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ON THE EVOLUTION BY DUALITY
OF DOMAINS ON MANIFOLDS

Koléhè Coulibaly-Pasquier, Laurent Miclo

Abstract. – On a manifold, consider an elliptic diffusion X admitting an invariant
measure µ. The goal of this paper is to introduce and investigate the first properties of
stochastic domain evolutions (Dt)t∈[0,τ] which are intertwining dual processes for X
(where τ is an appropriate positive stopping time before the potential emergence
of singularities). They provide an extension of Pitman’s theorem, as it turns out
that (µ(Dt))t∈[0,τ] is a Bessel-3 process, up to a natural time-change. When X is a
Brownian motion on a Riemannian manifold, the dual domain-valued process is a
stochastic modification of the mean curvature flow to which is added an isoperimetric
ratio drift to prevent it from collapsing into singletons.

Résumé (Sur l’évolution par dualité de domaines dans des variétés)
Sur une variété, considérons une diffusion elliptique X de mesure invariante µ. Le

but de ce papier est d’introduire et d’étudier les premières propriétés d’évolutions
stochastiques de domaines (Dt)t∈[0,τ] qui sont des processus duaux par entrelacement
de X (où τ est un temps d’arrêt strictement positif précédant l’apparition éventuelle
de singularités). Il s’agit d’une extension du théorème de Pitman, puisqu’il ressort que
(µ(Dt))t∈[0,τ] est un processus de Bessel-3, à un changement naturel de temps près.
Quand X est un mouvement brownien sur une variété compacte, ce processus dual
à valeurs domaines est une modification stochastique du flot par courbure moyenne
auquel est ajouté une dérive fournie par un quotient isopérimétrique qui l’empêche
de s’effondrer en des singletons.

© Mémoires de la Société Mathématique de France 171, SMF 2021





CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Homogeneous situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1. Euclidean spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2. Spherical spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Hyperbolic spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. Smooth initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4. Existence of a stochastic modified mean curvature flow . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1. Local existence of a pushed mean curvature flow . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2. Local existence of (51) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5. Back to the homogeneous situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1. About the Euclidean and constant curvature spaces . . . . . . . . . . . . . . . . . . . . . 65
5.2. Comparison of two Doss-Sussman approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6. About the martingale problems associated to L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1. Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2. The stochastic differential equation associated with the martingale

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3. Enrichment of the elementary observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4. Asymptotic behavior for large times on the plane . . . . . . . . . . . . . . . . . . . . . . . 92

7. Elliptic density theorem revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Appendix. About product situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021





CHAPTER 1

INTRODUCTION

In the finite state space framework, Diaconis and Fill [5] have shown that ergodic
Markov chains can be intertwined with Markov chains living on the set of non-empty
subsets of the state space and ending up being absorbed at the full state space. This
result enabled them to construct strong stationary times for ergodic Markov chains,
leading to quantitative bounds on their convergence to equilibrium, in the separation
discrepancy and in the total variation distance. In [19], this point of view was extended
to real ergodic diffusion processes, but the one-dimensionality seemed crucial in the
method. As noted in this previous paper, it is quite unfortunate, since otherwise it
could lead to a new probabilistic approach to the hypoellipticity theorem of Hörman-
der [11]. Here we make an important step further in this program, by showing that
elliptic diffusions on differential manifolds admitting an invariant measure can indeed
be intertwined with domain-valued Markov processes. Although the hypoellipticity
is not yet entering in the game (but see [18] for a first illustration in dimension 1),
the introduced domain-valued processes are already very intriguing and promising in
themselves. When dealing with the Brownian motion on a Riemannian manifold, they
are natural stochastic modifications of the mean curvature flow. In the more general
case, when a gradient drift is added to the Brownian motion, one has to consider some
weighted extensions.

Let L be an elliptic diffusion generator on a differentiable manifold V . Here we will
not be interested in regularity problems, so V and the coefficients of L are supposed
to be smooth. Assume there exists a σ-finite measure µ on V which is invariant for L
in the sense that

∀ f ∈ C∞c (V ), µ[L[f ]] = 0,

where C∞c (V ) stands for the space of smooth functions on V with compact support.
By ellipticity, the measure µ admits a positive density with respect to the Riemannian
measure. Note that in general µ is not unique, even up to a positive factor, e.g., for the
generator ∂2+∂ on R, all the measures with a density of the form R 3 x 7→ a+b exp(x),
with a, b ≥ 0, are invariant. But there is at most one finite invariant measure and in
this case it is usual to normalize µ into a probability measure.
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2 CHAPTER 1. INTRODUCTION

Let D be the set of non-empty, compact and connected domains D in V , which
coincide with the closure of their interior and whose boundary C B ∂D is smooth.
Denote also D B Dt{{x} : x ∈ V }, obtained by adjunction of all the singletons to D,
and D the set of all measurable subsets D of V which either satisfy µ(V ) ∈ (0,+∞)

or are singletons (so that D ⊂ D ⊂ D). Consider the Markov kernel Λ from D to V
given by

∀D ∈ D, ∀A ∈ B(V ), Λ(D,A) B

{
µ(A∩D)
µ(D) , if µ(D) > 0,

δx(A) if D = {x}, with x ∈ V,
(1)

where B(V ) is the set of measurable subsets of V and δx the Dirac mass at x. As usual,
such an integral kernel can be seen as an operator transforming bounded (respectively
positive) measurable functions on V into finite-valued (resp. (0,+∞]-valued) functions
on D.

The main goal of this paper is to find a Markov generator L with state space D
satisfying, in an appropriate sense, the intertwining relation

LΛ = ΛL(2)

and for which the singletons are entrance boundaries.

Remark 1. – This was done in [19] when V = R and when −∞ and +∞ were
entrance boundaries for L. The latter assumption was needed to insure that the
resulting Markov processes on the set of the closed segments (which were not assumed
to be compact in [19]) end up being absorbed at the whole state space R, because we
were primarily interested in constructing strong stationary times. This is no longer
our objective here (even if we should come back to this question in a future work),
that is why no assumption is made on the behavior of L at infinity.

Note also that in general there is not a unique Markov generator satisfying the
above requirements, since in [19] we constructed a whole family of such operators
when V = R. Nevertheless, among them, one was the fastest to be absorbed at R, it
is a generalization of this Markov generator that will be considered below.

As a consequence of the previous remark, from now on, we assume that the dimen-
sion of V is larger or equal to 2. To describe our candidate L, we need to introduce
some notations.

By using the inverse of the matrix diffusion of L to induce a Riemannian structure
on V (see e.g., the book [13] of Ikeda and Watanabe for the details), L can be decom-
posed as L = 4+ b, where 4 is the Laplacian operator associated to the Riemannian
structure and b is a vector field (seen as a first order differential operator). We assume
that V is complete, endowed with the Riemannian distance d. Let λ be the Rieman-
nian measure on V . It is well-known that µ is absolutely continuous with respect
to λ and that its density is smooth. Let us write U B ln(dµ/dλ) ∈ C∞(V ) (a priori
defined up to an additive constant, except when µ is normalized into a probability
measure). The vector field b can written as ∇U + β, with the vector field β satisfying
div(exp(U)β) = 0; it corresponds to the µ-weighted Hodge decomposition of b. In the
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CHAPTER 1. INTRODUCTION 3

previous sentence, ∇ and div(·) are the gradient and divergence operators associated
to the Riemannian structure. Other Riemannian notions that will be useful for our
purpose are the scalar product 〈·, ·〉, as well as the exterior normal vector νC , the
“mean” curvature ρC and the (dim(V )− 1)-Hausdorff measure σC , all the last three
objects being defined on the boundary C of an element D ∈ D. The mean curvature
is signed with respect to our choice of the orientation of νC and it is not really a
mean, since it is the trace (without renormalization) of the second fundamental form.
A priori the orientation of νC and the sign of ρC require to know on which side of C is
the interior of D (except when V is not compact, then the mapping D 3 D 7→ C is
one-to-one, otherwise it is two-to-one), but ρCνC depends only on C.

Let us first describe heuristically the type of stochastic evolution (Dt)t∈[0,τ) in D
we want to consider. The positive stopping time τ is earlier than the exit time from D,
typically due to the apparition of singularities on the boundary Ct B ∂Dt. We want,
as long as t ∈ [0, τ), the infinitesimal evolution of any Yt ∈ Ct to be given by

dYt =

(√
2dBt +

(
2
σCt(exp(U))

µ(Dt)
+ 〈β −∇U, νCt〉 (Yt)− ρCt(Yt)

)
dt

)
νCt(Yt),(3)

where B B (Bt)t≥0 is a standard real Brownian motion. The evolution (3) can be
seen as a deterministic and stochastic modification of the mean curvature flow, which
corresponds to

dyt = −ρCt(yt)νCt(yt) dt

for the points yt on the evolving boundary.

The global term σCt(exp(U))/µ(Dt) (it does not depend on the position of Yt
on Ct) in (3) can be seen as an isoperimetric ratio with respect to µ. Indeed, it can
be rewritten as µ(Ct)/µ(Dt), where µ is the (dim(V )−1)-dimensional measure on Ct
admitting exp(U) as density with respect to σCt . So this term explodes as Dt becomes
closer and closer to a point. In some sense, it will compensate the trend of the mean
curvature flow on compact boundaries to make them smaller and smaller (and rounder
and rounder). Though too qualitative to be convincing, this observation is a first hint
of why the singletons will be entrance boundaries for the Markov processes determined
by (3).

The term 〈β, νCt〉 (Yt)νCt(Yt) in (3) could be replaced by β(Yt), since the tangential
components in the description of the evolution of the points on the boundary can be
removed, up to a diffeomorphism of Ct (see e.g., Section 1.3 of Mantegazza [17]). Only
the radial component (i.e., the projection on the normal vectors νCt) is important,
thus an equation such as (3) will be said to be radial.

In fact, the radial stochastic differential Equation (3) of the points on the boundary
is not the most convenient way to work with the process (Dt)t∈[0,τ). In Markov theory,
the martingale problem approach is usually more helpful (for a general introduction
and an extensive development of this notion, cf. for instance the book of Ethier and
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4 CHAPTER 1. INTRODUCTION

Kurtz [7]). It needs convenient observables on the state space. On D, the role of
elementary observables is played by the mappings

Ff : D 3 D 7→ Ff (D) B

∫
D

f dµ(4)

associated to the functions f ∈ C∞(V ), the space of smooth mappings on V .
To proceed in the direction of the definition of the generator L on an appropriate

algebra D of functionals defined on D, we begin by defining the action of L on the
above elementary observables: for any f ∈ C∞(V ),

∀D ∈ D, L[Ff ](D) B

∫
D

L[f ] dµ+ 2
µ(C)

µ(D)

∫
C

f dµ.(5)

Using Stokes formula, we will check in Section 3 that the above r.h.s. can be written
as an integral over C only:

∀D ∈ D, L[Ff ](D) =

∫
C

〈∇f, νC〉+

(
2
µ(C)

µ(D)
+ 〈β, νC〉

)
f dµ.(6)

Furthermore, we introduce a bilinear form ΓL (which will be the carré du champs
associated to L) on such functionals, via

∀ f, g ∈ C∞(V ), ∀D ∈ D, ΓL[Ff , Fg](D) B

(∫
C

f dµ

)(∫
C

g dµ

)
.(7)

Since the D-valued Markov processes we are interested in will have continuous sample
paths (namely they will be diffusions), we are naturally led to the following definitions
(see e.g., the book of Bakry, Gentil and Ledoux [3]). Consider D the algebra consisting
of the functionals of the form F B f(Ff1

, . . . , Ffn), where n ∈ Z+, f1, . . . , fn ∈ C∞(V )

and f : R → R is a C∞ mapping, with R an open subset of Rn containing the image
of D by (Ff1 , . . . , Ffn). For such a functional F, define

L[F] B
∑

j∈[[1,n]]

∂jf(Ff1 , . . . , Ffn)L[Ffj ] +
∑

k,l∈[[1,n]]

∂k,lf(Ff1 , . . . , Ffn)ΓL[Ffk , Ffl ](8)

To two elements of D, F B f(Ff1 , . . . , Ffn) and G B (Fg1 , . . . , Fgm), we also associate

ΓL[F,G] B
∑

l∈[[n]],k∈[[m]]

∂lf(Ff1 , . . . , Ffn)∂k(Fg1 , . . . , Fgm)ΓL[Ffl , Fgk ](9)

Remark 2. – A priori the above definitions are ambiguous, since they seem to depend
on the writing of F ∈ D under the form f(Ff1

, . . . , Ffn) and similarly for G. To see
that they are indeed well-defined, note that

∀F,G ∈ D, ΓL[F,G] =
1

2
(L[FG]− FL[G]−GL[F])

This property implies that if f is a polynomial in n variables, then for any
F B f(f1, . . . , fn), with f1, . . . , fn ∈ C∞(V ), the object L[F] is uniquely defined.
Indeed, it relies on an iteration on the degree of f, starting from (6) and (7). The
general case of smooth functions f is deduced from their approximation over compact
domains by polynomial mappings.
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CHAPTER 1. INTRODUCTION 5

Let us come back to the Markov operator Λ defined in (1). For any f ∈ C∞(R2),
Λ[f ] is an element of D, since it can be written

∀D ∈ D, Λ[f ](D) =
Ff
F1

(D),

where 1 is the constant function taking the value 1. This relation also leads us to
endow D with the σ-algebra generated by the mappings Ff , for f ∈ C∞(V ), so
that Λ is really a Markov kernel from D to V : for any fixed A ∈ B(V ), the mapping
D 3 D 7→ Λ(D,A) is measurable. For this mapping to be measurable on D, put on
the set {δx : x ∈ V } the σ-algebra obtained by identifying it with V (seeing δx as x)
and consider on D the σ-algebra generated by those on D and on {δx : x ∈ V }.
Since we already mentioned continuity of trajectories, we must also endow D with a
topology. The simplest way to do so would be to consider the smallest topology such
that all the mappings Ff , for f ∈ C∞(V ), are continuous (with the natural extension
that the Ff vanish on the singletons). But for our purpose, we will need a stronger
topology making continuous the following functionals, for any f ∈ C∞(V ):

D 3 D 7→ Λ[f ](D)(10)

D 3 D 7→
∫
C

f dµ,(11)

with the convention that if D is a singleton, then C = ∅ (so that the latter r.h.s. is 0).
Condition (10) enables us to topologically identify {δx : x ∈ V } with V . The topology
on D will be such that the σ-algebra put on D is the Borelian one. Condition (11)
implies that for any f ∈ C∞(V ), L[Ff ] is continuous on D. For the precise definition
of this topology, see Section 3, where D will furthermore be endowed with an infinite-
dimensional differential structure.

After these structural precisions, let us come back to L, whose main interest is to
fulfill our goal (2):

Theorem 3. – For any f ∈ C∞(V ), we have

∀D ∈ D, L[Λ[f ]](D) = Λ[L[f ]](D).

To go further, we want to construct Markov processes whose generator is L and to
establish a link with (3).

Let be given a filtered probability space (Ω,F , (Ft)t≥0,P), all subsequent notions
from stochastic process theory will be relative to the filtration (Ft)t≥0. Consider a
stopped continuous and adapted stochastic process (Dt)t∈[0,τ), taking values in D and
where τ is a positive stopping time. It is said to be a solution to the martingale problem
associated to (D,L), if for all t ∈ (0, τ), Dt ∈ D and if for any F ∈ D, the process
MF B (MF

t )t∈[0,τ) defined by

∀ t ∈ [0, τ), MF
t B F(Dt)− F(D0)−

∫ t

0

L[F](Ds) ds
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6 CHAPTER 1. INTRODUCTION

is a local martingale. More precisely, in this situation we say that (Dt)t∈[0,τ) is a
solution to the martingale problem associated to the generator (D,L) and to the
initial distribution L(D0), the law of D0, or starting from D0 ∈ D, when L(D0) is a
Dirac mass.

One key to the following result is the adaptation of the Doss [6] and Sussman [28]
method to the infinite dimensional stochastic differential Equation (3).

Theorem 4. – For any D0 ∈ D, there is a solution to the martingale problem asso-
ciated to (D,L) starting from D0.

In certain homogeneous spaces, it is possible to start from singletons, because these
situations can be brought back to the 1-dimensional setting treated in [19]. Indeed, the
processes (Dt)t≥0 end up being balls centered at the point from the initial singleton
and it is sufficient to study the evolution of the radius. This is the case of the Laplacian
operator on Euclidean, hyperbolic and spheric spaces. The stopping time τ is infinite
in the two former situations and corresponds to the hitting time of the whole sphere in
the latter one. But in general to consider D as state space is probably too restrictive.
We believe there exists a set G of subdomains of V , with D ⊂ G ⊂ D, such that L
can be naturally extended to G, in particular one should be able to define µ and ν∂D,
µ-a.e. Heuristically, the set of singular points of the boundary of a domain from G
should be very small. We hope to investigate this question in a future work via the
geometric measure theory, but for the moment being, let us assume that we are given
such a set G with Theorem 4 holding up to a positive stopping time earlier than
the exit time of G. Still denote by (Dt)t∈[0,τ) the corresponding Markov processes.
Consider

ς B 2

∫ τ

0

(µ(Cs))
2 ds ∈ (0,+∞](12)

and the time change (θt)t∈[0,ς] defined by

∀ t ∈ [0, ς], 2

∫ θt

0

(µ(Cs))
2 ds = t.(13)

Theorem 5. – The process (µ(Dθt∧ς ))t≥0 is a (possibly stopped) Bessel process of
dimension 3.

By taking into account that 0 is an entrance boundary for the Bessel process of
dimension 3, a consequence of Theorem 5 is that the set of singletons is an entrance
boundary for the Markov processes associated to (D,L), if we were able to extend
Theorem 4 to initial conditions that are singletons. Theorem 5 can be seen as a
multidimensional extension of the intertwining relation between the real standard
Brownian motion and the Bessel process of dimension 3 by Pitman [25]: it corresponds
to (2) when L is the Laplacian on R (see also Remark 37 in [19]).

Up to now, we did not consider the Markov processes associated to L, whereas their
study is the first motivation for the above developments. The martingale problems
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CHAPTER 1. INTRODUCTION 7

associated to (C∞(V ), L) are well-posed (see e.g., the book of Ikeda and Watanabe
[13]), so to any initial distribution on V , we can associate a stopped Markov process
(Xt)t∈[0,τ) where τ is the explosion time (maybe infinite). The conjunction of The-
orems 3 and 4 should lead to the following result, which is the reason behind our
interest in the relation (2):

Conjecture 6. – Assume that the martingale problems associated to (C∞(V ), L)

are well-posed and defined for all times (no explosion). Let x0 ∈ V be given and let
X B (Xt)t≥0 be a solution starting from x0 ∈ V for the martingale problems associ-
ated to (C∞(V ), L). Up to enlarging the underlying probability space, it is possible
to couple the trajectory (Xt)t≥0 with a solution (Dt)t∈[0,τ] starting from the single-
ton {x0} to the martingale problem associated to (D,L), such that for any stopping
time T with T ≤ τ, we have for the conditional laws:

L(D[0,T ]|X) = L(D[0,T ]|X[0,T ])(14)

L(XT |D[0,T ]) = Λ(DT , ·).(15)

The difficulty behind the proof of such a result is technical, since conceptually it
is an immediate extension of the ideas of Diaconis and Fill [5] in the context of finite
Markov chains. Two different approaches to such couplings for diffusions via coalescing
stochastic flows have been proposed in Machida [16] and [21], but they would need
to be developed further to deal with the generality of our present framework. A
related point of view is currently under construction in [2]. Note that Conjecture 6
would enable us to come back to our initial motivation, first by recovering the density
theorem for elliptic diffusions:

Corollary 7. – Assume that a coupling of (Xt)t≥0 with (Dt)t∈[0,τ] can be constructed
as in Conjecture 6. Then for any t > 0, the restriction to V of the law of Xt is
absolutely continuous with respect to the Riemannian measure λ.

To obtain this result, only the existence of a domain-valued dual process is needed
(as well as its coupling with the process X), its uniqueness is irrelevant. The well-
posedness of the martingale problems associated to (D,L) is not crucial for this kind
of consideration, more important for us would be the possibility for the dual process
to start from singletons.

Another interesting stochastic domain evolution is obtained by removing the
isoperimetric ratio from the generator, namely corresponding to the generator (D, L̃),
where (5) is replaced by

∀D ∈ D, L̃[Ff ](D) B

∫
D

L[f ] dµ(16)

for its action on the elementary observables (but (7), (8) and (9) remain unchanged).
The associated Markov processes are the analogues of the evolving sets consid-
ered by Morris and Peres [22] in discrete settings. One downside of the processes
(D̃t)t∈[0,τ) associated to the generator (D, L̃) is that they have a strong tendency to
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collapse in singletons in finite time and they remain singletons when starting from
a singleton. The heuristic reason behind this collapse is that (µ(D̃t))t∈[0,τ) is a non-
negative martingale, due to L̃[F1] = 0. Thus, assuming for instance that τ = +∞,
(µ(D̃t))t∈[0,+∞) must converge in large time, as well as its bracket. It follows
that lim inft→+∞ µ(C̃t) = 0 and appropriate geometric assumptions will enable to
conclude that D̃t becomes closer and closer to a singleton, at least along a sequence
of diverging times (in the same spirit, an isoperimetric-type inequality between µ and
µ will imply that limt→+∞ µ(D̃t) = 0). The convergence toward a singleton can be
checked rigorously when starting from a ball in the constant curvature framework of
the next section. In fact, taking into account the general theory of Doob transforms
(with respect to the mappings D 3 D 7→ µ(D)), the processes (Dt)t∈[0,τ) correspond
to the process (D̃t)t∈[0,τ) conditioned not to hit the set of singletons, or more pre-
cisely, conditioned so that (µ(D̃t))t∈[0,τ) does not hit zero. This property gives an
understanding of the emergence of the Bessel-3 process in Theorem 5, seen as the
Brownian motion conditioned not to hit 0 (see also the observations at the end of
Section 7).

The plan of the paper is as follows. In the next section, we will deal with the simple
but illustrative situation of the Euclidean, spheric and hyperbolic Brownian motion
starting from a point. In Section 3 we prove Theorem 3 and Theorem 4. Section 4
presents a result on the existence of stochastic modified mean curvature flows, which
was required by the proof of Theorem 4. Section 5 comes back to the homogeneous
situations of Section 2, pursuing further some computations relative to the mean cur-
vature addressed in Section 3. It will also show some critical differences between two
ways of applying the Doss-Sussman method in these homogeneous geometric frame-
works. In Section 6, Theorem 5 is proved as well as other properties of the solutions
to the martingale problems associated to (D,L). In particular, we will see that if the
evolution (Dt)t≥0 is defined for all times, relatively to the usual Laplacian L = 4 on
the plane, then renormalizing the domains so that their areas is brought back to 1,
we get a convergence in large time toward the disk centered at 0 of radius 1/

√
π. An

appendix provides supplementary informations on product situations and alternative
dual processes (on domains whose boundaries are naturally non smooth).
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HOMOGENEOUS SITUATIONS

There are examples where the radial evolution Equation (3) can be globally solved
by coming back to the one-dimensional situation as it is treated in [19] (see also Fill
and Lyzinski [9]). They correspond to spaces V with constant curvature endowed with
the Laplacian 4 and we take µ = λ and µ = σC (denoted σ, to simplify), for C = ∂D

and D ∈ D, with the notation of the introduction. For them, we investigate solutions
(Dt)t≥0 of the form (B(0, Rt))t≥0, where 0 is any fixed point of the state space,
B(0, r) is the closed ball centered at 0 of radius r ≥ 0 and (Rt)t≥0 is a R+-valued
diffusion process starting from 0. We will describe separately the three situations of
null, negative and positive constant curvature spaces.

2.1. Euclidean spaces

We consider here the Euclidean space Rn, with n ∈ N \ {1}. Without loss of
generality, we can assume that 0 is the point zero from Rn. For r > 0, the Lebesgue
volume of B(0, r) is λ(B(0, r)) = πn/2

Γ(n/2+1)r
n and the corresponding hypersurface

volume of the sphere ∂B(0, r) is σ(∂B(0, r)) = n πn/2

Γ(n/2+1)r
n−1. The mean curvature

of any element x ∈ ∂B(0, r) is ρ(x) = (n− 1)/r. Thus a solution (B(0, Rt))t≥0 of the
radial evolution Equation (3), is given by

dRt =
√

2dBt +

(
2n

Rt
− n− 1

Rt

)
dt

=
√

2dBt +
n+ 1

Rt
dt,

where (Bt)t≥0 is a standard Brownian motion. Thus (Rt/2)t≥0 has for generator the
operator A given by

∀ f ∈ C∞(R+), ∀x ∈ R+ A[f ](x) B
1

2
f ′′(x) +

n+ 1

2x
f ′(x)

(in the sequel such a generator will be denoted 1
2∂

2 + n+1
2x ∂), namely it is a Bessel

process of dimension n + 2. In particular 0 is an entrance boundary for (Rt)t≥0 and
we can make it start from 0, i.e., we can let (B(0, Rt))t≥0 start from {0}.
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Let us check directly that (λ(B(0, Rt)))t≥0 is a Bessel of process of dimension 3,
up to a time change, as announced in Theorem 5. It is sufficient to show that the
same is true for (Rnt )t≥0. We compute

dRnt = nRn−1
t

(√
2dBt +

n+ 1

Rt
dt

)
+ 2

n(n− 1)

2
Rn−2
t dt

=
√

2nRn−1
t dBt + 2n2Rn−2

t dt.

So the generator of (Rnt )t≥0 is 2n2x2−2/n[ 1
2∂

2 + 1
x∂]. It follows that (Rnθt)t≥0 is a

Bessel process of dimension 3, where the time change (θt)t≥0 is defined by

∀ t ≥ 0,

∫ θt

0

R2−2n
s ds = 2n2t.

2.2. Spherical spaces

We consider now the sphere Sn ⊂ Rn+1, with n ∈ N. Without loss of generality, we
can assume that 0 is the point (1, 0, 0, .., 0) from Rn+1. For any r ∈ [0, π], B(0, r) is
the closed cap centered at 0 of radius r. In particular, we have B(0, 0) = {0} and
B(0, π) = Sn. Let λ be the uniform distribution on Sn and σ be the corresponding
hypersurface volume. The projection of λ on the first coordinate of Rn+1 is the mea-
sure Z−1

n (1 − x2)n/2−11[−1,1](x) dx, where the renormalizing factor is given by the
Wallis integral

Zn =

∫ 1

−1

(1− x2)n/2−1 dx

=

∫ π

0

sinn−1(u) du

=
√
π

Γ
(
n+1

2

)
Γ
(
n
2 + 1

) .
The cap B(0, r) is exactly the set of elements of Sn whose first coordinate belongs
to [cos(r), 1]. So we get

λ(B(0, r)) = Z−1
n I(r) B Z−1

n

∫ r

0

sinn−1(u) du

σ(∂B(0, r)) = Z−1
n sinn−1(r).

The mean curvature of any element x ∈ ∂B(0, r) is ρ(x) = (n− 1) cot(r). Indeed, the
mean curvature ρ on ∂B(0, r) is the function such that for any C∞(Sn), we have

∂r

∫
∂B(0,r)

f dσ =

∫
∂B(0,r)

〈∇f, ν〉 dσ +

∫
∂B(0,r)

fρ dσ
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(for more details, see e.g., Lemma 10 in Section 3 below). Due to the symmetries
of ∂B(0, r), one sees that ρ must be constant on ∂B(0, r). Thus considering f = 1 in
the above equality, we get

ρ =
∂rσ(∂B(0, r))

σ(∂B(0, r))

= (n− 1) cot(r).

It follows that a solution (B(0, Rt))t∈[0,τ) of the radial evolution Equation (3), where
τ is the hitting time of π by (Rt)t∈[0,τ), is given by

dRt =
√

2dBt +

(
2 sinn−1(Rt)

I(Rt)
− (n− 1) cot(Rt)

)
dt,(17)

where (Bt)t≥0 is a standard Brownian motion.

As r → 0+, we have

2 sinn−1(r)

I(Rt)
− (n− 1) cot(r) ∼ 2rn−1∫ r

0
un−1 du

− n− 1

r

=
n+ 1

r

and this enables us to see that 0 is an entrance boundary for (Rt)t∈[0,τ) and we can
make it start from 0, namely we can let (B(0, Rt))t∈[0,τ) start from {0}.

In general we did not find a nice expression for the drift of (17), but in the case
n = 2, this evolution equation can be written

dRt =
√

2dBt +
2 + cos(Rt)

sin(Rt)
dt.

Similarly to the Euclidean situation, let us check directly Theorem 5, i.e.,
that (λ(B(0, Rt)))t∈[0,τ) is a stopped Bessel of process of dimension 3, up to a time
change. It is sufficient to show that the same is true for (I(Rt))t∈[0,τ). We compute

dI(Rt) = I ′(Rt)

(√
2dBt +

(
2 sinn−1(Rt)

I(Rt)
− (n− 1) cot(Rt)

)
dt

)
+ I ′′(Rt)dt

=
√

2 sinn−1(Rt)dBt +

(
2 sin2n−2(Rt)

I(Rt)
− (n− 1) sinn−1(Rt) cot(Rt)

)
dt

+ (n− 1) sinn−2(Rt) cos(Rt)dt

=
√

2 sinn−1(Rt)dBt +
2 sin2n−2(Rt)

I(Rt)
dt.

So the generator of (I(Rt))t∈[0,τ) is 2 sin2n−2(I−1(x))[ 1
2∂

2 + 1
x∂], where I−1 is the

inverse mapping of I : [0, π] → [0, Zn]. This shows that (I(Rθt))t∈[0,τ) is a Bessel
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12 CHAPTER 2. HOMOGENEOUS SITUATIONS

process of dimension 3 starting from 0 and stopped when it hits Zn, where the time
change (θt)t∈[0,τ) is defined by

∀ t ∈ [0, τ),

∫ θt

0

1

sin2n−2(I−1(Rs))
ds = 2t.

Consider the case where R0 = 0. Then θτ has the same law as the first hitting time
of Zn by a Bessel process of dimension 3 starting from 0. It follows that τ is a.s. finite.
Thus, starting from {0}, the process (B(0, Rt))t∈[0,τ] ends up covering the whole
sphere Sn at the (a.s.) finite time τ. According to the theory of strong duality (see
e.g., the initial paper of Diaconis and Fill [5] for the principe and Section 7 for its
application to the present context), this property leads to the construction of strong
stationary times for the Brownian motion on Sn starting from 0 (and more generally
for any initial distribution on Sn, by symmetry and conditioning with respect to the
initial position of the spheric Brownian motion).

2.3. Hyperbolic spaces

Consider the Poincaré’s ball model of the hyperbolic space Hn of dimension
n ∈ N \ {1}. For references on the subject, one can consult the book of Anderson [1]
and we find the unpublished report of Parkkonen [24] very convenient. As above,
the choice of the point 0 is irrelevant, let us choose for instance the center of the
Euclidean ball on which is imposed the classical hyperbolic metric. Let λ be the
Riemannian distribution on Sn and σ be the corresponding hypersurface volume.
Denote by B(0, r) the closed ball in Hn centered at 0 and of radius r ≥ 0. Up to a
factor, we have

λ(B(0, r)) =

∫ r

0

sinhn−1(u) du(18)

σ(∂B(0, r)) = sinhn−1(r).(19)

From these formulas (and even only from (19), since (18) is already a consequence of
(19)), one can develop the same arguments as in the spherical situation, replacing the
trigonometric functions by their hyperbolic counter-parts, to get the following results.
A solution (B(0, Rt))t≥0 of the radial evolution Equation (3), is given by

dRt =
√

2dBt +

(
2 sinhn−1(Rt)

J(Rt)
− (n− 1) coth(Rt)

)
dt,

where J : R+ 3 r 7→
∫ r

0
sinhn−1(u) du. In particular, for the hyperbolic plane (n = 2),

we get

dRt =
√

2dBt +
2 + cosh(Rt)

sinh(Rt)
dt.
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Again, 0 is an entrance boundary for (Rt)t≥0 and we can make it start from 0,
namely we can let (B(0, Rt))t≥0 start from {0}. From this initial point, the pro-
cess (λ(Rθt))t≥0 is a Bessel process of dimension 3 starting from 0, where the time
change (θt)t≥0 is defined by

∀ t ≥ 0,

∫ θt

0

1

sinh2n−2(J−1(Rs))
ds = 2t,

where J−1 is the inverse mapping of J : R+ → R+. This is obtained through com-
putations similar to those of Subsection 2.2 or as a consequence of Theorem 5.
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SMOOTH INITIAL CONDITIONS

After proving Theorem 3, we will show how to solve (3) for small times, when the
initial domain has a smooth boundary. It will provide a solution of the martingale
problem associated to L, thus showing Theorem 4.

