structure of the space & + J* + ZC equipped with <->5. It is the main result of
this section.
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For any ® € C'(S) and any @ € o#;(S), we shorten
Eg(®) := Ea(®(fo) [ no = 1), Va(®) :=Varg(®(6o) [ no = 1),
Cova(w, @) = Ez(w®) — Ea(w)Ea(®), T(9) = (0) — Ea(®).

In particular, we denote by j?; = j¥ — Ea(®)j; = j¥ + Ea(®)d;n the associated
current. Note that any element jib T4 jg ! of J* can be written as a linear combination

of the j;f"' and j;’s, i = 1,2. For any fixed @, we finally define the function h? by
RY (1) = ds(@)(8:mg" + Ea(w)js) = 8; [ds(a) (0 1e, — Ea(w)no)]
= dy(@)(n2, — 1) — dy(@) [ s, 5 — 1L |
where as before E, = { >ven, e < | Byl — 2}.
We can now rewrite (6.51) as
(6.53) V@) =i + b + Zf.

Note that both j? and h depend on @ as well as w, but to simplify notations, we do
not write it explicitly. Throughout this section, we will not indicate the dependencies
in w which is a fixed smooth function. We now compute the inner product <-, >4
of h? with elements of J* + ZC.

COROLLARY 6.6.5. — For any @ € M,(S), g€ C, ® € C'(S) and i,k = 1,2,
(6.54)
<h?, Tg>a = 0, <h?,j¥>a = 1ukya®(@) and <h?,ji>a = Luogyry(@),
where we shortened
gy (@) = —ads(a)Covg(w, ®)uz(Bylno = 1)

and

rp(@) = do(@)Ea(w)Ea (1015 [1 — ne, = 20+ 1)%(@ — 1.)] ).
Furthermore, shortening q,(@) := g5 (@),

(6.55)

r2(a
lim sup |gp(@)pa(Eplno =1)+ ads(a)Vz(w)| =0 and lim  sup »(@) =0.
)

P= ae i, (S P=% ge oy (s) (1 — a)
In particular, gp(@) — —ads()Va(w) and rp(@) — 0 as p — oo uniformly in @ €
M1 (S).
Proof of Corollary 6.6.5. — The three identities in (6.54) are consequences of (6.47).
Regarding the first one,
<h}, Lg>a = —Ez(h] %)
= —ds(a)Ea (3 [12,1r., 5, — 1515, — Ea(w)ne, + Ea(w)mo)]) =0
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by translation invariance of pg.

For the second, we write

<h?jE>a == 3 wEa(hiny)
z€Z?
= —dy(@))_exEa((nf, —m5)n3) +ds(@) Y arBa (0 1r., ms — 5 L1me)ns ).
aez? T€ZL?

Since by construction ® has mean 0 w.r.t. the product measure ug, for any function v
which does not depend on 6,, Ea(dmg’ ) = 0. In particular, in both sums, any term
x # 0, e; vanishes. The terms for x = 0 also vanishes because of the factor xy, and so
does the term for x = e; if ¢ # k. This yields

<hY, e = ~Lgmwyds(a) {Ea(n8nd) - Ba(nnd 1., 5;) }
= —1ji—pyads(a)Cova(w, @) ps(Eplne = 1),

as wanted.

We now turn to the third identity, for which we can write, applying the same steps
as before

<hYji>a = —dy(@) Y 2xBa((n2 —n5)ne) +ds(e) Y a:kEa((n;; L. Bs — nglEg)nz)-
T€Z? T€Z?

By definition of &, each term in the first sum vanishes. Regarding the second term,
recall that B,(z) = z+ By, for any x € (B,UBp(e;))¢ and any « € B,NB,(e;)\{0,¢e;},
the corresponding contribution vanishes, because 7 7:1-, Be and 7§ 1,1 B have the
same distribution. The term for z = 0 vanishes once again because of the factor xy.
We can therefore write

<hL,Gi>a = Limkyds(@)Ba (12,1, 5; — 15 Lpg)ne, )
+dy(a) > 2B (1 Lr., 55 — 15 Lg)ne )

r€EBy, T;=—p
or z€By(e;), z;=p+1

If ¢ # k, the sum in the second line vanishes because the contributions for x; = ¢
cancel out the contributions for x;y = —q. If i« = k, all the contributions for x; = —p
(i.e., z € B, \ By(e;)) are identical and equal to

—pd, (0)Eg(w)Ea (01e, Lr,, 5 — natioLi; ) = —pds(0)Ba(w)Ba (& = ne, 1oL )

and the contributions for z; = p +1 (i.e., x € By(e;) \ Bp) are each equal to

~(p+ 1)ds () (w)Eg (@ = ne, JnoL; )
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Since each of those contributions appear 2p + 1 times, we finally obtain as wanted
that

<R, i35 = Liicyds(0)Ba () [Ba ((1 = me, )mole; ) — (20 + 1)°Ea (@ = neJmolsg )|

According to Proposition B.2.3, c¢(1 — p) < ds(p) < C(1 — p) for some positive
constants ¢, C. Using this fact, the uniform estimates (6.55) follow from elementary
computations: for high densities, the factor ua(Ej|no) fail to converge uniformly in @,
but then d,(a) provides the needed control. Regarding 7, the principle is the same,
and the extra factor (2p+ 1) is balanced out as & — 1 by the factor a —n;. We start
with the first estimate. To prove that g,(@)ua(Ep|lno = 1) + ads(a)Vaz(w) vanishes
uniformly in @, by definition of ¢, and since w is bounded, it is enough to prove
that |1 — pa(Ep|no = 1)?|ads(a) also does. The probability uz(E,|no = 1) is explicit,
and given by

pa(Eplno =1) =1—a” = P(1 - a)a”"!
where we shortened P = (2p+1)?—1 = | B,\{0}|. In particular, since ds(a) < C(1—a),
11— pa(Eplno = 1)%|ads(e) < Ca(l — @) [2a" +2P(1 - a)a” ! = [ + P(1 — a)a”"1?].

Thanks to the prefactor 1 — a, Each of the terms above is bounded by P?(1 — a)?t'a®?
for some different constants a € {0,1,2} and C; > 0 independent of P. The previous
expression is maximal in ap = C1P/(a + 1 + C1P), and is therefore, uniformly

in @ € oM(S), less than
Pa a+1 a+1
a+1+01P ’

which vanishes as wanted as P — oo.

We now turn to the second estimate. Once again, since ds(a) < C(1—a), we obtain

immediately
rp(Q)? 11—« 9 2
<C Ea(nolp:[1=n. — (2p+1)%(a —n, .
a(l—a) — o (770 EP[ Ner = (2p+1)%(@ 771)])

The expectation above can be split in two terms, resp.
(1= (2p+ 1)) Bz (m0(1 = ne,) ;) and (1-a)(2p +1)*Ea(nole; ).
We still shorten P = (2p +1)? — 1 = |B,, \ {0}/, to obtain the bound
|Ba (moles[1 = nes = @p+ 120 = n.,)] ) | < P = a)a” + a1 = a)(P + Dpua(Eglo = 1).

the last probability ,ua(Ef, |no = 1) has already been computed for the previous esti-
mate, and one obtains straightforwardly that r,(@)?/a(1 — «) is also bounded from
above by a (finite) sum of terms of the form C; P%(1 — a)**1a?P for a € {2,3,4} and
(1, Cs positive constants. As before, each of those vanishes uniformly in & € o#;(S),
which concludes the proof. U
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We are ready to investigate the structure of &/ Z; with respect to the semi-norm
<>gon I g+J*+ZC. Denote by oNg = Ker<< >4 and define /4 the completion
of (F4+J*+ZC)/ N5 with respect to <- >>A . We need to define <->>5 on a rather
general space, including in particular J* + ZC, in order to be able later on to estimate
the drift contribution to the hydrodynamic limit. However for now, we focus on the
symmetic current, and further define H* the closure in §#% of (¢ +J“+ZT%)/ N 5.
PROPOSITION 6.6.6 (Structure of H*). — For any & € o M,(S5), ( §,<<'>>3A¥/2
Hilbert space, and

) is a

1Y
Na
where LT/ Ny is the closure of TTY [ Ng w.rt. K>z in ‘CL:O,

HY = @Jw,

Proof of Proposition 6.6.6. — First note that if « = 0 or 1, <->5 = 0 and therefore
SHZ = {0} is trivial. We now assume that @ is such that a € ]0, 1[. Since we took the
quotient by Vg, the fact that (s, < >>1/ 2) is a Hilbert space is immediate. By
construction H* is a closed linear subspace of &#%, and the inclusion

LT

Na

is immediate, because J* = J“/ /5. Since both sets are closed subspaces of $//a, we

a1 T S
H = | S+ J @ S+ J¢ :

where the second set on the right-hand side denotes the orthogonal complement

+J¥ C H”

have

of % + J¥ in H“. To prove the converse inclusion, it is therefore sufficient to
prove ‘that this orthogonal complement is reduced to {0}. This is rather straightfor-
ward, although a bit technical because of the different definitions for <->>5. For that
purpose, and to give a proof as clear as possible, let us shorten M=9T%/Ng+ J*,
and denote by m = j** + Zh its elements. Since M C H%, and since H¥ 's
by definition the closure of (&g + M)/ V5 any of its element can be written either
as g+ m, where g € gg and m € M, or as the limit of elements of this type. In order
to avoid taking convergent sequences, fix

w

— L.H
go+mg € M ,

where gy € & ‘6) and mg € M, we want to prove that gy + mg = 0. By construction,
for any m € M

<Lgo + mg,m>5 = 0.
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and since gy € &, we can rewrite by the definition of <->>5 on & (cf. (6.48))

(6.56) KLgo>s = sup {2<Kgo, m>5 — KMm>5},
meM

therefore there exists a sequence (m*)_ o of elements of M such that <go + mF>z — 0
as k — oo. We can thus write

L go + mo>s = Kgo +mF, go + mo>z + <mg — mF, go + mo>5.

The second term vanishes because mg —m* € M, whereas the first term in the right-
hand side vanishes as kK — 00, therefore <gg+ mg>5 = 0 as wanted. The same proof
holds if go + my is replaced by a convergent sequence of elements of & + M, which

proves the reverse inclusion.

Only remains to prove that the sum LT 4 J@ is direct. Assume that for some

coefficients a;, b;, and for some cylinder function g € & g

<Y ai? +biji — Lg>a =0.

i=1,2

(We should really write this identity for a sequence g,, instead of g, with the identity
above holding only as n — oo, but this is purely cosmetic and the proof below holds
in this case as well.) Thanks to Equation (6.54), we can take the inner product of the
identity above w.r.t. ! and since we assumed that 0 < a < 1 let p — oo to obtain
that for ¢ = 1,2, a;ds(a)Vz(w)a(l — a) = 0, therefore a1 Vz(w) = a2Vz(w) = 0. In
both cases, we therefore have <<a1jf>>a = <<a2jg">>a = 0. This yields

Lbij1 +bajo — Lg>5 =0,

so that we can now take the inner product with §;m79 = —j; (which is orthogonal
to Zg), to obtain that bja(l — @) = bea(l — @) = 0, therefore by = by = 0 as wanted.
This proves that the sum is direct, and concludes the proof of Proposition 6.6.6. [J

The next proposition states that in $#%, j¢ can be written as a combination of A%
and j;, up to a function which takes the form Zg, and that the coefficients converge
as p — oo to those given in (6.53).

PROPOSITION 6.6.7 (Decomposition of the currents). — For any positive integer p,
define

e (@) = pa(Eplno =171 ifa<l
b 1 otherwise

—rp(@)cp(a)/a(l —a) if0<a<l

0 otherwise,

and dy(@) = {
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where 1, was defined in Corollary 6.6.5. Then, for any i € 1,2 and & € M, (S).

(6.57) inf <ji° + cp(a)hf + dp(@)ji + Lg>5 = 0.

geT™
Furthermore, any sequence (gm)m ultimately realizing (6.57) can be chosen indepen-
dently of p, and also ultimately realizes

(6.58) inf <%+ Zg>5.
geT

Proof of Proposition 6.6.7. — We start by clearing out the trivial cases when a =0

and @ = 1. In those, all quantities vanish and (6.57) is trivially true for any co-
efficients. Another trivial case is when Vz(w) = 0. In this case, % = 0 in §#Z,
therefore, the h” and j; being orthogonal (as local gradients) to ZT%, and h?
being orthogonal to ji for & # i, as a consequence of Proposition 6.6.6 we can
then write <h? 4+ a,j;>5 = 0 for some constant a,. This constant can be deter-
mined using Lemma 6.6.5 and taking the inner product of the previous quantity
with j;, which yields a, = —r,(@)/<ji>s = —rp(@)/a(l — «). In this case,
<Lcp(a@)hy + dy(@)ji>a = 0 for any p, as wanted.

We now fix @ € oM,(S) satisfying o € ]0,1] and Vz(w) > 0. Fix p € N, and
define ¢p, dy, as in Proposition 6.6.7, we now prove that (6.57) holds. According to
Proposition 6.6.6, there exists coefficients af’k and bf’k such that,

(6.59) inf <hf+ D aly g + 000k + Lo>a = 0.

g k=1,2
In order not to burden the proof, we will assume that the infimum in g is reached,
i.e., that there exists a function g € T* such that

(6.60) <h? + [ Z aﬁkj,? + b ik | + Lgi>a =
k=1,2

This assumption is purely for convenience, and we can substitute at any point to gf
a sequence of functions (gf’ m)meN such that the previous identity holds in the limit

m — OQ.

Using (6.47), one obtains immediately that <<j?,jk@>>a =l Va(w)a(l — a),
<j¥, je>a = 0 and <J;, ji>>a = 1fi—kya(l — ). Using these formulas and Corol-
lary 6.6.5, we take the inner product of the function in (6.60) with jla, g1, Zg7, and
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hY, to obtain the four identities

L=y ap(@) + af Va(w)a(l — a) + < Zgl, jP>5 = 0,
Lgi=iyrp(@) + b7 (1 — @) = 0,
(6.61) 3 @, <GP, LgP>a + <Ll Lgt s = O,
k=1,2
<hE, h>5 + af 1g,(Q) + b} (@) = 0.
Note that since we assumed a € ]0,1], Va(w) > 0 and p > 0, we have g,(a@) < 0.
Define A,, By, H,, G, and J, the matrices whose respective elements are given for
ik =1,2by al,, b7, <hi, hi>a, <Zg;, Lg;>a and < 247, j©>4. Note in par-
ticular that H, and G, are symmetric with non-negative eigenvalues. Further denote
by I the two-dimensional identity matrix. The four identities above then rewrite in
matrix form as
~ rp(@)
Jp = —qp(@Q)] — Va(w)a(l — a)A,, B, = —h[
—ApJ) = Gy, ~4(@)Ay — (@) B, = Hy,

where JJ is the transposed matrix of J,. The second and last identities show that B,
and A, are symmetric, therefore so is J?, and that

1 rp(@)?

p=——— [Hp—p()I}.
7 (@) a(l—a)

In particular, since H,, is positive in the matrix sense, it is diagonalizable, and thus

so is A,. Finally, the first and third identities then yields

Aplgp(@)] + Va(w)a(l — a)Ap] = Gy,
therefore, since G, is positive in the matrix sense, any eigenvalue A of A, must satisfy
Algp(@) + Va(w)a(l —a)A] 2 0

and therefore A > —g,(@)/Va(w)a(l —a) > 0. Let C,, denote the inverse of A,, which
is a positive matrix with eigenvalues bounded from above by —Vz(w)a(1 — a)/gp(@).
Since A, is invertible, we can therefore rewrite (6.60) as

(6.62) <@+ [ Z i phi +df k| + Zgr>a =0,

1‘7

k=1,2

which holds for i = 1,2, where gF = > k=12 Ci x9hs and the ¢, (vesp. df ;) are the
matrix elements of C), (resp. D, := C,B,). For z,y € R?, shorten z -y = z1y1 + T2y2
their usual inner product. Let j% = (j¥,5%), and define the quadratic form Q as

#'Qz = inf <z ¥ + Tg>5.
geTw
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Then, (6.62) yields for any x € R?

(6.63) inf <z 3%+ [ 3wl L+ widle| + Zg>a =

g ik=1,2
Taking the inner product of the expression above with z-j% + Zg, and since the terms
in the sum are orthogonal to any Zg, we obtain

' Qu = inf <z P+ Ly =— <z §0, Y wick hE + zidl ji>a
g i k=1,2
=— Y mimpcl  <hE, T>a + wiwkdt <G, >
ik=1,2

=— qp(a)wTCpm,

thanks to Corollary 6.6.5 and because j; and j,f are orthogonal. We prove in Ap-
pendix B.2, Equation (B.6), that Q = aV (@)ds(a)I, therefore

B aV(a)ds(a)

C:
P @

I=pa(Ep | no=1)""1=cp(),
and D, = [—cp(a)rp(@)/a(l — @)]l = dy(a)l, where c,, d, were defined in Proposi-
tion 6.6.7. We can now rewrite (6.63) as wanted as

(6.64) inf <7 + cp(@)hf +dp(@)ji + Lg>a =
nf,

Since h and j; are both orthogonal to any Zg, taking the inner product of the
identity above with jia + Zg, one obtains that any sequence of functions realizing the
infimum above also realizes infg 7w <<jf’ + Zg>g, which proves the last statement
and concludes the proof of Proposition (6.6.7). O

REMARK 6.6.8 (Bound on <h!>3).— We already obtained in (6.61),
<hi,h>a + a7 ,1q,(@) + b7 rp(@) = 0. Since we now have an explicit expres-
sion for the matrix A, = C;' = ¢;*(a)I, and B, = —r,(@)/a(l — a)I, we obtain

Tp ®?

<hY>a = —gp(Q)c, o) + a(i—a)- Equation (6.55) then yields the uniform bound

(6.65) lim sup |<h>5— ads(a)Va(w)| =0.
PO 5 M4 (S)

We now prove Equation (6.52), and thus concludes the proof of Theorem 6.1.1. Up
until now, we have only used <->5 for functions in 7%, but in (6.52) the function
f is a priori no longer in T bur rather in C, we therefore need the extension of <->>5
to ZC introduced in Definitions 6.6.1 and 6.6.2. Thanks to (6.53), the result can be
stated as follows.
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PROPOSITION 6.6.9 (Uniform bound on <« GZ)ﬁp>>a). — Identity (6.52) holds, in the
sense that there exists a sequence of local functions f, € C such that

(6.66) limsuplimsup sup <@ + AP + Lf,>>5 =0.
n— oo p—00 aGWI(S)

Furthermore, for any @ € oM,(9), lim, oo <j¥ + Lfn>>a = infere <5 + Lg>5.

Proof of Proposition 6.6.9. — In order not to burden with technical estimates, we start
by cutting off the extreme densities for which the convergences as p — oo can be
problematic. For any @, we can write by triangular inequality and using (6.65),

KA R+ Lf>a < <jo>a + <hP>5+<Lf>5
< Va(w)a(l - a) + ads(a)Va(w)(1 4 0,(1))
+ ) Ealno(l — ne,)[2p (%) — £41%),
i=1,2

where the 0,(1) does not depend on @. As stated in Proposition B.2.3, ds(a) < C(1 — ),
w is bounded, and f is a cylinder function and therefore X f(ﬁoe) — Xy is bounded
as well. Fix € > 0, in particular, the estimate above yields, for some constant C,, ¢,
and for any @ such that a ¢ [e,1 — €]

KGEH R+ Lf>a < Cu (14 0p(1))e.

We now fix @ such that € < a < 1 — ¢, by triangular inequality,

KGEARP+ Lf>a < <GP 4cp(@)hP+dp(@)ji+ Tf>a+< (cp(a) = 1)RP +d, (@) fi>4-

Since @ is bounded away from the extreme densities, the second term in the right-hand
side is Cc0,(1), and we can therefore write

Sup< e +hY + Lf>a < sup<je +cp(a)hl +dp(@)ji+ Lf>a+Co pe+ Ce 5o, (1).
a &
We then let p — oo and then € — 0 to obtain that

lim sup s1lp<<jfJ +h + Zf>5 < limsup sgp<<j? + cp(a)hf + dy(Q)j; + Lf>a.

p—00 a p—00 a

Proposition (6.6.9) is therefore a consequence of Lemma (6.6.10) below. O

LEMMA 6.6.10. — There exists a sequence of local functions f, € C such that
_ o 3
lim sup sup<j;’ + cp(@)hl + dp(Q)ji + Lfn>a < -

p— 00 (%

and for any @ € M1(S), lim,_0e<j¥ + Lfn>>a = infyere<j% + Lg>5
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Proof of Lemma 6.6.10. — The proof of this lemma is analogous to that of Theo-
rem 5.6, p.176 of [28]. We now write explicitly the dependency of h? in @. According
to Theorem 6.6.4 the application @ — <«1>>5 is continuous on ¢#;(S), and thanks
to Equation (6.52), for any @ € cM;(S), there exists a function gz, € T and a
neighborhood ¢/, of &g such that for any & € oN5,,
<GF + cpao)hf (@o) + dp(@0)js + Lga,>a < '

Furthermore, thanks to the last statement in Proposition 6.6.7, this function is an
approximation of the one realizing inf ecre < j? + Zg >gz;, and can be chosen
independently of p.

We prove in Proposition C.3.1 that ¢#;(S) is compact, it therefore admits a finite
covering oM;(S) C U;n:l a,- We can build a C? interpolation of the ga,’s, and
therefore obtain a function (&,7) — (@, n) which coincides in @ = a; with gg,, with
the two following properties:

— let B be a finite set of edges in Z? containing the support of all the ga,’s,
Y(@, . ) is a cylinder function in 7% with support included in B for any

a e M(9);
— for any fixed configuration 7, (. ,7) is in C?(M,(S));
— for any @ € oM4(S)
(6.67) <GP+ cp(@)hB(@) + dp(@)ji + (@, )>a < 2n7t

Recall that we introduced in (2.21) p, = | B, |7' 3 cp 700, the empirical angular
density in the box of side (2r + 1) around the origin. Define

fr() =¥ (pr, 1),
for any r large enough for the support B of the ¥ (@, n)’s to be contained in B,.. Note
that f, is not necessarily in 7%, but it is a local function for r fixed.

