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ON MOD p LOCAL-GLOBAL COMPATIBILITY FOR GL,(Q,)
IN THE ORDINARY CASE

Chol Park, Zicheng Qian

Abstract. — Let p be a prime number, n > 2 an integer, and F' a CM field in which
p splits completely. Assume that a continuous automorphic Galois representation
7: Gal(Q/F) — GL,(F,) is upper-triangular and satisfies certain genericity condi-

tions at a place w above p, and that every subquotient of ?IGal @/ F) of dimen-
o/ Fu

sion > 2 is Fontaine-Laffaille generic. In this paper, we show that the isomorphism
class of 7|, | is determined by GL, (F,,)-action on a space of mod p algebraic
Gal(Q,/Fuw)

automorphic forms cut out by the maximal ideal of a Hecke algebra associated to 7.
In particular, we show that the wildly ramified part of oo is determined by
Gal(Q,/Fuw)

the action of Jacobi sum operators (seen as elements of F,[GL, (F,)]) on this space.

Résumé (Sur la compatibilité local-global modulo p pour GL,,(Q,) dans le cas ordinaire)

Soient p un nombre premier, n > 2 un entier, et F' un corps & multiplication
complexe dans lequel p est complétement décomposé. Supposons qu’une représen-
tation galoisienne automorphe continue 7 : Gal(Q/F) — GL,(F,) est triangulaire
supérieure, Fontaine-Laffaille et suffisament générique (dans un certain sens) en une
place w au-dessus de p. On montre, en admettant un résultat d’élimination de poids
de Serre prouvé dans [47], que la classe d’isomorphisme de F|Ga1(6 JF) est déterminée

o/ Fu

par action de GL,,(F,,) sur un espace de formes automorphes modulo p découpé par

I'idéal maximal associée & 7 dans une algébre de Hecke. En particulier, on montre que

la partie sauvagement ramifiée de oo est déterminée par ’action de sommes
Gal(Q,/Fuw)

de Jacobi (vus comme éléments de F,[GL,, (F,)]) sur cet espace.

(© Mémoires de la Société Mathématique de France 173, SMF 2022
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CHAPTER 1

INTRODUCTION

It is believed that one can attach a smooth F,-representation of GL,(K)
(or a packet of such representations) to a continuous Galois representation
Gal(ép /K) — GL,(F,) in a natural way, that is called mod p Langlands program
for GL, (K), where K is a finite extension of Q,,. This conjecture is well-understood
for GL2(Qyp) (3], [4], [6], [7], [18], [53], [19], [24]). Beyond the GL2(Q,)-case, for
instance GL,(Q,) for n > 2 or even GL3(Q,s) for an unramified extension Qs
of Qp of degree f > 1, the situation is still quite far from being understood. One of
the main difficulties is that there is no classification of such smooth representations
of GL,(K) unless K = Q, and n = 2: in particular, we barely understand the
supercuspidal representations. Some of the difficulties in classifying the supercuspidal
representations are illustrated in [11], [40] and [56].

Let F be a CM field in which p is unramified, and 7 : Gal(Q/F) — GL,(F,) an
automorphic Galois representation. Although there is no precise statement of mod p
Langlands correspondence for GL,(K) unless K = Q, and n = 2, one can define
smooth representations II(7) of GL, (Fy,) in the spaces of mod p automorphic forms
on a definite unitary group cut out by the maximal ideal of a Hecke algebra associ-
ated to 7, where w is a place of F' above p. A precise definition of II(7¥) when p splits
completely in F', which is our context, will be given in Section 1.4. (See also Sec-
tion 5.6.) One wishes that II(7) is a candidate on the automorphic side corresponding

to 7|, @,/Fw) for a mod p Langlands correspondence in the spirit of Emerton [24].

However, we barely understand the structure of II(7) as a representation of GL,, (Fy,),
though the ordinary part of II(7) is described in [10] when p splits completely in F' and

is ordinary. In particular, it is not known whether II(7)

F|Ga1(6p/1~“w) and F|Gal(6p/Fw)

determine each other. But we have the following conjecture:

CONJECTURE 1.0.1. — The local Galois representation FlGal(a IF) is determined
by II(F).

SOCIETE MATHEMATIQUE DE FRANCE 2022



2 CHAPTER 1. INTRODUCTION

This conjecture is widely expected to be true by experts but not explicitly writ-
ten down before. The case GL2(Q,s) was treated by Breuil-Diamond [9]. Herzig-Le-
Morra [39] considered the case GL3(Q,) is upper-triangular, while
the case GL3(Q,) when F|Gal(6p/Fw)

representation by a character was considered by Le-Morra-Park [50]. We are informed
that John Enns from the University of Toronto has worked on this conjecture for the

when 7 _
|Gal@, /Fu)
is an extension of a two dimensional irreducible

group GL3(Q,s). All of the results above are under certain generic assumptions on
the tamely ramified part of 7| gl @,/F)

From another point of view, to a smooth admissible F,-representation II of GL,, (K)
for a finite extension K of Q,, Scholze [55] attaches a smooth admissible F-repre-
sentation S(II) of D* for a division algebra D over K with center K and invariant +,

which also has a continuous action of Gal(Q,/K), via the mod p cohomology of the
Lubin-Tate tower. Using this construction, it was possible for Scholze to prove Con-
jecture 1.0.1 in full generality for GLo(K) (cf. [55], Theorem 1.5). On the other hand,
the proof of Theorem 1.5 of [55] does not tell us where the invariants that determine
S(II) lie. We do not know if there is any relation between these two different methods.

The weight part of Serre’s conjecture already gives part of the information of II(7):

the local Serre weights of 7 at w determine the socle of H(F)|GL (Or) at least up
n Foy

to possible multiplicities, where OF, is the ring of integers of F,,. If | qal @/ F) is
P w

semisimple, then it is believed that the Serre weights of 7 at w determine | qal (Qo/F)

P w
up to twisting by unramified characters, but this is no longer the case if it is not
semisimple: the Serre weights are not enough to determine the wildly ramified part

of T eo , so that we need to understand a deeper structure of II(7) than just
Gal(Q,/Fuw)

its GL,,(Op,, )-socle.
In this paper, we show that Conjecture 1.0.1 is true when p splits completely
in F' and F|Ga1 @,/Fu) is upper-triangular and sufficiently generic in a precise sense.

Moreover, we describe the invariants in II(7) that determine the wildly ramified part

of 7| Gal @,/Fu)’ The generic assumptions on 7| Gal @,/F) ensure that very few Serre

weights of 7 at w will occur, which we call the weight elimination conjecture, Con-
jecture 1.3.2. The weight elimination results are significant for our method to prove
Conjecture 1.0.1. But Bao V. Le Hung pointed out that this weight elimination con-
jecture can be proved by constructing certain deformation rings, and the results will
appear in the forthcoming paper [47]. We follow the basic strategy in [9, 39]: we define
Fontaine-Laffaille parameters on the Galois side using Fontaine-Laffaille modules as
well as automorphic parameters on the automorphic side using the actions of Jacobi
sum operators, and then identify them via the classical local Langlands correspon-
dence. However, there are many new difficulties that didn’t occur in [9] or in [39]. For
instance, the classification of semi-linear algebraic objects of rank n > 3 on the Ga-
lois side is much more complicated. Moreover, failing of the multiplicity one property
of the Jordan-Holder factors of mod p reduction of Deligne-Lusztig representations

MEMOIRES DE LA SMF 173



1.1. LOCAL GALOIS SIDE 3

of GL,,(Z,) for n > 3 implies that new ideas are required to show crucial non-vanishing
of the automorphic parameters. In the rest of the introduction, we explain our ideas
and results in more detail.

1.1. Local Galois side

Let E be a (sufficiently large) finite extension of Q,, with ring of integers Og, a uni-

formizer wg, and residue field F, and let Iq, be the inertia subgroup of Gal(Q,/Q,)
and w the fundamental character of niveau 1. We also let g, : Gal(Q,/Q,) —
GL,(F) be a continuous (Fontaine-Laffaille) ordinary generic Galois representation.
Namely, there exists a basis e := (en—1,€n—2,...,€9) for p, such that with respect

to e the matrix form of p, is written as follows:

wcn_l-&-(n—l)

k1 * e * *
0 wen—2H(n=2) *p—9 e * *
0 0 wen—3tn=3) ... * *
(A1) Fof,
watl
0 wee

for some integers c¢; satisfying some genericity conditions (cf. Definition 3.0.3). We
also assume that p, is maximally non-split, i.e., *; # 0 for all 4 € {1,2,...,n — 1}.

Our goal on the Galois side is to show that the Frobenius eigenvalues of certain
potentially crystalline lifts of p, determine the Fontaine-Laffaille parameters of 5,
which parameterize the wildly ramified part of p,. When the unramified part and the
tamely ramified part of p, are fixed, we define the Fontaine-Laffaille parameters via the
Fontaine-Laffaille modules corresponding to g (cf. Definition 3.2.4). These parameters
vary over the space of W copies of the projective line P!(F), and we write
FLiJ°(5,) € P1(F) for each pair of integers (ig, jo) with 0 < jo < jo+1 < ip < n—1.
For each such pair (4o, jo), the Fontaine-Laffaille parameter FL}°7°(p,) is determined
by the subquotient p; ; of py which is determined by the subset (e, €iy—1,---;€j,)
of e (cf. (3.0.2)): in fact, we have the identity FLY7°(5,) = FLZ:ﬁ:;Efl(ﬁio,jo) (ct.
Lemma 3.2.6).

Since potentially crystalline lifts of p, are not Fontaine-Laffaille in general, we
are no longer able to use Fontaine-Laffaille theory to study such lifts of py; we use
Breuil modules and strongly divisible modules for their lifts. It is obvious that any lift
of p, determines the Fontaine-Laffaille parameters, but it is not obvious how one can
explicitly visualize the information that determines p, in those lifts. Motivated by the
automorphic side, we believe that for each pair (i, jo) as above the Fontaine-Laffaille
parameter FLﬁ{”jO (Po) is determined by a certain product of Frobenius eigenvalues of
the potentially crystalline lifts of p, with Hodge-Tate weights {—(n — 1),...,—1,0}

SOCIETE MATHEMATIQUE DE FRANCE 2022



4 CHAPTER 1. INTRODUCTION

n—1 ~x%0:70

and Galois type €, , @"i where w is the Teichmiiller lift of the fundamental
character w of niveau 1 and

Cig + 10— Jo—1 for i = ig;
(1.1.2) k7 =9 ¢j, — (io —jo— 1) for i = jo;
c; otherwise

modulo (p — 1). Here, ¢; are the integers determining the tamely ramified part of p,
in (1.1.1) and our normalization of the Hodge-Tate weight of the cyclotomic charac-
ter € is —1.

Our main result on the Galois side is the following:

THEOREM 1.1.3 (Theorem 3.7.3). — Fiz io, jo € Z with 0 < jo < jo+1 <o < n— 1.
Assume that py is generic (cf. Definition 3.0.8) and that p;, ;, is Fontaine-Laffaille
generic (cf. Definition 8.2.7), and let (N0, X070 ... A>7°) € (Og)" be the
Frobenius eigenvalues on the (&kzloflo,@k;o;go, e ,&kéo’jo)-isotypic components
of Dg‘“nil(pg) where po is a potentially crystalline lift of p, with Hodge-Tate
weights {—(n —1),—(n —2),...,—1,0} and Galois type @?:_01 k.

Then the Fontaine-Laffaille parameter FLff’jO associated to py is computed as fol-
lows:

ig+io

plin—1) =252 io—jo—1)

ip—1 0,70
||

FLiJ0(5,) = 1:( ) c PY(F).

Note that by ® € F in the theorem above we mean the image of ® € O under the
natural surjection O — F. We also note that p; ; being Fontaine-Laffaille generic
implies FLi{”jO (Po) # 0, 00 for all 4y, jp as in Theorem 1.1.3, but is a strictly stronger
assumption if ig — jo > 3.

Let us briefly discuss our strategy for the proof of Theorem 1.1.3. Recall that the
Fontaine-Laffaille parameter FLif’jO (Py) is defined in terms of the Fontaine-Laffaille
module corresponding to f,. Thus we need to describe FL7(p,) by the data of
the Breuil modules of inertial type @;:01 wki®”° corresponding to p,, and we do
this via étale ¢-modules, which requires classification of such Breuil modules. If the
filtration of the Breuil modules is of a certain shape, then a certain product of the
Frobenius eigenvalues of the Breuil modules determines a Fontaine-Laffaille parameter
(cf. Proposition 3.4.3). In order to get such a filtration, we need to assume that p;, ; is
Fontaine-Laffaille generic (cf. Definition 3.2.7). Then we determine the structure of
the filtration of the strongly divisible modules lifting the Breuil modules by direct
computation, which immediately gives enough properties of Frobenius eigenvalues of
the potentially crystalline representations we consider. But this whole process is subtle
for general 49, jo. To resolve this issue we prove that any potentially crystalline lift of 5,

n—1 ~g0-Jo

with Hodge-Tate weights {—(n—1),—(n—2),...,0} and Galois type @,_, @" = has

MEMOIRES DE LA SMF 173



1.2. LOCAL AUTOMORPHIC SIDE 5

a potentially crystalline subquotient p;, ;, of Hodge-Tate weights {—io,...,—j0} and
of Galois type @:0:]0 &% lifting Diy.jo- More precisely,

THEOREM 1.1.4 (Corollary 3.6.4). — Ewvery potentially crystalline lift po of py with
Hodge-Tate weights {—(n — 1),—(n — 2),...,0} and Galois type @?:_01 G s a
successive extension

p"—l,n_l ... * * * ... *
Pig+1,i9+1 * * I
Po = Pio .0 * T *
Pjo—1,jo—1 " *

P0,0

where

— forn—12>1>19 and jo > 1 >0, p;; is a 1-dimensional potentially crystalline
~ft0do

lift of p; ; with Hodge-Tate weight —i and Galois type w™i ~;
— Pig.jo 15 @ (t0—Jo+1)-dimensional potentially crystalline lift of Piy.j, with Hodge-

Tate weights {—ig, —io + 1,...,—jo} and Galois type ;O:jo Gk

Note that we actually prove the niveau f version of Theorem 1.1.4 since it adds
only little more extra work (cf. Corollary 3.6.4).

The representation p;, j, ® €770 is a (ip — jo + 1)-dimensional potentially crys-
talline lift of pio,jo wi.th. Hodge-Tate weights {—(io — jo), — (¢ — jo — 1),...,0} and
Galois type ;2 @*"” | so that, by Theorem 1.1.4, Theorem 1.1.3 reduces to the
case (io, jo) = (n — 1,0): we prove Theorem 1.1.3 when (4o, jo) = (n — 1,0), and then
use the fact FL;7°(p,) = FL;S:;gfl(ﬁiwo) to get the result for general ig, jg.

The Weil-Deligne representation WD(pg) associated to po (as in Theorem 1.1.3)
contains those Frobenius eigenvalues of py. We then use the classical local Langlands
correspondence for GL,, to transport the Frobenius eigenvalues of py (and so the
Fontaine-Laffaille parameters of 5, as well by Theorem 1.1.3) to the automorphic side

(cf. Corollary 3.7.5).

1.2. Local automorphic side

We start by introducing the Jacobi sum operators in characteristic p. Let T
(resp. B) be the maximal torus (resp. the maximal Borel subgroup) consist-
ing of diagonal matrices (resp. of upper-triangular matrices) of GL,. We let
X(T) := Hom(T, G,,) be the group of characters of 7" and ®* be the set of positive
roots with respect to (B,T). We define ¢; € X(T) as the projection of T & G,

SOCIETE MATHEMATIQUE DE FRANCE 2022



6 CHAPTER 1. INTRODUCTION

onto the i-th factor. Then the elements {¢; | 1 < ¢ < n} forms a Z-basis for the
free abelian group X (T"). We will use the notation (dy,ds,...,d,) € Z™ for the
element Y ,_, dyer, € X(T). Note that the group of characters of the finite group
T(F,) = (F;)" can be identified with X (T')/(p—1) X (T'), and therefore we sometimes
abuse the notation (di,ds,...,d,) for its image in X(T")/(p — 1)X(T"). We define
A:={ap:=¢e,—e€rr1|1<k<n-—1} C ®* as the set of simple positive roots. Note
that we write s; for the reflection of the simple root «aj. For an element w in the
Weyl group W, we define @ = {a € ®* | w(a) € —@*} C @ and Uy = [[,cqt Ua,
where U, is a subgroup of U whose only non-zero off-diagonal entry corresponds to a.
Note in particular that & = @;0, where wy is the longest element in W. For w € W
and for a tuple of integers k = (ka)ae<1>$ e{0,1,...,p— 1}@3‘, we define the Jacobi
sum operator

Sk = Z H Ake | A w € F,[GL,(F,)],

A€Uy(Fp) \aed

where A, is the entry of A corresponding to o € ®}. In Chapter 4, we establish
many technical results, both conceptual and computational, around these Jacobi sum
operators. The use of these Jacobi sum operators can be traced back to at least [15],
and are widely used for GLs in [11] and [40] for instance. But systematic computation
with these operators seems to be limited to GL, or GL3. In this paper, we need to
do some specific but technical computation on some special Jacobi sum operators
for GL,,(F,), which is enough for our application to Theorem 1.4.1 below.

By the discussion on the local Galois side, our target on the local automorphic side
is to capture the Frobenius eigenvalues coming from the local Galois side. By the clas-
sical local Langlands correspondence, the Frobenius eigenvalues of py are transported
to the unramified part of x in the tamely ramified principal series Indg%éi?”) X corre-
sponding to the Weil-Deligne representation WD(pg) attached to pg in Theorem 1.1.3,
and it is standard to use Up-operators to capture the information in the unramified
part of x.

The normalizer of the Iwahori subgroup I in GL,(Q)) is cyclic modulo I, and this
cyclic quotient group is generated by an element Z,, € GL,(Q,) that is explicitly de-
fined in (4.4.1). One of our goals is to translate the eigenvalue of U,-operators into the
action of =, on the space (Indg](éi?”)x)bLn(ZP). This is firstly done for GL2(Q,r)
in [9], and then the method is generalized to GL3(Q,) in the ordinary case by [39].
Both [9] and [39] need a pair of group algebra operators: for instance, group algebra
operators 5, 5’ € Q,[GL3(Q,)] are defined in [39] and the authors prove an intertwin-
ing identity of the form S’ . =5 = ¢S on a certain I(1)-fixed subspace of Indgl(gi?p)
with x assumed to be tamely ramified, where I(1) is the pro-p Sylow subgroup of I.
Here, the constant ¢ € OF, captures the eigenvalues of Up-operators. This is the first
technical point on the local automorphic side, and we generalize the results in [9] and
[39] by the following theorem.

MEMOIRES DE LA SMF 173



1.2. LOCAL AUTOMORPHIC SIDE 7

For an n-tuple of integers (an—1,Gn-2,...,09) € Z", we write S, and S
for Sy, with k' = (k!;) and Sy, with k" = (k;7) respectively, where
kil,i+1 :[ ag — Qp— 1]1+TL 2, k‘zl’ll_H = [an i—1 —an_1]1 +n—-2forl1 <i<n-— 1,
and kllj = kl J/ = 0 otherwise. Here, (4,7) is the entry corresponding to « if
a =¢—¢ € & and by [z]; for z € Z we mean the integer in [0,p — 1) such
that z = [z]; modulo (p— 1). We define S, € Z,[GL,(Z,)] (resp. S, € Z,[GL,(Z,)))
by taking the Teichmiiller lifts of the coefficients and the entries of the matrices
of S, € Fp[GL,(Fp)] (resp. of S, € Fp[GL,(Fp)]).

‘We use the notation e for the composition of maps or group operators to distinguish
from the notation o for an Og-lattice inside a representation.

THEOREM 1.2.1 (Theorem 4.4.23). — Assume that the n-tuple of integers
(an—1,0n-2,--.,00) 18 n-generic in the lowest alcove (cf. Definition 4.1.1), and
let

I, = IﬂdB(Q() )(Xl OX2®@X3® @ Xn—2® Xn-1® Xo)
be a tamely ramified principal series representation with the smooth characters
Xk : Qp — E satisfying Xk|, <= W% for0<k<n-—1.

I(1),(a1,a2,...,an—1,a0)

On the 1-dimensional subspace I, we have the identity:

n—2
(1.2.2) S, 0 (Bn)" 2 =p" Pkn <H xk(p)> Sn
k=1

or kn € ZX satisfying k, = €* - Pp(an_1,...,a0) mod (wg) where
p
n—2
e = (=1)@o—ax
k=1
and
T 3ak—a W = an-1 +J
P (a —1y---5Q n- ZX.

In fact, there are many identities similar to the one in (1.2.2) for each operator U}
for 1 <4 < n—1 (defined in (4.4.2)) which can be technically always reduced to
Proposition 4.4.8, but it is clear from the proof of Theorem 1.2.1 in Section 4.4
that we need to choose UP~2 for the Upy-operator acting on I (al’”""’a"’l’ao),

motivated from the local Galois side via Theorem 1.1.3. The crucial point here is
that the constant p"~ 2k, (HZ;IQ Xk(p)), which is closely related to FL"~1%(5,) via
Theorem 1.1.3 and classical local Langlands correspondence, should lie in O for
each II,, appearing in our application of Theorem 1.2.1 to Theorem 1.4.1.

The next step is to consider the mod p reduction of the identity (1.2.2), which
is effective to capture p" 2 [[1_3 xx(p) modulo (wg) only if 5,7 # 0 modulo (wg)

for § € ML (@1-02man-1200) T4 ting out that this non-vanishing property is very
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8 CHAPTER 1. INTRODUCTION

technical to prove for general GL, (Q,). Before we state our non-vanishing result, we
fix a little more notation: let

u* = (an_1 —n+2,a4_2,...,a1,a0 +n — 2);
to = (@p—1,01,02,...,0pn_3,0n_2,00);
p1 = (a1,a2,...,0n_3,0n_2,0n_1,00);
/14/1 = (an—la ag,a1,0a2, ..., an—3,an—2)

be four characters of T'(F,), and write 7y (resp. 7§) for the characteristic p principal
series (resp. the characteristic 0 principal series) induced by the characters ug (resp.
by its Teichmiiller lift 1zp). Note that we can attach an irreducible representation F'(\)
of GL,(F,) to each A € X(T)/(p — 1)X(T') satisfying some regular conditions (cf.
the beginning of Chapter 4). If we assume that (ap—_1,...,a9) € Z™ is n-generic in
the lowest alcove, the characters p*, po, u1 and p) do satisfy the regular condition
and thus we have four irreducible representations F'(u*), F'(uo), F(r1) and F(u})
of GL,(F;). There is a unique (up to homothety) Og-lattice 7 in 7§ ® v, E such that

SOCGLn(FP)(T ®oy F) = F(u*).

We are now ready to state the non-vanishing theorem.

THEOREM 1.2.3 (Corollary 4.8.3). — Assume that the n-tuple of integers
(an-1,Gn-2,...,00) is 2n-generic in the lowest alcove (cf. Definition 4.1.1).
Then we have

Sn ((T ®0y F)U(Fp),m) #0 and S, ((7- ®0, F)U(Fp)wi) £0.

The definition of py, p}, po and p* is motivated by our application of Theorem 1.2.3
to Theorem 1.4.1 and is closely related to the Galois types we choose in Theorem 1.1.3.
We emphasize that, technically speaking, it is crucial that F(u*) has multiplicity one
in my. The proof of Theorem 1.2.3 is technical and makes full use of the results in
Sections 4.1, 4.6, and 4.7.

1.3. Weight elimination and automorphy of a Serre weight

The weight part of Serre’s conjecture is considered as a first step towards mod p

Langlands program, since it gives a description of the socle of H(F)|GL 2, P to
n\4p

possible multiplicities. Substantial progress has been made for the groups GLy(Of),
where O is the ring of integers of a finite extension K of Q, ([12], [30], [34], [35],
[36]). For groups in higher semisimple rank, we also have a detailed description. (See
[25], [39], [50], [52], [49] for GLs; [38], [31], [1], [48], [33] for general n.)

Weight elimination results are significant for the proof of our main global appli-
cation, Theorem 1.4.1. For the purpose of this introduction, we quickly review some
notation. Let F* be the maximal totally real subfield of a CM field F, and assume
that p splits completely in F. Fix a place w of F' above p and set v := w|,, - We
assume that 7 is automorphic: this means that there exist a totally definite unitary
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1.3. WEIGHT ELIMINATION AND AUTOMORPHY OF A SERRE WEIGHT 9

group G, defined over ' that is an outer form of GL,, ,r+ and split at places above p,
an integral model G,, of G,, such that G,, x O P+ is reductive if v’ is a finite place of F'*
that splits in F, a compact open subgroup U - Gn(Opt ) XU C G (Opt) xGr(ATLY)
that is sufficiently small and unramified above p, a Serre weight V = ®v,|p V., that
is an irreducible smooth Fp—representation of Go(OF+ ), and a maximal ideal mz
associated to 7 in the Hecke algebra acting on the space S(U, V) of mod p algebraic
automorphic forms such that

(1.3.1) S(U, V)[m=] # 0.

We write W(7) for the set of Serre weights V satisfying (1.3.1) for some U, and
Wy, (7) for the set of local Serre weights V,,, that is irreducible smooth representa-
tions of G,,(Op+) = GL,(OF,) & GLn(Zyp), such that Vi, ® (Q,4, Ver) € W(T)
for an irreducible smooth representation ®v,¢v Vyr of Hv,;ﬁv gn(oFt). The local
Serre weights V, have an explicit description as representations of Gan(Fp): there
exists a p-restricted (i.e,, 0 < a; —a;—1 < p—1foral 1l < i < n—1) weight
a:= (an-1,an-2,...,a0) € X(T) such that F(a) = V, where F(a) is the irreducible
socle of the dual Weyl module associated to a (cf. Section 5.2 as well as the beginning
of Chapter 4).

Assume that 7|, =~ 5y, where p is defined as in (1.1.1). We define certain
Gal(@, /Fu)
characters p= and pti191 of T(F,) and a principal series

71.11,]1 — IndB(FIE) p)(u ,z1,]1)wo

at the beginning of Section 5.3. Our main conjecture for weight elimination is

CoNJECTURE 1.3.2 (Conjecture 5.3.2). — Assume that p, ;, 1is Fontaine-Laffaille
generic and that p="71 is 2n-generic. Then we have an inclusion

W, (7) N JH((ri9)Y) € {F(u7)Y, F(u191) V)

We emphasize that the condition p;, , is Fontaine-Laffaille generic is crucial in
Conjecture 1.3.2. For example, if n = 4 and (ig, jo) = (3,0) and we assume merely
FL3°(p,) # 0,00 (which is strictly weaker than Fontaine-Laffaille generic), then we
expect that an extra Serre weight can possibly appear in W, (7) N JH((7271)V).

The Conjecture 1.3.2 is motivated by the proof of Theorem 1.1.3 and the theory
of shape in [49]. The special case n = 3 of Conjecture 1.3.2 was firstly proven in [39]
and can also be deduced from the computations of Galois deformation rings in [49].

REMARK 1.3.3. — In an earlier version of this paper, we prove Conjecture 1.3.2 for
n < 5. But our method is rather elaborate to execute for general n. Bao V. Le Hung
pointed out that one can prove Conjecture 1.3.2 completely by constructing certain
potentially crystalline deformation rings. A proof of Conjecture 1.3.2 will appear
in [47].
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10 CHAPTER 1. INTRODUCTION

Finally, we also show the automorphy of the Serre weight F’ (MD)V. In other words,
(1.3.4) F(uP)Y € Wy (7) N JH((xiv31)V).

Showing the automorphy of a Serre weight, in general, is very subtle. But thanks to the
work of [1] we are able to show the automorphy of F(u™)Y by checking the existence
of certain potentially diagonalizable crystalline lifts of p, (cf. Proposition 5.3.3).

1.4. Mod p local-global compatibility

We now state our main results on mod p local-global compatibility. As discussed
at the beginning of this introduction, we prove that II(7) determines the ordinary
representation p,. Moreover, we also describe the invariants in II(7) that determine
the wildly ramified parts of p,. We first recall the definition of II(7).

Keep the notation of the previous sections, and write b; = —c,_1_; for all
0<i<mn-—1, with ¢; as in (1.1.1). We fix a place w of F above p and write
vi= W, and we let 7 : Gp — GL,(F) be an irreducible automorphic representa-
tion, of a Serre weight V' = &),, Vi (cf. Section 1.3), with F|GFw 5.

Let V' := @4, Vor and set S(U", V') := imS(U” - U,, V') where the direct limit
runs over compact open subgroups U, C G, (O FJ)' This space S(U", V') has a natural

smooth action of G, (F,") & GL,(F,) = GL,(Q,) by right translation as well as an
action of a Hecke algebra that commutes with the action of G,,(F,). We define

IL(F) := S(U”, V")[ms]

where m is the maximal ideal of the Hecke algebra associated to 7. In the spirit of [24],
this is a candidate on the automorphic side for a mod p Langlands correspondence
corresponding to py. Note that the definition of II(7) relies on U” and V' as well as
choice of a Hecke algebra, but we suppress them in the notation.

Fix n—1 2> 4 > jo+ 1 > jo > 0, and define i; and j; by the equation
i1 + 19 = j1 + jo = n — 1. Note that the following Jacobi sum operators

Sil’jl, Sihjl,/7 Si‘:laj17 Si‘:l)jla’ c Fp[Glefilﬁ»l(Fp)]
are defined at the beginning of Section 5.5.
Now we can state the main results in this paper.
THEOREM 1.4.1 (Theorem 5.6.3). — Fiz a pair of integers (ig,jo) satisfying
0<jo<jot+l<ig<n-—1, and let 7 : Gr — GL,(F) be an irreducible auto-

morphic representation with Tl = 0. Assume that
Fuw

— pBian s 2n-generic;

— Diy.jo S Fontaine-Laffaille generic.
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Assume further that
(142) (PO} C Wy(r) NIH((x89)Y) € {F()Y, P(uDin)Vy.
Then there exists a primitive vector (cf. Deﬁmtzon 5.6.2) in II(7)T(): #1 More-

1,01 L
over, for each primitive vector v**7* € TI(7)T(); m'" we have St o Sil’]lv“’“ #0
and

i1,01,/ o QILIL o (= \ji—i1—1, 01,01 _ i1,01D. | 10,90 (7= 11,5 11,J1 81,5
Siii! o S o (B, V1= —lyindt — AP, L (b, _y,..., by) FL (T‘GF).Sl, 1o Syt
w

where

ji—1

it — H (_1)b7~,l—bk—j1+i1+1

k=i +1

and

Ji—1 ji—i1—-1

Pil,jl(bn_l,...,bo): H H b — Z><

k=i1+1 gj=1 “_bk_]

Note that the conditions in (1.4.2) can be removed under some standard Taylor-
Wiles conditions (cf. Remark 1.3.3 and (1.3.4)).

Theorem 1.4.1 relies on the choice of a principal series type (the niveau 1 Galois
type @Z 01 ok ]0) But this choice is somehow the unique one that could possibly
make our strategy of the proof of Theorem 1.4.1 work.

Be careful that we cannot apply Theorem 1.2.1 and Theorem 1.2.3 directly to our
local global-compatibility for general (i1, j1). Instead, we need to generalize Theo-
rem 1.2.3 (resp. Theorem 1.2.1) to Proposition 5.5.13 (resp. Proposition 5.5.1) .

COROLLARY 1.4.3. — Keep the notation of Theorem 1.4.1 and assume that each as-
sumption in Theorem 1.4.1 holds for all (o, jo) such that 0 < jo < jo+1 <ip < n—1.
Assume further that a freeness result mentioned in Remark 5.6.6 is true.

Then the structure of II(T) as a smooth admissible F-representation of GL,,(Q,)
determines the Galois representation p, up to isomorphism.

1.5. Notation

Much of the notation introduced in this section will also be (or have already been)
introduced in the text, but we try to collect together various definitions here for ease
of reading.

We let E be a (sufficiently large) extension of Q, with ring of integers Og, a
uniformizer wg, and residue field F. We will use these rings E, Og, and F for the
coefficients of our representations. We also let K be a finite extension of Q, with ring
of integers Ok, a uniformizer w, and residue field k. Let W (k) be the ring of Witt

vectors over k and write Ky for W (k) [%] (Ko is the maximal absolutely unramified
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12 CHAPTER 1. INTRODUCTION

subextension of K.) In this paper, by K we always mean a tamely ramified extension
of Q, with e := [K : Ko] = p/ — 1 where f = [k: F,)].

For a field F, we write G for Gal(F/F) where F is a separable closure of F. For
instance, we are mainly interested in Gq, as well as G, in this paper. The choice of
a uniformizer w € K provides us with a map:

We : Gq,—W(k) : g+— 9(=)
w
whose reduction mod (w) will be denoted as wy. This map factors through
Gal(K/Q,) and I}w|G becomes a homomorphism. Note that the choice of the
Ko

embedding o : k — F provides us with a fundamental character of niveau f, namely

wg =090 ww|Gal(K/K X and we fix the embedding in this paper.
0

For a € k, we write a for its Teichmiiller lift in W (k). We also use the notation [a]

for @, in particular, in Section 4.4. When the notation for an element e in k is quite

long, we prefer [e] to e. For instance, if a,b,c,d € k then we write

[(a=b)a—c)la—=d)(b—c)(b—d)] for (a—0b)(a—c)(a—d)(b—c)b—d).
Note that W, is the Teichmiiller lift of w,.

We normalize the Hodge-Tate weight of the cyclotomic character € to be —1. Our
normalization on class field theory sends the geometric Frobenius to the uniformizers.
If a € F* or a € Of then we write U, for the unramified character sending the
geometric Frobenius to a. We may regard a character of Gq, as a character of Q)
via our normalization of class field theory. _

As usual, we write S for the p-adic completion of W(k)[u, "TT]iEN, and let
Sop =8 ®z, Op and Sg := So, ®z, Q,. We also let S¢ = So,/(wg, Fil’Sp,,) =
(k ®F, F)[u]/u?. Choose a uniformizer @ of K and let E(u) € W (k)[u] be the monic
minimal polynomial of . The group Gal(K/Ky) acts on S via the character @,
and we write (So,)zm for the W -isotypical component of S for m € Z. We define
(EF)ng in a similar fashion. If O or F are clear, we often omit them, i.e., we write
Szm and gwg for (Sop)zm and (gp)wg respectively. In particular,

So = S.0 = (k @, F)[u’]/u®

and

o0 i
So := Szo = {Z aiE(;) | a; € W(k) ®z, O and a; — 0 p—adically} .
i=0

The association a®b +— (o(a)b), gives rise to an isomorphism k®g, F = [[ ., ¢ F,
and we write e, for the idempotent element in k¥ ®r, F that corresponds to the
idempotent element in []_,.  F whose only non-zero entry is 1 at the position of o.

To lighten the notation, we often write G for GL,/z,. (By G, we mean an outer
form of GL,, defined in Section 5.1.) We let B be the Borel subgroup of G consisting
of upper-triangular matrices of G, U the unipotent subgroup of B, and T the torus of
diagonal matrices of GL,,. We also write B~ and U~ for the opposite Borel of B and
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the unipotent subgroup of B~, respectively. Let ®* denote the set of positive roots
with respect to (B,T), and A = {ak}1<k<n—1 the subset of simple positive roots.
We also let W be the Weyl group of GL,,, which is often considered as a subgroup
of GL,,, and let s; be the simple reflection corresponding to ay. We write wq for the
longest Weyl element in W, and we hope that the reader is not confused with places
w or w’ of F.

We often write K for GL,(Z,) for brevity. (Note that we use K for a tamely
ramified extension of Q, as well, and we hope that it does not confuse the reader.)
We will often use the following three open compact subgroups of GL,,(Z,): if we let
red : GL,,(Z,) - GL,(F,) be the natural mod p reduction map, then

K(1) := Ker(red) C I(1) :=red”"(U(F,)) C I:=red”*(B(F,)) C K.

If M is a free F-module with a smooth action of K, then T(F,) acts on the pro p
Iwahori fixed subspace M!(Y) via I/I1(1) = T(F,,). We write M!(1):# for the eigenspace
with respect to a character p: T'(F,) — F5. M) decomposes as

MM ~ @Mf(l),u

as T'(Fp)-representations, where the direct sum runs over the characters p of T'(F,).
In the obvious similar fashion, we define M!(1):# when M is a free Og-module or a
free E-module.

By [m] for a rational number m € Z [ﬂ C Q we mean the unique integer in [0, )

congruent to m mod (e) via the natural surjection Z [%} — Z/eZ. By |y] fory € R we
mean the floor function of ¥, i.e., the biggest integer less than or equal to y. For a set A,
we write |A| for the cardinality of A. If V is a finite-dimensional F-representation of a
group H, then we write socyV and cosocyV for the socle of V' and the cosocle of V,
respectively. If v is a non-zero vector in a free module over F (resp. over O, resp.
over E), then we write F[v] (resp. Og[v], resp. E[v]) for the F-line (resp. the Og-line,
resp. the E-line) generated by v.

We write T for the image of z € O under the natural surjection O — F. We

also have a natural surjection P*(Og) — P1(F) defined by letting [z : y] € P1(F) be
the image of [z : y] € P}(Og) where
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CHAPTER 2

INTEGRAL p-ADIC HODGE THEORY

In this chapter, we do a quick review of some (integral) p-adic Hodge theory which
will be needed later. We note that all of the results in this chapter are already known
or easy generalization of known results. We closely follow [25] as well as [39] in this
chapter.

2.1. Filtered (¢, N)-modules with descent data

In this section, we review potentially semi-stable representations and their corre-
sponding linear algebra objects, admissible filtered (¢, N)-modules with descent data.

Let K be a finite extension of Q,, and K{ the maximal unramified subfield of K,
so that Ko = W (k) ®z, Q, where k is the residue field of K. We fix the uniformizer
p € Qp, so that we fix an embedding By, < Bgr. We also let K’ be a subextension
of K with K/K' Galois, and write ¢ € Gal(Ky/Q,) for the arithmetic Frobenius.

A p-adic Galois representation p : Gx+ — GL,, (E) is potentially semi-stable if there
is a finite extension L of K’ such that Plg, is semi-stable, i.e., rankLO@,EDggl(V) =

dimg V, where V is an underlying vector space of p and DX (V) := (By ®q, V)C-.
We often write DX (p) for DX’ (V). If K is the Galois closure of L over K, then

Pl is semi-stable, provided that Pl is semi-stable.
G K GL

DEFINITION 2.1.1. — A filtered (¢, N,K/K’',E)-module of rank n is a free
Ky ® E-module D of rank n together with

— a ¢ ® l-automorphism ¢ on D;
— a nilpotent Ky ® E-linear endomorphism N on D;

— a decreasing filtration {Filka}iez on Dk = K ®gk, D consisting of
K ®q, E-submodules of Dy, which is exhaustive and separated;

— a Ky-semilinear, E-linear action of Gal(K/K') which commutes with ¢ and N
and preserves the filtration on Dg.
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16 CHAPTER 2. INTEGRAL p-ADIC HODGE THEORY

We say that D is (weakly) admissible if the underlying filtered (¢, N, K/K, E)-mod-
ule (with the trivial descent data) is weakly admissible in the sense of [28]. The action
of Gal(K/K') on D is often called descent data action. If V' is potentially semi-stable,
then DX’ (V) is a typical example of an admissible filtered (¢, N, K/K’, E)-module of
rank n.