As announced, we begin by the

Proof of Theorem 3. – Consider R B {(x, y) ∈ R2 : y > 0} and the mapping

f : R 3 (x, y) 7→ x

y
.

For any f ∈ C∞(V ), we have Λ[f ] = f(Ff , F1), so that Λ[f ] ∈ D.
It follows that

L[Λ[f ]] =
1

F1
L[Ff ]− Ff

F 2
1

L[F1]− 2

F 2
1

ΓL[Ff , F1] +
2Ff
F 3

1

ΓL[F1, F1],

which can be rewritten under the form

F1L[Λ[f ]] = L[Ff ]− 2

F1
ΓL[Ff , F1] + Ff

(
2

F 2
1

ΓL[F1, F1]− 1

F1
L[F1]

)
.

We compute, for any D ∈ D, with C B ∂D, ν B νC and σ B σC ,

L[F1](D) =

∫
D

L[1] dµ+ 2
µ(C)

µ(D)

∫
C

1 dµ

= 2
µ(C)2

µ(D)
.

Furthermore, remark that

ΓL[F1, F1](D) =

(∫
C

1 dµ

)2

= µ(C)2.

so taking into account that F1(D) = µ(D), we get
2

F 2
1

ΓL[F1, F1]− 1

F1
L[F1] = 0.
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Thus, we have

F1L[Λ[f ]](D) = L[Ff ](D)− 2

F1
ΓL[Ff , F1](D)

=

∫
D

L[f ] dµ+ 2
µ(C)

µ(D)

∫
f dµ− 2µ(C)

µ(D)

∫
C

f dµ

=

∫
D

L[f ] dµ

and we conclude to the announced intertwining relation

L[Λ[f ]] =
FL[f ]

F1
.

In the above proof, Definition (5) was helpful. Nevertheless to understand the
dynamic of the domains generated by L, it is preferable to resort to (6), so let us show
its equivalence with (5). It amounts to check that for any D ∈ D and any f ∈ C∞(V ),
we have ∫

D

L[f ] dµ =

∫
C

〈∇f, νC〉+ 〈β, νC〉 f dµ.(20)

This equality is based on the integration by parts formula (Stokes’ theorem), stating
that for any smooth vector field v on V , we have∫

D

div(v) dλ =

∫
C

〈v, ν〉 dσ.(21)

Indeed, we have∫
D

L[f ] dµ =

∫
D

(4f + 〈∇U + β,∇f〉) exp(U)dλ

=

∫
D

div(exp(U)∇f) + 〈exp(U)β,∇f〉 dλ.

By integration by parts formula, we get∫
D

div(exp(U)∇f) dλ =

∫
C

〈exp(U)∇f, ν〉 dσ

=

∫
C

〈∇f, ν〉 dµ.

Recalling that div(exp(U)β) = 0, we have div(exp(U)fβ) = 〈exp(U)β,∇f〉 +

div(exp(U)β)f = 〈exp(U)β,∇f〉, so another integration by parts gives us∫
D

〈exp(U)β,∇f〉 dλ =

∫
C

〈β, ν〉 f dµ

ending the proof of (20).
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Now that we know that L satisfies the wanted intertwining relation with L,
given D0 ∈ D, we would like to construct a Markov process (Dt)t∈[0,τ) starting
from D0 and whose generator is L, where τ will be a positive stopping time, in a first
step. To do so, we come back to the radial evolution Equation (3) that we reinterpret
under the heuristic D-valued stochastic differential equation

dDt = V1(Dt)

(√
2dBt + 2

µ(Ct)

µ(Dt)
dt

)
+V2(Dt) dt,(22)

where V1 and V2 are “vector fields” on D. This formulation will enable us to adapt
the Doss-Sussman method [6, 28] to this infinite dimensional setting to construct a
solution to the martingale problem associated to the generator L and to the initial
position D0, at least for small times.

Before explaining in general what we mean by a vector fields on D, we study the
flow generated by V1, which is very simple to describe. For any r ∈ R, denote

Ψ(D, r) B


{x ∈ V : d(x,D) ≤ r} if r > 0,

D if r = 0,

{x ∈ D : d(x,Dc) ≥ −r} if r < 0,

(23)

where we recall that for any subset A ⊂ D and x ∈ V ,

d(x,A) B inf{d(x, y) : y ∈ A},

with d the Riemannian distance on V .

It is easy to realize that the family (Ψ(D, r))r∈R does not behave well for some
r ∈ R: it does not stay in D and does not satisfy the flow property (see Remark 9
below). So we are going to restrict the parameter r to a convenient open segment
containing 0.

For any x ∈ V and v ∈ TxV , let (expx(rv))r∈R stand for the geodesic flow whose
position and speed at time 0 are x and v. By our assumption of completeness on V ,
these geodesic flows are defined for all times. For any r ∈ R, define the mapping

ψC,r : C 3 x 7→ expx(rνC(x)).(24)

Define

R+(D) = inf{r ∈ (0,+∞) : ψC,r is not a diffeomorphism on its image},(25)

R−(D) = − inf{r ∈ (0,+∞) : ψC,−r is not a diffeomorphism on its image}.(26)

Due to the existence of a normal tubular neighborhood around the compact set C, we
have that R+(D) > 0 and R−(D) < 0. The interest of the segment (R−(D), R+(D)) is
summarized as follows:
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Proposition 8. – Let D ∈ D be given. For any r ∈ (R−(D), R+(D)), we have

∂Ψ(D, r) = ψC,r(C)

=


{x ∈ Dc : d(D,x) = r} if r > 0,

C if r = 0,

{x ∈ D : d(Dc, x) = −r} if r < 0,

(27)

showing that Ψ(D, r) ∈ D.
Furthermore, for any r, r′ ∈ (R−(D), R+(D)) such that r + r′ ∈ (R−(D), R+(D)),

the “semi-group property” holds:

Ψ(D, r + r′) = Ψ(Ψ(D, r), r′) = Ψ(Ψ(D, r′), r).

Proof. – The above result is certainly standard, even we were not able to find a
corresponding reference.

For the first assertion, we begin by considering the case r ∈ (0, R+(D)). For any
x ∈ Ψ(D, r) \D, there exists y ∈ C such that d(x, y) = d(x,D) ∈ (0, r]. Let us check
that x = ψC,d(x,y)(y). Denote (γ(s))s∈[0,d(x,y)] a unitary minimizing geodesic going
from y to x. There exists v ∈ TyV with ‖v‖ = 1 such that γ(s) = expy(sv) for
all s ∈ [0, d(x, y)]. If v is not orthogonal to TyC, then for small s > 0, we could find
ys ∈ C with d(ys, γ(s)) < d(y, γ(s)), contradicting the minimizing property of y, since
we would get d(x, y) = d(y, γ(s)) + d(γ(s), x) > d(ys, γ(s)) + d(γ(s), x) ≥ d(x, ys). If
v was directed toward the interior of D, we would also end up with a contradiction,
by considering the last time s ∈ (0, d(x, y)) such that γ(s) ∈ D. It follows that
v = νC(y), showing that x = ψC,d(x,y)(y). We furthermore get such a point y ∈ C
is unique, otherwise we would be in contradiction with the fact that ψC,d(x,D) is
injective. Conversely, if s ∈ (0, r] and y ∈ C, then x B ψC,s(y) ∈ Ψ(D, s), with
d(x,D) ≤ d(x, y) ≤ s. Thus we have the description

∀ r ∈ (0, R+(D)), Ψ(D, r) = D
⋃

s∈(0,r]

ψC,s(C).

Let us show that all the sets of the r.h.s. are disjoint. First we prove by contradiction
that

∀ s ∈ (0, r], D ∩ ψC,s(C) = ∅.(28)

So assume that ψC,s(x) ∈ D, for some x ∈ C. Replacing s by inf{t > 0 : ψC,t(x) ∈ D},
which is still positive, because ψC,t(x) does not belong to D for t > 0 small enough, we
can assume that ψC,s(x) ∈ C. Consider the mapping φ : [0, s] 3 t 7→ d(ψC,t(x), C).
We have seen above that for t > 0 small enough, we have φ(t) = t. Since φ(s) = 0,
let u B inf{t > 0 : φ(t) 6= t}, which belongs to (0, s). Note that for t ∈ [0, u),
the directing normal vector d

dtψC,t(x) is orthogonal to the tangent space of ψC,t(C)

at ψC,t(x), otherwise for v ∈ (t, u), we could find a shortest way from ψC,v(x)

to ψC,t(C) than the one given by the geodesic (ψC,w(x))w∈[t,v] and it would follow
that d(ψC,v(x), C) < v. The tangent space of ψC,t(C) at ψC,t(x) coincides with the
image of TxC by TψC,t(x), by the fact that ψC,t is a diffeomorphism on its image.
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Letting t go to u, we get the directing normal vector d
dtψC,t(x)

∣∣
t=u

is still orthogonal
to the tangent space of ψC,u(C) at ψC,u(x). As above, this property insures us that
for ε > 0 small enough,

d(ψC,u+ε(x), ψC,u(C)) = ε(29)

namely either d(ψC,u+ε(x), C) = u+ε or d(ψC,u+ε(x), C) = u−ε. The first alternative
is forbidden by the definition of u. For the second alternative, we get, for ε > 0 small
enough, ψC,u+ε(x) 6= ψC,u−ε(x) belongs to ψC,u−ε(C), thus we can find y ∈ C \ {x}
with ψC,u+ε(x) = ψC,u−ε(y). If follows from (29) that ψC,u(x) = ψC,u(y), in con-
tradiction with the injectivity of ψC,u. This ends the proof of (28). The proof that
for s 6= s′ ∈ (0, r], we have ψC,s(C) ∩ ψC,s′(C) = ∅ is similar. Indeed, if this equal-
ity was not true, then one would be able to find again x ∈ C and t ∈ (0, r] such
that d(ψC,t(x), C) > t. We end up with the “foliation”

∀ r ∈ (0, R+(D), Ψ(D, r) = D
⊔

s∈(0,r]

ψC,s(C).(30)

From this decomposition and the continuity of C × (0, R+(D)) 3 (x, s) 7→ ψC,s(x),
we deduce that for r ∈ (0, R+(D)),

∂Ψ(D, r) = ψC,r(C)

= {x ∈ Dc : d(D,x) = r}.

The analogous relations when r ∈ (R−(D), 0) are obtained in a similar way, taking
into account that

∀ r ∈ (R−(D), 0), Ψ(D, r) = D \

 ⊔
s∈[r,0)

ψC,s(C)

 .(31)

The semigroup property is also a consequence of (30) and (31), taking into account
that for r, r′ as in the above proposition, we have

ψC,r+r′ = ψC,r ◦ ψC,r′ = ψC,r′ ◦ ψC,r

(remarking that for any x ∈ C and r ∈ (R−(D), R+(D)), we have TxψC,r[νC(x)] =

νΨ(C,r)(ψC,r(x))).

Remark 9. – The semi-group property of Corollary 8 is no longer necessarily true
if the conditions on r, r′ ∈ R are not satisfied. Consider first the following (non
connected) example: let D be the union of the open balls B((0, 0), 3) and B((0, 5), 1).
Then we have Ψ(D,−2) = B((0, 0), 1) and Ψ(B((0, 0), 1), 2) = B((0, 0), 3) 6= D. This
example can be modified into a connected one by joining B((0, 0), 3) and B((0, 5), 1)

through the open rectangle [0, 5]× [−1, 1]. The boundary of the resulting domain D is
not smooth, nevertheless, the Definition (23) makes sense. The boundary ∂Ψ(D, r)

makes an “irreversible transition” at r = −1.
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From now on, for r ∈ (R−(D), R+(D)), denote by Ψ(C, r) the set described in (27).
For given D ∈ D, the family (Ψ(C, r))r∈(R−(D),R+(D)) is the solution of the normal
flow equation, which can be written under the radial form{

Ψ(C, 0) = C

∀ r ∈ (R−(D), R+(D)), ∀x ∈ Ψ(C, r), ∂rx = νΨ(C,r)(x),
(32)

where the points of the boundaries are pushed according to the outward normal.
For our purposes, it is convenient to look at this set-valued evolution through our

elementary observables:

Lemma 10. – Let D ∈ D and f ∈ C∞(V ) be fixed. The mapping (R−(D), R+(D)) 3
r 7→ Ff (Ψ(D, r)) ∈ R is C2 and for any r ∈ (R−(D), R+(D)), we have

∂rFf (Ψ(D, r)) =

∫
Ψ(C,r)

f dµ

∂2
rFf (Ψ(D, r)) =

∫
Ψ(C,r)

〈
∇f, νΨ(C,r)

〉
dµ+

∫
Ψ(C,r)

(
〈
∇U, νΨ(C,r)

〉
+ ρΨ(C,r))f dµ.

To simplify the notation, when the set C will be clear from the context (e.g., coming
from the domain of integration), we will write σ, ν and ρ instead of σC , νC and ρC ,
convention which was already adopted for µ. So that the last r.h.s. admits the more
readable expression∫

Ψ(C,r)

〈∇f, ν〉 dµ+

∫
Ψ(C,r)

f(〈∇U, ν〉+ ρ) dµ.

Proof. – The first differentiation is a classical result. It can also be deduced from the
disintegration of µ with respect to (30) and (31). For instance for r ∈ [0, R+(D)), we
have

Ff (Ψ(D, r)) = Ff (D) +

∫ r

0

∫
Ψ(C,s)

f dµ ds

and the r.h.s. is easily differentiated with respect to r.
For the second differentiation, first write∫

Ψ(C,r)

f dµ =

∫
Ψ(C,r)

f exp(U) dσ.

To differentiate with respect to r the r.h.s., one has to adapt the arguments of Sec-
tion 1.2 of the book of Mantegazza [17], to get

∂r

∫
Ψ(C,r)

f exp(U) dσ =

∫
Ψ(C,r)

〈∇(f exp(U)), ν〉 dσ +

∫
Ψ(C,r)

f exp(U)ρ dσ

=

∫
Ψ(C,r)

〈∇f, ν〉 dµ+

∫
Ψ(C,r)

(〈∇U, ν〉+ ρ)f dµ.
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We will also need to differentiate Ψ with respect to the first variable D ∈ D. We
must first give a meaning to the underlying notion of differentiation in D.

Consider a family (Gs)s∈[0,S+) taking values in D, for a real number S+ > 0. We
say this family is strongly continuous in a neighborhood of s ∈ [0, S+) if there exist
a neighborhood Ns of s in [0, S+) and a continuous mapping ϕs : Ns × ∂Gs → V

such that for any u ∈ Ns, the function ∂Gs 3 x 7→ ϕs(u, x) is a homeomorphism
between ∂Gs and ∂Gu and if ϕs(s, ·) is the identity mapping. In this statement, the
boundaries ∂Gs, for s ∈ [0, S+) are endowed with the topology inherited from that
of V . Similarly, these boundaries will be endowed below with the smooth differentiable
structure inherited from V as smooth submanifolds. The family (Gs)s∈[0,S+) is said
to be strongly continuous on [0, S+), if for any s ∈ [0, S+), it is strongly continuous
in a neighborhood of s.

Remark 11. – Let d be the Hausdorff metric on the compact subsets of V . It endows
D with a metric structure. The strong continuity defined above implies the continuity
for the Hausdorff metric, but the converse is not always true, as it is illustrated by
the following picture:

Figure 1. Convergence in the Hausdorff topology, not in the strong sense

Note that the restrictions to D of the mappings defined in (10) and (11) are strongly
continuous.

By analogy, we say the family (Gs)s∈[0,S+) is strongly smooth in a neighborhood
of s ∈ [0, S+) if there exist a neighborhood Ns of s in [0, S+) and a smooth mapping
ϕs : Ns × ∂Gs → V such that for any u ∈ Ns, the function ∂Gs 3 x 7→ ϕs(u, x) is
a diffeomorphism between ∂Gs and ∂Gu and ϕs(s, ·) is the identity mapping. The
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family (Gs)s∈[0,S+) is then said to be strongly smooth if it is strongly smooth in the
neighborhood of any s ∈ [0, S+). For such a family, consider for any s ∈ [0, S+) and
x ∈ ∂Gs, the vector

X∂Gs(x) B ∂uϕs(u, x)|u=s.

The TV -valued vector field X∂Gs on ∂Gs enables to describe the infinitesimal evolu-
tion of Gs via a formula similar to (32)

∀ s ∈ [0, S+), ∀x ∈ ∂Gs, ∂sx = X∂Gs(x).

This description is not unique, because the mappings ϕs(u, ·) are not unique: they
can be composed by diffeomorphisms of ∂Gu, depending on s and (smoothly) on u.
Indeed, as already mentioned, the discussion of Section 1.3 of Mantegazza [17] shows
that for x ∈ ∂Gs, only the radial part α∂Gs(x) B 〈X∂Gs(x), ν∂Gs(x)〉 is unique.
Furthermore, it is possible to choose the mappings ϕs in such a way so that

∀ s ∈ [0, S+), ∀x ∈ ∂Gs, X∂Gs(x) = α∂Gs(x)ν∂Gs(x)

and the function α is continuous in the sense that if the sequences (sn)n∈N in [0, S+)

and (xn)n∈N, taking values respectively in (∂Gsn)n∈N, are converging toward
s ∈ [0, S+) and x ∈ ∂Gs, then limn→∞ α∂Gsn (xn) = α∂Gs(x).

The family (Gs)s∈[0,S+) can thus be described more intrinsically as a solution of
the radial equation equation

∀ s ∈ [0, S+), ∀x ∈ ∂Gs, ∂sx = α∂Gs(x)ν∂Gs(x).(33)

This formula enables us to identify the “tangent space” TDD at D ∈ D with the
space C∞(C) of real smooth functions on C (of the form αC with the above notation).
At least it appears that TDD ⊂ C∞(C). Conversely, given α ∈ C∞(C), we will see in
Remark 16 how to construct a strongly smooth family (Gs)s∈[0,S+) such that{

G0 = D

∀x ∈ ∂G0, ∂sx|s=0 = α(x)ν∂G0
(x).

(34)

This shows that C∞(C) ⊂ TDD.
Following the traditional definition in differential geometry, we say that a mapping

Φ : D → D is strongly smooth if any strongly smooth family (Gs)s∈[0,S+) is trans-
formed by Φ into a strongly smooth family, i.e., (Φ(Gs))s∈[0,S+) is smooth (to simplify
the terminology, from now on, smooth means strongly smooth). Then there exists a
vector field α̃ on (Φ(Gs))s∈[0,S+) such that

∀ s ∈ [0, S+), ∀x ∈ ∂Φ(Gs), ∂sx = α̃∂Φ(Gs)(x)ν∂Φ(Gs)(x)

Fix s ∈ [0, S+). It is not difficult to see that the function α̃∂Φ(Gs) depends on α

satisfying (33) only through α∂Gs . For fixedD ∈ D, consider any smooth andD-valued
family (Gs)s∈[0,S+) with 0 ∈ [0, S+) andG0 = D. Let α be associated with (Gs)s∈[0,S+)

as in (33). The linear functional transforming αC into α̃∂Φ(D), as above, is called the
tangent mapping TDΦ of Φ at D.
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Remark 12. – A natural converse question is: given D, D̃ ∈ D and a linear map-
ping T from C∞(C) to C∞(C̃) (with C̃ B ∂D̃), is there a smooth function Φ on D with
Φ(D) = D̃ and such that T = TDΦ? The investigation of this kind of general issues
is out of the scope of the present paper. Nevertheless, a first step in this direction is
as follows. Let α, α̃ be given in TDD and TD̃D respectively. Remark 16 shows how to
extend α and α̃ on D in order to be able to solve locally in time (34) to get smooth
families (Gs)s∈[0,S+) and (G̃s)s∈[0,S̃+). Replace S+ by S+ ∧ S̃+. Assuming that α did
not vanish identically on ∂D, we can furthermore impose that S+ is small enough so
that [0, S+) 3 s 7→ Gs is one-to-one. It enables us to define Φ on {Gs : s ∈ [0, S+)}
via Φ(Gs) = G̃s, for all s ∈ [0, S+). Then we get TDΦ[α] = α̃. To go further would
require a better understanding of the neighborhood of D in D.

With all these preliminaries at our disposal, we can now compute the tangent
mapping TDΨ(·, r) for r ∈ (R−(D), R+(D)). Rigorously, for given r ∈ R, the mapping
Ψ(·, r) is not defined on the whole set D but only on the subset

Dr B {D ∈ D : r ∈ (R−(D), R+(D))}.(35)

This subset is open for the strong topology alluded before (but not in the Hausdorff
topology, see Remark 11), so that the notion of tangent mapping can be extended to
this setting (as soon as Dr 6= ∅).

The tangent mapping TDΨ(·, r) is among the simplest possible ones:

Lemma 13. – Let D ∈ D and r ∈ (R−(D), R+(D)) be given. For any α ∈ C∞(C)

and x ∈ C, we have

TDΨ(·, r)[α](x) = α(ψ−1
C,r(x)),

where ψ−1
C,r : Ψ(C, r) → C is the inverse mapping of the function ψC,r defined in

(24).

Proof. – Let α ∈ C∞(C) be given, extend it smoothly on V and solve (34) for ε > 0

small enough. For x ∈ C and s ∈ (−ε, ε), denote ϕ(x, s) B xs and As B {ϕ(x, s) :

x ∈ C}. According to the previous discussion, to get the wanted result, we just need
to check that for any x ∈ C, the part of ∂sψAs,r(ϕ(x, s))|s=0 which is (outwardly)
normal to Ψ(As, r) is equal to α(x), namely that

∀x ∈ C,
〈
∂sψAs,r(ϕ(x, s))|s=0, νΨ(C,r)(ψC,r(x))

〉
ψC,r(x)

= α(x).(36)

Denote

∀ t ∈ [0, r], Jt B ∂sψAs,t(ϕ(x, s))|s=0,

so that (Jt)t∈[0,r] is a vector field over the geodesic (γ(t))t∈[0,r] B (ψC,t(x))t∈[0,r].
For all s ∈ (−ε, ε), (ψC,t(xs))t∈[0,r] is a geodesic, it follows that (Jt)t∈[0,r] is a Ja-
cobi fields (cf. for instance Proposition 3.45 from the book of Gallot, Hulin and
Lafontaine [10], whose Chapter 3 serves as a reference for all the following consid-
erations). Thus (Jt)t∈[0,r] is defined by its initial conditions J(0) and J ′(0), where the
prime corresponds to the covariant derivative with respect to t, and by the evolution
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J ′′ = −R(J, γ̇)γ̇, where R is the Riemannian curvature tensor. To prove (36) amounts
to show that the mapping [0, r] 3 t 7→ 〈J(t), γ̇(t)〉γ(t) is constant. The covariant
derivative is constructed so that the scalar product is left invariant, so that

∀ t ∈ [0, r],
d

dt
〈J(t), γ̇(t)〉γ(t) = 〈J ′(t), γ̇(t)〉γ(t) + 〈J(t), γ̇′(t)〉γ(t)

= 〈J ′(t), γ̇(t)〉γ(t) ,

since by definition of a geodesic, we have γ̇′(t) = 0. Differentiating once more, we get
d

dt
〈J ′(t), γ̇(t)〉γ(t) = 〈J ′′(t), γ̇(t)〉γ(t) + 〈J ′(t), γ̇′(t)〉γ(t)

= 〈J ′′(t), γ̇(t)〉γ(t)

= −R(J, γ̇, γ̇, γ̇)

= 0,

since the (0, 4)-curvature tensor R is anti-symmetric in its last two vector variables
(as well as in first two vector variables). Thus, to get the wanted result, we just
need to check that J ′(0) is orthogonal to γ̇(0) = νC(x). From the first equality of
Proposition 3.29 of Gallot, Hulin and Lafontaine [10] (applied with the commutating
vector fields X = ∂s and J = ∂t on (−ε, ε)× [0, r] parametrized by (s, t)), it appears
that J ′(0) coincides with the covariant derivative with respect to s of the tangent
vectors of the geodesic (ψC,t(xs))t∈[0,r], at s = 0 and t = 0. The latter tangent vectors
are unitary, so their covariant derivatives are orthogonal to them. Thus at s = 0 and
t = 0 we get 〈J ′(0), γ̇(0)〉x = 0, ending the proof of (36).

We deduce the differentiation of our favorite observables.

Corollary 14. – In the setting of Lemma 13, let be given f ∈ C∞(V ) and
(Gs)s∈[0,S+) with G0 = D and α∂G0 = α (in the sense of (33)). We have

d

ds
Ff (Ψ(Gs, r))

∣∣∣∣
s=0

=

∫
Ψ(C,r)

f(x)α(ψ−1
C,r(x))µ(dx).

Proof. – As in the first part of the proof of Lemma 10, we get
d

ds
Ff (Gs)

∣∣∣∣
s=0

=

∫
C

f(x)α(x)µ(dx).

Taking into account Lemma 13, the announced result follows from this formula, with
(Gs)s∈[0,S+) replaced by (Ψ(Gs, r))s∈[0,S+).

A famous example of radial evolution of the type (33) is the mean curvature flow:

∀ s ∈ [0, S+), ∀x ∈ ∂Gs, ∂sx = −ρ∂Gs(x)ν∂Gs(x),

where G0 ∈ D is given and [0, S+) is the maximum interval on which this flow remains
in D (there are various ways to define the mean curvature flow beyond the times when
it gets out of D, see e.g., Chapter 1 of the book of Mantegazza [17]). When V = R2

endowed with its usual Riemannian structure, it is possible to compute explicitly the
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image of the mean curvature vector field ρ by the tangent applications to the normal
flow Ψ, see Subsection 5.1. In general, it is more difficult (see nevertheless Remark 49
for the usual Riemannian structure on V = Rn), since the curvature of V will enter
into the game.

The arguments of Section 1.5 of Mantegazza [17] can be adapted to get existence
and uniqueness of the solutions (Gs)s∈[0,S+) to the radial evolution equations of the
form

∀ s ∈ [0, S+), ∀x ∈ ∂Gs, ∂sx = (−ρ∂Gs(x) + 〈b(x), ν∂Gs(x)〉x + a(x))ν∂Gs(x),

(37)

where [0, S+) is a small enough interval containing 0, where G0 is a given element
from D and where a and b are respectively a smooth function and a smooth vector
field on V . The obtained solution (Gs)s∈[0,S+) is a smooth family. The underlying
idea is to consider again the parametrization (r−, r+) × G0 3 (r, x) 7→ ψG0,r(x) of a
tubular neighborhood of G0, where (r−, r+) is a small neighborhood of 0. Then one
looks for a mapping [0, S+)×G0 3 (s, x) 7→ y(s, x), whose image is included into the
tubular neighborhood ψG0,(r−,r+)(G0) and which is such that for any s ∈ [0, S+) and
any x ∈ G0

y(0, x) = ϕ0(x)

〈∂sy(s, x), ν∂Gs(y(s, x))〉y(s,x) = −ρ∂Gs(y(s, x)) + 〈b(y(s, x)), ν∂Gs(y(s, x))〉y(s,x)

+ a(y(s, x)),

where ϕ0 : G0 → Rn is the inclusion map. Then writing y(s, x) = ψG0,f(s,x)(x), for all
(s, x) ∈ [0, S+)×G0, we end up with the quasi-linear parabolic equation with respect
to f : for any x ∈ G0,


f(0, x) = 0

∀ s ∈ [0, S+), ∂sf(s, x) = 4G0,sf(s, x)

+H(x, f(s, x), (∂xif(s, x))i∈[[n−1]], (∂xi(∂xjf(s, x))2)i,j∈[[n−1]]),

(38)

where H is a smooth mapping on R+ × Rn−1 × R(n−1)2

and where 4G0,s is the
Laplacian relatively to the Riemannian structure on G0 obtained by pulling back
through the diffeomorphism G0 3 x 7→ ψG0,f(s,x)(x) the Riemannian structure on Gs
inherited from that of V . Note that H will be independent from the chart in which
we compute ∂xif(s, x) and ∂xi∂xjf(s, x).

Before going further, let us explain how to get (38) from (37), when V = Rn. In
this case we have

y(s, x) = ψG0,f(s,x)(x) = ϕ0(x) + f(s, x)ν0(x)

and note that for f small and smooth, y(s, .) will be a diffeomorphism, with f(0, x) = 0

and ∂xif(0, x) = 0 and ∂xi∂xjf(0, x) = 0. We compute the equation satisfied by f(s, x)

such that y(s, x) is a solution of (37). Taking into account Corollary 1.3.5 in Man-
tegazza [17], up to a reparametrization, the evolution of Gs = y(s,G0) is characterized
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by it’s normal evolution, namely 〈∂sy(s, x), ν∂Gs(y(s, x))〉y(s,x). Let us compute the
pullback metric at x ∈ G0, g(s, x) = y(s, .)∗g|∂Gs , where g is the canonical metric
in V . In a local chart of G0, (xi)i∈[[n−1]] at x ∈ G0, we have:

gi,j(s, x) = 〈∂xiy(s, x), ∂xjy(s, x)〉
= 〈∂xiϕ0 + ∂xif(s, x)ν0(x) + f(s, x)∂xiν0(x), ∂xjϕ0

+ ∂xjf(s, x)ν0(x) + f(s, x)∂xjν0(x)〉
= 〈∂xiϕ0 + f(s, x)∂xiν0(x), ∂xjϕ0 + f(s, x)∂xjν0(x)〉+ ∂xif(s, x)∂xjf(s, x).

Using Gauss-Weingarten equation, namely:

∂xiν0(x) = hi,l(0, x)gl,k(0, x)∂xkϕ0(x),

where hi,l(0, x) is the second fundamental form of G0 at x, and (gl,k(0, x))l,k is the
inverse of the metric (gl,k(0, x))l,k, and we use the convention that every repeated
lower indices and upper indices are considered as a sum, as in the whole paper. We
get,

gi,j(s, x) = gi,j(0, x) + 2f(s, x)hi,j(0, x)

+ f2(s, x)hi,lg
l,mhj,m(0, x) + ∂xif(s, x)∂xjf(s, x).

Using again Gauss-Weingarten equation, and since 〈ν(s, x), ∂xiy(s, x)〉 = 0 we have

hi,j(s, x) = −〈ν(s, x), ∂xi∂xjy(s, x)〉
= −〈ν(s, x), ∂xi∂xjϕ0 + ∂xi∂xjfν0(x)

+ ∂xjf∂xiν0(x) + ∂xif∂xjν0 + f∂xi∂xjν0(x)〉

= −∂xi∂xjf〈ν(s, x), ν0(x)〉+ Ĥi,j(x, f(s, x), (∂xlf(s, x))l∈[[n−1]]),

where ν(s, x) is the exterior normal vector of Gs at the point y(s, x), and hi,j(s, x)

is the second fundamental form of Gs at y(s, x) in the basis (∂xiy(s, x))i∈[[n−1]] of
it’s tangent space and Ĥ is a smooth function when the two last argument are small
enough. We also have

∂sy(s, x) = ∂sf(s, x)ν0(x)

and ρ∂Gs(y(s, x)) = gi,j(s, x)hi,j(s, x), note that this quantity is independent of the
chart. If we write :

ρ∂Gs(y(s, x)) = gi,j(s, x)hi,j(s, x)

= −gi,j(s, x)∂xi∂xjf〈ν(s, x), ν0(x)〉+ gi,j(s, x)Ĥi,j(x, f(s, x), (∂xlf(s, x))l∈[[n−1]])

= −gi,j(s, x)
(
∂xi∂xjf − Γki,j(s, x)∂xkf(s, x)

)
〈ν(s, x), ν0(x)〉

+ gi,j(s, x)
(
Ĥi,j(x, f(s, x), (∂xlf(s, x)l∈[[n−1]])− Γki,j(s, x)∂xkf(s, x)〈ν(s, x), ν0(x)〉)

)
= −4G0,sf〈ν(s, x), ν0(x)〉+H(x, f(s, x), (∂xlf(s, x))l∈[[n−1]], (∂xl(∂xkf(s, x))2)l,k∈[[n−1]]),

where Γki,j(s, x) is the Christoffel for the metric g(s), this quantity depends
on the derivative of g and thus on the second derivative of f , but only via
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(∂xl(∂xkf(s, x))2)l,k∈[[n−1]]. Furthermore, as we can see below, ν(s, x) depends
on the derivative of f up to order one. Note that since ρ∂Gs(s, x) and 4G0,sf are
independent on the choice of the chart, the same is true for

H(x, f(s, x), (∂xlf(s, x))l∈[[n−1]], (∂xl(∂xkf(s, x))2)l,k∈[[n−1]])).

