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ON MOD p LOCAL-GLOBAL COMPATIBILITY FOR GLn(Qp)
IN THE ORDINARY CASE

Chol Park, Zicheng Qian

Abstract. – Let p be a prime number, n > 2 an integer, and F a CM field in which
p splits completely. Assume that a continuous automorphic Galois representation
r : Gal(Q/F )→ GLn(Fp) is upper-triangular and satisfies certain genericity condi-
tions at a place w above p, and that every subquotient of r|Gal(Qp/Fw)

of dimen-

sion > 2 is Fontaine-Laffaille generic. In this paper, we show that the isomorphism
class of r|Gal(Qp/Fw)

is determined by GLn(Fw)-action on a space of mod p algebraic

automorphic forms cut out by the maximal ideal of a Hecke algebra associated to r.
In particular, we show that the wildly ramified part of r|Gal(Qp/Fw)

is determined by

the action of Jacobi sum operators (seen as elements of Fp[GLn(Fp)]) on this space.

Résumé (Sur la compatibilité local-global modulo p pour GLn(Qp) dans le cas ordinaire)
Soient p un nombre premier, n > 2 un entier, et F un corps à multiplication

complexe dans lequel p est complètement décomposé. Supposons qu’une représen-
tation galoisienne automorphe continue r : Gal(Q/F ) → GLn(Fp) est triangulaire
supérieure, Fontaine-Laffaille et suffisament générique (dans un certain sens) en une
place w au-dessus de p. On montre, en admettant un résultat d’élimination de poids
de Serre prouvé dans [47], que la classe d’isomorphisme de r|Gal(Qp/Fw)

est déterminée

par l’action de GLn(Fw) sur un espace de formes automorphes modulo p découpé par
l’idéal maximal associée à r dans une algèbre de Hecke. En particulier, on montre que
la partie sauvagement ramifiée de r|Gal(Qp/Fw)

est déterminée par l’action de sommes

de Jacobi (vus comme éléments de Fp[GLn(Fp)]) sur cet espace.

© Mémoires de la Société Mathématique de France 173, SMF 2022
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CHAPTER 1

INTRODUCTION

It is believed that one can attach a smooth Fp-representation of GLn(K)

(or a packet of such representations) to a continuous Galois representation
Gal(Qp/K)→ GLn(Fp) in a natural way, that is called mod p Langlands program
for GLn(K), where K is a finite extension of Qp. This conjecture is well-understood
for GL2(Qp) ([3], [4], [6], [7], [18], [53], [19], [24]). Beyond the GL2(Qp)-case, for
instance GLn(Qp) for n > 2 or even GL2(Qpf ) for an unramified extension Qpf

of Qp of degree f > 1, the situation is still quite far from being understood. One of
the main difficulties is that there is no classification of such smooth representations
of GLn(K) unless K = Qp and n = 2: in particular, we barely understand the
supercuspidal representations. Some of the difficulties in classifying the supercuspidal
representations are illustrated in [11], [40] and [56].

Let F be a CM field in which p is unramified, and r : Gal(Q/F ) → GLn(Fp) an
automorphic Galois representation. Although there is no precise statement of mod p
Langlands correspondence for GLn(K) unless K = Qp and n = 2, one can define
smooth representations Π(r) of GLn(Fw) in the spaces of mod p automorphic forms
on a definite unitary group cut out by the maximal ideal of a Hecke algebra associ-
ated to r, where w is a place of F above p. A precise definition of Π(r) when p splits
completely in F , which is our context, will be given in Section 1.4. (See also Sec-
tion 5.6.) One wishes that Π(r) is a candidate on the automorphic side corresponding
to r|Gal(Qp/Fw)

for a mod p Langlands correspondence in the spirit of Emerton [24].

However, we barely understand the structure of Π(r) as a representation of GLn(Fw),
though the ordinary part of Π(r) is described in [10] when p splits completely in F and
r|Gal(Qp/Fw)

is ordinary. In particular, it is not known whether Π(r) and r|Gal(Qp/Fw)

determine each other. But we have the following conjecture:

Conjecture 1.0.1. – The local Galois representation r|Gal(Qp/Fw)
is determined

by Π(r).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2022



2 CHAPTER 1. INTRODUCTION

This conjecture is widely expected to be true by experts but not explicitly writ-
ten down before. The case GL2(Qpf ) was treated by Breuil-Diamond [9]. Herzig-Le-
Morra [39] considered the case GL3(Qp) when r|Gal(Qp/Fw)

is upper-triangular, while

the case GL3(Qp) when r|Gal(Qp/Fw)
is an extension of a two dimensional irreducible

representation by a character was considered by Le-Morra-Park [50]. We are informed
that John Enns from the University of Toronto has worked on this conjecture for the
group GL3(Qpf ). All of the results above are under certain generic assumptions on
the tamely ramified part of r|Gal(Qp/Fw)

.

From another point of view, to a smooth admissible Fp-representation Π of GLn(K)

for a finite extension K of Qp, Scholze [55] attaches a smooth admissible Fp-repre-
sentation S(Π) of D× for a division algebra D over K with center K and invariant 1

n ,
which also has a continuous action of Gal(Qp/K), via the mod p cohomology of the
Lubin-Tate tower. Using this construction, it was possible for Scholze to prove Con-
jecture 1.0.1 in full generality for GL2(K) (cf. [55], Theorem 1.5). On the other hand,
the proof of Theorem 1.5 of [55] does not tell us where the invariants that determine
S(Π) lie. We do not know if there is any relation between these two different methods.

The weight part of Serre’s conjecture already gives part of the information of Π(r):
the local Serre weights of r at w determine the socle of Π(r)|GLn(OFw )

at least up
to possible multiplicities, where OFw

is the ring of integers of Fw. If r|Gal(Qp/Fw)
is

semisimple, then it is believed that the Serre weights of r at w determine r|Gal(Qp/Fw)

up to twisting by unramified characters, but this is no longer the case if it is not
semisimple: the Serre weights are not enough to determine the wildly ramified part
of r|Gal(Qp/Fw)

, so that we need to understand a deeper structure of Π(r) than just

its GLn(OFw)-socle.
In this paper, we show that Conjecture 1.0.1 is true when p splits completely

in F and r|Gal(Qp/Fw)
is upper-triangular and sufficiently generic in a precise sense.

Moreover, we describe the invariants in Π(r) that determine the wildly ramified part
of r|Gal(Qp/Fw)

. The generic assumptions on r|Gal(Qp/Fw)
ensure that very few Serre

weights of r at w will occur, which we call the weight elimination conjecture, Con-
jecture 1.3.2. The weight elimination results are significant for our method to prove
Conjecture 1.0.1. But Bao V. Le Hung pointed out that this weight elimination con-
jecture can be proved by constructing certain deformation rings, and the results will
appear in the forthcoming paper [47]. We follow the basic strategy in [9, 39]: we define
Fontaine-Laffaille parameters on the Galois side using Fontaine-Laffaille modules as
well as automorphic parameters on the automorphic side using the actions of Jacobi
sum operators, and then identify them via the classical local Langlands correspon-
dence. However, there are many new difficulties that didn’t occur in [9] or in [39]. For
instance, the classification of semi-linear algebraic objects of rank n > 3 on the Ga-
lois side is much more complicated. Moreover, failing of the multiplicity one property
of the Jordan-Hölder factors of mod p reduction of Deligne-Lusztig representations

MÉMOIRES DE LA SMF 173



1.1. LOCAL GALOIS SIDE 3

of GLn(Zp) for n > 3 implies that new ideas are required to show crucial non-vanishing
of the automorphic parameters. In the rest of the introduction, we explain our ideas
and results in more detail.

1.1. Local Galois side

Let E be a (sufficiently large) finite extension of Qp with ring of integers OE , a uni-
formizer ϖE , and residue field F, and let IQp

be the inertia subgroup of Gal(Qp/Qp)

and ω the fundamental character of niveau 1. We also let ρ0 : Gal(Qp/Qp) →
GLn(F) be a continuous (Fontaine-Laffaille) ordinary generic Galois representation.
Namely, there exists a basis e := (en−1, en−2, . . . , e0) for ρ0 such that with respect
to e the matrix form of ρ0 is written as follows:

(1.1.1) ρ0|IQp

∼=



ωcn−1+(n−1) ∗n−1 ∗ · · · ∗ ∗
0 ωcn−2+(n−2) ∗n−2 · · · ∗ ∗
0 0 ωcn−3+(n−3) · · · ∗ ∗
...

...
...

. . .
...

...
0 0 0 · · · ωc1+1 ∗1
0 0 0 · · · 0 ωc0


for some integers ci satisfying some genericity conditions (cf. Definition 3.0.3). We
also assume that ρ0 is maximally non-split, i.e., ∗i ̸= 0 for all i ∈ {1, 2, . . . , n− 1}.

Our goal on the Galois side is to show that the Frobenius eigenvalues of certain
potentially crystalline lifts of ρ0 determine the Fontaine-Laffaille parameters of ρ0,
which parameterize the wildly ramified part of ρ0. When the unramified part and the
tamely ramified part of ρ0 are fixed, we define the Fontaine-Laffaille parameters via the
Fontaine-Laffaille modules corresponding to ρ0 (cf. Definition 3.2.4). These parameters
vary over the space of (n−1)(n−2)

2 copies of the projective line P1(F), and we write
FLi0,j0

n (ρ0) ∈ P1(F) for each pair of integers (i0, j0) with 0 ≤ j0 < j0 +1 < i0 ≤ n−1.
For each such pair (i0, j0), the Fontaine-Laffaille parameter FLi0,j0

n (ρ0) is determined
by the subquotient ρi0,j0 of ρ0 which is determined by the subset (ei0 , ei0−1, . . . , ej0)

of e (cf. (3.0.2)): in fact, we have the identity FLi0,j0
n (ρ0) = FLi0−j0,0

i0−j0+1(ρi0,j0) (cf.
Lemma 3.2.6).

Since potentially crystalline lifts of ρ0 are not Fontaine-Laffaille in general, we
are no longer able to use Fontaine-Laffaille theory to study such lifts of ρ0; we use
Breuil modules and strongly divisible modules for their lifts. It is obvious that any lift
of ρ0 determines the Fontaine-Laffaille parameters, but it is not obvious how one can
explicitly visualize the information that determines ρ0 in those lifts. Motivated by the
automorphic side, we believe that for each pair (i0, j0) as above the Fontaine-Laffaille
parameter FLi0,j0

n (ρ0) is determined by a certain product of Frobenius eigenvalues of
the potentially crystalline lifts of ρ0 with Hodge-Tate weights {−(n − 1), . . . ,−1, 0}
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4 CHAPTER 1. INTRODUCTION

and Galois type
⊕n−1

i=0 ω̃
k

i0,j0
i where ω̃ is the Teichmüller lift of the fundamental

character ω of niveau 1 and

(1.1.2) ki0,j0
i ≡


ci0 + i0 − j0 − 1 for i = i0;
cj0 − (i0 − j0 − 1) for i = j0;
ci otherwise

modulo (p− 1). Here, ci are the integers determining the tamely ramified part of ρ0

in (1.1.1) and our normalization of the Hodge-Tate weight of the cyclotomic charac-
ter ε is −1.

Our main result on the Galois side is the following:

Theorem 1.1.3 (Theorem 3.7.3). – Fix i0, j0 ∈ Z with 0 ≤ j0 < j0 + 1 < i0 ≤ n− 1.
Assume that ρ0 is generic (cf. Definition 3.0.3) and that ρi0,j0 is Fontaine-Laffaille
generic (cf. Definition 3.2.7), and let (λi0,j0

n−1 , λ
i0,j0
n−2 , . . . , λ

i0,j0
0 ) ∈ (OE)n be the

Frobenius eigenvalues on the (ω̃k
i0,j0
n−1 , ω̃k

i0,j0
n−2 , . . . , ω̃k

i0,j0
0 )-isotypic components

of D
Qp,n−1
st (ρ0) where ρ0 is a potentially crystalline lift of ρ0 with Hodge-Tate

weights {−(n− 1),−(n− 2), . . . ,−1, 0} and Galois type
⊕n−1

i=0 ω̃
k

i0,j0
i .

Then the Fontaine-Laffaille parameter FLi0,j0
n associated to ρ0 is computed as fol-

lows:

FLi0,j0
n (ρ0) =

1 :

(
p[(n−1)− i0+j0

2 ](i0−j0−1)∏i0−1
i=j0+1 λ

i0,j0
i

) ∈ P1(F).

Note that by • ∈ F in the theorem above we mean the image of • ∈ OE under the
natural surjection OE ↠ F. We also note that ρi0,j0 being Fontaine-Laffaille generic
implies FLi0,j0

n (ρ0) ̸= 0,∞ for all i0, j0 as in Theorem 1.1.3, but is a strictly stronger
assumption if i0 − j0 ≥ 3.

Let us briefly discuss our strategy for the proof of Theorem 1.1.3. Recall that the
Fontaine-Laffaille parameter FLi0,j0

n (ρ0) is defined in terms of the Fontaine-Laffaille
module corresponding to ρ0. Thus we need to describe FLi0,j0

n (ρ0) by the data of
the Breuil modules of inertial type

⊕n−1
i=0 ω

k
i0,j0
i corresponding to ρ0, and we do

this via étale ϕ-modules, which requires classification of such Breuil modules. If the
filtration of the Breuil modules is of a certain shape, then a certain product of the
Frobenius eigenvalues of the Breuil modules determines a Fontaine-Laffaille parameter
(cf. Proposition 3.4.3). In order to get such a filtration, we need to assume that ρi0,j0 is
Fontaine-Laffaille generic (cf. Definition 3.2.7). Then we determine the structure of
the filtration of the strongly divisible modules lifting the Breuil modules by direct
computation, which immediately gives enough properties of Frobenius eigenvalues of
the potentially crystalline representations we consider. But this whole process is subtle
for general i0, j0. To resolve this issue we prove that any potentially crystalline lift of ρ0

with Hodge-Tate weights {−(n−1),−(n−2), . . . , 0} and Galois type
⊕n−1

i=0 ω̃
k

i0,j0
i has

MÉMOIRES DE LA SMF 173



1.2. LOCAL AUTOMORPHIC SIDE 5

a potentially crystalline subquotient ρi0,j0 of Hodge-Tate weights {−i0, . . . ,−j0} and
of Galois type

⊕i0
i=j0

ω̃k
i0,j0
i lifting ρi0,j0 . More precisely,

Theorem 1.1.4 (Corollary 3.6.4). – Every potentially crystalline lift ρ0 of ρ0 with
Hodge-Tate weights {−(n − 1),−(n − 2), . . . , 0} and Galois type

⊕n−1
i=0 ω̃

k
i0,j0
i is a

successive extension

ρ0
∼=



ρn−1,n−1 · · · ∗ ∗ ∗ · · · ∗
. . .

...
...

...
. . .

...
ρi0+1,i0+1 ∗ ∗ · · · ∗

ρi0,j0 ∗ · · · ∗
ρj0−1,j0−1 · · · ∗

. . .
...
ρ0,0


where

— for n− 1 ≥ i > i0 and j0 > i ≥ 0, ρi,i is a 1-dimensional potentially crystalline
lift of ρi,i with Hodge-Tate weight −i and Galois type ω̃k

i0,j0
i ;

— ρi0,j0 is a (i0−j0+1)-dimensional potentially crystalline lift of ρi0,j0 with Hodge-

Tate weights {−i0,−i0 + 1, . . . ,−j0} and Galois type
⊕i0

i=j0
ω̃k

i0,j0
i .

Note that we actually prove the niveau f version of Theorem 1.1.4 since it adds
only little more extra work (cf. Corollary 3.6.4).

The representation ρi0,j0 ⊗ ε−j0 is a (i0 − j0 + 1)-dimensional potentially crys-
talline lift of ρi0,j0 with Hodge-Tate weights {−(i0 − j0),−(i0 − j0 − 1), . . . , 0} and
Galois type

⊕i0
i=j0

ω̃k
i0,j0
i , so that, by Theorem 1.1.4, Theorem 1.1.3 reduces to the

case (i0, j0) = (n− 1, 0): we prove Theorem 1.1.3 when (i0, j0) = (n− 1, 0), and then
use the fact FLi0,j0

n (ρ0) = FLi0−j0,0
i0−j0+1(ρi0,j0) to get the result for general i0, j0.

The Weil-Deligne representation WD(ρ0) associated to ρ0 (as in Theorem 1.1.3)
contains those Frobenius eigenvalues of ρ0. We then use the classical local Langlands
correspondence for GLn to transport the Frobenius eigenvalues of ρ0 (and so the
Fontaine-Laffaille parameters of ρ0 as well by Theorem 1.1.3) to the automorphic side
(cf. Corollary 3.7.5).

1.2. Local automorphic side

We start by introducing the Jacobi sum operators in characteristic p. Let T

(resp. B) be the maximal torus (resp. the maximal Borel subgroup) consist-
ing of diagonal matrices (resp. of upper-triangular matrices) of GLn. We let
X(T ) := Hom(T,Gm) be the group of characters of T and Φ+ be the set of positive
roots with respect to (B, T ). We define ϵi ∈ X(T ) as the projection of T ∼= Gn

m
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onto the i-th factor. Then the elements {ϵi | 1 ≤ i ≤ n} forms a Z-basis for the
free abelian group X(T ). We will use the notation (d1, d2, . . . , dn) ∈ Zn for the
element

∑n
k=1 dkϵk ∈ X(T ). Note that the group of characters of the finite group

T (Fp) ∼= (F×p )n can be identified with X(T )/(p−1)X(T ), and therefore we sometimes
abuse the notation (d1, d2, . . . , dn) for its image in X(T )/(p − 1)X(T ). We define
∆ := {αk := ϵk− ϵk+1 | 1 ≤ k ≤ n− 1} ⊂ Φ+ as the set of simple positive roots. Note
that we write sk for the reflection of the simple root αk. For an element w in the
Weyl group W , we define Φ+

w = {α ∈ Φ+ | w(α) ∈ −Φ+} ⊆ Φ+ and Uw =
∏

α∈Φ+
w
Uα,

where Uα is a subgroup of U whose only non-zero off-diagonal entry corresponds to α.
Note in particular that Φ+ = Φ+

w0
, where w0 is the longest element in W . For w ∈W

and for a tuple of integers k = (kα)α∈Φ+
w
∈ {0, 1, . . . , p− 1}|Φ+

w|, we define the Jacobi
sum operator

Sk,w :=
∑

A∈Uw(Fp)

 ∏
α∈Φ+

w

Akα
α

A · w ∈ Fp[GLn(Fp)],

where Aα is the entry of A corresponding to α ∈ Φ+
w . In Chapter 4, we establish

many technical results, both conceptual and computational, around these Jacobi sum
operators. The use of these Jacobi sum operators can be traced back to at least [15],
and are widely used for GL2 in [11] and [40] for instance. But systematic computation
with these operators seems to be limited to GL2 or GL3. In this paper, we need to
do some specific but technical computation on some special Jacobi sum operators
for GLn(Fp), which is enough for our application to Theorem 1.4.1 below.

By the discussion on the local Galois side, our target on the local automorphic side
is to capture the Frobenius eigenvalues coming from the local Galois side. By the clas-
sical local Langlands correspondence, the Frobenius eigenvalues of ρ0 are transported
to the unramified part of χ in the tamely ramified principal series Ind

GLn(Qp)

B(Qp) χ corre-
sponding to the Weil-Deligne representation WD(ρ0) attached to ρ0 in Theorem 1.1.3,
and it is standard to use Up-operators to capture the information in the unramified
part of χ.

The normalizer of the Iwahori subgroup I in GLn(Qp) is cyclic modulo I, and this
cyclic quotient group is generated by an element Ξn ∈ GLn(Qp) that is explicitly de-
fined in (4.4.1). One of our goals is to translate the eigenvalue of Up-operators into the
action of Ξn on the space (Ind

GLn(Qp)

B(Qp) χ)|GLn(Zp)
. This is firstly done for GL2(Qpf )

in [9], and then the method is generalized to GL3(Qp) in the ordinary case by [39].
Both [9] and [39] need a pair of group algebra operators: for instance, group algebra
operators Ŝ, Ŝ′ ∈ Qp[GL3(Qp)] are defined in [39] and the authors prove an intertwin-
ing identity of the form Ŝ′ · Ξ3 = cŜ on a certain I(1)-fixed subspace of Ind

GL3(Qp)

B(Qp) χ

with χ assumed to be tamely ramified, where I(1) is the pro-p Sylow subgroup of I.
Here, the constant c ∈ O×E captures the eigenvalues of Up-operators. This is the first
technical point on the local automorphic side, and we generalize the results in [9] and
[39] by the following theorem.
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For an n-tuple of integers (an−1, an−2, . . . , a0) ∈ Zn, we write Sn and S ′n
for Sk1,w0

with k1 = (k1
i,j) and Sk1,′,w0

with k1,′ = (k1,′
i,j) respectively, where

k1
i,i+1 = [a0 − an−i]1 + n− 2, k1,′

i,i+1 = [an−i−1 − an−1]1 + n − 2 for 1 ≤ i ≤ n − 1,
and k1

i,j = k1,′
i,j = 0 otherwise. Here, (i, j) is the entry corresponding to α if

α = ϵi − ϵj ∈ Φ+ and by [x]1 for x ∈ Z we mean the integer in [0, p − 1) such
that x ≡ [x]1 modulo (p− 1). We define Ŝn ∈ Zp[GLn(Zp)] (resp. Ŝ ′n ∈ Zp[GLn(Zp)])
by taking the Teichmüller lifts of the coefficients and the entries of the matrices
of Sn ∈ Fp[GLn(Fp)] (resp. of S ′n ∈ Fp[GLn(Fp)]).

We use the notation • for the composition of maps or group operators to distinguish
from the notation ◦ for an OE-lattice inside a representation.

Theorem 1.2.1 (Theorem 4.4.23). – Assume that the n-tuple of integers
(an−1, an−2, . . . , a0) is n-generic in the lowest alcove (cf. Definition 4.1.1), and
let

Πn = Ind
GLn(Qp)

B(Qp) (χ1 ⊗ χ2 ⊗ χ3 ⊗ · · · ⊗ χn−2 ⊗ χn−1 ⊗ χ0)

be a tamely ramified principal series representation with the smooth characters
χk : Q×

p → E× satisfying χk|Z×p = ω̃ak for 0 ≤ k ≤ n− 1.

On the 1-dimensional subspace Π
I(1),(a1,a2,...,an−1,a0)
n we have the identity:

(1.2.2) Ŝ ′n • (Ξn)n−2 = pn−2κn

(
n−2∏
k=1

χk(p)

)
Ŝn

for κn ∈ Z×p satisfying κn ≡ ε∗ · Pn(an−1, . . . , a0) mod (ϖE) where

ε∗ =

n−2∏
k=1

(−1)a0−ak

and

Pn(an−1, . . . , a0) =

n−2∏
k=1

n−3∏
j=0

ak − an−1 + j

a0 − ak + j
∈ Z×p .

In fact, there are many identities similar to the one in (1.2.2) for each operator U i
n

for 1 ≤ i ≤ n − 1 (defined in (4.4.2)) which can be technically always reduced to
Proposition 4.4.8, but it is clear from the proof of Theorem 1.2.1 in Section 4.4
that we need to choose Un−2

n for the Up-operator acting on Π
I(1),(a1,a2,...,an−1,a0)
n ,

motivated from the local Galois side via Theorem 1.1.3. The crucial point here is
that the constant pn−2κn

(∏n−2
k=1 χk(p)

)
, which is closely related to FLn−1,0

n (ρ0) via

Theorem 1.1.3 and classical local Langlands correspondence, should lie in O×E for
each Πn appearing in our application of Theorem 1.2.1 to Theorem 1.4.1.

The next step is to consider the mod p reduction of the identity (1.2.2), which
is effective to capture pn−2

∏n−2
k=1 χk(p) modulo (ϖE) only if Ŝnv̂ ̸≡ 0 modulo (ϖE)

for v̂ ∈ Π
I(1),(a1,a2,...,an−1,a0)
n . It turns out that this non-vanishing property is very
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technical to prove for general GLn(Qp). Before we state our non-vanishing result, we
fix a little more notation: let

µ∗ := (an−1 − n+ 2, an−2, . . . , a1, a0 + n− 2);

µ0 := (an−1, a1, a2, . . . , an−3, an−2, a0);

µ1 := (a1, a2, . . . , an−3, an−2, an−1, a0);

µ′1 := (an−1, a0, a1, a2, . . . , an−3, an−2)

be four characters of T (Fp), and write π0 (resp. π̃◦0) for the characteristic p principal
series (resp. the characteristic 0 principal series) induced by the characters µ0 (resp.
by its Teichmüller lift µ̃0). Note that we can attach an irreducible representation F (λ)

of GLn(Fp) to each λ ∈ X(T )/(p − 1)X(T ) satisfying some regular conditions (cf.
the beginning of Chapter 4). If we assume that (an−1, . . . , a0) ∈ Zn is n-generic in
the lowest alcove, the characters µ∗, µ0, µ1 and µ′1 do satisfy the regular condition
and thus we have four irreducible representations F (µ∗), F (µ0), F (µ1) and F (µ′1)

of GLn(Fp). There is a unique (up to homothety) OE-lattice τ in π̃◦0⊗OE
E such that

socGLn(Fp)(τ ⊗OE
F) = F (µ∗).

We are now ready to state the non-vanishing theorem.

Theorem 1.2.3 (Corollary 4.8.3). – Assume that the n-tuple of integers
(an−1, an−2, . . . , a0) is 2n-generic in the lowest alcove (cf. Definition 4.1.1).

Then we have

Sn

(
(τ ⊗OE

F)U(Fp),µ1

)
̸= 0 and S ′n

(
(τ ⊗OE

F)U(Fp),µ′1

)
̸= 0.

The definition of µ1, µ
′
1, µ0 and µ∗ is motivated by our application of Theorem 1.2.3

to Theorem 1.4.1 and is closely related to the Galois types we choose in Theorem 1.1.3.
We emphasize that, technically speaking, it is crucial that F (µ∗) has multiplicity one
in π0. The proof of Theorem 1.2.3 is technical and makes full use of the results in
Sections 4.1, 4.6, and 4.7.

1.3. Weight elimination and automorphy of a Serre weight

The weight part of Serre’s conjecture is considered as a first step towards mod p

Langlands program, since it gives a description of the socle of Π(r)|GLn(Zp)
up to

possible multiplicities. Substantial progress has been made for the groups GL2(OK),
where OK is the ring of integers of a finite extension K of Qp ([12], [30], [34], [35],
[36]). For groups in higher semisimple rank, we also have a detailed description. (See
[25], [39], [50], [52], [49] for GL3; [38], [31], [1], [48], [33] for general n.)

Weight elimination results are significant for the proof of our main global appli-
cation, Theorem 1.4.1. For the purpose of this introduction, we quickly review some
notation. Let F+ be the maximal totally real subfield of a CM field F , and assume
that p splits completely in F . Fix a place w of F above p and set v := w|F+

. We
assume that r is automorphic: this means that there exist a totally definite unitary
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group Gn defined over F+ that is an outer form of GLn/F+ and split at places above p,
an integral model Gn of Gn such that Gn×OF+

v′
is reductive if v′ is a finite place of F+

that splits in F , a compact open subgroup U = Gn(OF+
v

)×Uv ⊆ Gn(OF+
v

)×Gn(A∞,v
F+ )

that is sufficiently small and unramified above p, a Serre weight V =
⊗

v′|p Vv′ that
is an irreducible smooth Fp-representation of Gn(OF+,p), and a maximal ideal mr

associated to r in the Hecke algebra acting on the space S(U, V ) of mod p algebraic
automorphic forms such that

(1.3.1) S(U, V )[mr] ̸= 0.

We write W (r) for the set of Serre weights V satisfying (1.3.1) for some U , and
Ww(r) for the set of local Serre weights Vv, that is irreducible smooth representa-
tions of Gn(OF+

v
) ∼= GLn(OFw

) ∼= GLn(Zp), such that Vv ⊗ (
⊗

v′ ̸=v Vv′) ∈ W (r)

for an irreducible smooth representation
⊗

v′ ̸=v Vv′ of
∏

v′ ̸=v Gn(OF+

v′
). The local

Serre weights Vv have an explicit description as representations of GLn(Fp): there
exists a p-restricted (i.e., 0 ≤ ai − ai−1 ≤ p − 1 for all 1 ≤ i ≤ n − 1) weight
a := (an−1, an−2, . . . , a0) ∈ X(T ) such that F (a) ∼= Vv where F (a) is the irreducible
socle of the dual Weyl module associated to a (cf. Section 5.2 as well as the beginning
of Chapter 4).

Assume that r|Gal(Qp/Fw)
∼= ρ0, where ρ0 is defined as in (1.1.1). We define certain

characters µ□ and µ□,i1,j1 of T (Fp) and a principal series

πi1,j1
∗ = Ind

GLn(Fp)

B(Fp) (µ□,i1,j1)w0

at the beginning of Section 5.3. Our main conjecture for weight elimination is

Conjecture 1.3.2 (Conjecture 5.3.2). – Assume that ρi0,j0 is Fontaine-Laffaille
generic and that µ□,i1,j1 is 2n-generic. Then we have an inclusion

Ww(r) ∩ JH((πi1,j1
∗ )∨) ⊆ {F (µ□)∨, F (µ□,i1,j1)∨}.

We emphasize that the condition ρi0,j0 is Fontaine-Laffaille generic is crucial in
Conjecture 1.3.2. For example, if n = 4 and (i0, j0) = (3, 0) and we assume merely
FL3,0

4 (ρ0) ̸= 0,∞ (which is strictly weaker than Fontaine-Laffaille generic), then we
expect that an extra Serre weight can possibly appear in Ww(r) ∩ JH((πi1,j1

∗ )∨).
The Conjecture 1.3.2 is motivated by the proof of Theorem 1.1.3 and the theory

of shape in [49]. The special case n = 3 of Conjecture 1.3.2 was firstly proven in [39]
and can also be deduced from the computations of Galois deformation rings in [49].

Remark 1.3.3. – In an earlier version of this paper, we prove Conjecture 1.3.2 for
n ≤ 5. But our method is rather elaborate to execute for general n. Bao V. Le Hung
pointed out that one can prove Conjecture 1.3.2 completely by constructing certain
potentially crystalline deformation rings. A proof of Conjecture 1.3.2 will appear
in [47].
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Finally, we also show the automorphy of the Serre weight F (µ□)∨. In other words,

(1.3.4) F (µ□)∨ ∈Ww(r) ∩ JH((πi1,j1
∗ )∨).

Showing the automorphy of a Serre weight, in general, is very subtle. But thanks to the
work of [1] we are able to show the automorphy of F (µ□)∨ by checking the existence
of certain potentially diagonalizable crystalline lifts of ρ0 (cf. Proposition 5.3.3).

1.4. Mod p local-global compatibility

We now state our main results on mod p local-global compatibility. As discussed
at the beginning of this introduction, we prove that Π(r) determines the ordinary
representation ρ0. Moreover, we also describe the invariants in Π(r) that determine
the wildly ramified parts of ρ0. We first recall the definition of Π(r).

Keep the notation of the previous sections, and write bi = −cn−1−i for all
0 ≤ i ≤ n− 1, with ci as in (1.1.1). We fix a place w of F above p and write
v := w|F+

, and we let r : GF → GLn(F) be an irreducible automorphic representa-
tion, of a Serre weight V ∼=

⊗
v′ Vv′ (cf. Section 1.3), with r|GFw

∼= ρ0.

Let V ′ :=
⊗

v′ ̸=v Vv′ and set S(Uv, V ′) := lim
−→

S(Uv ·Uv, V
′) where the direct limit

runs over compact open subgroups Uv ⊆ Gn(OF+
v

). This space S(Uv, V ′) has a natural
smooth action of Gn(F+

v ) ∼= GLn(Fw) ∼= GLn(Qp) by right translation as well as an
action of a Hecke algebra that commutes with the action of Gn(F+

v ). We define

Π(r) := S(Uv, V ′)[mr]

where mr is the maximal ideal of the Hecke algebra associated to r. In the spirit of [24],
this is a candidate on the automorphic side for a mod p Langlands correspondence
corresponding to ρ0. Note that the definition of Π(r) relies on Uv and V ′ as well as
choice of a Hecke algebra, but we suppress them in the notation.

Fix n − 1 ≥ i0 > j0 + 1 > j0 ≥ 0, and define i1 and j1 by the equation
i1 + i0 = j1 + j0 = n− 1. Note that the following Jacobi sum operators

Si1,j1 , Si1,j1,′, Si1,j1
1 , Si1,j1,′

1 ∈ Fp[GLj1−i1+1(Fp)]

are defined at the beginning of Section 5.5.
Now we can state the main results in this paper.

Theorem 1.4.1 (Theorem 5.6.3). – Fix a pair of integers (i0, j0) satisfying
0 ≤ j0 < j0 + 1 < i0 ≤ n− 1, and let r : GF → GLn(F) be an irreducible auto-
morphic representation with r|GFw

∼= ρ0. Assume that

— µ□,i1,j1 is 2n-generic;

— ρi0,j0 is Fontaine-Laffaille generic.
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Assume further that

(1.4.2) {F (µ□)∨} ⊆Ww(r) ∩ JH((πi1,j1
∗ )∨) ⊆ {F (µ□)∨, F (µ□,i1,j1)∨}.

Then there exists a primitive vector (cf. Definition 5.6.2) in Π(r)I(1),µ
i1,j1
1 . More-

over, for each primitive vector vi1,j1 ∈ Π(r)I(1),µ
i1,j1
1 , we have Si1,j1 • Si1,j1

1 vi1,j1 ̸= 0

and

Si1,j1,′ • Si1,j1,′
1 • (Ξn)j1−i1−1vi1,j1 = εi1,j1Pi1,j1(bn−1, . . . , b0) FLi0,j0

n (r|GFw

) · Si1,j1 • Si1,j1
1 vi1,j1

where

εi1,j1 =

j1−1∏
k=i1+1

(−1)bi1
−bk−j1+i1+1

and

Pi1,j1(bn−1, . . . , b0) =

j1−1∏
k=i1+1

j1−i1−1∏
j=1

bk − bj1 − j
bi1 − bk − j

∈ Z×p .

Note that the conditions in (1.4.2) can be removed under some standard Taylor-
Wiles conditions (cf. Remark 1.3.3 and (1.3.4)).

Theorem 1.4.1 relies on the choice of a principal series type (the niveau 1 Galois
type

⊕n−1
i=0 ω̃

k
i0,j0
i ). But this choice is somehow the unique one that could possibly

make our strategy of the proof of Theorem 1.4.1 work.
Be careful that we cannot apply Theorem 1.2.1 and Theorem 1.2.3 directly to our

local global-compatibility for general (i1, j1). Instead, we need to generalize Theo-
rem 1.2.3 (resp. Theorem 1.2.1) to Proposition 5.5.13 (resp. Proposition 5.5.1) .

Corollary 1.4.3. – Keep the notation of Theorem 1.4.1 and assume that each as-
sumption in Theorem 1.4.1 holds for all (i0, j0) such that 0 ≤ j0 < j0+1 < i0 ≤ n−1.
Assume further that a freeness result mentioned in Remark 5.6.6 is true.

Then the structure of Π(r) as a smooth admissible F-representation of GLn(Qp)

determines the Galois representation ρ0 up to isomorphism.

1.5. Notation

Much of the notation introduced in this section will also be (or have already been)
introduced in the text, but we try to collect together various definitions here for ease
of reading.

We let E be a (sufficiently large) extension of Qp with ring of integers OE , a
uniformizer ϖE , and residue field F. We will use these rings E, OE , and F for the
coefficients of our representations. We also let K be a finite extension of Qp with ring
of integers OK , a uniformizer ϖ, and residue field k. Let W (k) be the ring of Witt
vectors over k and write K0 for W (k)

[
1
p

]
. (K0 is the maximal absolutely unramified
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subextension of K.) In this paper, by K we always mean a tamely ramified extension
of Qp with e := [K : K0] = pf − 1 where f = [k : Fp].

For a field F , we write GF for Gal(F/F ) where F is a separable closure of F . For
instance, we are mainly interested in GQp

as well as GK0
in this paper. The choice of

a uniformizer ϖ ∈ K provides us with a map:

ω̃ϖ : GQp
−→W (k) : g 7−→ g(ϖ)

ϖ

whose reduction mod (ϖ) will be denoted as ωϖ. This map factors through
Gal(K/Qp) and ω̃ϖ|GK0

becomes a homomorphism. Note that the choice of the
embedding σ0 : k ↪→ F provides us with a fundamental character of niveau f , namely
ωf := σ0 ◦ ωϖ|Gal(K/K0)

, and we fix the embedding in this paper.
For a ∈ k, we write ã for its Teichmüller lift in W (k). We also use the notation ⌈a⌉

for ã, in particular, in Section 4.4. When the notation for an element • in k is quite
long, we prefer ⌈•⌉ to •̃. For instance, if a, b, c, d ∈ k then we write

⌈(a− b)(a− c)(a− d)(b− c)(b− d)⌉ for ˜(a− b)(a− c)(a− d)(b− c)(b− d).
Note that ω̃ϖ is the Teichmüller lift of ωϖ.

We normalize the Hodge-Tate weight of the cyclotomic character ε to be −1. Our
normalization on class field theory sends the geometric Frobenius to the uniformizers.
If a ∈ F× or a ∈ O×E then we write Ua for the unramified character sending the
geometric Frobenius to a. We may regard a character of GQp

as a character of Q×
p

via our normalization of class field theory.
As usual, we write S for the p-adic completion of W (k)[u, uie

i! ]i∈N, and let
SOE

:= S ⊗Zp
OE and SE := SOE

⊗Zp
Qp. We also let SF := SOE

/(ϖE ,FilpSOE
) ∼=

(k⊗Fp F)[u]/uep. Choose a uniformizer ϖ of K and let E(u) ∈W (k)[u] be the monic
minimal polynomial of ϖ. The group Gal(K/K0) acts on S via the character ω̃ϖ,
and we write (SOE

)ω̃m
ϖ

for the ω̃m
ϖ -isotypical component of S for m ∈ Z. We define

(SF)ωm
ϖ

in a similar fashion. If OE or F are clear, we often omit them, i.e., we write
Sω̃m

ϖ
and Sωm

ϖ
for (SOE

)ω̃m
ϖ

and (SF)ωm
ϖ

respectively. In particular,

S0 := Sω0
ϖ

∼= (k ⊗Fp
F)[ue]/uep

and

S0 := Sω̃0
ϖ

=

{ ∞∑
i=0

ai
E(u)i

i!
| ai ∈W (k)⊗Zp OE and ai → 0 p-adically

}
.

The association a⊗b 7→ (σ(a)b)σ gives rise to an isomorphism k⊗Fp
F ∼=

∐
σ:k↪→F F,

and we write eσ for the idempotent element in k ⊗Fp
F that corresponds to the

idempotent element in
∐

σ:k↪→F F whose only non-zero entry is 1 at the position of σ.
To lighten the notation, we often write G for GLn/Zp

. (By Gn, we mean an outer
form of GLn defined in Section 5.1.) We let B be the Borel subgroup of G consisting
of upper-triangular matrices of G, U the unipotent subgroup of B, and T the torus of
diagonal matrices of GLn. We also write B− and U− for the opposite Borel of B and
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the unipotent subgroup of B−, respectively. Let Φ+ denote the set of positive roots
with respect to (B, T ), and ∆ = {αk}1≤k≤n−1 the subset of simple positive roots.
We also let W be the Weyl group of GLn, which is often considered as a subgroup
of GLn, and let sk be the simple reflection corresponding to αk. We write w0 for the
longest Weyl element in W , and we hope that the reader is not confused with places
w or w′ of F .

We often write K for GLn(Zp) for brevity. (Note that we use K for a tamely
ramified extension of Qp as well, and we hope that it does not confuse the reader.)
We will often use the following three open compact subgroups of GLn(Zp): if we let
red : GLn(Zp) ↠ GLn(Fp) be the natural mod p reduction map, then

K(1) := Ker(red) ⊂ I(1) := red−1(U(Fp)) ⊂ I := red−1(B(Fp)) ⊂ K.

If M is a free F-module with a smooth action of K, then T (Fp) acts on the pro p

Iwahori fixed subspace M I(1) via I/I(1) ∼= T (Fp). We write M I(1),µ for the eigenspace
with respect to a character µ : T (Fp)→ F×p . M I(1) decomposes as

M I(1) ∼=
⊕

M I(1),µ

as T (Fp)-representations, where the direct sum runs over the characters µ of T (Fp).
In the obvious similar fashion, we define M I(1),µ when M is a free OE-module or a
free E-module.

By [m]f for a rational number m ∈ Z
[

1
p

]
⊂ Q we mean the unique integer in [0, e)

congruent tommod (e) via the natural surjection Z
[

1
p

]
↠ Z/eZ. By ⌊y⌋ for y ∈ R we

mean the floor function of y, i.e., the biggest integer less than or equal to y. For a set A,
we write |A| for the cardinality of A. If V is a finite-dimensional F-representation of a
group H, then we write socHV and cosocHV for the socle of V and the cosocle of V ,
respectively. If v is a non-zero vector in a free module over F (resp. over OE , resp.
over E), then we write F[v] (resp. OE [v], resp. E[v]) for the F-line (resp. the OE-line,
resp. the E-line) generated by v.

We write x for the image of x ∈ OE under the natural surjection OE ↠ F. We
also have a natural surjection P1(OE) ↠ P1(F) defined by letting [x : y] ∈ P1(F) be
the image of [x : y] ∈ P1(OE) where

[x : y] =

{
[1 : ( y

x )] if y
x ∈ OE ;

[(x
y ) : 1] if x

y ∈ OE .

We often write y
x for [x : y] ∈ P1(F) if x ̸= 0.
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CHAPTER 2

INTEGRAL p-ADIC HODGE THEORY

In this chapter, we do a quick review of some (integral) p-adic Hodge theory which
will be needed later. We note that all of the results in this chapter are already known
or easy generalization of known results. We closely follow [25] as well as [39] in this
chapter.

2.1. Filtered (ϕ,N)-modules with descent data

In this section, we review potentially semi-stable representations and their corre-
sponding linear algebra objects, admissible filtered (ϕ,N)-modules with descent data.

Let K be a finite extension of Qp, and K0 the maximal unramified subfield of K,
so that K0 = W (k)⊗Zp

Qp where k is the residue field of K. We fix the uniformizer
p ∈ Qp, so that we fix an embedding Bst ↪→ BdR. We also let K ′ be a subextension
of K with K/K ′ Galois, and write ϕ ∈ Gal(K0/Qp) for the arithmetic Frobenius.

A p-adic Galois representation ρ : GK′ → GLn(E) is potentially semi-stable if there
is a finite extension L of K ′ such that ρ|GL

is semi-stable, i.e., rankL0⊗EDK′

st (V ) =

dimE V , where V is an underlying vector space of ρ and DK′

st (V ) := (Bst ⊗Qp V )GL .
We often write DK′

st (ρ) for DK′

st (V ). If K is the Galois closure of L over K ′, then
ρ|GK

is semi-stable, provided that ρ|GL
is semi-stable.

Definition 2.1.1. – A filtered (ϕ,N,K/K ′, E)-module of rank n is a free
K0 ⊗ E-module D of rank n together with

— a ϕ⊗ 1-automorphism ϕ on D;

— a nilpotent K0 ⊗ E-linear endomorphism N on D;

— a decreasing filtration {FiliDk}i∈Z on DK = K ⊗K0
D consisting of

K ⊗Qp
E-submodules of DK , which is exhaustive and separated;

— a K0-semilinear, E-linear action of Gal(K/K ′) which commutes with ϕ and N

and preserves the filtration on DK .
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16 CHAPTER 2. INTEGRAL p-ADIC HODGE THEORY

We say thatD is (weakly) admissible if the underlying filtered (ϕ,N,K/K,E)-mod-
ule (with the trivial descent data) is weakly admissible in the sense of [28]. The action
of Gal(K/K ′) on D is often called descent data action. If V is potentially semi-stable,
then DK′

st (V ) is a typical example of an admissible filtered (ϕ,N,K/K ′, E)-module of
rank n.

Theorem 2.1.2 ([20], Theorem 4.3). – There is an equivalence of categories between
the category of weakly admissible filtered (ϕ,N,K/K ′, E)-modules of rank n and the
category of n-dimensional potentially semi-stable E-representations of GK′ that be-
come semi-stable upon restriction to GK .

Note that Theorem 2.1.2 is proved in [20] in the case K = K ′, and that [54] gives
a generalization to the statement with non-trivial descent data.

If V is potentially semi-stable, then so is its dual V ∨. We define D∗,K
′

st (V ) :=

DK′

st (V ∨). Then D∗,K
′

st gives an anti-equivalence of categories from the category
of n-dimensional potentially semi-stable E-representations of GK′ that become
semi-stable upon restriction to GK to the category of weakly admissible filtered
(ϕ,N,K/K ′, E)-modules of rank n, with quasi-inverse

V∗,K
′

st (D) := Homϕ,N (D,Bst) ∩HomFil(DK ,BdR).

It will often be convenient to use covariant functors. We define an equivalence of
categories: for each r ∈ Z

VK′,r
st (D) := V∗,K

′

st (D)∨ ⊗ εr.

The functor DK′,r
st defined by DK′,r

st (V ) := DK′

st (V ⊗ ε−r) is a quasi-inverse of VK′,r
st .

For a given potentially semi-stable representation ρ : GK′ → GLn(E), one can
attach a Weil-Deligne representation WD(ρ) to ρ, as in [21], Appendix B.1. We refer
to WD(ρ)|IQp

as to the Galois type associated to ρ. Note that WD(ρ) is defined via

the filtered (ϕ,N,K/K ′, N)-module DK′

st (ρ) and that WD(ρ)|IK′
∼= WD(ρ ⊗ εr)|IK′

for all r ∈ Z.
Finally, we say that a potentially semi-stable representation ρ is potentially crys-

talline if the monodromy operator N on DK′

st (ρ) is trivial.

2.2. Strongly divisible modules with descent data

In this section, we review strongly divisible modules that correspond to Galois
stable lattices in potentially semi-stable representations. We keep the notation of
Section 2.1

From now on, we assume that K/K ′ is a tamely ramified Galois extension with
ramification index e(K/K ′). We fix a uniformizer ϖ ∈ K with ϖe(K/K′) ∈ K ′. Let
e be the absolute ramification index ofK and E(u) ∈W (k)[u] the minimal polynomial
of ϖ over K0.
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2.2. STRONGLY DIVISIBLE MODULES WITH DESCENT DATA 17

Let S be the p-adic completion of W (k)[u, uie

i! ]i∈N. The ring S has additional
structures:

— a continuous, ϕ-semilinear map ϕ : S → S with ϕ(u) = up and ϕ(uie

i! ) = upie

i! ;

— a continuous, W (k)-linear derivation of S with N(u) = −u and N(uie

i! ) =

−ieuie

i! ;

— a decreasing filtration {FiliS}i∈Z≥0
of S given by letting FiliS be the p-adic

completion of the ideal
∑

j≥i
E(u)j

j! S;

— a group action of Gal(K/K ′) on S defined for each g ∈ Gal(K/K ′) by the
continuous ring isomorphism ĝ : S → S with ĝ(wi

ui

⌊i/e⌋! ) = g(wi)h
i
g

ui

⌊i/e⌋! for
wi ∈W (k), where hg ∈W (k) satisfies g(ϖ) = hgϖ.

Note that ϕ and N satisfies Nϕ = pϕN and that ĝ(E(u)) = E(u) for all
g ∈ Gal(K/K ′) since we assume ϖe(K/K′) ∈ K ′. We write ϕi for 1

piϕ on FiliS.
For i ≤ p− 1 we have ϕ(FiliS) ⊆ piS.

Let SOE
:= S ⊗Zp OE and SE := SOE

⊗Zp Qp. We extend the definitions of ϕ, N ,
FiliS, and the action of Gal(K/K ′) to SOE

(resp. to SE) OE-linearly (resp. E-lin-
early).