THEOREM 2.1.2 ([20], Theorem 4.3). — There is an equivalence of categories between
the category of weakly admissible filtered (¢, N, K/K', E)-modules of rank n and the
category of n-dimensional potentially semi-stable E-representations of Gk that be-
come semi-stable upon restriction to Gk .

Note that Theorem 2.1.2 is proved in [20] in the case K = K’, and that [54] gives
a generalization to the statement with non-trivial descent data.

If V is potentially semi-stable, then so is its dual VV. We define D:t’K/(V) =
Dgfl (VV). Then D:t’Kl gives an anti-equivalence of categories from the category
of m-dimensional potentially semi-stable FE-representations of Ggs that become

semi-stable upon restriction to Gg to the category of weakly admissible filtered
(¢, N, K/K', E)-modules of rank n, with quasi-inverse

V:t’K (D) = Hom¢,N(D, Bst) n Hompil(DK, BdR)'

It will often be convenient to use covariant functors. We define an equivalence of
categories: for each r € Z

vE'r (D) = ViK' (D)Y @€

The functor Dgl’r defined by Dg/’T(V) .= DE'(V ® e7) is a quasi-inverse of ij“.

For a given potentially semi-stable representation p : Gg+ — GL,(E), one can
attach a Weil-Deligne representation WD(p) to p, as in [21], Appendix B.1. We refer
to VVD(,0)|IQ as to the Galois type associated to p. Note that WD(p) is defined via

the filtered (¢, N, K/K’, N)-module DX’ (p) and that WD(p)|IK, = WD(p®e")

for all r € Z.

Finally, we say that a potentially semi-stable representation p is potentially crys-
talline if the monodromy operator N on DX (p) is trivial.

I

2.2. Strongly divisible modules with descent data

In this section, we review strongly divisible modules that correspond to Galois
stable lattices in potentially semi-stable representations. We keep the notation of
Section 2.1

From now on, we assume that K/K' is a tamely ramified Galois extension with
ramification index e(K/K’). We fix a uniformizer w € K with w*5/K) € K'. Let
e be the absolute ramification index of K and E(u) € W (k)[u] the minimal polynomial
of w over K.
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ie

Let S be the p-adic completion of W (k)[u, %]ien. The ring S has additional
structures:

— a continuous, ¢-semilinear map ¢ : S — S with ¢(u) = uP and d)(“;!e) = “:l °
— a continuous, W (k)-linear derivation of S with N(u) = —u and N(“l,) =
—jet,

i
— a decreasing filtration {FiIiS}iez20 of S given by letting Fil’S be the p-adic
E(f)j S:
7! )

— a group action of Gal(K/K') on S defined for each g € Gal(K/K') by the

completion of the ideal Zpi

continuous ring isomorphism g : S — S with ?]\(wzﬁ) = g('wi)h;u’/‘—;ﬂ for
w; € W(k), where hy € W (k) satisfies g(w) = hyw.
Note that ¢ and N satisfies N¢ = péN and that §(E(u)) = E(u) for all
g € Gal(K/K') since we assume w®™/K) e K’. We write ¢; for #qﬁ on Fil'S.
For i < p — 1 we have ¢(Fil'S) C p'S.

Let Sp, =S5 Rz, Op and Sg := So, ®z, Qp. We extend the definitions of ¢, N,
Fil'S, and the action of Gal(K/K') to Sp, (resp. to Sg) Og-linearly (resp. E-lin-
early).

DEFINITION 2.2.1. — Fix a positive integer r < p—1. A strongly divisible Og-module
with descent data of weight r is a free Sp,-module M of finite rank together with

—

— a So,-submodule Fil" M;

— additive maps ¢, N : M- M\;

— So,-semilinear bijections g : M — M for each g € Gal(K/K")
such that

— Fil'So,, - M C Fil" M;

— Fil' M N IM = IFil" M for all ideals I in Og;

— ¢(sz) = ¢(s)¢(x) for all s € Sp,, and for all x € M;

— (b(FilT/T/l\) is contained in pTM\ and generates it over Sp;

— N(sz) = N(s)xz + sN(z) for all s € Sp,, and for all x € M;

— N¢ =poN;

— E(u)N(Fil' M) C Fil' M;

— for all g € Gal(K/K') g commutes with ¢ and N, and preserves Fil" M;

— G10G2 = g1 - g2 for all g1, g € Gal(K/K").
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18 CHAPTER 2. INTEGRAL p-ADIC HODGE THEORY

We write Og-Mod], for the category of strongly divisible O g-modules with descent
data of weight r. It is easy to see that the map ¢, = p%qﬁ : FiI'M — M satisfies

cNo,(z) = ¢p(E(u)N(z)) for all z € Fil" M where ¢ := @ € S*.

For a strongly divisible Og-module M with descent data of weight r, we define a
G -module T (M) as follows (cf. [25], Section 3.1.):

— —

T;’K (M) = HOmFilT7¢7N(M, Ast)-

PROPOSITION 2.2.2 (|25], Proposition 3.1.4). — The functor T:t’K/ provides an anti-
equivalence of categories from the category Og-Mody, to the category of G -stable
Og-lattices in finite-dimensional E-representations of G+ which become semi-stable
over K with Hodge-Tate weights lying in [—r,0], when 0 <r <p— 1.

Note that the case K = K’ and E = Q,, is proved by Liu [51].

In this paper, we will be mainly interested in covariant functors Tg " from the
category Og-Modj, to the category Reng_St’[_T’U]GK/ of Gk -stable Og-lattices in
finite-dimensional F-representations of Gx/ which become semi-stable over K with
Hodge-Tate weights lying in [—r, 0] defined by

o~ o~

TE (M) =T (M) @€,

Let M be in Og-Mod},, and define a free Sg-module D := ﬂ@zp Q,. We extend
¢ and N on D, and define a filtration on D as follows: Fil"D = Fil' M [%] and

D if i < 0;
Fil'D:=¢ {zeD|E) ‘zecFil'D} if0<i<r
S o (Fil' ™7 Sq, ) (Fi’ D) if i > r, inductively.

We let D := D ®5q, 50 Ky and D := D ®sq, K, where sy : Sq, — Ko and
8w :Sq, — K are defined by u — 0 and u — w respectively, which induce ¢ and
N on D and the filtration on D by taking s, (Fil’D). The Ky-vector space D also
inherits an E-linear action and a semi-linear action of Gal(K/K'). Then it turns out
that D is a weakly admissible filtered (¢, N, K/K’, E)-module with Fil"™'D = 0.
Moreover, there is a compatibility (cf. [25], Proof of Proposition 3.1.4.): if D corre-

sponds to D = M [%], then

sSw

—~

- 1 ~ -
T () [p] ~ vE'r(D).
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2.3. Breuil modules with descent data
In this section, we review Breuil modules with descent data. We keep the notation

of Section 2.2, and assume further that K’ C K.

We let S := S/(wg, Fil’S) & (k ®p, F)[u]/u?. It is easy to check that S inherits
¢, N, the filtration of S, and the action of Gal(K/K").

DEFINITION 2.3.1. — Fix a positive integer r < p — 1. A Breuil modules with descent
data of weight r is a free S-module M of finite rank together with

— a S-submodule Fil" M of M;

— maps ¢, : FiI'M — M and N : M — M;

— additive bijections g : M — M for all g € Gal(K/K")
such that

— Fil" M contains u®" M;

— ¢, is F-linear and ¢-semilinear (where ¢ : k[u]/u®? — k[u]/u®? is the p-th power
map) with image generating M as S-module;

— N is k ®@p, F-linear and satisfies
— N(uz) = uN(z) — uz for all x € M,
— weN(Fil" M) C Fil" M, and
— ¢ (u*N(z)) = cN(¢,(x)) for all z € FiI" M, where ¢ € (k[u]/u?)* is the
image of %(ZJ(E(U)) under the natural map S — k[u]/u®?.
— g preserves Fil"M and commutes with the ¢, and N, and the action satisfies
G10G2 = g1 - g2 for all g1, 92 € Gal(K/K'). Furthermore, if a € k ®p, F and
m € M then glau'm) = g(a)((22)) @ 1)u'g(m).

We write F-BrModj, for the category of Breuil modules with descent data of
weight 7. For M € F-BrMod},, we define a Gg/-module as follows (cf. [25], Sec-
tion 3.2):

T% (M) := Homppoea(M, A).

This gives an exact faithful contravariant functor from the category F-BrMody, to
the category ReppG k- of finite dimensional F-representations of Gx-. We also define
a covariant functor as follows: for each r € Z

THM) = TH(M)Y @',
in which we will be more interested in this paper.

If Mis a strongly divisible module with descent data, then
M := M/(wp, Fil’S)
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is naturally an object in F-BrMod};, (Fil" M is the image of Fil" M in M, the map ¢, is
induced by -2 ¢|F WA and N and g are those coming from M) Moreover, there is a

compatlblhty if M € Op- -Modj, and we let M = M/(wE,FllpS) then
TS (M) ®0, F = T4 (M).

(See [25], Lemma 3.2.2 for detail.)
There is a notion of duality of Breuil modules, which will be convenient for our

computation of Breuil modules as we will see later.
DEFINITION 2.3.2. — Let M € F-BrModj,. We define M* as follows:

— M= Homk[u]/ueP—Mod(Mv k[u]/uep);

— Fil"M* .= {f e M*| f(FiI'M) C u®"k[u]/u};

— ¢,(f) is defined by ¢,-(f)(¢pr(x)) = ¢(f(x)) for all z € Fil"M and f € Fil" M*,
where ¢, : u®"k[u]/u®? — k[u]/u? is the unique semilinear map sending u°"
to

— N(f):=Nof— foN, where N : k[u]/u®? — k[u]/u®? is the unique k-linear
derivation such that N(u) = —u;

— (@f)(x) = g(f(gtx)) for all z € M and g € Gal(K/K'), where Gal(K/K')
acts on k[u]/u? by g(au®) = g(a )(g(g)) ‘ for a € k.

If M is an object of F-BrModg, then so is M*. Moreover, we have M = M** and
T (M*) = TG (M).

(cf. [16]), Section 2.1.)
Finally, we review the notion of Breuil submodules developed mainly by [16]. See
also [39], Section 2.3.

DEFINITION 2.3.3. — Let M be an object of F-BrModgq. A Breuil submodule of M is
an S-submodule N of M if N satisfies

— N is a k[u]/uP-direct summand of M;

— NW) C N and gN) C N for all g € Gal(K/K');

— ¢ (N NFiI"'M) CN.

If NV is a Breuil submodule of M, then N and M /A are also objects of F-BrMod.
We now state a crucial result we will use later.

PROPOSITION 2.3.4 ([39], Proposition 2.3.5). — Let M be an object in F-BrMody,.
Then there is a natural inclusion preserving bijection

O : {Breuil submodules in M} — {G g -subrepresentations of Tr, (M)}

sending N C M to the image of T (N) — T, (M). Moreover, if My C M; are
Breuil submodules of M, then ©(M1)/©(Msy) = TL, (M1/Ms).
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We will also need classification of Breuil modules of rank 1 as follows. We denote
the Breuil modules in the following lemma by M(a, s, \).

LEMMA 2.3.5 ([52], Lemma 3.1). — Let k := Fr, e := p/ — 1, w := /=p, and
K'=Q,. We also let M be a rank-one object in F-BrModg,.

Then there exists a generator m € M such that:
(i) M= §F -my

(ii) Fil"'M = w$ DM where 0 < s < p’fl ;

(iif) ¢, (u*®P~Ym) = Am for some A € (F,s ®r, F)*;

(iv) g(m) = (wr(g)*®1)m for all g € Gal(K/Ky) where a is an integer such that a+
ps =0 mod (;57);

(v) N(m)=0.

Moreover, one has

T (M)], = wit",

IQP

The following lemma will be used to determine if the Breuil modules violate the
maximal non-splitness.

LEMMA 2.3.6 ([52], Lemma 3.2). — Let k := F,r, e := pf —1, @ = /—p, and
K' = Q. We also let My := M(kz, 5z, As) and My := M(ky, sy, \y) be rank-one
objects in F-BrModjy. Assume that the integers ks, ky, Sz, 8y € Z satisfy

(2.3.7) p(sy — 8z) + [ky — kz]f > 0.
Assume further that f < p and let
0O-My—-M-M,—=0
be an extension in F-BrModg,, with T (M) being Fontaine-Laffaille.
If the exact sequence of Sg-modules
0— Fi'M, - Fi'’M — Fil'M,, — 0
splits, then the Gq,-representation T3 (M) splits as a direct sum of two characters.

In particular, provided that pk, # k; modulo e and that sy(p—1) < re if f > 1, the
representation T (M) splits as a direct sum of two characters if the element jo € Z
uniquely defined by

joe + [P ky = kalp < sa(p—1) < (o + Ve + [P~ ky — kaly
satisfies

(2.3.8) (r+jo)e+ [p~ky — kol < (so + sy)(p — 1).
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2.4. Linear algebra with descent data

In this section, we introduce the notion of framed basis for a Breuil module M
and framed system of generators for Fil"M. Throughout this section, we assume
that Ko = K’ and continue to assume that K is a tamely ramified Galois extension
of K’'. We also fix a positive integer r < p — 1.

DEFINITION 2.4.1. — Let n € N and let (kp—1,kn—2,...,ko) € Z™ be an n-tuple.
A rank n Breuil module M € F-BrMod}, is of (inertial) type wer ™" & --- @ wko
if M has an S-basis (e,_1,...,e0) such that ge; = (wki(g) ® 1)e; for all i and all
g € Gal(K/Ky). We call such a basis a framed basis of M.

We also say that f := (fn_1,fn_2,...,f0) is a framed system of generators
of Fil' M if f is a system of S-generators for Fil"M and gf; = (w2 "Fi(g) @ 1) f; for
all 4 and all g € Gal(K/Kj).

The existence of a framed basis and a framed system of generators for a given
Breuil module M € F-BrMod, is proved in [39], Section 2.2.2.

Let M € F-BrModg, be of inertial type 69;:01 wki and let e := (en_1,...,€0) be
a framed basis for M and f := (fn-1,...,f0) be a framed system of genera-
tors for Fil"M. The matriz of the filtration, with respect to e, f, is the matrix

Mat,, ;(Fil"M) € M,,(S) such that
/= e-Mat, ;(Fil’ M).

Similarly, we define the matriz of the Frobenius with respect to e, f as the matrix

Mat,,t(¢r) € GLy(S) characterized by
(¢r(fr-1);---,¢r(fo)) = & Mate ¢ (7).

As we require e, f to be compatible with the framing, the entries in the matrix of
the filtration satisfy the important additional properties:

Matgi(FilrM)i,j €s T

More precisely, Mat, ;(Fil"’M); ; = u[pfflkﬂ'_ki]fsi,j, where s;; € S0 = k ®p,
Flu]/(u).

We can therefore introduce the subspace M.)(S) of matrices with framed type

— n—1 k;
T =@, wf as

ME(S) = {V € M (S) | Vijj €S ;- forall 0<i,j <m — 1} :
r
Similarly, we define

MO (8) = {V €My (S) | Viy €5 s, forall0<4,j <m - 1}
f
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and

ME(S) = {V eM,(S)| Vi, € ?wpq(krki) forall 0 <i,j <n— 1} .
f

We also define
GL? (S) := GL,(S) N M2 (S)
for e € {O} U {0, /} U {O,n}.
As o, (f;) is a w’;"—eigenvector for the action of Gal(K/Kj) we deduce that

Mat, ¢ (Fil"M) € M5”(S) and Mat, ;(¢,) € GL(S).
Note that M(S) = MJ(S) = MEY(S) if the framed type 7 is of niveau 1.

We use similar terminologies for strongly divisible modules Meo g-Modj,.

DEFINITION 2.4.2. — Let n € N and let (k,—1,kn—2,...,ko) € Z" be an n-tuple. A
rank n strongly divisible module Meo g-Mod], is of ( mertzal ) type w Q- -owk
if M has an S, -basis € := (€,_1,. . .,€) such that §é; = (@i (g) ® 1); for all i and
all g € Gal(K/Kj). We call such a bas1s a framed basis for M.

We also say that f = (ﬁL 1, ﬁl 2y ]?0) is a framed system of _gener-
ators for Fil' M if f is a system of S-generators for Fil' M JFil"S - M and
Gfi = @ ki(g) @ 1)f; for all i and all g € Gal(K/K).

One can readily check the existence of a framed basis for M and a framed
system of generators for Fil" M by Nakayama Lemma. For instance, the existence
of a framed system of generators for Fil’ M can be deduced as follows: if we let
M = M\/(wE,FilpS) is the Breuil module corresponding to the mod p reduction
of the strongly divisible module M and write f = (fn-1, fa=2,..., fo) for a framed

system of generators for Fil" M, then it is obvious that each f; has a lift ﬁ € FIITM\
such that §f; = (G,{’.{lki (9) ® 1)f; for all g € Gal(K/Ky). Since FIITM/FIITS M is
a finitely generated Og-module, we conclude that the system ( fn 1, fn 2y nnsy fo)
generates Fil' M JFil"S - M by Nakayama Lemma.
We also define
Mat, +(Fil"M) and Mat, +(¢,)

each of whose entries satisfies
Mat;e\’f(Fﬂr./T/l\)i,j S Sapf_lkj*k?i and Mat,\ A(gbr)” € S kj—k;
in the similar fashion to Breuil modules. In particular,

Mat,, (Fil" M) € M7(S) and Mat, #(g,) € GLY(S),

where MZ(S) and GLE(S) are defined in the similar way to Breuil modules. We also
define GLZ/(S) in the similar way to Breuil modules again.
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The inertial types on a Breuil module M and on a strongly divisible modules are

closely related to the Weil-Deligne representation associated to a potentially crys-
talline lift of T7, (M).

PROPOSITION 2.4.3 ([50], Proposition 2.12). — Let M be an object in Og-Mod}y
and let M := ﬂ@s S/(wg,FilPS) be the Breuil module corresponding to the mod p
reduction of M.

IngO’T(M\) [ﬂ has Galois type @?:_01 G’;i for some integers k;, then M (resp. M)

is of inertial type @?:_01 @ki (resp. EB::OI wki).

Finally, we need a technical result on change of basis of Breuil modules with descent
data.

LEMMA 2.4.4 (|39], Lemma 2.2.8). — Let M € F-BrMody, be of type @?z_ol wki
and let e, f be a framed basis for M and a framed system of generators for Fil" M

respectively. Write V := Mate ;(Fil"M) € MU(S) and A := Mat,,r(¢r) € GLI(S),
and assume that there are invertible matrices R € GLS(S) and C € GLY"(S) such
that
R-V.C =V mod u*"Y),

for some V' € MJ(S).

Then ¢ := e-R™! forms another framed basis for M and f' := €'V’ forms another
framed system of generators for Fil" M such that

Mat, ;o (Fil' M) = V' € MPY(S) and  Mat, ;/(¢,) = R- A- $(C) € GLY(S).
In particular, if R=' = A then Mate: 1 (¢r) = ¢(C).

The statement of Lemma 2.4.4 is slightly more general than [39], Lemma 2.2.8, but
exactly the same argument works.

2.5. Fontaine-Laffaille modules

In this section, we briefly recall the theory of Fontaine-Laffaille modules over F,
and we continue to assume that Ko = K’ and that K is a tamely ramified Galois
extension of K.

DEFINITION 2.5.1. — A Fontaine-Laffaille module over k ®r, F is the datum
(M,Fil* M, ¢,) of

— a free k ®p, F-module M of finite rank;
— a decreasing, exhaustive and separated filtration {Fil? M }jez on M by k ®p,

F-submodules;

Fily M

— a ¢-semilinear isomorphism ¢ : gr®*M — M, where gr*M = @ ,cz moriz-
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We write F-FLMody, for the category of Fontaine-Laffaille modules over k ®F, F,
which is abelian. If the field k is clear from the context, we simply write F-FLMod to
lighten the notation.

Given a Fontaine-Laffaille module M, the set of its Hodge-Tate weights in the
direction of o € Gal(k/F,) is defined as HT, := {i € Z | e,Fil'M # e,Fil'"'M}. In
the remainder of this paper we will be focused on Fontaine-Laffaille modules with
parallel Hodge-Tate weights, i.e., we will assume that for all ¢ € Z, the submodules
Fil' M are free over k ®F, F.

DEFINITION 2.5.2. — Let M be a Fontaine-Laffaille module with parallel Hodge-Tate
weights. A k ®r, F basis f = (fo, f1,..., fn—1) on M is compatible with the filtration
if for all i € Zso there exists j; € Zso such that Fil'M = E?:j,- k®r, F - f;.
In particular, the principal symbols (gr(fo),...,gr(fn—1)) provide a k ®r, F basis
for gr* M.

Note that if the graded pieces of the Hodge filtration have rank at most one then any
two compatible basis on M are related by a lower-triangular matrix in GL, (k®r, F).
Given a Fontaine-Laffaille module and a compatible basis f, it is convenient to describe
the Frobenius action via a matrix Mat¢(¢e) € GL, (k ®1:; F), defined in the obvious

way using the principal symbols (gr(fo),...,gr(fn—1)) as a basis on gr* M.

It is customary to write F-FLMod!®?~? to denote the full subcategory of F-FLMod
formed by those modules M verifying Fil°’M = M and FilP~'M = 0 (it is again an
abelian category). We have the following description of mod p Galois representations
of Gk, via Fontaine-Laffaille modules:

PROPOSITION 2.5.3 ([29], Theorem 6.1). — There is an exact fully faithful contravari-
ant functor

Tr e ko © F-FLMod"”™? — Repp(Gk,)

cris,Ko *

which is moreover compatible with the restriction over unramified extensions: if
Lo/ Ky is unramified with residue field I/k and if M is an object in F-FLModLO’p_Q],
then I Q@ M is naturally regarded as an object in F-FLModEO’p_Q] and

T*

cris,Lo (l Ok M) = T:ris,Ko (M) |GL0 .

for T*

cris, Ko

We will often write T*

cris

if the base field K is clear from the context.

DEFINITION 2.5.4. — We say that p € ReppGr, is Fontaine-Laffaille if T, (M) = p
for some M € F-FLMod>?~2.
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2.6. Etale ¢-modules

In this section, we review the theory of étale ¢p-modules, first introduced by Fontaine
[27], and its connection with Breuil modules and Fontaine-Laffaille modules. Through-
out this section, we continue to assume that Ko = K’ and that K is a tamely ramified
Galois extension of K'.

Let po := —p, and let p be identified with a sequence (pp), € (QP)N verifying
PP = p,—1 for all n. We also fix w := /—p € K, and let wy = w. We fix a se-
quence (wp), € (QP)N such that w? = p, and w? = w,_; for all n € N, and
which is compatible with the norm maps K (w, 1) — K(w,) (cf. [8], Appendix A).
By letting Koo := U, en K(@wn) and (Ko)so = U,,en Ko(prn), we have a canonical
isomorphism Gal(K../(K¢)eo) — Gal(K/Kj) and we will identify w,, as a char-
acter of Gal(Ks/(Kp)oo). The field of norms k((w)) associated to (K,w) is then
endowed with a residual action of Gal(K/(Kp)co), which is completely determined
by §(@) = we (9).

We define the category (¢, F ®p, k((p))) -Mod of étale (¢, FOF, k((p)))-modules as
the category of free F ®, k((g))—moduﬂes of finite rank 90t endowed with a semilinear
map ¢ : M — 9N with respect to the Frobenius on k((p)) and inducing an isomorphism
¢*IM — M (with obvious morphisms between objecgs). We also define the category
(¢, F ®r, k((@)))-Modyq of étale (¢, F ®p, k((m)))-modules with descent data: an
object M is defined as for the category (¢, F®r, k((p)))-Pod but we moreover require
that 9 is endowed with a semilinear action of Gal(K/(Ko)eo) (semilinear with
respect to the residual action on F ®r, k((=)) where F is endowed with the trivial
Gal(K s /(Ko)oo)-action) commuting with ¢.

By work of Fontaine [27], there are anti-equivalences

(¢, F ®r, k((p))) -M0od — Repp(G(xo)...)

and
(¢, F ®r, k((@))) -Modaa — Repp(G(k,)..)
given by
M — Hom (M, k((p))**")
and

9 1> Hom (M, k(())*?)
respectively. See also [39], Appendix A.2.

The following proposition summarizes the relation between the various categories
and functors we introduced above.

PROPOSITION 2.6.1 ([39], Proposition 2.2.1). — There exist faithful functors
Mjy((w)) : F-BrModyy — (¢, F ®F, k((=))) -Modaq
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and
F : F-FLMod®?~2 — (4, F @, k((p))) -Mod

fitting in the following commutative diagram:

. Mi((=))
F-BrMod, (¢,F ®F, k((m))) -Modaq
. Hom(—,k((=))*"
Tst
Repr(Gk,) _ Res | Repp(G(ky)..) —®k(() k(=)
Tiris
Hom(—,k((p))**
F-FLMod[*?—2] ~ (¢, F @, k((p))) -Dod

where the descent data is relative to Ko and the functor Reso T} . is fully faithful.

cris

Note that the functors My (o)) and F are defined in [9]. (See also [39], Appendix A).
The following is an immediate consequence of Proposition 2.6.1, which is also stated
in [50], Corollary 2.14.

COROLLARY 2.6.2. — Let 0 < r < p — 2, and let M (resp. M) be an object
in F-BrMod}, (resp. in F-FLMod®?=2). Assume that T*,(M) is Fontaine-Laffaille.
If

Mi((w)) (M) = F(M) ®r((p)) k((@))

then one has an isomorphism of Gk, -representations
T:t (M) = T:ris(M)'

The following two lemmas are very crucial in this paper, as we will see later, which
describe the functors Mj,(()) and F respectively.

LEMMA 2.6.3 ([39], Lemma 2.2.6). — Let M be a Breuil module of inertial
type @;:Ol wki with a framed basis e for M and a framed system of gener-
ators f for Fil"'M, and write M* for its dual as defined in Definition 2.3.2.
Let V = Mat, (Fil" M) € M2 (S) and A = Mat, ;(¢,) € GLY(S).

Then there exists a basis e for My((w))(M™*) with g-e¢; = (wzP *i(g) @ 1)e; for all
i€{0,1,...,n—1} and g € Gal(K/Ky), such that the Frobenius ¢ on My (z))(M*) is
described by

Mat,(¢) = V* (ﬁ—l)t € M,,(F ®, k[[=])),
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where V, A are lifts of V, A in M,,(F ®r, k[[@]]) via the reduction morphism F ®r,
k[[@]] - S induced by w — u and Mat,(¢); ; € (F ®F, k[[=]]) b1k, -

LEMMA 2.6.4 ([39], Lemma 2.2.7). — Let M € F-FLMod*?~? be a rank n Fontaine-
Laffaille module with parallel Hodge-Tate weights 0 < mg < --- < mp_1 < p—2
(counted with multiplicity). Let e = (eo, . .., en—1) be a k@, F basis for M, compatible
with the Hodge filtration Fil*M and let F € My, (k ®p, F) be the associated matriz of
the Frobenius ¢q : gr* M — M.

Then there exists a basis ¢ for M = F(M) such that the Frobenius ¢ on I is
described by

Mat,(¢) = Diag (Bmo, .. ,Bm"*l) -F € M,(F ®r, k[[p]]).
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CHAPTER 3

LOCAL GALOIS SIDE

In this chapter, we study ordinary Galois representations and their potentially
crystalline lifts. In particular, we prove that the Frobenius eigenvalues of certain
potentially crystalline lifts preserve the information of the wildly ramified part of
ordinary representations.

Throughout this chapter, we let f be a positive integer, K’ = Q,, e = pf —1,
and K = Q,s(y/=p). We also fix w := /—p, and let S = (F,; Qr, F)[u]/u®
and So := gw? = (F,s ®r, F)[u®]/u®® C S. Recall that by [m]; for a rational

number m € Z [%} we mean the unique integer in [0, e) congruent to m mod (e).

We say that a representation pj, : Gq, — GL,(F) is ordinary if it is isomorphic to
a representation whose image is contained in the Borel subgroup of upper-triangular

matrices. Namely, an ordinary representation has a basis e := (e;—1,€n—2,...,€0)
that gives rise to a matrix form as follows:
(3.0.1)
U, ,wen-1t-1) *p_1 e * *
0 U, ywen—2 =2 * *
Po = :
0 0 Umcucl+1 *1
0 0 0 U, w

Here, U, is the unramified character sending the geometric Frobenius to ; € F* and
¢; are integers. By p,, we always mean an n-dimensional ordinary representation that
is written as in (3.0.1). Forn —1 >4 > j > 0, we write

(3.0.2) i
for the (¢ — j + 1)-dimensional subquotient of 7, determined by the subset (e;,e;—1,...,€;)
of the basis e. For instance, p, ; = U,,w ™ and Pn—1,0 = Po-

An ordinary representation Gq, — GL,(F) is mazimally non-split if its socle
filtration has length n. For instance, 7, in (3.0.1) is maximally non-split if and only if
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x; # 0foralli =1,2,...,n—1. In this paper, we are interested in ordinary maximally
non-split representations satisfying a certain genericity condition.

DEFINITION 3.0.3. — We say that p, is generic if
cit1—ci>n—1forallie {0,1,...,n—2}and ch_1 —co < (p—1)— (n—1).
We say that p, is strongly generic if p, is generic and
Cn-1—¢co < (p—1)—(3n—5).

Note that this strongly generic condition implies p > n? + 2(n — 3).

We describe a rough shape of the Breuil modules with descent data from K to
K' = Q, corresponding to p,. Let r be a positive integer with p —1 > r > n — 1,
and let M € F-BrModj, be a Breuil module of inertial type @Z’L:_ol w’;i such that
T, (M) = By, for some k; € Z. By Proposition 2.3.4, we note that M is a successive
extension of M;, where M; := M(k;,r;,v;) (cf. Lemma 2.3.5) is a rank one Breuil
module of inertial type w’;" such that

(3.0.4) WP TL (M), 2w
Qp
for each i € {0,1,...,n — 1}.
More precisely, there exist a framed basis e = (e;—1,€p—2,...,€9) for M and a
framed system of generators f = (fn—1, fn—2,..., fo) for Fil" M such that

(3.0.5)

um-1(P—1) U[Pilkn—Q_kn—l]frUn_l 2 u[pilko_kn—l]f’un_l 0
0 um—2(-1) e u[Pflko—kn—ﬂfvniQ 0
Matgi(FilTM) = . . . . 7 )
0 0 ... yro(p—1)
Vp—1 u[kn—Z_kn—l]fwn_Ln_z e u[ko_kn_l]fwn—170
0 Un—o oo ylko=kn—2lre, oo
(3.0.6) Mate ;(¢r) = | . . : : ,
0 0 Vo
and
(3.0.7)
0 u[knfz—knfl]frynilmliz . ’U,[kl_knfl]f"}/nfl’l u[ko—kn—l]f7n71’0
0 0 conylbiRnalea o ylRo—kn 2l o
Mat.(N) = :
0 0 e 0 u[ko—kl]f»yLO
0 0 e 0 0

for some v; € (Fpr ®F, F)* and for some v; ;, w; ;,7:,; € So-
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Fix 0 < j < i <n — 1. We define the Breuil submodule
(3.0.8) M,

that is a subquotient of M determined by the basis (e;,e;_1,...,e;). For instance,
M; i = M, for all 0 < i < n—1. We note that T (M, ;) = p, ; by Proposition 2.3.4.
We will keep these notation and assumptions for M throughout this paper.

3.1. Elimination of Galois types

In this section, we find out the possible Galois types of niveau 1 for potentially
semi-stable lifts of p, with Hodge-Tate weights {—(n — 1), —(n — 2),...,0}.
We start this section with the following elementary lemma.

LEmMMA 3.1.1. — Let p : Gq, — GL,(E) be a potentially semi-stable representation
with Hodge-Tate weights {—(n —1),...,—2,—1,0} and of Galois type @?:_01 C)’;i.
Then

)

n(n—=1) __S =1,
de‘c(p)|lQ =T -w%“o ki
P

where € s the cyclotomic character.

Proof. — det(p) is a potentially crystalline character of Gq, with Hodge-Tate
n—1 g, s n—-1p.
weight —(X27""'4) and of Galois type Cz%":" M e, det(p) - W, ico ki g g
n(n—1)
———=— so that

crystalline character with Hodge-Tate weight —(E?:_OI i) = 3
O

det(p) &; S ks o~ n(n2—1)

|1Qp ' €

We will only consider the Breuil modules M corresponding to the mod p reduction
of the strongly divisible modules that correspond to the Galois stable lattices in poten-
tially semi-stable lifts of p, with Hodge-Tate weights {—(n —1), —(n —2),...,—1,0},
so that we may assume that r =n — 1, i.e., M € F—BrModgd_l.

LEMMA 3.1.2. — Let f = 1. Assume that p, is generic, and that M € F—Brl\/[odgd_1
corresponds to the mod p reduction of a strongly divisible module M such that
T2 Y(M) = 5, and Tg”’n_l(ﬂ) is a Galois stable lattice in a potentially semi-
stable lift of p, with Hodge-Tate weights {—(n — 1),—(n — 2),...,0} and Galois
type @?:_01 Wk for some integers k;.

Then there exists a framed basis e for M and a framed system of generators f
for FiI"""M such that Mat., ;(Fil"~'M), Mate, ;(#n_1), and Mat.(N) are as in
(3.0.5), (3.0.6), and (3.0.7) respectively. Moreover, the (k;,r;) satisfy the following
properties:

(i) ki=ci+i—r; mod (e) for allt € {0,1,...,n—1};

(i) 0<r; <n-—1 foralli e {0,1,...,n —1};

-1 n—1)n
(iii) Z?:o T = %
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Proof. — Note that the inertial type of M is EB:.LZ_Ol w”* by Proposition 2.4.3. The first
part of the lemma is obvious from the discussion at the beginning of Section 3.

We now prove the second part of the lemma. We may assume that the rank-one
Breuil modules M; are of weight 7;, so that 0 <r; <n—1fori= {0,1,...,n—1} by
Lemma 2.3.5. By the equation (3.0.4), we have k; = c¢; +i—r; mod (e),ase=p—1.
By looking at the determinant of p, we deduce the conditions

w%+kn—l+kn—2+"'+k0 = det T’ﬂt—l(M)l — detﬁ0| — wcn—1+cn—2+“'+cﬂ+%
s Iq, Iq,

from Lemma 3.1.1, and hence we have r,_1 + o + -+ + 179 = @ (as

p > n? + 2(n — 3) due to the genericity of p). O

One can further eliminate Galois types of niveau 1 if p, is maximally non-split.

PROPOSITION 3.1.3. — Keep the assumptions and notation of Lemma 8.1.2. If the
tuple (k;,r;) further satisfy one of the following conditions

— r;=n—1 for some i€ {0,1,2,...,n—2};
— r; =0 for some i € {1,2,3,...,n—1},

then p, is not mazimally non-split.

Proof. — The main ingredient is Lemma 2.3.6. Following the notation in Lemma 2.3.6,
we fix i € {0,1,2,...,n — 2} and identify = i + 1 and y = 4 so that r, = s, and
ry = Sy. From the results in Lemma 3.1.2, it is easy to compute that [k; — ki41]1 =
e — (¢it1 — ¢i + 1) + (riy1 — ;). By the genericity conditions in Definition 3.0.3 and
by part (ii) of Lemma 3.1.2, we see that 0 < [k; — k;11]1 < e so that if r; > r;; then
the equation (2.3.7) in Lemma 2.3.6 holds.

If rivie < [k; — kiy1]r and r; > 741, then #;497 = 0 by Lemma 2.3.6. Since
0 < [ki — kix1]1 < e, we have r;11e < [k; — ki+1]1 if and only if 7,41 = 0, in which
case p, is not maximally non-split.

We now apply the second part of Lemma 2.3.6. It is easy to check that jo = r;41—1.
One can again readily check that the equation (2.3.8) is equivalent to 7, = n — 1, in
which case *;;1 = 0 so that p, is not maximally non-split. O

Note that all of the Galois types that will appear later in this section will satisfy
the conditions in Lemma 3.1.2, and Proposition 3.1.3 as well if we further assume
that p, is maximally non-split.
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3.2. Fontaine-Laffaille parameters

In this section, we parameterize the wildly ramified part of generic and maximally
non-split ordinary representations using Fontaine-Laffaille theory.

We start this section by recalling that if p, is generic then py, ® w™° is Fontaine-
Laffaille (cf. [31], Lemma 3.1.5), so that there is a Fontaine-Laffaille module
M with Hodge-Tate weights {0,¢1 — ¢co + 1,...,¢n—1 — co + (n — 1)} such that
This(M) 2 py ® w™ (if we assume that p, is generic).

LEMMA 3.2.1. — Assume that p, is generic, and let M € F—FLModg)f_m be a
Fontaine-Laffaille module such that T, (M) = by, ® w™°.

cris

Then there exists a basis e = (eg,e1,...,en—1) for M such that
M if j <05
FiVM =14 F(e;,...,en 1) ifcici—co+i—1<7j<c¢—co+i;
0 ifcpo1—co+n—1<7.
and
ol apn @2+ Qon—a Qo1
0 uy' @2 - Qipe2  Qia-1
0 0 uy' o Qop_a  Q2p1

(32.2) Mate(¢e) = | . . . . . :
/J'T_Lig Opn—2n—1

0 HT_LL

where o; ; € F.

Note that the basis e on M in Lemma 3.2.1 is compatible with the filtration.

Proof. — This is an immediate generalization of [39], Lemma 2.1.7. O

For i > j, the subset (ej, ..., e;) of e determines a subquotient M; ; of the Fontaine-
Laffaille module M, which is also a Fontaine-Laffaille module with the filtration in-
duced from Fil° M in the obvious way and with Frobenius described as follows:

pitoege e gai1 o agy
0 M{ﬁl Tt OG- 1 Ol
Ai,j = .
0 0 e ui__ll Q14
0 0 . 0 pit

Note that Tj;(M;,;) @w®™ = p, ;. We let A; ; be the (i —j) x (i — j)-submatrix of A; ;

obtained by deleting the left-most column and the lowest row of A, ;.
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LEMMA 3.2.3. — Keep the assumptions and notation of Lemma 3.2.1, and let
0<j<j+1<i<n—1. Assume further that p, is mazimally non-split.

If det A} ;, # (—l)i_j“uj_il~-,ui__110éj,i, then [y : det Aj ;] € PY(F) does not
depend on the choice of basis e compatible with the filtration.