So if y(s, x) is a solution of (37) then after taking bracket with the normal vector
we get:

∂sf(s, x)〈ν(s, x), ν0(x)〉 = 〈∂sy(s, x), ν∂Gs(y(s, x))〉y(s,x)

= −ρ∂Gs(y(s, x)) + 〈b(y(s, x)), ν∂Gs(y(s, x))〉y(s,x) + a(y(s, x))

= 4G0,sf〈ν(s, x), ν0(x)〉

+H̃(x, a, b, f(s, x), (∂xlf(s, x))l∈[[n−1]], (∂xl(∂xkf(s, x))2)l,k∈[[n−1]]),

(39)

where H̃ is independent on the choice of the chart.
Furthermore, since (vi(s, x))i∈[[n−1]] B (

√
gi,l(s, x)∂xly(s, x))i∈[[n−1]] is an orthonor-

mal basis of the tangent space of Gs at y(s, x), the vector

ν0(x)−
∑

i∈[[n−1]]

〈ν0(x), vi(s, x)〉vi(s, x)

is orthogonal to this tangent space. Let us compute it, taking into account
that 〈ν0(x), ∂xlϕ0(x)〉 = 0 and 〈ν0(x), ∂xlν0(x)〉 = 0:

ν0(x)−
∑

i∈[[n−1]]

〈ν0(x), vi(s, x)〉vi(s, x)

= ν0(x)−
∑

i∈[[n−1]]

〈
ν0(x),

∑
l∈[[n−1]]

√
g
i,l

(s, x)∂xly(s, x)

〉 ∑
k∈[[n−1]]

√
g
i,k

(s, x)∂xky(s, x)

= ν0(x)−
∑

i∈[[n−1]]

∑
l∈[[n−1]]

√
g
i,l

(s, x)〈ν0(x), ∂xly(s, x)〉
∑

k∈[[n−1]]

√
g
i,k

(s, x)∂xky(s, x)

= ν0(x)−
∑

i∈[[n−1]]

∑
l∈[[n−1]]

√
g
i,l

(s, x)∂xlf(s, x)
∑

k∈[[n−1]]

√
g
i,k

(s, x)∂xky(s, x)

= ν0(x)−
∑

l∈[[n−1]]

∑
k∈[[n−1]]

∑
i∈[[n−1]]

√
g
i,l

(s, x)
√
g
i,k

(s, x)∂xlf(s, x)∂xky(s, x)

= ν0(x)−
∑

l∈[[n−1]]

∑
k∈[[n−1]]

gkl(s, x)∂xlf(s, x)∂xky(s, x).

In particular, this vector is different to zero for f and ∇f small enough and we get
then

ν(s, x) =
ν0(x)− ∂xif(s, x)gi,j(s, x)∂xj (ϕ0(x) + f(s, x)ν0(x))

‖ν0(x)− ∂xif(s, x)gi,j(s, x)∂xj (ϕ0(x) + f(s, x)ν0(x))‖
.
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It follows equally that 〈ν(s, x), ν0(x)〉 is different to zero for f and∇f small enough,
and thus dividing (39) by 〈ν(s, x), ν0(x)〉, we get (38) for a smooth functionH deduced
from the previous computations.

When s, f(s, x) and ∇G0,sf(s, x) are small, the implicit function theorem enables
us to write (38) under the form considered in Appendix A of Mantegazza [17], due to
the strict ellipticity of the operator 4G0,s on G0 and to the fact that

(∂xi(∂xjf(s, x))2)i,j∈[[n−1]] = 2(∂xjf(s, x)(∂xi∂xjf(s, x)))i,j∈[[n−1]].

As shown by Appendix A of Mantegazza [17], such quasi-linear parabolic equations
admit a unique solution on a small time interval containing 0, so this existence and
uniqueness result holds for (38). It would also be possible to put in front of the
term ρ∂Gs(x) of (37) a positive quantity depending smoothly on x.

Remark 15. – We have written in a natural way the leading term of ρ∂Gs in terms
of the Laplacian for the metric g(s). Unfortunately the equation we will need will not
be exactly of this form, because we will have an additional stochastic term, carefully
studied in Section 4. For the short time existence, we will prefer to write this leading
term in terms of a fixed manifold with a fixed metric as in (62) in Subsection 4.1.

Remark 16. – Let us come back to the search of a smooth family (Gs)s∈[0,S+) sat-
isfying (34), where α ∈ C∞(G0) is given. First extend ρ∂G0

+ α from ∂G0 to V , to
obtain a smooth function a ∈ C∞(V ) coinciding with ρ∂G0

+ α on ∂G0. Next define
for any D ∈ D,

∀x ∈ C, αC(x) = −ρC(x) + a(x).

The radial evolution equation

∀ s ∈ [0, S+), ∀x ∈ ∂Gs, ∂sx = α∂Gs(x)ν∂Gs(x)(40)

is of the form (37) and so admits a unique solution for small enough intervals [0, S+).
Restricting the above equation to s = 0 shows that (Gs)s∈[0,S+) solves (34).

This construction seems particularly cumbersome, it would be more natural to
extend α from ∂G0 to V to get a smooth function c ∈ C∞(V ) and to solve the radial
evolution equation

∀ s ∈ [0, S+), ∀x ∈ ∂Gs, ∂sx = c(x)ν∂Gs(x).(41)

Unfortunately, doing so, we end up with a Hamilton-Jacobi equation (see e.g., Chap-
ter 3 of Evans [8]) instead of the quasi-linear parabolic Equation (38). One would
then be led to investigate if the usual conditions for existence and uniqueness of the
solutions to the Hamilton-Jacobi equations are satisfied and thus to describe more
precisely the function H appearing in (38), but this is not so nice.

The normal flow Equation (32), corresponding to c = 1, was simple to solve (in
both direction of the time, contrary to the above quasi-linear parabolic equations),
because the normal vectors are transported in a parallel way by the geodesic flows
directed by these normal vectors.
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Equations of the type (37) are adapted to our purposes: only considering the last
vector field in (22), i.e., the heuristic D-valued “ordinary” differential equation dDt =

V2(Dt)dt, amounts to solve the following modification of the mean curvature flow:

∀ s ∈ [0, S+), ∀x ∈ ∂Gs, ∂sx = −ρb∂Gs(x)ν∂Gs(x),(42)

where

∀D ∈ D, ∀x ∈ C, ρbC(x) B ρC(x) + 〈∇U(x)− β(x), νC(x)〉x(43)

(despite the b in supscript, remember that b = ∇U +β and not ∇U −β, as the above
formula could suggest).

Let D0 ∈ D be given, as well as (Bt)t≥0 a standard (one-dimensional) Brownian
motion starting from 0. To solve (22), we are looking for a stochastic D-valued evo-
lution (Dt)t∈[0,τ), where τ > 0 is a stopping time (wrt. to the filtration generated by
the Brownian motion), such that

∀ t ∈ [0, τ), ∀x ∈ Ct, dx =

(√
2dBt + 2

µ(Ct)

µ(Dt)
dt− ρbCt(x)dt

)
νCt(x),(44)

where Ct B ∂Dt.

To explain the Doss [6] and Sussman [28] approach to such stochastic differential
equations, it is helpful to first replace

√
2 dBt+ 2µ(Ct)/µ(Dt) dt by dξt = ξ′t dt, where

ξ : R+ → R is a given C1 function with ξ0 = 0. Still starting from D0, we would like
to solve the radial evolution equation

∀ t ∈ [0, ε), ∀x ∈ Ct, ∂tx =
(
ξ′t − ρbCt(x)

)
νCt(x)(45)

for some ε > 0, without using the derivative (ξ′t)t∈[0,ε]. To do so, we begin by solving
another radial evolution equation{

G0 = D0

∀ t ∈ [0, ε̃), ∀x ∈ ∂Gt, ∂tx = α∂Gt,ξt(x)ν∂Gt(x)
(46)

for some ε̃ > 0 small enough, where α is defined by

∀ r > 0, ∀D ∈ Dr, ∀x ∈ C, αC,r(x) B −ρbΨ(C,r)(ψC,r(x)),(47)

where Ψ(C, r) was defined after Remark 9, taking into account (24), (25), (26), (35).
Next, consider

ε B inf{t ∈ [0, ε̃) : Gt 6∈ Dξt} > 0

(with the usual convention that ε = ε̃ if the set in r.h.s. is empty) and define

∀ t ∈ [0, ε), Dt B Ψ(Gt, ξt)

Let us check that this is indeed a solution of (45). First, we have Ψ(G0, ξ0) =

Ψ(D, 0) = D0. Concerning the evolution, differentiate with respect to the first and

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021



30 CHAPTER 3. SMOOTH INITIAL CONDITIONS

second variables of Ψ to find

∀ t ∈ [0, ε), ∀x ∈ Ct, ∂tx = (TGtΨ(·, ξt)[α∂Gt,ξt ](x) + ξ′t) νCt(x)

=
(
−ρbCt(x) + ξ′t

)
νCt(x),

as wanted, where we used Lemma 13. Denote h the mapping defined on D by

∀D ∈ D, h(D) = 2
µ(C)

µ(D)
.

For given D0 ∈ D and a C1 function ζ : R+ → R, we are now looking for a solution,
starting from D0, to the radial evolution equation

∀ t ∈ [0, ε), ∀x ∈ Ct, ∂tx =
(
ζ ′t + h(Dt)− ρbCt(x)

)
νCt(x)(48)

for some ε > 0. Following computations similar to those presented above, we get a
solution by taking, for t > 0 small enough,

Dt B Ψ(Gt, ζt + θt),(49)

where the R+ × D-valued family (θt, Gt)t∈[0,ε), for ε > 0 small enough, is a solution
of the system starting from (θ0, G0) = (0, D0) and satisfying

∀ t ∈ [0, ε),

{
d
dtθt = h(Ψ(Gt, ζt + θt))

∀x ∈ ∂Gt, ∂tx = α∂Gt,ζt+θt(x)ν∂Gt(x).
(50)

The formulations (49) and (50) do not require that the function ζ is differentiable.
These remarks suggest to solve (44) by replacing (ζt)t≥0 by (

√
2Bt)t≥0 in (49) and

(50), up to the random time τ these constructions are allowed: τ will be a stopping
time with respect to the filtration generated by the Brownian motion (Bt)t≥0. This is
the Doss [6] and Sussman [28] method, adapted to our evolving domain framework.

So given D0 ∈ D, we are led to consider the following stochastic radial evolution
equation system with respect to (θt, Gt)t∈[0,ε), starting with (θ0, G0) = (0, D0):

∀ t ∈ [0, ε),

{
d
dtθt = h(Ψ(Gt,

√
2Bt + θt))

∀x ∈ ∂Gt, ∂tx. = α∂Gt,
√

2Bt+θt
(x)ν∂Gt(x).

(51)

In Section 4, we show the existence of a solution of (46), where (ξt)t≥0 = (
√

2Bt)t≥0

and the existence of a solution of (51). There, we will only consider the case V = Rn+1,
the situation of a general manifold V is similar up to some modifications, which are
straightforward from a conceptual point of view, but induce complicated notations.

Once (51) is solved, define as in (49),

∀ t ∈ [0, τ), Dt B Ψ(Gt,
√

2Bt + θt),(52)

up to the stopping time τ until which this construction is permitted.
Let us now check that (52) provides a solution to the martingale problem presented

in the introduction:
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Theorem 17. – The stopped stochastic process (Dt)t∈[0,τ), defined on the natural
filtered probability space of the standard Brownian motion (Bt)t≥0, is a solution to
the stopped martingale problem associated to the generator (D,L) and to the starting
domain D.

Proof. – Fix some f ∈ C∞(V ). On the set I B {(s, r) ∈ R+×R : Gs ∈ Dr}, consider
the mapping

(s, r) 7→ Ff (Ψ(Gs, r)).(53)

According to Lemma 10, this mapping is C2 in the second variable. Concerning the
first variable, note that for (s, r) ∈ I, we have

∀x ∈ ∂Gs, ∂sx = −ρbΨ(∂Gs,r)
(ψ∂Gs,r(x))ν∂Gs(x).(54)

From Lemma 13, we deduce that

∀x ∈ Ψ(∂Gs, r), ∂sx = −ρbΨ(∂Gs,r)
(x)νΨ(∂Gs,r)(x)(55)

and from Lemma 14, that for any f ∈ C∞(V ),

d

ds
Ff (Ψ(Gs, r)) = −

∫
Ψ(∂Gs,r)

f(x)ρb(x)µ(dx)(56)

In particular, the mapping defined in (53) is C1 in the first variable.
These observations enable us to apply Itō’s formula to

[0, τ) 3 t 7→ Ff (Ψ(Gt,
√

2Bt + θt))

to get its stochastic evolution:

dFf (Ψ(Gt,
√

2Bt + θt))

= −

(∫
∂Ψ(Gt,

√
2Bt+θt)

fρb dµ

)
dt+

(∫
∂Ψ(Gt,

√
2Bt+θt)

f dµ

)
(
√

2dBt + ∂tθtdt)

+

(∫
∂Ψ(Gt,

√
2Bt+θt)

〈∇f, ν〉 dµ+

∫
∂Ψ(Gt,

√
2Bt+θt)

f(ρ+ 〈∇U, ν〉) dµ

)
dt

=

(∫
∂Ψ(Gt,

√
2Bt+θt)

〈∇f, ν〉+ f(h(Ψ(Gt,
√

2Bt + θt)) + 〈β, ν〉) dµ

)
dt

+
√

2

(∫
∂Ψ(Gt,

√
2Bt+θt)

f dµ

)
dBt

= L[Ff ](Dt) dt+ dMt,

where we used (6) and where (Mt)t∈[0,τ) is a local martingale whose bracket is given
by

∀ t ∈ [0, τ), 〈M〉t = 2

∫ t

0

ΓL[Ff , Fg](Ds) ds.
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This description and the continuity of the trajectories [0, τ) 3 t 7→ Ff (Dt) imply
that (Dt)t∈[0,τ) is a solution to the martingale problem associated to the generator
(D,L) (see e.g., the book of Bakry, Gentil and Ledoux [3]). SinceD0 = D, we conclude
to the wanted result.

Remark 18. – There are potentially other ways to use the Doss-Sussman approach.
For instance, Equation (22) can be rewritten under the form

dDt =
√

2V1(Dt) dBt + Ṽ2(Dt) dt,(57)

where Ṽ2(D) B 2h(D)V1(D) + V2(D) for any D ∈ D. Similarly to (43) and (47),
define

∀D ∈ D, ∀x ∈ C, ρ̃bC(x) B ρC(x) + 〈∇U(x)− β(x), νC(x)〉x − h(D)

∀ r > 0, ∀D ∈ Dr, ∀x ∈ C, α̃C,r(x) B −ρ̃bΨ(C,r)(ψC,r(x)).

Next try to construct a family (G̃t)t∈[0,ε) (where ε > 0 is a stopping time) such that

∀ t ∈ [0, ε), ∀x ∈ ∂G̃t, ∂tx = α̃∂Gt,
√

2Bt
(x)ν∂Gt(x).

Contrary to (51), no auxilliary (θt)t∈[0,ε) is needed here, but the above equation is
not really of the type (37), due to the isoperimetric ratio. Nevertheless, it should be
possible to adapt to this situation the fixed point approach presented in Section 4.

Once (G̃t)t∈[0,ε) has been constructed, consider

∀ t ∈ [0, τ), Dt B Ψ(G̃t,
√

2Bt)

with

τ B inf{t ∈ [0, ε) : G̃t 6∈ D√2Bt
}.

Then the stopped stochastic process (Dt)t∈[0,τ), defined on the natural filtered proba-
bility space of the standard Brownian motion (Bt)t≥0, is a solution to the martingale
problem associated to the generator (D,L) and to the starting domain G0.

We preferred to present how to solve (22), because the flows associated to V1 and
V2 are quite famous (at least when ∇U = β = 0) and well-investigated. But maybe
the flow associated to the radial equation

∀x ∈ Ct, ∂tx = (h(Dt)− ρCt(x)) νCt(x)

is also a natural object to study. In Subsection 5.2, we will check in the homogeneous
setting of Section 2 that this alternative Doss-Sussman approach should be preferred
to the one considered in the proof of Theorem 17.
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CHAPTER 4

EXISTENCE OF A STOCHASTIC
MODIFIED MEAN CURVATURE FLOW

This section presents the quite technical proofs of the existence of regular solu-
tions to (46) and (51), respectively the following subsections. As announced before
Theorem 17, we only deal with V = Rn+1 to avoid complicated notations.

We begin by recollecting our notations: D is the set of non-empty, compact and
connected domains D in V , which coincide with the closure of their interior and whose
boundary C B ∂D is smooth. The exterior normal vector νC and the mean curvature
ρC are defined on C. Recall we were given a function U ∈ C∞(V ) and a smooth
vector field β satisfying div(exp(U)β) = 0, to which is associated the smooth vector
field b B ∇U + β. Denote µ B exp(U)λ, the measure admitting the density exp(U)

with respect to the Riemannian measure λ (when µ gives a finite weight to V , it
is normalized into a probability measure, which amounts to add a constant to U).
The interest of µ is to be reversible for the operator L B 4+ b. We associate to the
boundary C the (dim(V )−1)-Hausdorff measure µC coming from µ, namely admitting
the density exp(U) with respect to the usual Riemannian (dim(V ) − 1)-Hausdorff
measure. We also distort ρC by introducing the modified mean curvature ρbC defined
by

∀x ∈ C, ρbC(x) B ρC(x) + 〈∇U(x)− β(x), νC(x)〉x .

Let D0 ∈ D be given, as well as (Bt)t≥0 a standard real Brownian motion starting
from 0. We are looking for a stochastic D-valued evolution (Dt)t∈[0,τ), where τ > 0 is
a stopping time, such that

∀ t ∈ [0, τ), ∀x ∈ Ct, dx =
(√

2dBt + 2h(Dt)dt− ρbCt(x)dt
)
νCt(x),(44)

where

∀D ∈ D, h(D) B 2
µ(C)

µ(D)
.

Resorting to the Doss [6] and Sussman [28] method, we are led to solve consecu-
tively:
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— The deterministic radial equation in (Gt)t∈[0,ε̃):{
G0 = D0

∀ t ∈ [0, ε̃), ∀x ∈ ∂Gt, ∂tx = α∂Gt,ξt(x)ν∂Gt(x),
(46)

where R+ 3 t 7→ ξt ∈ R is assumed to be α-Hölder regular with α ∈ (0, 1/2),
ε̃ is small enough and

∀ r > 0, ∀D ∈ Dr, ∀x ∈ C, αC,r(x) B −ρbΨ(C,r)(ψC,r(x))

with for any r ∈ R,

ψC,r : C 3 x 7→ expx(rνC(x)) ∈ V
Ψ(C, r) B {ψC,r(x) : x ∈ C}
Dr B {D ∈ D : r ∈ (R−(D), R+(D))}

R+(D) B inf{r ∈ (0,+∞) : ψC,r is not a diffeomorphism on its image}
R−(D) B − inf{r ∈ (0,+∞) : ψC,−r is not a diffeomorphism on its image}.

— The radial system in (θt, Gt)t∈[0,ε):

∀ t ∈ [0, ε),

{
d
dtθt = h(Ψ(Gt,

√
2ζt + θt))

∀x ∈ ∂Gt, ∂tx = α∂Gt,
√

2ζt+θt
(x)ν∂Gt(x),

(50)

where R+ 3 t 7→ ζt ∈ R is assumed to be α-Hölder regular with α ∈ (0, 1/2),
ε is small enough and

∀ r ∈ R, ∀D ∈ D, Ψ(D, r) B
⋃

s∈(−∞,r]

Ψ(C, s).

The interest of these manipulations is that a solution of (44) will be given by

∀ t ∈ [0, τ), Dt B Ψ(Gt,
√

2Bt + θt),

where in (50) we take (ζt)t≥0 = (Bt)t≥0 and where τ is the corresponding ε, which
ends up being a stopping time with respect to the filtration generated by (Bt)t≥0.

4.1. Local existence of a pushed mean curvature flow

Let F0 : M → Rn+1 be a smooth immersion of an n-dimensional manifold M

such that F0(M) = C. Let r : t ∈ [0,∞) 7→ r(t) ∈ R be a real continuous function.
Consider the following equation, which is similar to (46) (i.e., ∂Gt = F (t,M)), taking
into account the remark made before Lemma 13:{

∀x ∈M,
〈
∂
∂tF (t, x), νF (t, x)

〉
= −ρbΨ(F (t,M),r(t))(ψF (t,M),r(t)(x))

F (0, x) = F0(x),
(58)

where νF (t, x) is the normal vector of the hypersurface F (t,M) at F (t, x). The goal
of this section is to show existence in small time of solution of (58) with enough
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regularity in space and time, under the hypotheses that r(0) is small enough and
that r is α/2-Hölder regular, for some α ∈ (0, 1).

To get a small time existence of Equation (58) we will convert the problem in terms
of a quasi-parabolic equation. We will study the linearisation of this equation, it turns
to be linear and strictly parabolic for small time, with Cα/2,α([0, T ]×M) coefficients
when M is a C2+α manifold. We will resort to an existing result on the existence
and regularity of the solution of such a linear equation. Then we will use the inverse
function theorem to get a solution of the original Equation (58).

Let C = F0(M), we will suppose that M is a C3+α manifold and F0 is a C3+α

diffeomorphism (in general we will denote by reg(M) the manifold regularity of M),
so that C is also a C3+α manifold. Small perturbations in time of C under (58) live
in a small tubular neighborhood of C, and as in Mantegazza [17], a useful way to
obtain a quasi-linear equation from (58) is to represent the solution as graphs over
the fixed hypersurface C. The underlying idea is to consider again the parametrization
(r−, r+) × C 3 (r, y) 7→ ψC,r(y) of a tubular neighborhood of C, where (r−, r+) is a
small neighborhood of 0. Let x ∈ M , and ν0(x) be the unit outward normal of the
hypersurface C = F0(M) at the point F0(x). Then one looks at the function f(t, .) :

M → R, with enough regularity, whose image is included into (r−, r+) and which
satisfies

F (t, x) = ψC,f(t,x)(F0(x)) = F0(x) + f(t, x)ν0(x),

for all (t, x) ∈ [0, S+) ×M , with S+ small enough, i.e., we represent F (t,M) as a
graph over C, since C = F0(M) we have f(0, .) = 0 and the existence of S+ is due to
the regularity of f and the compactness of M .

Let xi be a local chart ofM , gi,j(0, x) = 〈∂iF0, ∂jF0〉 the Riemannian metric at x in
this chart, gi,j(0, x) its inverse, hi,j(0, x) B Π(∂iF0, ∂jF0) = 〈∇∂iF0(x)ν0(x), ∂jF0(x)〉
where Π in the second fundamental form of C at F0(x) and define Si,j(0, x) =

hi,kg
k,lhlj(0, x), where the convention that every repeated lower indices and upper

indices is considered as a sum is enforced, as in the whole paper. We end up with the
quasi-linear parabolic equation with respect to f in order that F (t, .) satisfies (58),
after taking care that we have some dilation term r(t) in the equation. We have for
all i, j ∈ [[n]], t ∈ [0, S+) and x ∈M ,

∂

∂t
F (t, x) = ∂tf(t, x)ν0(x)

(59)

∂iν0(x) = hi,kg
k,l(0, x)∂lF0(x)

∂iF (t, x) = ∂iF0(x) + f(t, x)hi,kg
k,l(0, x)∂lF0(x) + ∂if(t, x)ν0(x)

gi,j(t, x) = 〈∂iF (t, x), ∂jF (t, x)〉
= gi,j(0, x) + 2f(t, x)hi,j(0, x) + f2(t, x)Si,j(0, x) + ∂if(t, x)∂jf(t, x)

C Gi,j(t, x, f,∇f)
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ν(t, x) =
ν0(x)− ∂if(t, x)gi,j(t, x)∂j(F0(x) + f(t, x)ν0(x))

‖ν0(x)− ∂if(t, x)gi,j(t, x)∂j(F0(x) + f(t, x)ν0(x))‖

hi,j(t, x) = −〈ν(t, x), ∂i∂jF (t, x)〉
= −〈ν(t, x), ∂i∂jf(t, x)ν0(x) + ∂i∂jF0(x) + ∂if(t, x)∂jν0(x) + ∂jf(t, x)∂iν0(x)

+ f(t, x)∂i∂jν0(x)〉 C Hi,j(t, x, f,∇f,∇∇f),

where the second equality is the Gauss-Weingarten formula, where ν(t, x) is the
unit normal of the hypersurface F (t,M) at F (t, x), and where we used the
Gram-Schmidt procedure in the computation of ν(t, x) (taking into account
that

(
vi B

√
gi,l(t, x)∂lF (t, x)

)
i∈[[n]]

is an orthonormal basis of TF (t,x)F (t,M)).

To simplify the notations, denote

G B (Gi,j(t, x, f,∇f))i,j∈[[n]] and H B (Hi,j(t, x, f,∇f,∇∇f))i,j∈[[n]],

which take values in Sn×n, the space of symmetric matrices. Note that G does not
depend on ∇∇f and that H has regularity reg(M)−3 in x (due to the term ∂i∂jν0(x)

in Hi,j(t, x, f,∇f,∇∇f)).
To manage the right hand side of (58), define

M̃t B Ψ(F (t,M), r(t))

F̃ (t, x) B ΨF (t,M),r(t)(F (t, x)) = F (t, x) + r(t)ν(t, x)

and denote all the quantities that depend on M̃t = F̃ (t,M) by the same letter as
for F (t,M) with a tilde. So by the same computation as above we have for all i, j ∈
[[n]], t ∈ [0, S+) and x ∈M :

∂iF̃ (t, x) = ∂iF (t, x) + r(t)∂iν(t, x)

= ∂iF (t, x) + r(t)hi,kg
k,l(t, x)∂lF (t, x)

g̃i,j(t, x) = gi,j(t, x) + 2r(t)hi,j(t, x) + r(t)2Si,j(t, x)

=
(
G(Id + 2r(t)G−1H + r(t)2G−1HG−1H)

)
i,j

=
(
G
(
Id + r(t)G−1H

)2)
i,j
C G̃i,j(t, x, f,∇f,∇∇f)

ν̃(t, x) = ν(t, x)

h̃i,j(t, x) = −〈ν(t, x), ∂i∂jF̃ (t, x)〉 = Hi,j − r(t)〈ν(t, x), ∂i∂jν(t, x)〉
= Hi,j + r(t)〈∂iν(t, x), ∂jν(t, x)〉
= Hi,j + r(t)Si,j(t, x) = (H + r(t)HG−1H)i,j =

(
H(Id + r(t)G−1H)

)
i,j

C H̃i,j(t, x,∇f,∇∇f).

(60)

As usual, denote G̃ B (G̃i,j(t, x, f,∇f,∇∇f)i,j∈[[n]], H̃ B (H̃i,j(t, x, f,∇f,∇∇f))i,j∈[[n]]

and (G̃i,j(t, x, f,∇f,∇∇f))i,j∈[[n]] B G̃−1, all taking values in Sn×n, so that we have
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for the mean curvature

−ρΨ(F (t,M),r(t))(ψF (t,M),r(t)(x)) = −G̃i,jH̃i,j = −tr(G̃−1H̃)

= −tr
((

Id + r(t)G−1H
)−2

G−1H(Id + r(t)G−1H)
)

= −tr
((

Id + r(t)G−1H
)−1

G−1H
)

C Φ̂1(t, x, f,∇f,∇∇f)

for some mapping Φ̂1. Note that in the above formula only H depends on ∇∇f .
Furthermore consider the mapping Φ̂2 such that〈
∇U − β, νΨ(F (t,M),r(t))

〉
ψF (t,M),r(t)(x)

=
〈
∇U(F̃ (t, x))− β(F̃ (t, x)), ν̃(t, x)

〉
F̃ (t,x)

=
〈
∇U(F̃ (t, x))− β(F̃ (t, x)), ν(t, x)

〉
F̃ (t,x)

C Φ̂2(t, x, f,∇f)

remark the above expression does not depend on ∇∇f . Define

Φ̂(t, x, f,∇f,∇∇f) B Φ̂1(t, x, f,∇f,∇∇f) + Φ̂2(t, x, f,∇f)(61)

so that Equation (58) becomes the following non-linear parabolic equation{
∂tf(t, x) = 1

〈ν0(x),ν(t,x)〉 Φ̂(t, x, f,∇f,∇∇f) C Φ(t, x, f,∇f,∇∇f),

f(0, x) = 0.
(62)

Note that at time t = 0 we have f(0, x) = 0 , ∇f(0, x) = 0, ∇∇f(0, x) = 0.

The application Φ defined above will be considered with the following argument
Φ(t, x, z, v, q), where (t, x) ∈MT B [0, T ]×M , z ∈ R, v ∈ TxM and q is a symmetric
matrix in T ∗xM � T ∗xM . Since r is continuous and r(0) = 0 (or small enough), for
small T , Φ is smooth in three last variables in a neighborhood (0, 0, 0) and have at
least the regularity reg(M)− 3 in x, and the same Hölder regularity in time as r (i.e.,
it is enough to have G invertible and ‖r(t)G−1H‖ < 1). More precisely we have the
following proposition.

Proposition 19. – There exist T > 0 and R0 > 0 such that

— the mapping

Φ : [0, T ]×M ×B(0R,0Rn ,0Sn×n )(R0)→ R
(t, x, z, v, q) 7→ Φ(t, x, z, v, q)

(63)

is smooth in the three last components,

— the mapping t 7→ Φ(t, x, z, v, q) have the same Hölder regularity in time as r,

— the mapping x 7→ Φ(t, x, z, v, q) have at least the regularity reg(M)− 3.
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Proof. – Recall that

G(t, x, z, v) = G(0, x) + 2zH(0, x) + z2S(0, x) + v ⊗ v,

ν(t, x, z, v) =
ν0(x)− vigi,j(t, x, z, v)

(
∂jF0(x) + zhj,kg

k,l(0, x)∂lF0(x) + vjν0(x)
)

‖ν0(x)− vigi,j(t, x, z, v) (∂jF0(x) + zhj,kgk,l(0, x)∂lF0(x) + vjν0(x)) ‖
,

Hi,j(t, x, z, v, q) = −〈ν(t, x, z, q), ν0(x)〉qi,j − 〈ν(t, x, z, q), ∂i∂jF0(x)〉
− 〈ν(t, x, z, q), vi∂jν0(x) + vj∂iν0(x) + z∂i∂jν0(x)〉.

(64)

Since G(0, x) is invertible and M is compact, there exist R0, C1, C2 > 0 such that
for |z|, ‖v‖, ‖q‖ ≤ R0,

G(t, x, z, v) is invertible for all x ∈M,

‖G−1(t, x, z, v)‖ ≤ C1,

‖ν(t, x, z, v)− ν0(x)‖ ≤ 1

2
,

‖H(t, x, z, v, q)‖ ≤ C2.

Thus, since r is continuous and r(0) = 0 (or small enough), take T > 0 such that

T B sup

{
u ≥ 0 : sup

s∈[0,u]

|r(s)| ≤ 1

2C1C2

}
.(65)

Then ‖r(t)G−1H‖ ≤ 1
2 , and

(
Id + r(t)G−1H

)
is invertible for all (t, x, z, v, q) ∈ [0, T ]×

M ×B(0R,0Rn ,0Sn×n )(R0), and the wanted conclusions easily follow.

Lemma 20. – Let T be given by (65). For all (t, x, z, v, q) ∈ [0, T ] × M ×
B(0R,0Rn ,0Sn×n )(R0), we have:

∂qi,jΦ(t, x, z, v, q) = (G− 2r(t)H + r(t)2HG−1H)−1
i,j .

Furthermore, ∂qΦ(t, x, z, v, q) B (∂qi,jΦ(t, x, z, v, q))i,j∈[[n]] is uniformly elliptic.

Proof. – Let us write H as

H(q) B H(t, x, z, v, q)

C −〈ν(t, x, z, v), ν0(x)〉q −H1(t, x, z, v)

and recall that ν(t, x) and G do not depend on ∇∇f , ie are constant in q. Consider
ψ(q) B −G−1H(q), so

Φ̂(t, x, z, v, q) = tr
(

(Id− r(t)ψ(q))
−1
ψ(q)

)
.
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Let M ∈Mn×n, X ∈Mn×n small and u ∈ R such that ‖u(M +X)‖ < 1 then

(Id− u(M +X))−1(M +X) =
∑
n∈Z+

(u(M +X))n(M +X)

=
∑
n∈Z+

unMn+1 + un
∑

m∈[[0,n]]

MmXMn−m

+ o(X)

= (Id− uM)−1M +
∑

n∈Z+,m∈[[0,n]]

un
∑

MmXMn−m + o(X),

(66)

so d[(Id− uM)−1M ](X) =
∑
n∈Z+,m∈[[0,n]] u

n
∑
MmXMn−m. Hence

dq((Id− uψ(q))
−1

)(X) =
∑

n∈Z+,m∈[[0,n]]

unψ(q)mdψ(q)(X)ψ(q)n−m.

