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ASYMPTOTIC PROPERTIES OF SMALL DATA SOLUTIONS OF
THE VLASOV-MAXWELL SYSTEM IN HIGH DIMENSIONS

Léo Bigorgne

Abstract. — We prove almost sharp decay estimates for the small data solutions and
their derivatives of the Vlasov-Maxwell system in dimension n > 4. The smallness
assumption concerns only certain weighted L' or L? norms of the initial data. In
particular, no compact support assumption is required on the Vlasov or the Maxwell
fields. The main ingredients of the proof are vector field methods for both the kinetic
and the wave equations, null properties of the Vlasov-Maxwell system to control high
velocities and a new decay estimate for the velocity average of the solution of the
relativistic massive transport equation.

We also consider the massless Vlasov-Maxwell system under a lower bound on the
velocity support of the Vlasov field. As we prove in this paper, the velocity support
of the Vlasov field needs to be initially bounded away from 0. We compensate the
weaker decay estimate on the velocity average of the massless Vlasov field near the
light cone by an extra null decomposition of the velocity vector.

Résumé (Propriétés asymptotiques des solutions a données petites du systéme de Vlasov-
Maxwell en grandes dimensions)

Nous établissons dans cet article des estimations de décroissance presque optimales
sur les solutions & données petites, ainsi que sur leurs dérivées, du systéme de Vlasov-
Maxwell en dimension n > 4. Les hypothéses de petitesse ne concernent que des
normes L' ou L? & poids des données initiales. Par conséquent, aucune restriction
de support n’est imposée sur le champ de Vlasov ou le champ électromagnétique.
Les éléments clés de la démonstration sont des méthodes de champs de vecteurs,
utilisées tant pour étudier I’équation cinétique que les équations d’ondes, les propriétés
isotropes du systéme afin de controéler les grandes vitesses et une nouvelle inégalité
de décroissance pour la moyenne en vitesse des solutions de I’équation de transport
relativiste massive.

Nous étudions également le systéme de Vlasov-Maxwell sans masse pour des
champs de Vlasov dont le support en vitesse est disjoint d’un voisinage de 0. Comme
nous le montrons dans ce papier, cette hypothése est nécessaire pour que le probléme

(© Mémoires de la Société Mathématique de France 172, SMF 2022



soit bien posé. Nous compensons le faible taux de décroissance de la moyenne en
vitesse du champ de Vlasov le long du coéne de lumiére en exploitant les bonnes
composantes isotropes du vecteur vitesse.
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CHAPTER 1

INTRODUCTION

In this paper, we study the asymptotic properties of the small data solutions of
the Vlasov-Maxwell system in dimensions n > 4. For K species, this system is given

by

(1) \/ m2 + |v|20; fr + v'0i fi + exv"F 0yi fr, = O,

(2) VEF, = €*J(fi)v,
3) V% arana = 0,

with initial data,

(4) Je(0,+) = for,

(5) F(0,") = Fy,

with for and Fy satisfying the constraint equations (?)

(6) Vi(Fo)io = €"J(for)o, V*(Fy) poar..ans = 0.

This is a classical model in plasma physics and we refer to [10] for an introduction to

its analysis. Here,

— my, € Ry and e, € R* are the mass and the charge of the particles of the
species k € 1, K. The function fy(¢,z,v) is their velocity distribution, which is

a non-negative function.

— The Maxwell field is described in geometric form by the 2-form F(t,z) and its
Hodge dual, the (n —1)-form *F (¢, z). The initial datum Fj is a 2-form on R™*!
with cartesian components (Fp),, which do not depend on the variable ¢, so

that
*F

HOL ... Qi 2 (07 ) = *(FO)Hal‘-~anf2 .

1. During this article, we will use the Einstein summation convention. For instance, e*.J(fx), =

EkK:1 €* J(fi)v. Roman indices goes from 1 to n and greek indices from 0 to n. Moreover, we raise

and lower indices with respect to the Minkowski metric.

2. As *(Fp) is a (n — 1)-form, the constraint Equations (6) implies *(Fo);wél,_,Dtpoap_*_l,,,Dtn_3 =0.
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2 CHAPTER 1. INTRODUCTION

— The (n + 1)-current J(fy), in equation (2) is given by

J(fr)" (t, ) :/ U—Ofk(t,a:,v)dv, where v,g = y/mi + |v|2.

vERN Uk,

— The variable ¢ will be taken in R, z will be taken in R™ and for the species k,
v will be taken either in R™, if my # 0, or in R™ \ {0}, if my = 0.

In the 3 dimensional case, we can express the system in terms of the electric and the
magnetic vector fields through the relations

E'=Fy and B'= —*F,

so that the Vlasov-Maxwell equations take the familiar form

VmE + 20 fi + v 0 f, + ex(E +v X B) - Vy fp =0,
V-E = (i), O E = (V x B) — " J(fi)7,
V-B=0, 0¢B =—-V x E.

1.1. Global in time solutions for the Vlasov-Maxwell system in 3d

The global existence for classical solutions to the Vlasov-Maxwell system is still an
open problem. In dimension 3, they are known to be global in certain particular cases
such as under a translation symmetry hypothesis on the initial data in one of the space
variables. The pioneer works on this two and one half dimensional case originated from
Glassey-Schaeffer in [9] and required a compact support assumption in v. The result
obtained recently by Luk-Strain allows data with non-compact velocity support [20].
The solutions to the Vlasov-Maxwell system also appear to be global when they arise
from pertubation of spherically symmetric initial data ® (see [23]).

For the general case, several continuation criteria are known. The first one, obtained
by Glassey and Strauss in [12] (see also [3] and [18] for alternative proofs), expresses
that C! solutions to the Vlasov-Maxwell system arising from compactly initial data
do not develop singularities as long as the velocity supports of the particle densities
fr remain bounded. An improved continuation criteria requires the finiteness of

(7) (CEAEREA

for a certain g and 6, in order to extend the solution beyond T* > 0. Let us mention
[21] for the cases 6 < ¢ < oo and 6 > %, [29] for ¢ = +00 and 6 = 0 as well as [22]
for ¢ = 6 and 6 = 0. Earlier results of Glassey-Strauss required the boundedness of
(7) for ¢ = oo and @ = 1 and cover data with non-compact support in v (see [14]).
Recently, Luk-Strain removed in [20] all compact support assumptions and extend
the continuation criteria (7) for 2 < ¢ < +o00 and 0 > %.

Le=([0,T*[,L4LY)’

3. Recall that for spherically symmetric solutions, the Vlasov-Maxwell system reduces to the
relativistic Vlasov-Poisson system.
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1.3. OPTIMAL GRADIENT ESTIMATES FOR VLASOV SYSTEMS 3

1.2. Previous work on small data solutions of the Vlasov-Maxwell system

Global existence for small data in dimension 3 was first established by Glassey-
Strauss in [13] under a compact support assumption (in z and in v). In particular
they proved fv fdv < ﬁ, coinciding with the linear decay, but they did not con-

trol O, - -+ Oy, fv fdv. They also proved decay estimates for the electromagnetic field
and its derivatives of first order, but not for the derivatives of higher order. A similar
result was proved in [11] for the nearly neutral case, i.e., Y., exm} for(z, myv) has
to be small and not the individual particle densities. The result established by Scha-
effer in [24] allowed particles with high velocity but still requires the data to be
compactly supported in space (Y. Finally, let us also mention the earlier result of
Bardos-Degond for the more classical Vlasov-Poisson system [1]. Under a smallness
assumption, they established that the solution of the system is global in time and
proved that fv fdv < (1"‘%)3 but they did not obtain informations on the derivatives
of f. They also proved decay estimates for the electric field up to second order.

1.3. Optimal gradient estimates for Vlasov systems

Due to the linearity of the Maxwell equations and the elliptic nature of the Poisson
equation or a nonresonant phenomenon ¥, the previous results are established with-
out essentially commuting the Vlasov equation and controlling higher derivatives of
the solutions. For the Vlasov-Poisson system with small data, the sharp time decay
estimates | [ Oy, -+ Op, fdv| < W was proved ® in [15]. A similar result was
obtained in [25] using a vector field method which led to global bounds for the solu-
tion and optimal space and time decay rates for the velocity averages. In the same
spirit, optimal decay estimates was proved for the derivatives of the solutions of the
Vlasov-Nordstrém system in [7] and [27]. The stability of the Minkowski space for
the Einstein-Vlasov system was recently, and independently, proved in [26] and [19].
For both of them, vector field methods was a crucial point in the proof and led in
particular to almost optimal decay rates for the derivatives of the solutions.

The goal of this paper is to prove almost optimal decay for the small data solutions
and their derivatives of the Vlasov-Maxwell system in dimension n > 4 without any
compact support assumption on the initial data.

4. Note also that when the Vlasov field is not compactly supported (in v), the decay estimate
obtained in [24] for its velocity average contains a loss.

5. According to [4], the velocity averages of the solutions of a system coupling a linear wave
equation with a transport equation are such that the velocity averages are more regular than expected
if the speed of propagation of the wave equation is strictly larger than the speed of the particles
governed by the transport equation.

6. A similar result is established in [5], using the same techniques, for the Vlasov-Yukawa system
in dimension 2.

SOCIETE MATHEMATIQUE DE FRANCE 2022



4 CHAPTER 1. INTRODUCTION

1.4. The vector field method for Vlasov fields

In this paper, we will use a vector field method to derive decay estimates for both
the electromagnetic field and the Vlasov field. The vector field method was originally
developped by Klainerman in [16] to study wave equations and was adapted to cover
the Maxwell equations (and the spin 2 equations) in 3d in [6]. More recently, the
method was extended for the free relativistic transport equation in [7].

As in [16], these methods are based on energy estimates, commutation vector fields
and weighted Sobolev inequalities. For the transport operator v#9,, the set Py of
commutation vector fields used in [7] is composed of the scaling vector field S = z#9,
and the complete lifts of the generators of the Poincaré group, that is to say the
transalations

Ou, 0< <,
the complete lifts of the rotations
ﬁij = aziaj — 270, + 00, —v90,, 1<i<j<n
and the complete lifts of the Lorentz boosts
ﬁgk =10 + (Ekat + anvk, 1<k<n.

In [7], vector field methods are applied to derive the behavior of the solutions to the
Vlasov-Nordstrém system in the future of the hyperboloid (¥ ¢2 — 2 = 1. However,
without any compact support assumption, one cannot reduce the study of a solution
in the future of a t = constant slice to its study in the future of a hyperboloidal slice
(see for instance [7], Appendix A, for more details). In order to remove all compact
support assumption on the data, one of the goal of this paper is to start from a ¢ =0
slice and adapt the vector field method for transport equations to the more common
foliation ({t} x R™),-,. Note that [27] (respectively [26]) use slight modifications of
the commutation vector fields ® of the operator v#9,, in order to study the small data
solutions of the Vlasov-Nordstrom (respectively Einstein-Vlasov) system in 3d. They
also use a hyperboloidal foliation and restrict the study of the solutions to the future
of a hyperboloid.

1.5. The Lorenz gauge

Recall that a 1-form A is a potential of the electromagnetic field F if F = dA (or
F,, =0,A, — 0,A,). If moreover

o"A, =0,
7. The use of a hyperboloidal foliation in order to establish decay estimates was introduced in
[17] in the context of the Klein-Gordon equation.

8. The modified vector fields are built in order to compensate the worst source terms in the
commuted transport equations.

MEMOIRES DE LA SMF 172



1.6. RESULTS FOR THE MASSIVE VLASOV-MAXWELL SYSTEM 5

we say that A satisfies the Lorenz gauge condition. As the energy momentum ten-
sor T[F] of F is not traceless in dimension n > 4 and the Morawetz vector field
Ko := (t> + 12)0; + 2trd, is merely a conformal Killing vector field, we encounter the
same difficulty in using it as for the wave equation in 3d (see [28], Chapter II). More
precisely, the goal is to propagate the following weighted L? norm

E[F)(t) :== /{t} o T[Flo, Kjde.

However, even if F' solves the free Maxwell equations, i.e., V#F,, = 0 and
V*Fia4..an_, = 0, the divergence theorem gives, since the conformal factor
of Ky is 4t,

¢
/ T[F]O,,Ké’dac:/ T[F]O,,K(l)’dac—/ / 4sT[F]*  dzds.
{t} xR? {0} xR 0 JR3

The integrand in the spacetime integral on the right hand side of the previous
inequality does not vanish when n # 3 and is not nonnegative. Moreover, it cannot
be estimated using E[F](¢) as it would led to an inequality such as

E[F](t) < E[F](0) + Clog(1+1t) s?p]E[F](s), C>1,
s€[0,t

since we have, at least for large r, |T[F|o, K§| ~ 7?|T[F]| and 4s|T[F)* | ~ r|T[F]].
To circumvent this difficulty, we will consider in this paper the Vlasov-Maxwell system
in the Lorenz gauge, so that A, will satisfy the equation

v
(8) 04, =é* /v v—gfkdv.
Considering the modified current
1
T[FK§ + (n—3) (tAgaHAﬁ - iau(t)AgAﬂ —tAz9P A, + 0P (t)AﬁAH>

will allow us to avoid any term such as 4sT[F]* . in our energy inequalities. We also
make fundamental use of the Lorenz gauge to establish the optimal decay rate on the
component « of the null decomposition of the electromagnetic field, as the method
used in [6] cannot be reproduced in dimension n # 3.

1.6. Results for the massive Vlasov-Maxwell system

We will consider weighted L? norms to control A and F such as (**)

ENLAID) = 30 D 30 112° (Lzr () () | oy

1=01B|<1 |y|<N

9. This norm is given in terms of the null components of F' in Definition 3.20.
10. For a tensor G and a multi-index 8 = (B1,...,0p),

Lz6(G)=Lyp, Ly, (G).
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6 CHAPTER 1. INTRODUCTION

as well as weighted L! norms for the Vlasov field, such as

Z / / )4 ZPg|(¢, z, v)dvda

|BI<N
sup/ / )t L|Zﬁg|dde’ (1),
|ﬁ|<N ustJCut) JRY

where Cy(t) := {(s,y) € Ry x R" /s < t, s — [y| = u}. For the Vlasov field, we
also use extra norms with the additional weights v*, z%v? — 29v® or tv® — 2%0°. See
Definitions 3.2, 3.20 and Section 2.4 for an introduction to the other norms and the
weights.

We are now ready to present our main result for the massive Vlasov-Maxwell system
(for a detailled version, see Theorem 6.1).

THEOREM 1.1. — Letn >4, K > 2, and N > gn—I— 1. Let (fo, Fo) be an initial data
set for the massive Vlasov-Mazwell system with K species. Let (f,F) be the unique
classical solution to the system and let A be a potential in the Lorenz gauge. There
exists € > 0 such that V), if

EnlA](0) + En[F](0) ZENW (0) <e

then (f, F) exists globally in time and verifies the following estimates.

— Energy bounds for A, F and fi such as E3[fr] S e on R,.

— Sharp pointwise decay estimates on the null decomposition of Lzs(F) and for
the velocity average of fi and its derivatives. For instance,

3n+ 2 €
2

vis <N - (o) e xR [ (2P dao
vER”

1+t+ |z

REMARK 1.2. — Since we suppose that the initial energy on F is finite, we are nec-
essarily in the neutral case when the dimension is n = 4, i.e., the total charge of the

plasma
= ek/ / foxdvdz = —e* T (for)o
zeR” JyeRn

. . . . @
vanishes. Indeed, if n = 4, Gauss’s law implies, as Fo, = % Fy;,

lim »? / p(F)(0,70)dS® = lim r® / Fo,(0,70)dS?
0ess 9es3

r——4o0 r— 400

lim ViFydz = Q.

Tt Jig|<r

11. A smallness condition on F', which implies gN [A](0) < ¢, is given in Proposition 2.20.
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1.7. RESULTS FOR THE MASSLESS VLASOV-MAXWELL SYSTEM 7

Consequently, if Q # 0, we have fxeSs p(F)(0,2)dS? ~,_ 1 oo % and then

+o0 2
/ 2 / p(F)(0,76)dS?
r=0 [ASSH

r3dr = +0.
Hence, the energy Ex[F] cannot be finite if Q@ # 0 since, by the Cauchy-Schwarz
inequality,

+oo
r=0

We refer to [2] and [30] for a study of the Mazwell-Klein-Gordon system with a
non-zero total charge.

2

+oo
/ p(F)(0,70)dS?| r3dr < 271'2/ r2/ lp(F)|?(0,70)dS*r3dr
9es? r=0 9es?

< /R P2 F2(0, 2)dz < Ex[F)(0).

REMARK 1.3. — Thanks to the vector field method and in view of the definition of
our norms, we do not need any compact support assumption on the initial data. We
also automatically obtain improved decay rates for the derivatives of both the electro-

magnetic field and the velocity averages of the particle densities. For instance, for all
18] < N — 322 gnd (t,2) € Ry x R™,
< €

a"/ dv
L e Sy P Y s PRy

and (see Section 5.4), assuming more decay on the initial data,

. / frdv
’ vER™

REMARK 1.4. — Notice that in dimension n = 4, it is sufficient for Zﬂfk to initially
decay faster than (1 + |v])~67%(1 + |z|) =52, with 6 > 0, for our theorem to apply. In
[24], which concerns the 3d case, the main result requires the initial particle densities to
be compactly supported in x and to decay faster than (1+ |v|)~9, with ¢ > 60+12+/17.

< €
~ (L4t [z tIBE

1.7. Results for the massless Vlasov-Maxwell system

We now present an elusive version of our main result for massless particles (we
refer to Theorem 7.1 for more details).

THEOREM 1.5. — Letn >4, K > 2, N > 6n+3 and R > 0. Let (fo, Fy) be an initial
data set for the massless Vlasov-Mazwell system with K species, (f, F') be the unique
classical solution to the system and A be a potential in the Lorenz gauge. There exists
€ >0 and R > 0 such that, if

K
EnTAN(0) + En[FI(0) + > EX 1 [f2)(0) < e,

k=1
V1<k<K, supp(for) C {(2,v) € Ry x R\ {0} / [v] > R},

SOCIETE MATHEMATIQUE DE FRANCE 2022



8 CHAPTER 1. INTRODUCTION

then (f, F) exists globally in time and verifies the following properties.
: R
— fx(.,-,v) vanishes for all |v| < 5.
— FEnergy bounds are propagated for F' and fy. For instance, ifn =4, Ey_g[F|(t) <
e(1+¢t) for allt € [0,T].
— Pointwise decay estimates on the null decomposition of Lzs(F) and for the
velocity average of f and its derivatives. For instance,

€

VIB| < N —2n, (t,z) € Ry xR", / |26fk|dv S oo
veR™\{0} T+ T

REMARK 1.6. — The hypotheses on the velocity supports of the particle densities ap-
pear to be necessary (see Section 8).

REMARK 1.7. — We are not able to obtain optimal decay estimates for the electro-
magnetic field in dimension n = 4 with our reasoning since the velocity average of
the Viasov field has a weaker decay rate near the light cone when the mass is zero
(this is related to the estimate (11) mentionned below, which only applies to massive
particles).

1.8. The main difficulties and ingredients of our proof

1.8.1. High velocities and null properties of the system. — As we use vector field
methods, we are brought to commute the equations and prove global bounds on the
solutions through energy estimates. After commuting the Vlasov equation once, we
are led to estimate terms that could be written schematically as

/()t/gc/]|U£Z(F)3yf|dvdxds.

Unfortunately, 0,:, for 1 < i < n, is not part of the commutation vector fields for the
transport equation. We rewrite them in terms of the elements of Py as

©) Dot = 5 (oufi — 101 fx — 70 fi),

so that 0,f essentially behaves like t0, f, which is consistent with the behavior of
solutions to the free transport equation. This leads us to estimate

(10) /Ot / /v(s + |z))| L2 (F)Of|dvdzds.

As a solution to a wave equation, £z (F') only decays near the light cone as 1

(1+t+|x])
and we cannot prove by a naive estimate that, in dimensions n < 5, (10) is uniformly

bounded. However, if f is initially compactly supported, one can expect (for, say,
sufficiently small data) the characteristics of the transport equation to have velocities
bounded away from 1, and thus the Vlasov field support (in z) to be ultimately remote

n—1
2
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from the light cone. Now, assuming enough initial decay on the Maxwell field, one
can prove that

L2(F)| S (14 s+ e~ (1+]s —|2l)) 73

which, combined with the support properties of f, leads to
/ /(s + |2)|L2(F)of|dvdr S (1+s)"2

and (10) is then uniformly bounded in dimensions % n > 4.

In our work, we do not make any compact support assumption. Instead, we make
crucial use of null properties of the Vlasov-Mawxell system (*) to deal with the high
velocities. More precisely, certain null components of the velocity vector v, the deriva-
tives of the electromagnetic field (as Lz(F')) or the vector (0,9, f,..., 0y f) behave
better than others and the structure of the system is such that there is no product
involving only terms with a bad behavior. Taking advantage of the null structure
allows us either

— to transform a ¢t — r decay in a t + r one. For instance,

(L2 (F)| = | = L2(F)io| S (L4 s+ [e) ™5 (1 + s — [al|) 5.

— To transform a ¢ + r loss in a t — r loss using %iav,-f ~ (t—r)0f.

— Or to exploit the ¢ — r decay. For instance, we will control

L
/ / V10 |dvdCa(t) < ELF](2),
Cu(t) Jverr U

so that, by the change of variables (u,u) = (s +r,s — 1),
K 1 L ’ E[f](t
[ it [ [ O,
o Jo I+ls—z[])? J, v u=—oco (14 [ul)

1.8.2. Improved decay estimates. — o For massive particles. In [7], two Klainerman-
Sobolev inequalities for velocity averages of Vlasov fields were obtained. They imply

12. Note that our proof would lead to a v/t-loss in dimension 3 which is not sufficient to prove the
uniform boundedness of (10).

13. The null structure of the Vlasov-Nordstrém system is also a main ingredient of the proof of [7]
for the dimension n = 4.
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in particular that, for g a solution to v#9,(g) = 0,

V(t,x) < R+ X Rn,

/ gt z,v)do <Y Jiy Sy 12°4|(0, y, v)dvdy
g|(t,z,v)dv S |
K L+t 4zt A+ [t~ el

ZP Bk
181<3

V(t,z) e Ry xR™, ¢ — |a:|2 >1,

dvdy
t,z,v)dv < // A 1+ ,
[ el 5 3 [ PR

|ﬂ|<3

The first one has the advantage to be based on the foliation ({¢} x R™);>¢ but provides
a weak estimate near the light cone. The second one gives a stronger decay rate near
the light cone but is based on a hyperboloidal foliation. In this paper, in order to
remove all compact support assumption on the data and start from a ¢t = 0 slice, we
will prove and use a refined version of the Klainerman-Sobolev inequalities of [7]. Our
estimate will imply that, for g a solution to v#9,,(g) = 0 and for all (¢,z) € Ry x R™,

S S 100 (1 + 1y1) Z°91(0, y, v)dvdy
I A D s
n x n
R Z° Pk
1Bl<3

Compared to the Klainerman-Sobolev inequalities proved in [7], (11) cumulates the
advantages of giving a strong decay in the whole spacetime and being adapted to
the foliation ({¢t} x R™);>0. On the other hand, our estimate is not a pure Sobolev
inequality (we used the transport equation satisfied by g to establish it).

REMARK 1.8. — In the exterior of the light cone (where t < |z|), one can in fact
obtain arbitrary decay provided we consider additional decay on the initial data (see
Section 5.3.2).

o For massless particles. Unfortunately, (11) does not apply to massless particles. In-
stead, we use weights 2z € kg preserved by the relativistic transport operator |v|9;+v'd;
in order to gain additional decay. More precisely, in the same spirit as the deriva-
tive O0; + O, (respectively 0; — 0,) provides an extra decay in ¢+ r (respectively ¢ — r)
for, say, a solution to Ou = 0, one has

0
— d
v Z_1+t—|—rzk:|| an W+ ’Uz_1+|t Z||
0
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1.8.3. The problem of the small velocities. — For the massless Vlasov-Maxwell system,
another problem arises from the small velocities since v° = |v| is not bounded by
below. The velocity part V of the characteristics of

vt vt
atf + 76’Lf + 7Fujavjf = 0
|v] |v]
solves the ordinary differential equation
N VN
Vi=_—F/J
v

which can lead to V = 0 in finite time ‘4. More precisely, we prove in Section 8
that there exists smooth initial data such that the particle densities f; do not vanish
for small velocities and for which the massless Vlasov-Maxwell system does not even
admit a local classical solution.

An important step of the proof of Theorem 1.5 then consists in proving that the
velocity supports of fr remain bounded by below. For this, we make crucial use of
the smallness of assumption on the electromagnetic field as well as its strong decay
rate (1%

1.8.4. The perspective of the three dimensional case. — Nevertheless, even in making
use of the null properties of the system, our proof does not work in dimension 3.
One way to treat the 3d massive case would be to use modified vector fields in the
spirit of [25] for the Vlasov-Poisson system and [27] for the Vlasov-Nordstrém system.
This method led to the proof of the stability of the Minkowski space for the Einstein-
Vlasov system (cf [26], [19]), providing sharp estimates on both the Vlasov field and
the metric.

1.9. Structure of the paper

In Section 2 we introduce the notations used in the paper, the commutation vector
fields and the Vlasov-Maxwell system. In Section 3 we establish various energy esti-
mates for solutions to the relativistic transport equation or the Maxwell equations.
Section 4 contains an integral estimate, some ways to estimate the v derivatives and
the tools to prove pointwise decay estimates for the electromagnetic field. Section 5

14. Note that this difficulty does not appear in the Einstein-Vlasov system. Indeed, as in [26], the
Vlasov equation can be written, for a metric g, as

1
vuguuauf - Evuvuaigwjauif =0,
so these situations should be compared to the two ordinary differential equations

y=1 and y=uy.