Proof. — This is an immediate generalization of [39], Lemma 2.1.9. O

DEFINITION 3.2.4. — Keep the assumptions and notation of Lemma 3.2.3, and assume
further that p,, satisfies

(3.2.5) det A;,j # (_1)i7j+1li]‘_4}1 o ':U‘i__llaj,i
foralli,jeZwith0<j<j+1<i<n-—1
The Fontaine-Laffaille parameter associated to p, is defined as
_ i (n=2)(n-1)
FL,.(po) := (FL3 (po)), ; € [B'(F)] 2
where
FL. (By) = [aji: (—1)"77T" - det A} ;] € P(F)

foralli,jeZ suchthat 0<j<j+1<i<n-—1.

We often write ¥ for [z : y] € P'(F) if z # 0. The conditions in (3.2.5)
for i,j guarantee the well-definedness of FL.7(p,) in P*(F). We also point out that
FLiz’j (Po) # (_]')i_jl‘l’;—&l " ‘M;—11 in PI(F)-

One can define the inverses of the elements in P!(F) in a natural way: for
[z1 : z2] € PY(F), 71 : 3] 7L := [z9 : 21] € PL(F).

LEMMA 3.2.6. — Assume that p, is generic. Then
(i) py is generic;
(ii) if py is strongly generic, then so is py ;
(iii) if po is mazimally non-split, then so is py ;
(iv) f py is mazimally non-split, then the conditions in (3.2.5) are stable under
Po = Pg -
Assume further that p, is mazimally non-split and satisfies the conditions in (3.2.5).
(v) foralli,j € Z with0<j<j+1<i<n-—1, FL:(p,) = FLY (p, ® w®) for
any b € Z;
(vi) for alli,j € Z with0<j<j+1<i<n-—1,FLy/(p,) = FLIZ0, (5, ;);
(vii) foralli,j € Z with0 < j < j+1 <i<n—1,FLA(5,)~" = FLI~ 70— 145y,
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Proof. — (i), (ii) and (iii) are easy to check. We leave them for the reader.

The only effect on Fontaine-Laffaille module by twisting w? is shifting the jumps
of the filtration. Thus (v) and (vi) are obvious.

For (iv) and (vii), one can check that the Frobenius of the Fontaine-Laffaille module
associated to py is described by

00 - 01 0 0 1
00 -~ 10 0 10
oo Mate(ge) 70 | 2ot
01 -+ 00 0 00
10 -+ 00 00

where Mat.(¢,) is as in (3.2.2). Now one can check them by direct computation. [

We end this section by defining certain numerical conditions on Fontaine-Laffaille
parameters. We consider the matrix (1, n)wo Mate(¢s)?, where Mat,(¢s) is the upper-
triangular matrix in (3.2.2). Here, wq is the longest element of the Weyl group W
associated to T and (1,n) is a permutation in W. Note that the anti-diagonal matrix
displayed in the proof of Lemma 3.2.6 is wo seen as an element in GL,(F). For
1 <i<n-—1 welet B; be the square matrix of size i that is the left-bottom corner
of (1,n)wo Mate ().

DEFINITION 3.2.7. — Keep the notation and assumptions of Definition 3.2.4. We say
that p, is Fontaine-Laffaille generic if moreover det B; # 0 for all 1 <¢ <mn —1 and
Po is strongly generic.

We emphasize that by an ordinary representation p, being Fontaine-Laffaille
generic, we always mean that p, satisfies the maximally non-splitness and the condi-
tions in (3.2.5) as well as det B; # 0 for all 1 < ¢ < n — 1 and the strongly generic
assumption (cf. Definition 3.0.3).

Although the Frobenius matrix of a Fontaine-Laffaille module depends on the
choice of basis, it is easy to see that the non-vanishing of the determinants above
is independent of the choice of basis compatible with the filtration. Note that the
conditions in Definition 3.2.7 are necessary and sufficient conditions for

(1,n)wo Mat,(¢s)" € B(F)woB(F)

in the Bruhat decomposition, which will significantly reduce the size of the paper (cf.
Remark 3.2.8). We also note that

— det By # 0 if and only if FL?"°(5,) # oo;
— det B,,_; # 0 if and only if FL"~%(5,) # 0.

Finally, we point out that the locus of Fontaine-Laffaille generic ordinary Galois rep-
resentations p, forms a (Zariski) open subset in [P!(F)] (==t
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REMARK 3.2.8. — Definition 3.2.7 comes from the fact that the list of Serre weights
of P, is then minimal in the sense of Conjecture 5.3.2. It is very crucial in the proof
of Theorem 5.6.3 as it is more difficult to track the Fontaine-Laffaille parameters on
the automorphic side if we have too many Serre weights. Moreover, these conditions
simplify our proof for Theorem 3.7.3.

3.3. Breuil modules of certain inertial types of niveau 1

In this section, we classify the Breuil modules with certain inertial types, corre-
sponding to the ordinary Galois representations p, as in (3.0.1), and we also study
their corresponding Fontaine-Laffaille parameters.

Throughout this section, we always assume that p, is strongly generic. Since we are
only interested in inertial types of niveau 1, welet f =1, e =p— 1, and w = /—p.
We define the following integers for 0 < ¢ <n —1:

1 if 4 =n— 1;
(3.3.1) r® =0 if0<i<n-—1;
n—2 ifi=0.

We also set
£ .= ci+i— r®
for all i € {0,1,...,n —1}.

We first classify the Breuil modules of inertial types described as above.

LEMMA 3.3.2. — Assume that p, is strongly generic and that M € F—Brl\/[odgd_1
corresponds to the mod p reduction of a strongly divisible modules M such
that Tgp’”‘l(ﬂ) is a Galois stable lattice in a potentially semi-stable lift of p,
with Hodge-Tate weights {—(n —1),—(n —2),...,0} and Galois type 69;:01 k.

Then M € F—BrModgd_1 can be described as follows: there exist a framed basis e
for M and a framed system of generators f for Fil" ' M such that

(0) (0) (0) (0) (0)
u™m=1° B, 1 ,_2u 1€ ko L Brn_1 Ourn—le_knfl,o
(0) 0) ,_ (0
Mat, ¢ (Fil" ' M) ! un Bz gu’n=2"Fn 20
ate r(Fi =
0
0 0 . uT(() e

and
Matg,i(qﬁn_l) = Dlag (Vn—ly Up—2y ««+y l/o)
where kg)j) =k - kj(-o), v; € F* and B; ; € F. Moreover,
Mat,(N) = (%,j -u[k50)7k50)}1)

©) _ (0 —
where v; ; =0 ifi < j and v, ; € uelks” ki hg, ifi> 7.
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Note that e and f in Lemma 3.3.2 are not necessarily the same as the ones in
Lemma 3.1.2.

Proof. — We keep the notation in (3.0.5), (3.0.6), and (3.0.7). That is, there exist
a framed basis e for M and a framed system of generators f for F i1"~' M such

that Matg)i(FilnflM), Mate f(¢n—1), Mate(NN) are given as in (3.0.5), (3.0.6),

and (3.0.7) respectively. Since k; = kfo) mod (p — 1), we have r; = ’I‘EO) for all
1€{0,1,...,n — 1} by Lemma 3.1.2, following the notation of Lemma 3.1.2.

We start to prove the following claim: if n — 1 >4 > j > 0 then
(3.3.3) e— (k¥ — k) > n.
Indeed, by the strongly generic assumption, Definition 3.0.3
e— (K" — k") =@-1) ~(c+i-r") + (¢ +i-r)
= (-1~ (e —c)) = (=) + ()" = r}")
(-1 —(tn-1—c)—(n=-1-0)+(1—-(n-2))
3n—4-2n+4=n.
Note that this claim will be often used during the proof later.

We now diagonalize Mat, ¢ (¢n—1) with some restriction on the powers of the en-
tries of the matrix Matgyi(FilnflM). Let Vp = Matgi(Fil”ﬂM) e ME(S) and
Ao = Mate, j(dn-1) € GLI(S). We also let V3 € MH(S) be the matrix obtained
from Vj by replacing v;,; by v; ; € So, and B; € GLE (S) the matrix obtained from A,
by replacing w; ; by wgwj € Sp. It is straightforward to check that Ay - V4 =V - By if
and only if for all 4 > j

(3.3.4)
vivl, kO~ km)] Z Wit g WO —EOL [kQO)_kgm]l +u uJ(O)er(O) CIN
s=j+1
i—1
=] ur TRl SN g RO R OD KR
s=j+1 ’

Note that the power of u in each term of (3.3.4) is congruent to [kj(-o) — kgo)]l mod-
ulo (e). It is immediate that for all i > j there exist v] ; € So and wj ; € Sy satisfying
the equation (3.3.4) with the following additional properties: for all ¢ > j

(3.3.5) degv; ; < r%.
Letting e’ := eAg, we have

Mat,: g (Fil""*M) = V; and Mate j(¢n-1) = ¢(B1),
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where f' = ¢'Vi, by Lemma 2.4.4. Note that ¢(B;) is congruent to a diagonal ma-
trix modulo (u™®) by (3.3.3). We repeat this process one more time. We may as-
sume that w;; € um®Sy, i.e., that Ag = B; modulo (u™®) where B; is assumed
to be a diagonal matrix. It is obvious that there exists an upper-triangular matrix
Vi = (v§7ju[p71k;0)_k50)]1) whose entries have bounded degrees as in (3.3.5), satisfying
the equation AgV; = VpB1 modulo (u"¢). By Lemma 2.4.4, we get Mate s/ (¢n—1) is
diagonal. Hence, we may assume that Mat. ¢(¢,—1) is diagonal and that deg Vg
in Mat,_;(Fil"~' M) is bounded as in (3.3.5), and we do so. Moreover, this change of
basis do not change the shape of Mat,(N), so that we also assume that Mat,(N) is
still as in (3.0.7).

We now prove that foralln—1>4i>35>0
(3.3.6) vi,ju[kﬁo)_ki‘m]l = /Bi,jurgo)e‘(kgo)‘kﬁo))
for some 3; ; € F. Note that this is immediate for i =n — 1 and ¢ = 1, since ’I‘EO) =1
ifi=n—1or4=1. To prove (3.3.6), we induct on 4. The case ¢ = 1 is done as above.
Fix po € {2,3,...,n — 2}, and assume that (3.3.6) holds for all i € {1,2,...,p9 — 1}
and for all j < i. We consider the subquotient M, o of M defined in (3.0.8). By
abuse of notation, we write e = (ep,,...,eg) for the induced framed basis for My, o
and f = (fpy,- .-, fo) for the induced framed system of generators for Fil"_l./\/tm,o.

We claim that for pg > j >0

Po
_ — (0 (0
u*N(f;) € Sousf; + > Soults ~Flg,
t=j+1
It is clear that it is true when j = pg. For j < pg, consider

(0 (0)
N(fj) = N(fj —u eej) + N(UTJ eej).

) ) —
It is easy to check that N(f; — s “e;) and N(urj'0 ‘ej) + T;O)efj are S-lin-

ear combinations of e,,,...,e;11, and they are, in fact, So-linear combinations
(0) _1,(0) (0) _1.(0) ) o . . .
of ulfs kg hepo, e ,u[kj k]’+1hej+1 since they are w® -invariant. Since

ueN(f;) € Fil" My, 0 D u" DM, o

and
RO

(0)
uN(f;) +rVeuf; = uf[N(f; —u's “e;)] + wN @™ Ce;) + rVef;],

we conclude that

Po
— (0 (0
wN(f) +r¥euf; € 37 Souls TR,
t=j+1
which completes the claim.
Let

(0) _1.(0)
Mate s (N|, )= (i -l 70)
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where v; ; =0if i < j and ;5 € So if i > j. We also claim that

(0) _1.(0)y —
Vi € uthi TRl

for po > 4 > j > 0, which can be readily checked from the equation cN¢,_1(f;) =
Hn-1(uN(f;)). (Note that c =1 € S as E(u) = u® + p.) Indeed, we have

Po
(0) _;.(0)
cNon_1(f;) = Nvje;) =v; Y qigults ~F e
i=j+1
On the other hand, since Mat,, ¢(én—_1 | v ) is diagonal, the previous claim immedi-
e.f -

ately implies that

¢n 1(’U, N fj Z S()Up[k(o)_k(O)]l

t=j+1
Hence, we conclude the claim.
We now finish the proof of (3.3.6) by inducting on py — j as well. Let us write
Vi = Et(o()) ! (t) u'® for x 6 F. We need to prove x;) =0forte{0,1,.. r,(,?)) -2}

Assume first j = py — 1, and we compute N(f;) as follows:

TI()%)—I

t 0 1)— (50 _j(©

Nlf-1) == D by alelt+1) = (kD) — k{0 =00 Hm e,
t=0
© ©_ 1, ()
+ Ypopo— 1u( po—1TDe—(k5) —k, e o _TI(J(;) Leu Too—1€ €po1-
r(0) _q

RO
» (t) te+[kpy—1—k
Since fp,_1 = um0-1%, 1+ 3,70 squtetEro1=kulie, e get

Po,Po—
(3.3.7)

(0)
Tpo -1
t 0 0 e kO — £
N(fppe1) = 3 al) oty —e(t+1) + (K — K D= E s,
t=0

(0) (0) (0)
(r) ) +l)e—(k, ) —k 7 1)
+ Ypo,po—1U" PO ! Po “ro—t €po

©
modulo Fil" ' M, . Since vy, py—1 € v~ (k5o g -1 and e — (k) — kz()?)) )>n
by (3.3.3), we get

0 _
Tpo 1
t 0 0 . B0k ®
N(fpo-1) = Z ;0)1,0 1ler I(,O) 1= (t+1)+(k1(10) k;o) Dlu (t+1)—( o 1)ep0
t=0
modulo 13‘11”_1,/\/11,0’07 so that
(0) 1

0 0 © (0)
N(fpo—1) = Z 2 fer® ) —e(t+ 1) + (kD — kO utHD g ke
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modulo Fil"~' M, o. But if t = r,(,oo) — 1 then e(t +2) — (kl()g) - kl()gll) > ré?,), so that
we have

(3.3.8)
(i
0 0 e _(E(0) _(0)
N(fpo-1) = D @ alertony = e(t+1) + (k) = ko Jus¢H2 =0 -,
t=0
modulo Fil" ™' M, o.
It is easy to check that
0 0
(3.3.9) erioy —elt+1) + (K — ki) 1) #0

modulo (p) forall 0 < ¢ < r,()?)) — 2. Indeed, since kgo) =¢; for0 <i<n—1by (3.3.1),
we have

ert) | —e(t+ 1)+ (KO — k)= O 4 (E41) + (cpo — cpo—1)

Tpo—1 — po—1

modulo (p), and so

er® | —e(t+1) + (KO — £

po—1) = (t+ 1)+ (cp — cpp—1+1) — rz()g)
modulo (p) since 1“2(0) =ifor 0 <i<n-—1Dby (3.3.1).

Since 0 <t < r{Y) — 2,
0 < (cpy — Cpo—1+2) — ri(,g) < (t4+1)+ (epy —Cpp—1+1) — r]()g) < (epy —Cpg—1—1) < p
;to),po—l =

Oforall0<t¢< r,(,?)) — 2 since u¢N(fp,—1) € Fil" "' M,, o. This completes the proof
of (3.3.6) for j = pg — 1.

by the strongly generic conditions, Definition 3.0.3. Hence, we conclude that z

Assume that (3.3.6) holds for ¢ = pp and j € {po — L,po — 2,...,8 + 1}. We
compute N(fs) for po —1 > s > 0 as follows: using the induction hypothesis on
i€{1,2,...,po — 1}

r®_1
PO
e — (k) _(0)
N == 32 afdlet+1) = (K — MO0 =50,
t=0
po—1 0 . )
+ Y By e YK (Z T P [r@)e—(k@)—kg@)]ei)
1=s+1 s=i+1
©¢ o OO ©
+uls e Z YisutT TR e Oy Tee
i1=s+1
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. (10 (0=
Since v; ; € uele= (R =kIG ) we have

(0)_1
Po
. (6 _
N == S a4 1) (9 — KO-
t=0
= 0, (0) 0 O (k{9 — k(@ 0y, r®
- Z Bislr; (k) — Oy ek =k e, (O gyraee,
1=s+1

modulo Fil"~' M, o. By the same argument as in (3.3.7), we have

rO_1
Po
N(f)= Y 2@, rOe —e(t +1) + (kO — kO)ucD =05 K
t=0
= (0) ©) (1,0 _ (0
+ 3 Bislr@e —r@e+ (B — kO)Juri” e~ ®" =KD,
i=s541

modulo Fil”flMpoyg. Now, from the induction hypothesis on j € {po — 1,po — 2,...,5+ 1},

po—1
w3 Bislr@e —r®e 4 (1 — KO e K, € FilnTIM,,,

1=s+1

and so we have

r®_1
Po
e () _
N(f) = Y e —et+1) + (k) — KO)u = E0 = e,
t=0

modulo Fil"~' M, o. By the same argument as in (3.3.8), we have

(0) _
Tpo 2
e (k) _(®
N(f)= Y afd e —eft +1) + (k) — kO)u D00 KD,
t=0

modulo Fil”_lj\/lpmo. By the same argument as in (3.3.9), one can readily check
that r{”e — e(t+1)+ (k(o) - k(o)) # 0 modulo (p) for all 0 < ¢t < 7‘(0) — 2. Hence,
we conclude that xl(,to,s =0forall 0<t< r(o) 2 as u*N(f,) € Fil""'M,, o, which
completes the proof. O

ProPoSITION 3.3.10. — Keep the assumptions and notation of Lemma 3.8.2. Assume
further that py is mazimally non-split and satisfies the conditions in (3.2.5).

Then B;;—1 € F* fori € {1,2,...,n — 1} and we have the following identities:
for0<j<j+1l<i<n-—1

FLY (py) = [Bijvjs1 -+ vie1 : (=1)77 T det A; ;] e PY(F),
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where
Bi+1i  Bi+25  Bi+sg 0 Bi—iy Biy
I Bite a1 Biwsg+r - Bicij+r Bijh
, 0 1 Bitsgrz =+ Bicngrz Bijee
Ai,j = . . . .
0 0 0 o Bicti—2 Bii-2
0 0 0 e 1 Bii—1

Proof. — We may assume ¢y = 0 by Lemma 3.2.6. We let V' := Matg,i(Fil"_lM)
and A := Mat, (¢n—1) be as in the statement of Lemma 3.3.2. By Lemma 2.6.3, the
¢-module over F ®p, F),((w)) defined by 9 := Mg ((w))(M?*) is described as follows:

Mat,(¢) = (Ui ;),

where
(©
vy temh e if i = j;
Uimj = 0 if ¢ > j;
o) (0) _1(0)
vt By TR i<
. i . O] O] (0)
in a framed basis ¢ = (¢,,—1,¢5—2, . . ., ¢o) with dual type w knoi@u™kna .. ~€Bw‘k00 .
. . . (0) (0) (0)
By considering the change of basis ¢ = (@kn—len_l,gk"—%n_z,...,Qkog €0),
Mat, (¢) is described as follows:
Mate (¢) = (Vi,;)
where
), (0)
vyt if i = ji
Vij=4 0 if ¢ > g;
0)__.(0)
vt Bt ) i< g
Since ki(o) =c+1— 1“1(0) for each n — 1 > i > 0, we easily see that the ¢-module

My is the base change via F ®r, F,((p)) — F ®r, Fp((@)) of the ¢-module My
over F ®@r, F,((p)) described by

V’;_llgcn,1+(n—1) 0 0
V;fllﬂnil’niﬂzcnfri-(n—l) V;712p0n72+(7’b—2) ... 0

Mater () =

cn—2+(n—=2) | —1,co

cn—1+(n—1) vi'p

—1 -1
Vp Z1Bn—1,0P Vy —9Bn—2,0P
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in an appropriate basis ¢ = (e]!_;,el'_,,...,¢ey), which can be rewritten as
vt 0 e 0
Mat, (¢) = 1/;_11[37?_1,”_2 U;:_lz 0 Diag (po-1+"1,...,p 1, p) .
vt Bni1o vloBaoo oo vt
=H'

By considering the change of basis ¢’/ = ¢” - H' and then reversing the order of the
basis ¢/, the Frobenius ¢ of MMy with respect to this new basis is described as follows:
(3.3.11)

vl v o o v tiBa-10
-1 -1
Mat(¢) _ Diag (pco,pC“Ll, o ’pcn,1+(n—1)) 0 12 Vn_lﬁn—l,l
0 0 0 vt
=H

with respect to the new basis described as above.

The last displayed upper-triangular matrix H is the Frobenius of the Fontaine-
Laffaille module M such that T}, (M) = p, = T% (M), by Lemma 2.6.4. Hence, we

get the desired results (cf. Definition 3.2.4). O

REMARK 3.3.12. — We emphasize that the matrix H is the Frobenius of the Fontaine-
Laffaille module M, with respect to a basis (eg,e€1,...,e,—1) compatible with the
filtration, such that T} ; (M) = p, = TZ, (M), so that we can now apply the conditions
in (3.2.5) as well as Definition 3.2.7 to the Breuil modules in Lemma 3.3.2. Moreover,
H can be written as

1 Bio -+ Bn-10
0 1 - Bno1n
. . . . 'Dlag(yo_layl_la-'-ay';—ll)a

0 O 0 1

=:H"

so that we have (1,n)woH' € B(F)woB(F) if and only if (1,n)wy(H")! € B(F)woB(F).
Hence, p, being Fontaine-Laffaille generic is a matter only of the entries of the filtra-
tion of the Breuil modules if the Breuil modules are written as in Lemma 3.3.2.
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3.4. Fontaine-Laffaille parameters vs Frobenius eigenvalues

In this section, we study further the Breuil modules of Lemma 3.3.2. We show
that if the filtration is of a certain shape then a certain product of Frobenius eigen-
values (of the Breuil modules) corresponds to the newest Fontaine-Laffaille parame-
ter, FL"~%%(5,). To get such a shape of the filtration, we assume further that 7, is
Fontaine-Laffaille generic.

LEMMA 3.4.1. — Keep the assumptions and notation of Lemma 3.3.2. Assume further
that p, is Fontaine-Laffaille generic (cf. Definition 3.2.7).

Then M € F-BrMo "7 can be described as follows: there exist a framed basis e
for M and a framed system of generators f for Fil" ™ *M such that

Ma‘tg,i((ﬁnfl) = Diag (tn—1, Hn—2, - -, Ho)

and
Mat, ¢ (Fil" ™' M) = (Ui ),

where
uraem (k) ifi=n—1andj=0;
urt’e fo<i=j<n—1;

©) ¢ (K0

CE L EL i S S o
ue ifi=0andj=mn—1;
g AR 0 enl
0 otherwise.

Here, u; €e F* and z; ; € F.
Moreover, we have the following identity:
n—2

FL~(po) = [[ i’
=1

Due to the size of the matrix, we decide to describe the matrix Matgf(Filn_lM)

as (3.4.2). But for the reader we visualize the matrix Matg,i(FiI”_lM) below, al-
though it is less accurate:

(0) (0)
0 0 R 0 u’rnfle_kn—l,o
e (0) (0) (0) (0)
0 u'n—2 R xniz’lu’rn—Qe_k"n—2 1 l‘nfz’ouT"—Qe_k"—2 0
(0 (0) (0)
0 0 urt” xy0u™ T ki
(0) (0) (0) (0) C) (0) (0)
€+k” 1,0 mo,n_zuro e+kn 2,0 a’:o lu To e+k xo Ouro =

where k%) == k(¥ — k*).
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Proof. — Let ¢, be a framed basis for M and f o @ framed system of generators
for Fil" ' M such that V; := Matgo,fO(Filn_lM) and Ao := Mate s (¢n—1) are
given as in Lemma 3.3.2. So, in particular, V; is upper-triangular and Ap is diagonal.

By Proposition 3.3.10, the upper-triangular matrix H in (3.3.11) is the Frobenius
of the Fontaine-Laffaille module corresponding to p,, as in Definition 3.2.4. Since we
assume that p, is Fontaine-Laffaille generic, we have (1,n)woH! € B(F)woB(F) as
discussed right after Definition 3.2.4, so that we have woH'wq € (1,n)B(F)woB(F)wy.
Equivalently, wo(H')*wo € (1,n)B(F)woB(F)wy by Remark 3.3.12, where H' is de-
fined in Remark 3.3.12. Hence, comparing V, with wq(H')*wy, there exists a lower-
triangular matrix C' € GLS'(S) such that

Vo C=Vi=(Uij)ocijcn1

where U;; is described as in (3.4.2), since any matrix in woB(F)wg is lower-
triangular. From the identity Vy - C = Vi, we have V; = Mat@mil (Fil"_lM) and
A = Ma‘cgli1 (¢n—1) = Ao - ¢(C) by Lemma 2.4.4, where e, := ¢, and i1 = V1. If
i < 7, then [kj(o) — kio)]l = kj(-o) — kl@ > n as p, is strongly generic, so that A; is con-
gruent to a diagonal matrix By € GL,(F) modulo (u") as C = (c¢;; ~u[k§0>_k§0>]1) is
a lower-triangular and A is diagonal.

Let Vo be the matrix obtained from V; by replacing z; ; in (3.4.2) by y; ;, and
By = (b;;) is the diagonal matrix defined by taking b;; = b}, if 1 <4 <n —2 and
bii = b,_1_;n_1-; otherwise, where By = (b; ;). Then it is obvious that there exist
¥i,; € F such that

A Vo=V By
modulo (u"¢). Letting e, := ¢ - A1, we have V3 = Mate, s (Fil""* M) and
Mate, f (¢n-1) = ¢(B2) by Lemma 2.4.4. Note that Ay := Mat,, s (¢n—1) is diag-
onal. Hence, there exist a framed basis for M and a framed system of generators
for Fil" ' M such that Mat, f(¢,_1) and Mat, ¢(Fil"~'M) are described as in the
statement. - B

We now prove the second part of the lemma. It is harmless to assume ¢y = 0
by Lemma 3.2.6. Let V := Mat, ;(Fil""'M) and A := Mat, ;(¢,_1) be as in the
first part of the lemma. By Lemma 2.6.3, the ¢-module over F ®r, Fp((@))
defined by M := Mg, ((w))(M*) is described as follows: there exists a basis

e=(ey_1,en_2,...,¢), compatible with decent data, such that Mat,(¢) = (APt

where V' and (A~1)* are computed as follows:

(0) (0)
0 0 . 0 w0 etkatio
(0 (0) (0)
0 Ern—Z e 0 1;0 n—QQTO e+k:n—2,0
V=
0) __4.(0) (0) (0) (0)
0 xniz’lgrn—ze kplon ... w' moﬁlw’"o etkio
(0) (0) (0) (0) (0) (0) 0
Ern—le_kn—l,o Tp_2 Ozrn—26_kn—2,0 e T OETI e_kl,O xq Ozr(() )e
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and
-1 _ 1 -1 -1 -1
A7 =Diag (p, 11, pnltey ooy By ) -
: : . (0) (0) () )
By considering the change of basis ¢ = (@*n-1¢,_1,@"~2¢,_a,...,@" e, @" ),
we have
— (TtY . -1 -1 -1
Mat (6) = (V') - Ding (171, s ... 55")
where
0 0 e 0 we(ké0)+7‘(()0))
O 4r? ©,,.(0)
0 Ee(kn—2+7’n—2) 0 xO,n—QEe(kO +ri9)
7y = . | . .
©
0 Tp—2 1we(kn—2+Tfm_2) - we(k§0)+?“§o>) o lwe(k80)+réo))
(0) (0) (0) (0)
Ee(kn_1+rn_1) T2 Oze(kn_2+Tn_2) - Oze(kgo)_i_r;o)) - Oge(kéo)-l'rém)

Since k§0) + rj(o) = ¢; + j for all j, it is immediate that the ¢-module MM over
F ®r, F,((@)) is the base change via F®r, F,((p)) — FoF,Fy((@)) of the ¢p-module
Mo over F @, F,((p)) described by

Matgu(qﬁ) = F” . Dlag (Bcn71+"_17120n72+’ﬂ—2’ . 7pCO) ,

where
1
0 0 0 o0 g
-1 -1
0 ity 0 0 g o
—1 -1 -1
” 0 pyp9%n-2n-3 Hn—3 0 Ho T0,n—3
F" = ,
—1 —1 —1 —1
0 Pp—2Tn-21  fn_3Tn-31 " Hp Mo To,1
—1 —1 —1 -1 -1
Hp—1 My —2Tn—2,0 MHp_3Tn—-30 - M1 T1p0 Mg "Zo,0

in an appropriate basis ¢”.
Now, consider the change of basis ¢’/ = ¢’ - F”” and then reverse the order of the

basis ¢/”/. Then the matrix of the Frobenius ¢ for 9y with respect to this new basis
is given by
Dlag (pcoap61+17 s apcn_1+n_1) - F
where
po'moo B0y 'Tao vt HploTao20 fnly
po o1 pit o opytmen o pplamaan O
1o ' wo,2 0 py'l e pplaTnon 0
F= ) ) )
1o To,n—2 0 0 e Hnls
ot 0 0 .. 0
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By Lemma 2.6.4, there exists a Fontaine-Laffaille module M such that (M) = 9,
with Hodge-Tate weights (cg,c1 + 1,...,¢p—1 +n — 1) and Mat.(¢s) = F for some
basis e of M compatible with the Hodge filtration on M. On the other hand, since

T (M) = py, there exists a basis ¢’ of M compatible with the Hodge filtration on M
such that

Wo Wo,1 ' Won-2  Won-1

0 wi - Wip—2 Winp-1

Ma‘tgl (¢') = ’
0 0 e Wn—2 Wn—-2n—-1
0 0o - 0 Wp—1
=G

where w; ; € F and w; € F* by Lemma 3.2.1. Since both e and e’ are compatible with
the Hodge filtration on M, there exists a unipotent lower-triangular n X n-matrix U
such that

U-F=aG.
Note that we have wg,_1 = ", by direct computation.

Let U’ be the (n — 1) X (n — 1)-matrix obtained from U by deleting the right-most
column and the lowest row, and F’ (resp. G’) the (n — 1) x (n — 1)-matrix obtained
from F' (resp. G) by deleting the left-most column and the lowest row. Then they still
satisfy G’ = U’ - F’ as U is a lower-triangular unipotent matrix, so that

n—2
1: ] uﬁ] :
i=1

which completes the proof. O

FL "%(5y) = [won—1: (=1)"det G'] = [ 21 : (~1)"det F'] =

PRrROPOSITION 3.4.3. — Keep the assumptions and notation of Lemma 8.4.1.

Then M € F-BrMongl can be described as follows: there exist a framed basis e
for M and a framed system of generators f for Fil"™*M such that

e— (k" k)

0 0 0 wu
u(m—2)e 0 e 0 0
0 u(n=3)e 0 0
Mat, ;(Fil" ' M) =
0 0 0 ot 0
w2Vt (k2 k)

Moreover, if we let

Mat,, ¢ (¢n—1) = (aiju[kﬁo)*kgo)h)
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for a;; € ?é and oy ; € So if i # j then we have the following identity:

n—2
n— — 0
FLL(0) = [T (el H u
i=1
where a( ) € F is determined by a( ) = a; ; modulo (u®).

Note that Mat,, ;(¢n—1) always belong to GLZ(S) as e and f are framed.

Proof. — We let e, (resp. ;) be a framed basis for M and f  (resp. f ) be
a framed system of generators for Fil" 'M such that Mate, ¢ (Fll" 1./\/1) and
Matgoio(qﬁn,l) (resp. Mat,, s (Fil" "' M) and Ma,tglil(qﬁn,l)) are given as in the
statement of Lemma 3.4.1 (resp. in the statement of Proposition 3.4.3). We also let
Vo = Mat,, s (Fil"™'M) and Ag = Mat,, 1 (¢n-1) as wellas Vi = Mate, 5 (Fil"~")M
and A; = Mat,, 5 (Pn—1)-

10 k(o)]l

It is obvious that there exist R = (rmu[ ) and C = (cmu[km) B )

in GLZ(S) such that
R-Vy-C=1V; and ¢4 =§0R71
for r; ; and ¢; ; in So. From the first equation above, we immediately get the identities:

PO L0 g0 O

Tn-1,n-1 70,0 " Cn-1,n—

, and T(O) (f)i) =1

for 0 < i < n — 1, where 7"1(,0]-)

modulo (u®) (resp. c() = ¢;; modulo (ue)). By Lemma 2.4.4, we see that

A =R-Ay-¢(C).

€ F (resp. c( ) € F) is determined by rfj) =7

(0) _;(0)
Hence, if we let A, = <a ks Ok ]1) then
rgg) I c§?} = agg)

for each 0 < ¢ < n — 1 since R and C are diagonal modulo (u), so that we have

n—2
H i = H a(O)
=1

which completes its proof. O

Note that the matrix in the statement of Proposition 3.4.3 gives rise to the ele-
mentary divisors of M/Fil""' M.
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3.5. Filtration of strongly divisible modules

In this section, we describe the filtration of the strongly divisible modules lifting
the Breuil modules described in Proposition 3.4.3. Throughout this section, we keep
the notation TEO) as in (3.3.1) as well as k( )

We start to recall the following lemma, which is easy to prove but very useful.

LEMMA 3.5.1. — Let 0 < f < n be an integer, and let Me OE-ModZ(Il be a strongly
divisible module corresponding to a lattice in a potentially semi-stable representation
p: Gq, — GL,(E) with Hodge-Tate weights {—(n — 1), —(n —2),...,0} and Galois
type of niveau f such that Tg”’n_l(/\//\l) ®o, F = p,.

If we let
4 Fil" ' M NFil'S - M
X .= ! MT IEM ®op F
Fil" 'S - M

fori € {0,1,...,n — 1}, then for any character £ : Gal(K/Ky) — K* we have that
the &-isotypical component Xg(l) of X&) is a free Koy @ E-module of finite rank
nn—1) i(i+1)

2 2

rankK0®QpEX£(Z) =
Moreover, multiplication by u € S induces an isomorphism X(U) — X(O).

Proof. — We follow the strategy of the proof of [39], Lemma 2.4.9. Since p has Hodge-
Tate weights {—(n — 1), —(n — 2),...,0}, by the analogue with E-coefficients of [5],
Proposition A.4, we deduce that

Fil" D = Fil" 'Sg 1 ® Fil" 2S5 fro® - ® Fil'Ss f1 ® Sk fo

for some Sg-basis f(),...,fn_l of D, where D := M [ﬂ >~ Sp ®p DQ”’n 1(V), SO

that we also have

Fil" 'DNFil'SgD = Fil" 'S fr_1 @ Fil" 2Sp fr_s®- - @ Fil'Spfi @ - - - ® Fil'Sg fo.
Since p = TQ"’n 1(/\/1) ®oy E is a Gq,-representation, Fil'(K ®x, Dgp’"fl(p)) =
K ®q, Fil' DdR(p ®e'™"), so that X() = Fﬂ};ﬂ% is a free Ky ®q, E-mod-
ule. Since m ~ P @] (Ko ®q, E)u/E(u)?, we have rankg,gq nX ) =
[% Z(H'l)] e. We note that Gal(K/Kj) acts semisimply and that multiplica-
tion by u gives rise to a Ko ®q, E-linear isomorphism on Sg/Fil’Sg which cyclically
permutes the isotypical components, which completes the proof. O

Note that Lemma 3.5.1 immediately implies that
(3.5.2) rankr,zq, EX( ) _ rankp,zq, EX(Hl) i+ 1.

We will use this fact frequently to prove the main result, Proposition 3.5.4, in this
section.
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To describe the filtration of strongly divisible modules, we need to analyze the
Fil" ! M of the Breuil modules M we consider.

LEMMA 3.5.3. — Keep the notation and assumptions of Lemma 3.3.2.
() If u® is an elementary divisor of M/Fil" "' M then
e— 2, -k <a< (n—2e+ &, — k).

Moreover, FL;,~ 1(:)( )(Zf oo (resp. FLI10(5,) # 0) if and only if u®~ (k2 —kg”)
(resp. um= et Fni=ko ) ) s an elementary divisor of M/Fil" ' M.
ii) If we further assume that p, ts Fontaine-Laffaille generic, then
0

_ 0) _4.(0) _ _ _(1.(0) _4(0)
{u(n 2)e+(k, 2, —ky )’ u(n 2)5, u(n 3)e7 el ue’ u® (kp 2y —ky )}

are the elementary divisors of M/Fil”_lM.

Proof. — The first part of (i) is obvious since one can obtain the Smith normal form
of Mat, f Fil" "' M by elementary row and column operations. By Proposition 3.3.10,

we know that FL"~0(5,) # oo if and only if 8, 1,0 # 0. Since u*~ (k21 =56") has the
minimal degree among the entries of Mate Fil""* M, we conclude the equivalence
statement for FL"~1%(7,) # oo holds. The equivalence statement for FLI~"%(5,) # 0
is immediate from the equivalence statement for FL”~*%(5,) # oo by considering M*
and using Lemma 3.2.6, (vi).

Part (ii) is obvious from Proposition 3.4.3. O

PROPOSITION 3.5.4. — Assume that py is Fontaine-Laffaille generic and keep the
notation 7“1(0) as in (3.3.1) as well as kgo). Let M € Op-Mod}i;" be a strongly
divisible module corresponding to a lattice in a potentially semi-stable represen-
tation p : Gq, — GL.(E) with Galois type @P; 1ok” and Hodge-Tate weights
{-(n=1),—(n—2),...,0} such that Tgp’nfl(./\/t) ®op F 2 py.

Then there exists a fmmed basis (€,—-1,€n—2,...,€) for M and a framed sys-
tem of generators (fn 1,fn 2,...,]%) for Fil" 'M modulo Fil*™'S - M such
that MatA AFlln LM is described as follows:

_P’:l 0 0 T S T )
E@™2 0 0 0
0 E(uw)r3 0 0
0 0 0 - E(u)
ukgboll—kéo) Z;’L 02 pn 2— zEI( ) 0 0 . 0 a

where o € O with 0 < vp(a) <n — 1.
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Proof. — Note that we write the elements of M in terms of coordinates with respect

to a framed basis € := (€,-1,€1-2,...,€0). We let M := M\®s S, which is a Breuil

module of weight n — 1 and of type @7 01 whi” by Proposition 2.4.3. Note also that

M can be described as in Proposition 3.4.3, and we assume that M has such a framed
basis for M and such a framed system of generators for Fil" ! M. During the proof,
we write (Fil"_lﬁ/l\)g for the &-isotypical component of Fil" ' M for any character
¢ : Gal(K/Ky) — K*, and by abuse of notation we often write ﬁ for the image of ﬁ
in Fil""'M/Fil"~'S - M without mentioning.