Definition 2.2.1. – Fix a positive integer r < p−1. A strongly divisible OE-module
with descent data of weight r is a free SOE

-module M̂ of finite rank together with

— a SOE
-submodule FilrM̂;

— additive maps ϕ,N : M̂ → M̂;

— SOE
-semilinear bijections ĝ : M̂ → M̂ for each g ∈ Gal(K/K ′)

such that

— FilrSOE
· M̂ ⊆ FilrM̂;

— FilrM̂ ∩ IM̂ = IFilrM̂ for all ideals I in OE ;

— ϕ(sx) = ϕ(s)ϕ(x) for all s ∈ SOE
and for all x ∈ M̂;

— ϕ(FilrM̂) is contained in prM̂ and generates it over SOE
;

— N(sx) = N(s)x+ sN(x) for all s ∈ SOE
and for all x ∈ M̂;

— Nϕ = pϕN ;

— E(u)N(FilrM̂) ⊆ FilrM̂;

— for all g ∈ Gal(K/K ′) ĝ commutes with ϕ and N , and preserves FilrM̂;

— ĝ1 ◦ ĝ2 = ĝ1 · g2 for all g1, g2 ∈ Gal(K/K ′).
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18 CHAPTER 2. INTEGRAL p-ADIC HODGE THEORY

We write OE-Modr
dd for the category of strongly divisible OE-modules with descent

data of weight r. It is easy to see that the map ϕr = 1
pr ϕ : FilrM̂ → M̂ satisfies

cNϕr(x) = ϕr(E(u)N(x)) for all x ∈ FilrM̂ where c := ϕ(E(u))
p ∈ S×.

For a strongly divisible OE-module M̂ with descent data of weight r, we define a
GK′ -module T∗,K

′

st (M̂) as follows (cf. [25], Section 3.1.):

T∗,K
′

st (M̂) := HomFilr,ϕ,N (M̂, Âst).

Proposition 2.2.2 ([25], Proposition 3.1.4). – The functor T∗,K
′

st provides an anti-
equivalence of categories from the category OE-Modr

dd to the category of GK′-stable
OE-lattices in finite-dimensional E-representations of GK′ which become semi-stable
over K with Hodge-Tate weights lying in [−r, 0], when 0 < r < p− 1.

Note that the case K = K ′ and E = Qp is proved by Liu [51].

In this paper, we will be mainly interested in covariant functors TK′,r
st from the

category OE-Modr
dd to the category Rep

K−st,[−r,0]
OE

GK′ of GK′ -stable OE-lattices in
finite-dimensional E-representations of GK′ which become semi-stable over K with
Hodge-Tate weights lying in [−r, 0] defined by

TK′,r
st (M̂) := T∗,K

′

st (M̂)∨ ⊗ εr.

Let M̂ be in OE-Modr
dd, and define a free SE-module D := M̂⊗Zp

Qp. We extend

ϕ and N on D, and define a filtration on D as follows: FilrD = FilrM̂
[

1
p

]
and

FiliD :=


D if i ≤ 0;
{x ∈ D | E(u)r−ix ∈ FilrD} if 0 ≤ i ≤ r;∑i−1

j=0(Fili−jSQp
)(FiljD) if i > r, inductively.

We let D := D ⊗SQp ,s0 K0 and DK := D ⊗SQp ,sϖ K, where s0 : SQp → K0 and
sϖ : SQp

→ K are defined by u 7→ 0 and u 7→ ϖ respectively, which induce ϕ and
N on D and the filtration on DK by taking sϖ(FiliD). The K0-vector space D also
inherits an E-linear action and a semi-linear action of Gal(K/K ′). Then it turns out
that D is a weakly admissible filtered (ϕ,N,K/K ′, E)-module with Filr+1D = 0.
Moreover, there is a compatibility (cf. [25], Proof of Proposition 3.1.4.): if D corre-
sponds to D = M̂

[
1
p

]
, then

TK′,r
st (M̂)

[
1

p

]
∼= VK′,r

st (D).
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2.3. BREUIL MODULES WITH DESCENT DATA 19

2.3. Breuil modules with descent data

In this section, we review Breuil modules with descent data. We keep the notation
of Section 2.2, and assume further that K ′ ⊆ K0.

We let S := S/(ϖE ,FilpS) ∼= (k ⊗Fp
F)[u]/uep. It is easy to check that S inherits

ϕ, N , the filtration of S, and the action of Gal(K/K ′).

Definition 2.3.1. – Fix a positive integer r < p− 1. A Breuil modules with descent
data of weight r is a free S-moduleM of finite rank together with

— a S-submodule FilrM ofM;

— maps ϕr : FilrM→M and N :M→M;

— additive bijections ĝ :M→M for all g ∈ Gal(K/K ′)

such that

— FilrM contains uerM;

— ϕr is F-linear and ϕ-semilinear (where ϕ : k[u]/uep → k[u]/uep is the p-th power
map) with image generatingM as S-module;

— N is k ⊗Fp F-linear and satisfies

— N(ux) = uN(x)− ux for all x ∈M,

— ueN(FilrM) ⊆ FilrM, and

— ϕr(u
eN(x)) = cN(ϕr(x)) for all x ∈ FilrM, where c ∈ (k[u]/uep)× is the

image of 1
pϕ(E(u)) under the natural map S → k[u]/uep.

— ĝ preserves FilrM and commutes with the ϕr and N , and the action satisfies
ĝ1 ◦ ĝ2 = ĝ1 · g2 for all g1, g2 ∈ Gal(K/K ′). Furthermore, if a ∈ k ⊗Fp

F and
m ∈M then ĝ(auim) = g(a)(( g(ϖ)

ϖ )i ⊗ 1)uiĝ(m).

We write F-BrModr
dd for the category of Breuil modules with descent data of

weight r. For M ∈ F-BrModr
dd, we define a GK′ -module as follows (cf. [25], Sec-

tion 3.2):
T∗st(M) := HomBrMod(M, Â).

This gives an exact faithful contravariant functor from the category F-BrModr
dd to

the category RepFGK′ of finite dimensional F-representations of GK′ . We also define
a covariant functor as follows: for each r ∈ Z

Tr
st(M) := T∗st(M)∨ ⊗ ωr,

in which we will be more interested in this paper.

If M̂ is a strongly divisible module with descent data, then

M := M̂/(ϖE ,FilpS)
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is naturally an object in F-BrModr
dd (FilrM is the image of FilrM̂ inM, the map ϕr is

induced by 1
pr ϕ|FilrM̂

, and N and ĝ are those coming from M̂). Moreover, there is a

compatibility: if M̂ ∈ OE-Modr
dd and we letM = M̂/(ϖE ,FilpS) then

TK′,r
st (M̂)⊗OE

F ∼= Tr
st(M).

(See [25], Lemma 3.2.2 for detail.)
There is a notion of duality of Breuil modules, which will be convenient for our

computation of Breuil modules as we will see later.

Definition 2.3.2. – LetM∈ F-BrModr
dd. We define M∗ as follows:

— M∗ := Homk[u]/uep−Mod(M, k[u]/uep);

— FilrM∗ := {f ∈M∗ | f(FilrM) ⊆ uerk[u]/uep};
— ϕr(f) is defined by ϕr(f)(ϕr(x)) = ϕr(f(x)) for all x ∈ FilrM and f ∈ FilrM∗,

where ϕr : uerk[u]/uep → k[u]/uep is the unique semilinear map sending uer

to cr;

— N(f) := N ◦ f − f ◦ N , where N : k[u]/uep → k[u]/uep is the unique k-linear
derivation such that N(u) = −u;

— (ĝf)(x) = g(f(ĝ−1x)) for all x ∈ M and g ∈ Gal(K/K ′), where Gal(K/K ′)

acts on k[u]/uep by g(aui) = g(a)( g(ϖ)
ϖ )iui for a ∈ k.

IfM is an object of F-BrModr
dd then so isM∗. Moreover, we haveM∼=M∗∗ and

T∗st(M∗) ∼= Tr
st(M).

(cf. [16]), Section 2.1.)
Finally, we review the notion of Breuil submodules developed mainly by [16]. See

also [39], Section 2.3.

Definition 2.3.3. – LetM be an object of F-BrModr
dd. A Breuil submodule ofM is

an S-submodule N of M if N satisfies

— N is a k[u]/uep-direct summand ofM;

— N(N ) ⊆ N and ĝ(N ) ⊆ N for all g ∈ Gal(K/K ′);

— ϕr(N ∩ FilrM) ⊆ N .

IfN is a Breuil submodule ofM, thenN andM/N are also objects of F-BrModr
dd.

We now state a crucial result we will use later.

Proposition 2.3.4 ([39], Proposition 2.3.5). – Let M be an object in F-BrModr
dd.

Then there is a natural inclusion preserving bijection

Θ : {Breuil submodules in M} → {GK′-subrepresentations of Tr
st(M)}

sending N ⊆ M to the image of Tr
st(N ) ↪→ Tr

st(M). Moreover, if M2 ⊆ M1 are
Breuil submodules of M, then Θ(M1)/Θ(M2) ∼= Tr

st(M1/M2).
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We will also need classification of Breuil modules of rank 1 as follows. We denote
the Breuil modules in the following lemma by M(a, s, λ).

Lemma 2.3.5 ([52], Lemma 3.1). – Let k := Fpf , e := pf − 1, ϖ := e
√
−p, and

K ′ = Qp. We also let M be a rank-one object in F-BrModr
dd.

Then there exists a generator m ∈M such that:

(i) M = SF ·m;

(ii) FilrM = us(p−1)M where 0 ≤ s ≤ re
p−1 ;

(iii) φr(u
s(p−1)m) = λm for some λ ∈ (Fpf ⊗Fp

F)×;

(iv) ĝ(m) = (ωf (g)a⊗1)m for all g ∈ Gal(K/K0) where a is an integer such that a+

ps ≡ 0 mod ( e
p−1 );

(v) N(m) = 0.

Moreover, one has
Tr

st(M)|IQp

= ωa+ps
f .

The following lemma will be used to determine if the Breuil modules violate the
maximal non-splitness.

Lemma 2.3.6 ([52], Lemma 3.2). – Let k := Fpf , e := pf − 1, ϖ := e
√
−p, and

K ′ = Qp. We also let Mx := M(kx, sx, λx) and My := M(ky, sy, λy) be rank-one
objects in F-BrModr

dd. Assume that the integers kx, ky, sx, sy ∈ Z satisfy

(2.3.7) p(sy − sx) + [ky − kx]f > 0.

Assume further that f < p and let

0→Mx →M→My → 0

be an extension in F-BrModr
dd, with T∗st(M) being Fontaine-Laffaille.

If the exact sequence of SF-modules

0→ FilrMx → FilrM→ FilrMy → 0

splits, then the GQp-representation T∗st(M) splits as a direct sum of two characters.

In particular, provided that pky ̸≡ kx modulo e and that sy(p−1) < re if f > 1, the
representation T∗st(M) splits as a direct sum of two characters if the element j0 ∈ Z

uniquely defined by

j0e+ [p−1ky − kx]f < sx(p− 1) ≤ (j0 + 1)e+ [p−1ky − kx]f

satisfies

(2.3.8) (r + j0)e+ [p−1ky − kx]f < (sx + sy)(p− 1).
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2.4. Linear algebra with descent data

In this section, we introduce the notion of framed basis for a Breuil module M
and framed system of generators for FilrM. Throughout this section, we assume
that K0 = K ′ and continue to assume that K is a tamely ramified Galois extension
of K ′. We also fix a positive integer r < p− 1.

Definition 2.4.1. – Let n ∈ N and let (kn−1, kn−2, . . . , k0) ∈ Zn be an n-tuple.
A rank n Breuil module M ∈ F-BrModr

dd is of (inertial) type ω
kn−1
ϖ ⊕ · · · ⊕ ωk0

ϖ

if M has an S-basis (en−1, . . . , e0) such that ĝei = (ωki
ϖ (g) ⊗ 1)ei for all i and all

g ∈ Gal(K/K0). We call such a basis a framed basis of M.
We also say that f := (fn−1, fn−2, . . . , f0) is a framed system of generators

of FilrM if f is a system of S-generators for FilrM and ĝfi = (ωp−1ki
ϖ (g) ⊗ 1)fi for

all i and all g ∈ Gal(K/K0).

The existence of a framed basis and a framed system of generators for a given
Breuil module M∈ F-BrModr

dd is proved in [39], Section 2.2.2.
Let M ∈ F-BrModr

dd be of inertial type
⊕n−1

i=0 ω
ki
ϖ , and let e := (en−1, . . . , e0) be

a framed basis for M and f := (fn−1, . . . , f0) be a framed system of genera-
tors for FilrM. The matrix of the filtration, with respect to e, f , is the matrix
Mate,f (FilrM) ∈ Mn(S) such that

f = e ·Mate,f (FilrM).

Similarly, we define the matrix of the Frobenius with respect to e, f as the matrix
Mate,f (φr) ∈ GLn(S) characterized by

(ϕr(fn−1), . . . , ϕr(f0)) = e ·Mate,f (φr).

As we require e, f to be compatible with the framing, the entries in the matrix of
the filtration satisfy the important additional properties:

Mate,f (FilrM)i,j ∈ S
ω

pf−1kj−ki
ϖ

.

More precisely, Mate,f (FilrM)i,j = u[pf−1kj−ki]f si,j , where si,j ∈ Sω0
ϖ

= k ⊗Fp

F[ue]/(uep).
We can therefore introduce the subspace M□

n (S) of matrices with framed type
τ =

⊕n−1
i=0 ω

ki

f as

M□
n (S) :=

{
V ∈ Mn(S) | Vi,j ∈ S

ω
kj−ki
f

for all 0 ≤ i, j ≤ n− 1

}
.

Similarly, we define

M□,′
n (S) :=

{
V ∈ Mn(S) | Vi,j ∈ S

ω
p−1kj−ki
f

for all 0 ≤ i, j ≤ n− 1

}
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and

M□,′′
n (S) :=

{
V ∈ Mn(S) | Vi,j ∈ S

ω
p−1(kj−ki)

f

for all 0 ≤ i, j ≤ n− 1

}
.

We also define
GL•n(S) := GLn(S) ∩M•

n(S)

for • ∈ {□} ∪ {□, ′} ∪ {□, ′′}.
As φr(fi) is a ωki

f -eigenvector for the action of Gal(K/K0) we deduce that

Mate,f (FilrM) ∈ M□,′
n (S) and Mate,f (φr) ∈ GL□

n (S).

Note that M□
n (S) = M□,′

n (S) = M□,′′
n (S) if the framed type τ is of niveau 1.

We use similar terminologies for strongly divisible modules M̂ ∈ OE-Modr
dd.

Definition 2.4.2. – Let n ∈ N and let (kn−1, kn−2, . . . , k0) ∈ Zn be an n-tuple. A
rank n strongly divisible module M̂ ∈ OE-Modr

dd is of (inertial) type ω̃kn−1
ϖ ⊕· · ·⊕ω̃k0

ϖ

if M̂ has an SOE
-basis ê := (ên−1, . . . , ê0) such that ĝêi = (ω̃ki

ϖ (g)⊗ 1)êi for all i and
all g ∈ Gal(K/K0). We call such a basis a framed basis for M̂.

We also say that f̂ := (f̂n−1, f̂n−2, . . . , f̂0) is a framed system of gener-
ators for FilrM̂ if f̂ is a system of S-generators for FilrM̂/FilrS · M̂ and
ĝf̂i = (ω̃p−1ki

ϖ (g)⊗ 1)f̂i for all i and all g ∈ Gal(K/K0).

One can readily check the existence of a framed basis for M̂ and a framed
system of generators for FilrM̂ by Nakayama Lemma. For instance, the existence
of a framed system of generators for FilrM̂ can be deduced as follows: if we let
M := M̂/(ϖE ,FilpS) is the Breuil module corresponding to the mod p reduction
of the strongly divisible module M̂ and write f = (fn−1, fn−2, . . . , f0) for a framed
system of generators for FilrM, then it is obvious that each fi has a lift f̂i ∈ FilrM̂
such that ĝf̂i = (ω̃p−1ki

ϖ (g) ⊗ 1)f̂i for all g ∈ Gal(K/K0). Since FilrM̂/FilrS · M̂ is
a finitely generated OE-module, we conclude that the system (f̂n−1, f̂n−2, . . . , f̂0)

generates FilrM̂/FilrS · M̂ by Nakayama Lemma.
We also define

Matê,f̂ (FilrM̂) and Matê,f̂ (ϕr)

each of whose entries satisfies

Matê,f̂ (FilrM̂)i,j ∈ S
ω̃

pf−1kj−ki
ϖ

and Matê,f̂ (ϕr)i,j ∈ S
ω̃

kj−ki
ϖ

,

in the similar fashion to Breuil modules. In particular,

Matê,f̂ (FilrM̂) ∈ M□,′
n (S) and Matê,f̂ (φr) ∈ GL□

n (S),

where M□,′
n (S) and GL□

n (S) are defined in the similar way to Breuil modules. We also
define GL□,′′

n (S) in the similar way to Breuil modules again.
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The inertial types on a Breuil module M and on a strongly divisible modules are
closely related to the Weil-Deligne representation associated to a potentially crys-
talline lift of Tr

st(M).

Proposition 2.4.3 ([50], Proposition 2.12). – Let M̂ be an object in OE-Modr
dd

and let M := M̂ ⊗S S/(ϖE ,FilpS) be the Breuil module corresponding to the mod p
reduction of M̂.

If TK0,r
st (M̂)

[
1
p

]
has Galois type

⊕n−1
i=0 ω̃

ki

f for some integers ki, then M̂ (resp.M)

is of inertial type
⊕n−1

i=0 ω̃
ki
ϖ (resp.

⊕n−1
i=0 ω

ki
ϖ ).

Finally, we need a technical result on change of basis of Breuil modules with descent
data.

Lemma 2.4.4 ([39], Lemma 2.2.8). – Let M ∈ F-BrModr
dd be of type

⊕n−1
i=0 ω

ki
ϖ ,

and let e, f be a framed basis for M and a framed system of generators for FilrM
respectively. Write V := Mate,f (FilrM) ∈ M□,′

n (S) and A := Mate,f (φr) ∈ GL□
n (S),

and assume that there are invertible matrices R ∈ GL□
n (S) and C ∈ GL□,′′

n (S) such
that

R · V · C ≡ V ′ mod (ue(r+1)),

for some V ′ ∈ M□,′
n (S).

Then e′ := e·R−1 forms another framed basis forM and f ′ := e′ ·V ′ forms another
framed system of generators for FilrM such that

Mate′,f ′(FilrM) = V ′ ∈ M□,′
n (S) and Mate′,f ′(ϕr) = R ·A · ϕ(C) ∈ GL□

n (S).

In particular, if R−1 = A then Mate′,f ′(ϕr) = ϕ(C).

The statement of Lemma 2.4.4 is slightly more general than [39], Lemma 2.2.8, but
exactly the same argument works.

2.5. Fontaine-Laffaille modules

In this section, we briefly recall the theory of Fontaine-Laffaille modules over F,
and we continue to assume that K0 = K ′ and that K is a tamely ramified Galois
extension of K ′.

Definition 2.5.1. – A Fontaine-Laffaille module over k ⊗Fp
F is the datum

(M,Fil•M,ϕ•) of

— a free k ⊗Fp
F-module M of finite rank;

— a decreasing, exhaustive and separated filtration {FiljM}j∈Z on M by k ⊗Fp

F-submodules;

— a ϕ-semilinear isomorphism ϕ• : gr•M →M , where gr•M :=
⊕

j∈Z
FiljM

Filj+1M
.
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We write F-FLModk for the category of Fontaine-Laffaille modules over k ⊗Fp F,
which is abelian. If the field k is clear from the context, we simply write F-FLMod to
lighten the notation.

Given a Fontaine-Laffaille module M , the set of its Hodge-Tate weights in the
direction of σ ∈ Gal(k/Fp) is defined as HTσ :=

{
i ∈ Z | eσFiliM ̸= eσFili+1M

}
. In

the remainder of this paper we will be focused on Fontaine-Laffaille modules with
parallel Hodge-Tate weights, i.e., we will assume that for all i ∈ Z, the submodules
FiliM are free over k ⊗Fp

F.

Definition 2.5.2. – Let M be a Fontaine-Laffaille module with parallel Hodge-Tate
weights. A k⊗Fp

F basis f = (f0, f1, . . . , fn−1) on M is compatible with the filtration
if for all i ∈ Z≥0 there exists ji ∈ Z≥0 such that FiliM =

∑n
j=ji

k ⊗Fp
F · fj .

In particular, the principal symbols (gr(f0), . . . , gr(fn−1)) provide a k ⊗Fp
F basis

for gr•M .

Note that if the graded pieces of the Hodge filtration have rank at most one then any
two compatible basis on M are related by a lower-triangular matrix in GLn(k⊗Fp

F).
Given a Fontaine-Laffaille module and a compatible basis f , it is convenient to describe
the Frobenius action via a matrix Matf (ϕ•) ∈ GLn(k ⊗Fp F), defined in the obvious
way using the principal symbols (gr(f0), . . . , gr(fn−1)) as a basis on gr•M .

It is customary to write F-FLMod[0,p−2] to denote the full subcategory of F-FLMod

formed by those modules M verifying Fil0M = M and Filp−1M = 0 (it is again an
abelian category). We have the following description of mod p Galois representations
of GK0 via Fontaine-Laffaille modules:

Proposition 2.5.3 ([29], Theorem 6.1). – There is an exact fully faithful contravari-
ant functor

T∗cris,K0
: F-FLMod

[0,p−2]
k → RepF(GK0

)

which is moreover compatible with the restriction over unramified extensions: if
L0/K0 is unramified with residue field l/k and if M is an object in F-FLMod

[0,p−2]
k ,

then l ⊗k M is naturally regarded as an object in F-FLMod
[0,p−2]
l and

T∗cris,L0
(l ⊗k M) ∼= T∗cris,K0

(M)|GL0

.

We will often write T∗cris for T∗cris,K0
if the base field K0 is clear from the context.

Definition 2.5.4. – We say that ρ ∈ RepFGK0
is Fontaine-Laffaille if T∗cris(M) ∼= ρ

for some M ∈ F-FLMod[0,p−2].

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2022



26 CHAPTER 2. INTEGRAL p-ADIC HODGE THEORY

2.6. Étale ϕ-modules

In this section, we review the theory of étale ϕ-modules, first introduced by Fontaine
[27], and its connection with Breuil modules and Fontaine-Laffaille modules. Through-
out this section, we continue to assume that K0 = K ′ and that K is a tamely ramified
Galois extension of K ′.

Let p0 := −p, and let p be identified with a sequence (pn)n ∈
(
Qp

)N
verifying

pp
n = pn−1 for all n. We also fix ϖ := e

√
−p ∈ K, and let ϖ0 = ϖ. We fix a se-

quence (ϖn)n ∈
(
Qp

)N
such that ϖe

n = pn and ϖp
n = ϖn−1 for all n ∈ N, and

which is compatible with the norm maps K(ϖn+1) → K(ϖn) (cf. [8], Appendix A).
By letting K∞ :=

⋃
n∈NK(ϖn) and (K0)∞ :=

⋃
n∈NK0(pn), we have a canonical

isomorphism Gal(K∞/(K0)∞)
∼−→ Gal(K/K0) and we will identify ωϖ as a char-

acter of Gal(K∞/(K0)∞). The field of norms k((ϖ)) associated to (K,ϖ) is then
endowed with a residual action of Gal(K∞/(K0)∞), which is completely determined
by ĝ(ϖ) = ωϖ(g)ϖ.

We define the category
(
ϕ,F⊗Fp k((p))

)
-Mod of étale (ϕ,F⊗Fp k((p)))-modules as

the category of free F⊗Fp
k((p))-modules of finite rankM endowed with a semilinear

map ϕ :M→M with respect to the Frobenius on k((p)) and inducing an isomorphism
ϕ∗M → M (with obvious morphisms between objects). We also define the category
(ϕ,F ⊗Fp

k((ϖ)))-Moddd of étale (ϕ,F ⊗Fp
k((ϖ)))-modules with descent data: an

objectM is defined as for the category (ϕ,F⊗Fp
k((p)))-Mod but we moreover require

that M is endowed with a semilinear action of Gal(K∞/(K0)∞) (semilinear with
respect to the residual action on F ⊗Fp

k((ϖ)) where F is endowed with the trivial
Gal(K∞/(K0)∞)-action) commuting with ϕ.

By work of Fontaine [27], there are anti-equivalences(
ϕ,F⊗Fp k((p))

)
-Mod ∼−→ RepF(G(K0)∞)

and (
ϕ,F⊗Fp k((ϖ))

)
-Moddd

∼−→ RepF(G(K0)∞)

given by

M 7→ Hom
(
M, k((p))sep

)
and

M 7→ Hom (M, k((ϖ))sep)

respectively. See also [39], Appendix A.2.
The following proposition summarizes the relation between the various categories

and functors we introduced above.

Proposition 2.6.1 ([39], Proposition 2.2.1). – There exist faithful functors

Mk((ϖ)) : F-BrModr
dd →

(
ϕ,F⊗Fp

k((ϖ))
)
-Moddd
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and
F : F-FLMod[0,p−2] →

(
ϕ,F⊗Fp

k((p))
)
-Mod

fitting in the following commutative diagram:

F-BrModr
dd

T∗st

��

Mk((ϖ))
//
(
ϕ,F⊗Fp

k((ϖ))
)
-Moddd

Hom(−,k((ϖ))sep)

yy

RepF(GK0)
Res // RepF(G(K0)∞)

F-FLMod[0,p−2]

T∗cris

OO

F
//
(
ϕ,F⊗Fp

k((p))
)
-Mod

−⊗k((p))k((ϖ))

OO

Hom(−,k((p))sep)

ee

where the descent data is relative to K0 and the functor Res ◦ T∗cris is fully faithful.

Note that the functorsMk((ϖ)) and F are defined in [9]. (See also [39], Appendix A).
The following is an immediate consequence of Proposition 2.6.1, which is also stated
in [50], Corollary 2.14.

Corollary 2.6.2. – Let 0 ≤ r ≤ p − 2, and let M (resp. M) be an object
in F-BrModr

dd (resp. in F-FLMod[0,p−2]). Assume that T∗st(M) is Fontaine-Laffaille.
If

Mk((ϖ))(M) ∼= F(M)⊗k((p)) k((ϖ))

then one has an isomorphism of GK0
-representations

T∗st(M) ∼= T∗cris(M).

The following two lemmas are very crucial in this paper, as we will see later, which
describe the functors Mk((ϖ)) and F respectively.

Lemma 2.6.3 ([39], Lemma 2.2.6). – Let M be a Breuil module of inertial
type

⊕n−1
i=0 ω

ki
ϖ with a framed basis e for M and a framed system of gener-

ators f for FilrM, and write M∗ for its dual as defined in Definition 2.3.2.
Let V = Mate,f (FilrM) ∈ M□,′

n (S) and A = Mate,f (ϕr) ∈ GL□
n (S).

Then there exists a basis e for Mk((ϖ))(M∗) with ĝ · ei = (ω−p−1ki
ϖ (g)⊗ 1)ei for all

i ∈ {0, 1, . . . , n−1} and g ∈ Gal(K/K0), such that the Frobenius ϕ on Mk((ϖ))(M∗) is
described by

Mate(ϕ) = V̂ t
(
Â−1

)t

∈ Mn(F⊗Fp k[[ϖ]]),

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2022



28 CHAPTER 2. INTEGRAL p-ADIC HODGE THEORY

where V̂ , Â are lifts of V, A in Mn(F⊗Fp k[[ϖ]]) via the reduction morphism F⊗Fp

k[[ϖ]] ↠ S induced by ϖ 7→ u and Mate(ϕ)i,j ∈
(
F⊗Fp k[[ϖ]]

)
ω

p−1ki−kj
ϖ

.

Lemma 2.6.4 ([39], Lemma 2.2.7). – Let M ∈ F-FLMod[0,p−2] be a rank n Fontaine-
Laffaille module with parallel Hodge-Tate weights 0 ≤ m0 ≤ · · · ≤ mn−1 ≤ p − 2

(counted with multiplicity). Let e = (e0, . . . , en−1) be a k⊗Fp
F basis for M , compatible

with the Hodge filtration Fil•M and let F ∈ Mn(k ⊗Fp F) be the associated matrix of
the Frobenius ϕ• : gr•M →M .

Then there exists a basis e for M := F(M) such that the Frobenius ϕ on M is
described by

Mate(ϕ) = Diag
(
pm0 , . . . , pmn−1

)
· F ∈ Mn(F⊗Fp

k[[p]]).
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CHAPTER 3

LOCAL GALOIS SIDE

In this chapter, we study ordinary Galois representations and their potentially
crystalline lifts. In particular, we prove that the Frobenius eigenvalues of certain
potentially crystalline lifts preserve the information of the wildly ramified part of
ordinary representations.

Throughout this chapter, we let f be a positive integer, K ′ = Qp, e = pf − 1,
and K = Qpf ( e

√
−p). We also fix ϖ := e

√
−p, and let S = (Fpf ⊗Fp F)[u]/uep

and S0 := Sω0
f

= (Fpf ⊗Fp
F)[ue]/uep ⊆ S. Recall that by [m]f for a rational

number m ∈ Z
[

1
p

]
we mean the unique integer in [0, e) congruent to m mod (e).

We say that a representation ρ0 : GQp → GLn(F) is ordinary if it is isomorphic to
a representation whose image is contained in the Borel subgroup of upper-triangular
matrices. Namely, an ordinary representation has a basis e := (en−1, en−2, . . . , e0)

that gives rise to a matrix form as follows:
(3.0.1)

ρ0
∼=



Uµn−1
ωcn−1+(n−1) ∗n−1 · · · ∗ ∗

0 Uµn−2
ωcn−2+(n−2) · · · ∗ ∗

...
...

. . .
...

...
0 0 · · · Uµ1

ωc1+1 ∗1
0 0 · · · 0 Uµ0

ωc0


.

Here, Uµ is the unramified character sending the geometric Frobenius to µ ∈ F× and
ci are integers. By ρ0, we always mean an n-dimensional ordinary representation that
is written as in (3.0.1). For n− 1 ≥ i ≥ j ≥ 0, we write

(3.0.2) ρi,j

for the (i− j + 1)-dimensional subquotient of ρ0 determined by the subset (ei, ei−1, . . . , ej)

of the basis e. For instance, ρi,i = Uµi
ωci+i and ρn−1,0 = ρ0.

An ordinary representation GQp
→ GLn(F) is maximally non-split if its socle

filtration has length n. For instance, ρ0 in (3.0.1) is maximally non-split if and only if
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∗i ̸= 0 for all i = 1, 2, . . . , n−1. In this paper, we are interested in ordinary maximally
non-split representations satisfying a certain genericity condition.

Definition 3.0.3. – We say that ρ0 is generic if

ci+1 − ci > n− 1 for all i ∈ {0, 1, . . . , n− 2} and cn−1 − c0 < (p− 1)− (n− 1).

We say that ρ0 is strongly generic if ρ0 is generic and

cn−1 − c0 < (p− 1)− (3n− 5).

Note that this strongly generic condition implies p > n2 + 2(n− 3).
We describe a rough shape of the Breuil modules with descent data from K to

K ′ = Qp corresponding to ρ0. Let r be a positive integer with p − 1 > r ≥ n − 1,
and let M ∈ F-BrModr

dd be a Breuil module of inertial type
⊕n−1

i=0 ω
ki

f such that
Tr

st(M) ∼= ρ0, for some ki ∈ Z. By Proposition 2.3.4, we note that M is a successive
extension of Mi, where Mi := M(ki, ri, νi) (cf. Lemma 2.3.5) is a rank one Breuil
module of inertial type ωki

f such that

(3.0.4) ωki+pri

f
∼= Tr

st(Mi)|IQp

∼= ωci+i

for each i ∈ {0, 1, . . . , n− 1}.
More precisely, there exist a framed basis e = (en−1, en−2, . . . , e0) for M and a

framed system of generators f = (fn−1, fn−2, . . . , f0) for FilrM such that
(3.0.5)

Mate,f (FilrM) =


urn−1(p−1) u[p−1kn−2−kn−1]f vn−1,n−2 · · · u[p−1k0−kn−1]f vn−1,0

0 urn−2(p−1) · · · u[p−1k0−kn−2]f vn−2,0

...
...

. . .
...

0 0 · · · ur0(p−1)

 ,

(3.0.6) Mate,f (ϕr) =


νn−1 u[kn−2−kn−1]fwn−1,n−2 · · · u[k0−kn−1]fwn−1,0

0 νn−2 · · · u[k0−kn−2]fwn−2,0

...
...

. . .
...

0 0 · · · ν0

 ,

and
(3.0.7)

Mate(N) =



0 u[kn−2−kn−1]f γn−1,n−2 · · · u[k1−kn−1]f γn−1,1 u[k0−kn−1]f γn−1,0

0 0 · · · u[k1−kn−2]f γn−2,1 u[k0−kn−2]f γn−2,0

...
...

. . .
...

...
0 0 · · · 0 u[k0−k1]f γ1,0

0 0 · · · 0 0


for some νi ∈ (Fpf ⊗Fp

F)× and for some vi,j , wi,j , γi,j ∈ S0.
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Fix 0 ≤ j ≤ i ≤ n− 1. We define the Breuil submodule

(3.0.8) Mi,j

that is a subquotient of M determined by the basis (ei, ei−1, . . . , ej). For instance,
Mi,i

∼=Mi for all 0 ≤ i ≤ n− 1. We note that Tr
st(Mi,j) ∼= ρi,j by Proposition 2.3.4.

We will keep these notation and assumptions for M throughout this paper.

3.1. Elimination of Galois types

In this section, we find out the possible Galois types of niveau 1 for potentially
semi-stable lifts of ρ0 with Hodge-Tate weights {−(n− 1),−(n− 2), . . . , 0}.

We start this section with the following elementary lemma.

Lemma 3.1.1. – Let ρ : GQp
→ GLn(E) be a potentially semi-stable representation

with Hodge-Tate weights {−(n− 1), . . . ,−2,−1, 0} and of Galois type
⊕n−1

i=0 ω̃
ki

f .
Then

det(ρ)|IQp

= ε
n(n−1)

2 · ω̃
∑n−1

i=0 ki

f ,

where ε is the cyclotomic character.

Proof. – det(ρ) is a potentially crystalline character of GQp
with Hodge-Tate

weight −(
∑n−1

i=0 i) and of Galois type ω̃
∑n−1

i=0 ki

f , i.e., det(ρ) · ω̃−
∑n−1

i=0 ki

f is a
crystalline character with Hodge-Tate weight −(

∑n−1
i=0 i) = −n(n−1)

2 so that

det(ρ)|IQp

· ω̃−
∑n−1

i=0 ki

f
∼= ε

n(n−1)
2 .

We will only consider the Breuil modulesM corresponding to the mod p reduction
of the strongly divisible modules that correspond to the Galois stable lattices in poten-
tially semi-stable lifts of ρ0 with Hodge-Tate weights {−(n− 1),−(n− 2), . . . ,−1, 0},
so that we may assume that r = n− 1, i.e., M∈ F-BrModn−1

dd .

Lemma 3.1.2. – Let f = 1. Assume that ρ0 is generic, and that M ∈ F-BrModn−1
dd

corresponds to the mod p reduction of a strongly divisible module M̂ such that
Tn−1

st (M) ∼= ρ0 and T
Qp,n−1
st (M̂) is a Galois stable lattice in a potentially semi-

stable lift of ρ0 with Hodge-Tate weights {−(n − 1),−(n − 2), . . . , 0} and Galois
type

⊕n−1
i=0 ω̃

ki for some integers ki.
Then there exists a framed basis e for M and a framed system of generators f

for Filn−1M such that Mate,f (Filn−1M), Mate,f (ϕn−1), and Mate(N) are as in
(3.0.5), (3.0.6), and (3.0.7) respectively. Moreover, the (ki, ri) satisfy the following
properties:

(i) ki ≡ ci + i− ri mod (e) for all i ∈ {0, 1, . . . , n− 1};
(ii) 0 ≤ ri ≤ n− 1 for all i ∈ {0, 1, . . . , n− 1};

(iii)
∑n−1

i=0 ri = (n−1)n
2 .
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Proof. – Note that the inertial type ofM is
⊕n−1

i=0 ω
ki by Proposition 2.4.3. The first

part of the lemma is obvious from the discussion at the beginning of Section 3.

We now prove the second part of the lemma. We may assume that the rank-one
Breuil modulesMi are of weight ri, so that 0 ≤ ri ≤ n−1 for i = {0, 1, . . . , n−1} by
Lemma 2.3.5. By the equation (3.0.4), we have ki ≡ ci + i− ri mod (e), as e = p− 1.
By looking at the determinant of ρ0 we deduce the conditions

ω
n(n−1)

2 +kn−1+kn−2+···+k0 = detTn−1
st (M)|IQp

= det ρ0|IQp

= ωcn−1+cn−2+···+c0+
n(n−1)

2

from Lemma 3.1.1, and hence we have rn−1 + rn−2 + · · · + r0 = n(n−1)
2 (as

p > n2 + 2(n− 3) due to the genericity of ρ0).

One can further eliminate Galois types of niveau 1 if ρ0 is maximally non-split.

Proposition 3.1.3. – Keep the assumptions and notation of Lemma 3.1.2. If the
tuple (ki, ri) further satisfy one of the following conditions

— ri = n− 1 for some i ∈ {0, 1, 2, . . . , n− 2};

— ri = 0 for some i ∈ {1, 2, 3, . . . , n− 1},

then ρ0 is not maximally non-split.

Proof. – The main ingredient is Lemma 2.3.6. Following the notation in Lemma 2.3.6,
we fix i ∈ {0, 1, 2, . . . , n − 2} and identify x = i+ 1 and y = i so that rx = sx and
ry = sy. From the results in Lemma 3.1.2, it is easy to compute that [ki − ki+1]1 =

e− (ci+1 − ci + 1) + (ri+1 − ri). By the genericity conditions in Definition 3.0.3 and
by part (ii) of Lemma 3.1.2, we see that 0 < [ki − ki+1]1 < e so that if ri ≥ ri+1 then
the equation (2.3.7) in Lemma 2.3.6 holds.

If ri+1e ≤ [ki − ki+1]1 and ri ≥ ri+1, then ∗i+1 = 0 by Lemma 2.3.6. Since
0 < [ki − ki+1]1 < e, we have ri+1e ≤ [ki − ki+1]1 if and only if ri+1 = 0, in which
case ρ0 is not maximally non-split.

We now apply the second part of Lemma 2.3.6. It is easy to check that j0 = ri+1−1.
One can again readily check that the equation (2.3.8) is equivalent to ri = n − 1, in
which case ∗i+1 = 0 so that ρ0 is not maximally non-split.

Note that all of the Galois types that will appear later in this section will satisfy
the conditions in Lemma 3.1.2, and Proposition 3.1.3 as well if we further assume
that ρ0 is maximally non-split.
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3.2. Fontaine-Laffaille parameters

In this section, we parameterize the wildly ramified part of generic and maximally
non-split ordinary representations using Fontaine-Laffaille theory.

We start this section by recalling that if ρ0 is generic then ρ0 ⊗ ω−c0 is Fontaine-
Laffaille (cf. [31], Lemma 3.1.5), so that there is a Fontaine-Laffaille module
M with Hodge-Tate weights {0, c1 − c0 + 1, . . . , cn−1 − c0 + (n − 1)} such that
T∗cris(M) ∼= ρ0 ⊗ ω−c0 (if we assume that ρ0 is generic).

Lemma 3.2.1. – Assume that ρ0 is generic, and let M ∈ F-FLMod
[0,p−2]
Fp

be a
Fontaine-Laffaille module such that T∗cris(M) ∼= ρ0 ⊗ ω−c0 .

Then there exists a basis e = (e0, e1, . . . , en−1) for M such that

FiljM =


M if j ≤ 0;
F(ei, . . . , en−1) if ci−1 − c0 + i− 1 < j ≤ ci − c0 + i;
0 if cn−1 − c0 + n− 1 < j.

and

(3.2.2) Mate(ϕ•) =



µ−1
0 α0,1 α0,2 · · · α0,n−2 α0,n−1

0 µ−1
1 α1,2 · · · α1,n−2 α1,n−1

0 0 µ−1
2 · · · α2,n−2 α2,n−1

...
...

...
. . .

...
...

0 0 0 · · · µ−1
n−2 αn−2,n−1

0 0 0 · · · 0 µ−1
n−1


,

where αi,j ∈ F.

Note that the basis e on M in Lemma 3.2.1 is compatible with the filtration.

Proof. – This is an immediate generalization of [39], Lemma 2.1.7.

For i ≥ j, the subset (ej , . . . , ei) of e determines a subquotient Mi,j of the Fontaine-
Laffaille module M , which is also a Fontaine-Laffaille module with the filtration in-
duced from FilsM in the obvious way and with Frobenius described as follows:

Ai,j :=



µ−1
j αj,j+1 · · · αj,i−1 αj,i

0 µ−1
j+1 · · · αj+1,i−1 αj+1,i

...
...

. . .
...

...
0 0 · · · µ−1

i−1 αi−1,i

0 0 · · · 0 µ−1
i


.

Note that T∗cris(Mi,j)⊗ωc0 ∼= ρi,j . We let A′i,j be the (i−j)×(i−j)-submatrix of Ai,j

obtained by deleting the left-most column and the lowest row of Ai,j .
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Lemma 3.2.3. – Keep the assumptions and notation of Lemma 3.2.1, and let
0 ≤ j < j + 1 < i ≤ n− 1. Assume further that ρ0 is maximally non-split.

If detA′i,j ̸= (−1)i−j+1µ−1
j+1 · · ·µ

−1
i−1αj,i, then [αj,i : detA′i,j ] ∈ P1(F) does not

depend on the choice of basis e compatible with the filtration.

Proof. – This is an immediate generalization of [39], Lemma 2.1.9.

Definition 3.2.4. – Keep the assumptions and notation of Lemma 3.2.3, and assume
further that ρ0 satisfies

(3.2.5) detA′i,j ̸= (−1)i−j+1µ−1
j+1 · · ·µ

−1
i−1αj,i

for all i, j ∈ Z with 0 ≤ j < j + 1 < i ≤ n− 1.

The Fontaine-Laffaille parameter associated to ρ0 is defined as

FLn(ρ0) :=
(
FLi,j

n (ρ0)
)
i,j
∈ [P1(F)]

(n−2)(n−1)
2

where

FLi,j
n (ρ0) :=

[
αj,i : (−1)i−j+1 · detA′i,j

]
∈ P1(F)

for all i, j ∈ Z such that 0 ≤ j < j + 1 < i ≤ n− 1.

We often write y
x for [x : y] ∈ P1(F) if x ̸= 0. The conditions in (3.2.5)

for i, j guarantee the well-definedness of FLi,j
n (ρ0) in P1(F). We also point out that

FLi,j
n (ρ0) ̸= (−1)i−jµ−1

j+1 · · ·µ
−1
i−1 in P1(F).

One can define the inverses of the elements in P1(F) in a natural way: for
[x1 : x2] ∈ P1(F), [x1 : x2]

−1 := [x2 : x1] ∈ P1(F).

Lemma 3.2.6. – Assume that ρ0 is generic. Then

(i) ρ∨0 is generic;

(ii) if ρ0 is strongly generic, then so is ρ∨0 ;

(iii) if ρ0 is maximally non-split, then so is ρ∨0 ;

(iv) if ρ0 is maximally non-split, then the conditions in (3.2.5) are stable under
ρ0 7→ ρ∨0 .

Assume further that ρ0 is maximally non-split and satisfies the conditions in (3.2.5).

(v) for all i, j ∈ Z with 0 ≤ j < j + 1 < i ≤ n − 1, FLi,j
n (ρ0) = FLi,j

n (ρ0 ⊗ ωb) for
any b ∈ Z;

(vi) for all i, j ∈ Z with 0 ≤ j < j + 1 < i ≤ n− 1, FLi,j
n (ρ0) = FLi−j,0

i−j+1(ρi,j);

(vii) for all i, j ∈ Z with 0 ≤ j < j+1 < i ≤ n−1, FLi,j
n (ρ0)

−1 = FLn−1−j,n−1−i
n (ρ∨0 ).
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Proof. – (i), (ii) and (iii) are easy to check. We leave them for the reader.
The only effect on Fontaine-Laffaille module by twisting ωb is shifting the jumps

of the filtration. Thus (v) and (vi) are obvious.
For (iv) and (vii), one can check that the Frobenius of the Fontaine-Laffaille module

associated to ρ∨0 is described by

0 0 · · · 0 1

0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0

1 0 · · · 0 0


· [Mate(ϕ•)

t]−1 ·



0 0 · · · 0 1

0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0

1 0 · · · 0 0


,

where Mate(ϕ•) is as in (3.2.2). Now one can check them by direct computation.

We end this section by defining certain numerical conditions on Fontaine-Laffaille
parameters. We consider the matrix (1, n)w0 Mate(ϕ•)

t, where Mate(ϕ•) is the upper-
triangular matrix in (3.2.2). Here, w0 is the longest element of the Weyl group W

associated to T and (1, n) is a permutation in W . Note that the anti-diagonal matrix
displayed in the proof of Lemma 3.2.6 is w0 seen as an element in GLn(F). For
1 ≤ i ≤ n− 1 we let Bi be the square matrix of size i that is the left-bottom corner
of (1, n)w0 Mate(ϕ•)

t.

Definition 3.2.7. – Keep the notation and assumptions of Definition 3.2.4. We say
that ρ0 is Fontaine-Laffaille generic if moreover detBi ̸= 0 for all 1 ≤ i ≤ n− 1 and
ρ0 is strongly generic.

We emphasize that by an ordinary representation ρ0 being Fontaine-Laffaille
generic, we always mean that ρ0 satisfies the maximally non-splitness and the condi-
tions in (3.2.5) as well as detBi ̸= 0 for all 1 ≤ i ≤ n − 1 and the strongly generic
assumption (cf. Definition 3.0.3).

Although the Frobenius matrix of a Fontaine-Laffaille module depends on the
choice of basis, it is easy to see that the non-vanishing of the determinants above
is independent of the choice of basis compatible with the filtration. Note that the
conditions in Definition 3.2.7 are necessary and sufficient conditions for

(1, n)w0 Mate(ϕ•)
t ∈ B(F)w0B(F)

in the Bruhat decomposition, which will significantly reduce the size of the paper (cf.
Remark 3.2.8). We also note that

— detB1 ̸= 0 if and only if FLn−1,0
n (ρ0) ̸=∞;

— detBn−1 ̸= 0 if and only if FLn−1,0
n (ρ0) ̸= 0.

Finally, we point out that the locus of Fontaine-Laffaille generic ordinary Galois rep-
resentations ρ0 forms a (Zariski) open subset in [P1(F)]

(n−1)(n−2)
2 .
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Remark 3.2.8. – Definition 3.2.7 comes from the fact that the list of Serre weights
of ρ0 is then minimal in the sense of Conjecture 5.3.2. It is very crucial in the proof
of Theorem 5.6.3 as it is more difficult to track the Fontaine-Laffaille parameters on
the automorphic side if we have too many Serre weights. Moreover, these conditions
simplify our proof for Theorem 3.7.3.

3.3. Breuil modules of certain inertial types of niveau 1

In this section, we classify the Breuil modules with certain inertial types, corre-
sponding to the ordinary Galois representations ρ0 as in (3.0.1), and we also study
their corresponding Fontaine-Laffaille parameters.

Throughout this section, we always assume that ρ0 is strongly generic. Since we are
only interested in inertial types of niveau 1, we let f = 1, e = p− 1, and ϖ = e

√
−p.

We define the following integers for 0 ≤ i ≤ n− 1:

(3.3.1) r
(0)
i :=


1 if i = n− 1;
i if 0 < i < n− 1;
n− 2 if i = 0.

We also set
k

(0)
i := ci + i− r(0)i

for all i ∈ {0, 1, . . . , n− 1}.
We first classify the Breuil modules of inertial types described as above.