15. In dimension n > 4, [|[Fllre S (1+ t)fg is time integrable.
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12 CHAPTER 1. INTRODUCTION

is devoted to our new decay estimate for the solution of a massive relativistic trans-
port equation. In Section 6 (respectively 7), we prove the global existence and the
asymptotic properties of the small data solutions of the massive (respectively mass-
less) Vlasov-Maxwell system, which is Theorem 1.1 (respectively Theorem 1.5). In
Section 8, we prove that there exists smooth initial data which do not vanish for
small velocities and for which the massless Vlasov-Maxwell system do not admit a
local classical solution.
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CHAPTER 2

NOTATIONS AND PRELIMINARIES

2.1. Basic notations

Throughout this article we work on the n 4+ 1 dimensional Minkowski spacetime
(R™*1 %) and we consider two types of coordinates on it. The Cartesian coordi-
nates (t,z), in which 7 = diag(—1,1,...,1), and null coordinates which are defined
by

u=t—rm, u=t+r,
and spherical variables (B,C,D,...) (always denoted by capital Latin letters (®))
which are spherical coordinates on the (n — 1)-dimensional spheres t, 7 = constant.
These coordinates are defined globally on R™*! apart from the usual degeneration of
spherical coordinates and at r = 0. The null derivatives L and L are defined as

L:at+87‘7 L:at_a’lw

and we designate by (ep,ec,ep,...) an orthonormal basis on the spheres (t,7) =
constant. We will use the weights

T_?_=1+y2 and 72 =1+d%

For a 2-form F),,, its Hodge dual is denoted by *F', with

* 1 v
(12) F>\1“'>\n71 = §F# EpvArAn_1s
where €3, ...x,,,, is the Levi-Civita symbol. As in [6], we consider its null-decomposition
given by
1
ap(F) = Fpr, ag(F)=Fp, p(F)= oL, opp(F) = Fpp.

We also associate to a 2-form F' its energy-momentum tensor
1
T[F),w = FusF,° — 2 Fpr F7°.

We use Greek letters to denote spacetime indices and Latin letters for space indices.
The velociy vector (v°)o<p<n is parametrized by (v¢)i<i<, and v° = \/m2 + |v|2.

16. The letter A will be reserved for the potential of the electromagnetic.
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14 CHAPTER 2. NOTATIONS AND PRELIMINARIES

When we study massive particles, we often take m = 1 for simplicty so that v° =
\/1+ [v]2. On the other hand, for massless particles v° = |v|.
We designate the null components of the velocity vector (v? Jo<g<n DY
(wE ok B ), e,
v=v"L + vEL + vPep.

In particular,

0 r 0 r

v' 4+ v VY —v

ol = and oE= .
2 2

We now introduce several subsets of Ry x R™ depending on ¢ € Ry or u € R.
Let %, Cy(t) and V,,(t) be defined as

Sui= {t} x RY, Cult) = {(s,) € Ry x R"/ 5 <1, 5 — |y| = u}
and
Vu@) :={(s,y) e Ry xR"/ s <t, s— |y| <u}.
The volum form on C\(t) is given by dC\(t) = V2rn=1dudS"—, where dS™1 is

the standard volume form on the n — 1 dimensional unit sphere.

t

7 2y

The sets X, Cy(t) and V,(¢)

We will use the notation @1 < @2 for an inequality of the form @Q; < CQq,
where C > 0 is a positive constant independent of the solutions but which could
depend on N € N, the maximal order of commutation, or fixed parameters. Finally
we will raise and lower indices with respect to the Minkowski metric 7. For instance,
E, =7F,, sothat F,7 = F,; forall 1 < j < n.

2.2. The relativistic transport operator

For m > 0, we use the notation Tj,, to refer to the operator defined, for all v € R™,
by
T, = 000, + 0'0;,
with v® = {/m? + |v|2. For the massless case (m = 0), the relativistic transport
operator Tp is only defined for all v € R™ \ {0} and we have

Tm = 'ant + ’Uiai,
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with v9 = |v].
To simplify the notation, we will most of the time take either m = 1 or m = 0 and
we will only use 77 and Tj.

2.3. Vector fields

2.3.1. The conformal isometries and their complete lifts. — Let us consider the set K
composed by the generators of the isometries group of Minkowski spacetime and by
the scaling vector field. K contains

— the translations " 9, 0 < u <n,

— the rotations Q;; = xiaj —298;, 1<i<j<n,

— the hyperbolic rotations Qo = t0 + z*0,, 1 <k < n,

— the scaling S = z#0,,.

Sometimes we will only use the Poincaré group P := K\ {S} or the set of the

generators of the rotation group, O (composed of the ©Q;;). These vector fields will be
used as commutators whereas 9;, S and the vector field K, defined by
— 1 1
KQ = KO + 8t = §T3L+ iTiL’
will be used as multipliers as in [6].
These vector fields are well known to commute with the wave operator, i.e., if a
smooth function u satisfies [lu = 0, then,

VZeK, OZu=0.

We will use them to commute the Maxwell equations. However, as in [7], we use
another set of vector fields to study the Vlasov equation. For this, we use the complete
lift of a vector field, a classical operation in differential geometry (see [7], Appendix C
for more details). For us, the following definition in coordinates will be sufficient.

DEFINITION 2.1. — Let I' be a vector field of the form I‘ﬂag. Then, the complete lift
T of T is defined by

i

BN or
—_ 18 Y
=TI"0g+v 9z

Oyi -

We then consider P the set of the complete lifts of P given by
P={Z/ ZeP}).

The last set of vector fields required is the following

Py =PU{S}.

We can list the complete lifts that we will manipulate.

17. In this paper, we will denote 9, for 1 < i < n, by 9; and sometimes 0 by Jo.

xio
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16 CHAPTER 2. NOTATIONS AND PRELIMINARIES

LEMMA 2.2. — For 0 < p <n,

For1<i<j<n,
ﬁi\j =20 — 270; + v'0ys — v 0yi.
Finally, for1 <k <mn,
ﬁo\k =ty + 2*8; + v°0,x.
The following lemma is used in [7] to prove a Klainerman-Sobolev inequality.

LEMMA 2.3. — Let f : [0,T[ x R? x P — R, with P = R} or P = R} \ {0}, be a
sufficiently reqular function. Almost everywhere, we have

7 (/vEP |f|dv> & /veP |2f|dv " /’UEP Fldv,
‘S (/UEP |f|dv) e /veP 157 dv-

Similar estimates exist for [

‘S </ vo|f|dv> S/ v°|S f|dv.
veEP veP

REMARK 2.4. — When Z € P is not a Lorentz boost, we have

‘Z </v€P |f|dv> S /UEP |2f|dv

We consider an ordering on each of the following sets of vector fields : O, P, K,

VZ P,

cRrn (v9)*|f|dv. For instance,

P and @0. For simplicity, we introduce I which represents one of those sets. We can
suppose that
L={L'/ 1<i<|L}.

Let 8 € {1,...,|L|}", with r € N*. Then we will denote the differential opera-
tor Z51 ... ZPr by ZB. For a vector field Y, we will denote by Ly the Lie derivative
with respect to Y and if Z7 € K9, we will write Lz~ for Lzv - -+ Lzv.. We can suppose
that the orderings are such that if

P={Z'/ 1<i<|P[},
then
P={Zi/1<i<|P]} and Bo={Zi/1<i<[P|+1}, with ZIP+1=3.

Note that even if the scaling is not a complete lift, we will for simplicity denote
any vector field of Py by Z.
We now introduce some pointwise norms.
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DEFINITION 2.5. — Let U be a smooth p-covariant tensor field defined in R™ or
in R1*™. For k € N, the pointwise norm of U with respect to O, of order k, is defined

by

|U|@,k = Z |E25U|2 )
|BI1<k

with Z8 € Q8 and where
L20UP = 3 1Los @),

Ay Ap

with L76(U)x, ..., the Cartesian components of Lzs(U).

2.3.2. Commutation properties. — We have the following commutation relations :

LEMMA 2.6. — Let L be either O, P, K, P or I/EBO. Then

VL,L' €L, 3CLyr €R, such that [L,L'] =Y Crprl.
I'elL

The commutation relations between the vector fields of @0 and the massive trans-
port operator T (or the massless relativistic transport operator) are similar to those
between the vector fields of K and the wave operator.

LEMMA 2.7. — We have, for m € {0,1},
VZEP, [T, Z] =0 and [Tpn,S) =T

Proof. — This follows easily from Lemma 2.2 and the definition of the relativistic
transport operator. O

2.4. Weights preserved by the flow

We define, as in [7], the two following sets of weights
v# v Lot
klz{vO/OS,ugn}U{x“vo—x UQ/;L#V},
v
kg = k1 U {IEHU%} .

These weights are solutions to the free transport equation, i.e.,

(].3) Vz € kg, To(z) =0,
and
(14) Vze€ky, Tl(Z) =0.

Thus, if f is a regular function and if z € ky, then T} (zf) = 2T1(f).
Moreover, these weights have also good interactions with the vector fields of P.
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LEMMA 2.8. — If2 € @0, m € {0,1} and z € ky,,, then either
2( 02)=0 or Z(1°z) € k.
This leads to
VZ €Po, z €km, |Z(l2))] < D I2l.

z€kpm,

Proof. — Consider for instance €g; and z'v? — 220! or z2v® — z3v2. We have

Qo1 (z'0? — 2% = tv? — 2%°
as well as
Qo1 (z?v® — 230v?) = 0.

All the other cases are similar. O

The next proposition shows how these weights can be used to provide us extra
decay (at least in the massless case).

PROPOSITION 2.9. — Denoting x#v, by s and z"v* — zHv” by z,,, we have

i
2(t — r)ot = —x—zgi —s,
r

and
i

2(t + r)ok = x—zm — 8.
T

We also have

1 2
o1 < = Iz, |vP| < Volol  and M <L,

REMARK 2.10. — This result should be compared with the identities

(t-r)L =5~ >0,

i
(t+r)L=5+ %Qou

and

— E : i,J
reg = CB Qij,

1<i<j<n

where C’gj are bounded functions on the sphere.
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Proof. — Let us start by the first two equations. On the one hand,
(t? —r*)® = —xi2; — ts.
On the other hand,
i

x
2 —r*)" = —t7Z0i —rs.

It only remains to take the sum and the difference of these two equations. For the
third one, use [v?| < v° and that rv® = C}3z;;, which implies

0
B v
LR > il

1<i<j<n
0 j i 0o_n
v Z i [V : : ; (% i i v
= — 2| st—d+a ) -2 | t—2" 4+ <—E 204/
tr 4 (vo 20 ~ot %04
1<i<j<n qg=1

The fourth inequality ensues from rv? = C;’j z;; and
4rivtol = m2r? 4 2o — |22 v - 2 Z aF okl
1<k<i<n
:m27‘2+ Z |Zk:l|2a
1<k<i<n
since v° = y/m?2 + |v|2. Finally, using the Cauchy-Schwarz inequality,
zt m? m?
2wl =00 — > ———— > . O
r T w0 4y T 200
As for the sets of vector fields, we consider an ordering on kg with x“:’}—’g being
the last weight. It then gives an ordering on k; too. If kg = {2?/ 1 < i < |ko|} and
Be{l,...,|ko|}" with r € N*, we denote 2% - - . 2°" by 2.

2.5. Decay estimates

2.5.1. Norms. — With the vector field method, the pointwise decay estimates are
obtained through weighted Sobolev inequalities. In view of the above definitions of
the vector fields and weights, we are naturally brought to define the following weighted
L' and L? norms.

DEFINITION 2.11. — Let u : [0,T[ x R® — R be a smooth function. For k € N, we
define for all t € [0,T7,

n

() =D > 18,2%u(t, ) p2@n),

1=0|B|<k

with ZP € KIAI,
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Let f:[0,T[ x R? x P — R be a smooth function, with P =R or P =R? \ {0}.
For k € N, we define for allt € [0,T7,

I£ll, 8 == > 12°F(t s,
|BI<k

with ZP € I/P\’l)ﬁl.

We also define, for g € N and m € {0,1},

15, g ® = 32 S 27274t s
1BI<k |v|<q

with 78 ¢ @(l)ﬁl and 27 € kl}ybl.

Note that ||u||k,o corresponds to the energy ZZ:O 10 ull L2 (Y-
2.5.2. Decay estimates for the velocity averages. — Recall the Klainerman-Sobolev in-
equality (see [28], Chapter II). For u a sufficiently regular function such that for all
te 0,7, ||u||KnT+2(t) < +00, we have

T

(L+t+]a) ™= (L+ [t — ||

In particular, if Cu = 0 then ||u||KnT+2 is constant, as 0Z%u = 0 for all Z% € KIAI.
It gives us a decay estimate for V; ju.

However if f is a solution to a relativistic transport equation, we cannot expect
decay on || f||z, (even for the free transport equation T1(f) = 0 or To(f) = 0). It is

(15) V(t,z) € [0,T[xR", |Vizult,z)| S

only the velocity averages of f, such as fv fdwv, that decay. For instance, we have the
following classical estimate.

LEMMA 2.12. — Let f be the solution of T1(f) = 0 which satisfies f(0,.,.) = fo, with
fo a smooth function compactly supported in v. Then, if R is such that fo(.,v) =0
for all |v| > R,

vV1+ R2 2

V(t,z) € Ry x R", / |f(t, z,v)|dv <
vER™ L2k

[ foll s Lee-

Proof. — We fix (t,z) € Ry x R™. By the method of characteristics, we obtain that
v
Vv eR"™ f(t,z,v) = fo (CE — U—Ot,v) .

We now use the change of variables y = -5. Then,

y 1
|f(t,ac,v)|dv=/ | fo(z — ty, )| nr2dy-
/'UE]R" lyl<1 e RV TE +2

Using the hypothesis on the support of fj, we have

/]R |f( tacv|dv<\/1—+—R2 /| | fo(x — ty,.)|| L dy.
veER™ yI<

T
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A last change of variables (z = z — ty) gives the result. O

2.5.3. Klainerman-Sobolev inequalities for velocity averages. — As we can expect decay
on the velocity average of a solution of a relativistic transport equation (and not on
the solution itself), we will then use the following Klainerman-Sobolev inequalities.

THEOREM 2.13. — Let T > 0 and f be a smooth function defined on [0, T[ x RT? xRI
or [0, T[ x R x (R2 \ {0}). Then

v(t2) € [0, T[x R, / |f(t,@,v)|dv < w.
veER™

Ty T

A proof of this inequality can be found in [7] (see Theorem 7). We then deduce the
following result.

COROLLARY 2.14. — Let T > 0, g € N, m € {0,1} and f be a smooth function defined
on [0, T[ x R} x R? or [0, T x R} x (R?\ {0}). Then

n £ 115, 7,q,m (%)
Vvl <g (t,2) € [0, T[x R", |27t 2, 0)lde S — 35—
vERP T T

with 27 € k‘m'”.
Proof. — Let |B| < n, |7| < g, 78 ¢ @(‘)ﬁl and 27 € kil By Lemma 2.8, we have
(16) 22N Y Y TRy,
18oI<I8] 7ol <
with w7 € klnzo‘ and TP € @l},@ol‘ It only remains to apply Theorem 2.13. ]
REMARK 2.15. — All the results of this section are true if we add a v°-weight (we can

for instance study fve]R" (WO)*|fldv, for k € 7). We just need to modify the norms in
the same way. For instance,

w0k Z8 t,y.,.
Vo) e T(xrr, [ g g e TG
veER™ T+ T—

2.6. The Vlasov-Maxwell system

2.6.1. Presentation. — In order to introduce the Vlasov-Maxwell system, we abusively
use the notation
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For a sufficiently regular function f, we recall that

ffdv
f“ d

T oeven = | 7|
fvf%zdv

with v® = \/m2 + |v|2, where the mass m depends on the species considered.

Let K € N*. The equation (1) of the Vlasov-Maxwell system, for the species k, can
be rewritten as

(17) Ty (fk) + e F (v, Vo fy) =0
Note that the initial data needs to satisfy

Vi(Fo)io = €*J(for)o and V' (*Fp)iay-.a,_s0 = 0.

It is well known that in 3d the electric field and the magnetic field are solutions
to a wave equation. In dimension n and in the context of the Vlasov-Maxwell system
(and more precisely, with Equations (2) and (3)), we have

%

(18) Vi<i<n, OE'= Z ek/ Oifr + O frdv,

v
veER™ AV m% + |’U|2

with E’L = ng, and (8

(19) V1<i<j<n, OF;= Zek/ Oifr — 0; frdv.

,Ul
W TP mE A P

We end this subsection by the following proposition, which gives an alternative
form of the Maxwell equation.

PROPOSITION 2.16. — The Mazwell equations

{ VFG, =M,

I =
V¥G oy am_s =0,

for a 2-form G and a 1-form M, are equivalent to

VixGp =0
—1)!
1(n=1)! B
Vi Gy = (1) e, MO
18. In dimension n > 3, the magnetic field is a 2-form defined by B;; = —F;; but we make the

choice to work with Fj;.
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Proof. — That ensues from straightforward calculations. Let us consider the equation
VG = My. For 1 < i < n, we denote by (m’)i<j<n_1 the n—1 integers of 1,7\ {i}
ranked in ascending order. We have, without any summation,

. = (0 . . = . )
Gmi'”m;—l — G EOimll'“min—l — Glosimil'”m:z—l.
Hence,
n
B . 2
7 1%, *,
v GiO = E €im«i,,,ml_1v Gmi'”mi_1 = WVH ng]
i=1 ’

It only remains to remark that
My = (=1)" ey 0 M°.
For the equation V#*G3..., = 0, we note that
‘Goz..n = G12, "G13..n = Goz, "G2..n = G1o.
So
V*Gu3..n = VoGa1 + V1Goz + V2 Gio.

We then obtain that

VioGig = 0.

The remaining equations can be treated similarly. O

For the remaining of this section, we consider the maximal smooth solution
(f = (f1,.-.,f[K), F) to the Vlasov-Maxwell system, defined on [0, T, arising from
initial data (fo, Fo), so that f is a vector valued field (f1,..., fk). However, to lighten
the notations, we will often denote (by a small abuse of notation) by f only one of
the f; and we will suppose, without loss of generality for the results establish below,
that the charge of the species associated to f is equal to 1.

2.6.2. The electromagnetic potential. — In order to establish energy estimates for the
electromagnetic field, it is useful to introduce a potential in the Lorenz gauge.

DEFINITION 2.17. — A 1-form A is said to be a potential of the electromagnetic field F
if
F =dA or, in coordinates, F,, =0,A, —0,A,.

A satisfies the Lorenz gauge condition if moreover

0" A, = 0.

Every electromagnetic field F' defined on R™*!, which is contractible, has a po-
tential since dF' = 0. Furthermore, if A is a potential then, for x a regular function,
A + dx is also a potential. In particular, if A is a potential and x solves

Ox = —0"A,,

then A+ dy is a new potential satisfying the Lorenz gauge. The following lemma will
be useful to study the derivatives of F' in the Lorenz gauge.
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LEMMA 2.18. — If A is a potential satisfying the Lorenz gauge for an electromagnetic
field G, i.e.,
dA=G and 0"A, =

then, for all Z € K,
dﬁz(A) = EzG and aﬂﬁz(A)H =0.

Let us mention the wave equation satisfied by the potential in the Lorenz gauge.

PROPOSITION 2.19. — Let (f,F) be a solution to the Vlasov-Mazwell system and A
be a potential of the electromagnetic field F' which satisfies the Lorenz gauge. Then,
for all Z8 e KBl gnd 0 < u < n, there exists constants Cij such that

no
OLzsAp= Cff‘fk/ ZT,ZWfkdv,

<18l veRn
with Z7 € @(l)ﬂ.

Proof. — As
F,, =0,A,—-0,A, and 0"A, =0,
we have for 0 < v <n
o"0,A, =VHIE,,.

It remains to apply this to £zsA (see Lemma 2.18) and to use Proposition 2.30
below. O

The following proposition shows how we can construct a potential in the Lorenz
gauge which is initially controled by the energy (at the time 0) of the electromagnetic
field.

PROPOSITION 2.20. — We suppose here that n > 4. Let N € N and let F be a closed
2-form such that all the norms considered below are finite and F(0,.) € L%(R™). Then,
there exists a potential A in the Lorenz gauge such that, for all |5 < N,

1£25 AllL2@n (0) S D 1L+ |2)) 107 Foi 0, )| 12 ey

[v[SN-1
1<i<n

+ 3 (I + )P0 Fii(0, )z + (1 + o)+ 0707 Fyi(0, )1y )

[v|[<N
1<i<n

with Z8 € KA,

We start by a technical lemma.
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2.6. THE VLASOV-MAXWELL SYSTEM 25

LEMMA 2.21. — Let G such that

||(1 + |$|)G||L1(]R") + ||G||L2(R") < 400 and & Gdxz = 0.

Then, denoting by F the Fourier transform (in x),

Hf (=7 @)

Proof. — We have

Hf (@)

SIA+2))Gllr@ny + Gl L2 @ny-
L2(Rm)

L2(Rn) H €12 L2(R")

1
2

1
S IF@lezqes1) + wa(G)Q

L(lgl<1)

Note now that || F(G)||r2(jej>1) < [|GllL2rny- Finally, as ||(1 + |z|)G|| L1 gy is finite,
F(QG) is of class C! and vanishes at 0, so, using the mean value theorem,

|75 S IVeF@lg
€% Nzrger<n) [ PR
S |||$|G||L1(1Rn),
since [|[F(g)[lze < llgllrs for any L' function g. O

The first step of the construction of the suitable potential is contained in the
following lemma.

LEMMA 2.22. — There exists a potential A of the electromagnetic field F satisfying
the Lorenz gauge and such that

Ap(0,.) =0, 8:A0(0,.) =0,
and
V1<k<n, [|Aellgz@n(0) <107 Fji(0,)llzz + (1 + [2)0” Fjx(0, )| 12 -
This implies in particular that

(20) V1<k<n, 0A40,.)=Fyu0,.) and AAg0,.) = 0'F;y(0,.).

Proof. — Suppose that A exists. As 8;A(0.) = 0 and 8" A, = 0, we have 9°4;(0.) = 0.
Combined with 9,4, — 8,4, = F,, and Ay(0,.) = 0, we get that at ¢t = 0,

(21) V1<k<n, 8;A;=Fy and AA, = 8'Fy.

Moreover, recall from the proof of Proposition 2.19 that

(22) VO<v<n, OA4,=VHIE,.
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We then define A, as the solution of the wave Equation (22) such that A(0,.) =0,
0t Ap(0,.) =0 and, for all 1 <k <n,

8tAk(0, ) = FOk(O, ) and Ak(O, ) =F! <|g|12]-'(83F3k)> (0, )

Consequently, according to Lemma 2.21, AA(0,.) = 87 Fj;, and
[ Akll 2y (0) < 1107 Fy (0, )22 + (1 + [2])07 Fjie(0, )| .-
From classical elliptic equations theory, we have
V2 Ag | L2 rny = 107 Fjill L2 n)
and
VA, € L*(R™), with [[VAgllL2@n) S | Akll2@ny + IV Ak 2 @),

which concludes the proof. O
Proof of Proposition 2.20. — We consider the potential A constructed in Lemma 2.22.

In what follows, we omit to specify that all the quantities are considered at ¢t = 0.
Since, for instance,

V1 S ’L,j S n, QOiQOjA = 11,'18]14 + xiacj&gatA,

we have (and it is sufficient) to estimate ||xﬁBZmA||L2(Rn), with |8] < |y] £ N, in order
to control ||£ e Al|r2(zn)(0) for all Z¢ € KI¢l, with |¢| < N. Note that, as 9 A4, = 0,

1207 ,0r Aol L2 (ny < Y 12707, Ok Akl 22y,
k=1

so that, since Ag = 0, we only have to bound ||xﬂagwAk||L2(Rn), foralll <k <n.

Let 1 < k < mn,|y] < N—1and |8] < |y|+ 1. Then, since 0;Ar, = For (see
Lemma 2.22),

270] 0y Ay = 28] For, so (2707 ,0:Axllzz < II(1+ 2))"+107 For | 2.

The remaining case, where there are only spatial translations, is treated in the
following lemma.

LEMMA 2.23. — For all1 <k <mn, |v| < N and |B| < |v|,

12°0Y Arllzny S D 1270070 Fillre + II(1 + &)™ 070 Fjxl| s,

)N

[Bol<|vo|<N

where 7y, 3 € N, 2P = x’fl cooxbr and 87 = 9]* -+ 9", so there are no time deriva-
tives.
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2.6. THE VLASOV-MAXWELL SYSTEM 27

Proof. — We fix 1 < k < n and we proceed by induction on |3|. As AAy = 87 Fji, we
have, for all |y| < N — 2,

V1I<k<n, AI"Ay=0"0"F
So, by classical elliptic equations theory,
Vv < N =2, V207 AkllL2@n) = 11070 Fjill L2z,

implying the result for |3| = 0 (the case of the lower order derivatives is treated in
Lemma 2.22).
Let 1 < |B| < N. We suppose that for all |§] < |y| < N and 6| < |B] — 1,

12°0" Apll ey S D 2™ Fjillra + (1 + |z))a™ 8708 Fipl ;.

[Bol<lvol<N
Let v be a multi-index such that |G| < |y| < N. We have
(23) AzPT Ay = A(2P)07 Ay + 20;(2P)0797 Ay + 2P 9707 Fyy.

The first two terms of the right hand side are equal to zero or can be rewritten as a
linear combination of terms like

(24) "2 (07 Ay),
with |v2| =2, |71] < |y| = 1 and |d] < |y1]. For instance,
20, (x1)3 L Ay, = 290,85 (771037 Ay) — 2q(q — 1)02 (z7 20172 Ay,).

Let B be the right hand side of (23) and G = 279797 Fj;.. G satisfies the hypothesis
of Lemma 2.21 and B — G is a linear combination of terms such as (24), which implies

_ -1
H]: 1 <|€|2.7'—(B — G)) 5 Z H:Eéa%AkHL?(]Rn).

L2(R™)

[yal<lvl-1
161< 7l
So we only have to prove that
-1
(25) 2POA, = F1 <|§I2HB)> ;

or (it is equivalent) that z°37 Ay is the L? solution of Ay = B. Recall that the
difference of two solutions of this equation is an harmonic polynomial, so that there
exists exactly one L? solution, given by the right hand side of (25). Consequently,
there exists Q5. € L*(R"™) and Py 5., an harmonic polynomial function such that
2707 Ak = Qupy + Prpy-
By the induction hypothesis, 997 Ay € L2(R") for all |5]| = |B| — 1, so
B
Pk,,@fY — T a'yAk _ ;
1+ |z 1+ |z 1+ |z

As the dimension is n > 4 > 1, Py 3 - is necessarily zero. O

Q}C,Q,AY e L? (R™).