By the triangle inequality,
(6.68) sup<j?+cy(a)h?(@)+dp(@)ji+ Zfr>a < 2~ +sup< L(fr (G, ) >a.

The second term in the right-hand side is
Z Ea <(v0,ei Z Tz [fr - w(a’ )])2) = Z]Ea <( Z T_“”vw,w+ei [fT - ¢(a7 )])2> .

z€Z2 z€Z2
Note once again that ), cz2 Tof 1s merely a notation, and is not a well-defined function
as such, but instead, is meant to either be integrated against a mean-0 local function,
or taken a gradient of, as is the case here. We extend B by 1 in such a way that
for any edge a outside of B, V,1(@,.) vanishes. Therefore, the only contributions
outside of B in the sums above are at the boundary of B,, where f,. has a variation
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in its first argument of order (2r 4+ 1)~2. Thanks to the regularity of + in @, and since
the number of corresponding edges is roughly 4(2r + 1), the contribution of all these
jumps is of order »~! in the whole sum.

Then, since the number of edges in B depends only on 1, and since Eg ((Vaf)Z) <
4F5(f?), we obtain by definition of f, that

(6.69) sup<Z(f, —b(@)>a <supCW)Es [((ar, ) —$(@,)*] + 062,

whose right-hand side vanishes as r goes to infinity by the law of large numbers.

Let us fix r, such that the right-hand side of (6.69) is less than 1/n, and let
fn = fr., (6.68) finally yields

(6.70) sup<j{ + ¢p()hf (@) + dp(@)ji + Lf>a < 3071,

as wanted. The last statement of the lemma is a direct consequence of the construction
of f, and of Proposition 6.6.7. This concludes the proof of Lemma 6.6.10. O

6.7. Drift part of the hydrodynamic limit

Recall that Ly = N2Z + NZ"™ + 2 is the complete generator of our process
introduced in (2.2). In the previous section, we proved that the symmetric currents can
be replaced by a gradient, up to a perturbation L f. In our case, this perturbation is not
negligible, and must be added to the asymmetric currents induced by the asymmetric
generator 7™ to complete the drift term in Equation (2.11). This is the purpose of
this section.

To achieve that goal, we need notations similar to the ones introduced in Sec-
tion 4.1. For any positive integer [, and any smooth function G € C([0,T] x T?), let
us introduce

PP WA WA
R @) =1+ TV By + L),
and
(Gn N2 Z G(z/N) Txﬁ?/
z€T%,

where r¢ is the asymmetric current introduced in (2.16). According to Theorem 6.1.1,
for any i, there exists a family of cylinder functions (f{,)nen introduced in Proposi-
tion 6.6.9 such that
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where X f ’If,N was defined in Equation (6.1). Furthermore, we also established in Propo-
sition 6.6.9 that this sequence satisfies for any & € M, (S)

(6.71) lim <55’ + Zf;,>a = fi€n1fw<<ji“’ + Lf>s.
The replacement Lemma 4.1.1 applied to g(7) = r¥ + 7™ f yields the following result.

LEMMA 6.7.1. — Let G be some smooth function in C*2([0,T] x T?), and T € R,
then for i € {1,2} we have
|/ Y/ (@, m)ds ] =0

Furthermore, we now prove the following result, which states that any function of
the form N Z° f vanishes in the hydrodynamic limit, where Z2° = £+ N-1Z" is the
generator of whole exclusion process.

lim lim sup lim sup E’\ s
n—=0 50 N-—oo

LEMMA 6.7.2. — For any function G : [0,T] x T? — R in C%2, and any cylinder

function f,

N—oo zeT%,

limsupE,~ /T ! Z G (s,z/N) 1, 2" f(7i(s))ds } =0.

Proof of Lemma 6.7.2. — For any such smooth function H and cylinder function f,
let us denote

Fg(s,i(s)) = N72 > G(s,a/N)1a f(i(s))-

zeT%,
The process

Mg(t) = Fa(t,71(t)) — Fa(0,7(0)) — | asFG(S,ﬁ(S))dS—/O LnFg(s,7(s))ds

is a martingale, where Ly is the complete generator of our process, introduced in
(2.2). Since f is bounded, the first three terms are of order 1, it remains to control
fOT LyxFgds. The quadratic variation of this martingale is given (cf. Appendix 1.5,
Lemma 5.1 in [28]) by

T
[Ma (-, 7(.)]e = /0 LnFg(s,7(s))* = 2Fg(s,7(s)) Ly Fa (s, 7(s))ds

T
oy ~ 2
:/ dsN? S s [Fals, 7709 (s)) — Fal(s, i(s))]
0 2
a:ET
57i1ie{12}

; / A5 Y e [ copl6.0) [Fols.7"(s) = Folo,(s)" do

zeT%,

MEMOIRES DE LA SMF 169



6.7. DRIFT PART OF THE HYDRODYNAMIC LIMIT 123

- | T Y ) {Z G(s,y/N) (ryJ (7(s)) = 7 f(ﬁ(s»)1
N2 o meﬂﬁf }mﬂ’ [yGT?v ’ y y J
o==%1,i€{1,2

ty /ons 2 ”m/scfﬂ”vﬁ) {Z G(s,y/N) (ryf (7 (s)) —Tyf(ﬁ(s)))} d,

zeT3, yeT2,

where

0N (05)
N

Ti\,z,i,é(ﬁ) = <l + > nz(l - nerz)

is the total displacement jump rate.

Since f is a local function, all but a finite number of terms in the y sums vanish,
and the quadratic variation is hence of order N~2. We deduce from the estimate of
the quadratic variation of Mg and the order of the three first terms in the expression
of Mg that

The previous martingale estimate shows that E,~ (‘ fOT N~'LyxFg(s,7(s))ds D van-
ishes in the limit N — oo. Furthermore, elementary computations yield a crude

T
/ N='Ly Fa(s, 7(s))ds
0

N—oo

>SN1 {EW([MG(t,ﬁ(f))])l/2+0N(1)J - 0.
oW -1

bound on the contribution of the Glauber generator of order N~!. Finally, since
Ly = N2Z° + 2%, we obtain
> = 07
N—oo

which completes the proof of Lemma 6.7.2. O

T
/0 NZ°Fg(s,7(s))ds

We now use these two lemmas to prove that the total displacement current can be
replaced by the wanted averages. More precisely, let

A W 1 w () w 1 w
UL @) = ¢ + N7 T ds () 8ip 0 (pus ) Gipr — 7B (i + ™ ),

we can state the following result.

COROLLARY 6.7.3. — For any G € C**([0,T] x T?), T € R%, and i € {1,2},

T
N . A8 { 1 FEneN
lim lim sup lim sup &’y [‘/0 i E G(z/N)U;

n—oo 20 N—o00 o
z€T%;

(G, 7)ds } = 0.
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Proof of Corollary 6.7.8. — Adding and subtracting XZDf;‘f to GM{"’"’EN, we can split

n
it into three parts,

3¢ +ds (pen) 8ipen + 0 (penv, pEn) ipen + L £,

1 1
N+ V) = B+ L), and — LS,

The contribution of the first quantity vanishes in the limit of Corollary 6.7.3, ac-
cording to Corollary 6.1.2. The second contribution also does thanks to Lemma 6.7.1,
as well as the third due to Lemma 6.7.2, thus completing the proof of the corollary. [J

We now derive an explicit expression for the limit of E5_, (r¥ + 7" i), appearing

. il
in U™ as n goes to co.

LEMMA 6.7.4. — For any @ € oM(S),
(6.72) lim Eg (r‘; A wn) = 2d,(a)aiw, + 2%(1 —a—dy(a)),

where for any function ® € C(S), we defined ag = Eg(®(0o)no)-

Proof of Lemma 6.7.4. — By definition of

i = Ai(fo)w(Bo)no(1 — mey) + Ai(fe,)w(Be,)me, (1 — o),
we can write, shortening as before E5(®) = Ez(®(6p)|no = 1),
(6.73) Ea(r?) = 2E5(Aiw)a(l — o) = 2«4, ¥ > 5.

For any cylinder function f, by translation invariance of pg and Definition 6.6.1, one
also obtains by elementary computations that

(6.74) Ea(Z™f) = 2" + 45", Lf>a.
Recalling Corollary 6.6.5, we can then write
KGN WP = < P> g+ B (M) <y B> a
= —1gi—py[ads(a)Covg(w, Ai) (1 — 0p(1)) — Eg(Ai)op(1)],
where as before /)\\k = Ar — Eg(\x). We can also write by Definition 6.6.1
<k, ¥ >a = Liymn Ea(Ouw)a(l — a).

Once again, in order to avoid taking everywhere limits n — oo, we assume for
the convenience of notations, that there exists a local function f{” realizing the in-
fimum (6.71). Recall then from Equation (6.57) that in ¢#Z, we have the identity
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§@ 4+ Zf¥ = —cp(a)h? — dy(@)j;. Then, using (6.73), (6.74), and the explicit formu-
las for the inner products which prove orthogonality of directions i # k,
Ea(ré + 2 f2) = 2«4 + 22, LfE>a + 25, 1>
=2 4 537, 57 + LfE>a — 2 + 537, 50> a + 2<G0 5>
= =21 + 552, cp(@)hDY + dy(8)ji>a — 2<5, 5T >a + 25, 5 >a
(6.75) = —2¢,(Q) <M, WP >4 — 2d, ()<}, ji>a + 2Ba (W) <5}, ji>a-
We now let p — oo, so that d, vanishes, ¢, goes to 1, to obtain as wanted, by
Definition 6.6.1 and Corollary 6.6.5,

Ez(re + 2™ £2) = 2ady(a)Cova(w, \i) + 2Bz (w)Egs(Ai)a(l — ).
Reorganizing the terms yield Lemma 6.7.4. O
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CHAPTER 7

PROOF OF THE HYDRODYNAMIC LIMIT

We now have all the pieces to prove Theorem 2.3.3. The last remaining difficulty
is to perform the second integration by parts, since even the gradients obtained in
Section 6 are mot exactly microscopic gradients due to the mon-constant diffusion
coefficient. This is not a problem when the variations only depend on one quantity,
the density for example, since we can then simply consider a primitive of the diffusion
coefficient and obtain at the highest order in N a discrete gradient. This is not the
case here, and we need some more work to obtain the wanted gradient.

Let us recall from Section 2.4 that for any smooth function H € CV%1([0,T] x T? x S),
that we denoted by MtH N the martingale

t
(7.1) MY = <N Hy> — <alY, Hy> —/ (<7, 0,H> + Ly<nl, Hy>] ds,
0

where

1
Wiv = ﬁ Z nz(t)ax/N,Gm(s)

2
z€T%;

is the empirical measure of the process on T? x S.

Theorem, 2.8.8. — The quadratic variation [M*:N], of M (cf. A1.5. Lemma 5.1 in
[28]) is

t
[MEN], = / Ly<alN H,>% - 2<xN H,>Ly<n, Hy>ds
0

_ / t =y {Z Av(i, o, 2) Hy(@/N)Hy (@ + 2)/N) + a5, :v)Hs(w/N)z}ds

zeT? [ |z]=1

t
1 2 1 2
< [ Xl as < el
0 zeT?,
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where C, A1(7),z,2) and As(7, z) are bounded uniformly in N. The quadratic vari-
ation [M ], is therefore of order N2, and vanishes as N goes to infinity. Doob’s
inequality hence gives us for any "> 0, § > 0

lim PP ( sup ‘MtH’N‘ > 5) —0,
N—oo M 0<t<T

and in particular

(7.2) Jim P (‘ MEN ’ > 5) —0.

We first consider the case of a function H such that
Hy(u,0) = Gi(u)w(9),

the general case will be a simple consequence of a periodic version of the Weierstrass
approximation theorem. For any such H, we can write

T
(7.3) / Ly<mlN, Hy>dt
0

1 T
:ﬁ/o dt Y

2
z€T%;

Ta lZ[Njf +171(0)0u, NGi(z/N) + Gi(z/N)v* (1) |

i=1

where j¢, re and v were introduced in Definition 2.4.1, and
Ou, NG(z/N) = N(G(z + e;/N) — G(z/N))

is a microscopic approximation of the spatial derivative 0,,G.

Thanks to Sections 4 and 6, we can perform the following replacements, in the
expectation of the expression above, and in the limit N — oo then € — 0:

— thanks to Corollary 6.7.3, we can replace ji by
(7.4) — [ds(p=n)0ipy +0(p=n, PEN)dipen],
where 0 is given by Equation (6.39),
o(p, p*) = p*(1 = ds(p))/p,
— thanks to Corollary 6.7.3 and Lemma 6.7.4, ¥ can be replaced by

Es.y (18)Ep. (1)
PeN

RY(pen) =2 dS(peN)EﬁEN (778)&) + (1= pen —ds(pen)) |

— finally, the Replacement Lemma 4.1.1 yields that ~+“ can be replaced
by B (74)-
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In other words, thanks to Equation (7.2), for any H,(u,0) = Gs(u)w(6), we can

write

(7.5) limsup lim P (’ N > 5) —o,
e—0 —0o0

where

T
(7.6) MINE = <alN Hp> — <al), Hy> — / <xN,0,Hy>dt
0

Tl
+/0 dt []\/2 Z Ta Z |:N (ds(pen)dipen +0(pen, pEN)0ipen)

- Rf(ﬁew)] Ou; NGi(x/N) = Gi(z/N)Ep, (’Y“’)] (®)-

In order to give a clear scheme, we divide the end of the proof in a series of steps.

Performing the second integration by parts. — Due to the presence of the diffusion
coefficients, one cannot switch directly the last discrete derivatives d;p.n and ;0%
onto the smooth function G. In one dimension, one would consider a primitive d(p)
of the diffusion coefficient D(p), and write that

D(pen)dipen = 8id(pen) + on(dipen).
However, our case cannot be solved that way because the differential form
(p, %) = ds(p)dp” +(p, p*)dp

is not closed, and therefore not exact either, which means that we cannot express
(7.4) as

0iF (pen, pen) + on(1/N).
We thus need another argument to obtain the differential Equation (2.11).
First, we get rid of the part with §;p“. To do so, notice that

0; [ds(pen)pen] = ds(pen)dipen + pendids(pen) + on(1/N)
= ds(pn)0ipey + pindy(pen)dipen + on(1/N).

We can therefore write

(7.7) ds(pen)dipey = 8 [ds(pen)pin] — PENdL(pen)dipen + on(1/N).

Let us denote for any z € T%,

DN =1, (3(pen, PEn) — PENTL(Pen)) -
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We perform a second integration by parts in the contribution of the first term in the
right-hand side of (7.7), whereas the left-hand side is added to the existing contribu-
tion of §;p.n, with the modified diffusion coefficient D;N defined above. We can now

a7H,N,e

rewrite My, as

T T
(7.8) <7r]TV,HT>—<7réV,H0>—/ <7T§V,ath>dt—/ I (t, ) — Iz (¢, 7 )dt+on (1),
0 0

where
1 2
LIi(t,n) = N2 Z Tz |:Z ds(psN)p:}NaZ,-,NGt(l'/N) + Ry (ﬁsN)aui,NGt(x/N)
zeT%, =1
+ Gula/N)Es. (7))
and

2
e 1 .
L(t,7) = 55 D 7o D NDGY8ipenu, nGi(z/N)

wetry, =1

2
1
m Z Z ND;N (Tz+eip5N - TmpsN)aui,NGt (.’E/N)
z€T?, i=1
In I, we regrouped all the terms for which taking the limit N — oo is not a problem,
whereas I, is the term where the extra factor NN still has to be absorbed in a spatial
derivative.

Replacement of the microscopic gradient by a mesoscopic gradient. — Since we cannot
switch the derivative on the smooth function G due to the diffusion coefficient, we
need to obtain the gradient of p in another way. For this purpose, we need to replace
the microscopic gradient 7,i¢;penN — TzPen by @ mesoscopic gradient, and make the
derivative (in a weak sense) of p appear directly. More precisely, let us define

2
~ . 1 Tete3Ne: PeN — To—e3Nes PeN
L(t,7) = = Z ZDEN z+e3Ne; Pe = z—e3Ne; Pe B4, NG (z/N).
zeT?, i=1

We are going to prove that for any configuration 7,

(7.9) | B(7) - Bt,) | < ox(1) + 0.(1),

uniformly in 7. To prove the latter, for any k € [—e3N,e3N]J), let us denote by
T = ¢ + ke;,

k=e3N—-1

Tz+e3Ne;PeN — Tz—e3Ne; PeN = E ka+1p€N — Tz PeN -
k=—e3N
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A summation by parts therefore allows us to rewrite :fg as

k=e3N—-1
I 7] N2 Z Z I- 83N Z ‘D 8“1,NGt(xk/N)-| (T:E—l-eipsN - szsN)~
zETz i=1 [ k=—e3N J
Furthermore, we can write for any = € T%,
1 k=e*N-1
k=—e3N
1 k=e®N-1
<oov O | D (0unGil@/N) — Bun Gilow/ V)|
k=—e3N

+ | Oui N Gi(zi/N)(DFY = DY) |-
Since the diffusion coefficients are bounded and G, is C?, and since z and the x}’s
are distant of €3N, we can write

| DZY (8, NGe(2/N) = Bu, NGe(z1/N)) | < C(Go)e?

Since D;iv depends on the macroscopic density p.n, and since the diffusion coefficients
can be extended as C! functions due to their explicit expression, we also have

| O, v Gi(ai/N)(DY = DY) | < C(Ge) (| Tapen = T pen | + | Taply = oy |)

3
< O/l(Gt’w)i%'
These two bounds finally yield that
1 k=e3N—-1
DiN0u NGu(w/N) = oo Y D0, nGi(aw/N) | < C(G)e® + C" (Grw)e?
k=—e3N
(7.10) = 0.(€).

By definition of I and E, the triangular inequality yields

k=e>N-1
| L—1 | < Z Z DN, NGy(z/N) — 2€3N > DNo,, NGil(wi/N)
xe']F2 i=1 k=—e3N

X N(Tgqe;PeN — TaPeN)-

The quantity inside the absolute values in the right-hand side above is ox (1) + 0. (g),
thanks to (7.10), whereas N(Tyte; 0eN — Tupen) is of order at most 1/e, whereas the
quantity inside absolute values is o.(g), therefore their product vanishes as ¢ — 0,
which proves Equation (7.9). We therefore have obtained as wanted that

(7.11) lim sup lim sup Iy (¢, 7) — Iy (t,7) = 0,

e—0 —00
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uniformly in 77. We can now replace in Equation (7.8) Iy by L.

Embedding in the space of trajectories of measures W[O’T]. — Recall that QY is the
distribution of the empirical measure of our process. We now wish to express the

ArH,N
M

martingale introduced after Equation (7.5) as an explicit function of the

N

empirical measure 7 in order to characterize the limit points Q* of the compact

sequence QY. For that purpose, let (¢.)._.o be a family of localizing functions on T2,

505(') = (25)_21[76,6]2 ()

and recall that we defined the empirical measure as

1
7Tiv = ﬁ Z nm(t)am/N,Gz(t)~

zeT?%,
Then, for any function ® : § — R, and any u € T? we denote by cp?u the function

gofiu T2 xS —R
(v,0) — p(v—u)P(H).

With this notation, we can therefore write
1 (2eN)?
ETmﬁsN (n(()b) Z .

N ]
— = —" N >.
(2eN +1)2 = (@eN +1)2 " 0 Few/N

lly—z|l<eN
In the particular case where ® = 1, (resp. ® = w), this rewrites

(2eN)?

_ (2€N)2 N 1 w N  w
TzPeN = ( <75 Pee/N> Iesp.TzPe N = m«f »Pea/N> | -

2eN +1)2
Since (2¢eN)?/(2eN + 1)?2 = 1 + on(1), we can replace in the limit N — oo the
quantity E; 5 . (n®) (resp. Tupen, Tzp*) by the function of the empirical measure

<WN,¢$I/N> (resp. <7rN,<pi’z/N>, <7TN,(,O:I/N>).

We deduce from Equations (7.5), (7.8) and (7.11) and what precedes that for any
positive 6,

(7.12) lim sup lim sup Q™ (‘ Nf’N (W[O’T]) ‘ > 5) =0.

e—0 N—oo
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H,N .
where N;°" is defined as

(7.13)

T
NN (w[O’T]) = <mp, Hp> — <mo, Ho> —/ <m, O, Hy>dt
0

(7.14)

+ éw/N,s,i(Wt)aui,NGt(x/N) + F:/N,s (ﬂ't) Gt(m/N) dt

TIV 1 2 ~ SO;,I/N+E361' - w;,m/N—s3ei
+ Lm Z ZDm/N,E(Trt)<7Tt7 253 >8u“NGt(3:/N)J dt.
0

2€T?, i=1
In the identity above, we denoted
dy /e () = dy(<T, PLa/N>)<TL 0L N>
ﬁz/N,E(Tr) = D(<7Ta<P;,x/N>a <, 92 . /n>) — <, (P:,z/N>d.,s(<7T7(p;,z/N>)
ﬁgc/N,s,z'(W) =ds (<7T7 SO;,z/N>) <, 90:,;\57N>
<92 N> <Pl >
<m, sD;,z/N>

+ [1 — <, <p;z/N> —ds (<7r,g0;x/N>)] ,

and T'y _(m) =E (7*), where &y /N () € M1 (S) is the measure on S

Ay /n,e(m)
e 7)) = [ pel. =2/ N)w(du, d).

