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ASYMPTOTIC PROPERTIES OF SMALL DATA SOLUTIONS OF
THE VLASOV-MAXWELL SYSTEM IN HIGH DIMENSIONS

Léo Bigorgne

Abstract. – We prove almost sharp decay estimates for the small data solutions and
their derivatives of the Vlasov-Maxwell system in dimension n ≥ 4. The smallness
assumption concerns only certain weighted L1 or L2 norms of the initial data. In
particular, no compact support assumption is required on the Vlasov or the Maxwell
fields. The main ingredients of the proof are vector field methods for both the kinetic
and the wave equations, null properties of the Vlasov-Maxwell system to control high
velocities and a new decay estimate for the velocity average of the solution of the
relativistic massive transport equation.

We also consider the massless Vlasov-Maxwell system under a lower bound on the
velocity support of the Vlasov field. As we prove in this paper, the velocity support
of the Vlasov field needs to be initially bounded away from 0. We compensate the
weaker decay estimate on the velocity average of the massless Vlasov field near the
light cone by an extra null decomposition of the velocity vector.

Résumé (Propriétés asymptotiques des solutions à données petites du système de Vlasov-
Maxwell en grandes dimensions)

Nous établissons dans cet article des estimations de décroissance presque optimales
sur les solutions à données petites, ainsi que sur leurs dérivées, du système de Vlasov-
Maxwell en dimension n ≥ 4. Les hypothèses de petitesse ne concernent que des
normes L1 ou L2 à poids des données initiales. Par conséquent, aucune restriction
de support n’est imposée sur le champ de Vlasov ou le champ électromagnétique.
Les éléments clés de la démonstration sont des méthodes de champs de vecteurs,
utilisées tant pour étudier l’équation cinétique que les équations d’ondes, les propriétés
isotropes du système afin de contrôler les grandes vitesses et une nouvelle inégalité
de décroissance pour la moyenne en vitesse des solutions de l’équation de transport
relativiste massive.

Nous étudions également le système de Vlasov-Maxwell sans masse pour des
champs de Vlasov dont le support en vitesse est disjoint d’un voisinage de 0. Comme
nous le montrons dans ce papier, cette hypothèse est nécessaire pour que le problème
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soit bien posé. Nous compensons le faible taux de décroissance de la moyenne en
vitesse du champ de Vlasov le long du cône de lumière en exploitant les bonnes
composantes isotropes du vecteur vitesse.
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CHAPTER 1

INTRODUCTION

In this paper, we study the asymptotic properties of the small data solutions of
the Vlasov-Maxwell system in dimensions n ≥ 4. For K species, this system is given
by (1) √

m2
k + |v|2∂tfk + vi∂ifk + ekv

µFµ
j∂vjfk = 0,(1)

∇µFµν = ekJ(fk)ν ,(2)
∇µ∗Fµα1...αn−2

= 0,(3)

with initial data,

fk(0, ·, ·) = f0k,(4)
F (0, ·) = F0,(5)

with f0k and F0 satisfying the constraint equations (2)

(6) ∇i(F0)i0 = ekJ(f0k)0, ∇i∗(F0)µ0α1...αn−3
= 0.

This is a classical model in plasma physics and we refer to [10] for an introduction to
its analysis. Here,

— mk ∈ R+ and ek ∈ R∗ are the mass and the charge of the particles of the
species k ∈ 1,K. The function fk(t, x, v) is their velocity distribution, which is
a non-negative function.

— The Maxwell field is described in geometric form by the 2-form F (t, x) and its
Hodge dual, the (n−1)-form ∗F (t, x). The initial datum F0 is a 2-form on Rn+1

with cartesian components (F0)µν which do not depend on the variable t, so
that

∗Fµα1...αn−2(0, ·) = ∗(F0)µα1...αn−2 .

1. During this article, we will use the Einstein summation convention. For instance, ekJ(fk)ν =∑K
k=1 ekJ(fk)ν . Roman indices goes from 1 to n and greek indices from 0 to n. Moreover, we raise

and lower indices with respect to the Minkowski metric.
2. As ∗(F0) is a (n− 1)-form, the constraint Equations (6) implies ∗(F0)µα1...αp0αp+1...αn−3 = 0.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2022



2 CHAPTER 1. INTRODUCTION

— The (n+ 1)-current J(fk)ν in equation (2) is given by

J(fk)ν(t, x) =

∫
v∈Rn

vν

v0
k

fk(t, x, v)dv, where v0
k :=

√
m2

k + |v|2.

— The variable t will be taken in R+, x will be taken in Rn and for the species k,
v will be taken either in Rn, if mk ̸= 0, or in Rn \ {0}, if mk = 0.

In the 3 dimensional case, we can express the system in terms of the electric and the
magnetic vector fields through the relations

Ei = F0i and Bi = −∗F0i

so that the Vlasov-Maxwell equations take the familiar form

√
m2

k + |v|2∂tfk + vi∂ifk + ek(E + v ×B) · ∇vfk = 0,

∇ · E = ekJ(fk)0, ∂tE
j = (∇×B)j − ekJ(fk)j ,

∇ ·B = 0, ∂tB = −∇× E.

1.1. Global in time solutions for the Vlasov-Maxwell system in 3d

The global existence for classical solutions to the Vlasov-Maxwell system is still an
open problem. In dimension 3, they are known to be global in certain particular cases
such as under a translation symmetry hypothesis on the initial data in one of the space
variables. The pioneer works on this two and one half dimensional case originated from
Glassey-Schaeffer in [9] and required a compact support assumption in v. The result
obtained recently by Luk-Strain allows data with non-compact velocity support [20].
The solutions to the Vlasov-Maxwell system also appear to be global when they arise
from pertubation of spherically symmetric initial data (3) (see [23]).

For the general case, several continuation criteria are known. The first one, obtained
by Glassey and Strauss in [12] (see also [3] and [18] for alternative proofs), expresses
that C1 solutions to the Vlasov-Maxwell system arising from compactly initial data
do not develop singularities as long as the velocity supports of the particle densities
fk remain bounded. An improved continuation criteria requires the finiteness of

(7)
∥∥∥(1 + |v|2) θ

2 fk

∥∥∥
L∞([0,T∗[,Lq

xL1
v)
,

for a certain q and θ, in order to extend the solution beyond T ∗ > 0. Let us mention
[21] for the cases 6 ≤ q ≤ ∞ and θ > 4

q , [29] for q = +∞ and θ = 0 as well as [22]
for q = 6 and θ = 0. Earlier results of Glassey-Strauss required the boundedness of
(7) for q = ∞ and θ = 1 and cover data with non-compact support in v (see [14]).
Recently, Luk-Strain removed in [20] all compact support assumptions and extend
the continuation criteria (7) for 2 < q ≤ +∞ and θ > 2

q .

3. Recall that for spherically symmetric solutions, the Vlasov-Maxwell system reduces to the
relativistic Vlasov-Poisson system.
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1.3. OPTIMAL GRADIENT ESTIMATES FOR VLASOV SYSTEMS 3

1.2. Previous work on small data solutions of the Vlasov-Maxwell system

Global existence for small data in dimension 3 was first established by Glassey-
Strauss in [13] under a compact support assumption (in x and in v). In particular
they proved

∫
v
fdv ≲ 1

(1+t)3 , coinciding with the linear decay, but they did not con-
trol ∂µ1 · · · ∂µp

∫
v
fdv. They also proved decay estimates for the electromagnetic field

and its derivatives of first order, but not for the derivatives of higher order. A similar
result was proved in [11] for the nearly neutral case, i.e.,

∑
k ekm

3
kf0k(x,mkv) has

to be small and not the individual particle densities. The result established by Scha-
effer in [24] allowed particles with high velocity but still requires the data to be
compactly supported in space (4). Finally, let us also mention the earlier result of
Bardos-Degond for the more classical Vlasov-Poisson system [1]. Under a smallness
assumption, they established that the solution of the system is global in time and
proved that

∫
v
fdv ≲ 1

(1+t)3 but they did not obtain informations on the derivatives
of f . They also proved decay estimates for the electric field up to second order.

1.3. Optimal gradient estimates for Vlasov systems

Due to the linearity of the Maxwell equations and the elliptic nature of the Poisson
equation or a nonresonant phenomenon (5), the previous results are established with-
out essentially commuting the Vlasov equation and controlling higher derivatives of
the solutions. For the Vlasov-Poisson system with small data, the sharp time decay
estimates

∣∣∫
v
∂µ1 · · · ∂µpfdv

∣∣ ≲ 1
(1+t)3+p was proved (6) in [15]. A similar result was

obtained in [25] using a vector field method which led to global bounds for the solu-
tion and optimal space and time decay rates for the velocity averages. In the same
spirit, optimal decay estimates was proved for the derivatives of the solutions of the
Vlasov-Nordström system in [7] and [27]. The stability of the Minkowski space for
the Einstein-Vlasov system was recently, and independently, proved in [26] and [19].
For both of them, vector field methods was a crucial point in the proof and led in
particular to almost optimal decay rates for the derivatives of the solutions.

The goal of this paper is to prove almost optimal decay for the small data solutions
and their derivatives of the Vlasov-Maxwell system in dimension n ≥ 4 without any
compact support assumption on the initial data.

4. Note also that when the Vlasov field is not compactly supported (in v), the decay estimate
obtained in [24] for its velocity average contains a loss.

5. According to [4], the velocity averages of the solutions of a system coupling a linear wave
equation with a transport equation are such that the velocity averages are more regular than expected
if the speed of propagation of the wave equation is strictly larger than the speed of the particles
governed by the transport equation.

6. A similar result is established in [5], using the same techniques, for the Vlasov-Yukawa system
in dimension 2.
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4 CHAPTER 1. INTRODUCTION

1.4. The vector field method for Vlasov fields

In this paper, we will use a vector field method to derive decay estimates for both
the electromagnetic field and the Vlasov field. The vector field method was originally
developped by Klainerman in [16] to study wave equations and was adapted to cover
the Maxwell equations (and the spin 2 equations) in 3d in [6]. More recently, the
method was extended for the free relativistic transport equation in [7].

As in [16], these methods are based on energy estimates, commutation vector fields
and weighted Sobolev inequalities. For the transport operator vµ∂µ, the set P̂0 of
commutation vector fields used in [7] is composed of the scaling vector field S = xµ∂µ

and the complete lifts of the generators of the Poincaré group, that is to say the
transalations

∂µ, 0 ≤ µ ≤ n,

the complete lifts of the rotations

Ω̂ij = xi∂j − xj∂i + vi∂vj − vj∂vi , 1 ≤ i < j ≤ n

and the complete lifts of the Lorentz boosts

Ω̂0k = t∂k + xk∂t + v0∂vk , 1 ≤ k ≤ n.

In [7], vector field methods are applied to derive the behavior of the solutions to the
Vlasov-Nordström system in the future of the hyperboloid (7) t2 − r2 = 1. However,
without any compact support assumption, one cannot reduce the study of a solution
in the future of a t = constant slice to its study in the future of a hyperboloidal slice
(see for instance [7], Appendix A, for more details). In order to remove all compact
support assumption on the data, one of the goal of this paper is to start from a t = 0

slice and adapt the vector field method for transport equations to the more common
foliation ({t} × Rn)t≥0. Note that [27] (respectively [26]) use slight modifications of
the commutation vector fields (8) of the operator vµ∂µ in order to study the small data
solutions of the Vlasov-Nordström (respectively Einstein-Vlasov) system in 3d. They
also use a hyperboloidal foliation and restrict the study of the solutions to the future
of a hyperboloid.

1.5. The Lorenz gauge

Recall that a 1-form A is a potential of the electromagnetic field F if F = dA (or
Fµν = ∂µAν − ∂νAµ). If moreover

∂µAµ = 0,

7. The use of a hyperboloidal foliation in order to establish decay estimates was introduced in
[17] in the context of the Klein-Gordon equation.

8. The modified vector fields are built in order to compensate the worst source terms in the
commuted transport equations.
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1.6. RESULTS FOR THE MASSIVE VLASOV-MAXWELL SYSTEM 5

we say that A satisfies the Lorenz gauge condition. As the energy momentum ten-
sor T [F ] of F is not traceless in dimension n ≥ 4 and the Morawetz vector field
K0 := (t2 + r2)∂t + 2tr∂r is merely a conformal Killing vector field, we encounter the
same difficulty in using it as for the wave equation in 3d (see [28], Chapter II). More
precisely, the goal is to propagate the following weighted L2 norm (9)

E [F ](t) :=

∫
{t}×Rn

x

T [F ]0νK
ν
0 dx.

However, even if F solves the free Maxwell equations, i.e., ∇µFµν = 0 and
∇µ∗Fµα1...αn−2

= 0 , the divergence theorem gives, since the conformal factor
of K0 is 4t,∫

{t}×Rn
x

T [F ]0νK
ν
0 dx =

∫
{0}×Rn

x

T [F ]0νK
ν
0 dx−

∫ t

0

∫
R3

4sT [F ]µµdxds.

The integrand in the spacetime integral on the right hand side of the previous
inequality does not vanish when n ̸= 3 and is not nonnegative. Moreover, it cannot
be estimated using E [F ](t) as it would led to an inequality such as

E [F ](t) ≤ E [F ](0) + C log(1 + t) sup
s∈[0,t]

E [F ](s), C > 1,

since we have, at least for large r, |T [F ]0νK
ν
0 | ∼ r2|T [F ]| and 4s|T [F ]µµ| ∼ r|T [F ]|.

To circumvent this difficulty, we will consider in this paper the Vlasov-Maxwell system
in the Lorenz gauge, so that Aµ will satisfy the equation

(8) □Aµ = ek

∫
v

vµ

v0
fkdv.

Considering the modified current

T [F ]µνK
ν
0 + (n− 3)

(
tAβ∂µA

β − 1

2
∂µ(t)AβA

β − tAβ∂
βAµ + ∂β(t)AβAµ

)
will allow us to avoid any term such as 4sT [F ]µµ in our energy inequalities. We also
make fundamental use of the Lorenz gauge to establish the optimal decay rate on the
component α of the null decomposition of the electromagnetic field, as the method
used in [6] cannot be reproduced in dimension n ̸= 3.

1.6. Results for the massive Vlasov-Maxwell system

We will consider weighted L2 norms to control A and F such as (10)

ẼN [A](t) =

n∑
µ=0

∑
|β|≤1

∑
|γ|≤N

∥∥Zβ (LZγ (A)µ) (t, ·)
∥∥2

L2(Rn)

9. This norm is given in terms of the null components of F in Definition 3.20.
10. For a tensor G and a multi-index β = (β1, . . . , βp),

LZβ (G) = LZβ1 · · · LZβp (G).
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6 CHAPTER 1. INTRODUCTION

as well as weighted L1 norms for the Vlasov field, such as

Eq
N [g](t) =

∑
|β|≤N

∫
Rn

x

∫
Rn

v

(v0)q|Ẑβg|(t, x, v)dvdx

+
∑
|β|≤N

sup
u≤t

∫
Cu(t)

∫
Rn

v

(v0)q−1vL|Ẑβg|dvdCu(t),

where Cu(t) := {(s, y) ∈ R+ × Rn / s ≤ t, s − |y| = u}. For the Vlasov field, we
also use extra norms with the additional weights vµ, xivj − xjvi or tvi − xiv0. See
Definitions 3.2, 3.20 and Section 2.4 for an introduction to the other norms and the
weights.

We are now ready to present our main result for the massive Vlasov-Maxwell system
(for a detailled version, see Theorem 6.1).

Theorem 1.1. – Let n ≥ 4, K ≥ 2, and N ≥ 5
2n+ 1. Let (f0, F0) be an initial data

set for the massive Vlasov-Maxwell system with K species. Let (f, F ) be the unique
classical solution to the system and let A be a potential in the Lorenz gauge. There
exists ϵ > 0 such that (11), if

ẼN [A](0) + EN [F ](0) +

K∑
k=1

E2
N+n,1[fk](0) ≤ ϵ,

then (f, F ) exists globally in time and verifies the following estimates.

— Energy bounds for A, F and fk such as E2
N [fk] ≲ ϵ on R+.

— Sharp pointwise decay estimates on the null decomposition of LZβ (F ) and for
the velocity average of fk and its derivatives. For instance,

∀ |β| ≤ N − 3n+ 2

2
, (t, x) ∈ R+ × Rn,

∫
v∈Rn

|Ẑβfk|dv ≲
ϵ

(1 + t+ |x|)n
.

Remark 1.2. – Since we suppose that the initial energy on F is finite, we are nec-
essarily in the neutral case when the dimension is n = 4, i.e., the total charge of the
plasma

Q := ek

∫
x∈Rn

∫
v∈Rn

f0kdvdx = −ekJ(f0k)0

vanishes. Indeed, if n = 4, Gauss’s law implies, as F0r = xi

r F0i,

lim
r→+∞

r3
∫

θ∈S3

ρ(F )(0, rθ)dS3 = lim
r→+∞

r3
∫

θ∈S3

F0r(0, rθ)dS3

= lim
r→+∞

∫
|x|≤r

∇iF0idx = Q.

11. A smallness condition on F , which implies ẼN [A](0) ≤ ϵ, is given in Proposition 2.20.
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Consequently, if Q ̸= 0, we have
∫

x∈S3 ρ(F )(0, x)dS3 ∼r→+∞
Q
r3 and then∫ +∞

r=0

r2
∣∣∣∣∫

θ∈S3

ρ(F )(0, rθ)dS3

∣∣∣∣2 r3dr = +∞.

Hence, the energy EN [F ] cannot be finite if Q ̸= 0 since, by the Cauchy-Schwarz
inequality,∫ +∞

r=0

r2
∣∣∣∣∫

θ∈S3

ρ(F )(0, rθ)dS3

∣∣∣∣2r3dr ≤ 2π2

∫ +∞

r=0

r2
∫

θ∈S3

|ρ(F )|2(0, rθ)dS3r3dr

≤
∫
R3

r2|F |2(0, x)dx ≤ EN [F ](0).

We refer to [2] and [30] for a study of the Maxwell-Klein-Gordon system with a
non-zero total charge.

Remark 1.3. – Thanks to the vector field method and in view of the definition of
our norms, we do not need any compact support assumption on the initial data. We
also automatically obtain improved decay rates for the derivatives of both the electro-
magnetic field and the velocity averages of the particle densities. For instance, for all
|β| ≤ N − 3n+2

2 and (t, x) ∈ R+ × Rn,∣∣∣∣∂β
t,x

∫
v∈Rn

fkdv

∣∣∣∣ ≲ ϵ

(1 + t+ |x|)n(1 + |t− |x||)|β|

and (see Section 5.4), assuming more decay on the initial data,∣∣∣∣∂β
t,x

∫
v∈Rn

fkdv

∣∣∣∣ ≲ ϵ

(1 + t+ |x|)n+|β| .

Remark 1.4. – Notice that in dimension n = 4, it is sufficient for Ẑβfk to initially
decay faster than (1 + |v|)−6−δ(1 + |x|)−5−δ, with δ > 0, for our theorem to apply. In
[24], which concerns the 3d case, the main result requires the initial particle densities to
be compactly supported in x and to decay faster than (1+ |v|)−q, with q > 60+12

√
17.

1.7. Results for the massless Vlasov-Maxwell system

We now present an elusive version of our main result for massless particles (we
refer to Theorem 7.1 for more details).

Theorem 1.5. – Let n ≥ 4, K ≥ 2, N ≥ 6n+3 and R > 0. Let (f0, F0) be an initial
data set for the massless Vlasov-Maxwell system with K species, (f, F ) be the unique
classical solution to the system and A be a potential in the Lorenz gauge. There exists
ϵ > 0 and R > 0 such that, if

ẼN [A](0) + EN [F ](0) +

K∑
k=1

E0
N+n,1[fk](0) ≤ ϵ,

∀1 ≤ k ≤ K, supp(f0k) ⊂ {(x, v) ∈ Rn
x × Rn

v \ {0} / |v| ≥ R},
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then (f, F ) exists globally in time and verifies the following properties.

— fk(., ., v) vanishes for all |v| ≤ R
2 .

— Energy bounds are propagated for F and fk. For instance, if n = 4, EN−8[F ](t) ≲
ϵ(1 + t) for all t ∈ [0, T ].

— Pointwise decay estimates on the null decomposition of LZβ (F ) and for the
velocity average of f and its derivatives. For instance,

∀ |β| ≤ N − 2n, (t, x) ∈ R+ × Rn,

∫
v∈Rn\{0}

|Ẑβfk|dv ≲
ϵ

τn−1
+ τ−

.

Remark 1.6. – The hypotheses on the velocity supports of the particle densities ap-
pear to be necessary (see Section 8).

Remark 1.7. – We are not able to obtain optimal decay estimates for the electro-
magnetic field in dimension n = 4 with our reasoning since the velocity average of
the Vlasov field has a weaker decay rate near the light cone when the mass is zero
(this is related to the estimate (11) mentionned below, which only applies to massive
particles).

1.8. The main difficulties and ingredients of our proof

1.8.1. High velocities and null properties of the system. – As we use vector field
methods, we are brought to commute the equations and prove global bounds on the
solutions through energy estimates. After commuting the Vlasov equation once, we
are led to estimate terms that could be written schematically as∫ t

0

∫
x

∫
v

|vLZ(F )∂vf |dvdxds.

Unfortunately, ∂vi , for 1 ≤ i ≤ n, is not part of the commutation vector fields for the
transport equation. We rewrite them in terms of the elements of P̂0 as

(9) ∂vifk =
1

v0
(Ω̂0ifk − t∂ifk − xi∂tfk),

so that ∂vf essentially behaves like t∂µf , which is consistent with the behavior of
solutions to the free transport equation. This leads us to estimate

(10)
∫ t

0

∫
x

∫
v

(s+ |x|)|LZ(F )∂f |dvdxds.

As a solution to a wave equation, LZ(F ) only decays near the light cone as 1

(1+t+|x|)
n−1

2

and we cannot prove by a naive estimate that, in dimensions n ≤ 5, (10) is uniformly
bounded. However, if f is initially compactly supported, one can expect (for, say,
sufficiently small data) the characteristics of the transport equation to have velocities
bounded away from 1, and thus the Vlasov field support (in x) to be ultimately remote
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from the light cone. Now, assuming enough initial decay on the Maxwell field, one
can prove that

|LZ(F )| ≲ (1 + s+ |x|)−
n−1

2 (1 + |s− |x||)− 3
2

which, combined with the support properties of f , leads to∫
x

∫
v

(s+ |x|)|LZ(F )∂f |dvdx ≲ (1 + s)−
n
2

and (10) is then uniformly bounded in dimensions (12) n ≥ 4.

In our work, we do not make any compact support assumption. Instead, we make
crucial use of null properties of the Vlasov-Mawxell system (13) to deal with the high
velocities. More precisely, certain null components of the velocity vector v, the deriva-
tives of the electromagnetic field (as LZ(F )) or the vector (0, ∂v1f, . . . , ∂vnf) behave
better than others and the structure of the system is such that there is no product
involving only terms with a bad behavior. Taking advantage of the null structure
allows us either

— to transform a t− r decay in a t+ r one. For instance,

|ρ(LZ(F ))| =
∣∣∣∣xi

r
LZ(F )i0

∣∣∣∣ ≲ (1 + s+ |x|)−
n+1

2 (1 + |s− |x||)− 1
2 .

— To transform a t+ r loss in a t− r loss using xi

r ∂vif ∼ (t− r)∂f .

— Or to exploit the t− r decay. For instance, we will control∫
Cu(t)

∫
v∈Rn

vL

v0
|∂f |dvdCu(t) ≤ E[f ](t),

so that, by the change of variables (u, u) = (s+ r, s− r),∫ t

0

∫
x

1

(1 + |s− |x||)2

∫
v

vL

v0
|∂f |dvdxds ≤

∫ t

u=−∞

E[f ](t)

(1 + |u|)2
du.

1.8.2. Improved decay estimates. – • For massive particles. In [7], two Klainerman-
Sobolev inequalities for velocity averages of Vlasov fields were obtained. They imply

12. Note that our proof would lead to a
√

t-loss in dimension 3 which is not sufficient to prove the
uniform boundedness of (10).

13. The null structure of the Vlasov-Nordström system is also a main ingredient of the proof of [7]
for the dimension n = 4.
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in particular that, for g a solution to vµ∂µ(g) = 0,

∀ (t, x) ∈ R+ × Rn,∫
Rn

v

|g|(t, x, v)dv ≲
∑

Ẑβ∈P̂k
0

|β|≤3

∫
Rn

y

∫
Rn

v
|Ẑβg|(0, y, v)dvdy

(1 + t+ |x|)n−1(1 + |t− |x||)
,

∀ (t, x) ∈ R+ × Rn, t2 − |x|2 ≥ 1,∫
Rn

v

|g|(t, x, v)dv ≲
1

(1 + t)n

∑
Ẑβ∈P̂k

0

|β|≤3

∫
Rn

y

∫
Rn

v

|Ẑβg|(
√

1 + |y|2, y, v) dvdy√
1 + |y|2

.

The first one has the advantage to be based on the foliation ({t}×Rn)t≥0 but provides
a weak estimate near the light cone. The second one gives a stronger decay rate near
the light cone but is based on a hyperboloidal foliation. In this paper, in order to
remove all compact support assumption on the data and start from a t = 0 slice, we
will prove and use a refined version of the Klainerman-Sobolev inequalities of [7]. Our
estimate will imply that, for g a solution to vµ∂µ(g) = 0 and for all (t, x) ∈ R+×Rn,

(11)
∫
Rn

v

|g|(t, x, v)dv ≲
∑

Ẑβ∈P̂k
0

|β|≤3

∫
Rn

y

∫
Rn

v
|v0|2(1 + |y|)|Ẑβg|(0, y, v)dvdy

(1 + t+ |x|)n
.

Compared to the Klainerman-Sobolev inequalities proved in [7], (11) cumulates the
advantages of giving a strong decay in the whole spacetime and being adapted to
the foliation ({t} × Rn)t≥0. On the other hand, our estimate is not a pure Sobolev
inequality (we used the transport equation satisfied by g to establish it).

Remark 1.8. – In the exterior of the light cone (where t ≤ |x|), one can in fact
obtain arbitrary decay provided we consider additional decay on the initial data (see
Section 5.3.2).

• For massless particles. Unfortunately, (11) does not apply to massless particles. In-
stead, we use weights z ∈ k0 preserved by the relativistic transport operator |v|∂t+v

i∂i

in order to gain additional decay. More precisely, in the same spirit as the deriva-
tive ∂t + ∂r (respectively ∂t− ∂r) provides an extra decay in t+ r (respectively t− r)
for, say, a solution to □u = 0, one has

v0 − xi

r
vi ≤

|v|
1 + t+ r

∑
z∈k0

|z| and v0 +
xi

r
vi ≤

|v|
1 + |t− r|

∑
z∈k0

|z|.
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1.8.3. The problem of the small velocities. – For the massless Vlasov-Maxwell system,
another problem arises from the small velocities since v0 = |v| is not bounded by
below. The velocity part V of the characteristics of

∂tf +
vi

|v|
∂if +

vµ

|v|
Fµ

j∂vjf = 0

solves the ordinary differential equation

V̇ j =
V µ

|V |
Fµ

j ,

which can lead to V = 0 in finite time (14). More precisely, we prove in Section 8
that there exists smooth initial data such that the particle densities fk do not vanish
for small velocities and for which the massless Vlasov-Maxwell system does not even
admit a local classical solution.

An important step of the proof of Theorem 1.5 then consists in proving that the
velocity supports of fk remain bounded by below. For this, we make crucial use of
the smallness of assumption on the electromagnetic field as well as its strong decay
rate (15)

1.8.4. The perspective of the three dimensional case. – Nevertheless, even in making
use of the null properties of the system, our proof does not work in dimension 3.
One way to treat the 3d massive case would be to use modified vector fields in the
spirit of [25] for the Vlasov-Poisson system and [27] for the Vlasov-Nordström system.
This method led to the proof of the stability of the Minkowski space for the Einstein-
Vlasov system (cf [26], [19]), providing sharp estimates on both the Vlasov field and
the metric.

1.9. Structure of the paper

In Section 2 we introduce the notations used in the paper, the commutation vector
fields and the Vlasov-Maxwell system. In Section 3 we establish various energy esti-
mates for solutions to the relativistic transport equation or the Maxwell equations.
Section 4 contains an integral estimate, some ways to estimate the v derivatives and
the tools to prove pointwise decay estimates for the electromagnetic field. Section 5

14. Note that this difficulty does not appear in the Einstein-Vlasov system. Indeed, as in [26], the
Vlasov equation can be written, for a metric g, as

vµgµν∂νf −
1

2
vµvν∂ig

µν∂vif = 0,

so these situations should be compared to the two ordinary differential equations

ẏ = 1 and ẏ = y.

15. In dimension n ≥ 4, ∥F∥L∞x ≲ (1 + t)−
3
2 is time integrable.
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is devoted to our new decay estimate for the solution of a massive relativistic trans-
port equation. In Section 6 (respectively 7), we prove the global existence and the
asymptotic properties of the small data solutions of the massive (respectively mass-
less) Vlasov-Maxwell system, which is Theorem 1.1 (respectively Theorem 1.5). In
Section 8, we prove that there exists smooth initial data which do not vanish for
small velocities and for which the massless Vlasov-Maxwell system do not admit a
local classical solution.
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CHAPTER 2

NOTATIONS AND PRELIMINARIES

2.1. Basic notations

Throughout this article we work on the n + 1 dimensional Minkowski spacetime
(Rn+1, η̃) and we consider two types of coordinates on it. The Cartesian coordi-
nates (t, x), in which η̃ = diag(−1, 1, . . . , 1), and null coordinates which are defined
by

u = t− r, u = t+ r,

and spherical variables (B,C,D, . . .) (always denoted by capital Latin letters (16))
which are spherical coordinates on the (n − 1)-dimensional spheres t, r = constant.
These coordinates are defined globally on Rn+1 apart from the usual degeneration of
spherical coordinates and at r = 0. The null derivatives L and L are defined as

L = ∂t + ∂r, L = ∂t − ∂r,

and we designate by (eB , eC , eD, . . .) an orthonormal basis on the spheres (t, r) =

constant. We will use the weights

τ2
+ = 1 + u2 and τ2

− = 1 + u2.

For a 2-form Fµν , its Hodge dual is denoted by ∗F , with

(12) ∗Fλ1···λn−1 =
1

2
Fµνεµνλ1···λn−1 ,

where ελ1···λn+1 is the Levi-Civita symbol. As in [6], we consider its null-decomposition
given by

αB(F ) = FBL, αB(F ) = FBL, ρ(F ) =
1

2
FLL, σBD(F ) = FBD.

We also associate to a 2-form F its energy-momentum tensor

T [F ]µν = FµβFν
β − 1

4
ηµνFρσF

ρσ.

We use Greek letters to denote spacetime indices and Latin letters for space indices.
The velociy vector (vβ)0≤β≤n is parametrized by (vi)1≤i≤n and v0 =

√
m2 + |v|2.

16. The letter A will be reserved for the potential of the electromagnetic.
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When we study massive particles, we often take m = 1 for simplicty so that v0 =√
1 + |v|2. On the other hand, for massless particles v0 = |v|.
We designate the null components of the velocity vector (vβ)0≤β≤n by

(vL, vL, vB , . . .), i.e.,
v = vLL+ vLL+ vBeB .

In particular,

vL =
v0 + vr

2
and vL =

v0 − vr

2
.

We now introduce several subsets of R+ × Rn depending on t ∈ R+ or u ∈ R.
Let Σt, Cu(t) and Vu(t) be defined as

Σt := {t} × Rn, Cu(t) := {(s, y) ∈ R+ × Rn/ s ≤ t, s− |y| = u}

and
Vu(t) := {(s, y) ∈ R+ × Rn/ s ≤ t, s− |y| ≤ u}.

The volum form on Cu(t) is given by dCu(t) =
√

2rn−1dudSn−1, where dSn−1 is
the standard volume form on the n− 1 dimensional unit sphere.

The sets Σt, Cu(t) and Vu(t)

Σt

Σ0

Cu(t) Vu(t)

r = 0

t

r

We will use the notation Q1 ≲ Q2 for an inequality of the form Q1 ≤ CQ2,
where C > 0 is a positive constant independent of the solutions but which could
depend on N ∈ N, the maximal order of commutation, or fixed parameters. Finally
we will raise and lower indices with respect to the Minkowski metric η̃. For instance,
Fµ

j = η̃jνFµν so that Fµ
j = Fµj for all 1 ≤ j ≤ n.

2.2. The relativistic transport operator

For m > 0, we use the notation Tm to refer to the operator defined, for all v ∈ Rn,
by

Tm = v0∂t + vi∂i,

with v0 =
√
m2 + |v|2. For the massless case (m = 0), the relativistic transport

operator T0 is only defined for all v ∈ Rn \ {0} and we have

Tm = v0∂t + vi∂i,
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with v0 = |v|.
To simplify the notation, we will most of the time take either m = 1 or m = 0 and

we will only use T1 and T0.

2.3. Vector fields

2.3.1. The conformal isometries and their complete lifts. – Let us consider the set K
composed by the generators of the isometries group of Minkowski spacetime and by
the scaling vector field. K contains

— the translations (17) ∂µ, 0 ≤ µ ≤ n,

— the rotations Ωij = xi∂j − xj∂i, 1 ≤ i < j ≤ n,

— the hyperbolic rotations Ω0k = t∂k + xk∂t, 1 ≤ k ≤ n,

— the scaling S = xµ∂µ.

Sometimes we will only use the Poincaré group P := K \ {S} or the set of the
generators of the rotation group, O (composed of the Ωij). These vector fields will be
used as commutators whereas ∂t, S and the vector field K0, defined by

K0 = K0 + ∂t =
1

2
τ2
−L+

1

2
τ2
+L,

will be used as multipliers as in [6].
These vector fields are well known to commute with the wave operator, i.e., if a

smooth function u satisfies □u = 0, then,

∀Z ∈ K, □Zu = 0.

We will use them to commute the Maxwell equations. However, as in [7], we use
another set of vector fields to study the Vlasov equation. For this, we use the complete
lift of a vector field, a classical operation in differential geometry (see [7], Appendix C
for more details). For us, the following definition in coordinates will be sufficient.

Definition 2.1. – Let Γ be a vector field of the form Γβ∂β. Then, the complete lift
Γ̂ of Γ is defined by

Γ̂ = Γβ∂β + vγ ∂Γi

∂xγ
∂vi .

We then consider P̂ the set of the complete lifts of P given by

P̂ = {Ẑ/ Z ∈ P}.

The last set of vector fields required is the following

P̂0 = P̂ ∪ {S}.

We can list the complete lifts that we will manipulate.

17. In this paper, we will denote ∂xi , for 1 ≤ i ≤ n, by ∂i and sometimes ∂t by ∂0.
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Lemma 2.2. – For 0 ≤ µ ≤ n,
∂̂µ = ∂µ.