If the dimension n is at least 5, we can do better.
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PROPOSITION 2.24. — We suppose here thatn > 5. Let N € N and let F' be a 2-form
such that all the norms considered below are finite. There exists a potential in the
Lorenz gauge such that, for all |5] < N,

1£25 AllL2@n (0) S D 1L+ [2))1¥107 Foi 0, )| 12 ey

[v|<N-1
1<i<n
+ 30 (10 + 270 Fyi(0, ) z2quny + 1 (1 + [2)71870 F3s(0, iy )
[v[EN
1<i<n
with ZP e K18,

Proof. — The proof is similar to the previous one. The difference comes from the fact
& — ﬁ is integrable around 0 in R™, with n > 5, which allows us to lower the
hypothesis of Lemma 2.21. O

2.6.3. Commutation properties

Commutation of the transport equation. — We fix the mass m € R, and we denote
by T the operator 1%

Tr : g+ Tin(g) + F(v,Vy9),
so that Tr(f) = 0. We are now interested by the nature of the source terms of the
equation Tr(Z f) =

LEMMA 2.25. — If2 € @, then
Tp(Zf) = —L7(F)(v,Vyf).

For the scaling, we have
Tp(Sf) =2F(v,Vyf) = Ls(F)(v, Vo f).
Proof. — First of all, let us consider the scaling. According to Lemma 2.7,

Tn(Sf) = =S(F(v,Vof)) + Tm(f)-

But,
S(F(v,Vof)) = Ls(F)(v, Vo f) + F([S,v], Vo f) + F(v,[S, V., f]).
Since
[S,0] = —v  and  [S,V,f] = VuS(f) - Vof,
we obtain

Tp(Sf) =2F(v,Vuf) = Ls(F)(v, Vo f).
Now, let Z € P and consider Zy = Z-2Z. According to Lemma 2.7,

Tm(éf) = —Z(F(’U,va)) - Zv(F(U)vvf))'

19. Note that if the charge e of the species considered is not equal to 1, one just has to consider
T.r (in other words, one just has to replace F' by eF).
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On the one hand, we have
Zy(F(v,Vof)) = F(Zu(v), Vo f) + F(v, Zs(Vof)).
On the other hand we have
Z(F(v,Vof)) = L2(F)(v,Vof) + F((Z,0], Vo f) + F(v,(2,V, f]).

As [Z,v] = —Z,(v), F(Z,(v),Vyf) and F([Z,v], V,f) cancel.
If Z is a translation (we denote it by 0), then Z, = 0 and [Z,V, f] = V,0(f). Thus

TF(af) = _‘CB(F)(% v'uf)

If Z = 5, then
Zy(Vof) = VoZy(f) + 0y fO; — 0yi fO;
and
(2, Vo f] = Vo Z(f) = 0y fO; + Dy fOi.
Therefore

TF(ﬁlJf) = _‘CQ-;J' (F)(U,va)

Finally, if 7= (AZOZ-, then
k
Z2,(Vof) = VoZo(f) = 0 fo50n and [Z,V.f] = VoZ(f) = Oy fo.

We obtain that

~ Oy
TF(QO’Lf) = _‘CQO-; (F)( ) vOfF(UaU)'
It remains to remark that F'(v,v) =0 for all v € R", as F' is a 2-form. O
Iterating the above, one obtains
COROLLARY 2.26. — If B € {1,..., |@0|}”, with r > 0, there exist integers 05,5 such
that
Tp(ZPf)= Y. CF Lz (F)(v,Vo2°(F)),
IvI+[d]<r
[6]<r—1

with ZP € 1@6, ANS @(I)él and Z7 € KMl

REMARK 2.27. — If there is a source term G (such that Tp(f) = G), then we need to
add a linear combination of terms such as ZﬂG, with |8| < r, on the right hand side.
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Commutation of the Maxwell equations. — Before studying specifically the Vlasov-
Maxwell system, we recall the following general result.

PROPOSITION 2.28. — Let M, be a smooth 1-form and G, a 2-form satisfying
VG =M,
{V“"Cr’,wq...an2 =0.
Then, for all Z € P,
VHLZ (G = Lz(M),
{V”*EZ(G)HM.A.%2 =0.
For the scaling, we have
VALS(G)p = L(M), +2M,
{V‘”‘ES(G'),WI.,.Om2 =0.

In the Vlasov-Maxwell system, the source term is e¥J(fy), (see (2)), with

J, frdv
fv fk Zfod’u
S, fiimdv
so we need to compute Lz(J(f)), with Z € K and f a regular function.

PROPOSITION 2.29. — For all Z € P,

For the scaling, we have

Ls(J(f)v) = J(Sf)v + I(f)o:

Proof. — Let Z € K,
ozZw

LZ‘](f)V = ZJ(f)V—}_J(f)ﬂw

So
LoJ(f) = J(Of), LsJ(f)=J(Sf)+J(f).
If Z is a Lorentz boost, say 20, + t01, then, as

1
/voavlfdv: —/fZ—Odv:—J(f)ly

/vf’;ioavlfdv = —51,i/fdv = 51.47(f)o

and

©w
Q01
v

Iy

= J(f)16u.0 + J(f)ody 1,
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we obtain that -
'6901 J(f) = J(Q()1f)

The case where Z is a rotation is similar. O
Iterating the above, we obtain the following proposition.

PROPOSITION 2.30. — Let (f, F) be a smooth solution of the Vlasov-Mazwell system.

For all B € {1,...,|K|}", with r € N, there exist integers C’f such that
VELyo(Fu = T (ZPfi)u + Y. CEFI(Z7 fi),,
[yI<IBl-1

VH*EZﬁ(F)ual“'Dénfz =0,

with ZP € K™ and 27 € P!,
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CHAPTER 3

ENERGY ESTIMATES FOR THE VLASOV-MAXWELL SYSTEM

For all this section, we consider a sufficiently regular solution (f, F'), on [0,T], to
the Vlasov-Maxwell system arising from smooth initial data ( fo, Fp).

3.1. Energy estimates for the transport equation

We treat here the massless and the massive case together. As the set {v = 0} is

of measure zero, we write fv crn Pdv, or merely fv hdv, even when the function h is

not defined for v = 0. We start by introducing the vector field N#(g) defined by, for
a function ¢ : [0,T] x R? x R} — R,

dv
N*(g) :=/ got 5.
vERM v

We have the following energy estimates.

PROPOSITION 3.1. — Let g and H be two smooth functions defined on [0, T[x R} xR?
such that Tr(g) = H and k € Z. Then, for all t € [0,T],

L
//|g|dudm+\/§sup/ /|g|v—0dvd0u(t)
5. SRy ust o, Jry Y

t
d

§2/ / |9|dvdm+2// / |H|—gdxds.
2o JR 0 Jx, JRn v

Proof. — First, let us compute the (euclidian) divergence of N*(|g|). Start by noticing
that, in W1,

g
Tn(lgl) = v"0ulgl = T F(v, Vylgl)-

By integrations by parts and using F}; = 0 as well as vl F;; =0 (recall that F' is
a 2-form), we have

dv L vivd
/F(U,Vv|g|)vf0=/UfOF,LJ3W|g|dU=/Wsz|g|dv=0
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Consequently,

@) o= [ (La-rovd) G- [ L

We now apply the divergence theorem to N#(|g|) in several region. Applied to [0, ¢] x

R™, it gives
¢ dv
lg|dvdz < lg|dvdz + |H|—5dzds.
X Jo 3o Jv 0 JX, Ju v

Applied to V,(¢) and using that %(6,5 — Oy) is the outward pointing unit normal
field to Cy(t), it gives

f/ / |g|—dde’ s/ /|g|dvdﬂc+// /|H|—dmds
C,(t) JveR™ o

The estimate then ensues from the combination of the two inequalities. O
This estimate invites us to consider the following energies.

DEFINITION 3.2. — For N € N and k € Z, we define, for g a sufficiently regular
function,

oL
Exlgl®) = > 11" 2%l (1) +Sup/ / 27| (0° Oddeu(t)-
29 eplP! Cu(t) JR™
IBISN

We also need the following norms. For ¢ € N and m € {0,1},

Efgmldl®) = Y > 1027 Z0g||Ls (1)

78 =p16| 11
ZPePy! 27 ek,
IBISN  |vI<q

£ e [ 272715 (1) dvdC, (1),

20 Bl z”ekw uer
BI<N I<d

When k = 0, we drop the dependance in k of the energy morm. For instance,
E% [g] is denoted by En|g].

The following energy estimates hold.

PROPOSITION 3.3. — Let g and H be such that Tr(g) = H. Then, assuming that g
and H are sufficiently regular, we have for all N € N and for allt € [0,T],

el - 25xll0 £ X [ 5

|BI<SN

(s)ds

/ L2 () (55,9.2%(0)) | | (s)as

|7|+|5|<N
|5]<N=—1

1
La;,v

MEMOIRES DE LA SMF 172



3.1. ENERGY ESTIMATES FOR THE TRANSPORT EQUATION 35

and

t
E%[9)(t) — 2E3[)0) S 3 / |20 H] 1 (s) + [0 FioZPgll 1 (s)ds
|[BI<N

t
LD DI TR AP PP e
ly|+[8|<N 7O
5I<N—1

with Z° € @(I)él, 78 ¢ @]ﬁ‘ and Z7 € K,
Proof. — The first estimate follows from Corollary 2.26, Remark 2.27 and Proposi-

tion 3.1, applied to Zﬂg for |8] < N. For the second one, apply the same results
to (v9)2ZPg and note that

Tr ((UO)Q) =F (v, VU(’UO)2) = 2’U'u’UiF,”' = —2’()#’UOFN0 = —20%Fy. O

REMARK 3.4. — Assuming enough decay on the data, similar inequalities holds
for E[g]-

We also have an energy estimates which implies the weights transported by the
flow.

PROPOSITION 3.5. — Let g and H be two sufficiently regular functions such
that Tp(g) = H. For all N € N, m € {0,1} and t € [0, T, we have

t
Eramll) -~ 2wl 5 X X [ 528 s
sk |g<N 70 Y Le
t
£ X X [F () 2],

z€km |BISN

+Y Y /OtHzﬁzw(F)(;g,VU/Z\‘Sg)HLéU(s)ds

z€km |v|+|8|<N

[§|<N-1
and
t
Bl ~ 250l 5 3 0 [ 0e2%H],, (s)as
=€k |BI<N 70

t
+y) / 20" Fio 2|11 , () +[10°F (v, V2) 27| 11 (s)ds
2€ky, |B]<NY O

t
XY [0 (0.2 s (),
€k |y|+[8|<N 0
lSl<N—1

with Z° € @ggl, 78 ¢ @]ﬁ\ and Z7 € KNI,
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Proof. — Note that, for z € k,, and according to Equations (13) and (14),
Tr (zZﬁg) =2TF (25g> + Tp(z)zﬂg =2TF (2’3g> + F(v, sz)Zﬁg.

The remaining of the proof is then similar to the one of Proposition 3.3. O

3.2. Energy estimates for the wave equation

Recall that a potential A in the Lorenz gauge satisfies the wave Equation 8. In
order to bound its L? norm, we recall here a classical energy estimates for the wave
equation using the vector field K. We mostly follow [28], Chapter II.

During this subsection, we consider u : [0, x R®™ — R a smooth function such
that

l[wll L2 ) (0) + Z [ Zu| 2 (rn) (0) < 4o0.
ZeK
We also introduce its energy momentum tensor

1
Ty u] = 0,ud,u — inuynapaauapu.

Since K is merely a conformal Killing vector field and as T}, [u] is not traceless,
T, [u] K is not divergence free when Cu = 0. In fact

— _ 1
V(T ([u)Ky) = OuKou + §T’w [u]TH”,
with
o — VR 4 R
Since K is a conformal vector field of conformal factor 4¢, 7+ = 4tn*¥. So
VAT [ulKy) = DuKou + (1 — n)td ud,u.
The equality
1
to*ud,u = 0, (tud”u) — 0, (t)ud*u — tulOu = 0* <tu8#u - 2u28“t) — tulu,
suggests us to introduce the 1-form

—v —1
P, =T, [ulKy+ (n—1)tud,u — n u?0),t.

Applying the divergence theorem on [0,t] x R™ to T},o[u] and P, we obtain

PROPOSITION 3.6. — V t € [0,T7,

n n t
> 1wl < Y- Nouullasy + [ [ 1Culdz.ds
u=0 u=0 0 s

and

t
/ Podztg/ P0d20+// Dul|Kou + (n — 1)tu|dS,ds.
P 3o 0 P
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The first thing to verify is that th Pyd¥,; can be compared with the L? norm of u
(and of its derivatives).

PROPOSITION 3.7. — We suppose that n > 3. We have, for allt € [0,T],

S 1200y ® S [ PSS S 1280l ey (1)
18|<1 e |8]<1

Proof. — Let us first remark that

1 . —1
Py = 5(1 + |z)|? + %) | Vi ul? + 2t 0;udpu + (n — 1)tudpu — nTuQ.
Moreover,
1+ |22 + )| Vioul? + 4tz 0udu = [Vegul +|Sul* + D [Quul?

0<pu<vn

together with
(27) / 2tudyudr = / 2uSu — x'0;(u?)dx = / 2uSu + nu’dx
gives

1
(28) / Pyd% = 7/ Vizul +[Su+ (n—Dul>+ Y [Quul?dS.
I pa

2
0<pu<v<n

This proves the second inequality and reduces the first one to
2 2
Il e () + ISl () 5 | Pode
t

In order to transform fRn 2tud;udz in an alternative expression, we remark that

1 t o, T’

2udiu = 2u—Qo,u — —zxzai(uQ), with Qg = —Qg;.

r r r

So, by integration by parts,

t t2
/ tudyudx = / <2uQOru +(n— 2)2u2> dx.
n A\ T r

Combined with Equation (27), we get

/ (2(71 — Dtudu — (n — 1)u2) dr — 2n — 3

1 t 2, 9
—|—§/n <2ru§20,~u—|—(n—2)rzu >d:c— (n—l)/nu dzx.

We then obtain that

/ (QuSu + an) dx

2n —3 2n? — 5n + 2
(29)2/ Pydz = |Sul? + 2 n2 uSu + 2n+ u?dz
I I

¢ t2
+ /Et IV oul® + Z 1Quul? — [Qorul? + [Qorul® + ;'UJQOT’U, +(n— 2)ﬁu2dx.

p<v

SOCIETE MATHEMATIQUE DE FRANCE 2022



38 CHAPTER 3. ENERGY ESTIMATES FOR THE VLASOV-MAXWELL SYSTEM

The second integral on the right hand side of (29) is nonnegative since

2 n
<> [Qoiul
=1

mi
|QOTU,|2 = ‘ TQ()@U,

and
+ 2

g t
2ru) + (2n — 5)—u’.

t t2
|Q0,r.u|2 + ;UQOT‘U —+ (n — 2)ﬁu2 = (QOT‘U + 47"2

Consequently,
a2 gy (1) + 1S 2 () S / Pods:
t

comes from

2n — 3 2n2 — 5n 4 2 2n—3 \> 2n-5
|Sul? + 2 n2 uSu + 2n—|— u2:<Su+ n2 u) —i—nTu2

and from

2n—3 2n% — 5n + 2
Sul? + 22 uSu + nt u?
2 2

2
2n — 3 5 2 2n —5
S e S 2241 7O euP. O
(\/4n2—10n+4 u+<n 2"t ) “) * i 1on 4 Y

REMARK 3.8. — We also proved that

t2
/ T—Qusztg / PydX,.
I PN

Finally, we obtain the expected estimate.

PROPOSITION 3.9. — We have, for allt € [0,T7,
t
> 20l S Y 12%ulen @ + 3 [ [ 1ZulirDuldads,
BI<1 BI<1 Bl<1 0 >
with ZP € K if |3| = 1, leading to, for all t € [0, T],
t
Z ||ZBU||L2(]R")(t) < Z ||Zﬂu”L2(R")(O)+/ ||T+DU||L2(Rn)d3-
lBl<1 |Bl<1 0
Proof. — We have, according to Propositions 3.6 and 3.7,

t
S 1280y € 3 120l @) + [ [ DullRou+ (0= Duldads.
5I1<1 ls1<1 0

The result then follows from Remark 2.10, which gives us

[Koul < 72| Lul + 72 |Lu| S 74 > | Zul. O
ZeK
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3.3. ENERGY ESTIMATES FOR THE MAXWELL EQUATIONS 39

We now apply this to the electromagnetic potential in the Lorenz gauge. Since
we will need to estimate ||S (L£zs(A)) | r2(rn) in order to bound the energy of the
electromagnetic field F' (see Proposition 3.21 below), we consider the following norms.

DEFINITION 3.10. — Let A be a sufficiently regular 1-form defined on [0,T[ x R™. We
define, for N € N and all t € [0, T,

EnlAl(t Z Z Z 12°(L2+ (A) )| 72 ey (1)

1=0B|<1 |v|<N

REMARK 3.11. — Note that

n n
oY 2P A SENAIS DY D 127 Al 32 ey -

n=0|B|<N+1 =0 |B|<N+1

We work with EN[A] as we will apply Proposition 3.9 to Lz5(A),.
Using Proposition 3.9, we get the following result.

PROPOSITION 3.12. — Let N € N and A, be a sufficiently regular 1-form, defined
on [0, T[ x R™, such that EN[A](0) < +o00. Then, Vit € [0,T7,

B S Va0 +Y 3 / 174 O 2 (Al s,

H=0]7|<N

3.3. Energy estimates for the Maxwell equations

We prove three conservation laws for the Maxwell equations, using each time a
different multiplier (8¢, K¢ or S). In the study of the massive case, we will mostly use
the one associated to the Morawetz vector field.

For the remaining of this section, we consider a 2-form G and a current J, suffi-
ciently regular and defined on [0, T, such that

VEG, = J,
VG unyonn_a = 0.

The following lemmas hold.

LEMMA 3.13. — We have, for all0 < v <n,

VAT[Gluy = GupJ?’.

SOCIETE MATHEMATIQUE DE FRANCE 2022



40 CHAPTER 3. ENERGY ESTIMATES FOR THE VLASOV-MAXWELL SYSTEM

Proof. — According to Proposition 2.16,
G, V"G, = G"V,G,,
1
= iG“”(VHG,,p - V,G.,.)

1
= 3GV, G,

1
= ZV,,(G“”GW).

So,
1 1
VAT (Gl = VH(GLp)GL? + EV,,(G“"GM)) — Zm,,V"(G"”G(,p) =G,,J’. O

LEMMA 3.14. — We have, denoting by (o, a, p, o) the null decomposition of G,
T[Glrr =laf*, TI[Glr =laf and T[GlrL = |p* +|of.

3.3.1. Using 0; as a multiplier. — As we use here the multiplier J;, we work with
T[G]uo- Applying the divergence theorem to T[G],o on [0,¢] x R™ and V,(t), we
obtain the following result.

PROPOSITION 3.15. — For allt € [0,T7,

t
|a|2+|g|2+2|p|2+2|0|2da:=/ |a|2+|g|2+2|p|2+2|a|2dm+4// GopJ*dads
PN Yo 0 PR

and

t
Vasip [ JaP + P +1odCut) < [ ol + ol + 2+ 2oPdo+4 [ [ [Gu,¥dsds.
Cu(t) Yo 0 JX,

u<t
This explains the introduction of the following norms.

DEFINITION 3.16. — Let N € N. We define, fort € [0,T],

G0 = [ (lal? +1af + 21pf? +210P) do
¢

sup [ (P + 1 +]o]?) dCu()
Cu(t)

and
EXIGI(t) = Z EXIL 26 (Q)](1),
[BI<N
with ZP e KIAI.

Using the previous energy identities and commutation formula of Proposition 2.30,
we obtain
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PROPOSITION 3.17. — For all N € N and all t € [0, T, we have

EQ[F)(t) — 263 [F > / / (€530 (Fopd (27 fi)")|dacds,

Iﬁl lvI<N

with Z° € K18l and Z7 € B/,

3.3.2. Using K, as a multiplier. - As T[G] is not traceless in dimension n > 4,
VH(T|[G] ng ) does not necessarily vanishes when G solves the free Maxwell equa-
tions. We then consider, in the spirit of what is done for the wave equation, for A a
sufficiently regular potential of G in the Lorenz gauge, the current

—v 1
Py = T[Glu K" + (n - 3)(t450,4° - 5Ou(DA5A7 —tA0° A, + °(t)AgAy).

In order to establish an energy estimate for the electromagnetic field, we compute
the divergence of P,.

LEMMA 3.18. — We have
VEP, = G Ko J" + (n — 3)tAg0AP.
Proof. — We have
V(TG Kg) = V*(T1G]u) Ko + T[Glu VK.
Since T[G] is symmetric,
T(G)u V' Ky = 5TIG ™,

with 74 = V*K,+V*K}. As K is a conformal vector field (of conformal factor 4t),
we have
Tuw = 40y,

Thus,

=V 3—n
TGl VH K, = ZtT(G)u” T ap

Now, according to Lemma 3.13, we obtain that
=V -V 3 -
TG Kg) = GupKod? + =510, G
We now compute the divergence of
1
(n—3) (tAﬁaMAﬂ ~ §8H(t)AﬁAB —tAgd° A, + 0° (t)AﬁAu> :

First,
H(tAp8,AP) = —Ado AP + t8" Agd, AP + tAgOAP.
Secondly,

1
v (2(9“(15)145,4‘*) = Agd°AP.
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We also have, using in particular that in Lorenz gauge 0% A, =0,
VH (tAg0°A,) = —AgdP Ay + to*(Ap)0P A, + tAz0° 0 A,
= —ApgdP Ay + t0"(Ap)0P A,,.
Finally
VH (8°(t)AgA,) = —0"(Ao) A, — A" A,
= —0"(Ao)A,.

Hence,
1
(n—3)V* (tAﬂaﬂAﬂ - gau(t)A,@AB — tAgoPA, - 0° (t)AﬁAu>
= (n — 3)tAgOAP + (n — 3)t(9, A0 AP — 0, A50° AM).
And, since G, = 0, A, — 0, A,
1
EGM;GW =0, Ag0" AP — §,A50° A,
which gives us the result. O
We are now ready to prove the following energy estimate.

PROPOSITION 3.19. — For all t € [0,T7,

[ el 2 1al? + (72 + 7)o + o)Ee + (1= 37 Y A,
t pn=0
t
< [ Q+r)al +laP + 102 +loP)iso+4 [ [ [RiGyu It duds
Yo 0 PN
n t
+(n—3) Z ”SA;A”%?(&) +4(n — 3)/ / s|A,0A%|dzds.
=0 0 Jz,

Proof. — In order to apply the divergence theorem to P, in [0,¢] x R", we transform
1
/ (tAgatA'B - §AﬂAﬂ — tAgd° Ay — Ag) dz.
On the one hand, let us notice that

1 I
B 2 _ 2
—§A/@A _Ao—_§ E Aj.
B=0
On the other hand,

(30) | Apd® Agdz = —t A Agd° Agda +t A 89 (A;) Agda = t0, A A2dz,
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since 0*A,, = 0 in the Lorenz gauge. As

(31) t [ As0,A4%de="Lo, [ AsA%da,
- 2% [

we finally obtain that
1 1«
/ (tAﬁatAﬁ — §A5Aﬂ — tAﬁaﬂAo - A(2)> dx = 2 Z(t@t — 1)||AB||2L2(R")'
n ,B:O

The divergence theorem applied to P, in [0,t] x R™ gives, using Lemma 3.14 and
3.18,

t
/ 7'_?r|oz|2 +721a)® + (72 + 72)(|p|* + |o]?)dx < 4/ / |V#P,|dzds
0 J=,

P2

+ /20(1 +r3)(|a)? + | + 2|p|* + 2|0|?)dz + 2(n — 3) Z </z: (1- t@t)Aida,) .

=0 ¢
It only remains to use the last lemma and the inequality
1—n 1
10, [ 2o < T 1A sy + IS A s

which ensues from (27). O
This estimate justifies the introduction of the following norms.

DEFINITION 3.20. — Let G be a 2-form defined on [0,T[ and N € N. We define, for
all t € [0,T7,

EIG)(t) = / 21a(@) + 72 [a(G) + (72 + 7)o@ + o(G) [2)dz

and

ENIGI(t) = > E[LzGI(),
|B|I<N

with 2P € KIA!.
We then deduce, using Propositions 2.30, 3.19 and Lemma 2.18, an energy estimate

for the electromagnetic field F.
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PrOPOSITION 3.21. — Let A be a sufficiently reqular potential in the Lorenz gauge
of F. We have, for all N € N and allt € [0,T7,

ENIF)(t) = ENIFI(0) = (n=3) Y D 1ISLzx(A)ullFe(s,)

|k|<N p=0

t
<Y /O/E|e’°Koczg(F)WJM(Zka)mxds

1Bl 17N

t
+ > / / S|Lzn (A) DL 2w (A |dads,
0 s

|k|<N

with 27 € K19, 2% ¢ K and 7 < By

3.3.3. Using S as a multiplier. — The main difference with the previous case comes
from the fact that the scaling is not a timelike vector field. Because of that we are not
able to estimate all the null components of the electromagnetic field with this energy
estimate. We start by introducing, for A a potential of G satisfying the Lorenz gauge,

n —

3
5 (A0, AP — AgdPA,).

Qu=T(G)uS" +

As the potential A satisfies the Lorenz gauge and since the conformal factor of the
scaling is 2, we have

-3
(32) VHQu = G "I + TS A50IA°.
We can now state the energy estimate.
PROPOSITION 3.22. — For all t € [0, T,

/E (t+ )l + (= r)laf® +2t(p* + [o)dz + (n = 3)8: D [ Asll 72z,
t B=0

n t
= [ rllal ~laP)ds + (0 -390 3" 1Aali3ecoy +4 | [ V*Qudads.
o 5=0 o Jx,

Proof. — Note first that we proved, during the proof of Proposition 3.19 (see Equa-
tions (30) and (31)),

8 n
A ApdoA® — Ag0° Avdz = D || Asll g2

It then remains to apply the divergence theorem to @, on [0,7] x R™ (recall that
2S=({t+r)L+ (t—r)L). O

Note that (¢ —r)|a|? is not necessarily non negative, which invites us to transform
the equality in the following estimate.
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PROPOSITION 3.23. — For all t € [0,T],

/ 1+t - r)lafde < / (1 + 7)o + laf?) + 2/oP + 2|o[*dz
>, >o

+ =9+ 280410 + 1o (1)) + 0 Dy )

t t
+4// |GOHJ"|+|S"GWJ"|dxds+2(n—3)// |4, O A" |dods.
0 PN 0 X

Proof. — Adding the energy identities of Propositions 3.22 and 3.15, we can obtain,

/ (1+ |t — rl)lafde < / (1 + 7)ol + |af?) + 2loP + 2|o[2dz
>, 2o

t
+ [ e nlal + 2607 +oP)dz+ 4 [ [ [Gou"|+[99Q,ldods
PN 0 JX,

n

+(n—3)0, ) (IIAallsz(Rn)(O) - IIAﬂIIiz(Rn)(t)> :

=0

The result then ensues from the three following inequalities. Using Definition 3.20,
one has

(1 +t)/ (t+r)|a)® + 2t(|p]* + |o])dx < 2E[F](t).
Do
According to (32), we have

t t _
/ / |V"Qﬂ|dxds§/ / 187G d#| + =8| 4,0 4% duds.
0o J=, 0 Jx, 2

Finally, Equation (27) gives us

(14 8) 20l Aul3es,

<NSAullT2(s,) + 10c ALl 2 (s, + (R + 2 Al 2z, O
Let us introduce the following norms.