Lemma 3.3.2. – Assume that ρ0 is strongly generic and that M ∈ F-BrModn−1
dd

corresponds to the mod p reduction of a strongly divisible modules M̂ such
that T

Qp,n−1
st (M̂) is a Galois stable lattice in a potentially semi-stable lift of ρ0

with Hodge-Tate weights {−(n− 1),−(n− 2), . . . , 0} and Galois type
⊕n−1

i=0 ω̃
k
(0)
i .

Then M ∈ F-BrModn−1
dd can be described as follows: there exist a framed basis e

for M and a framed system of generators f for Filn−1M such that

Mate,f (Filn−1M) =


ur

(0)
n−1e βn−1,n−2u

r
(0)
n−1e−k

(0)
n−1,n−2 · · · βn−1,0u

r
(0)
n−1e−k

(0)
n−1,0

0 ur
(0)
n−2e · · · βn−2,0u

r
(0)
n−2e−k

(0)
n−2,0

...
...

. . .
...

0 0 · · · ur
(0)
0 e


and

Mate,f (ϕn−1) = Diag (νn−1, νn−2, . . . , ν0)

where k(0)
i,j := k

(0)
i − k(0)

j , νi ∈ F× and βi,j ∈ F. Moreover,

Mate(N) =
(
γi,j · u[k

(0)
j −k

(0)
i ]1

)
where γi,j = 0 if i ≤ j and γi,j ∈ ue[k

(0)
j −k

(0)
i ]1S0 if i > j.

MÉMOIRES DE LA SMF 173



3.3. BREUIL MODULES OF CERTAIN INERTIAL TYPES OF NIVEAU 1 37

Note that e and f in Lemma 3.3.2 are not necessarily the same as the ones in
Lemma 3.1.2.

Proof. – We keep the notation in (3.0.5), (3.0.6), and (3.0.7). That is, there exist
a framed basis e for M and a framed system of generators f for Filn−1M such
that Mate,f (Filn−1M), Mate,f (ϕn−1), Mate(N) are given as in (3.0.5), (3.0.6),

and (3.0.7) respectively. Since ki ≡ k
(0)
i mod (p − 1), we have ri = r

(0)
i for all

i ∈ {0, 1, . . . , n− 1} by Lemma 3.1.2, following the notation of Lemma 3.1.2.
We start to prove the following claim: if n− 1 ≥ i > j ≥ 0 then

(3.3.3) e− (k
(0)
i − k(0)

j ) ≥ n.

Indeed, by the strongly generic assumption, Definition 3.0.3

e− (k
(0)
i − k(0)

j ) = (p− 1)− (ci + i− r(0)i ) + (cj + j − r(0)j )

= (p− 1)− (ci − cj)− (i− j) + (r
(0)
i − r(0)j )

≥ (p− 1)− (cn−1 − c0)− (n− 1− 0) + (1− (n− 2))

≥ 3n− 4− 2n+ 4 = n.

Note that this claim will be often used during the proof later.
We now diagonalize Mate,f (ϕn−1) with some restriction on the powers of the en-

tries of the matrix Mate,f (Filn−1M). Let V0 = Mate,f (Filn−1M) ∈ M□
n (S) and

A0 = Mate,f (ϕn−1) ∈ GL□
n (S). We also let V1 ∈ M□

n (S) be the matrix obtained
from V0 by replacing vi,j by v′i,j ∈ S0, and B1 ∈ GL□

n (S) the matrix obtained from A0

by replacing wi,j by w′i,j ∈ S0. It is straightforward to check that A0 · V1 = V0 ·B1 if
and only if for all i > j

(3.3.4)

νiv
′
i,ju

[k
(0)
j −k

(0)
i ]1 +

i−1∑
s=j+1

wisv
′
s,ju

[k(0)
s −k

(0)
i ]1+[k

(0)
j −k(0)

s ]1 + wi,ju
r
(0)
j e+[k

(0)
j −k

(0)
i ]1

= w′i,ju
r
(0)
i e+[k

(0)
j −k

(0)
i ]1 +

i−1∑
s=j+1

vi,sw
′
s,ju

[k(0)
s −k

(0)
i ]1+[k

(0)
j −k(0)

s ]1 + νjvi,ju
[k

(0)
j −k

(0)
i ]1 .

Note that the power of u in each term of (3.3.4) is congruent to [k
(0)
j − k(0)

i ]1 mod-
ulo (e). It is immediate that for all i > j there exist v′i,j ∈ S0 and w′i,j ∈ S0 satisfying
the equation (3.3.4) with the following additional properties: for all i > j

(3.3.5) deg v′i,j < r
(0)
i e.

Letting e′ := eA0, we have

Mate′,f ′(Filn−1M) = V1 and Mate′,f ′(ϕn−1) = ϕ(B1),
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where f ′ = e′V1, by Lemma 2.4.4. Note that ϕ(B1) is congruent to a diagonal ma-
trix modulo (une) by (3.3.3). We repeat this process one more time. We may as-
sume that wi,j ∈ uneS0, i.e., that A0 ≡ B1 modulo (une) where B1 is assumed
to be a diagonal matrix. It is obvious that there exists an upper-triangular matrix
V1 = (v′i,ju

[p−1k
(0)
j −k

(0)
i ]1) whose entries have bounded degrees as in (3.3.5), satisfying

the equation A0V1 ≡ V0B1 modulo (une). By Lemma 2.4.4, we get Mate′,f ′(ϕn−1) is
diagonal. Hence, we may assume that Mate,f (ϕn−1) is diagonal and that deg vi,j

in Mate,f (Filn−1M) is bounded as in (3.3.5), and we do so. Moreover, this change of
basis do not change the shape of Mate(N), so that we also assume that Mate(N) is
still as in (3.0.7).

We now prove that for all n− 1 ≥ i > j ≥ 0

(3.3.6) vi,ju
[k

(0)
j −k

(0)
i ]1 = βi,ju

r
(0)
i e−(k

(0)
i −k

(0)
j )

for some βi,j ∈ F. Note that this is immediate for i = n− 1 and i = 1, since r(0)i = 1

if i = n−1 or i = 1. To prove (3.3.6), we induct on i. The case i = 1 is done as above.
Fix p0 ∈ {2, 3, . . . , n− 2}, and assume that (3.3.6) holds for all i ∈ {1, 2, . . . , p0 − 1}
and for all j < i. We consider the subquotient Mp0,0 of M defined in (3.0.8). By
abuse of notation, we write e = (ep0

, . . . , e0) for the induced framed basis for Mp0,0

and f = (fp0
, . . . , f0) for the induced framed system of generators for Filn−1Mp0,0.

We claim that for p0 ≥ j ≥ 0

ueN(fj) ∈ S0u
efj +

p0∑
t=j+1

S0u
[k

(0)
j −k

(0)
t ]1ft.

It is clear that it is true when j = p0. For j < p0, consider

N(fj) = N(fj − ur
(0)
j eej) +N(ur

(0)
j eej).

It is easy to check that N(fj − ur
(0)
j eej) and N(ur

(0)
j eej) + r

(0)
j efj are S-lin-

ear combinations of ep0
, . . . , ej+1, and they are, in fact, S0-linear combinations

of u[k
(0)
j −k(0)

p0
]1ep0

, . . . , u[k
(0)
j −k

(0)
j+1]1ej+1 since they are ωk

(0)
j -invariant. Since

ueN(fj) ∈ Filn−1Mp0,0 ⊃ u(n−1)eMp0,0

and

ueN(fj) + r
(0)
j euefj = ue[N(fj − ur

(0)
j eej)] + ue[N(ur

(0)
j eej) + r

(0)
j efj ],

we conclude that

ueN(fj) + r
(0)
j euefj ∈

p0∑
t=j+1

S0u
[k

(0)
j −k

(0)
t ]1ft,

which completes the claim.
Let

Mate,f (N |Mp0,0
) =

(
γi,j · u[k

(0)
j −k

(0)
i ]1

)
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where γi,j = 0 if i ≤ j and γi,j ∈ S0 if i > j. We also claim that

γi,j ∈ ue[k
(0)
j −k

(0)
i ]1S0

for p0 ≥ i > j ≥ 0, which can be readily checked from the equation cNϕn−1(fj) =

ϕn−1(u
eN(fj)). (Note that c = 1 ∈ S as E(u) = ue + p.) Indeed, we have

cNϕn−1(fj) = N(νjej) = νj

p0∑
i=j+1

γi,ju
[k

(0)
j −k

(0)
i ]1ei.

On the other hand, since Mate,f (ϕn−1|Mp0,0
) is diagonal, the previous claim immedi-

ately implies that

ϕn−1(u
eN(fj)) ∈

p0∑
t=j+1

S0u
p[k

(0)
j −k

(0)
t ]1et.

Hence, we conclude the claim.
We now finish the proof of (3.3.6) by inducting on p0 − j as well. Let us write

vi,j =
∑r

(0)
i −1

t=0 x
(t)
i,ju

te for x(t)
i,j ∈ F. We need to prove x(t)

p0,j = 0 for t ∈ {0, 1, . . . , r(0)p0 − 2}.
Assume first j = p0 − 1, and we compute N(fj) as follows:

N(fp0−1) = −
r(0)

p0
−1∑

t=0

x
(t)
p0,p0−1[e(t+ 1)− (k(0)

p0
− k(0)

p0−1)]u
e(t+1)−(k(0)

p0
−k

(0)
p0−1)ep0

+ γp0,p0−1u
(r

(0)
p0−1+1)e−(k(0)

p0
−k

(0)
p0−1)ep0 − r

(0)
p0−1eu

r
(0)
p0−1eep0−1.

Since fp0−1 = ur
(0)
p0−1eep0−1 +

∑r(0)
p0
−1

t=0 x
(t)
p0,p0−1u

te+[kp0−1−kp0
]1ep0

, we get

N(fp0−1) ≡
r(0)

p0
−1∑

t=0

x
(t)
p0,p0−1[er

(0)
p0−1 − e(t+ 1) + (k(0)

p0
− k(0)

p0−1)]u
e(t+1)−(k(0)

p0
−k

(0)
p0−1)ep0

(3.3.7)

+ γp0,p0−1u
(r

(0)
p0−1+1)e−(k(0)

p0
−k

(0)
p0−1)ep0

modulo Filn−1Mp0,0. Since γp0,p0−1 ∈ ue[e−(k(0)
p0
−k

(0)
p0−1)]S0 and e− (k

(0)
p0 − k

(0)
p0−1) ≥ n

by (3.3.3), we get

N(fp0−1) ≡
r(0)

p0
−1∑

t=0

x
(t)
p0,p0−1[er

(0)
p0−1 − e(t+ 1) + (k(0)

p0
− k(0)

p0−1)]u
e(t+1)−(k(0)

p0
−k

(0)
p0−1)ep0

modulo Filn−1Mp0,0, so that

ueN(fp0−1) ≡
r(0)

p0
−1∑

t=0

x
(t)
p0,p0−1[er

(0)
p0−1 − e(t+ 1) + (k(0)

p0
− k(0)

p0−1)]u
e(t+2)−(k(0)

p0
−k

(0)
p0−1)ep0
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modulo Filn−1Mp0,0. But if t = r
(0)
p0 − 1 then e(t+ 2)− (k

(0)
p0 − k

(0)
p0−1) ≥ r

(0)
p0 , so that

we have
(3.3.8)

ueN(fp0−1) ≡
r(0)

p0
−2∑

t=0

x
(t)
p0,p0−1[er

(0)
p0−1 − e(t+ 1) + (k(0)

p0
− k(0)

p0−1)]u
e(t+2)−(k(0)

p0
−k

(0)
p0−1)ep0

modulo Filn−1Mp0,0.

It is easy to check that

(3.3.9) er
(0)
p0−1 − e(t+ 1) + (k(0)

p0
− k(0)

p0−1) ̸≡ 0

modulo (p) for all 0 ≤ t ≤ r(0)p0 −2. Indeed, since k(0)
i = ci for 0 < i < n−1 by (3.3.1),

we have

er
(0)
p0−1 − e(t+ 1) + (k(0)

p0
− k(0)

p0−1) ≡ −r
(0)
p0−1 + (t+ 1) + (cp0

− cp0−1)

modulo (p), and so

er
(0)
p0−1 − e(t+ 1) + (k(0)

p0
− k(0)

p0−1) ≡ (t+ 1) + (cp0 − cp0−1 + 1)− r(0)p0

modulo (p) since r(0)i = i for 0 < i < n− 1 by (3.3.1).

Since 0 ≤ t ≤ r(0)p0 − 2,

0 < (cp0
− cp0−1 + 2)− r(0)p0

≤ (t+ 1) + (cp0
− cp0−1 + 1)− r(0)p0

≤ (cp0
− cp0−1− 1) < p

by the strongly generic conditions, Definition 3.0.3. Hence, we conclude that x(t)
p0,p0−1 =

0 for all 0 ≤ t ≤ r
(0)
p0 − 2 since ueN(fp0−1) ∈ Filn−1Mp0,0. This completes the proof

of (3.3.6) for j = p0 − 1.

Assume that (3.3.6) holds for i = p0 and j ∈ {p0 − 1, p0 − 2, . . . , s + 1}. We
compute N(fs) for p0 − 1 > s ≥ 0 as follows: using the induction hypothesis on
i ∈ {1, 2, . . . , p0 − 1}

N(fs) = −
r(0)

p0
−1∑

t=0

x(t)
p0,s[e(t+ 1)− (k(0)

p0
− k(0)

s )]ue(t+1)−(k(0)
p0
−k(0)

s )ep0

+

p0−1∑
i=s+1

βi,su
r
(0)
i e−(k

(0)
i −k(0)

s )

(
p0∑

s=i+1

γs,iu
e−(k(0)

s −k
(0)
i )es − [r

(0)
i e− (k

(0)
i − k(0)

s )]ei

)

+ ur(0)
s e

p0∑
i=s+1

γi,su
e−(k

(0)
i −k(0)

s )ei − r(0)s eur(0)
s ees.
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Since γi,j ∈ ue[e−(k
(0)
i −k

(0)
j )]S0, we have

N(fs) ≡ −
r(0)

p0
−1∑

t=0

x(t)
p0,s[e(t+ 1)− (k(0)

p0
− k(0)

s )]ue(t+1)−(k(0)
p0
−k(0)

s )ep0

−
p0−1∑
i=s+1

βi,s[r
(0)
i e− (k

(0)
i − k(0)

s )]ur
(0)
i e−(k

(0)
i −k(0)

s )ei − r(0)s eur(0)
s ees

modulo Filn−1Mp0,0. By the same argument as in (3.3.7), we have

N(fs) ≡
r(0)

p0
−1∑

t=0

x(t)
p0,s[r

(0)
s e− e(t+ 1) + (k(0)

p0
− k(0)

s )]ue(t+1)−(k(0)
p0
−k(0)

s )ep0

+

p0−1∑
i=s+1

βi,s[r
(0)
s e− r(0)i e+ (k

(0)
i − k(0)

s )]ur
(0)
i e−(k

(0)
i −k(0)

s )ei

modulo Filn−1Mp0,0. Now, from the induction hypothesis on j ∈ {p0 − 1, p0 − 2, . . . , s+ 1},

ue

p0−1∑
i=s+1

βi,s[r
(0)
s e− r(0)i e+ (k

(0)
i − k(0)

s )]ur
(0)
i e−(k

(0)
i −k(0)

s )ei ∈ Filn−1Mp0,0

and so we have

ueN(fs) ≡
r(0)

p0
−1∑

t=0

x(t)
p0,s[r

(0)
s e− e(t+ 1) + (k(0)

p0
− k(0)

s )]ue(t+2)−(k(0)
p0
−k(0)

s )ep0

modulo Filn−1Mp0,0. By the same argument as in (3.3.8), we have

ueN(fs) ≡
r(0)

p0
−2∑

t=0

x(t)
p0,s[r

(0)
s e− e(t+ 1) + (k(0)

p0
− k(0)

s )]ue(t+2)−(k(0)
p0
−k(0)

s )ep0

modulo Filn−1Mp0,0. By the same argument as in (3.3.9), one can readily check
that r(0)s e − e(t + 1) + (k

(0)
p0 − k

(0)
s ) ̸≡ 0 modulo (p) for all 0 ≤ t ≤ r

(0)
p0 − 2. Hence,

we conclude that x(t)
p0,s = 0 for all 0 ≤ t ≤ r

(0)
p0 − 2 as ueN(fs) ∈ Filn−1Mp0,0, which

completes the proof.

Proposition 3.3.10. – Keep the assumptions and notation of Lemma 3.3.2. Assume
further that ρ0 is maximally non-split and satisfies the conditions in (3.2.5).

Then βi,i−1 ∈ F× for i ∈ {1, 2, . . . , n − 1} and we have the following identities:
for 0 ≤ j < j + 1 < i ≤ n− 1

FLi,j
n (ρ0) =

[
βi,jνj+1 · · · νi−1 : (−1)i−j+1 detA′i,j

]
∈ P1(F),
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where

A′i,j =



βj+1,j βj+2,j βj+3,j · · · βi−1,j βi,j

1 βj+2,j+1 βj+3,j+1 · · · βi−1,j+1 βi,j+1

0 1 βj+3,j+2 · · · βi−1,j+2 βi,j+2

...
...

...
. . .

...
...

0 0 0 · · · βi−1,i−2 βi,i−2

0 0 0 · · · 1 βi,i−1


.

Proof. – We may assume c0 = 0 by Lemma 3.2.6. We let V := Mate,f (Filn−1M)

and A := Mate,f (ϕn−1) be as in the statement of Lemma 3.3.2. By Lemma 2.6.3, the
ϕ-module over F⊗Fp Fp((ϖ)) defined byM := MFp((ϖ))(M∗) is described as follows:

Mate(ϕ) = (Ui,j),

where

Ui,j =


ν−1

j ·ϖr
(0)
j e if i = j;

0 if i > j;

ν−1
j · βj,i ·ϖr

(0)
j e−(k

(0)
j −k

(0)
i ) if i < j

in a framed basis e = (en−1, en−2, . . . , e0) with dual type ω−k
(0)
n−1⊕ω−k

(0)
n−2 · · ·⊕ω−k

(0)
0 .

By considering the change of basis e′ = (ϖk
(0)
n−1en−1, ϖ

k
(0)
n−2en−2, . . . , ϖ

k
(0)
0 e0),

Mate′(ϕ) is described as follows:

Mate′(ϕ) = (Vi,j)

where

Vi,j =


ν−1

j ·ϖe(k
(0)
j +r

(0)
j ) if i = j;

0 if i > j;

ν−1
j · βj,i ·ϖe(k

(0)
j +r

(0)
j ) if i < j.

Since k(0)
i = ci + i − r(0)i for each n − 1 ≥ i ≥ 0, we easily see that the ϕ-module

M0 is the base change via F ⊗Fp Fp((p)) → F ⊗Fp Fp((ϖ)) of the ϕ-module M0

over F⊗Fp
Fp((p)) described by

Mate′′(ϕ) =


ν−1

n−1p
cn−1+(n−1) 0 · · · 0

ν−1
n−1βn−1,n−2p

cn−1+(n−1) ν−1
n−2p

cn−2+(n−2) · · · 0
...

...
. . .

...
ν−1

n−1βn−1,0p
cn−1+(n−1) ν−1

n−2βn−2,0p
cn−2+(n−2) · · · ν−1

0 pc0


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in an appropriate basis e′′ = (e′′n−1, e
′′
n−2, . . . , e

′′
0), which can be rewritten as

Mate′′(ϕ) =


ν−1

n−1 0 · · · 0

ν−1
n−1βn−1,n−2 ν−1

n−2 · · · 0
...

...
. . .

...
ν−1

n−1βn−1,0 ν−1
n−2βn−2,0 · · · ν−1

0


︸ ︷︷ ︸

=:H′

·Diag
(
pcn−1+n−1, . . . , pc1+1, pc0

)
.

By considering the change of basis e′′′ = e′′ ·H ′ and then reversing the order of the
basis e′′′, the Frobenius ϕ ofM0 with respect to this new basis is described as follows:
(3.3.11)

Mat(ϕ) = Diag
(
pc0 , pc1+1, . . . , pcn−1+(n−1)

)

ν−1
0 ν−1

1 β1,0 · · · ν−1
n−1βn−1,0

0 ν−1
1 · · · ν−1

n−1βn−1,1

...
...

. . .
...

0 0 0 ν−1
n−1


︸ ︷︷ ︸

=:H

with respect to the new basis described as above.

The last displayed upper-triangular matrix H is the Frobenius of the Fontaine-
Laffaille module M such that T∗cris(M) ∼= ρ0

∼= Tr
st(M), by Lemma 2.6.4. Hence, we

get the desired results (cf. Definition 3.2.4).

Remark 3.3.12. – We emphasize that the matrix H is the Frobenius of the Fontaine-
Laffaille module M , with respect to a basis (e0, e1, . . . , en−1) compatible with the
filtration, such that T∗cris(M) ∼= ρ0

∼= Tr
st(M), so that we can now apply the conditions

in (3.2.5) as well as Definition 3.2.7 to the Breuil modules in Lemma 3.3.2. Moreover,
H can be written as

H =


1 β1,0 · · · βn−1,0

0 1 · · · βn−1,1

...
...

. . .
...

0 0 0 1


︸ ︷︷ ︸

=:H′′

·Diag
(
ν−1
0 , ν−1

1 , . . . , ν−1
n−1

)
,

so that we have (1, n)w0H
t ∈ B(F)w0B(F) if and only if (1, n)w0(H

′′)t ∈ B(F)w0B(F).
Hence, ρ0 being Fontaine-Laffaille generic is a matter only of the entries of the filtra-
tion of the Breuil modules if the Breuil modules are written as in Lemma 3.3.2.
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3.4. Fontaine-Laffaille parameters vs Frobenius eigenvalues

In this section, we study further the Breuil modules of Lemma 3.3.2. We show
that if the filtration is of a certain shape then a certain product of Frobenius eigen-
values (of the Breuil modules) corresponds to the newest Fontaine-Laffaille parame-
ter, FLn−1,0

n (ρ0). To get such a shape of the filtration, we assume further that ρ0 is
Fontaine-Laffaille generic.

Lemma 3.4.1. – Keep the assumptions and notation of Lemma 3.3.2. Assume further
that ρ0 is Fontaine-Laffaille generic (cf. Definition 3.2.7).

Then M ∈ F-BrModn−1
dd can be described as follows: there exist a framed basis e

for M and a framed system of generators f for Filn−1M such that

Mate,f (ϕn−1) = Diag (µn−1, µn−2, . . . , µ0)

and
Mate,f (Filn−1M) = (Ui,j) ,

where

(3.4.2) Ui,j =



ur
(0)
n−1e−(k

(0)
n−1−k

(0)
0 ) if i = n− 1 and j = 0;

ur
(0)
i e if 0 < i = j < n− 1;

xi,j · ur
(0)
i e−(k

(0)
i −k

(0)
j ) if n− 1 > i > j;

ur
(0)
0 e+(k

(0)
n−1−k

(0)
0 ) if i = 0 and j = n− 1;

x0,j · ur
(0)
0 e+(k

(0)
j −k

(0)
0 ) if i = 0 ≤ j < n− 1;

0 otherwise.

Here, µi ∈ F× and xi,j ∈ F.
Moreover, we have the following identity:

FLn−1,0
n (ρ0) =

n−2∏
i=1

µ−1
i .

Due to the size of the matrix, we decide to describe the matrix Mate,f (Filn−1M)

as (3.4.2). But for the reader we visualize the matrix Mate,f (Filn−1M) below, al-
though it is less accurate:

0 0 · · · 0 ur
(0)
n−1e−k

(0)
n−1,0

0 ur
(0)
n−2 · · · xn−2,1u

r
(0)
n−2e−k

(0)
n−2,1 xn−2,0u

r
(0)
n−2e−k

(0)
n−2,0

...
...

. . .
...

...

0 0 · · · ur
(0)
1 x1,0u

r
(0)
1 e−k

(0)
1,0

ur
(0)
0 e+k

(0)
n−1,0 x0,n−2u

r
(0)
0 e+k

(0)
n−2,0 · · · x0,1u

r
(0)
0 e+k

(0)
1,0 x0,0u

r
(0)
0 e


where k(0)

i,j := k
(0)
i − k(0)

j .
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Proof. – Let e0 be a framed basis for M and f
0

a framed system of generators
for Filn−1M such that V0 := Mate0,f

0
(Filn−1M) and A0 := Mate0,f

0
(ϕn−1) are

given as in Lemma 3.3.2. So, in particular, V0 is upper-triangular and A0 is diagonal.
By Proposition 3.3.10, the upper-triangular matrix H in (3.3.11) is the Frobenius

of the Fontaine-Laffaille module corresponding to ρ0, as in Definition 3.2.4. Since we
assume that ρ0 is Fontaine-Laffaille generic, we have (1, n)w0H

t ∈ B(F)w0B(F) as
discussed right after Definition 3.2.4, so that we have w0H

tw0 ∈ (1, n)B(F)w0B(F)w0.
Equivalently, w0(H

′)tw0 ∈ (1, n)B(F)w0B(F)w0 by Remark 3.3.12, where H ′ is de-
fined in Remark 3.3.12. Hence, comparing V0 with w0(H

′)tw0, there exists a lower-
triangular matrix C ∈ GL□

n (S) such that

V0 · C = V1 := (Ui,j)0≤i,j≤n−1

where Ui,j is described as in (3.4.2), since any matrix in w0B(F)w0 is lower-
triangular. From the identity V0 · C = V1, we have V1 = Mate1,f

1
(Filn−1M) and

A1 := Mate1,f
1
(ϕn−1) = A0 ·ϕ(C) by Lemma 2.4.4, where e1 := e0 and f

1
:= e1V1. If

i < j, then [k
(0)
j − k

(0)
i ]1 = k

(0)
j − k

(0)
i ≥ n as ρ0 is strongly generic, so that A1 is con-

gruent to a diagonal matrix B′2 ∈ GLn(F) modulo (une) as C = (ci,j · u[k
(0)
j −k

(0)
i ]1) is

a lower-triangular and A0 is diagonal.
Let V2 be the matrix obtained from V1 by replacing xi,j in (3.4.2) by yi,j , and

B2 = (bi,j) is the diagonal matrix defined by taking bi,i = b′i,i if 1 ≤ i ≤ n − 2 and
bi,i = b′n−1−i,n−1−i otherwise, where B′2 = (b′i,j). Then it is obvious that there exist
yi,j ∈ F such that

A1 · V2 ≡ V1 ·B2

modulo (une). Letting e2 := e1 · A1, we have V2 = Mate2,f
2
(Filn−1M) and

Mate2,f
2
(ϕn−1) = ϕ(B2) by Lemma 2.4.4. Note that A2 := Mate2,f

2
(ϕn−1) is diag-

onal. Hence, there exist a framed basis for M and a framed system of generators
for Filn−1M such that Mate,f (ϕn−1) and Mate,f (Filn−1M) are described as in the
statement.

We now prove the second part of the lemma. It is harmless to assume c0 = 0

by Lemma 3.2.6. Let V := Mate,f (Filn−1M) and A := Mate,f (ϕn−1) be as in the
first part of the lemma. By Lemma 2.6.3, the ϕ-module over F ⊗Fp Fp((ϖ))

defined by M := MFp((ϖ))(M∗) is described as follows: there exists a basis
e = (en−1, en−2, . . . , e0), compatible with decent data, such that Mate(ϕ) = (Â−1V̂ )t

where V̂ t and (Â−1)t are computed as follows:

V̂ t =



0 0 · · · 0 ϖr
(0)
0 e+k

(0)
n−1,0

0 ϖr
(0)
n−2 · · · 0 x0,n−2ϖ

r
(0)
0 e+k

(0)
n−2,0

...
...

. . .
...

...

0 xn−2,1ϖ
r
(0)
n−2e−k

(0)
n−2,1 · · · ϖr

(0)
1 x0,1ϖ

r
(0)
0 e+k

(0)
1,0

ϖr
(0)
n−1e−k

(0)
n−1,0 xn−2,0ϖ

r
(0)
n−2e−k

(0)
n−2,0 · · · x1,0ϖ

r
(0)
1 e−k

(0)
1,0 x0,0ϖ

r
(0)
0 e


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and
Â−1 = Diag

(
µ−1

n−1, µ
−1
n−2, . . . , µ

−1
0

)
.

By considering the change of basis e′ = (ϖk
(0)
n−1en−1, ϖ

k
(0)
n−2en−2, . . . , ϖ

k
(0)
1 e1, ϖ

k
(0)
0 e0),

we have
Mate′(ϕ) = (V̂ t)′ ·Diag

(
µ−1

n−1, µ
−1
n−2, . . . , µ

−1
0

)
where

(V̂ t)′ =



0 0 · · · 0 ϖe(k
(0)
0 +r

(0)
0 )

0 ϖe(k
(0)
n−2+r

(0)
n−2) · · · 0 x0,n−2ϖ

e(k
(0)
0 +r

(0)
0 )

...
...

. . .
...

...

0 xn−2,1ϖ
e(k

(0)
n−2+r

(0)
n−2) · · · ϖe(k

(0)
1 +r

(0)
1 ) x0,1ϖ

e(k
(0)
0 +r

(0)
0 )

ϖe(k
(0)
n−1+r

(0)
n−1) xn−2,0ϖ

e(k
(0)
n−2+r

(0)
n−2) · · · x1,0ϖ

e(k
(0)
1 +r

(0)
1 ) x0,0ϖ

e(k
(0)
0 +r

(0)
0 )


.

Since k(0)
j + r

(0)
j = cj + j for all j, it is immediate that the ϕ-module M over

F⊗Fp
Fp((ϖ)) is the base change via F⊗Fp

Fp((p))→ F⊗Fp
Fp((ϖ)) of the ϕ-module

M0 over F⊗Fp Fp((p)) described by

Mate′′(ϕ) = F ′′ ·Diag
(
pcn−1+n−1, pcn−2+n−2, . . . , pc0

)
,

where

F ′′ =



0 0 0 · · · 0 µ−1
0

0 µ−1
n−2 0 · · · 0 µ−1

0 x0,n−2

0 µ−1
n−2xn−2,n−3 µ−1

n−3 · · · 0 µ−1
0 x0,n−3

...
...

...
. . .

...
...

0 µ−1
n−2xn−2,1 µ−1

n−3xn−3,1 · · · µ−1
1 µ−1

0 x0,1

µ−1
n−1 µ−1

n−2xn−2,0 µ−1
n−3xn−3,0 · · · µ−1

1 x1,0 µ−1
0 x0,0


,

in an appropriate basis e′′.
Now, consider the change of basis e′′′ = e′′ · F ′′ and then reverse the order of the

basis e′′′. Then the matrix of the Frobenius ϕ for M0 with respect to this new basis
is given by

Diag
(
pc0 , pc1+1, . . . , pcn−1+n−1

)
· F

where

F =



µ−1
0 x0,0 µ−1

1 x1,0 µ−1
2 x2,0 · · · µ−1

n−2xn−2,0 µ−1
n−1

µ−1
0 x0,1 µ−1

1 µ−1
2 x2,1 · · · µ−1

n−2xn−2,1 0

µ−1
0 x0,2 0 µ−1

2 · · · µ−1
n−2xn−2,2 0

...
...

...
. . .

...
...

µ−1
0 x0,n−2 0 0 · · · µ−1

n−2 0

µ−1
0 0 0 · · · 0 0


.
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By Lemma 2.6.4, there exists a Fontaine-Laffaille module M such that F(M) =M0

with Hodge-Tate weights (c0, c1 + 1, . . . , cn−1 + n − 1) and Mate(ϕ•) = F for some
basis e of M compatible with the Hodge filtration on M . On the other hand, since
T∗cris(M) ∼= ρ0, there exists a basis e′ of M compatible with the Hodge filtration on M
such that

Mate′(ϕ•) =



w0 w0,1 · · · w0,n−2 w0,n−1

0 w1 · · · w1,n−2 w1,n−1

...
...

. . .
...

...
0 0 · · · wn−2 wn−2,n−1

0 0 · · · 0 wn−1


︸ ︷︷ ︸

=:G

,

where wi,j ∈ F and wi ∈ F× by Lemma 3.2.1. Since both e and e′ are compatible with
the Hodge filtration on M , there exists a unipotent lower-triangular n× n-matrix U
such that

U · F = G.

Note that we have w0,n−1 = µ−1
n−1 by direct computation.

Let U ′ be the (n− 1)× (n− 1)-matrix obtained from U by deleting the right-most
column and the lowest row, and F ′ (resp. G′) the (n− 1)× (n− 1)-matrix obtained
from F (resp. G) by deleting the left-most column and the lowest row. Then they still
satisfy G′ = U ′ · F ′ as U is a lower-triangular unipotent matrix, so that

FLn−1,0
n (ρ0) = [w0,n−1 : (−1)n detG′] =

[
µ−1

n−1 : (−1)n detF ′
]

=

[
1 :

n−2∏
i=1

µ−1
i

]
,

which completes the proof.

Proposition 3.4.3. – Keep the assumptions and notation of Lemma 3.4.1.
Then M ∈ F-BrModn−1

dd can be described as follows: there exist a framed basis e
for M and a framed system of generators f for Filn−1M such that

Mate,f (Filn−1M) =



0 0 0 · · · 0 ue−(k
(0)
n−1−k

(0)
0 )

0 u(n−2)e 0 · · · 0 0

0 0 u(n−3)e · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ue 0

u(n−2)e+(k
(0)
n−1−k

(0)
0 ) 0 0 · · · 0 0


.

Moreover, if we let

Mate,f (ϕn−1) =
(
αi,ju

[k
(0)
j −k

(0)
i ]1

)
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for αi,i ∈ S
×
0 and αi,j ∈ S0 if i ̸= j then we have the following identity:

FLn−1,0
n (ρ0) =

n−2∏
i=1

(α
(0)
i,i )−1 =

n−2∏
i=1

µ−1
i ,

where α(0)
i,j ∈ F is determined by α(0)

i,j ≡ αi,j modulo (ue).

Note that Mate,f (ϕn−1) always belong to GL□
n (S) as e and f are framed.

Proof. – We let e0 (resp. e1) be a framed basis for M and f
0

(resp. f
1
) be

a framed system of generators for Filn−1M such that Mate0,f
0
(Filn−1M) and

Mate0,f
0
(ϕn−1) (resp. Mate1,f

1
(Filn−1M) and Mate1,f

1
(ϕn−1)) are given as in the

statement of Lemma 3.4.1 (resp. in the statement of Proposition 3.4.3). We also let
V0 = Mate0,f

0
(Filn−1M) andA0 = Mate0,f

0
(ϕn−1) as well as V1 = Mate1,f

1
(Filn−1)M

and A1 = Mate1,f
1
(ϕn−1).

It is obvious that there exist R = (ri,ju
[k

(0)
j −k

(0)
i ]1) and C = (ci,ju

[k
(0)
j −k

(0)
i ]1)

in GL□
n (S) such that

R · V0 · C = V1 and e1 = e0R
−1

for ri,j and ci,j in S0. From the first equation above, we immediately get the identities:

r
(0)
n−1,n−1 · c

(0)
0,0 = 1 = r

(0)
0,0 · c

(0)
n−1,n−1 and r(0)i,i · c

(0)
i,i = 1

for 0 < i < n − 1, where r
(0)
i,j ∈ F (resp. c(0)i,j ∈ F) is determined by r

(0)
i,j ≡ ri,j

modulo (ue) (resp. c
(0)
i,j ≡ ci,j modulo (ue)). By Lemma 2.4.4, we see that

A1 = R ·A0 · ϕ(C).

Hence, if we let A1 =
(
αi,ju

[k
(0)
j −k

(0)
i ]1

)
then

r
(0)
i,i · µi · c(0)i,i = α

(0)
i,i

for each 0 < i < n− 1 since R and C are diagonal modulo (u), so that we have

n−2∏
i=1

µi =

n−2∏
i=1

α
(0)
i,i

which completes its proof.

Note that the matrix in the statement of Proposition 3.4.3 gives rise to the ele-
mentary divisors ofM/Filn−1M.
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3.5. Filtration of strongly divisible modules

In this section, we describe the filtration of the strongly divisible modules lifting
the Breuil modules described in Proposition 3.4.3. Throughout this section, we keep
the notation r(0)i as in (3.3.1) as well as k(0)

i .
We start to recall the following lemma, which is easy to prove but very useful.

Lemma 3.5.1. – Let 0 < f ≤ n be an integer, and let M̂ ∈ OE-Modn−1
dd be a strongly

divisible module corresponding to a lattice in a potentially semi-stable representation
ρ : GQp

→ GLn(E) with Hodge-Tate weights {−(n − 1),−(n − 2), . . . , 0} and Galois
type of niveau f such that T

Qp,n−1
st (M̂)⊗OE

F ∼= ρ0.
If we let

X(i) :=

(
Filn−1M̂ ∩ FiliS · M̂

Filn−1S · M̂

)
⊗OE

E

for i ∈ {0, 1, . . . , n − 1}, then for any character ξ : Gal(K/K0) → K× we have that
the ξ-isotypical component X(i)

ξ of X(i) is a free K0 ⊗ E-module of finite rank

rankK0⊗Qp EX
(i)
ξ =

n(n− 1)

2
− i(i+ 1)

2
.

Moreover, multiplication by u ∈ S induces an isomorphism X
(0)
ξ

∼−→ X
(0)
ξω̃ .

Proof. – We follow the strategy of the proof of [39], Lemma 2.4.9. Since ρ has Hodge-
Tate weights {−(n − 1),−(n − 2), . . . , 0}, by the analogue with E-coefficients of [5],
Proposition A.4, we deduce that

Filn−1D = Filn−1SE f̂n−1 ⊕ Filn−2SE f̂n−2 ⊕ · · · ⊕ Fil1SE f̂1 ⊕ SE f̂0

for some SE-basis f̂0, . . . , f̂n−1 of D, where D := M̂
[

1
p

]
∼= SE ⊗E D

Qp,n−1
st (V ), so

that we also have

Filn−1D∩FiliSED = Filn−1SE f̂n−1⊕Filn−2SE f̂n−2⊕· · ·⊕FiliSE f̂i⊕· · ·⊕FiliSE f̂0.

Since ρ ∼= T
Qp,n−1
st (M̂) ⊗OE

E is a GQp -representation, Fili(K ⊗K0 D
Qp,n−1
st (ρ)) ∼=

K ⊗Qp FiliDdR(ρ ⊗ ε1−n), so that X(i) ∼= Filn−1D∩FiliSED
Filn−1SED

is a free K0 ⊗Qp
E-mod-

ule. Since SE

Filn−1SE

∼=
⊕n−2

i=0

⊕e−1
j=0(K0 ⊗Qp

E)ujE(u)i, we have rankK0⊗Qp EX
(i) =[

n(n−1)
2 − i(i+1)

2

]
e. We note that Gal(K/K0) acts semisimply and that multiplica-

tion by u gives rise to a K0⊗Qp
E-linear isomorphism on SE/FilpSE which cyclically

permutes the isotypical components, which completes the proof.

Note that Lemma 3.5.1 immediately implies that

(3.5.2) rankK0⊗Qp EX
(i)
ξ − rankK0⊗Qp EX

(i+1)
ξ = i+ 1.

We will use this fact frequently to prove the main result, Proposition 3.5.4, in this
section.
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To describe the filtration of strongly divisible modules, we need to analyze the
Filn−1M of the Breuil modulesM we consider.

Lemma 3.5.3. – Keep the notation and assumptions of Lemma 3.3.2.

(i) If ua is an elementary divisor of M/Filn−1M then

e− (k
(0)
n−1 − k

(0)
0 ) ≤ a ≤ (n− 2)e+ (k

(0)
n−1 − k

(0)
0 ).

Moreover, FLn−1,0
n (ρ0) ̸=∞ (resp. FLn−1,0

n (ρ0) ̸= 0) if and only if ue−(k
(0)
n−1−k

(0)
0 )

(resp. u(n−2)e+(k
(0)
n−1−k

(0)
0 )) is an elementary divisor of M/Filn−1M.

(ii) If we further assume that ρ0 is Fontaine-Laffaille generic, then

{u(n−2)e+(k
(0)
n−1−k

(0)
0 ), u(n−2)e, u(n−3)e, . . . , ue, ue−(k

(0)
n−1−k

(0)
0 )}

are the elementary divisors of M/Filn−1M.

Proof. – The first part of (i) is obvious since one can obtain the Smith normal form
of Mate,f Filn−1M by elementary row and column operations. By Proposition 3.3.10,

we know that FLn−1,0
n (ρ0) ̸=∞ if and only if βn−1,0 ̸= 0. Since ue−(k

(0)
n−1−k

(0)
0 ) has the

minimal degree among the entries of Mate,f Filn−1M, we conclude the equivalence
statement for FLn−1,0

n (ρ0) ̸=∞ holds. The equivalence statement for FLn−1,0
n (ρ0) ̸= 0

is immediate from the equivalence statement for FLn−1,0
n (ρ0) ̸=∞ by consideringM∗

and using Lemma 3.2.6, (vi).
Part (ii) is obvious from Proposition 3.4.3.

Proposition 3.5.4. – Assume that ρ0 is Fontaine-Laffaille generic and keep the
notation r

(0)
i as in (3.3.1) as well as k

(0)
i . Let M̂ ∈ OE-Modn−1

dd be a strongly
divisible module corresponding to a lattice in a potentially semi-stable represen-
tation ρ : GQp

→ GLn(E) with Galois type
⊕n−1

i=0 ω̃
k
(0)
i and Hodge-Tate weights

{−(n− 1),−(n− 2), . . . , 0} such that T
Qp,n−1
st (M̂)⊗OE

F ∼= ρ0.
Then there exists a framed basis (ên−1, ên−2, . . . , ê0) for M̂ and a framed sys-

tem of generators (f̂n−1, f̂n−2, . . . , f̂0) for Filn−1M̂ modulo Filn−1S · M̂ such
that Matê,f̂ Filn−1M̂ is described as follows:

−pn−1

α 0 0 · · · 0 ue−(k
(0)
n−1−k

(0)
0 )

0 E(u)n−2 0 · · · 0 0

0 0 E(u)n−3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · E(u) 0

uk
(0)
n−1−k

(0)
0
∑n−2

i=0 p
n−2−iE(u)i 0 0 · · · 0 α


,

where α ∈ OE with 0 < vp(α) < n− 1.
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Proof. – Note that we write the elements of M̂ in terms of coordinates with respect
to a framed basis ê := (ên−1, ên−2, . . . , ê0). We let M := M̂ ⊗S S, which is a Breuil
module of weight n− 1 and of type

⊕n−1
i=0 ω

k
(0)
i by Proposition 2.4.3. Note also that

M can be described as in Proposition 3.4.3, and we assume thatM has such a framed
basis for M and such a framed system of generators for Filn−1M. During the proof,
we write (Filn−1M̂)ξ for the ξ-isotypical component of Filn−1M̂ for any character
ξ : Gal(K/K0)→ K×, and by abuse of notation we often write f̂i for the image of f̂i

in Filn−1M̂/Filn−1S · M̂ without mentioning.

Since Filn−1S · M̂ ⊂ Filn−1M̂, we may let

f̂0 =



ue−(k
(0)
n−1−k

(0)
0 )∑n−2

k=0 xn−1,kE(u)k

ue−(k
(0)
n−2−k

(0)
0 )∑n−2

k=0 xn−2,kE(u)k

...
ue−(k

(0)
1 −k

(0)
0 )
∑n−2

k=0 x1,kE(u)k∑n−2
k=0 x0,kE(u)k


∈
(
Filn−1M̂

)
ω̃k

(0)
0
,

where xi,j ∈ OE . The vector f̂0 can be written as follows:

f̂0 = ue−(k
(0)
n−1−k

(0)
0 )



∑n−2
k=0 xn−1,kE(u)k

u(k
(0)
n−1−k

(0)
n−2)

∑n−2
k=0 xn−2,kE(u)k

...

u(k
(0)
n−1−k

(0)
1 )∑n−2

k=0 x1,kE(u)k

u(k
(0)
n−1−k

(0)
0 )∑n−2

k=1 x0,k[E(u)k − pk]/ue


︸ ︷︷ ︸

=:ê′n−1

+



0

0
...
0

x0,0 +
∑n−2

k=1 x0,kp
k


.

By (ii) of Lemma 3.5.3, we know that ue−(k
(0)
n−1−k

(0)
0 ) is an elementary divisor

of M/Filn−1M and all other elementary divisors have bigger powers, so that we
may assume vp(xn−1,0) = 0. Since Filn−1M ⊆ ue−(k

(0)
n−1−k

(0)
0 )M, we must have

vp(x0,0) > 0. So ê1 := (ê′n−1, ên−2, . . . , ê0) is a framed basis for M̂ by Nakayama
lemma and we have the following coordinates of f̂0 with respect to ê1:

f̂0 =



ue−(k
(0)
n−1−k

(0)
0 )

0
...
0

α


∈
(
Filn−1M̂

)
ω̃k

(0)
0

for α ∈ OE with vp(α) > 0.
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Since uk
(0)
1 −k

(0)
0 f̂0 ∈

(
Filn−1M̂

)
ω̃k

(0)
1

and Filn−1S · M̂ ⊂ Filn−1M̂, f̂1 can be
written as

f̂1 =



0

ue−(k
(0)
n−2−k

(0)
1 )∑n−2

k=0 yn−2,kE(u)k

...∑n−2
k=0 y1,kE(u)k

uk
(0)
1 −k

(0)
0
∑n−2

k=0 y0,kE(u)k


∈
(
Filn−1M̂

)
ω̃k

(0)
1
,

where yi,j ∈ OE . By Lemma 3.5.1, we have yi,0 = 0 for all i: otherwise, both
uk

(0)
1 −k

(0)
0 f̂0 and f̂1 belong to X(0)

ω̃k
(0)
1

−X(1)

ω̃k
(0)
1

which violates (3.5.2). Since ue is an ele-

mentary divisor ofM/Filn−1M by (ii) of Lemma 3.5.3, we may also assume y1,1 = 1.
Hence, by the obvious change of basis we get f̂1 as follows:

f̂1 = E(u)



0
...
0

1

0


∈
(
Filn−1M̂

)
ω̃k

(0)
1
.

By the same arguments, we get f̂i ∈
(
Filn−1M̂

)
ω̃k

(0)
i

for i = 1, 2, . . . , n− 2 as in the
statement.

Note that the elements in the set

{uk
(0)
n−1−k

(0)
0 f̂0, E(u)uk

(0)
n−1−k

(0)
0 f̂0, . . . , E(u)n−2uk

(0)
n−1−k

(0)
0 f̂0}

∪ {uk
(0)
n−1−k

(0)
1 f̂1, E(u)uk

(0)
n−1−k

(0)
1 f̂1, . . . , E(u)n−3uk

(0)
n−1−k

(0)
1 f̂1}

∪ · · · ∪ {uk
(0)
n−1−k

(0)
n−2 f̂n−2}

are linearly independent in X
(0)

ω̃
k
(0)
n−1

over E, so that the set forms a basis for X(0)

ω̃
k
(0)
n−1

by Lemma 3.5.1. Hence, f̂n−1 is a linear combination of those elements over E. We
have

uk
(0)
n−1−k

(0)
0

(
n−2∑
i=0

pn−2−iE(u)i

)
f̂0 =



−pn−1

0
...
0

αuk
(0)
n−1−k

(0)
0
∑n−2

i=0 p
n−2−iE(u)i


.
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Hence, we may let

f̂n−1 :=
1

α
uk

(0)
n−1−k

(0)
0

(
n−2∑
i=0

pn−2−iE(u)i

)
f̂0 ∈

(
Filn−1M̂

)
ω̃

k
(0)
n−1

since u(n−2)e+(k
(0)
n−1−k

(0)
0 ) is an elementary divisor for M/Filn−1M by (ii) of

Lemma 3.5.3. Moreover, vp

(
pn−1

α

)
> 0 since Filn−1M⊆ ue−(k

(0)
n−1−k

(0)
0 )M⊆ uM by

Proposition 3.4.3.