Thus using the trace property

dqtr((Id− uψ(q))−1ψ(q))(X)

= tr

 ∑
n∈Z+,m∈[[0,n]]

unψ(q)mdψ(q)(X)ψ(q)n−m


=

∑
n∈Z+,m∈[[0,n]]

untr
(
ψ(q)mdψ(q)(X)ψ(q)n−m

)
=

∑
n∈Z+,m∈[[0,n]]

untr (ψ(q)ndψ(q)(X))

= tr

∑
n∈Z+

(n+ 1)unψ(q)ndψ(q)(X)


= tr

(
(Id− uψ(q))−2dψ(q)(X)

)
.(67)

Thus we have

dqΦ̂(t, x, z, v, q)(X) = dqΦ̂1(t, x, z, v, q)(X)

= 〈ν(t, x, z, v), ν0(x)〉tr((Id− r(t)G−1H(q))−2G−1X)

so for any i, j ∈ [[n]],

∂qi,j Φ̂(t, x, z, v, q) = 〈ν(t, x, z, v), ν0(x)〉((Id− r(t)G−1H(q))−2G−1X)j,i

= 〈ν(t, x, z, v), ν0(x)〉(G− 2r(t)H + r(t)2HG−1H)−1
i,j ,

where G + 2r(t)H − r(t)2HG−1H ∈ Sn×n. For the last point of the lemma, use
Proposition 19, and the choice of T in its proof, to get

(G+ 2r(t)H + r(t)2HG−1H) = G(Id + r(t)G−1H)2
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is invertible for all t ∈ [0, T ], and is continuous as function of t, so its spectrum remains
positive as the spectrum at time 0, when r(0) = 0.

To show the existence result with sufficient regularity in time and space of Equa-
tion (58), we will show the existence result of the equivalent Equation (62) up to a
parametrization as in Proposition 1.3.4 in [17]. We will intensively use the existence
and regularity result of the linearised equation exposed in Lunardi [15]. Let us recall
briefly this result that appears as Theorem 5.1.10 of Lunardi [15] and whose extension
to the compact Riemannian manifold could be find e.g., as Theorem 2.3 of Huang [12]
(with the bundle E = M × R).

For α ∈ (0, 1) and T > 0 let

Cα,0([0, T ]×M) B
{
f ∈ C([0, T ]×M) : f(·, x) ∈ Cα([0, T ]), ∀x ∈M,

and such that ‖f‖Cα,0 B sup
x∈M
{‖f(·, x)‖Cα([0,T ]) <∞

}
,

where for any function f : [0, T ]→ R,

‖f‖Cα([0,T ]) B ‖f‖∞,[0,T ] + 〈f〉Cα([0,T ])(68)

〈f〉Cα([0,T ]) B sup

{
|f(t)− f(s)|
|t− s|α

, s 6= t ∈ [0, T ]

}
.(69)

Similarly, we define

C0,α([0, T ]×M) B
{
f ∈ C([0, T ]×M) : f(t, .) ∈ Cα(M), ∀t ∈ [0, T ],

and such that ‖f‖C0,α B sup
t∈[0,T ]

{‖f(t, ·)‖Cα(M) <∞
}
,

where the norm ‖ · ‖Cα(M) is defined as in (68) and (69), with [0, T ] replaced by M .
The most important functional spaces for our analysis will be, still for given

0 < α < 1,

Cα/2,α([0, T ]×M) B Cα/2,0([0, T ]×M) ∩ C0,α([0, T ]×M)

C1+α/2,2+α([0, T ]×M) B {f ∈ C1,2([0, T ]×M) :

∂tf, ∂i∂jf ∈ Cα/2,α([0, T ]×M), ∀i, j ∈ [[n]]}

respectively endowed with the norms

‖f‖Cα/2,α B ‖f‖Cα/2,0 + ‖f‖C0,α

‖f‖C1+α/2,2+α B ‖f‖∞ +

n∑
i=1

‖∂if‖∞ + ‖∂tf‖Cα/2,α +

n∑
i,j=1

‖∂i∂jf‖Cα/2,α .

As in Lemma 5.1.1 in Lunardi [15], there exists a uniform constant Cα > 0 such
that for all f ∈ C1+α/2,2+α:

‖∂if‖C(1+α)/2,1+α ≤ Cα‖f‖C1+α/2,2+α .(70)
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Consider the following linear equation:

{
∂tf(t, x) = g̃i,j(t, x)∂i∂jf(t, x) +

∑
i H̃1,i(t, x)∂if(t, x) + H̃0(t, x)f(t, x) + q(t, x)

f(0, x) = f0(x),

(71)

where g̃ B (g̃i,j)i,j∈[[n]], H̃1 B (H̃1,i)i∈[[n]], H̃0 and q (respectively f0) are some given
mappings on MT B [0, T ]×M (resp. M). As usual we will say that Equation (71) is
uniformly elliptic in MT when there exists an ellipticity coefficient λ > 0 such that
for all t ∈ [0, T ] and all ξ1, . . . , ξn ∈ R, we have:

g̃i,j(t, x)ξiξj ≥ λ‖ξ‖2.(72)

We recall the following theorem:

Theorem 21 (Th 5.1.10 Lunardi [15], Th 2.5 Huong [12]). – Let g̃, H̃1 , H̃0 and q
belong to Cα/2,α([0, T ]×M), with 0 < α < 1 and let f(0, .) ∈ C2+α. Assume moreover
that (71) is uniformly elliptic, i.e., (72) holds. Then there exists a quantity C > 0,
depending on the norms of g̃, H̃1,i and H̃0, as well as on the ellipticity coefficient
of g̃, such that Equation (71) has a unique solution f ∈ C1+α/2,2+α([0, T ]×M) and
we have the Schauder estimate:

‖f‖C1+α/2,2+α ≤ C
(
‖f0‖C2+α + ‖q‖Cα/2,α

)
.

Let us come back to the original equation i.e., (62), we will consider the following
space Mt0 = [0, t0]×M where the constant 0 < t0 ≤ T is to be chosen later, and let

X B {u ∈ C1+α/2,2+α(Mt0) : u(0, .) = 0,

max(‖u‖∞,Mt0
, ‖∇u‖∞,Mt0

, ‖∇∇u‖∞,Mt0
) ≤ R0}.

We define the map:

S : X→ Cα/2,α(Mt0)

u 7→ ∂tu− Φ(t, x, u,∇u,∇∇u).
(73)

This is clearly a continuously differentiable map.
We have the following theorem.

Theorem 22. – Let M be a C5+α manifold, for some fixed α ∈ (0, 1). If t 7→ r(t) is
α/2-Hölder and r(0) = 0 then there exists t0 > 0 such that Equation (62) has a unique
solution defined in Mt0 with regularity C1+α/2,2+α(Mt0).

Proof. – The above theorem is a consequence of inverse function theorem around a
specific function. Let u0(t, x) B

∫ t
0

Φ(s, x, 0, 0, 0) ds and note that u0 ∈ C1+α/2,2+α by
the assumption on the regularity of M . The Fréchet derivative of S at u0 it is given
by

dS(u0)u = ∂tu−
( ∂Φ

∂qi,j
∂i,ju+

∂Φ

∂vi
∂iu+

∂Φ

∂z
u
)
,
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where the coefficients are all evaluated at u0, for instance, ∂Φ
∂qi,j

stands for
∂Φ
∂qi,j

(t, x, u0,∇u0,∇∇u0). By definition of u0, there exists 0 < t1 ≤ T such that for
all 0 ≤ t ≤ t1, (u0,∇u0,∇∇u0)(t, x) ∈ B(0R,0Rn ,0Sn×n )(R0/2), so u0 ∈ X. Lemma 20
yields ∂Φ

∂q (t, x, u0,∇u0,∇∇u0) is strongly elliptic in Mt1 and is in Cα/2,α(Mt1). Using
Theorem 21, for the linearisation of (62), we get dS(u0) is locally invertible, and its
inverse is continuous. By the inverse function theorem there exist ε > 0, δ1 > 0 such
that for all 0 ≤ t ≤ t1 and for all g satisfying ‖g−S(u0)‖Cα/2,α(Mt) < ε, there exists an
unique f ∈ C1+α/2,2+α(Mt) satisfying ‖f−u0‖C1+α/2,2+α(Mt) < δ1 such that S(f) = g.
For f such that ‖f − u0‖C1+α/2,2+α(Mt) < δ1, since f(0, x) = u0(0, x) = 0 and us-
ing (70), we get

‖f − u0‖∞,Mt + ‖∇(f − u0)‖∞,Mt + ‖∇∇(f − u0)‖∞,Mt ≤ (t+ Cαt
(α+1)/2 + tα/2)δ1,

(74)

where Cα is the constant appearing in (70). So for t sufficiently small such that
(t+ Cαt

(α+1)/2 + tα/2)δ1 ≤ R0/2, we deduce f ∈ X for 0 < t0 ≤ t.
Let us show that with respect to the Cα/2,α(Mt) norm, S(u0) tends to 0 as t goes

to 0+. We will first show that ‖S(u0)(t, x) − S(u0)(s, x)‖ ≤ C1(δ)|t − s|α/2, for all
s, t ∈ [0, δ] and x ∈M , and with C1(δ) tending to 0 as δ tends to 0.

Let σ ∈ [0, 1] and

ζσ(t, x) = σ(u0(t, x),∇u0(t, x),∇∇u0(t, x)),

by definition of u0, there exists a constant C1 > 0 such that

|ζσ(t, x)− ζσ(s, x)| ≤ C1|t− s|,
|ζσ(t, x)− ζσ(t, y)| ≤ C1|x− y|α.

Let ~u0(t, x) B (u0(t, x),∇u0(t, x),∇∇u0(t, x)), we have:

S(u0)(t, x) = Φ(t, x, 0, 0, 0)− Φ(t, x, u0(t, x),∇u0(t, x),∇∇u0(t, x))

= −
∫ 1

0

d3Φ(t, x, ζσ(t, x))( ~u0(t, x)) dσ,

hence

|S(u0)(t, x)− S(u0)(s, x)|

=
∣∣∣ ∫ 1

0

(
d3Φ(t, x, ζσ(t, x))( ~u0(t, x))− d3Φ(s, x, ζσ(s, x))( ~u0(s, x))

)
dσ
∣∣∣

=
∣∣∣ ∫ 1

0

(
d3Φ(t, x, ζσ(t, x))− d3Φ(s, x, ζσ(s, x))

)
( ~u0(t, x)) dσ

+

∫ 1

0

(
d3Φ(s, x, ζσ(s, x))

)
( ~u0(t, x)− ~u0(s, x)) dσ

∣∣∣
≤
∫ 1

0

|
(
d3Φ(t, x, ζσ(t, x))− d3Φ(s, x, ζσ(s, x))

)
( ~u0(t, x))| dσ
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+

∫ 1

0

|
(
d3Φ(s, x, ζσ(s, x))

)
( ~u0(t, x)− ~u0(s, x))| dσ.

We have, since M is compact and Φ is regular in the three last variables:

|d3Φ(t, x, ζσ(t, x))− d3Φ(s, x, ζσ(s, x))|
≤ |d3Φ(t, x, ζσ(t, x))− d3Φ(t, x, ζσ(s, x))|+ |d3Φ(t, x, ζσ(s, x))− d3Φ(s, x, ζσ(s, x))|

≤ C1|ζσ(t, x)− ζσ(s, x)|+ C2|t− s|α/2

≤ (C1δ
1−α/2 + C2)|t− s|α/2,

where C is a constant whose value can change from one line to the other (also below).
Also we have | ~u0(t, x)| ≤ Ct ≤ Cδ. On the other hand we have:

|d3Φ(s, x, ζσ(s, x)| ≤ C

and
| ~u0(t, x)− ~u0(s, x)| ≤ C|t− s|.

Putting all things together we get:

|S(u0)(t, x)− S(u0)(s, x)| ≤ C(δ)|t− s|α/2

with C(δ) tending to 0 as δ tends to 0.
Let us show that:

|S(u0)(t, x)− S(u0)(t, y)| ≤ C(δ)|x− y|α

with C(δ) tending to 0 as δ tends to 0. With the same computation as above, we have:

|S(u0)(t, x)− S(u0)(t, y)| ≤
∫ 1

0

|
(
d3Φ(t, x, ζσ(t, x))− d3Φ(t, y, ζσ(t, y))

)
( ~u0(t, x))| dσ

+

∫ 1

0

|
(
d3Φ(t, y, ζσ(t, y))

)
( ~u0(t, x)− ~u0(t, y))| dσ

We also have, since M is compact:

|d3Φ(t, x, ζσ(t, x))− d3Φ(t, y, ζσ(t, y))|
≤ |d3Φ(t, x, ζσ(t, x))− d3Φ(t, y, ζσ(t, x))|+ |d3Φ(t, y, ζσ(t, x))− d3Φ(t, y, ζσ(t, y))|
≤ C2|x− y|α + C1|ζσ(t, x)− ζσ(t, y)|
≤ (C1 + C2)|x− y|α,

as well as

| ~u0(t, x)| ≤ Cδ
|d3Φ(t, y, ζσ(t, y))| ≤ C.

Moreover,

|u0(t, x)− u0(t, y)| ≤
∫ t

0

|Φ(s, x, 0, 0, 0)− Φ(s, y, 0, 0, 0)| ds ≤ Cδ|x− y|α
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and in the same way, using the regularity of Φ(s, x, 0, 0, 0) in terms of x, we get:

| ~u0(t, x)− ~u0(t, y)| ≤ Cδ|x− y|α.

We deduce that:

|S(u0)(t, x)− S(u0)(t, y)| ≤ C(δ)|x− y|α.

Hence ‖S(u0)‖Cα/2,α(Mt) tends to 0 as t tends to 0.
So there exist 0 < t2 such that ‖S(u0)‖Cα/2,α(Mt2 ) < ε. Let t0 = t1 ∧ t2, we get

by inverse function theorem that Sf = 0 has a solution f ∈ C1+α/2,2+α(Mt0), this is
actually a solution of Equation (62).

For the uniqueness, let f be the solution of (62) constructed above onMt0 . Consider
another solution g of (62) onMt0 , in particular g starts with the same initial condition
g0 = f0 = 0. Since g ∈ C1+α/2,2+α, let t3 ∈ (0, t0] be the maximum value of t such
that

‖g‖∞,Mt , ‖∇g‖∞,Mt , ‖∇∇g‖∞,Mt ≤ R0.

By construction of f , we have

‖f‖∞,Mt
, ‖∇f‖∞,Mt

, ‖∇∇f‖∞,Mt
≤ R0

for any t ∈ [0, t0] and in particular for t ∈ [0, t3].
Let u = f − g, then u satisfies the following linear equation:

∂tu = Φ(t, x, f,∇f,∇∇f)− Φ(t, x, g,∇g,∇∇g)

=

∫ 1

0

∂

∂σ
Φ(t, x, σ ~f + (1− σ)~g) dσ

=

∫ 1

0

∂Φ

∂qij
(t, x, σ ~f + (1− σ)~g)∂i,j(f − g) dσ +

∫ 1

0

∂Φ

∂vi
(t, x, σ ~f + (1− σ)~g)∂i(f − g) dσ

+

∫ 1

0

∂Φ

∂z
(t, x, σ ~f + (1− σ)~g)(f − g) dσ

= Aij(t, x)uij +Bi(t, x)ui + C(t, x)u,

where

Aij(t, x) =

∫ 1

0

∂Φ

∂qij
(t, x, σ ~f + (1− σ)~g) dσ,

Bi(t, x) =

∫ 1

0

∂Φ

∂vi
(t, x, σ ~f + (1− σ)~g) dσ,

C(t, x) =

∫ 1

0

∂Φ

∂z
(t, x, σ ~f + (1− σ)~g) dσ.

According to Lemma 20, Aij is uniformly elliptic. Let λ < −‖C‖Mt3
, and W B eλtu

then we have:

∂tW = Ai,j(t, x)∂i∂jW +Bi(t, x)Wi + (C + λ)W.
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The proof of uniqueness will be done by contradiction, suppose f 6= g then there
exists for example β > 0 (the negative possibility will be done in a similar way) and
(t, x) ∈ [0, t3] ×M such that W (t, x) = β. Consider the first time t0 such that there
exist x0 ∈ M such that W (t0, x0) = β, clearly t0 > 0. By definition, W (t0, x0) =

max{W (t, x), (t, x) ∈ [0, t0]×M}, and
∂tW (t0, x0) ≥ 0,

Hess(W )(t0, x0) ≤ 0,

∇W (t0, x0) = 0.

We have at (t0, x0)

0 ≤ ∂tW = Aij(t0, x0)∂i∂jW + (C + λ)β < Aij(t0, x)∂i∂jW ≤ 0,

where the last inequality come from Aij(t0, x0)∂i∂jW = tr(AHessW ) ≤ 0, and this
is a contradiction, so W ≤ 0. We do the same thing to get W ≥ 0 and so f = g for
all t ∈ [0, t3]. It follows in fact that t3 = t0.

Remark 23. – From the above proof, we see there exist two quantities η1, η2 > 0,
only depending on some bounds on the geometry of C, such that t0 can be expressed
as

t0 B η1 ∧ inf{s ≥ 0 : |r(s)| ≥ η2}.

Remark 24. – Using the α/2-Hölder regularity of the Brownian motion, for all
0 < α < 1, we get the existence and the regularity of the equation, similar to (44),
corresponding to the stochastic modified mean curvature flow:{

D0 = D,

∀ t ∈ [0, τ), ∀x ∈ Ct, dx =
(√

2dBt − ρbCt(x)dt
)
νCt(x),

(75)

where Ct B ∂Dt. The solution of this equation is obtained as above, first we solve
Equation (58) and we obtain Gt and then Dt B Ψ(Gt,

√
2Bt).

Remark 25. – Note that in the above proof we only need that r(0) is small enough,
such that ‖r(0)G−1H(0, ·)‖ < 1, so starting the same procedure at time t0, we have
a notion of maximal solution of Equation (62). A slight modification of the proof
of Theorem 22 also yields existence and uniqueness of solution of (62) for f0 small
enough, as well as all its derivatives up to order 2.

Using the strong maximum principle instead of the maximum principle in the proof
of Theorem 22, we have the following corollary:

Corollary 26. – Let U, Û ∈ D with C5+α boundaries, α ∈ (0, 1), and C = ∂U ,
Ĉ = ∂Û . Suppose that

Û ⊂ U, Ĉ 6= C

and that Ĉ belongs to an open tubular neighborhood of C. Let (∂Gt)t∈[0,τC) (resp.
(∂Ĝt)t∈[0,τĈ)) be a solution of (58) with r(t) =

√
2Bt started at C (resp. Ĉ), then
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there exist a positive stopping time τC,Ĉ > 0 (a priori smaller than τC ∧ τĈ because
we want ∂Gt to remain in an open tubular neighborhood of ∂Ĝt), such that

∀ t ∈ (0, τC,Ĉ), Ĝt ⊂ Gt, and ∂Gt ∩ ∂Ĝt = ∅.

The above corollary shows that even if the initial hypersurfaces are equal in a
large portion, it is sufficient they are different somewhere for the flow to detach them
instantaneously, at least when one of them lives in a tubular neighborhood of the
other. When the latter condition is not fulfilled, we have to impose that the initial
boundaries are disjoint:

Corollary 27. – Let U, Û ∈ D with C5+α boundaries, and C = ∂U , Ĉ = ∂Û .
Suppose that

Û ⊂ U, Ĉ ∩ C = ∅.

Let (∂Gt)t∈[0,τC) (resp. (∂Ĝt)t∈[0,τĈ)) be a solution of (58) with r(t) =
√

2Bt started
at C (resp. Ĉ), then for a positive stopping time τC,Ĉ > 0, we have

∀ t ∈ [0, τC,Ĉ), Ĝt ⊂ Gt, and ∂Gt ∩ ∂Ĝt = ∅.

Proof. – Since C and Ĉ are compact, and Ĉ ∩C = ∅ we have δ = d(C, Ĉ) > 0. Using
the continuity of the solution of (58), we get the existence of 0 < TC < τC (resp.
0 < TĈ < τĈ) such that for all t ∈ [0, TC ], we have d(C, ∂Gt) ≤ δ

4 (resp. for all t ≤ TĈ
we have d(Ĉ, ∂Ĝt) ≤ δ

4 ). Take τC,Ĉ = TC ∧ TĈ .

Consider the following stochastic mean curvature evolution starting from C0 = ∂D0

dx =
(√

2dBt − ρCt(x)dt
)
νCt(x).(76)

According to the Doss and Sussman approach, a solution of (76) is given by
(Ψ(Gt,

√
2Bt))t∈[0,τ), where (∂Gt)t∈[0,τ) is a solution of (58) with r(t) =

√
2Bt.

Equation (76) is a particular case of Equation (75) with b = 0.

Corollary 28. – Let D, D̂ ∈ D with C5+α boundaries, α ∈ (0, 1), and C = ∂D,
Ĉ = ∂D̂. Suppose that

D̂ ⊂ D, Ĉ ∩ C = ∅.

Let (∂Dt)t∈[0,τC) (resp. (∂D̂t)t∈[0,τĈ)) be a solution of (76) started at C (resp. Ĉ)
then for a positive stopping time τC,Ĉ > 0 we have:

∀ t ∈ [0, τC,Ĉ), D̂t ⊂ Dt and ∂Dt ∩ ∂D̂t = ∅.

Proof. – Use Corollary 27 we get there exist τC,Ĉ > 0 such that

∀ t ∈ [0, τC,Ĉ), ∂Gt ∩ ∂Ĝt = ∅

We have ∂Dt = Ψ(∂Gt,
√

2Bt) for t ∈ [0, τC) (resp. ∂D̂t = Ψ(∂Ĝt,
√

2Bt) for
t ∈ [0, τĈ)). For t ∈ [0, τC,Ĉ), Ψ(.,

√
2Bt) is a diffeomorphism between ∂Gt and
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its image ∂Dt (resp. between ∂Ĝt and its image ∂D̂t). The proof of the corollary
will be done by contradiction, suppose that there exists a time 0 < t < τC,Ĉ such
that Ψ(∂Gt,

√
2Bt) ∩ Ψ(∂Ĝt,

√
2Bt) 6= ∅. Then there exist x ∈ Gt and x̂ ∈ Ĝt such

that Ψ∂Gt(x,
√

2Bt) = Ψ∂Ĝt
(x̂,
√

2Bt). We have

d∂Gt(Ψ∂Gt(x,
√

2Bt)) =
√

2|Bt| = d∂Ĝt(Ψ∂Ĝt
(x̂,
√

2Bt)),

where d∂Gt(·) stands for the distance to ∂Gt. If Bt > 0, then Ψ∂Gt(x,
√

2Bt) ∈ Gct
so the geodesic curve r 7→ Ψ∂Ĝt

(x̂, r) has to cross ∂Gt at time r0 ∈ (0,
√

2Bt] (since
∂Gt ∩ ∂Ĝt = ∅ and Ĝt ⊂ Gt). Hence
√

2|Bt| = d∂Gt(Ψ∂Gt(x,
√

2Bt)) ≤ d(Ψ∂Ĝt
(x̂, r0),Ψ∂Ĝt

(x̂,
√

2Bt)) ≤
√

2|Bt| − r0,

so we get a contradiction.
The case Bt = 0 is clear.
If Bt < 0 namely Ψ∂Ĝt

(x̂,
√

2Bt) ∈ Int(Ĝt), the interior of Ĝt, and the geodesic
Ψ∂Gt(x,−r) have to cross ∂Ĝt at time r0 ∈ (0,

√
2|Bt|], so

√
2|Bt| = d∂Ĝt(Ψ(x̂,

√
2Bt)) ≤ d(Ψ∂Gt(x,−r0),Ψ∂Gt(x,

√
2Bt)) ≤

√
2|Bt| − r0

and we get a contradiction.

We want to control the distance between to different hypersurface evolving by the
stochastic mean curvature by quantities that only depend on the ambient curvature.

Lemma 29. – Let D, D̂ ∈ D with C2 boundaries in a d-dimensional manifold V,

C = ∂D, Ĉ = ∂D̂, D̂ ⊂ D and Ĉ ∩ C = ∅. Suppose that there exists k ∈ R such
that Ric ≥ (d − 1)kg, then at points (p, q) ∈ C × Ĉ such that d(p, q) = d(C, Ĉ) (or
local minimizers of the distance function restricted to C × Ĉ) we have:

(i) : if k > 0, and p is not conjugate to q then

2(d− 1)
√
k

(
1− cos(

√
kd(p, q))

)
sin(
√
kd(p, q))

≤ ρĈ(q)− ρC(p),

(ii) : if k ≤ 0, and p is not conjugate to q then

2(d− 1)
√
|k|
(
1− cosh(

√
|k|d(p, q))

)
sinh(

√
|k|d(p, q))

≤ ρĈ(q)− ρC(p),

(iii) : in particular for all k, if p is not conjugate to q then we have:

(d− 1)kd(p, q) ≤ ρĈ(q)− ρC(p),

(iv) : if V = Rd then

0 ≤ ρĈ(q)− ρC(p).
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Proof. – Let (p, q) ∈ C × Ĉ such that d(p, q) = d(C, Ĉ). Using the first variation
formula, we get there exists an unit speed geodesic γ in V such that γ(0) = q,
γ(d(p, q)) = p, γ̇(0) is orthogonal to TqĈ and γ̇(d(p, q)) is orthogonal to TpC. Let
(ei)i∈[[1,d−1]] be a orthonormal basis of TqĈ. Let γ1,i(t) be a geodesic in Ĉ such
that γ1,i(0) = q and γ̇1,i(0) = ei. Let γ2,i(t) be a geodesic in C such that γ2,i(0) = p

and γ̇1,i(0) = //d(p,q)ei, where // is the parallel transport along the geodesic γ. We
have 0 = 〈ei, γ̇(0)〉 = 〈//d(p,q)ei, γ̇(d(p, q))〉. Since (p, q) ∈ C × Ĉ is a local minimizer
of the distance function restricted to C × Ĉ, we have that

0 ≤ d2

dt2

∣∣∣∣
t=0

d(γ1,i(t), γ2,i(t)).

Let Yi be the Jacobi field along γ obtained by the variation of geodesic connecting
γ1,i(t) to γ2,i(t), we have: Yi(0) = ei, Yi(d(p, q)) = //d(p,q)ei. Using second variation
formula, the fact that γ̇(0) is the exterior normal vector of Ĉ at q and γ̇(d(p, q)) is
the exterior normal vector of C at p we get:

0 ≤ d2

d2t
d(γ1,i(t), γ2,i(t))|t=0

=
[
〈∇t=0γ̇2,i(t), γ̇(d(p, q))〉 − 〈∇t=0γ̇1,i(t), γ̇(0)〉

]
+ I(Yi, Yi)

=
[
〈∇t=0γ̇2,i(t), νC(p)〉 − 〈∇t=0γ̇1,i(t), νĈ(q)〉

]
+ I(Yi, Yi)

=
[
− 〈γ̇2,i(0),∇γ̇2,i(0)νC〉+ 〈γ̇1,i(0),∇γ̇1,i(0)νĈ〉

]
+ I(Yi, Yi)

= −ΠC(//d(p,q)ei, //d(p,q)ei) + ΠĈ(ei, ei) + I(Yi, Yi),(77)

where I(Yi, Yi) is the index of the Jacobi field Yi along γ, and ΠC (resp. ΠĈ) is the
second fundamental form of C (resp. Ĉ). Let Xi(s) = f(s)//sei, be a vector field
along γ such that f(0) = f(d(p, q)) = 1 and f ′′ = −kf , using the Index lemma since
p and q are not conjugate along γ, we have for all i ∈ [[1, d− 1]]

I(Yi, Yi) ≤ I(Xi, Xi).

Taking the sum in (77) we get:

0 ≤
d−1∑
i=1

(
−ΠC(//d(p,q)ei, //d(p,q)ei) + ΠĈ(ei, ei) + I(Yi, Yi)

)
≤ ρĈ(q)− ρC(p) +

d−1∑
i=1

I(Xi, Xi)

= ρĈ(q)− ρC(p) +

d−1∑
i=1

∫ d(p,q)

0

‖∇sXi‖2 − 〈R(Xi, γ̇)Xi, γ̇〉 ds

= ρĈ(q)− ρC(p) +

d−1∑
i=1

∫ d(p,q)

0

|f ′|2 − f2〈R(//sei, γ̇)//sei, γ̇〉 ds
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= ρĈ(q)− ρC(p) +

∫ d(p,q)

0

(d− 1)|f ′|2 − f2Ric(γ̇, γ̇) ds

≤ ρĈ(q)− ρC(p) + (d− 1)

∫ d(p,q)

0

(f ′)2 − f2k ds

= ρĈ(q)− ρC(p) + (d− 1)(f ′(d(p, q))− f ′(0)).

After computations of f , we get the result. For the particular case, we could take
Xi = //sei in the above computation and directly get the result.

Proposition 30. – Let D, D̂ ∈ D with C1 boundaries in a d-dimensional manifold V ,
and C = ∂D, Ĉ = ∂D̂. Suppose that

D̂ ⊂ D.

For r ∈ R such that ΨC(., r) (resp. ΨĈ(., r)) is diffeomorphism onto its image
ΨC(C, r) (resp. ΨĈ(Ĉ, r)) then

d(Ψ(C, r),Ψ(Ĉ, r)) = d(C, Ĉ).

Proof. – Let (p, q) ∈ C × Ĉ such that

d(p, q) = d(C, Ĉ).

If d(C, Ĉ) > 0, using Gauss Lemma, and the fact that D̂ ⊂ D, we get the exterior
normal vector of C at p is the parallel transport, along the geodesic γ that connects
q to p, of the exterior normal vector of Ĉ at q. Hence by definition of Ψ we have
d(ΨC(p, r),ΨĈ(q, r)) = d(p, q).

We get

d(Ψ(C, r),Ψ(Ĉ, r)) ≤ d(ΨC(p, r),ΨĈ(q, r)) = d(p, q) = d(C, Ĉ).

So d(Ψ(C, r),Ψ(Ĉ, r)) ≤ d(C, Ĉ).

In a similar way let (p, q) ∈ Ψ(C, r)×Ψ(Ĉ, r) such that

d(p, q) = d(Ψ(C, r),Ψ(Ĉ, r)),

which we have since ΨC(., r) (resp. ΨĈ(., r)) is a diffeomorphism onto their respective
image,

d(C, Ĉ) ≤ d(ΨΨ(C,r)(p,−r),ΨΨ(Ĉ,r)(q,−r)) = d(p, q) = d(Ψ(C, r),Ψ(Ĉ, r)).

Putting all things together we get

d(Ψ(C, r),Ψ(Ĉ, r)) = d(C, Ĉ).

If d(p, q) = d(C, Ĉ) = 0, since D̂ ⊂ D then νĈ(q) = νC(p) and the result follows as
above.

Remark 31. – The above proposition also gives an alternative proof of Corollary 28.
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Let

ιV B inf
(p,v)∈V×TpV : ‖v‖=1

inf{t > 0, γv(t) is conjugate to γv(0) = p},

where γv is a geodesic starting at γv(0) = p and γ̇v(0) = v.

Lemma 32. – Let D, D̂ ∈ D with C5+α boundaries, α ∈ (0, 1), and C = ∂D, Ĉ = ∂D̂.
Suppose that there exists k ≤ 0 such that Ric ≥ (d− 1)kg, ιV =∞ (for example if V
have non-positive sectional curvature) and

D̂ ⊂ D, Ĉ ∩ C = ∅.

Let (∂Dt)t∈[0,τC) (resp. (∂D̂t)t∈[0,τĈ)) be a solution of (76) started at C (resp. Ĉ)
then:

(i) : The mapping t 7→ d(∂Dt, ∂D̂t) is locally Lipschitz in [0, τC ∧ τĈ).

(ii) : For all t ∈ [0, τC ∧ τĈ)

d(C, Ĉ)ek(d−1)t ≤ d(∂Dt, ∂D̂t).

(iii) : We have Dt ∩ D̂t = ∅ for all t ∈ [0, τC ∧ τĈ).

(iv) : In particular, if V = Rd then t 7→ d(∂Dt, ∂D̂t) is non decreasing in [0, τC ∧τĈ).

Proof. – We have

Dt = Ψ(Gt,
√

2Bt), for t < τC

D̂t = Ψ(Ĝt,
√

2Bt), for t < τĈ ,

where ∂Gt and ∂Ĝt are solutions of (58) with r(t) =
√

2Bt and ∂G0 = C respectively
∂Ĝ0 = Ĉ. Let

τ B inf{t ≥ τC,Ĉ , s.t. ∂Dt ∩ ∂D̂t 6= ∅} ∧ τC ∧ τĈ .

Using Proposition 30 and Corollary 28, we have

∀t ∈ [0, τ), d(∂Dt, ∂D̂t)) = d(∂Gt, ∂Ĝt).