DEFINITION 3.24. — We define, for N € N and t € [0,T7,

W= Y [ rlaltm )P

7P k!Bl X
[B|<N

Commuting the equation satisfied by the electromagnetic field F' and using the pre-

vious energy estimate, we get the following proposition (see the commutation formulas
of Proposition 2.30 and Lemma 2.18).
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PRrROPOSITION 3.25. — Let A a sufficiently regqular potential of the the electromagnetic
field F in the Lorenz gauge. Then, for N € N, we have, for allt € [0,T7,

EXIFI®) — En[FI0) < En[AI0) + 1+ (EnlAIH) + En[FI(r))

1+t
t

+ 'ek'/ / 126 (F)opd (27 fi)| + 15" £ 26 (F) T (27 fr)|dads
0 s

1Bl,1vI<N
t
+ Z / / |Lz6(A),OLz5(A)!|dxds,
Bl<n 70 e
with Z8 € K18l and Z7 € ]IADQ'_

Later, we will have, in the 4 dimensional massless case, a strong loss on En[F]
which will lead to a poor pointwise decay estimate on |a|. With this inequality, we
will avoid the 7;-loss and we will have an extra 7_-decay (which is not given by
Proposition 3.17).
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CHAPTER 4

SOME TECHNICAL RESULTS

4.1. An integral estimate

The following lemma is useful so as to estimate a quantity like

/Ot/n |u(s,x)|/vIf(s,:v,v)|dvd:rds,

where we already have a bound on |ju(s,.)||rz and a pointwise decay estimate
on fv |f(s,z,v)|dv.

LEMMA 4.1. — Let m € N* and let a, b € R, such that a+b > m and b# 1. Then

+oo ,.m—1 b—1
T 1+1¢
3Capm >0, Vt € Ry / dr < Cabpm T fatom-

0 'rj“rTb -

A proof of this estimate can be found in [7], Appendix B.

4.2. The null coordinates of V,, f

Let f : [0,7] x R® x R® be a smooth function. We designate by ((V.,f)%,
(Vo £)E, (V,f)B,...) the null components of V, f. Later, we will have to transform
the v-derivatives in combinations of Pg-derivatives. If we only use the relation

(33) anvk = ﬁOk — tak — xké‘t,
we get that
(34) (VD | |onH] |(un)®| < T 30 1201,

Z€ePy

which will not be good enough to close the energy estimates (for the Vlasov-Maxwell
system).

We then use the following lemma.
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LEMMA 4.2. — Let f be a smooth function. We have

(v nH| |vupH < 5 X 1211,

Zeb,

Proof. — Since (V,f)? = 0 (by definition),
iz
(vvf)L = 781)1]‘.
Now, we use 9,; = v%(ﬁ()i —t0; — x;0¢). As

7 1 1
580+ i) = (19, +70,) = (S + (r —H)L),

rv 00
we have 4
L T35 1 t—r
(Vuf)" = QO’f - UT]Sf—F 20 Ly.
It only remains to notice that (V, )£ = —(V,f)¥, since (V, f)°? = 0. O

We are now interested in (V, f)B. During the study of the Vlasov equation, each
time that (34) is not sufficient to close the estimates, (V,f)? is multiplied by vL,
which reflects the null structure of the system. This leads us to study vZ (V, f )B.

LEMMA 4.3. — For 1 <i < n, we have
oVt
LS el

C zpaad
— — ot
r

)
,r.2

r

where z,, = z¥v* — THvY.

REMARK 4.4. — If p # v, Z;O” €k, and if p = v, then z,, =0.

Proof. — For simplicity, we take i = 1. We have

5 o R T L
v = — v
r r r2
1,0 j
zlv 21T
A L i O
r r2

And we obtain
COROLLARY 4.5. — Let i, j € 1,n such that i # j. We have

L a' ) zd N\ ! zikxk ~ xd Z]‘ka'k ~ ~
%(r%_rm>_<r+WﬂSM_r+Wﬂ fo: = {2

ifs k.. J(+ k., . .
_<m(t r)+tx51k>aj+<x(t r)+ta: z”)(’%—j;g@t-

r 7290
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Proof. — By the previous lemma,

i j 0,.i ok 0,7 ook ~ ) .
2uL (xavj - mavi> - <v e )f’%f_(v — 2 )a”i‘Qiﬁwlaj—x]ar
r r r r

T T

Now, using the relation v°9,« = §0k — t0), — *0,, we have

i J i ok j Lk
L[z T T ZikT®\ A T Zipx™\ A ~
20 <8,Uj - 8vi) = ( + = Qoj — | — + ) Qoi — Q5
r r r vO0r r vO0r

00 r r?
t (v oz Zij
T < r r? % %
It remains to remark that t# — V2t = vo%i(t —r). O

The naive estimation gave us
W2 (T )?| S lelloufl + 3 (1Ronf] + okt
k=1

whereas, with this lemma and the fact that (V, f)B is a combination with bounded
coefficients of (%av,-f — %8,]1 f) , we have

1<i<j<n

65) LSz Y 'Z”'|af|+2 + il g
cP

z 1<i<j<n

Therefore, with the last corollary, we transform a t-loss (and a |z|-loss) in a 7_-loss
and a f—loss (thanks, among others, to the weights transported by the flow). It is

particularly useful when we look for an estimate of || [, lWwE(V,Z8 £)B|dv|| r2 and we

already have an estimate of fv v0|22‘5f|dv. We can then use Lemma 4.1. One can also
transform the %—loss.

LEMMA 4.6. — For1<j <n,

oIt —r) n tekzjk

STy Ll

r 7290
z€k,

Proof. — We obviously have 7—* M

< %ﬁ For the second term, we need to study

different cases.
If r <1, then

1 ta:kzjk t Tk kol — a:Jvk

n
s
r2y0 T_ T TV 00 &
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Otherwise, r > 1, and

[ taR t o |z
r200 | T r_r r 20
It remains to note that if r < %, T_ > % and if r > %, then % <2 O

One then obtains the following result.

PROPOSITION 4.7. — We have

(V| ST 30 Y 12241

26@ z€ky

Note that later, in Sections 6.6 and 7.6, when we will establish an estimate
on va |2'3f|deL2, we will not be able to apply Propositions 4.7 or 4.2. A vector X

will contain various derivatives of f and we will split it in two vectors H 4+ G such
that

Tr(H) =0, with H(0)=X(0), and Tr(G)=Tr(X), with G(0)= 0.

Note yet that, for instance, if X, is 0, f and Xg is S(f), we have z/'X,, = Xg
whereas we do not necessarily have G, = Gs.

4.3. Some Sobolev inequalities

The following results come from [6] and in order to be self-sufficient, we also recall
their proof. We will use them to prove pointwise decay estimate for the electromagnetic
field.

We first recall two classical Sobolev inequalities.

LEMMA 4.8. — Let u: R™ — R be a sufficiently regular function. We have

Ve e R, fu@)] S D 10%ullrz(y-zi<1)-
|8]< 252

Let v : S"1 — R a sufficiently reqular function (where S*~! is the unit sphere
in R™). We have

vEesSt T w(E)| < Z IV zsv| L2sn-1),

1BI<3

with Z8 € Qlfl,

In order to treat the interior of the light cone (or rather the domain in which
|z| <1+ 3t), we will use.
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LEMMA 4.9. — Let U be a smooth tensor field defined in the FEuclidian space R™.
Then,

k| ork
VteRy, sup |U(z)| 1+t TIAT z_: 1+)"|v U||L2({|y|53+%t})-

lz|<1+%

Proof. — As it suffices to prove the result for each component of the tensor, we assume
that U is a scalar function. Let ¢ € Ry and |z| < 14 1¢. If ¢t < 1, then |z| < 2, so,
according to Lemma 4.8,

U@ S Y IVPUllLz(yi<s)-

+2
[BI< 3=

Now, if ¢ > 1, we apply Lemma 4.8 to y — U(z + %y). We get (after a change of
variables)

n

-3 18l
t 2 t
|U(CE)| 5 <4> Z <4> ||vﬂUI|L§(‘y_z|§£)

+2
BI<23=

It remains to observe that |y — z| < £ imply |y| < 1+ 2¢. O
For the other region (Jz| > 1+ %t), we have the following inequality.

LEMMA 4.10. — Let U be a sufficiently regular tensor field, which in particular van-
ishes at oo, defined in the euclidian space R™. Then, fort € R,
1 2 2 2 :
Va0 U@ E———p ([ 0@+ 2V VW sd
~ yiziz

o] 5" 7

Proof. — As 37 5«4 [VzsU? S UG 4, for ZP € 0Pl we only have to prove the result
for each component of U and we can assume that U is a scalar function.

Let  # 0 such that z = r¢, with r = |z| and ¢ € S"~!. Since 8, ((,/7-U)?) =
270, (7U),

+oo
T_|U(r¢)|? gr—<"—1)/ IWT_U (X[, (/T=U) (AE) A"~ L.
Therefore, an integration over S"~! and the inequality 2|ab| < a? + b? gives us

1

2

N

U 2@y S “E </|> IU(y)I2+72|3rU(y)I2dy>
Yy zr

As every vector field of O commute with 9,., we obtain, using Lemma 4.8,

n—1

U(2)| S v "5 70 </| | |U<y>|<%>,g+TE|aTU<y>|<%>,;dy> . 0
y|2r

ol
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4.4. Pointwise decay estimate for the null decomposition of the electromagnetic field

In this section, we recall some inequalities coming from [6] between quantites linked
to the null decomposition of a 2-form (see Section 2.1 for its definition) and we then
prove pointwise decay estimates on it. However, we cannot adapt the method used in
[6] to establish, in dimension 3, the optimal decay estimate on the null component a.
To circomvent this difficuty, we make crucial use of an electromagnetic potential
satisfying the Lorenz gauge. We first introduce some notations.

DEFINITION 4.11. — Let F be a 2-form. We define its pointwise norm |F|# by

[FI# = /2ol + 72[af? + (72 +72) (|0l + lo]?)
which is also equal to \/AT[F](Ko,0;).
We also define, for L=0 or L=K and k € N,

2
IFIf .= [ (L2 FI#),
|BI<k

with Z8 e LI8I,

Similarly, we define

IF| = Vlaf? + e + 2(]pl? + [o]?)
and
|FlLk =

REMARK 4.12. — By definition of |F|#, we have that 7_|F| < |F|*.
We have the following inequality (cf Remark 2.10).

LEMMA 4.13. — Let F be a 2-form and k a non-negative integer. Then
VI8l =k, [VOF* <rTMIFIE
We also have, according to [6].

LEMMA 4.14. — Let F be a 2-form and (o, o, p, o) its null decomposition. Then, for
allk € N,

k

24,25 i x7d 12 i 77 |2
E E , TZ'T (|VLVLQ|©,k47j +IVLVLalgk—i_j
1=0 i+j=l

+ |VZVJLP|%J,I€—1‘—]‘ + |vi£v]L0'|(%D,k—i—j) S |F|]I2<,k'
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Z Z 2% (TE|VZV£Q|<%),k—i—j + T2(|V2V£a|<%),k—i—j

. . . . 2
+ IV Vol ki + IV mis)) S (IFIE) -

The first inequality is not proved in [6] but can be treated similarly as the second
one.

The following corollary will be useful, particularly for the massless case in dimen-
sion 4, to obtain an extra decay on o away from the light cone.

COROLLARY 4.15. — Using the same notations as in the previous lemma, we have,
for F' a 2-form,

IVT=eld s, + T2 Ve (V=) [B k-1 S 7= |Fli -

Proof. — One only has to use that
_1
\Vov/7—| <7_2, 2V,=L-1L
and the previous lemma. O

Let us show how to establish pointwise decay estimates on the null decomposition
of the electromagnetic field with these inequalities.

PRrROPOSITION 4.16. — Let G be a 2-form and J be a 1-form, both defined on
[0, T x R™, such that
VG = Jy,
VH*Guagnn_, = 0.

If G and J are sufficiently regular, we have, for all (t,z) € [0,T] x R",

€12 (G101
@@I(t2), O)I(t,), 1o(G)](ta) S Y,

T, T2

€12 (G100
(36) 2@)l(ta) S Y

T2 T2
and

Ent2 [G](2)

—irr— + ELa (G0
(37) 2(O)l(t2) §

T+ T—

SOCIETE MATHEMATIQUE DE FRANCE 2022



54 CHAPTER 4. SOME TECHNICAL RESULTS

REMARK 4.17. — When we will study the massless Vlasov-Mazwell system in dimen-
ston n = 4, a strong t-loss on 5%2 [G] will lead to a strong T4 -loss on the pointwise

estimate (36). Since we will not need all the 7_ decay rate of (36), we will rather
use (37).

Proof. — Let us denote the null decomposition of G by (e, a, p, ). Let (t,z) € [0, T[ x R™.
First, we consider the case |z| <1+ 3t.
As

. K, ~ (" "2 2 C i N
Lemma 4.13 and Remark 412 giVe us

3 / TEI6\+2|V5G|2da;55%2[@@)'

Bl<ng2 7
Moreover,
3
V(t,y) € [0,T[ x R™ such that |y| < 3 + Zt’ T_(t,y) = 1+t

Hence,
/ g L OTIG dy  Eaa 10
pl<ngz T WISIHEE

Using Lemma 4.9, we obtain

+/Ente
|G(t,z)| S #

Y40

We consider now the case |z| > 1+ it.
According to Lemma 4.14,

E 2 2 2 i i 12 2 i j 12
/ ’ J |VZLVJLQ|@ ”T‘W_i_j +r (|VZAVJLQ|@ “T‘Fz_i_j
1=0 i+j=l |>1+ t

+ |v;v1p|g,%z HIVLVLOR we ) dy S Exs2[GI(0).

—i—j

Let w be either ra, rp, 7o or 7_a. Since 0, = g and |0,(7—)| < 1, we have

[ a7 190,003y dy S Easa G
ly|>1+%¢ T2 :

Lemma 4.10 then gives us

€232 [GI(0)
fw(t,a)] § Y————.
2|3 72
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Thus,

12 [G](2) NE0)
and |a(t, )] $ Y————

|Ol(t,l‘)|, |p(t,x)|, |U(t7m)|§ i+1 1
|LL'|T7'2 |:z:| T

We now prove (37). Using Corollary 4.15, we have

/||> CIVTmeff e + 72 Vo, (Vo) 5 dy <
y|>1+4t

> / T (| L2s G)* + (L 20 G)* + p(L 20 G)* + |0(L 20 G)[?) da.

Bl ng2 "
As, by Definition 3.20,

2 2 g E2 1010
Z . 7— (|e(LzsG) > + |p(L 26 G) + |0(L 26 G)?) dz < BT
|Bl< g2 "

and, by Definition 3.24
> [ a6 S G0
1< g2 :
we obtain, again by Lemma 4.10
Ent2 [G](D)
St \/5@ [G](t)

la(t, z)| < e : O
|z| = 7—

Our goal now is to show how to improve the decay estimate on «, in the Lorenz
gauge, near the light cone (we cannot reproduce the method used by [6] to treat the
3d case). We start by the following lemma.

LEMMA 4.18. — Let A be a sufficiently regular current, defined on [0,T] x R™, such
that
0*A, =0 and Vtel0,T], 5nT+2[.A](t) < E&(¥),

with € : [0,T] — R4 an increasing function. Then

Anlte), 1Asln) S LD and 4, < VED

~ n—1 n
2

2

| vl

T T Tf

Proof. — Using a classical L?-Klainerman-Sobolev inequality, we have, V|y| < 1,

1<p<n,(tz)€[0,T] xR",

1ZV ALt ) S
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56
We then have
()
(38) (27 A)rl, (Z7A)Ll, (27 A)Bl S —= T
T, T2
It then remains to improve the decay estimate on Ay near the light cone. Since,
o*A, =0,
(VEA) L + (VEA)L + (VBA) g = 0.
So, as VL =0,
(39) —ViAL — (VL A)L + (VB.A)B =0.

Ifr < % orr > % and ¢t < 1, the result comes from (38). For the remaining case,

r> % and ¢t > 1, note first that
(t

O

E(t
IL(AL)| n_l( N
T, T r Ty

1

+

n

=
M‘
| o= |~

T

Indeed, using Remark 2.10 and (38), we have

~—

(VLA ), |(VEA) sl ) < Y

2
T+ T.

[N

r

so that (using (39)), L(Ay) satisfies also this decay rate. As for a sufficiently regular

t—r

function g,
otr) =g+ [ Ligdu,
u=—t—r
and since £ is a increasing function, we have
t—r
|AL|(t,7) < |AL|(0,t +7) +/ |L(AL)|du
u=—t—r
£(0 Et) [T -1
L VEO , VED) =
TJ? 7—_¢_T u=—t—r

)
g
|

3
+ 3

S

Finally, we obtain the following pointwise decay on «.
PROPOSITION 4.19. — Let G and J be a sufficiently regular 2-form and 1-form (re-

spectively), defined on [0,T] x R™, such that
VEG L, = Jy,

VH*Guagan_, = 0.
Let A be a potential of G in the Lorenz gauge such that gnTM [A](t) < E(t). We suppose

that o(t)
|J[(t,2) S ——7—
T+ T_
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and that £ and 0 are increasing functions. Then,

V(t,z) € [0,T] xR, |a(@)|(t,2) S 55 +

REMARK 4.20. — The functions £ and 0 will later be of the form t — (1 + t)* or
t— logF (1 +1t).

Proof. — Consider a spherical variable B and note that
(40) aB(G) = (8“,41, — 8VA;L)BL
< %, we obtain from the standard Klainerman-

Sobolev inequality (15) and Remark 2.10 that for all (¢, ) € [0, T] x R3 such that r <

t+1
2

Since 74 < 74 in the region r <

0@tn) S Y Al S — X S 1Z40)

0<up,r<3 T 0<pu<3 Zek
%
En
N L S IR0
~ n—1 3 ~ nt2
2 2 2
T2 T2 Ty
We now focus on the region r > t+1 , so that 74 < r. Since V., L = 22, we have

ap(G) = Ver(A)L —Vi(A)p = Veg(AL) — ;AB —Vi(4)s.

As eg = Cg%, where C’g are bounded functions depending on the spherical
variables, and [Q;;, L] = 0 for any 1 < i < j < 3, we have

[

IVep(AL)l = lep(AL)] < — > 195(An)
1<i<j<3
La. (A A La.. (A
_ Z | Q”( )L|+| [Q5,L] | _ Z | Q”( )L|'
e—ai r r - T
1<i<j<3 1<i<j5<3

Using Lemma 4.18, we get

Alta) 5 YEO < VEO

2

C n
| €B 3
;"r 7+

For the remaining term, rewritting the wave Equation (8) satisfied by A in null
coordinates, we have, for 0 < pu < n,

1 1
—LLA“ + VCVCAN + ;LAM - ;LA/J, =Jy.

L<<L+i) ) VOVeA, + LA —i—L( >A — Jp.
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Now, note that, using a classical L? Klainerman-Sobolev inequality and Re-
mark 2.10,

t t
|L(1)fiu|v0ch| < VEO lpy < VED gy < 00
r 7"27'_|rT 2 T 7‘7'+T T2 T T-

so that, as 74 <7,

’L<<L+ i) Au>‘ < Li(t)% N nO(f)

Hence, as for a sufficiently regular function g,

t—r

mum:gmt+0+/‘ L(g)du,

u=—t—r

we have (using that £ and 6 are increasing functions)
1 VEWO)  VER) [T o@) [T 1
‘<L+T>AH hS nfz)-f— nJr(g) fd + (t) / —du

T—

(t, )

2 —t—r T —t—r
’7'+ ’7' +

2
3
s
©
3
|
—_

T_;’_T 7-+
implying
1 E@)  0(t)log(T
L+ s o) 5 VI 4 BT, E
2 +

REMARK 4.21. — In the context of the Vilasov-Mazwell system, using the null com-
ponent vB of the velocity vector, we have a better pointwise estimate on the compo-
nent Jg of the source term, as Jp is a linear combination of the terms f Z'Gfdv
Since the dimension n is such that n > 4, we do not need this extra decay (and we
then worked with the Cartesian components of the source term in the proof of the
previous proposition,).

4.5. A Gronwall inequality

Later, when we will study the velocity support of the scalar field in the massless
case, we will need the following variant of Grénwall’s lemma.

LEMMA 4.22. — Let T > 0, f and g two continuous nonnegatives functions defined
on [0,T] and C > 0. If

Wemeﬂws0+zég®¢ﬂﬁ@,
then

vt e [0,T), f(t) < <\/5+/Otg(s)ds>2.
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Proof. — First, we suppose that C' > 0. Let F : t — C + 2 fgg(s)mds. We have
F'(t) <2g9(t)\VF(t).
Since C' > 0, F' is nonnegative and we can divide by 2% . Integrating the above,
we obtain .
VF() < \FC+/ g(s)ds,
which implies the result. If C' = 0, then, for alloe >0,

YVt € [0,T], f(t) < €+2/0 g(s)V/ f(s)ds.

It only remains to apply the inequality in the case C' # 0 and let € tends to zero. [
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CHAPTER 5

DECAY ESTIMATE FOR THE MASSIVE CASE

Recall that, as we study massive particles in this section, v0 = /1 + |v]2. We
will use the commutation vector fields of ITDO and the weights of k; preserved by the
operator T (see Subsections 2.3 and 2.4 for their definitions). We fix for all this
section a sufficiently regular 2-form F' defined on [0,7*] x R™ and we recall that we
defined T as the operator

Tp:g— v*0,9+ F(v,V,g9)

and that V,g = (0,0,19,...,0,ng). The main result of this section is the following
estimate.

THEOREM 5.1. — Let T* > 0 and f: [0,T*[ x R? x R” — R be a sufficiently regular

function such that
>y [

z€ki |B|<n

Then, for all (¢t,z) € [0,T*] x R",

IR DYDY (//

ey
T zeki |B]<n
t
oL
0 Jz, Jrr

REMARK 5.2. — Compared to Theorem 8 in [7], the advantage is that the L' norms
on the right hand side are taken on {t} x R™ (or {0} x R™) and not on a hyperboloid.
On the other hand, our estimate is not a pure Sobolev inequality (we applied the
operator Tp to Eﬁf to establish it).

Z/Z\’Bf‘ dvdx < +00.

A

zZﬂf‘ dvdz

Tr (z?ﬁf) ‘ fédmds) .

REMARK 5.3. — To simplify the notation, we took the mass to be 1, but the estimate
is true as long as the mass is strictly positive (the constant hidden in < is however
proportional to #)
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62 CHAPTER 5. DECAY ESTIMATE FOR THE MASSIVE CASE

REMARK 5.4. — As we will need an estimate on fv | f|dv in this article, we will apply
Theorem 5.1 to (v°)2f. Note that, since T1((v°)?z) = 0, the spacetime integral given
by Theorem 5.1 can be bounded, in that case, by

VA

One can then use commutation formula of Proposition 2.26 in order to compute
Tr(ZPf).

0 2Tr (Zﬂf)’ + ”UOF(U, VUZ)Z\’Bf‘ + ’zviFiOZ\ﬂf’ dvdzds.

The proof is based on a partition of the spacetime. In the interior (|z| < %) and
the exterior (¢t < |z|) of the light cone, the proof relies on the Klainerman-Sobolev
inequality of Theorem 2.13. In the exterior region, the lack of decay is compensated
by using the weights (z? — t:}’—o) € k; defined in Section 2.4. For the remaining region,
we work on subsets of R"*! composed of a piece of an hyperboloid and a piece of a
slice t = constant as [8] for the Klein-Gordon equation, mixing what is usually done
for such problems.

Yo
r=20

The set D,(T) and its boundary

5.1. Sobolev inequalities

We start by a Sobolev inequality independent of time.

LEMMA 5.5. — Let g : R} x R? — R be a sufficiently reqular function. Then, for all
r € R,

2l / gl s S
veER™

|B]<n—1
J<1

)

[ 607 (@ g, v)ae
veER™

L (lyI<l=])

where QP € QA

MEMOIRES DE LA SMF 172



5.1. SOBOLEV INEQUALITIES 63

During the proof of this lemma, we will use many time the following one dimensional
Sobolev inequality. For w € W11, we have, for all @ € R and all § > n > 0,

|U(a)|§ C%(Huwy)HLWafégySa)+'”U/(y)”L%a75§y§aﬂy

with C), a positive constant depending only on 7.

Proof. — As there is nothing to prove when xz = 0, we suppose x # 0. We start by
introducing spherical coordinates. A point y € R™ has for coordinates (r,8), with

= |y| and # € S"~!. We denote by (|z|,w) the spherical coordinates of x and
by (#1,...,0,_1) a local coordinate map in a neighborhood of w € S"~! (by the
symmetry of the sphere, we can suppose that the 6; take their values in an interval
of a size independent of w). Let h be the function defined by h(r,0,v) = g(|z|r8,v).
By a one dimensional Sobolev inequality,

[ mawoiws |
vER™ 01

+ 361/ |h)(1, w1 + 61, ws, ... ,wn,v)dv
U€R7L

/ |h)(1, w1 + 61, ws, ... ,wp,v)dv
vER™

db;.

As 0Op, is a linear combination of the rotation vector fields, Remark 2.4 gives us

Z/ |Qh| (L,w1+61,wa, ... ,wp, v)dv.

891/ |h|(1, w1 + 61, wa, ... ,wp,v)dv
vER™

Qen Ve
Thus,
/ |h(1,w,v)|dv < Z / / 1Q°R|(1, w1 + 61, wa, . . ., wn, v)dvdb; .
vER™ Qﬁ @|5| 61 JveR”
181<1
Using the same argument for the variables 6s,..., 6,_2 and 6,,_1, we get
/ h(1,w,v)dv S Y / / 1Q°R|(1,6, v)dvds.
vER™ QB @‘B‘ gesSn—1 JyeRn
[B]1<n—1

The one dimensional Sobolev inequality, applied this time to the first variable, gives

/ [h(1,w,v)|dv < Z Z / 8ﬁ/ / QPR (r, 6, v)dvdd)| dr.
veRn Ji<1 QP clsl gesn—t JueRn
|8]<n—1
Hence, as % <r,
1
/ |h(1,w,v)|dv < Z Z / / (r@r)j/ |QPh|(r,0,v)dv| dor"~dr,
vER™ J<1 QB ec!Pl gesn—t veR™
|B|<n—1
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which implies

/ o)l s S
vER™

J<L,8|<n—1

/eRn(ra’“)j(@B(gﬂﬂy,v))l)dv

Li(|y|<1) .
It only remains to remark that, as rd, and € are homogeneous vector fields,
(r,)? (107 (g(laly, ) 1) = (r9,) (1¥g]) (laly, v)
and to make the change of variables y' = |z|y. O
We are now able to prove the following time dependent Sobolev inequality.