For 1 ≤ i < j ≤ n,

Ω̂ij = xi∂j − xj∂i + vi∂vj − vj∂vi .

Finally, for 1 ≤ k ≤ n,

Ω̂0k = t∂k + xk∂t + v0∂vk .

The following lemma is used in [7] to prove a Klainerman-Sobolev inequality.

Lemma 2.3. – Let f : [0, T [ × Rn
x × P → R, with P = Rn

v or P = Rn
v \ {0}, be a

sufficiently regular function. Almost everywhere, we have

∀Z ∈ P,
∣∣∣∣Z (∫

v∈P

|f |dv
)∣∣∣∣ ≲ ∫

v∈P

|Ẑf |dv +

∫
v∈P

|f |dv,∣∣∣∣S (∫
v∈P

|f |dv
)∣∣∣∣ ≲ ∫

v∈P

|Sf |dv.

Similar estimates exist for
∫

v∈Rn(v0)k|f |dv. For instance,∣∣∣∣S (∫
v∈P

v0|f |dv
)∣∣∣∣ ≲ ∫

v∈P

v0|Sf |dv.

Remark 2.4. – When Z ∈ P is not a Lorentz boost, we have∣∣∣∣Z (∫
v∈P

|f |dv
)∣∣∣∣ ≲ ∫

v∈P

|Ẑf |dv.

We consider an ordering on each of the following sets of vector fields : O, P, K,
P̂ and P̂0. For simplicity, we introduce L which represents one of those sets. We can
suppose that

L = {Li/ 1 ≤ i ≤ |L|}.

Let β ∈ {1, . . . , |L|}r, with r ∈ N∗. Then we will denote the differential opera-
tor Zβ1 · · ·Zβr by Zβ . For a vector field Y , we will denote by LY the Lie derivative
with respect to Y and if Zγ ∈ Kq, we will write LZγ for LZγ1 · · · LZγq . We can suppose
that the orderings are such that if

P = {Zi/ 1 ≤ i ≤ |P|},

then

P̂ = {Ẑi/1 ≤ i ≤ |P|} and P̂0 = {Ẑi/1 ≤ i ≤ |P|+ 1}, with Ẑ |P|+1 = S.

Note that even if the scaling is not a complete lift, we will for simplicity denote
any vector field of P̂0 by Ẑ.

We now introduce some pointwise norms.
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2.4. WEIGHTS PRESERVED BY THE FLOW 17

Definition 2.5. – Let U be a smooth p-covariant tensor field defined in Rn or
in R1+n. For k ∈ N, the pointwise norm of U with respect to O, of order k, is defined
by

|U |O,k =

∑
|β|≤k

|LZβU |2
 1

2

,

with Zβ ∈ O|β| and where

|LZβU |2 =
∑

λ1,...,λp

|LZβ (U)λ1···λp
|2,

with LZβ (U)λ1···λp the Cartesian components of LZβ (U).

2.3.2. Commutation properties. – We have the following commutation relations :

Lemma 2.6. – Let L be either O, P, K, P̂ or P̂0. Then

∀ L,L′ ∈ L, ∃CLL′Γ ∈ R, such that [L,L′] =
∑
Γ∈L

CLL′Γ Γ.

The commutation relations between the vector fields of P̂0 and the massive trans-
port operator T1 (or the massless relativistic transport operator) are similar to those
between the vector fields of K and the wave operator.

Lemma 2.7. – We have, for m ∈ {0, 1},

∀ Ẑ ∈ P̂, [Tm, Ẑ] = 0 and [Tm, S] = Tm.

Proof. – This follows easily from Lemma 2.2 and the definition of the relativistic
transport operator.

2.4. Weights preserved by the flow

We define, as in [7], the two following sets of weights

k1 =

{
vµ

v0
/ 0 ≤ µ ≤ n

}
∪
{
xµ v

ν

v0
− xν v

µ

v0
/ µ ̸= ν

}
,

k0 = k1 ∪
{
xµ vµ

v0

}
.

These weights are solutions to the free transport equation, i.e.,

(13) ∀ z ∈ k0, T0(z) = 0,

and

(14) ∀ z ∈ k1, T1(z) = 0.

Thus, if f is a regular function and if z ∈ k1, then T1(zf) = zT1(f).
Moreover, these weights have also good interactions with the vector fields of P̂0.
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Lemma 2.8. – If Ẑ ∈ P̂0, m ∈ {0, 1} and z ∈ km, then either

Ẑ(v0z) = 0 or Ẑ(v0z) ∈ v0km.

This leads to

∀ Ẑ ∈ P̂0, z ∈ km, |Ẑ(|z|)| ≤
∑

z∈km

|z|.

Proof. – Consider for instance Ω̂01 and x1v2 − x2v1 or x2v3 − x3v2. We have

Ω̂01(x
1v2 − x2v1) = tv2 − x2v0

as well as

Ω̂01(x
2v3 − x3v2) = 0.

All the other cases are similar.

The next proposition shows how these weights can be used to provide us extra
decay (at least in the massless case).

Proposition 2.9. – Denoting xµvµ by s and xνvµ − xµvν by zµν , we have

2(t− r)vL = −x
i

r
z0i − s,

and

2(t+ r)vL =
xi

r
z0i − s.

We also have

|vB |
v0

≲
1

τ+

∑
z∈k1

|z|, |vB | ≲
√
vLvL and

m2

4v0
≤ vL.

Remark 2.10. – This result should be compared with the identities

(t− r)L = S − xi

r
Ω0i,

(t+ r)L = S +
xi

r
Ω0i,

and

reB =
∑

1≤i<j≤n

Ci,j
B Ωij ,

where Ci,j
B are bounded functions on the sphere.
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Proof. – Let us start by the first two equations. On the one hand,

(t2 − r2)v0 = −xiz0i − ts.

On the other hand,

(t2 − r2)vr = −tx
i

r
z0i − rs.

It only remains to take the sum and the difference of these two equations. For the
third one, use |vB | ≤ v0 and that rvB = Ci,j

B zij , which implies

|vB | ≲ v0

r

∑
1≤i<j≤n

|zij |

=
v0

tr

∑
1≤i<j≤n

∣∣∣∣xi

(
vj

v0
t− xj + xj

)
− xj

(
vi

v0
t− xi + xi

)∣∣∣∣ ≲ v0

t

n∑
q=1

|z0q|.

The fourth inequality ensues from rvB = Ci,j
B zij and

4r2vLvL = m2r2 + r2|v|2 − |xi|2|vi|2 − 2
∑

1≤k<l≤n

xkxlvkvl

= m2r2 +
∑

1≤k<l≤n

|zkl|2,

since v0 =
√
m2 + |v|2. Finally, using the Cauchy-Schwarz inequality,

2vL = v0 − xi

r
vi ≥

m2

v0 + |v|
≥ m2

2v0
.

As for the sets of vector fields, we consider an ordering on k0 with xµ vµ

v0 being
the last weight. It then gives an ordering on k1 too. If k0 = {zi/ 1 ≤ i ≤ |k0|} and
β ∈ {1, . . . , |k0|}r with r ∈ N∗, we denote zβ1 · · · zβr by zβ .

2.5. Decay estimates

2.5.1. Norms. – With the vector field method, the pointwise decay estimates are
obtained through weighted Sobolev inequalities. In view of the above definitions of
the vector fields and weights, we are naturally brought to define the following weighted
L1 and L2 norms.

Definition 2.11. – Let u : [0, T [ × Rn → R be a smooth function. For k ∈ N, we
define for all t ∈ [0, T [,

∥u∥K,k(t) :=

n∑
µ=0

∑
|β|≤k

∥∂µZ
βu(t, .)∥L2(Rn),

with Zβ ∈ K|β|.
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Let f : [0, T [× Rn
x × P → R be a smooth function, with P = Rn

v or P = Rn
v \ {0}.

For k ∈ N, we define for all t ∈ [0, T [,

∥f∥P̂0,k(t) :=
∑
|β|≤k

∥Ẑβf(t, ., .)∥L1
x,v
,

with Ẑβ ∈ P̂|β|0 .
We also define, for q ∈ N and m ∈ {0, 1},

∥f∥P̂0,k,q,m(t) :=
∑
|β|≤k

∑
|γ|≤q

∥zγẐβf(t, ., .)∥L1
x,v
,

with Ẑβ ∈ P̂|β|0 and zγ ∈ k
|γ|
m .

Note that ∥u∥K,0 corresponds to the energy
∑n

µ=0 ∥∂µu∥L2(Rn).

2.5.2. Decay estimates for the velocity averages. – Recall the Klainerman-Sobolev in-
equality (see [28], Chapter II). For u a sufficiently regular function such that for all
t ∈ [0, T [, ∥u∥K, n+2

2
(t) < +∞, we have

(15) ∀ (t, x) ∈ [0, T [× Rn, |∇t,xu(t, x)| ≲
∥u∥K, n+2

2
(t)

(1 + t+ |x|)n−1
2 (1 + |t− |x||) 1

2

.

In particular, if □u = 0 then ∥u∥K, n+2
2

is constant, as □Zβu = 0 for all Zβ ∈ K|β|.
It gives us a decay estimate for ∇t,xu.

However if f is a solution to a relativistic transport equation, we cannot expect
decay on ∥f∥L∞x,v

(even for the free transport equation T1(f) = 0 or T0(f) = 0). It is
only the velocity averages of f , such as

∫
v
fdv, that decay. For instance, we have the

following classical estimate.

Lemma 2.12. – Let f be the solution of T1(f) = 0 which satisfies f(0, ., .) = f0, with
f0 a smooth function compactly supported in v. Then, if R is such that f0(., v) = 0

for all |v| ≥ R,

∀ (t, x) ∈ R+ × Rn,

∫
v∈Rn

|f(t, x, v)|dv ≤
√

1 +R2
n+2

tn
∥f0∥L1

xL∞v
.

Proof. – We fix (t, x) ∈ R+ × Rn. By the method of characteristics, we obtain that

∀v ∈ Rn, f(t, x, v) = f0

(
x− v

v0
t, v
)
.

We now use the change of variables y = v
v0 . Then,∫

v∈Rn

|f(t, x, v)|dv =

∫
|y|<1

|f0(x− ty,
y√

1− |y|2
)| 1√

1− |y|2
n+2 dy.

Using the hypothesis on the support of f0, we have∫
v∈Rn

|f(t, x, v)|dv ≤
√

1 +R2
n+2

∫
|y|< R√

1+R2

∥f0(x− ty, .)∥L∞v
dy.
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A last change of variables (z = x− ty) gives the result.

2.5.3. Klainerman-Sobolev inequalities for velocity averages. – As we can expect decay
on the velocity average of a solution of a relativistic transport equation (and not on
the solution itself), we will then use the following Klainerman-Sobolev inequalities.

Theorem 2.13. – Let T > 0 and f be a smooth function defined on [0, T [×Rn
x ×Rn

v

or [0, T [× Rn
x × (Rn

v \ {0}). Then

∀ (t, x) ∈ [0, T [× Rn,

∫
v∈Rn

|f(t, x, v)|dv ≲
∥f∥P̂0,n(t)

τn−1
+ τ−

.

A proof of this inequality can be found in [7] (see Theorem 7). We then deduce the
following result.

Corollary 2.14. – Let T > 0, q ∈ N, m ∈ {0, 1} and f be a smooth function defined
on [0, T [× Rn

x × Rn
v or [0, T [× Rn

x × (Rn
v \ {0}). Then

∀ |γ| ≤ q, (t, x) ∈ [0, T [× Rn,

∫
v∈Rn

|zγf(t, x, v)|dv ≲
∥f∥P̂0,n,q,m(t)

τn−1
+ τ−

,

with zγ ∈ k
|γ|
m .

Proof. – Let |β| ≤ n, |γ| ≤ q, Ẑβ ∈ P̂|β|0 and zγ ∈ k
|γ|
m . By Lemma 2.8, we have

(16) |Ẑβ(zγf)| ≲
∑

|β0|≤|β|

∑
|γ0|≤|γ|

|wγ0 Γ̂β0f |,

with wγ0 ∈ k
|γ0|
m and Γ̂β0 ∈ P̂|β0|

0 . It only remains to apply Theorem 2.13.

Remark 2.15. – All the results of this section are true if we add a v0-weight (we can
for instance study

∫
v∈Rn(v0)k|f |dv, for k ∈ Z). We just need to modify the norms in

the same way. For instance,

∀ (t, x) ∈ [0, T [× Rn,

∫
v∈Rn

(v0)k|f |dv ≲

∑
|β|≤n ∥(v0)kẐβf(t, ., .)∥L1

x,v

τn−1
+ τ−

.

2.6. The Vlasov-Maxwell system

2.6.1. Presentation. – In order to introduce the Vlasov-Maxwell system, we abusively
use the notation

∇vf =


0
∂f
∂v1

...
∂f
∂vn

 .
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For a sufficiently regular function f , we recall that

(J(f)ν)0≤ν≤n =


∫

v
fdv∫

v
f v1

v0 dv
...∫

v
f vn

v0 dv

 ,

with v0 =
√
m2 + |v|2, where the mass m depends on the species considered.

Let K ∈ N∗. The equation (1) of the Vlasov-Maxwell system, for the species k, can
be rewritten as

(17) Tmk
(fk) + ekF (v,∇vfk) = 0.

Note that the initial data needs to satisfy

∇i(F0)i0 = ekJ(f0k)0 and ∇i(∗F0)iα1···αn−30 = 0.

It is well known that in 3d the electric field and the magnetic field are solutions
to a wave equation. In dimension n and in the context of the Vlasov-Maxwell system
(and more precisely, with Equations (2) and (3)), we have

(18) ∀1 ≤ i ≤ n, □Ei =

K∑
k=1

ek

∫
v∈Rn

∂ifk +
vi√

m2
k + |v|2

∂tfkdv,

with Ei = F0i, and (18)

(19) ∀1 ≤ i < j ≤ n, □Fij =

K∑
k=1

ek

∫
v∈Rn

vj√
m2

k + |v|2
∂ifk −

vi√
m2

k + |v|2
∂jfkdv.

We end this subsection by the following proposition, which gives an alternative
form of the Maxwell equation.

Proposition 2.16. – The Maxwell equations{
∇µGµν = Mν

∇µ∗Gµα1···αn−2
= 0,

for a 2-form G and a 1-form M , are equivalent to
∇[λGµν] = 0

∇[λ
∗Gα1···αn−1] = (−1)n+1 (n− 1)!

2
ελα1···αn

Mαn .

18. In dimension n > 3, the magnetic field is a 2-form defined by Bij = −Fij but we make the
choice to work with Fij .
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Proof. – That ensues from straightforward calculations. Let us consider the equation
∇iGi0 = M0. For 1 ≤ i ≤ n, we denote by (mi

j)1≤j≤n−1 the n−1 integers of 1, n\{i}
ranked in ascending order. We have, without any summation,

∗Gmi
1···mi

n−1
= G0iε0imi

1···mi
n−1

= Gi0εimi
1···mi

n−1
.

Hence,

∇iGi0 =

n∑
i=1

εimi
1···mi

n−1
∇i∗Gmi

1···mi
n−1

=
2

(n− 1)!
∇[1

∗G2···n].

It only remains to remark that

M0 = (−1)n+1ε1···n0M
0.

For the equation ∇µ∗Gµ3···n = 0, we note that
∗G03···n = G12,

∗G13···n = G02,
∗G2···n = G10.

So
∇µ∗Gµ3···n = ∇0G21 +∇1G02 +∇2G10.

We then obtain that
∇[0G12] = 0.

The remaining equations can be treated similarly.

For the remaining of this section, we consider the maximal smooth solution
(f := (f1, . . . , fK), F ) to the Vlasov-Maxwell system, defined on [0, T [, arising from
initial data (f0, F0), so that f is a vector valued field (f1, . . . , fK). However, to lighten
the notations, we will often denote (by a small abuse of notation) by f only one of
the fi and we will suppose, without loss of generality for the results establish below,
that the charge of the species associated to f is equal to 1.

2.6.2. The electromagnetic potential. – In order to establish energy estimates for the
electromagnetic field, it is useful to introduce a potential in the Lorenz gauge.

Definition 2.17. – A 1-form A is said to be a potential of the electromagnetic field F
if

F = dA or, in coordinates, Fµν = ∂µAν − ∂νAµ.

A satisfies the Lorenz gauge condition if moreover

∂µAµ = 0.

Every electromagnetic field F defined on Rn+1, which is contractible, has a po-
tential since dF = 0. Furthermore, if A is a potential then, for χ a regular function,
A+ dχ is also a potential. In particular, if A is a potential and χ solves

□χ = −∂µAµ,

then A+ dχ is a new potential satisfying the Lorenz gauge. The following lemma will
be useful to study the derivatives of F in the Lorenz gauge.
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Lemma 2.18. – If A is a potential satisfying the Lorenz gauge for an electromagnetic
field G, i.e.,

dA = G and ∂µAµ = 0,

then, for all Z ∈ K,

dLZ(A) = LZG and ∂µLZ(A)µ = 0.

Let us mention the wave equation satisfied by the potential in the Lorenz gauge.

Proposition 2.19. – Let (f, F ) be a solution to the Vlasov-Maxwell system and A
be a potential of the electromagnetic field F which satisfies the Lorenz gauge. Then,
for all Zβ ∈ K|β| and 0 ≤ µ ≤ n, there exists constants Cµ

γ such that

□LZβAµ =
∑
|γ|≤|β|

Cµ
γ e

k

∫
v∈Rn

vµ

v0
Ẑγfkdv,

with Ẑγ ∈ P̂|γ|0 .

Proof. – As
Fµν = ∂µAν − ∂νAµ and ∂µAµ = 0,

we have for 0 ≤ ν ≤ n

∂µ∂µAν = ∇µFµν .

It remains to apply this to LZβA (see Lemma 2.18) and to use Proposition 2.30
below.

The following proposition shows how we can construct a potential in the Lorenz
gauge which is initially controled by the energy (at the time 0) of the electromagnetic
field.

Proposition 2.20. – We suppose here that n ≥ 4. Let N ∈ N and let F be a closed
2-form such that all the norms considered below are finite and F (0, .) ∈ L2(Rn). Then,
there exists a potential A in the Lorenz gauge such that, for all |β| ≤ N ,

∥LZβA∥L2(Rn)(0) ≲
∑

|γ|≤N−1
1≤i≤n

∥(1 + |x|)|γ|+1∂γF0i(0, .)∥L2(Rn)

+
∑
|γ|≤N
1≤i≤n

(
∥(1 + |x|)|γ|∂γ∂jFji(0, .)∥L2

x
+ ∥(1 + |x|)|γ|+1∂γ∂jFji(0, .)∥L1

x

)
,

with Zβ ∈ K|β|.

We start by a technical lemma.
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Lemma 2.21. – Let G such that

∥(1 + |x|)G∥L1(Rn) + ∥G∥L2(Rn) < +∞ and
∫
Rn

Gdx = 0.

Then, denoting by F the Fourier transform (in x),∥∥∥∥F−1

(
−1

|ξ|2
F(G)

)∥∥∥∥
L2(Rn)

≲ ∥(1 + |x|)G∥L1(Rn) + ∥G∥L2(Rn).

Proof. – We have∥∥∥∥F−1

(
−1

|ξ|2
F(G)

)∥∥∥∥
L2(Rn)

=

∥∥∥∥ 1

|ξ|2
F(G)

∥∥∥∥
L2(Rn)

≲ ∥F(G)∥L2(|ξ|≥1) +

∥∥∥∥ 1

|ξ|4
F(G)2

∥∥∥∥ 1
2

L1(|ξ|≤1)

.

Note now that ∥F(G)∥L2(|ξ|≥1) ≤ ∥G∥L2(Rn). Finally, as ∥(1 + |x|)G∥L1(Rn) is finite,
F(G) is of class C1 and vanishes at 0, so, using the mean value theorem,∥∥∥∥F(G)

|ξ|4

∥∥∥∥ 1
2

L1(|ξ|≤1)

≲ ∥∇ξF(G)∥L∞ξ

∥∥∥∥ 1

|ξ|3

∥∥∥∥ 1
2

L1(|ξ|≤1)

≲ ∥|x|G∥L1(Rn),

since ∥F (g)∥L∞ξ
≤ ∥g∥L1

x
for any L1 function g.

The first step of the construction of the suitable potential is contained in the
following lemma.

Lemma 2.22. – There exists a potential A of the electromagnetic field F satisfying
the Lorenz gauge and such that

A0(0, .) = 0, ∂tA0(0, .) = 0,

and

∀1 ≤ k ≤ n, ∥Ak∥H2(Rn)(0) ≤ ∥∂jFjk(0, .)∥L2
x

+ ∥(1 + |x|)∂jFjk(0, .)∥L1
x
.

This implies in particular that

(20) ∀ 1 ≤ k ≤ n, ∂tAk(0, .) = F0k(0, .) and ∆Ak(0, .) = ∂iFik(0, .).

Proof. – Suppose that A exists. As ∂tA0(0.) = 0 and ∂µAµ = 0, we have ∂iAi(0.) = 0.
Combined with ∂µAν − ∂νAµ = Fµν and A0(0, .) = 0, we get that at t = 0,

(21) ∀ 1 ≤ k ≤ n, ∂tAk = F0k and ∆Ak = ∂iFik.

Moreover, recall from the proof of Proposition 2.19 that

(22) ∀0 ≤ ν ≤ n, □Aν = ∇µFµν .
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We then define Aν as the solution of the wave Equation (22) such that A0(0, .) = 0,
∂tA0(0, .) = 0 and, for all 1 ≤ k ≤ n,

∂tAk(0, .) = F0k(0, .) and Ak(0, .) = F−1

(
−1

|ξ|2
F(∂jFjk)

)
(0, .).

Consequently, according to Lemma 2.21, ∆Ak(0, .) = ∂jFjk and

∥Ak∥L2(Rn)(0) ≤ ∥∂jFjk(0, .)∥L2
x

+ ∥(1 + |x|)∂jFjk(0, .)∥L1
x
.

From classical elliptic equations theory, we have

∥∇2Ak∥L2(Rn) = ∥∂jFjk∥L2(Rn)

and

∇Ak ∈ L2(Rn), with ∥∇Ak∥L2(Rn) ≲ ∥Ak∥L2(Rn) + ∥∇2Ak∥L2(Rn),

which concludes the proof.

Proof of Proposition 2.20. – We consider the potential A constructed in Lemma 2.22.
In what follows, we omit to specify that all the quantities are considered at t = 0.
Since, for instance,

∀ 1 ≤ i, j ≤ n, Ω0iΩ0jA = xi∂jA+ xixj∂t∂tA,

we have (and it is sufficient) to estimate ∥xβ∂γ
t,xA∥L2(Rn), with |β| ≤ |γ| ≤ N , in order

to control ∥LZξA∥L2(Rn)(0) for all Zξ ∈ K|ξ|, with |ξ| ≤ N . Note that, as ∂µAµ = 0,

∥xβ∂γ
t,x∂tA0∥L2(Rn) ≤

n∑
k=1

∥xβ∂γ
t,x∂kAk∥L2(Rn),

so that, since A0 = 0, we only have to bound ∥xβ∂γ
t,xAk∥L2(Rn), for all 1 ≤ k ≤ n.

Let 1 ≤ k ≤ n, |γ| ≤ N − 1 and |β| ≤ |γ| + 1. Then, since ∂tAk = F0k (see
Lemma 2.22),

xβ∂γ
t,x∂tAk = xβ∂γ

t,xF0k, so ∥xβ∂γ
t,x∂tAk∥L2

x
≲ ∥(1 + |x|)|γ|+1∂γF0k∥L2

x
.

The remaining case, where there are only spatial translations, is treated in the
following lemma.

Lemma 2.23. – For all 1 ≤ k ≤ n, |γ| ≤ N and |β| ≤ |γ|,

∥xβ∂γAk∥L2(Rn) ≲
∑

|β0|≤|γ0|≤N

∥xβ0∂γ0∂jFjk∥L2
x

+ ∥(1 + |x|)xβ0∂γ0∂jFjk∥L1
x
,

where γ, β ∈ Nn, xβ = xβ1

1 · · ·xβn
n and ∂γ = ∂γ1

1 · · · ∂γn
n , so there are no time deriva-

tives.
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Proof. – We fix 1 ≤ k ≤ n and we proceed by induction on |β|. As ∆Ak = ∂jFjk, we
have, for all |γ| ≤ N − 2,

∀ 1 ≤ k ≤ n, ∆∂γAk = ∂γ∂jFjk

So, by classical elliptic equations theory,

∀ |γ| ≤ N − 2, ∥∇2∂γAk∥L2(Rn) = ∥∂γ∂jFjk∥L2(Rn),

implying the result for |β| = 0 (the case of the lower order derivatives is treated in
Lemma 2.22).

Let 1 ≤ |β| ≤ N . We suppose that for all |δ| ≤ |γ| ≤ N and |δ| ≤ |β| − 1,

∥xδ∂γAk∥L2(Rn) ≲
∑

|β0|≤|γ0|≤N

∥xβ0∂γ0∂jFjk∥L2
x

+ ∥(1 + |x|)xβ0∂γ0∂jFjk∥L1
x
.

Let γ be a multi-index such that |β| ≤ |γ| ≤ N . We have

(23) ∆xβ∂γAk = ∆(xβ)∂γAk + 2∂j(x
β)∂j∂γAk + xβ∂γ∂jFjk.

The first two terms of the right hand side are equal to zero or can be rewritten as a
linear combination of terms like

(24) ∂γ2(xδ∂γ1Ak),

with |γ2| = 2, |γ1| ≤ |γ| − 1 and |δ| ≤ |γ1|. For instance,

2∂j(x
q
1)∂

j∂q
2Ak = 2q∂1∂2(x

q−1
1 ∂q−1

2 Ak)− 2q(q − 1)∂2
2(xq−2

1 ∂q−2
2 Ak).

Let B be the right hand side of (23) and G = xβ∂γ∂jFjk. G satisfies the hypothesis
of Lemma 2.21 and B−G is a linear combination of terms such as (24), which implies∥∥∥∥F−1

(
−1

|ξ|2
F(B −G)

)∥∥∥∥
L2(Rn)

≲
∑

|γ1|≤|γ|−1
|δ|≤|γ1|

∥xδ∂γ1Ak∥L2(Rn).

So we only have to prove that

(25) xβ∂γAk = F−1

(
−1

|ξ|2
F(B)

)
,

or (it is equivalent) that xβ∂γAk is the L2 solution of ∆φ = B. Recall that the
difference of two solutions of this equation is an harmonic polynomial, so that there
exists exactly one L2 solution, given by the right hand side of (25). Consequently,
there exists Qk,β,γ ∈ L2(Rn) and Pk,β,γ an harmonic polynomial function such that

xβ∂γAk = Qk,β,γ + Pk,β,γ .

By the induction hypothesis, xδ∂γAk ∈ L2(Rn) for all |δ| = |β| − 1, so

Pk,β,γ

1 + |x|
=

xβ

1 + |x|
∂γAk −

1

1 + |x|
Qk,β,γ ∈ L2(Rn).

As the dimension is n ≥ 4 > 1, Pk,β,γ is necessarily zero.

If the dimension n is at least 5, we can do better.
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Proposition 2.24. – We suppose here that n ≥ 5. Let N ∈ N and let F be a 2-form
such that all the norms considered below are finite. There exists a potential in the
Lorenz gauge such that, for all |β| ≤ N ,

∥LZβA∥L2(Rn)(0) ≲
∑

|γ|≤N−1
1≤i≤n

∥(1 + |x|)|γ|+1∂γF0i(0, .)∥L2(Rn)

+
∑
|γ|≤N
1≤i≤n

(
∥(1 + |x|)|γ|∂γ∂jFji(0, .)∥L2(Rn)+∥(1 + |x|)|γ|∂γ∂jFji(0, .)∥L1(Rn)

)
,

with Zβ ∈ K|β|.

Proof. – The proof is similar to the previous one. The difference comes from the fact
ξ 7→ 1

|ξ|4 is integrable around 0 in Rn, with n ≥ 5, which allows us to lower the
hypothesis of Lemma 2.21.

2.6.3. Commutation properties

Commutation of the transport equation. – We fix the mass m ∈ R+ and we denote
by TF the operator (19)

TF : g 7→ Tm(g) + F (v,∇vg),

so that TF (f) = 0. We are now interested by the nature of the source terms of the
equation TF (Ẑf) = G.

Lemma 2.25. – If Ẑ ∈ P̂, then

TF (Ẑf) = −LZ(F )(v,∇vf).

For the scaling, we have

TF (Sf) = 2F (v,∇vf)− LS(F )(v,∇vf).

Proof. – First of all, let us consider the scaling. According to Lemma 2.7,

Tm(Sf) = −S(F (v,∇vf)) + Tm(f).

But,

S(F (v,∇vf)) = LS(F )(v,∇vf) + F ([S, v],∇vf) + F (v, [S,∇vf ]).

Since
[S, v] = −v and [S,∇vf ] = ∇vS(f)−∇vf,

we obtain
TF (Sf) = 2F (v,∇vf)− LS(F )(v,∇vf).

Now, let Ẑ ∈ P̂ and consider Zv = Ẑ − Z. According to Lemma 2.7,

Tm(Ẑf) = −Z(F (v,∇vf))− Zv(F (v,∇vf)).

19. Note that if the charge e of the species considered is not equal to 1, one just has to consider
TeF (in other words, one just has to replace F by eF ).
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On the one hand, we have

Zv(F (v,∇vf)) = F (Zv(v),∇vf) + F (v, Zv(∇vf)).

On the other hand we have

Z(F (v,∇vf)) = LZ(F )(v,∇vf) + F ([Z, v],∇vf) + F (v, [Z,∇vf ]).

As [Z, v] = −Zv(v), F (Zv(v),∇vf) and F ([Z, v],∇vf) cancel.
If Ẑ is a translation (we denote it by ∂), then Zv = 0 and [Z,∇vf ] = ∇v∂(f). Thus

TF (∂f) = −L∂(F )(v,∇vf).

If Ẑ = Ω̂ij , then

Zv(∇vf) = ∇vZv(f) + ∂vif∂j − ∂vjf∂i

and
[Z,∇vf ] = ∇vZ(f)− ∂vif∂j + ∂vjf∂i.

Therefore
TF (Ω̂ijf) = −LΩij

(F )(v,∇vf).

Finally, if Ẑ = Ω̂0i, then

Zv(∇vf) = ∇vZv(f)− ∂vif
vk

v0
∂k and [Z,∇vf ] = ∇vZ(f)− ∂vif∂0.

We obtain that

TF (Ω̂0if) = −LΩ0i
(F )(v,∇vf) +

∂vif

v0
F (v, v).

It remains to remark that F (v, v) = 0 for all v ∈ Rn, as F is a 2-form.

Iterating the above, one obtains

Corollary 2.26. – If β ∈ {1, . . . , |P̂0|}r, with r ≥ 0, there exist integers Cβ
γ,δ such

that
TF (Ẑβf) =

∑
|γ|+|δ|≤r
|δ|≤r−1

Cβ
γ,δLZγ (F )(v,∇vẐ

δ(f)),

with Ẑβ ∈ P̂r
0, Ẑδ ∈ P̂|δ|0 and Zγ ∈ K|γ|.

Remark 2.27. – If there is a source term G (such that TF (f) = G), then we need to
add a linear combination of terms such as Ẑ β̃G, with |β̃| ≤ r, on the right hand side.
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Commutation of the Maxwell equations. – Before studying specifically the Vlasov-
Maxwell system, we recall the following general result.

Proposition 2.28. – Let Mν be a smooth 1-form and Gµν a 2-form satisfying{
∇µGµν = Mν

∇µ∗Gµα1···αn−2
= 0.

Then, for all Z ∈ P, {
∇µLZ(G)µν = LZ(M)ν

∇µ∗LZ(G)µα1···αn−2 = 0.

For the scaling, we have{
∇µLS(G)µν = LS(M)ν + 2Mν

∇µ∗LS(G)µα1···αn−2 = 0.

In the Vlasov-Maxwell system, the source term is ekJ(fk)ν (see (2)), with

(J(fk)ν)0≤ν≤3 =


∫

v
fkdv∫

v
fk

v1

v0 dv
...∫

v
fk

vn

v0 dv

 ,

so we need to compute LZ(J(f)), with Z ∈ K and f a regular function.

Proposition 2.29. – For all Z ∈ P,

LZ(J(f)ν) = J(Ẑf)ν .

For the scaling, we have

LS(J(f)ν) = J(Sf)ν + J(f)ν .

Proof. – Let Z ∈ K,

LZJ(f)ν = ZJ(f)ν + J(f)µ
∂Zµ

∂xν
.

So
L∂J(f) = J(∂f), LSJ(f) = J(Sf) + J(f).

If Z is a Lorentz boost, say x1∂t + t∂1, then, as∫
v

v0∂v1fdv = −
∫

v

f
v1

v0
dv = −J(f)1,∫

v

v0 v
i

v0
∂v1fdv = −δ1,i

∫
v

fdv = δ1,iJ(f)0

and

J(f)µ
Ωµ

01

∂xν
= J(f)1δν,0 + J(f)0δν,1,
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we obtain that
LΩ01

J(f) = J(Ω̂01f).

The case where Z is a rotation is similar.

Iterating the above, we obtain the following proposition.

Proposition 2.30. – Let (f, F ) be a smooth solution of the Vlasov-Maxwell system.
For all β ∈ {1, . . . , |K|}r, with r ∈ N, there exist integers Cβ

γ such that

∇µLZβ (F )µν = ekJ(Ẑβfk)ν +
∑

|γ|≤|β|−1

Cβ
γ e

kJ(Ẑγfk)ν ,

∇µ∗LZβ (F )µα1···αn−2
= 0,

with Zβ ∈ Kr and Ẑγ ∈ P̂|γ|0 .
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CHAPTER 3

ENERGY ESTIMATES FOR THE VLASOV-MAXWELL SYSTEM

For all this section, we consider a sufficiently regular solution (f, F ), on [0, T [, to
the Vlasov-Maxwell system arising from smooth initial data (f0, F0).

3.1. Energy estimates for the transport equation

We treat here the massless and the massive case together. As the set {v = 0} is
of measure zero, we write

∫
v∈Rn hdv, or merely

∫
v
hdv, even when the function h is

not defined for v = 0. We start by introducing the vector field Nµ(g) defined by, for
a function g : [0, T [× Rn

x × Rn
v → R,

Nµ(g) :=

∫
v∈Rn

gvµ dv

v0
.

We have the following energy estimates.

