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CONSTRUCTIVE AND DESTRUCTIVE INTERFERENCES
IN NONLINEAR HYPERBOLIC EQUATIONS

Rémi Carles, Christophe Cheverry

Abstract. – This article introduces a physically realistic model for explaining how
electromagnetic waves can be internally generated, propagate and interact in strongly
magnetized plasmas or in nuclear magnetic resonance experiments. It studies high fre-
quency solutions of nonlinear hyperbolic equations for time scales at which dispersive
and nonlinear effects can be present in the leading term of the solutions. It explains
how the produced waves can accumulate during long times to produce constructive
and destructive interferences which, in the above contexts, are part of turbulent ef-
fects.

Résumé (Interférences constructives et destructives pour des équations hyperboliques
non linéaires)

Cet article introduit un modèle physiquement réaliste qui explique comment, dans
des plasmas fortement magnétisés ou lors d’expériences de résonance magnétique nu-
cléaire, des ondes électromagnétiques peuvent être créées, se propager et interagir.
Il étudie des solutions haute fréquence de systèmes hyperboliques non linéaires pour
lesquelles des effets dispersifs et non linéaires sont impliqués à l’ordre principal. Il
explique les modalités selon lesquelles les ondes produites peuvent s’accumuler dans
le temps long pour produire des interférences constructives et destructives qui, dans
ce contexte, peuvent être interprétés comme des phénomènes de turbulence.

© Mémoires de la Société Mathématique de France 174, SMF 2022
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CHAPTER 1

INTRODUCTION

In this introduction, we present the main aspects of our text. In Section 1.1, we
introduce a simple ODE model that is intended to serve as a guideline. In Section 1.2,
we extend this model to better incorporate important specificities of two realistic situ-
ations which are related to strongly magnetized plasmas (SMP) and nuclear magnetic
resonance (NMR). In Section 1.3, we state under simplified assumptions our two main
results, Theorems 1.3 and 1.4. We also give an overview of our article.

1.1. A toy model

Introduce the phase φ : R→ R given by

(1.1) φ(t) := t+ γ(cos t− 1), γ ∈ ]0, 1/4[.

Let ε ∈ ]0, 1] be a small parameter, and λ ∈ C. Fix numbers (j1, j2, ν) ∈ N2 ×R such
that j1 + j2 ≥ 2. Select n ∈ Z and ω ∈ R. Then, define

(1.2) FL(ε, t) := ε3/2einφ(t)/ε, FNL(ε, t, u) := λενeiωt/εuj1 ūj2 .

Definition 1.1. – The number g := ω + j1 − j2 ∈ R is called the gauge parameter
associated with FNL.

Consider the ordinary differential equation on the complex plane C given by

(1.3)
d

dt
u− i

ε
u = F (ε, t, u) := FL(ε, t) + FNL(ε, t, u), u|t=0

= 0.

We can study the equation (1.3) on three different time scales:
• Fast, when t ∼ ε, that is when F undergoes a few number of oscillations;
• Normal, when t ∼ 1, that is when F generates O(ε−1) oscillations, whereas the

periodic part (cos t) inside φ sees a few number of oscillations;
• Slow, when t ∼ ε−1 or T := εt ∼ 1, that is when F involves O(ε−2) oscillations.

In this subsection, we analyze (1.3) during long times t ∼ ε−1 or T ∼ 1. With this
in mind, we can change u according to

(1.4) u(t) = εeit/εU(εt), U(T ) := ε−1e−iT/ε
2

u(ε−1T ).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2022



2 CHAPTER 1. INTRODUCTION

Expressed in terms of U , the equation (1.3) becomes

(1.5)
d

dT
U =

1√
ε
ei(n−1)T/ε2+inγ(cos(T/ε)−1)/ε + λεν+j1+j2−2ei(g−1)T/ε2U j1 Ū j2 .