Since Fil" 'S - M C Fil" "' M, we may let
_ (0) (0)
we™(nma—ho ™) SRS oxn LB (u)*
e (k(o) k:(o))
Zk 20 T2k E(uw)"
fo= : e (Fi"'M)
w0
(0) (0)
ue= k7 —ko )Z o w1 B (u)”
Snzo wokE(u)*

where z; ; € O. The vector ]?0 can be written as follows:

Yone Tnot kB (u)k

(0) (0)
k —k n—2
u( n—1 n—Z) k= Oxn QkE( )
~ (0) (0) .
()Zue (kn—l ko) : +
(0) (0)
k —k n—2
U( n—1"F1 ) Pl T kE( ) 0
(0) _ 1(0) -2 n—2 k
uFn=17ko") oy Tok[E(w)F — p*juc 0,0 + D p=1 L0,kP
=€,

©) (0
By (ii) of Lemma 3.5.3, we know that u®~*n=17%0") i an elementary divisor

of M /Fil"_lM and all other elementary divisors have bigger powers, so that we

_ _(p® _(0)
may assume v,(z,_10) = 0. Since Fil" *M C u°~*2-17F ) M, we must have
vp(x0,0) > 0. So € = (€),_1,€n—2,...,€0) is a framed basis for M by Nakayama

lemma and we have the following coordinates of on with respect to €;:

(0) (0)
ue—(knil—ko )

7= : e (P M) o)

for & € O with v,(a) > 0.
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Since u* k(O)f € (Fil"_lf/I\)ak;o) and FiI"~'S - M C Fil"'M, f, can be
written as
0
ue= (s k(O))Zk 0 Yn—2,k B (u)*
A= e (FI"'M) o,
Yo, IcE( )
G =k Sn- OyOkE( )i

where y; ; € Og. By Lemma 3.5.1, we have y;o = 0 for all i: otherwise, both
uki” = k(o)fo and f1 belong to X(O) —X( )(0) which violates (3.5.2). Since u® is an ele-

mentary divisor of M /Fil"™ 1./\/1 by (ii) of Lemma 3.5.3, we may also assume y; 1 = 1.
Hence, by the obvious change of basis we get f1 as follows:

0

7 = E(u) é e@m*ﬂkw

By the same arguments, we get ﬁ € (Fil"_lﬁ/l\)ak@) fori=1,2,...,n — 2 as in the
statement.

Note that the elements in the set

(0) _7.(0) ~ 0) _ 7.(0) ~ (0) _ 4.(0) ~
{uk kg an ( )uk" 1= kg f07-~-, ( )n 2ukn 1— kg f}
(0) (0) ~ (0) (0) ~ (0) (0)
U{Uk O O ] () e e PR /(1) KA S A 08
(0 ) _1.(0) ~
{ Fn o~ 2fn 2}

are linearly independent in X © )(0) over E, so that the set forms a basis for X © )(O)

ohn-1 ohn-1
by Lemma 3.5.1. Hence, fn—l is a linear combination of those elements over E. We
have

_pn—l
© 0 (2 ’
ukn—l_ko (an—2—zE(u)z> fO —
=0 0

(0) (0)
aukno 1_k0 Ezl 02pn 2— zE( )
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Hence, we may let

~ 1 Lo (0) -~
fn—l = Uk"O_ ko (an > ZE >f0 € (Flln_1M> 10

@n—1

©) (0
since u®Det*n=i=ke") s an elementary divisor for M/Fil"_l./\/l by (ii) of

1) > 0 since Fil" ' M C y¢ *n ko) 7’“(0))/\/1 C uM by

Lemma 3.5.3. Moreover, v, (pna_
Proposition 3.4.3.

It is obvious that the f; mod (wg, Fil’S) generate Fil"~*M for M written as in
Proposition 3.3.10, so that they generate Fil"~* M /u¢(»~1) M. By Nakayama Lemma,
we conclude that the ﬁ generate Fil" ' M / Fil"™'s . ./T/i\, which completes the proof.

O

COROLLARY 3.5.5. — Keep the notation and assumptions of Proposition 3.5.4, and
let

()\n—la)‘n—27~-~ ) (OE)n
. . PRONESSA) B0 .
be the Frobenius eigenvalues on the (W°»—1,&0"~2 ..., 0% ")-isotypic component
of DQP’" 1( ). Then
vp(a) ifi=n—1
vp(A)=4¢ (n—1)—1 ifn—1>i>0

(n—1)—vp(a) fi=0.

Proof. — The proof goes parallel to the proof of [39], Corollary 2.4.11. O

3.6. Reducibility of certain lifts

In this section, we let 1 < f < n and e = pf —1, and we prove that every potentially
semi-stable lift of p, with Hodge-Tate weights {—(n—1), —(n —2),...,0} and certain
prescribed Galois types @:L 01 w’; is reducible. We emphasize that we only assume

that p, is generic (cf. Definition 3.0.3) for the results in this section.

PROPOSITION 3.6.1. — Assume that p, is generic, and let (kp—1,kn—2,...,ko) be an
n-tuple of integers. Assume further that ko = (pf =1 +p/ =2+ -+ p+1)cy modulo (e)
and that k; are pairwise distinct modulo (e).

Then every potentially semi-stable lift of p, with Hodge-Tate weights
{-(n—1),—(n—2),...,0} and Galois types @;:01 &I;i is an extension of a 1-di-
mensional potentially semi-stable lift of py o with Hodge-Tate weight 0 and Galois
type &;fo by an (n — 1)-dimensional potentially semi-stable lift of ﬁn 1,1 with Hodge-
Tate weights {—(n —1),—(n — 2),...,1} and Galois types P;_, wf

SOCIETE MATHEMATIQUE DE FRANCE 2022



54 CHAPTER 3. LOCAL GALOIS SIDE

Note that if f = 1 then the assumption that p, is generic implies that k; are
pairwise distinct modulo (e) by Lemma 3.1.2. In fact, we believe that this is true for
any 1 < f < n, but this requires extra works as we did in Lemma 3.1.2. Since we will
need the results in this section only when f = 1, we will add the assumption that k;
are pairwise distinct modulo (e) in the proposition.

Proof. — Let M e Og-Modj; ! be a strongly divisible module corresponding to a
Galois stable lattice in a potentially semi-stable representation p : Gq, — GL,(E)
with Galois type @?__01 &';i and Hodge-Tate weights {—(n — 1), —(n —2),...,0} such
that Tgp’n_l(M) ®oy F = py. We also let M be the Breuil module correspondlng to

the mod p reduction of M. M (resp. M) is of inertial type G}n_o wf (resp. D, 0 wf )
by Proposition 2.4.3.

Welet f = (fn—1,fn—2,-.., fo) (resp. [: (ﬁl_l, ﬁl_g, R ﬁ))) be a framed system
of generators for Fil" "' M (resp. for Fil"_lﬂ). We also let e = (ep—1,€n—2,...,€0)
(resp. € = (€p—1,€n—2,---,€0)) be a framed basis for M (resp. for ./\//Y) If
T =ap_1€n—1+ -+ apeg € M, we will write [z]., for a; for ¢ € {0,1,...,n —
1}. We define [z]g, for z € M in the obvious similar way. We may assume
that Mat,, f(Fil"~ ' M), Mat,, #(¢n—1), and Mat,(IV) are written as in (3.0.5), (3.0.6),
and (3.0.7) respectively, and we do so.

By the equation (3.0.4), we deduce rg = 0 modulo (e) from our assumption on k.
Recall that p > n? + 2(n — 3) by the generic condition.

Since 0 < 79 < (n — 1)(pf — 1)/(p — 1) by (ii) of Lemma 2.3.5, we conclude
that ro = 0. Thus, we may let fj satisfy that [fol., = 0if 0 < i <n—1 and [fole, = 1,
so that we can also let

Hence, we can also assume that [};]go =0for0<j<n—-1
We let Vo = Mat E(Fﬂ"_lﬁ/l\) € MJ(So,) and Ay = Mat, f(¢n-1) € GLY(So,).

We construct a sequence of framed bases {E(m) } for M by change of basis, satisfying
that

Matg(m)’fm) (Fﬂn_lﬂ) € ME’/(SOE) and Matgm)’z{m)((ﬁn—l) € GLE(SOE)

converge to certain desired forms as m goes to co. We let V(™ € MU(Sp,) and
A e GLE(Sp,) for a non-negative integer m. We may write

(l‘slrz-fl)u[k"_l_ko]f , xﬁ:’i‘gl)u[kn—2—ko]f7 B (1) u[km+1—ko]f ) m(()m—i—l))

M llm-&-l
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for the last row of (A(™)~1 where mémﬂ) € (85,)0 and x(m+1) € (Sog)o for

0 < j <n-—1. We define an n X n-matrix RM+1) a5 follows:

0 - 0 0
0 1 0 0
R(m+1) —
0 0 1 0
To

We also define

—_
o
o

0 1 0
C(m+1): ) :
0 0 1 0

YDy ko)l Dy Bz ko)l LMDy ko)l

by the equation
R(m+1) [ yy(m) | olm+l) _ /(m)

(m+1)

where y; € (Sog)o for 0 < j < n — 1. Note that the existence of such a matrix

C(m+1) is obvious, since p~ ko = ko modulo (e) by our assumption on ko immediately
implies [p™*(k; — ko)ly < [ks — koly + [P~ "k; — ksly.

We also note that R € GLY(Sp,) and C™+D) e GLE(Sp,,).

Let V(™) = V(™) for all m > 0. Assume that V(™) = MautA<m> f{m)(Filn_l/T/l\)

A( )

and A(™ = MatA(m) f{m(qﬁn 1), with respect to a framed basis € and a framed

system of generators i  If we let &™) = g(m). (Rm+1))=1 then

¢n71(§(m+1)v(m+l)) = ¢n71(§(m)(R(m+1))_1V(m+1))
= ¢p_1 (@™ VM C(m+D)

= gMHD R(m+1) . g(m) . g(C(m+1)),

Hence, we get

i (FiI" 1)

y(m+1) _ Mat_,, 1) 7

and
ROmFD) . Am) . g(otmtD)y = Mat_,, 1) ];~(m+1)(¢n_1),

m+1
where f ) = My (m+1),
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We compute the matrix product A+ = R(m+1) . A(m) . g(C(m+1)) a5 it fol-
lows. If we let A(™) = (al(?)u[kf_ki]f) for a(,m) € (Sogz)o if ¢ # j and

(m) € (S5, )o, then

(3.6.2) A = (ki) e GLY(S0,),

0<i,j<n—1

(m+1)

where o; wlki—kils is described as follows:

(m) wlki=kils 4 a(m) [ko—k ]f¢(y(m+1))up[p (k;=ko)ls if 4> 0 and j > 0;

“") ulko—kils ifi>0and j = 0;
ey oy yurle ! ki ko)ls iti=0andj>0;
To
D if i = 0 and j = 0.
0

Let V(© =V, and A = A,. We apply the algorithm above to V() and A, By
the algorithm above, we have two matrices V™) and A™ for each m > 0. We claim
that
D) g™ e q(apter™eg, - if i > 0 and § > 0;

D = g if i >0 and j = 0;
am ) € y(apttreg, if i =0and j > 0;

(ZI-H) 57;1) c u(1+p+»--+pm_1)eSoE ifi=0and j=0.

L

2

It is obvious that the case ¢ > 0 and j = 0 from the computation (3.6.2). For the
case ¢ = 0 and j > 0 we induct on m.

Note that p[p~'(k; — ko)ls — [kj — kols = p([p™k;] s — ko) — (kj — ko) > e if j > 0.
From the computation (3.6.2) again, it is obvious that it is true for m = 0. Assume
that it holds for m. This implies that :1:( mt1) € u+pt=+P" " Neg, for0<j<n—1
and so y( M) g g (ptetp™ T DeSo, .

Since (;5( (m 1)y plp ™" (ks —ko)l s —lks —kol ) ¢ u(Itpt+p™)eg, by the computa-
tion (3.6.2) We conclude that the case ¢ = 0 and 7 > 0 holds. The case ¢ > 0 and
47 > 0 follows easily from the case i = 0 and j > 0, since

[P~ (kj — k)]s + [ko — kil s — [k — kil = p([p™kyl5 — ko) + e+ ko — ki — [k; — kil
> plp~ Kyl = ki = (p = ko
> e.
Finally, we check the case ¢ = 0 and j = 0. We also induct on m for this case. It is
obvious that it holds for m = 0. Note that R(™*+1) = I,, modulo u(1+p+-+p" " Neg,,

Since Am+1) = Rm+1) . A(M) . (C(m+1)) we conclude that the case i = 0 and j = 0
holds.

The previous claim says the limit of A(™) exists (entrywise), say A(°). By defini-
tion, we have V() = V(™) for all m > 0. In other words, there exist a framed basis
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§(°°) for M\ and a framed system of generators foo) for Fil”*~1 M\ such that
Mat ., s (Fil" L) = V) € MD¥(S0,)

and
Mat ) s (dn-1) = A € GL(So,,)-

Note that (V(°));; = 0 if either 4 = 0 and j > O or i > 0 and j = 0, and
that (A(>)), ; =0if i =0 and j > 0.

5(c0)

—~
Since e’ is a framed basis for M, we may write

Mat’g\(oo) (N) = (’y ks —k: ]f) € ME(SOE)

0<i,j<n—1

for the matrix of the monodromy operator of M where 7i,j € (Sog)o, and let

Ae0) — ( (o) [kj—ki]f) Lo ,
Qi U 0<i,j<n—1 €G n (SOE)
We claim that vy ; = 0 for n —1 > j > 0. Recall that a(oo) =0 for j > 0, and write
f(oo) (FL0) Floo) )y and @) = (@) 8l ,6600)). We also write

J?(OO) Zﬁ(w)u[p Tkj—k; ]400)
=1

where 61-(3-0) € (Soy)o, for each 0 < j < n — 1. From the equation
[eN¢n—1(F™)] s = [Bn-1(B@N(F™)) o

for n — 1 > j > 0, we have the identity

n—1 n—1
(3.6.3) Z al(?)u[kj—ki]f+[ki—ko]f70’i _ pz ﬁi()c;o)up[p‘ kj—kils+plki—kols ¢(70,¢)agf§)
i=1 i=1

foreachn—12>j > 0.

Choose an integer s such that ordu(ygvsu[ks_kO]f) < ordu(707iu[ki—ko]f) for all
n—12>14>0, and consider the identity (3.6.3) for j = s. Then the identity (3.6.3)
induces

a(OO)u[ks*kO]f,yO =0

modulo (uOrdu(v0.s)+ks—kols+1)  Note that a§°§> € S5, so that we get 7, = 0.
Recursively, we conclude that 7y ; =0 forall 0 < j <n —1.
olo0) ole0) g(w))

n17n27')1

Finally, it is now easy to check that (e determines a strongly

divisible modules of rank n — 1, that is a submodule of M. This completes the proof.
O
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COROLLARY 3.6.4. — Fiz a pair of integers (ig, jo) with 0 < jo <ip <n—1. Assume
that py is generic, and let (kn—1,kn—2,...,ko) be an n-tuple of integers. Assume
further that
ki=@ " "+ D
for i > iy and for i < jo and that the k; are pairwise distinct modulo (e).
Then every potentially semi-stable lift p of p, with Hodge-Tate weights

) Tk ; )
{=(n—-1),—(n—2),...,0} and Galois types P;_, w];’ is a successive extension
Pn—1,n—1 * * * *
Pio+1,i0+1 * * T *
~Y
p= Pio.do * SRR
Pjo—1.jo—1 **° ¥

00,0
where
— pii 18 a 1-dimensional potentially semi-stable lift of p;, with Hodge-Tate
weights —i and Galois type &7’;1' forn—12>14>1iy and for jo > i > 0;
— Pio.jo 8 a (io — jo + 1)-dimensional potentially semi-stable lift of p;, ;, with
Hodge-Tate weights {—ig, —io + 1,...,—jo} and Galois types @zijo &1;1

Proof. — Proposition 3.6.1 implies this corollary recursively. Let M € F-BrMod}j; Ipe
a Breuil module corresponding to the mod p reduction of a strongly divisible module
M e Og-Mod}; ! corresponding to a Galois stable lattice in a potentially semi-
stable representation p : GQ — GL, (F) with Galois type EB —0 wf and Hodge-Tate
weights {—(n—1),—(n— 2) .,0} such that TQ” " 1(M)®0E F = p,. M (resp. M)
is of inertial type @:L*Ol wf (resp @1 0 wf ‘) by Proposition 2.4.3. We may assume
that Mate 7 (Fil"~ M), Mat,, #(¢n—1), and Mat.(N) are written as in (3.0.5), (3.0.6),
and (3.0.7) respectively, and we do so.

By the equation (3.0.4), it is easy to see that r; = (p/ ' +p/ 2+ .- +p+1)i
for i > ig and for ¢ < jo, by our assumption on k;. By Proposition 3.6.1, there exists
an (n — 1)-dimensional subrepresentation p, _; ; of p whose quotient is pg o which is a
potentially semi-stable lift of p, , with Hodge-Tate weight 0 and Galois type (Iz’]fo. Now
consider p;,_; ; ® e~1. Apply Proposition 3.6.1 to Pr11® e~1. Recursively, one can
readily check that p has subquotients p; ; for 0 < i < jo—1. Considering p¥ ®e" ™!, one
can also readily check that p has subquotients p; ; lifting p; ; forn—1 >4 > ip+1. U

The results in Corollary 3.6.4 reduce many of our computations for the main results
on the Galois side.
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3.7. Main results on the Galois side

In this section, we state and prove the main local results on the Galois side, that
connects the Fontaine-Laffaille parameters of p, with the Frobenius eigenvalues of
certain potentially semi-stable lifts of p,. Throughout this section, we assume that p, is
Fontaine-Laffaille generic. We also fix f =1 and e=p — 1.

Fix ig,jo € Z with 0 < jg < jo + 1 < i9 < n — 1, and define the n-tuple of integers

0,0 %0,J0 10,70
(T2 TGy ooy 7o)

as follows:
t if i9 # 1 # Jo;
(3.7.1) rio? =S Go+ 1 if i = dg;
io—1 ifi=jo.
We note that if we replace n by ig — jo + 1 in the definition of 7"1(0) in (3.3.1) then we
have the identities:

for all 0 < i < iy — jo. In particular, 1"?_1’0 = T'Z(O) forall0<i<n-—1.
From the equation k°7° = ¢; +i — 7:°7° mod (e) (cf. Lemma 3.1.2, (i)), this tuple

immediately determines an n-tuple (k°70, Eiodo  klo7°) of integers mod (e),

which will determine the Galois types of our representations. We set
losdo . c+i— pioJo
) ‘ 1
for all: € {0,1,...,n—1}.
The following is the main result on the Galois side.

THEOREM 3.7.3. — Let ig,jo be integers with 0 < jo < jo+1 < 49 < n — 1.
Assume that p, is generic and that p,; ; is Fontaine-Laffaille generic. Let

(Alodo Niode | XRI0) e (Ogp)* be the Frobenius eigenvalues on  the
~gt0:d0  __pi0-d0 ~i0:doy . . Qpn—1 .

(@Fn=1 %2 .. W% )-isotypic components of Dy (po) where pg is a poten-
tially semi-stable lift of p, with Hodge-Tate weights {—(n — 1),—(n — 2),...,—1,0}

and Galois types EB?Z_Ol L
Then the Fontaine-Laffaille parameter FLff’jO associated to py is computed as fol-
lows:

pl(n=1)— 22 (io—jo—1)

Hio—l )\Z:o,jo

i=jo+1 "¢

FLY (5y) = < ) € P'(F).

We first prove Theorem 3.7.3 for the case (ig,jo) = (n — 1,0) in the following
proposition, which is the key step to prove Theorem 3.7.3.

PROPOSITION 3.7.4. — Keep the assumptions and notation of Theorem 3.7.3, and
assume further (ig, jo) = (n — 1,0). Then Theorem 3.7.3 holds.
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n— 17"'7k((JO))
n (3.3.1). To lighten the notation, we let k; = k"% and X\; = A?""° during the
proof of Proposition 3.7.4. We heavily use the results in Sections 3.3, 3.4 and 3.5 to
prove this proposition.

Recall that (K771, ..., k?~) in Proposition 3.7.4 is the same as (‘"

Proof. — Let M e Og-Modj; ! be a strongly divisible module corresponding to a
Galois stable lattice in a potentially semi-stable representation po : Gq, — GLy(E)
with Galois type @7__01 @* and Hodge-Tate weights {—(n — 1), —(n—2),...,0} such
that Tgp’n 1(/\/() Qoy F & = Po- We also let M be the Breuil module correspondlng to
the mod p reduction of M. M (resp. M) is of inertial type @"_ ki (resp. @Z 0 whki)
by Proposition 2.4.3.

We let I: (]?n,l, ]?n,g, e j?l, ]?0) be a framed system of generators for Fil"ilj\//i
and € = (€,-1,€n-2,...,€1,609) be a framed basis for M. We may assume
that Mataf(FiI"_I/T/l\) is described as in Proposition 3.5.4, and we do so.

Define a; € F* by the condition ¢,_1(f;) = @#&; modulo (wg, ) for all
i € {0,1,...,n — 1}. There exists a framed basis ¢ = (ep—1,€n—2,...,€9) for M

and a framed system of gemerators f = (fn_1,fn_2,...,f0) for Fil" *M such
that Matg,i(FiI"_lM) is given as in Proposition 3.4.3 and

Matg’i(qﬁn_l) = <a17ju[kj_ki]1) € GLE(?)

for some «; ; € So with a; ; = a; mod (u®).
Recrimll that f; = E(u)e; for i € {1,2,...,n — 2} by Proposition 3.5.4. Write
dn—1(f;) = Zf;ol az—,]—u[kﬂ'_kih@i for some @; ; € Sy. Then we get
~ PN
s0(Qi,i) P
for i € {1,2,...,n — 2} since ¢,_1 = pnl_lgi) for the Frobenius ¢ on Dg"’n_l(po), SO
that we have

(mod wg)

n—2

n—2~ )\Z
H a; = H T (mod wg).

i=1

(Note that oo T O} by Corollary 3.5.5.) This completes the proof, by applying
the results i 1n Proposition 3.4.3. O

We now prove Theorem 3.7.3, which is the main result on the Galois side.

Proof of Theorem 3.7.3. — Recall from the identities in (3.7.2) that
(riodo plods L ri00) = o + (1,0 — 2,n = 3,...,1,n/ — 2)

ig O 'ip—1) Jo
where n’ := ig—jo+1. Recall also that pg has a subquotient p;, j, that is a potentially
semi-stable lift of p; o with Hodge-Tate weights {—ig, —(ip — 1),...,—Jjo} and of
Galois type @ ki°%° by Corollary 3.6.4.

i=Jo
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It is immediate that p] . := pi e @7 is another potentially semi-stable
lift of p,;, ;, with Hodge-Tate weights {—(io — jo), —(io — jo — 1),...,0} and of

Galois type @ . """+, We let (Migs Mig—1s---sMjo) € (Og)o~9oF1 (resp.

1=jo

(8igs 0ig—15---:0jy) € (Og)o—Jotl) be the Frobenius eigenvalues on the

i0.d £0.3 i0.3 o
(&kg _O,&kigfg_7._..,ﬁkjg O)—isotypic component of D% "(pig.jo) (resp. on the

10,7 . 10,J . 10,7 . s
@’%3 0“0,@’“1‘3—?“0,...@’%3 0J”O)—isotypic component of Ds‘f““ Jo (0%, j,))- Then
we have

p—jo 5 = ni
for all i € {jo,50 +1,...,i0} and, by Proposition 3.7.4,
i0—J0,0 (= . lig=io)(ig=do=1) 1
FLZS-;Z-ﬁ-l(pio,jo) = H 0; | : b 2 elP (F)
[ i=jo+1 J

But we also have that
pn—l—(io—jo)m — )\Zo,jo

for all ¢ € {jo,jo+1,...,%} by Corollary 3.6.4. Hence, we have §; = p_("_l_i‘)))\z"’jo
for all i € {jo,jo + 1,...,i0} and we conclude that

io—1 -|
i0sd0 (= i0—jo,0 (= i0,j n—1)— 1090 (5 —jo—
FL:LO’JO (po) — FLig—;g-El (pimjo) — H )\io Jo | . p[( 1)—=052](l0—jo—1) | ¢ p! (F).
|_ 1=jo+1
(Note that FL%(5y) = FL2Z%°0, (5, ;,) by Lemma 3.2.6.) O

In the following corollary, we prove that the Weil-Deligne representation WD(pg)
associated to pg still contains Fontaine-Laffaille parameters. As we will see later, we
will transport this information to the automorphic side via local Langlands correspon-
dence.

COROLLARY 3.7.5. — Keep the assumptions and notation of Theorem 3.7.3.
Then pg is, in fact, potentially crystalline and

n—1

WD(po)" ™ = WD(po) = P
=0

where Q; : Q) — E* is defined by ; = UA;O,jO/p,,,_1 ki forallie{0,1,...,n—1}.
Moreover, '

(ig+37o)(ig—jo—1)
2

i0—1 -1
FL,7 (pg) = <H"‘j°+1 % e )> € P'(F).
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Proof. — Notice that ¢ is diagonal on D := Dg” (/?0) with respect to a framed

basis e := (en—1,...,€0) (which satisfies ge; = ok’ (g)e; for all ¢ and for all
g € Gal(K/Q,)) since &% are all distinct. Hence, we have WD(pg) = WD (po)F ~*.
Similarly, since the descent data action on D commutes with the monodromy opera-
tor N, it is immediate that N = 0.

From the definition of WD(po) (cf. [21]), the action of Wq, on D can be described
as follows: let a(g) € Z be determined by § = ¢*9), where ¢ is the arithmetic
Frobenius in Gy, and g is the image under the surjection Wq, — Gal(K/Q,). Then

/\Z:O’j0 e ~ 0570
WD(po)(9) - €i = pzn_l W () e

for all i € {0,1,...,n — 1}. (Recall that Dg”’n_l(po) = fop(po ® e~ (1), 50 that

0:70
the ';"n—,l are the Frobenius eigenvalues of the Frobenius on D.) Write Q; for the
eigen-character with respect to e;.

Recall that we identify the geometric Frobenius with the uniformizers in Q, (by
n—1

our normalization of class field theory), so that Q;(p) = which completes the

p___
20,70
>‘i

proof by applying Theorem 3.7.3. O
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CHAPTER 4

LOCAL AUTOMORPHIC SIDE

In this chapter, we establish several results concerning representation theory
of GL,,, that will be applied to the proof of our main results on mod p local-global
compatibility, Theorem 5.6.3. The main results in this chapter are the non-vanishing
result, Corollary 4.8.3, as well as the intertwining identity in characteristic 0,
Theorem 4.4.23.

We start this chapter by fixing some notation. Let G := GL,,/z, and T' be the maxi-
mal split torus consisting of diagonal matrices. We fix a Borel subgroup B C G consist-
ing of upper-triangular matrices, and let U C B be the maximal unipotent subgroup.
Let @1 denote the set of positive roots with respect to (B, T'), and A = {ag b1<k<n—1
the subset of simple positive roots. Let X(T') and XV (T') denote the abelian group
of characters and cocharacters respectively. We often say a weight for an element
in X(T), and write X (T)4 for the set of dominant weights. The set ®* induces a
partial order on X (T): for A\, u € X(T) we say that A < pif p— A€ ) ot Lo
We will also write A < p if A < pand A # p.

We use the n-tuple of integers A = (dy,ds,...,d,) to denote the character asso-
ciated to the weight ZZ:1 dier of T where for each 1 < i < n ¢; is a weight of T
defined by

diag(scl, T2y ,:L’n) s Z;.
We will often use the following weight
n:=Mm-1n-2,...,1,0).

We let G, B, ... be the base change to F, of G, B, ... respectively. The Weyl
group of GG, denoted by W, has a standard lifting inside G as the group of permutation
matrix, likewise with G. We denote the longest Weyl element by wq which is lifted
to the antidiagonal permutation matrix in G or G. We use the notation s; for the
simple reflection corresponding to a; = €; — €;41 for 1 < i < n — 1. We define the
length ¢(w) of w € W to be its minimal length of decomposition into product of s;
for 1 < ¢ <n-—1. Given A € U(F,), we use A, or equivalently A;; to denote the
(i,7)-entry of A, where o = ¢; — €; is the positive root corresponding to the pair (4, j)
with 1 <i<j<n.
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Given a representation 7 of G(F,), we use the notation 7* for the T'(F)-eigenspace
with the eigencharacter u. Given an algebraic representation V of G or G, we use the
notation V) for the weight space of V' associated to the weight \. For any representa-
tion V of G or G(F,) with coefficient in F, we define

Vg =V ®r, F
to be the extension of coeflicient of V' from F, to F.

Similarly, we write pr for V ®r, F,.

It is easy to observe that we can identify the character group of T'(F,) with
X(T)/(p—1)X(T). The natural action of the Weyl group W on T" and thus on T'(F,)
induces an action of W on the character group X (7T') and X(T')/(p — 1)X(T). We

carefully distinguish the notation between them. We use the notation w (resp. u™)
for the action of W on X(T') (resp. X(T)/(p — 1) X (T)) satisfying

wA(z) = Mw ™ zw) for all z € T
and
p¥(z) = p(wtzw) for all x € T(F,).

As a result, without further comments, the notation wA is a weight but p* is just a
character of T'(F,). There is another dot action of W on X (T') defined by

w-A=wA+n)—nforal A€ X(T) and w € W.

The affine Weyl group W of G is defined as the semi-direct product of W and X (T")
with respect to the natural action of W on X (T'). We denote the image of A € X (T')
in W by ty. Then the dot action of W on X(T) extends to the dot action of W
on X (T) through the following formula

W-A=w-(\+pp)

if w = wt,. We use the notation A T p for \,p € X(T) if A < pand A € W~,u. We
define a specific element of W by

ﬁ;h = U)Ot,n

following Section 4 of [48].

We usually write K for GL,,(Z,) for brevity. We will also often use the following
three open compact subgroups of GL,(Z,): if we let red : GL,(Z,) - GL,(F),) be
the natural mod p reduction map, then

K(1) := Ker(red) C I(1) :=red”"(U(F,)) C I :=red” " (B(F,)) C K.
For each o € @7, there exists a subgroup U, of G such that zu, (t)z~! = u,(a(z)t)
where x € T and u, : G, — U, is an isomorphism sending 1 to 1 in the entry

corresponding to «. For each o € &1, we have the following equalities by [43] IT 1.19
(5) and (6):

(4.0.1) o) =) tm(X3E),

m>0
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where X g{%n is an element in the algebra of distributions on G supported at the origin
1 € G. The equation (4.0.1) is actually just the Taylor expansion with respect to ¢ of
the operation u,(t) at the origin 1. We use the same notation X2!& if G is replaced

by G. "

We define the set of p-restricted weights as

X1(T):={AeX(T)|0< (N aY)y<p—1foralla € A}
and the set of central weights as
Xo(T) :={A e X(T) | (\,a") =0 for all a € A}.
We also define the set of p-regular weights as
X®(T)={eXT)|1<(N\a")<p—2foralacA},
and in particular we have X[°¢(T") C X1 (T'). We say that A € X (T') lies in the lowest
p-restricted alcove if
(4.0.2) 0<(A+n,a")y<pforallacdt.
We define a subset W+ of W as
Wt :={@eW |@- e X(T), for each A in the lowest p-restricted alcove}.

We define another subset W™ of W as
(4.0.3)
wresi={weW |w- e X,(T) for each X in the lowest p-restricted alcove}.

In particular, we have the inclusion
Wres C /Wv+.
For any weight A € X (T), we let
alg

HO(\) = (Ind%wox) -

p

be the associated dual Weyl module. Note by [43], Proposition II 2.6 that H°(X) # 0
if and only if A € X (T)4. Assume that A € X (T4, we write F(\) := socg(H°(A)) for
its irreducible socle as an algebraic representation (cf. [43] part II, Section 2). When
A is running through X;(7T), the F(\) exhaust all the irreducible representations
of G(F,). On the other hand, two weights A, A’ € X;(T') satisfies
F\) =2 F()
as G(Fp)-representation if and only if
A=XN € (p—-1)Xy(D).

If X € X{°®(T), then the structure of F'(\) as a G(F,)-representation depends only
on the image of A in X (7T")/(p — 1) X (T'), namely as a character of T'(F,). Conversely,
given a character p of T'(F,) which lies in the image of

X%(T) — X(T)/(p — 1) X(T),
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its inverse image in X{°®(T') is uniquely determined up to a translation of (p—1) X (7).
In this case, we say that u is p-regular. Whenever it is necessary for us to lift an element
in X(T)/(p—1)X(T) back into X1(T') (or maybe X;°(T')), we will clarify the choice
of the lift.

Consider the standard Bruhat decomposition
G= || BuB= || UywB= || BuwU,,
wew weWw wew

where U, is the unique subgroup of U satisfying BwB = U, wB as schemes over Z,,.
The group U, has a unique form of Ha€¢$ U, for the subset ®} of ®T defined
by ®F = {a € &7, w(a) € —®*}. (If w = 1, we understand [], 4+ Ua to be the
trivial group 1.) We also have the following Bruhat decomposition:
(4.0.4)
G(Fp) = |_| B(F,)wB(F,) = |_| Uw(Fp)wB(Fp) = |_| B(Fp)wUy,-1(Fy).
weWw weWw weW

Given any integer z, recall that we use the notation [z]; to denote the only integer
satisfying 0 < [z]; < p—2and [z]; = x mod (p—1). Given two non-negative integers m
and k with m > k, we use the notation c,, ; for the binomial number #k'),k, We use

the notation e for composition of maps and, in particular, composition of elements in
the group algebra F,[G(F,)].

4.1. Jacobi sums in characteristic p

In this section we establish several fundamental properties of Jacobi sum operators
on mod p principal series representations.

DEFINITION 4.1.1. — A weight A € X(T) is called k-generic for k € Zsq if for
each o € ®1 there exists mqo € Z such that
map+k < (N, av) < (mq+1)p— k.
In particular, the n-tuple of integers (a,_1, ..., a1, ag) is called k-generic in the lowest
alcove if
ai—a;_1 >k V1i<i<n-—landa,_1—ag<p—Ek.

Note that (ap_1,...,a0)—n lies the lowest p-restricted alcove in the sense of (4.0.2)
if (ap—1,-..,a0) is k-generic in the lowest alcove for some k£ > 0. Note also that the
existence of an n-tuple of integers satisfying k-generic in the lowest alcove implies
p>n(k+1)—1.

We use the notation 7 for a principal series representation:

7= TInd G i = {f - G(Fy) — By | f(bg) = p=(0)(g) V(bg) € B(F,) x G(F,)}
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where p, is a mod p character of T'(F,). The action of GL,(F,) on = is given by
(g-f)(g') = f(g'g). We will assume throughout this article that p, is p-regular. By
definition we have

cosocq(r,) (1) = F(ix) and socq(r,)(r) = F(42).
By Bruhat decomposition we can deduce that
dimeﬂ-U(FP)v[":’] =1

for each w € W. We denote by v, a non-zero fixed vector in 7V F»)#~ We also
consider the natural lift 7° of 7 defined as
(4.1.2)

— G(F,)~ ~
= Indy ") fie = {f : G(Fy) = Zy | f(bg) = in(b)f(g) V(b,g) € B(Fy) x G(Fy)}
where [i,; is the Teichmiiller lift of p.

Given w € W with w # 1 and k = (ka),cot € {0,1,...,p — 1}1%u], we define the
Jacobi sum operators

Skw= Y [1 4k | A-weF,GEF,).

A€V (Fp) \acdy
These Jacobi sum operators play a main role on the local automorphic side as a crucial
computation tool. These operators already appeared in [15] for example.

For each o € ®* and each integer m satisfying 0 < m < p — 2, we define the
operator

(4.1.3) Xom = Y P77 Mug(t) € Fy[U(F,)] C Fy[G(F,)].
teF,

The transition matrix between {u(t) |t € F;'} and {Xa,m [0 <m < p—2}isa
Vandermonde matrix

(tk)teF;,lchp—l
which has a non-zero determinant. Hence, we also have a converse formula

p—2
(4.1.4) Ua(t) =— Y  t"Xom forall t € F,.

m=0

By the equation (4.0.1), we note that we have the equality

(4.1.5) am == XoE o1k

k>0

LEMMA 4.1.6. — Fiz w € W and ag = (io,jJo) € D). Given a tuple of integers
k= (ki;) €{0,1,...,p— 120l satisfying

(4.1.7) kiy.j =0 for all (i, j) € ®), with j > jo +1,
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we have
X o SLw= ( 1) +1cka07mSE',w Zf m < kao
ag,m k,w 0 Zf N kao’

where k' = (k) acs, satisfies

/
kOL = .
ko otherwise.

{ koo —m  if a = ap;

Proof. — We prove this lemma by direct computation.

(4.1.8)
YomoSin= Y o (5 (1 4% ) ves
teF, AUy (Fp) aG‘Iﬂt
=) wtm > IT Ak ] (Ao, —t)Fe0 Aw
teF, AUy (Fp) ae@ﬁ],a;ﬁao
SR 0 | P o
A€Uy(Fp) \aedl,aap teF,

where the second equality follows from the change of variable A < uq,(t)A and the
assumption (4.1.7).

Notice that

Eag
DL S S Sl D DIV
teF, teF, j=0
Eag
. ka i 1 .
=D (Wer A | 2T
j=0 teF,
which can be easily seen to be
kog—m .
(4.1.9) (=)™ kg m Ay A m < Kag
0 if m>kq,.

The last computation (4.1.9) follows from the fact that

-1 if p—1|£and{#0.

teF,

Applying (4.1.9) back to (4.1.8) gives us the result. O
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LEMMA 4.1.10. — Fiz w € W and oy = (io,Jo) € ®F. Given a tuple of integers
k= (ki;)e€{0,1,...,p— 1}|‘I’$| satisfying
kiy.; = 0 for all (io, ) € ®F, with j > jo,
we have
U (t) o Sk,w = SE,uw

Proof. — By Lemma 4.1.6 we deduce that

—Sﬁ,w if m=0

Xao,m'Sk,wz .
- 0 if 1<m<p-2.

Therefore we conclude this lemma from (4.1.4). O

By the definition of principal series representations, we have the decomposition
(4.1.11) =P m
weWw
where 7, C g F consists of the functions supported on a non-empty subset of the
p

Bruhat cell

)
B(Fp)w_lB(Fp) = B(Fp)w_lUw(Fp)'

PROPOSITION 4.1.12. — Fiz a non-zero vector v, € vV Fr)itix  For each w € W with
w # 1, the set

(4.1.13) {Sﬁ,wvﬂ' | k= (ko) geor €{0,1,...,p— 1}|‘I’$|}

forms a T'(F)p)-eigenbasis of m,.

Proof. — We have a decomposition 7, = @ AU, (F,) Tw,A where 7, 4 is the subspace
of m,, consisting of functions supported on B(F,)w™!A~1. It is easy to observe by the
definition of parabolic induction that dimg, 7, 4 = 1 and 7, 4 is generated by Awv,.