Limit N — o0o. — We have now successfully balanced out all the factors N, and
can thus let N go to oo in (7.12). Since G is a smooth function, one can replace
in (7.13) the discrete space derivatives 9,, ny by the continuous derivative 9,,, the
sums N2 er’ﬂ'?\, by the integral f,ﬂ.2 du, and the variables /N by u. We proved
in Proposition 5.2.2 that the sequence of distributions (Q)y is relatively compact.
Since the quantity inside the absolute values is a continuous function (for Skorohod’s
topology defined in Appendix B.1) of 7l%T] the whole event is an open set, we obtain
that for any weak limit point Q* of (Q"), and any positive J,

(7.15)

e—0

T
lim sup Q*< <mp,Hpr> — <mg, Hy> — / <, Oy Hy>dt
0

_ /T / 22:{gu,g(m)agiat(u)+§u,s,i(wt)auiat(u)+rg’s (me) Ga(w)] duat
0 JT?
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T 2 N (,01 R —801 5
D <y, ot Teutetei o5 G dudt.
+ | /ngl welm) <, — 1 Clw) | du

1) =0

Limit e — 0. — In order to consider the limit ¢ — 0, we need to express

1 1
906,u+63e,- cps,u—s3e7-,
2e3

<7, >

in the third line above as an approximation of the gradient of the density 0y, p:(w).
As in the proof of Lemma 6.3.1, consider a smooth function A, ;, such that

(7.16) /T 2

Since such a function is very similar to the one already presented in Lemma 6.3.1, we

1 1
soz-:,u+s3ei ws,u—s3ei
2¢3

(v) = hein | dv = 0c(1).

do not give a detailed construction here. Then, we can build a smooth anti-derivative
H. , of h. ., and we can write for any u € T2, and any density p in H1,

/T2 p(V)he i u(v)dv = /Tz B, p(v) He o (v)dv.

Regarding the third line of (7.15), this yields

Pr vrede, — Prues
yutee; Y U—E“e;
<, e,utede o Suetei o /Tz auip(’U)Ha,u(U)d’U + 06(1),

where H,, is a smooth approximation of a Dirac in v and o.(1) is uniform in w.
According to (5.18), 8y, p is in L%([0,T] x T?) Q*-a.s, therefore

L2([0,T] x T?)

e—0

(7.17) /’]I‘2 Ou; pt(v)He o, (v)dv Ou, pt(u),

Q*-a.s. (see, for example, Theorem 4.22, p.109 in [6]).

By Lemma 5.2.4 any limit point Q* of (Q”) is concentrated on measures absolutely
continuous w.r.t. the Lebesgue measure on T2. For any such measure 7[%7], we denote

by p,(u,df) its corresponding density profile on the torus at time ¢, and let

) = [ () db).

We also shorten p(u) = p'(u). Thanks to this last remark and using both (7.17) and
the dominated convergence theorem for the second line of (7.15), we can now let € go
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to 0 in Equation (7.15), to obtain that for any limit point Q* of (Q*) and any § > 0,
(7.18)

o

T 2 3]
- / /T > da(p)p 02, Gi(u) + 2 [ds(Pt)PZ\M + %(1 —pr— ds(pt))p?”']
0 JT?

t
T 2
L3 (000 8) = a0 ) (Guup)u, G >6> ~o.
0 JT? iy

Conclusion. — As expected, all the quantities above are linear in w, and elementary

T
<mr,Hp> — <my, Hy> —/ <m, Oy Hy>dt
0

X Oy, G¢(u) + E5, (’y“’)Gt(u)) dudt

computations yield that
Ep,(u) () = /S w(0) [p1 () B ) (€0,5(6,7)d6 — By (u, dB)].
Furthermore, since Hy(u, ) = G¢(u)w(f), we can write for k = 1, 2

prok Gy(u) = / w(0)0% Gy (u) By (u, d6) = / 0k Hy(u,0)p,(u, do).
S S

analogous identities can be obtained when w is replaced by another function
® € C1(S). Using in Equation (7.18) the identities above finally yield, as wanted,
that for any § > 0

Q*<

T 2
- / / [Z < - auth(u’ 0) [/D\(ptv ﬁt) - d;(pt)ﬁt] (u’ de)aulpt(u)
0 JT2xS

i=1
+ aﬁth (u, 0)ds(pt) py(u, db)

T Ou Hu(u,0) [mm, )55, + mi(a)ds(pt)ﬁt} 4, da>)

-] =0

As in the proof of Proposition 5.2.2, this last identity can be extended in the case
where H;(u,0) does not take the form G;(u)w(#) by using a periodic version of the
Weierstrass Theorem, thus letting § — 0 completes the proof of Theorem 2.3.3. [

T
<mp,Hp> — <my, Hy> —/ <y, Oy Hy>dt
0

+ Hy(u,0)T:(p)(u, dﬁ)] dudt
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CHAPTER 8

LIMITING SPACE-TIME COVARIANCE

This section is entirely dedicated to the proof Theorem 6.6.4, that was postponed.
The strategy of the proof, follows the same scheme as in Section 7.4 of [28]. One of its
core ingredients is a decomposition theorem (cf. Proposition (8.2.5)) for translation-
invariant closed differential forms. To prove this decomposition, one requires a sharp
estimate on the spectral gap of the symmetric exclusion generator, which is not uni-
form w.r.t. the density in our case, and some adaptations w.r.t. the classical scheme
are necessary to account for the angles. The non-uniformity of the spectral gap comes
from the slow mizing occurring at high densities, and requires some minor adaptation
w.r.t. [35] where this issue was not dealt with. It is solved by cutting off large densities
(cf. Equation (8.2) and Lemma 8.2.9).

8.1. Spectral gap for the symmetric exclusion process with angles

As investigated in Section 3.3, the mizing time for the exclusion dynamics on con-

figurations of size n with angles is not of order n?

. We therefore cannot consider a
general class of functions as dependent on the 0,’s as wanted, and need to restrict
to a subclass of functions with low levels of correlations between particle angles, but
large enough for the non-gradient method to apply. In this section, we prove that the
spectral gap of the symmetric exclusion process on this class of functions is of or-
der C(p)n=2 if the density in the box is less than p < 1. The core estimate was first
derived by Quastel in [35]. We present here a modified version to take into account

the continuous angles.

Throughout this section, we consider the square domain

B, = [~n,n]?
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with closed boundaries. Recall that & was introduced in Definition 2.1.1 as the set of
angle-blind functions, and that w is the angular dependency of our test function H
(cf. Equation (2.13)). We already defined

T = {f el \ F@=em)+ > n%.(n), @€ &, Vre 22},
z€Z?

and now denote by C, (resp. &,) the set of cylinder functions (resp. angle-blind

functions) depending only on sites in B,,. Finally, we define 7% = C,, N T%.

REMARK 8.1.1. — The purpose of the non-gradient method is to replace the
instantaneous current j¢ introduced in Equation (2.15) by a gradient quantity
D(no —ne,) +d(ng —ng.), and the class T above is the simplest set of functions,
stable by Z,, and containing both the currents and the gradients.

We expect that it is not the biggest class of functions on which a spectral gap
estimate of order n~2 holds. Indeed, we believe that introducing some finite numbered
correlations between angles might not alter too much the order of the spectral gap.
It is not, however, the purpose of this section, and this remark is therefore left as a
conjecture at this point.

Recall from Definition 3.1.6 that we encoded in the canonical state K € K,, the
number and angles of the particles in B,,, and that we denote by u, = pa(- |7 € DI

the canonical measure with K particles inside B,,. Finally, define

Do 2(F) =E, z(F L),

where Z,, is the symmetric exclusion generator restricted to jumps with both extrem-
ities in B,,. We are now ready to state the main result of this section.

PROPOSITION 8.1.2 (Estimate on the spectral gap for the SSEP with angles). — For
any 0 < a < 1, there exists a constant C(«a) such that for any K € K,, such that
K < a|By|, and any f € T such that E_ »(f) =0,

E, z(f*) < Cla)n* D, z(f)-

REMARK 8.1.3 (Non-uniformity of the spectral gap). — Note that this estimate is
not uniform in the density. Actually, the constant C'(«) behaves as 1/(1 — «), and
therefore even on the set T, the spectral gap of the exclusion process when there are
only a finite number of empty sites in B,, is or order n~%. This high density estimate
is sharp: define I/(\'n by K, = (2n+1)2—1,and for k=1,...,K,, 0y = 2kn/K,, then

for fal@) = 3 (O =) ( nr ) ’

ocB, 2n +1
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one easily checks that there exists a positive constant C' such that

n4 tf/)nj{n (fn)

Varn,f(n (f") n—00

C.

This non-uniformity is not an issue here, however, because when we later on classify
the germs of closed forms for our model, we are able to cutoff the large densities (cf.
Equation (8.2)).

In order to prove Proposition 8.1.2, we need the following lemma, which states that
the angle-blind process has a uniform spectral gap of order n~2. For any angle-blind
function ¢ € &, we will write ¥(n) instead of ¥(7) to emphasize that it does not
depend on the angles.

LEMMA 8.1.4 (Spectral gap for the angle-blind exclusion process). — Denote by INEn,K
the expectation w.r.t. the angle-blind canonical measure with K particles inside B,,
defined for any angle-blind function v € &, by

an=K>,

zE€B,

E, x(¢) = Es <¢

which holds for any & with density o € (0,1). There exists a universal constant
C1 > 0 such that for anyn > 1, any 0 < K < (2n+ 1)? and any ¢ € &, satisfying
En,K(l/’) = 0;

ok (V2) < C1n2 Do g (1),

where %n)K(ib) = En,K(¢(—$n)¢)'

&

This result is fairly classical, its proof can be found for instance in [28], we do not
repeat it here. Note in particular that for the angle-blind process, the constant can be
chosen independently of the cap on the density a. Before proving Proposition 8.1.2,
we need one more definition. Fix a € [0,1), and a canonical state K € K, such
that K < a|B,|. We then define for any site z € Z2,

)

(8.1) D=w-E,z() and 72 = |w(0:) — E, z()] ne,

where E | 5 (w) stands for E_ »(w(6o) | no = 1). In particular, for any configuration 7,
Zwe B, nf = 0 under p, ». This centered occupation variable plays a particular role
in the proof of the spectral gap, and we state in the following lemma two identities

regarding n®, which will be used later on.
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LEMMA 8.1.5 (Properties of ). — Define V, z(w) = Var, z(w(fo) | mo = 1). For
any x #vy € By, Ke K., and any angle-blind function v € & ,,, we have

E, z (nv) =0,
E, z ((2)%%) =V, z@Enx(9),

V ?(w)"’ .
5.0 — e En k(nemy) if K > 1,
and E, z (nzny 1/;) = K Ry ‘
0 otherwise.

Proof of Lemma 8.1.5. — This lemma follows from elementary computations. Under
P B for any angle-blind function ¥ € &,, and any function ® on S, we have

E, z(n39) =E, 2(@(6) | 10 = 1)En,x (na1))-

For the first (resp. second) identity, we set ® =w —E_p(w) (resp. @ = (w — E, »(w))?),
which by construction has mean 0 (resp. V, z(w)) w.r.t. u, (- | no = 1). Regarding
the last identity, we obtain similarly

E,  (Bn5%) = [B, 2@(0)00,) | 1 = my = 1)~ E, 2(0)*] En (o, )

V. zgw)~
= —ﬁEn,K("]m"?y¢)
if K > 1, and trivially vanishes if K =0, 1. O

We now estimate the spectral gap of the angle process on T,°.

Proof of Proposition 8.1.2. — Fix a € [0,1), K € K, such that K < a|B,|, and
consider a function f = ¢(n) + >, cp neYz(n) in T/, where ¢,v, € &, such
that E =(f) = 0. Recall the notation introduced in (8.1), and denote

n,K
fi= e, H=¢+E, 2w Y Mt € S
z€B, zeB,
By construction, f = f1 + fp. Since for any ¢ € &, E_ » (nfzp) = 0, it is straight-
forward to obtain that
E, % (f*) = ]En,f( (F7) + Enxc (£7)
and E & (fZnf)=E, g (fiZnf1) + Enx (foZnfs)

(ie, D, z(f) = D, zg(f1) + D k(fp)). By assumption E_ »(f) = 0, therefore,
since by construction E, z(f1) = 0, we also have E 2(f%) = 0. Lemma 8.1.4 can
therefore be applied to f,. To prove Proposition 8.1. 2 1t is thus sufficient to prove it
for any function of the form f = >  p N1, (n). We can further assume, without
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loss of generality, that > 1, = 0 and that each 1, vanishes if 7, = 0 since we can
rewrite
F@)= > s
x€B,
where

. = A o zacEBn NePa _ ZIEBn Nz P
Yo =na(e —¥) and Y= TFERTE = S

Note that we only consider K > 0, since if K = 0, Proposition 8.1.2 is immediate.

To prove Proposition 8.1.2, it is therefore sufficient to prove it for any function

f = Z ﬁf‘/fz,

©€B,,
where ¥, = n,%,, and satisfy ZmEBn 1, = 0. For any such f, if K = 1, there is
only one particle in B, and ¥ = 0 for any z, therefore f = 0. We now assume
that 1 < K < «|B,|. By Lemma 8.1.5, since by assumption Yo%z =0

)

2 ” 2
82 Bz ()= X Eug (Bnvedy) = go1Vur®@) X Bk (42).
z,yEBy z€eB,,
We now turn our attention to E_ #(fZnf). For any site z and any angle-blind
function ¢ € &,, we can write

L) = 02 Lutbe + D Lpanemoye (0 ) (77F)7 = 1),
|z|=1
Since we assumed that 1, vanishes when the site x is empty, the quantity above can
be rewritten

Lalr2e) = mE Lotpe + D2 (= m)o(y™ ),

|z|=1
It follows that

06[)”71’{'(]0) - Z {]Emfg(??fngi[im(— Zn)’lpy) - En,l? nzawl‘ Z ﬂ§+z(1 - ny)¢y(ny7y+z) .

z,y€Bn |2|=1

Using once again that ) __ B, ¥z =0, and Lemma 8.1.5 the identity above rewrites
(8.3)

K
(@n,f?(f) = ﬁvn,l?(w) Z n, K ";Z)ac Z En K 77w+z)¢x1/}x+z (nz’m+z))

z€B, |z|=1

Let us introduce the Dirichlet form locally cropped in =

B4 Dok = gEarc | X w1 - g |

y,y+2€B,\{z}
[z|=1
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which forbids jumps to and from the site z. Since v, vanishes whenever the site z is
empty, the quantity 1, (1—1z42) (Y (n™*%) =1y (77))2 is also equal to (1 =7z 4.)Yz (77)2a
and a similar argument with ), , allows us to rewrite Equation (8.3)

K

zf()nf((f) = HVnﬁ(w)

X Z [ nK(wa:) + < Z Enx ((1 — Naotz) [Yate (NP7T7) — ¢z(77)]2>]-

r€B, \ =1

To obtain Proposition 8.1.2, thanks to the identity above together with (8.2) it is
enough to prove that for some constant C(«),

85) Y Enx (¥2) < Cla)n?

reB,

X Z [ g (V) + 5 Z E, x ( = Natz) [Yore (NP7F7) — ¢z]2>].

z€B, || 1

We now state a technical lemma, which gives a spectral gap estimate when one site
remains frozen.

LEMMA 8.1.6 (Spectral gap for the exclusion process with a frozen site). — Fix

x € B,,. There exists a universal constant Cy such that for any angle-blind function
Y e &, satisfying By, k(¢ |y =1) =0,

B i (@2 [ me = 1) < Con® Dy (& | 1 = 1),

where the conditioned Dirichlet form is defined by the conditional expectation
k(.| 1z = 1) instead of Ep, k,

Dy (W | 0o =1) = ~Ep g (0Lt | 0y = 1).

Proof of Lemma 8.1.6. — We do not give the detail of this proof. It is quite similar to
the proof without the frozen site for an angle-blind function, the only difference being
that whenever a path should go through the site x, the path is bypassed around it,
which results in a larger constant C but does not affect the order n2. O

We now take a look at the left-hand side of Equation (
whenever n, = 0 we have E, g (¢, | 7, = 1) = |€{"‘EH,K(¢9€), the previous lemma
applied to ¥, — E_ (¥ | ne = 1) yields

8.5). Since 1), vanishes

(8.6) S Bk (02) - BB, )2 < o 3 D).

xEB, zE€B,
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Furthermore,

Z [En,K (7/’:6) - IAE;‘n,K(Q/’y)P

z,yEBy

= Z []En,K('(/}ac) +EnK(¢y -2 Z IEnK (¥2)E nK("/)y)

z,y€B,, z,yeB,
=2n° Z En k (1h2)%,
z€B,

because the last term of the first line vanishes by the assumption ) . B, Yz = 0.
Furthermore, consider the family of paths (Vz,y)s,yeB, going from z to y, defined
as follows: starting from z, the path v, , starts straight in the first direction, until
reaching the first coordinate of y. then, it goes in the second direction until reaching y.
With this construction, each edge a is used at most a number of times p, < Cn?
the 74,,’s, for some universal constant C'. Furthermore, each path 7, , has length at
most 4n. With this construction, we therefore write, since

'(/)av - '()[}y = Z (wm - ¢a2)v

a=(a1,a2)€Yz,y
and (3-p_; x)> < pYoh_, o} that

S Enk (e) ~Earx @) < Y an > [Euk Wa)) = Enx (¥,

z,yEBny z,yEBy (a1,a2)EYa,y

=4n Z Pa [En,K (¢a1) - EH,K(¢H2)]2

(a1,a2)CBy

< 4C7’L4 Z [IEn,K (,(/}al) - IE”,K(QP&Q)P

(a1,a2)CBn,

= 4Cn4 Z [En,K (¢w+z) - En,K(wm)]Q
z,x+2€By,,
|z|=1

Using the two previous identities, we obtain that
(8'7) Z ]En,K('(/)x)z S an Z []En,K (¢x+z) - En,K(d’x)Pa
z€B, z€B,,|z|=1

so that using Equations (8.5), (8.6), and (8.7), to prove Proposition 8.1.2 it is enough
to show that for some constant C(«),

(8.8) > [Enk Wotz) — En e (v0)]?
zE€B,,|z|=1

< |é{n|C(a) Z {Eif{ () + Z En, x ((1 — Nayz) [Yarz (n77FF) _wz]z)} '

z€B, |z]=1
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Let us denote by e, , the empty site nearest to z + z other than z, chosen ar-
bitrarily if there are multiple candidates. We want to reach from 7 a configuration
with an empty site in x + z, where the successive jumps will be controlled by the
Dirichlet form of the 1. s, and the resulting difference will be controlled by the second
term above. To do so, we merely have to “move” the empty site from e, , to z + z,
using a path of minimal length. We denote by ay,...,a, the sequence of edges along
which the empty site travels. For any integer r < p let n("=1) = p%1--2r he the con-
figuration where the empty site has traveled along r edges. In particular, n(®©) = 7,
and Ug(ci)z = 0. Furthermore, for each edge a, in this sequence, we denote by a,; the
position throughout this construction of the displaced particle at the » —th stage, and
ar 2 the position of the empty site, therefore, a, = (ar,1,ar2). One easily sees that if
€z+. # x, we can perform this construction with the following conditions satisfied.

1. The path followed by the empty site contains at most p(ez+z) < 2| ezt — x|
jumps.
2. None of the edges a, connects x and one of its neighbors.

3. The only edge linking = + 2 to one of its neighbor is the last edge a,, and it is of
the form a, = (z + 2,2 + z + 2’), with z and 2’ orthogonal. In other words, we
assume that the empty site comes from the direction orthogonal to the direction
of the edge (z,z + 2).

With this construction, for any function h, since every successive jump is allowed
(each initial site is occupied, each end site is empty) we have

P
_ P ®) = ®) = (r=1)Y _ (r-1)
(20 ) =) =0+ 3 52) - 5)
) + Znaill) — )V, h (n(“l)) :
where %af = f(n®*2) — f(n). We can rewrite this identity
mem) = (1= 0 ) h (n®) - Znéﬁll — )V, (n).

Note that in the formula above, both p and the path n("~1) depends on the position
of Crtz-

We not let h(n) = ;4. (n™*T#) — 1,. This function vanishes if there is an empty
site in x, which is the only case for which the construction above does not hold
(because in particular the empty site cannot avoid the edges surrounding z). Using
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the construction above, we obtain

En,k (Yotz) = En,k (¥o) = Bn,xc (Yo (777F7)) = En i (¥)
= Bk (2 M@ =10V, [Bas (007 D) 755 wm“”)])
+ B ((1- nm) [Yora ()74 = (n®)] ).

We now project on the possible positions for e, ., by Cauchy-Schwarz inequality, and
since (3-7_, a;)? <p>-P_, a?, we obtain

< Y \/(2p(e) + Dfin,x (€z+2 = €, = 1)

eeB, \{z}

(8~9) IEn,K (d)m-i-Z) - En,K(wz)

~ 2
x (B (1{em+z—m—1}( —n?) [wﬁz((n@(e”)m’“ﬁ—«px(n@@”)])
p(e)~ _ 2
+Z]En,K <1{61+z—€,nz—1}n((1:11)(1 _77((17;,_21)) [Varwerz((??(r_l))z’erz)] >
r=1
ple) ) 1/2
+3 B (1{61“_6,%_1}%:1”( —10Y) [Va, e (1Y) )] .
r=1

We now estimate each of the three terms in the bracket.