LEMMA 5.6. — Let g : [0,T*] x R} x R — R a sufficiently regular function. For all
(t,z) € [0, T*] x R™ such that |z| < t, we have

2l / ot 0)ldv < S 1256V IP + @ 4,02t (i< lely 2t
vER™ |5|§”

with a® = t? — |z|? and Z8 € @Eﬁ‘ (more precisely the vector fields involved are either
rotations or Lorentz boosts).

Proof. — Let (t,z) € [0,T*[ x R™ such that |z| < t and a® = t? — |z|?. We apply the

previous lemma to (y,v) — g(1/|y|? + a2, y,v) to get

o [ lateolas 3| [ o) (@GP0 do
veER™ vERRP

J<1,|8|<n—1

)

L (Jyl<]=|)

where we used that

V(9P +a,5,0)) = O () (VIPP + a2, 9,0),

since Q(+/]y|? + a?) = 0 for all Q € O.

Now, we remark that

N (VP +a®y0) g 5
Tar<ﬂﬂg y2+a27y77-)) = = S QOiQBg y2+a23y7v .
ol ) = el ) Y ra o Y )

Note also that, droping the dependance in (1/|y|? + a2, y,v) of the functions con-
sidered,

Q%g|dv.

OB i .
9 i 000, QP gdv = —
v + a2

err |[QPg| /y|?

‘We then obtain that

ol [ lattz,olds
veR™

ly| / 5
< 1+ ——— 1ZPg|(\/|y]? + a2, y,v)dv
Z ( /|y|2 +a2 vERM

|Bl<n

i$|
vern V0 /Y2 + a2

)

L (lyl<|=))
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which allows us to deduce the result. O

5.2. An energy estimate

Before starting the proof of Theorem 5.1, we establish the following lemma, which
combined with our last Sobolev inequality, will give us the expected decay on the
velocity average of the Vlasov field for a spacetime region.

LEMMA 5.7. — Leta >0, T € Ja,T*[ and g : [0,T*[ x R3 x R3 — R be a sufficiently
regular function. Then,

[ aEr el a2 [ s
ly|<VT?—a? v o n
+2/ / / |Tr(g d:cds

Proof. — We use again the vector field N#( fRn 9 +dv and recall from (26) that

9 Tr(9) g (v /
9, N* =/ e i F (g Veg) dv =
WNeah= | T (vo )= | O

v

We now introduce the following subset of R4 x R™ :
D,(T)={(s,9) €ERy xR" /a®> > s> — |y|*, 0< s < T}.

Denoting by v is the outward pointing unit normal field to 0D, (T"), the divergence
theorem (in W11, for the euclidian space R"*1) gives us

dv
[ wNeghaonany = [ [ Lap(g)agan.@).
8Dy (T) Do (T) JveRn gl

The boundary term is equal to

’l]l"
_ 2 2’ , dvd)\ T — 0 ’
/|y|§m/1)ekﬂyuvo 91(V/1y[? + a2, y, 0)dvd\(y) + 191l .1 1y v77=azy 21 (T) = 19l 22 21 (0)

where d\(y) is the surface measure on the hyperboloid {s?—|y|? = a?}. More precisely,
on this hyperboloid (29,

1 _ [+

1
v(y) = W(v ly|?> + a2, —y).

and

20. Here, ty denotes the transpose of y.
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We then deduce, as D,(T') C [0,T] x R™,

) dvdy
2 4 q2¢0 — wl) 24+ a2, y,v)——oo
/|y|< S /Rg (\/Iyl viv' ) lgl(V 1yl Yv) OE T

T dv
< llgllzrz:(0) + ITr(9)| —5-
0 Jz, JRrn v

Finally, note that for s = /|y|%2 + a2 > |y|,

0 _ gy 0_ 0_ 0
sv” —yiv' v —yllo] (0 o)+ Ju]) 1

s s s(v0 + |v]) = 2007

The result follows from a combination of the last two inequalities. O

REMARK 5.8. — The lemma is also valid on the cone s = |y|, which means that the
result is true for a = 0, but we already knew it with Proposition 3.1.

5.3. Proof of Theorem 5.1
We consider a partition of the spacetime into four regions.
The bounded region, t + |z| < 2, where a standard Sobolev inequality gives the
result.
The interior of the light cone, where |z| < £.

— The exterior of the light cone, where ¢ < |z| and |z| > 1.

The remaining region where % <|z|<tandt>1.

5.3.1. The interior of the light cone. — Let (¢,z) € [0,7*[xR" such that |z| < %. Thus,
T_ > %T+ and the Klainerman-Sobolev inequality of Theorem 2.13 gives

[IRUCERE D I v

*181<n

- (t).

It only remains to apply Proposition 3.1, which gives us

0L

|24

6 5|2°f]

T (Eﬁ f)’ i—gdxds.

Liv(
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5.3.2. The exterior of the light cone. — We use (z° —t;’—;) € ki, for 1 < i < n, which are
solutions to the homogeneous relativistic transport equation. Let (¢,z) € [0, T*[ x R™
such that ¢ < |z| and |z| > 1. By Theorem 2.13, we have

/[ S D DD M e PO}

+ z€ki |B|<n

(t,z,v)

||

Since |20 — tv| > v0|z| — t|v] > 5, we get
ol [ Uit Sz |11t 2,0)d
x , T,V < z—t— , 2, v)dv
v (v°)? v v?
n
< Z/ (t,z,v)dv
i=1""Y

Hence, using that |z| 2 74 (recall that |z| > 1 and ¢ < |z| in the region studied) and
applying Proposition 3.1, we finally obtain

L1120 555 S e X 2 12710

z€ky |B]<n

cxs 7,00 [ f

z€k1

5.3.3. The remaining region. — Let (t,z) € [0,7*[ x R™ such that £ < |z| < ¢ and
t > 1. We start by applying Lemma 5.7 to Z°f, for all 8] < n, with T = ¢ and
a? = t? — |z|%. We have

dv
ZP f(V|yl? + d
/<z|/n| F(V 2 +a?y,v )I( o2

(/E / Zﬁf‘dvda:-l-///nTpZﬂfdxds).

As |27 (1°)72) |  (v°)~2, Lemma 5.6 applied to g = (v°)~2f allows us to bound
by below the left hand side of the previous inequality by

n dv
ol [ 1£1t2.0) -

> 3).

1Bl<n

Iﬁl<

The result follows from |z|™ > 77 (as |z| > §
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5.4. Improved decay for the derivatives of the velocity averages
Let us introduce the following vector fields.

DEFINITION 5.9. — For 1 <i<n and 1< k,l <n, with k # [, we consider

vk vl

X; = %at +0; and Y = —061 — — 0.
v

ProOPOSITION 5.10. — The vector ﬁelds =T, X; and Yy are good derivatives (as the
derivates tangential to the light cone L and ep, see Remark 2.10), which means that
if W denotes one of them, we have, for a smooth function f,

/vadU 5% > /Zfdv Z/lz [IVi,0fldv

ZcP z€ky
Proof. — For Ty, we remark that

tTy = 08 + (tv' — 200)0;, rTy =tTh + (r — )T

r—t/afdv Z‘/ZfduN /Eﬁfdu.

For X, that ensues from
' X; = 0°Qo; + (o' — 2"0°)0; and rX; =tX; + (r — ) X;.
For Y}, that follows from
100V = 00 + (t0* — 2F0)9; — (00! — 2'0°)0, and Y = tYi + (r — )Yy O

and that

28 Bl
|ﬁ|<1

Finally, let us show how we can obtain extra decay on 9 fv fdv if f solves an
equation such as Tr(f) = 0.

PROPOSITION 5.11. — Let f:[0,T] x R? x R — R be a function such that

VZ e Py, z €ky, /(UO)QZZfdv STt
Then, for all 0 < pu <mn,
Oy / fdv| < 7';”71
v
Proof. — As
2
. 1
T1 = v“@ = ’an + UZX - |—8t in + *Oat,
v
we have .
6t = ’UOT1 - ’UO’U’LXZ‘.
Similarly ‘
9; = (V0)2X; —v'Ty —w Ok, O
REMARK 5.12. — We can prove a similar proposition for derivatives of higher orders.
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CHAPTER 6

THE MASSIVE VLASOV-MAXWELL EQUATIONS

6.1. Global existence for small data

The aim of this section is to prove Theorem 1.1. We suppose that the dimension n is
at least 4 and we consider the massive Vlasov-Maxwell system (1)-(3) with at least
two species, so that K > 2. For simplicty, we suppose that mp =1forall 1 < k< K.

To simplify the notation, we denote during this chapter the energy norm ]Eﬁ“w 010

introduced previously in Definition 3.2, by Elfmq . We also introduce the function x
defined on Ry by

x(s)=1log®(3+s) if n=4 and x(s)=1 if n>5.
This is a more precise version of Theorem 1.1.
THEOREM 6.1. — Letn >4, K > 2 and N > gn + 1. Let (fo, Fo) be an initial data

set for the massive Viasov-Mazwell system. Let (f, F') be the unique classical solution

to the system and let A be a potential in the Lorenz gauge. There exists € > 0 such
that @V, 4f

En[AJ(0) < e, EN[FI(0) <€
and if, for all 1 <k < K,
EX 41 [f1](0) < e,
then (f, F) exists globally in time and verifies the following estimates.
— FEnergy bounds for A, F and fr: V1< k<K andVteRy,
ExTAI(D) S ext®), ExIFI(D) S ex(t),
EX[fil(0) S e and  EX1[f](8) < ex® (b).

21. A smallness condition on F', which implies 5N [A](0) < ¢, is given in Proposition 2.20.
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70 CHAPTER 6. THE MASSIVE VLASOV-MAXWELL EQUATIONS

— Pointwise decay for the null decomposition of Lzs(F):V |B| < N —n, (t,z) €
R+ X Rn,
_nt2 _n=1 _3
la(Lzs F)| S VeV x(t)my ? la(Lzs F)| S Ve x(t)y 7 727,
ntl 1 nt1

Ip(Lzo F) S VeVx®ry * 728, Jo(Las F) S vVey/x@ry T -t

— Pointwise decay for [, .. |\ Z5 fr.|dv:

2 ~
visl <N -T2 gmeroxrr, [ 12w s S
2 vERM T+

— Pointwise decay for [ . |2ﬁfk|(v0)2dv and [, p. 1228 £, (v°)2dw:

VI8 < N —n, (t,z) € Ry x R", / 128 i (o) < —5—,
vERN T+ .

3n+2

VIB| <N — , 2z €ky, (t,z) e Ry x R”,

/ |z25fk|(vo)2dv N n_iel
veERN 7'+ T—

ZB f|dv:

_ 2 '
L* estimates on fvER”

1
< X5 (1)

V|/8|S]V’t€]R-I-7 ‘ ~ .
ez | (1412

/ 120 fildv
vER™

REMARK 6.2. — In dimension 4, if N > 14, we can take x(t) = log®(3+1t) and avoid
the log% (34 t)-loss on the L* estimate on [ |Z” fi|dv.

6.2. Structure and beginning of the proof

Let (fo, Fp) be an initial data set satisfying the assumptions of Theorem 6.1. By a
standard local well-posedness argument, there exists a unique maximal solution (f, F')
of the massive Vlasov-Maxwell system defined on [0, T*[, with T* € R} U {+o0}.

We consider the following bootstrap assumptions. Let T" be the largest time such
that,V1 <k < K and Vt € [0,T],

(41)  En[F](t) < 2Cex(t), EXIFI(t) < 2Ce,
(42)  ERX[fel(t) <de, B} aps  [fi](0) < de and B, [fil(8) < dex® (1),

where C and C are positive constants which will be specified during the proof. Note
that by continuity, 7" > 0. We now present our strategy to improve these bootstrap
assumptions.

1. First, using the bootstrap assumptions, we obtain decay estimates for the null
decomposition of F' (and its Lie derivatives) and for velocity averages of deriva-
tives of f.
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2. Next, we improve the bounds on the Vlasov fields energies by means of the
energy estimates proved in Propositions 3.3 and 3.5. To bound the right hand
side in these energy estimates, we make fundamental use of the null structure of
the system and the pointwise decay estimates on p, o, o, & and fveRn |22'3fk|dv.

3. Then, using Theorem 5.1, we improve the decay estimate on fv|2ﬁ fr|dv near
the light cone.

4. In order to improve the estimates on the electromagnetic field energies, we es-
tablish an L2 estimate for the velocity averages of the Vlasov fields (and its
derivatives). For this purpose, we follow [7] and we rewrite all the transport
equations as an inhomogeneous system of transport equations. The velocity av-
erages of the homogeneous part of the solution verify strong pointwise decay
estimates (we use particularly the control that we have at our disposal on the
initial data of f, for derivatives of order N +n or less). The inhomegeneous part
is decomposed into a product of an integrable function and a pointwise decaying
function which gives us the expected estimate.

5. Finally, we bound the energy of the electromagnetic potential (which satisfy the
Lorenz gauge) and we improve the estimates on the electromagnetic field ener-
gies with the energy estimates for the Maxwell equations (Propositions 3.21 and
3.25). We use again the null decomposition of F' (and its Lie derivatives), which,

combined by the estimates on HT+ f]R" |2ﬁ fk|de L gives us the improvement.
LI

6.3. Step 1: Decay estimates

Using the bootstrap assumption on Ey[F| and Proposition 4.16, one immediately
obtains the following pointwise decay estimates on the electromagnetic field.
PROPOSITION 6.3. — For all t € [0,T], |3| < N — 22, we have

_ntl 1 _n-1 _ 3
la(Lzo F)| S Vey/x() . * 727, |a(LzeF)| S Ve/x(t)ry 7 727,

n+1 1

I(L20F) S Ve/xOr; F 772, Jo(LaeF) S Vev/xBrs * 7t

REMARK 6.4. — We will improve later the decay estimate on o(LzsF), for
|B8| < N —n, near the light cone (see Section 6.7.1).

The pointwise decay estimates on the velocity averages of the Vlasov fields are
given by Klainerman-Sobolev inequalities and the bootstrap assumptions on the f
energy norms. Using Theorem 2.13, we have that V |3| < N —n, (t,z) € [0,T] x R",
1<k<K

(43) / 129 ) (00)2dw < EM®) o€
R™ T T
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72 CHAPTER 6. THE MASSIVE VLASOV-MAXWELL EQUATIONS

In the same spirit, using Corollary 2.14, we have that V |3] < N — %, z € ky,
(t,z) € [0,T] x R™,

3 L 80)
(49) [ 1z nieopa s 20 e
Rn YT TV T

6.4. Step 2: Improving the energy estimates for the transport equation

We fix, for this section, 1 < k < K. According to Proposition 3.3, E3[fx] < 3¢
on [0, 7], for € small enough, would follow if we prove

(45) / / / |L 6, (F)(v,V Zﬁka)|’U0d’Udl’d8 < e%
veER”

for all |B1]| + |B2] < N, with |B2] < N — 1, and

t
/// v Fi0 2" fi|dvdzds < €3,
0 JX; JveRn

for all || < N. The second integral is easy to bound. Using Proposition 6.3 and the
bootstrap assumption on E%[fx], we have

t t
[ [ [ wireZ sidvdads < [ 1Pl s B L) ds
0 J3, n 0

3
< ez,

~

Similarly, according to Proposition 3.5, B} ,[fr] < 3ex¢(t) on [0,T], for € small
enough, would follow if we prove

t
(46) / / / 1200 L g6, (F) (v, Vo 272 1) |dvdads < €2 x5 (),
0 vER"?
for all z € ky and |B1] + |B2] < N, with |G| < N -1,
t
(47) / / / [WOF (v, V,2) 27 fi|dvdads < €2 X7 (),
0 veER™

for all z € ky, |B| < N and

/ / / |zv1 lOZﬁfk|dvdxds < e%
vER™

for all |8] < N. Again, the last integral is easy to bound.

We fix [51] + |B2] < N (with |f2] < N —1), |8] < N and z € ky. We denote
respectively p(Lzs, (), o(L s, (F)), a(Lze (F)) and a(Lzs, (F)) by p, o, a and
a. We denote also 7252 fr by g and VA fx by h. To unify the study of the remalmng
integrals, we introduce b, which could be equal to 0 or 1, zp = v° and 2z, = v°2. The
null decomposition of L£zs, (F)(v,V,g) (for (45) and (46)) or F(v,V,z2) (for (47))
brings us to control the integral of the following terms.

MEMOIRES DE LA SMF 172
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The good terms

(48) |0Ep (Vog)* |, [o0uEho(F) (Vo2)"],
(49) a0l (Vog)t|, |00 ho(F) (Vu2)5|,
(50) ’ZbUBO'BD (Vo) ", v2vBho(F)pp (Vuz)D‘ ,
(51) zolag (Vag)?, % ha(F)p (Vy2)?],

(52) 2P ap (V,9)" %9Bha(F)p (Voz)"],
and the bad terms
(53) avtag (Vog)®

(54) ZbUBQB (ung)A , vovBhg(F)B (Vﬂuz)A

Ovéhg(F)B (sz)B ,

The study of IE?V [fx] corresponds to b = 0 and, in this case, we only have to
estimate the spacetime integral of each of the first terms of (48)-(54). The study
of EX; [fx] corresponds to b = 1. For both of them, when |6;] < N — 242 we can use
the pointwise decay estimates on the electromagnetic field given by Proposmon 6.3.
When |81 > N — 22 |8,| < N — 322 (since N > 3n + 1), and we can then use the
pointwise estimates (43) and (44) on the velocity averages of the Vlasov field.

For the part where |51] < N — "%‘2, our proof leads also to E?Vf"T“,l[fk] < 3¢,

for € small enough, on [0, T].

REMARK 6.5. — To simplify the argument we will sometimes denote E3[fx]
by E?v,o[fk]'

6.4.1. Estimating the v derivatives. — To deal with the v derivatives of the Vlasov
field, which do not commute with the relativistic transport operator, we recall (34)

(55) (o), |Fu)®], || £ 55 3 1201,
ZeP,
We will also use
(56) ()|, | 5 5 Z 12yl
and
(57) W (V)| S 730 Y 122w,

Zebzeky
which come from Lemma 4.2 and Proposition 4.7. In order to reutilize certain esti-
mates of this section, we will not use inequalities (56) and (57) in the case where we
have a pointwise estimate on the electromagnetic field. We make this choice because
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74 CHAPTER 6. THE MASSIVE VLASOV-MAXWELL EQUATIONS

we do not identify such null structures in the equations studied in Section 6.6, where
we will make similar computations as in Subsection 6.4.2.

6.4.2. If || < N — — We start by treating the good terms. We use ¢ to denote
a, p or ¢. Thus, accordlng to Proposition 6.3,

R xf x(t)‘

Using (55), we can bound by -7 5 7+|C| |25 Zg| each first term of (48)-(52) so that
their integrals on [0,¢] x RZ? x R? are bounded by

t

(58) > // T+|C|/|zng|dvda:ds.
ZeB, 70 TP v

It remains to notice that

/ / ekl [ 1 Zoldvdads < / \fk’g 3“) L olfel()ds < e

since Ejy , [fx](s) < EX[fr](s) < 4e log%(3—|—s) for all s € [0, T]. Similarly, each second
term of (48)-(52) is bounded by > 7 5 007, |C(F)||h||Z(2)| and, using Lemma 2.8,
their integral on [0,¢] x RY? x R” are bounded by

Z// T |C(F |/ 002’ h|dvdads.

z'€ky

Using the pointwise estimate on ¢ and the bootstrap assumption (42), one has

/ / r G| [ o) dvdads < / fl"g 3“) Lalfel(s)ds S .

We now study the bad terms. Recall that, according to Proposition 6.3,

n—1
2
T4° T

| woles
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6.4. STEP 2: IMPROVING THE ENERGY ESTIMATES FOR THE TRANSPORT EQUATION75

Let us denote [0,t] x R? x R? by X; and dvdxds by dX;. Then, using (55),
fCu(t) [, vE|20Zg|dvdC,(t) < B, ,[fx](t) and the bootstrap assumption (42), we have,

t L
/ |zpvlag (Vug)B l[dX; < E // T+|g|/1;—0|zb2g|dvdxds
X, A= Jo Iz, v
Z€ePy

S

S

A

S

t
Z / / T+|Q|/U£|zng|ddeu(t)du
26@0 u=—00 JCu(t) v
¢ 1 .
Z / j/ /U£|z52g|dvd0u(t)du
Zep, T Wm0 T2 JCu(t) Ju
+o00

1 1
SRR [ S
u=—o0 T2

€3 if b=0, e2xs(t) if b=1.

Finally, for the first term of (54), we use successively (55), the inequality |[v?| <
v%vE (which ensues from Proposition 2.9) as well as the bootstrap assumptions (42)

to get

t
[ latasugtlaxe s S [ [ [ lalot Tz Zgldvdaas
X ~ ~ JO Y Jou
ZeP,

S

<

<

~

¢
Z/ / T+|Q|/vL|zng|ddeu(t)du
26@0 u=—o00 J Cy(t) v

¢

/ -
U=—00

2 B3, [f] ().

Wl
(N

€

Efy o [f4](t)du

The integrals of the second terms of (53) and (54) are treated similarly. For in-
stance, as 3z, [Z(2)| S X ek, |#']; we have

/|vov3th (Vo2)2ldX, <
Xt
<
<

t
E // T+|g|/\/va£|hZ(z)|dvdmds
=~ ~ J0 s v

ZeP,

t
Z / / 7'+|g|/v£v0|z'h|dvd0u(t)du
—o0 JCy () v

z' €k
2 B3, [ful(t)-

6.43. If 31| > N — 2f2. — In this case we cannot use Proposition 6.3 anymore.

AS |ﬂ2| S %a

we can however use the pointwise estimates on the velocity averages

of 192,Z8g given by (44). This time, we only have to bound the first terms of (48)—

(54).
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Again, we start by studying the good terms. Let us denote again «, p or o by C .
Then, according to Definition 3.20, for all s € [0,T],

/ 72 |CPde < En[F](s) S ex(s).

s

Recall that the integral of each first term of (48)-(52) can be bounded by (58).
Using the Cauchy-Schwarz inequality and

R 2 +oo pn—1
/ |26 Z g|dv S 62/ S dr S+ s)~ Y,
v LZ(Z ) 0 + TZ

which comes from (44) and Lemma 4.1, we have

// T+|C|/|Zb29|dvdl'd3 S /||T+C||L2(>:S)
0
3
€2,

<

ds
L2(%5)

/ |26 Zg|dv

In order to close the estimates for the bad terms, we use (56) or (57). The integral
of the first term of (54) is then bounded by

+o0
/ Im—allr2(s.) zng‘ dv ds.
Ze L2(Zs)
Now, using (44) and Lemma 4.1, we have
’UB = = 3
/ —5#Zg|dv /|zng|dv Se(l+s) 2.
v| Y L2(S,) v L2(2s)

Since [|[7_al|72(x,) < EN[F](s) S ex(t),

// /|zbv ap (Vog)t |dvdmds<e%

For the remaining term, z,vla B (V,,g) , we treat the two cases separately. First,
ifb=0, fot Js, J, v ag (Vg)” |dvdzds is bounded by

)3P> | Il | [ w12 Zglaw

o Z ’eky

ds.
L2 (%)

Now, using (44) and Lemma 4.1, we have
R 2
‘ /vo|z'Zg|dv

Hence, as ||T_g||%2(2 < En[F](s) < ex(t), we obtain

/// vE|ag (Vog)? |dvdasds<e%

MEMOIRES DE LA SMF 172

< e(1+s)~(nD,

L2(3s)



6.4. STEP 2: IMPROVING THE ENERGY ESTIMATES FOR THE TRANSPORT EQUATION 77

Finally, if b = 1, we have, by (55),

t
/ / / vol|zap (V,9)" |dvdzds
0 JE; Jv
3

1
S E // —=3 |Q|T+( o) /’UL|ZZg|d’Ud:L‘dS.
Fen, 0 B (

1+8) 2 7-% v

By the Cauchy-Schwarz inequality (in (s, z)), the right-hand side of the previous
inequality is bounded by

2 3 n— 2 3
59) / IvV=lallis, | 22 / / 1 ( /UL|zgg|dv> dods |
0 (1+s)n3 s 0o Js, T- v
0

By the bootstrap assumption 2 (41), ||,/7= |Q|||2LZ(ES) <e, so

ds < ex3 ().

/t ||\/T—|Q|||2L2(zs)
o (1+4s)n3

The second factor of (59) is bounded by €. Indeed, as, by (44),

Tn—l =R 2 € .
=+ (/ vL|ng|dv) < —2/1)L|ng|dv,
T v T* v

we have

t n—1 2 ¢
/ / ™ (/ vL|ng|dv> dzds < e/ 7:2/ /v£|ng|ddeu(t)du
0 Jx, T- v —o0 Cy(t) Ju

t
e/ T__QIE?V_"TH’I[fk](t)du

=—00

AN

2
S €

since ]E?V_LH 1 [f](t) < 4e by the bootstrap assumption (42). Thus
2

t
/ / / WOollzag (V,9)? |dvdeds < €2xF (2).
0 Ys Jo

This concludes the improvement of the bootstrap assumption (42).

22. Note that if we used the bound on || 7—a|| 2(x ) We would have in 4d an extra loss on E2, | [fx]
which would lead to a (1 + t)"-loss for the electromagnetic energy.

SOCIETE MATHEMATIQUE DE FRANCE 2022



78 CHAPTER 6. THE MASSIVE VLASOV-MAXWELL EQUATIONS

6.5. Step 3: Improved decay estimates for velocity averages

In this section, we improve the pointwise decay estimate on fv |Zﬂ fr|dv near the
lightcone.

ProPOSITION 6.6. — We have, for all1 < k< K,

3+ 2 _
V(t,z) € [0,T] xR, |8 < N — 2F2 / 128 fildv S —
2 veERn ¥

and

1
5 s (t
V(t,z) € [0,T] x R*, |B| < N —n, / |ZP fr.|dv < eXG( )
vER™

.
T+

Proof. — This ensues from Theorem 5.1, Remark 5.4 and the estimations made in
Section 6.4. The loss for the derivatives of higher order is linked to the loss on E3; | [f].