It is obvious that the f̂i mod (ϖE ,FilpS) generate Filn−1M for M written as in
Proposition 3.3.10, so that they generate Filn−1M/ue(n−1)M. By Nakayama Lemma,
we conclude that the f̂i generate Filn−1M̂/Filn−1S · M̂, which completes the proof.

Corollary 3.5.5. – Keep the notation and assumptions of Proposition 3.5.4, and
let

(λn−1, λn−2, . . . , λ0) ∈ (OE)n

be the Frobenius eigenvalues on the (ω̃k
(0)
n−1 , ω̃k

(0)
n−2 , . . . , ω̃k

(0)
0 )-isotypic component

of D
Qp,n−1
st (ρ). Then

vp(λi) =


vp(α) if i = n− 1

(n− 1)− i if n− 1 > i > 0

(n− 1)− vp(α) if i = 0.

Proof. – The proof goes parallel to the proof of [39], Corollary 2.4.11.

3.6. Reducibility of certain lifts

In this section, we let 1 ≤ f ≤ n and e = pf−1, and we prove that every potentially
semi-stable lift of ρ0 with Hodge-Tate weights {−(n−1),−(n−2), . . . , 0} and certain
prescribed Galois types

⊕n−1
i=0 ω̃

ki

f is reducible. We emphasize that we only assume
that ρ0 is generic (cf. Definition 3.0.3) for the results in this section.

Proposition 3.6.1. – Assume that ρ0 is generic, and let (kn−1, kn−2, . . . , k0) be an
n-tuple of integers. Assume further that k0 ≡ (pf−1 +pf−2 + · · ·+p+1)c0 modulo (e)

and that ki are pairwise distinct modulo (e).
Then every potentially semi-stable lift of ρ0 with Hodge-Tate weights

{−(n− 1),−(n− 2), . . . , 0} and Galois types
⊕n−1

i=0 ω̃
ki

f is an extension of a 1-di-
mensional potentially semi-stable lift of ρ0,0 with Hodge-Tate weight 0 and Galois
type ω̃k0

f by an (n − 1)-dimensional potentially semi-stable lift of ρn−1,1 with Hodge-
Tate weights {−(n− 1),−(n− 2), . . . , 1} and Galois types

⊕n−1
i=1 ω̃

ki

f .
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Note that if f = 1 then the assumption that ρ0 is generic implies that ki are
pairwise distinct modulo (e) by Lemma 3.1.2. In fact, we believe that this is true for
any 1 ≤ f ≤ n, but this requires extra works as we did in Lemma 3.1.2. Since we will
need the results in this section only when f = 1, we will add the assumption that ki

are pairwise distinct modulo (e) in the proposition.

Proof. – Let M̂ ∈ OE-Modn−1
dd be a strongly divisible module corresponding to a

Galois stable lattice in a potentially semi-stable representation ρ : GQp → GLn(E)

with Galois type
⊕n−1

i=0 ω̃
ki

f and Hodge-Tate weights {−(n− 1),−(n− 2), . . . , 0} such
that T

Qp,n−1
st (M̂)⊗OE

F ∼= ρ0. We also letM be the Breuil module corresponding to
the mod p reduction of M̂. M̂ (resp.M) is of inertial type

⊕n−1
i=0 ω̃

ki

f (resp.
⊕n−1

i=0 ω
ki

f )
by Proposition 2.4.3.

We let f = (fn−1, fn−2, . . . , f0) (resp. f̂ = (f̂n−1, f̂n−2, . . . , f̂0)) be a framed system
of generators for Filn−1M (resp. for Filn−1M̂). We also let e = (en−1, en−2, . . . , e0)

(resp. ê = (ên−1, ên−2, . . . , ê0)) be a framed basis for M (resp. for M̂). If
x = an−1en−1 + · · ·+ a0e0 ∈M, we will write [x]ei

for ai for i ∈ {0, 1, . . . , n −
1}. We define [x]êi

for x ∈ M̂ in the obvious similar way. We may assume
that Mate,f (Filn−1M), Mate,f (ϕn−1), and Mate(N) are written as in (3.0.5), (3.0.6),
and (3.0.7) respectively, and we do so.

By the equation (3.0.4), we deduce r0 ≡ 0 modulo (e) from our assumption on k0.
Recall that p > n2 + 2(n− 3) by the generic condition.

Since 0 ≤ r0 ≤ (n − 1)(pf − 1)/(p − 1) by (ii) of Lemma 2.3.5, we conclude
that r0 = 0. Thus, we may let f0 satisfy that [f0]ei

= 0 if 0 < i ≤ n−1 and [f0]e0
= 1,

so that we can also let

f̂0 =


0
...
0

1

 .

Hence, we can also assume that [f̂j ]ê0
= 0 for 0 < j ≤ n− 1.

We let V0 = Matê,f̂ (Filn−1M̂) ∈ M□,′
n (SOE

) and A0 = Matê,f̂ (ϕn−1) ∈ GL□
n (SOE

).

We construct a sequence of framed bases {ê(m)} for M̂ by change of basis, satisfying
that

Mat
ê(m),f̂

(m)(Filn−1M̂) ∈ M□,′
n (SOE

) and Mat
ê(m),f̂

(m)(ϕn−1) ∈ GL□
n (SOE

)

converge to certain desired forms as m goes to ∞. We let V (m) ∈ M□,′
n (SOE

) and
A(m) ∈ GL□

n (SOE
) for a non-negative integer m. We may write

(x
(m+1)
n−1 u[kn−1−k0]f , x

(m+1)
n−2 u[kn−2−k0]f , . . . , x

(1)
m+1u

[km+1−k0]f , x
(m+1)
0 )
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for the last row of (A(m))−1, where x
(m+1)
0 ∈ (S×OE

)0 and x
(m+1)
j ∈ (SOE

)0 for
0 < j ≤ n− 1. We define an n× n-matrix R(m+1) as follows:

R(m+1) =



1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
x
(m+1)
n−1

x
(m+1)
0

u[kn−1−k0]f
x
(m+1)
n−2

x
(m+1)
0

u[kn−2−k0]f · · · x
(m+1)
1

x
(m+1)
0

u[k1−k0]f 1


.

We also define

C(m+1) =



1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

y
(m+1)
n−1 u[p−1(kn−1−k0)]f y

(m+1)
n−2 u[p−1(kn−2−k0)]f · · · y

(m+1)
1 u[p−1(k1−k0)]f 1


by the equation

R(m+1) · V (m) · C(m+1) = V (m)

where y(m+1)
j ∈ (SOE

)0 for 0 < j ≤ n − 1. Note that the existence of such a matrix
C(m+1) is obvious, since p−1k0 ≡ k0 modulo (e) by our assumption on k0 immediately
implies [p−1(kj − k0)]f ≤ [ks − k0]f + [p−1kj − ks]f .

We also note that R(m+1) ∈ GL□
n (SOE

) and C(m+1) ∈ GL□,′′
n (SOE

).

Let V (m+1) = V (m) for all m ≥ 0. Assume that V (m) = Mat
ê(m),f̂

(m)(Filn−1M̂)

and A(m) = Mat
ê(m),f̂

(m)(ϕn−1), with respect to a framed basis ê(m) and a framed

system of generators f̂
(m)

. If we let ê(m+1) = ê(m) · (R(m+1))−1, then

ϕn−1(ê
(m+1)V (m+1)) = ϕn−1(ê

(m)(R(m+1))−1V (m+1))

= ϕn−1(ê
(m)V (m)C(m+1))

= ê(m)A(m)ϕ(C(m+1))

= ê(m+1)R(m+1) ·A(m) · ϕ(C(m+1)).

Hence, we get
V (m+1) = Mat

ê(m+1),f̂
(m+1)(Filn−1M̂)

and
R(m+1) ·A(m) · ϕ(C(m+1)) = Mat

ê(m+1),f̂
(m+1)(ϕn−1),

where f̂
(m+1)

:= ê(m+1)V (m+1).
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We compute the matrix product A(m+1) := R(m+1) · A(m) · ϕ(C(m+1)) as it fol-
lows. If we let A(m) =

(
α

(m)
i,j u

[kj−ki]f
)

0≤i,j≤n−1
for α(m)

i,j ∈ (SOE
)0 if i ̸= j and

α
(m)
i,i ∈ (S×OE

)0, then

(3.6.2) A(m+1) =
(
α

(m+1)
i,j u[kj−ki]f

)
0≤i,j≤n−1

∈ GL□
n (SOE

),

where α(m+1)
i,j u[kj−ki]f is described as follows:

α
(m)
i,j u

[kj−ki]f + α
(m)
i,0 u

[k0−ki]fϕ(y
(m+1)
j )up[p−1(kj−k0)]f if i > 0 and j > 0;

α
(m)
i,0 u

[k0−ki]f if i > 0 and j = 0;
1

x
(m+1)
0

ϕ(y
(m+1)
j )up[p−1(kj−k0)]f if i = 0 and j > 0;

1

x
(m+1)
0

if i = 0 and j = 0.

Let V (0) = V0 and A(0) = A0. We apply the algorithm above to V (0) and A(0). By
the algorithm above, we have two matrices V (m) and A(m) for each m ≥ 0. We claim
that 

α
(m+1)
i,j − α(m)

i,j ∈ u(1+p+···+pm)eSOE
if i > 0 and j > 0;

α
(m+1)
i,j = α

(m)
i,j if i > 0 and j = 0;

α
(m+1)
i,j ∈ u(1+p+···+pm)eSOE

if i = 0 and j > 0;
α

(m+1)
i,j − α(m)

i,j ∈ u(1+p+···+pm−1)eSOE
if i = 0 and j = 0.

It is obvious that the case i > 0 and j = 0 from the computation (3.6.2). For the
case i = 0 and j > 0 we induct on m.

Note that p[p−1(kj − k0)]f − [kj − k0]f = p([p−1kj ]f − k0)− (kj − k0) ≥ e if j > 0.
From the computation (3.6.2) again, it is obvious that it is true for m = 0. Assume
that it holds for m. This implies that x(m+1)

j ∈ u(1+p+···+pm−1)eSOE
for 0 < j ≤ n− 1

and so y(m+1)
j ∈ u(1+p+···+pm−1)eSOE

.

Since ϕ(y
(m+1)
j )up[p−1(kj−k0)]f−[kj−k0]f ) ∈ u(1+p+···+pm)eSOE

, by the computa-
tion (3.6.2) we conclude that the case i = 0 and j > 0 holds. The case i > 0 and
j > 0 follows easily from the case i = 0 and j > 0, since

[p−1(kj − k0)]f + [k0 − ki]f − [kj − ki]f = p([p−1kj ]f − k0) + e+ k0 − ki − [kj − ki]f

≥ p[p−1kj ]f − kj − (p− 1)k0

≥ e.

Finally, we check the case i = 0 and j = 0. We also induct on m for this case. It is
obvious that it holds for m = 0. Note that R(m+1) ≡ In modulo u(1+p+···+pm−1)eSOE

.
Since A(m+1) = R(m+1) ·A(m) · ϕ(C(m+1)), we conclude that the case i = 0 and j = 0

holds.
The previous claim says the limit of A(m) exists (entrywise), say A(∞). By defini-

tion, we have V (∞) = V (m) for all m ≥ 0. In other words, there exist a framed basis
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ê(∞) for M̂ and a framed system of generators f̂
(∞)

for Filn−1M̂ such that

Mat
ê(∞),f̂

(∞)(Filn−1M̂) = V (∞) ∈ M□,′
n (SOE

)

and
Mat

ê(∞),f̂
(∞)(ϕn−1) = A(∞) ∈ GL□

n (SOE
).

Note that (V (∞))i,j = 0 if either i = 0 and j > 0 or i > 0 and j = 0, and
that (A(∞))i,j = 0 if i = 0 and j > 0.

Since ê(∞) is a framed basis for M̂, we may write

Matê(∞)(N) =
(
γi,ju

[kj−ki]f
)

0≤i,j≤n−1
∈ M□

n (SOE
)

for the matrix of the monodromy operator of M̂ where γi,j ∈ (SOE
)0, and let

A(∞) =
(
α

(∞)
i,j u[kj−ki]f

)
0≤i,j≤n−1

∈ GL□
n (SOE

).

We claim that γ0,j = 0 for n − 1 ≥ j > 0. Recall that α(∞)
0,j = 0 for j > 0, and write

f̂
(∞)

= (f̂
(∞)
n−1, f̂

(∞)
n−2, . . . , f̂

(∞)
0 ) and ê(∞) = (ê

(∞)
n−1, ê

(∞)
n−2, . . . , ê

(∞)
0 ). We also write

f̂
(∞)
j =

n−1∑
i=1

β
(∞)
i,j u[p−1kj−ki]ê

(∞)
i

where β(∞)
i,j ∈ (SOE

)0, for each 0 < j ≤ n− 1. From the equation

[cNϕn−1(f̂
(∞)
j )]

ê
(∞)
0

= [ϕn−1(E(u)N(f̂
(∞)
j ))]

ê
(∞)
0

for n− 1 ≥ j > 0, we have the identity

(3.6.3)
n−1∑
i=1

α
(∞)
i,j u[kj−ki]f+[ki−k0]f γ0,i = p

n−1∑
i=1

β
(∞)
i,j up[p−1kj−ki]f +p[ki−k0]fϕ(γ0,i)α

(∞)
0,0

for each n− 1 ≥ j > 0.

Choose an integer s such that ordu(γ0,su
[ks−k0]f ) ≤ ordu(γ0,iu

[ki−k0]f ) for all
n− 1 ≥ i > 0, and consider the identity (3.6.3) for j = s. Then the identity (3.6.3)
induces

α(∞)
s,s u

[ks−k0]f γ0,s ≡ 0

modulo (uordu(γ0,s)+[ks−k0]f+1). Note that α(∞)
s,s ∈ S×OE

, so that we get γ0,s = 0.
Recursively, we conclude that γ0,j = 0 for all 0 < j ≤ n− 1.

Finally, it is now easy to check that (ê
(∞)
n−1, ê

(∞)
n−2, . . . , ê

(∞)
1 ) determines a strongly

divisible modules of rank n− 1, that is a submodule of M̂. This completes the proof.
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Corollary 3.6.4. – Fix a pair of integers (i0, j0) with 0 ≤ j0 ≤ i0 ≤ n− 1. Assume
that ρ0 is generic, and let (kn−1, kn−2, . . . , k0) be an n-tuple of integers. Assume
further that

ki = (pf−1 + pf−2 + · · ·+ p+ 1)ci

for i > i0 and for i < j0 and that the ki are pairwise distinct modulo (e).
Then every potentially semi-stable lift ρ of ρ0 with Hodge-Tate weights

{−(n− 1),−(n− 2), . . . , 0} and Galois types
⊕n−1

i=0 ω̃
ki

f is a successive extension

ρ ∼=



ρn−1,n−1 · · · ∗ ∗ ∗ · · · ∗
. . .

...
...

...
. . .

...
ρi0+1,i0+1 ∗ ∗ · · · ∗

ρi0,j0 ∗ · · · ∗
ρj0−1,j0−1 · · · ∗

. . .
...
ρ0,0


,

where

— ρi,i is a 1-dimensional potentially semi-stable lift of ρi,i with Hodge-Tate
weights −i and Galois type ω̃ki

f for n− 1 ≥ i > i0 and for j0 > i ≥ 0;

— ρi0,j0 is a (i0 − j0 + 1)-dimensional potentially semi-stable lift of ρi0,j0 with
Hodge-Tate weights {−i0,−i0 + 1, . . . ,−j0} and Galois types

⊕i0
i=j0

ω̃ki

f .

Proof. – Proposition 3.6.1 implies this corollary recursively. LetM∈ F-BrModn−1
dd be

a Breuil module corresponding to the mod p reduction of a strongly divisible module
M̂ ∈ OE-Modn−1

dd corresponding to a Galois stable lattice in a potentially semi-
stable representation ρ : GQp

→ GLn(E) with Galois type
⊕n−1

i=0 ω̃
ki

f and Hodge-Tate
weights {−(n−1),−(n−2), . . . , 0} such that T

Qp,n−1
st (M̂)⊗OE

F ∼= ρ0. M̂ (resp.M)
is of inertial type

⊕n−1
i=0 ω̃

ki

f (resp.
⊕n−1

i=0 ω
ki

f ) by Proposition 2.4.3. We may assume
that Mate,f (Filn−1M), Mate,f (ϕn−1), and Mate(N) are written as in (3.0.5), (3.0.6),
and (3.0.7) respectively, and we do so.

By the equation (3.0.4), it is easy to see that ri = (pf−1 + pf−2 + · · · + p + 1)i

for i > i0 and for i < j0, by our assumption on ki. By Proposition 3.6.1, there exists
an (n−1)-dimensional subrepresentation ρ′n−1,1 of ρ whose quotient is ρ0,0 which is a
potentially semi-stable lift of ρ0,0 with Hodge-Tate weight 0 and Galois type ω̃k0

f . Now
consider ρ′n−1,1 ⊗ ε−1. Apply Proposition 3.6.1 to ρ′n−1,1 ⊗ ε−1. Recursively, one can
readily check that ρ has subquotients ρi,i for 0 ≤ i ≤ j0−1. Considering ρ∨⊗εn−1, one
can also readily check that ρ has subquotients ρi,i lifting ρi,i for n−1 ≥ i ≥ i0+1.

The results in Corollary 3.6.4 reduce many of our computations for the main results
on the Galois side.
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3.7. Main results on the Galois side

In this section, we state and prove the main local results on the Galois side, that
connects the Fontaine-Laffaille parameters of ρ0 with the Frobenius eigenvalues of
certain potentially semi-stable lifts of ρ0. Throughout this section, we assume that ρ0 is
Fontaine-Laffaille generic. We also fix f = 1 and e = p− 1.

Fix i0, j0 ∈ Z with 0 ≤ j0 < j0 + 1 < i0 ≤ n− 1, and define the n-tuple of integers

(ri0,j0
n−1 , r

i0,j0
n−2 , . . . , r

i0,j0
0 )

as follows:

(3.7.1) ri0,j0
i :=


i if i0 ̸= i ̸= j0;
j0 + 1 if i = i0;
i0 − 1 if i = j0.

We note that if we replace n by i0 − j0 + 1 in the definition of r(0)i in (3.3.1) then we
have the identities:

(3.7.2) ri0,j0
j0+i = j0 + r

(0)
i

for all 0 ≤ i ≤ i0 − j0. In particular, rn−1,0
i = r

(0)
i for all 0 ≤ i ≤ n− 1.

From the equation ki0,j0
i ≡ ci + i− ri0,j0

i mod (e) (cf. Lemma 3.1.2, (i)), this tuple
immediately determines an n-tuple (ki0,j0

n−1 , k
i0,j0
n−2 , . . . , k

i0,j0
0 ) of integers mod (e),

which will determine the Galois types of our representations. We set

ki0,j0
i := ci + i− ri0,j0

i

for all i ∈ {0, 1, . . . , n− 1}.
The following is the main result on the Galois side.

Theorem 3.7.3. – Let i0, j0 be integers with 0 ≤ j0 < j0 + 1 < i0 ≤ n − 1.
Assume that ρ0 is generic and that ρi0,j0 is Fontaine-Laffaille generic. Let
(λi0,j0

n−1 , λ
i0,j0
n−2 , . . . , λ

i0,j0
0 ) ∈ (OE)n be the Frobenius eigenvalues on the

(ω̃k
i0,j0
n−1 , ω̃k

i0,j0
n−2 , . . . , ω̃k

i0,j0
0 )-isotypic components of D

Qp,n−1
st (ρ0) where ρ0 is a poten-

tially semi-stable lift of ρ0 with Hodge-Tate weights {−(n − 1),−(n − 2), . . . ,−1, 0}
and Galois types

⊕n−1
i=0 ω̃

k
i0,j0
i .

Then the Fontaine-Laffaille parameter FLi0,j0
n associated to ρ0 is computed as fol-

lows:

FLi0,j0
n (ρ0) =

(
p[(n−1)− i0+j0

2 ](i0−j0−1)∏i0−1
i=j0+1 λ

i0,j0
i

)
∈ P1(F).

We first prove Theorem 3.7.3 for the case (i0, j0) = (n − 1, 0) in the following
proposition, which is the key step to prove Theorem 3.7.3.

Proposition 3.7.4. – Keep the assumptions and notation of Theorem 3.7.3, and
assume further (i0, j0) = (n− 1, 0). Then Theorem 3.7.3 holds.
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Recall that (kn−1,0
n−1 , . . . , kn−1,0

0 ) in Proposition 3.7.4 is the same as (k
(0)
n−1, . . . , k

(0)
0 )

in (3.3.1). To lighten the notation, we let ki = kn−1,0
i and λi = λn−1,0

i during the
proof of Proposition 3.7.4. We heavily use the results in Sections 3.3, 3.4 and 3.5 to
prove this proposition.

Proof. – Let M̂ ∈ OE-Modn−1
dd be a strongly divisible module corresponding to a

Galois stable lattice in a potentially semi-stable representation ρ0 : GQp
→ GLn(E)

with Galois type
⊕n−1

i=0 ω̃
ki and Hodge-Tate weights {−(n− 1),−(n− 2), . . . , 0} such

that T
Qp,n−1
st (M̂)⊗OE

F ∼= ρ0. We also letM be the Breuil module corresponding to
the mod p reduction of M̂. M̂ (resp.M) is of inertial type

⊕n−1
i=0 ω̃

ki (resp.
⊕n−1

i=0 ω
ki)

by Proposition 2.4.3.
We let f̂ = (f̂n−1, f̂n−2, . . . , f̂1, f̂0) be a framed system of generators for Filn−1M̂,

and ê = (ên−1, ên−2, . . . , ê1, ê0) be a framed basis for M̂. We may assume
that Matê,f̂ (Filn−1M̂) is described as in Proposition 3.5.4, and we do so.

Define αi ∈ F× by the condition ϕn−1(f̂i) ≡ α̃iêi modulo (ϖE , u) for all
i ∈ {0, 1, . . . , n − 1}. There exists a framed basis e = (en−1, en−2, . . . , e0) for M
and a framed system of generators f = (fn−1, fn−2, . . . , f0) for Filn−1M such
that Mate,f (Filn−1M) is given as in Proposition 3.4.3 and

Mate,f (ϕn−1) =
(
αi,ju

[kj−ki]1
)
∈ GL□

n (S)

for some αi,j ∈ S0 with αi,i ≡ αi mod (ue).
Recall that f̂i = E(u)iêi for i ∈ {1, 2, . . . , n − 2} by Proposition 3.5.4. Write

ϕn−1(f̂j) =
∑n−1

i=0 α̂i,ju
[kj−ki]1 êi for some α̂i,j ∈ S0. Then we get

s0(α̂i,i) ≡
piλi

pn−1
(mod ϖE)

for i ∈ {1, 2, . . . , n − 2} since ϕn−1 = 1
pn−1ϕ for the Frobenius ϕ on D

Qp,n−1
st (ρ0), so

that we have
n−2∏
i=1

α̃i ≡
n−2∏
i=1

λi

pn−1−i
(mod ϖE).

(Note that λi

pn−1−i ∈ O×E by Corollary 3.5.5.) This completes the proof, by applying
the results in Proposition 3.4.3.

We now prove Theorem 3.7.3, which is the main result on the Galois side.

Proof of Theorem 3.7.3. – Recall from the identities in (3.7.2) that

(ri0,j0
i0

, ri0,j0
i0−1, . . . , r

i0,j0
j0

) = j0 + (1, n′ − 2, n′ − 3, . . . , 1, n′ − 2)

where n′ := i0−j0+1. Recall also that ρ0 has a subquotient ρi0,j0 that is a potentially
semi-stable lift of ρi0,j0 with Hodge-Tate weights {−i0,−(i0 − 1), . . . ,−j0} and of
Galois type

⊕i0
i=j0

ki0,j0
i , by Corollary 3.6.4.
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It is immediate that ρ′i0,j0
:= ρi0,j0ε

−j0 ω̃j0 is another potentially semi-stable
lift of ρi0,j0 with Hodge-Tate weights {−(i0 − j0),−(i0 − j0 − 1), . . . , 0} and of
Galois type

⊕i0
i=j0

ω̃k
i0,j0
i +j0 . We let (ηi0 , ηi0−1, . . . , ηj0) ∈ (OE)i0−j0+1 (resp.

(δi0 , δi0−1, . . . , δj0) ∈ (OE)i0−j0+1) be the Frobenius eigenvalues on the

(ω̃k
i0,j0
i0 , ω̃k

i0,j0
i0−1 , . . . , ω̃k

i0,j0
j0 )-isotypic component of D

Qp,i0−j0
st (ρi0,j0) (resp. on the

(ω̃k
i0,j0
i0

+j0 , ω̃k
i0,j0
i0−1+j0 , . . . , ω̃k

i0,j0
j0

+j0)-isotypic component of D
Qp,i0−j0
st (ρ′i0,j0

)). Then
we have

p−j0δi = ηi

for all i ∈ {j0, j0 + 1, . . . , i0} and, by Proposition 3.7.4,

FLi0−j0,0
i0−j0+1(ρi0,j0) =

 i0−1∏
i=j0+1

δi

 : p
(i0−j0)(i0−j0−1)

2

 ∈ P1(F).

But we also have that

pn−1−(i0−j0)ηi = λi0,j0
i

for all i ∈ {j0, j0 + 1, . . . , i0} by Corollary 3.6.4. Hence, we have δi = p−(n−1−i0)λi0,j0
i

for all i ∈ {j0, j0 + 1, . . . , i0} and we conclude that

FLi0,j0
n (ρ0) = FLi0−j0,0

i0−j0+1(ρi0,j0) =

 i0−1∏
i=j0+1

λi0,j0
i

 : p[(n−1)− i0+j0
2 ](i0−j0−1)

 ∈ P1(F).

(Note that FLi0,j0
n (ρ0) = FLi0−j0,0

i0−j0+1(ρi0,j0) by Lemma 3.2.6.)

In the following corollary, we prove that the Weil-Deligne representation WD(ρ0)

associated to ρ0 still contains Fontaine-Laffaille parameters. As we will see later, we
will transport this information to the automorphic side via local Langlands correspon-
dence.

Corollary 3.7.5. – Keep the assumptions and notation of Theorem 3.7.3.

Then ρ0 is, in fact, potentially crystalline and

WD(ρ0)
F−ss = WD(ρ0) ∼=

n−1⊕
i=0

Ωi

where Ωi : Q×
p → E× is defined by Ωi := U

λ
i0,j0
i /pn−1 · ω̃k

i0,j0
i for all i ∈ {0, 1, . . . , n− 1}.

Moreover,

FLi0,j0
n (ρ0) =

(∏i0−1
i=j0+1 Ω−1

i (p)

p
(i0+j0)(i0−j0−1)

2

)
∈ P1(F).
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Proof. – Notice that ϕ is diagonal on D := D
Qp

st (ρ0) with respect to a framed
basis e := (en−1, . . . , e0) (which satisfies gei = ω̃k

i0,j0
i (g)ei for all i and for all

g ∈ Gal(K/Qp)) since ω̃k
i0,j0
i are all distinct. Hence, we have WD(ρ0) = WD(ρ0)

F−ss.
Similarly, since the descent data action on D commutes with the monodromy opera-
tor N , it is immediate that N = 0.

From the definition of WD(ρ0) (cf. [21]), the action of WQp on D can be described
as follows: let α(g) ∈ Z be determined by ḡ = ϕα(g), where ϕ is the arithmetic
Frobenius in GFp

and ḡ is the image under the surjection WQp
↠ Gal(K/Qp). Then

WD(ρ0)(g) · ei =

(
λi0,j0

i

pn−1

)−α(g)

· ω̃k
i0,j0
i (g) · ei

for all i ∈ {0, 1, . . . , n − 1}. (Recall that D
Qp,n−1
st (ρ0) = D

Qp

st (ρ0 ⊗ ε−(n−1)), so that

the λ
i0,j0
i

pn−1 are the Frobenius eigenvalues of the Frobenius on D.) Write Ωi for the
eigen-character with respect to ei.

Recall that we identify the geometric Frobenius with the uniformizers in Q×
p (by

our normalization of class field theory), so that Ωi(p) = pn−1

λ
i0,j0
i

which completes the
proof by applying Theorem 3.7.3.
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CHAPTER 4

LOCAL AUTOMORPHIC SIDE

In this chapter, we establish several results concerning representation theory
of GLn, that will be applied to the proof of our main results on mod p local-global
compatibility, Theorem 5.6.3. The main results in this chapter are the non-vanishing
result, Corollary 4.8.3, as well as the intertwining identity in characteristic 0,
Theorem 4.4.23.

We start this chapter by fixing some notation. Let G := GLn/Zp
and T be the maxi-

mal split torus consisting of diagonal matrices. We fix a Borel subgroup B ⊆ G consist-
ing of upper-triangular matrices, and let U ⊆ B be the maximal unipotent subgroup.
Let Φ+ denote the set of positive roots with respect to (B, T ), and ∆ = {αk}1≤k≤n−1

the subset of simple positive roots. Let X(T ) and X∨(T ) denote the abelian group
of characters and cocharacters respectively. We often say a weight for an element
in X(T ), and write X(T )+ for the set of dominant weights. The set Φ+ induces a
partial order on X(T ): for λ, µ ∈ X(T ) we say that λ ≤ µ if µ − λ ∈

∑
α∈Φ+ Z≥0α.

We will also write λ < µ if λ ≤ µ and λ ̸= µ.
We use the n-tuple of integers λ = (d1, d2, . . . , dn) to denote the character asso-

ciated to the weight
∑n

k=1 dkϵk of T where for each 1 ≤ i ≤ n ϵi is a weight of T
defined by

diag(x1, x2, . . . , xn)
ϵi7→ xi.

We will often use the following weight

η := (n− 1, n− 2, . . . , 1, 0).

We let G, B, . . . be the base change to Fp of G, B, . . . respectively. The Weyl
group of G, denoted by W , has a standard lifting inside G as the group of permutation
matrix, likewise with G. We denote the longest Weyl element by w0 which is lifted
to the antidiagonal permutation matrix in G or G. We use the notation si for the
simple reflection corresponding to αi = ϵi − ϵi+1 for 1 ≤ i ≤ n − 1. We define the
length ℓ(w) of w ∈ W to be its minimal length of decomposition into product of si

for 1 ≤ i ≤ n − 1. Given A ∈ U(Fp), we use Aα or equivalently Ai,j to denote the
(i, j)-entry of A, where α = ϵi− ϵj is the positive root corresponding to the pair (i, j)

with 1 ≤ i < j ≤ n.
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Given a representation π of G(Fp), we use the notation πµ for the T (Fp)-eigenspace
with the eigencharacter µ. Given an algebraic representation V of G or G, we use the
notation Vλ for the weight space of V associated to the weight λ. For any representa-
tion V of G or G(Fp) with coefficient in Fp, we define

VF := V ⊗Fp F

to be the extension of coefficient of V from Fp to F.
Similarly, we write VFp

for V ⊗Fp
Fp.

It is easy to observe that we can identify the character group of T (Fp) with
X(T )/(p−1)X(T ). The natural action of the Weyl group W on T and thus on T (Fp)

induces an action of W on the character group X(T ) and X(T )/(p − 1)X(T ). We
carefully distinguish the notation between them. We use the notation wλ (resp. µw)
for the action of W on X(T ) (resp. X(T )/(p− 1)X(T )) satisfying

wλ(x) = λ(w−1xw) for all x ∈ T

and

µw(x) = µ(w−1xw) for all x ∈ T (Fp).

As a result, without further comments, the notation wλ is a weight but µw is just a
character of T (Fp). There is another dot action of W on X(T ) defined by

w · λ = w(λ+ η)− η for all λ ∈ X(T ) and w ∈W.

The affine Weyl group W̃ of G is defined as the semi-direct product of W and X(T )

with respect to the natural action of W on X(T ). We denote the image of λ ∈ X(T )

in W̃ by tλ. Then the dot action of W on X(T ) extends to the dot action of W̃
on X(T ) through the following formula

w̃ · λ = w · (λ+ pµ)

if w̃ = wtµ. We use the notation λ ↑ µ for λ, µ ∈ X(T ) if λ ≤ µ and λ ∈ W̃ · µ. We
define a specific element of W̃ by

w̃h := w0t−η

following Section 4 of [48].
We usually write K for GLn(Zp) for brevity. We will also often use the following

three open compact subgroups of GLn(Zp): if we let red : GLn(Zp) ↠ GLn(Fp) be
the natural mod p reduction map, then

K(1) := Ker(red) ⊂ I(1) := red−1(U(Fp)) ⊂ I := red−1(B(Fp)) ⊂ K.

For each α ∈ Φ+, there exists a subgroup Uα of G such that xuα(t)x−1 = uα(α(x)t)

where x ∈ T and uα : Ga → Uα is an isomorphism sending 1 to 1 in the entry
corresponding to α. For each α ∈ Φ+, we have the following equalities by [43] II 1.19
(5) and (6):

(4.0.1) uα(t) =
∑
m≥0

tm(Xalg
α,m),
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where Xalg
α,m is an element in the algebra of distributions on G supported at the origin

1 ∈ G. The equation (4.0.1) is actually just the Taylor expansion with respect to t of
the operation uα(t) at the origin 1. We use the same notation Xalg

α,m if G is replaced
by G.

We define the set of p-restricted weights as

X1(T ) := {λ ∈ X(T ) | 0 ≤ ⟨λ, α∨⟩ ≤ p− 1 for all α ∈ ∆}

and the set of central weights as

X0(T ) := {λ ∈ X(T ) | ⟨λ, α∨⟩ = 0 for all α ∈ ∆}.

We also define the set of p-regular weights as

Xreg
1 (T ) := {λ ∈ X(T ) | 1 ≤ ⟨λ, α∨⟩ ≤ p− 2 for all α ∈ ∆},

and in particular we have Xreg
1 (T ) ⊊ X1(T ). We say that λ ∈ X(T ) lies in the lowest

p-restricted alcove if

(4.0.2) 0 < ⟨λ+ η, α∨⟩ < p for all α ∈ Φ+.

We define a subset W̃+ of W̃ as

W̃+ := {w̃ ∈ W̃ | w̃ · λ ∈ X(T )+ for each λ in the lowest p-restricted alcove}.

We define another subset W̃ res of W̃ as
(4.0.3)

W̃ res := {w̃ ∈ W̃ | w̃ · λ ∈ X1(T ) for each λ in the lowest p-restricted alcove}.

In particular, we have the inclusion

W̃ res ⊆ W̃+.

For any weight λ ∈ X(T ), we let

H0(λ) :=
(
IndG

B
w0λ

)alg

/Fp

be the associated dual Weyl module. Note by [43], Proposition II 2.6 that H0(λ) ̸= 0

if and only if λ ∈ X(T )+. Assume that λ ∈ X(T )+, we write F (λ) := socG(H0(λ)) for
its irreducible socle as an algebraic representation (cf. [43] part II, Section 2). When
λ is running through X1(T ), the F (λ) exhaust all the irreducible representations
of G(Fp). On the other hand, two weights λ, λ′ ∈ X1(T ) satisfies

F (λ) ∼= F (λ′)

as G(Fp)-representation if and only if

λ− λ′ ∈ (p− 1)X0(T ).

If λ ∈ Xreg
1 (T ), then the structure of F (λ) as a G(Fp)-representation depends only

on the image of λ in X(T )/(p− 1)X(T ), namely as a character of T (Fp). Conversely,
given a character µ of T (Fp) which lies in the image of

Xreg
1 (T )→ X(T )/(p− 1)X(T ),
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its inverse image inXreg
1 (T ) is uniquely determined up to a translation of (p−1)X0(T ).

In this case, we say that µ is p-regular. Whenever it is necessary for us to lift an element
in X(T )/(p− 1)X(T ) back into X1(T ) (or maybe Xreg

1 (T )), we will clarify the choice
of the lift.

Consider the standard Bruhat decomposition

G =
⊔

w∈W

BwB =
⊔

w∈W

UwwB =
⊔

w∈W

BwUw−1 ,

where Uw is the unique subgroup of U satisfying BwB = UwwB as schemes over Zp.
The group Uw has a unique form of

∏
α∈Φ+

w
Uα for the subset Φ+

w of Φ+ defined
by Φ+

w = {α ∈ Φ+, w(α) ∈ −Φ+}. (If w = 1, we understand
∏

α∈Φ+
w
Uα to be the

trivial group 1.) We also have the following Bruhat decomposition:
(4.0.4)

G(Fp) =
⊔

w∈W

B(Fp)wB(Fp) =
⊔

w∈W

Uw(Fp)wB(Fp) =
⊔

w∈W

B(Fp)wUw−1(Fp).

Given any integer x, recall that we use the notation [x]1 to denote the only integer
satisfying 0 ≤ [x]1 ≤ p−2 and [x]1 ≡ xmod (p−1). Given two non-negative integersm
and k with m ≥ k, we use the notation cm,k for the binomial number m!

(m−k)!k! . We use
the notation • for composition of maps and, in particular, composition of elements in
the group algebra Fp[G(Fp)].

4.1. Jacobi sums in characteristic p

In this section we establish several fundamental properties of Jacobi sum operators
on mod p principal series representations.

Definition 4.1.1. – A weight λ ∈ X(T ) is called k-generic for k ∈ Z>0 if for
each α ∈ Φ+ there exists mα ∈ Z such that

mαp+ k < ⟨λ, α∨⟩ < (mα + 1)p− k.

In particular, the n-tuple of integers (an−1, . . . , a1, a0) is called k-generic in the lowest
alcove if

ai − ai−1 > k ∀ 1 ≤ i ≤ n− 1 and an−1 − a0 < p− k.

Note that (an−1, . . . , a0)−η lies the lowest p-restricted alcove in the sense of (4.0.2)
if (an−1, . . . , a0) is k-generic in the lowest alcove for some k > 0. Note also that the
existence of an n-tuple of integers satisfying k-generic in the lowest alcove implies
p > n(k + 1)− 1.

We use the notation π for a principal series representation:

π := Ind
G(Fp)

B(Fp)µπ = {f : G(Fp)→ Fp | f(bg) = µπ(b)f(g) ∀(b, g) ∈ B(Fp)×G(Fp)}
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where µπ is a mod p character of T (Fp). The action of GLn(Fp) on π is given by
(g · f)(g′) = f(g′g). We will assume throughout this article that µπ is p-regular. By
definition we have

cosocG(Fp)(π) = F (µπ) and socG(Fp)(π) = F (µw0
π ).

By Bruhat decomposition we can deduce that

dimFp
πU(Fp),µw

π = 1

for each w ∈ W . We denote by vπ a non-zero fixed vector in πU(Fp),µπ . We also
consider the natural lift π̃◦ of π defined as
(4.1.2)
π̃◦ := Ind

G(Fp)

B(Fp)µ̃π = {f : G(Fp)→ Zp | f(bg) = µ̃π(b)f(g) ∀(b, g) ∈ B(Fp)×G(Fp)}

where µ̃π is the Teichmüller lift of µπ.
Given w ∈ W with w ̸= 1 and k = (kα)α∈Φ+

w
∈ {0, 1, . . . , p− 1}|Φ+

w|, we define the
Jacobi sum operators

Sk,w :=
∑

A∈Uw(Fp)

 ∏
α∈Φ+

w

Akα
α

A · w ∈ Fp[G(Fp)].

These Jacobi sum operators play a main role on the local automorphic side as a crucial
computation tool. These operators already appeared in [15] for example.

For each α ∈ Φ+ and each integer m satisfying 0 ≤ m ≤ p − 2, we define the
operator

(4.1.3) Xα,m :=
∑
t∈Fp

tp−1−muα(t) ∈ Fp[U(Fp)] ⊆ Fp[G(Fp)].

The transition matrix between {uα(t) | t ∈ F×p } and {Xα,m | 0 ≤ m ≤ p − 2} is a
Vandermonde matrix (

tk
)
t∈F×p ,1≤k≤p−1

which has a non-zero determinant. Hence, we also have a converse formula

(4.1.4) uα(t) = −
p−2∑
m=0

tmXα,m for all t ∈ Fp.

By the equation (4.0.1), we note that we have the equality

(4.1.5) Xα,m = −
∑
k≥0

Xalg
α,m+(p−1)k.

Lemma 4.1.6. – Fix w ∈ W and α0 = (i0, j0) ∈ Φ+
w. Given a tuple of integers

k = (ki,j) ∈ {0, 1, . . . , p− 1}|Φ+
w| satisfying

(4.1.7) ki0,j = 0 for all (i0, j) ∈ Φ+
w with j ≥ j0 + 1,
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we have

Xα0,m • Sk,w =

{
(−1)m+1ckα0

,mSk′,w if m ≤ kα0

0 if m > kα0
,

where k′ = (k′α)α∈Φw
satisfies

k′α =

{
kα0 −m if α = α0;
kα otherwise.

Proof. – We prove this lemma by direct computation.

Xα,m • Sk,w =
∑
t∈Fp

tp−1−m

 ∑
A∈Uw(Fp)

 ∏
α∈Φ+

w

Akα
α

uα0
(t)Aw


(4.1.8)

=
∑
t∈Fp

tp−1−m

 ∑
A∈Uw(Fp)

 ∏
α∈Φ+

w,α ̸=α0

Akα
α

 (Aα0
− t)kα0Aw


=

∑
A∈Uw(Fp)

 ∏
α∈Φ+

w,α̸=α0

Akα
α

∑
t∈Fp

tp−1−m(Aα0 − t)kα0

Aw,

where the second equality follows from the change of variable A ↔ uα0
(t)A and the

assumption (4.1.7).

Notice that

∑
t∈Fp

tp−1−m(Aα0
− t)kα0 =

∑
t∈Fp

tp−1−m

kα0∑
j=0

(−1)jckα0
,jA

kα0−j

kα0
tj


=

kα0∑
j=0

(−1)jckα0 ,jA
kα0

−j

kα0

∑
t∈Fp

tp−1−m+j

 ,

which can be easily seen to be

(4.1.9)

{
(−1)m+1ckα0

,mA
kα0−m

kα0
if m ≤ kα0

0 if m > kα0 .

The last computation (4.1.9) follows from the fact that∑
t∈Fp

tℓ =

{
0 if p− 1 ∤ ℓ;
−1 if p− 1 | ℓ and ℓ ̸= 0.

Applying (4.1.9) back to (4.1.8) gives us the result.
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Lemma 4.1.10. – Fix w ∈ W and α0 = (i0, j0) ∈ Φ+
w. Given a tuple of integers

k = (ki,j) ∈ {0, 1, . . . , p− 1}|Φ+
w| satisfying

ki0,j = 0 for all (i0, j) ∈ Φ+
w with j ≥ j0,

we have
uα0

(t) • Sk,w = Sk,w.

Proof. – By Lemma 4.1.6 we deduce that

Xα0,m • Sk,w =

{
−Sk,w if m = 0

0 if 1 ≤ m ≤ p− 2.

Therefore we conclude this lemma from (4.1.4).

By the definition of principal series representations, we have the decomposition

(4.1.11) π =
⊕

w∈W

πw

where πw ⊂ π|B(Fp)
consists of the functions supported on a non-empty subset of the

Bruhat cell
B(Fp)w

−1B(Fp) = B(Fp)w
−1Uw(Fp).

Proposition 4.1.12. – Fix a non-zero vector vπ ∈ πU(Fp),µπ . For each w ∈W with
w ̸= 1, the set

(4.1.13)
{
Sk,wvπ | k = (kα)α∈Φ+

w
∈ {0, 1, . . . , p− 1}|Φ

+
w|
}

forms a T (Fp)-eigenbasis of πw.

Proof. – We have a decomposition πw =
⊕

A∈Uw(Fp) πw,A where πw,A is the subspace
of πw consisting of functions supported on B(Fp)w

−1A−1. It is easy to observe by the
definition of parabolic induction that dimFp

πw,A = 1 and πw,A is generated by Awvπ.

We claim that, for a fixed w ∈ W , the set of vectors (4.1.13) can be linearly
represented by the set of vectors {Awvπ, A ∈ Uw(Fp)} through the matrix

(
mk,A

)
where

k = (kα)α∈Φ+
w
∈ {0, 1, . . . , p− 1}|Φ

+
w|, A ∈ Uw(Fp)

and mk,A :=
∏

α∈Φ+
w
Akα

α . Note that this matrix is the |Φ+
w |-times tensor of the Van-

dermonde matrix (
λk
)
λ∈Fp,0≤k≤p−1

,

and therefore has a non-zero determinant. As a result, the matrix
(
mk,A

)
is invertible

and {Sk,wvπ | 0 ≤ kα ≤ p− 1 ∀α ∈ Φ+
w} forms a basis of πw.
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The fact that this is a T (Fp)-eigenbasis is immediate by the following calculation:
if we let x = diag(x1, x2, . . . , xn)

x • Sk,wvπ = x •

 ∑
A∈Uw(Fp)

 ∏
α∈Φ+

w

Akα
α

A w

 vπ

=

 ∑
A∈Uw(Fp)

 ∏
(i,j)∈Φ+

w

A
ki,j

i,j

xAx−1 w

 (
w−1xw

)
vπ

=

 ∑
B=xAx−1∈Uw(Fp)

 ∏
(i,j)∈Φ+

w

(Bi,jxjx
−1
i )ki,j

B w

 (
w−1xw

)
vπ

= µπ(w−1xw)

 ∏
(i,j)∈Φ+

w

(xjx
−1
i )ki,j

 ∑
A∈Uw(Fp)

∏
α∈Φ+

w

Akα
α A w

 vπ

= (µw
π λ)(x)Sk,wvπ,

where λ(x) =
∏

1≤i<j≤n(xjx
−1
i )ki,j and Bi,j = Ai,jxix

−1
j for 1 ≤ i < j ≤ n.

We can further describe the action of T (Fp) on Sk,wvπ. By ⌊y⌋ for y ∈ R we mean
the floor function of y, i.e., the biggest integer less than or equal to y.

Lemma 4.1.14. – Let µπ = (d1, d2, . . . , dn−1, dn). If we write (ℓ1, ℓ2 · · · , ℓn−1, ℓn) for
the T (Fp)-eigencharacter of Sk,wvπ, then we have

ℓr ≡ dw−1(r) +
∑

1≤i<r

ki,r −
∑

r<j≤n

kr,j (mod p− 1)

for all 1 ≤ r ≤ n, where ki,j = kα if α ∈ Φ+
w and (i, j) corresponds to α, and ki,j = 0

otherwise.
In particular,

(i) if kα = 0 for any α ∈ Φ+
w \∆, then for all 1 ≤ r ≤ n

ℓr ≡ dw−1(r) + (1− ⌊1/r⌋)kr−1,r − (1− ⌊1/(n+ 1− r)⌋)kr,r+1 (mod p− 1);

(ii) if w = w0 and ki,j = 0 for any 2 ≤ i < j ≤ n, then

ℓr ≡

{
dn −

∑n
j=2 k1,j (mod p− 1) if r = 1;

dn+1−r + k1,r (mod p− 1) if 2 ≤ r ≤ n.

Proof. – The first part of the lemma is a direct calculation as shown at the end of the
proof of Proposition 4.1.12. The second part follows trivially from the first part.

Given any w ∈W , we write S0,w for Sk,w with kα = 0 for all α ∈ Φ+
w .

Lemma 4.1.15. – We have

Fp[S0,wvπ] = πU(Fp),µw
π .
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Proof. – Pick an arbitrary positive root α. If α ∈ Φ+
w , then we have (since

uα(t) ∈ Uw(Fp))

uα(t)

 ∑
A∈Uw(Fp)

A

 =

 ∑
A∈Uw(Fp)

A


and therefore uα(t)S0,wvπ = S0,wvπ for any t ∈ Fp. On the other hand, if α /∈ Φ+

w ,
then

uα(t)

 ∑
A∈Uw(Fp)

A

 =

 ∑
A∈Uw(Fp)

A

u′α(t)

and
u′α(t)wvπ = wu′′α(t)vπ = wvπ,

where u′α(t) ∈
∏

α/∈Φ+
w
Uα(Fp) and u′′α(t) ∈ U(Fp) are elements depending on x, w

and α. Hence, uα(t)S0,wvπ = S0,wvπ for any t ∈ Fp and any α ∈ Φ+. So we conclude
that S0,wvπ is U(Fp)-invariant as {uα(t)}α∈Φ+,t∈Fp

generate U(Fp).