The initial data is still zero. Denote by Ulin the solution corresponding to the linear
evolution, that is the solution obtained from (1.5) when λ = 0. When λ ̸= 0 and when
ν + j1 + j2 > 2, the solution to (1.5) looks like Ulin. Our aim is to first study the
expression Ulin. Then, we incorporate nonlinear effects by looking at a critical size for
the nonlinearity, corresponding to the special case λ ̸= 0 and ν + j1 + j2 = 2. This
means to single out the following equation

(1.6)
d

dT
U =

1√
ε
ei(n−1)T/ε2+inγ(cos(T/ε)−1)/ε + λei(g−1)T/ε2U j1 Ū j2 , U|T=0

= 0.

The integral formulation of (1.6) reads

(1.7) U(T ) = Ulin(T ) + λ

∫ T

0

ei(g−1)s/ε2U(s)j1 Ū(s)j2ds.

In Paragraph 1.1.1, we first show that Ulin(T ) = O(1), an estimate which is sharp
when n = 1. As a consequence, the nonlinear contribution brought by the integral
term inside (1.7) is likely to be of the same order of magnitude as the linear one. It
can be expected that U(T ) ̸≡ Ulin(T ) + o(1). In Paragraph 1.1.2, we prove that this
is indeed the case if and only if g = 1.

1.1.1. The linear case. – By construction, we have

(1.8) ulin(t) := εeit/εUlin(εt) = ε3/2eit/ε
∫ t

0

ei[nφ(s)−s]/εds.

We start the analysis of (1.7) by looking at the part Ulin through the expression ulin

of (1.8). Examine the right hand side of (1.8). For harmonics n ∈ Z with n ̸= 1, since
0 < γ < 1/4, remark that

(1.9) ∀s ∈ R, 1/2 ≤ |nφ′(s)− 1| = |n− 1− γn sin s|.

Exploiting (1.9), a single integration by parts yields

∀t ≥ 0, ulin(t) = O
(
ε5/2(1 + t)

)
.

In other words, assuming that n ̸= 1, we find

(1.10) ∀T ≥ 0, Ulin(T ) = O(ε3/2 +
√
εT ).

The situation is completely different when n = 1. Fix an integer K ≥ 1. The solution
ulin computed at the time t = 2Kπ can be viewed as a sum of contributions produced
over time by the source term, namely

(1.11) ulin(2Kπ) =

K−1∑
k=0

uk, uk := ε3/2ei2Kπ/ε
∫ 2(k+1)π

2kπ

ei[φ(s)−s]/εds.
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1.1. A TOY MODEL 3

Since the function s 7→ φ(s) − s = γ(cos s − 1) is periodic of period 2π, the wave
packets uk can be interpreted according to uk = ε3/2ei2Kπ/εvk with

(1.12) vk =

∫ 2kπ+3π/2

2kπ−π/2
eiγ(cos s−1)/εds = v :=

∫ 3π/2

−π/2
eiγ(cos s−1)/εds.

The function s 7→ γ(cos s−1) has exactly two non-degenerate stationary points in the
interval [2kπ−π/2, 2kπ+3π/2], at the positions s = 2kπ and s = 2kπ+π. Using the
periodicity to get rid of the boundary terms and applying stationary phase formula,
it follows that

(1.13) v =

√
2πε

γ
e−i

γ
ε

(
ei(

γ
ε−

π
4 ) + e−i(

γ
ε−

π
4 )
)

+O
(
ε3/2

)
.

Let Aε ∈ C be such that

(1.14) A2
ε =

√
2

πγ
e−i

γ
ε cos

(γ
ε
− π

4

)
, lim sup

ε→0
|A2
ε| =

√
2

πγ
̸= 0.

Observe that

(1.15) v = 2πA2
ε

√
ε+O

(
ε3/2

)
, |uk| = 2π|A2

ε|ε2 +O
(
ε3
)
.

The combination of (1.11), (1.14) and (1.15) indicates that, when n = 1, wave pack-
ets uk of amplitude ε2 are repeatedly created over time when solving (1.3) in the
case λ = 0.

Look at (1.11). The emitted signals uk (one per period 2π) have cumulative effects
up to the stopping time 2Kπ. They give rise to a growth rate with respect to the time
variable t. For long times T ∼ 1, assuming that n = 1, we can assert that

(1.16) Ulin(T ) = A2
εT +O(ε) = A2

ε

∫ +∞

0

1[0,T ](s)ds+O(ε) = O(1).