The empty site e being fixed, the sequence of edges (a,) and its length p are also
fixed. The first term in the bracket can therefore be rewritten, thanks the one-to-one
change of variables n(P~1p

IA['in,K (1{em+z=e,nw=1}(n,) (1 - 7790+Z) [¢z+Z(nm’x+z) - ?ﬁx(ﬂ)]Z)
< IEn,K <(1 - 77m+z) [¢m+z(n$’m+z) - %(77)] 2) ,

where 7’ denotes the invert change of variable nn®~1). Since none of the edges a,
connects = to one of its neighbors, and since each edge is used at most once, one-to-
one changes of variable ("~ also allow us to crudely estimate

= ~ 2
2 Enk (1{e"+z—e ety = 20) (Vi (n )] )
r=1
P B , »
= Z]En,K <1{6w+z=ev’7z=1}(n’(r))nar,l(1 — naT,z) [Varqu(n)] ) < (’i)n,K(wx)
r=1

Finally, for the third contribution, we can write the same estimate, except for the
last gradient which is over an edge (ap 1, ap2) = (z+2,x+2+2'), with |2/| = |z| = 1.
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We therefore write

LA ~ 2
ZE"’K <1{ez+z—ewnz—1}n((l:,_11)(1 - 772:,_21)) [Varww+z((n(r_1))x7x+z)i| >

r=1

~z+z ~ ~ 2
< &@n,K(wac-i-z)‘f'En,K (1{ez+z—e,nz—l}ntg€,:1)(1 - 771(1;;,_21)) [Vap@bwﬂ—z((n(p_l))z’m—i_z)} >

~z+z ~ N T,T+z 2
< $n,K(¢z+Z) + En,K (Uerz(l - 77I+z+2’) [werz ((nw+z’z+z+z ) ) — Vrpe (nwﬂﬁ—z)] ) .

i i z,x+z+2 a4z \T+za+z+z z,x4+2 '
One easily obtains that ™ = (™) , therefore performing

the change of variable n%**#y in the bound above yields

LA _ 2
5 Bk (Lerermemmyt 0 =105 [T (077

r=1

—~x+z

< Cc/)n,K(wm+z) + EH,K (%(1 - 7796+z+z’) [¢w+z (ﬂw’”“z') - wm—&—z (77)} 2)

S2En,K((VI,I+Z/I/)CE+Z)2)+2E7L1K((vz+z/,z+z+zlwiﬂ+2)2)

~T+z
S 3$n,K(¢x+Z)7

where we used that 2z’ and z are orthogonal by assumption, which means that the
gradients in the last term are not of the form (z + z,z + z + 2””). We now use these
three bounds in (8.9), to obtain that for some universal constant Cj

2

~ ~ 2
(Brke Wore) = Bnkc@2)) <Cs| 3 /(1 +20(@)finic(ears = e = 1)
e€Bn\{z}

]En,K ((1 - 77x+z) [¢x+z(nz’m+z) - 7/)95(77)] 2) + E:,K("/}x) + $n§(¢z+z)‘| :

X

Since we assumed K < «|B,|, for a < 1 one straightforwardly obtains by elementary

computations that

> 0 2Dk (eass = eme = 1) < prCl),
e€B,\{z} "

therefore (8.8) holds as desired. This concludes the proof of Proposition 8.1.2. O

MEMOIRES DE LA SMF 169



8.2. DISCRETE DIFFERENTIAL FORMS IN THE CONTEXT OF PARTICLES SYSTEMS 147

8.2. Discrete differential forms in the context of particles systems

We introduce in this section the concept of discrete differential forms in the context
of particle systems. The key point of the non-gradient method is that any translation-
invariant closed form can be decomposed as the sum of a gradient of a translation-
invariant function and the currents. This result is stated in Proposition 8.2.5, and
directly rewrites as an approzimation (in the sense of Equation (6.37)) of any function
in & by a linear combination of the currents up to an element of ZC.

Let us denote by S, the set of configurations on Z?2
200 = {(ﬂxvf)x)xezz € ({071} X 5)22 | 91 =0if Nz = 0} .

We consider here the graph { = (X, E) with oriented edge set
(8.10)
E={®7)ex | 7 =7"" for some z € Z* |2| =1 and 05 (1 — p4.) = 1} .

In other words, there is an edge from 7 to 7}’ if and only if the latter can be reached
from the former with exactly one licit particle jump (i.e., the jump of a particle to
an empty site). We endow () with the usual distance d on graphs, i.e., d(7,7’) is the
minimal number of particle jumps necessary to go from one configuration to the other.
Note that this graph is not connected, since for example the configuration 7 with no
particles is not accessible from any configuration 7’ with any number of particles.
This is also the case for two configurations with different angle distributions. In such
a case where there is no path between 7’ and 7, we will adopt the usual convention
d(7,7m') = oo. By abuse of notation, we also denote by pg (cf. Definition 3.1.4) the
grand-canonical measure measure on Z? with parameter @, and write E4(.) for the
expectation w.r.t. ug.

We call differential form on (({,d) a collection of L?(ug) variables associated with
each edge in E. More precisely, it is a collection W = (Uz, z+4-)zc72,|2|=1, Satisfying

ﬁx,x+z(ﬁ) =n.(1—- nx—i—z)ﬁx,w-&-z(ﬁ) € Lz(/r"él)'

This definition arbitrarily attributes to U, 44,(7) the value 0 if 7, (1 — 744.) vanishes
(i-e., if the jump from z to = + z cannot be performed in 7), which is just a nota-
tion shortcut to define u on all configurations rather than only on those such that
Nz(1 — Nyt2) = 1. Another way to look at these objects is that with each possible
particle jump in a configuration 7 is associated a weight. In this section, we will only
consider closed forms, i.e., differential forms for which the added weight of any finite-
length path (composed only of licit jumps, i.e., jumps from z to z + z with z occupied
and z + z empty) between two configuration does not depend on the path chosen but
only on the two endpoints. Equivalently, closed forms are those for which the integral
over a closed loop of licit jumps vanishes.
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We call path a finite sequence of jumps coordinates v = (2;, x; + 2i)o<i<q, , Where
the z;’s are in Z?2, and |z;| = 1. Given a configuration 7, we denote I'(7) (resp. (7))
the set of licit paths (resp. licit loops, i.e., licit closed paths) such that all successive
jumps in the path are licit starting from 7), (resp. and such that the configuration
reached at the end of the sequence of jumps is 7)

L(@) = {7 = (@, @i + 2)osiza, | ALV -A07%) =1, 0<i< gy},

(resp. Te(M) = {v = (@5, @i + 2i)o<i<q, € T(M) | 7@+ =17 }) where for any
path 7, and any configuration 77, we denote 7(%7) = 7, and ¢+ = (ﬁ(”))zwﬂ
for 0 < i < g,. For any differential form % = (4 z4:)zez2,)2|=1, and any finite path v,
we denote by
L@ = Lpyermy D, Hoiwits @),
0<i<q,

the random variable representing the integral of u along the path . We assign for
convenience the value 0 to the integral if one of the jumps in the path was not licit.

DEFINITION 8.2.1 (Closed and exact forms on ({,d)). — A differential form
U= (Uy,042)0ez2,|z=1 I8 closed if for any finite path ,

1er.@ylya@ =0 pa-as.,

i.e., if its integral along any closed loop vanishes a.s.. Note that we require the above
to hold for any finite path, but for non-closed path the indicator function vanishes.
The reason for defining closed forms this way is that closedness of a finite path is
a random property that also depends on the configuration, not only on the jump
succession.

For any cylinder function f € C, we say that W is an ezact differential form
associated with f if

W () = 00(1— o) (F(R7F) — £(7))  ass.

It is easily checked that for any f € C, uw/ is a closed form, since then

(8.11) L () = Lpyerqy [F@@ ) - £@)]

which vanishes a.s. if the loop is closed.
‘We now consider the case of translation invariant closed forms.

DEFINITION 8.2.2 (Germs of a closed form). — A pair u = (ug,up) : L — R?
in L?(ug) is a germ of a closed form if i defined by
(8.12)

ﬁz,w-‘rei (ﬁ) = Tzui(ﬁ) and ﬁz+ei,w(ﬁ) = _Tzui(ﬁmm-’_m)

/\m,z—!—ei)

= Uz e, (77
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is a closed form. We endow the set of germs of closed forms with its L?(ug) norm
1/2

(8.13) [ulla,z = [Ba(ul +up)]

Denote by & & the closure in L%(ug) of T* (the set of cylinder functions, defined

in (6.42), depending on the angles through a linear combination of the w(6,)), and

let T = T denote the closure in L?(u5) of the set T} of germs of closed forms with

components in & &, namely

(8.14)

W — {u: (u1,u2) | wisa L?(uz) germ of a closed form, u; € %, Vi € {1,2}}.

DEFINITION 8.2.3 (Germs of an exact form). — A pair u = (uy,u2) will be called
germ of an exact form associated with a cylinder function h € C if we can write

(u1,u2) = VE, = (Vo,e, 2h, Vo, 51)

pointwise, where ¥ is the formal sum ¥, = ). _,. 7,h. Note that although the
formal sum X is ill-defined a priori, its gradient V3 is not, because h is assumed
to be a cylinder function, and therefore only depends on a finite number of sites.

One easily verifies that any germ of an exact form is also the germ of a closed form.
In particular, for any function h € T, (cf. (6.42)), we have VX, € T“. We denote
by ¥ = & the closure in L?(ug) of the set €% of germs of exact forms associated
with functions in T,

0 ={VZy, heT*}C%;.

DEFINITION 8.2.4 (Germs of a closed form associated with the currents). — Define
i',5%,3", and 3> as

(8.15) jf (M) = Lymymo(1-ne,)  and  §“ () = Lympyn (1—me,)  for k,i = 1,2,

These four functions are germs of closed forms, and can be seen as germs of “almost”
exact forms associated with the formal functions

=" mme and Y=Y oy,
z€Z? z€Z?
which are not well defined, but for which the gradient along any licit jumps is. Of

kwrg are not

course, since the functions f*, f** above are merely formal sums, the jk, j
germs of exact forms. In other words, the closed form ik associated with the germ jk
is equal to +1 on any edge representing a particle jump in the direction +ej, and

k,w

the closed form fk’w associated with j** is equal to £w(f) on any edge representing

a jump in the direction +ej of a particle with angle . We denote by J* the linear
span of the j*, 5%

3= {i*" = i + 0o + b b, @ €R%LbER?] C T
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We are now ready to state the main result of this section.

PROPOSITION 8.2.5 (Structure of ). — We have the decomposition

TV =F" @€~

REMARK 8.2.6. — Note that we can safely assume that the total density « is in ]0, 1.
If not, the graph is trivial since its edge set is empty. This assumption will be made
throughout the rest of this section.

Before turning to the proof of the last proposition, we investigate the case of a
finite domain. We start by a technical lemma. Recall that C, is the set of functions
depending only on sites in B,,, and C! with respect to each 6, for z in B,,, we denote
T¥ = T%NC,, the set of functions depending only on sites in B,,, and depending on the
angles through a linear combination of the w(f,). In order to be as clear as possible,
recall that & is fixed, we denote by f,‘;’ the set of functions a.s. equal to a function
in T¥. Note that we need to be cautious because the various forms considered in this
section are not explicit and are merely L?(ug) functions of the infinite configuration.
However, once their conditional expectation w.r.t. the sigma-algebra generated by
sites in B, all those forms are, up to modification on a negligible set, in T,. Since
w is a smooth function, and was fixed once and for all at the very begining of the
proof (cf. (2.13)), T is actually a finite dimensional vector space, and all the results
below are therefore analogous to the ones one would obtain with a finite number of
particle types.

LEMMA 8.2.7. — For any n > 0, T\,‘;’ is closed in L?(ug), where ug, here, stands for
the product measure on B,,.

Proof of Lemma 8.2.7. — Since f,‘f is roughly a finite-dimensional subspace of L%(ug),
this result is quite natural, but we detail the proof for the sake of exhaustivity. We
need to show that if a sequence of functions (@x(n) + > ,cp n;’dlk,x(n))keN con-
verges as k — oo in L?(ug) to f, then there exists angle-blind functions ¢*, 7
such that f = ¢*(n) + >_,cp, M55 (n) a.s.. Here, the i, ¥y o, ¢* and ¢} are angle-
blind functions depending only on sites in B,,. Denote o,7 the configuration equal
to 7 everywhere in B,, except in x where it is distributed as an independent copy
n, = (n,,0,) with distribution @. Then, we abuse our notation, and also denote E4

the expectation taken w.r.t. both 7 and 7.

We can now write

Ea [(£) = £(0e0)” Lgumry=y] = Jim Ba [(0(6:) = w(01)20F ()L (e=r=1))]
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Now assume that the variance of w(f,) w.r.t. uz does not vanish (else, the result
obviously holds, because in L%(ug), T is the set of angle blind functions), we can
write for some constant C' := C(w, @)

Jim B [¢7,(n) | 1. = 1] < CE(f?).

In particular, since the set of angle blind configurations in B,, is finite, and since we
can assume without loss of generality that ¢ (1) vanishes if 9, = 0, all the ¢, , must
be bounded, uniformly in z, k, and 1 by some constant M, and therefore remain in
a compact set. Up to successive extractions, we can as a consequence assume that
each sequences (v ;)i converges uniformly in  as k& — oo to ¢}. In particular,
the sequence ¢, also converges to a function ¢*, and we can thus write as wanted

f=e )+ X, 192(n) as. O

We now consider closed differential forms in a finite box. Considering the graph
with vertices the configurations 7 on the box B, and connected, as on the infinite
graph, if one configuration can be reached from another with one licit jump along an
edge of B,.

PROPOSITION 8.2.8. — Fiz a parameter &,n>0, and a closed form U= (Wy 442)z.0+2¢B,
on §, satisfying for any x,z + z € B,

(i) Wy 4y, identically vanishes when there are 1 or less empty sites in By,
(if) Uz z1. € TY and is therefore smooth.
Then, there exists a cylinder function h € T such that
Uy otz = Vaazt+h Vr,x+ 2 € B,, pointwise,

i.e., on a finite set, all closed forms are exact forms. Furthermore, one can assume
without loss of generality that for any K € K,,, E »(h) =0.

Proof of Proposition 8.2.8. — Since u is a closed form with each element in T (there-
fore in particular smooth in the angle variables), we have that 1¢,cr,(7)}/,,w vanishes
pointwise for any finite path . Recall that u, ;, vanishes if there is one or less empty
site in B,,, we split the set of configurations on B,, into components (25 ) Rek, €ach
connected on the graph ¢ . In particular, for any two configurations 7, 7’ in the
same 25 , we must have by construction d(7,7") < oco.

For any K with at least two empty sites, let us denote ﬁf{ the configuration where
the particles are inserted from the bottom left, row by row, and in the order of
increasing angles from 0 to 27. In other words, we insert the particle with the angle
closest to 0 at site (—n, —n), the second closest at (—n,—n + 1), and so on until
all particles have been placed. The choice of this reference configuration is arbitrary,
but depends continuously in the angles in K € K,. We then set h(AK ) = 0 for
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each K € H~<n, and for any other configuration 7 € 25 , we fix a path ~5 of licit jumps
from 7”7\]? to 77, and let
(@) = L, w (@)

Since u is a pointwise closed form, this expression does not depend on the choice
of 5 and pointwise, we have for any z,x + 2, Wy z4> = Vg oy.h. Furthermore, by
construction, because both u and ﬁf‘f depend smoothly on the particle’s angles, so
does h, and therefore h € C,,. We now show that h € T¥.

To do so, we now consider the space L%(ug), recall that T\,‘f is the trace of T)¥
in L?(ug). Since, according to Lemma 8.2.7, T is a closed linear subspace of L2(uz),

- N
we can write on B, that L*(ug) = T @ (Tfj) . Straightforwardly, one can show

. L ~
that both T’ and (T“’) are stable under any symmetric gradient V, ,.f =

1{,71771“70}(]‘(’\”” *+2) — f(@)), for z,x+ 2z € B,. In particular since Uy 4, € f“’ we
also have V, P R T (7]) + Uy . (T g”z) € T“’ for any =,z + z € B,,. Let now
write h as hqy+ho, where hy € T“’ and hy € (T‘*’) we must have V, otz = V. P
All gradients of ho therefore vanish a.s., we conclude that hs is a.s. constant on each
connected component, therefore we can choose it to be 0 without changing 6w7z+zh.

We thus have as wanted u’ = V; 2z+2h1, we can therefore choose h = hy € T\:l"

T, x+2z
Since h is smooth in the angle coordinates, it implies as wanted A € T, in a pointwise

sense.

Regarding the second claim of the proposition, given a configuration 77 on B,, let
us denote by I?n(ﬁ) = (K (1), ©k#)(7)) the parameter giving the number and angles
of particles in 7, i.e.,

K(ﬁ) = Z Ny and @K(ﬁ)(ﬁ) = {9117- .- ’axK(;l‘)} s
z€B,
where z1, ...,z are the positions of the K particles in 7). Since the function K () is
unchanged under any gradient inside B,,, we can replace h by hg = h — ]En’ I (ﬁ)(h)
(where ]Em 7 is the expectation w.r.t. the canonical measure corresponding to having
K particles in B,,) and still satisfy U, ;1 ,(7) = Vg z4.h0(7).
O

We now turn to the proof of the decomposition of germs of closed forms on the
infinite graph.

Proof of Proposition 8.2.5. — We first prove that the sum is direct: assume that
for a,b € R?, there exists a cylinder function h such that

3" = a1j! + azj” + bij + b = V.
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In particular fix ¢ = 1,2, one easily obtains that
aiji + biJi = Vo,e,.5h = V0,6, Za([0%) = Lingn.. =03 (Zn(n) — Ta(n®9)),

where the j;’s are the currents defined in (2.4.1). Multiplying by 7., —n0 (resp. n¢ —n§)
and taking the expectation w.r.t. ug, the identity above rewrites

2(a; + biEg(w))a(l—a) =0 (resp. 2(a;Ez(w)+ biEz(w?))a(l —a) =0),

where, as in Section 8.1, E4(w*) stands for Eg(w*(0)|no = 1). In particular, since
a € (0,1) this yields that a; + b;Egz(w) = 0 and that Eg(w?) = Ez(w)?, therefore
w(fp) is constant under pg. In particular, a;j; + b;j¢ vanishes in L?(ug) as wanted.
The inclusion ¥* D J* + €% is immediate.

We now prove the reverse inclusion. The set of germs of an exact form being a
linear (therefore convex) subset of L%(ug), its weak and strong closure in L?(ug)
coincide. In order to prove Proposition 8.2.5, it is therefore sufficient to prove that
for any u € T, there exists a sequence of cylinder functions h,, € T* such that the
sequence (VI Jnen is weakly relatively compact in L?(ugz), and for any of its weak
limit points B, there exists a and b in R? such that

b=u+j".

Fix u € ¥, and (Uy 542)z,2+- the associated closed form defined by (8.12). For
any fixed integer n, let of,, be the o-algebra generated by the sites inside B,

gn:o—(ﬁz7 $€Bn)7

and let u, denote the conditional expectation

T, T+2
ﬁ;,x+z = Ea(ﬁm,z+z | (’yn)

Note in particular that since w is in T, u" is a closed form on §,_, and each of its
coordinate is in T}, according to Lemma 8.2.7, and because each of the u, ;. , is the

limit in L?(ug) of a sequence of functions in 7%. In particular, up to simultaneous

n
x,x+2)
n
T, r+2z

modification of all the u z,x + z € B, on a ug-negligible set of configurations,

we can safely assume that it € T in a pointwise sense.

Fix once and for all a density a < o’ < 1, and define p, = ﬁ > zeB, M the
density in B,,, according to Proposition 8.2.8, there exists a family of of,,-measurable
functions ¢, € T,¥ with mean 0 w.r.t. any canonical measure on B,, such that

1o <ayWy otz = Vaaizpn VT,7+ 2 € By pg-as.,

where the identity holds only a.s. and not pointwise because we may have modified

=N
the uy ..,

to respect the conditions of Proposition 8.2.8 (namely, that there are two empty sites

on a negligible set. Note that we would need a weaker indicator function
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in B,,) however in order to estimate the L?(ug)-norm of the ¢, we will need the
stronger indicator function above.

Let us fix n € N, and consider the germ of an exact form ﬁVZ%, whose
coordinates can be rewritten for i = 1,2

1

1
oz VoeZo, = 5o Y maVautefn
€72

Since ¢, is of ,-measurable, Vi, z4e;Pn vanishes as soon as neither x nor = + e; is
in B,,. Hence, the previous quantity is equal to

1 1

(816) WVO’&;E%” = W Z T_mVx,Hei(pn
—n—1<z;<n
x€B,
1
= Rn,i + (2n)2 Z T—sz,x-l-eicpna
—n<z;<n-—1
r€EB,
where the boundary term R, ; is
1
Rn,i = W Z T—xvx,m+e¢v§0n + Z T—xvz,z—i-eisan
i=—n—1 T;=n
aczeBn(n—ei) r€B,

For any n, the left-hand side in (8.16) the germ of an exact form as introduced in
Definition 8.2.3. We will see that the second term of the right-hand side converges
in L2(ug) as n goes to infinity towards u;. Hence to prove Proposition 8.2.5 it will be
sufficient to show that the boundary term R,, ; is weakly relatively compact in L?(ug),
and that any of its weak limit points is in J“. Since ¢, is supported in B,, the
exchanges at the boundary act as reservoirs with creation (first term in R, ;) at the
sites z + e; with ; = —n — 1, and annihilation of particles (second term in R, ;) at
the sites x such that xz; = n, and cannot be expressed as such as particle transfers. To
prove that the sequence of boundary terms is weakly relatively compact, we therefore
need to smooth out the ¢,,’s, by letting

(8.17) @n =Ealpsn | f n)-

Not in particular that we still have @,, € T.