Proposition 3.1. – Let g and H be two smooth functions defined on [0, T [× Rn
x×Rn

v

such that TF (g) = H and k ∈ Z. Then, for all t ∈ [0, T [,∫
Σt

∫
Rn

v

|g|dvdx+
√

2 sup
u≤t

∫
Cu(t)

∫
Rn

v

|g|v
L

v0
dvdCu(t)

≤ 2

∫
Σ0

∫
Rn

v

|g|dvdx+ 2

∫ t

0

∫
Σs

∫
Rn

v

|H|dv
v0
dxds.

Proof. – First, let us compute the (euclidian) divergence of Nµ(|g|). Start by noticing
that, in W 1,1,

Tm(|g|) = vµ∂µ|g| =
g

|g|
H − F (v,∇v|g|).

By integrations by parts and using Fjj = 0 as well as vivjFij = 0 (recall that F is
a 2-form), we have∫

v

F (v,∇v|g|)
dv

v0
=

∫
v

vµ

v0
Fµ

j∂vj |g|dv =

∫
v

vivj

(v0)3
Fij |g|dv = 0.
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Consequently,

(26) ∂µN
µ(|g|) =

∫
v∈Rn

(
g

|g|
H − F (v,∇v|g|)

)
dv

v0
=

∫
v∈Rn

g

|g|
H
dv

v0
.

We now apply the divergence theorem to Nµ(|g|) in several region. Applied to [0, t]×
Rn, it gives ∫

Σt

∫
v

|g|dvdx ≤
∫

Σ0

∫
v

|g|dvdx+

∫ t

0

∫
Σs

∫
v

|H|dv
v0
dxds.

Applied to Vu(t) and using that 1√
2
(∂t − ∂r) is the outward pointing unit normal

field to Cu(t), it gives
√

2

∫
Cu(t)

∫
v∈Rn

|g|v
L

v0
dvdCu(t) ≤

∫
Σ0

∫
v

|g|dvdx+

∫ t

0

∫
Σs

∫
v

|H|dv
v0
dxds.

The estimate then ensues from the combination of the two inequalities.

This estimate invites us to consider the following energies.

Definition 3.2. – For N ∈ N and k ∈ Z, we define, for g a sufficiently regular
function,

Ek
N [g](t) =

∑
Ẑβ∈P̂|β|0

|β|≤N

∥(v0)kẐβg∥L1
x,v

(t) + sup
u∈R

∫
Cu(t)

∫
Rn

|Ẑβg|(v0)k v
L

v0
dvdCu(t).

We also need the following norms. For q ∈ N and m ∈ {0, 1},

Ek
N,q,m[g](t) =

∑
Ẑβ∈P̂|β|0

|β|≤N

∑
zγ∈k|γ|m

|γ|≤q

∥(v0)kzγẐβg∥L1
x,v

(t)

+
∑

Ẑβ∈P̂|β|0

|β|≤N

∑
zγ∈k|γ|m

|γ|≤q

sup
u∈R

∫
Cu(t)

∫
v∈Rn

|zγẐβg|v
L

v0
(v0)kdvdCu(t).

When k = 0, we drop the dependance in k of the energy norm. For instance,
E0

N [g] is denoted by EN [g].

The following energy estimates hold.

Proposition 3.3. – Let g and H be such that TF (g) = H. Then, assuming that g
and H are sufficiently regular, we have for all N ∈ N and for all t ∈ [0, T [,

EN [g](t)− 2EN [g](0) ≲
∑
|β|≤N

∫ t

0

∥∥∥∥ 1

v0
ẐβH

∥∥∥∥
L1

x,v

(s)ds

+
∑

|γ|+|δ|≤N
|δ|≤N−1

∫ t

0

∥∥∥LZγ (F )
( v
v0
,∇vẐ

δ(g)
)∥∥∥

L1
x,v

(s)ds
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and

E2
N [g](t)− 2E2

N [g](0) ≲
∑
|β|≤N

∫ t

0

∥v0ẐβH∥L1
x,v

(s) + ∥viFi0Ẑ
βg∥L1

x,v
(s)ds

+
∑

|γ|+|δ|≤N
|δ|≤N−1

∫ t

0

∥LZγ (F )(v,∇vẐ
δ(g))v0∥L1

x,v
(s)ds,

with Ẑδ ∈ P̂|δ|0 , Ẑβ ∈ P̂|β|0 and Zγ ∈ K|γ|.

Proof. – The first estimate follows from Corollary 2.26, Remark 2.27 and Proposi-
tion 3.1, applied to Ẑβg for |β| ≤ N . For the second one, apply the same results
to (v0)2Ẑβg and note that

TF

(
(v0)2

)
= F

(
v,∇v(v0)2

)
= 2vµviFµi = −2vµv0Fµ0 = −2viv0Fi0.

Remark 3.4. – Assuming enough decay on the data, similar inequalities holds
for Ek

N [g].

We also have an energy estimates which implies the weights transported by the
flow.

Proposition 3.5. – Let g and H be two sufficiently regular functions such
that TF (g) = H. For all N ∈ N, m ∈ {0, 1} and t ∈ [0, T [, we have

EN,1,m[g](t)− 2EN,1,m[g](0) ≲
∑

z∈km

∑
|β|≤N

∫ t

0

∥∥∥ z
v0
ẐβH

∥∥∥
L1

x,v

(s)ds

+
∑

z∈km

∑
|β|≤N

∫ t

0

∥∥∥F ( v
v0
,∇vz

)
Ẑβg

∥∥∥
L1

x,v

(s)ds

+
∑

z∈km

∑
|γ|+|δ|≤N
|δ|≤N−1

∫ t

0

∥∥∥zLZγ (F )
( v
v0
,∇vẐ

δg
)∥∥∥

L1
x,v

(s)ds

and

E2
N,1,m[g](t)− 2E2

N,1,m[g](0) ≲
∑

z∈km

∑
|β|≤N

∫ t

0

∥∥∥v0zẐβH
∥∥∥

L1
x,v

(s)ds

+
∑

z∈km

∑
|β|≤N

∫ t

0

∥zviFi0Ẑ
βg∥L1

x,v
(s)+∥v0F (v,∇vz)Ẑ

βg∥L1
x,v

(s)ds

+
∑

z∈km

∑
|γ|+|δ|≤N
|δ|≤N−1

∫ t

0

∥v0zLZγ (F )(v,∇vẐ
δg)∥L1

x,v
(s)ds,

with Ẑδ ∈ P̂|δ|0 , Ẑβ ∈ P̂|β|0 and Zγ ∈ K|γ|.
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Proof. – Note that, for z ∈ km and according to Equations (13) and (14),

TF

(
zẐβg

)
= zTF

(
Ẑβg

)
+ TF (z)Ẑβg = zTF

(
Ẑβg

)
+ F (v,∇vz)Ẑ

βg.

The remaining of the proof is then similar to the one of Proposition 3.3.

3.2. Energy estimates for the wave equation

Recall that a potential A in the Lorenz gauge satisfies the wave Equation 8. In
order to bound its L2 norm, we recall here a classical energy estimates for the wave
equation using the vector field K0. We mostly follow [28], Chapter II.

During this subsection, we consider u : [0, T [ × Rn → R a smooth function such
that

∥u∥L2(Rn)(0) +
∑
Z∈K

∥Zu∥L2(Rn)(0) < +∞.

We also introduce its energy momentum tensor

Tµν [u] = ∂µu∂νu−
1

2
ηµνη

σρ∂σu∂ρu.

Since K0 is merely a conformal Killing vector field and as Tµν [u] is not traceless,
Tµν [u]K

ν

0 is not divergence free when □u = 0. In fact

∇µ(Tµν [u]K
ν

0) = □uK0u+
1

2
Tµν [u]πµν ,

with
πµν = ∂µK

ν

0 + ∂νK
µ

0 .

Since K0 is a conformal vector field of conformal factor 4t, πµν = 4tηµν . So

∇µ(Tµν [u]K
ν

0) = □uK0u+ (1− n)t∂µu∂µu.

The equality

t∂µu∂µu = ∂µ(tu∂µu)− ∂µ(t)u∂µu− tu□u = ∂µ

(
tu∂µu−

1

2
u2∂µt

)
− tu□u,

suggests us to introduce the 1-form

Pµ = Tµν [u]K
ν

0 + (n− 1)tu∂µu−
n− 1

2
u2∂µt.

Applying the divergence theorem on [0, t]× Rn to Tµ0[u] and Pµ, we obtain

Proposition 3.6. – ∀ t ∈ [0, T [,
n∑

µ=0

∥∂µu∥L2(Σt) ≤
n∑

µ=0

∥∂µu∥L2(Σ0) +

∫ t

0

∫
Σs

|□u|dΣsds

and ∫
Σt

P0dΣt ≤
∫

Σ0

P0dΣ0 +

∫ t

0

∫
Σs

|□u||K0u+ (n− 1)tu|dΣsds.
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The first thing to verify is that
∫
Σt
P0dΣt can be compared with the L2 norm of u

(and of its derivatives).

Proposition 3.7. – We suppose that n ≥ 3. We have, for all t ∈ [0, T [,∑
|β|≤1

∥Zβu∥2L2(Rn)(t) ≲
∫

Σt

P0dΣt ≲
∑
|β|≤1

∥Zβu∥2L2(Rn)(t).

Proof. – Let us first remark that

P0 =
1

2
(1 + |x|2 + t2)|∇t,xu|2 + 2txi∂iu∂tu+ (n− 1)tu∂tu−

n− 1

2
u2.

Moreover,

(1 + |x|2 + t2)|∇t,xu|2 + 4txi∂iu∂tu = |∇t,xu|2 + |Su|2 +
∑

0≤µ<ν≤n

|Ωµνu|2

together with∫
Rn

2tu∂tudx =

∫
Rn

2uSu− xi∂i(u
2)dx =

∫
Rn

2uSu+ nu2dx(27)

gives ∫
Σt

P0dΣt =
1

2

∫
Σt

|∇t,xu|2 + |Su+ (n− 1)u|2 +
∑

0≤µ<ν≤n

|Ωµνu|2dΣt.(28)

This proves the second inequality and reduces the first one to

∥u∥2L2(Rn)(t) + ∥Su∥2L2(Rn)(t) ≲
∫

Σt

P0dΣt.

In order to transform
∫
Rn 2tu∂tudx in an alternative expression, we remark that

2u∂tu = 2u
1

r
Ω0ru−

t

r2
xi∂i(u

2), with Ω0r =
xi

r
Ω0i.

So, by integration by parts,∫
Rn

2tu∂tudx =

∫
Rn

(
2
t

r
uΩ0ru+ (n− 2)

t2

r2
u2

)
dx.

Combined with Equation (27), we get∫
Rn

(
2(n− 1)tu∂tu− (n− 1)u2

)
dx =

2n− 3

2

∫
Rn

(
2uSu+ nu2

)
dx

+
1

2

∫
Rn

(
2
t

r
uΩ0ru+ (n− 2)

t2

r2
u2

)
dx− (n− 1)

∫
Rn

u2dx.

We then obtain that

(29)2
∫

Σt

P0dx =

∫
Σt

|Su|2 + 2
2n− 3

2
uSu+

2n2 − 5n+ 2

2
u2dx

+

∫
Σt

|∇t,xu|2 +
∑
µ<ν

|Ωµνu|2 − |Ω0ru|2 + |Ω0ru|2 +
t

r
uΩ0ru+ (n− 2)

t2

2r2
u2dx.
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The second integral on the right hand side of (29) is nonnegative since

|Ω0ru|2 =

∣∣∣∣xi

r
Ω0iu

∣∣∣∣2 ≤ n∑
i=1

|Ω0iu|2

and

|Ω0ru|2 +
t

r
uΩ0ru+ (n− 2)

t2

2r2
u2 =

(
Ω0ru+

t

2r
u

)2

+ (2n− 5)
t2

4r2
u2.

Consequently,

∥u∥2L2(Rn)(t) + ∥Su∥2L2(Rn)(t) ≲
∫

Σt

P0dΣt

comes from

|Su|2 + 2
2n− 3

2
uSu+

2n2 − 5n+ 2

2
u2 =

(
Su+

2n− 3

2
u

)2

+
2n− 5

4
u2

and from

|Su|2 + 2
2n− 3

2
uSu+

2n2 − 5n+ 2

2
u2

=

(
2n− 3√

4n2 − 10n+ 4
Su+

(
n2 − 5

2
n+ 1

) 1
2

u

)2

+
2n− 5

4n2 − 10n+ 4
|Su|2.

Remark 3.8. – We also proved that∫
Σt

t2

r2
u2dΣt ≲

∫
Σt

P0dΣt.

Finally, we obtain the expected estimate.

Proposition 3.9. – We have, for all t ∈ [0, T [,∑
|β|≤1

∥Zβu∥2L2(Rn)(t) ≲
∑
|β|≤1

∥Zβu∥2L2(Rn)(0) +
∑
|β|≤1

∫ t

0

∫
Σs

|Zβu||τ+□u|dxds,

with Zβ ∈ K if |β| = 1, leading to, for all t ∈ [0, T [,∑
|β|≤1

∥Zβu∥L2(Rn)(t) ≲
∑
|β|≤1

∥Zβu∥L2(Rn)(0) +

∫ t

0

∥τ+□u∥L2(Rn) ds.

Proof. – We have, according to Propositions 3.6 and 3.7,∑
|β|≤1

∥Zβu∥2L2(Rn)(t) ≲
∑
|β|≤1

∥Zβu∥2L2(Rn)(0) +

∫ t

0

∫
Σs

|□u||K0u+ (n− 1)tu|dxds.

The result then follows from Remark 2.10, which gives us

|K0u| ≲ τ2
+|Lu|+ τ2

−|Lu| ≲ τ+
∑
Z∈K

|Zu|.
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We now apply this to the electromagnetic potential in the Lorenz gauge. Since
we will need to estimate ∥S (LZβ (A)) ∥L2(Rn) in order to bound the energy of the
electromagnetic field F (see Proposition 3.21 below), we consider the following norms.

Definition 3.10. – Let A be a sufficiently regular 1-form defined on [0, T [×Rn. We
define, for N ∈ N and all t ∈ [0, T [,

ẼN [A](t) =

n∑
µ=0

∑
|β|≤1

∑
|γ|≤N

∥Zβ(LZγ (A)µ)∥2L2(Rn)(t).

Remark 3.11. – Note that
n∑

µ=0

∑
|β|≤N+1

∥ZβAµ∥2L2(Rn) ≲ ẼN [A] ≲
n∑

µ=0

∑
|β|≤N+1

∥ZβAµ∥2L2(Rn).

We work with ẼN [A] as we will apply Proposition 3.9 to LZβ (A)µ.

Using Proposition 3.9, we get the following result.

Proposition 3.12. – Let N ∈ N and Aµ be a sufficiently regular 1-form, defined
on [0, T [× Rn, such that ẼN [A](0) < +∞. Then, ∀ t ∈ [0, T [,√

ẼN [A](t) ≲
√
ẼN [A](0) +

n∑
µ=0

∑
|γ|≤N

∫ t

0

∥τ+□LZγ (A)µ∥L2(Σs) ds.

3.3. Energy estimates for the Maxwell equations

We prove three conservation laws for the Maxwell equations, using each time a
different multiplier (∂t, K0 or S). In the study of the massive case, we will mostly use
the one associated to the Morawetz vector field.

For the remaining of this section, we consider a 2-form G and a current J , suffi-
ciently regular and defined on [0, T [, such that{

∇µGµν = Jν

∇µ∗Gµλ1···λn−2 = 0.

The following lemmas hold.

Lemma 3.13. – We have, for all 0 ≤ ν ≤ n,

∇µT [G]µν = GνρJ
ρ.
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Proof. – According to Proposition 2.16,

Gµρ∇µGν
ρ = Gµρ∇µGνρ

=
1

2
Gµρ(∇µGνρ −∇ρGνµ)

=
1

2
Gµρ∇νGµρ

=
1

4
∇ν(GµρGµρ).

So,

∇µT [G]µν = ∇µ(Gµρ)Gν
ρ +

1

4
∇ν(GµρGµρ)−

1

4
ηµν∇µ(GσρGσρ) = GνρJ

ρ.

Lemma 3.14. – We have, denoting by (α, α, ρ, σ) the null decomposition of G,

T [G]LL = |α|2, T [G]LL = |α|2 and T [G]LL = |ρ|2 + |σ|2.

3.3.1. Using ∂t as a multiplier. – As we use here the multiplier ∂t, we work with
T [G]µ0. Applying the divergence theorem to T [G]µ0 on [0, t] × Rn and Vu(t), we
obtain the following result.

Proposition 3.15. – For all t ∈ [0, T [,∫
Σt

|α|2+|α|2+2|ρ|2+2|σ|2dx =

∫
Σ0

|α|2+|α|2+2|ρ|2+2|σ|2dx+4

∫ t

0

∫
Σs

G0µJ
µdxds

and
√

2 sup
u≤t

∫
Cu(t)

|α|2 + |ρ|2 + |σ|2dCu(t) ≤
∫

Σ0

|α|2 + |α|2 + 2|ρ|2 + 2|σ|2dx+ 4

∫ t

0

∫
Σs

|G0µJ
µ|dxds.

This explains the introduction of the following norms.

Definition 3.16. – Let N ∈ N. We define, for t ∈ [0, T [,

E0[G](t) =

∫
Σt

(
|α|2 + |α|2 + 2|ρ|2 + 2|σ|2

)
dx

+ sup
u≤t

∫
Cu(t)

(
|α|2 + |ρ|2 + |σ|2

)
dCu(t)

and

E0
N [G](t) =

∑
|β|≤N

E0
N [LZβ (G)](t),

with Zβ ∈ K|β|.

Using the previous energy identities and commutation formula of Proposition 2.30,
we obtain
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Proposition 3.17. – For all N ∈ N and all t ∈ [0, T [, we have

E0
N [F ](t)− 2E0

N [F ](0) ≲
∑

|β|,|γ|≤N

∫ t

0

∫
Σs

|ekLZβ (F )0µJ(Ẑγfk)µ)|dxds,

with Zβ ∈ K|β| and Ẑγ ∈ P̂|γ|0 .

3.3.2. Using K0 as a multiplier. – As T [G] is not traceless in dimension n ≥ 4,
∇µ(T [G]µνK

ν

0) does not necessarily vanishes when G solves the free Maxwell equa-
tions. We then consider, in the spirit of what is done for the wave equation, for A a
sufficiently regular potential of G in the Lorenz gauge, the current

Pµ = T [G]µνK
ν

+ (n− 3)
(
tAβ∂µA

β − 1

2
∂µ(t)AβA

β − tAβ∂
βAµ + ∂β(t)AβAµ

)
.

In order to establish an energy estimate for the electromagnetic field, we compute
the divergence of Pµ.

Lemma 3.18. – We have

∇µPµ = GµνK
ν

0J
µ + (n− 3)tAβ□A

β .

Proof. – We have

∇µ(T [G]µνK
ν

0) = ∇µ(T [G]µν)K
ν

0 + T [G]µν∇µK
ν

0 .

Since T [G] is symmetric,

T [G]µν∇µK
ν

0 =
1

2
T [G]µνπ

µν ,

with πµν = ∇µK
ν

0 +∇νK
µ

0 . As K0 is a conformal vector field (of conformal factor 4t),
we have

πµν = 4tηµν .

Thus,

T [G]µν∇µK
ν

0 = 2tT (G)µ
µ

=
3− n

2
tGσρG

σρ.

Now, according to Lemma 3.13, we obtain that

∇µ(T [G]µνK
ν

0) = GνρK
ν

0J
ρ +

3− n

2
tGσρG

σρ.

We now compute the divergence of

(n− 3)

(
tAβ∂µA

β − 1

2
∂µ(t)AβA

β − tAβ∂
βAµ + ∂β(t)AβAµ

)
.

First,
∇µ
(
tAβ∂µA

β
)

= −Aβ∂0A
β + t∂µAβ∂µA

β + tAβ□A
β .

Secondly,

∇µ

(
1

2
∂µ(t)AβA

β

)
= Aβ∂

0Aβ .
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We also have, using in particular that in Lorenz gauge ∂µAµ = 0,

∇µ
(
tAβ∂

βAµ

)
= −Aβ∂

βA0 + t∂µ(Aβ)∂βAµ + tAβ∂
β∂µAµ

= −Aβ∂
βA0 + t∂µ(Aβ)∂βAµ.

Finally

∇µ
(
∂β(t)AβAµ

)
= −∂µ(A0)Aµ −A0∂

µAµ

= −∂µ(A0)Aµ.

Hence,

(n− 3)∇µ

(
tAβ∂µA

β − 1

2
∂µ(t)AβA

β − tAβ∂
βAµ − ∂β(t)AβAµ

)
= (n− 3)tAβ□A

β + (n− 3)t(∂µAβ∂
µAβ − ∂µAβ∂

βAµ).

And, since Gµν = ∂µAν − ∂νAµ,

1

2
GµβG

µβ = ∂µAβ∂
µAβ − ∂µAβ∂

βAµ,

which gives us the result.

We are now ready to prove the following energy estimate.

Proposition 3.19. – For all t ∈ [0, T [,∫
Σt

τ2
+|α|2 + τ2

−|α|2 + (τ2
+ + τ2

−)(|ρ|2 + |σ|2)dΣt + (n− 3)2
n∑

µ=0

∥Aµ∥2L2(Σt)

≤
∫

Σ0

(1 + r2)(|α|2 + |α|2 + |ρ|2 + |σ|2)dΣ0 + 4

∫ t

0

∫
Σs

|Kν

0GνµJ
µ|dxds

+ (n− 3)

n∑
µ=0

∥SAµ∥2L2(Σt)
+ 4(n− 3)

∫ t

0

∫
Σs

s|Aµ□A
µ|dxds.

Proof. – In order to apply the divergence theorem to Pµ in [0, t]× Rn, we transform∫
Rn

(
tAβ∂tA

β − 1

2
AβA

β − tAβ∂
βA0 −A2

0

)
dx.

On the one hand, let us notice that

−1

2
AβA

β −A2
0 = −1

2

n∑
β=0

A2
β .

On the other hand,

(30) −t
∫
Rn

Aβ∂
βA0dx = −t

∫
Rn

A0∂
0A0dx+ t

∫
Rn

∂j(Aj)A0dx = t∂t

∫
Rn

A2
0dx,
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since ∂µAµ = 0 in the Lorenz gauge. As

(31) t

∫
Rn

Aβ∂tA
βdx =

t

2
∂t

∫
Rn

AβA
βdx,

we finally obtain that∫
Rn

(
tAβ∂tA

β − 1

2
AβA

β − tAβ∂
βA0 −A2

0

)
dx =

1

2

n∑
β=0

(t∂t − 1)∥Aβ∥2L2(Rn).

The divergence theorem applied to Pµ in [0, t] × Rn gives, using Lemma 3.14 and
3.18,∫

Σt

τ2
+|α|2 + τ2

−|α|2 + (τ2
+ + τ2

−)(|ρ|2 + |σ|2)dx ≤ 4

∫ t

0

∫
Σs

|∇µPµ|dxds

+

∫
Σ0

(1 + r2)(|α|2 + |α|2 + 2|ρ|2 + 2|σ|2)dx+ 2(n− 3)

n∑
µ=0

(∫
Σt

(1− t∂t)A
2
µdx

)
.

It only remains to use the last lemma and the inequality

−t∂t

∫
Σt

A2
µdx ≤

1− n

2
∥Aµ∥2L2(Σt)

+
1

2
∥SAµ∥2L2(Σt)

which ensues from (27).

This estimate justifies the introduction of the following norms.

Definition 3.20. – Let G be a 2-form defined on [0, T [ and N ∈ N. We define, for
all t ∈ [0, T [,

E [G](t) =

∫
Σt

τ2
+|α(G)|2 + τ2

−|α(G)|2 + (τ2
+ + τ2

−)(|ρ(G)|2 + |σ(G)|2)dx

and

EN [G](t) =
∑
|β|≤N

E [LZβG](t),

with Zβ ∈ K|β|.

We then deduce, using Propositions 2.30, 3.19 and Lemma 2.18, an energy estimate
for the electromagnetic field F .
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Proposition 3.21. – Let A be a sufficiently regular potential in the Lorenz gauge
of F . We have, for all N ∈ N and all t ∈ [0, T [,

EN [F ](t)− EN [F ](0)− (n− 3)
∑
|κ|≤N

n∑
µ=0

∥SLZκ(A)µ∥2L2(Σt)

≲
∑

|β|,|γ|≤N

∫ t

0

∫
Σs

|ekK
ν

0LZβ (F )νµJ
µ(Ẑγfk)|dxds

+
∑
|κ|≤N

∫ t

0

∫
Σs

s|LZκ(A)µ□LZκ(A)µ|dxds,

with Zβ ∈ K|β|, Zκ ∈ K|κ| and Ẑγ ∈ P̂|γ|0 .

3.3.3. Using S as a multiplier. – The main difference with the previous case comes
from the fact that the scaling is not a timelike vector field. Because of that we are not
able to estimate all the null components of the electromagnetic field with this energy
estimate. We start by introducing, for A a potential of G satisfying the Lorenz gauge,

Qµ = T (G)µνS
ν +

n− 3

2
(Aβ∂µA

β −Aβ∂
βAµ).

As the potential A satisfies the Lorenz gauge and since the conformal factor of the
scaling is 2, we have

(32) ∇µQµ = GµνS
νJµ +

n− 3

2
Aβ□A

β .

We can now state the energy estimate.

Proposition 3.22. – For all t ∈ [0, T [,∫
Σt

(t+ r)|α|2 + (t− r)|α|2 + 2t(|ρ|2 + |σ|2)dx+ (n− 3)∂t

n∑
β=0

∥Aβ∥2L2(Σt)

=

∫
Σ0

r(|α|2 − |α|2)dx+ (n− 3)∂t

n∑
β=0

∥Aβ∥2L2(Σ0)
+ 4

∫ t

0

∫
Σs

∇µQµdxds.

Proof. – Note first that we proved, during the proof of Proposition 3.19 (see Equa-
tions (30) and (31)),∫

Rn

Aβ∂0A
β −Aβ∂

βA0dx =
∂t

2

n∑
β=0

∥Aβ∥2L2(Rn).

It then remains to apply the divergence theorem to Qµ on [0, T ]× Rn (recall that
2S = (t+ r)L+ (t− r)L).

Note that (t− r)|α|2 is not necessarily non negative, which invites us to transform
the equality in the following estimate.
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Proposition 3.23. – For all t ∈ [0, T ],∫
Σt

(1 + |t− r|)|α|2dx ≤
∫

Σ0

(1 + r)(|α|2 + |α|2) + 2|ρ|2 + 2|σ|2dx

+ (n− 3)(n+ 2)Ẽ0[A](0) +
2

1 + t

(
E [F ](t) +

(n− 3)(n+ 2)

2
Ẽ0[A](t)

)
+ 4

∫ t

0

∫
Σs

|G0µJ
µ|+ |SνGµνJ

µ|dxds+ 2(n− 3)

∫ t

0

∫
Σs

|Aµ□A
µ|dxds.

Proof. – Adding the energy identities of Propositions 3.22 and 3.15, we can obtain,∫
Σt

(1 + |t− r|)|α|2dx ≤
∫

Σ0

(1 + r)(|α|2 + |α|2) + 2|ρ|2 + 2|σ|2dx

+

∫
Σt

(t+ r)|α|2 + 2t(|ρ|2 + |σ|2)dx+ 4

∫ t

0

∫
Σs

|G0µJ
µ|+ |∇µQµ|dxds

+ (n− 3)

∣∣∣∣∣∣∂t

n∑
β=0

(
∥Aβ∥2L2(Rn)(0)− ∥Aβ∥2L2(Rn)(t)

)∣∣∣∣∣∣ .
The result then ensues from the three following inequalities. Using Definition 3.20,

one has

(1 + t)

∫
Σt

(t+ r)|α|2 + 2t(|ρ|2 + |σ|2)dx ≤ 2E [F ](t).

According to (32), we have∫ t

0

∫
Σs

|∇µQµ|dxds ≤
∫ t

0

∫
Σs

|SνGµνJ
µ|+ (n− 3)

2
|Aµ□A

µ|dxds.

Finally, Equation (27) gives us

(1 + t)
∣∣∣∂t∥Aµ∥2L2(Σs)

∣∣∣ ≤ ∥SAµ∥2L2(Σs) + ∥∂tAµ∥2L2(Σs) + (n+ 2)∥Aµ∥2L2(Σs).

Let us introduce the following norms.

Definition 3.24. – We define, for N ∈ N and t ∈ [0, T [,

ES
N [F ](t) =

∑
Zβ∈K|β|
|β|≤N

∫
Σt

τ−|α(LZβ (F ))|2dx.

Commuting the equation satisfied by the electromagnetic field F and using the pre-
vious energy estimate, we get the following proposition (see the commutation formulas
of Proposition 2.30 and Lemma 2.18).
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Proposition 3.25. – Let A a sufficiently regular potential of the the electromagnetic
field F in the Lorenz gauge. Then, for N ∈ N, we have, for all t ∈ [0, T [,

ES
N [F ](t)− EN [F ](0) ≲ ẼN [A](0) +

1

1 + t

(
ẼN [A](t) + EN [F ](t)

)
+

∑
|β|,|γ|≤N

|ek|
∫ t

0

∫
Σs

|LZβ (F )0µJ
µ(Ẑγfk)|+ |SνLZβ (F )νµJ

µ(Ẑγfk)|dxds

+
∑
|β|≤N

∫ t

0

∫
Σs

|LZβ (A)µ□LZβ (A)µ|dxds,

with Zβ ∈ K|β| and Ẑγ ∈ P̂|γ|0 .

Later, we will have, in the 4 dimensional massless case, a strong loss on EN [F ]

which will lead to a poor pointwise decay estimate on |α|. With this inequality, we
will avoid the τ+-loss and we will have an extra τ−-decay (which is not given by
Proposition 3.17).
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CHAPTER 4

SOME TECHNICAL RESULTS

4.1. An integral estimate

The following lemma is useful so as to estimate a quantity like∫ t

0

∫
Rn

|u(s, x)|
∫

v

|f(s, x, v)|dvdxds,

where we already have a bound on ∥u(s, .)∥L2 and a pointwise decay estimate
on
∫

v
|f(s, x, v)|dv.

Lemma 4.1. – Let m ∈ N∗ and let a, b ∈ R, such that a+ b > m and b ̸= 1. Then

∃Ca,b,m > 0, ∀ t ∈ R+

∫ +∞

0

rm−1

τa
+τ

b
−
dr ≤ Ca,b,m

1 + tb−1

1 + ta+b−m
.

A proof of this estimate can be found in [7], Appendix B.

4.2. The null coordinates of ∇vf

Let f : [0, T [ × Rn × Rn be a smooth function. We designate by ((∇vf)L,

(∇vf)L, (∇vf)B , . . .) the null components of ∇vf . Later, we will have to transform
the v-derivatives in combinations of P̂0-derivatives. If we only use the relation

(33) v0∂vk = Ω̂0k − t∂k − xk∂t,

we get that

(34)
∣∣∣(∇vf)

L
∣∣∣ , ∣∣∣(∇vf)

L
∣∣∣ , ∣∣∣(∇vf)

B
∣∣∣ ≤ τ+

v0

∑
Ẑ∈P̂0

|Ẑf |,

which will not be good enough to close the energy estimates (for the Vlasov-Maxwell
system).

We then use the following lemma.
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Lemma 4.2. – Let f be a smooth function. We have∣∣∣(∇vf)
L
∣∣∣ , ∣∣∣(∇vf)

L
∣∣∣ ≤ τ−

v0

∑
Ẑ∈P̂0

|Ẑf |.

Proof. – Since (∇vf)0 = 0 (by definition),

(∇vf)L =
xi

r
∂vif.

Now, we use ∂vi = 1
v0 (Ω̂0i − t∂i − xi∂t). As

xi

rv0
(t∂i + xi∂t) =

1

v0
(t∂r + r∂t) =

1

v0
(S + (r − t)L),

we have

(∇vf)L =
xi

rv0
Ω̂0if −

1

v0
Sf +

t− r

v0
Lf.

It only remains to notice that (∇vf)L = −(∇vf)L, since (∇vf)0 = 0.

We are now interested in (∇vf)
B . During the study of the Vlasov equation, each

time that (34) is not sufficient to close the estimates, (∇vf)B is multiplied by vL,
which reflects the null structure of the system. This leads us to study vL (∇vf)

B .

Lemma 4.3. – For 1 ≤ i ≤ n, we have

2vLx
i

r
=
v0xi

r
− vi +

zijx
j

r2
,

where zµν = xνvµ − xµvν .

Remark 4.4. – If µ ̸= ν, zµν

v0 ∈ k1 and if µ = ν, then zµµ = 0.

Proof. – For simplicity, we take i = 1. We have

2vLx
1

r
=
x1v0

r
− x1

r2
xiv

i

=
x1v0

r
− v1 +

z1jx
j

r2
.

And we obtain

Corollary 4.5. – Let i, j ∈ 1, n such that i ̸= j. We have

2vL

(
xi

r
∂vj − xj

r
∂vi

)
=

(
xi

r
+
zikx

k

v0r2

)
Ω̂0j −

(
xj

r
+
zjkx

k

v0r2

)
Ω̂0i − Ω̂ij

−
(
xi(t− r)

r
+
txkzik

r2v0

)
∂j +

(
xj(t− r)

r
+
txkzjk

r2v0

)
∂i −

zij

v0
∂t.
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Proof. – By the previous lemma,

2vL

(
xi

r
∂vj − xj

r
∂vi

)
=

(
v0xi

r
+
zikx

k

r2

)
∂vj−

(
v0xj

r
+
zjkx

k

r2

)
∂vi−Ω̂ij+x

i∂j−xj∂i.

Now, using the relation v0∂vk = Ω̂0k − t∂k − xk∂t, we have

2vL

(
xi

r
∂vj − xj

r
∂vi

)
=

(
xi

r
+
zikx

k

v0r2

)
Ω̂0j −

(
xj

r
+
zjkx

k

v0r2

)
Ω̂0i − Ω̂ij

+ xi∂j − xj∂i −
t

v0

(
v0xi

r
+
zikx

k

r2

)
∂j

+
t

v0

(
v0xj

r
+
zjkx

k

r2

)
∂i −

zij

v0
∂t.

It remains to remark that t v0xi

r − v0xi = v0 xi

r (t− r).

The naive estimation gave us∣∣∣vL (∇vf)
B
∣∣∣ ≲ |x||∂tf |+

n∑
k=1

(
|Ω̂0kf |+ t|∂kf |

)
,

whereas, with this lemma and the fact that (∇vf)
B is a combination with bounded

coefficients of
(

xi

r ∂vjf − xj

r ∂vif
)

1≤i<j≤n
, we have

(35)
∣∣∣vL (∇vf)

B
∣∣∣ ≲ ∑

Ẑ∈P̂

|Ẑf |+
∑

1≤i<j≤n

|zij |
v0

|∂tf |+
n∑

k=1

(τ− +
t
∑n

i=1 |zki|
rv0

)|∂kf |.