This short discussion about the linear situation (λ = 0) highlights a difference between
the cases n ̸= 1—see (1.10)—and n = 1—see (1.16). This observation is important
in the perspective of nonlinear effects. As a matter of fact, it allows a first selection
between the different modes n ∈ Z.

1.1.2. Nonlinear effects. – Here, we consider the nonlinear framework, when λ ̸= 0

and ν + j1 + j2 = 2. The difference W := U − Ulin is subject to

(1.17) W(T ) = λ

∫ T

0

ei(g−1)s/ε2(Ulin +W)(s)j1(Ūlin + W̄)(s)j2ds.

Using a Picard scheme, it is easy to infer that the life span of the solution W to the
integral equation (1.17), and therefore of the solution U to (1.6), can be bounded
below by a positive constant not depending on ε ∈ ]0, 1]. Knowing (1.10) and (1.16),
it is also possible to deduce that W(T ) is of size O(ε(j1+j2)/2) = O(ε) when n ̸= 1,
and of size O(1) when n = 1. This means that the preceding dichotomy between the
two cases n ̸= 1 and n = 1 remains when λ ̸= 0.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2022



4 CHAPTER 1. INTRODUCTION

Fact 1. – When solving (1.6), the harmonic n = 1 stands out from the others.
Given T > 0, we find U(T ) = O(

√
ε) when n ̸= 1, and U(T ) = O(1) when n = 1.

Assume that g ̸= 1. The identity (1.7) becomes after an integration by parts

U(T ) = Ulin(T )− iλε2

g− 1
ei(g−1)T/ε2U(T )j1 Ū(T )j2(1.18)

+
iλε2

g− 1

∫ T

0

ei(g−1)s/ε2∂s
(
U(s)j1 Ū(s)j2

)
ds.

From the Equation (1.6), since we have seen that the solution U is (at least) bounded,
we know that ∂sU(s) = O(ε−1/2). From (1.18), it follows that

∀T ∈ R, U(T ) = Ulin(T ) +O(ε3/2).

Now, assume that n = 1 and moreover that g = 1. To show that, in this situation,
nonlinear effects actually occur, it suffices to produce an example. To this end, take
(j1, j2, ν) = (2, 0, 0) and ω = −1, so that g = 1. Choose λ = 1. Then, using (1.16),
the identity (1.7) becomes

(1.19) U(T ) = A2
εT +O(ε) +

∫ T

0

U(s)2ds.

This implies that U(T ) = Aε tan(AεT ) +O(ε), and therefore

U(T )− Ulin(T ) = Aε tan(AεT )−A2
εT +O(ε) ̸= o(1).

In view of the above formula, the asymptotic behavior of the nonlinear solution U can
strongly differ from the one of the linear solution Ulin.

Fact 2. – When solving (1.6), the gauge parameter g = 1 stands out from the others.
When g ̸= 1, the asymptotic behaviors of U and Ulin when ε goes to 0 are the same.
On the contrary, when g = 1, nonlinear effects can be expected at leading order.

1.2. A more realistic model

The preceding features, Facts 1 and 2, which have been emphasized in the case
of ODEs, are still present when dealing with partial differential equations arising in
strongly magnetized plasmas (SMP) or in nuclear magnetic resonance experiments
(NMR). But, there are two emerging issues: the first is due to dispersive effects which
are completely absent in the ODE case; the second comes from the occurrence of non-
trivial spatial variations when dealing with the phase φ. At all events, the discussion
becomes much more subtle, and new important phenomena can and do occur.

In order to investigate SMP or NMR, we must consider the PDE counterpart of
(1.3), which is

(1.20) ∂tu−
i

ε
p(εDx)u = F = FL + FNL, u|t=0

= 0, 0 < ε≪ 1,

MÉMOIRES DE LA SMF 174



1.2. A MORE REALISTIC MODEL 5

where t ∈ R and x ∈ R. The state variable is u ∈ R and Dx := −i∂x. The action of the
pseudo-differential operator p(εDx) is given on the Fourier side by the multiplier p(εξ).