Rewrite (8.16) with &,, instead of ¢,

1 1 - ~
(818) WV(]’WE@,‘ = (2n)2 § T—arva;,z—i-eiﬁon + Rn,ia
—n<z;<n—1
xEB,
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where this time

(8.19) En,i = @ \‘ Z T_2Vaate;Pn + Z T—2Va, z+el¢n| :
T;=—n—1 Ti="n

weBn( 8@) z€Bn

We are going to show that

— the bulk term converges in L?(ug) to u;,

— the sequence of boundary term is bounded in L?(ug), and any of its weak limit
points is an element of J.

For the sake of clarity, we state both of these results as separate lemmas, and we will
prove them afterwards.

LEMMA 8.2.9 (Convergence of the bulk term towards u;). — For any i € {1,2},
2

. 1 -
(8.20) lim sup Eg W § [T—xvx,w-‘rei Pn — ui] =0.
n—oeo n —n<lz;<n—1
z€B,

LEMMA 8.2.10 (Limit of the boundary term). — For any ¢ € {1,2}, we split the
boundary term as

R,.=R,,+ R}

7L’L7

where
(8.21)
= ~ Bt _
Rn,i - (277,)2 zI:;_l T—zvz,x+ei§0nv and Rn,i - (2 )2 mz_:n T2V z,T+e; San’
wéBn(—ei) 2€Bn

which will be referred to respectively as negative and positive boundary terms. With the
previous notations, both sequences (R, ;)nen and (R )neN are bounded in L?(ug).

Furthermore, for any weakly convergent subsequence R,;mi — R, , there exists
ai,b; € R such that

Ry = aing (1 —ne,) + bimo(1 — 7e,)-

The same is true for the positive boundary term.
Thanks to (8.18), these two lemmas prove Proposition 8.2.5. O
The proof of Lemma 8.2.9 is simple, we treat it right now before turning to the

proof of Lemma 8.2.10, which is the main difficulty of this section.
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Proof of Lemma 8.2.9. — By construction, for any z,z + e; € B,

vz,x+ei95n = vx,x+ei]E62(‘P3n | C?n)
= Ea(vw,x+ei§03n | C?n)

=E (1{panio/}ﬁi7z+ei 07n)
= Ea(l{PSnSa'}Ea(ﬁz@'f‘ei | (’?‘Bn) | gn)
(8.22) =Ea(1{psn<a}Wa,cte; | F n)

a

By triangular inequality, translation invariance of ug, and using (Zle a;)? <
k¥ | a2, we can bound the expectation in (8.20) by

(8.23)
1 _ _ _
mZ Z (E& [(E&(um,x+ez' | Fn) — uz,x+e¢)2] +Ea [1{ﬂ3n>a’}uz,z+ei] )
—n<lz;<n—1
z€B,

We start by estimating the contribution of the first expectation in the sum. To do so,
split it for any positive € as

m2 > Ea {(Ea(ﬁaz,wei Fn) = ﬁw’”ei)Q]

£€Bn(1,5)

+ # Z Ea [(Ea(ﬁm,x—i-ai (_’7”) - ﬁz,z+ei)2]

—n<az;<n—1
2€Bu\Bp(1-c)
By definition of u, 7,u; = U, 54,, thus for any € > 0, the expectations in the first
term vanish uniformly in x € B,,(;_.) as n — oo by martingale convergence theorem,
whereas the second sum can be crudely estimated by Jensen inequality and is less
than
Ce max  B|(Ba(leare, | F0) = Hore)’] < 4CER (D),
—n<z;<n—1
€€B\Bp(1_<
which vanishes as ¢ — 0 regardless of n.

We now consider the contributions of the second part in (8.23). That each term
vanishes is a direct consequence of the dominated convergence theorem, however since
we need a convergence that is uniform in z, we give a more detailed and quantitative
argument. We can rewrite by translation invariance of ug, for any z,x +e; € B,,, and
for any p < 2,

Ea (L, >0} gre,] = Ba 4 (7o 1(p,,50r))]
< Ea [|u? — [wil?|] + Eg [wil”(7—s1(py,>a'))]

E
< Eg [|uf — |wi|”|] + Ea (uf)p/z i (p3n > a/)l—p/Q,
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by Holder inequality. By a standard large deviation estimate, ugz (psn > ') =
O(e=°""). We then choose p = p(n) = 2 — 1/n, to obtain that second term in the
right-hand side above is less than C(u;)e~“". The function inside the expectation in
the first term is pointwise less than max(2u?, 1) which is integrable and the first term
therefore vanishes by dominated convergence as p(n) — 2. Since the bound above
does not depend on z, we finally obtain

. 1 _2
(8.24) nhjgo m2 Z Eg [1{p3n>a,}uw,$+ei] =0
—n<z;<n-—1
zEB,
as wanted, which proves Lemma 8.2.9. O

Proof of Lemma 8.2.10. — The proof of this lemma being long, we split it into three
steps.

— We first control the L?(ug) norm of the @,’s.

— Thanks to this control, we prove that the sequence of boundary terms Efz is
bounded in L?(ugz).

— Finally, we prove that any weak limit point %zi of the boundary term can only
depend on the configuration through 7y and 7,,, and that they can be written
as a combination of the j¢ and j*“.

The scheme follows closely that of Theorem 4.14 in Appendix 3 of [28] however ad-
justments are needed in the second and third step to take into account the presence
of the angles.

First step: Control on the L? norm of the p,’s. — We proved in Section 8.1 that,

2. we could circumvent

even though we do not have a general spectral gap of order n™
this difficulty by staying in a convenient class of functions linear in the angles and
by cutting off the large densities. This spectral gap estimate is needed to control the
norm of the ¢/s. This is the reason for limiting the result to closed forms in ¥T*
defined in (8.14), and for introducing the indicator functions 1, <,/}. We state this

step as a separate lemma for the sake of clarity.

LEMMA 8.2.11. — There exists a constant K := K (&, o', u) such that for any n € N,
Ea(py) < Kn',

where @, was introduced in (8.2).

Proof of Lemma 8.2.11. — For any K e K,,, we proved in Proposition 8.2.8 that we
could assume Enf((gon) = 0, and thanks to the indicator function 1;, <.}, ¥n van-
ishes when the density in B, is larger than o', therefore the spectral gap estimate
given in Proposition 8.1.2, since ¢,, € T}?, yields

Ea(ﬂoi) = Ea(‘pil{pnﬁa’}) < C(av a,)n2 @n(@n)a
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where 0, (f) = —Eg(f Zv f) is the Dirichlet form relative to the symmetric exclusion
process restricted to B,,,

2
c@n(Wn) = %Z Z Z Ea [(Vw,z-kéei‘Pn)Q] .

i=14§e{-1,1} z,x+de;EB,

By construction (cf. (8.2)), Vigte,on = Lip.<atWistre, @a0d Vieie, 200

~r,r+e;

—Lip <anttly pre, (M ). Thus, since u is in L?*(ugz), and since pg is invariant

under the change of variables 7j — 7®**¢  Jensen’s inequality yields
(8.25)
2 2
Dulen) <D D EBal@.p)’]<d Y. Ea[w)’] <C'(wn’

1=1 x,z+e;EB, 1=1 xz,z+e;EB,

We obtain as wanted, thanks to the spectral gap estimate above,
(8.26) Ea(py,) < Kn',
where K = C'C’ depends only on @, o', and u. O

Second step: Control on the L? norm of the boundary terms. — We now prove thanks
to Lemma 8.2.11 that the boundary terms are bounded in L?(ug).

LEMMA 8.2.12. — There exists a constant C = C(a, o, w) such that for any n,
~_ \2
(8.27) B (R <.

The statement remains true if E;i is replaced by é:z

Proof of Lemma 8.2.12. — We will treat in full detail only the case of the negative
boundary term

~_ 1 _
Rn,i = (271)2 mv:Zn_l T—zvz,m-irei(pn,

zE€B,(—e;)

analogous arguments yield the bound for E:er Using (Zle a;)? < k‘Zf:l a?, we
obtain

5 (A7) < G X BaliraVewseal

< Cn~3 Z Es I:(Vx,z-l-ei[ﬁn)ﬂ )
B (o)

for some universal constant C', by translation invariance of uz. For z in the negative
boundary, under ug, we can rewrite

(8'28) Vizte; Pn (7/7\) = "790(1 - 77z+e¢) (%(ﬁ+ 52-&-@,-) — &n (7/7\)) ,
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where 74 67 +e, is the configuration equal to 7) everywhere except in x 4+ e;, where the
site contains a particle with angle 6 distributed as @/« independently of 7). Note that
in the expectation Eg, we will also take the expectation w.r.t. 8, but still denote it Ez
not to burden the notations. Since ¢, is independent of 77, for any x in the negative
boundary term,

(829) B [(Rr,)’] <aCn™® > Ea[(l=mare) @i+ 00) — @),

r;=—n—1

z€By (—e;)

where the expectation w.r.t. 6 is also taken, under the distribution @&/«. Recall
that &, = Eg(@sn | of »), since the number of terms in the sum is O(n), Lemma 8.2.12
is a consequence of Lemma 8.2.13 below. O

LEMMA 8.2.13. — There exists a constant C = C(a,a’,u) such that for any
z € Bp(—e;) such that x; = —n — 1,

Ea [(1 = Nlove) (Ba(@onl )0+ 00e,) — Ealanl F ) @)°] < Cn2,

where the exrpectation above is taken w.r.t. uz on Bs, and w.r.t. 0 distributed un-
der a/a.

Proof of Lemma 8.2.13. — Let us fix z, such that z; = —n — 1 in the negative bound-
ary. To make the Dirichlet form appear, we are going to force an occupied site in a
neighborhood of x, and transform the particle creation into a particle transfer. This
is the reason for smoothing out ¢, and taking ¢, instead. For the sake of clarity, any
configuration 77 on Bs, will be considered as the pair of an interior configuration E
on B,, (which is hence ¢f,,-measurable), and an exterior configuration E on Bs, \ By,.

For any y € B3, \ B,, we rewrite using the identity (1 —a) [l —¢+¢&—a] =1

Ea(ganl ) (T4 8040, ) = 1o (Ea( (1= &)gsn | F)

+Ea( (& —a)gsn | ) (C+620.)

where ¢, is the occupation variable in y, and is either 1 or 0 depending on whether
the site y is empty or not.

The first part of this decomposition will be controlled by the Dirichlet form, as
the existence of an empty site in y (thanks to 1 — &,) will allow us to reconstruct a
particle transfer from y to = 4 e;. The second term will be estimated after a spatial
averaging over a large microscopic box. This box must be measurable with respect to
the sites in Bs, \ By, in order to be able to introduce it inside the expectation. For
any « in the negative boundary, consider the set

x

n—1,4 — T —ne; + B’n.—la

SOCIETE MATHEMATIQUE DE FRANCE 2021



160 CHAPTER 8. LIMITING SPACE-TIME COVARIANCE

which is the box of radius n — 1 centered in x — ne;. Remark that the cardinal
of B¥
yields

(8.30)  Ealpsn | &) <C+5z+e,) = ﬁ > <]Ea (11_—%‘/)3"

yeEBT 1

is (2n — 1)?, so that averaging the previous identity over the y’s in By, ;

)
Fr )) (C+al.e,)-

Let us consider the first term of the previous equality. For any y in the boundary,

nli

thanks to the factor 1 — £, the site y is empty. Performing the change of variable
& — £ — 6, where £ — 6, is the configuration identical to £ everywhere except in y
where the site is now empty, we obtain

]Ea( T fy P3n

Fu) (C+02ue,)

~Bs (g, (€-4) | 7.) (C+ot)
e (£ [om (64 0 6-0) -0 ()] | 5.
+Ea <§y¢3n (Eg?)‘ c7n>

We deduce from the last identity and Equation (8.30) that we can write

Ea(psnl F ) (C+0%.,) as

o ¥ [ (& foun (T4 800 8) ~ o (€8)] | )

yeEBZ _
7m0 )] )]

+Es ( fy ~—P3n (Z E)

and therefore

(8:31) Ea(snl ) (C+62,) = Ealsnl F.)(0)

o O (B (2 e @ - 8) e (28] | 0.)

yeBT_,
é’n> +Ea(€y o (S ' ‘;I")]

n—

+Ea<§y;a ©3n (272

)

i
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Using (Zf a;)? <k Z __, a7 as well as Jensen’s inequality yields

Ba (1 = note) (Balsnl )@+ 02e,) — Ealwsal F.)@)°)

2n — 1)2 { Z Ez (TIHE) [Sﬁsn (ﬁ+ 52+ei - 5y) — P3n (7/7\)]2>}

yeEBZE

n—1,1

2

+3Es | Ea m’ Gsn |
yEB

)

n—1,i

(8.32)
2

Q)

(1—17w+ei) Ny — SR
yeB:_, ,

From now on, the strategy to prove Lemma 8.2.13 is straightforward. We are going
to prove that each of the three terms in the right-hand side above is of order n2:

— the second and third line above are controlled thanks to the spatial averaging
by the L? norm of the ,,’s;

— in the first line, the angle of the particle deleted in y is not necessarily the
same as the one of the particle created in = + e;, because the angle 6 above is
distributed according to @/« and independent of the configuration. However,
since the ¢,, are in T} their dependency in the angles can be sharply estimated.
Once this difficulty is dealt with, the remaining quantity will be controlled by
the Dirichlet form.

We first treat the first step above. Thanks to the Cauchy-Schwarz inequality, we can
estimate the second line

2

1 Ny —
Es | Ea — < n
(27’L _ 1) Z a ©3 (’?n
yeEB, _ 1,i
2
1 (1-a)
< —Es - Ea(02,) = — Y [, (p2
~ a? 2n —1)2 yeBZ: fly = (4,03”) a(2n —1)2 ((p3") ’
n—1,1

since under ug, the n,’s are i.i.d. variables. We can now use the bound obtained in
Lemma 8.2.11, which yields that for some constant C; = C(@, o', u),
2

2
(8.33) Es | Ea | | oo 1)2 yEBZ ny—al| | Fn < Cyn?.

n—1,i
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Similarly, since

l1—«

~ 2
Ea <(1 — Naute:)P3n (77 + 5ﬁ+ei) ) = Ea(nz+ei‘p§n) < Cn27

we also have for some constant Cy = Cs(@, o, 1)

(8.34)
2

n ~
Es | Ea -1 ) y — Nove)P3n (M+0040,) | I < Con.
yeEBZ®

n—1,i
We now estimate the first line of the right-hand side of (8.32), namely

(835) o > Es (n“) [0sn (7 + 021, = 0y) = @3n (ﬁ)]2> :

yeBY

n—1,i

We first deal with the fact that the deleted and created particles do not have the same
angle. Recall that V% is the configuration where the angle of the particle at the site
y has been set to 6, we can thus write

77 + 6x+e - 69 = (ﬁ(y’e)y’erei ?

therefore

(‘P3n (ﬁ"‘ 6z+ei - 5y) — P3n (ﬁ))2

<2 [W?m ((ﬁy’e)ywrm) — ©P3n (ﬁy’e)r +2 [903n (ﬁy’o) — ©P3n (ﬁ)]Q

Since 6 is distributed according to &/«, conditionally to n, = 1, 7¥% has the same
distribution as 7 under pg, and we can therefore control (8.35) by

(8.36) 2 > [Ea (11 = maver) [psm (754%) = p3n ()])

291 — 1)2
a?(2n—1) -y

+Ez (ﬂy [03n (1) — @3n (ﬁ)]Z)) :

Once again, we are going to prove that the contributions of both terms in the right-
hand side above are of order n2.

We first need to decompose, as in the proof of the two-block estimate of
Lemma 4.2.2, the particle jumps appearing in the first term into nearest neigh-
bor jumps. More precisely, there exists a finite family zo,...,z, such that zo = y,
zp = « and for any k € [[0,p — 1], |2k — zx+1| = 1. Furthermore, we can safely
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x

assume that p = |y — x |. With this construction, for any y € By 1, we can write

Es [ny(l — Tate,;) (wsn(ﬁy’ﬁei) ~ $an (ﬁ))T

ly—z |

L, T fog 2
<ly-z| ) Ea [%k(l—nxw)(@sn(n . ’““)—wsn(n)) }
k=1

ly—=|

(8.37) <ly-z| Y Ea ([vzk,zk+1¢3n]2) ,
k=1

since (3_%_;ar)? < p> p_,ai. As in the proof of Lemma 8.2.11, one easily checks
that,  and x4 being neighbors,

Ea ([Var e (@]’) < Cw).

therefore (8.37) yields

Ba (1= tere) (030 (027) = 020@) | < 1y =2 PO

We now get back to the first term in (8.36).
It is not hard to see that }° 5.

that for some constant C3 = C3(Q, u),

|y—x |? is of order n*, and we obtain as wanted
1,i

2 R e\ ~12 2
(8.38) m%; Ea (Uy(l — Nate:) [P3n (7Y ) — 30 ()] ) < Csn”.

n—1,i

We now estimate the second contribution in (8.36). The only difference between
©3n (77%0) and 3, (77) is the angle of the particle at site y. Recall that for any n,
pn € T¥, therefore the variation of ¢,, when an angle is changed can be precisely esti-
mated. Fix n > 0, and recall that @3, € T%;,. Then, there exists angle-blind functions
(Yn.)zeBs,, and ¥, in &, such that

P3n = 'an + Z n;)@bn,x-

rEB3y

Since the only difference between 7% and 7 is in the angle present at the site y, we
can write

©3n (ﬁy’e) — ¥3n ("/7\) = (w(e) - w(ey))nywn,y(n)y

therefore the second contribution in (8.36) can be rewritten
(8.39)

SOCIETE MATHEMATIQUE DE FRANCE 2021



164 CHAPTER 8. LIMITING SPACE-TIME COVARIANCE

where we shortened Vz(w) = Varg(w(fo) | no = 1), since the angles are independent
of the configuration conditionally to the presence of a particle. Similarly to what we
did in Section 8.1 rewrite

P3n = 902 + ‘plr)m

S(J}; = Z (w(eas) - Ea(w))nx"/}n,x and 30?7, =, + Ea(w) Z nzi/)n,xa

€ B3, TE€B3,

where Eg(w) stands for Eg(w(6p) | 7o = 1). As in Section 8.1,

Ea(p3,) = Ea((n)?) + Ea((¢})?)
and
Ea((en)?) = Va(w) D Ealnavi.)-
r€B3y,
The two previous identities finally yield that
Va(w) > Ea(new?,) < Ea(e3,)-
x€ B3y

We now use this bound as well as (8.39) and Lemma 8.2.11 to obtain that for some
constant Cy = Cy(7, &', u)
2 12
)2 Z Ea <77y [903n (7/7\%0) — P3n (77)] ) < C4TL2.

a?(2n—1
yeB®

n—1,i

(8.40)

This is the estimate we wanted for the second line of (8.36).

Letting C = 3(Cy + Cy + C3 + C4), we now use the four bounds (8.33), (8.34),
(8.38) and (8.40) in Equation (8.32), to obtain that

Ba (1= tete.) (Ba(9snl F )0+ 82e,) — Balpnl F )@)°) < On?

as wanted, which concludes the proof of Lemma 8.2.13. O

We have now finished the second step, and proved that the sequences of boundary

terms (Ei’i)neN and (R, ;)nen are bounded in L*(uz). To conclude the proof of

Lemma 8.2.10 we now prove that any weak limit point :; of (ﬁ_ is in the linear

)
n,i
span of the currents J“. The main difficulty is to prove that any limit point only
depends on 7y and 7, which we state as a separate lemma. We will once again only
consider the negative boundary terms, the positive boundary terms being treated in

the same way.
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Third step: Proof that R; only depends on 7 through 7y and fe,. — Let us introduce
Zi,i = {l‘l > 0} N Zz \ {62}

We first prove the following intermediate result.

LEMMA 8.2.14. — Any weak limit point R, of the sequence (E;l) is measurable w.r.t.
the sites in 7> N {x; > 0} U {0}. Furthermore, for any edge (y,y + z) with both ends
in the set 73 ;, the gradient V., .R; vanishes in L*(ug).

Proof of Lemma 8.2.14. — In order to avoid taking subsequences, let us also assume
that (ér_”) weakly converges towards R; . We first prove the first statement, which
is elementary. For any x in the negative boundary, z; = —n — 1, 7_,®,, is measurable
with respect to the half plane {z; > 0}, therefore V ., 7_,{ is measurable with respect
to the sites in {z; > 0} U {0}. We deduce from the last remark that for any n, E;Z is
measurable for any n w.r.t. the sites in {z; > 0} U {0}, therefore R, also is.

We now show that for any edge {y,y + 2} C Z2 % .i, the gradient V,, , 4 . vanishes
in L?(ug). Fix an edge (y,v + z) with both ends in Z3 ;. By definition,

Vy,erzR;,i = § : Vyyt+:T-2Vaoate,Pn

ri=—n—1

Z Vy,y-i-zVO e@T—wSOn

i=—n—1

1
(2n

Because y,y + z are different from 0 and e;, the two gradients in the formula above
commute, therefore using once again (3., ; a;)? < n) ., a?, as well as the crude
bound Egz((V.f)?) < 4E5(f?), yields

Ea “vy,y+z§;,i|2} < ! Z Es [(voveivy,y-&-zT—z‘Zn)Z]

3

(2”) r;i=—n—1

1 ~\2

> Es [ Vo,e:T=2Vaty,otytsPn) ]
x1=—n 1

~ \2
(841) Z ]E" [ m+y,z+y+z§0n) ] .

r;i=—n—1

There are three cases to consider to estimate Eg [(Vz+y,z+y+z§5n)2]

1. The first one is the case where both x +y and « + y + 2z are in B, the comple-
mentary set of B, . In this case,

Ea {(vz-i-y,z-i-y-&-z@n)ﬂ = 0,

because @y, is of ,- measurable.
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2. The second case when both x + y and x + y + z are in B,,. In this case, using
(8.22) and Jensen’s inequality we can write

(8.42) Ea ((Vw+y,w+y+zan)2) < Ea (1{p3n§a’}(ﬁm+y,m+y+z)2) < C(u).