Recall that Gt = {F0(x) + fC(t, x)νC0 (x), x ∈ M} with F0(M) = C, and fC(t, x)

the solution of (62). We have the same construction for Ĝ. We recall that
fC ∈ C1+α/2,2+α(MτC ) and fĈ ∈ C1+α/2,2+α(M̂τĈ

). So by definition, for 0 ≤ t < τ ,

d(∂Gt, ∂Ĝt) = inf
(x,y)∈M×M̂

d(FC(t, x), FĈ(t, y)),

where FC(t, x) = F0(x) + fC(t, x)νC0 (x) and FĈ(t, y) = F̂0(y) + fĈ(t, y)νĈ0 (y). Also
t 7→ FC(t, x) and t 7→ FĈ(t, y) are uniformly Lipschitz on any compact [0, T ] ⊂ [0, τ).

Hence t 7→ d(∂Gt, ∂Ĝt) = d(∂Dt, ∂D̂t)) is Lipschitz on [0, T ], hence almost everywhere
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differentiable on [0, T ] and absolutely continuous. At differentiability time t ∈ [0, T ]

we have
d

dt
d(∂Dt, ∂D̂t)

=
d

dt

(
inf

(xt,yt)∈∂Gt×∂Ĝt : d(xt,yt)=d(∂Gt,∂Ĝt)
d(xt, yt)

)
= inf

(xt,yt)∈∂Gt×∂Ĝt : d(xt,yt)=d(∂Gt,∂Ĝt)

d

dt
d(xt, yt)

= inf
(xt,yt)∈∂Gt×∂Ĝt : d(xt,yt)=d(∂Gt,∂Ĝt)

〈 d
dt
xt, ν

∂Gt(xt)〉 − 〈
d

dt
yt, ν

∂Ĝt(yt)〉

= inf
(xt,yt)∈∂Gt×∂Ĝt : d(xt,yt)=d(∂Gt,∂Ĝt)

−ρΨ(∂Gt,
√

2Bt)
(ψ∂Gt,

√
2Bt

(xt))

+ ρΨ(∂Ĝt,
√

2Bt)
(ψ∂Ĝt,

√
2Bt

(yt))

= inf
(xt,yt)∈∂Dt×∂D̂t : d(xt,yt)=d(∂Dt,∂D̂t)

−ρ∂Dt(xt) + ρ∂D̂t(yt)

≥ (d− 1)kd(∂Dt, ∂D̂t),

where in the second equality we use the usual Lagrange Theorem, in the third one
we use the first variation formula, and in the last one we use Lemma 29. Since
t 7→ d(∂Dt, ∂D̂t) is absolutely continuous we can integrate the above inequality. Hence,
using Gronwall’s lemma, we get the conclusions (i), (ii), (iii) and (iv) of the lemma,
at least on [0, τ). Since d(C, Ĉ) > 0, we easily deduce that τ = τC ∧ τĈ .

Remark 33. – If the D̂ ⊂ Dc and C ∩ Ĉ = ∅ for all reasonable r, we have
d(ΨC(p, r),ΨĈ(q, r)) = d(p, q)− 2r and we could get a similar kind of result.

Theorem 34. – Let D, D̂ ∈ D with C5+α boundaries, α ∈ (0, 1), and C = ∂D,
Ĉ = ∂D̂. Suppose that there exists k ∈ R such that Ric ≥ (d − 1)kg and ιV > 0 (for
example if the sectional curvature is bounded above by a2 then ιV ≥ π

a , see e.g., [10]
page 159) and

D̂ ⊂ D, Ĉ ∩ C = ∅

Let (∂Dt)t∈)0,τC) (resp. (∂D̂t)t∈[0,τĈ)) be a solution of (76) started at C (resp. Ĉ)
then

(i) : The mapping t 7→ d(∂Dt, ∂D̂t) is locally Lipschitz on [0, τC ∧ τĈ).

(ii) : If k ≥ 0 then for all t ∈ [0, τC ∧ τĈ),

(d(C, Ĉ)ek(d−1)t) ∧ ιV ≤ d(∂Dt, ∂D̂t).

(iii) : If k ≤ 0 then for all t ∈ [0, τC ∧ τĈ),

(d(C, Ĉ) ∧ ιV )ek(d−1)t ≤ d(∂Dt, ∂D̂t).

(iv) : We have Dt ∩ D̂t = ∅ for t ∈ [0, τC ∧ τĈ).
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Proof. – The proof is similar to the proof of Lemma 32. Using (iii) in Lemma 29, we
have:

d(∂Dt, ∂D̂t) < ιV =⇒ d

dt
d(∂Dt, ∂D̂t) ≥ (d− 1)kd(∂Dt, ∂D̂t).

We deduce that, if k ≥ 0 then for all t ∈ [0, τC ∧ τĈ)

(d(C, Ĉ)ek(d−1)t) ∧ ιV ≤ d(∂Dt, ∂D̂t),

since after being above ιV , d(∂Dt, ∂D̂t) cannot go below ιV again.

Similarly, if k ≤ 0 then for all t ∈ [0, τC ∧ τĈ)

(d(C, Ĉ) ∧ ιV )ek(d−1)t ≤ d(∂Dt, ∂D̂t).

As a consequence of Theorem 34, we can extend Corollary 26 under an assumption
relaxing the requirement that one of the initial boundaries must be in a tubular
neighborhood of the other initial boundary:

Proposition 35. – Let D, D̂ ∈ D with C5+α boundaries, α ∈ (0, 1), and C = ∂D,
Ĉ = ∂D̂. Suppose that

D̂ ⊂ D and C 6= Ĉ

Let (∂Dt)t∈[0,τC) (resp. (∂D̂t)t∈[0,τĈ)) be a solution of (76) started at C (resp. Ĉ).
Suppose that there exists k ∈ R such that Ric ≥ (d − 1)kg, ιV > 0, and (H): it is
possible to interpolate between C and Ĉ by a family of C5+α hypersurfaces (Ci)i∈[[0,n]]

such that Ci = ∂Di with Di ∈ D, Ci is in a tubular neighborhood of Ci+1, and
D̂ ⊂ Di+1  Di ⊂ D, for i ∈ [[0, n− 1]], C0 = C and Cn = Ĉ. Then

(i) : The mapping t 7→ d(∂Dt, ∂D̂t) is locally Lipschitz on [0, τC ∧ τĈ).

(ii) : ∂Dt ∩ ∂D̂t = ∅, for t ∈ (0, τC ∧ τĈ).

Proof. – We can use Corollary 26 with initial conditions Ci and Ci+1, and extend this
corollary without the hypothesis that Ĉ belongs to an open tubular neighborhood
of C, up to the time τC,Ĉ B infi∈[[1,n−1]] τCi,Ci+1

. Hence for all t ∈ (0, τC,Ĉ) and all
i ∈ [[1, n− 1]] we have

(Gi+1)t ⊂ (Gi)tand ∂(Gi+1)t ∩ ∂(Gi)t = ∅

so for all t ∈ (0, τC,Ĉ) we have

Ĝt ⊂ Gtand ∂Ĝt ∩ ∂Gt = ∅.(78)

Let

τ B inf{t ≥ τC,Ĉ , s.t. ∂Dt ∩ ∂D̂t 6= ∅} ∧ τC ∧ τĈ .
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Using the same reasoning as the proof of Theorem 34, since ∂Dt = Ψ(∂Gt,
√

2Bt) and
∂D̂t = Ψ(∂Ĝt,

√
2Bt) for all t ∈ [0, τ), we get

∀t ∈ [0, τ), d(∂Dt, ∂D̂t)) = d(∂Gt, ∂Ĝt)

and t 7→ d(∂Dt, ∂D̂t) is locally Lipschitz on [0, τ).

Hence using (78) we get

∀ t ∈ (0, τ), D̂t ⊂ Dt and ∂Dt ∩ ∂D̂t = ∅.

Let t0 =
τC,Ĉ

2 , since D̂t0 ⊂ Dt0 and d(∂Dt0 , ∂D̂t0) > 0 we apply (ii) or (iii) of
Theorem 34 to D̂t0 ⊂ Dt0 . We get, independently of the sign of the constant k,

∀ t ∈ [t0, τCt0 ∧ τĈt0 ), d(∂Dt, ∂D̂t) > 0

since τCt0 = τC − t0 and τĈt0 = τĈ − t0 we have τ = τC ∧ τĈ .

Remark 36. – In the above proposition, Hypothesis (H) seems to be satisfied for all
D, D̂ ∈ D with D̂ ⊂ D, even if ∂D ∩ ∂D̂ 6= ∅, but for the moment we do not have a
complete proof of this fact.

4.2. Local existence of (51)

In this section, we will show the existence of a solution to the system of Equa-
tions (51). As the basic principle described in the paragraph following (16), a solution
of (51) could be obtained as a solution of (58) conditioned not to collapse. Unfortu-
nately, to develop this approach, we would need a solution of (58) defined for all times
up to this collapsing. Since we have not been able to find such a maximal solution,
we will directly work on (51), inspired by the previous subsection.

We recall the notations:

∀D ∈ D, C = ∂D h(D) = 2
µ(C)

µ(D)

∀ r > 0, ∀D ∈ Dr, ∀x ∈ C, αC,r(x) B −ρbΨ(C,r)(ψC,r(x)).

For given D0 ∈ D, we are interested in the system of equations:
d
dtθt = h(Ψ(Gt,

√
2Bt + θt))

∀x ∈ ∂Gt, ∂tx = α∂Gt,
√

2Bt+θt
(x)ν∂Gt(x)

(θ0, G0) = (0, D0).

(79)

To prove the existence of a solution to the above system of equations, we consider
the equation described below. Let g : [0,+∞) 3 t 7→ g(t) ∈ R be a real α

2 -Hölder
function, such that g(0) = 0 (or small enough), and 0 < α < 1.
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The goal of this first step is to show the existence of real numbers t0 > 0 and
δ > 0, such that for all g ∈ BCα/2(0, δ) and g(0) = 0 , there exists a family (Ggt )t∈[0,t0]

solution of{
∀ t ∈ [0, t0], ∀x ∈ ∂Ggt , ∂tx = α∂Ggt ,

√
2Bt+g(t)

(x)ν∂Ggt (x)

Gg0 = D0.
(80)

We adopt the same strategy as in the previous section, in order to deal with the
quasi-parabolic equation, and we adopt the same notation, let ∂D0 = F0(M).

We consider the following equation.{〈
∂
∂tF

g(t, x), νF
g

(t, x)
〉

= −ρb
Ψ(F g(t,M),

√
2Bt+g(t))

(ψF g(t,M),
√

2Bt+g(t)
(x))

F (0, x) = F0(x).
(81)

As before we represent the solution as graphs over the fixed hypersurface
C = F0(M), and we write the solution as:

F g(t, x) = ψC,fg(t,x)(F0(x)) = F0(x) + fg(t, x)ν0(x)

for a function fg with enough regularity and fg(0, .) = 0. With similar computations
as in the above section, F g is a solution of (81) (with r(t) =

√
2Bt+g(t) for any t ≥ 0)

if fg satisfy the following non linear parabolic equation:{
∂tf

g(t, x) = Φg(t, x, fg,∇fg,∇∇fg)
fg(0, x) = 0,

(82)

where Φg have the same definition as Φ in Proposition 19, but with r(t) =
√

2Bt+g(t),
for all t ≥ 0. Taking into account that C is smooth, Theorem 22 leads to:

Proposition 37. – Take g = g0 ≡ 0. There exists 0 < t0 ≤ T (where T comes from
Proposition 19) such that (82) admits a solution fg0 belonging to

X(t0) B {u ∈ C1+α/2,2+α(Mt0) :

u(0, .) = 0,max(‖u‖∞,Mt0
, ‖∇u‖∞,Mt0

, ‖∇∇u‖∞,Mt0
) ≤ R0}.

We deduce:

Proposition 38. – With the same notation as in the above proposition, there exist
two real δ0, δ1 > 0 and a continuously differentiable map

Θ : B
C
α
2 ([0,t0])

(g0, δ0)→ B
C1+α

2
,2+α(Mt0 )

(fg0 , δ1)

g 7→ fg,
(83)

where fg is a solution of (82). Moreover Θ is uniformly Lipschitz in B
C
α
2 ([0,t0])

(g0, δ0).
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Proof. – Consider the mapping

S : X(t0)× C α
2 ([0, t0])→ C

α
2 ,α(Mt0)

(u, g) 7→ ∂tu− Φg(t, x, u,∇u,∇∇u).
(84)

It is continuously differentiable, at least when g belongs to a small ball. Note that from
Proposition 37, there exists (fg0 , g0) ∈ X(t0) × C α

2 ([0, t0]) such that S(fg0 , g0) = 0.

Also

dSu(fg0 , g0)(v) = dS(fg0)(v),

where S is defined before the proof of Theorem 22 (with r(t) B
√

2Bt). Since fg0 is
in X, dS(fg0) is invertible with continuous inverse, according to Lemma 20 and The-
orem 21. The result follows from implicit function theorem.

We will show the existence of solution of (79) by using a fixed point theorem.
For g ∈ B

C
α
2 ([0,t0])

(g0, δ0), define

F g(t, x) B F0(x) + fg(t, x)ν0(x)

and consider the family of hypersurfaces

∂Ggt B F g(t,M),

note that Gg0 = D0.

Proposition 39. – There exist 0 < t1 ≤ t0 and a mapping

Γ : B
C
α
2 ([0,t1])

(g0, δ0) ∩ {g ∈ C α
2 |g(0) = 0}

→ B
C
α
2 ([0,t1])

(g0, δ0) ∩ {g ∈ C α
2 : g(0) = 0},

such that

(85)

{
∀ t ∈ [0, t1], d

dtΓ(g)(t) = h(Ψ(Ggt ,
√

2Bt + g(t))),

Γ(g)(0) = 0.

Moreover Γ is a contraction and there exists an unique fixed point for Γ in
B
C
α
2 ([0,t1])

(g0, δ0) ∩ {g ∈ C α
2 ([0, t1]) : g(0) = 0}.

Proof. – Take δ0 such that by Proposition 38, Θ is uniformly Lipschitz in
B
C
α
2 ([0,t0])

(g0, δ0). Let g ∈ B
C
α
2 ([0,t0])

(g0, δ0), r ∈ R and fg = Θ(g), define for
all x ∈M :

F gψ(t, x, r) = F g(t, x) + rνF
g

(t, x)

= F0(x) + fg(t, x)ν0(x) + rνF
g

(t, x)

= F0(x) + fg(t, x)ν0(x) + rν(t, x, fg(t, ·),∇fg(t, ·)),

then we have

Ψ(∂Ggt , r(t)) = {F0(x) + fg(t, x)ν0(x) + r(t)ν(t, x, fg(t, ·),∇fg(t, ·)) : x ∈M}
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and

h(Ψ(Ggt ,
√

2Bt + g(t))) = 2
µ(Ψ(∂Ggt ,

√
2Bt + g(t)))

µ(Ψ(Ggt ,
√

2Bt + g(t)))
.

We have the following formula for the n-volume of the boundary:

µ(Ψ(∂Ggt ,
√

2Bt + g(t))) =

∫
F gψ(t,M,

√
2Bt+g(t))

dµF gψ(t,M,
√

2Bt+g(t))

=

∫
M

det[νF
g
ψ (t, x), dxF

g
ψ(t, x,

√
2Bt + g(t))] dµM .

(86)

In the above formula, dµM is a Riemannian measure for a fixed metric in M and
dxF

g
ψ(t, x,

√
2Bt + g(t)) is evaluated in an orthonormal basis for this metric. Let

dg(t, x) B det[νF
g
ψ (t, x), dxF

g
ψ(t, x,

√
2Bt + g(t))]

C V (x,
√

2Bt + g(t), fg(t, x),∇fg(t, x),∇∇fg(t, x)),

where V is a function regular in the four last components. It follows that there exists
a constant C > 0 such that

〈(t, x) 7→ dg(t, x)〉α/2 ≤ C(‖
√

2B.‖Cα/2 + ‖g‖Cα/2 + ‖fg‖C1+α/2,2+α)

with the semi-norm

〈(t, x) 7→ dg(t, x)〉α/2 B sup

{
|f(t)− f(s)|
|t− s|α

, s 6= t ∈ [0, t0], x ∈M
}
.

We deduce there exists Cδ0,δ1 , depending on δ0, δ1 and on the random quan-
tity ‖

√
2B.‖Cα/2 , such that

〈t 7→ dg(t, x)〉α/2 ≤ Cδ0,δ1
and thus

‖t 7→ dg(t, x)‖Cα/2[0,t0] ≤ Cδ1,δ0(t
α/2
0 + 1) +K

with K = ‖dg(0, .)‖∞ not depending on g.
Hence t 7→ µ(Ψ(∂Ggt ,

√
2Bt + g(t))) is in Cα/2 and

(87) ‖t 7→ µ(Ψ(∂Ggt ,
√

2Bt + g(t)))‖Cα/2 ≤ (Cδ1,δ0(t
α/2
0 + 1) +K)µ(M).

Using Stoke’s theorem we have that the volume of µ(Ψ(Ggt ,
√

2Bt+g(t))) enclosed by
the hypersurface Ψ(∂Ggt ,

√
2Bt + g(t)) is

µ(Ψ(Ggt ,
√

2Bt + g(t))) =
1

n+ 1

∫
F gψ(t,M)

〈~x, νF
g
ψ 〉 dµF gψ(t,M)(~x)

=
1

n+ 1

∫
M

〈F gψ(t, x,
√

2Bt + g(t)), νF
g
ψ (t, x)〉dg(t, x) dµM (x).

(88)

As before, we get, for some C ′δ1,δ0 > 0 and K ′ > 0 of the same nature as Cδ1,δ0 > 0

and K > 0, that

(89) ‖t 7→ µ(Ψ(Ggt ,
√

2Bt + g(t)))‖Cα/2 ≤ (C ′δ1,δ0(t
α/2
0 + 1) +K ′)µ(M).
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As a quotient, it follows that t 7→ h(Ψ(Ggt ,
√

2Bt + g(t)) is in Cα/2, as long as the
domain Ψ(Ggt ,

√
2Bt+ g(t)) keeps a positive mass, which may lead us to replace t0 by

a smaller value, and we deduce that

(90) ‖t 7→ h(Ψ(Ggt ,
√

2Bt + g(t)))‖Cα/2([0,t0]) ≤ C

for a constant C that only depends on δ0 ,δ1, t0 and ‖
√

2B.‖Cα/2 . So Γ(g) ∈ C1+α/2.

We have for 0 < s, t < t1 ≤ t0

|Γ(g)(t)− Γ(g)(s)| ≤ |t− s|C ≤ Ct1−α/21 |t− s|α/2,

since Γ(g)(0) = 0 we have that:

‖Γ(g)‖Cα/2[0,t1] ≤ Ct1 + Ct
1−α/2
1 .

Take 0 < t1 ≤ t0 sufficiently small such that Ct1 + Ct
1−α/2
1 ≤ δ0 we have Γ

maps B
C
α
2 ([0,t1])

(g0, δ0) ∩ {g ∈ C α
2 |g(0) = 0} into himself.

Let us show that Γ is a contraction.

Let g1, g2 ∈ BC α
2 ([0,t1])

(g0, δ0), and fg1 = Θ(g1), fg2 = Θ(g2) then

µ(Ψ(∂Gg1

t ,
√

2Bt + g1(t)))− µ(Ψ(∂Gg2

t ,
√

2Bt + g2(t)))

=

∫
M

V (x,
√

2Bt + g1(t), fg1(t, x),∇fg1(t, x),∇∇fg1(t, x))

− V (x,
√

2Bt + g2(t), fg2(t, x),∇fg2(t, x),∇∇fg2(t, x))µM (dx).

(91)

We want to control the norm of the above function in Cα/2. Since it vanishes at
time 0, we have only to control its semi-norm 〈·〉α/2.

We write for simplicity ~fg(t, x) B (fg(t, x),∇fg(t, x),∇∇fg(t, x)), and let

J(t, x) B V (x,
√

2Bt + g1(t), ~fg1(t, x))− V (x,
√

2Bt + g2(t), ~fg2(t, x)).

Let σ ∈ [0, 1] and

ζσ(t, x) B σ(
√

2Bt + g1(t), ~fg1(t, x)) + (1− σ)(
√

2Bt + g2(t), ~fg2(t, x)),

we have, for all 0 ≤ s, t ≤ t1,

|ζσ(t, x)− ζσ(s, x)| ≤ |t− s|α/2(2
√

2‖B.‖Cα/2 + 2δ0 + 2δ1)

≤ Cδ0,δ1 |t− s|α/2.

Also using the regularity of V in the four last variables we have

J(t, x) =

∫ 1

0

d3V (x, ζσ(t, x))((g1(t), ~fg1(t, x))− (g2(t), ~fg2(t, x))) dσ.
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Hence,

|J(t, x)− J(s, x)| =
∣∣∣∣∫ 1

0

d3V (x, ζσ(t, x))(g1(t)− g2(t), ~fg1(t, x)− ~fg2(t, x))

− d3V (x, ζσ(s, x))(g1(s)− g2(s), ~fg1(s, x)− ~fg2(s, x))dσ

∣∣∣∣
≤
∫ 1

0

|
(
d3V (x, ζσ(t, x))− d3V (x, ζσ(s, x))

)
(g1(t)− g2(t), ~fg1(t, x)− ~fg2(t, x))| dσ

+

∫ 1

0

∣∣d3V (x, ζσ(s, x))
(
(g1(t)− g2(t), ~fg1(t, x)− ~fg2(t, x))

− (g1(s)− g2(s), ~fg1(s, x)− ~fg2(s, x))
)∣∣ dσ.

Since d3V (x, ζσ(s, x)) is bounded we have (again the constant C can change from one
line to the other),

|d3V (x, ζσ(s, x))
(
(g1(t)− g2(t), ~fg1(t, x)− ~fg2(t, x))− (g1(s)− g2(s), ~fg1(s, x)− ~fg2(s, x))

)
≤ C|t− s|α/2(‖g1 − g2‖Cα/2 + ‖~fg1 − ~fg2‖Cα/2,α)

≤ C|t− s|α/2(‖g1 − g2‖Cα/2 + ‖Θ(g1)−Θ(g2)‖C1+α/2,2+α)

≤ C|t− s|α/2(1 + ‖Θ‖Lip)‖g1 − g2‖Cα/2 ,

where in the last line we use Proposition 38. Using that d3V (x, .) is Lipschitz in the
last variable:

|d3V (x, ζσ(t, x))− d3V (x, ζσ(s, x)) ≤ C|ζσ(t, x)− ζσ(s, x)|

≤ CCδ0,δ1 |t− s|α/2.

Since (g1(0), ~fg1(0, x)) = ~0 = (g2(0), ~fg2(0, x)) we have:

|(g1(t)− g2(t), ~fg1(t, x)− ~fg2(t, x))| ≤ Ctα/2(1 + ‖Θ‖Lip)‖g1 − g2‖Cα/2 .

Putting all things together we get 〈t 7→ J(t, x)〉Cα/2 ≤ C‖g1 − g2‖Cα/2 and since
J(0, x) = 0,

‖t 7→ J(t, x)‖Cα/2 ≤ C‖g1 − g2‖Cα/2 .

Hence

‖t 7→ µ(Ψ(∂Gg1

t ,
√

2Bt + g1(t)))− µ(Ψ(∂Gg2

t ,
√

2Bt + g2(t)))‖Cα/2 ≤ C‖g1 − g2‖Cα/2 .

(92)

With the same proof we also have:

‖t 7→ µ(Ψ(Gg1

t ,
√

2Bt + g1(t)))− µ(Ψ(Gg2

t ,
√

2Bt + g2(t)))‖Cα/2 ≤ C‖g1 − g2‖Cα/2 .

(93)
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Let µ(g)(t) B µ(Ψ(Ggt ,
√

2Bt+g(t))) and µ(g)(t) B µ(Ψ(∂Ggt ,
√

2Bt+g(t))). We have

d

dt

(
Γ(g1)− Γ(g2)

)
= 2
(µ(g1)

µ(g1)
− µ(g2)

µ(g2)

)
= 2
(µ(g1)µ(g2)− µ(g2)µ(g1)

µ(g1)µ(g2)

)
= 2
(µ(g1)(µ(g2)− µ(g1))− µ(g1)(µ(g2)− µ(g1))

µ(g1)µ(g2)

)
.

Hence using (87), (89), (92) and (93),∥∥∥∥ ddt(Γ(g1)− Γ(g2)
)∥∥∥∥

Cα/2([0,t1])

≤ C‖g1 − g2‖Cα/2

and so ∥∥∥∥ ddt(Γ(g1)− Γ(g2)
)∥∥∥∥

C0([0,t1])

≤ C‖g1 − g2‖Cα/2 .

Since Γ(g1)(0) = 0 = Γ(g2)(0),

‖Γ(g1)− Γ(g2)‖Cα/2([0,t1]) ≤ (t1 + t
1−α/2
1 )C‖g1 − g2‖Cα/2 .

Reducing t1 such that (t1 + t
1−α/2
1 )C ≤ 1

2 , we get:

‖Γ(g1)− Γ(g2)‖Cα/2([0,t1]) ≤
1

2
‖g1 − g2‖Cα/2([0,t1]).

Hence Γ have a unique fixed point in B
C
α
2 ([0,t1])

(g0, δ0) ∩ {g ∈ C α
2 |g(0) = 0}.

Theorem 40. – Let D0 ∈ D, then there exists 0 < t1 such that the system of Equa-
tions (79) has a unique solution.

Proof. – Let θ be the fixed point of Γ, and fθ = Θ(θ) then F θ(t, x) = F0(x) +

fθ(t, x)ν0(x) solves{
∂
∂tF

θ(t, x) =
(
− ρb

Ψ(F θ(t,M),
√

2Bt+θ(t))
(ψF θ(t,M),

√
2Bt+θ(t)

(x))
)
νF

θ

(t, x)

F (0, x) = F0(x)

and so {
∀ t ∈ [0, t1], ∀x ∈ ∂Gθt , ∂tx = α∂Gθt ,

√
2Bt+θ(t)

(x)ν∂Gθt (x)

Gθ0 = D0.

Also 
d
dtθ(t) = d

dtΓ(θ)(t)

= h(Ψ(Gθt ,
√

2Bt + θ(t)),

Γ(θ)(0) = 0.
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Let D ∈ D, C = ∂D with C5+α boundaries, α ∈ (0, 1), in a d-dimensional Rieman-
nian manifold V , and (θt, Gt)0≤t<τ be a solution of (79) given by Theorem 40. As in
the beginning of this section, the solution of

∀ t ∈ [0, τ), ∀x ∈ Ct B Dt, dx =

(√
2dBt + 2

µ(Ct)

µ(Dt)
dt− ρCt(x)dt

)
νCt(x)(94)

is given by (Dt)t∈[0,τ), where

∀ t ∈ [0, τ), Dt B Ψ(Gt,
√

2Bt + θt)

(as a special case of (44)).
Proposition 42 below will give a control of the extrinsic diameter of Ct defined by

diam(Ct) B sup
(x,y)∈C2

t

d(x, y),

where d(·, ·) is the Riemannian distance in V . First we need the following proposition
bounding the sum of the mean curvature at points that realize the diameter, in terms
of the extrinsic curvature (by extrinsic we mean in the ambient manifold V , i.e., not
intrinsic in the hypersurface). For all b ∈ R, we denote by V b(d) the d-dimensional
manifold with constant curvature b. Let ιV b(d) defined before Lemma 32. We have:{

ιV b(d) =∞ , if b ≤ 0

ιV b(d) = π√
b

, if b > 0.

Proposition 41. – Let D ∈ D with a C2 boundary in a d-dimensional manifold V ,
and C = ∂D. Suppose that there exists b ∈ R such that the sectional curvature KV

of V is bounded above by b, i.e., KV ≤ b. For all (p, q) ∈ C2 such that d(p, q) =

diam(C) and d(p, q) < ιV b(d), we have

1. if b ≤ 0 then −ρC(p)− ρC(q) ≤ 2(d− 1)
√
|b|
( 1−cosh(

√
|b|d(p,q))

sinh(
√
|b|d(p,q))

)
≤ 0,

2. if b > 0 then −ρC(p)− ρC(q) ≤ 2(d− 1)
√
b
( 1−cos(

√
bd(p,q))

sin(
√
bd(p,q))

)
.

Proof. – As in the proof of Lemme 29, consider (p, q) ∈ C2 such that d(p, q) =

diam(C). Using the first variation formula, we get there exists an unit speed geodesic γ
in V such that γ(0) = q, γ(d(p, q)) = p, γ̇(0) = −νC(q) and γ̇(d(p, q)) = νC(p). Let
(ei)i∈[[1,d−1]] be a orthonormal basis of TqC. For i ∈ [[1, d−1]], let γ1,i(t) be a geodesic
in C such that γ1,i(0) = q and γ̇1,i(0) = ei. Let γ2,i(t) be a geodesic in C such
that γ2,i(0) = p and γ̇1,i(0) = //d(p,q)ei, where // is the parallel transport along the
geodesic γ. Since (p, q) ∈ C2 is a local maximum of the distance function restricted
to C × C, we have that

d2

dt2

∣∣∣∣
t=0

d(γ1,i(t), γ2,i(t)) ≤ 0.
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Let Yi be the Jacobi field along γ obtained by the variation of geodesic connecting
γ1,i(t) to γ2,i(t), we have: Yi(0) = ei, Yi(d(p, q)) = //d(p,q)ei. Using second variation
formula, we get:

d2

d2t
d(γ1,i(t), γ2,i(t))|t=0 =

[
〈∇t=0γ̇2,i(t), γ̇(d(p, q))〉 − 〈∇t=0γ̇1,i(t), γ̇(0)〉

]
+ I(Yi, Yi)

=
[
〈∇t=0γ̇2,i(t), νC(p)〉 − 〈∇t=0γ̇1,i(t),−νC(q)〉

]
+ I(Yi, Yi)

= −ΠC(//d(p,q)ei, //d(p,q)ei)−ΠC(ei, ei) + I(Yi, Yi).

Put the above two computations together and take the sum to get:

−ρC(q)− ρC(p) ≤ −
d−1∑
i=1

I(Yi, Yi).

We have to bound from below the index of the normal Jacobi field Yi for all i. Since
Yi is a normal Jacobi field, there exist real functions f ji for j ∈ [[1, d − 1]] such
that Yi(t) =

∑d−1
j=1 f

j
i (t)//tej . By construction of Yi, we have f

j
i (0) = f ji (d(p, q)) = δji .

Consider γ̃(t)t∈[0,d(p,q)] a geodesic in V b(d) with same length as γ, take (ẽi)i∈[[1,d−1]]

an orthonormal basis of ˙̃γ(0)⊥ in Tγ̃(0)V
b(d), and denote by /̃/ the parallel transport

along γ̃. Let X̃i(t) =
∑d−1
j=1 f

j
i (t)/̃/tẽj , be a vector field along γ̃, note that X̃i(0) = ẽi

and X̃i(d(p, q)) = /̃/ẽi. Let Ỹi be the Jacobi field in V b(d) along γ̃ such that Ỹi(0) = ẽi
and Ỹi(d(p, q)) = /̃/d(p,q)ẽi. We have by definition:

I(Yi, Yi) =

∫ d(p,q)

0

‖∇tYi‖2 − 〈R(Yi, γ̇)Yi, γ̇〉 dt

≥
∫ d(p,q)

0

‖∇tYi‖2 − b‖Yi‖2 dt

=

∫ d(p,q)

0

‖∇tX̃i‖2 − b‖X̃i‖2 dt

≥
∫ d(p,q)

0

‖∇tỸi‖2 − b‖Ỹi‖2 dt,

where in the last inequality we used again the Index lemma since d(p, q) < ιV b(d).
So γ̃(0) and γ̃(d(p, q)) are not conjugate in V b(d). Since Ỹi(t) = fb(t)/̃/tẽi with f

′′
b =

−bfb, and fb(0) = fb(d(p, q)) = 1, we get

I(Yi, Yi) ≥
∫ d(p,q)

0

(f ′b)
2 − bf2

b dt

= (f ′b(d(p, q))− f ′b(0)).

Hence

−ρC(q)− ρC(p) ≤ −(d− 1)(f ′b(d(p, q))− f ′b(0))

and the result follows by explicit computation of fb in different cases.
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Proposition 42. – Let D ∈ D with a C5+α boundary C B ∂D in a d-dimensional
manifold V , for some fixed α ∈ (0, 1). Suppose there exists b ∈ R such that the
sectional curvature of V satisfies KV ≤ b. Then the evolution of the diameter of the
solution (Ct)t∈[0,τ) of (94) started at C is controlled by:

(i) : If b ≤ 0, we get for all 0 ≤ t < τ,

ddiam(Ct) ≤ 2(
√

2dBt + h(Dt)dt) + 2(d− 1)
√
|b|
(1− cosh(

√
|b|diam(Ct))

sinh(
√
|b|diam(Ct))

)
dt.