In what follows, we will focus on the scalar wave equation (1.20). The origin of
equation (1.20), its physical significances and the reasons why it may be seen as a
universal problem (when dealing with systems of hyperbolic equations) will be clearly
explained in Chapters 2 and 3. We will work in space dimension one. The possible
multidimensional effects will not be investigated here.

We now fix some notations and we introduce simplified assumptions intended to fa-
cilitate the presentation of our main results. We suppose that the symbol p is smooth,
say p ∈ C∞(R). The function p is even. It is such that p|[−ξc,ξc]

≡ 0 for some ξc ≥ 0.
It is strictly increasing on (ξc,∞). Moreover, for large values of ξ, it is subject to

(1.21) lim
ξ→+∞

p(ξ) = 1, lim
ξ→+∞

p′(ξ) = 0, ∃ℓ < 0, lim
ξ→+∞

ξ4p′′(ξ) = ℓ,

as well as

(1.22) ∃D ≥ 4; ∀n ∈ {2, . . . , D}, lim sup
ξ→+∞

|p(n)(ξ)|
p′(ξ)

< +∞.

Fix some M ∈ N∗. The source term FL is defined by

(1.23) FL(ε, t, x) = −ε3/2
∑

m∈[−M,M ]\{0}

am(εt, t, x)eimφ(t,x)/ε.

In the above line (1.23), the amplitudes am(T, t, x) are chosen in the set C∞b (R3) of
smooth functions whose derivatives are all bounded. They are selected in such a way
that, for some T > 0 and some r ∈ R∗+ with r < γ/2, we have

(1.24) ∀m ∈ [−M,M ] \ {0}, suppam ⊂ ]−∞, T ]× [1,+∞[× [−r, r].

The amplitude a1(T, t, x) is chosen periodic for large times in the second variable. In
other words, there exists ts ∈ R∗+ and a smooth function a(T, t, x) such that

(1.25) ∀t ≥ ts, ∀n ∈ N, a1(·, t+ nπ, ·) ≡ a(·, t+ nπ, ·) ≡ a(·, t, ·).

The phase φ arising in (1.23) is more general than in (1.1). It does depend on the
spatial variable x ∈ R. It is the sum of a quadratic part (in t and x) and a periodic
part (in t).

Assumption 1.2 (Selection of a relevant phase φ). – The function φ is

(1.26) φ(t, x) = t− xt+ γ(cos t− 1), 0 < γ < 1/4.

In Chapter 2, the above assumptions on p and φ will be motivated by the study of
two realistic situations which are related to strongly magnetized plasmas (SMP) and
nuclear magnetic resonance (NMR). In Chapter 3, to better incorporate important
specificities of SMP and NMR, they will be somewhat generalized.

In the right hand side of (1.20), the nonlinear part FNL is, up to some localization
in time and space, of the same form as in the previous subsection. Select a nonnegative
cut-off function χ which is equal to 1 in a neighborhood of the origin and which is
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6 CHAPTER 1. INTRODUCTION

such that suppχ ⊂ [−1, 1]. Fix some parameter ι ∈ [0, 1] which is aimed to measure
the strength of the spatial localization. We impose

(1.27) FNL(ε, t, x, u) = λενχ
(
3− 2

εt

T

)
χ
( x

rει

)
eiωt/εuj1 ūj2 .

Taking into account the conditions on the support of the am’s and χ, the term FNL
becomes effective only for t ≥ T /ε, that is after the term FL has played its part. So
we observe successively two distinct phenomena: a possible linear amplification, and
then nonlinear interactions.

The solution u to (1.20) exists on a time interval [0, T̃ /ε] with T < T̃ . The argument
is similar to the one given for the toy model. Through the change (1.4), we can
reformulate the equation (1.20) in terms of W = U − Ulin, see (5.3) and (5.4). When
ν+ j1 + j2 > 2, the lifespan expressed in terms of T = εt does not shrink to T when ε
goes to zero. Note however that, due to the quadratic nonlinearity, the global-in-time
existence is not at all guaranteed concerning (1.20).