We claim that, for a fixed w € W, the set of vectors (4.1.13) can be linearly
represented by the set of vectors {Awv,, A € U,(F,)} through the matrix (my,4)
where

k= (ko) aept €{0,1,...,p— 1%l AcU,(F,)

and my, 4 =[], cq+ AFe. Note that this matrix is the |®]|-times tensor of the Van-
dermonde matrix

()‘k),\eF,,,ogkgp—1 J

and therefore has a non-zero determinant. As a result, the matrix (mE, A) is invertible
and {Sk,wvr |0 <ky <p—1 Va € ®}} forms a basis of 7.
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The fact that this is a T'(F,)-eigenbasis is immediate by the following calculation:
if we let x = diag(z1,x2,...,%yn)

T O Sk = T® Z H Aljﬁ Aw | v,

AU, (Fp) a€<1>$

Z H AfJJ zAz "' w ('w_lxw) Ur

A€Uw (Fp) \(4,5)€;

> I[I Bz | Bw| (w'aw) v

B=zAz~1€Uy(Fp) \(4,j)cd?

o (W™ L zw) H (zjz;t)kis Z H AR A w | v,

(i,§)€®E A€U (Fp) acdy
= (7 A)(@)Sk,wvr,
where A(z) =[], ;<. (2z;7; THkii and B;; = A; JTiT; “lfor1<i<j<n. O

We can further describe the action of T'(F,) on Sk ,vr. By |y] for y € R we mean
the floor function of y, i.e., the biggest integer less than or equal to y.

LEMMA 4.1.14. — Let pr = (d1,da, .. .,dn-1,dy). If we write (41,82 ,£,_1,£y) for
the T'(Fp)-eigencharacter of Sk v, then we have

by = dy-1(r) + Z kir— Z kr; (mod p—1)
1<i<r r<j<n

for all1 <r < n, where k; ; = ko if a € D}, and (i, ) corresponds to o, and k; j =0
otherwise.
In particular,

(i) if ko =0 for any a € ®F \ A, then for all1 <r<n
by =dy—1(ry + (1= [1/r))hr—1r — (L= [1/(n+1—7))krry1 (mod p—1);
(i) if w=wo and k; ; =0 for any 2 < i < j < n, then

{ dp =35 ok (modp—1) ifr=1;

I
dnt1—r + k1, (modp—-1) if2<r<n.

Proof. — The first part of the lemma is a direct calculation as shown at the end of the
proof of Proposition 4.1.12. The second part follows trivially from the first part. [
Given any w € W, we write Sy, for Sk, with k, = 0 for all a € ®}.

LEMMA 4.1.15. — We have

F,[So,wvx] = 7Y (Fp)my
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Proof. — Pick an arbitrary positive root a. If « € ®} then we have (since
ua(t) € Uu(Fp))

w) | Y, Al=| > A4

AeUy, (Fp) AeU, (Fp)

and therefore uq(t)So,wVr = S0~ for any t € F,,. On the other hand, if a ¢ @,
then

U (t) Yo A= S A uL)

AeU, (Fp) AeU,, (Fp)
and

ul, (H)wo, = wull () v, = wog,
where u/ (t) € Ha¢<1>$ U, (F,) and v/ (t) € U(F,) are elements depending on =, w
and a. Hence, uq(t)So,uvr = So,wvr for any t € F), and any a € ®*. So we conclude
that Sp,vx is U(Fp)-invariant as {Ua(t)}a€q>+’t€Fp generate U(F,).

Finally, we check that - Sg wvx = p¥ (2)S0,wvx for x € T(F,). But this is imme-
diate from the following two easy computations:

ze| Y Al=| Y A|ezcF,G(F,)

AU, (Fp) AEU, (F,)
and
zwur = w (W aw) ve = wpr (W TW)VE = P (T) WV
This completes the proof. O

Note that Proposition 4.1.12, Lemma 4.1.14, and Lemma 4.1.15 are very elementary
and have essentially appeared in [15]. In this article, we formulate them and give quick
proofs of them for the convenience.

DEFINITION 4.1.16. — Given a,a’ € ®T, we say that « is strongly smaller than o
with the notation

a=<a

if there exist 1 < i < j <k <n — 1 such that

J k
o= Zar and o = Zar.
A subset ® of ®7 is said to be good if it satisfies the following:

(i) f a,0’ € ® and o+ o’ € | then o + o’ € ¥';
(ii) if « € ® and a <o/, then o/ € ¥'.
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We associate a subgroup of U to @' by
(4.1.17) Ugp := (Uy | @ € D)
and denote its reduction mod p by Ug:. We define U; to be the subgroup scheme of U
generated by U,, for 2 <r <n — 1, and denote its reduction mod p by Uj;.

EXAMPLE 4.1.18. — The following are two examples of good subsets of ®*, that will
be important for us:

i j
{Zar|1§i<j§n—1} and {Zangigg’gn—l}.

The subgroups of U associated with the two good subsets via (4.1.17) are [U, U] and
U, respectively.

We recall that we have defined m,, C 7 in (4.1.11) for each w € W.

=

PROPOSITION 4.1.19. — Let & C ®% be good. Pick an element w € W with w # 1.
The following set of vectors

(4.1.20) {SMU,, |k = (ka)acos € 40,1, ,p— 1Y% with k, = 0 Vo € &' <1>;}

forms a basis of the subspace Wg‘l"(F") of Ty.

Proof. — By Proposition 4.1.12, the set of vectors (4.1.13) forms a T'(F,)-eigenbasis
of m,. Hence we fix a Ug/(F,)-invariant vector v in 7, and can write it as a unique
linear combination of vectors of the form Sy, ., vx, namely

v= Z Ck,wSk,wvr for some Cy o, € Fy.
ke{0,...,p—1}1e5
We define
Supp(v)a = {k = (ko) 4eqt | Crw # 0 and ko > 0}
for each o € @, and then consider
D, 50 = {a € &' N | Supp(v)a # 2}

We have a natural partial order on ®, , ., induced from the partial order < on ®*.
Assume that

(4.1.21) O, 0 F D

which means that Supp(v), # @ for some a € ® N @}, and thus we can choose one
maximal element ag € ®;, , - With respect to the order <. We may write v as

(4.1.22) v = Z Cr,wSkwVn + Z Cr,wSkwln-
k€{0,....p—1} %] k€{0,...,p—1}1 7!
koo =0 Eag >0
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By the maximality assumption on «g we know that if Cj ., # 0 and ag <, then
ko = 0. As a result, we deduce from Lemma 4.1.10 that

(4.1.23) U@ Y. ChuwSuwve = > CruwSkwvr
k€{0,....p—1} %! k€{0,....p—1} %!
ag = ag ™

for all t € F.
We define
o200t .= {a e ®f | ap<a} and 020 := o\ o2t
and we use the notation
= (o) yeqoo~ €{0,-,p - 1
for a tuple of integers indexed by ®$°~. Given a tuple ¢, we can define

ko =0 ifa€®t\{a};
AL, ) = { k= (ka)uegs € 10,...,p = 1}1%1 | k>0 ifa=ap;
ko =4y if a € ®0"

Now we can define a polynomial

fean(@ = D Cruz™o e Fyla]

keA(¢,ao)

for each tuple of integers £. By the maximality assumption on g and the notation
introduced above, we have

Z CE’wSE,w’Uﬂ- = Z Z H Ag‘" f(ﬁ,ao)(Aao)A WU .

EE{O,.A.7P—1}|¢$| ge{o’.”’pil}\cpio’*‘ Aer(Fp) ae@i(}ﬂ*
>0

@0

By the assumption on v we know that u,,(t)v = v for all ¢t € F,. Using (4.1.23) and
(4.1.22) we have

Uay (1) > ChywSk,wVn = > Cr,wSk,wln
k€{0,....p—1}1%%! k€{0,....p—1}!%%!
kag >0 kag >0
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and so

> > T A% fiean (Aag)A | wos

EE{O,--.,p—l}“PZO'_I AeUy (Fp) a€do0 ™
= Uao () Y > I A% | fieao)(Aan)A | won
£6{0,...,p—1}1250 71 \AEVw(Fp) \aealo ™
= Z Z H Aia f(ﬁyolo)(AOéo_t)A WU,
£6{07,,,yp_1}\<1>501—‘ A€U,(Fp) \aecd0~

where the last equality follows from a change of variable A < u,,(t)A.
By the linear independence of Jacobi sums from Proposition 4.1.12; we deduce an
equality

Z H ALy ftt,a0)(Aay)A | wour

A€U, (Fp) aedL0

= Z H Al | floae) (Aag —t)A | wor

AeU, (Fp) aed0 T

for each fixed tuple £.
Therefore, again by the linear independence of Jacobi sum operators in Proposi-
tion 4.1.12 we deduce that

f(ﬁ,ao)(Aao - t) = f(ﬁ,ao)(AOéo)
for each ¢t € F,, and each (£, ap). We know that if f € F,[z] satisfies degf < p — 1,
f(0) =0 and f(x —t) = f(z) for each t € F), then f = 0. Thus we deduce that

ft,a0) =0

for each tuple of integers £, which is a contradiction to (4.1.21) and so we have k, =0
for any a € ®' N @ for each tuple of integers k such that Cj ., # 0.

As a result, we have shown that each vector in wgq"(F”) can be written as certain
linear combination of vectors in (4.1.20). On the other hand, by Proposition 4.1.12
we know that vectors in (4.1.20) are linear independent, and therefore they actually
form a basis of Wg“"(F”). O
COROLLARY 4.1.24. — Let i = (d1, ... ,dy) and fix a non-zero vector v, € 7UEp)spin
Given a weight = (€1,...,4,) € X1(T) the space

WQ[U[{](F”)’U(F”)]’”
has a basis whose elements are of the form

SE,wo Urs
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where k = (k) satisfies
b =dpy1—r + (1= |1/rDkr—1r — (1= |1/ (n+1—7)])kr 41 mod (p— 1)
forall1<r<mnandk, =0 ifac dT\A.

Proof. — By a special case of Prop. 4.1.19 when @' = {Zi:l ar |1<i<j<n—1},
we know that
{Skuwovr | ka =0if a € T\ A}

forms a basis of WQ[D[{J(F")’U(F”)]. On the other hand, we know from Proposition 4.1.12

that the above basis is actually an T'(F)-eigenbasis. Therefore the vectors in this
basis with a fixed eigencharacter p form a basis of the eigensubspace WL,[{)(F”)’U(FP)]’“ .

Finally, using (i) of the second part of Lemma 4.1.14 we conclude this lemma. O

COROLLARY 4.1.25. — Let p, = (di,ds,...,d,) and fix a non-zero wvector
vr € TVED b Qiven a weight p = (b1, ...,4,) € X1(T), the space

Wgé(F”)’”
has a basis whose elements are of the form
SkwoUn
where k = (k; j)i,; satisfies
ki;=4¢; —dpt1—; mod (p—1)
for2<j<nandk;; =0 forall2<i<j<n.

Proof. — By a special case of Prop. 4.1.19 when &' = {Zi:z ar|2<i<j<n—1)},
we know that
{Skwovr | kij=0if2<i<j<n}

forms a basis of wZ;(FP). On the other hand, we know from Proposition 4.1.12 that the
above basis is actually an T'(F))-eigenbasis. Therefore the vectors in this basis with a

fixed eigencharacter u form a basis of the eigensubspace WZ;(FP’ #*. Finally, using (ii)
of the second part of Lemma 4.1.14 we conclude this lemma. O

4.2. Summary of results on Deligne-Lusztig representations

In this section, we recall some standard facts on Deligne-Lusztig representations
and fix the notation that will be used throughout this paper. We closely follow [38].
Throughout this article we will only focus the group G(F,) = GL,(F,), which is
the fixed point set of the standard (p-power) Frobenius F inside GL,,(F,). We will
identify a variety over F,, with the set of its F,-rational points for simplicity. Then
our fixed maximal torus T is F-stable and split.

To each pair (T, #) consisting of an F-stable maximal torus T and a homomorphism
6:TF - 6: , Deligne-Lusztig [23] associate a virtual representation R% of GL,,(F,).
(We restrict ourself to GL,,(F) although the result in [23] is much more general.) On
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the other hand, given a pair (w, u) € W x X(T'), one can construct a pair (Ty,, 8.,,.) by
the method in the third paragraph of [38], Section 4.1. Then we denote by R,,(x) the
representation corresponding to R%:'“ after multiplying a sign. This is the so-called
Jantzen parametrization in [41] 3.1.

The representations R% (resp. R, (1)) can be isomorphic for different pairs (T, 6)
(resp. (w, 1)), and the explicit relation between is summarized in [38], Lemma 4.2. As
each p-regular character p € X(T')/(p — 1)X(T) of T(F,) can be lift to an element
in X{°®(T) which is unique up to (p — 1)Xo(7T'), the representation R, (p) is well
defined for each w € W and such a pu.

We recall the notation ©(f) for a cuspidal representation for GL, (F,) from [37],
Section 2.1 where 6 is a primitive character of F . defined in [38], Section 4.2. We
refer further discussion about the basic properties and references of ©(0) to [37],
Section 2.1. The relation between the notation R, (x) and the notation ©(0) is sum-
marized in [38], Lemma 4.7. In this paper, we will use the notation ©,,(6,,) for a
cuspidal representation for GL,,(F,) where 6,, is a primitive character of F;;m.

We emphasize that, as a special case of [38], Lemma 4.7, we have the natural
isomorphism

~ G(F,)~
Ry(n) = Indg )

for a p-regular character u of T'(F)), where f is the Teichmiiller lift of p.

4.3. A multiplicity one theorem

The main target of this section is to prove Corollary 4.3.9, which immediately
implies our main multiplicity one theorem, Theorem 4.8.2. In fact, Theorem 4.8.2 is
a special case of Corollary 4.3.9.

We recall some notation from [43]. We use the notation G, for the r-th Frobenius
kernel defined in [43] Chapter I 9 as kernel of r-th iteration of Frobenius morphism

on the group scheme G over F,. We will consider the subgroup scheme G, T, G,B,

G,B of G in the following. Note that our B (resp. B ) is denoted by BT (resp. B)
in [43] Chapter IT 9. We define

Z/(A) = ind%P )
Z, A) == coind%rﬁ)\,

where ind and coind are defined in I 3.3 and I 8.20 of [43] respectively. By [43]
Proposition II 9.6 we know that there exists a simple G, T-module L,.(\) satisfying

socg, (Z\;()\)) ~ T, (\) cosocg (Z\T()\)) .

The properties of Z/(\) and Z,()\) are systematically summarized in [43] II 9, and
therefore we will frequently refer to results over there.
From now on we assume r = 1 in this section.
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Now we recall several well-known results from [41], [42] and [43]. We recall the
definition of W™ from (4.0.3).

THEOREM 4.3.1 ([41], Satz 4.3). — Assume that p + n is in the lowest p-restricted
alcove and 2n-generic (Definition 4.1.1). Then we have

Ru(u+m = > [Ziu—pv+pn): L@ - w]F@ - (4 +wv)).

,&-}/e’vf;res
veX(T)

PROPOSITION 4.3.2 ([43], Corollary 11 6.24). — Let A € X (T)4+. Suppose p € X(T) is
mazimal for p T X and p# X. If p € X(T)y and if u # X — pa for all o € T, then

[H() : F(u)] = 1.

If M is an arbitrary G-module, we use the notation M for the Frobenius twist
of M as defined in [43], I 9.10.

PROPOSITION 4.3.3 ([43], Proposition IT 9.14). — Let A € X(T),. Suppose each com-
position factor of Z{(X\) has the form Li(uo + pu1) with po € X1(T) and pq1 € X(T)
such that

</J’1 + m, ﬂV> Z 0
for all B € A. Then H()\) has a filtration with factors of the form F(uo)® HO (1)1,
Each such module occurs as often as Li(uo + pu1) occurs in a composition series
of Z1(N).

REMARK 4.3.4. — Note that if g is in the lowest p-restricted alcove, then
F(uo) ® H°(uy)™M = F(u) by Steinberg tensor product theorem.

LEMMA 4.3.5 ([43], Lemma I19.18 (a)). — Let L1 (1) be a composition factor of 2{ (M),
and write

A4+ n=pA\ + X and p = pu1 + o
with )\0,/1,0 € Xl(T) and )\1,[1,1 S X(T)
If
(4.3.6) NaYy>n—2
for all a € T, then
(w1 +m,87) >0
for all B € ®F.

Proof. — We only need to mention that h, = n for all a € ®* and for our group
G = GL,,/F,, where h, is defined in [43], Lemma IT 9.18. O

We define an element sq ,,, € W by
Sa,m A= Sq - A+ mpa

for each « € & and m € Z.
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THEOREM 4.3.7. — Let A\, p € X(T) such that
(4.3.8) p=5Sam A and mp < (A+n,a") < (m+1)p.

Assume further that there exists v € X(T') such that A\ + pv satisfies the condition
(4.3.6) and that v and pq + v are in the lowest p-restricted alcove.
Then we have

[Zi(A) : Ly ()] = 1.

Proof. — The condition (4.3.8) ensures that for any fixed v € X(T'), p+ pv is maximal
for u+prv T A+ prv and p + pr # A + pr. Notice that we have

[Z1(A) = Ly ()] = [Z1(N) = L ()]
by II 9.2(3) in [43], as the character of a G, T-module determine its Jordan-Holder
factors with multiplicities (or equivalently, determine the semisimplification of the
G, T-module).
By II 9.2(5) and II 9.6(6) in [43] we have
21N : L) = [Z1(N) @ pv = Li(p) @ pr] = [Z{(A+ pv) : L(u+ pv)),
and thus we may assume that
A aYy>n—2
for all @« € ®* by choosing appropriate v (which exists by our assumption) and
replacing A by A + pv and p by p + pr. Then by Lemma 4.3.5 we know that

(Wi +n,8")y>0

for any p' = puj + pg such that L (i) is a factor of Z!(\).
Thus by Proposition 4.3.3, Proposition 4.3.2 and Remark 4.3.4 we know that

[Z{(N) : Ly (w)] = [H°(A) : Flpo) @ HO(u)M] = [HO(N) : F(p)] = 1,
which finishes the proof. O

We pick an arbitrary principal series 7 and write

e = (dy,...,dy).
For each pair of integers (i1, j1) satisfying 0 < i1 <41 + 1 < j; < n — 1, we define
P = (AL ),
where
dp if k#mn—j; and k #n — iy
A7 = dyi +ji—iy— 1 ifk=n—ig;
dnojy —j1+i1+1 ifk=n—j.
COROLLARY 4.3.9. — Assume that p, is 2n-generic in the lowest alcove (cf. Defini-
tion 4.1.1). Then F(ui»91) has multiplicity one in 7, or equivalently in Indggzgul‘r’
for any w e W.
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Proof. — We notice at first that each Indggz;

as m with the same multiplicity as each of them is a mod p reduction of certain
lattice of the same characteristic 0 representation of G(F,). We are going to apply
Theorem 4.3.7 and Theorem 4.3.1 to determine the multiplicity of F(ui11) in . We
use the shortened notation

u? has the same Jordan-Hélder factor

’I’L—].—il

Qi 51 = E Q.

r=n—ji
We choose w = 1 in Theorem 4.3.1 and take
= e = pg 7+ (1 — i = D,y
We would like to consider the multiplicity of F(ui+1) in m = Ry(u + n). We will

follow the notation of Theorem 4.3.1 except that we will replace the notation v in
Theorem 4.3.1 with the notation vg. We take @’ :=1 € W' as well as

vo :==n— (j1 — i1 — Doy, 5,
and then note that
Pt = p 4 vp.
We deduce from II 9.16 (5) in [43] the following equality

(4.3.10) [Z1 ((u+n—pro) + (p — 1)n) : Ly ()]
=[Z1 ((n — g1, — i) (4 +n — pro) + (p — 1)n) = L1 ().
We set
A= (n—ji,n—i)(p+n—pro)+(p—1)n
and observe that
(43.11) A= (n—ji,n—1i1)- (a0 —pro) +pn
=Mm—jun—di1) - p+pMm—(n—7ji,n—i)n— (i —i1— Day, 5,)
= (n—j1,n—1i1) - p+pay, ;-
Therefore we have
P <Ay ) <2p
and that
K= Sa,, ;0" A
Moreover, it is easy to see that
Ad+pn=(n—ji,n—i1) - p+pa,  +pn
satisfies (4.3.6).
We take v := X and then apply Theorem 4.3.7, (4.3.10) as well as the obvious
equality
(b —pro) +pn = (n+n—pro) + (p—1)n
and conclude that

~ ~ ~

[Z1 (= pvo) + ) : Li(w)] = [Z:(N) : La(w)] = 1,
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which implies that F(ué7') = F(u + 19) has multiplicity one in Ri(u+mn) =

Indggzguﬁ by Theorem 4.3.1. O

4.4. Jacobi sums in characteristic 0

In this section, we establish an intertwining identity for lifts of Jacobi sums in
characteristic 0 in Theorem 4.4.23, which is one of the main ingredients of the proof
of Theorem 5.6.3. All of our calculations here are in the setting of G(Q,) = GL,(Q)).
We first fix some notation.

Let A € G(F,). By [A] we mean the matrix in G(Q,) whose entries are the
classical Teichmiiller lifts of the entries of A. The map A — [A] is obviously not a
group homomorphism but only a map between sets. On the other hand, we use the
notation g for the Teichmiiller lift of a character p of T'(F)).

We denote the standard lifts of simple reflections in G(Q,) by

Idi—1

Idn—i—l

for 1 <i<mn—1. We also use the following notation

pld;
t; =
Idn—i
for 1 <7 <n. Let

(4.4.1) o= wty,

where w* := s,_1 ®--- @ s7. We recall the Iwahori subgroup I and the pro-p Iwahori
subgroup I(1) from the beginning of Chapter 4. Note that the operator =, and the
group I actually generate the normalizer of I inside G(Q,). One easily sees that =, is
nothing else than the following matrix:

010 --000
00 1
000

Ep=1: ¢+ o0 T eG(Qy).
00 - 010
00 - 00
p 00 --- 00 0

For each 1 < i < m — 1, we consider the maximal parabolic subgroup P, of G
containing lower-triangular Borel subgroup B~ such that its Levi subgroup can be
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chosen to be GL; x GL,,_; which embeds into G in the standard way. We denote the
unipotent radical of P,” by N, . Then we introduce
(4.4.2) Ui= Y t;'[Alforeach1<i<n-—1.

AEN] (Fp)

Note that each A € N, has the form

Id; O(n—s)xs
*ix(nfi) Idn—z
foreach 1 <i<n-—1.

For each w € W and each tuple k = (ko) cqpr € {0,...,p — 1}"%', we consider
the following Jacobi sum

Sewi=| Y. | T T4a1* | TA] | w € Z,1G(2,)).

A€U, (Fp) a€¢>$

In particular, we consider

So=| X M1|wezlc@),

A€U, (Fp)

which is a characteristic 0 lift of Sp .
Recall the notation 7° from (4.1.2).

LEMMA 4.4.3. — Assume that . is n-generic (Definition 4.1.1). We have the equality

L(w)+e(w)—L(ww’) ~
2

g’w o S‘\w’ =D ww’
on (7)) for all w,w’ € W.

Proof. — One can quickly reduce the general case to the following two elementary
equalities on (7°)/(1):

(4.4.4) Sy Sy = Sy if L(ww') = £(w) + £(w')
and
(4.4.5) S'\sr ° gsr =pforalll<r<mn-—1.

The equality (4.4.4) follows directly from the definition of the Jacobi sum operators.
The equality (4.4.5) follows from a simple Bruhat decomposition. In fact, we have for
each t # 0

Sptte, (1)8y = Uq, (t7H)spdiag(l, ..., 1,6, —t 711, Dug, (t71),

where the diagonal matrix has t at (r,7)-entry and —t~1 at (r + 1,7 + 1)-entry.
Therefore for each v € (%°)I(1) there exists an integer n < ¢ < p — n such that

diag(1,...,1,t, -t~ 1,...,1)0 = £[t]*
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and thus
S\ST ° §Srﬁ: Z Uq, () v+ Z Tug, (t71)]s,0
t'eF,, teF,
=po+ > [ ta, ( +t7)]s, | D
t/€F, teF,
= pu.
This finishes the proof. O

LEMMA 4.4.6. — We have the equality
(En)* o UF = (e .
Proof. — This is immediate by definition. O
We quickly recall some standard facts about Jacobi sums and Gauss sums. We fix

a primitive p-th root of unity £ € E and set € := £ — 1. For each pair of integers (a, b)
with 0 < a,b < p—1, we set
= > -

AEF,

We also set

Gla) = ) [A]°€*

AEF,
for each integers a with 0 < a < p — 1. For example, we have G(p — 1) = —1.
It is known by section 1.1, GS3 of [44] that if a + b % 0 mod (p — 1), we have

G(a)G(b)
J(a,b) = ——=.
(a,5) G(a+b)
It is also obvious from the definition that if a,b,a + b # 0 mod (p — 1) then
J(b,a) = J(a,b) = (=1)2J(b,[—a — b]1) = (=1)*J(a, [—a — b];).
By Stickelberger’s theorem ([44], Section 1.2, Theorem 2.1), we know that

a and G(a)
p—1 ep—1-a

(4.4.7) ord,(G(a)) =1— =a! (mod p).

Let r € Z with 1 <r <n—1and w € W. Given the data pu, = (d1,da,...,d,)
and tuple k € {0,...,p — 1}1%%], we define a tuple
e {0,...,p— 1%l if g(ws,) < L(w);
= 0,...,p— 1} %0l if o(ws,) > £(w)
by
o[ ke ifaca;
0 ifa=wa,

MEMOIRES DE LA SMF 173



4.4. JACOBI SUMS IN CHARACTERISTIC 0

in the first case and

K = [kwar —d, + dr+1]1 ifa= Wy
: ko if o € &% and a # wa,

in the second case.

PROPOSITION 4.4.8. — Assume that p, = (d1,ds,...,d,) is n-generic and that
ko =0 forall a € <I>$ with wa, < a.

Assume further that if £(ws,) < £(w) then kyo, € {0, p—1, [dr — dry1]1}-

Then for each 1 < r < n —1 we have

~

o Skt s if L(ws,) > L(w);
Sk,w ® Ssr = s - .
- (=141 T (kwa,, [drs1 — d]1)Spw  if L(ws,) < £(w)

on (%0)1(1),%‘

Proof. — By definition we have

StweS, = > [T T4a1* | TATw[ua, ()]s,

A€U(Fp),teF, \acdd
We divide it into two cases:
(i) Lwsr) > L(w);
(i) £(ws,) < L(w).
In case (i), we have the Bruhat decomposition
Awug, ()8, = Ay, (£)ws,
and thus
S\E,w ® gsr = g&’,wsr'
In case (ii), we have the Bruhat decompositions: if t = 0

Awug, (0)57‘ = A(wsr) = A/lwsruar (Awozr)a

83

where A” is the unipotent matrix that has the same entries as A except a zero

at wa-entry;
ift#0

Awng, ()8, = Atye, (t"Hwdiag(l, ..., t, =t .. Dug, (t71).
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We fix a vector v, € (7°)!()F= whose mod p reduction is non-zero. Therefore, we
have

g&,w . gsri)} = (—1)4+ Z H [Ag]Fe | [E]9 =1 [ Al e, (t 1wy

A€U,, (Fp),teFS \acdy

+ Z H [Aa]ka [Alws, Uy

AeUy (Fp) Oé€®$

The summation }_ ¢y, (F,) (Hae@$ [Aa]ka) Aws, U, can be rewritten as

> I r4.1% > [Aua "o | Aws, Ty

A"€Uys, (Fp) ae@ﬁsr Awa,€EFp

which is 0 as we assume 0 < ko, < p — 1. Hence, we have

Skwy ® Ss, U = (—1)dr+2 > IT TAa1®e | [E1% =4 [Auga, (t) W

ACU, (Fp) t€F)Y \acdl

On the other hand, after setting A’ = Auyq, (t71) we have

(4.4.9) > IT r4a1® | 14 =4 [Auga, () s

A€U, (Fp) teF)X \acdf

= > I TAa1™ | [(Ala, — ) Fwor [E] 44+ [A T,

A’€U, (Fp) teFy \a€dl,,

since k, = 0 for all wa, < a.
One can easily check that if A7, =0 then

3 [( A, = 7] vmr [ = (e 37 [ R < o,

teFy teF,

and if A7, # 0 then
S (g, ] [

teFy
= [Al,q [Fwer =@t LN (1= (AL, 1)) or [(Alg, £) 1)+ 7]
teF,
= J(kwa,, [dr+1 — dr]l)(A;Uar][kwaﬁd#wdr]l'
Combining these computations with (4.4.9) finishes the proof. O
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REMARK 4.4.10. — Proposition 4.4.8 is the technical heart of this section. It roughly
says that [U(F,), U(Fp)]-invariant vectors behave well under intertwining of principal
series, which is essentially why the identities in Theorem 4.4.23 and Proposition 5.5.1
exist. On the other hand, it is crucial that the vector U, is invariant under [ug, (¢)]
for t € F,.

From now on we fix an n-tuple of integers (an—1,...,ao) which is assumed to be
n-generic in the lowest alcove (cf. Definition 4.1.1). We let

,U'* = (a'n—l —-—n+ 270’11—2’ Gp—3,-..,02,01,00 + 1 — 2)7
H1 = (a17 ag,...,0n-3,An—2,0n-1, aO);
/A .
Hy = (an—17 a0, a1,02,...,0n_3, an—2)7
Ho = (an—la a;,az - ,0p-3,0n—-2, aO)
and
G(Fp)
my 1= IndB(FP),uO;
(4.4.11) B(Fs)
o = Ind 7, .7
0 - B(F,)H0>

where Jig is the Teichmiiller lift of pg. Then we recursively define sequences of elements
in the Weyl group W by
w1 =1, Wy = Sp—mWm—1;
wy =1, w, = spw,_4

for all 2 < m < n — 1, where s, are the reflection of the simple roots «,,. We define
the sequences of characters of T'(F,)

fm o= py™ and g, = ()"
for all 1 < m <n — 1. In particular, we have p,—1 = po = pl,_4.
We let k' = (k;), k"' = (k;}) and k° = (k?), where

kiivn = lao—an—ili +n—2
(4412) kz‘17’i,+1 = [an—i—l - an—l]l +n—2;
kﬁiH = [ap— an_1]1 +n—2

for 1<i<n-—1and kllj = kzlj' = kgj = 0 otherwise.

We also define several families of Jacobi sums:
S\Em,wo and S\&m”,wo
for all integers m with 1 < m < n — 1, where k™ = (k:”j) satisfies
n—2+[ay—an—1)1 fl<i=j5—-1<m;
Eh=q n—2+[a—an_il1 ifm+1<i=j—-1<n-1
0 otherwise

SOCIETE MATHEMATIQUE DE FRANCE 2022



86 CHAPTER 4. LOCAL AUTOMORPHIC SIDE

and k™' = (k]"}) satisfies

n_2+[an—i—1_an—1]1 ifl<i=j—-1<n-m-1;
k%/: n—2+[ag — an—1)1 ifn—-m<i=j—-1<n-1;

0 otherwise.

We keep the notation in (4.4.11) and recall that k° is defined in (4.4.12) and satisfies
(4.4.13) B =ft =Y
We also define
(4.4.14)
1) n=2,  n_9
Kn ™ 1= (_1) m=17m Hm=1 J(n -2+ [a'O - an—m—l]h [an—m—l - an—l]l)?
k2 = (—1)(n=2)ao H;‘;jl J(n—2+4 [am — an—1]1, a0 — am]1)-
PROPOSITION 4.4.15. — Assume that (an—1,...,a0) is n-generic.
Then we have

Sﬁl,wo [ ] Sw—ll = ngl)sﬁo,wo and SEI',,U)

n—

o Swp,_-r = wD S0

0 »Wo

on the 1-dimensional space (75)T(1)-Fo,

Proof. — By the case w = wy of Proposition 4.4.8 and the fact that

N
kmiimie =n—2+[ao — an_m-1]1 and k;"_m_l’n_m =n—2+[am — an-1)1

we have

SET"JUU oS

Sn—m—1

= (_l)an77n71J(n -2+ [ao - a'n—m—l]la [an—m—l - an—l]l)gkm*'l,wo
and
3&’"”@0 o §Sm+1 = (—1)“0J(n -2 + [am — an_l]l, [ao - am]1)§Em+1,/’w0

on the 1-dimensional space (m§)! (W:Fo for all 1 < m < m — 2. Using the equality
(4.4.13) together with Lemma 4.4.3 one can write

~ ~

:s\,w—l = ‘§Sn72 ®:---0 §517 and §(w;1_1)—1 = 852 ®---0 Ss

n—1 n—1

Hence, we finish the proof by induction on m. U

LEMMA 4.4.16. — We have
6%1) (=1) n=2 g (Hn—2 (n_2+[a0—an,m,1]1)1([an,m,1—an,l]l)!) (mod p);

m=1 (n—2+[ao—an—1]1)!
n— — Am —0n— ! —aml1)!
k@ = (—1)(n=2)a0 (Hmﬁl (n 2+([n _2;1[&01_1;1 f[fﬁy ]1)) (mod p).

In particular,
ord, (kM) = ord, (@) = 0.

Proof. — This follows directly from (4.4.7), the definition of Ii;l), /@22), and the fact
that (an—1,...,aq) is n-generic. O
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COROLLARY 4.4.17. — Assume that (an—1,...,a0) is n-generic.

Then we have

gkl,wo = p"—%g”‘?&o,wo ) gwnq and §E1,/’w0 = p”‘%ﬁf)g‘&o,wo . gw/n_l
on the 1-dimensional space (75)T(1)-Fo,
Proof. — It follows from Lemma 4.4.3 that
Suzt, ®Swas =" =8y 08wy,
so that this follows from Proposition 4.4.15 and Lemma 4.4.3. O

We define two important Jacobi sum operators (in characteristic p) S, and S;, to
be

(4.4.18) Sn = Skt and Sy, = S -
COROLLARY 4.4.19. — We have the equality
S, (W(I)J(Fp) ) s ( Fp), ul) = 540,00 (Wo (Fp), Mo) )
Proof. — It follows from Lemma 4.1.15 that
St (Wéf(Fp)wo) = alEpm and So.(uw, )1 (W(T)J(Fp),uo) _ W(T)J(Fp)»ui'

Hence we finish the proof by the reduction modulo p of identities in Proposition 4.4.15
and the fact that the reduction modulo p of S, is Sy ., for each w € W. O

As in (4.4.18), we use the shortened notation
An = S\El,wu and S\;L = S\El,/’w()

and note that S,, (resp. S/,) is the reduction modulo p of S, (resp. 3\;)
To state the main result in this chapter, we also define

n—2n—3

— - A — Ap— 11+] ag — Qp— 1+.7 X
4.4.20 P = —_— eZ”,
( ) " kl;[l;[ [ao — ak]1 +J kl_[ljl_[(] ap —ak +J P

n—2

(4.4.21) e = H )eo—am,

and

(4.4.22) bom = KD (K) 7L

The main result of this chapter is the following theorem, which is a generalization
of the case n = 3 in [39], (3.2.1).

SOCIETE MATHEMATIQUE DE FRANCE 2022



88 CHAPTER 4. LOCAL AUTOMORPHIC SIDE

THEOREM 4.4.23. — Let

G(Qp
II, = IndBEgng

be a tamely ramified principal series representation where the x = X1 ® ++- ® Xn :
T(Qp) — E* is a smooth character satisfying X|T(Z )= -
P

On the 1-dimensional subspace Hfl(l)’ﬁl we have the identity:

n—2
Sno(En)" 2 =p" %kn (H x;c(p)> S
k=1

for K, € OF (defined in (4.4.22)) such that
kn = " Pp(an_1,...,a0) (mod wg),

where e* = £1 is the sign function defined in (4.4.21) and P,, is the rational function
defined in (4.4.20).

The following is a direct generalization of Lemma 3.2.5 in [39].

LEMMA 4.4.24. — We have the equality

U, = <H Xk(P))
k=1

on the 1-dimensional space H{l(l)’ﬁl foreach 1 <r<n-—1.

Proof. — The proof of this lemma is an immediate calculation which is parallel to that
of [39], Lemma 3.2.5. O
Proof of Theorem 4.4.23. — Notice that

w,_ (w2 =w,_1 and L(w,_;)+L(w*)""?) =3(n—2) = L(w,_1) +2(n —2),

so that by Lemma 4.4.3 we have

~ ~

(4.4.25) Sur_, 0 Sueyn—2 =p" 280, _,.
By composing g&”,wo on both sides of (4.4.25), we deduce from Proposition 4.4.15
that
(62)718), 0 Sy = p" 2 (6) 1S,
and thus

SZL L (§(w*)n72 = pn_Ql’iné\n
on the 1-dimensional subspace Hi(l)’ﬁ '. Now Lemma 4.4.6 together with Lemma 4.4.24
gives rise to the identity in the statement of this theorem.
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Finally, one can readily check from Lemma 4.4.16 that

Ky = 5(2)(,41))—1

2 a0—am 1 (n—2+4[ao — an—m—1]1)/([Gn—m—1 — an—1]1)!
( 1 "H (n—2+[ —an_l]l)!([ao—am]l)!

I
0
=

33

L

8

|

)

3
—
—

[
+

e*Pn, (mod wg).

Note that ord,(xy) = 0. This completes the proof. O

4.5. Special vectors in a dual Weyl module
We fix a tuple of integers h := (hq,..., hs) for some 1 < s < n — 1 such that
1<h,<n-1lforalll<r<s

and .
Zh” =n-—1
=1

Then we can define n — 1 positive roots §p,; for 1 <3 < n —1 as follows. Given an
integer 1 < ¢ < n — 1, there exists a unique integer 0 < ry < s — 1 such that
ro+1

Zh <i< Zhr,

and we use the notation

r=1
Then we define _
K3
>
k=1+[i]n
Note in particular that we always have
5@,1 = Q3.

Then we define
<I>'£ ={a€®" |a#pPp;foralll <i<n-—1}
and notice that this set gives an unipotent group U, C U by setting
IT ve.
ae@;
We emphasize that all Up, constructed here are good in the sense of Definition 4.1.16.
In particular, if s = n—1and h, =1 for 1 < r < n— 1 we recover [U,U], and
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if s =1 and h; = n — 1 we recover U; (cf. Example 4.1.18). We define U}, as the
reduction of U, mod p. If we mark the positive roots 34 ; by a e on their corresponding
upper-triangular entry, we get the following matrix looking like a ladder with s steps

1 ¢ --- ¢ ¢ 0 0O --- 0 0 O 0
1 --- 0 0 0 O0 --- 00O 0
1 0 0 O 0 0 O 0
1 o 0 0 0
1 0 0 0 0
1 0 0 0
1 e o 0
0
1

Let R be a Fp-algebra, and A € G(R) a matrix. For Jy, Jo C {1,2,...,n—1,n}, we
write Ay, s, for the submatrix of A consisting of the entries of A at the (3, j)-position
for i € Ji, j € Jo. We define

Ji=1{1,2,...,i} € {1,...,n}

for each 1 < i < n. Given a tuple h as above, we define the subsets Jé c{1,...,n}
for1<i<n-—1as

Jp={1,2,.. i+ 1P\ {[i +1]n + 1}.