(ii) : If b > 0, we get, for all 0 ≤ t < τ ∧ τ π√
b
(diam(C.)),

ddiam(Ct) ≤ 2(
√

2dBt + h(Dt)dt) + 2(d− 1)
√
b
(1− cos(

√
bdiam(Ct))

sin(
√
bdiam(Ct))

)
dt,

where τ π√
b
(diam(C.)) B inf{t ≥ 0 : diam(Ct) ≥ π√

b
}.

Proof. – Using the construction of (Dt)t∈[0,τ), we get, for 0 ≤ t < τ,

diam(Ct) = sup
(x,y)∈∂G2

t

d(ΨGt(x,
√

2Bt + θt),ΨGt(y,
√

2Bt + θt))

= 2(
√

2Bt + θt) + sup
(x,y)∈∂G2

t

d(x, y),

where in the second equality, we used that for 0 ≤ t < τ, ΨGt(.,
√

2Bt + θt) is a
diffeomorphism onto its image, and a reasoning similar to the proof of Proposition 30.
Also since

sup
(x,y)∈∂G2

t

d(x, y) = sup
x,y∈M2

d(F θ(t, x), F θ(t, y)),

and the mappings t 7→ F θ(t, x) are uniformly Lipschitz on any compact [0, T ] ⊂ [0, τ),

we deduce that

t 7→ sup
(x,y)∈∂G2

t

d(x, y)

is Lipschitz on [0, T ], hence almost everywhere differentiable on [0, T ] and absolutely
continuous.

At a differentiability time t ∈ [0, T ], we have, as in the proof of Proposition 30,
d

dt
sup

(x,y)∈∂G2
t

d(x, y) =
d

dt
sup

(xt,yt)∈∂G2
t : d(xt,yt)=diam(∂Gt)

d(xt, yt)

= sup
(xt,yt)∈∂G2

t : d(xt,yt)=diam(∂Gt)

d

dt
d(xt, yt)

= sup
(xt,yt)∈∂G2

t : d(xt,yt)=diam(∂Gt)

〈 d
dt
xt, ν

∂Gt(xt)〉+ 〈 d
dt
yt, ν

∂Gt(yt)〉

= sup
(xt,yt)∈∂G2

t : d(xt,yt)=diam(∂Gt)

−ρΨ(∂Gt,
√

2Bt+θt)
(ψ∂Gt,

√
2Bt+θt

(xt))

− ρΨ(∂Gt,
√

2Bt+θt)
(ψ∂Gt,

√
2Bt+θt

(yt))
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= sup
(xt,yt)∈∂D2

t : d(xt,yt)=diam(∂Dt)

−ρ∂Dt(xt)− ρ∂Dt(yt).

Taking into account Proposition 41, we obtain the wanted points (i) and (ii).

When (94) is replaced by (76), the previous proof leads to a similar result:

Proposition 43. – Let D ∈ D with a C5+α boundary C B ∂D in a d-dimensional
manifold V , for some fixed α ∈ (0, 1). Suppose there exists b ∈ R such that the
sectional curvature of V satisfies KV ≤ b. Then the evolution of the diameter of the
solution (Ct)t∈[0,τ) of (76) started at C is controlled by:

(i) : If b ≤ 0, we get, for all 0 ≤ t < τ,

ddiam(Ct) ≤ 2
√

2dBt + 2(d− 1)
√
|b|
(1− cosh(

√
|b|diam(Ct))

sinh(
√
|b|diam(Ct))

)
dt.

(ii) : If b > 0, we get ,for all 0 ≤ t < τ ∧ τ π√
b
(diam(C.)),

ddiam(Ct) ≤ 2
√

2dBt + 2(d− 1)
√
b
(1− cos(

√
bdiam(Ct))

sin(
√
bdiam(Ct))

)
dt,

where τ π√
b
(diam(C.)) B inf{t ≥ 0 : diam(Ct) ≥ π√

b
}.

Remark 44. – Proposition 43 may seem simpler than Proposition 42, since it does
not require to deal with the tricky term h(Dt). For instance when KV ≤ 0, we have
for all 0 ≤ t < τ:

diam(Ct) ≤ 2
√

2(Bt −B0) + diam(C0).

It follows that τ ≤ τ− diam(C0)

2
√

2

(B.) a.s. But the supplementary term h(Dt) in Proposi-

tion 42 should prevent this collapsing in finite time.
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CHAPTER 5

BACK TO THE HOMOGENEOUS SITUATIONS

Here we return to the situations encountered in Section 2, where V has a constant
curvature and is endowed with the Laplacian L B ∆. This section has two main goals
developed in the following subsections:
— When V is an Euclidean space, it is possible to go further in the considerations

of Section 3. In particular when V = R2, it is possible to compute explicitly
the image of the mean curvature vector field by the tangent mappings to the
normal flow.

— When D0 = B(x0, r0) with x0 ∈ V and r0 > 0 (small enough in the spherical
case), the Doss-Sussman approach can be described explicitly (more generally
this is also true when V is rotationally symmetric and x0 is a center of sym-
metry). It is then possible to compare the Doss-Sussman methods in the two
decompositions (22) and (57), concerning their respective time-domains and to
see that the method suggested in Remark 18 is stable when we let r0 go to
zero, namely when we try an approximation of the initial conditions consisting
of singletons.

5.1. About the Euclidean and constant curvature spaces

We begin by bringing some precisions about the quantities defined in (25) and (26).
They can always be written

R−(D) = R̃−(D) ∨ R̂−(D) and R+(D) = R̃+(D) ∧ R̂+(D),

where

R̃+(D) B inf{r ∈ (0,+∞) : ψC,r is not an immersion}

R̃−(D) B − inf{r ∈ (0,+∞) : ψC,−r is not an immersion}

R̂+(D) B inf{r ∈ (0,+∞) : ψC,r is not one-to-one}

R̂−(D) B − inf{r ∈ (0,+∞) : ψC,−r is not one-to-one}

(with the usual convention inf ∅ = +∞).
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Consider the Euclidean case:

Lemma 45. – When V = Rn, with n ≥ 2 and endowed with its Euclidean structure,
we have

R̃−(D) =
1

min(0−,min{−λn−1,C(x) : x ∈ C})
∈ [−∞, 0)

R̃+(D) =
1

max(0+,max{−λ1,C(x) : x ∈ C})
∈ (0,+∞],

where λ1,C(x) ≤ · · · ≤ λn−1,C(x) are the eigenvalues of the second fundamental
form (defined with respect to νC) at x ∈ C. The notations 0− and 0+ just indicate
that 1/0− = −∞ and 1/0+ = +∞.

Proof. – Recall that the tangent mapping dνC associated to the mapping C 3 x 7→
νC(x) can be seen as a linear mapping from TxC (the tangent space of C at x) to
itself, and that the second fundamental form is given at x ∈ C by

TxC × TxC 3 (v, w) 7→ 〈v, dνC [w]〉 .

We deduce that for r ∈ R, the tangent mapping dψC,r satisfies

∀ v, w ∈ TxC, 〈v, dψC,r[w]〉 = 〈v, w〉+ r 〈v, dνC [w]〉 .

It follows that if r is such that all the quantities 1 + rλC,1(x), . . . , 1 + rλC,n−1(x) are
either all positive or all negative, then the tangent mapping dψC,r is not degenerate
at x. As a consequence, for r ∈ (R̃−(D), R̃+(D)), dψC,r is not degenerate on C. More
precisely, (R̃−(D), R̃+(D)) is the largest interval I containing 0 on which the tangent
mapping dψC,r is not degenerate on C for all r ∈ I. Indeed, when for some x ∈ C and
r ∈ R, the values 1 + rλC,1(x), . . . , 1 + rλC,n−1(x) are not of the same sign, we can
find r′ ∈ (−|r|, |r|), such that 1 + r′λC,1(x) = 0, so that dψC,r′ is degenerate at x.

Remark 46. – Consider the case where V = R2 endowed with its usual Riemannian
structure (coming from its Euclidean structure). The following picture (where the
boundary of the C in black stands for C, while the line in red is a portion of its image
by ψC,r, for some positive element r ∈ (R̃−(D), R̃+(D))), shows that in general the
mapping ψC,r is not an embedding of C in the plane.

In this picture, if r is reduced a little to be equal to R̂+(D) and if x 6= x′ ∈ C are
such that ψC,r(x) = ψC,r(x

′), it appears that νC(x) = −νC(x′) and x′ belongs to the
line passing by x and directed by νC(x).

The last observation of the above remark corresponds to a general phenomenon that
we now describe, coming back to the situation of an abstract Riemannian manifold V .

For any D ∈ D and x ∈ C, consider

R̆+(x)B
1

2
inf

{
r > 0 : expx(rνC(x)) ∈ C and νC(expx(rνC(x))) = − d

dr
expx(rνC(x))

}
R̆+(D) B inf{R̆+(x) : x ∈ C}.
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Figure 1. Example of a non injective mapping ψC,r

Similarly, let

R̆−(x) B
1

2
sup

{
r < 0 : expx(rνC(x))) ∈ C and νC(expx(rνC(x))) =

d

dr
expx(rνC(x))

}
R̆−(D) B sup{R̆−(x) : x ∈ C}.

The interest of these quantities is:

Lemma 47. – When R̂+(D) < R̃+(D), it means that R+(D) = R̂+(D) = R̆+(D) > 0.
Similarly, we always have R−(D) = R̃−(D) ∨ R̆−(D) < 0.

Proof. – We only prove the first assertion, since the second one can be shown in the
same way, by reversing the time (or, when V is compact, by replacing D by Dc).

We begin by remarking that for any x ∈ C, we can find a neighborhood U

of x such that the intersection of U ∩ C and U ∩ expx([−ε, ε]νC(x)) is reduced
to x for ε > 0 small enough (this is a consequence of the assumption that C is
a smooth submanifold of V ). It follows that the set {r > 0 : expx(rνC(x)) ∈
C and νC(expx(rνC(x))) = − d

dr expx(rνC(x))} does not contain 0 as an accumula-
tion point. Since it is also closed, for any x ∈ C, the infimum defining R̆+(x) is either
attained and positive or infinite. Assume that R̆+(D) < +∞ and let (xn)n∈N be
a sequence of elements of C such that R̆+(xn) converges toward R̆+(D). By com-
pactness, we can assume that (xn)n∈N converges toward some x ∈ C. Passing to
the limit in νC(expxn(2R̆+(xn)νC(xn))) = − d

dr expxn(rνC(xn))|r=2R̆+(xn), we obtain
νC(expx(2R̆+(D)νC(x))) = − d

dr expx(rνC(x))|r=2R̆+(D). In particular R̆+(D) > 0,
otherwise we would end up with νC(x) = −νC(x). As a consequence, we get R̆+(x) ≤
R̆+(D) and finally R̆+(D) = R̆+(x), namely the infimum defining R̆+(D) is attained
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and is positive. Then the mapping ψC,R̆+(D) is not injective, since

ψC,R̆+(D)(x) = expx(R̆+(D)νC(x)) = ψC,R̆+(D)(expx(2R̆+(D)νC(x))),

where x is still a minimizer in the definition of R̆+(D). Thus we get R̂+(D) ≤ R̆+(D).
Next, assuming that R̂+(D) < R̃+(D), let us show conversely that R̂+(D) ≥

R̆+(D). Indeed, we can find distinct x, x′ ∈ C and r ∈ (0, R̃+(D)) such that ψC,r(x) =

ψC,r(x
′). Since r ∈ (0, R̃+(D)), we can find a neighborhood A of x (respectively A′

of x′, disjoint from A) in C such that ψC,r is a diffeomorphism of A (resp. A′) on its
image. If the tangent space TψC,r(x)ψC,r(A) of ψC,r(A) at ψC,r(x) is not equal to the
tangent space TψC,r(x′)ψC,r(A

′) of ψC,r(A′) at ψC,r(x′), then ψC,r(A) and ψC,r(A
′)

are crossing each other at ψC,r(x). Then by decreasing a little r into r′ < r, ψC,r′(A)

and ψC,r′(A′) are still crossing each other. One can then find y ∈ A and y′ ∈ A′ such
that ψC,r′(y) = ψC,r′(y

′) ∈ ψC,r(A)∩ψC,r′(A′). This is in contradiction with the defi-
nition of R̂+(D). Thus we get TψC,r(x)ψC,r(A) = TψC,r(x′)ψC,r(A

′). Note that by paral-
lel transport along the geodesic, d

dr expx(rνC(x)) is orthogonal to TψC,r(x)ψC,r(A) and
similarly for d

dr expx′(rνC(x′)). It follows that the two unit vectors d
dr expx(rνC(x))

and d
dr expx′(rνC(x′)) are proportional. They cannot be equal, otherwise by revers-

ing time in the geodesics, we would end up with x = x′. So d
dr expx(rνC(x)) =

− d
dr expx′(rνC(x′)) and by considering the geodesic starting from ψC,r(x) with speed

d
dr expx(rνC(x)) and its reversed time geodesic, we get expx(2rνC(x)) = x′ and
d
ds expx(sνC(x))|s=2r = −νC(x′), namely r ≥ R̆+(D) and as a consequence, R̂+(D) ≥
R̆+(D), i.e., R̂+(D) = R̆+(D).

We now come to the specific situation of the Euclidean plane.

Lemma 48. – Assume that V = R2, endowed with its usual Euclidean structure. For
any D ∈ D and r ∈ (R−(D), R+(D)), we have

∀x ∈ C, ρΨ(C,r)(ψC,r(x)) =
ρC(x)

1 + rρC(x)
.

In the context of Lemma 13, if α is given by

∀x ∈ C, α(x) =
ρC(x)

1− rρC(x)

then we have

∀x ∈ Ψ(C, r), TDΨ(·, r)[α](x) = ρΨ(C,r)(x).

Proof. – One way to compute the curvature ρΨ(C,r)(ψC,r(x)), for x ∈ C, is to con-
sider a parametrization (y(s))s of Ψ(C, r) by its length such that y(0) = ψC,r(x).
The quantity ρΨ(C,r)(ψC,r(x)) is then obtained by specializing the following formula
at s = 0,

∂sτΨ(C,r)(y(s)) = −ρΨ(C,r)(y(s))νΨ(C,r)(y(s)),

where τΨ(C,r)(y(s)) is the unit vector ∂sy(s).
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Let (x(s))s be a parametrization of C by its length, with x(0) = x. A parametriza-
tion of Ψ(C, r) is then given by (ψC,r(x(s)))s, but it is not by its length, due to the
relation

∂sψC,r(x(s)) = (1 + rρC(x(s)))τC(x(s)).

To get a parametrization by the length, consider the time change (θs)s given by∫ θs

0

1 + rρC(ψC,r(x(u))) du = s

and define y(s) = ψC,r(x(θs)). We compute

∂sy(s) = TψC,r[τC(x(θs))]∂sθs

= τC(x(θs)),

which is a unitary vector. We are thus led to differentiate

∂sτC(x(θs)) = −ρC(x(θs))νC(x(θs))∂sθs

= − ρC(x(θs))

1 + rρC(ψC,r(x(s)))
νC(x(θs)).

This computation proves that

ρΨ(C,r)(y(s)) =
ρC(x(θs))

1 + rρC(ψC,r(x(s)))

(and that νΨ(C,r)(y(s)) = νC(x(θs)), but that was already clear), which at s = 0 is
the first assertion of the above lemma.

For the second one, note that for any D ∈ D and r ∈ (R−(D), R+(D)), we have

∀x ∈ Ψ(C, r), ψ−1
C,r(x) = ψΨ(C,r),−r(x)

(note that r ∈ (R−(D), R+(D)) implies that −r ∈ (R−(Ψ(D, r)), R+(Ψ(D, r)))). It
follows that for x ∈ C,

α(ψ−1
C,r(x)) =

ρC(ψ−1
C,r(x))

1− rρC(ψ−1
C,r(x))

=
ρC(ψΨ(C,r),−r(x))

1− rρC(ψΨ(C,r),−r(x))

=

ρΨ(C,r)(x)

1+rρΨ(C,r)(x)

1− r ρΨ(C,r)(x)

1+rρΨ(C,r)(x)

= ρΨ(C,r)(x).

So Lemma 13 leads to the announced result.

Remark 49. – Lemma 48 is only valid in dimension 2. If R2 is replaced by Rn,
with n > 2, recall that the mean curvature ρ(x) at a point x from C B ∂D, where
D is a non-empty, open, bounded, connected domain with smooth boundary, is given

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021



70 CHAPTER 5. BACK TO THE HOMOGENEOUS SITUATIONS

by λ1,C(x) + · · ·+λn−1,C(x) (with the notation introduced in Lemma 45). Extending
in the natural way the previous notions, it appears that

∀x ∈ C, ∀m ∈ [[n− 1]], λm,Ψ(C,r)(ψC,r(x)) =
λm,C(x)

1 + rλm,C(x)

(as long as r ∈ R is such that minx∈C 1+rλ1,C(x) > 0). Thus to recover the mean cur-
vature vector through the tangent mapping of Ψ(·, r), one must consider the vector α
above D given by

∀x ∈ C, α(x) =
∑

m∈[[n−1]]

λm,C(x)

1− rλm,C(x)

(as long as r ∈ R is such that minx∈C 1− rλn−1,C(x) > 0).

Lemma 50. – Assume that V is a surface of constant curvature K, D ∈ D and
r ∈ (R−, R+) then we have:
• if K > 0 and x ∈ C,

ρΨ(C,r)(ψC,r(x)) =
(ρ2
C(x)−K) sin(2

√
Kr)

2
√
K

+ ρC(x) cos (2
√
Kr)(

cos (
√
Kr) + sin(

√
Kr)√
K

ρC(x)
)2 ,

• if K < 0 and x ∈ C,

ρΨ(C,r)(ψC,r(x)) =
(ρ2
C(x)−K) sinh(2

√
−Kr)

2
√
−K + ρC(x) cosh(2

√
−Kr)(

cosh (
√
−Kr) + sinh(

√
−Kr)√
−K ρC(x)

)2 .

By letting K go to zero in both cases, we recover Lemma 48.

Proof. – We only give the proof when K > 0, the case K < 0 can be deduced by
similar computations. For x ∈ C, let (γx(s))s be a curve parametrized by its arc
length with values in C and γx(0) = x. Denote τ(s) B γ̇x(s) its unitary tangent
vectors. Consider for any t, s,

γ(s, t) B expγx(s)(tν(γx(s)))

Js(t) B ∂s(γ(s, t)).

As a variation of a geodesic (for all the following Riemannian geometry notions, see
e.g., the book of Gallot, Hulin and Lafontaine [10]), (Js(t))t is a Jacobi field. We have
Js(0) = τ(s) and J̇s(0) = ∇∂sν(γx(s)) = ρC(γx(s))τ(s). So there exist α, β ∈ R such
that Js(t) = (α cos(

√
Kt) + β sin(

√
Kt))//t7→γ(s,t)τ(s), where //t 7→γ(s,t) is the parallel

transport above the curve t 7→ γ(s, t). Adjusting with the initial condition, we get:

Js(t) =

(
cos(
√
Kt) +

ρC(γx(s))√
K

sin(
√
Kt)

)
//t7→γ(s,t)τ(s).
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For fixed and small enough t, to get the arc length parametrization of s 7→ γ(s, t), let
us consider the time-change solution of the following equation:θ

(t)
0 = 0

d
dsθ

(t)
s =

(
cos(
√
Kt) +

ρC(γx(θ(t)
s ))√

K
sin(
√
Kt)

)−1

.

Let us denote γ̃(s, u) B γ(θ
(t)
s , u), we have

−ρΨ(C,t)(ψC,t(γx(θ(t)
s ))) = 〈∇∂s

∂

∂s
γ̃(s, t), νΨ(C,t)(γ̃(s, t)〉

= 〈∇∂s
∂

∂s
γ̃(s, t),

∂

∂u

∣∣
u=t

γ̃(s, u)〉

= 〈∇∂s
∂

∂s
γ̃(s, u),

∂

∂u
γ̃(s, u)〉

∣∣
u=t

.

Then

−ρΨ(C,t)(ψC,t(x)) = 〈∇∂s|s=0

∂

∂s
γ̃(s, u),

∂

∂u
γ̃(0, u)〉

∣∣
u=t

=

∫ t

0

∇∂u〈∇∂s|s=0

∂

∂s
γ̃(s, u),

∂

∂u
γ̃(0, u)〉 du

+ 〈∇∂s|s=0

∂

∂s
γ̃(s, 0), ∂u|u=0γ̃(0, u)〉.

Recall that

〈∇∂s|s=0

∂

∂s
γ̃(s, 0), ∂u|u=0γ̃(0, u)〉 = 〈∇∂s|s=0

∂

∂s
(θ(t)
s )τ(θ(t)

s ), νC(x)〉

= −ρC(x)(
∂

∂s

∣∣
s=0

(θ(t)
s ))2

= − ρC(x)(
cos(
√
Kt) + ρC(x)√

K
sin(
√
Kt)

)2 .

On the other hand, let J
θ
(t)
s

(u) = ∂
∂s
γ̃(s, u) and let R(·, ·) be the curvature tensor,

since u 7→ γ̃(s, u) is a geodesic, we have

∇∂u〈∇∂s|s=0

∂

∂s
γ̃(s, u),

∂

∂u
γ̃(0, u))〉

= 〈∇∂u∇∂s|s=0

∂

∂s
γ̃(s, u),

∂

∂u
γ̃(0, u)〉

= 〈∇∂s|s=0
∇∂u

∂

∂s
γ̃(s, u),

∂

∂u
γ̃(0, u)〉

+ 〈R
( ∂
∂s

∣∣
s=0

γ̃(s, u),
∂

∂u
γ̃(0, u)

) ∂
∂s
|s=0γ̃(s, u),

∂

∂u
γ̃(0, u)〉

= 〈∇∂s|s=0
∇∂uJθ(t)

s
(u),

∂

∂u
γ̃(0, u)〉+ 〈R

(
J
θ
(t)
0

(u),
∂

∂u
γ̃(0, u)

)
J
θ
(t)
0

(u),
∂

∂u
γ̃(0, u)〉
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= −〈∇∂uJθ(t)
0

(u),∇∂uJθ(t)
0

(u)〉+K〈J
θ
(t)
0

(u), J
θ
(t)
0

(u)〉,

where in the last equality, we took into account that ∇∂s〈∇∂uJθ(t)
s

(u), ∂∂u γ̃(s, u)〉 = 0.
Since

J
θ
(t)
0

(u) =
∂

∂s
|s=0(θ(t)

s )(cos(
√
Ku) +

ρC(x)√
K

sin(
√
Ku))//u 7→γ̃(0,u)τ(x)

∇∂uJθ(t)
0

(u) =
∂

∂s
|s=0(θ(t)

s )(−
√
K sin(

√
Ku) + ρC(x) cos(

√
Ku))//u 7→γ̃(0,u)τ(x)

d

ds
|s=0θ

(t)
s =

1

cos(
√
Kt) + ρC(x)√

K
sin(
√
Kt)

,

we deduce:

ρΨ(C,t)(ψC,t(x))

=

∫ t

0

‖∇∂uJθ(t)
0

(u)‖2 −K‖J
θ
(t)
0

(u)‖2 du+
ρC(x)(

cos(
√
Kt) + ρC(x)√

K
sin(
√
Kt)

)2

=
1

(cos(
√
Kt) + ρC(x)√

K
sin(
√
Kt))2

(∫ t

0

(
−
√
K sin(

√
Ku) + ρC(x) cos(

√
Ku)

)2

−K
(

cos(
√
Ku) +

ρC(x)√
K

sin(
√
Ku)

)2

du+ ρC(x)
)

=
(ρ2
C(x)−K) sin(2

√
Kt)

2
√
K

+ ρC(x) cos (2
√
Kt)(

cos (
√
Kt) + sin(

√
Kt)√
K

ρC(x)
)2 .

When the curvature is negative K < 0, except for the sign change in the second
order differential equation for the Jacobi field, all the computations are similar.

Remark 51. – In the context of the above lemma, let V be a (n + 1)-dimensional
manifold with constant curvature K > 0, D ∈ D, r ∈ (R−, R+) and λC,1(x) ≤ . . . ≤
λC,n(x) be the principal curvatures of C. It is not so clear how to control the principal
curvatures of Ψ(C, r) at the point ψC,r(x), but for the mean curvature we have:

ρΨ(C,r)(ψC,r(x)) =

n∑
l=1

(λ2
C,l(x)−K) sin(2

√
Kr)

2
√
K

+ λC,l(x) cos (2
√
Kr)(

cos (
√
Kr) + sin(

√
Kr)√
K

λC,l(x)
)2 .

A similar formula holds for K < 0.
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5.2. Comparison of two Doss-Sussman approaches

Consider the Doss-Sussman method corresponding to the decomposition (57) of
Remark 18. Similarly to (43) and (47), define in the present Riemannian Brownian
setting,

∀D ∈ D, ∀x ∈ C, ρ̃C(x) B ρC(x)− h(D)

∀ r > 0, ∀D ∈ Dr, ∀x ∈ C, α̃C,r(x) B −ρ̃Ψ(C,r)(ψC,r(x)).

We are interested in constructing a family (G̃t)t∈[0,τ) such that{
G̃0 = B(x, r0)

∀ t ∈ [0, τ), ∀x ∈ ∂G̃t, ∂tx = α̃∂G̃t,
√

2Bt
(x)ν∂G̃t(x),

(95)

since the process (Dt)t∈[0,τ) obtained by a particular composition of the normal flow Ψ

and of the flow (95), namely

∀ t ∈ [0, τ), Dt B Ψ(G̃t,
√

2Bt)(96)

will provide a solution to the martingale problem associated to (D,L), as in Theo-
rem 17.

In the following subsections we reformulate the results of Section 2, using this
Doss-Sussman approach.

5.2.1. Euclidean spaces. – Let V = Rn, fix x0 ∈ Rn and r0 > 0 and consider the
initial condition G̃0 = B(x0, r0) and C0 = ∂G̃0. According to Lemma 48 (also by
direct computation) we have for all r > −r0,

ρΨ(C0,r)(ψC0,r(x)) = (n− 1)
1
r0

1 + r
r0

=
n− 1

r + r0

h(Ψ(D0, r)) =
2n

r + r0
,

so

∀x ∈ C0, α̃C0,r(x) =
n+ 1

r + r0
.

Since the above quantity does not depend on x, the solution of (95) is radial and
G̃t = B(x, R̃t). According to (95), the radius starts with R̃0 = r0 and its evolution is
described by

∀ t ∈ [0, τ), dR̃t =
n+ 1

R̃t +
√

2Bt
dt(97)

this equation being well-defined up to the stopping time

τ B inf{t ≥ 0 : R̃t = −
√

2Bt or R̃t = 0}.

The condition R̃t > 0 comes from the fact that the normal flow Ψ(C, r) is not defined
when C is reduced to a singleton, and the condition R̃t > −

√
2Bt comes from the

fact that the normal flow Ψ(∂B(x0, R̃t), r) is well-defined only for r > −R̃t.
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We get the following equation:

∀ t ∈ [0, τ), d(R̃t +
√

2Bt) =
n+ 1

R̃t +
√

2Bt
dt+

√
2dBt

so (R̃t +
√

2Bt)t≥0 = (Bes
(n+2)
2t (r0))t≥0, where Bes(n+2)(r0) B (Bes

(n+2)
t (r0))t≥0 is a

Bessel process of dimension n+ 2 ≥ 2 starting from r0 > 0. For all t ≥ 0, R̃t +
√

2Bt > 0,
so (dR̃t)/(dt) > 0 and R̃t ≥ r0 > 0, hence Equation (97) is well-defined for all times,
i.e., τ =∞, and

∀ t ≥ 0, Dt = Ψ(G̃t,
√

2Bt) = B(x0, R̃t +
√

2Bt)

Since 0 is a entrance boundary for the Bessel process of dimension n + 2, it is
possible to solve the martingale problem associated to the generator (D,L) and to
the initial singleton condition D0 = {x0} as follow: let Bes(n+2)(0) be a Bessel process
of dimension n + 2 starting at 0, and (Bt)t≥0 be the associated Brownian motion,
namely such that

∀ t ≥ 0, Bes
(n+2)
2t =

√
2Bt +

∫ 2t

0

n+ 1

2Bes(n+2)
s (0)

ds

=
√

2Bt +

∫ t

0

n+ 1

Bes
(n+2)
2s (0)

ds.

Consider for any t ≥ 0,

Dt(x0,Bes
(n+2)
2t )

G̃t B Ψ−1(Dt,
√

2Bt),

where the latter is well-defined since Bes
(n+2)
2t >

√
2Bt for all t > 0. It appears that

∀ t ≥ 0, Bes
(n+2)
2t =

√
2Bt +

∫ t

0

h(Ds)− ρ∂Ds ds,

hence

∀x ∈ ∂G̃t, ∂tx = (h(Dt)− ρΨ(∂Gt,
√

2Bt)
)ν∂Gt(x)

= α̃∂Gt,
√

2Bt
(x)ν∂Gt(x).
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According to Lemma 10 and (56), we have for any f ∈ C∞(Rn),

dFf (Dt) = dFf (Ψ(Gt,
√

2Bt))

=

(∫
∂Dt

f(h(Dt)− ρ∂Dt) dµ
)
dt+

(∫
∂Dt

f dµ

)
(
√

2dBt)

+

(∫
∂Dt

〈∇f, ν∂Dt〉 dµ+

∫
∂Dt

fρ∂Dt dµ

)
dt

=

(∫
∂Dt

〈∇f, ν∂Dt〉+ fh(Dt)) dµ

)
dt

+
√

2

(∫
∂Dt

f dµ

)
dBt

= L[Ff ](Dt) dt+ dMt,

where

(Mt)t≥0 B

(√
2

∫ t

0

(∫
∂Ds

f dµ

)
dBs

)
t≥0

is a martingale. We get for all t ≥ s > 0,

Ff (Dt)− Ff (Ds) =

∫ t

s

L[Ff ](Du) du+Mt −Ms.(98)

Since a.s.

lim
s→0+

Ff (Ds) = 0

and

lim
s→0
L[Ff ](Ds) =

{
0 if n ≥ 3,

8πf(x0) if n = 2,

we can pass to the limit in (98) to get (Dt)t≥0 solves the martingale problem associated
to the generator (D,L) and to the singleton initial condition D0 = {x0}.

Let us now consider the Doss-Sussman method relative to the decomposition (22),
for simplicity only in the illustrative Euclidean plane V = R2. For x0 ∈ R2 and r0 > 0,
we are interested in the initial condition D0 B B(x0, r0). Starting with (θ0, G0) =

(0, D0), we solve the evolution equation system (51) with respect to (θt, Gt)t∈[0,τr0 ).
The solution (Gt)t∈[0,τr0 ) remains radial, so let us write it as Gt = B(x, R̂t) for all
t ∈ [0, τr0). Equation (51) becomes:

∀ t ∈ [0, τr0),

{
dR̂t = − 1

R̂t+
√

2Bt+θt
dt, R̂0 = r0

dθt = 4
R̂t+
√

2Bt+θt
dt, θ0 = 0,

(99)

where

τr0 = inf{t ≥ 0, R̂t = 0 or
√

2Bt + θt = −R̂t}.
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It follows that (R̂t +
√

2Bt + θt)t∈[0,τr0 ) = (Bes
(4)
2t (r0))t∈[0,τr0 ) where Bes(4)(r0) is a

Bessel process of dimension 4 starting from r0 We deduce that τr0 = inf{t ≥ 0, R̂t = 0}
and for any t ∈ [0, τr0),

R̂t − r0 = −
∫ t

0

1

R̂s +
√

2Bs + θs
ds = −1

2

∫ 2t

0

1

Bes(4)
s (r0)

ds.

Using the iterated logarithm law for the Bessel process for large times, we get∫ +∞

0

1

Bes(4)
s (r0)

ds = +∞.

It follows that necessarily, a.s. τr0 <∞ and more precisely that

2r0 =

∫ 2τr0

0

1

Bes(4)
s (r0)

ds.(100)

Taking into account that for any t > 0, we have (a.s.)∫ t

0

1

Bes(4)
s (0)

ds ∈ (0,+∞)

we can let r0 go to 0+ in (100) to see that

lim
r0→0+

τr0 = 0.

Thus, the Doss-Sussman method relative to the decomposition (22) does not en-
able to define the dual process for all times nor permits approximations of singleton
initial condition, contrary to the Doss-Sussman method associated to the decomposi-
tion (57).

Remark 52. – It may be surprising at first view that several decompositions of a
generator lead to solutions defined on different time domains. This is due to the fact
that the flows associated to the corresponding vector fields may not be defined for all
times. To get a simple example on R+, consider the case n = 1 in this subsection.