We still denote by ulin the linear solution obtained from (1.20) when λ = 0. One
point should be underlined here. Our discussion of the linear situation is based on the
analysis in L∞ of oscillatory integrals appearing in a suitable wave packet decompo-
sition of ulin. The precise structure of these wave packets is lost under the influence
of nonlinearities. It follows that our key argument cannot be iterated to obtain the
existence and the asymptotic behavior of the solution to the full nonlinear Equa-
tion (1.20). For this reason, we do not work with (1.20). Instead, we look at the first
two iterates of an associated Picard iterative scheme, which are

∂tu
(0) − i

ε
p(εDx)u

(0) = FL, u|(0)t=0
= 0,(1.28a)

∂tu
(1) − i

ε
p(εDx)u

(1) = FL + FNL
(
u(0)

)
, u|(1)t=0

= 0.(1.28b)

Generalizing (1.4), we can define

(1.29) U (j)(T, z) :=
1

ε
e−iT/ε

2

u(j)
(T
ε
, εz
)
, u(j)(t, x) := εeit/εU (j)

(
εt,

x

ε

)
.

The expression U (0) is the solution to the linear equation (λ = 0). Thus, we have

U (0)(T, z) = Ulin(T, z) :=
1

ε
e−iT/ε

2

ulin

(T
ε
, εz
)
.

Symbols like p appear when looking at special branches V of characteristic varieties
describing the propagation of electromagnetic waves

(1.30) V :=
{
(t, x, τ, ξ); τ = p(ξ), (t, x, ξ) ∈ R3

}
⊂ T ∗(R2) ≡ R2 × R2.

On the other hand, the phase φ may reflect the transport properties of particles. The
graph G of the gradient of φ is associated with the Lagrangian manifold

(1.31) G :=
{(
t, x, ∂tφ(t, x), ∂xφ(t, x)

)
; (t, x) ∈ R2

}
⊂ T ∗(R2) ≡ R2 × R2.

In the ODE framework of Paragraph 1.1, we simply find

Vode =
{
(t, x, 1, ξ); (t, x, ξ) ∈ R3

}
, Gode =

{
(t, x, 1− γ sin t, 0); (t, x) ∈ R2

}
,
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so that

(1.32) Vode ∩ Gode =
{
(kπ, x, 1, 0); (k, x) ∈ Z× R

}
.

Thus, the production at the successive times kπ with k ∈ N of the wave packets uk
which appear at the level of (1.11) can be interpreted as coming from positions which
are inside Vode ∩ Gode. This principle is illustrated in Figure 1 below, given at x fixed
and ξ = 0, with t in abscissa and the time frequency τ in ordinate.

Figure 1. Intersection (in red) of Vode (in blue) and Gode (in green)

Similarly, in the general framework (1.20), two-dimensional oscillating waves uk
can emanate from the more complicated intersection

V ∩ G =
{(
t, x, p(−t),−t

)
; (t, x) ∈ R2 and p(−t) = p(t) = 1− x− γ sin t

}
.

In view of (1.21), for large values of |ξ|, the dispersion relation p(ξ) = τ mimics the
choice p ≡ 1 of (1.3). As in (1.32), the set V ∩ G contains (near x = 0 and for t large
enough) an infinite number of curve portions (in R2) which appear repeatedly in time,
and from which oscillating waves uk may be triggered.

In the framework of SMP and NMR, the symbol p and the phase φ are issued
from different physical laws. They are originally unrelated, see Chapter 2. But they
are connected when solving the equation (1.20). The interactions between “waves”
(associated with p) and “particles” (described by φ) may be revealed through the
intersection between the two geometrical objects V and G, from which waves uk can
be emitted.

The amplification mechanism that may arise after summing the uk’s can be viewed
as a resonance. But now, the waves uk are no more sure to overlap. In contrast to
the toy model, since ∂xφ ̸≡ 0 and p′ ̸≡ 0, the waves uk do propagate in R2. They
propagate in different directions and with various group velocities. They can mix
before reaching the long times t ∼ ε−1.

Fact 3. – In the PDE framework of Equation (1.28), the accumulation of the emitted
oscillating waves uk can produce during long times T ∼ 1 both constructive and
destructive interferences.
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1.3. Statement of main results

The analysis of the creation, the propagation, the linear superposition, and the
nonlinear interaction of the uk’s is a manner to approach some kind of turbulence.
We start with situations where the linear aspects are predominant. A standard Picard
scheme can be used to approximate the nonlinear Equation (1.20). The corresponding
first two iterates yield the Cauchy problems (1.28a) and (1.28b).