Therefore, with the last corollary, we transform a t-loss (and a |x|-loss) in a τ−-loss
and a t

r -loss (thanks, among others, to the weights transported by the flow). It is
particularly useful when we look for an estimate of ∥

∫
v
|vL(∇vẐ

βf)B |dv∥L2
x

and we
already have an estimate of

∫
v
v0|zẐδf |dv. We can then use Lemma 4.1. One can also

transform the t
r -loss.

Lemma 4.6. – For 1 ≤ j ≤ n,∣∣∣∣xj(t− r)

r
+
txkzjk

r2v0

∣∣∣∣ ≲ τ−
∑
z∈k1

|z|.

Proof. – We obviously have τ−1
−

∣∣∣xj(t−r)
r

∣∣∣ ≤ v0

v0 . For the second term, we need to study
different cases.

If r ≤ 1, then

τ−1
−

∣∣∣∣ txkzjk

r2v0

∣∣∣∣ = t

τ−

xk

r

xkvj − xjvk

rv0
≲

1

v0

n∑
i=1

|vi|.
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Otherwise, r ≥ 1, and

τ−1
−

∣∣∣∣ txkzjk

r2v0

∣∣∣∣ ≤ t

τ−r

xk

r

|zjk|
v0

.

It remains to note that if r ≤ t
2 , τ− ≥ t

2 and if r ≥ t
2 , then t

r ≤ 2.

One then obtains the following result.

Proposition 4.7. – We have∣∣∣vL (∇vf)
B
∣∣∣ ≲ τ−

∑
Ẑ∈P̂

∑
z∈k1

|zẐf |.

Note that later, in Sections 6.6 and 7.6, when we will establish an estimate
on
∥∥∥∫v |Ẑβf |dv

∥∥∥
L2

x

, we will not be able to apply Propositions 4.7 or 4.2. A vector X

will contain various derivatives of f and we will split it in two vectors H + G such
that

TF (H) = 0, with H(0) = X(0), and TF (G) = TF (X), with G(0) = 0.

Note yet that, for instance, if Xµ is ∂µf and XS is S(f), we have xµXµ = XS

whereas we do not necessarily have xµGµ = GS .

4.3. Some Sobolev inequalities

The following results come from [6] and in order to be self-sufficient, we also recall
their proof. We will use them to prove pointwise decay estimate for the electromagnetic
field.

We first recall two classical Sobolev inequalities.

Lemma 4.8. – Let u : Rn → R be a sufficiently regular function. We have

∀x ∈ Rn, |u(x)| ≲
∑

|β|≤n+2
2

∥∂βu∥L2
y(|y−x|≤1).

Let v : Sn−1 → R a sufficiently regular function (where Sn−1 is the unit sphere
in Rn). We have

∀ ξ ∈ Sn−1, |v(ξ)| ≲
∑
|β|≤n

2

∥∇Zβv∥L2(Sn−1),

with Zβ ∈ O|β|.

In order to treat the interior of the light cone (or rather the domain in which
|x| ≤ 1 + 1

2 t), we will use.
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Lemma 4.9. – Let U be a smooth tensor field defined in the Euclidian space Rn.
Then,

∀ t ∈ R+, sup
|x|≤1+ t

2

|U(x)| ≲ 1

(1 + t)
n
2

n+2
2∑

k=0

(1 + t)k∥∇kU∥L2({|y|≤3+ 3
4 t}).

Proof. – As it suffices to prove the result for each component of the tensor, we assume
that U is a scalar function. Let t ∈ R+ and |x| ≤ 1 + 1

2 t. If t ≤ 1, then |x| ≤ 2, so,
according to Lemma 4.8,

|U(x)| ≲
∑

|β|≤n+2
2

∥∇βU∥L2
y(|y|≤3).

Now, if t ≥ 1, we apply Lemma 4.8 to y 7→ U(x + t
4y). We get (after a change of

variables)

|U(x)| ≲
(
t

4

)−n
2 ∑
|β|≤n+2

2

(
t

4

)|β|
∥∇βU∥L2

y(|y−x|≤ t
4 ).

It remains to observe that |y − x| ≤ t
4 imply |y| ≤ 1 + 3

4 t.

For the other region (|x| ≥ 1 + 1
2 t), we have the following inequality.

Lemma 4.10. – Let U be a sufficiently regular tensor field, which in particular van-
ishes at ∞, defined in the euclidian space Rn. Then, for t ∈ R+,

∀x ̸= 0, |U(x)| ≲ 1

|x|n−1
2 τ

1
2
−

(∫
|y|≥|x|

|U(y)|2O, n
2

+ τ2
−|∇∂rU(y)|2O, n

2
dy

) 1
2

.

Proof. – As
∑
|β|≤k |∇ZβU |2 ≲ |U |2O,k, for Zβ ∈ O|β|, we only have to prove the result

for each component of U and we can assume that U is a scalar function.
Let x ̸= 0 such that x = rξ, with r = |x| and ξ ∈ Sn−1. Since ∂r

(
(
√
τ−U)2

)
=

2
√
τ−U∂r(

√
τ−U),

τ−|U(rξ)|2 ≲ r−(n−1)

∫ +∞

r

|√τ−U(λξ)|∂r(
√
τ−U)(λξ)|λn−1dλ.

Therefore, an integration over Sn−1 and the inequality 2|ab| ≤ a2 + b2 gives us

∥U(rξ)∥L2
ξ(Sn−1) ≲ r−

n−1
2 τ

− 1
2

−

(∫
|y|≥r

|U(y)|2 + τ2
−|∂rU(y)|2dy

) 1
2

.

As every vector field of O commute with ∂r, we obtain, using Lemma 4.8,

|U(x)| ≲ r−
n−1

2 τ
− 1

2
−

(∫
|y|≥r

|U(y)|2O, n
2

+ τ2
−|∂rU(y)|2O, n

2
dy

) 1
2

.
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4.4. Pointwise decay estimate for the null decomposition of the electromagnetic field

In this section, we recall some inequalities coming from [6] between quantites linked
to the null decomposition of a 2-form (see Section 2.1 for its definition) and we then
prove pointwise decay estimates on it. However, we cannot adapt the method used in
[6] to establish, in dimension 3, the optimal decay estimate on the null component α.
To circomvent this difficuty, we make crucial use of an electromagnetic potential
satisfying the Lorenz gauge. We first introduce some notations.

Definition 4.11. – Let F be a 2-form. We define its pointwise norm |F |# by

|F |# =
√
τ2
+|α|2 + τ2

−|α|2 + (τ2
− + τ2

+)(|ρ|2 + |σ|2),

which is also equal to
√

4T [F ](K0, ∂t).

We also define, for L = O or L = K and k ∈ N,

|F |#L,k =

√∑
|β|≤k

(|LZβF |#)
2
,

with Zβ ∈ L|β|.
Similarly, we define

|F | =
√
|α|2 + |α|2 + 2(|ρ|2 + |σ|2)

and
|F |L,k =

√√√√ ∑
Zβ∈L|β|
|β|≤k

|LZβF |2.

Remark 4.12. – By definition of |F |#, we have that τ−|F | ≤ |F |#.

We have the following inequality (cf Remark 2.10).

Lemma 4.13. – Let F be a 2-form and k a non-negative integer. Then

∀ |β| = k, |∇βF |# ≲ τ−k
− |F |#K,k.

We also have, according to [6].

Lemma 4.14. – Let F be a 2-form and (α, α, ρ, σ) its null decomposition. Then, for
all k ∈ N,

k∑
l=0

∑
i+j=l

τ2i
− r

2j
(
|∇i

L∇
j
Lα|

2
O,k−i−j + |∇i

L∇
j
Lα|

2
O,k−i−j

+ |∇i
L∇

j
Lρ|

2
O,k−i−j + |∇i

L∇
j
Lσ|

2
O,k−i−j

)
≲ |F |2K,k.
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and
k∑

l=0

∑
i+j=l

τ2i
− r

2j
(
τ2
−|∇i

L∇
j
Lα|

2
O,k−i−j + r2(|∇i

L∇
j
Lα|

2
O,k−i−j

+ |∇i
L∇

j
Lρ|

2
O,k−i−j + |∇i

L∇
j
Lσ|

2
O,k−i−j)

)
≲
(
|F |#K,k

)2

.

The first inequality is not proved in [6] but can be treated similarly as the second
one.

The following corollary will be useful, particularly for the massless case in dimen-
sion 4, to obtain an extra decay on α away from the light cone.

Corollary 4.15. – Using the same notations as in the previous lemma, we have,
for F a 2-form,

|√τ−α|2O,k + τ2
−|∇r(

√
τ−α)|2O,k−1 ≲ τ−|F |2K,k.

Proof. – One only has to use that

|∇r
√
τ−| ≤ τ

− 1
2

− , 2∇r = L− L

and the previous lemma.

Let us show how to establish pointwise decay estimates on the null decomposition
of the electromagnetic field with these inequalities.

Proposition 4.16. – Let G be a 2-form and J be a 1-form, both defined on
[0, T [× Rn, such that

∇µGµν = Jν ,

∇µ∗Gµλ1···λn−2 = 0.

If G and J are sufficiently regular, we have, for all (t, x) ∈ [0, T [× Rn,

|α(G)|(t, x), |ρ(G)|(t, x), |σ(G)|(t, x) ≲

√
En+2

2
[G](t)

τ
n+1

2
+ τ

1
2
−

,

|α(G)|(t, x) ≲

√
En+2

2
[G](t)

τ
n−1

2
+ τ

3
2
−

(36)

and

|α(G)|(t, x) ≲

√
En+2

2
[G](t)

1+t +
√
ES

n+2
2

[G](t)

τ
n−1

2
+ τ−

.(37)
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Remark 4.17. – When we will study the massless Vlasov-Maxwell system in dimen-
sion n = 4, a strong t-loss on En+2

2
[G] will lead to a strong τ+-loss on the pointwise

estimate (36). Since we will not need all the τ− decay rate of (36), we will rather
use (37).

Proof. – Let us denote the null decomposition of G by (α, α, ρ, σ). Let (t, x) ∈ [0, T [× Rn.
First, we consider the case |x| ≤ 1 + 1

2 t.
As ∫

Σt

(
|G|#K, n+2

2

)2

dx ≲ En+2
2

[G](t).

Lemma 4.13 and Remark 4.12 give us∑
|β|≤n+2

2

∫
Σt

τ
2|β|+2
− |∇βG|2dx ≲ En+2

2
[G](t).

Moreover,

∀ (t, y) ∈ [0, T [× Rn such that |y| ≤ 3 +
3

4
t, τ−(t, y) ≳ 1 + t.

Hence, ∑
|β|≤n+2

2

∫
|y|≤3+ 3

4 t

(1 + t)2|β|+2|∇βG|2dy ≲ En+2
2

[G](t).

Using Lemma 4.9, we obtain

|G(t, x)| ≲

√
En+2

2
[G](t)

(1 + t)
n+2

2

.

We consider now the case |x| ≥ 1 + 1
2 t.

According to Lemma 4.14,
1∑

l=0

∑
i+j=l

∫
|y|≥1+ 1

2 t

τ2i
− r

2j
(
τ2
−|∇i

L∇
j
Lα|

2
O, n+2

2 −i−j
+ r2(|∇i

L∇
j
Lα|

2
O, n+2

2 −i−j

+ |∇i
L∇

j
Lρ|

2
O, n+2

2 −i−j
+ |∇i

L∇
j
Lσ|

2
O, n+2

2 −i−j
)
)
dy ≲ En+2

2
[G](t).

Let w be either rα, rρ, rσ or τ−α. Since ∂r = L−L
2 and |∂r(τ−)| ≤ 1, we have∫

|y|≥1+ 1
2 t

|w|2O, n+2
2

+ τ2
−|∇∂r

w|2O, n
2
dy ≲ En+2

2
[G](t).

Lemma 4.10 then gives us

|w(t, x)| ≲

√
En+2

2
[G](t)

|x|n−1
2 τ

1
2
−

.
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Thus,

|α(t, x)|, |ρ(t, x)|, |σ(t, x)| ≲

√
En+2

2
[G](t)

|x|n+1
2 τ

1
2
−

and |α(t, x)| ≲

√
En+2

2
[G](t)

|x|n−1
2 τ

3
2
−

.

We now prove (37). Using Corollary 4.15, we have∫
|y|≥1+ 1

2 t

|√τ−α|2O, n+2
2

+ τ2
−|∇∂r

(
√
τ−α)|2O, n

2
dy ≲

∑
|β|≤n+2

2

∫
Σt

τ−
(
|α(LZβG)|2 + |α(LZβG)|2 + |ρ(LZβG)|2 + |σ(LZβG)|2

)
dx.

As, by Definition 3.20,∑
|β|≤n+2

2

∫
Σt

τ−
(
|α(LZβG)|2 + |ρ(LZβG)|2 + |σ(LZβG)|2

)
dx ≲

En+2
2

[G](t)

1 + t

and, by Definition 3.24∑
|β|≤n+2

2

∫
Σt

τ−|α(LZβG)|2dx ≲ ES
n+2

2

[G](t),

we obtain, again by Lemma 4.10

|α(t, x)| ≲

√
En+2

2
[G](t)

1+t +
√
ES

n+2
2

[G](t)

|x|n−1
2 τ−

.

Our goal now is to show how to improve the decay estimate on α, in the Lorenz
gauge, near the light cone (we cannot reproduce the method used by [6] to treat the
3d case). We start by the following lemma.

Lemma 4.18. – Let A be a sufficiently regular current, defined on [0, T ] × Rn, such
that

∂µAµ = 0 and ∀ t ∈ [0, T ], Ẽn+2
2

[A](t) ≤ E(t),

with E : [0, T ] → R+ an increasing function. Then

|AL|(t, x), |AB |(t, x) ≲
√
E(t)

τ
n−1

2
+ τ

1
2
−

and |AL|(t, x) ≲
√
E(t)

τ
n
2

+

.

Proof. – Using a classical L2-Klainerman-Sobolev inequality, we have, ∀ |γ| ≤ 1,
1 ≤ µ ≤ n, (t, x) ∈ [0, T ]× Rn,

|ZγAµ|(t, x) ≲

√
Ẽn+2

2
[A](t)

τ
n−1

2
+ τ

1
2
−

.
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We then have

(38) |(ZγA)L|, |(ZγA)L|, |(ZγA)B | ≲
√
E(t)

τ
n−1

2
+ τ

1
2
−

.

It then remains to improve the decay estimate on AL near the light cone. Since,
∂µAµ = 0,

(∇LA)L + (∇LA)L + (∇BA)B = 0.

So, as ∇LL = 0,

(39) −∇LAL − (∇LA)L + (∇BA)B = 0.

If r ≤ t
2 or r ≥ t

2 and t ≤ 1, the result comes from (38). For the remaining case,
r ≥ t

2 and t ≥ 1, note first that

|L(AL)| ≲
√
E(t)

τ
n−1

2
+ τ

1
2
−r

≲

√
E(t)

τ
n+1

2
+ τ

1
2
−

.

Indeed, using Remark 2.10 and (38), we have

|(∇LA)L|(t, x), |(∇BA)B |(t, x) ≲
√
E(t)

τ
n−1

2
+ τ

1
2
−r

so that (using (39)), L(AL) satisfies also this decay rate. As for a sufficiently regular
function g,

g(t, r) = g(0, t+ r) +

∫ t−r

u=−t−r

L(g)du,

and since E is a increasing function, we have

|AL|(t, r) ≤ |AL|(0, t+ r) +

∫ t−r

u=−t−r

|L(AL)|du

≲

√
E(0)

τ
n
2

+

+

√
E(t)

τ
n+1

2
+

∫ t−r

u=−t−r

τ
− 1

2
− du

≲

√
E(t)

τ
n
2

+

.

Finally, we obtain the following pointwise decay on α.

Proposition 4.19. – Let G and J be a sufficiently regular 2-form and 1-form (re-
spectively), defined on [0, T ]× Rn, such that

∇µGµν = Jν ,

∇µ∗Gµλ1···λn−2
= 0.

Let A be a potential of G in the Lorenz gauge such that Ẽn+4
2

[A](t) ≤ E(t). We suppose
that

|J |(t, x) ≲ θ(t)

τn−1
+ τ−
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and that E and θ are increasing functions. Then,

∀ (t, x) ∈ [0, T ]× Rn, |α(G)|(t, x) ≲
√
E(t)

τ
n+2

2
+

+
θ(t) log(τ+)

τn−1
+

.

Remark 4.20. – The functions E and θ will later be of the form t 7→ (1 + t)a or
t 7→ logk(1 + t).

Proof. – Consider a spherical variable B and note that

(40) αB(G) = (∂µAν − ∂νAµ)BL.

Since τ+ ≲ τ+ in the region r ≤ t+1
2 , we obtain from the standard Klainerman-

Sobolev inequality (15) and Remark 2.10 that for all (t, x) ∈ [0, T ]×R3 such that r ≤
t+1
2 ,

|α(G)|(t, x) ≲
∑

0≤µ,ν≤3

|∂νAµ|(t, x) ≲
1

τ−

∑
0≤µ≤3

∑
Z∈K

|ZAµ|(t, x)

≲

∣∣∣Ẽn+2
2

[A](t)
∣∣∣ 12

τ
n−1

2
+ τ

3
2
−

≲

√
E(t)

τ
n+2

2
+

.

We now focus on the region r ≥ t+1
2 , so that τ+ ≲ r. Since ∇eB

L = eB

r , we have

αB(G) = ∇eB
(A)L −∇L(A)B = ∇eB

(AL)− 1

r
AB −∇L(A)B .

As eB = Cij
B

Ωij

r , where Cij
B are bounded functions depending on the spherical

variables, and [Ωij , L] = 0 for any 1 ≤ i < j ≤ 3, we have

|∇eB
(AL)| = |eB(AL)| ≤ 1

r

∑
1≤i<j≤3

|Ωij(AL)|

=
∑

1≤i<j≤3

|LΩij
(A)L|
r

+
|A[Ωij ,L]|

r
=

∑
1≤i<j≤3

|LΩij
(A)L|
r

.

Using Lemma 4.18, we get

|∇eB
(AL)|(t, x) ≲

√
E(t)

rτ
n
2

+

≲

√
E(t)

τ
n+2

2
+

.

For the remaining term, rewritting the wave Equation (8) satisfied by A in null
coordinates, we have, for 0 ≤ µ ≤ n,

−LLAµ +∇C∇CAµ +
1

r
LAµ −

1

r
LAµ = Jµ.

Hence

L

((
L+

1

r

)
Aµ

)
= ∇C∇CAµ +

1

r
LAµ + L

(
1

r

)
Aµ − Jµ.
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Now, note that, using a classical L2 Klainerman-Sobolev inequality and Re-
mark 2.10,

|L
(

1

r

)
Aµ|, |∇C∇CAµ| ≲

√
E(t)

r2τ
n−1

2
+ τ

1
2
−

, |1
r
LAµ| ≲

√
E(t)

rτ
n+1

2
+ τ

1
2
−

, |Jµ| ≲ θ(t)

τn−1
+ τ−

so that, as τ+ ≲ r, ∣∣∣∣L((L+
1

r

)
Aµ

)∣∣∣∣ ≲
√
E(t)

τ
n+3

2
+ τ

1
2
−

+
θ(t)

τn−1
+ τ−

.

Hence, as for a sufficiently regular function g,

g(t, r) = g(0, t+ r) +

∫ t−r

u=−t−r

L(g)du,

we have (using that E and θ are increasing functions)∣∣∣∣(L+
1

r

)
Aµ

∣∣∣∣ (t, x) ≲

√
E(0)

τ
n+2

2
+

+

√
E(t)

τ
n+3

2
+

∫ t−r

−t−r

1

τ
1
2
−

du+
θ(t)

τn−1
+

∫ t−r

−t−r

1

τ−
du

≲

√
E(t)

τ
n+2

2
+

+
θ(t) log(τ+)

τn−1
+

,

implying ∣∣∣∣1rAB +∇L(A)B

∣∣∣∣ (t, x) ≲
√
E(t)

τ
n+2

2
+

+
θ(t) log(τ+)

τn−1
+

.

Remark 4.21. – In the context of the Vlasov-Maxwell system, using the null com-
ponent vB of the velocity vector, we have a better pointwise estimate on the compo-
nent JB of the source term, as JB is a linear combination of the terms

∫
v

vB

v0 Ẑ
βfdv.

Since the dimension n is such that n ≥ 4, we do not need this extra decay (and we
then worked with the Cartesian components of the source term in the proof of the
previous proposition).

4.5. A Grönwall inequality

Later, when we will study the velocity support of the scalar field in the massless
case, we will need the following variant of Grönwall’s lemma.

Lemma 4.22. – Let T > 0, f and g two continuous nonnegatives functions defined
on [0, T ] and C ≥ 0. If

∀t ∈ [0, T ], f(t) ≤ C + 2

∫ t

0

g(s)
√
f(s)ds,

then

∀t ∈ [0, T ], f(t) ≤
(√

C +

∫ t

0

g(s)ds

)2

.
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Proof. – First, we suppose that C > 0. Let F : t 7→ C + 2
∫ t

0
g(s)

√
f(s)ds. We have

F ′(t) ≤ 2g(t)
√
F (t).

Since C > 0, F is nonnegative and we can divide by 2
√
F (t). Integrating the above,

we obtain √
F (t) ≤

√
C +

∫ t

0

g(s)ds,

which implies the result. If C = 0, then, for all ϵ > 0,

∀t ∈ [0, T ], f(t) ≤ ϵ+ 2

∫ t

0

g(s)
√
f(s)ds.

It only remains to apply the inequality in the case C ̸= 0 and let ϵ tends to zero.
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CHAPTER 5

DECAY ESTIMATE FOR THE MASSIVE CASE

Recall that, as we study massive particles in this section, v0 =
√

1 + |v|2. We
will use the commutation vector fields of P̂0 and the weights of k1 preserved by the
operator T1 (see Subsections 2.3 and 2.4 for their definitions). We fix for all this
section a sufficiently regular 2-form F defined on [0, T ∗[ × Rn and we recall that we
defined TF as the operator

TF : g 7→ vµ∂µg + F (v,∇vg)

and that ∇vg = (0, ∂v1g, . . . , ∂vng). The main result of this section is the following
estimate.

Theorem 5.1. – Let T ∗ > 0 and f : [0, T ∗[× Rn
x × Rn

v → R be a sufficiently regular
function such that ∑

z∈k1

∑
|β|≤n

∫
Σ0

∫
Rn

v

∣∣∣zẐβf
∣∣∣ dvdx < +∞.

Then, for all (t, x) ∈ [0, T ∗[× Rn,∫
Rn

v

|f(t, x, v)| dv
(v0)2

≲
1

τn
+

∑
z∈k1

∑
|β|≤n

( ∫
Σ0

∫
Rn

v

∣∣∣zẐβf
∣∣∣ dvdx

+

∫ t

0

∫
Σs

∫
Rn

v

∣∣∣TF

(
zẐβf

)∣∣∣ dv
v0
dxds

)
.

Remark 5.2. – Compared to Theorem 8 in [7], the advantage is that the L1 norms
on the right hand side are taken on {t}×Rn (or {0}×Rn) and not on a hyperboloid.
On the other hand, our estimate is not a pure Sobolev inequality (we applied the
operator TF to Ẑβf to establish it).

Remark 5.3. – To simplify the notation, we took the mass to be 1, but the estimate
is true as long as the mass is strictly positive (the constant hidden in ≲ is however
proportional to 1

m2 ).
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Remark 5.4. – As we will need an estimate on
∫

v
|f |dv in this article, we will apply

Theorem 5.1 to (v0)2f . Note that, since T1((v
0)2z) = 0, the spacetime integral given

by Theorem 5.1 can be bounded, in that case, by∫ t

0

∫
Σs

∫
Rn

v

∣∣∣v0zTF

(
Ẑβf

)∣∣∣+ ∣∣∣v0F (v,∇vz)Ẑ
βf
∣∣∣+ ∣∣∣zviFi0Ẑ

βf
∣∣∣ dvdxds.

One can then use commutation formula of Proposition 2.26 in order to compute
TF (Ẑβf).

The proof is based on a partition of the spacetime. In the interior (|x| ≤ t
2 ) and

the exterior (t ≤ |x|) of the light cone, the proof relies on the Klainerman-Sobolev
inequality of Theorem 2.13. In the exterior region, the lack of decay is compensated
by using the weights (xi− t vi

v0 ) ∈ k1 defined in Section 2.4. For the remaining region,
we work on subsets of Rn+1 composed of a piece of an hyperboloid and a piece of a
slice t = constant as [8] for the Klein-Gordon equation, mixing what is usually done
for such problems.

Da(T )

T

Σ0

a

r = 0

The set Da(T ) and its boundary

5.1. Sobolev inequalities

We start by a Sobolev inequality independent of time.

Lemma 5.5. – Let g : Rn
x × Rn

v → R be a sufficiently regular function. Then, for all
x ∈ Rn,

|x|n
∫

v∈Rn

|g(x, v)|dv ≲
∑

|β|≤n−1
j≤1

∥∥∥∥∫
v∈Rn

(r∂r)
j(|Ω̂βg|)(y, v)dv

∥∥∥∥
L1(|y|≤|x|)

,

where Ωβ ∈ O|β|.
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During the proof of this lemma, we will use many time the following one dimensional
Sobolev inequality. For w ∈W 1,1, we have, for all a ∈ R and all δ ≥ η > 0,

|w(a)| ≤ Cη(∥w(y)∥L1(a−δ≤y≤a) + ∥w′(y)∥L1(a−δ≤y≤a)),

with Cη a positive constant depending only on η.

Proof. – As there is nothing to prove when x = 0, we suppose x ̸= 0. We start by
introducing spherical coordinates. A point y ∈ Rn has for coordinates (r, θ), with
r = |y| and θ ∈ Sn−1. We denote by (|x|, ω) the spherical coordinates of x and
by (θ1, . . . , θn−1) a local coordinate map in a neighborhood of ω ∈ Sn−1 (by the
symmetry of the sphere, we can suppose that the θi take their values in an interval
of a size independent of ω). Let h be the function defined by h(r, θ, v) = g(|x|rθ, v).
By a one dimensional Sobolev inequality,∫

v∈Rn

|h(1, ω, v)|dv ≲
∫

θ1

∣∣∣∣∫
v∈Rn

|h|(1, ω1 + θ1, ω2, . . . , ωn, v)dv

∣∣∣∣
+

∣∣∣∣∂θ1

∫
v∈Rn

|h|(1, ω1 + θ1, ω2, . . . , ωn, v)dv

∣∣∣∣ dθ1.
As ∂θ1

is a linear combination of the rotation vector fields, Remark 2.4 gives us∣∣∣∣∂θ1

∫
v∈Rn

|h|(1, ω1 + θ1, ω2, . . . , ωn, v)dv

∣∣∣∣ ≲ ∑
Ω∈O

∫
v∈Rn

|Ω̂h|(1, ω1+θ1, ω2, . . . , ωn, v)dv.

Thus,∫
v∈Rn

|h(1, ω, v)|dv ≲
∑

Ωβ∈O|β|
|β|≤1

∫
θ1

∫
v∈Rn

|Ω̂βh|(1, ω1 + θ1, ω2, . . . , ωn, v)dvdθ1.

Using the same argument for the variables θ2,. . . , θn−2 and θn−1, we get∫
v∈Rn

|h(1, ω, v)|dv ≲
∑

Ωβ∈O|β|
|β|≤n−1

∫
θ∈Sn−1

∫
v∈Rn

|Ω̂βh|(1, θ, v)dvdθ.

The one dimensional Sobolev inequality, applied this time to the first variable, gives∫
v∈Rn

|h(1, ω, v)|dv ≲
∑
j≤1

∑
Ωβ∈O|β|
|β|≤n−1

∫ 1

1
2

∣∣∣∣∂j
r

∫
θ∈Sn−1

∫
v∈Rn

|Ω̂βh|(r, θ, v)dvdθ
∣∣∣∣ dr.

Hence, as 1
2 ≤ r,∫

v∈Rn

|h(1, ω, v)|dv ≲
∑
j≤1

∑
Ωβ∈O|β|
|β|≤n−1

∫ 1

1
2

∫
θ∈Sn−1

∣∣∣∣(r∂r)
j

∫
v∈Rn

|Ω̂βh|(r, θ, v)dv
∣∣∣∣ dθrn−1dr,
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which implies∫
v∈Rn

|g(x, v)|dv ≲
∑

j≤1,|β|≤n−1

∥∥∥∥∫
v∈Rn

(r∂r)
j(|Ω̂β(g(|x|y, v))|)dv

∥∥∥∥
L1(|y|≤1)

.

It only remains to remark that, as r∂r and Ω are homogeneous vector fields,

(r∂r)
j
(
|Ω̂β (g(|x|y, v)) |

)
= (r∂r)

j
(
|Ω̂βg|

)
(|x|y, v)

and to make the change of variables y′ = |x|y.

We are now able to prove the following time dependent Sobolev inequality.

Lemma 5.6. – Let g : [0, T ∗[ × Rn
x × Rn

v → R a sufficiently regular function. For all
(t, x) ∈ [0, T ∗[× Rn such that |x| ≤ t, we have

|x|n
∫

v∈Rn

|g(t, x, v)|dv ≲
∑
|β|≤n

∥Ẑβg(
√
|y|2 + a2, y, v)∥L1(|y|≤|x|)L1

v
,

with a2 = t2 − |x|2 and Ẑβ ∈ P̂|β|0 (more precisely the vector fields involved are either
rotations or Lorentz boosts).

Proof. – Let (t, x) ∈ [0, T ∗[ × Rn such that |x| ≤ t and a2 = t2 − |x|2. We apply the
previous lemma to (y, v) 7→ g(

√
|y|2 + a2, y, v) to get

|x|n
∫

v∈Rn

|g(t, x, v)|dv ≲
∑

j≤1,|β|≤n−1

∥∥∥∥∫
v∈Rn

(r∂r)
j
(
|Ω̂βg|(

√
|y|2 + a2, y, v)

)
dv

∥∥∥∥
L1(|y|≤|x|)

,

where we used that

Ω̂β
(
g(
√
|y|2 + a2, y, v)

)
= Ω̂β (g) (

√
|y|2 + a2, y, v),

since Ω(
√
|y|2 + a2) = 0 for all Ω ∈ O.

Now, we remark that

r∂r

(
|Ω̂βg|(

√
|y|2 + a2, y, v)

)
=

Ω̂βg(
√
|y|2 + a2, y, v)

|Ω̂βg|(
√
|y|2 + a2, y, v)

yi√
|y|2 + a2

Ω0iΩ̂
βg(
√
|y|2 + a2, y, v).

Note also that, droping the dependance in (
√
|y|2 + a2, y, v) of the functions con-

sidered,∫
v∈Rn

Ω̂βg

|Ω̂βg|
yi√

|y|2 + a2
v0∂viΩ̂βgdv = −

∫
v∈Rn

vi

v0

yi√
|y|2 + a2

|Ω̂βg|dv.

We then obtain that

|x|n
∫

v∈Rn

|g(t, x, v)|dv

≲
∑
|β|≤n

∥∥∥∥∥
(

1 +
|y|√

|y|2 + a2

)∫
v∈Rn

|Ẑβg|(
√
|y|2 + a2, y, v)dv

∥∥∥∥∥
L1(|y|≤|x|)

,
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which allows us to deduce the result.

5.2. An energy estimate

Before starting the proof of Theorem 5.1, we establish the following lemma, which
combined with our last Sobolev inequality, will give us the expected decay on the
velocity average of the Vlasov field for a spacetime region.

Lemma 5.7. – Let a > 0, T ∈ ]a, T ∗[ and g : [0, T ∗[× R3
x × R3

v → R be a sufficiently
regular function. Then,∫

|y|≤
√

T 2−a2

∫
Rn

v

|g(
√
|y|2 + a2, y, v)| dv

(v0)2
dy ≤ 2

∫
Σ0

∫
Rn

v

|g|dxdv

+ 2

∫ T

0

∫
Σs

∫
Rn

v

|TF (g)| dv
v0
dxds.

Proof. – We use again the vector field Nµ(g) :=
∫
Rn

v
g vµ

v0 dv and recall from (26) that

∂µN
µ(|g|) =

∫
v∈Rn

g

|g|
TF (g)

v0
− g

|g|
F
( v
v0
,∇vg

)
dv =

∫
v∈Rn

g

|g|
TF (g)

dv

v0
.

We now introduce the following subset of R+ × Rn :

Da(T ) = {(s, y) ∈ R+ × Rn / a2 ≥ s2 − |y|2, 0 ≤ s ≤ T}.

Denoting by ν is the outward pointing unit normal field to ∂Da(T ), the divergence
theorem (in W 1,1, for the euclidian space Rn+1) gives us∫

∂Da(T )

νµN
µ(|g|)d∂Da(T ) =

∫
Da(T )

∫
v∈Rn

g

|g|
TF (g)

dv

v0
dydDa(T ).

The boundary term is equal to∫
|y|≤

√
T 2−a2

∫
v∈Rn

νµ
vµ

v0
|g|(
√
|y|2 + a2, y, v)dvdλ(y) + ∥g∥L1

x(|y|≥
√

T 2−a2)L1
v
(T )− ∥g∥L1

xL1
v
(0),

where dλ(y) is the surface measure on the hyperboloid {s2−|y|2 = a2}. More precisely,
on this hyperboloid (20),

dλ(y) =

√
det

(
In +

1

|y|2 + a2
tyy

)
dy =

√
2|y|2 + a2

|y|2 + a2

and

ν(y) =
1√

2|y|2 + a2
(
√
|y|2 + a2,−y).

20. Here, ty denotes the transpose of y.
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We then deduce, as Da(T ) ⊂ [0, T ]× Rn,∫
|y|≤

√
T 2−a2

∫
Rn

v

(√
|y|2 + a2v0 − yiv

i
)
|g|(
√
|y|2 + a2, y, v)

dvdy

v0
√
|y|2 + a2

≤ ∥g∥L1
xL1

v
(0) +

∫ T

0

∫
Σs

∫
Rn

v

|TF (g)| dv
v0
.

Finally, note that for s =
√
|y|2 + a2 ≥ |y|,

sv0 − yiv
i

s
≥ sv0 − |y||v|

s
≥ s

(v0 − |v|)(v0 + |v|)
s(v0 + |v|)

≥ 1

2v0
.

The result follows from a combination of the last two inequalities.

Remark 5.8. – The lemma is also valid on the cone s = |y|, which means that the
result is true for a = 0, but we already knew it with Proposition 3.1.

5.3. Proof of Theorem 5.1

We consider a partition of the spacetime into four regions.

— The bounded region, t+ |x| ≤ 2, where a standard Sobolev inequality gives the
result.

— The interior of the light cone, where |x| ≤ t
2 .