6.6. Step 4: L? estimates for the velocity averages

In view of commutation formula of Propositions 2.19 and the energy estimates of
Propositions 3.12, 3.21, we need to prove enough decay on |74 [;. |Z” fi|dv]| 2 for
all || < N. The goal of this section is to prove the following proposition.

PROPOSITION 6.7. — We have, for all 1 <k < K, |3| < N and for all t € [0,T],

< eixé(tg T
s, (L4127

T+/ |Z° fildv
RTL

The log%(:}—i—t)—loss (specific to the dimension 4) can be removed for |3| < N — 2142
or improved in a log%(3 +t)-loss for |B| > N —n+1.

Note that if |3] < N —n, that ensues from Proposition 6.6 and Lemma 4.1. For the
higher order derivatives, we follow the strategy used in [7], in Section 4.5.7, to prove
similar L? estimates. Let 233 1 < k < K and M € N such that 3’"2—+4 <M<N-n+1.
Let I; and I, be two sets defined as

I, = {f multi-index / M < |B| < N} and I, = {f multi-index /|8] < M — 1}.

We consider an ordering on I;, for 1 <4 < 2, so that I; = {8;1,...,0,5,|} and two
vector valued fields X and Y, of respective length |I;| and |I3|, such that

X9 =27ZPif, and Y9 = ZPif,.

23. If n = 4 and N > 14, we can take 8 < M < N — 6 and avoid the log%(?) + t)-loss for all
derivatives.
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LEMMA 6.8. — There exists three matrices valued functions A; : [0,T] x R" —
EJJT‘M(R), A2 : [O,T] x R* — muﬂ(R) and B : [O,T] x R" — 93?‘11|7|12|(R) such
that

If1<j<Iy, Ay and B are such that Tr(X7) is a linear combination of

v Ul vt ;
vfoﬁz'n (F)HmXﬂl'q, thEZW1 (F)MmXﬁl'q, DT£ZW1 (F)mfl,‘lXﬁl'q,

0 2 0 ,
Zioﬁzw (F)umyﬂ2,17 t:}ToEZ” (F)Mmyﬂz’l and Z—Oﬁzvz (F)M;lleﬁz,z’

with |y1] < N — 3”—;2, lv2] <N, 1 S m<n,1<qg<|L]|andl <1< || Similarly,
if 1 <j<Iy, Ay is such that Tp(Y7?) is a linear combination of

oM oM vH i
oL (F)umY P21, t-5Lz (F)mY"?* and oL (F)uz Yheu,
with |[y| < N —n,1<m <n and 1 <1< |Iz|. Note also, using Proposition 6.6, that

1
/ Y |oodv < ELT(Lt).
v T+

Proof. — Let |8] < N. According to commutation formula of Lemma 2.26, T (Z” f},) is
a linear combination of terms such as £z-(F)(v, V,Z%(fx)), with |y| + |5 < |B| and
|6| < |B] — 1. Replacing each 8,:Z° fi, by % (Q0:Z° fr — t8; Z° fr — x°0,ZP f), the

v

matrices naturally appear. O

Now, we split X in G + H where G is the solution of the homogeneous system and
H is the solution to the inhomogeneous system,

Te(H) + AH =0, H(0,.,.) = X(0,.,.),
{ T#(G) + AG = BY, G(0,.,.) = 0.

The goal now is to prove L? estimates on the velocity averages of H and G.

6.6.1. The homogeneous part. — We start by the following commutation formula.
LEMMA 6.9. — Let 1 < i < |I1| and consider Z° € l}A”gsl, with |8| < n. Then, Tr(Z3H?)
can be written as a linear combination of terms of the form

Lz+(F)(v, W),

where W is such that
[11]
T+ Z Z 76

[6]<n g=1

and where |y| < N — ”T“, so that the electromagnetic field can be estimated pointwise.

Proof. — The proof is similar to the ones of Lemma 2.25 and Corollary 2.26. O
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We introduce the energy E[H] of H.
|11] ' _
=Y ENH+E] [H']

i=1

and we have the following lemma.

LEMMA 6.10. — If € is small enough, we have, for all t € [0,T],

/T+|Hi|d?}
v

Proof We follow here what we have done in Section 6.4.2. Since E[H](0) <
E3 1 [fx](0) + %E%V+n71[fk](0) < 3¢ for € small enough, there exists 0 < T' < T such
that

< €

E[H]|(t) <8 and Y1 <i<|I], S——==
L2(X%y) (1+t)=

vte[0,T]), E[H]() < 8e.

To improve this bootstrap assumption, for ¢ small enough, we only have to use
the prev1ous lemma and to follow Section 6.4.2 (as we always estimated | V,w)t |

|(Vow)E| and [(V,w)B]| by Z% IR R |Zwl|). We can then take T = T and obtain, as
in Section 6.5, that

V1<i<|Ll, (t2)€[0,T] x R", / \H(t, 2, 0)|dv < —.
vER™ T

+

The L? estimate then ensues from Lemma 4.1. O

6.6.2. The inhomogeneous part. — Let us introduce K, the solution of Tr(K)+ A1 K +
K Ay = B which verifies K(0,.,.) = 0, and the function

KEY|ow= Y |KIPY.
1<i<|n|
1<5,p<| 12|
KY and G are solutions of the same system,
Te(KY) = Tp(K)Y + KTp(Y) = BY — A|KY — KA,Y + KA,Y
= BY — A1 KY.
As KY(0,.,.) = 0 and G(0,.,.) = 0, we have KY = G. For 1 < i < || and
1 < j,p < |L|, |K]|*Y, sastifies the equation
Tp (IKIPY, ) = |K7 P(A2)3Y, — 2 ((A)IK] + K (A2)]) KIY, + 2BIK7Y,,
which will allow us to estimate
E|KKY |oo] = B[ KKY] ).

We will then be able to bound ||T+ Joern |G|deL2(E ) thanks to the estimates
on [, g |Y|dv and E[| KKY o).
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LEMMA 6.11. — We have,
Vte[0,T], E[|KKY|x] <€
Proof. — We use again the continuity method. Let T be the largest time such

that E[|[KKY |o] < 2¢ for all ¢ € [0,Tp] and let us prove, with the energy estimate of
Proposition 3.1, that for e small enough, E[|[KKY |s] < € on [0,Tp]. Let ¢t € [0, Tp].

As for the estimate of E[H] in the proof of Lemma 6.10, we have

o

t 1 . i j j
| L gy, =2 (a0 + ki) K,
sJv

Next, we need to estimate the following integral,

¢
1 .
(60) /O/Z/U—O|BfoYp|dvd:c.
sJu

The components of the matrix B involve terms in which the electromagnetic field has
too many derivatives to be estimated pointwise. Indeed, recall from Lemma 6.8 that

|BIKIY,| < Z >

m=1|y|<N

czv F)mK?Y,

We fix || and we denote the null decomposition of Lz~ (F) by (a, a, p, ). In order
to bound (60), we bound the integral of the five following terms, given by the null
decomposition of the velocity vector v and Lz~ (F).

— The good terms

|KY| |KY| |KY|
7—-|-|O‘4| 20’ 7--|-|p| 20 7-4-|O'| 0
— The bad terms
2|a||KY| and T4 — il |a||KY .

() (v0)?

We start by bounding the integral on X x R} of the good terms. We use ¢ to
denote either a, p or o. Using twice the Cauchy-Schwarz inequality (in = and then
in v), we have

2\ 2
[ [ < e, (/ ([1mvian) da:>
< VEnIFI(s (/ /|Y|dv/|KKY|oodvda:>
< VENTFIG) B KKY |oc] ¥
Lm(zs)
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Using the bootstrap assumptions, on Ex[F] and E[|KKY |«], and the pointwise
estimate [ |Y|dv < elog% 3+ t)T;” given in Lemma 6.8, we obtain

t 31 2
€z log“(3 + t)
< — 2 ds <
// /T+|C| dvdmd /0 11s) ds < e2.

To unify the study of the bad terms, we use ¥ to denote v or vZ. Using the
Cauchy-Schwarz inequality (in (s, z)), the integral on [0,t] x s x RY of a bad term

is bounded by
2 3
> dxds) .

Nfw

o ([ Lt [ 22 (]2

(1+
As ||T,|g|||2L2(E ) S elog®(3 + t), we have

72|af?
/ / ——— —dzxds Se.
5. (1+5)%

For the second factor of the product in (61), we first note that, by the Cauchy-

Schwarz inequality,
> / Y |dv

(L5

512
Now, recall from Proposition 2.9 that [v?| 5 VLol so that | 5]” < Z—ﬁ Using the
pointwise decay estimate [ |Y|dv < elog% (B+1t)7, ", we get

~ 2
(/ v U) SEM/ U KKY | v,
v |V

—+ v
As o Jy S KKY |o0dCy(t)dv < E[[KKY |](t) < 2€, we obtain

t 2(1+s 3 v 2 +oo
/ / # (/ % ) dzds < 62/ 7 %du < €2.
0 s TZ v |V U=—00

Hence,
' 0] 5
/ / /T+W|g||KY|dvdxds <e2
0 Ju, Ju T (¥0)

and the energy estimate of Proposition 3.1 gives that, for € small enough,
E[|KKY |»x] < € on [0, Tp). O

|KKY|oodv

REMARK 6.12. — A naive estimation of the bad terms in the previous lemma would
lead to a (1 + t)"-loss which would affect the electromagnetic energy.

We are now able to prove the expected L? estimate on [ |G|dv.

LEMMA 6.13. — If € is small enough, we have,

/T+|Gi|d1)

1

Vtel0,T], 1 <3< I,
L2(%¢) (1+t)T
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Proof. — Let 1 <4 < |I;]. The Cauchy-Schwarz inequality (in v) gives us
I 1
T+/|Gi|dv <> Ti/|yj|dv/|(z{g)2yj|dv

L2 () j=1 L (Zy)
Thus, using once again that fv |Y;ldv S exs (t)7 ", we obtain

T+ / |Gl|d'l)

We can now conclude this section.

/-\

< €x 12

) O

Proof of Proposition 6.7. — As mentionned earlier, for |3| < M — 1, the estimate en-
sues from Proposition 6.6 and Lemma 4.1. If M < |B| < N, as there exists 1 < i < |I;]
such that Z2f;, = H* + G*, we have
Ty / |G| dv
v

T+/|2Bfk|dv T+/|Hi|dv
v v

It then remains to use Lemmas 6.10 and 6.13. O

L2(%¢) L2 (%) L2 (%)

6.7. Step 5: Improvement of the electromagnetic field energy estimates

6.7.1. The bound on the potential energy. — According to the energy estimate given
by Proposition 3.12 and the commutation formula of Proposition 2.19, we have, for
all t € [0, 7],

EnlAlt) S VEnAI) + Y / €|

[vI<N

ds.
L2(%5)

. / 127 fildo

Using the L? decay estimate of Proposition 6.7 and En [A](0) < €, we obtain, for e
small enough and if the constant C is large enough, that

Vitelo,T], En[A]k) < clog®(3+1¢) if n=4

_C¢
2(n—3)
and
~ C
Vte[0,T], En[A](t) < ——€ if n>5.
0.7), EnlA)) < gr—gse i n>

We are now able, using Proposition 4.19, to improve the pointwise decay estimate

on «.

VIBIS N —n, (6,2) € 0,T] xR, |a(Ls(F)l(t,2) S ve 2l

2

T+
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6.7.2. Improvement of the electromagnetic field energy estimates. — Recall from Propo-
sition 3.21 that

En[FI(t) < EnIFI(0) + (n = 3)ENIAI() + (1),

where ¢(t) is a linear combination of terms such that

t t
(62) / / Ko Lz6(F)uJ(Z7 fr)!|dzds and / / 8|L 25 A OL 55 A*|dds,
0 J3, 0 JE,

(62) is bounded by €2 x(t), we would have, for € small enough and if the constant C is
large enough, Ex[F] < Cex(t) on [0,T] since Ex[F](0) < € and (n — 3)En[A](t) <
Sex(®).

We start by bounding the integrals involving the potential. Using Proposition 2.19
and the Cauchy-Schwarz inequality, we have, for |§| < N,

// s|Lzs Ay D»’vizt“‘w|dgﬁd*‘3<Z Z / \/7

k=11y|<|9]

ds.
L2(%y)

Ty / |27 fi|dv

Using the L? estimate of Proposition 6.7 and that Ex[A](s) < ex(s), we get

3 1
Z// s|Lzs A OL 55 AP|dxds < EE/ og (3—|—_s)
0

I5|<N (1+s)

S oexx(t).

In order to estimate the remaining integrals of (62), we express
Fgﬁzg (F)puwJ(Z7 fir)* in null coordinates. Dropping the dependance in L£zs(F') or
Z7 fy, this gives us the four following terms :

(63) 2pJE, 2pJt, t2apJ®, and TiagJP.

As

vk RPN vB
JL:/TZ’YfkdU, JL:/TZkadv and JB:/TZ’Yfkdvv
v v v v v v
we have,
H M RIS [ (2 s,
veER™

The integrals (on [0,7] x R? x R”) of each of the four terms of (63) are then

bounded, using the Cauchy-Schwarz inequality, by

/Ot VENTF(s)

ds.
L2(%y)

ro [ 12 sk
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By Proposition 6.7 and the bootstrap assumption (41),

/t\/é'N[F](s) ds < /\/ clog? clog2(B+9) ;o
0

(14s)"z

T+ / |27fk|dv

L2(Zs)

A

B x(t).

Hence, En[F](t) < Cex(t) for all ¢t € [0, T if € is small enough.

We can prove in the same way, using in particular the energy estimate of Proposi-
tion 3.25 and

)

/|Zﬁfk|dv T+/|2ﬁfk|du

that E5[F] < Ce on [0,T] if € is small enough and the constant C is large enough.
We then improve the bootstrap assumption (41).

L2 (%) L2 (%)
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CHAPTER 7

THE MASSLESS VLASOV-MAXWELL EQUATIONS

7.1. Global existence for small data

The aim of this section is to prove Theorem 1.5. We then consider the massless
Vlasov-Maxwell system (1)-(3), with at least two species ¥ in dimension n > 4. This
means that K >2and mp =0forall 1 <k < K.

To simplify the notation, we denote, during this chapter, ES,[f] by E[f] and
Ef.1.0 by Ear1. In view of Definition 3.2 and 1 € ko, we have

Enm(f] < Emalf]-
We introduce the functions y, defined on R, by
x(8) =145 if n=4, x(s)=log?(3+s) if n="5 and x(s) =1 if n> 6,
and log™, defined on R, by
log" =log if n=4 and log* =1 if n >5.
We give a more precise version of Theorem 1.5.

THEOREM 7.1. — Letn>4, K>2, N >6n+2 ifn is even and N > 6n+ 3 isn is
odd, 0 <n < % ifn=4andn=014n>5and R>0. Let (fo, Fo) be an initial data
set for the massless Vlasov-Mazwell system. Let (f, F') be the unique classical solution

to the system and let A be a potential in the Lorenz gauge. There exists € > 0 such
that %) if

EnlA)(0) <, ENIF](0) <e
and if, for all1 < k< K,
supp(fox) C{(z,v) € Ry x Ry \ {0} / [v| > R}, Enn1[fi](0) <

then (f, F) exists globally in time and verifies the following estimates.

24. We recall that we take K > 2 since we suppose that the initial energy E[F] is finite, which
implies that the plasma is electrically neutral (see Remark 1.2 for more details).

25. We recall that a smallness condition on F', which implies En [A](0) < ¢, is given in Proposi-
tion 2.20.
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88 CHAPTER 7. THE MASSLESS VLASOV-MAXWELL EQUATIONS

— Vanishing property for small velocities : for all1 < k < K,
R
supp(7) < { (6:2,0) € Ry x BRI <RI\ (0} / o] 2 5 |-

— FEnergy bounds for F and fi, : V1< k<K andVteRy,
En[FI(t) Sex(t)(1 +1)", En—2n[F](t) < ex(),
En[fel(t) < €log™(3 +1), En—n1[fe](t) S e
5n+4

— Pointwise decay for the null decomposition of Lzs(F) : V |B] < N — =%,
(t,z) € Ry x R™,

_nt2 _n-1 _3
la(Lzs F)| S Vex(t)ry * la(Lzs F)| S Vex(t)ry * 7_7,

_ntl 1 _ntl 1
Ip(Lzs F)| S Vex(t)ry * 7_7, 0(LzeF)| S Vex(t)ry * 7.2
and

_n-1
LzaF)| < Very * 7L

— Pointwise decay for fvER"\{O} |22ﬁfk|dv :

VIB| £ N —2n, z € kg, (t,z) € Ry x R", /|z2ﬁfk|dv§ n_el
v T

— L? estimates on fveR”\{O} | Z5 fr.|dv :

/ 127 £, dv
veR™\{0}

— Energy bound for a potential A satisfying the Lorenz gauge :
Vie Ry, En[AI(t) Sex(t)(1+1)" and En_an[Al(t) < ex().

< €

V|,6|SN,tER+, /\J(1+t)

n—1-n *
2

L2(X%y)

7.2. Structure and beginning of the proof

Let (fo, Fp) be an initial data set satisfying the assumptions of Theorem 7.1. By a
standard local well-posedness argument, there exists a unique maximal solution (f, F)
of the massless Vlasov-Maxwell system defined on [0, T*[, with T* € R% U {4+o00}.

We consider the following bootstrap assumptions. Let 7" be the largest time such
that,V1 <k < K and Vt € [0,T],

(64)  ENFI() <2Cex ()1 +1)", En—2alFI(t) < 20ex(b),

]
(65) EN[F] (t) < 4e, EN[F)(t) <2Ce(1+1)", En_o,[F](t) < 2C,
(66) EnlA](t) < 2Cex(t)(1+1)",  En—2nlAl(t) < 2Cex(t),
(67) [fk](t) S 4log (3 + t), and Ean,l[fk](t) S 46,
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7.3. STEP 1: DECAY ESTIMATES 89

where C and C are positive constants which will be specified during the proof. Note
that by continuity, 7" > 0. We now present our strategy to improve these bootstrap
assumptions.

1. First, using the bootstrap assumptions, we obtain decay estimates for the null
decomposition of F' (and its Lie derivatives) and for velocity averages of deriva-
tives of f.

2. Then, we prove that 0 is not in the closure of the Vlasov fields v-support. This
follows from the study of the characteristics of the transport equation.

3. Next, we improve the bounds on the Vlasov fields energies by means of the en-
ergy estimates proved in Propositions 3.3 and 3.5. To bound the right hand side
in these energy estimates, we make fundamental use of the null structure of the
system and the pointwise decay estimates on p, o, a, a and f]R"\{O} |22'6fk|dv.

4. In order to improve the estimates on the electromagnetic field energies, we es-
tablish an L2 estimate for the velocity averages of the Vlasov fields (and its
derivatives). For this purpose, we follow [7| and we rewrite all the transport
equations as an inhomogeneous system of transport equations. The velocity av-
erages of the homogeneous part of the solution verify strong pointwise decay
(we use particularly the control that we have at our disposal on the initial data
of fx, for derivatives of order N 4+ n or less). The inhomegeneous part is decom-
posed into a product of an integrable function and a pointwise decaying function
which gives us the expected estimate.

5. Finally, we improve the estimates on the energies of the electromagnetic po-
tential and the electromagnetic field, with the energy estimate for the Maxwell
equations (using in particular Propositions 3.21 and 3.25). We use the null de-
composition of J(Z7 fi)*L4s (F)W,Fg, which, combined with L2 estimates on
quantities such as fR" |27 fx|dv, gives us the improvement.

7.3. Step 1: Decay estimates

By the Klainerman-Sobolev inequality of Theorem 2.13 and the bootstrap assump-
tion (67), we have V |B| < N —mn, (t,z) € [0,T[x R*, 1 <k < K,

(68) /|Zﬁf o < EN[fk]( ) < elc;gn (?T+ t)
i

In the same spirit (3¢, using Corollary 2.14, we have V |8] < N — 2n, z € ko,
(t,z) € [0,T] x R™,

(69) /

26. Note that the pointwise decay estimate (69) implies (68) for the lower order derivatives, taking
z=1.

En—n,1[fe](t) < €

n—1 ~ n-1 :
Ty T Ty T-

zEﬁfk‘ dv <
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We have improved decay estimates for the null components of the current M,, :=
[, 2 ZP frdv. For all || < N — 2n, we have

'UL Aﬁ €
(70) (127 i s =
T
(71) / |1 ZP fildv < —— —
v Ty -
and
|UB| 78 <
(72) (22 i
This results from (see Proposition 2.9)
vk 1 vE vB
WEL Tk GSE TR md |Gl T
€ko €ko z€ko

Using the bootstrap assumptions (64), (65), (66), Propositions 4.16, 4.19 and the
pointwise decay estimate (68), we obtain.

PROPOSITION 7.2. — For allt € [0,T], |8| < N —n, we have

ex(®)(1+t)n ()(
oL F)] 5 LA, la(L )| 5 YDA
T, ® T+ 2T
ex(t) ) ex(t)(1+1)"
lp(LzsF)| < —Ely lo(Lzs F)| < L+—11)
T, 2 T2 T, T2
and
e(l+¢t)n
oL )] 5 YLD
T T
For all t € [0,T], |8| < N — 5%£2 we have
_no1 _n=1 _3
Lz F)| S Very = 2%, oL )| £ Vex®r, T 7%,

_ni1 1 _ndl 1
Ip(Lzs F)| S Vex(t)ry * 7_72, lo(LzsF)| S Vex(t)ry * 7_2.
Finally, for allt € [0,T], |8 < N — 5"2—+4,

_nt2

la(LzF)| S Vex()Ty *

REMARK 7.3. — The alternative estimate on « is useful to avoid a T4 -loss whenn < 5
and is particularly used in Section 7.6.1.

REMARK 7.4. — We also have pointwise decay estimates if |3] < N — "TH but the one
on « is worse near the light cone (see Proposition 4.16).
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7.4. Step 2: the Vlasov fields vanishes for small velocities

We recall that
V].SZSTL, EiIFQi,
and that the transports equation of the Vlasov-Maxwell system can be rewritten
’l)“a/_tfk + vOEi&,ifk + ijjia,,@-fk =0.

We now fix 1 < k < K and we prove, under the bootstrap assumption, that if
fu(t,z,v) # 0, with (t,z,v) € [0,T] x R® x R\ {0}, then |[v| > £. During the
argument, we will use various constants and we will all call them C for simplicity.
These constants will not depend on € or on T

Let x € R™ and |v| > R. Let (X, V) be the characteristics of the transport equation
such that (X (0),V(0)) = (z,v). In particular

. ave Vi
V1<i<n, Is :E(S,X)—i-WFﬁ(s,X).
It follows that (| |2)
d(|V
=2(F(s, X .
T o (Bs,x),v)
So,
t
(73) Vo) = ol +2 / (E(s, X(s)), V(s)) ds.
0

We denote |V (s)|? by g(s). By the Cauchy-Schwarz inequality, we have

ol6) < o +2 [ B X ()1 o)

We now use a Gronwall inequality (Lemma 4.22) and |E(s, X(s))| < OV
(149)" 7
(which come from Proposition 7.2) to obtain

b C\/eds 2
g(s)§(|v|+/o (1+s)3> '
Thus,
[V(s)| < [v] + CVe.

Returning to (73), we obtain

V(s)I? = Jv]* - 2/0 [E(s, X())[|V (5)|ds.

Therefore, using again the pointwise estimate on F,
[V (s)]? > [v]* = 2CVe([v| + CVe).
Finally,
V)P > fol(le] ~ CVe) — Ce > FoP,
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. . . R R
if € is sufficiently small so that Ce < % and C4/e < o

Then, if (z,v) is such that |v| > R, (X,V) is well defined on [0,T] (X is also
bounded since |d‘§| =1)and |V]| > 12?’. Consequently, we obtain.

LEMMA 7.5. — We have
R
supb(fujor) < { (6,0) € 0.T) x " < R*\ {0} / o] 2 7 }.
In the remainder, we will then be able to use inequalities like

1
U70|fk(tvm7v)| 5 |fk(t>$7v)|'

Sometimes, we will abusively use inequalities such that
1
NI
z€ko z€ko

because these quantities are always multiplied by Z8 fr-

7.5. Step 3: Improving the Energy estimates for the transport equations

We fix for all this section 1 < k < K. According to Proposition 3.3, Ex[fx] <
3elog®(3 +t) on [0, T, for € small enough, follows from

/1

for all |B1| + |B2] < N, with |B2] < N — 1.

Similarly, according to Proposition 3.5, En_n1[f] < 3¢ on [0,T], for ¢ small
enough, follows from

/J/Es

F) (%, vaﬂsz) ‘ dvdzds < €3 log* (3 + 1),

dvdzds < e%

Vv2ﬁ2fk)

and

5> Vo2 Z’Bfk‘ dvdzds < e%

for all z € ko, |B1]| + |ﬂ2| <N-n (Wlth |ﬂ2| <N-n-1)and || <N —n.

To unify the study of En[fi] and Ex_p 1[fx], we consider b, which could be equal
to0ortol, N =N and N; = N — n. Now, we fix z € ko, |B1] + |B2] < Np (with
|B2] < Ny —1) and |8 < N —n. We denote p(L s, (F)), 0(Lzo: (F)), a(Lzs (F)) and
a(Lys, (F)) by p, o, a and « (respesctively). We also denote ZP2 ., by g and ZPfy,
by h. The null decomposition of L£,s, (F)(v,V,g) or F(v,V,z) brings us to control
the integral of the following terms, with zg = 1 and z; = 2.
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The terms involving L or L components of V,g or V,z

’I)L L

L oL
(74) zbv—op(vvg)L , o hgPE) (Vw2)"|,
oL oL
(75) mep(vvg)é, h-5P(F) (Vo2)H|,
vB vB
(76) 5B (Vo) ", h-—5an(F) (Vo2)|,
vB vB
(77) ZbUTJQB (va)é ) th)QB (F) (VUZ)£ .
The terms involving angular components of V,g or V,z
vl vl
(78) 25 OB (Vog)?, h—san(F) (Vo2)?],
¥ D v D
(79) %G OBD (Vog)™ | thJ(F)BD (Vo2)7],
ok vk
(80) 5B (V.9)"|, h-gap(F) (V,2)2|.