Theorem 1.3 (Situations where the linear asymptotic behavior is predominant). –
Select a source term FL as indicated in (1.23) with a phase φ depending on γ ac-
cording to (1.26). Take profiles am satisfying both (1.24) and (1.25). Look at the
Equation (1.20) with a symbol p subject to both (1.21) and (1.22). Introduce the pro-
files U (j), with j ∈ {0, 1}, which are issued from (1.29) after solving (1.28). Fix
some T > 0.

The aim here is to describe the asymptotic behavior of the U (j) when ε goes to
zero. Below, in (1), we first examine what happens in the linear case, when FNL ≡ 0.
Then, in (2), we identify nonlinearities FNL ̸≡ 0 whose introduction has no impact
at leading order.

1. Linear case (FNL ≡ 0). Concerning the profile U (0) ≡ Ulin, we can produce the
following distinct asymptotic behaviors when ε goes to zero.

— Constructive interferences. For all j ∈ Z and T ∈ [T , 2T ],

Ulin(T, 2j) = O(1) = A2
ε

∫ +∞

0

e−i
ℓ
6 (

1
s−

T
s2

)a(s, 0, 0)ds+ o(1),(1.33)

where A2
ε =

√
2

πγ
e−i

γ
ε cos

(γ
ε
− π

4

)
is as in (1.14).

— Destructive interferences. By contrast, for all z ∈ R \ 2Z and for all T ∈
[T , 2T ], we find that

(1.34) |Ulin(T, z)| = o(1).

2. Nonlinear case (FNL ̸≡ 0). Adjust the nonlinearity FNL as in (1.27), with real
parameters ν, j1, j2 ω and ι. Assume that either ν+j1+j2 > 2, or ν+j1+j2 = 2

with ω+j1−j2 ̸= 1. Fix some ι ∈ [0, 1]. In the case ν+j1+j2−2 = ω+j1−j2 = 0,
set ι = 1. Then the nonlinearity plays no role at leading order in the sense that

(1.35) ∀(T, z) ∈ [0, 2T ]× R, U (1)(T, z) = Ulin(T, z) + o(1).

Interpreted in the setting of SMP, Theorem 1.3 shows, as forecast in [8], that
small plasma waves (the uk’s) driven by microscopic instabilities can accumulate over
long times to furnish nontrivial effects. In turn, this phenomenon participate in some
anomalous transport [7] and can trigger instabilities which may act as obstructions to
the confinement of magnetized plasmas [11]. Applied in the context of NMR, our result
investigates the processes whereby human tissues could be heated during magnetic
resonance imaging [21].

MÉMOIRES DE LA SMF 174

https://en.wikipedia.org/wiki/Magnetic_resonance_imaging
https://en.wikipedia.org/wiki/Magnetic_resonance_imaging


1.3. STATEMENT OF MAIN RESULTS 9

It is worth noting that the turbulent aspects which are revealed by Theorem 1.3
are inherently linked to spatial heterogeneity. They are caused by the impact of the
inhomogeneous source term FL, which involves special oscillating wave front sets.
Both in SMP and NMR, the input of energy is due to a strong external magnetic
field B, whose directions vary with the spatial positions, see Chapter 2.

Theorem 1.3 indicates that Facts 1, 2 and 3 indeed prevail. We still have two notions
of criticality as far as nonlinear effects are concerned: the size of the nonlinearity
(through the choice of ν + j1 + j2) and the nature of oscillations (involving the gauge
parameter g = ω + j1 − j2).

The case ν + j1 + j2 > 2 corresponds to a nonlinearity whose amplitude is too weak
to have effects at leading order, regardless of the gauge. The case ν + j1 + j2 = 2 cor-
responds to a nonlinearity with a critical size, for which we have to further investigate
the content of the oscillations. For g ̸= 1, that is for ω + j1 − j2 ̸= 1, the oscillations
in the nonlinear term are not resonant. They prevent the nonlinearity from having a
leading order contribution. This is why we have (1.35).