It is easy to see that |J}l| =¢for1 <i<mn-—1. We define

Dp,; := det ((wOA)Jg,Jé)

foralll1 <i<n-—1. We also set D; := det(woA)Jé’Jé for 1 < i < n. Hence, Dy ;
(1<i<n-1)and D; (1 <i<mn) are polynomials over the entries of A.

Given a weight A € X (T'), we now introduce an explicit model for the represen-
tation H%(\), and then start some explicit calculation. Consider the space of poly-
nomials on Gg,, which is denoted by O(G). The space O(G) has both a left action

and a right action of B induced by right translation and Eft translation by B on G
respectively. The fraction field of O(G) is denoted by M(G).
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Consider the subspace
O\ :=={f€O(G)| f b=woAb)f Vbe B},

which has a natural left G-action by right translation. As the right action of T
on O(G) is semisimple (and normalizes U), we have a decomposition of algebraic
representations of G:

OG)Y ={feO0@)|fu=f YVuell= P OO
AEX(T)

It follows from the definition of the dual Weyl module as an algebraic induction that
we have a natural isomorphism

(4.5.1) HOO\) = ON).

Note by [43], Proposition II 2.6 that H%()\) # 0 if and only if A € X (7).

We often write the weight A explicitly as (di,d2,...,d,) whered; € Zfor1 <1i < n.
We will restrict our attention to a p-restricted and dominant A, i.e.,d; > ds > --- > d,
and d;_1 — d; < p for 2 < i < n. We recall from the beginning of Chapter 4 the
notation (-),s for a weight space with respect to the weight \'. We define X to be the
set of (n — 1)-tuple of integers m = (my,...,m,_1) satisfying

OSmlfdz—dH_l fOI'lSZSTL—].
For each tuple m, we can define a vector
n—1
i3, = i T] DA Dy
i=1
PROPOSITION 4.5.2. — Let A = (d1,do,...,d,) € X1(T). The set
(4.5.3) (v |me X}

forms a basis of H*(\)Ur. Moreover, the weight of valg is

- (Z miﬂh,i)
=1

and thus each element in (4.5.3) has distinct weight.

Proof. — We define
TO@)7 = {f€O@) |u-f=f-u=f VuelU & Vu €Uy}
and
VM@ = {f e M@) |ur-f=Ff-u=Ff VYuelU & Yus €Uy}

We consider a matrix A such that its entries A; ; are indefinite variables. Then we
can formally do Bruhat decomposition

A= UA’LU()TA,EUA@
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such that the entries of U, T4 p, Ua,p are rational functions of A; ; satisfying
1 ifi=y;
Ua)ij =
(Uakis { 0 ifi>j,
D;(A) if i = j;
(Tan)ig =93 Drr(4) if (i,5) = Buk;
0 otherwise ,

1 ifi=yj;
Uan)ig = e
0 ifi>jor(4j) =pPhk for somel <k<n-—1.

For each rational function f € Un M (é)ﬁ, we notice that f only depends on T4 p,
which means that f is rational function of D; for 1 <4 <mand Dy ; for1 <i<n—1.
In other word, we have

Us M(G) =F, (Ds1,...,Dn, Dty -, Dpn_1) € M(G).
Then we define
NGV :={fe 0@ |z-f=N(z)f, and f -z = Az)f VoeT}

and

UnX MG = {fe VoM@ |z f=N(2)f, and f-z = Nz)f VaeT)

Note that we have and an obvious inclusion

ﬁi,,\’O(G)U,A C ﬁL,A'M(é)ﬁ,A‘

We can also identify UnX O(G)U* with HO(\ ﬁ,i via the isomorphism (4.5.1). By
A

definition of D; (resp. Dy, ;) we know that they are T-eigenvector with eigencharacter
i i+1 . )
_ . _ — €4 S S . S S — .
> op—1 €k (resp. (301 ex) —epyp ) for 1 < i < m (resp. for 1 <i <n—1). Therefore we
observe that V=2 M(G)7* is one dimensional for any A, X’ € X (T) and is spanned
by

n—1
di—diy1—m; ]
D:an H Diz i+1 T4 (D@,i)mza
=1

where A\ = (dy,...,d,) and

n—1
)\/ =A- <Z mi,ﬁh’,) .
i=1

As O(G) is a UFD and D;, Dy, ; are irreducible, we deduce that
n—1
Dy [T D= (Dui)™ € 0(G)
i=1
if and only if
OSmiSdi—di+1 foralllgign—l
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if and only if
H (W) # 0

which finishes the proof. O
REMARK 4.5.4. — The groups U}, we defined have the advantage that the U j,-invari-
ant subspace H°(\)V2 C HO()) is a direct sum of its one dimensional weight spaces.

In other word, one can easily distinguish vectors in H°(\)U~ using the T-action. Note
that the weight spaces of H%(\) have very large dimensions in general.

We consider the special case of Proposition 4.5.2 when s = 1, h; = n—1 and hence
h={n—1}

COROLLARY 4.5.5. — Let A = (d1,ds,...,d,) € X1 (T). For N € X(T'), we have
dimg, HO(\){? < 1.

Moreover, the set of X' such that the space above is nontrivial is described explicitly
as follows: consider the set X¢,_13y of (n — 1)-tuple of integers m = (my,...,Mmp_1)
satisfying m; < d; —d;y1 for1 <i<n—1, and

n—1
alg _ dn di—dit1—m; m;
v{”—l}’m - ‘Dn H Di (D{n—l},i) .
=1

Then the set
al
{Vn—1ym | ™ € Zn-1y}
forms a basis of the space HO()\)Ul, and the weight of the vector v?'lngfl},m 18

n—1
(dl - Z mi,dg +ma, ..., dp_1+Mp_2,dn + mn—l)-
i=1
REMARK 4.5.6. — Corollary 4.5.5 essentially describes the decomposition of an irre-
ducible algebraic representation of GL,, after restricting to a maximal Levi subgroup
which is isomorphic to GL; x GL, _;. This classical result is crucial in the proof of
Theorem 4.7.48.

4.6. Some technical formula

In this section, we prove a technical formula that will be used in Section 4.7. The
main result of this section is Proposition 4.6.20.

Throughout this section, we assume that (a,—1,. .., ap) is n-generic in the lowest al-
cove (cf. Definition 4.1.1). We need to do some elementary calculation of Jacobi sums.
For this purpose we need to define the following group operators for 2 < r < n — 1:

Xt o= 30 0 2ugas (1) € F[G(F,)),

teF,
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and similarly

X = Z tp_QwOUE:.;l o, (Dwo € Fp[G(Fy)].
teF,

We notice that by definition we have the identification X & = Xzﬁ:lai 1> Where
Xs-n-1,., is defined in (4.1.3).

LEMMA 4.6.1. — For a tuple of integers k = (k; ;) € {0,1,...,p— 1}|¢’$0|, we have
X" e Skw = ErnSkr— wo

where k"~ = (k;’;") satisfies ko, = krn — 1, and kj; = kq j if (i,5) # (r,n).

Proof. — This is just a special case of Lemma 4.1.6 when ag = anl

i=r

a; and m = 1.
O
For the following lemma, we set
I:={(1,%2,...,%5) |1 <i1 <ia < - <is=nfor somel<s<n}

to lighten the notation.

LEMMA 4.6.2. — Let X = (X, ;)1<i,j<n be a matriz satisfying
X%J:Ozf1§j<z§n—1
Then the determinant of X is

(463) det(X) = Z (_l)s_lxn,il H Xj,j <SH Xik,ik+1> :

(i1,0v0yis) EL Jj#ik, 1<k<s

Proof. — By definition of the determinant we know that

det(X) = Y (=D ] Xnwi)-

weW k=1
From the assumption on X, we know that each w that appears in the sum satisfies
(4.6.4) w(k) <k
forall2 <k <n-—1.
Assume that w has the decomposition into disjoint cycles
w=(if,43,...,dp, ) (07485, ..., in )

where m is the number of disjoint cycles and ny > 2 is the length for the k-th cycle
appearing in the decomposition.

We observe that the largest integer in {i¥ | 1 < j < ni} must be n for each
1 < k < m by condition (4.6.4). Therefore we must have m = 1 and we can assume
without loss of generality that i), = n. It follows from the condition (4.6.4) that

-1 -1
Zj < Zj-‘rl
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for all 1 < 5 < n; — 1. Hence we can set

S1=ny, Gy i=1y,...,0 =1y .
We observe that ¢(w) = s — 1 and the formula (4.6.3) follows. O

Recall from the beginning of Section 4.6 that we use the notation Aj, j, for the
submatrix of A consisting of the entries at the (4,7)-position with ¢ € Jy1,j € Ja,
where Ji, Jy are two subsets of {1,2,...,n} with the same cardinality. For a pair of
integers (m,r) with 1 <m <r—1<n—2, we let

Jom i ={1,2,...,r;,n—m+1}.
For a matrix A € U(F,), an element t € F,, and a triple of integers (m,r,¢)
satisfying 1 <m <r—1<n-—2and 1 < £ <n—1, we define some polynomials as

follows:
(4.6.5)

Dy, (A, t) := det (Uzﬁ:l o (t)wko0> when 1 <m <r—1;

m,r gn—r+1
JoT,Jg

Do (A,t) := det (uzz—l o (t)wkog) when 1 </ <n—r.

LI
We define the following subsets of I: for each 1 < /< n —1
L= {(i1,%2,...,is5) El|n—0+1<i; <ig<- - <is=n for some 1 < s </}
Note that we have natural inclusions
I, CIyC1I
if1 < ¢ < ¢ < n—1. In particular, Iy has a unique element (n). Similarly, for
each 1 < ¢ <n —1 we define
I = {(i1, 02, ... ,is) | 1< iy <ip < -+~ <is_y <n—l <i,=mn for some1<s<l}
and we set
I =1,n1"
forall1 </¢ <£—1<n—2. We often write i = (i1,...,is) for an arbitrary element
of I, and define the sign of i by

ed) = (~1)°.

We emphasize that all the matrices (wouzﬁ:wi(t)wkoO) for

JT'T,J;7T+1

1 <m <r—1, and all the matrices <w0uznf1a_(t)w0Awo) . forl</{<n-r,
i=r T 1:J2

after multiplying a permutation matrix, satisfy the conditions on the matrix X in
Lemma 4.6.2. Hence, by Lemma 4.6.2 we notice that

(466) { Dm,r(A;t) = Am,r + tfm’r(A) when 1 <m<r-— 1’

D (At) =1—tfrp_ss1(A) whenl<l<n—r,
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where foralll1 <m <r -1

(4.6.7) fmr(A) = Z a(@)Am,“HAiH,,-j
j=2

(1<) P—.Y

Let (m,r) be a tuple of integers with 1 < m < r —1 < n — 2. Given a tuple
of integers k € {0,1,...,p — 1}@;0', i = (i1,42,...,%5) € I,_,41, and an integer r’
satisfying 1 < ' < r, we define four tuples of integers in {0,1,...,p — 1}‘@30|

El',m,r,-ﬂ— _ (ki,m,r,—i-)’ Ej,m,r _ (ki,m,r)’ Ez,m,r,r’,_;'_ _ (ki77-n7r7rl’+), Eg,m,r,r’ _ (ki"."’r”’)

2% ,J i,j i,j
as follows:
kmi, +1 if (4,5) = (m,41) and i1 > r;
k£7m7T,+ — kmﬂ‘ if (27.7) = (m,r);
“J kij+1 if (4,5) = (4pyint1) for 1 <h < s—1;
ki j otherwise,
i _ kfjmwr -1 if (4,5) = (m,r) and iy > r;
e kf;nH' otherwise,
and

2] 5,7y %
%]

1,1, T, % . SN g .
ki*’.“’”/’* — kr’,n -1 if (7’7]) - (T 7n)a
otherwise,

where x € {+, @}.

Finally, we define one more tuple of integers k™" = (k:;r) e{0,1,...,p— 1}|q>$o‘
by

2,7 k

kr,—i— L k'r,n + 1 if (’La.]) = (Ta n)v
' otherwise.

(2%

REMARK 4.6.8. — If we use the shortened notation o, ; = Zi;i ay, then we clearly
have the equality

(4.6.9) Om,n = Qm,i; + E : Qipingr = Omyr + Qe
1<h<s—1

as we always have i; = n by definition of the tuple i. The equality (4.6.9) would imply
by Lemma 4.1.14 that Syim.r ,, vo and Sgr.+ ,,,vo have the same T'(F,)-eigencharacter,
which differs from the one for S .,v0 by a,, = € — €,. Very roughly speaking,
Spimor 1poV0 and Syr+ 4, Vo exhaust minimal modifications of S .,,vo that modify the
corresponding T(fp)-eigencharacter by arn, if we vary m and 1.
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LEMMA 4.6.10. — Fix two integers r and m such that 1 < m <r—1<n—2, and
let k= (ki;) €{0,1,...,p— 1}@%'. Assume that k; j =0 forr+1<j<n—1 and
that k; » = 0 for i # m, and assume further that

n—1

Qp—r — a1 + [al — Qap—1 — Z ki,n]l + km,r < p.
i=1

Then we have

X,,._ .SEJUO/UO = km,r Z 8(1’)5&1,m,r7w0’l)0

€L,
n—1
+ ([anfr —Qp-1 — Z ki,n]l + km,r)SETv‘*',wOUO
i=1
n—r
— Z(an_r —ap—1+ km,r) Z 5(!‘)5&1,7‘,71.72+1,+’w0'v0
=2 i€ \Ip—1

Proof. — By the definition of X, we have

_ _ p—2 ki
X, ® Sk w0 = E t H Ai,j Wl 1 o (t)woAwg | vo.
A€U(F)p),teF, 1<i<j<n

For an element w € W, we use E,, to denote the subset of U(F,) x F, consisting of
all (A,t) such that
Wolgn—1 o, DwoAwo € B(Fp)wB(Fp).

We consider the standard parabolic subgroup P O U of G with standard Levi sub-
group isomorphic to G’",,jl x GL; ;41 which induces an embedding GL,,_,+1 — G.
We consider the longest element in the Weyl group of GL,,_, 1 and denote its image
under the embedding GL,,_,+1 < G by wp. We notice that

wosn-1 ,, (YwoAwy € GLn—r41(Fy) - U(Fy)wo = P(Fy)wo C | | B@®F,)wiweB(F,),
w1 <wp

and deduce that if E,, # @ then wwy < wp and in particular wwg(i) = 4 for all
1<i<r-—1.
We define M, to be

e p—2 ki,j
M, = E t H A Wty n—1 ah(t)wkoo V.
(At)EE, 1<i<j<n

By the definition of E,,, we deduce that there exist A’ € U, (F,), A” € U(F,), and
T € T(F,) for each given (A,t) € E,, such that

(4611) wouzz;: on (t)wkoO = A'wTA".
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Here, the entries of A’, T and A" are rational functions of ¢ and the entries of A. We
can rewrite the identity (4.6.11) as

(4.6.12) Wollgn -1 o, (FDwoA'w = Aw T~ H(T(A")~IT7h).
Note that the right side of (4.6.12) can also be viewed as the Bruhat decomposition

of the left side. In fact, if we define E, as the set of elements (A’,t) € U, (F,) x F,
satisfying

(4.6.13) Wolls~n—1 (—t)woA'w € B(Fp)woB(Fy),
then (4.6.11) and (4.6.12) imply that we have a natural bijection
Ey = By, (A1) = (A1)

induced from isomorphism of schemes by considering F-points. Therefore the entries
of A, T, A” can also be expressed as rational functions of the entries of A’.
For each A’ € U, (F,) and w € W, we define

(4.6.14)
DY (A',t) := det ((uzyzrl w (t)wOA’w> Jénm’JnTH) when 1 <m <r—1;
DA 1) = det ((uZ?: o (t)woA’w> st when 1 <£<n-—r.

Note that if w = wp, then the definition in (4.6.14) specializes to (4.6.5). We notice
that for a given matrix A’ € U, (F),), the inclusion (4.6.13) holds if and only if

(4.6.15) DY (A —t) #0forall1 <L <n-—r.
On the other hand, using the bijection E,, — E!, we deduce that (4.6.15) holds

for (A’,t) € U,(Fp) x F, if and only if there exists a unique determined pair
(A,t) € E,, such that (4.6.11) (or equivalently (4.6.12)) holds for some T' € T'(F,),
A" € U(F,) uniquely determined by (A’,¢).

By the Bruhat decomposition in (4.6.12), we have

(4.6.16) T~ = diag (D;ﬂ,(l)’ D:Ei . IZ}U(::?) _ (1n_r) . 1)
D, D, D>
in which we write D, @ for Dy (@) (A’, —t) for brevity. We also have
A;,j ifl<i<j<nandj<r-—1;
(4.6.17) Aij =4 Dm (A —t) if (4,5) = (m,r);
W ifl<i<n-—1andj=n.

We apply (4.6.11), (4.6.17) and (4.6.16) to M, and get

My,= Y |FA w0 IT @ik | Awo | v,
(A,t)EE, 1<i<j<n
j<r—1lor j=n
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where

m,

P w,t) = 7 ((Dw ) (D e 2 b H(D%“))as-%l) ,

s=2

in which we let D}, . := D;, (A’,—t) and D) = D;”’(s)(A’, —t) for brevity. We
have discussed in (4.6.15) that (A,t) € E,, is equivalent to (4’,t) € Uy(F,) x F,
satisfying the conditions in (4.6.15). As each DY) (A’, —t) appears in F(A',w,t)
with a positive power, we can automatically drop the condition (4.6.15) and get

(4.6.18) M, = > F(A' w,t) II @A) | Awo | v.
(A,t) €U (Fp)xFp 1<i<j<n
j<r—1or j=n

If w # wy, then there exist a unique integer iy satisfying r < ip < n such
that wwo(i9) < o but wwe (i) =4 for all ig +1 < i < n.

By applying Lemma 4.6.2 to Df”("+17i°)(A', —t) (as (usn-1,, (HwoA'w) ye s sat-
isfy the condition of Lemma 4.6.2 after multiplying a permutation matrix), we deduce
that

D nt1=io)(A —t) = tf(A'),
where f(A’) is certain polynomial of entries of A’.

Now we consider F'(A’, w,t) as a polynomial of ¢. The minimal degree of monomials
of ¢t appearing in F(A’,w,t) is at least

P—2+ant1—iy — An_j, > p— 1,

and the maximal degree of monomials of ¢ appearing in F(A’, w,t) is

n—1 n—r
b— 2+ km,r + [al —Qp—1 — Z ki,n]l + Z as — Qs—1
i=1 s=2
n—1
=p—2+ km,r + [a1 — Ap_1 — Z k¢7n]1 +an—r—a1
i=1

<2(p-1).

As a result, the degree of each monomials of ¢ in F(A’, w,t) is not divisible by p — 1.
Hence, we conclude that

M, = 0 for all w # wy

as we know that 35, . ¢* # 0 if and only if p— 1| k and k # 0.
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Finally, we compute M,,, explicitly using (4.6.18). Indeed, by applying (4.6.6), the
monomials of ¢ appearing in F'(A’, wg,t) is nothing else than

n—1
(AL, ) (—km,rfm,r(z‘l’)(Ain,r)_1 a1 = anoy = D kil fra(4)
i=1

+ i(as - as—l)fr,n+1—s(A,)> .

5=2
As Zter tP~1 = —1, we conclude that

(4.6.19) X, 0 Skwovo =My, = Y, | Fo(4)) IT ik | Awo | v,

A'eU(Fp) 1<i<j<n
j<r O j=n
where
n—1
FO(A/) = (‘Lllm,r)’%’r (km,Tfm,T(A,)(A;n,r)_l - [al —0n-1— Z ki,n]lfr,n(Al)
=1

- Z(as - as—l)f'r,n+1—s(Al)> .
5=2

Recalling the explicit formula of f,, » and frny1-5 for 1 < s < n—r from (4.6.7) and
then rewriting (4.6.19) as a sum of distinct monomials of entries of A’ finishes the
proof. O

PROPOSITION 4.6.20. — Keep the assumptions and the notation of Lemma 4.6.10.
Then we have

X e X" 0Skuwvo=kmrkrn Z €(8) Sgiimorr 1o V0

EEITL*’V‘

n—1
+ (kr,n + ]-) <[an—r —Qp—-1 — Z ki,n]l + km,r) Sﬁ,wo’UO

i=1

n—r
- kr,n Z(an_r —ap—1 + km)r) Z E(QSELT,n4+1,n+7wDUQ
=2 €I \Ip—1

Proof. — This is just a direct combination of Lemma 4.6.10 and Lemma 4.6.1. O

REMARK 4.6.21. — The effect of X/t (resp. X, ) on T'(F),)-eigencharacter is essentially
X — X+ (resp. x — X —ay ) where x is the T(F,)-eigencharacter of Sy ., vo. The
conditions assumed in Lemma 4.6.10 are crucial for the formula in Proposition 4.6.20.
In fact, the formula in Proposition 4.6.20 is relatively simple in the sense that all the
coefficients are totally explicit when we write X," ¢ X~ oS ., vo as a linear combination
of Sy w,vo for various k'.
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4.7. A non-vanishing theorem

The main target of this section is to prove Theorem 4.7.48. This theorem together
with Corollary 4.4.19 immediately implies Theorem 4.8.1. We start this section by
introducing some notation.

We first define a subset A,, of {0,...,p — 1}|¢’$0| consisting of the tuples
k = (ki j)i; such that foreach 1 <r <n -1

E k@j = [ao —an_1]1+n—2.
1<i<r<j<n

Note that the set A,,, embeds into my by sending k to S ., vo. Moreover, this family
of vectors {Sk,w,v0 | K € Ay, } shares the same eigencharacter by Lemma 4.1.14.

We define k* € Ay, where k* = (k} ) is defined by k} ,, = [ag — an_1]1 +n—2 and
kf ; = 0 otherwise. We set
V.= (G(F,) - Skt wov0) S To-
We also need to define some other useful elements of A,,,. Foreach 1 <r <n—1, we

define k" = (k) € Ay, by

n—24ay—an_1]1 f2<j=i4+1<r;
KT i= 0 n—2+4[ag—an_s if (i,4) = (r,n);

0 otherwise.
In particular, we have
(4.7.1) kPt = kP and kP = EO,

where k° is defined in (4.4.12). If we represent k by a matrix in U(Z) with (i, j)-entry
given by k; ;, then k»" has the following form

1 k O 0 0 00
1 ko 0 0 0 O
1 0 0 00 0
1 ko 0 0 0
1 0 0 ko |,
0 0
1 0
1 0
1
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where kg := n — 2 + [agp — an—1]1 and the unique ko appearing on n-th column is
on (r,n)-entry. For each 1 <r <n—2and 0 < s < [ag — an—1]1 +n — 2, we define
kb = (k‘f;s) € Ay, as follows:

n—2+4[ag — an-11 if2<j=i+1<r
n—2+ap —an_1]1 —s if (4,5) = (r,7 + 1);
KpT=9 s if (1,9) = (r,m);
n—2+4ag—an-1]1 —s if (4,5) = (r + 1,n);
0 otherwise.
In particular, we have
(4.7.2) EPT0 = b+l and ghrleo—an—ditn—2 _ gt

for each 1 <r < mn — 2. If we represent k by a matrix in U(Z) with (¢, j)-entry given
by k; ;, then k*™* has the following form

1 k O - 0 0 0 00
1 k --- 0 0 0 00
1 -0 0 0 00 0
1 kk 0O 00 0 0
1 kg—s 0 0 0 s
1 00 0 ko—s |’

1 0 0 0

1 0 0

1 0

1

where the s appearing on n-th column is on (r,n)-entry.

We now introduce the rough idea of the proof of Theorem 4.7.48. We set
(473) VO = <G(Fp) . S&o7wo’l)0> g T0-

The first obstacle to generalize the method of Proposition 3.1.2 in [39] is that Vj
does not necessarily admit a structure as G-representation in general. Our method to
resolve this difficulty is to replace Sio ,,,v0 by St ., v0. We prove in Proposition 4.7.43
that V* admits a structure as G-representation and actually can be identified with a
dual Weyl module H°(p¢°). (The notation ug° will be clear in the following.) Now it
remains to prove that

(4.7.4) St w0 € Vi
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to deduce Theorem 4.7.48. We will prove in Proposition 4.7.25 that
Sptoris=1 1, V0 € Vo = Sptirs ov0 € Vo
foreach1 <r<mn—2and1<s<[ag—an_1]1 +n—2. As a result, we can thus pass
from Syo ,,v0 € Vo to Sptir 4,0 € Vo for r =n —2,n —3,...,1. The identification
k* = k%! thus gives us (4.7.4).
We firstly state three direct corollaries of Proposition 4.6.20. It is easy to check

that each tuple k appearing in the following corollaries satisfies the assumption in
Proposition 4.6.20.

COROLLARY 4.7.5. — For each2 <r<n—-1and0<s<[ag— an_1]1 +n — 3, we
have

X,j_ ° X,’,_.SEﬁ,r—l,s7wO'UO = ([ao — an_l]l +n—2— 8)2 Z 6(Z)S(En,r—1,s)i,m,r,r7wO’U0

i€lp_r
+ ([an—r — an—1]1 — 8)([a0 — @n—1]1 + 1 — 1 — 8)Spr—1.5 4, V0
—([ao —an—1]1+n—-2—15) Z (@p—r —ap—1+ a0 — ap—11 +n—2—25)
=2

E 6(@)S(ku,r71,s)i,r,n7z+1,r,+’wovo
[AS) VAN PESY

COROLLARY 4.7.6. — Fiz two integers r and m such that 1 <m <r—1<mn-—2, and
let k = (ki ;) be a tuple of integers in A,,, such that
0 ifr+1<j<n-—1;
ifiEmandj=r;
ifr+1<i<n—1andj=n;
if (4,5) = (m,r);
if (i,5) = (r,n).

kij =

= o= O O

Then we have

X e X" 0Skuwvo= Z (1) Simrr 1pyV0 + 2(An—r — g — 1+ 3) Sk, w0

i€l r
n—r

- E (an_T — ap—1 + 1) E S(Z)Ski,r,n—é-%—l,r,ﬁ—ﬂuovo
=2 i€I\Io s

COROLLARY 4.7.7. — Fiz two integers r and m such that1 <m <r—1<n-—2, and
let k = (ki ;) be a tuple of integers in Ay, such that

)0 fr<j<n-1
I 0 ifr<i<n—1landj=n
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Then we have

XteX o SkwoV0 = (@n—r — ag — 1+ 2)Sk 1w, Vo-

We now define the following constants in F:

cy = Hi;ll(ak — ag —n+2+k)2e_k_l;
c, = (ar—ap—n+3+0)c
for all 1 < £ < n — 1 where we understand c; to be 1. As the tuple (a,—1,...,a0) is

n-generic in the lowest alcove, we notice that ¢, # 0 # ¢, for all 1 < ¢ < n — 1. By
definition of ¢j and c}, one can also easily check that

£—1

(4.7.8) I1(ck—ck) =ce

k=1

We also define inductively the constants: for each 1 </Z<n—1

d e ) 2ae—a0—n+3) if ¢ = 0
T ehdipo — (a0 —ap + e TIEZM e, —c) if1< 0 <1,

We further define inductively a sequence of group operators Z, as follows:
Zyi=diold— X, e X, , €F,[G(F,)
and
Zpi=dggld— (210 0210 X, 0 X ) € F[G(F,)]

foreach 2 </ <n-—2.

LEMMA 4.7.9. — For 1 < /¢ <n — 1, we have the identity
-1
dys—1 = (ag—ag—n+2) (H c%) + cj.
k=1

Proof. — During the proof of this lemma, we will keep using the following obvious
identity with two variables

(4.7.10) ab=(a+1)(b—-1)4+a—-b+1

By definition of d;¢—; we know that

-1 £—1 V-1 £—1
deg1=2(a—ag—n+3) [[ ek =D | (ae—aw +1er | [] (ch —cx) ( 11 CL)

k=1 =1 k=1 k=041
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and therefore

-1
dog—1—(ar—ap—n+2) (H%) (ag —ap —n+4) Hck
k=1
- -1 -1
- Z (ag —ap + 1)cg H (¢}, —ck) ( H c%)
=1 k=1 k=0'+1
Now we prove inductively that foreach 1 <j < /-1
(4.7.11)
j—1 -1
dg—1—(ar—ap—n+2) (Ilck> Cu—ao—n+3+ﬂ)<11(%r—cw> IICZ
k=1 k=j

-1 Vo1 1
_Z (ae — ap + 1)cp H(C;c_ck) < H c%)

U=j k=1 k=041

By the identity (4.7.10), one can easily deduce that
(ag —ao —n+ 3+ j)c; — (ap — a; + 1)c;
=[(ag—ao—n+3+j)(aj —ao—n+3+j)— (ar—a; +1)]c,
:(af—ao—n+4+j)(aj—ao_n+2+j)cj
= (ag —ap —n+4+j)(c; — cj).

Hence, we get the identity:

-1 j—1
(47.12)  [(ar —ao — n+ 3+ j)c; — (ar — a; + 1)c;] H cl (1_[(c§c - ck)>

k=j+1

J -1
:(ag—ao—n+4+j)<H(c;€—ck)> H cl

k=j+1

Thus, if the equation (4.7.11) holds for j, we can deduce that it also holds for j+ 1.
By taking j = ¢ — 1 and using the equation (4.7.12) once more, we can deduce that

-1
doo—1— (ar—agp—n+2) <Hck> (ag —ap—n+3+4) (H(ck—c@).
k=1

Hence, by the equation (4.7.8), one finishes the proof. O

PROPOSITION 4.7.13. — Fiz two integers r and m such that 1 < m <r—1<n—2.
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(i) Let k = (k; ;) be as in Corollary 4.7.6. Then we have
(4.7.14) Zn—r (] Sk,wo = Cn—TSE’,wO
where k' = (kj ;) is defined as follows:
0 if (27]) = (mv'r) or (Zaj) = (T'?n);
ky=q 1 i (i4)=(mn);
k;; otherwise.
(ii) Let k = (ki ;) be as in Corollary 4.7.7. Then we have
(4715) anr L4 SE,wo = C;LerE,wo'
We prove this proposition by a series of lemmas.
LEMMA 4.7.16. — Proposition 4.7.13 is true forr =n — 1.
Proof. — For part (i) of Proposition 4.7.13, by applying Corollary 4.7.6 to the case
r =n — 1 we deduce that
X:L_—l ° X;—l ° SE,wO'UO = 2(a1 —ag—n+ 3)5&11,0’[10 - Skio,m,n—l,n—l’wo’vo

where 4, = {n — 1,n}. Hence, part (i) of the proposition follows directly from the
definition of Z; and c;.

For part (ii) of Proposition 4.7.13, again by Corollary 4.7.7 to the case r = n — 1
we deduce that

X,_1 0 X, 1 ® Skuwvo = (a1 — ao — 1 + 2)Sk,uw, V-
Then we have
Z1 0 Sk w0 = (@1 — ag — 1+ 4)Sk,we Vo
and part (ii) of the proposition follows directly from the definition of c}. O

LEMMA 4.7.17. — Let £ be an integer with 2 < £ < n— 1. If Proposition 4.7.18 is true
forr>n—~0+1, then it is true forr =n — /.

Proof. — We prove part (ii) first. Assume that (4.7.15) holds for r > n— £+ 1. In fact,
for a Jacobi sum S, ., satisfying the conditions in the Corollary 4.7.7 for r = n — ¥,
we have

X o X, ;@ Skwvo = (ae— ao — 1+ 2)Sk w0

by Corollary 4.7.7. Then we can deduce

-1
Zy_10---0Z @ X;'_Z o X ,®Skwvo=(ag—ap—n+2) (H cé) Sk, wo V0
s=1
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from the inductive assumption of this lemma. Hence, by definition of Z,, we have

— + -
Z; @ Skwovo = dee—15kwoV0 — Zo—10- -0 Z 0 X" 0 X ", 0.5k ,U0

£—1
= (dz)gl —(ag—ap—n+2) (H C;)) Sk, wo 0
s=1

/
= CZSE,U]OUO

where the last equality follows from Lemma 4.7.9.
Now we turn to part (i). Assume that (4.7.14) holds for r > n — £ + 1. We will
prove inductively that for each ¢’ satisfying 0 < ¢’ < £ — 1, we have

(4.7.18)

Zypeo---0Z e X;r_e e X, ,®Skw,0

e/
= dg ¢ Skwe 0 + 1_[(0'S —cs) Z €(8)Syi,mn—t,n—t 4 Vo
s=1 i€y
¢ £—1
+ H(c's —cs) Z (ag —ap+1) Z €(1)Spin—t.n—hn—t 4 Vo
s=1 h=0'+1 15 AN r

where the case ¢/ = 0, namely the formula for X;: 0 ® X, _;® Sk w0, follows directly
from Corollary 4.7.6 for r = n — £.

We begin with studying some basic properties of the index sets Ifl, which are useful
for our induction on £’ to prove (4.7.18). First of all, the set IZ:H \Ifj+2 has a unique
element, which is precisely i = {n — ¢’ — 1,n}. Furthermore, there is a natural map of
sets

resy : If; — If;“
for all #/ +2 < h < £ defined by eliminating the element n — ¢’ from ¢ € If; ifn—2¢ €i.
In other words, for each ¢ € If;“, we have

res, ! ({i}) = {i,iU{n - £}} C T}
We use the shortened notation
i’ =iu{n—20}
for each ¢ € If;“. Note in particular that e(i) = —5(1’21).

Given an arbitrary i € I‘,{:+1 for ¢/ +2 < h < ¢ -1, then Ski,nff,n—h,nfé,,w() (resp.
S it em_nn_e ) satisfies the conditions in Corollary 4.7.6 (resp. Corollary 4.7.7).
ki T v n ,wo

As a result, by the assumption that Proposition 4.7.13 is true for r = n — ¢ — 1, we
deduce that
(4.7.19)

ZE’+1 ° Sﬁimfﬂn*h,"*{wovo — SEﬁ/,n—Zyn—hvﬂ—f,wOvO) = (Cl’+1 — Cg/+1) Sﬁlyn—l,nfh,nfﬂ’wovo.
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Similarly, we have
(4.7.20)

/
Z[/_,_l [ ] (SEi,m,n—Z,n—Z,wO’UO — Skze',mfé,nfi,wovo) = (CZ’+1 — Cg/_H) SEj,m,n—Z,n—l’wo’UO

for each ¢ € Ig’+1_ We also have

(4.7.21) Zp41 ® Sk,woV0 = Cpr g1 Skwo V0

by (4.7.15) for r =n— ¢ — 1, and

(4.7.22) Zpr11 8 Spigun—tin—t' =10t 4y V0 = C¢'4+1 5k, 1w, V0

by (4.7.14) for r =n — ¢ — 1 where iy = {n — ¢’ — 1,n}.

Now we begin our induction and assume that (4.7.18) is true for some 0 < ¢/ < £—2.
Then by combining (4.7.19), (4.7.20), (4.7.21) and (4.7.22), we have

+ —
ZZ/JFl o Zl ¢ Xn—E * Xn—E * Sanovo

e/
= dg)nggu,_l ° SE,wOUO + H(C; — Cs) Zpyy® E E(é)SEi,m,nfl,n—l’wD/UO
p— . ’
s=1 i€}
¢ £—1
! .
+ H(cs —c5) | Zegr e Z (ag —an+1) Z €(2)Syim—tn—nn—t 00 | ,
s=1 h=tt1 ey,
which is the same as
el
! !
(4.7.23) pdepSeawevo+ | [J(ch—co) | (X +Y +2)
s=1
where
X=(ag—ap+1)Zp410 Skiomr—l,n—@'—l,n—Z’wO’U07
Y = E E(@')Zg/+1 [ ] (SELm,nfl,nflﬂvo/UO — Skil/,m,nfl,nfﬁ’wov()) s
a1 -
i€l
and
-1
7Z = Z (ag —ap + 1) E 5@)2@/+1
nee sert

o <SE1,W—€,n—h,n—Z’wO’UO - Skﬁ",n—l,n—hmflywovo) .
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One can also readily check that (4.7.23) is also the same as

Z/
/ !/
pprdee +copr | [](ch —es) | (ar—ap +1) | Skwovo
s=1
o+1
+ H (ch —cs) E €(2)Spimn—t.n—t 4 V0
s=1 3‘615“
241 -1
! .
+{ [ (k=) Y (a—an+1) D e(@)Sgin-tmnnt oo |
s=1 L el P

which implies that (4.7.18) holds for ¢/ + 1, as we have

e/
/ /
de g1 = Cpdee + o | [ (el —¢o) | (ar—ap +1)
s=1

by definition.

Hence we have finished the proof of (4.7.18) for each 1 < ¢/ < £ — 1 by induction
on ¢'. Note that the case £ = ¢ — 1 for (4.7.18) is just the following

(4.7.24)
-1

+ — /
ZE—I ®---0 Zl [ ] Xn—é (] Xn—é (] SE,’onO = dZ,Z—ISE,onO - (H(CS — CS)) SEil,m,n—l,n—l,wolUO,

s=1
where i, = {n}.

Finally, (4.7.14) for r = n — ¢ follows from the equation (4.7.24) together with the
definition of Z, and the identity (4.7.8). O

Proof of Proposition 4.7.13. — It follows easily from Lemma 4.7.16 and Lemma 4.7.17.
O

PROPOSITION 4.7.25. — Foreach 1 <r<n-—-2and1<s<[ap—an_1]1+n—2, if
SEﬁ,r,s—l vg € Vo, then Skﬁ,r,swwov() e V.

sWo

Proof. — We deduce from the same argument as (4.7.19), (4.7.20), (4.7.21) and (4.7.22)
that the following equalities

n—2—r
(4.7.26) Zy 2 r®- 021083, Vo= < c2> Setiris—1 1, V0,
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(4.727) Z, 9 ,0---0Z e Z 6(2’)5(&]1,7“,571)i,r,r+l,r+1,wO’UO

i€ln—1-r

n—2—r
== ( II (- cz)) St V05

=1
and

(4728) Zn,Q,T ®---0 Zl [ ] Z E(z)S(En,r,s—1)1‘,r+1,n—e+1,r+1’wovo
i€l \Ip—1

£—1 n—2—r
=cy (H(c'h — ch)> < H c%) Stra=1 4 V0

h=1 h=¢+1

hold for each 1 < ¢ < n — 2 — r. Therefore by replacing (r,s) in Corollary 4.7.5
by (r+1,s — 1) and then using (4.7.26), (4.7.27) and (4.7.28) respectively, we can
deduce that

+ —_
Zn g re---0Z1e X 0 X e a1, U
n—2—r

2

= —([ag — an_l]l +n—1-— 8) H (CZ - Cg) SEu,r,s7w0U0 + CSM*“S*HwOUO
=1

2

= —([ag - an_l]l +n—1-— S) Cn_l_TSEﬁ,T,SﬂUO/UO + CSEﬂ,r,s—l7wofUO

for a certain constant C € F,. Note that we use the identity (4.7.8) for the last
equality .