Finally, we check that x · S0,wvπ = µw
π (x)S0,wvπ for x ∈ T (Fp). But this is imme-

diate from the following two easy computations:

x •

 ∑
A∈Uw(Fp)

A

 =

 ∑
A∈Uw(Fp)

A

 • x ∈ Fp[G(Fp)]

and
xwvπ = w

(
w−1xw

)
vπ = wµπ(w−1xw)vπ = µw

π (x)wvπ.

This completes the proof.

Note that Proposition 4.1.12, Lemma 4.1.14, and Lemma 4.1.15 are very elementary
and have essentially appeared in [15]. In this article, we formulate them and give quick
proofs of them for the convenience.

Definition 4.1.16. – Given α, α′ ∈ Φ+, we say that α is strongly smaller than α′

with the notation
α ≺̃α′

if there exist 1 ≤ i ≤ j ≤ k ≤ n− 1 such that

α =

j∑
r=i

αr and α′ =
k∑

r=i

αr.

A subset Φ′ of Φ+ is said to be good if it satisfies the following:

(i) if α, α′ ∈ Φ′ and α+ α′ ∈ Φ+, then α+ α′ ∈ Φ′;

(ii) if α ∈ Φ′ and α ≺̃α′, then α′ ∈ Φ′.
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We associate a subgroup of U to Φ′ by

(4.1.17) UΦ′ := ⟨Uα | α ∈ Φ′⟩

and denote its reduction mod p by UΦ′ . We define U1 to be the subgroup scheme of U
generated by Uαr

for 2 ≤ r ≤ n− 1, and denote its reduction mod p by U1.

Example 4.1.18. – The following are two examples of good subsets of Φ+, that will
be important for us:{

j∑
r=i

αr | 1 ≤ i < j ≤ n− 1

}
and

{
j∑

r=i

αr | 2 ≤ i ≤ j ≤ n− 1

}
.

The subgroups of U associated with the two good subsets via (4.1.17) are [U,U ] and
U1 respectively.

We recall that we have defined πw ⊊ π in (4.1.11) for each w ∈W .

Proposition 4.1.19. – Let Φ′ ⊆ Φ+ be good. Pick an element w ∈ W with w ̸= 1.
The following set of vectors

(4.1.20)
{
Sk,wvπ | k = (kα)α∈Φ+

w
∈ {0, 1, . . . , p− 1}|Φ

+
w| with kα = 0 ∀α ∈ Φ′ ∩ Φ+

w

}
forms a basis of the subspace πUΦ′ (Fp)

w of πw.

Proof. – By Proposition 4.1.12, the set of vectors (4.1.13) forms a T (Fp)-eigenbasis
of πw. Hence we fix a UΦ′(Fp)-invariant vector v in πw and can write it as a unique
linear combination of vectors of the form Sk,wvπ, namely

v =
∑

k∈{0,...,p−1}|Φ+
w|

Ck,wSk,wvπ for some Ck,w ∈ Fp.

We define

Supp(v)α := {k = (kα)α∈Φ+
w
| Ck,w ̸= 0 and kα > 0}

for each α ∈ Φ+
w , and then consider

Φ′w,v,>0 := {α ∈ Φ′ ∩ Φ+
w | Supp(v)α ̸= ∅}.

We have a natural partial order on Φ′w,v,>0 induced from the partial order ≺̃ on Φ+.
Assume that

(4.1.21) Φ′w,v,>0 ̸= ∅

which means that Supp(v)α ̸= ∅ for some α ∈ Φ′ ∩ Φ+
w , and thus we can choose one

maximal element α0 ∈ Φ′w,v,>0 with respect to the order ≺̃. We may write v as

(4.1.22) v =
∑

k∈{0,...,p−1}|Φ
+
w|

kα0=0

Ck,wSk,wvπ +
∑

k∈{0,...,p−1}|Φ
+
w|

kα0>0

Ck,wSk,wvπ.
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By the maximality assumption on α0 we know that if Ck,w ̸= 0 and α0 ≺̃α, then
kα = 0. As a result, we deduce from Lemma 4.1.10 that

(4.1.23) uα0
(t)

∑
k∈{0,...,p−1}|Φ

+
w|

kα0=0

Ck,wSk,wvπ =
∑

k∈{0,...,p−1}|Φ
+
w|

kα0=0

Ck,wSk,wvπ

for all t ∈ Fp.

We define

Φα0,+
w := {α ∈ Φ+

w | α0 ≺̃α} and Φα0,−
w := Φ+

w \ Φα0,+
w ,

and we use the notation

ℓ := (ℓα)
α∈Φ

α0,−
w
∈ {0, . . . , p− 1}|Φ

α0,−
w |

for a tuple of integers indexed by Φα0,−
w . Given a tuple ℓ, we can define

Λ(ℓ, α0) :=

k = (kα)α∈Φ+
w
∈ {0, . . . , p− 1}|Φ

+
w|

∣∣∣∣∣∣∣
· kα = 0 if α ∈ Φα0,+

w \ {α0};
· kα > 0 if α = α0;
· kα = ℓα if α ∈ Φα0,−

w

 .

Now we can define a polynomial

f(ℓ,α0)(x) =
∑

k∈Λ(ℓ,α0)

Ck,wx
kα0 ∈ Fp[x]

for each tuple of integers ℓ. By the maximality assumption on α0 and the notation
introduced above, we have

∑
k∈{0,...,p−1}|Φ

+
w|

kα0>0

Ck,wSk,wvπ =
∑

ℓ∈{0,...,p−1}|Φ
α0,−
w |

 ∑
A∈Uw(Fp)

 ∏
α∈Φ

α0,−
w

Aℓα
α

 f(ℓ,α0)(Aα0)A

wvπ.

By the assumption on v we know that uα0
(t)v = v for all t ∈ Fp. Using (4.1.23) and

(4.1.22) we have

uα0
(t)

∑
k∈{0,...,p−1}|Φ

+
w|

kα0>0

Ck,wSk,wvπ =
∑

k∈{0,...,p−1}|Φ
+
w|

kα0>0

Ck,wSk,wvπ
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and so∑
ℓ∈{0,...,p−1}|Φ

α0,−
w |

 ∑
A∈Uw(Fp)

 ∏
α∈Φ

α0,−
w

Aℓα
α

 f(ℓ,α0)(Aα0
)A

wvπ

= uα0
(t)

∑
ℓ∈{0,...,p−1}|Φ

α0,−
w |

 ∑
A∈Uw(Fp)

 ∏
α∈Φ

α0,−
w

Aℓα
α

 f(ℓ,α0)(Aα0
)A

wvπ

=
∑

ℓ∈{0,...,p−1}|Φ
α0,−
w |

 ∑
A∈Uw(Fp)

 ∏
α∈Φ

α0,−
w

Aℓα
α

 f(ℓ,α0)(Aα0 − t)A

wvπ,

where the last equality follows from a change of variable A↔ uα0
(t)A.

By the linear independence of Jacobi sums from Proposition 4.1.12, we deduce an
equality ∑

A∈Uw(Fp)

 ∏
α∈Φ

α0,−
w

Aℓα
α

 f(ℓ,α0)(Aα0
)A

wvπ

=

 ∑
A∈Uw(Fp)

 ∏
α∈Φ

α0,−
w

Aℓα
α

 f(ℓ,α0)(Aα0
− t)A

wvπ

for each fixed tuple ℓ.
Therefore, again by the linear independence of Jacobi sum operators in Proposi-

tion 4.1.12 we deduce that

f(ℓ,α0)(Aα0
− t) = f(ℓ,α0)(Aα0

)

for each t ∈ Fp and each (ℓ, α0). We know that if f ∈ Fp[x] satisfies degf ≤ p − 1,
f(0) = 0 and f(x− t) = f(x) for each t ∈ Fp then f = 0. Thus we deduce that

f(ℓ,α0) = 0

for each tuple of integers ℓ, which is a contradiction to (4.1.21) and so we have kα = 0

for any α ∈ Φ′ ∩ Φ+
w for each tuple of integers k such that Ck,w ̸= 0.

As a result, we have shown that each vector in π
UΦ′ (Fp)
w can be written as certain

linear combination of vectors in (4.1.20). On the other hand, by Proposition 4.1.12
we know that vectors in (4.1.20) are linear independent, and therefore they actually
form a basis of πUΦ′ (Fp)

w .

Corollary 4.1.24. – Let µπ = (d1, . . . , dn) and fix a non-zero vector vπ ∈ πU(Fp),µπ .
Given a weight µ = (ℓ1, . . . , ℓn) ∈ X1(T ) the space

π[U(Fp),U(Fp)],µ
w0

has a basis whose elements are of the form

Sk,w0
vπ,
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where k = (kα) satisfies

ℓr ≡ dn+1−r + (1− ⌊1/r⌋)kr−1,r − (1− ⌊1/(n+ 1− r)⌋)kr,r+1 mod (p− 1)

for all 1 ≤ r ≤ n and kα = 0 if α ∈ Φ+ \∆.

Proof. – By a special case of Prop. 4.1.19 when Φ′ = {
∑j

r=i αr | 1 ≤ i < j ≤ n− 1},
we know that

{Sk,w0vπ | kα = 0 if α ∈ Φ+ \∆}

forms a basis of π[U(Fp),U(Fp)]
w0 . On the other hand, we know from Proposition 4.1.12

that the above basis is actually an T (Fp)-eigenbasis. Therefore the vectors in this
basis with a fixed eigencharacter µ form a basis of the eigensubspace π[U(Fp),U(Fp)],µ

w0 .
Finally, using (i) of the second part of Lemma 4.1.14 we conclude this lemma.

Corollary 4.1.25. – Let µπ = (d1, d2, . . . , dn) and fix a non-zero vector
vπ ∈ πU(Fp),µπ . Given a weight µ = (ℓ1, . . . , ℓn) ∈ X1(T ), the space

πU1(Fp),µ
w0

has a basis whose elements are of the form

Sk,w0
vπ

where k = (ki,j)i,j satisfies

k1,j ≡ ℓj − dn+1−j mod (p− 1)

for 2 ≤ j ≤ n and ki,j = 0 for all 2 ≤ i < j ≤ n.

Proof. – By a special case of Prop. 4.1.19 when Φ′ = {
∑j

r=i αr | 2 ≤ i ≤ j ≤ n− 1},
we know that

{Sk,w0
vπ | ki,j = 0 if 2 ≤ i < j ≤ n}

forms a basis of πU1(Fp)
w0 . On the other hand, we know from Proposition 4.1.12 that the

above basis is actually an T (Fp)-eigenbasis. Therefore the vectors in this basis with a
fixed eigencharacter µ form a basis of the eigensubspace πU1(Fp),µ

w0 . Finally, using (ii)
of the second part of Lemma 4.1.14 we conclude this lemma.

4.2. Summary of results on Deligne-Lusztig representations

In this section, we recall some standard facts on Deligne-Lusztig representations
and fix the notation that will be used throughout this paper. We closely follow [38].
Throughout this article we will only focus the group G(Fp) = GLn(Fp), which is
the fixed point set of the standard (p-power) Frobenius F inside GLn(Fp). We will
identify a variety over Fp with the set of its Fp-rational points for simplicity. Then
our fixed maximal torus T is F-stable and split.

To each pair (T, θ) consisting of an F-stable maximal torus T and a homomorphism
θ : TF → Q

×
p , Deligne-Lusztig [23] associate a virtual representation Rθ

T of GLn(Fp).
(We restrict ourself to GLn(Fp) although the result in [23] is much more general.) On
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the other hand, given a pair (w, µ) ∈W×X(T ), one can construct a pair (Tw, θw,µ) by
the method in the third paragraph of [38], Section 4.1. Then we denote by Rw(µ) the
representation corresponding to Rθw,µ

Tw
after multiplying a sign. This is the so-called

Jantzen parametrization in [41] 3.1.
The representations Rθ

T (resp. Rw(µ)) can be isomorphic for different pairs (T, θ)
(resp. (w, µ)), and the explicit relation between is summarized in [38], Lemma 4.2. As
each p-regular character µ ∈ X(T )/(p − 1)X(T ) of T (Fp) can be lift to an element
in Xreg

1 (T ) which is unique up to (p − 1)X0(T ), the representation Rw(µ) is well
defined for each w ∈W and such a µ.

We recall the notation Θ(θ) for a cuspidal representation for GLn(Fp) from [37],
Section 2.1 where θ is a primitive character of F×pn defined in [38], Section 4.2. We
refer further discussion about the basic properties and references of Θ(θ) to [37],
Section 2.1. The relation between the notation Rw(µ) and the notation Θ(θ) is sum-
marized in [38], Lemma 4.7. In this paper, we will use the notation Θm(θm) for a
cuspidal representation for GLm(Fp) where θm is a primitive character of F×pm .

We emphasize that, as a special case of [38], Lemma 4.7, we have the natural
isomorphism

R1(µ) ∼= Ind
G(Fp)

B(Fp)µ̃

for a p-regular character µ of T (Fp), where µ̃ is the Teichmüller lift of µ.

4.3. A multiplicity one theorem

The main target of this section is to prove Corollary 4.3.9, which immediately
implies our main multiplicity one theorem, Theorem 4.8.2. In fact, Theorem 4.8.2 is
a special case of Corollary 4.3.9.

We recall some notation from [43]. We use the notation Gr for the r-th Frobenius
kernel defined in [43] Chapter I 9 as kernel of r-th iteration of Frobenius morphism
on the group scheme G over Fp. We will consider the subgroup scheme GrT , GrB,
GrB

−
of G in the following. Note that our B (resp. B

−
) is denoted by B+ (resp. B)

in [43] Chapter II 9. We define

Ẑ ′r(λ) := indGrB
−

B
− λ;

Ẑr(λ) := coindGrB

B
λ,

where ind and coind are defined in I 3.3 and I 8.20 of [43] respectively. By [43]
Proposition II 9.6 we know that there exists a simple GrT -module L̂r(λ) satisfying

socGr

(
Ẑ ′r(λ)

)
∼= L̂r(λ) ∼= cosocGr

(
Ẑr(λ)

)
.

The properties of Ẑ ′r(λ) and Ẑr(λ) are systematically summarized in [43] II 9, and
therefore we will frequently refer to results over there.

From now on we assume r = 1 in this section.
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Now we recall several well-known results from [41], [42] and [43]. We recall the
definition of W̃ res from (4.0.3).

Theorem 4.3.1 ([41], Satz 4.3). – Assume that µ + η is in the lowest p-restricted
alcove and 2n-generic (Definition 4.1.1). Then we have

Rw(µ+ η) =
∑

w̃′∈W̃ res

ν∈X(T )

[Ẑ1(µ− pν + pη) : L̂1(w̃
′ · µ)]F (w̃′ · (µ+ wν)).

Proposition 4.3.2 ([43], Corollary II 6.24). – Let λ ∈ X(T )+. Suppose µ ∈ X(T ) is
maximal for µ ↑ λ and µ ̸= λ. If µ ∈ X(T )+ and if µ ̸= λ− pα for all α ∈ Φ+, then

[H0(λ) : F (µ)] = 1.

If M is an arbitrary G-module, we use the notation M [1] for the Frobenius twist
of M as defined in [43], I 9.10.

Proposition 4.3.3 ([43], Proposition II 9.14). – Let λ ∈ X(T )+. Suppose each com-
position factor of Ẑ ′1(λ) has the form L̂1(µ0 + pµ1) with µ0 ∈ X1(T ) and µ1 ∈ X(T )

such that
⟨µ1 + η, β∨⟩ ≥ 0

for all β ∈ ∆. Then H0(λ) has a filtration with factors of the form F (µ0)⊗H0(µ1)
[1].

Each such module occurs as often as L̂1(µ0 + pµ1) occurs in a composition series
of Ẑ ′1(λ).

Remark 4.3.4. – Note that if µ1 is in the lowest p-restricted alcove, then
F (µ0)⊗H0(µ1)

[1] = F (µ) by Steinberg tensor product theorem.

Lemma 4.3.5 ([43], Lemma II 9.18 (a)). – Let L̂1(µ) be a composition factor of Ẑ ′1(λ),
and write

λ+ η = pλ1 + λ0 and µ = pµ1 + µ0

with λ0, µ0 ∈ X1(T ) and λ1, µ1 ∈ X(T ).
If

(4.3.6) ⟨λ, α∨⟩ ≥ n− 2

for all α ∈ Φ+, then
⟨µ1 + η, β∨⟩ ≥ 0

for all β ∈ Φ+.

Proof. – We only need to mention that hα = n for all α ∈ Φ+ and for our group
G = GLn/Fp

, where hα is defined in [43], Lemma II 9.18.

We define an element sα,m ∈ W̃ by

sα,m · λ = sα · λ+mpα

for each α ∈ Φ+ and m ∈ Z.
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Theorem 4.3.7. – Let λ, µ ∈ X(T ) such that

(4.3.8) µ = sα,m · λ and mp < ⟨λ+ η, α∨⟩ < (m+ 1)p.

Assume further that there exists ν ∈ X(T ) such that λ + pν satisfies the condition
(4.3.6) and that ν and µ1 + ν are in the lowest p-restricted alcove.

Then we have
[Ẑ1(λ) : L̂1(µ)] = 1.

Proof. – The condition (4.3.8) ensures that for any fixed ν ∈ X(T ), µ+pν is maximal
for µ+ pν ↑ λ+ pν and µ+ pν ̸= λ+ pν. Notice that we have

[Ẑ1(λ) : L̂1(µ)] = [Ẑ ′1(λ) : L̂1(µ)]

by II 9.2(3) in [43], as the character of a GrT -module determine its Jordan-Hölder
factors with multiplicities (or equivalently, determine the semisimplification of the
GrT -module).

By II 9.2(5) and II 9.6(6) in [43] we have

[Ẑ ′1(λ) : L̂1(µ)] = [Ẑ ′1(λ)⊗ pν : L̂1(µ)⊗ pν] = [Ẑ ′1(λ+ pν) : L̂1(µ+ pν)],

and thus we may assume that
⟨λ, α∨⟩ ≥ n− 2

for all α ∈ Φ+ by choosing appropriate ν (which exists by our assumption) and
replacing λ by λ+ pν and µ by µ+ pν. Then by Lemma 4.3.5 we know that

⟨µ′1 + η, β∨⟩ ≥ 0

for any µ′ = pµ′1 + µ′0 such that L̂1(µ
′) is a factor of Ẑ ′1(λ).

Thus by Proposition 4.3.3, Proposition 4.3.2 and Remark 4.3.4 we know that

[Ẑ ′1(λ) : L̂1(µ)] = [H0(λ) : F (µ0)⊗H0(µ1)
[1]] = [H0(λ) : F (µ)] = 1,

which finishes the proof.

We pick an arbitrary principal series π and write

µπ = (d1, . . . , dn).

For each pair of integers (i1, j1) satisfying 0 ≤ i1 < i1 + 1 < j1 ≤ n− 1, we define

µi1,j1
π := (di1,j1

1 , . . . , di1,j1
n ),

where

di1,j1
k =


dk if k ̸= n− j1 and k ̸= n− i1;
dn−i1 + j1 − i1 − 1 if k = n− i1;
dn−j1 − j1 + i1 + 1 if k = n− j1.

Corollary 4.3.9. – Assume that µπ is 2n-generic in the lowest alcove (cf. Defini-
tion 4.1.1). Then F (µi1,j1

π ) has multiplicity one in π, or equivalently in Ind
G(Fp)

B(Fp)µ
w
π

for any w ∈W .

MÉMOIRES DE LA SMF 173



4.3. A MULTIPLICITY ONE THEOREM 79

Proof. – We notice at first that each Ind
G(Fp)

B(Fp)µ
w
π has the same Jordan-Hölder factor

as π with the same multiplicity as each of them is a mod p reduction of certain
lattice of the same characteristic 0 representation of G(Fp). We are going to apply
Theorem 4.3.7 and Theorem 4.3.1 to determine the multiplicity of F (µi1,j1

π ) in π. We
use the shortened notation

αii,j1 :=

n−1−i1∑
r=n−j1

αr.

We choose w = 1 in Theorem 4.3.1 and take

µ+ η := µπ = µi1,j1
π + (j1 − i1 − 1)αii,j1 .

We would like to consider the multiplicity of F (µi1,j1
π ) in π = R1(µ + η). We will

follow the notation of Theorem 4.3.1 except that we will replace the notation ν in
Theorem 4.3.1 with the notation ν0. We take w̃′ := 1 ∈ W̃ res as well as

ν0 := η − (j1 − i1 − 1)αii,j1

and then note that
µi1,j1

π = µ+ ν0.

We deduce from II 9.16 (5) in [43] the following equality

(4.3.10) [Ẑ1 ((µ+ η − pν0) + (p− 1)η) : L̂1(µ)]

= [Ẑ1 ((n− j1, n− i1)(µ+ η − pν0) + (p− 1)η) : L̂1(µ)].

We set
λ := (n− j1, n− i1)(µ+ η − pν0) + (p− 1)η

and observe that

λ = (n− j1, n− i1) · (µ− pν0) + pη(4.3.11)

= (n− j1, n− i1) · µ+ p (η − (n− j1, n− i1)η − (j1 − i1 − 1)αii,j1)

= (n− j1, n− i1) · µ+ pαii,j1 .

Therefore we have
p < ⟨λ, αii,j1⟩ < 2p

and that
µ = sαii,j1

,p · λ.
Moreover, it is easy to see that

λ+ pη = (n− j1, n− i1) · µ+ pαii,j1 + pη

satisfies (4.3.6).
We take ν := λ and then apply Theorem 4.3.7, (4.3.10) as well as the obvious

equality
(µ− pν0) + pη = (µ+ η − pν0) + (p− 1)η

and conclude that

[Ẑ1 ((µ− pν0) + pη) : L̂1(µ)] = [Ẑ1(λ) : L̂1(µ)] = 1,
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which implies that F (µi1,j1
π ) = F (µ + ν0) has multiplicity one in R1(µ+ η) =

Ind
G(Fp)

B(Fp)µπ by Theorem 4.3.1.

4.4. Jacobi sums in characteristic 0

In this section, we establish an intertwining identity for lifts of Jacobi sums in
characteristic 0 in Theorem 4.4.23, which is one of the main ingredients of the proof
of Theorem 5.6.3. All of our calculations here are in the setting of G(Qp) = GLn(Qp).
We first fix some notation.

Let A ∈ G(Fp). By ⌈A⌉ we mean the matrix in G(Qp) whose entries are the
classical Teichmüller lifts of the entries of A. The map A 7→ ⌈A⌉ is obviously not a
group homomorphism but only a map between sets. On the other hand, we use the
notation µ̃ for the Teichmüller lift of a character µ of T (Fp).

We denote the standard lifts of simple reflections in G(Qp) by

si =


Idi−1

1

1

Idn−i−1


for 1 ≤ i ≤ n− 1. We also use the following notation

ti =

(
pIdi

Idn−i

)
for 1 ≤ i ≤ n. Let

(4.4.1) Ξn := w∗t1,

where w∗ := sn−1 • · · · • s1. We recall the Iwahori subgroup I and the pro-p Iwahori
subgroup I(1) from the beginning of Chapter 4. Note that the operator Ξn and the
group I actually generate the normalizer of I inside G(Qp). One easily sees that Ξn is
nothing else than the following matrix:

Ξn =



0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0

0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1

p 0 0 · · · 0 0 0


∈ G(Qp).

For each 1 ≤ i ≤ n − 1, we consider the maximal parabolic subgroup P−i of G
containing lower-triangular Borel subgroup B− such that its Levi subgroup can be
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chosen to be GLi ×GLn−i which embeds into G in the standard way. We denote the
unipotent radical of P−i by N−

i . Then we introduce

(4.4.2) U i
n =

∑
A∈N−

i (Fp)

t−1
i ⌈A⌉ for each 1 ≤ i ≤ n− 1.

Note that each A ∈ N−
i has the form(

Idi 0(n−i)×i

∗i×(n−i) Idn−i

)
for each 1 ≤ i ≤ n− 1.

For each w ∈ W and each tuple k = (kα)α∈Φ+
w
∈ {0, . . . , p − 1}|Φ+

w|, we consider
the following Jacobi sum

Ŝk,w :=

 ∑
A∈Uw(Fp)

 ∏
α∈Φ+

w

⌈Aα⌉kα

 ⌈A⌉
w ∈ Zp[G(Zp)].

In particular, we consider

Ŝw :=

 ∑
A∈Uw(Fp)

⌈A⌉

w ∈ Zp[G(Zp)],

which is a characteristic 0 lift of S0,w.
Recall the notation π̃◦ from (4.1.2).

Lemma 4.4.3. – Assume that µπ is n-generic (Definition 4.1.1). We have the equality

Ŝw • Ŝw′ = p
ℓ(w)+ℓ(w′)−ℓ(ww′)

2 Ŝww′

on (π̃◦)I(1) for all w,w′ ∈W .

Proof. – One can quickly reduce the general case to the following two elementary
equalities on (π̃◦)I(1):

(4.4.4) Ŝw • Ŝw′ = Ŝww′ if ℓ(ww′) = ℓ(w) + ℓ(w′)

and

(4.4.5) Ŝsr
• Ŝsr

= p for all 1 ≤ r ≤ n− 1.

The equality (4.4.4) follows directly from the definition of the Jacobi sum operators.
The equality (4.4.5) follows from a simple Bruhat decomposition. In fact, we have for
each t ̸= 0

sruαr
(t)sr = uαr

(t−1)srdiag(1, . . . , 1, t,−t−1, 1, . . . , 1)uαr
(t−1),

where the diagonal matrix has t at (r, r)-entry and −t−1 at (r + 1, r + 1)-entry.
Therefore for each v̂ ∈ (π̃◦)I(1) there exists an integer n ≤ ℓ ≤ p− n such that

diag(1, . . . , 1, t,−t−1, 1, . . . , 1)v̂ = ±⌈t⌉ℓv̂
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and thus

Ŝsr
• Ŝsr

v̂ =

∑
t′∈Fp

uαr
(t′)

v̂ ±∑
t∈F′p

⌈t⌉ℓ⌈uαr
(t−1)⌉srv̂


= pv̂ ±

 ∑
t′∈Fp,t∈Fp

⌈t⌉ℓ⌈uαr
(t′ + t−1)⌉sr

 v̂

= pv̂.

This finishes the proof.

Lemma 4.4.6. – We have the equality

(Ξn)k • Uk
n = Ŝ(w∗)k .

Proof. – This is immediate by definition.

We quickly recall some standard facts about Jacobi sums and Gauss sums. We fix
a primitive p-th root of unity ξ ∈ E and set ϵ := ξ− 1. For each pair of integers (a, b)

with 0 ≤ a, b ≤ p− 1, we set

J(a, b) :=
∑

λ∈Fp

⌈λ⌉a⌈1− λ⌉b.

We also set
G(a) :=

∑
λ∈Fp

⌈λ⌉aξλ

for each integers a with 0 ≤ a ≤ p− 1. For example, we have G(p− 1) = −1.
It is known by section 1.1, GS3 of [44] that if a+ b ̸≡ 0 mod (p− 1), we have

J(a, b) =
G(a)G(b)

G(a+ b)
.

It is also obvious from the definition that if a, b, a+ b ̸≡ 0 mod (p− 1) then

J(b, a) = J(a, b) = (−1)bJ(b, [−a− b]1) = (−1)aJ(a, [−a− b]1).

By Stickelberger’s theorem ([44], Section 1.2, Theorem 2.1), we know that

(4.4.7) ordp(G(a)) = 1− a

p− 1
and

G(a)

ϵp−1−a
≡ a! (mod p).

Let r ∈ Z with 1 ≤ r ≤ n − 1 and w ∈ W . Given the data µπ = (d1, d2, . . . , dn)

and tuple k ∈ {0, . . . , p− 1}|Φ+
w|, we define a tuple

k′ ∈

{
{0, . . . , p− 1}|Φ+

w| if ℓ(wsr) < ℓ(w);

{0, . . . , p− 1}|Φ
+
wsr

| if ℓ(wsr) > ℓ(w)

by

k′α =

{
kα if α ∈ Φ+

w ;

0 if α = wαr
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in the first case and

k′α =

{
[kwαr

− dr + dr+1]1 if α = wαr;

kα if α ∈ Φ+
w and α ̸= wαr

in the second case.

Proposition 4.4.8. – Assume that µπ = (d1, d2, . . . , dn) is n-generic and that

kα = 0 for all α ∈ Φ+
w with wαr < α.

Assume further that if ℓ(wsr) < ℓ(w) then kwαr
̸∈ {0, p− 1, [dr − dr+1]1}.

Then for each 1 ≤ r ≤ n− 1 we have

Ŝk,w • Ŝsr =

{
Ŝk′,wsr

if ℓ(wsr) > ℓ(w);

(−1)dr+1J(kwαr , [dr+1 − dr]1)Ŝk′,w if ℓ(wsr) < ℓ(w)

on (π̃◦)I(1),µ̃π .

Proof. – By definition we have

Ŝk,w • Ŝsr =
∑

A∈U(Fp),t∈Fp

 ∏
α∈Φ+

w

⌈Aα⌉kα

 ⌈A⌉w⌈uαr (t)⌉sr.

We divide it into two cases:

(i) ℓ(wsr) > ℓ(w);

(ii) ℓ(wsr) < ℓ(w).

In case (i), we have the Bruhat decomposition

Awuαr
(t)sr = Auwαr

(t)wsr

and thus

Ŝk,w • Ŝsr = Ŝk′,wsr
.

In case (ii), we have the Bruhat decompositions: if t = 0

Awuαr (0)sr = A(wsr) = A′′wsruαr (Awαr ),

where A′′ is the unipotent matrix that has the same entries as A except a zero
at wαr-entry;
if t ̸= 0

Awuαr
(t)sr = Auwαr

(t−1)wdiag(1, . . . , t,−t−1, . . . , 1)uαr
(t−1).
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We fix a vector v̂π ∈ (π̃◦)I(1),µ̃π whose mod p reduction is non-zero. Therefore, we
have

Ŝk,w • Ŝsr v̂π = (−1)dr+1

∑
A∈Uw(Fp),t∈F×p

 ∏
α∈Φ+

w

⌈Aα⌉kα

 ⌈t⌉dr−dr+1⌈A⌉uwαr (t
−1)wv̂π

+
∑

A∈Uw(Fp)

 ∏
α∈Φ+

w

⌈Aα⌉kα

 ⌈A⌉wsrv̂π.

The summation
∑

A∈Uw(Fp)

(∏
α∈Φ+

w
⌈Aα⌉kα

)
Awsrv̂π can be rewritten as

∑
A′′∈Uwsr (Fp)

 ∏
α∈Φ+

wsr

⌈Aα⌉kα

 ∑
Awαr∈Fp

⌈Awαr
⌉kwαr

A′′wsrv̂π

which is 0 as we assume 0 < kwαr
< p− 1. Hence, we have

Ŝk,w0
• Ŝsr

v̂π = (−1)dr+1

∑
A∈Uw(Fp),t∈F×p

 ∏
α∈Φ+

w

⌈Aα⌉kα

 ⌈t⌉dr−dr+1⌈Auwαr
(t−1)⌉wv̂π.

On the other hand, after setting A′ = Auwαr (t
−1) we have

(4.4.9)
∑

A∈Uw(Fp),t∈F×p

 ∏
α∈Φ+

w

⌈Aα⌉kα

 ⌈t⌉dr−dr+1⌈Auwαr
(t−1)⌉wv̂π

=
∑

A′∈Uw(Fp),t∈F×p

 ∏
α∈Φ+

wsr

⌈Aα⌉kα

 ⌈(A′wαr
− t−1)⌉kwαr ⌈t⌉dr−dr+1⌈A′⌉wv̂π

since kα = 0 for all wαr < α.
One can easily check that if A′wαr

= 0 then∑
t∈F×p

⌈(A′wαr
− t−1)⌉kwαr ⌈t⌉dr−dr+1 = (−1)kwαr

∑
t∈Fp

⌈t⌉dr−dr+1−kwαr = 0,

and if A′wαr
̸= 0 then∑

t∈F×p

⌈(A′wαr
− t−1)⌉kwαr ⌈t⌉dr−dr+1

= ⌈A′wαr
⌉kwαr−dr+dr+1

∑
t∈Fp

⌈(1− (A′wαr
t)−1)⌉kwαr ⌈(A′wαr

t)−1)dr+1−dr⌉


= J(kwαr , [dr+1 − dr]1)⌈A′wαr

⌉[kwαr−dr+1+dr]1 .

Combining these computations with (4.4.9) finishes the proof.
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Remark 4.4.10. – Proposition 4.4.8 is the technical heart of this section. It roughly
says that [U(Fp), U(Fp)]-invariant vectors behave well under intertwining of principal
series, which is essentially why the identities in Theorem 4.4.23 and Proposition 5.5.1
exist. On the other hand, it is crucial that the vector v̂π is invariant under ⌈uαr (t)⌉
for t ∈ Fp.

From now on we fix an n-tuple of integers (an−1, . . . , a0) which is assumed to be
n-generic in the lowest alcove (cf. Definition 4.1.1). We let

µ∗ := (an−1 − n+ 2, an−2, an−3, . . . , a2, a1, a0 + n− 2);

µ1 := (a1, a2, . . . , an−3, an−2, an−1, a0);

µ′1 := (an−1, a0, a1, a2, . . . , an−3, an−2);

µ0 := (an−1, a1, a2 · · · , an−3, an−2, a0)

and

(4.4.11)

{
π0 := Ind

G(Fp)

B(Fp)µ0;

π̃◦0 := Ind
G(Fp)

B(Fp)µ̃0,

where µ̃0 is the Teichmüller lift of µ0. Then we recursively define sequences of elements
in the Weyl group W by {

w1 = 1, wm = sn−mwm−1;

w′1 = 1, w′m = smw
′
m−1

for all 2 ≤ m ≤ n− 1, where sm are the reflection of the simple roots αm. We define
the sequences of characters of T (Fp)

µm := µwm
1 and µ′m := (µ′1)

w′m

for all 1 ≤ m ≤ n− 1. In particular, we have µn−1 = µ0 = µ′n−1.
We let k1 = (k1

i,j), k
1,′ = (k1,′

i,j) and k0 = (k0
i,j), where

(4.4.12)


k1

i,i+1 = [a0 − an−i]1 + n− 2;

k1,′
i,i+1 = [an−i−1 − an−1]1 + n− 2;

k0
i,i+1 = [a0 − an−1]1 + n− 2

for 1 ≤ i ≤ n− 1 and k1
i,j = k1,′

i,j = k0
i,j = 0 otherwise.

We also define several families of Jacobi sums:

Ŝkm,w0
and Ŝkm,′,w0

for all integers m with 1 ≤ m ≤ n− 1, where km = (km
i,j) satisfies

km
i,j =


n− 2 + [a0 − an−1]1 if 1 ≤ i = j − 1 ≤ m;
n− 2 + [a0 − an−i]1 if m+ 1 ≤ i = j − 1 ≤ n− 1;
0 otherwise
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and km,′ = (km,′
i,j ) satisfies

km,′
i,j =


n− 2 + [an−i−1 − an−1]1 if 1 ≤ i = j − 1 ≤ n−m− 1;
n− 2 + [a0 − an−1]1 if n−m ≤ i = j − 1 ≤ n− 1;
0 otherwise.

We keep the notation in (4.4.11) and recall that k0 is defined in (4.4.12) and satisfies

(4.4.13) k0 = kn−1 = kn−1,′.

We also define
(4.4.14){

κ
(1)
n := (−1)

∑n−2
m=1 am

∏n−2
m=1 J(n− 2 + [a0 − an−m−1]1, [an−m−1 − an−1]1);

κ
(2)
n := (−1)(n−2)a0

∏n−2
m=1 J(n− 2 + [am − an−1]1, [a0 − am]1).

Proposition 4.4.15. – Assume that (an−1, . . . , a0) is n-generic.
Then we have

Ŝk1,w0
• Ŝw−1

n−1
= κ(1)

n Ŝk0,w0
and Ŝk1,′,w0

• Ŝ(w′n−1)
−1 = κ(2)

n Ŝk0,w0

on the 1-dimensional space (π̃◦0)I(1),µ̃0 .

Proof. – By the case w = w0 of Proposition 4.4.8 and the fact that

km
m+1,m+2 = n− 2 + [a0 − an−m−1]1 and km,′

n−m−1,n−m = n− 2 + [am − an−1]1

we have

Ŝkm,w0 • Ŝsn−m−1 = (−1)an−m−1J(n− 2 + [a0− an−m−1]1, [an−m−1− an−1]1)Ŝkm+1,w0

and

Ŝkm,′,w0
• Ŝsm+1 = (−1)a0J(n− 2 + [am − an−1]1, [a0 − am]1)Ŝkm+1,′,w0

on the 1-dimensional space (π◦0)I(1),µ̃0 for all 1 ≤ m ≤ n − 2. Using the equality
(4.4.13) together with Lemma 4.4.3 one can write

Ŝw−1
n−1

= Ŝsn−2
• · · · • Ŝs1

, and Ŝ(w′n−1)
−1 = Ŝs2

• · · · • Ŝsn−1
.

Hence, we finish the proof by induction on m.

Lemma 4.4.16. – We have κ
(1)
n ≡ (−1)

∑n−2
m=1 am

(∏n−2
m=1

(n−2+[a0−an−m−1]1)!([an−m−1−an−1]1)!
(n−2+[a0−an−1]1)!

)
(mod p);

κ
(2)
n ≡ (−1)(n−2)a0

(∏n−2
m=1

(n−2+[am−an−1]1)!([a0−am]1)!
(n−2+[a0−an−1]1)!

)
(mod p).

In particular,
ordp(κ

(1)
n ) = ordp(κ

(2)
n ) = 0.

Proof. – This follows directly from (4.4.7), the definition of κ(1)
n , κ(2)

n , and the fact
that (an−1, . . . , a0) is n-generic.
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Corollary 4.4.17. – Assume that (an−1, . . . , a0) is n-generic.
Then we have

Ŝk1,w0
= pn−2κ(1)

n Ŝk0,w0
• Ŝwn−1

and Ŝk1,′,w0
= pn−2κ(2)

n Ŝk0,w0
• Ŝw′n−1

on the 1-dimensional space (π̃◦0)I(1),µ̃0 .

Proof. – It follows from Lemma 4.4.3 that

Ŝw−1
n−1
• Ŝwn−1 = pn−2 = Ŝ(w′n−1)

−1 • Ŝw′n−1
,

so that this follows from Proposition 4.4.15 and Lemma 4.4.3.

We define two important Jacobi sum operators (in characteristic p) Sn and S ′n to
be

(4.4.18) Sn := Sk1,w0
and S ′n := Sk1,′,w0

.

Corollary 4.4.19. – We have the equality

Sn

(
π

U(Fp),µ1

0

)
= S ′n

(
π

U(Fp),µ′1
0

)
= Sk0,w0

(
π

U(Fp),µ0

0

)
.

Proof. – It follows from Lemma 4.1.15 that

S0,w−1
n−1

(
π

U(Fp),µ0

0

)
= π

U(Fp),µ1

0 and S0,(w′n−1)
−1

(
π

U(Fp),µ0

0

)
= π

U(Fp),µ′1
0 .

Hence we finish the proof by the reduction modulo p of identities in Proposition 4.4.15
and the fact that the reduction modulo p of Ŝw is S0,w for each w ∈W .

As in (4.4.18), we use the shortened notation

Ŝn := Ŝk1,w0
and Ŝ ′n := Ŝk1,′,w0

and note that Sn (resp. S ′n) is the reduction modulo p of Ŝn (resp. Ŝ ′n).
To state the main result in this chapter, we also define

Pn :=

n−2∏
k=1

n−2∏
j=1

[ak − an−1]1 + j

[a0 − ak]1 + j
=

n−2∏
k=1

n−3∏
j=0

ak − an−1 + j

a0 − ak + j
∈ Z×p ,(4.4.20)

ε∗ :=

n−2∏
m=1

(−1)a0−am ,(4.4.21)

and

κn := κ(2)
n (κ(1)

n )−1.(4.4.22)

The main result of this chapter is the following theorem, which is a generalization
of the case n = 3 in [39], (3.2.1).
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Theorem 4.4.23. – Let
Πn := Ind

G(Qp)

B(Qp)χ

be a tamely ramified principal series representation where the χ = χ1 ⊗ · · · ⊗ χn :

T (Qp)→ E× is a smooth character satisfying χ|T (Zp)
= µ̃1.

On the 1-dimensional subspace Π
I(1),µ̃1
n we have the identity:

Ŝ ′n • (Ξn)n−2 = pn−2κn

(
n−2∏
k=1

χk(p)

)
Ŝn

for κn ∈ O×E (defined in (4.4.22)) such that

κn ≡ ε∗Pn(an−1, . . . , a0) (mod ϖE),

where ε∗ = ±1 is the sign function defined in (4.4.21) and Pn is the rational function
defined in (4.4.20).

The following is a direct generalization of Lemma 3.2.5 in [39].

Lemma 4.4.24. – We have the equality

Ur
n =

(
r∏

k=1

χk(p)

)−1

on the 1-dimensional space Π
I(1),µ̃1
n for each 1 ≤ r ≤ n− 1.

Proof. – The proof of this lemma is an immediate calculation which is parallel to that
of [39], Lemma 3.2.5.

Proof of Theorem 4.4.23. – Notice that

w′n−1(w
∗)n−2 = wn−1 and ℓ(w′n−1) + ℓ((w∗)n−2) = 3(n− 2) = ℓ(wn−1) + 2(n− 2),

so that by Lemma 4.4.3 we have

(4.4.25) Ŝw′n−1
• Ŝ(w∗)n−2 = pn−2Ŝwn−1

.

By composing Ŝk0,w0
on both sides of (4.4.25), we deduce from Proposition 4.4.15

that

(κ(2)
n )−1Ŝ ′n • Ŝ(w∗)n−2 = pn−2(κ(1)

n )−1Ŝn

and thus

Ŝ ′n • Ŝ(w∗)n−2 = pn−2κnŜn

on the 1-dimensional subspace Π
I(1),µ̃1
n . Now Lemma 4.4.6 together with Lemma 4.4.24

gives rise to the identity in the statement of this theorem.
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Finally, one can readily check from Lemma 4.4.16 that

κn = κ(2)
n (κ(1)

n )−1

≡ (−1)
∑n−2

m=1 a0−am

n−2∏
m=1

(n− 2 + [a0 − an−m−1]1)!([an−m−1 − an−1]1)!

(n− 2 + [am − an−1]1)!([a0 − am]1)!

≡ (−1)
∑n−2

m=1 a0−am

n−2∏
m=1

n−2∏
ℓ=1

ℓ+ [a0 − am]1
ℓ+ [am − an−1]1

≡ ε∗Pn (mod ϖE).

Note that ordp(κn) = 0. This completes the proof.

4.5. Special vectors in a dual Weyl module

We fix a tuple of integers h := (h1, . . . , hs) for some 1 ≤ s ≤ n− 1 such that

1 ≤ hr ≤ n− 1 for all 1 ≤ r ≤ s
and

s∑
r=1

hr = n− 1.

Then we can define n − 1 positive roots βh,i for 1 ≤ i ≤ n − 1 as follows. Given an
integer 1 ≤ i ≤ n− 1, there exists a unique integer 0 ≤ r0 ≤ s− 1 such that

r0∑
r=1

hr < i ≤
r0+1∑
r=1

hr,

and we use the notation

[i]h :=

r0∑
r=1

hr.

Then we define

βh,i :=

i∑
k=1+[i]h

αk.

Note in particular that we always have

βh,1 = α1.

Then we define

Φ+
h := {α ∈ Φ+ | α ̸= βh,i for all 1 ≤ i ≤ n− 1}

and notice that this set gives an unipotent group Uh ⊊ U by setting

Uh :=
∏

α∈Φ+
h

Uα.

We emphasize that all Uh constructed here are good in the sense of Definition 4.1.16.
In particular, if s = n − 1 and hr = 1 for 1 ≤ r ≤ n − 1 we recover [U,U ], and
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if s = 1 and h1 = n − 1 we recover U1 (cf. Example 4.1.18). We define Uh as the
reduction of Uh mod p. If we mark the positive roots βh,i by a • on their corresponding
upper-triangular entry, we get the following matrix looking like a ladder with s steps

1 • · · · • • 0 0 · · · 0 0 0 · · · · · · 0

1 · · · 0 0 0 0 · · · 0 0 0 · · · · · · 0

. . .
...

...
...

...
. . .

...
...

...
. . . . . .

...
1 0 0 0 · · · 0 0 0 · · · · · · 0

1 • • · · · • 0 0 · · · · · · 0

1 0 · · · 0 0 0 · · · · · · 0

1 · · · 0 0 0 · · · · · · 0

. . .
...

...
...

. . . . . .
...

1 • • · · · · · · 0

1 0 · · · · · · 0

1 · · · · · · 0

. . . . . .
...

. . .
...
1



.

Let R be a Fp-algebra, and A ∈ G(R) a matrix. For J1, J2 ⊆ {1, 2, . . . , n−1, n}, we
write AJ1,J2

for the submatrix of A consisting of the entries of A at the (i, j)-position
for i ∈ J1, j ∈ J2. We define

J i
0 := {1, 2, . . . , i} ⊆ {1, . . . , n}

for each 1 ≤ i ≤ n. Given a tuple h as above, we define the subsets J i
h ⊆ {1, . . . , n}

for 1 ≤ i ≤ n− 1 as

J i
h := {1, 2, . . . , i+ 1} \ {[i+ 1]h + 1}.

It is easy to see that |J i
h| = i for 1 ≤ i ≤ n− 1. We define

Dh,i := det
(
(w0A)Ji

0,Ji
h

)
for all 1 ≤ i ≤ n − 1. We also set Di := det(w0A)Ji

0,Ji
0

for 1 ≤ i ≤ n. Hence, Dh,i

(1 ≤ i ≤ n− 1) and Di (1 ≤ i ≤ n) are polynomials over the entries of A.

Given a weight λ ∈ X+(T ), we now introduce an explicit model for the represen-
tation H0(λ), and then start some explicit calculation. Consider the space of poly-
nomials on G/Fp

, which is denoted by O(G). The space O(G) has both a left action
and a right action of B induced by right translation and left translation by B on G

respectively. The fraction field of O(G) is denoted byM(G).
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Consider the subspace

O(λ) := {f ∈ O(G) | f · b = w0λ(b)f ∀b ∈ B},

which has a natural left G-action by right translation. As the right action of T
on O(G) is semisimple (and normalizes U), we have a decomposition of algebraic
representations of G:

O(G)U := {f ∈ O(G) | f · u = f ∀u ∈ U} =
⊕

λ∈X(T )

O(λ).

It follows from the definition of the dual Weyl module as an algebraic induction that
we have a natural isomorphism

(4.5.1) H0(λ) ∼= O(λ).

Note by [43], Proposition II 2.6 that H0(λ) ̸= 0 if and only if λ ∈ X(T )+.
We often write the weight λ explicitly as (d1, d2, . . . , dn) where di ∈ Z for 1 ≤ i ≤ n.

We will restrict our attention to a p-restricted and dominant λ, i.e., d1 ≥ d2 ≥ · · · ≥ dn

and di−1 − di < p for 2 ≤ i ≤ n. We recall from the beginning of Chapter 4 the
notation (·)λ′ for a weight space with respect to the weight λ′. We define Σ to be the
set of (n− 1)-tuple of integers m = (m1, . . . ,mn−1) satisfying

0 ≤ mi ≤ di − di+1 for 1 ≤ i ≤ n− 1.

For each tuple m, we can define a vector

valg
h,m := Ddn

n

n−1∏
i=1

D
di−di+1−mi

i (Dh,i)
mi .