— The exterior of the light cone, where t ≤ |x| and |x| ≥ 1.

— The remaining region where t
2 ≤ |x| ≤ t and t ≥ 1.

5.3.1. The interior of the light cone. – Let (t, x) ∈ [0, T ∗[×Rn such that |x| ≤ t
2 . Thus,

τ− ≥ 1
3τ+ and the Klainerman-Sobolev inequality of Theorem 2.13 gives∫

v∈Rn

|f(t, x, v)|dv ≲
1

τn
+

∑
|β|≤n

∥∥∥Ẑβf
∥∥∥

L1
x,v

(t).

It only remains to apply Proposition 3.1, which gives us∥∥∥Ẑβf
∥∥∥

L1
x,v

(t) ≲
∥∥∥Ẑβf

∥∥∥
L1

x,v

(0) +

∫ t

0

∫
Σs

∫
Rn

v

∣∣∣TF

(
Ẑβf

)∣∣∣ dv
v0
dxds.
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5.3.2. The exterior of the light cone. – We use (xi−t vi

v0 ) ∈ k1, for 1 ≤ i ≤ n, which are
solutions to the homogeneous relativistic transport equation. Let (t, x) ∈ [0, T ∗[×Rn

such that t ≤ |x| and |x| ≥ 1. By Theorem 2.13, we have∫
Rn

v

∣∣∣∣xi − t
vi

v0

∣∣∣∣ |f |(t, x, v)dv ≲
1

τn−1
+

∑
z∈k1

∑
|β|≤n

∥zẐβf∥L1
x,v

(t).

Since |xv0 − tv| ≥ v0|x| − t|v| ≥ |x|
2v0 , we get

|x|
∫

v

|f |(t, x, v) dv

(v0)2
≲

∫
v

∣∣∣x− t
v

v0

∣∣∣ |f |(t, x, v)dv
≲

n∑
i=1

∫
v

∣∣∣∣xi − t
vi

v0

∣∣∣∣ |f |(t, x, v)dv.
Hence, using that |x| ≳ τ+ (recall that |x| ≥ 1 and t ≤ |x| in the region studied) and
applying Proposition 3.1, we finally obtain∫

v

|f |(t, x, v) dv

(v0)2
≲

1

|x|τn−1
+

∑
z∈k1

∑
|β|≤n

∥zẐβf∥L1
x,v

(t)

≲
1

τn
+

∑
|β|≤n
z∈k1

∥∥∥zẐβf
∥∥∥

L1
x,v

(0)+

∫ t

0

∫
Σs

∫
v

∣∣∣TF

(
zẐβf

)∣∣∣ dv
v0
dxds.

5.3.3. The remaining region. – Let (t, x) ∈ [0, T ∗[ × Rn such that t
2 ≤ |x| ≤ t and

t ≥ 1. We start by applying Lemma 5.7 to Ẑβf , for all |β| ≤ n, with T = t and
a2 = t2 − |x|2. We have

∑
|β|≤n

∫
|y|≤|x|

∫
Rn

v

|Ẑβf(
√
|y|2 + a2, y, v)| dv

(v0)2
dy

≲
∑
|β|≤n

(∫
Σ0

∫
Rn

v

∣∣∣Ẑβf
∣∣∣ dvdx+

∫ t

0

∫
Σs

∫
Rn

v

TF (Ẑβf)
dv

v0
dxds

)
.

As |Ẑγ
(
(v0)−2

)
| ≲ (v0)−2, Lemma 5.6 applied to g = (v0)−2f allows us to bound

by below the left hand side of the previous inequality by

|x|n
∫

v

|f |(t, x, v) dv

(v0)2
.

The result follows from |x|n ≳ τn
+ (as |x| ≥ t

2 ≥
1
2 ).
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5.4. Improved decay for the derivatives of the velocity averages

Let us introduce the following vector fields.

Definition 5.9. – For 1 ≤ i ≤ n and 1 ≤ k, l ≤ n, with k ̸= l, we consider

Xi =
vi

v0
∂t + ∂i and Ykl =

vk

v0
∂l −

vl

v0
∂k.

Proposition 5.10. – The vector fields 1
v0T1, Xi and Ykl are good derivatives (as the

derivates tangential to the light cone L and eB, see Remark 2.10), which means that
if W denotes one of them, we have, for a smooth function f ,∣∣∣∣∫

v

Wfdv

∣∣∣∣ ≲ 1

τ+

∑
Ẑ∈P̂0

∣∣∣∣∫
v

Ẑfdv

∣∣∣∣+ ∑
z∈k1

∫
v

|z||∇t,xf |dv

 .

Proof. – For T1, we remark that

tT1 = v0S + (tvi − xiv0)∂i, rT1 = tT1 + (r − t)T1

and that ∣∣∣∣(r − t)

∫
v

∂fdv

∣∣∣∣ ≲ ∑
Ẑ∈K

∣∣∣∣∫
v

Zfdv

∣∣∣∣ ≲ ∑
Ẑβ∈P̂|β|0

|β|≤1

∣∣∣∣∫
v

Ẑβfdv

∣∣∣∣ .
For Xi, that ensues from

tv0Xi = v0Ω0i + (tvi − xiv0)∂t and rXi = tXi + (r − t)Xi.

For Ykl, that follows from

tv0Ykl = v0Ωkl + (tvk − xkv0)∂l − (tvl − xlv0)∂k and rYkl = tYkl + (r − t)Ykl.

Finally, let us show how we can obtain extra decay on ∂
∫

v
fdv if f solves an

equation such as TF (f) = 0.

Proposition 5.11. – Let f : [0, T ]× Rn
x × Rn

v → R be a function such that

∀ Ẑ ∈ P̂0, z ∈ k1,

∣∣∣∣∫
v

(v0)2zẐfdv

∣∣∣∣ ≲ τ−n
+ .

Then, for all 0 ≤ µ ≤ n, ∣∣∣∣∂µ

∫
v

fdv

∣∣∣∣ ≲ τ−n−1
+ .

Proof. – As

T1 = vµ∂µ = v0∂t + viXi −
|v|2

v0
∂t = viXi +

1

v0
∂t,

we have
∂t = v0T1 − v0viXi.

Similarly
∂i = (v0)2Xi − viT1 − v0vkYki.

Remark 5.12. – We can prove a similar proposition for derivatives of higher orders.
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CHAPTER 6

THE MASSIVE VLASOV-MAXWELL EQUATIONS

6.1. Global existence for small data

The aim of this section is to prove Theorem 1.1. We suppose that the dimension n is
at least 4 and we consider the massive Vlasov-Maxwell system (1)-(3) with at least
two species, so that K ≥ 2. For simplicty, we suppose that mk = 1 for all 1 ≤ k ≤ K.

To simplify the notation, we denote during this chapter the energy norm Ek
M,q,1,

introduced previously in Definition 3.2, by Ek
M,q . We also introduce the function χ

defined on R+ by

χ(s) = log3 (3 + s) if n = 4 and χ(s) = 1 if n ≥ 5.

This is a more precise version of Theorem 1.1.

Theorem 6.1. – Let n ≥ 4, K ≥ 2 and N ≥ 5
2n + 1. Let (f0, F0) be an initial data

set for the massive Vlasov-Maxwell system. Let (f, F ) be the unique classical solution
to the system and let A be a potential in the Lorenz gauge. There exists ϵ > 0 such
that (21), if

ẼN [A](0) ≤ ϵ, EN [F ](0) ≤ ϵ

and if, for all 1 ≤ k ≤ K,

E2
N+n,1[fk](0) ≤ ϵ,

then (f, F ) exists globally in time and verifies the following estimates.

— Energy bounds for A, F and fk: ∀ 1 ≤ k ≤ K and ∀ t ∈ R+,

ẼN [A](t) ≲ ϵχ(t), EN [F ](t) ≲ ϵχ(t),

E2
N [fk](t) ≲ ϵ and E2

N,1[fk](t) ≲ ϵχ
1
6 (t).

21. A smallness condition on F , which implies ẼN [A](0) ≤ ϵ, is given in Proposition 2.20.
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— Pointwise decay for the null decomposition of LZβ (F ): ∀ |β| ≤ N − n, (t, x) ∈
R+ × Rn,

|α(LZβF )| ≲
√
ϵ
√
χ(t)τ

−n+2
2

+ , |α(LZβF )| ≲
√
ϵ
√
χ(t)τ

−n−1
2

+ τ
− 3

2
− ,

|ρ(LZβF )| ≲
√
ϵ
√
χ(t)τ

−n+1
2

+ τ
− 1

2
− , |σ(LZβF )| ≲

√
ϵ
√
χ(t)τ

−n+1
2

+ τ
− 1

2
− .

— Pointwise decay for
∫

v∈Rn |Ẑβfk|dv:

∀ |β| ≤ N − 3n+ 2

2
, (t, x) ∈ R+ × Rn,

∫
v∈Rn

|Ẑβfk|dv ≲
ϵ

τn
+

.

— Pointwise decay for
∫

v∈Rn |Ẑβfk|(v0)2dv and
∫

v∈Rn |zẐβfk|(v0)2dv:

∀ |β| ≤ N − n, (t, x) ∈ R+ × Rn,

∫
v∈Rn

|Ẑβfk|(v0)2dv ≲
ϵ

τn−1
+ τ−

,

∀ |β| ≤ N − 3n+ 2

2
, z ∈ k1, (t, x) ∈ R+ × Rn,∫

v∈Rn

|zẐβfk|(v0)2dv ≲
ϵ

τn−1
+ τ−

.

— L2 estimates on
∫

v∈Rn |Ẑβfk|dv:

∀ |β| ≤ N, t ∈ R+,

∥∥∥∥∫
v∈Rn

|Ẑβfk|dv
∥∥∥∥

L2(Σt)

≲
ϵχ

1
6 (t)

(1 + t)
n
2
.

Remark 6.2. – In dimension 4, if N ≥ 14, we can take χ(t) = log2(3 + t) and avoid
the log

1
2 (3 + t)-loss on the L2 estimate on

∫
v
|Ẑβfk|dv.

6.2. Structure and beginning of the proof

Let (f0, F0) be an initial data set satisfying the assumptions of Theorem 6.1. By a
standard local well-posedness argument, there exists a unique maximal solution (f, F )

of the massive Vlasov-Maxwell system defined on [0, T ∗[, with T ∗ ∈ R∗+ ∪ {+∞}.
We consider the following bootstrap assumptions. Let T be the largest time such

that, ∀ 1 ≤ k ≤ K and ∀ t ∈ [0, T ],

EN [F ](t) ≤ 2Cϵχ(t), ES
N [F ](t) ≤ 2Cϵ,(41)

E2
N [fk](t) ≤ 4ϵ, E2

N−n+2
2 ,1

[fk](t) ≤ 4ϵ and E2
N,1[fk](t) ≤ 4ϵχ

1
6 (t),(42)

where C and C are positive constants which will be specified during the proof. Note
that by continuity, T > 0. We now present our strategy to improve these bootstrap
assumptions.

1. First, using the bootstrap assumptions, we obtain decay estimates for the null
decomposition of F (and its Lie derivatives) and for velocity averages of deriva-
tives of fk.
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2. Next, we improve the bounds on the Vlasov fields energies by means of the
energy estimates proved in Propositions 3.3 and 3.5. To bound the right hand
side in these energy estimates, we make fundamental use of the null structure of
the system and the pointwise decay estimates on ρ, σ, α, α and

∫
v∈Rn |zẐβfk|dv.

3. Then, using Theorem 5.1, we improve the decay estimate on
∫

v
|Ẑβfk|dv near

the light cone.

4. In order to improve the estimates on the electromagnetic field energies, we es-
tablish an L2

x estimate for the velocity averages of the Vlasov fields (and its
derivatives). For this purpose, we follow [7] and we rewrite all the transport
equations as an inhomogeneous system of transport equations. The velocity av-
erages of the homogeneous part of the solution verify strong pointwise decay
estimates (we use particularly the control that we have at our disposal on the
initial data of f , for derivatives of order N+n or less). The inhomegeneous part
is decomposed into a product of an integrable function and a pointwise decaying
function which gives us the expected estimate.

5. Finally, we bound the energy of the electromagnetic potential (which satisfy the
Lorenz gauge) and we improve the estimates on the electromagnetic field ener-
gies with the energy estimates for the Maxwell equations (Propositions 3.21 and
3.25). We use again the null decomposition of F (and its Lie derivatives), which,
combined by the estimates on

∥∥∥τ+ ∫Rn |Ẑβfk|dv
∥∥∥

L2
x

, gives us the improvement.

6.3. Step 1: Decay estimates

Using the bootstrap assumption on EN [F ] and Proposition 4.16, one immediately
obtains the following pointwise decay estimates on the electromagnetic field.

Proposition 6.3. – For all t ∈ [0, T ], |β| ≤ N − n+2
2 , we have

|α(LZβF )| ≲
√
ϵ
√
χ(t)τ

−n+1
2

+ τ
− 1

2
− , |α(LZαF )| ≲

√
ϵ
√
χ(t)τ

−n−1
2

+ τ
− 3

2
− ,

|ρ(LZαF )| ≲
√
ϵ
√
χ(t)τ

−n+1
2

+ τ
− 1

2
− , |σ(LZαF )| ≲

√
ϵ
√
χ(t)τ

−n+1
2

+ τ
− 1

2
− .

Remark 6.4. – We will improve later the decay estimate on α(LZβF ), for
|β| ≤ N − n, near the light cone (see Section 6.7.1).

The pointwise decay estimates on the velocity averages of the Vlasov fields are
given by Klainerman-Sobolev inequalities and the bootstrap assumptions on the fk

energy norms. Using Theorem 2.13, we have that ∀ |β| ≤ N − n, (t, x) ∈ [0, T ]× Rn,
1 ≤ k ≤ K

(43)
∫
Rn

|Ẑβfk|(v0)2dv ≲
E2

N [fk](t)

τn−1
+ τ−

≲
ϵ

τn−1
+ τ−

.
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In the same spirit, using Corollary 2.14, we have that ∀ |β| ≤ N − 3n+2
2 , z ∈ k1,

(t, x) ∈ [0, T ]× Rn,

(44)
∫
Rn

|zẐβfk|(v0)2dv ≲
E2

N−n+2
2 ,1

[fk](t)

τn−1
+ τ−

≲
ϵ

τn−1
+ τ−

.

6.4. Step 2: Improving the energy estimates for the transport equation

We fix, for this section, 1 ≤ k ≤ K. According to Proposition 3.3, E2
N [fk] ≤ 3ϵ

on [0, T ], for ϵ small enough, would follow if we prove

(45)
∫ t

0

∫
Σs

∫
v∈Rn

|LZβ1 (F )(v,∇vẐ
β2fk)|v0dvdxds ≲ ϵ

3
2 ,

for all |β1|+ |β2| ≤ N , with |β2| ≤ N − 1, and∫ t

0

∫
Σs

∫
v∈Rn

|viFi0Ẑ
βfk|dvdxds ≲ ϵ

3
2 ,

for all |β| ≤ N . The second integral is easy to bound. Using Proposition 6.3 and the
bootstrap assumption on E2

N [fk], we have∫ t

0

∫
Σs

∫
Rn

|viFi0Ẑ
βfk|dvdxds ≲

∫ t

0

∥F∥L∞(Σs)E2
N [fk](s)ds

≲ ϵ
3
2 .

Similarly, according to Proposition 3.5, E2
N,1[fk] ≤ 3ϵχ

1
6 (t) on [0, T ], for ϵ small

enough, would follow if we prove

(46)
∫ t

0

∫
Σs

∫
v∈Rn

|zv0LZβ1 (F )(v,∇vẐ
β2fk)|dvdxds ≲ ϵ

3
2χ

1
6 (t),

for all z ∈ k1 and |β1|+ |β2| ≤ N , with |β2| ≤ N − 1,

(47)
∫ t

0

∫
Σs

∫
v∈Rn

|v0F (v,∇vz)Ẑ
βfk|dvdxds ≲ ϵ

3
2χ

1
6 (t),

for all z ∈ k1, |β| ≤ N and∫ t

0

∫
Σs

∫
v∈Rn

|zviFi0Ẑ
βfk|dvdxds ≲ ϵ

3
2 ,

for all |β| ≤ N . Again, the last integral is easy to bound.
We fix |β1| + |β2| ≤ N (with |β2| ≤ N − 1), |β| ≤ N and z ∈ k1. We denote

respectively ρ(LZβ1 (F )), σ(LZβ1 (F )), α(LZβ1 (F )) and α(LZβ1 (F )) by ρ, σ, α and
α. We denote also Ẑβ2fk by g and Ẑβfk by h. To unify the study of the remaining
integrals, we introduce b, which could be equal to 0 or 1, z0 = v0 and zb = v0z. The
null decomposition of LZβ1 (F )(v,∇vg) (for (45) and (46)) or F (v,∇vz) (for (47))
brings us to control the integral of the following terms.
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The good terms ∣∣∣zbv
Lρ (∇vg)

L
∣∣∣, ∣∣∣v0vLhρ(F ) (∇vz)

L
∣∣∣ ,(48) ∣∣∣zbv

Lρ (∇vg)
L
∣∣∣, ∣∣∣v0vLhρ(F ) (∇vz)

L
∣∣∣ ,(49) ∣∣∣zbv

BσBD (∇vg)
D
∣∣∣, ∣∣∣v0vBhσ(F )BD (∇vz)

D
∣∣∣ ,(50) ∣∣∣zbv

LαB (∇vg)
B
∣∣∣, ∣∣∣v0vLhα(F )B (∇vz)

B
∣∣∣ ,(51) ∣∣∣zbv

BαB (∇vg)
L
∣∣∣, ∣∣∣v0vBhα(F )B (∇vz)

L
∣∣∣ ,(52)

and the bad terms ∣∣∣zbv
LαB (∇vg)

B
∣∣∣, ∣∣∣v0vLhα(F )B (∇vz)

B
∣∣∣ ,(53) ∣∣∣zbv

BαB (∇vg)
L
∣∣∣, ∣∣∣v0vBhα(F )B (∇vz)

L
∣∣∣ .(54)

The study of E2
N [fk] corresponds to b = 0 and, in this case, we only have to

estimate the spacetime integral of each of the first terms of (48)-(54). The study
of E2

N,1[fk] corresponds to b = 1. For both of them, when |β1| ≤ N − n+2
2 we can use

the pointwise decay estimates on the electromagnetic field given by Proposition 6.3.
When |β1| > N − n+2

2 , |β2| ≤ N − 3n+2
2 (since N ≥ 5

2n+ 1), and we can then use the
pointwise estimates (43) and (44) on the velocity averages of the Vlasov field.

For the part where |β1| ≤ N − n+2
2 , our proof leads also to E2

N−n+2
2 ,1

[fk] ≤ 3ϵ,
for ϵ small enough, on [0, T ].

Remark 6.5. – To simplify the argument we will sometimes denote E2
N [fk]

by E2
N,0[fk].

6.4.1. Estimating the v derivatives. – To deal with the v derivatives of the Vlasov
field, which do not commute with the relativistic transport operator, we recall (34)

(55)
∣∣∣(∇vψ)

L
∣∣∣ , ∣∣∣(∇vψ)

L
∣∣∣ , ∣∣∣(∇vψ)

B
∣∣∣ ≲ τ+

v0

∑
Ẑ∈P̂0

|Ẑψ|.

We will also use

(56)
∣∣∣(∇vψ)

L
∣∣∣ , ∣∣∣(∇vψ)

L
∣∣∣ ≲ τ−

v0

∑
Ẑ∈P̂0

|Ẑψ|

and

(57)
∣∣∣vL (∇vψ)

B
∣∣∣ ≲ τ−

∑
Ẑ∈P̂

∑
z∈k1

|zẐψ|,

which come from Lemma 4.2 and Proposition 4.7. In order to reutilize certain esti-
mates of this section, we will not use inequalities (56) and (57) in the case where we
have a pointwise estimate on the electromagnetic field. We make this choice because
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we do not identify such null structures in the equations studied in Section 6.6, where
we will make similar computations as in Subsection 6.4.2.

6.4.2. If |β1| ≤ N − n+2
2 . – We start by treating the good terms. We use ζ to denote

α, ρ or σ. Thus, according to Proposition 6.3,

|ζ| ≲
√
ϵ
√
χ(t)

τ
n+1

2
+ τ

1
2
−

.

Using (55), we can bound by
∑

Ẑ∈P̂0
τ+|ζ||zbẐg| each first term of (48)-(52) so that

their integrals on [0, t]× Rn
x × Rn

v are bounded by

(58)
∑

Ẑ∈P̂0

∫ t

0

∫
Σs

τ+|ζ|
∫

v

|zbẐg|dvdxds.

It remains to notice that∫ t

0

∫
Σs

τ+|ζ|
∫

v

|zbẐg|dvdxds ≲
∫ t

0

√
ϵ
log

3
2 (3 + s)

(1 + s)
3
2

E1
N,b[fk](s)ds ≲ ϵ

3
2 ,

since E1
N,b[fk](s) ≤ E2

N,1[fk](s) ≤ 4ϵ log
1
2 (3+s) for all s ∈ [0, T ]. Similarly, each second

term of (48)-(52) is bounded by
∑

Ẑ∈P̂0
v0τ+|ζ(F )||h||Ẑ(z)| and, using Lemma 2.8,

their integral on [0, t]× Rn
x × Rn

v are bounded by

∑
z′∈k1

∫ t

0

∫
Σs

τ+|ζ(F )|
∫

v

v0|z′h|dvdxds.

Using the pointwise estimate on ζ and the bootstrap assumption (42), one has

∫ t

0

∫
Σs

τ+|ζ(F )|
∫

v

v0|z′h|dvdxds ≲
∫ t

0

√
ϵ
log

3
2 (3 + s)

(1 + s)
3
2

E1
N,1[fk](s)ds ≲ ϵ

3
2 .

We now study the bad terms. Recall that, according to Proposition 6.3,

|α| ≲
√
ϵ
√
χ(t)

τ
n−1

2
+ τ

3
2
−

.
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Let us denote [0, t] × Rn
x × Rn

v by Xt and dvdxds by dXt. Then, using (55),∫
Cu(t)

∫
v
vL|zbẐg|dvdCu(t) ≤ E2

N,b[fk](t) and the bootstrap assumption (42), we have,∫
Xt

|zbv
LαB (∇vg)

B |dXt ≲
∑

Ẑ∈P̂0

∫ t

0

∫
Σs

τ+|α|
∫

v

vL

v0
|zbẐg|dvdxds

≲
∑

Ẑ∈P̂0

∫ t

u=−∞

∫
Cu(t)

τ+|α|
∫

v

vL|zbẐg|dvdCu(t)du

≲
∑

Ẑ∈P̂0

∫ t

u=−∞

1

τ
3
2
−

∫
Cu(t)

∫
v

vL|zbẐg|dvdCu(t)du

≲ ϵ
1
2E2

N,b[fk](t)

∫ +∞

u=−∞

1

τ
3
2
−

du

≲ ϵ
3
2 if b = 0, ϵ

3
2χ

1
6 (t) if b = 1.

Finally, for the first term of (54), we use successively (55), the inequality |vB | ≲
v0vL (which ensues from Proposition 2.9) as well as the bootstrap assumptions (42)
to get∫

Xt

|zbv
BαB (∇vg)

L |dXt ≲
∑

Ẑ∈P̂0

∫ t

0

∫
Σs

∫
v

|α|v0vL τ+
v0
|zbẐg|dvdxds

≲
∑

Ẑ∈P̂0

∫ t

u=−∞

∫
Cu(t)

τ+|α|
∫

v

vL|zbẐg|dvdCu(t)du

≲ ϵ
1
2

∫ t

u=−∞
τ
− 3

2
− E2

N,b[fk](t)du

≲ ϵ
1
2E2

N,b[fk](t).

The integrals of the second terms of (53) and (54) are treated similarly. For in-
stance, as

∑
Ẑ∈P̂0

|Ẑ(z)| ≲
∑

z′∈k1
|z′|, we have∫

Xt

|v0vBhαB (∇vz)
L |dXt ≲

∑
Ẑ∈P̂0

∫ t

0

∫
Σs

τ+|α|
∫

v

√
vLvL|hẐ(z)|dvdxds

≲
∑

z′∈k1

∫ t

−∞

∫
Cu(t)

τ+|α|
∫

v

vLv0|z′h|dvdCu(t)du

≲ ϵ
1
2E2

N,1[fk](t).

6.4.3. If |β1| > N − n+2
2 . – In this case we cannot use Proposition 6.3 anymore.

As |β2| ≤ n
2 , we can however use the pointwise estimates on the velocity averages

of v0zbẐ
βg given by (44). This time, we only have to bound the first terms of (48)–

(54).
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Again, we start by studying the good terms. Let us denote again α, ρ or σ by ζ .
Then, according to Definition 3.20, for all s ∈ [0, T ],∫

Σs

τ2
+|ζ|2dx ≤ EN [F ](s) ≲ ϵχ(s).

Recall that the integral of each first term of (48)-(52) can be bounded by (58).
Using the Cauchy-Schwarz inequality and∥∥∥∥∫

v

|zbẐg|dv
∥∥∥∥2

L2(Σs)

≲ ϵ2
∫ +∞

0

rn−1

τ2n−2
+ τ2

−
dr ≲ ϵ2(1 + s)−(n−1),

which comes from (44) and Lemma 4.1, we have∫ t

0

∫
Σs

τ+|ζ|
∫

v

|zbẐg|dvdxds ≲
∫ t

0

∥τ+ζ∥L2(Σs)

∥∥∥∥∫
v

|zbẐg|dv
∥∥∥∥

L2(Σs)

ds

≲ ϵ
3
2 .

In order to close the estimates for the bad terms, we use (56) or (57). The integral
of the first term of (54) is then bounded by∑

Ẑ∈P̂0

∫ +∞

0

∥τ−α∥L2(Σs)

∥∥∥∥∫
v

∣∣∣∣vB

v0
zbẐg

∣∣∣∣ dv∥∥∥∥
L2(Σs)

ds.

Now, using (44) and Lemma 4.1, we have∥∥∥∥∫
v

∣∣∣∣vB

v0
zbẐg

∣∣∣∣ dv∥∥∥∥
L2(Σs)

≲

∥∥∥∥∫
v

|zbẐg|dv
∥∥∥∥

L2(Σs)

≲ ϵ(1 + s)−
3
2 .

Since ∥τ−α∥2L2(Σs) ≤ EN [F ](s) ≲ ϵχ(t),∫ t

0

∫
Σs

∫
v

|zbv
BαB (∇vg)

L |dvdxds ≲ ϵ
3
2 .

For the remaining term, zbv
LαB (∇vg)

B , we treat the two cases separately. First,
if b = 0,

∫ t

0

∫
Σs

∫
v
v0vL|αB (∇vg)

B |dvdxds is bounded by∑
Ẑ∈P̂0

∑
z′∈k1

∫ +∞

0

∥τ−α∥L2(Σs)

∥∥∥∥∫
v

v0|z′Ẑg|dv
∥∥∥∥

L2(Σs)

ds.

Now, using (44) and Lemma 4.1, we have∥∥∥∥∫
v

v0|z′Ẑg|dv
∥∥∥∥2

L2(Σs)

≲ ϵ2(1 + s)−(n−1).

Hence, as ∥τ−α∥2L2(Σs) ≤ EN [F ](s) ≲ ϵχ(t), we obtain∫ t

0

∫
Σs

∫
v

v0vL|αB (∇vg)
B |dvdxds ≲ ϵ

3
2 .
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Finally, if b = 1, we have, by (55),∫ t

0

∫
Σs

∫
v

v0vL|zαB (∇vg)
B |dvdxds

≲
∑

Ẑ∈P̂0

∫ t

0

∫
Σs

τ
1
2
−

(1 + s)
n−3

2

|α|τ+(1 + s)
n−3

2

τ
1
2
−

∫
v

vL|zẐg|dvdxds.

By the Cauchy-Schwarz inequality (in (s, x)), the right-hand side of the previous
inequality is bounded by

(59)

(∫ t

0

∥√τ−|α|∥2L2(Σs)

(1 + s)n−3
ds

) 1
2 ∑

Ẑ∈P̂0

(∫ t

0

∫
Σs

τn−1
+

τ−

(∫
v

vL|zẐg|dv
)2

dxds

) 1
2

.

By the bootstrap assumption (22) (41), ∥√τ−|α|∥2L2(Σs) ≲ ϵ, so∫ t

0

∥√τ−|α|∥2L2(Σs)

(1 + s)n−3
ds ≲ ϵχ

1
3 (t).

The second factor of (59) is bounded by ϵ2. Indeed, as, by (44),

τn−1
+

τ−

(∫
v

vL|zẐg|dv
)2

≲
ϵ

τ2
−

∫
v

vL|zẐg|dv,

we have∫ t

0

∫
Σs

τn−1
+

τ−

(∫
v

vL|zẐg|dv
)2

dxds ≲ ϵ

∫ t

−∞
τ−2
−

∫
Cu(t)

∫
v

vL|zẐg|dvdCu(t)du

≲ ϵ

∫ t

u=−∞
τ−2
− E2

N−n+2
2 ,1

[fk](t)du

≲ ϵ2,

since E2
N−n+2

2 ,1
[fk](t) ≤ 4ϵ by the bootstrap assumption (42). Thus∫ t

0

∫
Σs

∫
v

v0vL|zαB (∇vg)
B |dvdxds ≲ ϵ2χ

1
6 (t).

This concludes the improvement of the bootstrap assumption (42).

22. Note that if we used the bound on ∥τ−α∥L2(Σs) we would have in 4d an extra loss on E2
N,1[fk]

which would lead to a (1 + t)η-loss for the electromagnetic energy.
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6.5. Step 3: Improved decay estimates for velocity averages

In this section, we improve the pointwise decay estimate on
∫

v
|Ẑβfk|dv near the

lightcone.

Proposition 6.6. – We have, for all 1 ≤ k ≤ K,

∀ (t, x) ∈ [0, T ]× Rn, |β| ≤ N − 3n+ 2

2
,

∫
v∈Rn

|Ẑβfk|dv ≲
ϵ

τn
+

and

∀ (t, x) ∈ [0, T ]× Rn, |β| ≤ N − n,

∫
v∈Rn

|Ẑβfk|dv ≲ ϵ
χ

1
6 (t)

τn
+

.

Proof. – This ensues from Theorem 5.1, Remark 5.4 and the estimations made in
Section 6.4. The loss for the derivatives of higher order is linked to the loss on E2

N,1[fk].

6.6. Step 4: L2 estimates for the velocity averages

In view of commutation formula of Propositions 2.19 and the energy estimates of
Propositions 3.12, 3.21, we need to prove enough decay on ∥τ+

∫
Rn |Ẑβfk|dv∥L2

x
for

all |β| ≤ N . The goal of this section is to prove the following proposition.

Proposition 6.7. – We have, for all 1 ≤ k ≤ K, |β| ≤ N and for all t ∈ [0, T ],∥∥∥∥τ+ ∫
Rn

|Ẑβfk|dv
∥∥∥∥

L2(Σt)

≲ ϵ
χ

1
6 (t)

(1 + t)
n
2−1

.

The log
1
2 (3+t)-loss (specific to the dimension 4) can be removed for |β| ≤ N− 3n+2

2

or improved in a log
1
4 (3 + t)-loss for |β| ≥ N − n+ 1.

Note that if |β| ≤ N −n, that ensues from Proposition 6.6 and Lemma 4.1. For the
higher order derivatives, we follow the strategy used in [7], in Section 4.5.7, to prove
similar L2 estimates. Let (23) 1 ≤ k ≤ K and M ∈ N such that 3n+4

2 ≤M ≤ N−n+1.
Let I1 and I2 be two sets defined as

I1 = {β multi-index/M ≤ |β| ≤ N} and I2 = {β multi-index/ |β| ≤M − 1}.

We consider an ordering on Ii, for 1 ≤ i ≤ 2, so that Ii = {βi,1, . . . , βi,|Ii|} and two
vector valued fields X and Y , of respective length |I1| and |I2|, such that

Xj = Ẑβ1,jfk and Y j = Ẑβ2,jfk.

23. If n = 4 and N ≥ 14, we can take 8 ≤ M ≤ N − 6 and avoid the log
1
2 (3 + t)-loss for all

derivatives.
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Lemma 6.8. – There exists three matrices valued functions A1 : [0, T ] × Rn →
M|I1|(R), A2 : [0, T ] × Rn → M|I2|(R) and B : [0, T ] × Rn → M|I1|,|I2|(R) such
that

TF (X) +A1X = BY, and TF (Y ) = A2Y.

If 1 ≤ j ≤ I1, A1 and B are such that TF (Xj) is a linear combination of
vµ

v0
LZγ1 (F )µmX

β1,q , t
vµ

v0
LZγ1 (F )µmX

β1,q ,
vµ

v0
LZγ1 (F )µix

iXβ1,q ,

vµ

v0
LZγ2 (F )µmY

β2,l , t
vµ

v0
LZγ2 (F )µmY

β2,l and
vµ

v0
LZγ2 (F )µix

iY β2,l ,

with |γ1| ≤ N − 3n+2
2 , |γ2| ≤ N , 1 ≤ m ≤ n, 1 ≤ q ≤ |I1| and 1 ≤ l ≤ |I2|. Similarly,

if 1 ≤ j ≤ I2, A2 is such that TF (Y j) is a linear combination of
vµ

v0
LZγ (F )µmY

β2,l , t
vµ

v0
LZγ (F )µmY

β2,l and
vµ

v0
LZγ (F )µix

iY β2,l ,

with |γ| ≤ N − n, 1 ≤ m ≤ n and 1 ≤ l ≤ |I2|. Note also, using Proposition 6.6, that∫
v

|Y |∞dv ≲ ϵ
χ

1
6 (t)

τn
+

.

Proof. – Let |β| ≤ N . According to commutation formula of Lemma 2.26, TF (Ẑβfk) is
a linear combination of terms such as LZγ (F )(v,∇vẐ

δ(fk)), with |γ|+ |δ| ≤ |β| and
|δ| ≤ |β| − 1. Replacing each ∂viẐδfk by 1

v0 (Ω̂0iẐ
βfk − t∂iẐ

βfk − xi∂tẐ
βfk), the

matrices naturally appear.

Now, we split X in G+H where G is the solution of the homogeneous system and
H is the solution to the inhomogeneous system,{

TF (H) +AH = 0, H(0, ., .) = X(0, ., .),

TF (G) +AG = BY, G(0, ., .) = 0.

The goal now is to prove L2 estimates on the velocity averages of H and G.