By our assumption, we know that Sys.rs-1,,,v0 € Vo. Hence, we can deduce

»Wo
SEﬁ,r,s,wOUO eV

since ([ap — an—1]1 +n —1—38)%cp_1_ # 0. O

COROLLARY 4.7.29. — We have Sy ,,,vo € Vo.

Proof. — By (4.7.2) and Proposition 4.7.25 we deduce that
SM,T’UO eVy=> SEﬁ,T—l’UO eV
for each 2 < r < n—1. Then by (4.7.1) and the definition of V{), we finish the proof. O

ExaMPLE 4.7.30. — We will give an example to illustrate the technical results in
Proposition 4.7.13 and Proposition 4.7.25. Given a tuple k € {0,1,...,p— 1}|<1>$0 ‘, we
associate a matrix in U(Z) with (4, j)-entry given by k; ; for all 1 <4 < j < n and
abuse the notation k for such a matrix. In this example, we are going to use k or the
matrix in U(Z) associated with it to represent the corresponding vector Sk, w,vo. We
will write

k=K
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if Sy wovo € (G(Fp) - Skwevo). We consider the special case n = 5 and r = 1 from
now on, and our goal here is to illustrate the proof of

(4.7.31)
1 kg—s+1 0 0 s—1 1 kg—s 0 0 S
1 0 0 kp—s+1 1 0 0 ko+s
EbbTl = 10 0 = kb = 10 0
1 0 1 0
1 1

intuitively for all 0 < s < ko where ko = 3 + [ag — a4]1. We firstly observe that
L={()} I2\TIi ={(4,5)} and I3\ I, = {(3,5), (3,4,5)}.

The first step towards (4.7.31) is to apply X" e X, to A (as a special case of
Corollary 4.7.5) and obtain

(4.7.32)  Xi o Xy kM7 = (ko — 8)2Yp + ([as — aaly — ) (ko + 1 — s)kP1 7

3
+ (ko —8) Y (ag—ap_1+ko—3) Yy
=2
where we have
1 kg—s 0 O s 1 kg—s 0 1 s-—-1
1 0 0 ko—s 1 0 0 ky—s
Yy = — 10 0 + 1 0 0
1 0 1 1
1 1
1 kg—s 1 0 s-—1 1 kg—s 1 0 s-—1
1 0 0 ky—s 1 0 0 ky—s
+ 1 0 1 - 1 1 0 ,
1 0 1 1
1 1
1 kg—s+1 0 0 s-—1
1 0 1 ko—s
Y = 1 0 0 )
1 1
1
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and
1 kg—s+1 0 0 s-—1 1 kg—s+1 0 0 s-—1
1 1 0 ko—s 1 1 0 ko—s
Y; = 10 1 - 11 0
1 0 1 1
1 1

Note that the terms in Y (resp. the terms in Yy) are indexed by I3 (resp. by I, \ I,_;
for £ =2,3). Then we apply Z; to each of Yy, Eﬁ’l’s_l, Y> and Y3 and obtain

2 BT = kT 2 Y = ekt

1 kg—s+1 0 0 s-—1
1 1 0 ko—s
Z1-Ys=(c} —cy)- 10 1
1 0
1
and
1 ko—s 0 s-—1
1 0 0 kog—s
21 Yo =(c} —c1) | k""" + 0 1 :
1 0
1

where ¢| = a; —ag — 1 and ¢; = 1. Then we apply Z5 and obtain

(4.7.33)

Zy0Z1 kP = e kP 2,020 Yy = chkP T 200 21Y5 = cy(c)—cy kM
and

(4.7.34) Zy0 21 - Yy = —(ch — co)(c) — ¢y kDS

where we have ¢o = a1 —ag—2 and ¢}, = (a3 —ag)(a1 —ag—2). By combining (4.7.32),
(4.7.33) and (4.7.34), we deduce that

ZyeZ e X e Xy kP T = CEP T — (ko + 1 — 5)%cakPtt
for ¢35 = (a1 — ap — 2)%(az — ap — 1) and a certain constant C € F,,, which implies

(4.7.31). If we consider the subspace V of my spanned by the various k (namely
Sk,wov0) appearing in (4.7.32), then Z; and 2, e Z; induce maps in Endg, (V). In
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fact, the image of Z; is spanned by

1 kg—s+1 0 0 s-—1 1 kg—s 1 0 s-—1

1 1 0 ko—s 1 0 0 ky—s
Ehbe ghlel 10 1 and 10 1
1 0 1 0
1 1

while the image of Z5 @ Z; is simply spanned by k> and k*1*~1.

REMARK 4.7.35. — If we view the procedure of applying a group operator of the form
Cld - X" e X~

(for some 2 < r < n —1 and a certain constant C € F,) as an elementary opera-
tion, then Z, is the composition of 2! such elementary operations by definition. In
particular, we need to apply such elementary operations 27~2~" times in the proof
of Proposition 4.7.25. Such complexity is hidden in the inductive definition of Z,
forl1 </¢<n-—2.

We write g for Z:,:ll a; to lighten the notation.

LEMMA 4.7.36. — Given a Jacobi sum Sk ,, we have
Xﬁ,kl,n hd SE,wo = (_l)klyn-HSE',wo’

where k' = (ki ;) satisfies ky ,, =0 and k; ; = k; ; otherwise.

Proof. — This is a special case of Lemma 4.1.6 when ag = 5 and m = k; ,,. O

From now on, whenever we want to view the notation pg° as a weight, namely to

fix a lift of pg°® € X(T)/(p — 1) X (T) into X°®(T), we always mean
po® =(ao+p—1,an_2,...,a1,an_1 —p+1) € X(T).
In particular, we have
(L) py® +pB=p"

We recall the operators X;li from the beginning of Chapter 4.

LEMMA 4.7.37. — For 1 <r <n—1, we have the following equalities on HO(ug°),=:
Xpp=—X55

forall1<k<p-1.
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Proof. — Note that we have
,U,go — (,u* +k/3) = ([ao — an_l]l +n— 2 — k,O,...,O,k— ([ao — an_l]l +n — 2))
Therefore py® — (u* + kB) ¢ > ocor Lo as long as k > [ag — an—_1]1 + 71 — 2.

As (an-1,...,a0) is assumed to be n-generic in the lowest alcove throughout this
section, we deduce that
(4.7.38) po® — (1" + kpB) ¢ Z Zsoo for all k > p— 1.

aedt

Note by the definition (4.0.1) that the image of XZ{% lies inside HO(p°),+xg, which
is zero by (4.7.38) assuming k > p — 1. Hence we deduce that

Xg{i =0on H(uy°),~ forall k >p—1.
Then the conclusion of this lemma follows from the equality (4.1.5). O
We have a natural embedding H°(ug®) < o by the definition of algebraic induc-
tion and parabolic induction. Recall that we have defined U; in Example 4.1.18.
LEMMA 4.7.39. — We have
Fp[Sit wyvo] = HO(ug°)x.

In particular,

VEC H(ug").
Proof. — It follows from Corollary 4.5.5 that

dimp, HO(u°)0! = 1,

and this space is generated by v?ilg_l} ¢ Where
(4.7.40) mt = (mf,. .. 7m£b—1) :=(0,...,0,[ap — an—1]1 + n — 2).

We now need to identify the vector v?l ;, with certain linear combination of

g
"_1}7m
Jacobi sums. Note that by Corollary 4.5.5 we have

n—2
[ag—an,1]1+n—2D£a0*an72]1 H D?n—i*an—i—l.

i=2
Given a matrix A € G(F,), then D;(A) # 0 for all 1 <i <n —1 if and only if

A € B(F,)woB(F)),

alg _ Pan—1—p+l nar—ao—n+2
v{nfl},mﬂ - Dnn anl (

D{n—l},n—l)

and thus the support of v?:f_l}’mﬁ is contained in B(F,)woB(F)). As a result, accord-

ing to Proposition 4.1.12, we know that v?:f_l} ¢ 18 @ linear combination of vectors
of the form B

S&,wO'UO-

MEMOIRES DE LA SMF 173



4.7. A NON-VANISHING THEOREM 115

As v?ilg 1},m? is U;-invariant, and in particular U1 (Fp)-invariant, then by Proposi-
tion 4.1.25 we know that it has the form
(4.7.41) > CiSkup o,

k

where we sum over tuples k satisfying k1, = [ap — an—1]1 +n—2, k1 j=0o0rp—1
for2<j<n—-landk;; =0forall2<i<j<n,and Cy € F, is a certain constant
for each tuple k.

Finally, note that

! - - - — —
Uﬂ(t) U?"g—l]nm” :DZn—1 P-‘rlDzl_lao n+2(D{n—1},n—1+tDn—1)[ao an_1]1+n—2

n—2
. Dgaofanfzh H D?n*iia’nf’ifl
i=2
is a polynomial of ¢ with degree [ag — an—1] + n — 2, we conclude that

alg alg _ _alg
B.lao—an_1]1+n—2 U{n 1}mt = Y{n—1},0
where 0 is the (n — 1)-tuple with all entries zero.
By Lemma 4.7.37 and the fact that
al U(F:D)7 o0
Fplv {ng 1}, 0] Fp[S0,uw,v0] = 7o fo,

we deduce that
1
XB,[ao—an,1]1+n—2 ’U?ng_l}wmﬁ = ClSva()vO
for some constant C’ € F;. By Lemma 4.7.36 and the linear independence of Jacobi

sums proved in Proposition 4.1.12, we know that only the vector CysSys ,,,v0 can
appear in the sum (4.7.41). In other words, we have shown that

1
Vin—1ymt = Okt wov0
for some constant C” € F, and thus we finish the proof. O

LEMMA 4.7.42. — The dual Weyl module H® () is uniserial of length two with socle
F(ug®) and cosocle F(u*).

Proof. — By [43] Proposition II 2.2 we know that socg (H®(pg)) is irreducible and
can be identified with F(ug’o) (which is in fact the definition of F (,uf]“‘))) Therefore it
suffices to show that H%(ug°) has only two Jordan-Hélder factor F(ug®) and F(u*),
each of which has multlphclty one.

By [43] II 2.13 (2) it is harmless for us to replace H%(ug°) by the Weyl module
V(1g®) (defined in [43] II 2.13 ) and show that V(up®) has only two Jordan-Hélder
factor F'(p5°) and F'(u*) and each of them has multiplicity one. As

p < < ,(Z“a@)> < 2p;
0 < <u0 (02 )Y > < B
0 < ("S5 e)Y) < p

SOCIETE MATHEMATIQUE DE FRANCE 2022



116 CHAPTER 4. LOCAL AUTOMORPHIC SIDE

we deduce that the only dominant alcove lying below the one containing ug® is the

lowest p-restricted alcove. In particular, the only dominant weight which is linked to

and strictly smaller than pg® is u*.

By [43] Proposition II 8.19, we know the existence of a filtration of subrepresenta-
tion
V(kg®) 2 Vilug®) 2 -+
such that the following equality in Grothendieck group holds
> Viug©) = F(u*).
i>0
This equality implies that
Vi(pg®) = F(u")
and
Vi(po®) =0 for all § > 2.
By [43] II 8.19 (2) we also know that

Vi(pg®)/Vi(ug®) = Fug®),

and thus we have shown that

V(ug®) = Fpg®) + F(u")
in the Grothendieck group. U

PROPOSITION 4.7.43. — We have
Vi = H(u5").

Proof. — By Lemma 4.7.42, we have the natural surjection
H°(py°) — F(u*)
which induces a morphism

H (45 = F(1") .-
wo

Now we consider H 0(u0 ) as a L;-representation where Ly = G,, x GL,_; is the
standard Levi subgroup of G which contains U; as a maximal unipotent subgroup.
We denote the set of A € X(T') which is dominant while viewed as a weight of L;
by Xz, (T)+. Then we use the notation H} (X) for the dual Weyl module of L; which
is defined via the same way as the dual Weyl module of G determined by a weight
in X(T)4 (cf. the beginning of Chapter 4). The dual Weyl module H°(ug°) is the
mod p reduction of a lattice Vz, in the unique irreducible algebraic representation
Vq, of G such that (Vgp)uwo # 0. As the category of finite dimensional algebraic

0
representations of L; in characteristic 0 is semisimple, Vq, decomposes into a direct
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sum of characteristic 0 irreducible representations of L;. More precisely, we have the
decomposition

Vo, ,,= B mav),
AeXr, (T)+
(Vap)yt#0

where Vi, ()\) is the unique (up to isomorphism) irreducible algebraic representation
of Ly such that (VLI()\)Ul)A # 0 and

my = dimq, (Vg;))\

Therefore in the Grothendieck group of algebraic representations of L; over F,, we
have

(4.7.44) Hug ), = D malHL )]
AGXqu)‘F
HO () #0

as by Corollary 4.5.5 H°(ug° )U1 is the mod p reduction of VZUP1 and VZUP1 ®z,Qp = Vgpl

We use the notation WXt for the affine Weyl group associated with the group L;.
We say that

:u'* TLl A
if there exists @ € WLt such that
A=w-p* and p* <A

Assume that there exists a A € X, (T); such that u* T, A and that HO(ug° )?1 # 0.

We denote by v?:f_l})m the vector in HO(pug®° )Yl + (l given by Corollary 4.5.5. We
note that by Corollary 4.5.5 the vector in Ho(pgo)gﬁ is U?lf_l}ﬂu (see (4.7.40)).

As p* T, A, we must firstly have 2?2—11 m; = [ag — an—1]1 + n — 2. By the last
statement in Corollary 4.5.5, we have

(4.7.45)

n—1
A= <a0+p—1—Zmi,an_g—kml,...,al + Mp_2,0n_1 —p—|—1+mn_1)

i=1

= (an-1—n+2,a,2+m1,...,01 +Mp_2,an_1 —p+1+m,_1).

Recalln = (n—1,n—2,...,1,0). We notice that u* — lies in the lowest p-restricted
L1-alcove in the sense that

(4.7.46) 0<(u*,a) <pforalac®],

where <I>j§1 is the set of positive roots of L; naturally viewed as a subset of ®.
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As we assume that (a,—1,...,aq) is n-generic, it is easy to see the following

an—2+m1—(an-1 —=p+1+mp_1) <p+1+a,-2—a,—1+mi <2p;
An—2+mi — (a1 + Mp_2) < an_a+mi — a1 < [ag — a1)1 < p;

An—3+mg — (an_1 —p+1+mp_1) < [an—3 — Gn_1]1 + M2 < [an—2 — an_1]1 <D,

so that we know that A — 7 lies in either the lowest L;-alcove in the sense of (4.7.46)
(if we replace u* by A) or the p-restricted L;-alcove described by the conditions

p < </\7 (Z?:}l ai> V> < 2p
0 < <>\, (Z;‘;j ai>v> < p
0 < <>\, (Z;:; ai> v> < p

0<(\aYy<pforalla € Ap,

and

where Ay, :={a; | 2 <i<n—1} is the set of simple positive roots in @2‘1.
In the first case, if A — 7 lies in the lowest Li-alcove, as we assume that p* Ty A,
we must have A = p*; in the second case, we must have

n—1

A= (2an)'ﬂ*+P<Zai> = (an—1—n+2,a0 +p,an_3,...,01,0p_2 +n—2—p)
i=2

which means by (4.7.45) that
m = (mla s 7mn—1) = ([a() - an—?]l + 170a s 70aan—2 —Qp—1+Nn— 3)

This implies a,_9 — a,-1 +n —1 = m,_1 > 0, which is a contradiction to the
n-generic assumption on (a,_1,...,aq). Therefore we must have A\ = p*. Hence we
deduce by (4.7.44) and the strong linkage principle [43] IT 2.12 (1) that FL1(u*) (see
the beginning of Chapter 5 for notation) has multiplicity one in JHf (H 0(,u6”°)|f1)
and is actually a direct summand.

On the other hand, as FL1(u*) is obviously an L;-subrepresentation of F(u*),
we know that the surjection of G-representation H(ug°) — F(u*) induces an iso-
morphism of L;-representation on the direct summand F*!(u*) on both sides with
multiplicity one, by restriction from G to L. In particular, we know that the map

U *
H ()t — F(u")ur
is a bijection, and therefore the composition
Ve HO(ug®) — F(u*)
is non-zero as

wo\U 1
HO(“OO)gl = Fp[“?f_”’mﬁ] = Fp[SEﬁ,wOUO]
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by Lemma 4.7.39. Hence we obtain a surjection
(4.7.47) Vi F(u"),
which implies that the injection

vt B0

must be an isomorphism as it induces surjection on cosocle according to Lemma 4.7.42
and (4.7.47). The proof is thus finished. O

THEOREM 4.7.48. — Assume that (an—1,...,a0) is n-generic in the lowest alcove (cf.
Definition 4.1.1). Then H°(ug®) C Vo. In particular, we have

F(u) € JH(Vo).
Proof. — The first inclusion is a direct consequence of Proposition 4.7.43 together

with Corollary 4.7.29. The second inclusion follows from the first as we have
F(u*) € JH(H(13")). O

Before we end this section, we need several remarks to summarize the proof, and
to clarify the necessity for all the constructions.

REMARK 4.7.49. — If we assume that forall 2 < k <n —2
(4.7.50) [ap — an—1]1 +n —2 < ax, — ag—_1,
then we can actually show that
S0,y V0 € HO ()10
using Corollary 4.1.24 and the case s = n — 1 of Proposition 4.5.2, and thus
Vo=H O(NSJO)-
Moreover, under the condition (4.7.50), we can even prove that the set
{Skwnto | & € Aoy}

forms a basis for HO(pg°) -
On the other hand, if we have

[0 — an-1]1+n —2 > ar — ax—1
for some 2 < k < n — 2, then we can show that
F(pgt™) € JH(V)
which means that the inclusion
H(15°) € Vo

is actually strict.

In fact, through the proof of Proposition 4.7.25, the subrepresentation of my gen-
erated by Sy, vg is shrinking if r is fixed and s is growing. Therefore the subrepre-
sentation of Ty generated by S t,~vo shrinks as r decreases. Finally, we succeeded in
shrinking from Vj to V¥ which can be identified with H°(ug®).
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REMARK 4.7.51. — We need to emphasize that the choice of the operators X and
X, for 2 <r <n—1 are crucial. For example, the operator

>t wgug, (H)wo € Fp[G(F,)]

teF,
for some 2 < r < n — 2 does not work in general. The reason is that, as one can check
by explicit computation, applying such operator to Sgy,vo for some k € A, will
generally give us a huge linear combination of Jacobi sum operators. From our point
of view, it is basically impossible to compute such a huge linear combination explicitly
and systematically. Instead, as stated in Proposition 4.6.20, our operators X% and X~
can be computed systematically, even though the computation is still complicated.

The motivation of the choice of operators X% and X~ can be roughly explained
as follows. First of all, we need one ‘weight raising operator’ X+ and one ‘weight
lowering operator’ X ~. These are two operators lying in a subalgebra F,(X*, X ™)
of F,[G(F,)] such that
F, (X", X") = F,[GL(F,)].

We start with the vector S .,,vo for some k € A,,,. We apply the operator X~ once
and then X™T once, the result is a vector with the same T'(F,)-eigencharacter u*.
We observe that Sk .,vo is in general not an eigenvector of the operator X+ e X~
because the representation g, after restricting from F,[G(F,)] to F (X1, X ™), is
highly non-semisimple. The naive expectation is that we just take the difference

XTeX o Sk, w0 — €Sk,w,V0
for some constant ¢ € F,, and then repeat the procedure by applying some other
operators similar to X+ and X .
The case n = 3 is easy. In the case n = 4, the operator
> P 2woa, ()wo € Fy[GL4(F,)]
teF,

is not well behaved as we explained in this remark, and therefore we are forced to use
our X, to replace 35, cp 7~ *wola, (t)wo.

Now we consider the general case, and it is possible for us to carry on an induction

step. We have an increasing sequence of subgroups of G

Py S Piian-13 S-S Ppan-1
and

f{nfl} - f{n72,n71} G- G z{2,..‘,n71}
where ?{r,...,n—l} is the standard parabolic subgroup corresponding to the simple
roots ay for r < k < n — 1 and f{r’wn,l} is its standard Levi subgroup. Tech-
nically speaking, constructing the vector Sys.r+1 ,,,v0 (for some 1 < r < n —2)
from Sjo ,,,vo should be reduced to Corollary 4.7.29 when we replace G by its Levi
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subgroup f{r+1,_“7n_1}. In other words, to construct Sysr+1
only need the operators

X Xy €FplLirya -1} (Fp)] € FplLirsn, 1) (Fp)]
forallr+2<k<n-1.
In order to construct Sys.r ,, vo from Sys.r+1,, v0, we only need to prove Proposi-
tion 4.7.25. Then we summarize the proof of Proposition 4.7.25 as the following: for
some a € Ff and b € F,

w0 from Spo , vo we

XhieX e Sptra=1 4,00 = @Sptrs 4o V0 + bSgtra—1 4, Vo + error terms

and the error terms can be killed by combinations of the operators X,j Xy
forr+2<k<n-—1.

4.8. Main results in characteristic p

In this section, we summary our main results on certain Jacobi sum operators in
characteristic p.

We recall two important Jacobi sum operators S,, and S;, from (4.4.18) and recall
from (4.7.3) that Vj is the sub-representations of my generated by

SEO 0o (ﬂ_g(Fp)vlLO) .

We also define V; and VY as the sub-representations of my generated by
Sn <W((]](Fp)>l1«1> and 8711 (ﬂ_(()](FP)vﬂll)

respectively.

The following theorem, which we usually call the non-vanishing theorem, is a tech-
nical heart on the local automorphic side. The proofs of this non-vanishing theorem
as well as the next theorem, which we usually call the multiplicity one theorem, have
occupied the previous sections.

THEOREM 4.8.1. — Assume that (ap—1,...,aq) is n-generic in the lowest alcove.
Then we have
Vi=V/ =W
and
F(u*) € JH(Vo).

Proof. — This is an immediate consequence of Corollary 4.4.19 and Theorem 4.7.48.

O
We also have the following multiplicity one result.
THEOREM 4.8.2. — Assume that (an—1,...,a0) is 2n-generic in the lowest alcove.
Then F(u*) has multiplicity one in .
Proof. — This is a special case of Corollary 4.3.9: replace p2"~1 with u*. O
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COROLLARY 4.8.3. — Assume that (ap—1,...,a0) is 2n-generic in the lowest alcove
and that 7 is an Og-lattice in 7§ ®o, E such that

socq(r,) (T ®o, F) = F(u").
Then we have
Sn ((T R0k F)U(FP)”“) #0 and S, ((T Qo F)U(FP)’”'l) # 0.
Proof. — Such a 7 is unique up to homothety by Theorem 4.8.2. By multiplying a
suitable power of wg, we may assume that
7o C 7 and 7y € wr,
and thus we have a non-zero morphism
T —= T Qo F

whose image is the unique quotient of 7y with socle F(u*). We now finish the proof
by applying Theorem 4.8.1. O

REMARK 4.8.4. — Theorem 4.8.1 and Corollary 4.8.3 can be generalized to the case
when p* is replaced by any weight lying sufficiently deep in an arbitrary p-restricted
alcove except the highest one. The crucial points here are the [U(F)), U(F,)]-invari-
ance of S, (resp. S},) and that 7 (in Corollary 4.8.3) is one of the simplest lattices
of 7§ ®o, E apart from those coming from parabolic inductions from B(F,).
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CHAPTER 5

MOD p LOCAL-GLOBAL COMPATIBILITY

In this chapter, we state and prove our main results on mod p local-global compat-
ibility, which is a global application of our local results of Chapters 3 and 4. In the
first two sections, we recall some necessary known results on algebraic automorphic
forms and Serre weights, for which we closely follow [25], [39], and [1].

We first fix some notation for the whole chapter. Let P O B be an arbitrary
standard parabolic subgroup and N its unipotent radical. We denote the opposite
parabolic by P~ := woPwqy with corresponding unipotent radical N~ := woNwy. We
fix a standard choice of Levi subgroup L := PN P~ C G. We denote the positive
roots of L defined by the pair (BN L,T) by ®F. We use

Xp(T); = {A € X(T) | (\,a") >0 for all & € &7}

to denote the set of dominant weights with respect to the pair (BN L,T). We denote
the Weyl group of L by W and identify it with a subgroup of W. The longest
Weyl element in WL is denoted by wl. We define the affine Weyl group WZL of L as
the semi-direct product of W% and X (T) with respect to the natural action of Wt
on X (T). Therefore WE has a natural embedding into W. We define the groups G,
P, L, ... to be the base change of G, P, L, ... to F,, respectively.

We also need to define several open compact subgroups of L(Q,). We define

Kb = L(Zy),
and via the mod p reduction map
red” : K = L(Z,) - L(F,)
we also define KZ(1), I*(1), and I'” as follows:
KE(1) i= (red") (1) € I(1) = (red”) " (U(F,) 1 L(F,))
C I":= (red") " (B(Fy) N L(F,)).
For any dominant weight A € X (T')4, we let

HY(\) = (Ind

alg
L
= =W, )\)
BNL ™0 JF

I4
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be the associated dual Weyl module of L. We also write FL()) := socy (H2(A)) for
its irreducible socle as an algebraic representation of L. Through a similar argument
presented at the beginning of Chapter 4, the notation FZ()) is well defined as an
irreducible representation of L(F,) if A € T'(F,) is p-regular, namely lies in the
image of X|°®(T) — X(T)/(p—1)X(T). We will sometimes abuse the notation FL())
for FX(\) @, F or FZ(X) for F¥(\) ®F, F) in the literature. We will emphasize the
abuse of the notation F'*()) each time we do so.

We introduce some specific standard parabolic subgroups of G. Fix integers iy and
jo such that 0 < jo < jo+1 < ig <n—1, and let ¢; and j; be the integers determined
by the equation
(5.0.1) o+t =Jo+j1=n—1
We let P;, j, O B be the standard parabolic subgroup of G = GL,, corresponding
to the subset {ax | jo+1 < k < ip} of A. By specifying the notation for gen-
eral P to P;, j,, we can define P, ; , L;, j,, Ni, j, and N; ;. We can naturally embed

11,517

GLj, —;,+1 into G with its image denoted by G;, ;, such that L;, ;, = G;, ;,T:

Gle—i1+1 = Gil»jl = Ly j, = Py j, = G.

We define T;, ;, to be the maximal tori of G;, ;, that is contained in T, and define
X (T3, j,) to be the character group of T, ;,. If 41 and j; are clear from the context (or
equivalently ¢y and jo are clear) then we often write P, P~ L, N, and N~ for P;, ;,
P . L, N; and N, ., respectively.

11,J1° 1,717 91,71

5.1. The space of algebraic automorphic forms

Let F/Q be a CM field with maximal totally real subfield F*. We write c¢ for the
generator of Gal(F/F*), and let S/ (resp. S,) be the set of places of F* (resp. F)
above p. For v (resp. w) a finite place of F'* (resp. F') we write k, (resp. k) for the
residue field of Ff (resp. F,).

From now on, we assume that

— F/F7 is unramified at all finite places;

— p splits completely in F'.
Note that the first assumption above excludes F'+ = Q. We also note that the sec-
ond assumption is not essential in this section, but it is harmless since we are only
interested in Gq,-representations in this paper. Every place v of FT* above p further
decomposes and we often write v = ww® in F'.

There exists a reductive group G, p+ satisfying the following properties (cf. [1],
Section 2):

— G, is an outer form of GL,, with G,,/r & GLy,F,

— @G, is a quasi-split at any finite place of F't;

— Gn(F}) ~ U, (R) for all v|oo.
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5.1. THE SPACE OF ALGEBRAIC AUTOMORPHIC FORMS 125

By [17], Section 3.3, G, admits an integral model G, over Op+ such that
Gn X0, OF,T is reductive if v is a finite place of F* which splits in F. If v is
such a place and w is a place of F' above v, then we have an isomorphism

tw : Gn(Op+) = Gu(OF,) = GL4(OF, ).

We fix this isomorphism for each such place v of F'*.

Define F,\ := Ft®qQ, and Op+ ;, := Op+ ®zZy. If W is an Og-module endowed
with an action of G,(Op+,) and U C Gn(AR") X Gn(OF+,) is a compact open
subgroup, the space of algebraic automorphic forms on G,, of level U and coefficients
in W, which is also an Og-module, is defined as follows:

SWUW) :={f: Gu(F)\Gn(AZ:) = W | f(gu) =u, ' f(9) V g € Go(AR:),ue U}
with the usual notation v = uPu, for u € U.
We say that the level U is sufficiently small if
t T G (FINTU

has finite order prime to p for all ¢t € G (A%, ). We say that U is unramified at a
finite place v of F't if it has a decomposition

U = Gn(Ops )U"

for some compact open U¥ C G,(A:"). If w is a finite place of F', then we say, by
abuse of notation, that w is an unramified place for U or U is unramified at w if U is
unramified at w|,, -

For a compact open subgroup U of G,,(A%}") X Gn(Op+ ), we let Py denote the
set consisting of finite places w of F' such that

— w|,, is split in F,
—w ¢ Sp)
— U is unramified at w.

For a subset P C Py of finite complement and closed with respect to complex con-
jugation we write T? = O] I(Ul), w € P,i € {0,1,...,n}] for the universal Hecke
algebra on P, where the Hecke operator Tg) acts on S(U, W) via the usual double

coset operator
1d; 0
~1 | GL,(Op,) | ““ GL.(OR,)|
Lw [ ©Or) | o) GLa(OR)

where w,, is a uniformizer of Op, and Id; is the identity matrix of size . The Hecke
algebra T% naturally acts on S(U, W).

Recall that we assume that p splits completely in F. Following [25], Section 7.1

we consider the subset (Z’_f_)g” consisting of dominant weights ¢ = (a, ). where
Ay = (01,0, 02,1, - - -, On ) Satisfying
(511) Qi w + Ap41—iwe = 0
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for allw € S, and 1 <4 < n. We let
Wﬂw = Mll (OFw) ®Opw OEa

where M, (OF,) is the OF,-specialization of the dual Weyl module associated
to a, (cf. [25], Section 4.1.1); by condition (5.1.1), one deduces an isomor-
phism of gn((’)Fj )-representations W, o1y, = W, . 0 tye. Therefore, by letting
W,, =W, o, for any place w|v, the Op-representation of G, (Op+ ;)

Wy = Q W,
v|p
is well-defined.

For a weight a € (Zﬁ)g”7 let us write S4(Q),) to denote the inductive limit of the
spaces S(U,W,) ®o, Q, over the compact open subgroups U C Gn(AZ") x Gn(Op+ ).
(Note that the transition maps are induced, in a natural way, from the inclusions
between levels U.) Then S,(Q,) has a natural left action of Gn(A%,) induced by
right translation of functions.

We briefly recall the relation between the space A of classical automorphic forms
and the previous spaces of algebraic automorphic forms in the particular case which
is relevant to us. Fix an isomorphism 2 : Qp 5 C for the rest of the paper. As we did
for the OF, -specialization of the dual Weyl modules, we define a finite dimensional
Gn(F* ®q R)-representation o, = @D, |0 a, With C-coefficients. (We refer to [25],
Section 7.1.4 for the precise definition of o,.)

LEMMA 5.1.2 ([25], Lemma 7.1.6). — The isomorphism 1 : Q, = C induces an iso-
morphism of smooth G, (A¥,)-representations

SQ(Qp) ®6p71 C - HomGn(F+®QR) (UZ7 A)
for any a € (Z’j_)gp.
The following theorem guarantees the existence of Galois representations attached

to automorphic forms on the unitary group G,,. We let | |1;n FX — 6: denote the
whose composite with ¢ : Qp 5 C takes positive values.

|1—n

unique square root of |

THEOREM 5.1.3 ([25], Theorem 7.2.1). — Let IT be an irreducible G, (A%, )-subrepre-

sentation of S,(Q,)-
Then there exists a continuous semisimple representation

rg: Gp — GLn(Qp)
such that
(i) rg@e™t =2y,
(ii) for each place w above p, the representation TH|GFw is de Rham with Hodge-Tate
weights

HT(rp )={a1,w+n—1),a2,+(n—2),...,80u};
GF,
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(iii) if w|p is a place of F and v := w| ., splits in F, then

1—n

WD(rm|, )P = rec((Myo15h) ®] | F).

We note that the fact that (iii) holds without semi-simplification on the automor-
phic side is one of the main results of [13]. We also note that property (iii) says that
the restriction to G, is compatible with the local Langlands correspondence at w,
which is denoted by rec,,,.

5.2. Serre weights and potentially crystalline lifts

In this section, we recall the relation of Serre weights and potentially crystalline
lifts via (inertial) local Langlands correspondence.

DEFINITION 5.2.1. — A Serre weight for G, is an isomorphism class of an irreducible
smooth F,-representation V of G,, (OF+ p). If v is a place of F'* above p, then a Serre
weight at v is an isomorphism class of an irreducible Fp—smooth representation V,,
of G, (Opy+). Finally, if w is a place of I above p, a Serre weight at w is an isomorphism
class of an irreducible F,-smooth representation V,, of GL,(OF, ).

We will often say a Serre weight for a Serre weight for G, if G, is clear from the
context. A smooth representation defined over a finite extension of F,, is often called
a Serre weight if it is absolutely irreducible. Note that if V, is a Serre weight at v,

there is an associated Serre weight at w above v defined by V, ot

As explained in [25], Section 7.3, a Serre weight V' admits an explicit description in
terms of GL,,(k,, )-representations. More precisely, let w be a place of F above p and
write v := w| .- For any n-tuple of integers a,, := (@1,w,a2,u;- -, 0n,w) € Z7, that
is p-restricted (i.e., 0 < @i — Giy1,0 <p—1fori=1,2,...,n—1), we consider the
Serre weight F(a,,) := F(a1,w,02,w,---,0n,w), as defined in [25], Section 4.1.2. It is
an irreducible F-representation of GL, (k) and of G, (k,) via the isomorphism ¢,,.
Note that F(a1,uw,02,u;- - 0nw)” 0 bwe = F(@1,0,02 05 - -3 Gnow) © Ly aS G (ky)-Tep-
resentations, i.e., F(@y.c) © Lye = F(a,,) © by if @i + Gnip1—jwe =0 forall 1 <i <mn.
Hence, if a = (a,,)w € (Z’_’F)g" that is p-restricted, then we can set F, := F(a,,) 0 tw

for w|v. We also set
Fy = QF,,
vlp
which is a Serre weight for G,(Op+ ;). From [25], Lemma 7.3.4 if V is a Serre weight

for G,,, there exists a p-restricted weight a = (a,,)w € (Zﬁﬁ)g ? such that V has a decom-
position V = @V, where the V,, are Serre weights at v satisfying V, 01! = F(a,).
v|p
Recall that we write F for the residue field of E.
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DEFINITION 5.2.2. — Let 7 : Gp — GL,(F) be an absolutely irreducible continuous
Galois representation and let V' be a Serre weight for G,,. We say that 7 is automorphic
of weight V' (or that V is a Serre weight of T) if there exists a compact open subgroup U
in G,(AR"?) x G,(Op+ ;) unramified above p and a cofinite subset P C Py such
that 7 is unramified at each place of P and
S(U’ V)m? 7& 07
where my is the kernel of the system of Hecke eigenvalues @ : T? — F associated
to 7, i.e.,
det (1 — 7 (Froby)X) = 3 (~1)? (N pyq(w)) Da(T)) X7
=0
for all w € P.

We write W (T) for the set of automorphic Serre weights of 7. Let w be a place of F
above p and v = w| _, . We also write W, (7) for the set of Serre weights F'(a,,) such
that

(F(ay) © tw) ® ® Vi | € W(T),
v €S \{v}
where V), are Serre weights of G, (O~ ) for all v’ € St \{v}. We often write W (
and W, (F|G ) )
Fay
restriction of an automorphic representation 7 to G, .

Fix a place w of F' above p and let v = w|,, - We also fix a compact open sub-
group U of G,(AZ") x G,(Op+ ;) which is sufficiently small and unramified at all
places above p. We may write U = G,(Op+) x UY. If W' is an Op-module with an
action of Hv'esj\{u} gn(OFJ), we define

S(U, W' = lim sSwr-u,,w)

Uy

|, )

Gry

for W(7) and W, (7) respectively, when the given 74 is clearly a
Fy

where the limit runs over all compact open subgroups U, of Qn(OFj), endow-
ing W' with a trivial G, (Of+)-action. Note that S(U",W’) has a smooth action
of G,(F,") (given by right translation) and hence of GL,,(F,,) via t,. We also note
that S(U?,W’) has an action of T” commuting with the smooth action of G, (F,"),
where P is a cofinite subset of Py.

LEMMA 5.2.3 ([25], Lemma 7.4.3). — Let U be a compact open subgroup of
Gn(AF?) x Go(Op+ ) which is sufficiently small and unramified at all places
above p, and P a cofinite subset of Py. Fiz a place w of F' above p and let v = w|,. -
Let V = ®v'esp+ Vi be a Serre weight for G,. Then there is a natural isomorphism
of TP -modules

Homgn(@F;r) vy, sS(uv,v")) = S(U,V),

where V' := ®U,€S;r\{v} Vir.
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We now recall some formalism related to Deligne-Lusztig representations from Sec-
tion 4.2. Let w be a place of F' above p. For a positive integer m, let ky m/ky be
an extension satisfying [ky,m : kw] = m, and let T be an F-stable maximal torus
in GLy, /i, where F is the Frobenius morphism. We have an identification from [38],
Lemma 4.7

T(ku) < [T K,
J

where n > n; > 0 and Ej n; = n; the isomorphism is unique up to Hj Gal(kw,n, /kw)-
conjugacy. In particular, any character 6 : T(k,,) — Q: can be written as § = ®,0;
where 0; : kj , — 6; is a character.

Given an F-stable maximal torus T and a primitive character 6, we consider the
Deligne-Lusztig representation RY. of GL,, (k) over Qp defined in Section 4.2. Recall

from Section 4.2 that ©(6;) is a cuspidal representation of GL,, (k) associated to
the primitive character 0;, we have

~Y n—r GLn kw
R§ = (-1)"" - Ind5 ) (2,;0(6)))

where P, is the standard parabolic subgroup containing the Levi [ ] j GL,; and 7 de-
notes the number of its Levi factors.

Let Fy = W(kw,m)[%] for a positive integer m. We consider §; as a character
on O;wmj by inflation and we define the following Galois type rec(f) : Ir, — GLA(Q,)

as follows:

rec(f) = U(G-OArt_l ) ,
v 16:91 aeGal(g?nj/kw) ’ fon
where §; is a primitive character on k,jmj of niveau n; for each j = 1,...,7r. Re-
call that Artp, . : FJ, — WI‘%ZM is the isomorphism of local class field theory,
normalized by sending the uniformizers to the geometric Frobenii.
We quickly review the inertial local Langlands correspondence. Recall that we write

recq, for the local Langlands correspondence for GL,(Q,) (cf. Theorem 5.1.3).