Proposition 4.5.2. – Let λ = (d1, d2, . . . , dn) ∈ X1(T ). The set

(4.5.3) {valg
h,m | m ∈ Σ}

forms a basis of H0(λ)Uh . Moreover, the weight of valg
h,m is

λ−

(
n−1∑
i=1

miβh,i

)
and thus each element in (4.5.3) has distinct weight.

Proof. – We define
UhO(G)U := {f ∈ O(G) | u1 · f = f · u = f ∀u ∈ U & ∀u1 ∈ Uh}

and
UhM(G)U := {f ∈M(G) | u1 · f = f · u = f ∀u ∈ U & ∀u1 ∈ Uh}.

We consider a matrix A such that its entries Ai,j are indefinite variables. Then we
can formally do Bruhat decomposition

A = UAw0TA,hUA,h
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such that the entries of UA, TA,h, UA,h are rational functions of Ai,j satisfying

(UA)i,j =

{
1 if i = j;

0 if i > j,

(TA,h)i,j =


Di(A) if i = j;

Dh,k(A) if (i, j) = βh,k;

0 otherwise ,

(UA,h)i,j =

{
1 if i = j;

0 if i > j or (i, j) = βh,k for some 1 ≤ k ≤ n− 1.

For each rational function f ∈ UhM(G)U , we notice that f only depends on TA,h,
which means that f is rational function of Di for 1 ≤ i ≤ n and Dh,i for 1 ≤ i ≤ n−1.
In other word, we have

UhM(G)U = Fp

(
D1, . . . , Dn, Dh,1, . . . , Dh,n−1

)
⊆M(G).

Then we define
Uh,λ′O(G)U,λ := {f ∈ UhO(G)U | x · f = λ′(x)f, and f · x = λ(x)f ∀x ∈ T}

and
Uh,λ′M(G)U,λ := {f ∈ UhM(G)U | x · f = λ′(x)f, and f · x = λ(x)f ∀x ∈ T}.

Note that we have and an obvious inclusion
Uh,λ′O(G)U,λ ⊆ Uh,λ′M(G)U,λ.

We can also identify Uh,λ′O(G)U,λ with H0(λ)
Uh

λ′ via the isomorphism (4.5.1). By
definition of Di (resp. Dh,i) we know that they are T -eigenvector with eigencharacter∑i

k=1 ϵk (resp. (
∑i+1

k=1 ϵk)− ϵ[i]′h) for 1 ≤ i ≤ n (resp. for 1 ≤ i ≤ n− 1). Therefore we

observe that Uh,λ′M(G)U,λ is one dimensional for any λ, λ′ ∈ X(T ) and is spanned
by

Ddn
n

n−1∏
i=1

D
di−di+1−mi

i (Dh,i)
mi ,

where λ = (d1, . . . , dn) and

λ′ = λ−

(
n−1∑
i=1

miβh,i

)
.

As O(G) is a UFD and Di, Dh,i are irreducible, we deduce that

Ddn
n

n−1∏
i=1

D
di−di+1−mi

i (Dh,i)
mi ∈ O(G)

if and only if
0 ≤ mi ≤ di − di+1 for all 1 ≤ i ≤ n− 1
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if and only if

H0(λ)
Uh

λ′ ̸= 0

which finishes the proof.

Remark 4.5.4. – The groups Uh we defined have the advantage that the Uh-invari-
ant subspace H0(λ)Uh ⊆ H0(λ) is a direct sum of its one dimensional weight spaces.
In other word, one can easily distinguish vectors in H0(λ)Uh using the T -action. Note
that the weight spaces of H0(λ) have very large dimensions in general.

We consider the special case of Proposition 4.5.2 when s = 1, h1 = n−1 and hence
h = {n− 1}.

Corollary 4.5.5. – Let λ = (d1, d2, . . . , dn) ∈ X1(T ). For λ′ ∈ X(T ), we have

dimFpH
0(λ)U1

λ′ ≤ 1.

Moreover, the set of λ′ such that the space above is nontrivial is described explicitly
as follows: consider the set Σ{n−1} of (n − 1)-tuple of integers m = (m1, . . . ,mn−1)

satisfying mi ≤ di − di+1 for 1 ≤ i ≤ n− 1, and

valg
{n−1},m = Ddn

n

n−1∏
i=1

D
di−di+1−mi

i (D{n−1},i)
mi .

Then the set
{valg
{n−1},m | m ∈ Σ{n−1}}

forms a basis of the space H0(λ)U1 , and the weight of the vector valg
{n−1},m is

(d1 −
n−1∑
i=1

mi, d2 +m1, . . . , dn−1 +mn−2, dn +mn−1).

Remark 4.5.6. – Corollary 4.5.5 essentially describes the decomposition of an irre-
ducible algebraic representation of GLn after restricting to a maximal Levi subgroup
which is isomorphic to GL1 × GLn−1. This classical result is crucial in the proof of
Theorem 4.7.48.

4.6. Some technical formula

In this section, we prove a technical formula that will be used in Section 4.7. The
main result of this section is Proposition 4.6.20.

Throughout this section, we assume that (an−1, . . . , a0) is n-generic in the lowest al-
cove (cf. Definition 4.1.1). We need to do some elementary calculation of Jacobi sums.
For this purpose we need to define the following group operators for 2 ≤ r ≤ n− 1:

X+
r :=

∑
t∈Fp

tp−2u∑n−1
i=r αi

(t) ∈ Fp[G(Fp)],
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and similarly
X−

r :=
∑
t∈Fp

tp−2w0u∑n−1
i=r αi

(t)w0 ∈ Fp[G(Fp)].

We notice that by definition we have the identification X+
r = X∑n−1

i=r αi,1
, where

X∑n−1
i=r αi,1

is defined in (4.1.3).

Lemma 4.6.1. – For a tuple of integers k = (ki,j) ∈ {0, 1, . . . , p− 1}|Φ
+
w0
|, we have

X+
r • Sk,w0

= kr,nSkr,−,w0

where kr,− = (kr,−
i,j ) satisfies kr,−

r,n = kr,n − 1, and kr,−
i,j = ki,j if (i, j) ̸= (r, n).

Proof. – This is just a special case of Lemma 4.1.6 when α0 =
∑n−1

i=r αi and m = 1.

For the following lemma, we set

I := {(i1, i2, . . . , is) | 1 ≤ i1 < i2 < · · · < is = n for some 1 ≤ s ≤ n}

to lighten the notation.

Lemma 4.6.2. – Let X = (Xi,j)1≤i,j≤n be a matrix satisfying

Xi,j = 0 if 1 ≤ j < i ≤ n− 1.

Then the determinant of X is

(4.6.3) det(X) =
∑

(i1,...,is)∈I

(−1)s−1Xn,i1

 ∏
j ̸=ik, 1≤k≤s

Xj,j

(s−1∏
k=1

Xik,ik+1

)
.

Proof. – By definition of the determinant we know that

det(X) =
∑

w∈W

(−1)ℓ(w)
n∏

k=1

Xk,w(k).

From the assumption on X, we know that each w that appears in the sum satisfies

(4.6.4) w(k) < k

for all 2 ≤ k ≤ n− 1.
Assume that w has the decomposition into disjoint cycles

w = (i11, i
1
2, . . . , i

1
n1

) · · · (im1 , im2 , . . . , imnm
)

where m is the number of disjoint cycles and nk ≥ 2 is the length for the k-th cycle
appearing in the decomposition.

We observe that the largest integer in {ikj | 1 ≤ j ≤ nk} must be n for each
1 ≤ k ≤ m by condition (4.6.4). Therefore we must have m = 1 and we can assume
without loss of generality that i1n1

= n. It follows from the condition (4.6.4) that

i1j < i1j+1
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for all 1 ≤ j ≤ n1 − 1. Hence we can set

s := n1, i1 := i11, . . . , is := i1n1
.

We observe that ℓ(w) = s− 1 and the formula (4.6.3) follows.

Recall from the beginning of Section 4.6 that we use the notation AJ1,J2
for the

submatrix of A consisting of the entries at the (i, j)-position with i ∈ J1, j ∈ J2,
where J1, J2 are two subsets of {1, 2, . . . , n} with the same cardinality. For a pair of
integers (m, r) with 1 ≤ m ≤ r − 1 ≤ n− 2, we let

Jm,r
0 := {1, 2, . . . , r, n−m+ 1}.

For a matrix A ∈ U(Fp), an element t ∈ Fp, and a triple of integers (m, r, ℓ)

satisfying 1 ≤ m ≤ r − 1 ≤ n − 2 and 1 ≤ ℓ ≤ n − 1, we define some polynomials as
follows:
(4.6.5)

Dm,r(A, t) := det
(
u∑n−1

i=r αi
(t)w0Aw0

)
Jm,r
0 ,Jn−r+1

0

when 1 ≤ m ≤ r − 1;

D
(ℓ)
r (A, t) := det

(
u∑n−1

i=r αi
(t)w0Aw0

)
Jℓ
0 ,Jℓ

0

when 1 ≤ ℓ ≤ n− r.

We define the following subsets of I: for each 1 ≤ ℓ ≤ n− 1

Iℓ := {(i1, i2, . . . , is) ∈ I | n− ℓ+ 1 ≤ i1 < i2 < · · · < is = n for some 1 ≤ s ≤ ℓ}.

Note that we have natural inclusions

Iℓ ⊆ Iℓ′ ⊆ I

if 1 ≤ ℓ ≤ ℓ′ ≤ n − 1. In particular, I1 has a unique element (n). Similarly, for
each 1 ≤ ℓ′ ≤ n− 1 we define

Iℓ′ := {(i1, i2, . . . , is) | 1 ≤ i1 < i2 < · · · < is−1 ≤ n−ℓ′ < is = n for some 1 ≤ s ≤ ℓ′},

and we set
Iℓ′

ℓ := Iℓ ∩ Iℓ′

for all 1 ≤ ℓ′ ≤ ℓ− 1 ≤ n− 2. We often write i = (i1, . . . , is) for an arbitrary element
of I, and define the sign of i by

ε(i) := (−1)s.

We emphasize that all the matrices
(
w0u∑n−1

i=r αi
(t)w0Aw0

)
Jm,r
1 ,Jn−r+1

2

for

1 ≤ m ≤ r − 1, and all the matrices
(
w0u∑n−1

i=r αi
(t)w0Aw0

)
Jℓ
1 ,Jℓ

2

for 1 ≤ ℓ ≤ n − r,
after multiplying a permutation matrix, satisfy the conditions on the matrix X in
Lemma 4.6.2. Hence, by Lemma 4.6.2 we notice that

(4.6.6)

{
Dm,r(A, t) = Am,r + tfm,r(A) when 1 ≤ m ≤ r − 1;
D

(ℓ)
r (A, t) = 1− tfr,n−ℓ+1(A) when 1 ≤ ℓ ≤ n− r,
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where for all 1 ≤ m ≤ r − 1

(4.6.7) fm,r(A) :=
∑

i∈In−r+1

ε(i)Am,i1

s∏
j=2

Aij−1,ij

 .

Let (m, r) be a tuple of integers with 1 ≤ m ≤ r − 1 ≤ n − 2. Given a tuple
of integers k ∈ {0, 1, . . . , p − 1}|Φ

+
w0
|, i = (i1, i2, . . . , is) ∈ In−r+1, and an integer r′

satisfying 1 ≤ r′ ≤ r, we define four tuples of integers in {0, 1, . . . , p− 1}|Φ
+
w0
|

ki,m,r,+ = (k
i,m,r,+
i,j ), ki,m,r = (k

i,m,r
i,j ), ki,m,r,r′,+ = (k

i,m,r,r′,+
i,j ), ki,m,r,r′ = (k

i,m,r,r′

i,j )

as follows:

k
i,m,r,+
i,j =


km,i1 + 1 if (i, j) = (m, i1) and i1 > r;
km,r if (i, j) = (m, r);
ki,j + 1 if (i, j) = (ih, ih+1) for 1 ≤ h ≤ s− 1;
ki,j otherwise,

k
i,m,r
i,j =

{
k

i,m,r,+
i,j − 1 if (i, j) = (m, r) and i1 > r;
k

i,m,r,+
i,j otherwise,

and

k
i,m,r,r′,∗
i,j =

{
k

i,m,r,∗
r′,n − 1 if (i, j) = (r′, n);
k

i,m,r,∗
i,j otherwise,

where ∗ ∈ {+,∅}.

Finally, we define one more tuple of integers kr,+ = (kr,+
i,j ) ∈ {0, 1, . . . , p− 1}|Φ

+
w0
|

by

kr,+
i,j :=

{
kr,n + 1 if (i, j) = (r, n);
ki,j otherwise.

Remark 4.6.8. – If we use the shortened notation αi,j =
∑j−1

k=i αk, then we clearly
have the equality

(4.6.9) αm,n = αm,i1 +
∑

1≤h≤s−1

αih,ih+1
= αm,r + αr,n

as we always have is = n by definition of the tuple i. The equality (4.6.9) would imply
by Lemma 4.1.14 that Ski,m,r,w0

v0 and Skr,+,w0
v0 have the same T (Fp)-eigencharacter,

which differs from the one for Sk,w0v0 by αr,n = ϵr − ϵn. Very roughly speaking,
Ski,m,r,w0

v0 and Skr,+,w0
v0 exhaust minimal modifications of Sk,w0

v0 that modify the
corresponding T (Fp)-eigencharacter by αr,n, if we vary m and i.
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Lemma 4.6.10. – Fix two integers r and m such that 1 ≤ m ≤ r − 1 ≤ n − 2, and
let k = (ki,j) ∈ {0, 1, . . . , p− 1}|Φ

+
w0
|. Assume that ki,j = 0 for r + 1 ≤ j ≤ n− 1 and

that ki,r = 0 for i ̸= m, and assume further that

an−r − a1 + [a1 − an−1 −
n−1∑
i=1

ki,n]1 + km,r < p.

Then we have

X−
r • Sk,w0

v0 = km,r

∑
i∈In−r

ε(i)Ski,m,r,w0
v0

+ ([an−r − an−1 −
n−1∑
i=1

ki,n]1 + km,r)Skr,+,w0
v0

−
n−r∑
ℓ=2

(an−r − aℓ−1 + km,r)

 ∑
i∈Iℓ\Iℓ−1

ε(i)Ski,r,n−ℓ+1,+,w0
v0

 .

Proof. – By the definition of X−
r , we have

X−
r • Sk,w0

v0 =
∑

A∈U(Fp),t∈Fp

tp−2

 ∏
1≤i<j≤n

A
ki,j

i,j

w0u∑n−1
h=r αh

(t)w0Aw0

 v0.

For an element w ∈ W , we use Ew to denote the subset of U(Fp)× Fp consisting of
all (A, t) such that

w0u∑n−1
h=r αh

(t)w0Aw0 ∈ B(Fp)wB(Fp).

We consider the standard parabolic subgroup P ⊇ U of G with standard Levi sub-
group isomorphic to Gr−1

m × GLn−r+1 which induces an embedding GLn−r+1 ↪→ G.
We consider the longest element in the Weyl group of GLn−r+1 and denote its image
under the embedding GLn−r+1 ↪→ G by wP . We notice that

w0u∑n−1
h=r αh

(t)w0Aw0 ∈ GLn−r+1(Fp) · U(Fp)w0 = P (Fp)w0 ⊆
⊔

w1≤wP

B(Fp)w1w0B(Fp),

and deduce that if Ew ̸= ∅ then ww0 ≤ wP and in particular ww0(i) = i for all
1 ≤ i ≤ r − 1.

We define Mw to be

Mw :=
∑

(A,t)∈Ew

tp−2

 ∏
1≤i<j≤n

A
ki,j

i,j

w0u∑n−1
h=r αh

(t)w0Aw0

 v0.

By the definition of Ew, we deduce that there exist A′ ∈ Uw(Fp), A′′ ∈ U(Fp), and
T ∈ T (Fp) for each given (A, t) ∈ Ew such that

(4.6.11) w0u∑n−1
h=r αh

(t)w0Aw0 = A′wTA′′.
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Here, the entries of A′, T and A′′ are rational functions of t and the entries of A. We
can rewrite the identity (4.6.11) as

(4.6.12) w0u∑n−1
h=r αh

(−t)w0A
′w = Aw0T

−1(T (A′′)−1T−1).

Note that the right side of (4.6.12) can also be viewed as the Bruhat decomposition
of the left side. In fact, if we define E′w as the set of elements (A′, t) ∈ Uw(Fp)× Fp

satisfying

(4.6.13) w0u∑n−1
h=r αh

(−t)w0A
′w ∈ B(Fp)w0B(Fp),

then (4.6.11) and (4.6.12) imply that we have a natural bijection

Ew
∼−→ E′w, (A, t) 7→ (A′, t)

induced from isomorphism of schemes by considering Fp-points. Therefore the entries
of A, T , A′′ can also be expressed as rational functions of the entries of A′.

For each A′ ∈ Uw(Fp) and w ∈W , we define
(4.6.14)

Dw
m,r(A

′, t) := det

((
u∑n−1

i=r αi
(t)w0A

′w
)

Jm,r
0 ,Jn−r+1

0

)
when 1 ≤ m ≤ r − 1;

D
w,(ℓ)
r (A′, t) := det

((
u∑n−1

i=r αi
(t)w0A

′w
)

Jℓ
0 ,Jℓ

0

)
when 1 ≤ ℓ ≤ n− r.

Note that if w = w0, then the definition in (4.6.14) specializes to (4.6.5). We notice
that for a given matrix A′ ∈ Uw(Fp), the inclusion (4.6.13) holds if and only if

(4.6.15) Dw,(ℓ)
r (A′,−t) ̸= 0 for all 1 ≤ ℓ ≤ n− r.

On the other hand, using the bijection Ew
∼−→ E′w, we deduce that (4.6.15) holds

for (A′, t) ∈ Uw(Fp) × Fp if and only if there exists a unique determined pair
(A, t) ∈ Ew such that (4.6.11) (or equivalently (4.6.12)) holds for some T ∈ T (Fp),
A′′ ∈ U(Fp) uniquely determined by (A′, t).

By the Bruhat decomposition in (4.6.12), we have

(4.6.16) T−1 = diag

(
Dw,(1)

r ,
D

w,(2)
r

D
w,(1)
r

, . . . ,
D

w,(n−r)
r

D
w,(n−1−r)
r

,
1

D
w,(n−r)
r

, 1, . . . , 1

)
in which we write Dw,(i)

r for Dw,(i)
r (A′,−t) for brevity. We also have

(4.6.17) Ai,j =


A′i,j if 1 ≤ i < j ≤ n and j ≤ r − 1;
Dw

m,r(A
′,−t) if (i, j) = (m, r);

A′i,n

D
w,(1)
r (A′,−t)

if 1 ≤ i ≤ n− 1 and j = n.

We apply (4.6.11), (4.6.17) and (4.6.16) to Mw and get

Mw =
∑

(A,t)∈Ew

F (A′, w, t)

 ∏
1≤i<j≤n

j≤r−1 or j=n

(A′i,j)
ki,j

A′w0

 v0,

MÉMOIRES DE LA SMF 173



4.6. SOME TECHNICAL FORMULA 99

where

F (A′, w, t) := tp−2

(
(Dw

m,r)
km,r (Dw,(1)

r )a1−an−1−
∑n−1

i=1 ki,n

n−r∏
s=2

(Dw,(s)
r )as−as−1

)
,

in which we let Dw
m,r := Dw

m,r(A
′,−t) and D

w,(s)
r := D

w,(s)
r (A′,−t) for brevity. We

have discussed in (4.6.15) that (A, t) ∈ Ew is equivalent to (A′, t) ∈ Uw(Fp) × Fp

satisfying the conditions in (4.6.15). As each D
w,(s)
r (A′,−t) appears in F (A′, w, t)

with a positive power, we can automatically drop the condition (4.6.15) and get

(4.6.18) Mw =
∑

(A,t)∈Uw(Fp)×Fp

F (A′, w, t)

 ∏
1≤i<j≤n

j≤r−1 or j=n

(A′i,j)
ki,j

A′w0

 v0.

If w ̸= w0, then there exist a unique integer i0 satisfying r ≤ i0 ≤ n such
that ww0(i0) < i0 but ww0(i) = i for all i0 + 1 ≤ i ≤ n.

By applying Lemma 4.6.2 to Dw,(n+1−i0)
r (A′,−t) (as (u∑n−1

i=r αi
(t)w0A

′w)Jℓ
0 ,Jℓ

0
sat-

isfy the condition of Lemma 4.6.2 after multiplying a permutation matrix), we deduce
that

Dw,(n+1−i0)
r (A′,−t) = tf(A′),

where f(A′) is certain polynomial of entries of A′.

Now we consider F (A′, w, t) as a polynomial of t. The minimal degree of monomials
of t appearing in F (A′, w, t) is at least

p− 2 + an+1−i0 − an−i0 > p− 1,

and the maximal degree of monomials of t appearing in F (A′, w, t) is

p− 2 + km,r + [a1 − an−1 −
n−1∑
i=1

ki,n]1 +

n−r∑
s=2

as − as−1

= p− 2 + km,r + [a1 − an−1 −
n−1∑
i=1

ki,n]1 + an−r − a1

< 2(p− 1).

As a result, the degree of each monomials of t in F (A′, w, t) is not divisible by p− 1.
Hence, we conclude that

Mw = 0 for all w ̸= w0

as we know that
∑

t∈Fp
tk ̸= 0 if and only if p− 1 | k and k ̸= 0.
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Finally, we compute Mw0 explicitly using (4.6.18). Indeed, by applying (4.6.6), the
monomials of t appearing in F (A′, w0, t) is nothing else than

tp−1(A′m,r)
km,r

(
−km,rfm,r(A

′)(A′m,r)
−1 + [a1 − an−1 −

n−1∑
i=1

ki,n]1fr,n(A′)

+

n−r∑
s=2

(as − as−1)fr,n+1−s(A
′)

)
.

As
∑

t∈Fp
tp−1 = −1, we conclude that

(4.6.19) X−
r •Sk,w0

v0 = Mw0
=

∑
A′∈U(Fp)

F0(A
′)

 ∏
1≤i<j≤n

j≤r or j=n

(A′i,j)
ki,j

A′w0

 v0,

where

F0(A
′) := (A′m,r)

km,r

(
km,rfm,r(A

′)(A′m,r)
−1 − [a1 − an−1 −

n−1∑
i=1

ki,n]1fr,n(A′)

−
n−r∑
s=2

(as − as−1)fr,n+1−s(A
′)

)
.

Recalling the explicit formula of fm,r and fr,n+1−s for 1 ≤ s ≤ n− r from (4.6.7) and
then rewriting (4.6.19) as a sum of distinct monomials of entries of A′ finishes the
proof.

Proposition 4.6.20. – Keep the assumptions and the notation of Lemma 4.6.10.
Then we have

X+
r •X−

r • Sk,w0
v0 = km,rkr,n

∑
i∈In−r

ε(i)Ski,m,r,r,w0
v0

+ (kr,n + 1)

(
[an−r − an−1 −

n−1∑
i=1

ki,n]1 + km,r

)
Sk,w0

v0

− kr,n

n−r∑
ℓ=2

(an−r − aℓ−1 + km,r)

 ∑
i∈Iℓ\Iℓ−1

ε(i)Ski,r,n−ℓ+1,r,+,w0
v0

 .

Proof. – This is just a direct combination of Lemma 4.6.10 and Lemma 4.6.1.

Remark 4.6.21. – The effect ofX+
r (resp.X−

r ) on T (Fp)-eigencharacter is essentially
χ 7→ χ+αr,n (resp. χ 7→ χ−αr,n) where χ is the T (Fp)-eigencharacter of Sk,w0

v0. The
conditions assumed in Lemma 4.6.10 are crucial for the formula in Proposition 4.6.20.
In fact, the formula in Proposition 4.6.20 is relatively simple in the sense that all the
coefficients are totally explicit when we writeX+

r •X−
r •Sk,w0

v0 as a linear combination
of Sk′,w0

v0 for various k′.
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4.7. A non-vanishing theorem

The main target of this section is to prove Theorem 4.7.48. This theorem together
with Corollary 4.4.19 immediately implies Theorem 4.8.1. We start this section by
introducing some notation.

We first define a subset Λw0
of {0, . . . , p − 1}|Φ

+
w0
| consisting of the tuples

k = (ki,j)i,j such that for each 1 ≤ r ≤ n− 1∑
1≤i≤r<j≤n

ki,j = [a0 − an−1]1 + n− 2.

Note that the set Λw0
embeds into π0 by sending k to Sk,w0

v0. Moreover, this family
of vectors {Sk,w0v0 | k ∈ Λw0} shares the same eigencharacter by Lemma 4.1.14.

We define k♯ ∈ Λw0
where k♯ = (k♯

i,j) is defined by k♯
1,n = [a0 − an−1]1 + n− 2 and

k♯
i,j = 0 otherwise. We set

V ♯ := ⟨G(Fp) · Sk♯,w0
v0⟩ ⊆ π0.

We also need to define some other useful elements of Λw0
. For each 1 ≤ r ≤ n− 1, we

define k♯,r = (k♯,r
i,j ) ∈ Λw0 by

k♯,r
i,j :=


n− 2 + [a0 − an−1]1 if 2 ≤ j = i+ 1 ≤ r;
n− 2 + [a0 − an−1]1 if (i, j) = (r, n);
0 otherwise.

In particular, we have

(4.7.1) k♯,1 = k♯ and k♯,n−1 = k0,

where k0 is defined in (4.4.12). If we represent k by a matrix in U(Z) with (i, j)-entry
given by ki,j , then k♯,r has the following form

1 k0 0 · · · 0 0 0 0 · · · 0 0

1 k0 · · · 0 0 0 0 · · · 0 0

1 · · · 0 0 0 0 · · · 0 0

. . .
...

...
...

...
. . .

...
...

1 k0 0 0 · · · 0 0

1 0 0 · · · 0 k0

1 0 · · · 0 0

1 · · · 0 0

. . .
...

...
1 0

1



,
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where k0 := n − 2 + [a0 − an−1]1 and the unique k0 appearing on n-th column is
on (r, n)-entry. For each 1 ≤ r ≤ n − 2 and 0 ≤ s ≤ [a0 − an−1]1 + n − 2, we define
k♯,r,s = (k♯,r,s

i,j ) ∈ Λw0 as follows:

k♯,r,s
i,j =



n− 2 + [a0 − an−1]1 if 2 ≤ j = i+ 1 ≤ r;
n− 2 + [a0 − an−1]1 − s if (i, j) = (r, r + 1);
s if (i, j) = (r, n);
n− 2 + [a0 − an−1]1 − s if (i, j) = (r + 1, n);
0 otherwise.

In particular, we have

(4.7.2) k♯,r,0 = k♯,r+1 and k♯,r,[a0−an−1]1+n−2 = k♯,r

for each 1 ≤ r ≤ n− 2. If we represent k by a matrix in U(Z) with (i, j)-entry given
by ki,j , then k♯,r,s has the following form

1 k0 0 · · · 0 0 0 0 0 · · · 0 0

1 k0 · · · 0 0 0 0 0 · · · 0 0

1 · · · 0 0 0 0 0 · · · 0 0

. . .
...

...
...

...
...

. . .
...

...
1 k0 0 0 0 · · · 0 0

1 k0 − s 0 0 · · · 0 s

1 0 0 · · · 0 k0 − s
1 0 · · · 0 0

1 · · · 0 0

. . .
...

...
1 0

1



,

where the s appearing on n-th column is on (r, n)-entry.
We now introduce the rough idea of the proof of Theorem 4.7.48. We set

(4.7.3) V0 := ⟨G(Fp) · Sk0,w0
v0⟩ ⊆ π0.

The first obstacle to generalize the method of Proposition 3.1.2 in [39] is that V0

does not necessarily admit a structure as G-representation in general. Our method to
resolve this difficulty is to replace Sk0,w0

v0 by Sk♯,w0
v0. We prove in Proposition 4.7.43

that V ♯ admits a structure as G-representation and actually can be identified with a
dual Weyl module H0(µw0

0 ). (The notation µw0
0 will be clear in the following.) Now it

remains to prove that

(4.7.4) Sk♯,w0
v0 ∈ V0

MÉMOIRES DE LA SMF 173



4.7. A NON-VANISHING THEOREM 103

to deduce Theorem 4.7.48. We will prove in Proposition 4.7.25 that

Sk♯,r,s−1,w0
v0 ∈ V0 =⇒ Sk♯,r,s,w0

v0 ∈ V0

for each 1 ≤ r ≤ n− 2 and 1 ≤ s ≤ [a0− an−1]1 +n− 2. As a result, we can thus pass
from Sk0,w0

v0 ∈ V0 to Sk♯,r,w0
v0 ∈ V0 for r = n − 2, n − 3, . . . , 1. The identification

k♯ = k♯,1 thus gives us (4.7.4).
We firstly state three direct corollaries of Proposition 4.6.20. It is easy to check

that each tuple k appearing in the following corollaries satisfies the assumption in
Proposition 4.6.20.

Corollary 4.7.5. – For each 2 ≤ r ≤ n − 1 and 0 ≤ s ≤ [a0 − an−1]1 + n − 3, we
have

X+
r •X−

r •Sk♯,r−1,s,w0
v0 = ([a0 − an−1]1 + n− 2− s)2

∑
i∈In−r

ε(i)S(k♯,r−1,s)i,m,r,r,w0
v0

+ ([an−r − an−1]1 − s)([a0 − an−1]1 + n− 1− s)Skr−1,s,w0
v0

− ([a0 − an−1]1 + n− 2− s)
n−r∑
ℓ=2

(an−r − aℓ−1 + [a0 − an−1]1 + n− 2− s)

·

 ∑
i∈Iℓ\Iℓ−1

ε(i)S(k♯,r−1,s)i,r,n−ℓ+1,r,+,w0
v0

 .

Corollary 4.7.6. – Fix two integers r and m such that 1 ≤ m ≤ r− 1 ≤ n− 2, and
let k = (ki,j) be a tuple of integers in Λw0 such that

ki,j =



0 if r + 1 ≤ j ≤ n− 1;
0 if i ̸= m and j = r;
0 if r + 1 ≤ i ≤ n− 1 and j = n;
1 if (i, j) = (m, r);
1 if (i, j) = (r, n).

Then we have

X+
r •X−

r • Sk,w0
v0 =

∑
i∈In−r

ε(i)Ski,m,r,r,w0
v0 + 2(an−r − a0 − n+ 3)Sk,w0

v0

−
n−r∑
ℓ=2

(an−r − aℓ−1 + 1)

 ∑
i∈Iℓ\Iℓ−1

ε(i)Ski,r,n−ℓ+1,r,+,w0
v0

 .

Corollary 4.7.7. – Fix two integers r and m such that 1 ≤ m ≤ r− 1 ≤ n− 2, and
let k = (ki,j) be a tuple of integers in Λw0

such that

ki,j =

{
0 if r ≤ j ≤ n− 1;
0 if r ≤ i ≤ n− 1 and j = n.
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Then we have

X+
r •X−

r • Sk,w0
v0 = (an−r − a0 − n+ 2)Sk,w0

v0.

We now define the following constants in Fp:{
cℓ :=

∏ℓ−1
k=1(ak − a0 − n+ 2 + k)2

ℓ−k−1

;

c′ℓ := (aℓ − a0 − n+ 3 + ℓ)cℓ

for all 1 ≤ ℓ ≤ n − 1 where we understand c1 to be 1. As the tuple (an−1, . . . , a0) is
n-generic in the lowest alcove, we notice that cℓ ̸= 0 ̸= c′ℓ for all 1 ≤ ℓ ≤ n − 1. By
definition of ck and c′k one can also easily check that

(4.7.8)
ℓ−1∏
k=1

(c′k − ck) = cℓ.

We also define inductively the constants: for each 1 ≤ ℓ ≤ n− 1

dℓ,ℓ′ :=

{
2(aℓ − a0 − n+ 3) if ℓ′ = 0;
c′ℓ′dℓ,ℓ′−1 − (aℓ − aℓ′ + 1)cℓ′

∏ℓ′−1
k=1 (c′k − ck) if 1 ≤ ℓ′ ≤ ℓ− 1.

We further define inductively a sequence of group operators Zℓ as follows:

Z1 := d1,0Id−X+
n−1 •X

−
n−1 ∈ Fp[G(Fp)]

and

Zℓ := dℓ,ℓ−1Id−
(
Zℓ−1 • · · · • Z1 •X+

n−ℓ •X
−
n−ℓ

)
∈ Fp[G(Fp)]

for each 2 ≤ ℓ ≤ n− 2.

Lemma 4.7.9. – For 1 ≤ ℓ ≤ n− 1, we have the identity

dℓ,ℓ−1 = (aℓ − a0 − n+ 2)

(
ℓ−1∏
k=1

c′k

)
+ c′ℓ.

Proof. – During the proof of this lemma, we will keep using the following obvious
identity with two variables

(4.7.10) ab = (a+ 1)(b− 1) + a− b+ 1

By definition of dℓ,ℓ−1 we know that

dℓ,ℓ−1 = 2(aℓ − a0 − n+ 3)

ℓ−1∏
k=1

c′k −
ℓ−1∑
ℓ′=1

(aℓ − aℓ′ + 1)cℓ′

ℓ′−1∏
k=1

(c′k − ck)

( ℓ−1∏
k=ℓ′+1

c′k

)
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and therefore

dℓ,ℓ−1 − (aℓ − a0 − n+ 2)

(
ℓ−1∏
k=1

c′k

)
= (aℓ − a0 − n+ 4)

ℓ−1∏
k=1

c′k

−
ℓ−1∑
ℓ′=1

(aℓ − aℓ′ + 1)cℓ′

ℓ′−1∏
k=1

(c′k − ck)

( ℓ−1∏
k=ℓ′+1

c′k

) .

Now we prove inductively that for each 1 ≤ j ≤ ℓ− 1

(4.7.11)

dℓ,ℓ−1−(aℓ−a0−n+2)

(
ℓ−1∏
k=1

c′k

)
= (aℓ−a0−n+3+j)

(
j−1∏
k=1

(c′k − ck)

)ℓ−1∏
k=j

c′k


−

ℓ−1∑
ℓ′=j

(aℓ − aℓ′ + 1)cℓ′

ℓ′−1∏
k=1

(c′k − ck)

( ℓ−1∏
k=ℓ′+1

c′k

) .

By the identity (4.7.10), one can easily deduce that

(aℓ − a0 − n+ 3 + j)c′j − (aℓ − aj + 1)cj

= [(aℓ − a0 − n+ 3 + j)(aj − a0 − n+ 3 + j)− (aℓ − aj + 1)] cj

= (aℓ − a0 − n+ 4 + j)(aj − a0 − n+ 2 + j)cj

= (aℓ − a0 − n+ 4 + j)(c′j − cj).

Hence, we get the identity:

(4.7.12)
[
(aℓ − a0 − n+ 3 + j)c′j − (aℓ − aj + 1)cj

] ℓ−1∏
k=j+1

c′k

(j−1∏
k=1

(c′k − ck)

)

= (aℓ − a0 − n+ 4 + j)

(
j∏

k=1

(c′k − ck)

) ℓ−1∏
k=j+1

c′k

 .

Thus, if the equation (4.7.11) holds for j, we can deduce that it also holds for j+1.
By taking j = ℓ− 1 and using the equation (4.7.12) once more, we can deduce that

dℓ,ℓ−1 − (aℓ − a0 − n+ 2)

(
ℓ−1∏
k=1

c′k

)
= (aℓ − a0 − n+ 3 + ℓ)

(
ℓ−1∏
k=1

(c′k − ck)

)
.

Hence, by the equation (4.7.8), one finishes the proof.

Proposition 4.7.13. – Fix two integers r and m such that 1 ≤ m ≤ r − 1 ≤ n− 2.
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(i) Let k = (ki,j) be as in Corollary 4.7.6. Then we have

(4.7.14) Zn−r • Sk,w0
= cn−rSk′,w0

where k′ = (k′i,j) is defined as follows:

k′i,j :=


0 if (i, j) = (m, r) or (i, j) = (r, n);
1 if (i, j) = (m,n);
ki,j otherwise.

(ii) Let k = (ki,j) be as in Corollary 4.7.7. Then we have

(4.7.15) Zn−r • Sk,w0
= c′n−rSk,w0

.

We prove this proposition by a series of lemmas.

Lemma 4.7.16. – Proposition 4.7.13 is true for r = n− 1.

Proof. – For part (i) of Proposition 4.7.13, by applying Corollary 4.7.6 to the case
r = n− 1 we deduce that

X+
n−1 •X

−
n−1 • Sk,w0

v0 = 2(a1 − a0 − n+ 3)Sk,w0
v0 − Ski0,m,n−1,n−1,w0

v0

where i0 = {n − 1, n}. Hence, part (i) of the proposition follows directly from the
definition of Z1 and c1.

For part (ii) of Proposition 4.7.13, again by Corollary 4.7.7 to the case r = n − 1

we deduce that

X+
n−1 •X

−
n−1 • Sk,w0

v0 = (a1 − a0 − n+ 2)Sk,w0
v0.

Then we have
Z1 • Sk,w0

v0 = (a1 − a0 − n+ 4)Sk,w0
v0

and part (ii) of the proposition follows directly from the definition of c′1.

Lemma 4.7.17. – Let ℓ be an integer with 2 ≤ ℓ ≤ n−1. If Proposition 4.7.13 is true
for r ≥ n− ℓ+ 1, then it is true for r = n− ℓ.

Proof. – We prove part (ii) first. Assume that (4.7.15) holds for r ≥ n− ℓ+1. In fact,
for a Jacobi sum Sk,w0 satisfying the conditions in the Corollary 4.7.7 for r = n− ℓ,
we have

X+
n−ℓ •X

−
n−ℓ • Sk,w0v0 = (aℓ − a0 − n+ 2)Sk,w0v0

by Corollary 4.7.7. Then we can deduce

Zℓ−1 • · · · • Z1 •X+
n−ℓ •X

−
n−ℓ • Sk,w0

v0 = (aℓ − a0 − n+ 2)

(
ℓ−1∏
s=1

c′s

)
Sk,w0

v0
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from the inductive assumption of this lemma. Hence, by definition of Zℓ, we have

Zℓ • Sk,w0v0 = dℓ,ℓ−1Sk,w0v0 −Zℓ−1 • · · · • Z1 •X+
n−ℓ •X

−
n−ℓ • Sk,w0v0

=

(
dℓ,ℓ−1 − (aℓ − a0 − n+ 2)

(
ℓ−1∏
s=1

c′s

))
Sk,w0

v0

= c′ℓSk,w0
v0

where the last equality follows from Lemma 4.7.9.
Now we turn to part (i). Assume that (4.7.14) holds for r ≥ n − ℓ + 1. We will

prove inductively that for each ℓ′ satisfying 0 ≤ ℓ′ ≤ ℓ− 1, we have

Zℓ′ • · · · • Z1 •X+
n−ℓ •X

−
n−ℓ • Sk,w0

v0

(4.7.18)

= dℓ,ℓ′Sk,w0
v0 +

 ℓ′∏
s=1

(c′s − cs)

∑
i∈Iℓ′

ℓ

ε(i)Ski,m,n−ℓ,n−ℓ,w0
v0



+

 ℓ′∏
s=1

(c′s − cs)


 ℓ−1∑

h=ℓ′+1

(aℓ − ah + 1)
∑

i∈Iℓ′
h \I

ℓ′
h+1

ε(i)Ski,n−ℓ,n−h,n−ℓ,w0
v0


where the case ℓ′ = 0, namely the formula for X+

n−ℓ •X
−
n−ℓ • Sk,w0v0, follows directly

from Corollary 4.7.6 for r = n− ℓ.
We begin with studying some basic properties of the index sets Iℓ′

h which are useful
for our induction on ℓ′ to prove (4.7.18). First of all, the set Iℓ′

ℓ′+1 \ Iℓ′

ℓ′+2 has a unique
element, which is precisely i = {n− ℓ′− 1, n}. Furthermore, there is a natural map of
sets

resℓ′ : Iℓ′

h → Iℓ′+1
h

for all ℓ′+2 ≤ h ≤ ℓ defined by eliminating the element n−ℓ′ from i ∈ Iℓ′

h if n−ℓ′ ∈ i.
In other words, for each i ∈ Iℓ′+1

h , we have

res−1
ℓ′ ({i}) = {i, i ∪ {n− ℓ′}} ⊆ Iℓ′

h .

We use the shortened notation

iℓ
′
:= i ∪ {n− ℓ′}

for each i ∈ Iℓ′+1
h . Note in particular that ε(i) = −ε(iℓ

′
).

Given an arbitrary i ∈ Iℓ′+1
h for ℓ′ + 2 ≤ h ≤ ℓ − 1, then Ski,n−ℓ,n−h,n−ℓ,w0

(resp.
S

kiℓ′ ,n−ℓ,n−h,n−ℓ,w0
) satisfies the conditions in Corollary 4.7.6 (resp. Corollary 4.7.7).

As a result, by the assumption that Proposition 4.7.13 is true for r = n − ℓ′ − 1, we
deduce that
(4.7.19)
Zℓ′+1 •

(
Ski,n−ℓ,n−h,n−ℓ,w0

v0 − Skiℓ′ ,n−ℓ,n−h,n−ℓ,w0
v0

)
=
(
c′ℓ′+1 − cℓ′+1

)
Ski,n−ℓ,n−h,n−ℓ,w0

v0.
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Similarly, we have
(4.7.20)
Zℓ′+1 •

(
Ski,m,n−ℓ,n−ℓ,w0

v0 − Skiℓ′ ,m−ℓ,n−ℓ,w0
v0

)
=
(
c′ℓ′+1 − cℓ′+1

)
Ski,m,n−ℓ,n−ℓ,w0

v0

for each i ∈ Iℓ′+1
ℓ . We also have

(4.7.21) Zℓ′+1 • Sk,w0
v0 = c′ℓ′+1Sk,w0

v0

by (4.7.15) for r = n− ℓ′ − 1, and

(4.7.22) Zℓ′+1 • Ski0,n−ℓ,n−ℓ′−1,n−ℓ,w0
v0 = cℓ′+1Sk,w0v0

by (4.7.14) for r = n− ℓ′ − 1 where i0 = {n− ℓ′ − 1, n}.

Now we begin our induction and assume that (4.7.18) is true for some 0 ≤ ℓ′ ≤ ℓ−2.
Then by combining (4.7.19), (4.7.20), (4.7.21) and (4.7.22), we have

Zℓ′+1 • · · · • Z1 •X+
n−ℓ •X

−
n−ℓ • Sk,w0

v0

= dℓ,ℓ′Zℓ′+1 • Sk,w0
v0 +

 ℓ′∏
s=1

(c′s − cs)

Zℓ′+1 •

∑
i∈Iℓ′

ℓ

ε(i)Ski,m,n−ℓ,n−ℓ,w0
v0



+

 ℓ′∏
s=1

(c′s − cs)

Zℓ′+1 •

 ℓ−1∑
h=ℓ′+1

(aℓ − ah + 1)
∑

i∈Iℓ′
h \I

ℓ′
h+1

ε(i)Ski,n−ℓ,n−h,n−ℓ,w0
v0

 ,

which is the same as

(4.7.23) c′ℓ′dℓ,ℓ′Sk,w0
v0 +

 ℓ′∏
s=1

(c′s − cs)

 (X + Y + Z)

where

X = (aℓ − aℓ′ + 1)Zℓ′+1 • Ski0,n−ℓ,n−ℓ′−1,n−ℓ,w0
v0,

Y =
∑

i∈Iℓ′+1
ℓ

ε(i)Zℓ′+1 •
(
Ski,m,n−ℓ,n−ℓ,w0

v0 − Skiℓ′ ,m,n−ℓ,n−ℓ,w0
v0

)
,

and

Z =

ℓ−1∑
h=ℓ′+2

(aℓ − ah + 1)
∑

i∈Iℓ′+1
h \Iℓ′+1

h+1

ε(i)Zℓ′+1

•
(
Ski,n−ℓ,n−h,n−ℓ,w0

v0 − Skiℓ′ ,n−ℓ,n−h,n−ℓ,w0
v0

)
.
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One can also readily check that (4.7.23) is also the same asc′ℓ′+1dℓ,ℓ′ + cℓ′+1

 ℓ′∏
s=1

(c′s − cs)

 (aℓ − aℓ′ + 1)

Sk,w0
v0

+

ℓ′+1∏
s=1

(c′s − cs)


 ∑

i∈Iℓ′+1
ℓ

ε(i)Ski,m,n−ℓ,n−ℓ,w0
v0


+

ℓ′+1∏
s=1

(c′s − cs)


 ℓ−1∑

h=ℓ′+2

(aℓ − ah + 1)
∑

i∈Iℓ′+1
h \Iℓ′+1

h+1

ε(i)Ski,n−ℓ,n−h,n−ℓ,w0
v0

 ,

which implies that (4.7.18) holds for ℓ′ + 1, as we have

dℓ,ℓ′+1 = c′ℓ′+1dℓ,ℓ′ + cℓ′+1

 ℓ′∏
s=1

(c′s − cs)

 (aℓ − aℓ′ + 1)

by definition.

Hence we have finished the proof of (4.7.18) for each 1 ≤ ℓ′ ≤ ℓ − 1 by induction
on ℓ′. Note that the case ℓ′ = ℓ− 1 for (4.7.18) is just the following
(4.7.24)

Zℓ−1 • · · · • Z1 •X+
n−ℓ •X

−
n−ℓ • Sk,w0v0 = dℓ,ℓ−1Sk,w0v0 −

(
ℓ−1∏
s=1

(c′s − cs)

)
Ski1,m,n−ℓ,n−ℓ,w0

v0,

where i1 = {n}.

Finally, (4.7.14) for r = n− ℓ follows from the equation (4.7.24) together with the
definition of Zℓ and the identity (4.7.8).

Proof of Proposition 4.7.13. – It follows easily from Lemma 4.7.16 and Lemma 4.7.17.

Proposition 4.7.25. – For each 1 ≤ r ≤ n− 2 and 1 ≤ s ≤ [a0 − an−1]1 + n− 2, if
Sk♯,r,s−1,w0

v0 ∈ V0, then Sk♯,r,s,w0
v0 ∈ V0.

Proof. – We deduce from the same argument as (4.7.19), (4.7.20), (4.7.21) and (4.7.22)
that the following equalities

(4.7.26) Zn−2−r • · · · • Z1 • Sk♯,r,s−1,w0
v0 =

(
n−2−r∏

ℓ=1

c′ℓ

)
Sk♯,r,s−1,w0

v0,
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(4.7.27) Zn−2−r • · · · • Z1 •

 ∑
i∈In−1−r

ε(i)S(k♯,r,s−1)i,r,r+1,r+1,w0
v0


= −

(
n−2−r∏

ℓ=1

(c′ℓ − cℓ)

)
Sk♯,r,s,w0

v0,

and

(4.7.28) Zn−2−r • · · · • Z1 •

 ∑
i∈Iℓ\Iℓ−1

ε(i)S(k♯,r,s−1)i,r+1,n−ℓ+1,r+1,w0
v0


= cℓ

(
ℓ−1∏
h=1

(c′h − ch)

)(
n−2−r∏
h=ℓ+1

c′h

)
Sk♯,r,s−1,w0

v0

hold for each 1 ≤ ℓ ≤ n − 2 − r. Therefore by replacing (r, s) in Corollary 4.7.5
by (r + 1, s − 1) and then using (4.7.26), (4.7.27) and (4.7.28) respectively, we can
deduce that

Zn−2−r • · · · • Z1 •X+
r+1 •X

−
r+1 • Sk♯,r,s−1,w0

v0

= −([a0 − an−1]1 + n− 1− s)2
(

n−2−r∏
ℓ=1

(c′ℓ − cℓ)

)
Sk♯,r,s,w0

v0 + CSk♯,r,s−1,w0
v0

= −([a0 − an−1]1 + n− 1− s)2cn−1−rSk♯,r,s,w0
v0 + CSk♯,r,s−1,w0

v0

for a certain constant C ∈ Fp. Note that we use the identity (4.7.8) for the last
equality .