The study of En[fx] corresponds to b = 0. In this case, we only have to estimate
the spacetime integral of each of the first terms of (74)-(80), but we need to consider
two cases. When |f1] < N — n we can use the pointwise decay estimates on the
electromagnetic field given by Proposition 7.2. When |81] > N —n, |f2] < N —2n
(since N > 6n+2), and we can then use the pointwise decay estimates on the velocity
averages of the Vlasov field given in Section 7.3.

In the study of Ex_p 1[fx] (which corresponds to b = 1 and where z can be any
weights of kg), we can always use a pointwise estimate on the electromagnetic field
(as |B1| < N —n), but we need to estimate the spacetime integral of all the terms of
(74)-(80).

REMARK 7.6. — To simplify the argument we will sometimes denote Epn[f]
by Eng,olfe] and Ex—n1[fe] by En, 1[fi]-

7.5.1. Estimating the v derivatives. — In order to eliminate the v derivatives, we use,
as in Section 6.4.1,

T ~

(81) Vowl S 563 |Zul
ZeP,

and

(82) (V)] |(Vow)t] £ 55 3 1wl

ZeP,
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7.5.2. If |B1| < N — n. — We start by the terms involving L or L components of V,g
or V,z. We use ¢ to denote «, a or p. Thus, by Proposition 7.2,

Vel + 1)

T+T_

[

The integral on [0,¢] x R? x (R?\ {0}) of each of the first terms of (74)-(77) are

bounded by
¢
Z // T_|§|/|zng|dvd$ds,
2P 0 JE v

where we use in particular (82) and the fact that 5 < 1 on the support of g. Using
the bootstrap assumption (67), we obtain

t t
/ / L] / | Zgldvdzds < / Ve + )" T Eny o[l (s)ds < e
0 JXg v 0

Similarly, the integrals of each of the second terms of (74)-(77) are bounded by

t > dv
Py L e [ inzqeDiGasas

Using again the bootstrap assumption (67) and U% < 1 on the support of h, one
has

| [ e [ nz(apiSasds s [ Ve +o)7 5w alfil(o)ds S e,
0 J=, v v 0

since |Z(|2])| S X wek,

We now study the remaining terms. Using (81), the pointwise decay estimates of
Proposition 7.2, that U% < 1 on the support of g and the bootstrap assumption (67),

|w| by Lemma 2.8.

we have
¢ v 5 ¢ R
// /zb—OaB(va) dvdzds < Z// T+|a|/|zng|dvdxds
0 J=, Jv v = Jo Jx, v
ZePy
¢
3—mn
S Ve [ 149 T Ewalfil(s)ds
0
S €3

The second term of (78) can be treated similarly. For the second term of (79) (as
the first one can be treated in a similar way), we have, using (81), Lemma 2.8 and
|’UB| < Vvlovl (which comes from Proposition 2.9),

dvdads S Y // T lo( F)|/ Voo® |/||hldvdads.

z'€ko

th’ BD (V |Z|
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_1

Since, by Proposition 7.2, |o(F)| < \ﬁT;ZT_ Z(14t)?, one has, using the Cauchy-
Schwarz inequality (in (s,z,v)), that the right hand side of the previous inequality is
bounded by the product of

5 o | nas)
(f/u__oo i t)/ * /| |kldvdC., (¢)du )

< 1 on the support of h and

~

z'€ko
with

z'€ko

The first factor is bounded by €i since 7(50)3

fEs fv |2’||h|dvdz <
second factor since [, . [, ”j}—ﬁ|z'||h|dvd6’u(t) < En—na[fk](t) < 4e, still by the
bootstrap assumption (67).

4e by the bootstrap assumption 67. The same is true for the

Finally, let us treat, for instance, the first term of (80). Using the same ingredients
as before, namely (81), that 1 < 1 on the support of g and the bootstrap assumption
(67), we have,

L1

Zb 70QB (Vug)

dsdxdv < Z / / 7'+|7|/ |zng|dvdxds

/ Il e B il

i

© T

A

wjw

Se EE du(d1 p+00,5log™ (3 + 1)).

2

REMARK 7.7. — If we used (81) instead of (82) to estimate (75) and (77), it would
give us a (1 + t)"-loss on the energies (as in the proof of Lemma 7.10 below). The
weight vB could be used to avoid this loss in (77).

7.5.3. If |B1]| > N — n. — We study again the integrals of the first terms of (74)-(80),
but this time when |31] > N — n, so that |52] < N — 2n, and 2z, = 1. We then use
the pointwise estimate on the velocity averages of the Vlasov fields. This time, we
study the terms involving a, p and o together ?” and we finish with the two terms
involving a. Note that as we use the extra decay given by v”, v and v®, we cannot
close the estimate for Ep 1 [fx] with our method.

Let us denote this time «, p or o by . Then, by the bootstrap assumption (64),

Vt¢elo,T], / |¢|2dx < e
Cu(t)

27. Note that except for (78), we could bound all this terms without the log* (1 + t)-loss.

SOCIETE MATHEMATIQUE DE FRANCE 2022



96 CHAPTER 7. THE MASSLESS VLASOV-MAXWELL EQUATIONS

All first terms of (74)-(80) involving «, p or o have their integral on [0, ] x R? x R?
bounded by

|<|T+ dvdzds,

T~
v UO

where we used (81), that —; < 1 on the support of g and where v denotes either vl

’UL or ’UB

Using the pointwise decay estimate on [ ‘ Zg’ dv, given by (70), (71) or (72),

and the Cauchy-Schwarz inequality (on the u = constant integrals), we have

1
2

t B 2 B
/ (/ |C|2dx> (/ 2,1'574“10 (t)) du
u=—00 Cu(t) Cu(t) T+ =

M 3
t 3 2t—u ,n—1 2
< / 6; / TQn—4d@ du
U=—00 T E=O 7-+
t *
< 6%/ log (1+2t—u)du
u=—00 —
3 +oo -3
< ez log*(l—l—t)/ 7_ 2du.
U=—00

We now study the two remaining terms, which involve a. We start by (77). Using
(82), we obtain that fot s/, |f}—§g3 (Vo9)X |dvdzds is bounded by

+oo
S [ Il
ZeP, 0

B

~

v
’ 7(1)0)2 Zg|dv

ds.

Using (72), Lemma 4.1 and that -5 < 1 on the support of Z g, we have
B
v ~
——=7
o @22

By the bootstrap assumption 64, ||7LO(||L2(2 ) SVex()(1+1)7, so

< €

~ ntl *

dv S
2z, (1+s) =

‘ dvdzds < €2
Finally,

’l)f UL =
ug dvdmds < Z ||a||L2(E ) T+ W

Now, using the pointwise estimates (70) and Lemma 4.1, we have

ol o
T+/U(UO)2|Zg|dU

ds.

L2(3s)

2

< 2 +oo ,r,nfl g < e(1 —(n—1)
<e s 5 dr < e(l+s) .
0 Ty TZ

L2(%s)
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7.6. STEP 4: L? ESTIMATES FOR THE VELOCITY AVERAGES 97

As, by the bootstrap assumption (65), ||g||%2(zs) Se,

[

This concludes the improvement of the bootstrap assumption (67).

—ag (va)B‘ dvdzds < €3.

7.6. Step 4: L? estimates for the velocity averages

As for the massive case, to close the energy estimates on the electromagnetic field,
we need enough decay on quantities such as || [ |Zﬁfk|dv||Li for all |8] < N. If

|8] < N — 2n, strong L? decay estimates can already be obtained on [, %|2Bfk|dv,
for instance, combining (70) and Lemma 4.1.

We fix, for the remaining of this section, 1 < k < K. Following the strategy of [7]
(see Section 4.5.7), for a similar problem, we introduce M € N such that % < M <
N — gn Let I; and I, be defined as

I, = {f multi-index / M < |B| < N} and I, = {f multi-index /|8] < M — 1}.

We consider an ordering on I;, for 1 <i < 2, so that I; = {8;,1,..., 0,1} and two
vector valued fields X and Y, of respective length |I;| and |I3|, such that

X9 =7ZPif, and Y9 = ZPif,.
LEMMA 7.8. — There ezists three matrices valued functions A; : [0,T] x R* —
M1, (R), Az : [0,T] x R* —€ M1, |(R) and B : [0,T] x R* —& M, 1,|(R) such
that

If1<j<I, Ay and B are such that Tr(X7) is a linear combination of
oM vk vH .
WEZ’H (F),,LmX’Bl’q, tﬁﬁzﬁ (F)”mX’Bl’q, ,U70£Zwl (F)M.’IZlX’Bl"’,
ot v# oM ;
oL (F)mY P2, t-5Lao (F)umY 2! and gL (F)ix'Y P,

with |y1| < N — %, [v2l N, 1<m<n,1<q< | and 1 <1 < |L]. Similarly,
if 1 < j < Iy, Ag is such that Tr(Y7) is a linear combination of

© " " ,
Z—Oﬁzw(F)#mYﬂ“, tZ—OLZV(F)#mYﬁ’“ and Z—OEZW(F)M:UZY'B“,

with |y] < N — %, 1<m<nandl<I[<|L|. Moreover,

n—1

Vaeko [ JolYndo S
v T
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98 CHAPTER 7. THE MASSLESS VLASOV-MAXWELL EQUATIONS

Proof. — Let |8| < N. According to commutation formula of Lemma 2.26, T (Z” f3,) is
a linear combination of terms such as Lz~ (F )('u Vo Z9(fx)), with |y| + |6] < |8] and
|6] < |B| — 1. Replacing each 8UZZ frx by - (QolZﬁfk — t0; Zﬁfk — x’@tZﬂfk) the
matrices naturally appear. The decay estlmates ensue from the definition of Y and
(69). O

Now, we split X in G + H where G is the solution of the homogeneous system and
H is the solution to the inhomogeneous system,
TF(H) + AH = 03 H(Oa ) ) = X(Oa ) ')7
Tr(G) + AG = BY, G(0,.,.)=0.

We will prove below that G = KY (with K a well chosen matrix), which implies,
in view of the velocity support of X and Y, that H and G vanish if |v| < %.

The goal now is to prove L? estimates on the velocity averages of H and G.

7.6.1. The homogeneous part. — As for the massive case, we have the following com-
mutation formula.

LEMMA 7.9. — Let 1 <4 < |I1| and consider ANS @Hgl, with |8| < n. Then, Trp(Z°H')
can be written as a linear combination of terms of the form
LZ'Y (F)(Uv W)7

where W is such that
- [11]
+ >0
[6]<n q=1

and where |y| < N—%, so that we can use the sharpest estimates of Proposition 7.2,
except for a.

We introduce the energy Ei[H] defined by

[11]

Z]ETanq

Note that for € small enough,
E1[H](0) < 2En4n,1[f](0) < 2e.
LEMMA 7.10. — If € is small enough, we have
Vte[0,T), Ei[H](t) < 6e(1+1t)%.
Moreover,
V1<i<|hL|, z €ko, (t,z) €[0,T] x R", /|2;Hl|d'u<e(1+tj727
T T
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7.6. STEP 4: L? ESTIMATES FOR THE VELOCITY AVERAGES 99

Proof. — We use again the continuity method. Since, for € small enough, I~E1[H](0) < 2e,
there exists a larger time 0 < T < T such that
vt e[0,T), Ei[H|(t) <6e(l+1)?

Following the argument of Section 7.5.2, we almost get that for € small enough,
Ey[H] < 5¢(1 4 t)7 on [0,7]. In fact, using Lemma 7.9, we have that Tr(H?) is a
linear combination of terms like £z-(F)(v, W), with |y| < N — 222 Thus we can
use the null decomposition of the velocity vector and the electromagnetic field (and
use its pointwises estimates) and then make similar computations as in Section 7.5.2.
As we cannot use (82) (the algebraic relations between SZPf and 8M26f (n€0,n),
for instance, are not necessarily conserved by the decomposition X = H + G), we
need to reexamine the terms corresponding to (74)-(77). For instance, for the terms
analogous to one of (77), we have to prove for z € ko,

(83) / [ [rsial:

As [vB| £ /|vLol by Proposition 2.9 and as 74 |a| < %7 we have, by the
T+2 T—

Cauchy-Schwarz inequality (in (s, z,v)), that (83) is bounded by the product of

L
([ .= /w/

The first factor is bounded by

(/ot 1 —e% sfg‘l[fl](=9)c18>5 <e(l+1)%,

n
2

ZGH‘] dvdzds < e%(l +1)

2Z°H1

l
dvdxds)

with

(NI

Hq‘ dvdC,y (t)d )

< 1 on the support of H, by

~

and the other one, since o 0)3

E.[H](t) (/:: 7_12du>; <Ve(d+t)i.

The other terms are easier to bound. Let us study also the terms analogous to one
of (75), as there are also the cause of the (1 + t)Z-loss (2,

[ ke

28. Note that we could use that /77— |vB| < o0 Ezeko |z| in (77) to obtain a better bound in
(83) for an other energy of H. On the other hand, the loss coming from (75) could not be avoided
with such techniques.

H§

dvdzds

AN
=
c\“
_
+
&

|
H
E
“»
B

< e2(1+1)
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100 CHAPTER 7. THE MASSLESS VLASOV-MAXWELL EQUATIONS

The pointwise estimate on [ |z||H'|dv then ensues from the Klainerman-Sobolev
inequality of Corollary 2.14. O

7.6.2. The inhomogeneous part. — As in the massive case, let us introduce K, the
solution of Tr(K) + A1 K + KAy = B which verifies K(0,.,.) = 0, and the function

KKY|o =Y |KI]?[Y,l.
1<i<| 1|
1<4,p<| 12|

KY and G are solutions of the same system,
Tr(KY)=Tr(K)Y + KTp(Y) =BY — A1 KY — KA)Y + KAY
= BY - A1 KY.
As KY(0,.,.) = 0 and G(0,.,.) = 0, we have KY = G. For 1 < i < |[;] and
1 < j,p < |L|, |K}|?Y, sastifies the equation
Tr (1K1Y, ) = |KI[*(A2)3Y, — 2 ((A0)!KZ + K{(42)3) K, + 2B] K],
which will allow us to estimate
E[KKY |oo] = Bo 1 [|[KKY |oo].
We will then be able to prove L? estimates for fv cRn |G|dv thanks to the estimates
on [ . |Y|dv and on E[|[KKY ).
LEMMA 7.11. — We have, if € is small enough,
Vte[0,T], E[|KKY|x] <e(l+1t)".

Proof. — Let T > 0 be the largest time such that E[|[KKY|x](t) < 2e(1 4 t)7
for all t € [0,7] and let us prove, with Proposition 3.1, that for € small enough,
E[|[KKY |x](t) < €1 +t)" for all t € [0,T]. It will follow that ' = T. As for the

estimate of E1[H] in the proof of Lemma 7.10,

|K7|(A2)2Y, — 2 ((A1)IK] + K{(Az)?) Kgyp] %dvdms <er(1+t)"
v

» (]2]) >‘ |[KKY |oodvdzds < €3
Next, we need to estimate the followmg integral,

t
(84) / / / L%'|B§K3Yp|dvdx.
0 s Jo

Recall from Lemma 7.8 that

|BIKIY,| < Z > o

m=1|y|<N

LZW F)umKlY,|.
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The components of the matrix B involve terms in which the electromagnetic field
has too many derivatives to be estimated pointwise. We fix |y| and we denote the
null decomposition of Lz~ (F') by (o, e, p,o). In order to bound (84), we bound the
integral of the five following terms, given by the null decomposition of the velocity
vector v and Lz~ (F).

— The terms which do not involve o

K | |KY| |KY|
Telallzl= 5=, Trlllel = 5= and Tilolle]
v 00
— The terms involving a
vk G
relal S AIKY] and 7ol LZ|KY ]

(v°) (v0)?

We start by bounding the integral on s x (R?\ {0}) of the good terms. We use ¢
to denote either a, p or 0. Using twice the Cauchy-Schwarz inequality (in = and then
in v) and that ;5 < 1 on the support of Y, we have

:KY 2 \:
R S T < / (/ |zKY|dv) dw)
s vV s v
‘&V[F](s)/ /|zY|dv/|zKKY|dvdm
Y Jo v
E[|KKY [o]

/|zY|dv
Zs)

Using the bootstrap assumptions on En[F] and E[|KK Y|Oo] and the pointwise
decay estimate [ |2Y|dv S ety -t =1 given in Lemma 7.8, we obtain

t 8 oy ,
/ / /T+|C| |ZKOY|dvdxds < / ¢ Xg(,t) Sez(1+1¢)".
0 Ju. Ju v 0o (I14+s)277

As in the massive case, to unify the study of the terms involving «, we use v to
denote vL or vB. Using the Cauchy-Schwarz inequality (in (s, z)), we have

// r+|a|/
[ s [ [ B [

As, by the bootstrap assumption 65, ||~/7'—|0‘|||L2(2 ) S €(1+5)", we have

|af®
/ / T+ 5 . —pdrds S e(1+1)".

A

N|=

A

512||KY |dvdzds

1
2 2

Y|dv| dzds

(85)
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102 CHAPTER 7. THE MASSLESS VLASOV-MAXWELL EQUATIONS

For the second factor of the product in (85), we first note that, by the Cauchy-
Schwarz inequality and that ﬁ <1 on the support of Y,
vz v
s KY 20

(L d”>2§/v'zy'd“/v :

512
Now, recall from Proposition 2.9 that [v?| < VolvL so that |U%| < ’j}—ﬁ Using the

pointwise estimate [ |2Y|dv < ery "2t

U

As o J, S 2 KKY odCy(t)dv < B[[KKY |50 (t) < 2€(1 + 1), we obtain
/f/ T2(1+s)"3 / 2
0 s T— v

Hence,
t ~
/ / /T+%|g||zKY|dvdxds SEE(L+t)"
0o Ju, Ju T (°)

and the energy estimate of Proposition 3.1 gives that, for e small enough,
E[|KKY |x] < €(1+¢)" on [0,T]. O

2
|z|| KKY |sodv.

, we get

vz

w02 KY

2 € ’UL
Ty T-Ju v

vz

(v°)

¢
drds < €2(1 + t)"/ 2 du.

QKY‘dv

7.6.3. The L? estimates. — We start with the following proposition.

PROPOSITION 7.12. — We have,

€

[ Zha| s
veRn\ {0} gy A+t

V[B| < N, tel0,T],

and

€

T+/ |\ Z° f,|dv S ——=
veRn\ {0} 2w,y (H1)

V|8 < N, tel0,T],

We can remove the (1 + t)% -loss if || < N — 2n.

Proof. — Let 1 < k < K. The first inequality ensues from the second one since
1+¢<7p. If || < N — 2n, we only have to use the pointwise estimate (68) and
Lemma 4.1. If |3] > N — 2n, recall that there exists 1 < i < |I1| such that Z°f), =
H'+ G'. For 1 <i < |I;|, Lemmas 7.10 and 4.1 imply

< -

T+/|Hi|dv <<
v L2 (%) (1 + t) 2

Moreover, as G = KY, we have, by the Cauchy-Schwarz inequality (in v),

1
T+/|Gi|du Ti/|Y|oodv/|Kf|2|Yj|dv

2
L1(2¢)
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7.6. STEP 4: L? ESTIMATES FOR THE VELOCITY AVERAGES 103

As, by Lemmas 7.8 and 7.11,

2 / Y| oo dv

we have

1

K??Y-dvE
1 J

Ll(zt)

m\»-t
w\:

5 and ez(1+1¢)2,

< °
Leo(sy ("

T+/|Gi|d’l)

These inequalities will not be sufficient to close the estimate on the energy
& 1‘?[7 niz [F] in the next section. This is why we prove the following proposition.

sy T (L6

PROPOSITION 7.13. — For all |B| < N and all t € [0,T], we have :

L
V= A~ €
7|Zﬂf/€|d’u < n )
/Uvo Lo (1+¢)="

L
E/%|Zﬁfk|dv S ;n-l—ln?
T+ Jo U 2z (1+1)

We can remove the (1 + t)%-loss if || < N — 2n.

< €

sy (L+1)

n+1 nt+l—m *

vB 4
—2° fi| dv
v

Proof. — If |3] < N — 2n, these inequalities are implied by the pointwise estimates
(70), (71) and (72) and Lemma 4.1.

If || > N — 2n, we prove in the same way that these inequalities are true if we
replace Z¥ fi, by H, with 1 < i < |I;| such that Z” f, = H*+G". It then only remains
to consider G?. Recall that by Proposition 2.9 and Lemma, 7.8,

L
— v — €
Tt Yl Gt e and [ Yo S

z€ko z€ko v + -

Hence, using also G = KY, the Cauchy-Schwarz inequality (in v) and
E[|[KKY |](t) < 2¢(1 4+ t)", we have

oL vk
SV ledo [ Z5|(K)Y; av

2

z€ko

1
2

~

L
U—O|G’|dv
v L2(%4)

L1(32y)

2

7;2/|z||Y|oodv/|z||KKY|oodv
v v L (32)

-n

Se(l+t)" 7,
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1
L 2 oL ] 3
= [ VG |dv <|I= |Y|00dv —|(K?)2Y»|dv
0 0 7 J
T+ Jyp U L2(%,) T+ L1(Zy)
3
<N 7;2/|z||Y|oodv/|z||KKY|oodv
2€kg v v L1
<e(l+t)y~ T

The remaining estimate can be proved in a similar way, using [v?] < = Z ek 12
(see Proposition 2.9). O

7.7. Step 5: Improvement of the electromagnetic field estimates

7.7.1. Improvement of the energies estimates for the potential. — According to the en-
ergy estimate of Proposition 3.12 and the commutation formula of Proposition 2.19,

one has, for all ¢ € [0, T,
/ 27 fi|dv
]Rn

Se(l 4ty Proposi-
Legny e(1+1) (see Proposi

tion 7.12), we have, for € small enough and if the constant C' is large enough,

Vie[0,T], En[At) < z(nc_g)

EnlAl(t) < 5N ds.

L2(R™)

| |I<N

As En[A](0) < € and HT+3k Jzn |/Z\”fk|dv‘

ex(®H)(X+1)7,

with x such that

x(s)=1+s if n=4, x(s) =log?(3+s) if n=5 and x(s) =1 if n>6.
Similarly, using (68) and Lemma 4.1, we obtain

Vite0,T), En_anlAl) < z(f_g)exa»

This concludes the improvement of the bootstrap assumption (66).

7.7.2. Improvement of the estimate on £ [F]. — Recall from Proposition 3.17 that, for
all ¢ € [0,7],

ESIFN0 20 S S 11 [ [ 1o (P @ o) Viads

18I, |7|<N
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As, by the Cauchy-Schwarz inequality, the bootstrap assumption (65) and the L?
estimates of Proposition 7.12,

t t
/ / 1L (F)ow J (27 ) |dads < / 1228 (F)| 2 sy 1 (27 i)l 2. s
0 s 0

</ NCITE [ 1Zsas

n—1—n

5/6%6(1+s) =" ds
0

3
< el

ds

L2(Zs)

)

we have, for € small enough, ES[F] < 3¢ on [0, T].

7.7.3. Improvement of the estimates on Ex[F] and Ey_2,[F]. — Recall from Proposi-
tion 3.21 that

En[F(t) < ENIF(0) + (n = 3)EN[A](#) + (D),

where ¢(t) is a linear combination of terms such that

t t
(86) / / B2 Ly Fuud (27 fi)"|dzds and / / S| A, 1L s A*|dads,
0 JX, 0 JE;

with |8], |7], [6] £ N and 1 < k < K. Then, if we could prove that each integrals
of (86) is bounded by €2 x(t)(1 + t)7, we would have, for ¢ small enough and C large
enough, Ex[F] < Cex(t)(1 +t)7 on [0, T] since Ex[F](0) < € and (n — 3)Ex[A](t) <
Cex(t)(1+t).

REMARK 7.14. — We could estimate the integrals of (86) with a better bound (the
computations are similar to those done below in Section 7.7.4, but this would not give
us a better estimate on En[F] because of the x(t)(1 4 t)"-loss on En[A].

We start by bounding the integrals involving the potential. Using Proposition 2.19
and the Cauchy-Schwarz inequality, we have, for |§| < N,

/Ot /E S|L 25 AuOL 75 AP|dzds < i 3 /Ot \/m

k=1 |y|<]3]

ds.
L2(%5)

T+/|Z\"’fk|dv

Using the L? estimates of Proposition 7.12 and that Ex[A](s) < ex(s)(1 4 t)7, we
obtain

! ¢
S [ sleaanes ariisds < ¢ _VXGE)
ls|<n 0 e 0o (14+s)"z "

SeEx(H)A+1)".
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In order to estimate the remaining integrals of (86), we express fg Lz6(F)ud (Z”’ fr)H
in null coordinates. Dropping the dependance in Lzs(F) or Z7 f, this gives us the
four following terms :

(87) 2pJE, 2pJt, t2apJ®, and TiagJP.

As
L ’UAA L UL" B ’UBA
J—:/—OZWfkdv, J Z/T)ZkadU and J :/T}vakd”’
b U v U v U
we have,
TH 174 P S [ 12l

The integrals (on [0,7] x R? x (R? \ {0})) of each of the four terms of (87) are
then bounded, using the Cauchy-Schwarz inequality (in z), by

t
| VENTFI)

0
By Proposition 7.12 and the bootstrap assumption (64),

[ Ve < [ Vol e

1+S)T_
EX(B)A+1)".

Hence, En[F](t) < Cex(¢)(1 +t)" for all t € [0,T] if € is small enough. We can
prove exactly in the same way that En_2, [F|(t) < Cex(t) for all ¢ € [0, T if € is small
enough.

ds.
L2(%y)

ro [ 12 sk

T+/ \Z7 fi|dv

L2(3s)

A

We then improve the bootstrap assumption (64).