THEOREM 5.2.4 ([14], Theorem 3.7 and [48], Proposition 2.3.4). — Let
T:1q, — GLn(Qp) be a Galois type. Then there exists a finite dimensional ir-
reducible smooth Qp-representation o(1) of GLy(Z,) such that if 7w is any irreducible

smooth Qp-representation of GL,(Qy) then T a1, @ contains a unique copy of o(T)
n{4p

)
as a subrepresentation if and only if recq, (7r)|I =7 and N =0 on recq, (7).
Qp

Moreover, if T = EB§=1 7; and the T; are pairwise distinct, then o(T) = RS
and T =rec(d) for a mazimal torus T in GL, g, and a primitive character
—X
0:T(Fp) —Q, .
The following theorem provides a connection between Serre weights and potentially
crystalline lifts, which will be useful for the main result, Theorem 5.6.3.
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THEOREM 5.2.5 ([48], Proposition 4.2.5). — Let w be a place of F above p, T a
mazimal torus in GL, , , 0 = ®§=1 0; : T(ky) — 6: a primitive character such
that 8; are pairwise distinct, and V,, a Serre weight at w for a Galois representation
7: Gp — GL,(F).

Assume that V,, is a Jordan-Hdélder constituent in the mod p reduction of the
Deligne-Lusztig representation RS of GLy(ky). Then ?|GF has a potentially crys-

talline lift with Hodge-Tate weights {—(n—1),—(n—2),... ,6} and Galois type rec(6).

For a given automorphic Galois representation 7 : Gp — GL,(F), it is quite
difficult to determine if a given Serre weight is a Serre weight of 7. Thanks to the
work of [1], we have the following theorem, in which we refer the reader to [1] for the
unfamiliar terminology.

THEOREM 5.2.6 ([1], Theorem 4.1.9). — Assume that if n is even then so is "[FTW,
that {, ¢ F, and that T : Gp — GL,(F) is an absolutely irreducible representa-
tion with split ramification. Assume further that there is a RACSDC automorphic
representation I1 of GL,(AF) such that

— T~ FH,‘

— For each place w|p of F, 1| is potentially diagonalizable;
Fy

— T(GF(,)) is adequate.

Ifa=(ay)w € (Z’j_)g” and for each w € Sp, Tl has a potentially diagonalizable
F.

crystalline lift with Hodge-Tate weights {a1 4, + (n z 1),a20+ (M —2),...,800-1,w +
1,an,w}, then a Jordan-Hélder factor of W, ®z, F is a Serre weight of 7.

5.3. Weight elimination and automorphy of a Serre weight

In this section, we state our main conjecture for weight elimination (Conjec-
ture 5.3.2) which will be a crucial assumption in the proof of Theorem 5.6.3. We also
prove the automorphy of a certain obvious Serre weight under the assumptions of
Taylor-Wiles type.

Throughout this section, we assume that p, is always a restriction of an auto-
morphic representation 7 : G — GL,(F) to Gg, for a fixed place w above p and
is generic (cf. Definition 3.0.3). Recall that for 0 < jo < jo+1 < g < n—1 we
have defined a tuple of integers (r:°7°, ... rio7° 7lo79) in (3.7.1), which determines
the Galois types as in (1.1.2). In many cases, we will consider the dual of our Serre
weights, so that we define a pair of integers (i1, j1) by the equation (5.0.1). We also
let

by == —Cn_1-k
for all 0 < k < n — 1. We will keep the notation (i1, j1) and by for the rest of the
paper.
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For the rest of this section, we are mainly interested in the following characters
of T(F,): let

i = (bur, ., bo)

and
u‘:l,ihjl = (yn—l)yn—Q?" ~,y17y0)’
where
Yy =14 by, —ji+i+1 ifj=j;

bj, +j1—41—1 if j=1;.
As P, is generic, each of the characters above is p-regular and thus uniquely determines
a p-restricted weight up to a twist in (p — 1)Xo(T), and, by abuse of notation, we
write g, pBi71 for those corresponding p-restricted weights, respectively. We will
clarify the twist in (p — 1) Xo(T") whenever necessary. We also define a principal series
representation

(5.3.1) ﬂ-ihjl — IndG(Fp)

s i
B(F,,)(N 7117]1)100.

We now state necessary results of weight elimination to our proof of the main

results, Theorem 5.6.3, in this paper.

CONJECTURE 5.3.2. — Let
representation with F|G
F,

7 : Gp — GL,(F) be a continuous automorphic Galois
>~ 5, as in (3.0.1). Fiz a pair of integers (ig,jo) such
that 0 < jo < jo+1 < 1ig wg n—1, and assume that p,  ; 1is Fontaine-Laffaille generic
and that p="91 is 2n-generic.
Then we have
Wy (7) N JH((m 7)) € {F (7)Y, F(u=0 )}

In an earlier version of this paper, we prove Conjecture 5.3.2 for n < 5. But our
method is rather elaborate to execute for general n. But Bao V. Le Hung pointed out
that one can prove Conjecture 5.3.2 by constructing certain potentially crystalline
deformation rings, and a proof of the conjecture will appear in our forthcoming pa-
per [47].

Finally, we prove the automorphy of the Serre weight F(u™)Y.

ProOPOSITION 5.3.3. — Keep the assumptions and notation of Conjecture 5.3.2. As-
sume further that if n is even then so is M%W, that §, & F, that7 : Gp — GL,(F) is
an irreducible representation with split ramification, and that there is a RACSDC au-
tomorphic representation I of GL,, (A F) such that

f?’l’?ﬂ,‘

— for each place w'|p of F, |, is potentially diagonalizable;
F

— T(GF,)) s adequate.

SOCIETE MATHEMATIQUE DE FRANCE 2022



132 CHAPTER 5. MOD p LOCAL-GLOBAL COMPATIBILITY

Then
{F(u™)Y} € Wy () N TH((wl)Y).

Proof. — We prove that F(uP)Y = F(cp_1,¢n_2,...,¢c0) € Wy(7) as well as
F(uP)Y e JH((xl7*)V). Note that (cp_1,...,co) is in the lowest alcove as g, is
generic, so that by Theorem 5.2.6 it is enough to show that p, has a potentially
diagonalizable crystalline lift with Hodge-Tate weights {c,—1+(n—1),...,c1+1,¢0}.
Since p, is generic, by [2], Lemma 1.4.3 it is enough to show that p, has an
ordinary crystalline lift with those Hodge-Tate weights. The existence of such a
crystalline lift is immediate by [32], Proposition 2.1.10. On the other hand, we have
F(uP)Y e JH((x7")V which is a direct corollary of Theorem 5.5.4. Therefore, we
conclude that F(uP)Y € W, () N JH((xl7)V). O

Note that Theorem 6.1.2 in [31] also gives an evidence of the modularity of the
Serre weight {F(u")V}, although it treats “global" Serre weights.

5.4. Some application of Morita theory

In this section, we will recall standard results from Morita theory to prove Corol-
lary 5.4.6. We fix here an arbitrary finite group H and a finite dimensional irreducible
E-representation V of H. By Proposition 16.16 in [22], we know that for any Og-lat-
tice V° C V, the set JHp[g](V° ®0, F) depends only on V' and is independent of
the choice of V°, and thus we will use the notation JHgg) (V) from now on where
V = V°®g, F for a randomly chosen V°. We may assume that F is sufficiently large
such that E (resp. its residual field F) is a splitting field of V' (resp. JHp(z(V')). Let
C be the category of all finitely generated Og-modules with an H-action which are
isomorphic to subquotients of Og-lattices in V¥ for some k > 1. Then the irreducible
objects of C are just elements of JHp()(V). If ¢ € JHp(y)(V) has multiplicity one
in V, then there is an Op-lattice V° (unique up to homothety by following the proof
of Lemma 4.4.1 of [26] as it actually requires only the multiplicity one of ¢ in our
notation) such that

cosocy (V7 ®o, F) =o0.

By considering an Og-lattice in the F-dual of V' with the F-dual of ¢ as cosocle and
then taking Og-dual of this lattice, we reach another Og-lattice V, in V, which is
the unique (up to homethety), such that

socy (Vo @0, F) = 0.

By repeating the proof of Lemma 2.3.1, Lemma 2.3.2 and Proposition 2.3.3 in [45],
we deduce the following.

PROPOSITION 5.4.1. — If o has multiplicity one in V, then the lattice V° is a projec-
tive object in C.
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Note that the proof of Proposition 2.3.3 in [45] requires only that the multiplicity

of ¢ in V is one, rather than the much stronger condition that each constituent
of V has multiplicity one.

COROLLARY 5.4.2. — Let ¥ be a subset of JHF[H](V) such that each 0 € ¥ has
multiplicity one in V. If an Og-lattice V° C V satisfies

(5.4.3) cosocy(V° ®p, F) = @ o
oEXD
then we have a surjection

(5.4.4) Pve—ve
ceX

Proof. — By (5.4.3) we have a surjection
Ve — @ o.
oED

By Proposition 5.4.1 we know that €, 5, V7 is a projective object in C. By the
definition of V' we know that there is a surjection

Dv -Do
oED oEY

which can be lifted by projectivity to (5.4.4). O

Note in particular that (5.4.4) implies automatically the surjection

(5.4.5) PV’ ®o, F— V° @0, F.
oeX

COROLLARY 5.4.6. — Let ¥ be a subset of JHg()(V) such that each 0 € X has
multiplicity one in V. If an Og-lattice V, C V satisfies

socy (Vo ®o, F) = @ o

oeX

then we have an injection

Vo ®0, F = @V, ®0, F.
ogEX

Proof. — This is simply the F-dual of (5.4.5). O
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5.5. Generalization of Chapter 4

In this section, we fix a pair of integers (7g, jo) satisfying 0 < jo < jo+1 < ig < n—1,
and determine (i1, 51) by the equation (5.0.1). We will use the shortened notation P
(resp. N, L, P~ ---) for P;, j, (resp. Ni, ji, Liy 4y, i 4,5 ---) as introduced at the

beginning of Chapter 5. Proposition 5.5.13 is crucial for the proof of Theorem 5.6.3.
We assume throughout this section that p%1:91 is 2n-generic (cf. Definition 4.1.1).

We start this section by defining some weights and Jacobi sum operators which
will play a crucial role for our main results, Theorem 5.6.3. Let

Pt = (g, T gy 2y, xg) and pit T = (2w, a2 );
where
bntis— fn—ji+i+1<j<n-1;
bjtjr—is—1 ifiy +2<j<n—ji+iy
gh =9 b -1 i j=iy+ 1
bi, —j1+i1+1 ifj=iq;
L b if0<j<ip—1
and
bjr—1- if0<j<ji—i—2
bj—ji+ir+1 if j1—i1—1<j<ji1—2;
w7 = b +h—ii—1 ifj=jy
biy —j1+i+1 ifj=g — 1
b ifj1+1<j<n-1

We also fix certain two elements in the Weyl group W:
Wi = (5, 34, s e W oand wit = (Sn—jit2- csp) T T ew,
and further define two more weights

117J1)w11 71

poI = (11

A i1,41.7
11,J1,/)w11 71

and 'uihjhl = (u)

More precisely, 1+t and p*71' can be written as follow:

11,J1 — 91,91, _ (] ’ ro
prIt = (X1, Bp—2,...,21,%0) and ptv =(z, _j,z o, ..., 27,10),
where
b; if j > 51 oriq > j;
o — bji4ir+1—j ifj1>7>i1+1;
;=

bj, +j1i—i1—1 ifj=1i+1;
by, —j1i+i1+1 ifj=1
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and
b]‘ if j > j; ori; > j;
Z = by +iy—1—j if j1 —1> 7 >iy;
! bj, +51 —in—1 if j = ji;

by, —j1+i1+1 ifj=74 -1
Note that if we let
W =5, g spi 2 € WE and w Y =5, 4 gy € WE

then we have
(uilyjl )wil’jl — (MDJ‘lJl)wé - (uil,jh/)wil’jl"'

Recall that wl is defined at the beginning of Chapter 5 and that pidt g defined
in Section 5.3.

We now define certain mod p Jacobi sum operators:
11,01 . o 11,71,/ . o
S = SQ,w?’“ and S = Sg,wil’“'“
We further define
S = Spin pr and St = Sk wk s

o o ot | o o ot |
where k"7t = (k; ;") €{0,...,p = 1)/ and ki = (ki iy €400 = 1"t
satisfy

[biy = bp—il1 ifn—j1+1<i=j—1<n—i—1;
k=% i — i+ 14 by, — by ifi=j—1=mn—jg;
0 if j >i+2
and
[bn—1-i — bj, 1 ifn—ji<i=j—1<n—i—2
KL = i — i+ 14 by, — byt fi=j—1=n—i -1
0 ifj>i+2.

We now consider characteristic 0 lifts of the mod p Jacobi sum operators above.

n—i;—1
11,391

Sinin . 3 IT TAcen™h | 1A] | wh
Aeré(Fp) £=n—j1
and

n—i1—1

~ . 11,71/
St = Z H [Age]fee | TA] | wg.

Aeré’ (Fp) \f=n—j1
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We also let
n—i;—1

o~ %1,71,0
Soit=1 Y TT TAceci1®E5 | 147 | wf,

A€U,, 1 (Fy) \t=n—i1

- - o
where k1910 = (k;y’l’o)m €{0,...,p—1} v& satisfies

g0 . ) =it 14 by —byly ifn—ji<i=j-l<n-a-1
¢ ’ 0 ifj>i+2.
Note that S, Sinins, §él’jl are Teichmiiller lifts of S%Ji, Si-di/ Shi1:91.:0 L

respectively. We will also consider the Teichmiiller lifts of S;"/* and Si**’*" as follows:

S = > AT |wit and S = S AT | wi

Aerilvjl (FP) Aerilrjlr’(FP)

We recall the operator Z,, € G(Q,) from (4 4 1). Note that 7%/ : T(F,) — OF is
the Teichmiiller lift of x}"’*. We also recall T (A (4.4.14)), Kn (cf. (4.4.22)),
e* (cf. (4.4.21)), and P,, (cf. (4.4.20)), whose definitions are completely determined
by fixing the data n and (an—1,...,a0). We define mgl e K}Ef)h, Kivgy € 2y,
gt = 41 and Py, 4, € Z,) by replacing n and (an_1,...,a1,a0) by j1 — i1 + 1 and
(bj, +d1—t1—1,bj,-1,. .., biy41,b, —j1 +i1+ 1) respectively with by as at the
beginning of Section 5.3.

O,iq

PROPOSITION 5.5.1. — Assume that p->"J1 s 2n-generic. Let

IIédt .— Indgggz’) Xh »J1

be a tamely ramified principal series where ' 71 = x" 1 @. . CX)XH’J1 :T(Qp) — EX is

a smooth character satisfying X |7 (z,)= iy .01 Then we have the identity
Sil,]l,/ ° Sila]ly/ ° (En)jl—il—l — p(jl_il_l)(“Jrl)"%l,jl H X?,Jl (p) Sil,]l .Silv]l
k=n—ji1+i1+1

on the 1-dimensional space (H“’jl)l(l)’ﬁil’“.

Proof. — By Lemma 4.4.6 we know that
(Ep) 1 e U171 = 8 peyin—ia-1.
Then by Lemma 4.4.3 and the fact
L )"y = ) ) w2~ 1)
we deduce that

i1—1)%
S @1 J1"S(w*)11 ip—1 —p(ﬂ e )15 n I (e )ir =i — 1 (! i1,71) 1'8 Z1 Jj1 -
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Therefore it remains to show that
Sil’jl’/ o Swilvjlv’(w*)jl—il—l(wilvjl)—1 = pjl_il_lfiil,jlsil’jl
on the 1-dimensional space
P ~iq,J =~ I ~i1,71
(Hnm)l(l),u DI Swil’jl ((HllyJI)I(l)vﬂl )
We observe by Lemma 4.4.3 that

~ ~ o _ii_1a
o o o — pJ1—t1— o
Swu,n,/ L Sw?,J1,/(w*)j171~171(w;1,31),1 = p] L Swn,n

and therefore by composing gél J1 it remains to show that

(5.5-2) S\él,jl ° gfwil,jl,/ = pjl—il—l(Hgf?jl)_lgil,jhl
on (Hil,j1)1(1)’ﬁil,jl’, and
(5.5.3) gél,jl ° §wi1,jl = pjl_il_l(ﬁl(-ll’)jl)_lé\h,jl

on (ITi:1)T()A" Byt these can be checked by the same argument as in Corol-
lary 4.4.17. O

We state here a generalization of the Theorem 4.8.2. Recall the definition of 71'11 1

from (5.3.1).
THEOREM 5.5.4. — The constituent F(u") has multiplicity one in wi*7*.
Proof. — This is Corollary 4.3.9 if we replace piJ1 by ub. O
We define a characteristic 0 principal series
~ii g G(Fp) ~0iy .5
(F1)° = IndBEFzg(” i1 Yo
which is an Op-lattice in (727*)° ®0,, E.
LEMMA 5.5.5. — (i) Forp e {/ﬂl’jl,,u“*jl”,u?’jl,,uill’jl’/}, we have
dimp, (ﬂiujl)U(Fp),# - 1.
(ii) We have the following non-vanishing results:
S ((Wil,jl)U(Fp),u“’jl) = Siin! <(7Tily]'1)U(Fp),p,i1’j1’/> £ 0.
(iii) We also have the following non-vanishing results:
St ((wihh)U@p):ui““) — (gt )UFp) it

and
. . 91,514/ P $1,31,/
Sila]l ((ﬂ.ihjl)U(Fp),Ml ) — (ﬂ-ilaJl)U(Fp):N .
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Proof. — The statement (i) is immediate by Bruhat decomposition (4.0.4).

Now we prove (ii). According to Lemma 4.4.3, (5.5.2) and (5.5.3) and Lemma 4.4.16,
we deduce by mod p reduction with respect to the lattice (7,'**)° that

St ((71.1'17.71)U(Fp):#i1’j1> = St/ ((ﬂ-ilyjl)U(FP)a/‘/il’jl'l)
* *

P O,ip,51\wd
i1,J1\U (Fp), 11w
= Sy’l,jl,o,wg <(7r*1 ]1) (Fp) (1 ) > .

If we abuse the notation k"7*'° for the tuple in {0,...,p— 1]»"1):50| satisfying
i1,J1,0 _
k0T =0 for all o ¢ @Ig
then by mod p reduction of first possibility of Proposition 4.4.8 we deduce that

S 910w @ So.uwgwe = k910w,

on the 1-dimensional subspace (ﬂ'il’jl)U(FP)’(“D’il’h)wO. Thus we finish the proof of

(ii) by
((Wil,jl)U<Fp>,(um*i1’j1)w0) £0,

which follows from Proposition 4.1.12.

SEiLjLO,wO

Finally we prove (iii). We only prove the first equality in (iii) as the same proof
works for the second equality. By Lemma 4.1.15 we know that

i1,51\U(Fp),(pBi191ywo\ o 4 5 \U(F,),ut191
SQ,(wile)*lwé’wo <(7T*1 ]1) ( p) (H ) ) - (ﬂ-*l Jl) ( p)#

and

SO,(wil 1 w;’l I1 )~ lwlwo

. 0,471,741 yw . i1,J1
i1,J1\U(Fp),(p="171)w0 N i1,51\U(Fp),u
((W* YU Fa)( "0 = (qrivdn)UE)

Therefore it remains to show that
91,51 o — o
51 ® 0,(wit-d1 w1 =1wkwe Sga(wil’J1)71w€w0

on the 1-dimensional subspace (%' ’jl)U(Fp),(uD’il’jl )" which follows from the mod p
reduction of Lemma 4.4.3 and the fact that

(wit ) + £((w Tt wi ) g we) = £((w' ) T wg wo).
This completes the proof. O

We define V71 and V91 to be the subrepresentations of 72! generated by
Sttt ((Wi1,j1)U(Fp)7Hi1'j1) and St/ ((ﬂ.ihjl)U(Fp),uil’jl”)
respectively. Similarly, we define Voil’j ! as the subrepresentation of 72/ generated

by
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LEMMA 5.5.6. — We have

(557) Vindt — yindn — Vo’il,j1
and
(5.5.8) F(uD) € JH(VG ).

Proof. — The equality (5.5.7) follows directly from the proof of (ii) of Lemma 5.5.5.
We define a new tuple k71% = (k:ljhﬁ)” €{0,...,p— 1}@%' defined by

2,

it iv— g1+ 14 [bi, —bj, ] if (4,5) = (n—j1,n —i1);
0 otherwise.

We also define V#1714 to be the subrepresentation of it generated by

Spiriot ((Wil’jl)U(Fp)’(MD’il’jl)wo)

k*1:71:% g * '

By Proposition 4.6.20 and the same method in the proof of Proposition 4.7.25 we
deduce that

(5.5.9) Vit C Voil,jl.

By abuse of notation we view g1 as a fixed weight in X; (T"), and then there
exists 7 € X (T) such that

n—i;1—1
pBr =P (mod (p— 1)X(T)) and pB = (n—1i1,n —71) CpPa g Z Q.

r=n—ji

We define Uil 7' to be the unipotent subgroup of L generated by U,, for
n—j1+1<7r<n-—1i; —1 and then define

771,01 71,01 R7
U =U;" -N.
By a direct generalization of proof of Lemma 4.7.39, we can show that

sJ1

o O,i1,41 yw RN 131
, U(F,), »11531)W0 _ 0 |:’7 , U
Spersnsy () EHETII ) = OO T

We define V;llg’jl to be the G-subrepresentation of HO(,u':’*il’jl) generated by
HO(/J,D’il’jl )Zjl,“ and by definition we have

(6510)  (Viy™)V o BP0 and (Vig™)T" = HO (P

alg  /pus Iz

’
s

We have natural identification (cf. the beginning of Chapter 5 for definition
of H (1)

(5'5_11) HO(NDM,J&)W%Hg(uﬂm,jl) and HO(ND,ZE,J&)U

11,1 0 7

HL(#D’il’jl)U

11,71
1

IR
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By applying Lemma 4.7.42 and the proof of Proposition 4.7.43 to the Levi L, we
deduce that HY (u=1+71) is uniserial of length two with socle F'Z'(4=1-71) and cosocle
FX(uP') and that

N it S
(5.5.12) HY (D), S PR ) o0

Combine (5.5.10), (5.5.11) and (5.5.12) we deduce the surjection of representations
of L

(Vi) — PH™) = HY(u™) = HO(u)Y
and thus a non-zero morphism

(V“’h) R HO(,U/D’I) and (Vu,h)U 1/ i1~ HO( );(L]D" P F(MD,/)E] )

alg alg m

by coinduction for algebraic representation from P to G. In particular we know that

F(u2) € JHS (V”) :

alg
Now we restrict the action of G to G(F,) and observe the injections

Vindut 1 and F(,U'D) < F(,U,D’I)

als |G, e,
which induces
1,1\ U(F,), O,i1,41 ywo 1,91, Uildl (R , O i1, ﬁilvjl
Spern g () ED O (AU E DT — () T

and

O O
F(p)UEhm™ = (F(u VED 1 = F(u™) 0,

Naw,)
Hence, we deduce that

F(u) € THaq,) (Vi)
which together with (5.5.9) finishes the proof of (5.5.8). O

PROPOSITION 5.5.13. — Let 7 be an Og-lattice in (F7)° ®o, E satisfying
SOCG(F,) (T Rog F) — F(/J,D) sy F(Muvilvjl)‘
(i) For p € {uihjl’Hilajh/,uill#jl’ull W1yt } we have
dimp (1 @0, F)VEF)# =1,
(i) We have the non-vanishing results for St and S*+1/':
St ((’r ®0p F)U(Fp)vﬂil'jl) = St1.dr/ ((7_ R0, F)U(Fp)vﬂil’jl’/> £0.
(iii) We also have the non-vanishing results for Sil’jl and Sil’jl”:
S ((7- R0, F)U(FP),M;LH> — (r ®o, F)U(Fp),uil,h

and

8;’1,11,’ ((7_ ®0, F)U(FP)M?YHJ) = (T Qo, F)U(FP),HH,J'L"
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Proof. — We can easily deduce (i) from
dlmE(( zl,Jl) R0 E) U(F p)’ﬁilvjl :dlmE(( 7,1,]1) ®0 E)U(F) Fian _q

and Frobenius reciprocity as F(u‘71), F(u '), F(u7") and F(ui7"") all have
p y 1% ) 1% Hy
multiplicity one in 7 ®¢, F.
We define 7;/* as the mod p reduction of (7*7')° ®o, E with respect to the
unique (up to homothety) Og-lattice such that

SOCG(F,) ( “’Jl) = F(ND).
Then we deduce from Corollary 5.4.6 that there exists an injection
TQo, F e it g ’/T;l’jl.

Note that we have

(5.5.14) (ﬂil,jl o 7T;'l,yg)U(Fp),u _ (D g (o h’h)U(Fp) »
for R= {uil,jl’uil,jl,/’uildl’,ulilajla’}.

The equality of two spaces in (ii) is true because both of them can be identified
with .
by the same argument as in the proof of (ii) of Lemma 5.5.5. Therefore we only need to

o o o o \UF,),piti
show that St (resp. §*+71) gives rise to a bijection from (ﬂil 1 g 7r;1’h>

U(Fp),u'tt
(resp. from <7r*1 g 7r“’h) ! ) to its image. According to (ii) of Lemma 5.5.5

and (5.5.14) we only need to show that
S ((ng’jl)U(Fp)vﬂil’j1> 40 and St/ ((ﬂglyjl)U(Fp)vliil'jl',) £0,

which follows from Lemma 5.5.6 by definition of 71'“’] !

We have a unique (up to scalar) non-zero morphlsm
(5.5.15) i W;l’jl
which by Lemma 5.5.6 induces isomorphisms

(ﬂ-ilvjl)U(FP)Vl" = (Wl;ilvjl)U(Fp)vﬂ
for p € {utr71, uf91'} and hence (iii) follows from (iii) of Lemma 5.5.5 by considering
the image of (iii) of Lemma 5.5.5 under (5.5.15) inside 7" O
COROLLARY 5.5.16. — Let 7 be an Op-lattice in (Ti7")° @, E satisfying
socg(r,) (T ®0, F) = F(u") @ F(p™ ).

Then we have

St OSil’jl ((7— ®0p F)U(Fp);ﬂil’j1> = Siudv/ .Silvjl,/ (( TR0, F)U(Fp) it ’) £0.
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5.6. Main results

In this section, we state and prove our main results on mod p local-global compati-
bility. Throughout this section, p, is always assumed to be a restriction of a global rep-
resentation 7 : Ggp — GL,(F) to G, for a fixed place w of F' above p. Let v := W)
and assume further that 7 is automorphic of a Serre weight V = &, V,, with
Vi = Vy 0150 = F(uP)V. We may write Vs o1} = F(a, )" for a dominant

weight a,,, € Z" where w’ is a place of F' above v’, and define
(5.6.1) Vi=Q@ Ve and Vi=QW,,.
v’ #v v’ #v
From now on, we also assume that a,, is in the lowest alcove for each place w' of F
above p, so that
Vvi=y Ko F.
Let U be a compact open subgroup of G,,(A%"") x G,(Op+ ,), which is sufficiently

small and unramified at all places above p, such that S(U,V)[mz| # 0 where mz is
the maximal ideal of T% attached to 7 for a cofinite subset P of Py .

We fix a pair of integers (ig,jo) such that 0 < jg < jo+1 < ip < n —1, and
determine a pair of integers (i1, j1) by the equation (5.0.1). We also define

M = S(U°, V)
Mivit = S, TR

Note that M%7t is a free Og-module of finite rank as M is a smooth admissible
representation of G(Q,) which is wg-torsion free. For any Og-algebra A, we write
My for MUt @, A. We similarly define M.

Let T be the Og-module that is the image of T” in Ende, (M%"+). Then
Tt ig a local Og-algebra with the maximal ideal ms, where, by abuse of notation,
we write mz C T%J1 for the image of my of T7. As the level U is sufficiently small,
by passing to a sufficiently large E as in the proof of Theorem 4.5.2 of [39], we may
assume that T%7' = E” for some 7 > 0. For any Og-algebra A we write T 7!
for T @4, A.

We have M;ﬂl = @p Mg J1 [pE], where the sum runs over the minimal primes p
of T#J1 and pg = pT27'. Note that T /pg = E for any such p. By abuse of
notation, we also write p (resp. pg) for its inverse image in T” (resp. T%).

DEFINITION 5.6.2. — A non-zero vector v*171 € Mp*7' is said to be primitive if there
exists a vector '1J1 € M%+J1[p] that lifts v®1+J1 | for certain minimal prime p of T 1.

Note that the G(Q,)-subrepresentation of M generated by a lift 9171 of a prim-
itive element v'1+J! is irreducible and actually lies in Mg[pg].

Now we can state our main results in this paper. Recall that by p, we always mean
an n-dimensional ordinary representation of Gq, as described in (3.0.1).
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THEOREM 5.6.3. — Fiz a pair of integers (ig, jo) satisfying0 < jo < jo+1<ig<mn-—1,

and let (i1,71) be a pair of integers such that ig + i1 = jo +j1 = n — 1. We also let

7 : Gp — GL,(F) be an irreducible automorphic representation with Tl = Do-
Fu

Assume that
— pBiat s 2n-generic;
— Piy.jo s Fontaine-Laffaille generic.
Assume further that
(5:64) (P} C Wa(r) NIH((mie)Y) € {(P(D)Y, i)y,
Then there ezists a primitive vector in S(U", V')[m;]l(l)’“iml, Moreover, for each
primitive vector v7 € S(UY, V') [mz] ! we have S o SitI1yindt £ 0 and
(5.6.5) S e ST o (2,) T yindt

— E“’leh,jl (bnfly cee b0> . FL}nOy]o (?|G ) . 811,31 ° Sil’]lvu’h,

Fy
where
ji—1
it — H (_1)bi1 —br—j1+i1+1
k=i1+1
and
Ji—1 j1—i1—1 .
by, — b, —
Pil,jl(bn—lv""bO): H #EZ;
- ” bi, —bx—j
k=i1+1 j=1
REMARK 5.6.6. — — The right inclusion of (5.6.4) is just Conjecture 5.3.2, which

becomes a theorem in [47] (cf. Remark 1.3.3). We also give an evidence for the
left inclusion of (5.6.4) in Proposition 5.3.3 under some assumption of Taylor-
Wiles type. As a result, the condition (5.6.4) can be removed under some stan-
dard Taylor-Wiles conditions.

— Under standard Taylor-Wiles conditions, it is possible to prove the identity
(5.6.5) on the whole space S(UY,V’)[mz]71)+»1""" and hence to remove the
conditions on “primitive” vectors. This argument has been used in the recent
paper [46].

— Assume that standard Taylor-Wiles conditions hold. Compared to Section 5 of
[39], we can also deduce from (5.6.4) that M*1+J1 is free over an enlarged Hecke
algebra defined by adding a certain Up-operator to T%1. Moreover, under a
stronger generic condition (compared to our Fontaine-Laffaille generic condi-
tions), we can use results from [47] to improve (5.6.4) to an equality

W (F) N JH((r 7)) = {F(u°)"},

which implies that M?+Jt is free over T#+J1,
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Proof. — We firstly point out that M%7t # 0, as S(U, (F(u~)Y 014) @ V'), # 0 and

F(uP) is a factor of IndX i7" = Indggpgu? J1

Picking an embedding F — Qp, as well as an isomorphism ¢ : Qp = C, we see
that

~i1,71

(567) M%’jl o~ @m(n) . H£(1)7”1 ® (Hoo,U)Uv’
? it

where the sum runs over irreducible representations IT = I, Q I, @ II**¥ of G,,(Ap+)
over @p such that IT ®, C is a cuspidal automorphic representation of multiplicity
m(Il) € Z~o with I, ®, C being determined by the algebraic representation (‘7’)\/
and with associated Galois representation ry lifting 7" (cf. Lemma 5.1.2).

We write § for the modulus character of B(Q,):
sl "ol " ee] el

where | | is the (unramified) norm character sending p to p~!. For any II contributing
to (5.6.7), we have

(i) I, = IndG(Qp)(w ® §) for some smooth character

B(Qy)
Y=Up_1 Q@ UYn_2® - QY1 @Yo

of T(Q,) such that 1/1|T(Z )= ﬁlll J1 where 1), are the smooth characters
p

72,

of Q.
(ii) "”1\'/1|G is a potentially crystalline lift of 7 with Hodge-Tate weights
Fuw
—SS AU n—1 , —
{-(n-1),—(n—-2),...,-1,0} and WD(rl\ﬂGFw YFoss = @Rl n 1

Here, part (i) follows from [25], Propositions 2.4.1 and 7.4.4, and part (ii) follows from
classical local-global compatibility (cf. Theorem 5.1.3). Moreover, by Corollary 3.7.5,
we have

io—1
— H;co=jo+1 Vi1 14%(p)

(ig+io)(ig—do—1)
2

(5.6.8) FL;?7° (p)

Note that we may identify ¥;, 14, with Q! for jo < k < i, where Q is defined in
1+1+ k
Corollary 3.7.5.)

Now we pick an arbitrary primitive vector vt € Mg 1 my] with a lift
vt e Mhdi[p]. We set
TE = <Ki)\i1’j1>E - ME[pE] and 7 := <Ki}\/i1’j1> - M[p],
and thus 7 is an Og-lattice in 7. Note that ME 1 be]|®F Qp is a direct summand of
(5.6.7) where II runs over a subset of automorphic representations in (5.6.7). The same
argument as in the paragraph above (4.5.7) of [39] using Cebotarev density theorem

shows that the local component II, of each IT occurring in this direct summand does
not depend on II.
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By the definition of 7, we obtain non-zero morphisms
(5.6.9) T Qo F — M[p] ®0, F — Mp[mz]

as p + wgT? = mz. We denote the image of T ®0, F under the composition (5.6.9)
by V and note that it can be naturally identified with (Kv"+J1)g according to the
definition of 7. By the assumption (5.6.4) (cf. Conjecture 5.3.2), we deduce that

JH (socq(r,) (Mr[mz])) € {F(u"), F(u™7)}
and therefore by (5.6.9) we have
JH (socg,) (V) € {F(u"), F(u=191)}.
We know that there exists an Og-lattice 7/ C 7 such that
socg(r,) (V) = socgr,) (7' ®o, F).
Moreover, we have a saturated inclusion 7 — 7’ which induces a morphism
TR0, F =17 Q0, F

whose image is isomorphic to V. It follows from Proposition 5.5.13 that we necessarily
have isomorphisms of F-lines

(r @0, F)TET 2 yUE) 0 > g o F)U(Fp),pf'lvfl .
Hence, by Corollary 5.5.16 and the fact that
VUED — By ] C Mp[me],
we deduce that
(5.6.10) Sh .Silvjlvihjl £0.

On the other hand, we have the following equality by Proposition 5.5.1
(5.6.11)

~ N
8“7]1"08{1’]1’ o(Z,)rn 150001 = Kiy.j

io—1
( b o1 Vi +145(D)

(ig+ig)(ig—=dg—1) ) §i17j1 .S\il’jlﬁil’jl‘
Gotio)Go=jo=1)
By taking mod p reduction of (5.6.11) we deduce from (5.6.8) that
St o S{lajlvl ° (En)jl—il—lvil,jl
_ Eiujlpil’jl (bn—la o bO) . FL:’S,J'O (ﬂg ) .St o S{lvjlvil,jl.
Fu

This equation together with (5.6.10) finishes the proof. O

COROLLARY 5.6.12. — Keep the notation of Theorem 5.6.3 and assume that each as-
sumption in Theorem 5.6.8 holds for all (ig, jo) such that0 < jo < jo+1 <ig <n—1.
Assume further that M3t is free over Tt for all pair (i1, 1) (cf. Remark 5.6.6).

Then the structure of S(UY,V')[mz] as a smooth admissible F-representation
of G(Qy) determines p, up to isomorphism.
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Proof. — We follow the notation in Section 3.4 of [10]. As 7, is ordinary, we can view
it as a morphism R R
po : Gq, — B(F) C G(F),

where B (resp. @) is the dual group of B (resp. G). The local class field theory gives us
a bijection between smooth characters of Q,f and the smooth characters of the Weil
group of Q,, in characteristic 0. This bijection restricts to a bijection between smooth
characters of Q, and smooth characters of Gq, both with values in O} Taking mod p
reduction and then taking products we reach a bijection between smooth F-characters
of T(Q,) and Hom(Gq,, T(F)). We can therefore define Xz, as the character of T'(Q,)
corresponding to the composition

Xz, : Gq, — B(F) — T(F).
In [10], a closed subgroup C;, C B (at the beginning of Section 3.2) and a subset W5,
((2) before Lemma 2.3.6) of W is defined.
As we are assuming that p, is maximally non-split, we observe that C; = B

and W5, = {1} in our case. Therefore by the definition of II°"%(p,) in [10] before
Definition 3.4.3, we know that it is indecomposable with socle

G(Q, _
IndB(,? )p)Xﬁo (wlod),

where § € X(T) is a twist character defined after Conjecture 3.1.2 in [10] which can
be chosen to be 7 in our notation. Then as a corollary of Theorem 4.4.7 in [10], we
deduce that S(U",V’)[mz] determines x5, and hence X5, .
Now, we know that p, is determined by the Fontaine-Laffaille parameters
{FL7° (py) € PHF) |0 < jo < jo+1<ig<n—1}

and X3, , up to isomorphism. Our conclusion thus follows from Theorem 5.6.3 together
with Remark 5.6.6. O
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Let p be a prime number, n > 2 an integer, and F' a CM field in
which p splits completely. Assume that a continuous automorphic Galois
representation 7 : Gal(Q/F) — GL,(F,) is upper-triangular and satisfies
certain genericity conditions at a place w above p, and that every subquotient

of 7| Gal(@, /F) of dimension > 2 is Fontaine-Laffaille generic. In this

paper, we show that the isomorphism class of 7| Gal(Q, /T, is determined

)

by GL,(Fy)-action on a space of mod p algebraic automorphic forms cut out
by the maximal ideal of a Hecke algebra associated to 7. In particular, we

show that the wildly ramified part of 7| qal @./F.) is determined by the action

of Jacobi sum operators (seen as elements of F,[GL,(Fp)]) on this space.

Soient p un nombre premier, n > 2 un entier, et F' un corps & multiplication
complexe dans lequel p est complétement décomposé. Supposons qu’une
représentation galoisienne automorphe continue 7 : Gal(Q/F) — GL,(F))
est triangulaire supérieure, Fontaine-Laffaille et suffisament générique (dans
un certain sens) en une place w au-dessus de p. On montre, en admettant
un résultat d’élimination de poids de Serre prouvé dans [47], que la classe

d’isomorphisme de 7| Cal(Q. /F) est déterminée par l'action de GL,(F)) sur

un espace de formes automorphes modulo p découpé par l'idéal maximal
associée & T dans une algébre de Hecke. En particulier, on montre que la partie

sauvagement ramifiée de 7| Gal @, /F.) est déterminée par ’action de sommes de
a. P w

Jacobi (vus comme éléments de Fp[GLy,(F)p)]) sur cet espace.
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