By our assumption, we know that Sk♯,r,s−1,w0
v0 ∈ V0. Hence, we can deduce

Sk♯,r,s,w0
v0 ∈ V0

since ([a0 − an−1]1 + n− 1− s)2cn−1−r ̸= 0.

Corollary 4.7.29. – We have Sk♯,w0
v0 ∈ V0.

Proof. – By (4.7.2) and Proposition 4.7.25 we deduce that

Sk♯,rv0 ∈ V0 ⇒ Sk♯,r−1v0 ∈ V0

for each 2 ≤ r ≤ n−1. Then by (4.7.1) and the definition of V0, we finish the proof.

Example 4.7.30. – We will give an example to illustrate the technical results in
Proposition 4.7.13 and Proposition 4.7.25. Given a tuple k ∈ {0, 1, . . . , p−1}|Φ

+
w0
|, we

associate a matrix in U(Z) with (i, j)-entry given by ki,j for all 1 ≤ i < j ≤ n and
abuse the notation k for such a matrix. In this example, we are going to use k or the
matrix in U(Z) associated with it to represent the corresponding vector Sk,w0

v0. We
will write

k ⇒ k′
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if Sk′,w0
v0 ∈ ⟨G(Fp) · Sk,w0v0⟩. We consider the special case n = 5 and r = 1 from

now on, and our goal here is to illustrate the proof of
(4.7.31)

k♯,1,s−1 =


1 k0 − s+ 1 0 0 s− 1

1 0 0 k0 − s+ 1

1 0 0

1 0

1

⇒ k♯,1,s =


1 k0 − s 0 0 s

1 0 0 k0 + s

1 0 0

1 0

1


intuitively for all 0 ≤ s ≤ k0 where k0 = 3 + [a0 − a4]1. We firstly observe that

I1 = {(5)}, I2 \ I1 = {(4, 5)} and I3 \ I2 = {(3, 5), (3, 4, 5)}.

The first step towards (4.7.31) is to apply X+
2 •X

−
2 to k♯,1,s−1 (as a special case of

Corollary 4.7.5) and obtain

X+
2 •X

−
2 · k

♯,1,s−1 = (k0 − s)2Y0 + ([a3 − a4]1 − s)(k0 + 1− s)k♯,1,s−1(4.7.32)

+ (k0 − s)
3∑

ℓ=2

(a3 − aℓ−1 + k0 − s) · Yℓ

where we have

Y0 := −


1 k0 − s 0 0 s

1 0 0 k0 − s
1 0 0

1 0

1

+


1 k0 − s 0 1 s− 1

1 0 0 k0 − s
1 0 0

1 1

1



+


1 k0 − s 1 0 s− 1

1 0 0 k0 − s
1 0 1

1 0

1

−


1 k0 − s 1 0 s− 1

1 0 0 k0 − s
1 1 0

1 1

1

 ,

Y2 :=


1 k0 − s+ 1 0 0 s− 1

1 0 1 k0 − s
1 0 0

1 1

1

 ,
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and

Y3 :=


1 k0 − s+ 1 0 0 s− 1

1 1 0 k0 − s
1 0 1

1 0

1

−


1 k0 − s+ 1 0 0 s− 1

1 1 0 k0 − s
1 1 0

1 1

1

 .

Note that the terms in Y0 (resp. the terms in Yℓ) are indexed by I3 (resp. by Iℓ \ Iℓ−1

for ℓ = 2, 3). Then we apply Z1 to each of Y0, k♯,1,s−1, Y2 and Y3 and obtain

Z1 · k♯,1,s−1 = c′1k
♯,1,s−1, Z1 · Y2 = c1k

♯,1,s−1,

Z1 · Y3 = (c′1 − c1) ·


1 k0 − s+ 1 0 0 s− 1

1 1 0 k0 − s
1 0 1

1 0

1


and

Z1 · Y0 = (c′1 − c1)

−k
♯,1,s +


1 k0 − s 1 0 s− 1

1 0 0 k0 − s
1 0 1

1 0

1



 ,

where c′1 = a1 − a0 − 1 and c1 = 1. Then we apply Z2 and obtain
(4.7.33)
Z2•Z1·k♯,1,s−1 = c′2c

′
1k

♯,1,s−1, Z2•Z1·Y2 = c′2k
♯,1,s−1, Z2•Z1·Y3 = c2(c

′
1−c1)k

♯,1,s−1

and

(4.7.34) Z2 • Z1 · Y0 = −(c′2 − c2)(c
′
1 − c1)k

♯,1,s

where we have c2 = a1−a0−2 and c′2 = (a2−a0)(a1−a0−2). By combining (4.7.32),
(4.7.33) and (4.7.34), we deduce that

Z2 • Z1 •X+
2 •X

−
2 · k

♯,1,s−1 = Ck♯,1,s−1 − (k0 + 1− s)2c3k
♯,1,s

for c3 = (a1 − a0 − 2)2(a2 − a0 − 1) and a certain constant C ∈ Fp, which implies
(4.7.31). If we consider the subspace V of π0 spanned by the various k (namely
Sk,w0

v0) appearing in (4.7.32), then Z1 and Z2 • Z1 induce maps in EndFp
(V ). In
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fact, the image of Z1 is spanned by

k♯,1,s, k♯,1,s−1,


1 k0 − s+ 1 0 0 s− 1

1 1 0 k0 − s
1 0 1

1 0

1

 and


1 k0 − s 1 0 s− 1

1 0 0 k0 − s
1 0 1

1 0

1


while the image of Z2 • Z1 is simply spanned by k♯,1,s and k♯,1,s−1.

Remark 4.7.35. – If we view the procedure of applying a group operator of the form

CId−X+
r •X−

r

(for some 2 ≤ r ≤ n − 1 and a certain constant C ∈ Fp) as an elementary opera-
tion, then Zℓ is the composition of 2ℓ−1 such elementary operations by definition. In
particular, we need to apply such elementary operations 2n−2−r times in the proof
of Proposition 4.7.25. Such complexity is hidden in the inductive definition of Zℓ

for 1 ≤ ℓ ≤ n− 2.

We write β for
∑n−1

r=1 αr to lighten the notation.

Lemma 4.7.36. – Given a Jacobi sum Sk,w0 , we have

Xβ,k1,n
• Sk,w0

= (−1)k1,n+1Sk′,w0
,

where k′ = (k′i,j) satisfies k′1,n = 0 and k′i,j = ki,j otherwise.

Proof. – This is a special case of Lemma 4.1.6 when α0 = β and m = k1,n.

From now on, whenever we want to view the notation µw0
0 as a weight, namely to

fix a lift of µw0
0 ∈ X(T )/(p− 1)X(T ) into Xreg

1 (T ), we always mean

µw0
0 = (a0 + p− 1, an−2, . . . , a1, an−1 − p+ 1) ∈ X(T ).

In particular, we have
(1, n) · µw0

0 + pβ = µ∗.

We recall the operators Xalg
β,k from the beginning of Chapter 4.

Lemma 4.7.37. – For 1 ≤ r ≤ n− 1, we have the following equalities on H0(µw0
0 )µ∗ :

Xβ,k = −Xalg
β,k

for all 1 ≤ k ≤ p− 1.
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Proof. – Note that we have

µw0
0 − (µ∗ + kβ) = ([a0 − an−1]1 + n− 2− k, 0, . . . , 0, k − ([a0 − an−1]1 + n− 2)).

Therefore µw0
0 − (µ∗ + kβ) /∈

∑
α∈Φ+ Z≥0α as long as k > [a0 − an−1]1 + n − 2.

As (an−1, . . . , a0) is assumed to be n-generic in the lowest alcove throughout this
section, we deduce that

(4.7.38) µw0
0 − (µ∗ + kβ) /∈

∑
α∈Φ+

Z≥0α for all k ≥ p− 1.

Note by the definition (4.0.1) that the image of Xalg
β,k lies inside H0(µw0

0 )µ∗+kβ , which
is zero by (4.7.38) assuming k ≥ p− 1. Hence we deduce that

Xalg
β,k = 0 on H0(µw0

0 )µ∗ for all k ≥ p− 1.

Then the conclusion of this lemma follows from the equality (4.1.5).

We have a natural embedding H0(µw0
0 ) ↪→ π0 by the definition of algebraic induc-

tion and parabolic induction. Recall that we have defined U1 in Example 4.1.18.

Lemma 4.7.39. – We have

Fp[Sk♯,w0
v0] = H0(µw0

0 )U1
µ∗ .

In particular,
V ♯ ⊆ H0(µw0

0 ).

Proof. – It follows from Corollary 4.5.5 that

dimFp
H0(µw0

0 )U1
µ∗ = 1,

and this space is generated by valg
{n−1},m♯ where

(4.7.40) m♯ = (m♯
1, . . . ,m

♯
n−1) := (0, . . . , 0, [a0 − an−1]1 + n− 2).

We now need to identify the vector valg
{n−1},m♯ with certain linear combination of

Jacobi sums. Note that by Corollary 4.5.5 we have

valg
{n−1},m♯ = Dan−1−p+1

n Da1−a0−n+2
n−1 (D{n−1},n−1)

[a0−an−1]1+n−2D
[a0−an−2]1
1

n−2∏
i=2

D
an−i−an−i−1

i .

Given a matrix A ∈ G(Fp), then Di(A) ̸= 0 for all 1 ≤ i ≤ n− 1 if and only if

A ∈ B(Fp)w0B(Fp),

and thus the support of valg
{n−1},m♯ is contained in B(Fp)w0B(Fp). As a result, accord-

ing to Proposition 4.1.12, we know that valg
{n−1},m♯ is a linear combination of vectors

of the form
Sk,w0

v0.
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As valg
{n−1},m♯ is U1-invariant, and in particular U1(Fp)-invariant, then by Proposi-

tion 4.1.25 we know that it has the form

(4.7.41)
∑

k

CkSk,w0
v0,

where we sum over tuples k satisfying k1,n = [a0 − an−1]1 + n − 2, k1,j = 0 or p − 1

for 2 ≤ j ≤ n−1 and ki,j = 0 for all 2 ≤ i < j ≤ n, and Ck ∈ Fp is a certain constant
for each tuple k.

Finally, note that

uβ(t) valg
{n−1},m♯ = Dan−1−p+1

n Da1−a0−n+2
n−1 (D{n−1},n−1 + tDn−1)

[a0−an−1]1+n−2

·D[a0−an−2]1
1

n−2∏
i=2

D
an−i−an−i−1

i

is a polynomial of t with degree [a0 − an−1] + n− 2, we conclude that

Xalg
β,[a0−an−1]1+n−2 v

alg
{n−1},m♯ = valg

{n−1},0

where 0 is the (n− 1)-tuple with all entries zero.
By Lemma 4.7.37 and the fact that

Fp[v
alg
{n−1},0] = Fp[S0,w0

v0] = π
U(Fp),µ

w0
0

0 ,

we deduce that
Xβ,[a0−an−1]1+n−2 v

alg
{n−1},m♯ = C ′S0,w0

v0

for some constant C ′ ∈ F×p . By Lemma 4.7.36 and the linear independence of Jacobi
sums proved in Proposition 4.1.12, we know that only the vector Ck♯Sk♯,w0

v0 can
appear in the sum (4.7.41). In other words, we have shown that

valg
{n−1},m♯ = C ′′Sk♯,w0

v0

for some constant C ′′ ∈ F×p , and thus we finish the proof.

Lemma 4.7.42. – The dual Weyl module H0(µw0
0 ) is uniserial of length two with socle

F (µw0
0 ) and cosocle F (µ∗).

Proof. – By [43] Proposition II 2.2 we know that socG

(
H0(µw0

0 )
)

is irreducible and
can be identified with F (µw0

0 ) (which is in fact the definition of F (µw0
0 )). Therefore it

suffices to show that H0(µw0
0 ) has only two Jordan-Hölder factor F (µw0

0 ) and F (µ∗),
each of which has multiplicity one.

By [43] II 2.13 (2) it is harmless for us to replace H0(µw0
0 ) by the Weyl module

V (µw0
0 ) (defined in [43] II 2.13 ) and show that V (µw0

0 ) has only two Jordan-Hölder
factor F (µw0

0 ) and F (µ∗) and each of them has multiplicity one. As
p <

〈
µw0

0 , (
∑n−1

i=1 αi)
∨
〉

< 2p;

0 <
〈
µw0

0 , (
∑n−2

i=1 αi)
∨
〉

< p;

0 <
〈
µw0

0 , (
∑n−1

i=2 αi)
∨
〉

< p,
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we deduce that the only dominant alcove lying below the one containing µw0
0 is the

lowest p-restricted alcove. In particular, the only dominant weight which is linked to
and strictly smaller than µw0

0 is µ∗.
By [43] Proposition II 8.19, we know the existence of a filtration of subrepresenta-

tion
V (µw0

0 ) ⊇ V1(µ
w0
0 ) ⊇ · · ·

such that the following equality in Grothendieck group holds∑
i>0

Vi(µ
w0
0 ) = F (µ∗).

This equality implies that

V1(µ
w0
0 ) = F (µ∗)

and

Vi(µ
w0
0 ) = 0 for all i ≥ 2.

By [43] II 8.19 (2) we also know that

V (µw0
0 )/V1(µ

w0
0 ) ∼= F (µw0

0 ),

and thus we have shown that

V (µw0
0 ) = F (µw0

0 ) + F (µ∗)

in the Grothendieck group.

Proposition 4.7.43. – We have

V ♯ = H0(µw0
0 ).

Proof. – By Lemma 4.7.42, we have the natural surjection

H0(µw0
0 ) ↠ F (µ∗)

which induces a morphism

H0(µw0
0 )µ∗ → F (µ∗)µ∗ .

Now we consider H0(µw0
0 ) as a L1-representation where L1

∼= Gm × GLn−1 is the
standard Levi subgroup of G which contains U1 as a maximal unipotent subgroup.
We denote the set of λ ∈ X(T ) which is dominant while viewed as a weight of L1

by XL1(T )+. Then we use the notation H0
L1

(λ) for the dual Weyl module of L1 which
is defined via the same way as the dual Weyl module of G determined by a weight
in X(T )+ (cf. the beginning of Chapter 4). The dual Weyl module H0(µw0

0 ) is the
mod p reduction of a lattice VZp

in the unique irreducible algebraic representation

VQp
of G such that

(
V U
Qp

)
µ

w0
0

̸= 0. As the category of finite dimensional algebraic

representations of L1 in characteristic 0 is semisimple, VQp
decomposes into a direct
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sum of characteristic 0 irreducible representations of L1. More precisely, we have the
decomposition

VQp |L1
=

⊕
λ∈XL1

(T )+

(VQp )
U1
λ ̸=0

mλVL1
(λ),

where VL1
(λ) is the unique (up to isomorphism) irreducible algebraic representation

of L1 such that
(
VL1(λ)U1

)
λ
̸= 0 and

mλ := dimQp

(
V U1

Qp

)
λ
.

Therefore in the Grothendieck group of algebraic representations of L1 over Fp, we
have

(4.7.44) [H0(µw0
0 )]|L1

=
⊕

λ∈XL1
(T )+

H0(µ
w0
0 )

U1
λ ̸=0

mλ[H0
L1

(λ)]

as by Corollary 4.5.5H0(µw0
0 )U1 is the mod p reduction of V U1

Zp
and V U1

Zp
⊗ZpQp = V U1

Qp
.

We use the notation W̃L1 for the affine Weyl group associated with the group L1.
We say that

µ∗ ↑L1
λ

if there exists w̃ ∈ W̃L1 such that

λ = w̃ · µ∗ and µ∗ ≤ λ.

Assume that there exists a λ ∈ XL1
(T )+ such that µ∗ ↑L1

λ and that H0(µw0
0 )U1

λ ̸= 0.
We denote by valg

{n−1},m the vector in H0(µw0
0 )U1

λ ̸= 0 given by Corollary 4.5.5. We

note that by Corollary 4.5.5 the vector in H0(µw0
0 )U1

µ∗ is valg
{n−1},m♯ (see (4.7.40)).

As µ∗ ↑L1
λ, we must firstly have

∑n−1
i=1 mi = [a0 − an−1]1 + n − 2. By the last

statement in Corollary 4.5.5, we have

λ =

(
a0 + p− 1−

n−1∑
i=1

mi, an−2 +m1, . . . , a1 +mn−2, an−1 − p+ 1 +mn−1

)(4.7.45)

= (an−1 − n+ 2, an−2 +m1, . . . , a1 +mn−2, an−1 − p+ 1 +mn−1).

Recall η = (n− 1, n− 2, . . . , 1, 0). We notice that µ∗− η lies in the lowest p-restricted
L1-alcove in the sense that

(4.7.46) 0 < ⟨µ∗, α∨⟩ < p for all α ∈ Φ+
L1
,

where Φ+
L1

is the set of positive roots of L1 naturally viewed as a subset of Φ+.
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As we assume that (an−1, . . . , a0) is n-generic, it is easy to see the following
an−2 +m1 − (an−1 − p+ 1 +mn−1) ≤ p+ 1 + an−2 − an−1 +m1 < 2p;

an−2 +m1 − (a1 +mn−2) ≤ an−2 +m1 − a1 ≤ [a0 − a1]1 < p;

an−3 +m2 − (an−1 − p+ 1 +mn−1) ≤ [an−3 − an−1]1 +m2 ≤ [an−2 − an−1]1 < p,

so that we know that λ− η lies in either the lowest L1-alcove in the sense of (4.7.46)
(if we replace µ∗ by λ) or the p-restricted L1-alcove described by the conditions

p <

〈
λ,
(∑n−1

i=2 αi

)∨〉
< 2p

0 <

〈
λ,
(∑n−2

i=2 αi

)∨〉
< p

0 <

〈
λ,
(∑n−1

i=3 αi

)∨〉
< p

and
0 < ⟨λ, α∨⟩ < p for all α ∈ ∆L1

where ∆L1 := {αi | 2 ≤ i ≤ n− 1} is the set of simple positive roots in Φ+
L1

.

In the first case, if λ − η lies in the lowest L1-alcove, as we assume that µ∗ ↑L λ,
we must have λ = µ∗; in the second case, we must have

λ = (2, n) · µ∗ + p

(
n−1∑
i=2

αi

)
= (an−1 − n+ 2, a0 + p, an−3, . . . , a1, an−2 + n− 2− p)

which means by (4.7.45) that

m = (m1, . . . ,mn−1) = ([a0 − an−2]1 + 1, 0, . . . , 0, an−2 − an−1 + n− 3).

This implies an−2 − an−1 + n − 1 = mn−1 ≥ 0, which is a contradiction to the
n-generic assumption on (an−1, . . . , a0). Therefore we must have λ = µ∗. Hence we
deduce by (4.7.44) and the strong linkage principle [43] II 2.12 (1) that FL1(µ∗) (see
the beginning of Chapter 5 for notation) has multiplicity one in JHL1

(H0(µw0
0 )|L1

)

and is actually a direct summand.
On the other hand, as FL1(µ∗) is obviously an L1-subrepresentation of F (µ∗),

we know that the surjection of G-representation H0(µw0
0 ) ↠ F (µ∗) induces an iso-

morphism of L1-representation on the direct summand FL1(µ∗) on both sides with
multiplicity one, by restriction from G to L1. In particular, we know that the map

H0(µw0
0 )U1

µ∗ → F (µ∗)µ∗

is a bijection, and therefore the composition

V ♯ ↪→ H0(µw0
0 ) ↠ F (µ∗)

is non-zero as
H0(µw0

0 )U1
µ∗ = Fp[v

alg
{n−1},m♯ ] = Fp[Sk♯,w0

v0]
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by Lemma 4.7.39. Hence we obtain a surjection

(4.7.47) V ♯ ↠ F (µ∗),

which implies that the injection

V ♯ ↪→ H0(µw0
0 )

must be an isomorphism as it induces surjection on cosocle according to Lemma 4.7.42
and (4.7.47). The proof is thus finished.

Theorem 4.7.48. – Assume that (an−1, . . . , a0) is n-generic in the lowest alcove (cf.
Definition 4.1.1). Then H0(µw0

0 ) ⊆ V0. In particular, we have

F (µ∗) ∈ JH(V0).

Proof. – The first inclusion is a direct consequence of Proposition 4.7.43 together
with Corollary 4.7.29. The second inclusion follows from the first as we have
F (µ∗) ∈ JH(H0(µw0

0 )).

Before we end this section, we need several remarks to summarize the proof, and
to clarify the necessity for all the constructions.

Remark 4.7.49. – If we assume that for all 2 ≤ k ≤ n− 2

(4.7.50) [a0 − an−1]1 + n− 2 < ak − ak−1,

then we can actually show that

Sk0,w0
v0 ∈ H0(µw0

0 )
[U,U ]
µ∗

using Corollary 4.1.24 and the case s = n− 1 of Proposition 4.5.2, and thus

V0 = H0(µw0
0 ).

Moreover, under the condition (4.7.50), we can even prove that the set

{Sk,w0v0 | k ∈ Λw0}
forms a basis for H0(µw0

0 )µ∗ .
On the other hand, if we have

[a0 − an−1]1 + n− 2 ≥ ak − ak−1

for some 2 ≤ k ≤ n− 2, then we can show that

F (µskw0
0 ) ∈ JH(V0)

which means that the inclusion

H0(µw0
0 ) ⊆ V0

is actually strict.
In fact, through the proof of Proposition 4.7.25, the subrepresentation of π0 gen-

erated by Sk♯,r,sv0 is shrinking if r is fixed and s is growing. Therefore the subrepre-
sentation of π0 generated by Sk♯,rv0 shrinks as r decreases. Finally, we succeeded in
shrinking from V0 to V ♯ which can be identified with H0(µw0

0 ).
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Remark 4.7.51. – We need to emphasize that the choice of the operators X+
r and

X−
r for 2 ≤ r ≤ n− 1 are crucial. For example, the operator∑

t∈Fp

tp−2w0uαr (t)w0 ∈ Fp[G(Fp)]

for some 2 ≤ r ≤ n− 2 does not work in general. The reason is that, as one can check
by explicit computation, applying such operator to Skw0

v0 for some k ∈ Λw0
will

generally give us a huge linear combination of Jacobi sum operators. From our point
of view, it is basically impossible to compute such a huge linear combination explicitly
and systematically. Instead, as stated in Proposition 4.6.20, our operatorsX+

r andX−
r

can be computed systematically, even though the computation is still complicated.
The motivation of the choice of operators X+

r and X−
r can be roughly explained

as follows. First of all, we need one ‘weight raising operator’ X+ and one ‘weight
lowering operator’ X−. These are two operators lying in a subalgebra Fp⟨X+, X−⟩
of Fp[G(Fp)] such that

Fp⟨X+, X−⟩ ∼= Fp[GL2(Fp)].

We start with the vector Sk,w0v0 for some k ∈ Λw0 . We apply the operator X− once
and then X+ once, the result is a vector with the same T (Fp)-eigencharacter µ∗.
We observe that Sk,w0

v0 is in general not an eigenvector of the operator X+ • X−

because the representation π0, after restricting from Fp[G(Fp)] to Fp⟨X+, X−⟩, is
highly non-semisimple. The naive expectation is that we just take the difference

X+ •X− • Sk,w0v0 − cSk,w0v0

for some constant c ∈ Fp, and then repeat the procedure by applying some other
operators similar to X+ and X−.

The case n = 3 is easy. In the case n = 4, the operator∑
t∈Fp

tp−2w0uα2
(t)w0 ∈ Fp[GL4(Fp)]

is not well behaved as we explained in this remark, and therefore we are forced to use
our X−

2 to replace
∑

t∈Fp
tp−2w0uα2(t)w0.

Now we consider the general case, and it is possible for us to carry on an induction
step. We have an increasing sequence of subgroups of G

P {n−1} ⊊ P {n−2,n−1} ⊊ · · · ⊊ P {2,...,n−1}

and
L{n−1} ⊊ L{n−2,n−1} ⊊ · · · ⊊ L{2,...,n−1}

where P {r,...,n−1} is the standard parabolic subgroup corresponding to the simple
roots αk for r ≤ k ≤ n − 1 and L{r,...,n−1} is its standard Levi subgroup. Tech-
nically speaking, constructing the vector Sk♯,r+1,w0

v0 (for some 1 ≤ r ≤ n − 2)
from Sk0,w0

v0 should be reduced to Corollary 4.7.29 when we replace G by its Levi
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subgroup L{r+1,...,n−1}. In other words, to construct Sk♯,r+1,w0
v0 from Sk0,w0

v0 we
only need the operators

X+
k , X

−
k ∈ Fp[L{r+2,...,n−1}(Fp)] ⊊ Fp[L{r+1,...,n−1}(Fp)]

for all r + 2 ≤ k ≤ n− 1.
In order to construct Sk♯,r,w0

v0 from Sk♯,r+1,w0
v0, we only need to prove Proposi-

tion 4.7.25. Then we summarize the proof of Proposition 4.7.25 as the following: for
some a ∈ F×p and b ∈ Fp

X+
r+1 •X

−
r+1 • Sk♯,r,s−1,w0

v0 ≡ aSk♯,r,s,w0
v0 + bSk♯,r,s−1,w0

v0 + error terms

and the error terms can be killed by combinations of the operators X+
k , X

−
k

for r + 2 ≤ k ≤ n− 1.

4.8. Main results in characteristic p

In this section, we summary our main results on certain Jacobi sum operators in
characteristic p.

We recall two important Jacobi sum operators Sn and S ′n from (4.4.18) and recall
from (4.7.3) that V0 is the sub-representations of π0 generated by

Sk0,w0

(
π

U(Fp),µ0

0

)
.

We also define V1 and V ′1 as the sub-representations of π0 generated by

Sn

(
π

U(Fp),µ1

0

)
and S ′n

(
π

U(Fp),µ′1
0

)
respectively.

The following theorem, which we usually call the non-vanishing theorem, is a tech-
nical heart on the local automorphic side. The proofs of this non-vanishing theorem
as well as the next theorem, which we usually call the multiplicity one theorem, have
occupied the previous sections.

Theorem 4.8.1. – Assume that (an−1, . . . , a0) is n-generic in the lowest alcove.
Then we have

V1 = V ′1 = V0

and
F (µ∗) ∈ JH(V0).

Proof. – This is an immediate consequence of Corollary 4.4.19 and Theorem 4.7.48.

We also have the following multiplicity one result.

Theorem 4.8.2. – Assume that (an−1, . . . , a0) is 2n-generic in the lowest alcove.
Then F (µ∗) has multiplicity one in π0.

Proof. – This is a special case of Corollary 4.3.9: replace µ0,n−1
π with µ∗.
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Corollary 4.8.3. – Assume that (an−1, . . . , a0) is 2n-generic in the lowest alcove
and that τ is an OE-lattice in π̃◦0 ⊗OE

E such that

socG(Fp) (τ ⊗OE
F) = F (µ∗).

Then we have

Sn

(
(τ ⊗OE

F)U(Fp),µ1

)
̸= 0 and S ′n

(
(τ ⊗OE

F)U(Fp),µ′1

)
̸= 0.

Proof. – Such a τ is unique up to homothety by Theorem 4.8.2. By multiplying a
suitable power of ϖE , we may assume that

π̃◦0 ⊊ τ and π̃◦0 ⊈ ϖτ,

and thus we have a non-zero morphism

π0 → τ ⊗OE
F

whose image is the unique quotient of π0 with socle F (µ∗). We now finish the proof
by applying Theorem 4.8.1.

Remark 4.8.4. – Theorem 4.8.1 and Corollary 4.8.3 can be generalized to the case
when µ∗ is replaced by any weight lying sufficiently deep in an arbitrary p-restricted
alcove except the highest one. The crucial points here are the [U(Fp), U(Fp)]-invari-
ance of Sn (resp. S ′n) and that τ (in Corollary 4.8.3) is one of the simplest lattices
of π̃◦0 ⊗OE

E apart from those coming from parabolic inductions from B(Fp).
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CHAPTER 5

MOD p LOCAL-GLOBAL COMPATIBILITY

In this chapter, we state and prove our main results on mod p local-global compat-
ibility, which is a global application of our local results of Chapters 3 and 4. In the
first two sections, we recall some necessary known results on algebraic automorphic
forms and Serre weights, for which we closely follow [25], [39], and [1].

We first fix some notation for the whole chapter. Let P ⊇ B be an arbitrary
standard parabolic subgroup and N its unipotent radical. We denote the opposite
parabolic by P− := w0Pw0 with corresponding unipotent radical N− := w0Nw0. We
fix a standard choice of Levi subgroup L := P ∩ P− ⊆ G. We denote the positive
roots of L defined by the pair (B ∩ L, T ) by Φ+

L . We use

XL(T )+ := {λ ∈ X(T ) | ⟨λ, α∨⟩ ≥ 0 for all α ∈ Φ+
L}

to denote the set of dominant weights with respect to the pair (B ∩L, T ). We denote
the Weyl group of L by WL and identify it with a subgroup of W . The longest
Weyl element in WL is denoted by wL

0 . We define the affine Weyl group W̃L of L as
the semi-direct product of WL and X(T ) with respect to the natural action of WL

on X(T ). Therefore W̃L has a natural embedding into W̃ . We define the groups G,
P , L, . . . to be the base change of G, P , L, . . . to Fp, respectively.

We also need to define several open compact subgroups of L(Qp). We define

KL := L(Zp),

and via the mod p reduction map

redL : KL = L(Zp) ↠ L(Fp)

we also define KL(1), IL(1), and IL as follows:

KL(1) := (redL)−1(1) ⊆ IL(1) := (redL)−1(U(Fp) ∩ L(Fp))

⊆ IL := (redL)−1(B(Fp) ∩ L(Fp)).

For any dominant weight λ ∈ X(T )+, we let

H0
L(λ) :=

(
IndL

B∩L
wL

0 λ
)alg

/Fp
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be the associated dual Weyl module of L. We also write FL(λ) := socL

(
H0

L(λ)
)

for
its irreducible socle as an algebraic representation of L. Through a similar argument
presented at the beginning of Chapter 4, the notation FL(λ) is well defined as an
irreducible representation of L(Fp) if λ ∈ T (Fp) is p-regular, namely lies in the
image of Xreg

1 (T )→ X(T )/(p−1)X(T ). We will sometimes abuse the notation FL(λ)

for FL(λ)⊗Fp
F or FL(λ) for FL(λ)⊗Fp

Fp in the literature. We will emphasize the
abuse of the notation FL(λ) each time we do so.

We introduce some specific standard parabolic subgroups of G. Fix integers i0 and
j0 such that 0 ≤ j0 < j0 +1 < i0 ≤ n−1, and let i1 and j1 be the integers determined
by the equation

(5.0.1) i0 + i1 = j0 + j1 = n− 1.

We let Pi1,j1 ⊃ B be the standard parabolic subgroup of G = GLn corresponding
to the subset {αk | j0 + 1 ≤ k ≤ i0} of ∆. By specifying the notation for gen-
eral P to Pi1,j1 , we can define P−i1,j1

, Li1,j1 , Ni1,j1 and N−
i1,j1

. We can naturally embed
GLj1−i1+1 into G with its image denoted by Gi1,j1 such that Li1,j1 = Gi1,j1T :

GLj1−i1+1
∼→ Gi1,j1 ↪→ Li1,j1 ↪→ Pi1,j1 ↪→ G.

We define Ti1,j1 to be the maximal tori of Gi1,j1 that is contained in T , and define
X(Ti1,j1) to be the character group of Ti1,j1 . If i1 and j1 are clear from the context (or
equivalently i0 and j0 are clear) then we often write P , P− L, N , and N− for Pi1,j1 ,
P−i1,j1

, Li1,j1 , Ni1,j1 , and N−
i1,j1

, respectively.

5.1. The space of algebraic automorphic forms

Let F/Q be a CM field with maximal totally real subfield F+. We write c for the
generator of Gal(F/F+), and let S+

p (resp. Sp) be the set of places of F+ (resp. F )
above p. For v (resp. w) a finite place of F+ (resp. F ) we write kv (resp. kw) for the
residue field of F+

v (resp. Fw).
From now on, we assume that

— F/F+ is unramified at all finite places;

— p splits completely in F .

Note that the first assumption above excludes F+ = Q. We also note that the sec-
ond assumption is not essential in this section, but it is harmless since we are only
interested in GQp -representations in this paper. Every place v of F+ above p further
decomposes and we often write v = wwc in F .

There exists a reductive group Gn/F+ satisfying the following properties (cf. [1],
Section 2):

— Gn is an outer form of GLn with Gn/F
∼= GLn/F ,

— Gn is a quasi-split at any finite place of F+;

— Gn(F+
v ) ≃ Un(R) for all v|∞.
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By [17], Section 3.3, Gn admits an integral model Gn over OF+ such that
Gn ×OF+ OF+

v
is reductive if v is a finite place of F+ which splits in F . If v is

such a place and w is a place of F above v, then we have an isomorphism

ιw : Gn(OF+
v

)
∼→ Gn(OFw

)
∼→ GLn(OFw

).

We fix this isomorphism for each such place v of F+.
Define F+

p := F+⊗QQp and OF+,p := OF+⊗ZZp. If W is an OE-module endowed
with an action of Gn(OF+,p) and U ⊂ Gn(A∞,p

F+ ) × Gn(OF+,p) is a compact open
subgroup, the space of algebraic automorphic forms on Gn of level U and coefficients
in W , which is also an OE-module, is defined as follows:

S(U,W ) :=
{
f : Gn(F+)\Gn(A∞

F+)→W | f(gu) = u−1
p f(g) ∀ g ∈ Gn(A∞

F+), u ∈ U
}

with the usual notation u = upup for u ∈ U .
We say that the level U is sufficiently small if

t−1Gn(F+)t ∩ U

has finite order prime to p for all t ∈ Gn(A∞
F+). We say that U is unramified at a

finite place v of F+ if it has a decomposition

U = Gn(OF+
v

)Uv

for some compact open Uv ⊂ Gn(A∞,v
F+ ). If w is a finite place of F , then we say, by

abuse of notation, that w is an unramified place for U or U is unramified at w if U is
unramified at w|F+

.
For a compact open subgroup U of Gn(A∞,p

F+ )× Gn(OF+,p), we let PU denote the
set consisting of finite places w of F such that

— w|F+
is split in F ,

— w /∈ Sp,

— U is unramified at w.

For a subset P ⊆ PU of finite complement and closed with respect to complex con-
jugation we write TP = OE [T

(i)
w , w ∈ P, i ∈ {0, 1, . . . , n}] for the universal Hecke

algebra on P, where the Hecke operator T (i)
w acts on S(U,W ) via the usual double

coset operator

ι−1
w

[
GLn(OFw)

(
ϖwIdi 0

0 Idn−i

)
GLn(OFw)

]
,

where ϖw is a uniformizer of OFw
and Idi is the identity matrix of size i. The Hecke

algebra TP naturally acts on S(U,W ).
Recall that we assume that p splits completely in F . Following [25], Section 7.1

we consider the subset (Zn
+)

Sp

0 consisting of dominant weights a = (aw)w where
aw = (a1,w, a2,w, . . . , an,w) satisfying

(5.1.1) ai,w + an+1−i,wc = 0
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for all w ∈ Sp and 1 ≤ i ≤ n. We let

Waw
:= Maw

(OFw
)⊗OFw

OE ,

where Maw
(OFw

) is the OFw
-specialization of the dual Weyl module associated

to aw (cf. [25], Section 4.1.1); by condition (5.1.1), one deduces an isomor-
phism of Gn(OF+

v
)-representations Waw

◦ ιw ∼= Wawc ◦ ιwc . Therefore, by letting
Wav

:= Waw
◦ ιw for any place w|v, the OE-representation of Gn(OF+,p)

Wa :=
⊗
v|p

Wav

is well-defined.
For a weight a ∈ (Zn

+)
Sp

0 , let us write Sa(Qp) to denote the inductive limit of the
spaces S(U,Wa)⊗OE

Qp over the compact open subgroups U ⊂ Gn(A∞,p
F+ )× Gn(OF+,p).

(Note that the transition maps are induced, in a natural way, from the inclusions
between levels U .) Then Sa(Qp) has a natural left action of Gn(A∞

F+) induced by
right translation of functions.

We briefly recall the relation between the space A of classical automorphic forms
and the previous spaces of algebraic automorphic forms in the particular case which
is relevant to us. Fix an isomorphism ı : Qp

∼→ C for the rest of the paper. As we did
for the OFw

-specialization of the dual Weyl modules, we define a finite dimensional
Gn(F+ ⊗Q R)-representation σa

∼=
⊕

v|∞ σav
with C-coefficients. (We refer to [25],

Section 7.1.4 for the precise definition of σa.)

Lemma 5.1.2 ([25], Lemma 7.1.6). – The isomorphism ı : Qp
∼→ C induces an iso-

morphism of smooth Gn(A∞
F+)-representations

Sa(Qp)⊗Qp,ı C
ı−→ HomGn(F+⊗QR)(σ

∨
a ,A)

for any a ∈ (Zn
+)

Sp

0 .

The following theorem guarantees the existence of Galois representations attached
to automorphic forms on the unitary group Gn. We let | | 1−n

2 : F× → Q
×
p denote the

unique square root of | |1−n whose composite with ι : Qp
∼→ C takes positive values.

Theorem 5.1.3 ([25], Theorem 7.2.1). – Let Π be an irreducible Gn(A∞
F+)-subrepre-

sentation of Sa(Qp).
Then there exists a continuous semisimple representation

rΠ : GF → GLn(Qp)

such that

(i) rc
Π ⊗ εn−1 ∼= r∨Π;

(ii) for each place w above p, the representation rΠ|GFw

is de Rham with Hodge-Tate
weights

HT(rΠ|GFw

) = {a1,w + (n− 1), a2,w + (n− 2), . . . , an,w};
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(iii) if w|p is a place of F and v := w|F+
splits in F , then

WD(rΠ|GFw

)F−ss ∼= recw((Πv ◦ ι−1
w )⊗ | · |

1−n
2 ).

We note that the fact that (iii) holds without semi-simplification on the automor-
phic side is one of the main results of [13]. We also note that property (iii) says that
the restriction to GFw

is compatible with the local Langlands correspondence at w,
which is denoted by recw.

5.2. Serre weights and potentially crystalline lifts

In this section, we recall the relation of Serre weights and potentially crystalline
lifts via (inertial) local Langlands correspondence.

Definition 5.2.1. – A Serre weight for Gn is an isomorphism class of an irreducible
smooth Fp-representation V of Gn(OF+,p). If v is a place of F+ above p, then a Serre
weight at v is an isomorphism class of an irreducible Fp-smooth representation Vv

of Gn(OF+
v

). Finally, if w is a place of F above p, a Serre weight at w is an isomorphism
class of an irreducible Fp-smooth representation Vw of GLn(OFw

).

We will often say a Serre weight for a Serre weight for Gn if Gn is clear from the
context. A smooth representation defined over a finite extension of Fp is often called
a Serre weight if it is absolutely irreducible. Note that if Vv is a Serre weight at v,
there is an associated Serre weight at w above v defined by Vv ◦ ι−1

w .
As explained in [25], Section 7.3, a Serre weight V admits an explicit description in

terms of GLn(kw)-representations. More precisely, let w be a place of F above p and
write v := w|F+

. For any n-tuple of integers aw := (a1,w, a2,w, . . . , an,w) ∈ Zn
+, that

is p-restricted (i.e., 0 ≤ ai,w − ai+1,w ≤ p− 1 for i = 1, 2, . . . , n− 1), we consider the
Serre weight F (aw) := F (a1,w, a2,w, . . . , an,w), as defined in [25], Section 4.1.2. It is
an irreducible Fp-representation of GLn(kw) and of Gn(kv) via the isomorphism ιw.
Note that F (a1,w, a2,w, . . . , an,w)∨ ◦ ιwc ∼= F (a1,w, a2,w, . . . , an,w) ◦ ιw as Gn(kv)-rep-
resentations, i.e., F (awc) ◦ ιwc ∼= F (aw) ◦ ιw if ai,w + an+1−i,wc = 0 for all 1 ≤ i ≤ n.
Hence, if a = (aw)w ∈ (Zn

+)
Sp

0 that is p-restricted, then we can set Fav
:= F (aw) ◦ ιw

for w|v. We also set

Fa :=
⊗
v|p

Fav
,

which is a Serre weight for Gn(OF+,p). From [25], Lemma 7.3.4 if V is a Serre weight
for Gn, there exists a p-restricted weight a = (aw)w ∈ (Zn

+)
Sp

0 such that V has a decom-
position V ∼=

⊗
v|p
Vv where the Vv are Serre weights at v satisfying Vv ◦ ι−1

w
∼= F (aw).

Recall that we write F for the residue field of E.
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Definition 5.2.2. – Let r : GF → GLn(F) be an absolutely irreducible continuous
Galois representation and let V be a Serre weight for Gn. We say that r is automorphic
of weight V (or that V is a Serre weight of r) if there exists a compact open subgroup U
in Gn(A∞,p

F ) × Gn(OF+,p) unramified above p and a cofinite subset P ⊆ PU such
that r is unramified at each place of P and

S(U, V )mr ̸= 0,

where mr is the kernel of the system of Hecke eigenvalues α : TP → F associated
to r, i.e.,

det (1− r∨(Frobw)X) =

n∑
j=0

(−1)j(NF/Q(w))(
j
2)α(T (j)

w )Xj

for all w ∈ P.

We write W (r) for the set of automorphic Serre weights of r. Let w be a place of F
above p and v = w|F+

. We also write Ww(r) for the set of Serre weights F (aw) such
that

(F (aw) ◦ ιw)⊗

 ⊗
v′∈S+

p \{v}

Vv′

 ∈W (r),

where Vv′ are Serre weights of Gn(OF+

v′
) for all v′ ∈ S+

p \{v}. We often write W (r|GFw

)

and Ww(r|GFw

) for W (r) and Ww(r) respectively, when the given r|GFw

is clearly a
restriction of an automorphic representation r to GFw .

Fix a place w of F above p and let v = w|F+
. We also fix a compact open sub-

group U of Gn(A∞,p
F ) × Gn(OF+,p) which is sufficiently small and unramified at all

places above p. We may write U = Gn(OF+
v

) × Uv. If W ′ is an OE-module with an
action of

∏
v′∈S+

p \{v} Gn(OF+

v′
), we define

S(Uv,W ′) := lim
−→
Uv

S(Uv · Uv,W
′)

where the limit runs over all compact open subgroups Uv of Gn(OF+
v

), endow-
ing W ′ with a trivial Gn(OF+

v
)-action. Note that S(Uv,W ′) has a smooth action

of Gn(F+
v ) (given by right translation) and hence of GLn(Fw) via ιw. We also note

that S(Uv,W ′) has an action of TP commuting with the smooth action of Gn(F+
v ),

where P is a cofinite subset of PU .

Lemma 5.2.3 ([25], Lemma 7.4.3). – Let U be a compact open subgroup of
Gn(A∞,p

F )× Gn(OF+,p) which is sufficiently small and unramified at all places
above p, and P a cofinite subset of PU . Fix a place w of F above p and let v = w|F+

.
Let V ∼=

⊗
v′∈S+

p
Vv′ be a Serre weight for Gn. Then there is a natural isomorphism

of TP -modules
HomGn(O

F
+
v

) (V ∨v , S(Uv, V ′))
∼→ S(U, V ),

where V ′ :=
⊗

v′∈S+
p \{v} Vv′ .
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We now recall some formalism related to Deligne-Lusztig representations from Sec-
tion 4.2. Let w be a place of F above p. For a positive integer m, let kw,m/kw be
an extension satisfying [kw,m : kw] = m, and let T be an F-stable maximal torus
in GLn/kw

where F is the Frobenius morphism. We have an identification from [38],
Lemma 4.7

T(kw)
∼−→
∏
j

k×w,nj
,

where n ≥ nj > 0 and
∑

j nj = n; the isomorphism is unique up to
∏

j Gal(kw,nj/kw)-

conjugacy. In particular, any character θ : T(kw) → Q
×
p can be written as θ = ⊗jθj

where θj : k×w,nj
→ Q

×
p is a character.

Given an F-stable maximal torus T and a primitive character θ, we consider the
Deligne-Lusztig representation Rθ

T of GLn(kw) over Qp defined in Section 4.2. Recall
from Section 4.2 that Θ(θj) is a cuspidal representation of GLnj

(kw) associated to
the primitive character θj , we have

Rθ
T
∼= (−1)n−r · Ind

GLn(kw)
Pn(kw) (⊗jΘ(θj))

where Pn is the standard parabolic subgroup containing the Levi
∏

j GLnj and r de-
notes the number of its Levi factors.

Let Fw,m := W (kw,m)[ 1p ] for a positive integer m. We consider θj as a character
onO×Fw,nj

by inflation and we define the following Galois type rec(θ) : IFw
→ GLn(Qp)

as follows:

rec(θ) :=

r⊕
j=1

 ⊕
σ∈Gal(kw,nj

/kw)

σ
(
θj ◦Art−1

Fw,nj

) ,

where θj is a primitive character on k×w,nj
of niveau nj for each j = 1, . . . , r. Re-

call that ArtFw,nj
: F×w,nj

→ W ab
Fw,nj

is the isomorphism of local class field theory,
normalized by sending the uniformizers to the geometric Frobenii.

We quickly review the inertial local Langlands correspondence. Recall that we write
recQp for the local Langlands correspondence for GLn(Qp) (cf. Theorem 5.1.3).

Theorem 5.2.4 ([14], Theorem 3.7 and [48], Proposition 2.3.4). – Let
τ : IQp → GLn(Qp) be a Galois type. Then there exists a finite dimensional ir-
reducible smooth Qp-representation σ(τ) of GLn(Zp) such that if π is any irreducible
smooth Qp-representation of GLn(Qp) then π|GLn(Zp)

contains a unique copy of σ(τ)

as a subrepresentation if and only if recQp(π)|IQp

∼= τ and N = 0 on recQp(π).

Moreover, if τ ∼=
⊕r

j=1 τj and the τj are pairwise distinct, then σ(τ) ∼= Rθ
T

and τ ∼= rec(θ) for a maximal torus T in GLn/Fp
and a primitive character

θ : T(Fp)→ Q
×
p .

The following theorem provides a connection between Serre weights and potentially
crystalline lifts, which will be useful for the main result, Theorem 5.6.3.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2022



130 CHAPTER 5. MOD p LOCAL-GLOBAL COMPATIBILITY

Theorem 5.2.5 ([48], Proposition 4.2.5). – Let w be a place of F above p, T a
maximal torus in GLn/kw

, θ =
⊗r

j=1 θj : T(kw) → Q
×
p a primitive character such

that θj are pairwise distinct, and Vw a Serre weight at w for a Galois representation
r : GF → GLn(F).

Assume that Vw is a Jordan-Hölder constituent in the mod p reduction of the
Deligne-Lusztig representation Rθ

T of GLn(kw). Then r|GFw

has a potentially crys-
talline lift with Hodge-Tate weights {−(n−1),−(n−2), . . . , 0} and Galois type rec(θ).

For a given automorphic Galois representation r : GF → GLn(F), it is quite
difficult to determine if a given Serre weight is a Serre weight of r. Thanks to the
work of [1], we have the following theorem, in which we refer the reader to [1] for the
unfamiliar terminology.

Theorem 5.2.6 ([1], Theorem 4.1.9). – Assume that if n is even then so is n[F+:Q]
2 ,

that ζp ̸∈ F , and that r : GF → GLn(F) is an absolutely irreducible representa-
tion with split ramification. Assume further that there is a RACSDC automorphic
representation Π of GLn(AF ) such that

— r ≃ rΠ;

— For each place w|p of F , rΠ|GFw

is potentially diagonalizable;

— r(GF (ζp)) is adequate.

If a = (aw)w ∈ (Zn
+)

Sp

0 and for each w ∈ Sp r|GFw

has a potentially diagonalizable
crystalline lift with Hodge-Tate weights {a1,w + (n − 1), a2,w + (n − 2), . . . , an−1,w +

1, an,w}, then a Jordan-Hölder factor of Wa ⊗Zp F is a Serre weight of r.