6.6.1. The homogeneous part. – We start by the following commutation formula.

Lemma 6.9. – Let 1 ≤ i ≤ |I1| and consider Ẑδ ∈ P̂|δ|0 , with |δ| ≤ n. Then, TF (ẐδHi)

can be written as a linear combination of terms of the form

LZγ (F )(v,W ),

where W is such that

∀0 ≤ µ ≤ n, |Wµ| ≲ τ+
v0

∑
|θ|≤n

|I1|∑
q=1

|ẐθHq|,

and where |γ| ≤ N− n+2
2 , so that the electromagnetic field can be estimated pointwise.

Proof. – The proof is similar to the ones of Lemma 2.25 and Corollary 2.26.
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We introduce the energy Ẽ[H] of H.

Ẽ[H] =

|I1|∑
i=1

E2
n[Hi] + E2

n,1[H
i]

and we have the following lemma.

Lemma 6.10. – If ϵ is small enough, we have, for all t ∈ [0, T ],

Ẽ[H](t) ≤ 8ϵ and ∀1 ≤ i ≤ |I1|,
∥∥∥∥∫

v

τ+|Hi|dv
∥∥∥∥

L2(Σt)

≲
ϵ

(1 + t)
n−2

2

.

Proof. – We follow here what we have done in Section 6.4.2. Since Ẽ[H](0) ≤
3
2E

2
N+n[fk](0) + 3

2E
2
N+n,1[fk](0) ≤ 3ϵ for ϵ small enough, there exists 0 < T̃ ≤ T such

that
∀ t ∈ [0, T̃ ], Ẽ[H](t) ≤ 8ϵ.

To improve this bootstrap assumption, for ϵ small enough, we only have to use
the previous lemma and to follow Section 6.4.2 (as we always estimated

∣∣(∇vw)L
∣∣,∣∣(∇vw)L

∣∣ and
∣∣(∇vw)B

∣∣ by τ+

v0

∑
Ẑ∈P̂0

|Ẑw|). We can then take T̃ = T and obtain, as
in Section 6.5, that

∀1 ≤ i ≤ |I1|, (t, x) ∈ [0, T ]× Rn,

∫
v∈Rn

|Hi(t, x, v)|dv ≲
ϵ

τn
+

.

The L2 estimate then ensues from Lemma 4.1.

6.6.2. The inhomogeneous part. – Let us introduce K, the solution of TF (K)+A1K+

KA2 = B which verifies K(0, ., .) = 0, and the function

|KKY |∞ =
∑

1≤i≤|I1|
1≤j,p≤|I2|

|Kj
i |

2|Yp|.

KY and G are solutions of the same system,

TF (KY ) = TF (K)Y +KTF (Y ) = BY −A1KY −KA2Y +KA2Y

= BY −A1KY.

As KY (0, ., .) = 0 and G(0, ., .) = 0, we have KY = G. For 1 ≤ i ≤ |I1| and
1 ≤ j, p ≤ |I2|, |Kj

i |2Yq sastifies the equation

TF

(
|Kj

i |
2Yp

)
= |Kj

i |
2(A2)

q
pYq − 2

(
(A1)

q
iK

j
q +Kq

i (A2)
j
q

)
Kj

i Yp + 2Bj
iK

j
i Yp,

which will allow us to estimate

E[|KKY |∞] := E0
0[|KKY |∞].

We will then be able to bound
∥∥τ+ ∫v∈Rn |G|dv

∥∥
L2(Σt)

thanks to the estimates
on
∫

v∈Rn |Y |dv and E[|KKY |∞].
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Lemma 6.11. – We have,

∀ t ∈ [0, T ], E[|KKY |∞] ≤ ϵ.

Proof. – We use again the continuity method. Let T0 be the largest time such
that E[|KKY |∞] ≤ 2ϵ for all t ∈ [0, T0] and let us prove, with the energy estimate of
Proposition 3.1, that for ϵ small enough, E[|KKY |∞] ≤ ϵ on [0, T0]. Let t ∈ [0, T0].

As for the estimate of Ẽ[H] in the proof of Lemma 6.10, we have∫ t

0

∫
Σs

∫
v

1

v0

∣∣∣|Kj
i |

2(A2)
q
pYq − 2

(
(A1)

q
iK

j
q +Kq

i (A2)
j
q

)
Kj

i Yp

∣∣∣ dvdxds ≲ ϵ
3
2 .

Next, we need to estimate the following integral,

(60)
∫ t

0

∫
Σs

∫
v

1

v0
|Bj

iK
j
i Yp|dvdx.

The components of the matrix B involve terms in which the electromagnetic field has
too many derivatives to be estimated pointwise. Indeed, recall from Lemma 6.8 that

|Bj
iK

j
i Yp| ≲

n∑
m=1

∑
|γ|≤N

τ+

∣∣∣∣vµ

v0
LZγ (F )µmK

j
i Yp

∣∣∣∣ .
We fix |γ| and we denote the null decomposition of LZγ (F ) by (α, α, ρ, σ). In order

to bound (60), we bound the integral of the five following terms, given by the null
decomposition of the velocity vector v and LZγ (F ).

— The good terms

τ+|α|
|KY |
v0

, τ+|ρ|
|KY |
v0

and τ+|σ|
|KY |
v0

.

— The bad terms

τ+
vL

(v0)2
|α||KY | and τ+

|vB |
(v0)2

|α||KY |.

We start by bounding the integral on Σs × Rn
v of the good terms. We use ζ to

denote either α, ρ or σ. Using twice the Cauchy-Schwarz inequality (in x and then
in v), we have∫

Σs

∫
v

τ+|ζ|
|KY |
v0

dvdx ≲ ∥τ+|ζ|∥L2(Σs)

(∫
Σs

(∫
v

|KY |dv
)2

dx

) 1
2

≲
√
EN [F ](s)

(∫
Σs

∫
v

|Y |dv
∫

v

|KKY |∞dvdx
) 1

2

≲
√
EN [F ](s)

∥∥∥∥∫
v

|Y |dv
∥∥∥∥ 1

2

L∞(Σs)

E[|KKY |∞]
1
2 .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2022



82 CHAPTER 6. THE MASSIVE VLASOV-MAXWELL EQUATIONS

Using the bootstrap assumptions, on EN [F ] and E[|KKY |∞], and the pointwise
estimate

∫
v
|Y |dv ≲ ϵ log

1
2 (3 + t)τ−n

+ given in Lemma 6.8, we obtain∫ t

0

∫
Σs

∫
v

τ+|ζ|
|KY |
v0

dvdxds ≲
∫ t

0

ϵ
3
2 log2(3 + t)

(1 + s)2
ds ≲ ϵ

3
2 .

To unify the study of the bad terms, we use ṽ to denote vL or vB . Using the
Cauchy-Schwarz inequality (in (s, x)), the integral on [0, t] × Σs × Rn

v of a bad term
is bounded by

(61)

(∫ t

0

∫
Σs

τ2
−|α|2

(1 + s)
3
2

dxds

∫ t

0

∫
Σs

τ2
+(1 + s)

3
2

τ2
−

(∫
v

∣∣∣∣ ṽv0

∣∣∣∣ |KY |dv)2

dxds

) 1
2

.

As ∥τ−|α|∥2L2(Σs) ≲ ϵ log3(3 + t), we have∫ t

0

∫
Σs

τ2
−|α|2

(1 + s)
3
2

dxds ≲ ϵ.

For the second factor of the product in (61), we first note that, by the Cauchy-
Schwarz inequality,(∫

v

∣∣∣∣ ṽv0

∣∣∣∣ |KY |dv)2

≤
∫

v

|Y |dv
∫

v

∣∣∣∣ ṽv0

∣∣∣∣2 |KKY |∞dv.
Now, recall from Proposition 2.9 that |vB | ≲

√
vLvL so that

∣∣ ṽ
v0

∣∣2 ≲ vL

v0 . Using the
pointwise decay estimate

∫
v
|Y |dv ≲ ϵ log

1
2 (3 + t)τ−n

+ , we get(∫
v

∣∣∣∣ ṽv0

∣∣∣∣ |KY |dv)2

≤ ϵ
log

1
2 (3 + t)

τn
+

∫
v

vL

v0
|KKY |∞dv.

As
∫

Cu(t)

∫
v

vL

v0 |KKY |∞dCu(t)dv ≤ E[|KKY |∞](t) ≤ 2ϵ, we obtain∫ t

0

∫
Σs

τ2
+(1 + s)

3
2

τ2
−

(∫
v

∣∣∣∣ ṽv0

∣∣∣∣ |KY |dv)2

dxds ≲ ϵ2
∫ +∞

u=−∞
τ−2
− du ≲ ϵ2.

Hence, ∫ t

0

∫
Σs

∫
v

τ+
|ṽ|

(v0)2
|α||KY |dvdxds ≲ ϵ

3
2

and the energy estimate of Proposition 3.1 gives that, for ϵ small enough,
E[|KKY |∞] ≤ ϵ on [0, T0].

Remark 6.12. – A naive estimation of the bad terms in the previous lemma would
lead to a (1 + t)η-loss which would affect the electromagnetic energy.

We are now able to prove the expected L2 estimate on
∫

v
|G|dv.

Lemma 6.13. – If ϵ is small enough, we have,

∀ t ∈ [0, T ], 1 ≤ i ≤ |I1|,
∥∥∥∥∫

v

τ+|Gi|dv
∥∥∥∥

L2(Σt)

≲
ϵχ

1
12 (t)

(1 + t)
n−2

2

.
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Proof. – Let 1 ≤ i ≤ |I1|. The Cauchy-Schwarz inequality (in v) gives us∥∥∥∥τ+ ∫
v

|Gi|dv
∥∥∥∥

L2(Σt)

≲
|I2|∑
j=1

∥∥∥∥τ2
+

∫
v

|Yj |dv
∫

v

|(Kj
i )2Yj |dv

∥∥∥∥ 1
2

L1(Σt)

.

Thus, using once again that
∫

v
|Yj |dv ≲ ϵχ

1
6 (t)τ−n

+ , we obtain∥∥∥∥τ+ ∫
v

|Gi|dv
∥∥∥∥

L2(Σt)

≲
ϵχ

1
12 (t)

(1 + t)
n
2−1

.

We can now conclude this section.

Proof of Proposition 6.7. – As mentionned earlier, for |β| ≤M − 1, the estimate en-
sues from Proposition 6.6 and Lemma 4.1. If M ≤ |β| ≤ N , as there exists 1 ≤ i ≤ |I1|
such that Ẑβfk = Hi +Gi, we have∥∥∥∥τ+ ∫

v

|Ẑβfk|dv
∥∥∥∥

L2(Σt)

≤
∥∥∥∥τ+ ∫

v

|Hi|dv
∥∥∥∥

L2(Σt)

+

∥∥∥∥τ+ ∫
v

|Gi|dv
∥∥∥∥

L2(Σt)

.

It then remains to use Lemmas 6.10 and 6.13.

6.7. Step 5: Improvement of the electromagnetic field energy estimates

6.7.1. The bound on the potential energy. – According to the energy estimate given
by Proposition 3.12 and the commutation formula of Proposition 2.19, we have, for
all t ∈ [0, T ],√

ẼN [A](t) ≲
√
ẼN [A](0) +

∑
|γ|≤N

∫ t

0

|ek|
∥∥∥∥τ+ ∫

Rn

|Ẑγfk|dv
∥∥∥∥

L2(Σs)

ds.

Using the L2 decay estimate of Proposition 6.7 and ẼN [A](0) ≤ ϵ, we obtain, for ϵ
small enough and if the constant C is large enough, that

∀ t ∈ [0, T ], ẼN [A](t) ≤ C

2(n− 3)
ϵ log3 (3 + t) if n = 4

and

∀ t ∈ [0, T ], ẼN [A](t) ≤ C

2(n− 3)
ϵ if n ≥ 5.

We are now able, using Proposition 4.19, to improve the pointwise decay estimate
on α.

∀ |β| ≤ N − n, (t, x) ∈ [0, T ]× Rn, |α(LZβ (F )|(t, x) ≲
√
ϵ

√
χ(t)

τ
n+2

2
+

.
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6.7.2. Improvement of the electromagnetic field energy estimates. – Recall from Propo-
sition 3.21 that

EN [F ](t) ≤ EN [F ](0) + (n− 3)ẼN [A](t) + φ(t),

where φ(t) is a linear combination of terms such that

(62)
∫ t

0

∫
Σs

|Kν

0LZβ (F )µνJ(Ẑγfk)µ|dxds and
∫ t

0

∫
Σs

s|LZδAµ□LZδAµ|dxds,

with |β|, |γ|, |δ| ≤ N and 1 ≤ k ≤ K. Then, if we could prove that each integrals of
(62) is bounded by ϵ

3
2χ(t), we would have, for ϵ small enough and if the constant C is

large enough, EN [F ] ≤ Cϵχ(t) on [0, T ] since EN [F ](0) ≤ ϵ and (n − 3)ẼN [A](t) ≤
C
2 ϵχ(t).

We start by bounding the integrals involving the potential. Using Proposition 2.19
and the Cauchy-Schwarz inequality, we have, for |δ| ≤ N ,∫ t

0

∫
Σs

s|LZδAµ□LZδAµ|dxds ≲
K∑

k=1

∑
|γ|≤|δ|

∫ t

0

√
ẼN [A](s)

∥∥∥∥τ+ ∫
v

|Ẑγfk|dv
∥∥∥∥

L2(Σs)

ds.

Using the L2 estimate of Proposition 6.7 and that ẼN [A](s) ≲ ϵχ(s), we get∑
|δ|≤N

∫ t

0

∫
Σs

s|LZδAµ□LZδAµ|dxds ≲ ϵ
3
2

∫ t

0

log2(3 + s)

(1 + s)
n−2

2

ds

≲ ϵ
3
2χ(t).

In order to estimate the remaining integrals of (62), we express
K

ν

0LZβ (F )µνJ(Ẑγfk)µ in null coordinates. Dropping the dependance in LZβ (F ) or
Ẑγfk, this gives us the four following terms :

(63) τ2
+ρJ

L, τ2
−ρJ

L, τ2
+αBJ

B , and τ2
−αBJ

B .

As

JL =

∫
v

vL

v0
Ẑγfkdv, JL =

∫
v

vL

v0
Ẑγfkdv and JB =

∫
v

vB

v0
Ẑγfkdv,

we have,

|JL|, |JL|, |JB | ≲
∫

v∈Rn

|Ẑγfk|dv.

The integrals (on [0, T ] × Rn
x × Rn

v ) of each of the four terms of (63) are then
bounded, using the Cauchy-Schwarz inequality, by∫ t

0

√
EN [F ](s)

∥∥∥∥τ+ ∫
v

|Ẑγfk|dv
∥∥∥∥

L2(Σs)

ds.
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By Proposition 6.7 and the bootstrap assumption (41),∫ t

0

√
EN [F ](s)

∥∥∥∥τ+ ∫
v

|Ẑγfk|dv
∥∥∥∥

L2(Σs)

ds ≲
∫ t

0

√
ϵχ(s)

ϵ log
1
2 (3 + s)

(1 + s)
n−2

2

ds

≲ ϵ
3
2χ(t).

Hence, EN [F ](t) ≤ Cϵχ(t) for all t ∈ [0, T ] if ϵ is small enough.
We can prove in the same way, using in particular the energy estimate of Proposi-

tion 3.25 and ∥∥∥∥∫
v

|Ẑβfk|dv
∥∥∥∥

L2(Σt)

≤ 1

1 + t

∥∥∥∥τ+ ∫
v

|Ẑβfk|dv
∥∥∥∥

L2(Σt)

,

that ES
N [F ] ≤ Cϵ on [0, T ] if ϵ is small enough and the constant C is large enough.

We then improve the bootstrap assumption (41).
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CHAPTER 7

THE MASSLESS VLASOV-MAXWELL EQUATIONS

7.1. Global existence for small data

The aim of this section is to prove Theorem 1.5. We then consider the massless
Vlasov-Maxwell system (1)-(3), with at least two species (24), in dimension n ≥ 4. This
means that K ≥ 2 and mk = 0 for all 1 ≤ k ≤ K.

To simplify the notation, we denote, during this chapter, E0
M [f ] by EM [f ] and

E0
M,1,0 by EM,1. In view of Definition 3.2 and 1 ∈ k0, we have

EM [f ] ≤ EM,1[f ].

We introduce the functions χ, defined on R+ by

χ(s) = 1 + s if n = 4, χ(s) = log2 (3 + s) if n = 5 and χ(s) = 1 if n ≥ 6,

and log∗, defined on R+ by

log∗ = log if n = 4 and log∗ = 1 if n ≥ 5.

We give a more precise version of Theorem 1.5.

Theorem 7.1. – Let n ≥ 4, K ≥ 2, N ≥ 6n+ 2 if n is even and N ≥ 6n+ 3 is n is
odd, 0 < η < 1

2 if n = 4 and η = 0 if n ≥ 5 and R > 0. Let (f0, F0) be an initial data
set for the massless Vlasov-Maxwell system. Let (f, F ) be the unique classical solution
to the system and let A be a potential in the Lorenz gauge. There exists ϵ > 0 such
that (25), if

ẼN [A](0) ≤ ϵ, EN [F ](0) ≤ ϵ

and if, for all 1 ≤ k ≤ K,

supp(f0k) ⊂{(x, v) ∈ Rn
x × Rn

v \ {0} / |v| ≥ R}, EN+n,1[fk](0) ≤ ϵ,

then (f, F ) exists globally in time and verifies the following estimates.

24. We recall that we take K ≥ 2 since we suppose that the initial energy E[F ] is finite, which
implies that the plasma is electrically neutral (see Remark 1.2 for more details).

25. We recall that a smallness condition on F , which implies ẼN [A](0) ≤ ϵ, is given in Proposi-
tion 2.20.
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— Vanishing property for small velocities : for all 1 ≤ k ≤ K,

supp(fk) ⊂
{

(t, x, v) ∈ R+ × Rn
x × Rn

v \ {0} / |v| ≥
R

2

}
.

— Energy bounds for F and fk : ∀ 1 ≤ k ≤ K and ∀ t ∈ R+,

EN [F ](t) ≲ ϵχ(t)(1 + t)η, EN−2n[F ](t) ≲ ϵχ(t),

EN [fk](t) ≲ ϵ log∗(3 + t), EN−n,1[fk](t) ≲ ϵ.

— Pointwise decay for the null decomposition of LZβ (F ) : ∀ |β| ≤ N − 5n+4
2 ,

(t, x) ∈ R+ × Rn,

|α(LZβF )| ≲
√
ϵχ(t)τ

−n+2
2

+ , |α(LZβF )| ≲
√
ϵχ(t)τ

−n−1
2

+ τ
− 3

2
− ,

|ρ(LZβF )| ≲
√
ϵχ(t)τ

−n+1
2

+ τ
− 1

2
− , |σ(LZβF )| ≲

√
ϵχ(t)τ

−n+1
2

+ τ
− 1

2
−

and
|α(LZβF )| ≲

√
ϵτ
−n−1

2
+ τ−1

− .

— Pointwise decay for
∫

v∈Rn\{0} |zẐ
βfk|dv :

∀ |β| ≤ N − 2n, z ∈ k0, (t, x) ∈ R+ × Rn,

∫
v

|zẐβfk|dv ≲
ϵ

τn−1
+ τ−

.

— L2 estimates on
∫

v∈Rn\{0} |Ẑ
βfk|dv :

∀ |β| ≤ N, t ∈ R+,

∥∥∥∥∥
∫

v∈Rn\{0}
|Ẑβfk|dv

∥∥∥∥∥
L2(Σt)

≲
ϵ

(1 + t)
n−1−η

2

.

— Energy bound for a potential A satisfying the Lorenz gauge :

∀ t ∈ R+, ẼN [A](t) ≲ ϵχ(t)(1 + t)η and ẼN−2n[A](t) ≲ ϵχ(t).

7.2. Structure and beginning of the proof

Let (f0, F0) be an initial data set satisfying the assumptions of Theorem 7.1. By a
standard local well-posedness argument, there exists a unique maximal solution (f, F )

of the massless Vlasov-Maxwell system defined on [0, T ∗[, with T ∗ ∈ R∗+ ∪ {+∞}.
We consider the following bootstrap assumptions. Let T be the largest time such

that, ∀ 1 ≤ k ≤ K and ∀ t ∈ [0, T ],

EN [F ](t) ≤ 2Cϵχ(t)(1 + t)η, EN−2n[F ](t) ≤ 2Cϵχ(t),(64)

E0
N [F ](t) ≤ 4ϵ, ES

N [F ](t) ≤ 2Cϵ(1 + t)η, ES
N−2n[F ](t) ≤ 2C,(65)

ẼN [A](t) ≤ 2Cϵχ(t)(1 + t)η, ẼN−2n[A](t) ≤ 2Cϵχ(t),(66)

EN [fk](t) ≤ 4 log∗(3 + t), and EN−n,1[fk](t) ≤ 4ϵ,(67)
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where C and C are positive constants which will be specified during the proof. Note
that by continuity, T > 0. We now present our strategy to improve these bootstrap
assumptions.

1. First, using the bootstrap assumptions, we obtain decay estimates for the null
decomposition of F (and its Lie derivatives) and for velocity averages of deriva-
tives of fk.

2. Then, we prove that 0 is not in the closure of the Vlasov fields v-support. This
follows from the study of the characteristics of the transport equation.

3. Next, we improve the bounds on the Vlasov fields energies by means of the en-
ergy estimates proved in Propositions 3.3 and 3.5. To bound the right hand side
in these energy estimates, we make fundamental use of the null structure of the
system and the pointwise decay estimates on ρ, σ, α, α and

∫
Rn\{0} |zẐ

βfk|dv.
4. In order to improve the estimates on the electromagnetic field energies, we es-

tablish an L2
x estimate for the velocity averages of the Vlasov fields (and its

derivatives). For this purpose, we follow [7] and we rewrite all the transport
equations as an inhomogeneous system of transport equations. The velocity av-
erages of the homogeneous part of the solution verify strong pointwise decay
(we use particularly the control that we have at our disposal on the initial data
of fk, for derivatives of order N +n or less). The inhomegeneous part is decom-
posed into a product of an integrable function and a pointwise decaying function
which gives us the expected estimate.

5. Finally, we improve the estimates on the energies of the electromagnetic po-
tential and the electromagnetic field, with the energy estimate for the Maxwell
equations (using in particular Propositions 3.21 and 3.25). We use the null de-
composition of J(Ẑγfk)µLZβ (F )µνK

ν

0 , which, combined with L2
x estimates on

quantities such as
∫
Rn |Ẑγfk|dv, gives us the improvement.

7.3. Step 1: Decay estimates

By the Klainerman-Sobolev inequality of Theorem 2.13 and the bootstrap assump-
tion (67), we have ∀ |β| ≤ N − n, (t, x) ∈ [0, T [× Rn, 1 ≤ k ≤ K,

(68)
∫

v

|Ẑβfk|dv ≲
EN [fk](t)

τn−1
+ τ−

≲
ϵ log∗(3 + t)

τn−1
+ τ−

.

In the same spirit (26), using Corollary 2.14, we have ∀ |β| ≤ N − 2n, z ∈ k0,
(t, x) ∈ [0, T ]× Rn,

(69)
∫

v

∣∣∣zẐβfk

∣∣∣ dv ≲
EN−n,1[fk](t)

τn−1
+ τ−

≲
ϵ

τn−1
+ τ−

.

26. Note that the pointwise decay estimate (69) implies (68) for the lower order derivatives, taking
z = 1.
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We have improved decay estimates for the null components of the current Mµ :=∫
v

vµ

v0 Ẑ
βfkdv. For all |β| ≤ N − 2n, we have∫

v

vL

v0
|Ẑβfk|dv ≲

ϵ

τn
+τ−

,(70) ∫
v

vL

v0
|Ẑβfk|dv ≲

ϵ

τn−1
+ τ2

−
(71)

and ∫
v

|vB |
v0

|Ẑβfk|dv ≲
ϵ

τn
+τ−

.(72)

This results from (see Proposition 2.9)

vL

v0
≲

1

τ+

∑
z∈k0

|z|, vL

v0
≲

1

τ−

∑
z∈k0

|z| and
∣∣∣∣vB

v0

∣∣∣∣ ≲ 1

τ+

∑
z∈k0

|z|.

Using the bootstrap assumptions (64), (65), (66), Propositions 4.16, 4.19 and the
pointwise decay estimate (68), we obtain.

Proposition 7.2. – For all t ∈ [0, T ], |β| ≤ N − n, we have

|α(LZβF )| ≲
√
ϵχ(t)(1 + t)η

τ
n+2

2
+

, |α(LZβF )| ≲
√
ϵχ(t)(1 + t)η

τ
n−1

2
+ τ

3
2
−

,

|ρ(LZβF )| ≲
√
ϵχ(t)(1 + t)η

τ
n+1

2
+ τ

1
2
−

, |σ(LZβF )| ≲
√
ϵχ(t)(1 + t)η

τ
n+1

2
+ τ

1
2
−

and

|α(LZγF )| ≲
√
ϵ(1 + t)η

τ
n−1

2
+ τ−

.

For all t ∈ [0, T ], |β| ≤ N − 5n+2
2 , we have

|α(LZγF )| ≲
√
ϵτ
−n−1

2
+ τ−1

− , |α(LZβF )| ≲
√
ϵχ(t)τ

−n−1
2

+ τ
− 3

2
− ,

|ρ(LZβF )| ≲
√
ϵχ(t)τ

−n+1
2

+ τ
− 1

2
− , |σ(LZβF )| ≲

√
ϵχ(t)τ

−n+1
2

+ τ
− 1

2
− .

Finally, for all t ∈ [0, T ], |β| ≤ N − 5n+4
2 ,

|α(LZγF )| ≲
√
ϵχ(t)τ

−n+2
2

+ .

Remark 7.3. – The alternative estimate on α is useful to avoid a τ+-loss when n ≤ 5

and is particularly used in Section 7.6.1.

Remark 7.4. – We also have pointwise decay estimates if |β| ≤ N − n+2
2 but the one

on α is worse near the light cone (see Proposition 4.16).
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7.4. Step 2: the Vlasov fields vanishes for small velocities

We recall that
∀1 ≤ i ≤ n, Ei = F0i,

and that the transports equation of the Vlasov-Maxwell system can be rewritten

vµ∂µfk + v0Ei∂vifk + vjFj
i∂vifk = 0.

We now fix 1 ≤ k ≤ K and we prove, under the bootstrap assumption, that if
fk(t, x, v) ̸= 0, with (t, x, v) ∈ [0, T ] × Rn × Rn \ {0}, then |v| ≥ R

2 . During the
argument, we will use various constants and we will all call them C for simplicity.
These constants will not depend on ϵ or on T .

Let x ∈ Rn and |v| ≥ R. Let (X,V ) be the characteristics of the transport equation
such that (X(0), V (0)) = (x, v). In particular

∀ 1 ≤ i ≤ n,
dV i

ds
= Ei(s,X) +

V j

V 0
Fji(s,X).

It follows that
d(|V |2)
ds

= 2 ⟨E(s,X), V ⟩ .

So,

(73) |V (t)|2 = |v|2 + 2

∫ t

0

⟨E(s,X(s)), V (s)⟩ ds.

We denote |V (s)|2 by g(s). By the Cauchy-Schwarz inequality, we have

g(t) ≤ |v|2 + 2

∫ t

0

|E(s,X(s))|
√
g(s)ds.

We now use a Grönwall inequality (Lemma 4.22) and |E(s,X(s))| ≤ C
√

ϵ

(1+s)
n−1

2

(which come from Proposition 7.2) to obtain

g(s) ≤
(
|v|+

∫ t

0

C
√
ϵds

(1 + s)
3
2

)2

.

Thus,
|V (s)| ≤ |v|+ C

√
ϵ.

Returning to (73), we obtain

|V (s)|2 ≥ |v|2 − 2

∫ t

0

|E(s,X(s))||V (s)|ds.

Therefore, using again the pointwise estimate on E,

|V (s)|2 ≥ |v|2 − 2C
√
ϵ(|v|+ C

√
ϵ).

Finally,

|V (s)|2 ≥ |v|(|v| − C
√
ϵ)− Cϵ ≥ 1

4
|v|2,
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if ϵ is sufficiently small so that Cϵ ≤ R
4 and C

√
ϵ ≤ R

2 .
Then, if (x, v) is such that |v| ≥ R, (X,V ) is well defined on [0, T ] (X is also

bounded since
∣∣dX

ds

∣∣ = 1) and |V | ≥ R
2 . Consequently, we obtain.

Lemma 7.5. – We have

supp(fk|[0,T ]) ⊂
{

(t, x, v) ∈ [0, T ]× Rn × Rn \ {0} / |v| ≥ R

2

}
.

In the remainder, we will then be able to use inequalities like
1

v0
|fk(t, x, v)| ≲ |fk(t, x, v)|.

Sometimes, we will abusively use inequalities such that
1

v0

∑
z∈k0

|z| ≲
∑
z∈k0

|z|

because these quantities are always multiplied by Ẑβfk.

7.5. Step 3: Improving the Energy estimates for the transport equations

We fix for all this section 1 ≤ k ≤ K. According to Proposition 3.3, EN [fk] ≤
3ϵ log∗(3 + t) on [0, T ], for ϵ small enough, follows from

∫ t

0

∫
Σs

∫
v

∣∣∣LZβ1 (F )
( v
v0
,∇vẐ

β2fk

)∣∣∣ dvdxds ≲ ϵ
3
2 log∗(3 + t),

for all |β1|+ |β2| ≤ N , with |β2| ≤ N − 1.
Similarly, according to Proposition 3.5, EN−n,1[fk] ≤ 3ϵ on [0, T ], for ϵ small

enough, follows from∫ t

0

∫
Σs

∫
v

|z|
∣∣∣LZβ1 (F )

( v
v0
,∇vẐ

β2fk

)∣∣∣ dvdxds ≲ ϵ
3
2 ,

and ∫ t

0

∫
Σs

∫
v

∣∣∣F ( v
v0
,∇vz

)
Ẑβfk

∣∣∣ dvdxds ≲ ϵ
3
2 ,

for all z ∈ k0, |β1|+ |β2| ≤ N − n (with |β2| ≤ N − n− 1) and |β| ≤ N − n.
To unify the study of EN [fk] and EN−n,1[fk], we consider b, which could be equal

to 0 or to 1, N0 = N and N1 = N − n. Now, we fix z ∈ k0, |β1| + |β2| ≤ Nb (with
|β2| ≤ Nb−1) and |β| ≤ N −n. We denote ρ(LZβ1 (F )), σ(LZβ1 (F )), α(LZβ1 (F )) and
α(LZβ1 (F )) by ρ, σ, α and α (respesctively). We also denote Ẑβ2fk by g and Ẑβfk

by h. The null decomposition of LZβ1 (F )(v,∇vg) or F (v,∇vz) brings us to control
the integral of the following terms, with z0 = 1 and z1 = z.
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The terms involving L or L components of ∇vg or ∇vz∣∣∣∣zb
vL

v0
ρ (∇vg)

L

∣∣∣∣, ∣∣∣∣hvL

v0
ρ(F ) (∇vz)

L

∣∣∣∣ ,(74) ∣∣∣∣zb
vL

v0
ρ (∇vg)

L

∣∣∣∣, ∣∣∣∣hvL

v0
ρ(F ) (∇vz)

L

∣∣∣∣ ,(75) ∣∣∣∣zb
vB

v0
αB (∇vg)

L

∣∣∣∣, ∣∣∣∣hvB

v0
αB(F ) (∇vz)

L

∣∣∣∣ ,(76) ∣∣∣∣zb
vB

v0
αB (∇vg)

L

∣∣∣∣, ∣∣∣∣hvB

v0
αB(F ) (∇vz)

L

∣∣∣∣ .(77)

The terms involving angular components of ∇vg or ∇vz∣∣∣∣zb
vL

v0
αB (∇vg)

B

∣∣∣∣, ∣∣∣∣hvL

v0
αB(F ) (∇vz)

B

∣∣∣∣ ,(78) ∣∣∣∣zb
vB

v0
σBD (∇vg)

D

∣∣∣∣, ∣∣∣∣hvB

v0
σ(F )BD (∇vz)

D

∣∣∣∣ ,(79) ∣∣∣∣zb
vL

v0
αB (∇vg)

B

∣∣∣∣, ∣∣∣∣hvL

v0
αB(F ) (∇vz)

B

∣∣∣∣ .(80)

The study of EN [fk] corresponds to b = 0. In this case, we only have to estimate
the spacetime integral of each of the first terms of (74)-(80), but we need to consider
two cases. When |β1| ≤ N − n we can use the pointwise decay estimates on the
electromagnetic field given by Proposition 7.2. When |β1| > N − n, |β2| ≤ N − 2n

(since N ≥ 6n+2), and we can then use the pointwise decay estimates on the velocity
averages of the Vlasov field given in Section 7.3.

In the study of EN−n,1[fk] (which corresponds to b = 1 and where z can be any
weights of k0), we can always use a pointwise estimate on the electromagnetic field
(as |β1| ≤ N − n), but we need to estimate the spacetime integral of all the terms of
(74)-(80).

Remark 7.6. – To simplify the argument we will sometimes denote EN [fk]

by EN0,0[fk] and EN−n,1[fk] by EN1,1[fk].

7.5.1. Estimating the v derivatives. – In order to eliminate the v derivatives, we use,
as in Section 6.4.1,

|∇vw| ≲
τ+
v0

∑
Ẑ∈P̂0

|Ẑw|(81)

and ∣∣∣(∇vw)
L
∣∣∣ , ∣∣∣(∇vw)

L
∣∣∣ ≲ τ−

v0

∑
Ẑ∈P̂0

|Ẑw|.(82)
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7.5.2. If |β1| ≤ N − n. – We start by the terms involving L or L components of ∇vg

or ∇vz. We use ζ to denote α, α or ρ. Thus, by Proposition 7.2,

|ζ| ≲
√
ϵ(1 + t)

η
2

τ
3
2
+τ−

.

The integral on [0, t] × Rn
x × (Rn

v \ {0}) of each of the first terms of (74)-(77) are
bounded by ∑

Ẑ∈P̂0

∫ t

0

∫
Σs

τ−|ζ|
∫

v

|zbẐg|dvdxds,

where we use in particular (82) and the fact that 1
v0 ≲ 1 on the support of g. Using

the bootstrap assumption (67), we obtain∫ t

0

∫
Σs

τ−|ζ|
∫

v

|zbẐg|dvdxds ≲
∫ t

0

√
ϵ(1 + s)−

3−η
2 ENb,b[fk](s)ds ≲ ϵ

3
2 .

Similarly, the integrals of each of the second terms of (74)-(77) are bounded by∑
Ẑ∈P̂0

∫ t

0

∫
Σs

τ−|ζ(F )|
∫

v

|hẐ(|z|)|dv
v0
dxds.

Using again the bootstrap assumption (67) and 1
v0 ≲ 1 on the support of h, one

has ∫ t

0

∫
Σs

τ−|ζ(F )|
∫

v

|hẐ(|z|)|dv
v0
dxds ≲

∫ t

0

√
ϵ(1 + s)−

3−η
2 EN1,1[fk](s)ds ≲ ϵ

3
2 ,

since |Ẑ(|z|)| ≲
∑

w∈k0
|w| by Lemma 2.8.