5.2.2. Hyperbolic spaces. – Let V = Hn be the hyperbolic space of dimension n. Fix
some x0 ∈ Hn and r0 > 0 and consider the initial condition G̃0 = D0 B B(x0, r0),
and C0 = ∂G̃0. We have for any r > −r0,

ρΨ(C0,r)(ψC0,r(x)) = (n− 1) coth(r + r0)

h(Ψ(D0, r)) = 2
sinhn−1(r + r0)

J(r + r0)
,

hence

∀x ∈ C0, α̃C0,r(x) = 2
sinhn−1(r + r0)

J(r + r0)
− (n− 1) coth(r + r0),
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where

∀ r ≥ 0, J(r) =

∫ r

0

sinhn−1(u) du.

The solution of (95) is radial, say G̃t = B(x, R̃t), and we have, starting with R̃0 = r0:

∀ t ∈ [0, τ), dR̃t =

(
2

sinhn−1(R̃t +
√

2Bt)

J(R̃t +
√

2Bt)
− (n− 1) coth(R̃t +

√
2Bt)

)
dt,

(101)

where

τ = inf{t ≥ 0 : R̃t = −
√

2Bt or R̃t = 0}.

We get, for all t ∈ [0, τ),

d(R̃t +
√

2Bt) =

(
2

sinhn−1(R̃t +
√

2Bt)

J(R̃t +
√

2Bt)
− (n− 1) coth(R̃t +

√
2Bt)

)
dt+

√
2dBt.

Note that as r > 0 goes to zero,

2
sinhn−1(r)

J(r)
− (n− 1) coth(r) ∼ n+ 1

r
.

This behavior is sufficient to insure that 0 is an entrance boundary for the diffusion
(R̃t +

√
2Bt)t≥0 (see for instance the classical computations of Chapter 15 of Karlin

and Taylor [14]). In particular, since (R̃t +
√

2Bt)t≥0 starts from r0 > 0, it will never
reach 0 (a.s.). Furthermore, let us check that the radius process (R̃t)t≥0 of (G̃t)t≥0 is
non-decreasing. Indeed, after an integration by parts, we obtain for all r ≥ 0:∫ r

0

sinhn−1(u) du =

∫ sinh(r)

0

vn−1

√
1 + v2

dv

=
sinhn(r)

n cosh(r)
+

∫ sinh(r)

0

vn+1

n
√

1 + v2(1 + v2)
dv

≤ sinhn(r)

n cosh(r)
+

1

n

∫ sinh(r)

0

vn−1

√
1 + v2

dv.

Hence we have for any r ≥ 0,∫ r

0

sinhn−1(u) du ≤ sinhn(r)

(n− 1) cosh(r)

namely

sinhn−1(r)

J(r)
≥ (n− 1) coth(r)

and
2 sinhn−1(r)

J(r)
− (n− 1) coth(r) ≥ sinhn−1(r)

J(r)
≥ 0.
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This non-negativity and (101) show that (R̃t)t≥0 is non-decreasing.
From these observations, we get the solution of (101) is defined for all times, i.e.,

τ =∞, and finally

∀ t ≥ 0, Dt = B(x0, R̃t +
√

2Bt)

provides a solution to the martingale problem associated to the generator (D,L) and
starting from B(x0, r0).

As in the Euclidean case, by letting r0 go to zero, we solve the martingale problem
associated to the generator (D,L) starting from the singleton {x0}.

5.2.3. Spherical spaces. – Let V = Sn be the sphere of dimension n ∈ N. Fix x0 ∈ Sn
and r0 ∈ (0, π), and consider the initial condition G̃0 = B(x0, r0), and C0 = ∂G̃0. We
have for any r ∈ (−r0, π − r0) (note that the normal flow in not well-defined for all
positive times):

α̃C0,r(x) = 2
sinn−1(r + r0)

I(r + r0)
− (n− 1) cot(r + r0),

where I(s) =
∫ s

0
sinn−1(u) du, for any s ∈ [0, π].

The solution of (95) is radial, say G̃t = B(x, R̃t). According to (95), starting
from R̃0 = r0, we have

∀ t ∈ [0, τ), dR̃t =

(
2

sinn−1(R̃t +
√

2Bt)

J(R̃t +
√

2Bt)
− (n− 1) cot(R̃t +

√
2Bt)

)
dt,(102)

where

τ = inf{t ≥ 0 : R̃t = π −
√

2Bt or R̃t = −
√

2Bt or R̃t = 0}.

We get

∀ t ∈ [0, τ), d(R̃t +
√

2Bt)

=

(
2

sinn−1(R̃t +
√

2Bt)

I(R̃t +
√

2Bt)
− (n− 1) cot(R̃t +

√
2Bt)

)
dt+

√
2dBt

Again, we have as r goes to 0+,

2
sinn−1(r)

I(r)
− (n− 1) cot(r) ∼ n+ 1

r

and this behavior is sufficient to get that 0 is an entrance boundary for the diffusion
(R̃t+

√
2Bt)t≥0. It follows that it never hits 0. To show that (R̃t)t≥0 is non-decreasing,

let us check that

∀ r ∈ (0, π), 2
sinn−1(r)

I(r)
− (n− 1) cot(r) ≥ 0.
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Observe that it is clearly satisfied for r ∈ [π2 , π). For r ∈ (0, π2 ), we have:∫ r

0

sinn−1(u) du =

∫ sin(r)

0

vn−1

√
1− v2

dv

=
sinn(r)

n cos(r)
−
∫ sin(r)

0

vn+1

n
√

1− v2(1− v2)
dv

≤ sinn(r)

n cos(r)
≤ sinn(r)

(n− 1) cos(r)
.

We deduce that r ∈ (0, π2 ),

2
sinn−1(r)

I(r)
− (n− 1) cot(r) ≥ sinn−1(r)

I(r)
≥ 0.

From these considerations, it appears that the solution to (102) is well-defined until
the (a.s. finite) stopping time

τ = inf{t ≥ 0 : R̃t +
√

2Bt = π}
and we have

∀ t ∈ [0, τ], Dt = B(x, R̃t +
√

2Bt).

In fact τ is the hitting time of the whole sphere Sn by (Dt)t∈[0,τ]. Since for all
f ∈ C∞(Sn), we have L[Ff ](Sn) = 0, it is natural to let the latter process be ab-
sorbed at Sn, namely to extend it by

∀ t ≥ τ, Dt B Sn

so that (Dt)t≥0 provides a solution to the martingale problem associated to the gen-
erator (D,L) and starting from B(x0, r0).

As in the Euclidean and hyperbolic cases, the martingale problem associated to
the generator (D,L) and starting from the singleton {x0} is solved by letting r0 go
to zero.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021





CHAPTER 6

ABOUT THE MARTINGALE PROBLEMS ASSOCIATED TO L

After proving Theorem 5, we will show that the martingales naturally associated
to L are directed by a unique Brownian motion, property corresponding to the ra-
dial evolution (3). Next, we will enrich the set of elementary observables and see in
the particular example of the diffusion X consisting of the Brownian motion in the
Euclidean plane how the enriched martingale problem is sufficient to deduce that the
dual domain-valued process ends up looking like a big disk, at least if it can be defined
for all times.

6.1. Proof of Theorem 5

As explained above Theorem 5, we assume we are given a stochastic process
(Dt)t∈[0,τ) taking values in G for positive times and solution to the martingale prob-
lem associated to (D,L), defined as in the introduction, except that the elementary
observables are defined on G instead of D. Despite this generalization, the following
arguments are similar to those given in the one-dimensional case treated in [19].

Let a test function f ∈ C∞(R+) be given and consider the process (St)t∈[0,τ) defined
by

∀ t ∈ [0, τ), St B f(µ(Dt))

= f(F1(Dt)).

Since the mapping G 3 D 7→ f(F1(D)) belongs to D, there exists a local martingale
(Mt)t∈[0,τ) such that for all t ∈ [0, τ),

St = S0 +

∫ t

0

L[f ◦ F1](Ds) ds+Mt.(103)

By definition of L, we have

L[f ◦ F1](D) = f′(F1)L[F1] + f′′(F1)ΓL[F1, F1].
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Recall that in the proof of Theorem 3, we computed, for any D ∈ G, with C B ∂D,

L[F1](D) = 2
µ(C)2

µ(D)
(104)

ΓL[F1, F1](D) = µ(C)2(105)

so that

L[f ◦ F1](D) = µ(C)2

(
f′′(F1) + 2

f′(F1)

F1

)
(D)

= 2µ(C)2L[f](F1(D)),

where

∀x ∈ R∗+, L B 1

2
∂2 +

1

x
∂

is the generator of the Bessel process of dimension 3 on R+ (see e.g., Chapter 11 of
the book [26] of Revuz and Yor). Thus we obtain, for all t ∈ [0, τ),

St = S0 + 2

∫ t

0

µ(Cs)
2L[f](µ(Ds)) ds+Mt.

It leads us to introduce the time change described by (12) and (13) and

∀ t ∈ [0, ς), Rt B µ(Dθ(t))

to get (Rt)t∈[0,ς) is a stopped continuous solution to the martingale problem associated
to the generator (C∞(R+),L). It follows that (Rt)t∈[0,ς) is a stopped Bessel process
of dimension 3. For completeness, let us just recall the underlying argument.

Define for t ∈ [0, ς),

Wt B Rt −R0 −
∫ t

0

1

Rs
ds.

According to the martingale problem, the process (Wt)t∈[0,ς) is a continuous local
martingale whose bracket is given by

∀ t ∈ [0, ς), 〈W 〉t =

∫ t

0

ΓL[id, id](Rs) ds,

where ΓL is the carré du champ operator associated to L and id : R∗+ 3 x 7→ x is the
identity mapping on R∗+. Since ΓL[id, id] = (id′)2 ≡ 1, we get

∀ t ∈ [0, ς), 〈W 〉t = t

so Lévy’s theorem shows that (Wt)t∈[0,ς) is a stopped Brownian motion. Then
(Rt)t∈[0,ς) is solution to the stochastic differential solution

∀ t ∈ [0, ς), dRt = dWt +
1

Rt
dt,

which admits a unique strong solution, once R0 is given. In particular the law
of (Rt)t∈[0,ς) is determined by the initial distribution of R0, it is the Bessel process
of dimension 3 with initial law L(X0).
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6.2. The stochastic differential equation associated with the martingale problem

With the notation of the above proof, for f = id in (103), we get Mθt = Wt

for t ∈ [0, ε), or

∀ t ∈ [0, τ), Mt = Wθ−1
t
,

where θ−1 : [0, τ)→ [0, ε) is the inverse mapping of θ given in (13). In particular, we
get

∀ t ∈ [0, τ), 〈M〉t = θ−1
t

= 2

∫ t

0

µ(Cs)
2 ds

so that we can find a Brownian motion (Bt)t≥0 (up to enlarging the underlying prob-
ability space) such that

∀ t ∈ [0, τ), Mt =
√

2

∫ t

0

µ(Cs) dBs.

Namely we have

∀ t ∈ [0, τ), dµ(Dt) = 2
µ(Ct)

2

µ(Dt)
dt+

√
2µ(Ct) dBt.(106)

The same Brownian motion (Bt)t≥0 is driving all the (Ff (Dt))t∈[0,τ), for all f ∈
C∞(V ), and even more:

Proposition 53. – For all F ∈ D, we have

∀ t ∈ [0, τ), F(Dt) = F(D0) +

∫ t

0

L[F](Ds) ds+
√

2

∫ t

0

√
ΓL[F,F](Ds) dBs,

(107)

where the determination of the sign of
√

ΓL[F,F] is

∀D ∈ D,
√

ΓL[F,F](D) B
∑
l∈[[n]]

∂lf(Ff1
, . . . , Ffn)(D)

∫
C

fl dσ

when F = f(Ff1
, . . . , Ffn), with the notation of the introduction.

Proof. – By definition of (D,L) and due to the usual rules of continuous stochastic
calculus (see for instance the book [26] of Revuz and Yor), it is sufficient to check the
above formula on the elementary observables, namely that for all f ∈ C∞(V ),

∀ t ∈ [0, τ), Ff (Dt) = Ff (D0) +

∫ t

0

L[Ff ](Ds) ds+
√

2

∫ t

0

√
ΓL[Ff , Ff ](Ds) dBs

with the determination of sign:
√

ΓL[Ff , Ff ] B
∫
f dσ. From the martingale problem,

we know that for any f ∈ C∞(V ), the process

∀ t ∈ [0, τ), Mf
t B Ff (Dt)− Ff (D0)−

∫ t

0

L[Ff ](Ds) ds
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is a local martingale whose bracket is given by

∀ t ∈ [0, τ),
〈
Mf

〉
t
B 2

∫ t

0

ΓL[Ff , Ff ](Ds) ds.

So our goal is to check that

∀ t ∈ [0, τ), Mf
t =

∫ t

0

√
ΓL[Ff , Ff ]√
ΓL[F1, F1]

(Ds) dM
1
s .

Since all the considered martingales start from 0, it is equivalent to show that

∀ t ∈ [0, τ),

〈
Mf
· −

∫ ·
0

√
ΓL[Ff , Ff ]√
ΓL[F1, F1]

(Ds) dM
1
s

〉
t

= 0.

Developing by polarization the l.h.s., we obtain〈
Mf

〉
t

+

〈∫ ·
0

√
ΓL[Ff , Ff ]√
ΓL[F1, F1]

(Ds) dM
1
s

〉
t

− 2

〈
Mf ,

∫ ·
0

√
ΓL[Ff , Ff ]√
ΓL[F1, F1]

(Ds) dM
1
s

〉
t

=
〈
Mf

〉
t

+

∫ t

0

ΓL[Ff , Ff ]

ΓL[F1, F1]
(Ds) d

〈
M1
〉
s
− 2

∫ t

0

√
ΓL[Ff , Ff ]√
ΓL[F1, F1]

(Ds) d
〈
Mf ,M1

〉
s

= 2

∫ t

0

ΓL[Ff , Ff ](Ds) ds+ 2

∫ t

0

ΓL[Ff , Ff ]

ΓL[F1, F1]
(Ds) ΓL[F1, F1](Ds)ds

− 4

∫ t

0

√
ΓL[Ff , Ff ]√
ΓL[F1, F1]

(Ds) ΓL[Ff , F1](Ds)ds

= 4

∫ t

0

(
ΓL[Ff , Ff ]−

√
ΓL[Ff , Ff ]√
ΓL[F1, F1]

ΓL[F1, Ff ]

)
(Ds) ds

= 0,

where we used that for any D ∈ G,(
ΓL[Ff , Ff ]−

√
ΓL[Ff , Ff ]√
ΓL[F1, F1]

ΓL[F1, F1]

)
(D) =

(∫
C

f dµ

)2

−
∫
C
f dµ

µ(C)
µ(C)

∫
C

f dµ

= 0.

Remark 54. – The stopped standard Brownian motion (Bt)t∈[0,τ) in (107) is (a.s.)
on the random interval [0, τ), the same as the one appearing in Theorem 17, when
above, one considers the stochastic process (Dt)t∈[0,τ) constructed in Theorem 17.
This is a consequence, on one hand of (106), which enables to recover (Bt)t∈[0,τ)

from (Dt)t∈[0,τ), since B0 = 0 and µ(Ct) > 0 for t ∈ [0, τ), and on the other hand of
the fact that in the proof of Theorem 17, we have

∀ t ∈ [0, τ), Mt =
√

2

∫ t

0

(∫
Cs

f dµ

)
dBs,

so by taking f = 1, we can recover (Bt)t∈[0,τ) in the same way.
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In the same spirit as Theorem 5 and similarly to [19], we also have

Proposition 55. – Under the setting of Theorem 5, the process (1/µ(Dt))t∈[0,τ) is
a positive local martingale. It follows that limt→τ− µ(Dt) exists a.s. in (0,+∞].

Proof. – Consider the mapping F : G 3 D 7→ 1/µ(D), which belongs to D. To see
that (1/µ(Dt))t∈[0,τ) is a local martingale, it is sufficient to check that L[F] = 0. By
definition,

∀D ∈ G, L[F](D) = − 1

F 2
1 (D)

L[F1](D) +
2

F 3
1 (D)

ΓL[F1, F1](D)

= − 1

F 2
1 (D)

µ(C)2

µ(D)
+

2

F 3
1 (D)

µ(C)2

= 0,

where (104) and (105) were taken into account.
Thus as a positive submartingale 1/µ(Dt), converges a.s. as t goes to τ from below,

to a limit belonging to [0,+∞). By taking the inverse, we get the announced result.

6.3. Enrichment of the elementary observables

Up to now, we only considered elementary observables of type (4), since they
were sufficient for our purposes, but other functionals are interesting to go further.
To simplify the presentation, we restrict ourselves to the situation of the Brownian
motion on a Riemannian manifold, namely we take b = 0, so that µ = λ, µ = σ and
ρb = ρ. The general case can be treated similarly (see the manipulations of the proof
of Theorem 3).

The first of new elementary observables we would like to add have the following
form, for any f ∈ C∞(V ),

Gf : D 3 D 7→ Gf (D) B

∫
C

f dσ.(108)

Indeed, the action (6) of the generator L can then be rewritten, taking into account
Stokes’ Theorem (21), as

∀D ∈ D, L[Ff ](D) =

∫
C

〈∇f, ν〉+ 2
σ(C)

σ(D)
f dσ

= F4f (D) + 2
G1(D)Gf (D)

F1(D)
,

so it seems natural to study the evolution of (Gf (Dt))t∈[0,τ), when (Dt)t∈[0,τ) is a
solution to the martingale problem associated to L.

Unfortunately, it seems difficult to work directly from this martingale problem,
while we still don’t know if it is well-posed. Our hope is that by enriching the domain
of functionals to which it is applied, we should be more able to obtain that it is well-
posed. So we rather consider the process (Dt)t∈[0,τ) given by (52) and construct new
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martingales for it. More precisely, up to reducing τ (replacing it by its minimum with
the first time Dt is no longer included into a nice tubular neighborhood of D0), we
will assume that Dτ is defined and belong to D. Before investigating the functionals
of the form (108), we are interested in the composition of the process (Dt)t∈[0,τ] with
the normal flow, which already played a crucial role in the construction of (Dt)t∈[0,τ].
So define

R B {r ∈ R : ∀ t ∈ [0, τ], Dt ∈ Dr}

∀ r ∈ R, ∀ t ∈ [0, τ), D
(r)
t B Ψ(Dt, r)(109)

= Ψ(Gt,
√

2Bt + θt + r),

where (Gt)t∈[0,τ] and (θt)t∈[0,τ] are defined as in (51). For any r ∈ R, consider

∀D ∈ Dr, ∀x ∈ C, α
(r)
C (x) B ρC(x)− ρΨ(C,r)(ψC,r(x))

and the operator L(r) acting on D−r via

∀ f ∈ C∞(V ),∀D ∈ D−r,

L(r)[Ff ](D) =

∫
C

〈∇f, ν〉+

(
2
σ(Ψ(C,−r))
λ(Ψ(D,−r))

+ α
(−r)
C

)
f dσ

=

∫
D

4f dλ+ 2
σ(Ψ(C,−r))

∫
C
f dσ

λ(Ψ(D,−r))
+

∫
C

α
(−r)
C f dσ.(110)

Its interest comes from:

Lemma 56. – For any f ∈ C∞(V ), t ∈ [0, τ] and r ∈ R, we have

Ff (D
(r)
t ) = Ff (D

(r)
0 ) +

∫ t

0

L(r)[Ff ](D(r)
s ) ds+

√
2

∫ t

0

Gf (D(r)
s ) dBs

Proof. – The arguments are similar to those of the proof of Theorem 17, which lead
to

dFf (Ψ(Gt,
√

2Bt + θt + r))

= −

(∫
∂Ψ(Gt,

√
2Bt+θt+r)

ρ∂Ψ(Gt,
√

2Bt+θt)
◦ ψ∂Gt,√2Bt+θt

◦ ψ−1

∂Gt,
√

2Bt+θt+r
f dσ

)
dt

+

(∫
∂Ψ(Gt,

√
2Bt+θt+r)

f dσ

)
(
√

2dBt + ∂tθtdt)

+

(∫
∂Ψ(Gt,

√
2Bt+θt+r)

〈ν,∇f〉 dσ +

∫
∂Ψ(Gt,

√
2Bt+θt+r)

ρf dσ

)
dt

= −

(∫
∂Ψ(Gt,

√
2Bt+θt+r)

ρ∂Ψ(Gt,
√

2Bt+θt)
◦ ψ∂Ψ(Gt,

√
2Bt+θt+r),−r f dσ

)
dt
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+

(∫
∂Ψ(Gt,

√
2Bt+θt+r)

〈ν,∇f〉+ ρf + ∂tθtf dσ

)
dt

+
√

2

(∫
∂Ψ(Gt,

√
2Bt+θt+r)

f dσ

)
dBt

=

(∫
∂Ψ(Gt,

√
2Bt+θt+r)

〈ν,∇f〉+

(
h(Ψ(Gt,

√
2Bt + θt)) + α

(−r)
∂D

(r)
t

)
f dσ

)
dt

+
√

2

(∫
∂Ψ(Gt,

√
2Bt+θt+r)

f dσ

)
dBt

= L(r)[Ff ](D
(r)
t ) dt+

√
2

(∫
∂D

(r)
t

f dσ

)
dBt.

For any D ∈ D, define

∀x ∈ C, ρ
(1)
C (x) B ∂rρΨ(C,r)(ψC,r(x))|r=0(111)

= −∂rα(r)
C (x)|r=0

= ∂rα
(−r)
C (x)|r=0.

By differentiation with respect to r at 0 in Lemma 56, we get:

Proposition 57. – For any f ∈ C∞(V ), we have ∀ t ∈ [0, τ],

Gf (Dt) = Gf (D0) +

∫ t

0

L[Gf ](Ds) ds+
√

2

∫ t

0

(∫
Cs

〈∇f, ν〉+ ρf dσ

)
dBs,

where

∀D ∈ D, L[Gf ](D) B

∫
C

4f + 2
σ(C)

λ(D)
〈ν,∇f〉+

(
2
σ(C)

λ(D)
ρ+ ρ(1)

)
f dσ.

Proof. – Consider the evolution described in Lemma 56. Certain terms are very easy
to differentiate with respect to r: according to the first part of Lemma 10

∀ t ∈ [0, τ ], ∂rFf [D
(r)
t ]|r=0 = Gf [Dt].

For the Brownian part, use the second part of Lemma 10:

∀ t ∈ [0, τ ], ∂r

∫
∂D

(r)
t

f dσ =

∫
Ct

〈∇f, ν〉+ ρf dσ.

For the remaining term, we decompose the derivative in

∂rL
(r)[Ff ](D

(r)
t )|r=0 = (∂rL

(r)|r=0)[Ff ](Dt) + ∂rL[Ff ](D
(r)
t )|r=0.

Use (110) for both terms of the r.h.s. For the first one, we get for any D ∈ D,

(∂rL
(r)|r=0)[Ff ](D) = −2

∫
ρ dσ

∫
C
f dσ

λ(D)
+ 2

σ(C)2
∫
C
f dσ

λ(D)2
+

∫
C

ρ(1)f dσ.
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For the second one, again for any D ∈ D, taking into account that α(0)
C ≡ 0, we have

∂rL[Ff ](Ψ(D, r))|r=0 = ∂r

∫
Ψ(D,r)

4f dλ+ 2
σ(Ψ(C, r))

∫
Ψ(C,r)

f dσ

λ(Ψ(D, r))

∣∣∣∣∣
r=0

=

∫
C

4f dσ + 2

∫
ρ dσ

∫
C
f dσ

λ(D)
− 2

σ(C)2
∫
C
f dσ

λ(D)2

+ 2
σ(C)

∫
C
〈ν,∇f〉+ ρf dσ

λ(D)
.

Putting together these computations, we obtain

∂rL
(r)[Ff ](D

(r)
t )|r=0 =

∫
C

4f + ρ(1)f dσ + 2
σ(C)

λ(D)

∫
C

〈ν,∇f〉+ ρf dσ,

which leads to the definition of L[Gf ].

Note that for any f ∈ C∞(V ) and D ∈ D, we have

L[Gf ](D) = G4f (D) + 2
G1(D)

F1(D)
F4f (D) + 2

G1(D)

F1(D)

∫
C

ρf dσ +

∫
C

ρ(1)f dσ

but neither
∫
C
ρf dσ nor

∫
C
ρ(1)f dσ are of the form Fg of Gg for some g ∈ C∞(V ).

We are thus lead to introduce two new types of elementary observables:

Hf : D 3 D 7→ Hf (D) B

∫
C

ρf dσ

H
(1)
f : D 3 D 7→ Hf (D) B

∫
C

ρ(1)f dσ.

Investigating the evolution of these observables, one will have to consider more gen-
erally for any l ∈ Z+

H
(l)
f : D 3 D 7→ Hf (D) B

∫
C

ρ(l)f d,(112)

where by iteration, for any n ∈ Z+,

∀x ∈ C, ρ
(n+1)
C (x) B ∂rρ

(n)
Ψ(C,r)(ψC,r(x))|r=0.

Probably other functionals will also appear (such as D 3 D 7→
∫
C
ρ 〈ν,∇f〉 dσ or

D 3 D 7→
∫
C
ρ2f dσ, see the next lemma), but the study of these iterations, as well as

their impact on the well-posedness of the corresponding martingale problems, is left
for a future work.

In the same spirit, we remark that the introduction of ρ(1) and H(1) are already
needed to consider a third derivative in Lemma 10:

Lemma 58. – For any f ∈ C∞(V ) and D ∈ D, we have

∂rHf (Ψ(D, r))|r=0 =

∫
C

ρ 〈ν,∇f〉+ ρ(1)f + ρ2f dσ.
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It follows that

∂3
rFf (D)|r=0 =

∫
C

4f + ρ 〈ν,∇f〉+ ρ(1)f + ρ2f dσ.

Proof. – The domain D ∈ D being fixed, consider a tubular neighborhood T of D
such that for any y ∈ T , there exists a unique r ∈ R and x ∈ C such that y = ψC,r(x).
Consider then the mapping ρ̃ : T → R given by ρ̃(y) = ρΨ(C,r)(y). With this defini-
tion, we have for r sufficiently small, Hf (Ψ(D, r)) = Gρ̃f (Ψ(D, r)). It follows that

∂rHf (Ψ(D, r))|r=0 = ∂rGρ̃f (Ψ(D, r))

=

∫
C

〈ν,∇(ρ̃f)〉+ ρρ̃f dσ.

It remains to note that on C, we have

〈ν,∇(ρ̃f)〉 = ρ̃ 〈ν,∇f〉+ f 〈ν,∇ρ̃〉

= ρ 〈ν,∇f〉+ fρ(1)

to get the first identity.

The second one comes from the rewriting, in our present context, of the second
equality in Lemma 10 as

∂2
rFf (Ψ(D, r)) =

∫
Ψ(D,r)

4f dλ+

∫
Ψ(C,r)

ρf dσ

= F4f (Ψ(D, r)) +Hf (Ψ(D, r))

and by differentiating with respect to r at 0.

The case f = 1 is particularly interesting, since G1(D) = σ(C) for any D ∈ D. The
quantity

∫
C
ρ dσ is called the total mean curvature of C and according to the previous

lemma,
∫
C
ρ(1) + ρ2 dσ is the derivative of the total mean curvature along the normal

radial flow. In the situation of constant curvature in dimension 2, the terms ρ(1) and
ρ2 are in fact comparable:

Lemma 59. – Assume that V is a surface of constant curvature K ∈ R. Then we
have

∀D ∈ D, ρ(1) = −ρ2 −K.

Proof. – When V is the Euclidean plane, the result follows by differentiating at r = 0

the first formula given in Lemma 48. The other null curvature situations (cylinders
and flat torus) can be treated similarly, since they can be up-lifted to their locally
isometric covering R2.

For the other constant curvature cases, use instead Lemma 50 of Subsection 5.1.
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Remark 60. – (a) When V is the Euclidean plane, it follows from Lemma 59 that

∂r

∫
Ψ(C,r)

ρ dσ = 0,

namely locally the normal radial flow leaves the total curvature of a smooth curve
invariant. This is in fact a consequence of Hopf’s Umlaufsatz Theorem, stating that
for any piecewise differentiable curve C in R2∫

C

ρ dσ = 2π(113)

(with an appropriate convention for the jumps of the tangent vectors, where ρ dσ has
to be seen as the difference of angles times a Dirac mass at the considered singular
point). When C is the smooth boundary of a convex domain, this can be obtained by
letting r go to +∞ in ∫

C

ρ dσ =

∫
Ψ(C,r)

ρ dσ

and by remarking that for large r > 0, Ψ(C, r) is quite close to a circle of radius r.
It would be interesting to see if this argument could be adapted to treat the general

case.

(b) Consider the Euclidean space (or any null curvature space) of dimension larger
than 2. From Remark (49), we deduce that

ρ(1)(x) = −
∑

m∈[[n−1]]

λ2
m(x).

More generally, when V has a constant sectional curvature K, we get

ρ(1)(x) = −K(n− 1)−
∑

m∈[[n−1]]

λ2
m,C(x).

Recall that the Gauss curvature at x ∈ C is given by

κC(x) =
∏

m∈[[n−1]]

λm,C(x).

Similarly to (111), we can introduce

∀x ∈ C, κ
(1)
C (x) B ∂rκΨ(C,r)(ψC,r(x))|r=0

and, if one has indexed in a coherent (e.g., nondecreasing) way the eigenvalues of the
second fundamental form,

∀x ∈ C, ∀m ∈ [[n− 1]], λ
(1)
m,C(x) B ∂rλm,Ψ(C,r)(ψC,r(x))|r=0.

Then we have, at least if none of the eigenvalues vanishes,

∀x ∈ C, κ
(1)
C (x) = κC(x)

∑
m∈[[n−1]]

λ
(1)
m,C

λm,C
(x).
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As in the proof of Lemma 58, we deduce that

∂r

∫
Ψ(C,r)

κ dσ

∣∣∣∣∣
r=0

=

∫
C

κ(1) + ρκ dσ.(114)

The last two formulas are valid on any Riemannian manifold V of dimension n.
But when V has a constant sectional curvature K, since

∀x ∈ C, ∀m ∈ [[n− 1]], λ
(1)
m,C(x) = −K − λ2

m,C

we obtain that, at least if none of the eigenvalues vanishes,

∀x ∈ C, κ
(1)
C (x) = −

ρC(x) +K
∑

m∈[[n−1]]

1

λm,C(x)

κC(x).

Integrating this relation with respect to σ on C, it follows from (114) that

∂r

∫
Ψ(C,r)

κC dσ

∣∣∣∣∣
r=0

= −K
∫
C

∑
m∈[[n−1]]

1

λm,C
κC dσ.

When n = 3, we have (
1

λ1,C
+

1

λ2,C

)
κC = λ1,C + λ2,C

= ρC

thus

∂r

∫
Ψ(C,r)

κC dσ

∣∣∣∣∣
r=0

= −K
∫
C

ρC dσ

= −K ∂rλ(Ψ(D, r))|r=0 .

Namely the quantity ∫
C

κC dσ +Kλ(D)

is invariant under the normal radial flow (as long as it remains in D). This is a very
special case of the Gauss-Bonnet theorem, asserting that the above quantity is equal
to 2π times the Euler characteristic of V .

Again, one is left wondering about possible links between the normal radial flow
and the generalized Gauss-Bonnet theorem.

(c) It is also natural to ask for a generalization of Lemma 59 when V is a surface
whose curvature is not constant.

Let us come back to our martingale problem and to Proposition 57. The explicit
description of the martingale associated to the evolution of (Gf (Dt))t∈[0,τ] in terms of
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the stopped Brownian motion (Bt)t∈[0,τ], enables us to see that for any f, g ∈ C∞(V )

and D ∈ D,
ΓL[Ff , Gg](D) = Gf (D) (F4g(D) +Hg(D))

ΓL[Gf , Gg](D) = (F4f (D) +Hf (D)) (F4g(D) +Hg(D)) .

These formulas leads to an enrichment of the algebra D of the introduction. Indeed,
consider the new algebraD consisting of the functionals of the form F B f(A1, . . . , An),
where n ∈ Z+, A1, . . . , An are elementary observables of the form (4) or (108) and
f : R → R is a C∞ mapping, with R an open subset of Rn containing the image of D
by (A1, . . . , An). For such a functional F, define

L[F] =
∑

j∈[[1,n]]

∂jf(A1, . . . , An)L[Aj ] +
∑

k,l∈[[1,n]]

∂k,lf(A1, . . . , An)ΓL[Ak, Al].

To two elements of D, F B f(A1, . . . , An) and G B (Ã1, . . . , Ãm), we also associate

ΓL[F,G] B
∑

l∈[[n]],k∈[[m]]

∂lf(A1, . . . , An)∂k(Ã1, . . . , Ãm)ΓL[Al, Ãk].