3. The last case to consider is if z + y and = + y + 2z link B,, and B;. Then, as in
the proof of Lemma 8.2.12 we obtain

Ea |:(vz+y,x+y+z$n)2:| < C(aa o/,u)nQ.

Fix an edge (y,y + z) with both ends in Zi,i and write z as *e;, we treat sepa-
rately the two cases for j. If j = i, for any n large enough (more precisely as soon
as 2n+ 2 > y;), for any x such that 1 = —n — 1, either z + y and = + y + e; are
both in B,, or both are in its complementary set B:. We are therefore either in the
first or in the second case above, and since the number of terms in the sum is O(n),
Equation (8.41) yields

Ea [(Vyus-Ryy)’] < 02—,

n—0o0
for some constant C' = C’(a, u).

If now j # i, there can be only two terms in the sum over z for which z 4+ y and
x +yte; link B, and BS (third case above), whereas all the others are either in the
first or the second case. In this case, Equation (8.41) yields
Ea [(Vous-Ryo)’] < C'@wn~2 + €@, wpn~ 3 —— 0.

n—oo

This proves that the sequence V, , . R

n,:

vanishes as n — oo in L?(ug) for any
edge (y,y + z) with both ends in Z?H Since the gradient V,, . is a (Lipschitz, and
therefore) continuous functional in L?(ug), V. ,+-9R; vanishes for any edge (y,y + 2)
with both ends in Z7 ;. This concludes the proof of Lemma 8.2.14. O
LEMMA 8.2.15. — Any weak limit point R, of the sequence (E
on the configuration through 7o and 7.,. The same is true for the limit points of the

positive boundary terms (R:,i)'ﬂeN'

n.i)neN only depends

Proof of Lemma 8.2.15. — This lemma is a consequence of Lemma 8.2.14. Consider
the localization R;,, = Ea(R; | ¢,,), then R, ,, is measurable with respect to the
sites in {2; > 0} U {0} and for any edge (y,y + z) with both ends in Z3 ; its gradient
vanishes in L?(u5). These two properties are immediate consequences of the properties

of R, and Jensen’s inequality.
Let
B, =B,N7Z4
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since the gradients of R, vanish for any edge in B:n, on the event on which there
+

,m?

are at least two empty sites in B; , SR, only depends on the 7, z € B:‘ ,, through

the empirical measure on B;rn
N 1
PBt = BT E Nz00,, -
’ | mwnl gt

Indeed, for two configurations 77 and 77’ with the same number of particles, and with

the same angles in B

7,n’

previous gradients, hence the difference R; () — R, ,(7') vanishes. This is not true

we can reach one from the other with a combination of the

whenever there is one or less empty site in BZ > but since we are under the product
measure, this happens with exponentially small probability and will not be an issue.

Let us denote by E the event “there are at least two empty sites in B ) the

i,n

previous statement rewrites as

‘ﬁ;nlEi =E; <%i_,n1E7*L

ﬁOa ﬁeia //)\Bjrn> .
For any cylinder function f, we are going to prove that
Ea(f.%;) = Ea [f- E(R} |70, 7.,)]
Let
fP=E(f | %, v € {z; > 0} U{0})

be the conditional expectation with respect to the sites in {x; > 0} U{0}. Since f is a
cylinder function, so is f, therefore for any sufficiently large integer n, we can write

E(f % 1p;) = Ea(f R, 15;)
Eg (Ea ( fR 1 ﬁo,ﬁei,ﬁB;n»
Ea (fR;’nlE;Ea (f ﬁO) ﬁemﬁBfﬂ))
ﬁOaﬁemﬁBIn>>

ﬁOaﬁeialb\Bj'n))
ﬁOaﬁeiaﬁBjTL))

(8.43) = Ba (% B (£ | 0.7, ) ) + on(D),

=Ea (ﬁgnlE;Ea <f+

=Ez (m;nEa <f+
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Ea (fJr

because pgy+ converges ug a.s. as n — oo towards @, and
1,1

since

~ A~ L*(pug) ~
Tloﬂlei,pB:rn> —Ii) Eg (f+ ‘ nOanei) 3

n—oo

Es (mi_’nlE;cEa <fJr

ﬁo,ﬁe“ﬁg;rn>> —_— 07

n—oo

because f* is a bounded function, and R;, is in L?(ug). For the same reason, the

i,

left-hand side in (8.43) converges as n goes to oo towards E5(f.fR; ), and therefore
for any cylinder function f

Ea (%7 Ea (11 | 0,7 ) ) = Balf-5),
so that
ml_ =g (%: ‘ ﬁOaﬁez) .
This concludes the proof of Lemma 8.2.15. O
To complete the proof of Lemma 8.2.10, now that we have proved that all limit

points of the boundary terms are function of 7jp and 7j,,, we still have to show that such
limit points are in J*. First notice that any limit point of the negative boundary R,

verifies
(8.44) Mo Ry = (1= no)RT = 0.
Indeed,
Ne,R; = lim ! Z NeiT—2Vagte,Pn = lim = Z Ne; V0,6, T—2Pns
n—oo (2n)? o1 n—oo (2n)?2 e Th1
z€B, z€B,,

since 7, Vof = Va7 f. Now the latter obviously vanishes since 1., Vg, = 0. The
second identity is proved in the same way.

Since the ¢,’s are in T, so is SR; . Since R; depends only on 7y and 7,, using
(8.44) it can therefore be expressed as

Ry (@) = no(1 = 1e, )Ry (7los M) = M0(1 = 1e;) [¥(105me;) + 16 %0 (M0, Me,)]
for some angle blind functions 1, 1o. In particular, letting ¢; = ¥o(1,0), c2 = ¥(1,0),
R, (M) = (cang + c2mo) (1 — 7e,)-

Finally, any weak limit point of the boundary term is an element of J*, which is what
we wanted to show. The proof of Lemma 8.2.10 is thus complete. O
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8.3. An integration by parts formula

Considering the symmetric exclusion generator 7 as a discrete Laplacian, to prove
Theorem 6.6.4, we are going to need an integration by parts formula in order to express
the expectation of .h in terms of the gradient of h and the “integral” Vi_lz/z of V.

We first extend the definition of the canonical measures given in Definition 3.1.6 to
any domain B C T%,. For that purpose, consider an integer K < |B|, and an orderless
family {6;,...,0x} € S¥. Recall that we denote by K the pair (K,{01,...,0k}), and
we let u; » be the measure such that the K particles with fixed angles 01,...,0x are
uniforml}; distributed in the domain B. If B = By is the ball of radius I, this notation
is shortened as u,  in accord with Definition 3.1.6. The expectation w.r.t. both of
these measures is }espectively denoted E B.R and El, 7+ We will, in a similar fashion,
write

Lof@ = D ne(l—ness) (A7) = F@),

z,x+2€B
|2|=1

for the generator of the symmetric exclusion process restricted to B, shortened as Z;
if B = B;.
Recall that we defined

Co = {¢ el ‘ E, z(®)=0VKeK,, and ¢| . =0VKecK,, \sz},
sy
and that V, is the gradient representing a particle jump along a.

LeEMMA 8.3.1 (Integration by parts formula). — Let v € Cy be a cylinder function, and
a C By, an oriented edge in its domain. Then, ¢ is in the range of the generator Zs,,
and we can define the “primitive” I,(v) of ¥ with respect to the gradient along the

oriented edge a as
1) = 5Va(~L0,) .
Furthermore, for any B C T3 containing Bs,, any K = (K, (01,...,0K)) such
that K < |B| and h € C measurable w.r.t. sites in B, we have
(8.45) Epg@Wh)= > Epzla(®).Vah).
aCB;,

This result is also true if ug  is replaced by a grand-canonical measure pg. Note that
if K =|B| —1 or K = |B]| the result is trivial because ¥ vanishes.

Proof of Lemma 8.3.1. — The proof of the previous result is quite elementary. Fix a
function ¢ € Cq, to prove the integration by parts formula, we first show that i is
in the range of Z

gzsw@]? = w

sy» Dy building for any K a function pp on ¥ ’”, verifying

sy . This result is well-known for the color-blind exclusmn process, but
R

P
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in our case where each particle has an angle, the canonical measures take an unusual
form, and we prove it for the sake of exhaustivity.
For any ¢ : Z;;" — R such that Z5,¢ =0,

1 —~
EBsw,I?(Sozswgp) = _E]EBSV,J? Z nx(l - nz)(ﬁo(ﬁm’z) - Sa(n))z = 07
w,z+z€Bs¢
therefore ¢ is invariant under the allowed jump of a particle along any edge in Bj,,. For
any I/(\' € ]sz
the exclusion dynamics in B

the function ¢ is constant on Z}?, because E;f is then irreducible w.r.t.

s, » according to Section 3.3. In particular Kergsy sz is
K

the set of constant functions, and

{o: o8¢ 2R | By z@)=0} ={Zs, v, v:T¥ R}

Sy

For any ¢ € Cq, any K € K,,, there exists a PR Z;’{‘” — R, such that

Safp )

z&p@}? =9

s

v
R

Since 9 vanishes when B, has one or less empty site, we also let ¢ = 0 for any
K € K, \ K;,. We now define the local function ¢* € C by <p*|zi"/ = (), which
verifies by construction “

VY= Zs,0",
therefore ¢ € Z,, C.

Proving the integration by parts formula is now elementary: since ¢ = Z, » %;ﬂl}w,
-1
By z(he) =By ¢ (h20, 2.)0)
1 —1
=2 Y Bz (Voo - Vah)

aC By,
= Z EB’[? (Ia("/})'vah)
aCBy

which proves identity (8.45). By conditioning to the canonical state in B, one easily
obtains that the same is true when the canonical measure is replaced by a grand-
canonical measure ug. O

We finish this section with a technical lemma. Recall that for any cylinder func-
tion v, we denote by s, the size of its support and for any integer [, I, =1 — sy — 1.

LEMMA 8.3.2. — For any ¢ € Co + J* + ZC, there exists a constant C(¢)) such that
for any I, K € K, h € C only depending on sites in By, v > 0, and A C By,

1
E, (h > w) <ACW)A| + 5 D30,

z€A
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where we shortened Ay = {z € By, d(z,A) < sy}, @fg(h) =E, z(h(=Za)h) and
L a is the SSEP generator restricted to jumps with both ends in A.

Proof of Lemma 8.3.2. — Since for some constant C(sy), > . c4 CG/)le(w (z)(h) <

C(sy) @f}ﬁ((h) to establish this result, it is sufficient to prove that for any z € A and
for any positive «/,
1 By, (®)
L W
2y ‘@lﬁ ().

We now establish this last bound for any ¢ € Cy U J* U ZC, which proves the lemma.

(8.46) E, z (h1uy) <v'C'(9) +

Assume first that ¢ = j2 for k € {1,2}, and ® € C*(S). Then, E, z (h7p¢)) =
El)f( (hjg,erek) , where as before j§m+ek = ®(02)0:(1-Nz1e, ) = P(Onte )Nrte, (1=12)-
Thanks to changes of variable 7 — 7®%T ¢ in the second term, we obtain, using the
elementary bound ab < ya?/2 + b2 /2y which holds for any 7,
el |, 1

+

El,}? (h1ap) = _El,I? (®(0:)Ve,zteh) < > ﬂ

E & (Vaw+eh)?)
which proves (8.46).

We now consider ¢p = Zf € ZC. Since f is a local function, fix s, such that
2f = Zs, f. We rewrite

B, (het)) =By 2 (hZs,, ) (ef)) =By g ((mef) T, ()

¢ IR, 1 oB@
"o E”’?((T””f)v””’””“h“% ﬂﬂffé” (h),

Y,y+2€Bs, (2)

as wanted.

Only remains the case 9 € Cg, for which (8.46) is a consequence of the integration
by parts formula and is proved similarly to the case ¢ = Zf. By definition of I,(¢),

S B pUasen(ret)?) = 2B, ()~ L5 ) ()

2
Y,y +2€Bs,, (2)
1

= 3E 7 (¥(- 25 w) <cw),

where C (1) can be chosen independently of K. Using (8.45), and this last bound, we
obtain

Bz ()= > By g (Tyyr=(ra).Vyys-h) < ot > D g (h),
y,y—&-zEBSw (x)
which proves (8.46) and Lemma 8.3.2. O
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8.4. Heuristics on <->>5 and Theorem 6.6.4

The purpose of this section is to explain the variational formula for the limiting
covariance <> introduced in Definition 6.6.2. Given the generator Z of the SSEP
on Z2, for any function f with mean 0 w.r.t. any canonical measure, consider the
linear application

-1
(8.47) F:fVZTs; = (Vo,ﬁ% Zf) :

Vo L 'Sy

A priori, even if f is a local function, 7! f is no longer local, and vz 'y ¢ can there-
fore involve a infinite number of non-zero contribution, so that § is not a priori well
defined. However, assuming that f is such that V 7'y ¢ is well-defined, the definition
above indicates thanks to the translation invariance of ¥; and 7™, that §(f) is the
germ of a closed form as introduced in Section 8.2. To illustrate this last remark, we
describe the effect of this application on ZC and J*.

Recall that for ® € C*(S), i =ng (1 —ne,) —n2 (1 — no). We first investigate the
action of § on the currents j. Consider an infinite configuration 7 with no particles
outside of some large compact set K. For the sake of concision, we will call such a
configuration bounded. Then, we can write

T E€Z2 z€Z2 zEZ?
Since the configuration was assumed bounded, both of the sums above are finite,
and the identity above is well posed. Coming back to our application §, the previous

. P v0761 %_12]".1’ v0,61 21622 xmf
%’(]i ): 1 = o/
Vo,ez .°Z Zj? VO,eg ZzeZZ :1,‘1‘7770

Since the only positive contribution in the right-hand side above is for x = e;, ele-

identity yields

mentary calculations yield

3G =",
where the ji’q)’s are the germs of closed forms introduced in Equation (8.15). The
application § therefore maps J* (cf. (6.44)) into

3* = {jl’q)l —|—j2’q>27 @1,@2 S CI(S)} .
Since one can also write §(f) = VX ¢-1s, We can define § on ZC as

L=V nl Lf =V,

TEZ2
which is the germ of an exact form associated with f.
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Denote by &* the set of germs of exact forms associated with functions in C, the
construction above allow us to define the bijective application

F: T +2LC—-F +¢&
R AR O NCS RS A L1

Recall that we defined the L2-norm of any closed form u as
1/2
lullo 5 = [Ea (w7 +u3)] ™

According to Proposition 8.2.5, we can rewrite for any u € T,

(8.48) [ul2 5 = sup {21{«:& (u (95, +5) - ||, +5**
geT*

a,beR?

2
28] "

we can equip & /Kerg(F) with the
induced by the mapping §, defined as

2

‘2,&} '

By generalizing the integration by parts formula in the previous section, this formula

Define Kerz(§) the kernel of § w.r.t. || .|,

norm <<->>}a/2

7a’

<f»a=IB(la= sup {2Ea (500 (g +5) - HVEngi”*”
geT™
a,beR?

is strictly analogous to Definition 6.6.1, and § is therefore an isomorphism
5 (g[g/Kera(S) , <<->>a) — (‘Iw =JY+ e, ||||§7a) )

which gives & /Kerz(3), as stated in Proposition 6.6.6, the same structure as
JY + LT [Kers(F).

We now briefly carry on with our heuristics and explain why Theorem 6.6.4 holds,
which is rigorously proved in Section 8.5. The proof is based on the integration by
parts obtained in Subsection 8.3. Applying it to Y

in the right-hand side of (6.49) can be rewritten

s€B, T yields that the quantity

lgﬂﬁ@@ % 2 [V%szl— DY TWJ

z,x+2€B; meBlw

Assuming that one is able to replace y, 7 by the translation invariant grand-canonical
measure pg, and all quantities being ultimately translation invariant, this limit should
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be the same as
12

. 1 1 [ —1
B Gt |2 2 Vot 2 Y
z,2+2€B, z€By,,

92

=lmEs | Y (Vo %' D Tt

l— o0 i
i=1,2 TEBy,

= I3@W)l5a
= LY>5.

The rigorous proof of this result, given in the next section, is technical due to the
delicate nature of 7.

8.5. Proof of Theorem 6.6.4

In order to prove Theorem 6.6.4, we need to prove that

1
(849) lim WEZ,IAQ (—ng)il Z ’Tx’l/J. Z Tz P = <<1b,<,0>>a

bmee z€By, ©€B,
in three cases:
1. p=vand y € ZC+ J*,
2. p€ Jg and p € TC+ J*,
3. p=tvandp € Ty.

The first two cases correspond to Definition 6.6.1, whereas the last one corresponds
to Definition 6.6.2. The first two cases are easier, we treat them first as a separate

lemma. The uniformity of the convergence will be proved at the end of the section as
in [28].

LEMMA 8.5.1. - Fizp € J ¢ and = Zg+ 53 +j32 € LC+ J*. For any sequence
(K1) such that @ — @,

. 1 -
Jim e (D) 3 w3

:cEBlw xeBlw

(8.50) =2 Es (no(l —1e;) [@i(60) + Sy (7*) — 29]2) :
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and

. 1 —1
Jm Bk | (CL0) D ey D T

zGBzu) a:EBzg,
=—-E; (@ Xy + Z (z1n! +93177$1)]> .
€72

Proof of Lemma 8.5.1. — Fix v = Zg + j* + j3* € ZC + J*, and shorten
B} = {x € Bj,z; <1— 1} one easily obtains the identity

o niti=2 ) wmy

weéll TEB;
Shorten
1,2, ; B,
F=Fp"0® = E Tog + E z;n,' and G = — E Todi b
T€By, i=1,2, i=1,2,
Tz€B; weBl"\Blw

we can then rewrite 3 _p 7% = £;F + G, and therefore
P

(8.51)

Elﬁ((—zl‘l) Yo b Y, wt) =E z(F(-2)F) - 28, 3 (FG) +E, » (G(-2)~'G) .
zEBlw :L'EB%

Writing

Bz (G(—‘;Z,)_lG) = S%P{EI,I?(Gh) - wl,f?(h)}v

and using Lemma 8.3.2, we obtain that the last term in (8.51) is less than
C(®1,®2)|B; \ B, | = O(l), and therefore the corresponding contribution vanishes in
the limit (8.49). Regarding the second term, elementary computations yield

Elj(\'z (ng‘szgk) = C(l{y:z} - 1{y:I+6k})v

where we shortened C' = E; z (®;Px(60)n0(1 — 7e,)), which yields after elementary
computations that

Eg | D vy D, meint | =00)

i=1,2, k=1,2,
yEB z€Bf\By,

Similarly, for any y such that {z,z + ez} N Bs, (y) = 0, we have E, R, (Tyg'rzj,fk) =0,
so that
E, z, (FG) < C(g, ®1,%:)|B} \ By, | = O(l)

and thus vanishes as well in the limit (8.49).
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Finally, the last two contributions in (8.51) vanish in the limit, and we now only
need to compute E, z (F(—Z;)F), that we split into three parts. We rewrite the first
one

2

Eg | (20 X0 mg- 3 79 =% >, Ez {vyﬂﬁz > ng}

zEBlw weBlw y,y+2€B; iEEBlw

Since f only depends on sites in B, for any y € Bj_a,, -2, we can write
Vyytz erBlw Teg = Vyyt225g, where as before ¥, is the formal sum ;> 7.g.

Furthermore, for any y ¢ B;_2,, 2

{Vy,y—s-z Z ng} = {Vy,y-l-z Z ng} SC(Sg)Hg”Zo‘

zGBlw |z—y |<sg+2

Since all the V, ,,,%, have the same distribution under u, g fory € By_o5, 2, we
can therefore write using the two bounds above

652 Gt (0 Y e Y n

zeBzw zGBzw

|Bi—2s, 2| |Bi\ Bi—2s,—2|
_ [Biozs, o l; E, 2 ([Vo..0") + C(£)O <l(mi1)2)

2
=D Bz (IVo.e, %) +C(1)O/0).

Since Vg ¢, X is a local function, the equivalence of ensembles (cf. Proposition (C.1.1))
finally yields for any sequence K; such that & 7~ a

2
i e (€0 3 moe T o) = 3R (W)
i=1

zEBlw ﬂCEBlw

as wanted.

Similarly, one obtains straightforwardly after elementary computations

B |2 X et Doaal | =8 8 B ([Taae]).