We now study the remaining terms. Using (81), the pointwise decay estimates of
Proposition 7.2, that 1

v0 ≲ 1 on the support of g and the bootstrap assumption (67),
we have∫ t

0

∫
Σs

∫
v

∣∣∣∣zb
vL

v0
αB (∇vg)

B

∣∣∣∣ dvdxds ≲
∑

Ẑ∈P̂0

∫ t

0

∫
Σs

τ+|α|
∫

v

|zbẐg|dvdxds

≲
√
ϵ

∫ t

0

(1 + s)−
3−η
2 ENb,b[fk](s)ds

≲ ϵ
3
2 .

The second term of (78) can be treated similarly. For the second term of (79) (as
the first one can be treated in a similar way), we have, using (81), Lemma 2.8 and
|vB | ≲

√
vLvL (which comes from Proposition 2.9),∫ t

0

∫
Σs

∫
v

∣∣∣∣hvB

v0
σ(F )BD (∇v|z|)D

∣∣∣∣ dvdxds ≲ ∑
z′∈k0

∫ t

0

∫
Σs

τ+|σ(F )|
∫

v

√
vLvL

(v0)2
|z′||h|dvdxds.
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Since, by Proposition 7.2, |σ(F )| ≲
√
ϵτ−2

+ τ
− 1

2
− (1+ t)

η
2 , one has, using the Cauchy-

Schwarz inequality (in (s, x, v)), that the right hand side of the previous inequality is
bounded by the product of∑

z′∈k0

(√
ϵ

∫ t

0

(1 + s)−
3−η
2

∫
Σs

∫
v

vL

(v0)3
|z′||h|dvdxds

) 1
2

with ∑
z′∈k0

(
√
ϵ

∫ t

u=−∞
τ
− 3−η

2
−

∫
Cu(t)

∫
v

vL

v0
|z′||h|dvdCu(t)du

) 1
2

.

The first factor is bounded by ϵ
3
4 since vL

(v0)3 ≲ 1 on the support of h and∫
Σs

∫
v
|z′||h|dvdx ≤ 4ϵ by the bootstrap assumption 67. The same is true for the

second factor since
∫

Cu(t)

∫
v

vL

v0 |z′||h|dvdCu(t) ≤ EN−n,1[fk](t) ≤ 4ϵ, still by the
bootstrap assumption (67).

Finally, let us treat, for instance, the first term of (80). Using the same ingredients
as before, namely (81), that 1

v0 ≲ 1 on the support of g and the bootstrap assumption
(67), we have,∫ t

0

∫
Σs

∫
v

∣∣∣∣zb
vL

v0
αB (∇vg)

B

∣∣∣∣ dsdxdv ≲
∑

Ẑ∈P̂0

∫ t

0

∫
Σs

τ+|α|
∫

v

vL

(v0)2
|zbẐg|dvdxds

≲
∫ t

u=−∞
∥τ+|α|∥L∞(Cu(t))ENb,b[fk](t)du

≲ ϵ
3
2

∫ +∞

−∞

1

τ
3−η
2

−

du(δ1,b+δ0,b log∗(3 + t)).

Remark 7.7. – If we used (81) instead of (82) to estimate (75) and (77), it would
give us a (1 + t)η-loss on the energies (as in the proof of Lemma 7.10 below). The
weight vB could be used to avoid this loss in (77).

7.5.3. If |β1| > N − n. – We study again the integrals of the first terms of (74)-(80),
but this time when |β1| > N − n, so that |β2| ≤ N − 2n, and zb = 1. We then use
the pointwise estimate on the velocity averages of the Vlasov fields. This time, we
study the terms involving α, ρ and σ together (27) and we finish with the two terms
involving α. Note that as we use the extra decay given by vL, vL and vB , we cannot
close the estimate for EN,1[fk] with our method.

Let us denote this time α, ρ or σ by ζ. Then, by the bootstrap assumption (64),

∀ t ∈ [0, T ],

∫
Cu(t)

|ζ|2dx ≲ ϵ.

27. Note that except for (78), we could bound all this terms without the log∗(1 + t)-loss.
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All first terms of (74)-(80) involving α, ρ or σ have their integral on [0, t]×Rn
x×Rn

v

bounded by

M :=
∑

Ẑ∈P̂0

∫ t

0

∫
Σs

|ζ|τ+
∫

v

∣∣∣∣ ṽv0
Ẑg

∣∣∣∣ dvdxds,
where we used (81), that 1

v0 ≲ 1 on the support of g and where ṽ denotes either vL,
vL or vB .

Using the pointwise decay estimate on
∫

v

∣∣∣ ṽ
v0 Ẑg

∣∣∣ dv, given by (70), (71) or (72),
and the Cauchy-Schwarz inequality (on the u = constant integrals), we have

M ≲
∫ t

u=−∞

(∫
Cu(t)

|ζ|2dx

) 1
2
(∫

Cu(t)

ϵ2

τ2n−4
+ τ4

−
dCu(t)

) 1
2

du

≲
∫ t

u=−∞

ϵ
3
2

τ2
−

∣∣∣∣∣
∫ 2t−u

u=0

rn−1

τ2n−4
+

du

∣∣∣∣∣
1
2

du

≲ ϵ
3
2

∫ t

u=−∞

log∗(1 + 2t− u)

τ2
−

du

≲ ϵ
3
2 log∗(1 + t)

∫ +∞

u=−∞
τ
− 3

2
− du.

We now study the two remaining terms, which involve α. We start by (77). Using
(82), we obtain that

∫ t

0

∫
Σs

∫
v
|v

B

v0 αB (∇vg)
L |dvdxds is bounded by∑

Ẑ∈P̂0

∫ +∞

0

∥τ−α∥L2(Σs)

∥∥∥∥∫
v

∣∣∣∣ vB

(v0)2
Ẑg

∣∣∣∣ dv∥∥∥∥
L2(Σs)

ds.

Using (72), Lemma 4.1 and that 1
v0 ≲ 1 on the support of Ẑg, we have∥∥∥∥∫

v

∣∣∣∣ vB

(v0)2
Ẑg

∣∣∣∣ dv∥∥∥∥
L2(Σs)

≲
ϵ

(1 + s)
n+1

2

.

By the bootstrap assumption 64, ∥τ−α∥L2(Σs) ≲
√
ϵχ(t)(1 + t)η, so∫ t

0

∫
Σs

∫
v

∣∣∣∣vB

v0
αB (∇vg)

L

∣∣∣∣ dvdxds ≲ ϵ
3
2 .

Finally,∫ t

0

∫
Σs

∫
v

∣∣∣∣vL

v0
αB (∇vg)

B

∣∣∣∣ dvdxds ≲ ∑
Ẑ∈P̂0

∫ t

0

∥α∥L2(Σs)

∥∥∥∥τ+ ∫
v

∣∣∣∣ vL

(v0)2
Ẑg

∣∣∣∣ dv∥∥∥∥
L2(Σs)

ds.

Now, using the pointwise estimates (70) and Lemma 4.1, we have∥∥∥∥τ+ ∫
v

vL

(v0)2
|Ẑg|dv

∥∥∥∥2

L2(Σs)

≲ ϵ2
∫ +∞

0

rn−1

τ2n−2
+ τ2

−
dr ≲ ϵ(1 + s)−(n−1).
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As, by the bootstrap assumption (65), ∥α∥2L2(Σs) ≲ ϵ,∫ t

0

∫
Σs

∫
v

∣∣∣∣vL

v0
αB (∇vg)

B

∣∣∣∣ dvdxds ≲ ϵ
3
2 .

This concludes the improvement of the bootstrap assumption (67).

7.6. Step 4: L2 estimates for the velocity averages

As for the massive case, to close the energy estimates on the electromagnetic field,
we need enough decay on quantities such as ∥

∫
v
|Ẑβfk|dv∥L2

x
for all |β| ≤ N . If

|β| ≤ N − 2n, strong L2 decay estimates can already be obtained on
∫

v
vL

v0 |Ẑβfk|dv,
for instance, combining (70) and Lemma 4.1.

We fix, for the remaining of this section, 1 ≤ k ≤ K. Following the strategy of [7]
(see Section 4.5.7), for a similar problem, we introduce M ∈ N such that 7n+4

2 ≤M ≤
N − 5

2n. Let I1 and I2 be defined as

I1 = {β multi-index/M ≤ |β| ≤ N} and I2 = {β multi-index/ |β| ≤M − 1}.

We consider an ordering on Ii, for 1 ≤ i ≤ 2, so that Ii = {βi,1, . . . , βi,|Ii|} and two
vector valued fields X and Y , of respective length |I1| and |I2|, such that

Xj = Ẑβ1,jfk and Y j = Ẑβ2,jfk.

Lemma 7.8. – There exists three matrices valued functions A1 : [0, T ] × Rn →
M|I1|(R), A2 : [0, T ] × Rn →∈ M|I2|(R) and B : [0, T ] × Rn →∈ M|I1|,|I2|(R) such
that

TF (X) +A1X = BY, and TF (Y ) = A2Y.

If 1 ≤ j ≤ I1, A1 and B are such that TF (Xj) is a linear combination of

vµ

v0
LZγ1 (F )µmX

β1,q , t
vµ

v0
LZγ1 (F )µmX

β1,q ,
vµ

v0
LZγ1 (F )µix

iXβ1,q ,

vµ

v0
LZγ2 (F )µmY

β2,l , t
vµ

v0
LZγ2 (F )µmY

β2,l and
vµ

v0
LZγ2 (F )µix

iY β2,l ,

with |γ1| ≤ N − 7n+2
2 , |γ2| ≤ N , 1 ≤ m ≤ n, 1 ≤ q ≤ |I1| and 1 ≤ l ≤ |I2|. Similarly,

if 1 ≤ j ≤ I2, A2 is such that TF (Y j) is a linear combination of

vµ

v0
LZγ (F )µmY

β2,l , t
vµ

v0
LZγ (F )µmY

β2,l and
vµ

v0
LZγ (F )µix

iY β2,l ,

with |γ| ≤ N − 5n+2
2 , 1 ≤ m ≤ n and 1 ≤ l ≤ |I2|. Moreover,

∀ z ∈ k0,

∫
v

|z||Y |∞dv ≲
ϵ

τn−1
+ τ−

.
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Proof. – Let |β| ≤ N . According to commutation formula of Lemma 2.26, TF (Ẑβfk) is
a linear combination of terms such as LZγ (F )(v,∇vẐ

δ(fk)), with |γ|+ |δ| ≤ |β| and
|δ| ≤ |β| − 1. Replacing each ∂viẐδfk by 1

v0 (Ω̂0iẐ
βfk − t∂iẐ

βfk − xi∂tẐ
βfk), the

matrices naturally appear. The decay estimates ensue from the definition of Y and
(69).

Now, we split X in G+H where G is the solution of the homogeneous system and
H is the solution to the inhomogeneous system,{

TF (H) +AH = 0, H(0, ., .) = X(0, ., .),

TF (G) +AG = BY, G(0, ., .) = 0.

We will prove below that G = KY (with K a well chosen matrix), which implies,
in view of the velocity support of X and Y , that H and G vanish if |v| ≤ R

2 .
The goal now is to prove L2 estimates on the velocity averages of H and G.

7.6.1. The homogeneous part. – As for the massive case, we have the following com-
mutation formula.

Lemma 7.9. – Let 1 ≤ i ≤ |I1| and consider Ẑδ ∈ P̂|δ|0 , with |δ| ≤ n. Then, TF (ẐδHi)

can be written as a linear combination of terms of the form

LZγ (F )(v,W ),

where W is such that

∀0 ≤ µ ≤ n, |Wµ| ≲ τ+
v0

∑
|θ|≤n

|I1|∑
q=1

|ẐθHq|,

and where |γ| ≤ N− 5n+2
2 , so that we can use the sharpest estimates of Proposition 7.2,

except for α.

We introduce the energy Ẽ1[H] defined by

Ẽ1[H] =

|I1|∑
q=1

En,1[H
q].

Note that for ϵ small enough,

Ẽ1[H](0) ≤ 2EN+n,1[f ](0) ≤ 2ϵ.

Lemma 7.10. – If ϵ is small enough, we have

∀ t ∈ [0, T ], Ẽ1[H](t) ≤ 6ϵ(1 + t)
η
2 .

Moreover,

∀1 ≤ i ≤ |I1|, z ∈ k0, (t, x) ∈ [0, T ]× Rn,

∫
v

|zHi|dv ≲ ϵ
(1 + t)

η
2

τn−1
+ τ−

.
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Proof. – We use again the continuity method. Since, for ϵ small enough, Ẽ1[H](0) ≤ 2ϵ,
there exists a larger time 0 < T̃ ≤ T such that

∀ t ∈ [0, T̃ ], Ẽ1[H](t) ≤ 6ϵ(1 + t)
η
2 .

Following the argument of Section 7.5.2, we almost get that for ϵ small enough,
Ẽ1[H] ≤ 5ϵ(1 + t)η on [0, T̃ ]. In fact, using Lemma 7.9, we have that TF (Hβ) is a
linear combination of terms like LZγ (F )(v,W ), with |γ| ≤ N − 5n+2

2 . Thus we can
use the null decomposition of the velocity vector and the electromagnetic field (and
use its pointwises estimates) and then make similar computations as in Section 7.5.2.
As we cannot use (82) (the algebraic relations between SẐβf and ∂µẐ

βf (µ ∈ 0, n),
for instance, are not necessarily conserved by the decomposition X = H + G), we
need to reexamine the terms corresponding to (74)-(77). For instance, for the terms
analogous to one of (77), we have to prove, for z ∈ k0,

(83)
∫ t

0

∫
Σs

∫
v

τ+|α|
∣∣∣∣z vB

(v0)2
ẐθHq

∣∣∣∣ dvdxds ≲ ϵ
3
2 (1 + t)

η
2 .

As |vB | ≲
√
|vLvL by Proposition 2.9 and as τ+|α| ≲

√
ϵ

τ
n−3

2
+ τ−

, we have, by the

Cauchy-Schwarz inequality (in (s, x, v)), that (83) is bounded by the product of(∫ t

0

∫
Σs

ϵ

τn−3
+

∫
v

∣∣∣zẐθHq
∣∣∣ dvdxds) 1

2

with (∫ t

u=−∞

1

τ2
−

∫
Cu(t)

∫
v

vLvL

(v0)4

∣∣∣zẐθHq
∣∣∣ dvdCu(t)du

) 1
2

.

The first factor is bounded by(∫ t

0

ϵ

1 + s
Ẽ1[H](s)ds

) 1
2

≲ ϵ(1 + t)
η
4 ,

and the other one, since vL

(v0)3 ≲ 1 on the support of H, by√
Ẽ1[H](t)

(∫ +∞

u=−∞

1

τ2
−
du

) 1
2

≲
√
ϵ(1 + t)

η
4 .

The other terms are easier to bound. Let us study also the terms analogous to one
of (75), as there are also the cause of the (1 + t)

η
2 -loss (28).∫ t

0

∫
Σs

∫
v

τ+|ρ|
∣∣∣∣z vL

(v0)2
ẐθHξ

∣∣∣∣ dvdxds ≲
√
ϵ

∫ t

0

(1 + s)−
n−2

2 Ẽ1[H](s)ds

≲ ϵ
3
2 (1 + t)

η
2 .

28. Note that we could use that √τ+τ−|vB | ≲ v0
∑

z∈k0
|z| in (77) to obtain a better bound in

(83) for an other energy of H. On the other hand, the loss coming from (75) could not be avoided
with such techniques.
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The pointwise estimate on
∫

v
|z||Hi|dv then ensues from the Klainerman-Sobolev

inequality of Corollary 2.14.

7.6.2. The inhomogeneous part. – As in the massive case, let us introduce K, the
solution of TF (K) +A1K +KA2 = B which verifies K(0, ., .) = 0, and the function

|KKY |∞ =
∑

1≤i≤|I1|
1≤j,p≤|I2|

|Kj
i |

2|Yp|.

KY and G are solutions of the same system,

TF (KY ) = TF (K)Y +KTF (Y ) = BY −A1KY −KA2Y +KA2Y

= BY −A1KY.

As KY (0, ., .) = 0 and G(0, ., .) = 0, we have KY = G. For 1 ≤ i ≤ |I1| and
1 ≤ j, p ≤ |I2|, |Kj

i |2Yp sastifies the equation

TF

(
|Kj

i |
2Yp

)
= |Kj

i |
2(A2)

q
pYq − 2

(
(A1)

q
iK

j
q +Kq

i (A2)
j
q

)
Kj

i Yp + 2Bj
iK

j
i Yp,

which will allow us to estimate

E[|KKY |∞] := E0,1[|KKY |∞].

We will then be able to prove L2 estimates for
∫

v∈Rn |G|dv thanks to the estimates
on
∫

v∈Rn |Y |dv and on E[|KKY |∞].

Lemma 7.11. – We have, if ϵ is small enough,

∀ t ∈ [0, T ], E[|KKY |∞] ≤ ϵ(1 + t)η.

Proof. – Let T̃ > 0 be the largest time such that E[|KKY |∞](t) ≤ 2ϵ(1 + t)η

for all t ∈ [0, T̃ ] and let us prove, with Proposition 3.1, that for ϵ small enough,
E[|KKY |∞](t) ≤ ϵ(1 + t)η for all t ∈ [0, T̃ ]. It will follow that T̃ = T . As for the
estimate of Ẽ1[H] in the proof of Lemma 7.10,∫ t

0

∫
Σs

∫
v

∣∣∣|Kj
i |

2(A2)
q
pYq − 2

(
(A1)

q
iK

j
q +Kq

i (A2)
j
q

)
Kj

i Yp

∣∣∣ |z|
v0
dvdxds ≲ ϵ

3
2 (1 + t)η

and ∫ t

0

∫
Σs

∫
v

∣∣∣F ( v
v0
,∇v (|z|)

)∣∣∣ |KKY |∞dvdxds ≲ ϵ
3
2 .

Next, we need to estimate the following integral,

(84)
∫ t

0

∫
Σs

∫
v

|z|
v0
|Bj

iK
j
i Yp|dvdx.

Recall from Lemma 7.8 that

|Bj
iK

j
i Yp| ≲

n∑
m=1

∑
|γ|≤N

τ+

∣∣∣∣vµ

v0
LZγ (F )µmK

j
i Yp

∣∣∣∣ .
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The components of the matrix B involve terms in which the electromagnetic field
has too many derivatives to be estimated pointwise. We fix |γ| and we denote the
null decomposition of LZγ (F ) by (α, α, ρ, σ). In order to bound (84), we bound the
integral of the five following terms, given by the null decomposition of the velocity
vector v and LZγ (F ).

— The terms which do not involve α

τ+|α||z|
|KY |
v0

, τ+|ρ||z|
|KY |
v0

and τ+|σ||z|
|KY |
v0

.

— The terms involving α

τ+|α|
vL

(v0)2
|z||KY | and τ+|α|

|vB |
(v0)2

|z||KY |.

We start by bounding the integral on Σs × (Rn
v \ {0}) of the good terms. We use ζ

to denote either α, ρ or σ. Using twice the Cauchy-Schwarz inequality (in x and then
in v) and that 1

v0 ≲ 1 on the support of Y , we have∫
Σs

∫
v

τ+|ζ|
|zKY |
v0

dvdx ≲ ∥τ+|ζ|∥L2(Σs)

(∫
Σs

(∫
v

|zKY | dv
)2

dx

) 1
2

≲

∣∣∣∣EN [F ](s)

∫
Σs

∫
v

|zY | dv
∫

v

|zKKY | dvdx
∣∣∣∣ 12

≲

∣∣∣∣∣EN [F ](s)

∥∥∥∥∫
v

|zY | dv
∥∥∥∥

L∞(Σs)

E[|KKY |∞]

∣∣∣∣∣
1
2

.

Using the bootstrap assumptions, on EN [F ] and E[|KKY |∞], and the pointwise
decay estimate

∫
v
|zY | dv ≲ ϵτ−n+1

+ τ−1
− given in Lemma 7.8, we obtain∫ t

0

∫
Σs

∫
v

τ+|ζ|
|zKY |
v0

dvdxds ≲
∫ t

0

ϵ
3
2

√
χ(t)

(1 + s)
3
2−η

ds ≲ ϵ
3
2 (1 + t)η.

As in the massive case, to unify the study of the terms involving α, we use ṽ to
denote vL or vB . Using the Cauchy-Schwarz inequality (in (s, x)), we have∫ t

0

∫
Σs

τ+|α|
∫

v

|ṽ|
(v0)2

|z||KY |dvdxds ≲

(85)

∣∣∣∣∣
∫ t

0

∫
Σs

τ−|α|2

(1 + s)n−3
dxds

∫ t

0

∫
Σs

τ2
+(1 + s)n−3

τ−

∣∣∣∣∫
v

∣∣∣∣ ṽz

(v0)2
KY

∣∣∣∣ dv∣∣∣∣2 dxds
∣∣∣∣∣
1
2

.

As, by the bootstrap assumption 65, ∥√τ−|α|∥2L2(Σs) ≲ ϵ(1 + s)η, we have∫ t

0

∫
Σs

τ−|α|2

(1 + s)n−3
dxds ≲ ϵ(1 + t)η.
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For the second factor of the product in (85), we first note that, by the Cauchy-
Schwarz inequality and that 1

(v0)2 ≲ 1 on the support of Y ,(∫
v

∣∣∣∣ ṽz

(v0)2
KY

∣∣∣∣ dv)2

≤
∫

v

|zY | dv
∫

v

∣∣∣∣ ṽv0

∣∣∣∣2 |z||KKY |∞dv.
Now, recall from Proposition 2.9 that |vB | ≲

√
vLvL so that

∣∣ ṽ
v0

∣∣2 ≲ vL

v0 . Using the
pointwise estimate

∫
v
|zY | dv ≲ ϵτ−n+1

+ τ−1
− , we get(∫

v

∣∣∣∣ ṽz

(v0)2
KY

∣∣∣∣ dv)2

≲
ϵ

τn−1
+ τ−

∫
v

vL

v0
|z||KKY |∞dv.

As
∫

Cu(t)

∫
v

vL

v0 |z||KKY |∞dCu(t)dv ≤ E[|KKY |∞](t) ≤ 2ϵ(1 + t)η, we obtain∫ t

0

∫
Σs

τ2
+(1 + s)n−3

τ−

∣∣∣∣∫
v

∣∣∣∣ ṽz

(v0)2
KY

∣∣∣∣ dv∣∣∣∣2 dxds ≲ ϵ2(1 + t)η

∫ t

u=−∞
τ−2
− du.

Hence, ∫ t

0

∫
Σs

∫
v

τ+
|ṽ|

(v0)2
|α||zKY |dvdxds ≲ ϵ2(1 + t)η

and the energy estimate of Proposition 3.1 gives that, for ϵ small enough,
E[|KKY |∞] ≤ ϵ(1 + t)η on [0, T̃ ].

7.6.3. The L2 estimates. – We start with the following proposition.

Proposition 7.12. – We have,

∀ |β| ≤ N, t ∈ [0, T ],

∥∥∥∥∥
∫

v∈Rn\{0}
|Ẑβfk|dv

∥∥∥∥∥
L2(Σt)

≲
ϵ

(1 + t)
n−1−η

2

and

∀ |β| ≤ N, t ∈ [0, T ],

∥∥∥∥∥τ+
∫

v∈Rn\{0}
|Ẑβfk|dv

∥∥∥∥∥
L2(Σt)

≲
ϵ

(1 + t)
n−3−η

2

.

We can remove the (1 + t)
η
2 -loss if |β| ≤ N − 2n.

Proof. – Let 1 ≤ k ≤ K. The first inequality ensues from the second one since
1 + t ≤ τ+. If |β| ≤ N − 2n, we only have to use the pointwise estimate (68) and
Lemma 4.1. If |β| > N − 2n, recall that there exists 1 ≤ i ≤ |I1| such that Ẑβfk =

Hi +Gi. For 1 ≤ i ≤ |I1|, Lemmas 7.10 and 4.1 imply∥∥∥∥τ+ ∫
v

|Hi|dv
∥∥∥∥

L2(Σt)

≲
ϵ

(1 + t)
n−3−η

2

.

Moreover, as G = KY , we have, by the Cauchy-Schwarz inequality (in v),∥∥∥∥τ+ ∫
v

|Gi|dv
∥∥∥∥

L2(Σt)

≤
∥∥∥∥τ2

+

∫
v

|Y |∞dv
∫

v

|Kj
i |

2|Yj |dv
∥∥∥∥ 1

2

L1(Σt)

.
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As, by Lemmas 7.8 and 7.11,∥∥∥∥τ2
+

∫
v

|Y |∞dv
∥∥∥∥

L∞(Σt)

≲
ϵ

(1 + t)n−3
and

∥∥∥∥∫
v

|Kj
i |

2|Yj |dv
∥∥∥∥ 1

2

L1(Σt)

≤ ϵ
1
2 (1 + t)

η
2 ,

we have ∥∥∥∥τ+ ∫
v

|Gi|dv
∥∥∥∥

L2(Σt)

≲
ϵ

(1 + t)
n−3−η

2

.

These inequalities will not be sufficient to close the estimate on the energy
ES

N−n+2
2

[F ] in the next section. This is why we prove the following proposition.

Proposition 7.13. – For all |β| ≤ N and all t ∈ [0, T ], we have :∥∥∥∥∫
v

vL

v0
|Ẑβfk|dv

∥∥∥∥
L2(Σt)

≲
ϵ

(1 + t)
n+1−η

2

,∥∥∥∥τ−τ+
∫

v

vL

v0
|Ẑβfk|dv

∥∥∥∥
L2(Σt)

≲
ϵ

(1 + t)
n+1−η

2

,∥∥∥∥∫
v

∣∣∣∣vB

v0
Ẑβfk

∣∣∣∣ dv∥∥∥∥
L2(Σt)

≲
ϵ

(1 + t)
n+1−η

2

.

We can remove the (1 + t)
η
2 -loss if |β| ≤ N − 2n.

Proof. – If |β| ≤ N − 2n, these inequalities are implied by the pointwise estimates
(70), (71) and (72) and Lemma 4.1.

If |β| > N − 2n, we prove in the same way that these inequalities are true if we
replace Ẑβfk by Hi, with 1 ≤ i ≤ |I1| such that Ẑβfk = Hi +Gi. It then only remains
to consider Gi. Recall that by Proposition 2.9 and Lemma 7.8,

vL

v0
≤ τ−1

+

∑
z∈k0

|z|, vL

v0
≤ τ−1

−

∑
z∈k0

|z| and
∫

v

|z||Y |∞dv ≲
ϵ

τn−1
+ τ−

.

Hence, using also G = KY , the Cauchy-Schwarz inequality (in v) and
E[|KKY |∞](t) ≤ 2ϵ(1 + t)η, we have∥∥∥∥∫

v

vL

v0
|Gi|dv

∥∥∥∥
L2(Σt)

≲

∥∥∥∥∫
v

vL

v0
|Y |∞dv

∫
v

vL

v0
|(Kj

i )2Yj |dv
∥∥∥∥

1
2

L1(Σt)

≲
∑
z∈k0

∥∥∥∥τ−2
+

∫
v

|z||Y |∞dv
∫

v

|z||KKY |∞dv
∥∥∥∥ 1

2

L1(Σt)

≲ ϵ(1 + t)−
n+1−η

2 ,
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∥∥∥∥τ−τ+
∫

v

vL

v0
|Gi|dv

∥∥∥∥
L2(Σt)

≲

∥∥∥∥τ2
−
τ2
+

∫
v

vL

v0
|Y |∞dv

∫
v

vL

v0
|(Kj

i )2Yj |dv
∥∥∥∥

1
2

L1(Σt)

≲
∑
z∈k0

∥∥∥∥τ−2
+

∫
v

|z||Y |∞dv
∫

v

|z||KKY |∞dv
∥∥∥∥ 1

2

L1

≲ ϵ(1 + t)−
n+1−η

2 .

The remaining estimate can be proved in a similar way, using |vB | ≲ v0

τ+

∑
z∈k0

|z|
(see Proposition 2.9).

7.7. Step 5: Improvement of the electromagnetic field estimates

7.7.1. Improvement of the energies estimates for the potential. – According to the en-
ergy estimate of Proposition 3.12 and the commutation formula of Proposition 2.19,
one has, for all t ∈ [0, T ],√

ẼN [A](t) ≲
√
ẼN [A](0) +

∑
|γ|≤N

∫ t

0

∥∥∥∥τ+ek

∫
Rn

|Ẑγfk|dv
∥∥∥∥

L2(Rn)

ds.

As ẼN [A](0) ≤ ϵ and
∥∥∥τ+ek

∫
Rn |Ẑγfk|dv

∥∥∥
L2(Rn)

≲ ϵ(1 + t)−
n−3−η

2 (see Proposi-

tion 7.12), we have, for ϵ small enough and if the constant C is large enough,

∀ t ∈ [0, T ], ẼN [A](t) ≤ C

2(n− 3)
ϵχ(t)(1 + t)η,

with χ such that

χ(s) = 1 + s if n = 4, χ(s) = log2 (3 + s) if n = 5 and χ(s) = 1 if n ≥ 6.

Similarly, using (68) and Lemma 4.1, we obtain

∀ t ∈ [0, T ], ẼN−2n[A](t) ≤ C

2(n− 3)
ϵχ(t).

This concludes the improvement of the bootstrap assumption (66).

7.7.2. Improvement of the estimate on E0
N [F ]. – Recall from Proposition 3.17 that, for

all t ∈ [0, T ],

E0
N [F ](t)− 2E0

N [F ](0) ≲
∑

|β|,|γ|≤N

|ek|
∫ t

0

∫
Σs

|LZβ (F )0νJ(Ẑγfk)ν |dxds.
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As, by the Cauchy-Schwarz inequality, the bootstrap assumption (65) and the L2

estimates of Proposition 7.12,∫ t

0

∫
Σs

|LZβ (F )0νJ(Ẑγfk)ν |dxds ≲
∫ t

0

∥LZβ (F )∥L2(Σs)∥J(Ẑγfk)∥L2(Σs)ds

≲
∫ t

0

√
E0

N [F ](s)

∥∥∥∥∫
v

|Ẑfkdv

∥∥∥∥
L2(Σs)

ds

≲
∫ t

0

ϵ
1
2 ϵ(1 + s)

n−1−η
2 ds

≲ ϵ
3
2 ,

we have, for ϵ small enough, E0
N [F ] ≤ 3ϵ on [0, T ].

7.7.3. Improvement of the estimates on EN [F ] and EN−2n[F ]. – Recall from Proposi-
tion 3.21 that

EN [F ](t) ≤ EN [F ](0) + (n− 3)ẼN [A](t) + φ(t),

where φ(t) is a linear combination of terms such that

(86)
∫ t

0

∫
Σs

|Kν

0LZβFµνJ(Ẑγfk)µ|dxds and
∫ t

0

∫
Σs

s|LZδAµ□LZδAµ|dxds,

with |β|, |γ|, |δ| ≤ N and 1 ≤ k ≤ K. Then, if we could prove that each integrals
of (86) is bounded by ϵ

3
2χ(t)(1 + t)η, we would have, for ϵ small enough and C large

enough, EN [F ] ≤ Cϵχ(t)(1 + t)η on [0, T ] since EN [F ](0) ≤ ϵ and (n − 3)ẼN [A](t) ≤
C
2 ϵχ(t)(1 + t)η.

Remark 7.14. – We could estimate the integrals of (86) with a better bound (the
computations are similar to those done below in Section 7.7.4, but this would not give
us a better estimate on EN [F ] because of the χ(t)(1 + t)η-loss on ẼN [A].

We start by bounding the integrals involving the potential. Using Proposition 2.19
and the Cauchy-Schwarz inequality, we have, for |δ| ≤ N ,∫ t

0

∫
Σs

s|LZδAµ□LZδAµ|dxds ≲
K∑

k=1

∑
|γ|≤|δ|

∫ t

0

√
ẼN [A](s)

∥∥∥∥τ+ ∫
v

|Ẑγfk|dv
∥∥∥∥

L2(Σs)

ds.

Using the L2 estimates of Proposition 7.12 and that ẼN [A](s) ≲ ϵχ(s)(1 + t)η, we
obtain ∑

|δ|≤N

∫ t

0

∫
Σs

s|LZδAµ□LZδAµ|dxds ≲ ϵ
3
2

∫ t

0

√
χ(s)

(1 + s)
n−3

2 −η
ds

≲ ϵ
3
2χ(t)(1 + t)η.
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In order to estimate the remaining integrals of (86), we express K
ν

0LZβ (F )µνJ(Ẑγfk)µ

in null coordinates. Dropping the dependance in LZβ (F ) or Ẑγfk, this gives us the
four following terms :

(87) τ2
+ρJ

L, τ2
−ρJ

L, τ2
+αBJ

B , and τ2
−αBJ

B .

As

JL =

∫
v

vL

v0
Ẑγfkdv, JL =

∫
v

vL

v0
Ẑγfkdv and JB =

∫
v

vB

v0
Ẑγfkdv,

we have,

|JL|, |JL|, |JB | ≲
∫

v

|Ẑγfk|dv.

The integrals (on [0, T ] × Rn
x × (Rn

v \ {0})) of each of the four terms of (87) are
then bounded, using the Cauchy-Schwarz inequality (in x), by∫ t

0

√
EN [F ](s)

∥∥∥∥τ+ ∫
v

|Ẑγfk|dv
∥∥∥∥

L2(Σs)

ds.

By Proposition 7.12 and the bootstrap assumption (64),∫ t

0

√
EN [F ](s)

∥∥∥∥τ+ ∫
v

|Ẑγfk|dv
∥∥∥∥

L2(Σs)

ds ≲
∫ t

0

√
ϵχ(s)

ϵ

(1 + s)
n−3

2 −η
ds

≲ ϵ
3
2χ(t)(1 + t)η.

Hence, EN [F ](t) ≤ Cϵχ(t)(1 + t)η for all t ∈ [0, T ] if ϵ is small enough. We can
prove exactly in the same way that EN−2n[F ](t) ≤ Cϵχ(t) for all t ∈ [0, T ] if ϵ is small
enough.

We then improve the bootstrap assumption (64).