5.3. Weight elimination and automorphy of a Serre weight

In this section, we state our main conjecture for weight elimination (Conjec-
ture 5.3.2) which will be a crucial assumption in the proof of Theorem 5.6.3. We also
prove the automorphy of a certain obvious Serre weight under the assumptions of
Taylor-Wiles type.

Throughout this section, we assume that ρ0 is always a restriction of an auto-
morphic representation r : GF → GLn(F) to GFw

for a fixed place w above p and
is generic (cf. Definition 3.0.3). Recall that for 0 ≤ j0 < j0 + 1 < i0 ≤ n − 1 we
have defined a tuple of integers (ri0,j0

n−1 , . . . , r
i0,j0
1 , ri0,j0

0 ) in (3.7.1), which determines
the Galois types as in (1.1.2). In many cases, we will consider the dual of our Serre
weights, so that we define a pair of integers (i1, j1) by the equation (5.0.1). We also
let

bk := −cn−1−k

for all 0 ≤ k ≤ n − 1. We will keep the notation (i1, j1) and bk for the rest of the
paper.
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For the rest of this section, we are mainly interested in the following characters
of T (Fp): let

µ□ := (bn−1, . . . , b0)

and

µ□,i1,j1 := (yn−1, yn−2, . . . , y1, y0),

where

yj =


bj if j ̸∈ {j1, i1};
bi1 − j1 + i1 + 1 if j = j1;
bj1 + j1 − i1 − 1 if j = i1.

As ρ0 is generic, each of the characters above is p-regular and thus uniquely determines
a p-restricted weight up to a twist in (p − 1)X0(T ), and, by abuse of notation, we
write µ□, µ□,i1,j1 for those corresponding p-restricted weights, respectively. We will
clarify the twist in (p− 1)X0(T ) whenever necessary. We also define a principal series
representation

(5.3.1) πi1,j1
∗ := Ind

G(Fp)

B(Fp)(µ
□,i1,j1)w0 .

We now state necessary results of weight elimination to our proof of the main
results, Theorem 5.6.3, in this paper.

Conjecture 5.3.2. – Let r : GF → GLn(F) be a continuous automorphic Galois
representation with r|GFw

∼= ρ0 as in (3.0.1). Fix a pair of integers (i0, j0) such
that 0 ≤ j0 < j0 +1 < i0 ≤ n− 1, and assume that ρi0,j0 is Fontaine-Laffaille generic
and that µ□,i1,j1 is 2n-generic.

Then we have

Ww(r) ∩ JH((πi1,j1
∗ )∨) ⊆ {F (µ□)∨, F (µ□,i1,j1)∨}.

In an earlier version of this paper, we prove Conjecture 5.3.2 for n ≤ 5. But our
method is rather elaborate to execute for general n. But Bao V. Le Hung pointed out
that one can prove Conjecture 5.3.2 by constructing certain potentially crystalline
deformation rings, and a proof of the conjecture will appear in our forthcoming pa-
per [47].

Finally, we prove the automorphy of the Serre weight F (µ□)∨.

Proposition 5.3.3. – Keep the assumptions and notation of Conjecture 5.3.2. As-
sume further that if n is even then so is n[F+:Q]

2 , that ζp ̸∈ F , that r : GF → GLn(F) is
an irreducible representation with split ramification, and that there is a RACSDC au-
tomorphic representation Π of GLn(AF ) such that

— r ≃ rΠ;

— for each place w′|p of F , rΠ|GF
w′

is potentially diagonalizable;

— r(GF (ζp)) is adequate.
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Then
{F (µ□)∨} ⊆Ww(r) ∩ JH((πi1,j1

∗ )∨).

Proof. – We prove that F (µ□)∨ = F (cn−1, cn−2, . . . , c0) ∈ Ww(r) as well as
F (µ□)∨ ∈ JH((πi1,j1

∗ )∨). Note that (cn−1, . . . , c0) is in the lowest alcove as ρ0 is
generic, so that by Theorem 5.2.6 it is enough to show that ρ0 has a potentially
diagonalizable crystalline lift with Hodge-Tate weights {cn−1 +(n−1), . . . , c1 +1, c0}.
Since ρ0 is generic, by [2], Lemma 1.4.3 it is enough to show that ρ0 has an
ordinary crystalline lift with those Hodge-Tate weights. The existence of such a
crystalline lift is immediate by [32], Proposition 2.1.10. On the other hand, we have
F (µ□)∨ ∈ JH((πi1,j1

∗ )∨ which is a direct corollary of Theorem 5.5.4. Therefore, we
conclude that F (µ□)∨ ∈Ww(r) ∩ JH((πi1,j1

∗ )∨).

Note that Theorem 6.1.2 in [31] also gives an evidence of the modularity of the
Serre weight {F (µ□)∨}, although it treats “global" Serre weights.

5.4. Some application of Morita theory

In this section, we will recall standard results from Morita theory to prove Corol-
lary 5.4.6. We fix here an arbitrary finite group H and a finite dimensional irreducible
E-representation V of H. By Proposition 16.16 in [22], we know that for any OE-lat-
tice V ◦ ⊆ V , the set JHF[H](V

◦ ⊗OE
F) depends only on V and is independent of

the choice of V ◦, and thus we will use the notation JHF[H](V ) from now on where
V = V ◦⊗OE

F for a randomly chosen V ◦. We may assume that E is sufficiently large
such that E (resp. its residual field F) is a splitting field of V (resp. JHF[H](V )). Let
C be the category of all finitely generated OE-modules with an H-action which are
isomorphic to subquotients of OE-lattices in V ⊕k for some k ≥ 1. Then the irreducible
objects of C are just elements of JHF[H](V ). If σ ∈ JHF[H](V ) has multiplicity one
in V , then there is an OE-lattice V σ (unique up to homothety by following the proof
of Lemma 4.4.1 of [26] as it actually requires only the multiplicity one of σ in our
notation) such that

cosocH(V σ ⊗OE
F) = σ.

By considering an OE-lattice in the E-dual of V with the F-dual of σ as cosocle and
then taking OE-dual of this lattice, we reach another OE-lattice Vσ in V , which is
the unique (up to homethety), such that

socH(Vσ ⊗OE
F) = σ.

By repeating the proof of Lemma 2.3.1, Lemma 2.3.2 and Proposition 2.3.3 in [45],
we deduce the following.

Proposition 5.4.1. – If σ has multiplicity one in V , then the lattice V σ is a projec-
tive object in C.
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Note that the proof of Proposition 2.3.3 in [45] requires only that the multiplicity
of σ in V is one, rather than the much stronger condition that each constituent
of V has multiplicity one.

Corollary 5.4.2. – Let Σ be a subset of JHF[H](V ) such that each σ ∈ Σ has
multiplicity one in V . If an OE-lattice V ◦ ⊆ V satisfies

(5.4.3) cosocH(V ◦ ⊗OE
F) =

⊕
σ∈Σ

σ

then we have a surjection

(5.4.4)
⊕
σ∈Σ

V σ ↠ V ◦.

Proof. – By (5.4.3) we have a surjection

V ◦ ↠
⊕
σ∈Σ

σ.

By Proposition 5.4.1 we know that
⊕

σ∈Σ V
σ is a projective object in C. By the

definition of V σ we know that there is a surjection⊕
σ∈Σ

V σ ↠
⊕
σ∈Σ

σ,

which can be lifted by projectivity to (5.4.4).

Note in particular that (5.4.4) implies automatically the surjection

(5.4.5)
⊕
σ∈Σ

V σ ⊗OE
F ↠ V ◦ ⊗OE

F.

Corollary 5.4.6. – Let Σ be a subset of JHF[H](V ) such that each σ ∈ Σ has
multiplicity one in V . If an OE-lattice V◦ ⊆ V satisfies

socH(V◦ ⊗OE
F) =

⊕
σ∈Σ

σ

then we have an injection

V◦ ⊗OE
F ↪→

⊕
σ∈Σ

Vσ ⊗OE
F.

Proof. – This is simply the F-dual of (5.4.5).
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5.5. Generalization of Chapter 4

In this section, we fix a pair of integers (i0, j0) satisfying 0 ≤ j0 < j0+1 < i0 ≤ n−1,
and determine (i1, j1) by the equation (5.0.1). We will use the shortened notation P

(resp. N , L, P− · · · ) for Pi1,j1 (resp. Ni1,j1 , Li1,j1 , P
−
i1,j1

, . . .) as introduced at the
beginning of Chapter 5. Proposition 5.5.13 is crucial for the proof of Theorem 5.6.3.
We assume throughout this section that µ□,i1,j1 is 2n-generic (cf. Definition 4.1.1).

We start this section by defining some weights and Jacobi sum operators which
will play a crucial role for our main results, Theorem 5.6.3. Let

µi1,j1
1 := (x1

n−1, x
1
n−2, . . . , x

1
1, x

1
0) and µi1,j1,′

1 := (x1,′
n−1, x

1,′
n−2, . . . , x

1,′
1 , x1,′

0 );

where

x1
j =



bn+i1−j if n− j1 + i1 + 1 ≤ j ≤ n− 1;
bj+j1−i1−1 if i1 + 2 ≤ j ≤ n− j1 + i1;
bj1 + j1 − i1 − 1 if j = i1 + 1;
bi1 − j1 + i1 + 1 if j = i1;
bj if 0 ≤ j ≤ i1 − 1

and

x1,′
j =



bj1−1−j if 0 ≤ j ≤ j1 − i1 − 2;
bj−j1+i1+1 if j1 − i1 − 1 ≤ j ≤ j1 − 2;
bj1 + j1 − i1 − 1 if j = j1;
bi1 − j1 + i1 + 1 if j = j1 − 1;
bj if j1 + 1 ≤ j ≤ n− 1.

We also fix certain two elements in the Weyl group W :

wi1,j1
1 := (sn−3−i1 · · · s1)

j1−i1−1 ∈W and wi1,j1,′
1 := (sn−j1+2 · · · sn−1)

j1−i1−1 ∈W,

and further define two more weights

µi1,j1 := (µi1,j1
1 )w

i1,j1
1 and µi1,j1,′ := (µi1,j1,′

1 )w
i1,j1,′
1 .

More precisely, µi1,j1 and µi1,j1,′ can be written as follow:

µi1,j1 = (xn−1, xn−2, . . . , x1, x0) and µi1,j1,′ = (x′n−1, x
′
n−2, . . . , x

′
1, x

′
0),

where

xj =


bj if j > j1 or i1 > j;
bj1+i1+1−j if j1 ≥ j > i1 + 1;
bj1 + j1 − i1 − 1 if j = i1 + 1;
bi1 − j1 + i1 + 1 if j = i1
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and

x′j =


bj if j > j1 or i1 > j;
bj1+i1−1−j if j1 − 1 > j ≥ i1;
bj1 + j1 − i1 − 1 if j = j1;
bi1 − j1 + i1 + 1 if j = j1 − 1.

Note that if we let

wi1,j1 := sn−j1 · · · sn−i1−2 ∈WL and wi1,j1,′ := sn−i1−1 · · · sn−j1+1 ∈WL

then we have
(µi1,j1)wi1,j1

= (µ□,i1,j1)wL
0 = (µi1,j1,′)wi1,j1,′

.

Recall that wL
0 is defined at the beginning of Chapter 5 and that µ□,i1,j1 is defined

in Section 5.3.

We now define certain mod p Jacobi sum operators:

Si1,j1
1 := S

0,w
i1,j1
1

and Si1,j1,′
1 := S

0,w
i1,j1,′
1

.

We further define

Si1,j1 := Ski1,j1 ,wL
0

and Si1,j1,′ := Ski1,j1,′,wL
0
,

where ki1,j1 = (ki1,j1
i,j )i,j ∈ {0, . . . , p− 1}

|Φ+

wL
0

|
and ki1,j1,′ = (ki1,j1,′

i,j )i,j ∈ {0, . . . , p− 1}
|Φ+

wL
0

|

satisfy

ki1,j1
i,j :=


[bi1 − bn−i]1 if n− j1 + 1 ≤ i = j − 1 ≤ n− i1 − 1;

i1 − j1 + 1 + [bi1 − bj1 ]1 if i = j − 1 = n− j1;
0 if j ≥ i+ 2

and

ki1,j1,′
i,j :=


[bn−1−i − bj1 ]1 if n− j1 ≤ i = j − 1 ≤ n− i1 − 2;

i1 − j1 + 1 + [bi1 − bj1 ]1 if i = j − 1 = n− i1 − 1;

0 if j ≥ i+ 2.

We now consider characteristic 0 lifts of the mod p Jacobi sum operators above.

Ŝi1,j1 :=

 ∑
A∈U

wL
0

(Fp)

n−i1−1∏
ℓ=n−j1

⌈Aℓ,ℓ+1⌉k
i1,j1
ℓ,ℓ+1

 ⌈A⌉
wL

0

and

Ŝi1,j1,′ :=

 ∑
A∈U

wL
0

(Fp)

n−i1−1∏
ℓ=n−j1

⌈Aℓ,ℓ+1⌉k
i1,j1,′
ℓ,ℓ+1

 ⌈A⌉
wL

0 .
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We also let

Ŝi1,j1
0 :=

 ∑
A∈U

wL
0

(Fp)

n−i1−1∏
ℓ=n−j1

⌈Aℓ,ℓ+1⌉k
i1,j1,0

ℓ,ℓ+1

 ⌈A⌉
wL

0 ,

where ki1,j1,0 = (ki1,j1,0
i,j )i,j ∈ {0, . . . , p− 1}

|Φ+

wL
0

|
satisfies

ki1,j1,0
i,j :=

{
i1 − j1 + 1 + [bi1 − bj1 ]1 if n− j1 ≤ i = j − 1 ≤ n− i1 − 1;

0 if j ≥ i+ 2.

Note that Ŝi1,j1 , Ŝi1,j1,′, Ŝi1,j1
0 are Teichmüller lifts of Si1,j1 , Si1,j1,′, Ski1,j1,0,wL

0
,

respectively. We will also consider the Teichmüller lifts of Si1,j1
1 and Si1,j1,′

1 as follows:

Ŝi1,j1
1 :=

 ∑
A∈U

w
i1,j1
1

(Fp)

⌈A⌉

wi1,j1
1 and Ŝi1,j1,′

1 :=

 ∑
A∈U

w
i1,j1,′
1

(Fp)

⌈A⌉

wi1,j1,′
1 .

We recall the operator Ξn ∈ G(Qp) from (4.4.1). Note that µ̃i1,j1
1 : T (Fp)→ O×E is

the Teichmüller lift of µi1,j1
1 . We also recall κ(1)

n , κ(2)
n (cf. (4.4.14)), κn (cf. (4.4.22)),

ε∗ (cf. (4.4.21)), and Pn (cf. (4.4.20)), whose definitions are completely determined
by fixing the data n and (an−1, . . . , a0). We define κ

(1)
i1,j1

, κ(2)
i1,j1

, κi1,j1 ∈ Z×p ,
εi1,j1 = ±1 and Pi1,j1 ∈ Z×p by replacing n and (an−1, . . . , a1, a0) by j1 − i1 + 1 and
(bj1 + j1 − i1 − 1, bj1−1, . . . , bi1+1, bi1 − j1 + i1 + 1) respectively with bk as at the
beginning of Section 5.3.

Proposition 5.5.1. – Assume that µ□,i1,j1 is 2n-generic. Let

Πi1,j1 := Ind
G(Qp)

B(Qp)χ
i1,j1

be a tamely ramified principal series where χi1,j1 = χi1,j1
n−1⊗· · ·⊗χ

i1,j1
0 : T (Qp)→ E× is

a smooth character satisfying χ |T (Zp)
∼= µ̃i1,j1

1 . Then we have the identity

Ŝi1,j1,′ • Ŝi1,j1,′
1 • (Ξn)j1−i1−1 = p(j1−i1−1)(i1+1)κi1,j1

 n−1∏
k=n−j1+i1+1

χi1,j1
k (p)

 Ŝi1,j1 • Ŝi1,j1
1

on the 1-dimensional space (Πi1,j1)I(1),µ̃
i1,j1
1 .

Proof. – By Lemma 4.4.6 we know that

(Ξn)j1−i1−1 • U j1−i1−1
n = Ŝ(w∗)j1−i1−1 .

Then by Lemma 4.4.3 and the fact

ℓ(wi1,j1,′
1 )+ℓ((w∗)j1−i1−1) = ℓ(wi1,j1,′

1 (w∗)j1−i1−1(wi1,j1
1 )−1)+ℓ(wi1,j1

1 )+2(j1−i1−1)i1

we deduce that

Ŝ
w

i1,j1,′
1

• Ŝ(w∗)j1−i1−1 = p(j1−i1−1)i1 Ŝ
w

i1,j1,′
1 (w∗)j1−i1−1(w

i1,j1
1 )−1 • Ŝw

i1,j1
1

.
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Therefore it remains to show that

Ŝi1,j1,′ • Ŝ
w

i1,j1,′
1 (w∗)j1−i1−1(w

i1,j1
1 )−1 = pj1−i1−1κi1,j1 Ŝi1,j1

on the 1-dimensional space

(Πi1,j1)I(1),µ̃i1,j1
= Ŝ

w
i1,j1
1

(
(Πi1,j1)I(1),µ̃

i1,j1
1

)
.

We observe by Lemma 4.4.3 that

Ŝwi1,j1,′ • Ŝ
w

i1,j1,′
1 (w∗)j1−i1−1(w

i1,j1
1 )−1 = pj1−i1−1Ŝwi1,j1

and therefore by composing Ŝi1,j1
0 it remains to show that

(5.5.2) Ŝi1,j1
0 • Ŝwi1,j1,′ = pj1−i1−1(κ

(2)
i1,j1

)−1Ŝi1,j1,′

on (Πi1,j1)I(1),µ̃i1,j1,′
and

(5.5.3) Ŝi1,j1
0 • Ŝwi1,j1 = pj1−i1−1(κ

(1)
i1,j1

)−1Ŝi1,j1

on (Πi1,j1)I(1),µ̃i1,j1 . But these can be checked by the same argument as in Corol-
lary 4.4.17.

We state here a generalization of the Theorem 4.8.2. Recall the definition of πi1,j1
∗

from (5.3.1).

Theorem 5.5.4. – The constituent F (µ□) has multiplicity one in πi1,j1
∗ .

Proof. – This is Corollary 4.3.9 if we replace µi1,j1
π by µ□.

We define a characteristic 0 principal series

(π̃i1,j1
∗ )◦ := Ind

G(Fp)

B(Fp)(µ̃
□,i1,j1)w0

which is an OE-lattice in (π̃i1,j1
∗ )◦ ⊗OE

E.

Lemma 5.5.5. – (i) For µ ∈ {µi1,j1 , µi1,j1,′, µi1,j1
1 , µi1,j1,′

1 }, we have

dimFp
(πi1,j1
∗ )U(Fp),µ = 1.

(ii) We have the following non-vanishing results:

Si1,j1
(
(πi1,j1
∗ )U(Fp),µi1,j1

)
= Si1,j1,′

(
(πi1,j1
∗ )U(Fp),µi1,j1,′

)
̸= 0.

(iii) We also have the following non-vanishing results:

Si1,j1
1

(
(πi1,j1
∗ )U(Fp),µ

i1,j1
1

)
= (πi1,j1

∗ )U(Fp),µi1,j1

and
Si1,j1

1

(
(πi1,j1
∗ )U(Fp),µ

i1,j1,′
1

)
= (πi1,j1

∗ )U(Fp),µi1,j1,′
.
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Proof. – The statement (i) is immediate by Bruhat decomposition (4.0.4).
Now we prove (ii). According to Lemma 4.4.3, (5.5.2) and (5.5.3) and Lemma 4.4.16,

we deduce by mod p reduction with respect to the lattice (π̃i1,j1
∗ )◦ that

Si1,j1
(
(πi1,j1
∗ )U(Fp),µi1,j1

)
= Si1,j1,′

(
(πi1,j1
∗ )U(Fp),µi1,j1,′

)
= Ski1,j1,0,wL

0

(
(πi1,j1
∗ )U(Fp),(µ□,i1,j1 )wL

0

)
.

If we abuse the notation ki1,j1,0 for the tuple in {0, . . . , p− 1}|Φ
+
w0
| satisfying

ki1,j1,0
α = 0 for all α /∈ Φ+

wL
0

then by mod p reduction of first possibility of Proposition 4.4.8 we deduce that

Ski1,j1,0,wL
0
• S0,wL

0 w0
= Ski1,j1,0,w0

on the 1-dimensional subspace (πi1,j1
∗ )U(Fp),(µ□,i1,j1 )w0 . Thus we finish the proof of

(ii) by

Ski1,j1,0,w0

(
(πi1,j1
∗ )U(Fp),(µ□,i1,j1 )w0

)
̸= 0,

which follows from Proposition 4.1.12.
Finally we prove (iii). We only prove the first equality in (iii) as the same proof

works for the second equality. By Lemma 4.1.15 we know that

S0,(wi1,j1 )−1wL
0 w0

(
(πi1,j1
∗ )U(Fp),(µ□,i1,j1 )w0

)
= (πi1,j1

∗ )U(Fp),µi1,j1

and

S
0,(wi1,j1w

i1,j1
1 )−1wL

0 w0

(
(πi1,j1
∗ )U(Fp),(µ□,i1,j1 )w0

)
= (πi1,j1

∗ )U(Fp),µ
i1,j1
1 .

Therefore it remains to show that

Si1,j1
1 • S

0,(wi1,j1w
i1,j1
1 )−1wL

0 w0
= S0,(wi1,j1 )−1wL

0 w0

on the 1-dimensional subspace (πi1,j1
∗ )U(Fp),(µ□,i1,j1 )w0 , which follows from the mod p

reduction of Lemma 4.4.3 and the fact that

ℓ(wi1,j1
1 ) + ℓ((wi1,j1wi1,j1

1 )−1wL
0 w0) = ℓ((wi1,j1)−1wL

0 w0).

This completes the proof.

We define V i1,j1 and V i1,j1,′ to be the subrepresentations of πi1,j1
∗ generated by

Si1,j1
(
(πi1,j1
∗ )U(Fp),µi1,j1

)
and Si1,j1,′

(
(πi1,j1
∗ )U(Fp),µi1,j1,′

)
respectively. Similarly, we define V i1,j1

0 as the subrepresentation of πi1,j1
∗ generated

by

Ski1,j1,0

(
(πi1,j1
∗ )U(Fp),(µ□,i1,j1 )w0

)
.
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Lemma 5.5.6. – We have

(5.5.7) V i1,j1 = V i1,j1,′ = V i1,j1
0

and

(5.5.8) F (µ□) ∈ JH(V i1,j1
0 ).

Proof. – The equality (5.5.7) follows directly from the proof of (ii) of Lemma 5.5.5.

We define a new tuple ki1,j1,♯ = (ki1,j1,♯
i,j )i,j ∈ {0, . . . , p− 1}|Φ

+
w0
| defined by

ki1,j1,♯
i,j :=

{
i1 − j1 + 1 + [bi1 − bj1 ]1 if (i, j) = (n− j1, n− i1);
0 otherwise.

We also define V i1,j1,♯ to be the subrepresentation of πi1,j1
∗ generated by

Ski1,j1,♯,w0

(
(πi1,j1
∗ )U(Fp),(µ□,i1,j1 )w0

)
.

By Proposition 4.6.20 and the same method in the proof of Proposition 4.7.25 we
deduce that

(5.5.9) V i1,j1,♯ ⊆ V i1,j1
0 .

By abuse of notation we view µ□,i1,j1 as a fixed weight in X1(T ), and then there
exists µ□,′ ∈ X+(T ) such that

µ□,′ ≡ µ□ (mod (p− 1)X(T )) and µ□,′ = (n− i1, n− j1) · µ□,i1,j1 + p

n−i1−1∑
r=n−j1

αr.

We define U
i1,j1
1 to be the unipotent subgroup of L generated by Uαr for

n− j1 + 1 ≤ r ≤ n− i1 − 1 and then define

U
i1,j1

:= U
i1,j1
1 ·N.

By a direct generalization of proof of Lemma 4.7.39, we can show that

Ski1,j1,♯,w0

(
(πi1,j1
∗ )U(Fp),(µ□,i1,j1 )w0

)
= H0(µ□,i1,j1)U

i1,j1

µ□,′ .

We define V i1,j1
alg to be the G-subrepresentation of H0(µ□,i1,j1) generated by

H0(µ□,i1,j1)U
i1,j1

µ□,′ and by definition we have

(5.5.10) (V i1,j1
alg )N ↪→ H0(µ□,i1,j1)N and (V i1,j1

alg )U
i1,j1

µ□,′ = H0(µ□,i1,j1)U
i1,j1

µ□,′ .

We have natural identification (cf. the beginning of Chapter 5 for definition
of H0

L(µ□,i1,j1))

(5.5.11) H0(µ□,i1,j1)N ∼= H0
L(µ□,i1,j1) and H0(µ□,i1,j1)U

i1,j1 ∼= H0
L(µ□,i1,j1)U

i1,j1
1 .
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By applying Lemma 4.7.42 and the proof of Proposition 4.7.43 to the Levi L, we
deduce that H0

L(µ□,i1,j1) is uniserial of length two with socle FL(µ□,i1,j1) and cosocle
FL(µ□,′) and that

(5.5.12) H0
L(µ□,i1,j1)

U
i1,j1
1

µ□,′
∼−→ FL(µ□,′)µ□,′ .

Combine (5.5.10), (5.5.11) and (5.5.12) we deduce the surjection of representations
of L

(V i1,j1
alg )N ↠ FL(µ□,′) ∼= H0

L(µ□,′) ∼= H0(µ□,′)N

and thus a non-zero morphism

(V i1,j1
alg )→ H0(µ□,′) and (V i1,j1

alg )U
i1,j1

µ□,′
∼−→ H0(µ□,′)U

µ□,′
∼←− F (µ□,′)U

µ□,′

by coinduction for algebraic representation from P to G. In particular we know that

F (µ□,′) ∈ JHG

(
V i1,j1

alg

)
.

Now we restrict the action of G to G(Fp) and observe the injections

V i1,j1,♯ ↪→ V i1,j1
alg |G(Fp)

and F (µ□) ↪→ F (µ□,′)|G(Fp)
,

which induces

Ski1,j1,♯,w0

(
(πi1,j1
∗ )U(Fp),(µ□,i1,j1 )w0

)
= (V i1,j1,♯)Ui1,j1 (Fp),µ□

= (V i1,j1
alg )U

i1,j1

µ□,′

and
F (µ□)U(Fp),µ□

= (F (µ□,′)|G(Fp)
)U(Fp),µ□

= F (µ□,′)µ□,′ .

Hence, we deduce that
F (µ□) ∈ JHG(Fp)

(
V i1,j1,♯

)
,

which together with (5.5.9) finishes the proof of (5.5.8).

Proposition 5.5.13. – Let τ be an OE-lattice in (π̃i1,j1
∗ )◦ ⊗OE

E satisfying

socG(Fp) (τ ⊗OE
F) ↪→ F (µ□)⊕ F (µ□,i1,j1).

(i) For µ ∈ {µi1,j1 , µi1,j1,′, µi1,j1
1 , µi1,j1,′

1 }, we have

dimF(τ ⊗OE
F)U(Fp),µ = 1.

(ii) We have the non-vanishing results for Si1,j1 and Si1,j1,′:

Si1,j1
(
(τ ⊗OE

F)U(Fp),µi1,j1
)

= Si1,j1,′
(
(τ ⊗OE

F)U(Fp),µi1,j1,′
)
̸= 0.

(iii) We also have the non-vanishing results for Si1,j1
1 and Si1,j1,′

1 :

Si1,j1
1

(
(τ ⊗OE

F)U(Fp),µ
i1,j1
1

)
= (τ ⊗OE

F)U(Fp),µi1,j1

and

Si1,j1,′
1

(
(τ ⊗OE

F)U(Fp),µ
i1,j1,′
1

)
= (τ ⊗OE

F)U(Fp),µi1,j1,′
.
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Proof. – We can easily deduce (i) from

dimE((π̃i1,j1
∗ )◦ ⊗OE

E)U(Fp),µ̃i1,j1
= dimE((π̃i1,j1

∗ )◦ ⊗OE
E)U(Fp),µ̃i1,j1,′

= 1

and Frobenius reciprocity as F (µi1,j1), F (µi1,j1,′), F (µi1,j1
1 ) and F (µi1,j1,′

1 ) all have
multiplicity one in τ ⊗OE

F.
We define πi1,j1

♭ as the mod p reduction of (π̃i1,j1
∗ )◦ ⊗OE

E with respect to the
unique (up to homothety) OE-lattice such that

socG(Fp)

(
πi1,j1

♭

)
= F (µ□).

Then we deduce from Corollary 5.4.6 that there exists an injection

τ ⊗OE
F ↪→ πi1,j1

∗ ⊕ πi1,j1
♭ .

Note that we have

(5.5.14)
(
πi1,j1
∗ ⊕ πi1,j1

♭

)U(Fp),µ

= (πi1,j1
∗ )U(Fp),µ ⊕ (πi1,j1

♭ )U(Fp),µ

for µ ∈ {µi1,j1 , µi1,j1,′, µi1,j1
1 , µi1,j1,′

1 }.
The equality of two spaces in (ii) is true because both of them can be identified

with
Ski1,j1,0,w0

(
(τ ⊗OE

F)U(Fp),(µ□,i1,j1 )w0
)

by the same argument as in the proof of (ii) of Lemma 5.5.5. Therefore we only need to

show that Si1,j1 (resp. Si1,j1,′) gives rise to a bijection from
(
πi1,j1
∗ ⊕ πi1,j1

♭

)U(Fp),µi1,j1

(resp. from
(
πi1,j1
∗ ⊕ πi1,j1

♭

)U(Fp),µi1,j1

) to its image. According to (ii) of Lemma 5.5.5
and (5.5.14) we only need to show that

Si1,j1
(
(πi1,j1

♭ )U(Fp),µi1,j1
)
̸= 0 and Si1,j1,′

(
(πi1,j1

♭ )U(Fp),µi1,j1,′
)
̸= 0,

which follows from Lemma 5.5.6 by definition of πi1,j1
♭ .

We have a unique (up to scalar) non-zero morphism

(5.5.15) πi1,j1
∗ → πi1,j1

♭

which by Lemma 5.5.6 induces isomorphisms

(πi1,j1
∗ )U(Fp),µ ∼−→ (πi1,j1

♭ )U(Fp),µ

for µ ∈ {µi1,j1 , µi1,j1,′}, and hence (iii) follows from (iii) of Lemma 5.5.5 by considering
the image of (iii) of Lemma 5.5.5 under (5.5.15) inside πi1,j1

♭ .

Corollary 5.5.16. – Let τ be an OE-lattice in (π̃i1,j1
∗ )◦ ⊗OE

E satisfying

socG(Fp) (τ ⊗OE
F) ↪→ F (µ□)⊕ F (µ□,i1,j1).

Then we have

Si1,j1 •Si1,j1
1

(
(τ ⊗OE

F)U(Fp),µ
i1,j1
1

)
= Si1,j1,′ •Si1,j1,′

1

(
(τ ⊗OE

F)U(Fp),µ
i1,j1,′
1

)
̸= 0.
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5.6. Main results

In this section, we state and prove our main results on mod p local-global compati-
bility. Throughout this section, ρ0 is always assumed to be a restriction of a global rep-
resentation r : GF → GLn(F) to GFw for a fixed place w of F above p. Let v := w|F+

,
and assume further that r is automorphic of a Serre weight V =

⊗
v′ Vv′ with

Vw := Vv ◦ ι−1
w
∼= F (µ□)∨. We may write Vv′ ◦ ι−1

w′
∼= F (aw′)

∨ for a dominant
weight aw′ ∈ Zn

+ where w′ is a place of F above v′, and define

(5.6.1) V ′ :=
⊗
v′ ̸=v

Vv′ and Ṽ ′ :=
⊗
v′ ̸=v

Wav′
.

From now on, we also assume that aw′ is in the lowest alcove for each place w′ of F
above p, so that

V ′ ∼= Ṽ ′ ⊗OE
F.

Let U be a compact open subgroup of Gn(A∞,p
F ) × Gn(OF+,p), which is sufficiently

small and unramified at all places above p, such that S(U, V )[mr] ̸= 0 where mr is
the maximal ideal of TP attached to r for a cofinite subset P of PU .

We fix a pair of integers (i0, j0) such that 0 ≤ j0 < j0 + 1 < i0 ≤ n − 1, and
determine a pair of integers (i1, j1) by the equation (5.0.1). We also define{

M := S(Uv, Ṽ ′)mr
;

M i1,j1 := S(Uv, Ṽ ′)
I(1),µ̃

i1,j1
1

mr .

Note that M i1,j1 is a free OE-module of finite rank as M is a smooth admissible
representation of G(Qp) which is ϖE-torsion free. For any OE-algebra A, we write
M i1,j1

A for M i1,j1 ⊗OE
A. We similarly define MA.

Let Ti1,j1 be the OE-module that is the image of TP in EndOE
(M i1,j1). Then

Ti1,j1 is a local OE-algebra with the maximal ideal mr, where, by abuse of notation,
we write mr ⊆ Ti1,j1 for the image of mr of TP . As the level U is sufficiently small,
by passing to a sufficiently large E as in the proof of Theorem 4.5.2 of [39], we may
assume that Ti1,j1

E
∼= Er for some r > 0. For any OE-algebra A we write Ti1,j1

A

for Ti1,j1 ⊗OE
A.

We have M i1,j1
E =

⊕
pM

i1,j1
E [pE ], where the sum runs over the minimal primes p

of Ti1,j1 and pE := pTi1,j1
E . Note that Ti1,j1

E /pE ∼= E for any such p. By abuse of
notation, we also write p (resp. pE) for its inverse image in TP (resp. TPE).

Definition 5.6.2. – A non-zero vector vi1,j1 ∈M i1,j1
F is said to be primitive if there

exists a vector v̂i1,j1 ∈M i1,j1 [p] that lifts vi1,j1 , for certain minimal prime p of Ti1,j1 .

Note that the G(Qp)-subrepresentation of ME generated by a lift v̂i1,j1 of a prim-
itive element vi1,j1 is irreducible and actually lies in ME [pE ].

Now we can state our main results in this paper. Recall that by ρ0 we always mean
an n-dimensional ordinary representation of GQp

as described in (3.0.1).
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Theorem 5.6.3. – Fix a pair of integers (i0, j0) satisfying 0 ≤ j0 < j0 + 1 < i0 ≤ n− 1,
and let (i1, j1) be a pair of integers such that i0 + i1 = j0 + j1 = n − 1. We also let
r : GF → GLn(F) be an irreducible automorphic representation with r|GFw

∼= ρ0.
Assume that

— µ□,i1,j1 is 2n-generic;

— ρi0,j0 is Fontaine-Laffaille generic.

Assume further that

(5.6.4) {F (µ□)∨} ⊆Ww(r) ∩ JH((πi1,j1
∗ )∨) ⊆ {F (µ□)∨, F (µ□,i1,j1)∨}.

Then there exists a primitive vector in S(Uv, V ′)[mr]
I(1),µ

i1,j1
1 . Moreover, for each

primitive vector vi1,j1 ∈ S(Uv, V ′)[mr]
I(1),µ

i1,j1
1 we have Si1,j1 • Si1,j1

1 vi1,j1 ̸= 0 and

(5.6.5) Si1,j1,′ • Si1,j1,′ • (Ξn)j1−i1−1vi1,j1

= εi1,j1Pi1,j1(bn−1, . . . , b0) · FLi0,j0
n (r|GFw

) · Si1,j1 • Si1,j1
1 vi1,j1 ,

where

εi1,j1 =

j1−1∏
k=i1+1

(−1)bi1−bk−j1+i1+1

and

Pi1,j1(bn−1, . . . , b0) =

j1−1∏
k=i1+1

j1−i1−1∏
j=1

bk − bj1 − j
bi1 − bk − j

∈ Z×p .

Remark 5.6.6. – — The right inclusion of (5.6.4) is just Conjecture 5.3.2, which
becomes a theorem in [47] (cf. Remark 1.3.3). We also give an evidence for the
left inclusion of (5.6.4) in Proposition 5.3.3 under some assumption of Taylor-
Wiles type. As a result, the condition (5.6.4) can be removed under some stan-
dard Taylor-Wiles conditions.

— Under standard Taylor-Wiles conditions, it is possible to prove the identity
(5.6.5) on the whole space S(Uv, V ′)[mr]

I(1),µ
i1,j1
1 , and hence to remove the

conditions on “primitive” vectors. This argument has been used in the recent
paper [46].

— Assume that standard Taylor-Wiles conditions hold. Compared to Section 5 of
[39], we can also deduce from (5.6.4) that M i1,j1 is free over an enlarged Hecke
algebra defined by adding a certain Up-operator to Ti1,j1 . Moreover, under a
stronger generic condition (compared to our Fontaine-Laffaille generic condi-
tions), we can use results from [47] to improve (5.6.4) to an equality

Ww(r) ∩ JH((πi1,j1
∗ )∨) = {F (µ□)∨},

which implies that M i1,j1 is free over Ti1,j1 .
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Proof. – We firstly point out that M i1,j1 ̸= 0, as S(U, (F (µ□)∨ ◦ ιw)⊗V ′)mr ̸= 0 and
F (µ□) is a factor of IndK

I µ̃
i1,j1
1 = Ind

G(Fp)

B(Fp)µ
i1,j1
1 .

Picking an embedding E ↪→ Qp, as well as an isomorphism ι : Qp
∼−→ C, we see

that

(5.6.7) M i1,j1
Qp

∼=
⊕
Π

m(Π) ·ΠI(1),µ̃
i1,j1
1

v ⊗ (Π∞,v)Uv

,

where the sum runs over irreducible representations Π ∼= Π∞⊗Πv⊗Π∞,v of Gn(AF+)

over Qp such that Π ⊗ι C is a cuspidal automorphic representation of multiplicity
m(Π) ∈ Z>0 with Π∞ ⊗ι C being determined by the algebraic representation (Ṽ ′)∨

and with associated Galois representation rΠ lifting r∨ (cf. Lemma 5.1.2).
We write δ for the modulus character of B(Qp):

δ :=| |n−1 ⊗ | |n−2 ⊗ · · ·⊗ | | ⊗1

where | | is the (unramified) norm character sending p to p−1. For any Π contributing
to (5.6.7), we have

(i) Πv
∼= Ind

G(Qp)

B(Qp)(ψ ⊗ δ) for some smooth character

ψ = ψn−1 ⊗ ψn−2 ⊗ · · · ⊗ ψ1 ⊗ ψ0

of T (Qp) such that ψ|T (Zp)
= µ̃i1,j1

1 |T (Zp)
, where ψk are the smooth characters

of Q×
p .

(ii) r∨Π|GFw

is a potentially crystalline lift of r with Hodge-Tate weights

{−(n− 1),−(n− 2), . . . ,−1, 0} and WD(r∨Π|GFw

)F−ss ∼=
⊕n−1

k=0 ψ
−1
k .

Here, part (i) follows from [25], Propositions 2.4.1 and 7.4.4, and part (ii) follows from
classical local-global compatibility (cf. Theorem 5.1.3). Moreover, by Corollary 3.7.5,
we have

(5.6.8) FLi0,j0
n (ρ0) =

∏i0−1
k=j0+1 ψi1+1+k(p)

p
(i0+j0)(i0−j0−1)

2

.

(Note that we may identify ψi1+1+k with Ω−1
k for j0 < k < i0, where Ωk is defined in

Corollary 3.7.5.)
Now we pick an arbitrary primitive vector vi1,j1 ∈ M i1,j1

F [mr] with a lift
v̂i1,j1 ∈M i1,j1 [p]. We set

τE := ⟨Kv̂i1,j1⟩E ⊆ME [pE ] and τ := ⟨Kv̂i1,j1⟩ ⊆M [p],

and thus τ is an OE-lattice in τE . Note that M i1,j1
E [pE ]⊗E Qp is a direct summand of

(5.6.7) where Π runs over a subset of automorphic representations in (5.6.7). The same
argument as in the paragraph above (4.5.7) of [39] using Cebotarev density theorem
shows that the local component Πv of each Π occurring in this direct summand does
not depend on Π.
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By the definition of τ , we obtain non-zero morphisms

(5.6.9) τ ⊗OE
F→M [p]⊗OE

F→MF[mr]

as p+ϖETP = mr. We denote the image of τ ⊗OE
F under the composition (5.6.9)

by V and note that it can be naturally identified with ⟨Kvi1,j1⟩F according to the
definition of τ . By the assumption (5.6.4) (cf. Conjecture 5.3.2), we deduce that

JH
(
socG(Fp) (MF[mr])

)
⊆ {F (µ□), F (µ□,i1,j1)}

and therefore by (5.6.9) we have

JH
(
socG(Fp)(V )

)
⊆ {F (µ□), F (µ□,i1,j1)}.

We know that there exists an OE-lattice τ ′ ⊆ τE such that

socG(Fp)(V ) ∼= socG(Fp) (τ ′ ⊗OE
F) .

Moreover, we have a saturated inclusion τ ↪→ τ ′ which induces a morphism

τ ⊗OE
F→ τ ′ ⊗OE

F

whose image is isomorphic to V . It follows from Proposition 5.5.13 that we necessarily
have isomorphisms of F-lines

(τ ⊗OE
F)

U(Fp),µi1,j1 ∼−→ V U(Fp),µi1,j1 ∼−→ (τ ′ ⊗OE
F)

U(Fp),µi1,j1

.

Hence, by Corollary 5.5.16 and the fact that

V U(Fp),µi1,j1
= F[vi1,j1 ] ⊆MF[mr],

we deduce that

(5.6.10) Si1,j1 • Si1,j1
1 vi1,j1 ̸= 0.

On the other hand, we have the following equality by Proposition 5.5.1
(5.6.11)

Ŝi1,j1,′ • Ŝi1,j1,′
1 • (Ξn)j1−i1−1v̂i1,j1 = κi1,j1

(∏i0−1
k=j0+1 ψi1+1+k(p)

p
(i0+j0)(i0−j0−1)

2

)
Ŝi1,j1 • Ŝi1,j1

1 v̂i1,j1 .

By taking mod p reduction of (5.6.11) we deduce from (5.6.8) that

Si1,j1,′ • Si1,j1,′
1 • (Ξn)j1−i1−1vi1,j1

= εi1,j1Pi1,j1(bn−1, . . . , b0) · FLi0,j0
n (r|GFw

) · Si1,j1 • Si1,j1
1 vi1,j1 .

This equation together with (5.6.10) finishes the proof.

Corollary 5.6.12. – Keep the notation of Theorem 5.6.3 and assume that each as-
sumption in Theorem 5.6.3 holds for all (i0, j0) such that 0 ≤ j0 < j0 + 1 < i0 ≤ n− 1.
Assume further that M i1,j1 is free over Ti1,j1 for all pair (i1, j1) (cf. Remark 5.6.6).

Then the structure of S(Uv, V ′)[mr] as a smooth admissible F-representation
of G(Qp) determines ρ0 up to isomorphism.
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Proof. – We follow the notation in Section 3.4 of [10]. As ρ0 is ordinary, we can view
it as a morphism

ρ0 : GQp → B̂(F) ⊆ Ĝ(F),

where B̂ (resp. Ĝ) is the dual group of B (resp. G). The local class field theory gives us
a bijection between smooth characters of Q×

p and the smooth characters of the Weil
group of Qp in characteristic 0. This bijection restricts to a bijection between smooth
characters of Q×

p and smooth characters of GQp
both with values in O×E . Taking mod p

reduction and then taking products we reach a bijection between smooth F-characters
of T (Qp) and Hom(GQp , T̂ (F)). We can therefore define χρ0

as the character of T (Qp)

corresponding to the composition

χ̂ρ0
: GQp

→ B̂(F) ↠ T̂ (F).

In [10], a closed subgroup Cρ0
⊆ B (at the beginning of Section 3.2) and a subset Wρ0

((2) before Lemma 2.3.6) of W is defined.
As we are assuming that ρ0 is maximally non-split, we observe that Cρ0

= B

and Wρ0
= {1} in our case. Therefore by the definition of Πord(ρ0) in [10] before

Definition 3.4.3, we know that it is indecomposable with socle

Ind
G(Qp)

B−(Qp)χρ0
· (ω−1 ◦ θ),

where θ ∈ X(T ) is a twist character defined after Conjecture 3.1.2 in [10] which can
be chosen to be η in our notation. Then as a corollary of Theorem 4.4.7 in [10], we
deduce that S(Uv, V ′)[mr] determines χρ0

and hence χ̂ρ0
.

Now, we know that ρ0 is determined by the Fontaine-Laffaille parameters

{FLi0,j0
n (ρ0) ∈ P1(F) | 0 ≤ j0 < j0 + 1 < i0 ≤ n− 1}

and χ̂ρ0
, up to isomorphism. Our conclusion thus follows from Theorem 5.6.3 together

with Remark 5.6.6.
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Let p be a prime number, n > 2 an integer, and F a CM field in
which p splits completely. Assume that a continuous automorphic Galois
representation r : Gal(Q/F )→ GLn(Fp) is upper-triangular and satisfies
certain genericity conditions at a place w above p, and that every subquotient
of r|Gal(Qp/Fw)

of dimension > 2 is Fontaine-Laffaille generic. In this
paper, we show that the isomorphism class of r|Gal(Qp/Fw)

is determined

by GLn(Fw)-action on a space of mod p algebraic automorphic forms cut out
by the maximal ideal of a Hecke algebra associated to r. In particular, we
show that the wildly ramified part of r|Gal(Qp/Fw)

is determined by the action

of Jacobi sum operators (seen as elements of Fp[GLn(Fp)]) on this space.

Soient p un nombre premier, n > 2 un entier, et F un corps à multiplication
complexe dans lequel p est complètement décomposé. Supposons qu’une
représentation galoisienne automorphe continue r : Gal(Q/F ) → GLn(Fp)
est triangulaire supérieure, Fontaine-Laffaille et suffisament générique (dans
un certain sens) en une place w au-dessus de p. On montre, en admettant
un résultat d’élimination de poids de Serre prouvé dans [47], que la classe
d’isomorphisme de r|Gal(Qp/Fw)

est déterminée par l’action de GLn(Fw) sur
un espace de formes automorphes modulo p découpé par l’idéal maximal
associée à r dans une algèbre de Hecke. En particulier, on montre que la partie
sauvagement ramifiée de r|Gal(Qp/Fw)

est déterminée par l’action de sommes de

Jacobi (vus comme éléments de Fp[GLn(Fp)]) sur cet espace.


	Chapter 1. Introduction
	1.1. Local Galois side
	1.2. Local automorphic side
	1.3. Weight elimination and automorphy of a Serre weight
	1.4. Mod p local-global compatibility
	1.5. Notation
	Acknowledgements

	Chapter 2. Integral p-adic Hodge theory
	2.1. Filtered (,N)-modules with descent data
	2.2. Strongly divisible modules with descent data
	2.3. Breuil modules with descent data
	2.4. Linear algebra with descent data
	2.5. Fontaine-Laffaille modules
	2.6. Étale -modules

	Chapter 3. Local Galois side
	3.1. Elimination of Galois types
	3.2. Fontaine-Laffaille parameters
	3.3. Breuil modules of certain inertial types of niveau 1
	3.4. Fontaine-Laffaille parameters vs Frobenius eigenvalues
	3.5. Filtration of strongly divisible modules
	3.6. Reducibility of certain lifts
	3.7. Main results on the Galois side

	Chapter 4. Local automorphic side
	4.1. Jacobi sums in characteristic p
	4.2. Summary of results on Deligne-Lusztig representations
	4.3. A multiplicity one theorem
	4.4. Jacobi sums in characteristic 0
	4.5. Special vectors in a dual Weyl module
	4.6. Some technical formula
	4.7. A non-vanishing theorem
	4.8. Main results in characteristic p

	Chapter 5. Mod p local-global compatibility
	5.1. The space of algebraic automorphic forms
	5.2. Serre weights and potentially crystalline lifts
	5.3. Weight elimination and automorphy of a Serre weight
	5.4. Some application of Morita theory
	5.5. Generalization of Chapter 4
	5.6. Main results

	Bibliography