1=1,2, i=1,2, y,y+z€B;
T€EB; zEB;
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where i, = k iff 2 = +e;. Once again, under p, z, all the terms have the same
distribution, and we can rewrite

1 ) .
W]El,f( (=) Z zing - Z zing

i=1,2, i=1,2,
rEB; TEB;

:Z ( (60 770(1—7761)]2)+C’(¢’1,‘1>2)0(1/l)»

therefore using once again the equivalence of ensembles also yields

zlirgo ﬁEl,fg (=) Z zing - Z zing Z]E ( i(60)no(1 Tlei)]2>~

i=1,2, i=1,2,
TEB,; TEB,;

Using the fact that E, z(fZi9) = -3, i.en Bl g([Vyy+:f[Vyy+:9]), is is
straightforward to adapt the previous estimates to the cross term, and obtain

(21i1) Eyg, | (20 D oz X 7ag ZE i(00)Vo,e;5g) -

1=1,2, zEBlw
Il?EBl

These three estimates finally yield as wanted
(8.53)

Jim WEL,R (F(=)F) = ;Ea (m0(1 = 7,)[®i(60) + T4 (7)) — Bg]?) ,

which proves the first statement of the lemma.
The second identity in Lemma 8.5.1 is proved in a similar way. Using the same

notations as for the first identity, we have }- _p 7,9 = £;F+G, and given f € & o
P
we rewrite the left-hand side in (8.50)

Bz |(F+(2)0) Y nf
:CEBLf

Using once again the equivalence of ensembles, it is easy to prove that
(8.54)

1
lim —— R - |F E - _F.
100 (20 +1)2 b i ) <f

IEBzf

S+ Y (zany +$1,75>1)D :

TEZL?
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therefore we only need to prove that the contribution of G vanishes. This is straight-
forward, since the contribution of G' can be rewritten

G |GG 2T T nf

:cEBlf

- @iy {3 ST GO S|
|_ z,x+2€B8; xEBlf J

We now use Holder’s inequality, and that for any positive v, |ab| < va?/2 + b%/27, to
obtain that the absolute value of the left-hand side above is less than

1

EESTRE (CLIR D DY,

zGBlf

- 1 _
= mEl’f{l (G(_ Z 1)G> + WEL,RZ (-2 Z Tof - Z o f

zEBlf aceBlf

We already proved that the first term in the right-hand side is O(yl~!), whereas in
the limit [ — oo the second is bounded by < f>>5/~v according to Lemma 8.5.3 below.
We can therefore choose v = V1, to obtain that both terms vanish as | — oo, thus
concluding the proof of Lemma 8.5.1. O

We now consider the case ¢ € & 3’, which is the main result of this section, and
conclude by proving that the convergence is uniform and that (6.50) holds. Thanks
to the decomposition of the germs of closed forms obtained in Proposition 8.2.5 and
Lemma 8.5.1 above, these two steps follow closely Section 7.4 of [28], we repeat the
proof here for the sake of exhaustivity. Recall that we denoted for any ¢ € &/ E)

<P>g= sup 2Bz | v S+ Y (ya)iy + (b, | | - <Lg+i*">a
geTu L 72 J
a,bER? ve

We split the proof of the third case ¢ € &, in two lemmas, namely an upper and a
lower bound. Using the identities obtained in Lemma 8.3.2, the lower bound is easy
to prove.

LEMMA 8.5.2. — Under the assumption of Theorem 6.6.4,

(8.55) lim sup B 7, (—551_1) Z T Z TV | = KY>a.

1
=00 (2l + 1) ©€By, z€By,
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Proof of Lemma 8.5.2. — Denote by C; the set of local functions measurable w.r.t.
sites in B;. We start by writing the variational formula

El 12¢ (_zl_l) Z Tw’d) Z de] = sup 2El,f€l h Z Tzw - oc/)lj%l(h)

)

z€By, z€B, hely T€By,,
(8.56) > sup QEl’f(l h Z TP | - @l,f?l (h) ¢
heT; z€By,

~w
where & , is the subspace of (;

I, = { Freb = > mg+ Y ((ax)nf + (ba)n.), g€Ta,beR?
mEBLg z€B;

As stated in (8.54) the contribution of the first term in (8.56) is

1
. g,a,b TR~
Jm R | 2 T F ) = —Ea | ) Ty9+2 (@) + Gy)n,)

z€B,, y€eZ?
and we proved in (8.53) that
1
. R g,a,by __ ca,b
zli,rim@liﬂ(ﬂ ) =<Zg+j"">5.

These two identities prove (8.56), and concludes the proof of the lemma. O
We now state and prove the upper bound, which is more difficult.

LEMMA 8.5.3. — Under the assumptions of Theorem 6.6.4, for any ¢ € ffg,

1
(8.57) lim sup WEM?Z (—Z)7' > Y. Y Y | < <Y>a.

l
o z€By, ©€By,

Proof of Lemma 8.5.3. — We start by replacing the canonical measure p R by the
grand-canonical measure ug thanks to the equivalence of ensembles stated in Propo-
sition C.1.1. The main obstacle in doing so is that the support of the function whose
expectation we want to estimate grows with [.

By the variational formula for the variance, we can write for any K e K,

Bz | (= )" Z T Z T | = sup 2E, z Z T bl = D p(h) ¢,
z€By, z€By,, heT; T€B,
where as before, T = C;NTY and ), z(h) = E, 2, (h.(—Z;h)). As in the proof of the

one-block-estimate, let k£ be an integer that will go to co after [, and let us partition B;
2[,’0 +1 J 2
2k+1

into disjoint boxes Ao, . . . ,Kp, where p = | , 1~Xj = Bogyi(z;) forany 1 < j <p
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and some family of sites z1,...,2,, and where we let Ao = B, \ ( ?:1 A;). Recall
that sy is the smallest integer such that v is measurable with respect to the sites
in By,, we now define

p
Aj={z ey, d(z,A%) > sy} and Ag=B;, \ (|JA
=1

One easily obtains that for some universal constant C, |Ag| < Csy(12/k + k).
Let h be a function in 7}, we can split

(8.58) Y Eg (b h)= Y Eg(mph)+ Y E g (ret.h).

zGBlw J zé,Aj,p zE€Ao
Letting v = Vk/2 in lemma 8.3.2, for any [ > k2, the second term is less
than k='/2[C ()12 + &, (h)]. Letting ¢, = 1 — k~1/2, for some constant C (1), and
for any [ > k2, the left-hand side of (8.57) is therefore less than

Ck 2 C(’l/))
—F _ su > EE g () h) = Dy g(h) p + ——
(21 + 1)2 pere = e i (Tt h) = Dy g (R) vk

:IIGA]'

For any h € T, 1 < j < p define h; = E, p(h | 0,y € Kj), by convexity of the
Dirichlet form, we have

where as before J[)Z‘f((h) is the contribution to the Dirichlet form of edges in A.

Denoting T}’ ; the set of functions in T* measurable w.r.t. sites in Kj, we can therefore
finally bound from above the left-hand side of (8.57) by

2 , Cw)
(2z+1)2ZhET chE (2 ) = D)% () Sy

TEA;

All the terms in the sum over j are identically distributed, the quantity above is thus
less than

Ck 2 By,
oo Sup —E, z (12¢ .h) — D, 5 (h) p + —=
(2k +1)? perp zegkw cp K (re -h) v ()

-k (! . cw)
= a@h TR | CTe) D T D m | £

xEBkw weBkTIJ
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The quantity inside the expectation is now a local function w.r.t. I, we can now
let | — oo and as af(l — @, replace My %, by pa by the equivalence of ensembles
stated in Proposition C.1.1. Letting then k¥ — oo, we finally obtain

(8.59) limsup ﬁEl,ﬁz (=)~ ! Z TP . Z oY

l—oo wEBzw wGBlw

< limsup

1 -1
P WE@ (_%k) Z Tz . Z Tz

zEBkw zeBktﬁ’

By the variational formula for the variance, to prove the lemma it is enough to
show

(8.60) hlrcrisotip Okt 12 hseuj% 2E5 hmEZB;% Tz ar(h) ¢ < <LY>q,
where we shortened g x(h) = Ez(h(—Zg)h). According to Lemma 8.3.2, there
exists a constant C(¢) such that the first term 2Ejz (ZzeBw Tz ¥ .h) is less than
C()(2k +1)% + Dar(h)/2. For any h such that s x(h) > 2C(¥)(2k + 1)2, the
right-hand side above is therefore negative, and since it vanishes for A = 0, we can
therefore safely assume that the supremum is taken w.r.t. functions h € T}’ satisfying

a.x(h) < 2C(¢)(2k + 1)2. Using the integration by parts formula of Lemma 8.3.1
yields

a(rap )= > Ez(la(re¥)Vah),
TEBy (x)

where I,(¢) = (1/2)V4(—Zs, ) '4. For any edge a, let us denote by BY(a) the set
of sites z € Z? such that a is in By(z), and E;f(a) = B¥(a) N By, . Note that for
any edge a € By, s, , these two sets coincide. The integration by parts formula then

yields
> Ea(hatr) = > Y. Ea(la(ra¥)Vah)
z€By,, a€ By, zeB”’(a)
=Y Y EalLu(m)Veh) = > Y Ea(lu(ra¥)Vah)
a€By z€BY(a) a€By zeBw\Ez)(a)
=Y Y Eall(my)Vah) - Y 2. Ealla(ms)Vah).
a€By, z€ B (a) aEBk\Bkd)_sw xeB#’\E}f(a)

For any positive v,

Ea(L(rs9)Vah) < %Ea(fa(me)Q) + LEg((Vah)?),

2
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since | By \ Bk, —s, | < C(¢)k, and thanks to the bound on g (h), letting v = 1/Vk,
it is then straightforward to obtain

> S Eallu(r$)Vaeh) < C@)kY2.

a€Bx\Bk,,—s, z€B¥\B} (a)

therefore its contribution to the left-hand side of (8.60) vanishes in the limit ¥ — oo.
Letting I,(%) = ZmeBw(a) o(T2t), the left-hand side of Equation (8.60) is therefore
less than

. 1
(8.61) hzrisip T hs€11711)u { Z Ea( ah) — a,k(h)}

a€By,
= lim 23" Ea(Ta(¥)Vahi) — Dax(hn) b,
[ { > - Dan k>}

for some sequence of functions hy € T}’ ultimately realizing the limit k¥ — oo of the
left-hand side.

Thanks to the translation invariance of pg, and since 7,1, (¢) = I, q(v), letting
y = a1 be the first site of the edge a = (a1, a3), we have

E&(Ta(d})vahk) = Ea (T(O,azfal)("!})V(O,tmfal)'r—al hk) .

As seen before, a simple change of variable yields that Ez (V,f.V.g9) = Ez (V_of-V_a9),
from which we deduce

2 ) Ea(Ta()Vahi) =4 > Ea | T0en(®) Vioe D, T—ohu

S T
a€ By 1=1,2 ©,5+e; € By,

Define

=

1
k E w
i = 7(2]6 n 1)2 V (0,e4) T_xhk eT™.

z
z,x+e;EBy

The elementary bound (31, a;)®> <n) ., a? yields

9 k(2k 2
> Eal(uf) )Sw >, Ea ((Vu,ﬁei)hk) )

= ™
=12 z,x+e;EBy

! Da i (he)-

[ —
=2k +1)?
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Thanks to this bound, Equation (8.61) yields

ﬁﬂia (_ik)_l Z Tz Z Tz

:rEBkw xEBkw

< Jim 343" Ea(Toen () ) = 3 Eal(@h)?) p,

i=1,2 i=1,2

and since we already assumed that for some constant C(), Dz x(hr) < C(¥)(2k + 1)2,
the sequence of differential forms (u*);cy is bounded in L?(ug). It is straightforward
to check that any of its limit point u = (11, u5) is the germ of a closed form in ¥“ in
the sense of Definition 8.2.2).

Indeed, given a limit point u and a finite path v defined by jumps z;, z; + z;,
0 <1< gy — 1, we can write for the closed form 1 associated with u

Ea(Lyer @ lya@|) = lim Ea(lyer, Ly q (@));

where u" is the (non-closed) differential form

1
—k _
uw,:z;+z - (2k+ 1)2 v(m,m+z) Z ’T_yhk;,

y
Y,y+2€Bk(x)

Since ~ is a finite path, it depends on edges in a finite box B,,, with n fixed. In partic-
ular, for any y € By_,, when computing I 3«(7), the contribution of 7_,hy vanishes
since it involves the complete path. We can therefore write for some constant C, and
any k > n,

= q
Ea(Lyer @l (M) < w > Eaz (IVo,e, T—yhk!)
Y, y+ei€EBy

y or y+e;¢Br_n

< Gz (CnrDas(m))

where C), ; < cnk is the cardinal of the y’s such that y and y+e; are in By and either
y or y + e; are not in Bjy_y,. Since Dz x(hir) < C(¥)(2k + 1)2, the right-hand side
above vanishes as k — oo for any path +. This proves that E5(1ycr @) |ly=(7)]) =0
for any path 7, and any limit point u of ()., and in particular Lier.mlya()]
vanishes ug-a.s. for any finite path ~.
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We can therefore write

1 1
Gkr1ra (=27 D) Y. Y Y

CEGBkw Z‘EBkw

< sup {4 Y Ea(T(o.e)(¥) ) — > Eg(ud) ¢,

i=1,2 i=1,2

where T is the set of germs of closed forms introduced in Definition 8.2.2.
According to Proposition 8.2.5, the estimate above becomes

1 1
MEa<(_zk)_ Z Tz Z Tz¢>

xeBkw IEBkw

< sup (4 > Ea(0,0,)(%)-G5° + VioenZg)) — D Eal((* + VEy)?)
nggw i=1,2 i=1,2

= sup { 2Ez | 9. {Eg + Z (y-a)ny + (yb)yny | | —<Zg+ >4
geT™ |_ yEeZ2? J

a,beR?

The last identity is derived as in the proof of Lemma 8.5.1. The right-hand-side
above is «->4 as defined in Definition 6.6.2, which concludes the proof of the upper

bound. O

In order to complete the proof of Theorem 6.6.4, we still need to prove that the
convergence is uniform in @, to prove (6.50). Let us denote

Vigo(Gg,) = ﬁ“‘:l,fa R AT

z€By, z€B,,
and let us extend smoothly the domain of definition of V; 4 , to ¢#;(S). The three
previous lemmas yield that W’w’ip(f(l(Zl—i—l)*z)) converges as | goes to 0o to K, >4
as soon as K; converges towards the profile &, hence in particular, V; 4 ,(@;) converges
as | goes to oo towards <), p>>5 as soon as a; goes to @. For that reason, <->5 is
continuous, and V} y (@) converges uniformly in @ towards <, ¢>>5 as | goes to co.
This, combined with the three Lemmas 8.5.1, 8.5.3 and 8.5.2, completes the proof of
Theorem 6.6.4.
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APPENDIX A

POSSIBLE APPLICATION:
COARSENING AND GLOBAL ORDER IN ACTIVE MATTER

We give some context on the modeling of collective dynamics and the rich phe-

nomenology of active matter.

A.1. Collective motion among biological organisms

Collective motion is a widespread phenomenon in nature, and has motivated in
the last decades a fruitful and interdisciplinary field of study [34]. Such behavior can
be observed among many animal species, across many scales of the living spectrum,
and in a broad range of environments. Animal swarming usually needs to balance
out the benefits of collective behavior (defense against predation, protection of the
young ones, increased vigilance) against the drawback of large groups (food hardships,
predator multiplication, etc.).

Despite the numerous forms of interaction between individuals, all of these self-
organization phenomenons present spontaneous emergence of density fluctuations and
long range correlations. This similarity suggests some universality of collective dynam-
ics models [26], [51]. Even though the biological reasons for collective behavior are
now well known, the underlying microscopic and macroscopic mechanisms are not
yet fully understood. To unveil these mechanisms, numerous aggregation models have
been put forward.

These models can be built on two distinct principles. The first approach specifies
the macroscopic partial differential equation which rules the evolution of the local
density of individuals. The main upside is that one can use the numerous tools de-
veloped for solving PDE’s. Several examples of such models are presented in Okubo
and Levin’s book, [33]. Since it represents an average behavior, this approach to col-
lective dynamics is, however, mainly fitted to describe systems with large number of
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individuals, and does not take into account the fluctuations to which smaller systems
are subject.

The second approach, called Individual-Based Models (IBM), specifies the motion
of each individual organism. If the motion of each individual was described realisti-
cally (from a biological standpoint), the theoretical study of these models with large
number of degrees of freedom would be extremely difficult. For this reason, it is usu-
ally preferred to simplify the rules for the motion of each individual, as well as its
interaction with the group. A classical simplification is to consider that the interaction
of each individual with the group is averaged out over a large number of its neighbors.
This so-called local field simplification often allows to obtain explicit results, at the
expense however of their biological accuracy (cf. below).

A.2. Microscopic active matter models

In order to represent the direction of the motion of each individual, as well as spatial
constraints (e.g., volume of each organism), collective dynamics are often modeled by
individual-based active matter models. Active matter is characterized by an energy
dissipation taking place at the level of each individual particle, which allows it to
self-propel, thus yielding an extra degree of freedom representing the direction of its
motion. One can therefore obtain a phase transition towards collective motion when
these directions align on lengths large with respect to the size of the particles. Active
matter models exhibit various behaviors, and in the context of collective motion, two
phenomena are particularly important:

— when each particle tends to align the direction of its motion to that of its neigh-
bors, one can observe a phase transition between order and disorder depending
on the strength of the alignment. This alignment phase transition was first ob-
served in an influential model for collective dynamics introduced by Vicsek et
al. [50];

— When the particle’s velocity decreases with the local density, congestion effects
appear: particles spend more time where their speed is lower, and therefore tend
to accumulate there. This phenomenon, called Motility-Induced Phase Separa-
tion (MIPS), was extensively studied in the recent years [9], [22], [11].

Vicsek model and phase transition in alignment models. — Interest for self-organization
phenomenons have grown significantly in statistical physics, where the diversity of
such behaviors opens numerous modeling perspectives, and raises new questions re-
garding out-of-equilibrium systems. Many stochastic models have been introduced
to represent specific biological behavior using statistical physics methods and have
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FI1GURE 1. Schematic representation of the phase transition in Vicsek’s
model. (A) low density and high noise intensity, (B) high density and low
noise intensity.

revealed a phase transition between high density collective motion, and disordered
behavior with short range correlations at low densities.

A pioneering model was proposed in 1995 by Vicsek et al. They introduce in [50]
a general IBM (cf. previous paragraph) to model collective dynamics. In the latter,
a large number of particles move in discrete time, and update the direction of their
motion to the average direction of the particles in a small neighborhood. The direc-
tion of their motion is also submitted to a small noise, which makes the dynamics
stochastic.

Despite its relative simplicity, the original model described in [50] is extremely
rich, and has given rise to a considerable literature (cf. the review by Viczek and
Zafeiris, [51]). The first article on this model unveiled a phase transition between a
high-noise, low-density disordered phase and a low-noise high-density ordered phase.
Initially thought to be critical, this transition was later shown to be discontinuous [12],
with an intermediate region in which an ordered band cruises in a disordered back-
ground. It was recently shown that this transition can be understood as a liquid-gas
phase separation in which the coexistence phase is organized in a smectic arrangement
of finite-width bands traveling collectively [42]. Numerous extensions and variations
on Vicsek’s model have been put forward, usually by considering a continuous time
dynamics, more pertinent to represent biological organisms.

Phase transitions are central to the study of collective dynamics, where coher-
ent behavior arise when the alignment becomes strong enough. This notion of phase
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transition for alignment dynamics is reminiscent of the Ising and XY models, two
classical statistical physics models. The Ising model is known to have a symmetry
breaking phase transition leading to the emergence of a spontaneous magnetization.
Unlike the Ising model, the XY model (for which the spins are two-dimensional unit
vectors parametrized by angles 6 € [0,2n[) does not present in two dimensions this
type of symmetry breaking phase transition, according to the Mermin-Wagner The-
orem. This is one of the reasons for the popularity of the Vicsek model [50], whose
alignment dynamics is reminiscent of the XY model, but unlike the latter presents a
phase transition of the magnetization due to the particle motility [47]. Both the Ising
and XY models are now well understood. These are equilibrium models and they
fall within the formalism of Gibbs measures, which relates to the thermodynamical
parameters of the system.

Active matter models like Vicsek’s are out of equilibrium, and in the case of Vicsek’s
model, the phase transition is a dynamical phenomenon. The concepts developed for
equilibrium models, namely Gibbs measures and free energy, can therefore no longer
be used, and despite ample numerical evidence of spontaneous magnetization, (cf.
[41]) mathematically proving a phase transition becomes significantly harder.

Despite these issues, several exact results have been obtained for systems closely
related to Vicsek’s model. In 2007, Degond and Motsch notably introduced a con-
tinuous time version of Vicsek’s model, and derived the macroscopic scaling limit of
the system [19], as well as its microscopic corrections [20]. Their model, which was
directly inspired by that of Vicsek et al., is a locally mean-field model, where particles
interact with all other particles present in a small macroscopic neighborhood. This ap-
proximation simplifies a number of difficulties of out-of-equilibrium systems. In their
initial article [19], Degond and Motsch assume that a law of large number holds for
the microscopic system. This was later rigorously proved in [5]. The phase transition
as a function of the noise level, between disordered system and global alignment, was
shown in [17] for this model. Similar results have since been extended to more gen-
eral forms of alignment, (e.g., [4], [7], [18]) and to density dependent parameters [23].
The evolution of the macroscopic density was also obtained in the particular case
where the interaction between individuals is driven by a Morse potential, [8], where
previously the shape of animal aggregates (e.g., fish schools mills) was only known
empirically.

The Active Ising Model (AIM) is another alignment model, phenomenologically
close to Vicsek’s model [41], put forward to better understand collective dynamics.
It is less demanding from a computational standpoint, and is extensively studied
both numerically and theoretically by Solon and Tailleur in [43]. This model does
not rely on the mean-field approximation of the Vicsek’s model. The particles (with
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either “+” or “-” spins) move independently in a discrete space domain, performing
an asymmetric random walk with drift directed according to the particle’s spin. In
addition to the displacement dynamics, the particles align their spins with the other
particles on the same site as in a fully connected Ising model.

It was numerically shown in [43] that the AIM presents, as does Vicsek’s, a phase
transition depending both on the temperature and the particle density. At low tem-
perature and density, one observes a magnetically neutral gas, whereas at strong
temperature and densities, one obtains a strongly polarized liquid. In an intermedi-
ary domain, these two phases coexist. The AIM being an out-of-equilibrium model
as well, its mathematical study is difficult, mainly because of the lack of mean-field
approximation present in Vicsek’s model. To our knowledge, there exists to this day
no mathematical proof of the phase transition of the AIM. The model considered in
this paper is closely related to both the Vicsek and the active Ising models.

Motility-Induced Phase Transition (MIPS). — As previously emphasized, a second in-
teresting phenomenon can occur in active matter: when the motility of the particles
decreases as the local particle density increases, one can observe a phase separation
between a low density gaseous phase, and condensed clusters. This separation is a
direct consequence of particles slowing down in dense areas: since they spend more
time there, they tend to accumulate. This creates the congestion phenomenon called
Motility Induced Phase Transition, or MIPS, which was thoroughly studied in recent
years (cf. the review by Cates and Tailleur, [11]).