These formulas can be directly obtained as consequences of Itō’s formula applied to
the expressions given in (107) and Proposition 57, since the corresponding Brownian
motions are the same (cf. Remark 54).

6.4. Asymptotic behavior for large times on the plane

In this last subsection, we present an example of application of the above extension
of the domain of L. We consider the Laplacian L = 4 on the Euclidean plane R2. We
assume the domain of L has been extended to contain all mappings of the forms (4)
and (108), defined on G, an extension of D as described before Theorem 5. Just make
the hypothesis that the boundaries of the elements of G are piecewise differentiable
curves.

Theorem 61. – Let (Dt)t≥0 be a solution to the martingale problem associated to L
defined for all times. Then we have a.s. in the Hausdorff metric,

lim
t→+∞

Dt√
λ(Dt)

= B(0, 1/
√
π),

where B(0, 1/
√
π) is the Euclidean ball centered at 0 of radius 1/

√
π.

Proof. – From Theorem 5, we know that for any t > 0, λ(Dt) > 0, namely Dt is not
a singleton and belongs to G by assumption. Up to replacing (Dt)t≥0 by (D1+t)t≥0,
we assume in this proof that Dt belongs to G for all t ≥ 0.

In the Euclidean plane, the following isoperimetric inequality holds:

∀D ∈ G, σ(C)2

λ(D)
≥ 4π(115)

with equality if and only if D is a ball.
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From Proposition 55 and τ = +∞, we deduce that

lim inf
t→+∞

σ(Ct) ≥ 2 lim
t→+∞

√
πλ(Dt) > 0.

Thus in (12) we get ς = +∞ and in (13), limt→+∞ θt = +∞.

Under these circunstances, Theorem 5 asserts that (λ(Dθt))t≥0 is a Bessel process
of dimension 3 and in particular

lim
t→+∞

λ(Dt) = +∞.

We now use Proposition 57. From the relation G1(D) = σ(C), we get in general
that

dσ(Ct) =

(∫
Ct

ρ(1) + 2
σ(Ct)

λ(Dt)
ρ dσ

)
dt+

√
2

(∫
Ct

ρ dσ

)
dBt.

But for the Euclidean space, we have ρ(1) = −ρ2 and
∫
ρ dσ = 2π, according to

Lemma 59 and Hopf’s Umlaufsatz Theorem (113) (taking into account that the con-
sidered boundaries are piecewise differentiable), respectively. Thus we get

dσ(Ct) =

(
−
∫
Ct

ρ2 dσ + 4π
σ(Ct)

λ(Dt)

)
dt+ 2

√
2π dBt

and

dσ(Ct)
2 = 2

(
−
∫
Ct

ρ2 dσ + 4π
σ(Ct)

λ(Dt)

)
σ(Ct) dt+ 4

√
2πσ(Ct) dBt + 8π2dt.

Recall from (106) that

dλ(Dt) = 2
σ(Ct)

2

λ(Dt)
dt+

√
2σ(Ct) dBt.

Consider the process Z B (Zt)t≥0 defined by

∀ t ≥ 0, Zt B σ(Ct)
2 − 4πλ(Dt).

From the above computations, we deduce that

∀ t ≥ 0, dZt = 2

(
4π2 − σ(Ct)

∫
Ct

ρ2 dσ

)
dt.

By Cauchy-Schwarz’ inequality, we have for any t ≥ 0,

4π2 =

(∫
Ct

ρ dσ

)2

≤ σ(Ct)

∫
Ct

ρ2 dσ,

showing that Z is a.s. non-increasing. Thus we have

∀ t ≥ 0, Zt ≤ Z0.(116)
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For any t ≥ 0, denote D̃t B Dt/
√
λ(Dt). We have for any t ≥ 0,

σ(C̃t)
2 − 4πλ(D̃t) =

σ(Ct)
2 − 4πλ(Dt)

λ(Dt)

≤ σ(C0)2 − 4πλ(D0)

λ(Dt)

and the last expression goes to zero as t goes to +∞. From Bonnesen’s inequality
(see e.g., the book of Burago and Zalgaller [4]), we deduce that as t goes to infinity,
D̃t becomes closer and closer, in Hausdorff metric, to a disk of volume 1. To see
the announced result, it is sufficient to see that the barycenter of D̃t, which is the
barycenter of Dt divided by

√
λ(Dt), i.e.,

1

λ(Dt)3/2

∫
Dt

xλ(dx)

converges a.s. to 0 as t goes to +∞. It amounts to see that Ff/F
3/2
1 (Dt) converges to

zero for t large, where f is either the first or the second canonical projection of R2. So
let f be the first coordinate mapping (the second coordinate can be treated similarly,
note that a symmetry argument cannot be used here, since the well-posedness is
missing). Before investigating the evolution of R+ 3 t 7→ Ff/F

3/2
1 (Dt), we need a

preliminary result.

Lemma 62. – A transition phenomenon occurs:

∀ a > 1,

∫ +∞

0

1

λ(Dt)a
ds < +∞,

while

∀ a ≤ 1,

∫ +∞

0

1

λ(Dt)a
ds = +∞.

Furthermore, we have for large t ≥ 0, a.s.,∫ t

0

1

λ(Ds)
ds ∼ ln(F1)(Dt)

4π
.

Proof. – This is based on the fact that λ(Dt) goes to infinity as t goes to infinity.
More precisely, taking into account (104) and (105), we compute, for any a > 0 and
any D ∈ G,

L

[
1

F a1

]
(D) = − a

F a+1
1 (D)

L[F1](D) +
a(a+ 1)

F a+2
1

ΓL[F1, F1](D)

= a(a− 1)
σ(C)2

λ(D)a+2
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and in the sense of Proposition 53√
ΓL

[
1

F a1

]
(D) = − a

F a+1
1 (D)

G1(D)

= − aσ(C)

λ(D)a+1
,

where
√

ΓL [1/F a1 ] stands for
√

ΓL [1/F a1 , 1/F
a
1 ]. Since for any a > 0, we know

that 1/F a1 (Dt) converges to zero as t goes to infinity, we deduce that

1

F a1
(Dt)−

1

F a1
(D0) =

∫ t

0

L

[
1

F a1

]
(Ds) ds+

√
2

∫ t

0

√
ΓL

[
1

F a1

]
(Ds) dBs

= a(a− 1)

∫ t

0

σ(Cs)
2

λ(Ds)a+2
ds−

√
2a

∫ t

0

σ(Cs)

λ(Ds)a+1
dBs(117)

converges for large t ≥ 0. By a contradictory argument, assume that∫ +∞

0

σ(Cs)
2

λ(Ds)2a+2
ds = +∞,

which implies in particular that∫ +∞

0

σ(Cs)
2

λ(Ds)a+2
ds = +∞(118)

since limt→+∞ λ(Dt) = +∞. The bracket of the local martingale (
∫ t

0

√
ΓL[ 1

Fa1
](Ds) dBs)t≥0

is given for any t ≥ 0 by〈∫ ·
0

√
ΓL

[
1

F a1

]
(Ds) dBs

〉
t

=

∫ t

0

ΓL

[
1

F a1

]
(Ds) ds

= a2

∫ t

0

σ(Cs)
2

λ(Ds)2a+2
ds,

so that the iterated logarithm law for continuous local martingales implies

lim sup
t→+∞

∫ t

0

√
ΓL

[
1

F a1

]
(Ds) dBs = +∞

lim inf
t→+∞

∫ t

0

√
ΓL

[
1

F a1

]
(Ds) dBs = −∞.

In view of (118), it would follow that for large t ≥ 0, the expression in (117) admits
−∞ as liminf if a ≤ 1 and +∞ as limsup if a ≥ 1, this is in contradiction with the
existence of a finite limit. Thus we get∫ +∞

0

σ(Cs)
2

λ(Ds)2a+2
ds < +∞.

We get the first announced result, remembering that for large t ≥ 0, σ(Ct) ∼
2
√
πλ(Dt).
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For the second result with a = 1, rather consider the observable ln(1/F1). We have
for any D ∈ G,

L [ln(F1)] (D) =
1

F1(D)
L[F1](D)− 1

F 2
1 (D)

ΓL[F1](D) =
σ(C)2

λ(D)2

and √
ΓL [ln(F1)] (D) =

1

F1(D)
G1(D) =

σ(C)

λ(D)
.

So via similar contradictory arguments as before with

ln(F1)(Dt)− ln(F1)(D0) =

∫ t

0

σ(Cs)
2

λ(Ds)2
ds−

√
2

∫ t

0

σ(Cs)

λ(Ds)
dBs,(119)

which diverges to +∞ as t goes to infinity, we end up with∫ +∞

0

σ(Cs)
2

λ(Ds)2
ds = +∞.

For the last result, we need to apply more carefully the iterated logarithm law. Let
(Mt)t≥0 be the continuous local martingale defined by

∀ t ≥ 0, Mt B

∫ t

0

σ(Cs)

λ(Ds)
dBs.

Its bracket is given by

∀ t ≥ 0, 〈M〉t B
∫ t

0

σ(Cs)
2

λ(Ds)2
ds.

Since 〈M〉t diverges to +∞ for large t ≥ 0, the iterated logarithm law asserts that

lim sup
t→+∞

|Mt|√
〈M〉t ln(ln(〈M〉t))

= 1

It follows that for large t ≥ 0,

|Mt| �
∫ +∞

0

σ(Cs)
2

λ(Ds)2
ds

and the last statement of the lemma is a direct consequence of (119) and of the fact
that σ(Ct)

2 ∼ 4πλ(Dt), for large t ≥ 0.

Let us come back to our objective to show that ξt converges a.s. toward 0, where

∀ t ≥ 0, ξt B
Ff (Dt)

F
3/2
1 (Dt)

with f the first coordinate mapping of R2. Instead of applying the martingale problem
directly to the composed observable D 3 D 7→ Ff/F

3/2
1 (D), it seems more convenient

to decompose ξt into Mt/
√
λ(Dt), where (Mt)t≥0 is defined by

∀ t ≥ 0, Mt B
Ff
F1

(Dt) = Λ[f ](Dt).
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From Theorem (3), we have

L[Λ[f ]](D) = Λ[4[f ]] = 0,

so it follows that (Mt)t≥0 is a local martingale. More precisely, we get from Proposi-
tion 53 that

∀ t ≥ 0, Mt = M0 +

∫ t

0

hs dBs,

where for any s ≥ 0,

hs B
√

ΓL[Ff/F1](Ds)

=
Gf
F1

(Ds)−
Ff
F 2

1

(Ds)G1(Ds)

=
G1

F1
(Ds)

(
Gf
G1
− Ff
F1

)
(Ds).

When f is replaced by the identity mapping id : R2 → R2, for any D ∈ G, the vec-
tor

(
Gid

G1
− Fid

F1

)
(D) is the difference between the barycenter of C and the barycenter

of D, so it appears easily that for any s ≥ 0,

|hs| ≤
σ(Cs)

λ(Ds)

∥∥∥∥Gid

G1
(Ds)−

Fid

F1
(Ds)

∥∥∥∥ ≤ σ(Cs)
2

2λ(Ds)
.

More precise computations, separately presented in [20] because they rely on tech-
niques belonging to the field of isoperimetric stability, show that there exists a uni-
versal constant c > 0 such that for any D ∈ G with σ(C)2 − 4πλ(D) ≤ λ(D)/π, we
have ∥∥∥∥Gid

G1
(D)− Fid

F1
(D)

∥∥∥∥ ≤ cλ1/4(D)(σ(C)2 − 4πλ(D))1/4.

Thus taking into account the decreasing property (116) and the fact that λ(Ds)

diverges to +∞ as s goes to infinity, we get there exists (a.s.) a random time S and
a constant χ (depending on D0) such that

∀ s ≥ S, |hs| ≤
χ

λ(Ds)1/4
.

From the iterated logarithm law, we deduce that as t goes to +∞,

|Mt| = Õ

(√∫ t

0

1√
λ(Ds)

ds

)
,(120)

where the notation φ(t) = Õ(ϕ(t)), for two functions φ, ϕ : R+ → R+ with
limt→+∞ ϕ(t) = +∞, means that

lim sup
t→+∞

φ(t)

ϕ(t) ln(ln(ϕ(t)))
< +∞.
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Applying the martingale problem to the composed functional
√
F1, we get that for

any t ≥ 0,√
F1(Dt) =

√
F1(D0) +

3

4

∫ t

0

σ(Cs)
2

λ(Ds)3/2
ds+

1√
2

∫ t

0

σ(Cs)√
λ(Ds)

dBs.

Using again, on one hand that σ(Cs)
2 and λ(Ds) are of the same order for large s ≥ 0,

and on the other hand the iterated logarithm law, we deduce that for large t ≥ 0,∫ t

0

1√
λ(Ds)

ds = Õ(
√
λ(Dt) +

√
t).(121)

Another application of the iterated logarithm law to three independent Brownian
motions enables to see that if (Rt)t≥0 is a Bessel process of dimension 3, then a.s.,

Rt = Õ(
√
t).(122)

Recall that (Rt)t≥0 B λ(Dθt)t≥0 is a Bessel process of dimension 3, according to
Theorem 5, where (θt)t≥0 is defined by

∀ t ≥ 0, 2

∫ θt

0

σ(Cs)
2 ds = t.

The martingale problem applied to F1 shows that for any t ≥ 0,

λ(Dt) = λ(D0) + 2

∫ t

0

σ(Cs)
2

λ(Ds)
ds+

√
2

∫ t

0

σ(Cs) dBs.

Replacing t by θt, we deduce that

θt ∼
1

4π

∫ θt

0

σ(Cs)
2

λ(Ds)
ds

=
1

8π

(
λ(Dθt)− λ(D0)−

√
2

∫ θt

0

σ(Cs) dBs

)

= Õ

√t+

√∫ θs

0

σ(Cs)2 ds


= Õ(

√
t).

It follows that

t2 = Õ(θ−1
t )

= Õ(R2
θ−1
t

)

= Õ(λ(Dt)
2),

where θ−1 stands for the inverse mapping of θ : R+ → R+. Finally we obtain
√
t = Õ(

√
λ(Dt))(123)
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and this is sufficient to insure that a.s.

lim
t→+∞

Mt√
λ(Dt)

= 0,

in view of (120) and (121).

Remark 63. – From (123), it appears that

lim sup
t→+∞

ln(t)

ln(λ(Dt))
≤ 1.

We believe (in accordance with the beginning of Lemma 62) that

lim
t→+∞

ln(λ(Dt))

ln(t)
= 1,

but we have not been able to show it, even taking into account a lower bound on the
rate of escape for the Bessel process (Rt)t≥0 of dimension 3, stating that for any a > 1,

lim inf
t→+∞

Rt lna(t)√
t

= +∞

according to Theorem 3.2 (ii) of Shiga and Watanabe [27], see also Motoo [23] (the
part (i) of their theorem extends (122) to any Bessel process with a positive parame-
ter). This implies that

lim
t→+∞

ln(Rt)

ln(t)
=

1

2
.

Furthermore, note that in the above proof we did not use the last part Lemma 62,
which also gives an equivalent of ln(λ(Dt)) for large t ≥ 0.

These shortcomings are an invitation to study further the asymptotic behavior of
the renormalized domains (Dt/

√
λ(Dt))t≥0, in particular their fluctuations around

the convergence of Theorem 61.
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CHAPTER 7

ELLIPTIC DENSITY THEOREM REVISITED

Here we assume that Conjecture 6 is true: not only we can construct a solution
(Dt)t∈[0,τ] to the martingale problem associated to (D,L) and starting from any sin-
gleton {x0} ⊂ V , but it can be coupled with the primal diffusion X starting from x0

so that (14) and (15) are satisfied. Let us show how to quickly recover the density
theorem for elliptic diffusion from this property.

The proof is based on the following elementary observation:

Lemma 64. – Let A ⊂ V be a negligible event with respect to µ and denote f its
indicator function. For any measurable D ⊂ V with µ(D) > 0 and s ≥ 0, we have

Λ[Ps[f ]](D) = 0,

where (Pt)t≥0 is the Markov semi-group associated to L, seen as a family of Markov
kernels.

Proof. – Taking into account that µ is invariant for (Pt)t≥0, we have

Λ[Ps[f ]](D) =
µ[1DPs[f ]]

µ(D)

≤ µ[Ps[f ]]

µ(D)

=
µ[f ]

µ(D)

= 0.

We can now come to the

Proof of Corollary 7. – With the notations of the above lemma and Corollary 7, we
want to check that for any x0 ∈ V and any r > 0, Pr[f ](x0) B Ex0

[f(Xr)] = 0.
For any t ≥ 0, let Ft be the σ-field generated by X[0,t] and D[0,t∧τ]. From (14),

we get the diffusion X B (Xt)t≥0 is also strongly Markovian with respect to the
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filtration (Ft)t≥0. Remark that τ > 0, the stopping time entering into the definition
of (Dt)t∈[0,τ], is also a stopping time with respect to (Ft)t≥0. It follows that

Ex0
[f(Xr)] = Ex0

[Ex0
[f(Xr)|Fr∧τ]]

= Ex0
[Pr−r∧τ[f ](Xr∧τ)].

For any t ≥ 0, let Dt be the σ-field generated by D[0,t∧τ]. It follows from (14) with
T = r ∧ τ, that

E[h(r ∧ τ, Xr∧τ)|Dr∧τ] = Λ(Dr∧τ, h(r ∧ τ, ·))

for any non-negative measurable mapping h : R+ × V → R+. We deduce that

Ex0
[f(Xr)] = Ex0

[Ex0
[Pr−r∧τ[f ](Xr∧τ)|Dr∧τ]]

= Ex0
[Λ[Pr−r∧τ[f ]](Dr∧τ)]

= 0

according to Lemma 64. Indeed, we took into account Theorem 5, insuring that for
any t ∈ (0, τ], we have µ(Dt) > 0.

With Marc Arnaudon, we are currently working on the existence of a coupling as
in Conjecture 6 and some results in this direction will be presented in a future paper.

When the solutions to the martingale problems associated to (D,L) and to initial
singleton sets can be defined for all times, there is no need to have such a coupling
at our disposal to recover the density theorem for elliptic diffusions. Indeed, assume
that for any x0 ∈ V , we can construct a solution (Dt)t≥0 to the martingale problem
associated to (D,L) and starting from the singleton {x0} ⊂ V . First, we remark that
we can enrich the martingale problem by adding a temporal component. Let us just
sketch the argument: when F ∈ D and f ∈ C1([0, t]) with t > 0 are given, define

∀ (s,D) ∈ [0, t]×D, L[f ⊗ F](s,D) B ∂sf(s)F(D) + f(s)L[F](D).(124)

A simple computation shows that the process (Mf⊗F
s )s∈[0,t] given by

∀ s ∈ [0, t], Mf⊗F
s B f(s)F(Ds)− f(0)F(D0)−

∫ s

0

L[f ⊗ F](u,Du) du

is a martingale, whose bracket process is given by

∀ s ∈ [0, t],
〈
Mf⊗F
·

〉
s

=

∫ s

0

f2(u)ΓL[F,F](Du) du.

By traditional approximations, these considerations can be generalized to more gen-
eral mappings F : [0, t] × D → R, in particular they must be C1 with respect to the
time component so that (124) can be extended to

∀ (s,D) ∈ [0, t]×D, L[F](s,D) B ∂sF(s,D) + L[F(s, ·)](D).

The fact that the corresponding process defined by

∀ s ∈ [0, t], MF
s B F(s,Ds)− F(0, D0)−

∫ s

0

L[F](u,Du) du
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is a martingale is called the Dynkin’s formula.
Fix g ∈ C∞(V ), the above considerations can be applied to the mapping

F : [0, t]×D 3 (s,D) 7→ Λ[Pt−s[g]](D),

for which we compute L[F] = 0, due to the intertwining relation of Theorem 3. Taking
expectations, it follows that

E{x0}[Λ[g](Dt)] = Λ[Pt[g]]({x0}),
which amounts to intertwining relations at the level of semi-groups:

∀ g ∈ C∞(V ), Pt[Λ[g]]({x0}) = Λ[Pt[g]]({x0})
= Pt[g](x0),

where (Pt)t≥0 is the Markov semi-group associated to L. Since both the l.h.s. and
the r.h.s. can be seen as integration of the mapping g, this relation is extended to any
non-negative measurable function g. When we take for g the indicator function of a
measurable set negligible with respect to µ, we get

∀ t > 0, E{x0}[Λ[g](Dt)] = 0,

according to Lemma 64 and due to the fact that µ(Dt) > 0, from Theorem 5. We
deduce that Pt[g](x0) = 0, for any t > 0 and x0 ∈ V , as wanted.

An immediate extension is:

Proposition 65. – Assume that there exists ε > 0 such that for any x0 ∈ V , we
can construct a solution (Dt)t∈[0,ε] to the martingale problem associated to (D,L) and
starting from the singleton {x0} ⊂ V . Then for any t > 0 and whatever the initial
law L(X0), the law of Xt is absolutely continuous with respect to µ.

Proof. – The arguments presented above the statement of this proposition show that
for any s ∈ (0, ε] and any function f : V → R+ negligible with respect to µ, we have
that Ps[f ] = 0. By invariance of µ, we also have that for any u ≥ 0, Pu[f ] is negligible
with respect to µ: µ[Pu[f ]] = µ[f ] = 0. We deduce that Ps+u[f ] = Ps[Pu[f ]] = 0 and
the announced result follows.

Of course Corollary 7 and Proposition 65 are well-known in the present elliptic
diffusion framework. Nevertheless, we think this new approach can be adapted to
more complicated context, as Theorem 5 is quite universal (it was shown to hold
also for hypoelliptic diffusions, for the moment in dimension 1, in [18]). We believe it
should always be possible to associate to a diffusion some evolving sets (as mentioned
in the introduction) whose weights for an invariant measure behave like a continuous
martingale. By conditioning the primal diffusion X to remain inside these sets, we
would be led to a Bessel-3 process, up to a time-change and at least if the randomness
of X is sufficient, as the Brownian motion conditioned to stay positive ends up being
a Bessel-3 process.

Another noticeable downside of Corollary 7 is that it requires the a priori knowledge
that µ is absolutely continuous with respect to the Riemannian measure. A more
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general statement would only conclude, at positive times, to the absolute continuity
of the time-marginal laws with respect to the invariante measure. In this paper we
only considered kernels Λ which are directly related to the invariant measure µ, but it
would be instructive to condition with respect to other measures, even time-dependent
ones.
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APPENDIX

ABOUT PRODUCT SITUATIONS

As already mentioned in the introduction, there are in general several dual gener-
ators intertwined through Λ with a given generator L. We consider in this appendix
the product situation, where this multiplicity is particularly obvious.

Let L̃ and L̂ be two smooth generators on the manifolds Ṽ and V̂ of dimension
larger or equal to 1. Consider V B Ṽ × V̂ endowed with L B L̃⊗ Î + Ĩ ⊗ L̂ (Ĩ and Î
are the identity operators acting on C∞(Ṽ ) and C∞(V̂ ) respectively). All the notions
relative to L̃ (respectively L̂) will receive a tilde (resp. a hat). Assume that L̃ admits
an invariant Radon measure µ̃ and consider on G̃, an appropriate set of compact
subsets of Ṽ with positive measures, the kernel Λ̃ naturally associated with µ̃. Let
D̃ be an algebra of observables on G̃ on which we are given an operator L̃, intertwined
with L̃ through Λ̃: L̃Λ̃ = Λ̃L̃. Make similar hypotheses for L̂. Next define

Gindep B {D̃ × D̂ : D̃ ∈ G̃ and D̂ ∈ Ĝ}

Dindep B D̃⊗ D̂

Lindep B L̃⊗ ID̂ + I
D̃
⊗ L̂,

where I
D̃

and I
D̂

are the identity operators on D̃ and D̂ respectively. It is immediate
to check that LindepΛ = ΛL, where Λ B Λ̃⊗Λ̂ is the natural Markov kernel associated
with the measure µ B µ̃ ⊗ µ̂, invariant for L. When (D̃t)t∈[0,τ̃) and (D̂t)t∈[0,τ̂) are
independent processes satisfying the martingale problems associated with (D̃, L̃) and
(D̂, L̂) respectively, then (Dt)t∈[0,τ), defined by

τ B τ̃ ∧ τ̂

∀ t ∈ [0, τ), Dt B (D̃t, D̂t) ∈ Gindep

is a solution to the martingale problem associated with (Dindep,Lindep).
It should be clear that such a solution is very different from the one obtained from

Theorem 4, due to the fact that the evolutions on G̃ and Ĝ are independent. In fact,
the state spaces Gindep and D are even disjoint. Consider the example where L̃ = L̂ is
the Laplacian on R and add the singletons to G and D. Starting from a singleton,
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the solution associated with Lindep evolves as rectangles (centered at the initial point)
with independent side-lengths behaving as Bessel processes of dimension 3, while the
solution associated with Theorem 4 evolves as disks (centered at the initial point)
whose radius are Bessel process of dimension 4 (according to Subsection 2.1). It could
be objected that this argument is not really valid, since we did not show uniqueness
of the solution to the martingale problem associated with (D,L), or with formal
extensions of (D,L), in the sense that exactly the same definitions are applied to
more general subsets than those from D. But in Proposition 61, it is proven that a
solution to such a martingale problem, which is furthermore defined for all times,
ends up looking like a big disk and this is not true for the processes associated with
(Dindep,Lindep), since starting from a rectangle, it remains in the set of rectangles.

The fact that under L the evolutions of different parts of the boundary of a domain
are strongly correlated could suggest to try to couple the evolutions under L̃ and
L̂. More precisely, assume that G̃ = D̃ and that D̃ and L̃ are constructed as in
the introduction, similarly for (Ĝ, D̂, L̂). Let (D̃t)t∈[0,̃τ) and (D̂t)t∈[0,̂τ) be solutions
to the corresponding martingale problems. According to Proposition 53, there exist
Brownian motions (B̃t)t≥0 and (B̂t)t≥0 such that

∀ f̃ ∈ C∞(Ṽ ), ∀ t ∈ [0, τ̃), dFf̃ (D̃t) = L̃[Ff̃ ](D̃t) dt+
√

2
√

Γ
L̃

[Ff̃ ](D̃t) dB̃t

= L̃[Ff̃ ](D̃t) dt+
√

2Gf̃ (D̃t) dB̃t

and

∀ f̂ ∈ C∞(V̂ ), ∀ t ∈ [0, τ̂), dFf̂ (D̂t) = L̂[Ff̂ ](D̃t) dt+
√

2
√

Γ
L̂

[Ff̂ ](D̂t) dB̂t

= L̂[Ff̂ ](D̃t) dt+
√

2Gf̂ (D̂t) dB̂t.

In the previous independent framework, (B̃t)t≥0 and (B̂t)t≥0 are independent and
we end up with the generator Lindep. Now we would like to couple (D̃t)t∈[0,̃τ) with
(D̂t)t∈[0,̂τ) by taking (B̃t)t≥0 = (B̂t)t≥0, since this is suggested by a naive extension of
the radial evolution (3) to the domains belonging to Gindep. But again we end up with
a process different from the one obtained from Theorem 4, for the same reason as
above: in the case L̃ = L̂ = ∂2, it will evolve as squares if it is started from a square.
It can also be seen on the action of the generators on observables of the form Ff̃⊗f̂ ,
where f̃ ∈ C∞(Ṽ ) and f̂ ∈ C∞(V̂ ). In the general setting, Itō’s formula leads for the
above coupling to the generator Lequal acting on Gindep as

Lequal[Ff̃⊗f̂ ] = Ff̂ ⊗ L̃[Ff̃ ] + Ff̃ ⊗ L̂[Ff̂ ] + 2Gf̃ ⊗Gf̂
with the notation of Subsection 6.3. But simple computations show that the formal
extension of L to Gindep should be given by

L[Ff̃⊗f̂ ] = L̃[Ff̃ ]⊗ Ff̂ + Ff̃ ⊗ L̂[Ff̂ ] + 2
G1̃

F1̃

Ff̃ ⊗Gf̂ + 2Gf̃ ⊗
G1̂

F1̂

Ff̂ ,

where 1̃ ∈ C∞(Ṽ ) and 1̂ ∈ C∞(V̂ ) are the functions always taking the value 1.
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But in both cases, we have the same carré du champs: for any f̃ ∈ C∞(Ṽ ) and
f̂ ∈ C∞(V̂ ),

ΓL[Ff̃⊗f̂ ] = ΓLequal
[Ff̃⊗f̂ ]

=
(
Ff̃ ⊗Gf̂ +Gf̃ ⊗ Ff̂

)2

,

which is different from

ΓLindep
[Ff̃⊗f̂ ] = F 2

f̃
⊗G2

f̂
+G2

f̃
⊗ F 2

f̂
.

Nevertheless, the generator Lequal is not intertwined with L through Λ. Indeed, for
any f̃ ∈ C∞(Ṽ ) and f̂ ∈ C∞(V̂ ), denote

Rf̃⊗f̂ B Gf̃ ⊗Gf̂ −
G1̃

F1̃

Ff̃ ⊗Gf̂ −Gf̃ ⊗
G1̂

F1̂

Ff̂

so that

Lequal[Ff̃⊗f̂ ] = L[Ff̃⊗f̂ ] + 2Rf̃⊗f̂ .

From the proof of Theorem 3, we have, with f B f̃ ⊗ f̂ and 1 B 1̃⊗ 1̂,

F1Lequal[Λ[f ]] = Lequal[Ff ]− 2

F1
ΓLequal

[Ff , F1] + Ff

(
2

F 2
1

ΓLequal
[F1, F1]− 1

F1
Lequal[F1]

)
= Lequal[Ff ]− 2

F1
ΓL[Ff , F1] + Ff

(
2

F 2
1

ΓL[F1, F1]− 1

F1
Lequal[F1]

)
= F1L[Λ[f ]] + 2Rf − 2

Ff
F1
R1

= F1Λ[L[f ]] + 2Rf − 2
Ff
F1
R1.

Thus if the generator Lequal was to be intertwined with L through Λ, we would have
for any f̃ ∈ C∞(Ṽ ) and f̂ ∈ C∞(V̂ ),

Rf̃⊗f̂ =
Ff̃⊗f̂
F1
R1

= −
Ff̃⊗f̂
F1

G1̃ ⊗G1̂.

This equality holds on Gindep, namely for any D̃ ∈ D̃ and D̂ ∈ D̂, we have

Ff̃⊗f̂ (D̃ × D̂) = − µ̃(D̃)µ̂(D̂)

µ̃(∂D̃)µ̂(∂D̂)
Rf̃⊗f̂ (D̃ × D̂).

The sets D̃ and D̂ being fixed, the mapping f̃ ⊗ f̂ 7→ Rf̃⊗f̂ (D̃ × D̂) corresponds
to an integration of f̃ ⊗ f̂ on the boundary of D̃ ⊗ D̂, while f̃ ⊗ f̂ 7→ Ff̃⊗f̂ (D̃ × D̂)

correspond to an integration of f̃⊗ f̂ on the interior of D̃⊗D̂. Thus for any function f̃
(respectively f̂) whose support is included in the interior of D̃ (resp. D̂), we get
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Ff̃⊗f̂ (D̃ × D̂) = 0, i.e., µ̃⊗ µ̂ vanishes on the interior of D̃ ⊗ D̂. Since this is true for
any D̃ ∈ D̃ and D̂ ∈ D̂, we would conclude that µ̃ = 0 and µ̂ = 0, a contradiction.
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On a manifold, consider an elliptic diffusion X admitting an invariant measure µ.
The goal of this paper is to introduce and investigate the first properties of stochastic
domain evolutions (Dt)t∈[0,τ] which are intertwining dual processes for X (where τ is
an appropriate positive stopping time before the potential emergence of singularities).
They provide an extension of Pitman’s theorem, as it turns out that (µ(Dt))t∈[0,τ] is
a Bessel-3 process, up to a natural time-change. When X is a Brownian motion on a
Riemannian manifold, the dual domain-valued process is a stochastic modification of
the mean curvature flow to which is added an isoperimetric ratio drift to prevent it
from collapsing into singletons.

Sur une variété, considérons une diffusion elliptique X de mesure invariante µ.
Le but de ce papier est d’introduire et d’étudier les premières propriétés d’évolutions
stochastiques de domaines (Dt)t∈[0,τ] qui sont des processus duaux par entrelacement
de X (où τ est un temps d’arrêt strictement positif précédant l’apparition éventuelle
de singularités). Il s’agit d’une extension du théorème de Pitman, puisqu’il ressort que
(µ(Dt))t∈[0,τ] est un processus de Bessel-3, à un changement naturel de temps près.
Quand X est un mouvement brownien sur une variété compacte, ce processus dual
à valeurs domaines est une modification stochastique du flot par courbure moyenne
auquel est ajouté une dérive fournie par un quotient isopérimétrique qui l’empêche
de s’effondrer en des singletons.
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