7.7.4. Improvement of the estimates on £X[F] and £5_,, [F]. — Recall from Proposi-
tions 3.25 and 2.19 that, for all ¢ € [0, 7],

ERIFI(0) < ENIFI(0) + C, (EN 40) + A Il t‘“) o),

where C,, is a positive constant and where (t) is a linear combination of terms such
as

t

(88) / / £ (F)ou* (27 fi)| + 187 £ 28 (F)y J*(27 fi)\decds,
0 PN

with |8, [vy| < N and 1 < k < K, and

(59) [ [ |ewan [ 52

with |8], [y| < Nand 1 <k < K.

dxds,
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Let |8] +|v| £ N and 1 < k < K. We denote the null decomposition of £zs(F')
by (o, a,p,0), Z“’fk by ¢ and J(Z“Yfk) by J. Expressing Lzo(F)o,J"(g9) and
SYLz6(F)yuJ*(g) in null components, (88) would be bounded by €7 if

/ / 174 pJE|dads < €3, / / Ir_pJ*|dzds < €2,
/ / Iy aJB|dzds < €3 / / Ty aJB|dzds < €7,
0 J3,

By the Cauchy-Schwarz inequality,

t t
/ / Ty |pJE|dads 5/ I7+pll L2y
0 Jz, 0

Since, by the bootstrap assumption (64), ||T+p||%2(zs) < ex(s)(1+ )" and, accord-

I
v x(t
2| pJE|dzds < e #ds < €.
v 0 (1

ds.
L2(%5)

L
oL
—5 lgldv
v ,UO

ing to Proposition 7.13,

s § e(1+s)~"2", we obtain that

+s) 2

The other terms are treated similarly.

t t
| [ mlestiazas < [ ||r+p||Lz(zs)‘ Ulglde]|  ds < e,
0 . 0 T+ Ju ¥ L2(2,)
t t B 3
| [ welansPlasds < [irealiz, | [ S| dss e,
0 8 0 v L2(Zs)
t t UB 3
| [ rlapsPldsds < [l | [ Yol dss e
0 /5, 0 v L2(%)

enoting L s y B, wou e bounded by €2 (1 + ¢)" if we prove that
Denoting L5 (A) by B, (89) would be bounded by €3 (1 + t)7 if h

t
(90) // |BpJ " |dads < €3 (1 + )7,
0 s
t 3 ¢ 3
(91) // |BpJE|dxds < ez and // |BpJP|dzds < e2.
o Jz, 0 Jz,

Let us show (91) first. Using Proposition 7.13 and the bound on Ex[A], we have

€
1Bllz2s) S Vex(s)(1+t)7 and ||JD||L2(ZS) + ||JL||L2(ES) S ——
(1+9)%

Hence, by the Cauchy-Schwarz inequality,

t t
// |BLJL|+|BDJD|dmds§e%/ V) oy
0 s 0

(L+ s

N
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For (90), we have

t t
| [ 1Buitiasds s [ 1Belues,| [ 1ol
0 JX, 0 v

t /X(5) ds.

ds

L3(Zs)

o (14s)"z "
< €3 (141t)".

N
Tﬂw

Hence, if € is small enough and C large enough, we have Ex[F] < Ce(1 +t)" for

all ¢ € [0, 7.
In view of the above, £~ _, [F] < Ce on [0,T], for € small enough, would follow if

we improve the bound in (90) from €2 (1+)7 to ez, when |8] < N — 242 To do this,
we use a pointwise estimate on By, and we keep J in L'-norm. By Lemma 4.18, we

have
1Byt 5 VAOLHDT

T+

)

which implies

t t
[ [ 1Burtidnds < [ 1Bulis s lglliss.ds
0 JX, 0

t *
ca [ VCog B 1)

n—n

0 (1+s)z2

njw

<e

~

This concludes the improvement of the bootstrap assumption (65).
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CHAPTER 8

NON EXISTENCE

We show in this chapter the following proposition. Let us denote (1,...,1) by @
and we recall that E! = Fy,.

PROPOSITION 8.1. — Let the dimension n be such thatn > 2 and let x : R — Ry be a
function of class C*° such that x =1 on ]—00,1] and x =0 on [3,+oo[. We suppose
also that x is decreasing on [1,3]. Let also M € Ry such that M~" = [ . x(Jv]*)dv.

The Viasov-Mazwell system (1)-(3), with two species (K = 2), e1 = 1, e5 = —1,
my =0, mg € Ry and the initial data

2
Ey:z— 10x(2) 'y (2T) i, Fo;; =0 forall 1<4d,j<mn,
n

. . 27‘2 2
for = M (div(Bo) + [[div(Eo) | o e ) x 35 ) XU,
n
and
X 27“2 2
foz = M||div(Eo)|| Lo rm) X 30 x([vl),

do not admit a C' local solution, provided *® w — wy'(2w?) is not constant on a
neighborhood of 1.

REMARK 8.2. — Note that the initial data satisfy the constaint equations. Indeed,

2r?

/f01 - fozd’l) = diV(Eo)X <3n>

and T — x (%) is equal to 1 on the support of Ey. The other ones, Vi Fy;i = 0,
are obvious to check.

29. Note that such a function x exists. Recall for instance the classical construction of cut-off
functions
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REMARK 8.3. — There is uniqueness for a such Cauchy problem in the class of the
local C! functions. Indeed, let (f1, f2, F) and (g1, g2, G) be two such solutions on [0, T).
As fi and g; are the unique C' solution of T—1yi+1p(h) = 0 and T(_q1yitr1g(h) = 0

n [0,T], respectively, we obtain with the method of characteristics that they both
vanish for |z| > %\/ﬁ—l— T. In view of the wave Equations (18) and (19), the same
is true for F' and G. All the integrals considered below will then be finite. We have

Tr(fq — 94) = (G = F)(v, Vugy),
VH(F = G)uy = €I (fq — 9q);
VHNF = Q)pay--an_ =0.

Using Propositions 3.17 and 3.1, we obtain

Z]Eo (t) +4/EFF — GI(¢)
< S S.
~/oh<>(1+ o)

The Gronwall lemma gives us that h = 0 on [0,T], implying (f, F) = (g, G).

vvgk|dv

The strategy of the proof of Proposition 8.1 is to construct, for all T, > 0, a
characteristic of the system such that its velocity part vanish in a time less than Tj.
For this, we make crucial use of the colinearity of y — E(¢,y%) and @ which is a
corollary of the following subsection.

8.1. A symmetry property for the Vlasov-Maxwell system

To lighten the notations, we use z(yj), if 7 # j, to denote
T i U A L AR L
PropPoOSITION 8.4. — We consider the n dimensional Viasov-Mazwell system, with K
species,
qu (fq) + eqUOEiavifq + eqviFijavj fq = 07
VHEE,, =elJ(fq)v,
V¥ an_s =0,

with the initial smooth data f4(0,.,.) = foq, F(0,.) = Fy. We suppose that the initial
data satisfy the following symmetry relations

fao(@(anys viany) = foo(z,v), i # 4,

Ey(z() = By (z), i #k,
Eé(w(kl)) o( ), 1#14, k#i.
(Fr)o(zy) = —(F)o(@),

MEMOIRES DE LA SMF 172
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(Fr)o(z(iry) = (Fu)o(x), 1 # ki,
(Fr)o(z(ij)) = (Fra)o(z), i # k1, j#k,l

If there is a unique classical solution (f1,..., [k, F) on [0,T], then

(fl(ta'a')7"'afK(t?'a‘)’F(t"))
satisfies also these symmetries.
Proof. — To simplify the notation, we suppose that K = 1, e; = 1 and we consider

the transposition 7 = (12). We denote (y2,y%,%3,...,y") by y,, m; by m and f; by f.
Let g and G be defined by

g(t,xz,v) = f(t,zr,v),
Goa(t, x) := E*(t,z,),

Goi(t,z) := E*(t,z,),

Gok(t,x) := Ek(t,wT), k>3,
Gia(t, z) == —Fia(t, z,),

Gii(t,x) == Fop(t,z,), k#1, k#2,
Gox(t,x) := Fig(t,z;), k#1, k#2,

Gri(t,z) :== Fi(t,z,), k,01>3

and let D* = Go;. We want to prove that (g, G) = (f, F). By assumption, this is true
for t = 0 and, by uniqueness, it will be true for ¢ < T if we can prove that (g, G) is
solution to the same system as (f, F').

Propagation of symmetry for the Mazwell equations. — Let us prove first that V*G,, =
J(g)y. As J(h)” = [

v

J(9)'(t,x) = J(f)*(t,z), J(9)*(t,2) = J(f)'(t,2r)

Z—;hdv, we have, by the change of variables v/ = v,,

and
Jg) (ta) = I(f) (b)) i v#1,2
The equation ViG;o = J(g)o then comes from
81D1(t,l') = 62E2(t,l‘7-), 82D2(t,l') = BlEl(t,mT) and VZE’L = J(f)o

As

n

VEGa(t ) = =0, B (t, 1) — O (Far(t,2)) + V' (Fia(t, 7))
=3

= —8tE2(t, ZE-,—) - 81F21(t, JIT) + Z ViFig(t, IL‘T)
=3
= VHF,a(t ©.),
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we have V#G 1 = J(g)1. The equation V*G,2(t, ) = J(g)2 can be obtained similarly.

The remaining equations are obtained from
n

VIGk(t, o) = 01 (Fak(t, z7)) + 02 (Fik(t, 7)) + > V* (Fi(t, )
=3

= 82F2k(t7 xT) + alFlk(ta 'T‘r) + Z VZF1,2(t) CL'.,-)
i=3
= Vijk(t, £L‘-,—)
and 0;D*(t,x) = 0, E*(t,x,), for k > 3. For the other part of the Maxwell equations,
recall from Proposition 2.16 that it is equivalent to prove

V[)\Gu,,] = 0.

We have
V1Gasg)(t, x) = 01 (Fi3(t,©.)) + 02 (F32(t, x;)) — 05 (F12(t, z7))
= 02 F13(t,x,) + 01 F32(t, x,) + O3 Fp1(t, 27)
= Vo Fig(t, z,)
=0.
The other equations can be obtained in the same way.

Propagation of symmetry for the Viasov equation. — We have
n

T (9)(t,2,0) = 0'0af (t, 27, 07) + 000 f (b, 2, 07) + ) 0*Ouf (8,7, 07)
MI;ZI?Q
= T (f)(t, 27, vr).
Moreover, as
Ourg(t,z,v) = D2 f(t,2+,v7) and Oy2g(t,m,v) = O f(t, 27, vr),

Di(ta x)avig(ta z, U) = Ei(ta m‘r)auif(ta Zr, U‘r)'
Finally,

('Ukalavlg) (t,z,v) = <—v2F21(t, z:) + Z UkaQ(t, mT)> Op2 f(t, 2, v7)
k=3

= (Uka28v2f) (t7 x‘rav'r)v

and more generally
(vakja'ujg) (t7 Zz, U) = (kakT(j)av"'(J')f) (ta L7y U‘r)‘

We then deduce,
Tg(g) = 0, as TF(f)(t,.CL‘-,—, UT) = 0.
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The symmetries are propagated over time. — We then proved that (g, G) satisfies the
same system as (f, F'). As (f,F) = (9,G) at t = 0, we have, by the uniqueness of the
solution, that (f, F') = (g,G) for all t € [0,T. O

REMARK 8.5. — More generally, from the above proof, (f,F) — (g,G) maps C*
solutions of the Vlasov-Mazwell system to C* solutions of the Viasov-Mazwell system.

8.2. Proof of Proposition 8.1

Let us suppose that the system admits a local C! solution on [0, 7], with T > 0,
which is then necessarily unique. We will reduce T later if necessary, but we already
assume that T' < 1.

8.2.1. Some informations on the electromagnetic fields around 4. — We start by the
study of the solution around #. Let us introduce M, := 20y (2)_1 and (B;j)i<i,j<n
the 2-form defined by B;; = Fj;.

PROPOSITION 8.6. — Reducing T' if necessary, we have the following properties.

1. Local bounds on the field: Vt € [0,T],
Vlz| < vn+2T, 1<i<3, 5< E(t,z) < Mo, |0,E(t,z) <1
and

(92) vt €[0,T), |z —u| < 2T, |B(t )| <

| =

2. The field is locally-Lipschitz: AL > 0, Vt € [0,TY, |z|, ly| < /n+ 2T,
(93) |E(t,z) — E(t,y)| + |B(t,z) — B(t,y)| < Llz — yl.
3. Specific behavior along the u-direction:

VyeR, te[0,T], E(t,yi)= E'(t,y@)d and B(t,yi) = 0.

Proof. — In view of the initial data, we have B(0, %) = 0 and

, M
iyl < Vi, 1<i<n, 10<E(0,y) < =7, 8B(0,y) =0.

The point 1 then ensues, taking T" smaller if necessary, from the uniform continuity
of the electromagnetic field on every compact subset of [0, 7] x R™. The point 2 comes
from the mean value theorem, as E and B are C' and the point 3 follows from

Proposition 8.4. U
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8.2.2. The method of charateristics fails. — Let us denote by (X (s, t,z,v),V(s,t,z,v))
the value at s of the characteristic, for the transport Equation (1) satisfied by fi,
which was equal to (x,v) at ¢. Let n € ]0,T[ and

Xy i (s,t) = X(s,t,4,na), Vy:(s,t)— V(s t,u,ni).

We now fix t € [0,T[. (X,(.,t),V,(.,t)) is well defined on a neighborhood of ¢ and
we have, denoting I%I by v,

(o4) Pl ) = Tots),
dvi(.,t)

(95) (5) = B (5, X, (5,1)) + Vy (8)F (5, X, (s, 1)).

ds
LEMMA 8.7. — X, (.,t), V,(.,t) and E (along X,(.,t)) stay collinear to @. We have,

as long as V,, stay positive, X, (s,t) = (1 + ﬁ(s — t)) 4 and

Vyy(s,t) = nid + /t E! <s’, (1 + %(s - t)> ﬁ) ds'i.

Proof. — We start by a change of coordinates. We consider an orthonormal system
(ui)1<i<n such that u; = ﬁﬁ and we denote by X* and V* the coordinates of X, (.,t)
and V,(.,t) in this basis. Then, for all 1 <7 < n,

dX’ Vi(s)

E() = s

ds IV1(s)
and, for i > 2, Xi(0) = 0 and Vi(0) = 0. We remark, using Proposition 8.6, that
if X* =0 for i > 2, then E(s,X,(s,t)) = E'(s,X,(s,t))@ and B(s, X,(s,t)) = 0.
Consider now the solution of the following system

dr w

s Jul
dw fEl r r

— =+/n Sy ==y — |,

ds Vn vn

with the initial data 7(¢t) = v/n and w(t) = ny/n. The solution exists as long long
as w # 0 and we have

7;(/%):1—7:\;; and uj/(%):n—i-/tsEl (s',l—t_S, ...,l—t\;;l))ds’.

By uniqueness of the solution of the system (94)-(95), we have

(X', X" VL. ..,V =(r0,...,0,w,,0,...,0),
which implies the result. O

We now try to estimate the time when V,, vanishes.
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PROPOSITION 8.8. — The exists 0 < ng < T such that for alln € ]0,no[, there exists T,
such that if t < Ty, (X,(.,t), V,(.,t)) is well defined on [0,t] and if T, <t < T there
exists T,(t) <t such that (X,(.,t),V,(.,t)) is well defined on |t — 7,(¢),t] and

_ . 7y (t)
lim Vi, (s,t) =0, lim Xp(s,t) = (1 - ) u.
s (t=ry () s (t=ry () vn

Moreover, t — t — 1,(t) is in C°([T,,, T[) N C*(|T;,, T[), vanishes at T, and such
that

Ot =)  Mot1
at 5

Proof. — We fix n € 10, T[. Noting, by (94), that
| X, (s, t) —u| <|t—s| <T,

Vit elT,, T,

4
— <
0

we obtain by Proposition 8.6, as X, and @ are collinear, that E(s, X,(s,t)) =
El(s, X, (s,t))d. Hence, if t € [0,T[, only two situations can occur. Either
(X5 (.,1),V, (., 1)) is well defined on [0, t], or there exists 7,(t) < t such that

lim Va(s,t) =0,

s (t—my ()T

and the characteristic is well defined on |t — 7, (¢), t]. Now, consider

s t— s
gn : (s,%) »—>n+/ E! <s', <1— \/f> ﬁ) ds’
t n

so that, by Lemma 8.7, if ¢ € ]0,7T'[ and s is near to ¢, g,(s,t) is equal to Vn"(s,t)
(for all 1 <4 < n). For all t € ]0,T], g,(.,t) stricly increases on [0,t], as E' > 0 by
Proposition 8.6. As

/3E1<s' <1—t_SI>ﬁ'>ds'——/t_sE1<t—s' (1—8l>ﬁ>ds'
t ’ Vvn 0 ’ Vn
and
(g _t—8~_/t‘s oo (122 a) as
o (s,t)=—FE (s, (1 \/ﬁ)u) ; OE (t—s,(1 Tn | ds',

we have

Ogn
—=(s,t) < —4
8t (S, ) —_ Y

so that g,(s,.) is strictly decreasing on [s,T[. Moreover, by the bounds given on E*
in Proposition 8.6, if ¢t < MLO, gn(.,t) does not vanish on [0,¢] and vanishes exactly
one time, in ¢t — 7,(t), if ¢ > . Then, if 7 is small enough, there exists ¢ € ]0, T[ such
that g, (.,t) vanishes in ¢ — 7,,(¢). Let ¢; be a such time and let ¢5 > ¢;. We have

0= gn(tl — Tn(tl)ytl) > gn(tl — Tn(tl),tz),

implying the existence of t; — 7,)(t2) and t1 — 7,(t1) < t2 — 7,(¢2), since

gﬂ(tl — Tn(tl),tz) <0= g”l(t2 — Tn(t2),t2).
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Hence, T), exists ® and t — t — 7,)(¢) strictly increases on [T, T'[, vanishes in T, and
tends to zero as t — Tj,. The fact that t — t — 7,(¢) is in C*(]T,, T[) follows from
the implicit function theorem, as g, (t — 7,(t),t) = 0 and aais"(s, t) > 5. Furthermore,
dropping the dependance in ¢ of 7,

o—ny, B (= (1= ) 8) 4 am (1, (1= ) 7)o
T 7 B (i (1 22)3) |

which, by Proposition 8.6, implies the last statement. O

REMARK 8.9. — Note that, if 0 < n < 19, 7,(T,) = T,, and then g,(0,T,) = 0.
Later, we will use again that g,(0,.) is strictly decreasing on [0,T.

8.2.3. The contradiction. - We fix again n € ]0,7n[. As V,(.,t) is not defined on
[0,t — 7, (¢)] if t > T,,, we cannot directly express fi(¢,u,ni) in terms of fo; by the
method of the characteristics.

If t > T,), we extend X, (.,t) and V;(.,t) on [0,t — 7,,(t)] by

X, (s,t) = (1 + t‘s‘\/ﬁz”“)) @ and V(s,t) = nm/t E(s', X, (s', 1))ds’.

REMARK 8.10. — Ift >t —7,(t), = Xy 2(s,t) =

We extend X, (.,t) on [0,t — 7, (¢)]

%
in order that
ax, ( )= q

s el

ds S Un

We then extend V,(.,t) such that (95) remains true on [0,t — 7, (¢)].

We have the following result.
LEMMA 8.11. —
(96) Vte [0,T], fi(t,4,n%) = fo1(X,(0,t),V,(0,1)).

Proof. — If t < T, this follows from the method of characteristics. In order to prove
the result for ¢t > T,,, we consider € > 0, v = (0,...,0,¢),

X're],t PS8 X(S, t - Tn(t)’ X?’I(t - Tn(t)7 t)7 ve)
and
Vi it V(s it —1y(t), Xy (t — 1 (8), 1), ve).
Proposition 8.6 gives us that Xy, and V7, are well defined on [0,T'[. Indeed, as,
by (94),

|X5.¢(s) — | <X ,(s) = Xyt — 7 (1), )| + | X (8 — 7 (2), 8) — ] < 2T,
we obtain

) 1
Vi<i<n, 5<E'(s,X;4(s) <My and |B(s, X, ,(s))] < T

30. More precisely, T, = sup{t € ]0,T[ | g5(.,t) >0 on [0,¢]}.
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so that V7, cannot vanish. Now, the method of characteristics gives us, for all
te[0,T],

fi (th:;,t(t)v Vne,t(t)) = fOl(Xf,,t(O)» Vne,t(o))~
Then, the result, for t > T), follows from the continuity of f; and the following
proposition. O
ProprosITION 8.12. — We have
lim [[X (- 8) = X5 el e o) + Vo (5 8) = Viellee o) = 0-

Proof. — On the one hand, as

w 2
ECTP I
lwl| = |wl

v

(97) Vv, w e R™\ {0}, ol

we have

| X (s,8) = X5, (s)| < [V (w, 8) =V (w)|dw

J i
t—7y(t) |Vn€t(w)|

On the other hand, note first that for s < T and |z|, |y| < v/n + 2T, we have, by
the local Lipschitz property of the electromagnetic field (93),

|E(s,z) — E(s,y) + 9" Bi(s,z) — @'B;(s,y)| < L|z — y| + [v — @||B(s, z)|.
Then, using (95), (97) and the bound (92) on the magnetic field,

s 1
/€ < Y€ - _Y/€
|V77(8’ t) Vn,t(3)| Se+ /t—rn(t) L|Xﬂ(w7t) Xn,t(w)‘ + 2|qué7t(w)| |V?7(w7 t) Vﬂ,t (w)|dw

)

Hence, by the Gronwall lemma, for all s € [0, T,

@&IXM&U—X%®M+WM&®—Wﬁ®NSewp(

s 5
L+ ——F—dw
/t—r,,(t) 2|Vne,t(w)|

We now prove that, 3a >0, b > g such that Vw € [0,T7,
(99) [V :(w)| > ae + blt — 7, (t) — w].
Recall that 5 < EV < My and |B| < 1 around @ (see Proposition 8.6) and
Vit =i [ B0+ V0B 0, X )
t—1,(t
Hence, we have.
— Ifw>t—7,(1),
Vil (w) > §jne+ (5= 1) (w — t + 7 (t))

so that

Vi (w)? > +n(5—1)*(w —t+7,(t)* > (e + 4v/nfw — t + 7, ()])*.

DN | =
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— It 1) — gy S w < t—7y(),
V;g(w) <—(B6-1)(t—7(t) —w) for 1<j<n—1 and V" (w)> %,
S0
(2
V() > 7 T-16- 1)%(t — 7y (t) — w)®
1
= < +4vn — 1t — 1, (t) — w|)
2
— Ifwgt—Tn(t)—m,then, for1<j<mn-1,
. 4 €
Vi) < ~(5 - (0= (0) - ) <~ |y + 20 - w0 - u).

‘We obtain

2
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Inequality (99) then holds with

1 2v/n — 8
— i =—-vn—1.
a = min (Z\f 3(M0+1)> and b 3 n

We now prove that the right hand side of (98) tends uniformly to zero in s, on [0, ].

As, by (99),
8 5
———dw
/t—‘rn(t) 2|V (w)]

we have, since max(t — 7,,(t), 7, (t)) < ¢,

exp /S 5 dw|| <e p<2b_5log()+ log< bt>>
eex —_ <exp| —— — )
t—Ty,(t) 2|V7]E(U))| 2b 2b a

We then deduce, as 2b > 5, that
lim max eexp /S L+ de =0
e—0s€(0,t] t—7 (1) 2|V,f(w)| ’

which implies the result. O
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Differenciating (96) in ¢ for ¢t < T;, gives us

T L Y AW
e =D~ o ((1- =) @vc.0)
t

et (1) an00).

MEMOIRES DE LA SMF 172



8.2. PROOF OF PROPOSITION 8.1 119

Doing the same for t > T;, gives

B, fu(t = ddj 0, )0y for ((1 + t‘j;:*’”) i, V,,(O,t))

=1

_+;n<a@ )w_4>@hl(o+f_jz@>awmao>.

Recall from Proposition 8.8 that ¢ — W(t) is defined on |T;), T[ and takes its

values in [Mio, ALl

]. Hence, there exists a sequence (t,), with ¢, — T}, such that,

. ot —m) _

Using that f; and fo1 are C' and taking the limit ¢, — T, in the two last equations,

we obtain
20536h1 1—Zi %,0] =0
prt 1 \/ﬁ b
and thus

(100) Za for <(1 - f) i, o> =0.

Finally, we need the following proposition.

PROPOSITION 8.13. — The function n — T, is defined on |0,no[, strictly increasing,
continuous and such that

lim T;, = 0.
n—0

Proof. — We recall (see Remark (8.9)) that T}, is defined by the implicit equation

T
n T, —w
T,) =n-— E! 1- =1 i | dw = 0.
97(0,T) =mn /0 (w,( Jn )u) w =0

Let 0 < m <ma <T. We have

Im (07T772) < Gna (OaTnz) =0,

SO
9n (O»Tnz) < 9m (07 T’fh) =0.

Since gy, (0,.) strictly decreases (see again Remark (8.9), T, > T,,, which means
that n — T, is strictly increasing. As E' is bounded away from 0 on the domain of
integration, T}, tends to 0 as 7 — 0. The continuity ensues from the implicit function
theorem. O
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Using Equation (100) and the last proposition, we can find T* > 0 such that
w — fo1((1 — w),0) is constant on |0, T*[. However, there exists Cy > 0 and Cy > 0
such that

for((1 = w)@,0) = Co + C1 (1 —w)x' (2(1 — w)?)
forall 0 <w < T*, and w — (1 — w)x’ (2(1 — w)?) is not constant around 0.
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We prove almost sharp decay estimates for the small data solutions and their
derivatives of the Vlasov-Maxwell system in dimension n > 4. The smallness
assumption concerns only certain weighted L' or L? norms of the initial data. In
particular, no compact support assumption is required on the Vlasov or the Maxwell
fields. The main ingredients of the proof are vector field methods for both the kinetic
and the wave equations, null properties of the Vlasov-Maxwell system to control high
velocities and a new decay estimate for the velocity average of the solution of the
relativistic massive transport equation.

We also consider the massless Vlasov-Maxwell system under a lower bound on the
velocity support of the Vlasov field. As we prove in this paper, the velocity support
of the Vlasov field needs to be initially bounded away from 0. We compensate the
weaker decay estimate on the velocity average of the massless Vlasov field near the
light cone by an extra null decomposition of the velocity vector.

Nous établissons dans cet article des estimations de décroissance presque
optimales sur les solutions & données petites, ainsi que sur leurs dérivées, du systéme
de Vlasov-Maxwell en dimension n > 4. Les hypothéses de petitesse ne concernent que
des normes L' ou L? & poids des données initiales. Par conséquent, aucune restriction
de support n’est imposée sur le champ de Vlasov ou le champ électromagnétique.
Les éléments clés de la démonstration sont des méthodes de champs de vecteurs,
utilisées tant pour étudier I’équation cinétique que les équations d’ondes, les propriétés
isotropes du systéme afin de controler les grandes vitesses et une nouvelle inégalité
de décroissance pour la moyenne en vitesse des solutions de I’équation de transport
relativiste massive.

Nous étudions également le systéme de Vlasov-Maxwell sans masse pour des
champs de Vlasov dont le support en vitesse est disjoint d’un voisinage de 0. Comme
nous le montrons dans ce papier, cette hypothése est nécessaire pour que le probléme
soit bien posé. Nous compensons le faible taux de décroissance de la moyenne en vitesse
du champ de Vlasov le long du céne de lumiére en exploitant les bonnes composantes
isotropes du vecteur vitesse.
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