7.7.4. Improvement of the estimates on ES
N [F ] and ES

N−2n[F ]. – Recall from Proposi-
tions 3.25 and 2.19 that, for all t ∈ [0, T ],

ES
N [F ](t) ≤ EN [F ](0) + Cn

(
ẼN [A](0) +

ẼN [A](t)

1 + t
+
EN [F ](t)

1 + t

)
+ ψ(t),

where Cn is a positive constant and where ψ(t) is a linear combination of terms such
as

(88)
∫ t

0

∫
Σs

|LZβ (F )0µJ
µ(Ẑγfk)|+ |SνLZβ (F )νµJ

µ(Ẑγfk)|dxds,

with |β|, |γ| ≤ N and 1 ≤ k ≤ K, and

(89)
∫ t

0

∫
Σs

∣∣∣∣LZβ (A)µ

∫
v

vµ

v0
Ẑγfk

∣∣∣∣ dxds,
with |β|, |γ| ≤ N and 1 ≤ k ≤ K.
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Let |β| + |γ| ≤ N and 1 ≤ k ≤ K. We denote the null decomposition of LZβ (F )

by (α, α, ρ, σ), Ẑγfk by g and J(Ẑγfk) by J . Expressing LZβ (F )0µJ
µ(g) and

SνLZβ (F )νµJ
µ(g) in null components, (88) would be bounded by ϵ

3
2 if∫ t

0

∫
Σs

|τ+ρJL|dxds ≲ ϵ
3
2 ,

∫ t

0

∫
Σs

|τ−ρJL|dxds ≲ ϵ
3
2 ,∫ t

0

∫
Σs

|τ+αJB |dxds ≲ ϵ
3
2 and

∫ t

0

∫
Σs

|τ+αJB |dxds ≲ ϵ
3
2 .

By the Cauchy-Schwarz inequality,∫ t

0

∫
Σs

τ+|ρJL|dxds ≲
∫ t

0

∥τ+ρ∥L2(Σs)

∥∥∥∥∫
v

vL

v0
|g|dv

∥∥∥∥
L2(Σs)

ds.

Since, by the bootstrap assumption (64), ∥τ+ρ∥2L2(Σs) ≲ ϵχ(s)(1+ s)η and, accord-

ing to Proposition 7.13,
∥∥∥∫v vL

v0 |g|dv
∥∥∥

L2(Σs)
≲ ϵ(1 + s)−

n+1−η
2 , we obtain that

∫ t

0

∫
Σs

τ2
+|ρJL|dxds ≲ ϵ

3
2

∫ t

0

√
χ(t)

(1 + s)
n+1

2 −η
ds ≲ ϵ

3
2 .

The other terms are treated similarly.∫ t

0

∫
Σs

τ−|ρJL|dxds ≲
∫ t

0

∥τ+ρ∥L2(Σs)

∥∥∥∥τ−τ+
∫

v

vL

v0
|g|dv

∥∥∥∥
L2(Σs)

ds ≲ ϵ
3
2 ,∫ t

0

∫
Σs

τ+|αBJ
B |dxds ≲

∫ t

0

∥τ+α∥L2(Σs)

∥∥∥∥∫
v

vB

v0
|g|dv

∥∥∥∥
L2(Σs)

ds ≲ ϵ
3
2 ,∫ t

0

∫
Σs

τ−|αBJ
B |dxds ≲

∫ t

0

∥τ−α∥L2(Σs)

∥∥∥∥∫
v

vB

v0
|g|dv

∥∥∥∥
L2(Σs)

ds ≲ ϵ
3
2 .

Denoting LZβ (A) by B, (89) would be bounded by ϵ
3
2 (1 + t)η if we prove that∫ t

0

∫
Σs

|BLJ
L|dxds ≲ ϵ

3
2 (1 + t)η,(90) ∫ t

0

∫
Σs

|BLJ
L|dxds ≲ ϵ

3
2 and

∫ t

0

∫
Σs

|BDJ
D|dxds ≲ ϵ

3
2 .(91)

Let us show (91) first. Using Proposition 7.13 and the bound on ẼN [A], we have

∥B∥L2(Σs) ≲
√
ϵχ(s)(1 + t)η and ∥JD∥L2(Σs) + ∥JL∥L2(Σs) ≲

ϵ

(1 + s)
n−η

2

.

Hence, by the Cauchy-Schwarz inequality,∫ t

0

∫
Σs

|BLJ
L|+ |BDJ

D|dxds ≲ ϵ
3
2

∫ t

0

√
χ(s)

(1 + s)2−η
ds ≲ ϵ

3
2 .
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For (90), we have∫ t

0

∫
Σs

|BLJ
L|dxds ≲

∫ t

0

∥BL∥L2(Σs)

∥∥∥∥∫
v

|g|dv
∥∥∥∥

L2(Σs)

ds

≲ ϵ
3
2

∫ t

0

√
χ(s)

(1 + s)
n−1

2 −η
ds.

≲ ϵ
3
2 (1 + t)η.

Hence, if ϵ is small enough and C large enough, we have ES
N [F ] ≤ Cϵ(1 + t)η for

all t ∈ [0, T ].
In view of the above, ES

N−2n[F ] ≤ Cϵ on [0, T ], for ϵ small enough, would follow if
we improve the bound in (90) from ϵ

3
2 (1+ t)η to ϵ

3
2 , when |β| ≤ N − n+2

2 . To do this,
we use a pointwise estimate on BL and we keep JL in L1-norm. By Lemma 4.18, we
have

|BL(t, x)| ≲
√
ϵχ(t)(1 + t)η

τ
n
2

+

,

which implies ∫ t

0

∫
Σs

|BLJ
L|dxds ≲

∫ t

0

∥BL∥L∞(Σs)∥g∥L1(Σs)ds

≲ ϵ
3
2

∫ t

0

√
χ(s) log∗(3 + s)

(1 + s)
n−η

2

ds

≲ ϵ
3
2 .

This concludes the improvement of the bootstrap assumption (65).
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CHAPTER 8

NON EXISTENCE

We show in this chapter the following proposition. Let us denote (1, . . . , 1) by u⃗

and we recall that Ei = F0i.

Proposition 8.1. – Let the dimension n be such that n ≥ 2 and let χ : R→ R+ be a
function of class C∞ such that χ = 1 on ]−∞, 1] and χ = 0 on [3,+∞[. We suppose
also that χ is decreasing on [1, 3]. Let also M ∈ R+ such that M−1 =

∫
v∈Rn χ(|v|2)dv.

The Vlasov-Maxwell system (1)-(3), with two species (K = 2), e1 = 1, e2 = −1,
m1 = 0, m2 ∈ R+ and the initial data

E0 : x 7→ 10χ(2)−1χ

(
2
r2

n

)
u⃗, F0ij = 0 for all 1 ≤ i, j ≤ n,

f01 = M
(
div(E0) + ∥div(E0)∥L∞(Rn)

)
χ

(
2r2

3n

)
χ(|v|2),

and

f02 = M∥div(E0)∥L∞(Rn)χ

(
2r2

3n

)
χ(|v|2),

do not admit a C1 local solution, provided (29) w 7→ wχ′(2w2) is not constant on a
neighborhood of 1.

Remark 8.2. – Note that the initial data satisfy the constaint equations. Indeed,∫
v

f01 − f02dv = div(E0)χ

(
2r2

3n

)
and x 7→ χ

(
2r2

3n

)
is equal to 1 on the support of E0. The other ones, ∇[iF0jk] = 0,

are obvious to check.

29. Note that such a function χ exists. Recall for instance the classical construction of cut-off
functions
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Remark 8.3. – There is uniqueness for a such Cauchy problem in the class of the
local C1 functions. Indeed, let (f1, f2, F ) and (g1, g2, G) be two such solutions on [0, T ].
As fi and gi are the unique C1 solution of T(−1)i+1F (h) = 0 and T(−1)i+1G(h) = 0

on [0, T ], respectively, we obtain with the method of characteristics that they both
vanish for |x| ≥ 3√

2

√
n + T . In view of the wave Equations (18) and (19), the same

is true for F and G. All the integrals considered below will then be finite. We have

TF (fq − gq) = (G− F )(v,∇vgq),

∇µ(F −G)µν = eqJ(fq − gq),

∇µ∗(F −G)µα1···αn−2
= 0.

Using Propositions 3.17 and 3.1, we obtain

h(t) :=

2∑
q=1

E0[fq − gq](t) +
√
E0
0 [F −G](t)

≲
∫ t

0

h(s)

(
1 +

∥∥∥∥∫
v

|ek∇vgk|dv
∥∥∥∥

L2(Σs)

)
ds.

The Grönwall lemma gives us that h = 0 on [0, T ], implying (f, F ) = (g,G).

The strategy of the proof of Proposition 8.1 is to construct, for all T0 > 0, a
characteristic of the system such that its velocity part vanish in a time less than T0.
For this, we make crucial use of the colinearity of y 7→ E(t, yu⃗) and u⃗ which is a
corollary of the following subsection.

8.1. A symmetry property for the Vlasov-Maxwell system

To lighten the notations, we use x(ij), if i ̸= j, to denote

(x1, . . . , xi−1, xj , xi+1, . . . , xj−1, xi, xj+1, . . . , xn).

Proposition 8.4. – We consider the n dimensional Vlasov-Maxwell system, with K
species,

Tmq
(fq) + eqv

0Ei∂vifq + eqv
iFi

j∂vjfq = 0,

∇µFµν = eqJ(fq)ν ,

∇µ∗Fµλ1···λn−2 = 0,

with the initial smooth data fq(0, ., .) = f0q, F (0, .) = F0. We suppose that the initial
data satisfy the following symmetry relations

fq0(x(ik), v(ik)) = fq0(x, v), i ̸= j,

Ei
0(x(ik)) = Ek

0 (x), i ̸= k,

Ei
0(x(kl)) = Ei

0(x), l ̸= i, k ̸= i.

(Fkl)0(x(kl)) = −(Fkl)0(x),
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(Fkl)0(x(ik)) = (Fil)0(x), l ̸= k, i,

(Fkl)0(x(ij)) = (Fkl)0(x), i ̸= k, l, j ̸= k, l.

If there is a unique classical solution (f1, . . . , fK , F ) on [0, T [, then

(f1(t, ., .), . . . , fK(t, ., .), F (t, .))

satisfies also these symmetries.

Proof. – To simplify the notation, we suppose that K = 1, eq = 1 and we consider
the transposition τ = (12). We denote (y2, y1, y3, . . . , yn) by yτ , m1 by m and f1 by f .
Let g and G be defined by

g(t, x, v) := f(t, xτ , vτ ),

G02(t, x) := E1(t, xτ ),

G01(t, x) := E2(t, xτ ),

G0k(t, x) := Ek(t, xτ ), k ≥ 3,

G12(t, x) := −F12(t, xτ ),

G1k(t, x) := F2k(t, xτ ), k ̸= 1, k ̸= 2,

G2k(t, x) := F1k(t, xτ ), k ̸= 1, k ̸= 2,

Gkl(t, x) := Fkl(t, xτ ), k, l ≥ 3

and let Dk = G0k. We want to prove that (g,G) = (f, F ). By assumption, this is true
for t = 0 and, by uniqueness, it will be true for t < T if we can prove that (g,G) is
solution to the same system as (f, F ).

Propagation of symmetry for the Maxwell equations. – Let us prove first that∇µGµν =

J(g)ν . As J(h)ν =
∫

v
vν

v0 hdv, we have, by the change of variables v′ = vτ ,

J(g)1(t, x) = J(f)2(t, xτ ), J(g)2(t, x) = J(f)1(t, xτ )

and
J(g)ν(t, x) = J(f)ν(t, xτ ) if ν ̸= 1, 2.

The equation ∇iGi0 = J(g)0 then comes from

∂1D
1(t, x) = ∂2E

2(t, xτ ), ∂2D
2(t, x) = ∂1E

1(t, xτ ) and ∇iE
i = J(f)0.

As

∇µGµ1(t, x) = −∂tE
2(t, xτ )− ∂2 (F21(t, xτ )) +

n∑
i=3

∇i (Fi2(t, xτ ))

= −∂tE
2(t, xτ )− ∂1F21(t, xτ ) +

n∑
i=3

∇iFi2(t, xτ )

= ∇µFµ2(t, xτ ),
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we have∇µGµ1 = J(g)1. The equation∇µGµ2(t, x) = J(g)2 can be obtained similarly.
The remaining equations are obtained from

∇jGjk(t, x) = ∂1 (F2k(t, xτ )) + ∂2 (F1k(t, xτ )) +

n∑
i=3

∇i (Fik(t, xτ ))

= ∂2F2k(t, xτ ) + ∂1F1k(t, xτ ) +

n∑
i=3

∇iFi2(t, xτ )

= ∇jFjk(t, xτ )

and ∂tD
k(t, x) = ∂tE

k(t, xτ ), for k ≥ 3. For the other part of the Maxwell equations,
recall from Proposition 2.16 that it is equivalent to prove

∇[λGµν] = 0.

We have

∇[1G23](t, x) = ∂1 (F13(t, xτ )) + ∂2 (F32(t, xτ ))− ∂3 (F12(t, xτ ))

= ∂2F13(t, xτ ) + ∂1F32(t, xτ ) + ∂3F21(t, xτ )

= ∇[2F13](t, xτ )

= 0.

The other equations can be obtained in the same way.

Propagation of symmetry for the Vlasov equation. – We have

Tm(g)(t, x, v) = v1∂2f(t, xτ , vτ ) + v2∂1f(t, xτ , vτ ) +

n∑
µ=0

µ̸=1,2

vµ∂µf(t, xτ , vτ )

= Tm(f)(t, xτ , vτ ).

Moreover, as

∂v1g(t, x, v) = ∂v2f(t, xτ , vτ ) and ∂v2g(t, x, v) = ∂v1f(t, xτ , vτ ),

Di(t, x)∂vig(t, x, v) = Ei(t, xτ )∂vif(t, xτ , vτ ).

Finally,(
vkGk1∂v1g

)
(t, x, v) =

(
−v2F21(t, xτ ) +

n∑
k=3

vkFk2(t, xτ )

)
∂v2f(t, xτ , vτ )

=
(
vkFk2∂v2f

)
(t, xτ , vτ ),

and more generally(
vkGkj∂vjg

)
(t, x, v) =

(
vkFkτ(j)∂vτ(j)f

)
(t, xτ , vτ ).

We then deduce,

TG(g) = 0, as TF (f)(t, xτ , vτ ) = 0.
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The symmetries are propagated over time. – We then proved that (g,G) satisfies the
same system as (f, F ). As (f, F ) = (g,G) at t = 0, we have, by the uniqueness of the
solution, that (f, F ) = (g,G) for all t ∈ [0, T [.

Remark 8.5. – More generally, from the above proof, (f, F ) 7→ (g,G) maps C1

solutions of the Vlasov-Maxwell system to C1 solutions of the Vlasov-Maxwell system.

8.2. Proof of Proposition 8.1

Let us suppose that the system admits a local C1 solution on [0, T ], with T > 0,
which is then necessarily unique. We will reduce T later if necessary, but we already
assume that T ≤ 1.

8.2.1. Some informations on the electromagnetic fields around u⃗. – We start by the
study of the solution around u⃗. Let us introduce M0 := 20χ (2)

−1 and (Bij)1≤i,j≤n

the 2-form defined by Bij = Fij .

Proposition 8.6. – Reducing T if necessary, we have the following properties.

1. Local bounds on the field: ∀ t ∈ [0, T ],

∀ |x| ≤
√
n+ 2T, 1 ≤ i ≤ 3, 5 ≤ Ei(t, x) ≤M0, |∂tE(t, x)| ≤ 1

and

(92) ∀ t ∈ [0, T ], |x− u⃗| ≤ 2T, |B(t, x)| ≤ 1

4
.

2. The field is locally-Lipschitz: ∃L > 0, ∀ t ∈ [0, T ], |x|, |y| ≤
√
n+ 2T ,

(93) |E(t, x)− E(t, y)|+ |B(t, x)−B(t, y)| ≤ L|x− y|.

3. Specific behavior along the u⃗-direction:

∀y ∈ R, t ∈ [0, T ], E(t, yu⃗) = E1(t, yu⃗)u⃗ and B(t, yu⃗) = 0.

Proof. – In view of the initial data, we have B(0, u⃗) = 0 and

∀ |y| ≤
√
n, 1 ≤ i ≤ n, 10 ≤ Ei(0, y) ≤ M0

2
, ∂tE(0, y) = 0.

The point 1 then ensues, taking T smaller if necessary, from the uniform continuity
of the electromagnetic field on every compact subset of [0, T ]×Rn. The point 2 comes
from the mean value theorem, as E and B are C1 and the point 3 follows from
Proposition 8.4.
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8.2.2. The method of charateristics fails. – Let us denote by (X(s, t, x, v), V (s, t, x, v))

the value at s of the characteristic, for the transport Equation (1) satisfied by f1,
which was equal to (x, v) at t. Let η ∈ ]0, T [ and

Xη : (s, t) 7→ X(s, t, u⃗, ηu⃗), Vη : (s, t) 7→ V (s, t, u⃗, ηu⃗).

We now fix t ∈ [0, T [. (Xη(., t), Vη(., t)) is well defined on a neighborhood of t and
we have, denoting v

|v| by v̂,

dXη(., t)

ds
(s) = V̂η(s),(94)

dV j
η (., t)

ds
(s) = Ej(s,Xη(s, t)) + V̂η

i
(s)Fi

j(s,Xη(s, t)).(95)

Lemma 8.7. – Xη(., t), Vη(., t) and E (along Xη(., t)) stay collinear to u⃗. We have,
as long as Vη stay positive, Xη(s, t) =

(
1 + 1√

n
(s− t)

)
u⃗ and

Vη(s, t) = ηu⃗+

∫ s

t

E1

(
s′,

(
1 +

1√
n

(s− t)

)
u⃗

)
ds′u⃗.

Proof. – We start by a change of coordinates. We consider an orthonormal system
(ui)1≤i≤n such that u1 = 1√

n
u⃗ and we denote by X̃i and Ṽ i the coordinates of Xη(., t)

and Vη(., t) in this basis. Then, for all 1 ≤ i ≤ n,

dX̃i

ds
(s) =

Ṽ i(s)

|V |(s)

and, for i ≥ 2, X̃i(0) = 0 and Ṽ i(0) = 0. We remark, using Proposition 8.6, that
if X̃i = 0 for i ≥ 2, then E(s,Xη(s, t)) = E1(s,Xη(s, t))u⃗ and B(s,Xη(s, t)) = 0.
Consider now the solution of the following system

dr

ds
=

w

|w|
,

dw

ds
=
√
nE1

(
s,

r√
n
, . . . ,

r√
n

)
,

with the initial data r(t) =
√
n and w(t) = η

√
n. The solution exists as long long

as w ̸= 0 and we have

r(s)√
n

= 1− t− s√
n

and
w(s)√
n

= η +

∫ s

t

E1

(
s′, 1− t− s′√

n
, . . . , 1− t− s′√

n
)

)
ds′.

By uniqueness of the solution of the system (94)-(95), we have

(X̃1, . . . , X̃n, Ṽ 1, . . . , Ṽ n) = (r, 0, . . . , 0, w, , 0, . . . , 0),

which implies the result.

We now try to estimate the time when Vη vanishes.
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Proposition 8.8. – The exists 0 < η0 < T such that for all η ∈ ]0, η0[, there exists Tη

such that if t < Tη, (Xη(., t), Vη(., t)) is well defined on [0, t] and if Tη ≤ t < T there
exists τη(t) ≤ t such that (Xη(., t), Vη(., t)) is well defined on ]t− τη(t), t] and

lim
s→(t−τη(t))+

Vη(s, t) = 0, lim
s→(t−τη(t))+

Xη(s, t) =

(
1− τη(t)√

n

)
u⃗.

Moreover, t 7→ t − τη(t) is in C0([Tη, T [) ∩ C1(]Tη, T [), vanishes at Tη, and such
that

∀ t ∈ ]Tη, T [,
4

M0
≤ ∂(t− τη)

∂t
(t) ≤ M0 + 1

5
.

Proof. – We fix η ∈ ]0, T [. Noting, by (94), that

|Xη(s, t)− u⃗| ≤ |t− s| ≤ T,

we obtain by Proposition 8.6, as Xη and u⃗ are collinear, that E(s,Xη(s, t)) =

E1(s,Xη(s, t))u⃗. Hence, if t ∈ [0, T [, only two situations can occur. Either
(Xη(., t), Vη(., t)) is well defined on [0, t], or there exists τη(t) < t such that

lim
s→(t−τη(t))+

Vη(s, t) = 0,

and the characteristic is well defined on ]t− τη(t), t]. Now, consider

gη : (s, t) 7→ η +

∫ s

t

E1

(
s′,

(
1− t− s′√

n

)
u⃗

)
ds′

so that, by Lemma 8.7, if t ∈ ]0, T [ and s is near to t, gη(s, t) is equal to V i
η (s, t)

(for all 1 ≤ i ≤ n). For all t ∈ ]0, T [, gη(., t) stricly increases on [0, t], as E1 > 0 by
Proposition 8.6. As∫ s

t

E1

(
s′,

(
1− t− s′√

n

)
u⃗

)
ds′ = −

∫ t−s

0

E1

(
t− s′,

(
1− s′√

n

)
u⃗

)
ds′

and
∂gη

∂t
(s, t) = −E1

(
s,

(
1− t− s√

n

)
u⃗

)
−
∫ t−s

0

∂tE
1

(
t− s′,

(
1− s′√

n

)
u⃗

)
ds′,

we have
∂gη

∂t
(s, t) ≤ −4,

so that gη(s, .) is strictly decreasing on [s, T [. Moreover, by the bounds given on E1

in Proposition 8.6, if t < η
M0

, gη(., t) does not vanish on [0, t] and vanishes exactly
one time, in t− τη(t), if t ≥ η

5 . Then, if η is small enough, there exists t ∈ ]0, T [ such
that gη(., t) vanishes in t− τη(t). Let t1 be a such time and let t2 > t1. We have

0 = gη(t1 − τη(t1), t1) > gη(t1 − τη(t1), t2),

implying the existence of t2 − τη(t2) and t1 − τη(t1) < t2 − τη(t2), since

gη(t1 − τη(t1), t2) < 0 = gη(t2 − τη(t2), t2).
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Hence, Tη exists (30) and t 7→ t− τη(t) strictly increases on [Tη, T [, vanishes in Tη and
tends to zero as t → Tη. The fact that t 7→ t − τη(t) is in C1(]Tη, T [) follows from
the implicit function theorem, as gη(t− τη(t), t) = 0 and ∂gη

∂s (s, t) ≥ 5. Furthermore,
dropping the dependance in t of τη,

∂(t− τη)

∂t
(t) =

E1
(
t− τη,

(
1− τη√

n

)
u⃗
)

+
∫ τη

0
∂tE

1
(
t− s′,

(
1− s′√

n

)
u⃗
)
ds′

E1
(
t− τη,

(
1− τη√

n

)
u⃗
) ,

which, by Proposition 8.6, implies the last statement.

Remark 8.9. – Note that, if 0 < η < η0, τη(Tη) = Tη and then gη(0, Tη) = 0.
Later, we will use again that gη(0, .) is strictly decreasing on [0, T [.

8.2.3. The contradiction. – We fix again η ∈ ]0, η0[. As Vη(., t) is not defined on
[0, t− τη(t)] if t > Tη, we cannot directly express f1(t, u⃗, ηu⃗) in terms of f01 by the
method of the characteristics.

If t ≥ Tη, we extend Xη(., t) and Vη(., t) on [0, t− τη(t)] by

Xη(s, t) =

(
1 +

t− s− 2τη(t)√
n

)
u⃗ and Vη(s, t) = ηu⃗+

∫ s

t

E(s′, Xη(s′, t))ds′.

Remark 8.10. – If t > t− τη(t), dXη

ds (s, t) = u⃗√
n
. We extend Xη(., t) on [0, t− τη(t)]

in order that
dXη

ds
(s, t) = − u⃗√

n
.

We then extend Vη(., t) such that (95) remains true on [0, t− τη(t)].

We have the following result.

Lemma 8.11. –

(96) ∀ t ∈ [0, T [, f1(t, u⃗, ηu⃗) = f01(Xη(0, t), Vη(0, t)).

Proof. – If t < Tη, this follows from the method of characteristics. In order to prove
the result for t ≥ Tη, we consider ϵ > 0, vϵ = (0, . . . , 0, ϵ),

Xϵ
η,t : s 7→ X(s, t− τη(t), Xη(t− τη(t), t), vϵ)

and
V ϵ

η,t : t 7→ V (s, t− τη(t), Xη(t− τη(t), t), vϵ).

Proposition 8.6 gives us that Xϵ
η,t and V ϵ

η,t are well defined on [0, T [. Indeed, as,
by (94),

|Xϵ
η,t(s)− u⃗| ≤ |Xϵ

η,t(s)−Xη(t− τη(t), t)|+ |Xη(t− τη(t), t)− u⃗| ≤ 2T,

we obtain

∀1 ≤ i ≤ n, 5 ≤ Ei(s,Xϵ
η,t(s)) ≤M0 and |B(s,Xϵ

η,t(s))| ≤
1

4
,

30. More precisely, Tη = sup{t ∈ ]0, T [ | gη(., t) > 0 on [0, t]}.
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so that V ϵ
η,t cannot vanish. Now, the method of characteristics gives us, for all

t ∈ [0, T [,
f1(t,X

ϵ
η,t(t), V

ϵ
η,t(t)) = f01(X

ϵ
η,t(0), V ϵ

η,t(0)).

Then, the result, for t ≥ Tη, follows from the continuity of f1 and the following
proposition.

Proposition 8.12. – We have

lim
ϵ→0

∥Xη(., t)−Xϵ
η,t∥L∞([0,t]) + ∥Vη(., t)− V ϵ

η,t∥L∞([0,t]) = 0.

Proof. – On the one hand, as

(97) ∀v, w ∈ Rn \ {0},
∣∣∣∣ v|v| − w

|w|

∣∣∣∣ ≤ 2

|w|
|v − w|,

we have

|Xη(s, t)−Xϵ
η,t(s)| ≤

∣∣∣∣∣
∫ s

t−τη(t)

2

|V ϵ
η,t(w)|

|Vη(w, t)− V ϵ
η,t(w)|dw

∣∣∣∣∣ .
On the other hand, note first that for s < T and |x|, |y| ≤

√
n + 2T , we have, by

the local Lipschitz property of the electromagnetic field (93),

|E(s, x)− E(s, y) + v̂iBi(s, x)− ŵiBi(s, y)| ≤ L|x− y|+ |v̂ − ŵ||B(s, x)|.

Then, using (95), (97) and the bound (92) on the magnetic field,

|Vη(s, t)− V ϵ
η,t(s)| ≤ ϵ+

∣∣∣∣∣
∫ s

t−τη(t)

L|Xη(w, t)−Xϵ
η,t(w)|+ 1

2|V ϵ
η,t(w)|

|Vη(w, t)− V ϵ
η,t(w)|dw

∣∣∣∣∣ .
Hence, by the Grönwall lemma, for all s ∈ [0, T [,

(98) |Xη(s, t)−Xϵ
η,t(s)|+ |Vη(s, t)− V ϵ

η,t(s)| ≤ ϵ exp

(∣∣∣∣∣
∫ s

t−τη(t)

L+
5

2|V ϵ
η,t(w)|

dw

∣∣∣∣∣
)
.

We now prove that, ∃ a > 0, b > 5
2 such that ∀w ∈ [0, T [,

(99) |V ϵ
η,t(w)| ≥ aϵ+ b|t− τη(t)− w|.

Recall that 5 ≤ Ej ≤M0 and |B| ≤ 1 around u⃗ (see Proposition 8.6) and

V ϵ,j
η,t (w) = vj

ϵ +

∫ w

t−τη(t)

Ej(s,Xϵ
η,t(s)) + V̂ ϵ

η,t

i
(s)Bi

j(s,Xϵ
η,t(s))ds.

Hence, we have.

— If w ≥ t− τη(t),

V ϵ,j
η,t (w) ≥ δj,nϵ+ (5− 1)(w − t+ τη(t))

so that

|V ϵ
η,t(w)|2 ≥ ϵ2 + n(5− 1)2(w − t+ τη(t))2 ≥ 1

2
(ϵ+ 4

√
n|w − t+ τη(t)|)2.
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— If t− τη(t)− ϵ
2(M0+1) ≤ w ≤ t− τη(t),

V ϵ,j
η,t (w) ≤ −(5− 1)(t− τη(t)− w) for 1 ≤ j ≤ n− 1 and V ϵ,n

η,t (w) ≥ ϵ

2
,

so

|V ϵ
η,t(w)|2 ≥ ϵ2

4
+ (n− 1)(5− 1)2(t− τη(t)− w)2

≥ 1

2

( ϵ
2

+ 4
√
n− 1|t− τη(t)− w|

)2

.

— If w ≤ t− τη(t)− ϵ
2(M0+1) , then, for 1 ≤ j ≤ n− 1,

V ϵ,j
η,t (w) ≤ −(5− 1)(t− τη(t)− w) ≤ −4

3

∣∣∣∣ ϵ

2(M0 + 1)
+ 2(t− τη(t)− w)

∣∣∣∣ .
We obtain

|V ϵ
η,t(w)|2 ≥ 16

9
(n− 1)

(
ϵ

2(M0 + 1)
+ 2|t− τη(t)− w|

)2

.

Inequality (99) then holds with

a = min

(
1

2
√

2
,

2
√
n− 1

3(M0 + 1)

)
and b =

8

3

√
n− 1.

We now prove that the right hand side of (98) tends uniformly to zero in s, on [0, t].
As, by (99),∣∣∣∣∣

∫ s

t−τη(t)

5

2|V ϵ
η,t(w)|

dw

∣∣∣∣∣ ≤ 5

2b
log

(
1 +

bmax(t− τη(t), τη(t))

aϵ

)
,

we have, since max(t− τη(t), τη(t)) ≤ t,

ϵ exp

(∣∣∣∣∣
∫ s

t−τη(t)

5

2|V ϵ
η (w)|

dw

∣∣∣∣∣
)
≤ exp

(
2b− 5

2b
log(ϵ) +

5

2b
log

(
ϵ+

bt

a

))
.

We then deduce, as 2b > 5, that

lim
ϵ→0

max
s∈[0,t]

ϵ exp

(∣∣∣∣∣
∫ s

t−τη(t)

L+
5

2|V ϵ
η (w)|

dw

∣∣∣∣∣
)

= 0,

which implies the result.

Differenciating (96) in t for t < Tη gives us

∂tf1(t, u⃗, ηu⃗) =

n∑
i=1

− 1√
n
∂if01

((
1− t√

n

)
u⃗, Vη(0, t)

)

+
dV i

η

dt
(0, t)∂vif01

((
1− t√

n

)
u⃗, Vη(0, t)

)
.
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Doing the same for t > Tη gives

∂tf1(t, u⃗, ηu⃗) =

n∑
i=1

dV i
η

dt
(0, t)∂vif01

((
1 +

t− 2τη(t)√
n

)
u⃗, Vη(0, t)

)
+

1√
n

(
2
∂(t− τη)

∂t
(t)− 1

)
∂if01

((
1 +

t− 2τη(t)√
n

)
u⃗, Vη(0, t)

)
.

Recall from Proposition 8.8 that t 7→ ∂(t−τη)
∂t (t) is defined on ]Tη, T [ and takes its

values in [ 4
M0
, M0+1

5 ]. Hence, there exists a sequence (tn), with tn → Tη, such that,

∃C > 0, lim
tn→Tη

∂(t− τη)

∂t
(tn) = C.

Using that f1 and f01 are C1 and taking the limit tn → Tη in the two last equations,
we obtain

2C

n∑
i=1

∂if01

((
1− Tη√

n

)
u⃗, 0

)
= 0

and thus
n∑

i=1

∂if01

((
1− Tη√

n

)
u⃗, 0

)
= 0.(100)

Finally, we need the following proposition.

Proposition 8.13. – The function η 7→ Tη is defined on ]0, η0[, strictly increasing,
continuous and such that

lim
η→0

Tη = 0.

Proof. – We recall (see Remark (8.9)) that Tη is defined by the implicit equation

gη(0, Tη) = η −
∫ Tη

0

E1

(
w,

(
1− Tη − w√

n

)
u⃗

)
dw = 0.

Let 0 < η1 < η2 < T . We have

gη1
(0, Tη2

) < gη2
(0, Tη2

) = 0,

so
gη1

(0, Tη2
) < gη1

(0, Tη1
) = 0.

Since gη1(0, .) strictly decreases (see again Remark (8.9), Tη2 > Tη1 , which means
that η 7→ Tη is strictly increasing. As E1 is bounded away from 0 on the domain of
integration, Tη tends to 0 as η → 0. The continuity ensues from the implicit function
theorem.
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Using Equation (100) and the last proposition, we can find T ∗ > 0 such that
w 7→ f01((1− w)u⃗, 0) is constant on ]0, T ∗[. However, there exists C0 > 0 and C1 > 0

such that
f01((1− w)u⃗, 0) = C0 + C1(1− w)χ′

(
2(1− w)2

)
for all 0 < w < T ∗, and w 7→ (1− w)χ′

(
2(1− w)2

)
is not constant around 0.
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We prove almost sharp decay estimates for the small data solutions and their
derivatives of the Vlasov-Maxwell system in dimension n ≥ 4. The smallness
assumption concerns only certain weighted L1 or L2 norms of the initial data. In
particular, no compact support assumption is required on the Vlasov or the Maxwell
fields. The main ingredients of the proof are vector field methods for both the kinetic
and the wave equations, null properties of the Vlasov-Maxwell system to control high
velocities and a new decay estimate for the velocity average of the solution of the
relativistic massive transport equation.

We also consider the massless Vlasov-Maxwell system under a lower bound on the
velocity support of the Vlasov field. As we prove in this paper, the velocity support
of the Vlasov field needs to be initially bounded away from 0. We compensate the
weaker decay estimate on the velocity average of the massless Vlasov field near the
light cone by an extra null decomposition of the velocity vector.

Nous établissons dans cet article des estimations de décroissance presque
optimales sur les solutions à données petites, ainsi que sur leurs dérivées, du système
de Vlasov-Maxwell en dimension n ≥ 4. Les hypothèses de petitesse ne concernent que
des normes L1 ou L2 à poids des données initiales. Par conséquent, aucune restriction
de support n’est imposée sur le champ de Vlasov ou le champ électromagnétique.
Les éléments clés de la démonstration sont des méthodes de champs de vecteurs,
utilisées tant pour étudier l’équation cinétique que les équations d’ondes, les propriétés
isotropes du système afin de contrôler les grandes vitesses et une nouvelle inégalité
de décroissance pour la moyenne en vitesse des solutions de l’équation de transport
relativiste massive.

Nous étudions également le système de Vlasov-Maxwell sans masse pour des
champs de Vlasov dont le support en vitesse est disjoint d’un voisinage de 0. Comme
nous le montrons dans ce papier, cette hypothèse est nécessaire pour que le problème
soit bien posé. Nous compensons le faible taux de décroissance de la moyenne en vitesse
du champ de Vlasov le long du cône de lumière en exploitant les bonnes composantes
isotropes du vecteur vitesse.
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