This congestion phenomenon can be observed across several types of dynamics,
under the condition that the particle’s velocities and diffusion constants depend on
the local density. One of the most studied is the run-and-tumble dynamics [2], which
models the behavior of bacteria: each individual goes in a straight line for a while,
and then reorients in another random direction. However, MIPS is not specific to run
and tumble dynamics: it is shown numerically in [10], [40] that MIPS also occurs for
active Brownian particles, for which each particles motion’s direction diffuses, instead
of updating at discrete times like in the run-and-tumble dynamics. MIPS can also be
observed in lattice models [46], or in models with repulsive forces [22], for which the
kinetic slowdown is a consequence of repulsive forces.

As already pointed out, one can expect that the active exclusion process investi-
gated in this article may exhibit both MIPS and alignment phase transition. However,
mathematically proving this statement is a difficult task, and this claim is left as a
conjecture at this point.
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APPENDIX B

GENERAL TOOLS

This appendix regroups a general definitions and results that have been used
throughout the proof.

B.1. Topological setup

This paragraph defines the topological setup we endow the trajectories space for
our process with. Denoting by ¢#(T? x S) the space of non-negative measures on the
continuous configuration space, and

MO = D ([0,T], M(T? x 5)),

the space of right-continuous and left-limited trajectories of measures on T2 x S. Each

[0,T]

trajectory Ni%T of our process admits a natural image in oM through its empirical

measure
R 1
(B.1) m <n[°’T]) =53 2 Me(®)a/no, (o)
IGT%

Let (fi)ren be a dense family of functions in C°°(T? x S), and assume that fo = 1.
The weak topology on o#(T? x S) is metrizable, by letting

=1 | <mo, fa> — <7, fri> |
B.2 3(mo,m0) = D 5% : 7 '
( ) ( 0 0) kZ:OQk1+|<7rO,fk>—<7T()7fk>|

Given this metric, eﬂfl[O’T] is endowed with Skorohod’s metric, defined as

(B.3) d(r, ') = inf max {nmn ,sup am,w;t)} ,
e [0,T]

0,
where F is the set of strictly increasing continuous functions from [0, 7] into itself,
such that kg = 0 and kK = T, equipped with the norm

Ks — K¢
||k]| = sup {log [ ]}
5,t€[0,T] s—t
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Now, (W[U’T},d) is a metric space, and we endow the set ( JM[O’T]) of probability

[0,T]

measures on oM with the weak topology.

Given the empirical measure 7/ of the process at time ¢, defined in Equation (B.1),
define the application

WN:EB&T]_)W{QT]

AOT] sy <ﬂ-§v (ﬁ[O’T]))te[OyT] ,

we define
-1
(B.4) QN = IP’I);}\? o (M) e P( W[O’T]),

the pushforward of IP’I);]\? by 7.

B.2. Self-diffusion coefficient

We regroup in this paragraph some useful results regarding the self-diffusion coeffi-
cient. Consider on Z2, an initial configuration where each site is initially occupied w.p.
p € [0,1], and with a tagged particle at the origin. Each particle then follows a symmet-
ric exclusion process with finite range transition matrix p(.), verifying >, zp(z) = 0,
and p(z) = 0 outside of a finite set of vertices B.

DEFINITION B.2.1 (Self-Diffusion Coefficient). — Given X; = (X},...,X?) the
position at time ¢ of the tagged particle, the d-dimensional self-diffusion matriz
D, = Dg(p) is defined as

. 2
(B.5) 2! Dy = lim w Vy e RY,

t—o0

where z' is the transposed vector of z and ( . ) is the usual inner product in R

This result follows from [29]. The following lemma gives a variational formula for D,
and was obtained in Spohn [44].

PROPOSITION B.2.2 (Variational formula for the self-diffusion coefficient). — The self-
diffusion matriz Dy = Ds(p) is characterized by the variational formula

2! Dyz = inf { > [Ea ((1 —1e;) [@i + 7, f (™) — f]z) + Y Ea ([Vo,eiTyf]z)-l }
fes i=1,2 |_ y#£0,e; J

Our system being invariant through coordinates inversions, it is shown in [14] that
the matrix D, is diagonal, and can therefore be written

Ds(p) = ds(p)I'
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Finally, the regularity of the self-diffusion coefficient follows from [32], and a lower
and upper bound was derived by Varadhan in all dimensions by Varadhan in [49].

PrOPOSITION B.2.3 (Regularity of the self-diffusion coefficient). — In any dimen-
sion d > 1, the self-diffusion coefficient ds is C*([0, 1]), and for some constant C' > 0,
we can write

1

c=p) <ds(p) <CU—p).

Finally, we prove a result that we postponed in during the proof of Proposi-
tion 6.6.7.

PROPOSITION B.2.4 (Conductivity matrix). — Fiz @ € oM(S), let j* = (5%,5%),
where as before
¥ = [w(bo) = Ea(@)lno(1 = 7e,) — w(Be,) — Ea(w)]7e, (1 = mo).-
Recall that we defined the conductivity matriz @ = Q¥ as
¢'Qz = inf <z %+ Zg>z,
geT
then, we have the identity

(B.6) Q = aVz(w)Ds(a) = aVz(w)ds(a)l.

Proof of Proposition B.J. — The proof is analogous to that of Theorem 3.2 in [35]. We
first consider the trivial case a = 0, 1. Since ds(1) = 0, if « = 0,1, Proposition B.2.4
is trivially true, because both sides of the identity vanish. Furthermore, assuming
that Vz(w) = 0, we then have 5% = 0, therefore both sides vanish as well. We now
assume that o € ]0,1[ and Vz(w) > 0. By Definition 6.6.1,

-| 2
<z-j°+dg>s = Ea | Y, [wmg’ (1=7e) + Vo, D 79
i=1,2 yez? J

Since g € T“, it can be rewritten g = ¢(n) + >_, ngwy(n) for some angle-blind
functions ¢,1¢, € &. As we saw in the proof of the spectral gap, any angle-blind
function is orthogonal to any function nf ¥(n), therefore

~ ~ N 2 2
Lz jw + zg>>a = Z ]Ea < [iﬂmow(l - nei) + VO,e,i Z Ty [77;%]} > + Ea({vo,ei Z SD:I >
i=1,2 y,y' €L2 yerz?

To minimize the left-hand side, we can choose ¢ = 0, so that g must take the form
9=7>, ngwy. Since g is a local function, ¢’ = > 7_,1y is well defined, and satisfies
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Z%y,EZQ Ty [ny‘gz/)y] = Zyezg nnyw’, therefore

2
<z-j+2g>s =Y Es {:vmg(l ~7e.) + Vo, Y nnyw’}

i=1,2 yEZ2

Elementary computations yield

VO e’ /l’[) Oa( 7761)1/1 9
VO’eﬂ?eiTeﬂp g( )Teﬂ/) (nO)ei) ,

and for any y # 0, ¢;, an()’eiTy’([)/, therefore

Lz Ja + %g>>a Z Ea I:’]O 1 — Ne; ) [mz + Teﬂp, (nO,ei) - d)/} + Z ngvo,ei7y¢,J
1=1,2 y7#0,e;

For any angle-blind function ¢ € &, we have already established in Section 8.1 that

Eg (mymy b (1) = Ly=y/}va (@)EBa (ny v (n)-

The previous quantity now rewrites

<z % + Lg>a
=Valw) Y {Ea (m0(1 =) s + e’ (%) = 9)*) + > Ba (my [vo,eirylzz'f)} .
i=1,2 y#0,e;

Denote by f = E5(¢'|no = 1)= a 'Ez(not’), where the expectation is taken only
w.r.t. 9 (f is therefore a function of the configuration (1;)zx0), we have

Ea(Teﬂ/)/ (7707ei) |770 = 1) = Tmf (770)%) and Ea(VO,eiTy¢/|ny = 1) = VO,eiTyfa

so that

<z j°+ Lg>a
— aVa(w) Y {Ea ((1 —e,) [wi + 7o, f (%) — f]Q) + > Ea ([vo,e;y f]2>} .
i=1,2 y#0,e;

Taking the infimum over g € T%, f spans & which yields as wanted, according to
Proposition B.2.2

2'Qr = <z j° + Lg>5 = aVi(w)z' Dy,

thus concluding the proof. O
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B.3. Entropy
Given two measures on a space E, let us denote
du du
H =E, | —log—
(1) =B, (105 22

the relative entropy of u w.r.t. v.

ProprosiTION B.3.1 (Entropy inequality). — Let m be a reference measure on some
probability space E. Let f be a function E — R, and v € R*. Then, for any non-

negative measure p on E, we have

/fdu < % [log </ e”fdw> + H(,u|7r)] ;

where H(u|m) is the relative entropy of p with respect to .

Proof of Proposition B.8.1. — The proof is omitted, it can be found in Appendix 1.8
of [28]. O

REMARK B.3.2 (Utilization throughout the proof). — This inequality is used through-
out this proof with u¥ the marginal at time s of the measure of the process started
from an initial profile 4V, and with © = ugs the equilibrium measure of a symmetric
simple exclusion process with grand-canonical parameter @. Then, for any fixed time
s and for any function f and any positive v,

E,x (f) < % log Ba (¢77) + H(u |1z)]

This inequality will be our main tool to bound expectation w.r.t. the measure of our
process of vanishing quantities .

B.4. Bound on the largest eigenvalue of a perturbed Markov generator

ProroSITION B.4.1 (Largest eigenvalue for a small perturbation of a Markov gen-
erator). — Let us consider a Markov Generator L with positive spectral gap v and a
bounded function V' with mean 0 with respect to the equilibrium measure pg of the
Markov process. Then, for any small € > 0, the Largest eigenvalue of the operator
L + €V can be bounded from above by

sup {eBa(V f?) + Ea(fLf)} <

82

S

where the supremum in the variational formula is taken among the probability densi-

(V(—L)_1V) )

ties f w.r.t. pg.

The proof of this result is omitted, it is given in Theorem A3.1.1, p.375 in [28].
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APPENDIX C

SPACE OF GRAND-CANONICAL PARAMETERS

In this appendix, we prove some useful results regarding the space of parameters
(M1(S), ||| - |l]) introduced in Section 3.1.

C.1. Equivalence of ensembles

ProposITION C.1.1 (Equivalence of ensembles). — Let f be a cylinder function (in
the sense of Definition 2.1.1), we have

limsup sup |E, z(f) —Ea.(f)| =0,
l—o0 I?EK;
where the first measure is the projection along sets with K particles in Bj, whereas
the second is the grand-canonical measure with parameter @ = Qg introduced in Def-
inition 3.1.7.

Proof of Proposition C.1.1. — The proof of this result is quite elementary, and is a
matter of carefully writing expectations for a random sampling with (grand-canonical
measures) and without (canonical measures) replacement.

The proof of this problem can be reduced to the following: Consider two samplings
of M occupation variables, chosen among L fixed possible values

A0 e ot = {(5,0) € {0,1} x S, 6 =0 if § = 0}~.

The first sampling is made without replacement to represent the canonical measure
K, %> and the sampled items will be denoted X1, ..., Xy, where each X; is of the form
(6: ). The second sampling is made with replacement to represent the grand-canonical
measure U5, and will be denoted Y1,..., Y. let us denote by &L the set

b ={a',.... ),
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and denote by .. the expectation w.r.t. the two samplings (X;) and (Y;) given £r,
Further denote by I pr = {1,..., L} i = (i1,...,ip) the elements of I, s, and
Dy, y and Cp s its two subsets

Dpa ={(i1,... i) €Elp g | i1 # - #im}, and Cpy=Ipm\ Dy
Then, for any function
9:3Y =R,
we have

|E§L (g(Xla cee 7XM)) - EEL (g(Y17 .. vYM))|

<llolle D0 [Ber (X0, Xa) = @, 7))

ieln, m
B (Vi Yan) = @)

=gl 32 [Per (X0, Xa) = @, )]

i€eDr M
~ B (Vi Yan) = @ )]

+lglle D PgL{(Yi,...,YM):(Wl,_._’ﬁM)].
ieCr,m
The sum on the last line is the probability that at least two indexes among the M we

chosen uniformly in {1,..., L} are equal. This probability is

Z IP’SL[(Yl,,_.,YM):(nw'l’._.ynq‘M)} :1_L(L_1)..L.](WL_M+1)7

iECL,M

which for M fixed vanishes uniformly in ¢ as L — co. We now take a look at the
other term, for which we write

>

Per [(X1,, Xar) = (7, 7)| = Per [ (Vi Yar) = (771,...,77”'1\4)]‘

i€eDr M
_y 1 1
- —1)---(L = T M
WS LT =D (L-M+1) L
L, LL-1- (LM

LM ’
which also vanishes uniformly in ¢¥ as L — oo. We can therefore write for any
bounded function g depending on M sites

sup | Eez (9(X1,., X)) = Ber (9(Yi,.., Yan)) | < llglloc C(Mor (1),
glext

thus proving Proposition C.1.1. U
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C.2. Regularity of the grand-canonical measures in their parameter

PrOPOSITION C.2.1. — Consider the set of local profiles M, (S) equipped with the

norm ||| . ||| defined in Definition 3.1.2. Then, given a function g € C, the application
gz (M (S), - 1Il) = R
a— Ea(g)

is Lipschitz-continuous with Lipschitz constant depending on the function g.

Proof of Proposition C.2.1. — Let us consider a cylinder function g depending only

on vertices x1,...,Zns, and let us start by assuming that g vanishes as soon as one of
the sites z1, ..., zps is empty. We can then rewrite g(7) as 9z, - N2, 9(O0zys -+ s 0z0r)s
and

Es(g) = ]g -'-Jé G(Oarr- 1 O0ry) dG(0y,) - (6.

We can now proceed by recurrence on M. Given a function g depending only on a

site 1, and for any two grand-canonical parameters & and &' we can write

* g 91?1 ~ -~ * ~ ~
Edm—mamr4M|A |Mgdm—aw%nsum|Ma—wm.

Assuming now that the proposition is true for any function depending on M — 1 sites,
and considering a function g depending on M vertices, we can write

(C.1) Ea(g) —Ea(9) = Ea (Ea(g | Mess- - Menr) — Ear (Bar (9| Doy -+ -5 Tns)) -

Fix any angle 6, and let g° be the function ¢?(7) = 9(0,0z,,. . 6,,, ), We can write
thanks to the recurrence hypothesis that

|Ea(9”) —Ear(9°) | < Colll @ —a’ |,
which, integrated in 0 against &', yields
|Ear (Ear(9 | M- -+ Mo ) — Ear (Ba(g [ Dss -, a,)) | < Chlll @ — &[]
On the other hand, we can also write
|Ea (Ea(g | Mess - - Tanr)) — Ear (Ba(g [ Maas - - aag)) | < Cofll @ =" ],
therefore (C.1) yields that
|Ea(9) —Ear(9)| < (CT +C?)l[la—a |l

which is what we wanted to show.

To complete the proof of Proposition C.2.1, we now only need to extend the result
to functions g which do not necessarily vanish when one site in their domain is empty.
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This case is easily derived, since any function g depending on vertices z1,...,, 23 can
be rewritten

(C2) 9 ars - >en) = D, 98(0a,,i € B),

Bc{1,....M}
where gp(0,,,i¢ € B) is defined in the following fashion: recall that 7, = (7,,0.), with
6, = 0 if n, = 0, and let us assume that B is the set of increasing indexes i1, ..., p,
then gp is defined as

gB(exil e exip)
= T]mil M nztpg((o’ 0)7 M} (07 0)’ (1? Gzil )7 (0’ 0)’ M (07 0)7 (17 arip)7 (0’ 0)’ M (07 0))'
These functions all vanish whenever one of their depending sites is empty, therefore
according to the beginning of the proof, there exists a family of constants Cp such
that for any B C {1,..., M} we have
|Ea(9p) —Ear(9p) | < Csll|a—a |-

We now only need to let C' = EBc{l _..uy OB to obtain thanks to the decomposition
(C.2) that
|Ea(g) —Ea(g9)| < Cllla—a"|l,

as intended. This completes the proof of Proposition C.2.1. O

C.3. Compactness of the set of grand-canonical parameters

ProposITION C.3.1 (Compactness of (M(S),|]|.1II))- — The metric space
(M1(S), ]Il - |l) introduced in Definition 3.1.2 is totally bounded and Cauchy
complete, and is therefore compact.

Proof of Proposition C.8.1. — The proof of the Cauchy-completeness is almost imme-
diate, we treat it first. Consider a Cauchy sequence (Qx)ren € oM4(S)Y, then by
definition of ||| . |||, for any g € B*, the sequence ([ g(0)ax(df))x is a real Cauchy
sequence and therefore converges, and we can let

[ o) = i [ a(0)3(a0).

This definition can be extended to any C*(S) function g by letting

. . 9(6)
9(0)a" (d9) = max(llg . ') Jim_ [
/s > > k=0 Jg max(|lgllo 5 119"l )
This defines a measure @* on S, whose total mass is given by

/ a*(do) = lim [ ax(do) € [0, 1],
T2 2

k—oo Jr

ax(d9).

which proves the Cauchy completeness of (M4 (S), ||| - |l])-
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We now prove that (M(S),]|| . |||) is totally bounded. For any integer n, we are
going to construct a finite set My, C M1(S) such that

. ., 1
sup inf ||a-a' ||| < —.
&€ oM, (S) &' EMi,p n

For any n € N and any j € [0,n — 1], we shorten 6, ,, = 27j/n, and 0, ,, = 6y, = 0.
We can now define

n—1

k.
Wl,n = Z TTJQ(SG]',TL k; € [[Oan]]v Z kj < n?
J

Jj=0

The inclusion oM, C ¢M,(S) is trivial thanks to the condition _, k; < n?, and

oMy, is finite since the k;’s can each take only a finite number of values. we now

prove that any @ € ¢M;(S) is at distance at most 1/n of an element &, € M ,.
Fix @ € oM,(S), and let

= |n*&([0j.n, 0410
Since @ € oM,(S), its total mass is in [0,1], and the conditions k; € [0,n%] and
> j kj < n? are trivially verified. We now let

and prove that ||| @ — a, ||| < 2/n.
Fix a function g € C*(S) such that max(||g|| ,||¢'||.) < 1, we can write

[ 90)G =) (a) - Z / 9(0)a(d0) ~ "3.9(0;.,)

05,n0i+1,n[

= Z 0jn, J+1,n[)g(9j,n) - niég(ej,n)

+ i /6 (9(0) — g(8;,n))a(d)

j—O [ 'n9‘+1 n[

k.

<Z||g|| Ojns05+1,n[) — TTJQ
<1/n?

+Z||g|| Oys10~Orvn] |, )
—_— J"J+1TL[
<1/n
/
ol + Ny,
n
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Finally, we have proved that
Ila—an [l <2/n,

which proves that ¢#;(S) is totally bounded. This, together with the Cauchy com-
pleteness, immediately yields the compactness, and concludes the proof of Proposi-
tion C.3.1. O
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Collective dynamics can be observed among many animal species, and have given rise
in the last decades to an active and interdisciplinary field of study. Such behaviors
are often modeled by active matter, in which each individual is self-driven and tends
to update its velocity depending on the one of its neighbors.

In a classical model introduced by Vicsek et al., as well as in numerous
related active matter models, a phase transition between chaotic behavior at high
temperature and global order at low temperature can be observed. Even though
ample evidence of these phase transitions has been obtained for collective dynamics,
from a mathematical standpoint, such active systems are not fully understood yet.
Significant progress has been achieved in the recent years under an assumption of
mean-field interactions, however to this day, few rigorous results have been obtained
for models involving purely local interactions.

In this paper, as a first step towards the mathematical understanding of active
microscopic dynamics, we describe a lattice active particle system, in which particles
interact locally to align their velocities. We obtain rigorously, using the formalism
developed for hydrodynamic limits of lattice gases, the scaling limit of this out-of-
equilibrium system. This article builds on the multi-type exclusion model introduced
by Quastel [35] by detailing his proof and incorporating several generalizations, adding
significant technical and phenomenological difficulties.

L’étude des dynamiques collectives, observables chez de nombreuses espéces animales,
a motivé dans les derniéres décemnies un champ de recherche actif et transdiscipli-
naire. De tels comportements sont souvent modélisés par de la matiére active, c’est-
a-dire par des modeéles dans lesquels chaque individu est caractérisé par une vitesse
propre qui tend & s’ajuster selon celle de ses voisins.

De nombreux modéles de matiére active sont liés & un modeéle fondateur
proposé en 1995 par Vicsek et al.. Ce dernier, ainsi que de nombreuzr modéles
proches, présentent une transition de phase entre un comportement chaotique a
haute température, et un comportement global et cohérent & faible température. De
nombreuses preuves numeériques de telles transitions de phase ont été obtenues dans
le cadre des dynamiques collectives. D’un point de vue mathématique, toutefois, ces
systémes actifs sont encore mal compris. Plusieurs résultats ont été obtenus récemment
sous une approximation de champ moyen, mais il n’y a encore & ce jour que peu
d’études mathématiques de modéles actifs faisant intervenir des interactions purement
MicToscopiques.

Dans cet article, nous décrivons un systéme de particules actives sur réseau inter-
agissant localement pour aligner leurs vitesses. Comme premiére étape afin d’atteindre
une meilleure compréhension des modéles microscopiques de matiére active, nous ob-
tenons rigoureusement, & l’aide du formalisme des limites hydrodynamiques pour les
gaz sur réseau, la limite macroscopique de ce systéme hors-équilibre. Nous dévelop-
pons le travail réalisé par Quastel [35], en apportant une prewve plus détaillée et en
incorporant plusieurs généralisations posant de nombreuses difficultés techniques et
phénoménologiques.
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