In practice, the expression (1.33) is built as a sum of wave packets, which may
be viewed as corresponding to the terms uk of (1.12). But now, the wave packets
accumulate only at special positions which, in the space variable x, are located on a
moving lattice of size ε. The complete statement is Proposition 4.16, which takes into
account the general choices of p and FL introduced in Chapter 2.

By contrast, at all other positions, as indicated in (1.34), the wave packets uk
compensate to furnish asymptotic disappearance. This is due to mixing properties
induced by the variations of the phase (∂xφ ̸≡ 0) and dispersive effects (p′ ̸≡ 0),
mixing properties which are recorded in the arithmetic properties of a phase shift.
This is a feature of the PDE (1.20), which is completely absent from the ODE (1.3).
The full statement can be found in Proposition 4.18.

Compare (1.16) and (1.33). The characteristic function 1[0,T ](s) of (1.16) plays the
role of a(s, 0, 0) inside (1.33). Observe however that the Formula (1.33) differs from
(1.16), due to the factor exp

(
−i ℓ6 ( 1

s −
T
s2 )
)

in front of a. This additional factor is
induced by the rate of convergence of p′′(ξ) towards 1, which appears at the end of
line (1.21). It is absent when p ≡ 1. In comparison to (1.16), due to the presence of
an oscillating factor, it can reduce the amplification phenomenon which is revealed
by (1.33). It reflects some microlocal effect, which is encoded in the behavior of p, on
the asymptotic behavior of the solution Ulin.

Remark that the constructive interferences (1.33) would be very difficult to detect
in Lebesgue norms other than L∞, like L2. This is because the asymptotic profile
of Ulin is nontrivial only on a set of Lebesgue measure zero (the lattice Z). To some
extent, we can say that the underlying mechanisms rely on the recombination of small
scales (rapid oscillations) into larger scales, which produces (asymptotically) a very
weak solution.

As already explained, the linear part (1) of Theorem 1.3 is a direct consequence
of Propositions 4.16 and 4.18. The proof relies basically on classical stationary and
non-stationary phase arguments to precisely describe the infinite number (k ∈ N)
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of emitted signals uk. But the linear superposition of the uk is a quite complicated
mechanism. This requires to sort between dispersive and almost stationary waves,
and this means to carefully examine the phase compensation phenomena that occur
in the summation process. The integral inside (1.33) appears ultimately as the limit
of a Riemann sum indexed by k.

The comparison between the linear solution U (0) ≡ Ulin and the expression U (1) is
a nontrivial test to measure whether or not nonlinear effects can alter the solution
at leading order. Subparagraph (2) of Theorem 1.3 deals with situations where this
effect is negligible, see (1.35).

The content of (1.35) is proved in Chapter 5.2. According to the choice of g or
ι ∈ [0, 1], the size of the o(1) inside (1.35) may be improved, see Propositions 5.18,
5.19 and 5.20. In view of Theorem 1.3, nonlinear phenomena can be expected only
under critical nonlinearities (ν + j1 + j2 = 2) and resonant oscillations (g = 1).

General nonlinear source terms will be investigated in Sections 5.1 and 5.2. But,
because it is simpler and already quite illustrative, in Section 5.3, we only examine
the case of u2. Other quadratic nonlinearities may be more difficult to resolve. Retain
also that, higher-order nonlinearities, like the cubic choice |u|2u, appear to be not
directly manageable through our approach, see Remark 5.26.

Recall that FL has been defined at the level of (1.23). The implementation of u2

corresponds at the level of (1.27) to the selection of λ = 1 and (ν, j1, j2) = (0, 2, 0),
so that ω = −1 (since we want to impose g = 1). Thus, we consider the solution
u(0) = ulin to (1.28a), as well as the solution u(1) to u(1)|t=0

= 0 together with

(1.36) ∂tu
(1) − i

ε
p(−iε∂x)u(1) = FL + χ

(
3− 2

εt

T

)
χ
( x

rει

)
e−it/ε

(
u(0)

)2
.

Theorem 1.4 (Nontrivial nonlinear effects in the presence of resonances). – The
general context is as in Theorem 1.3. We fix ν = 1, j1 = 2, j2 = 0 and ω = −1 to
deal with the quadratic source term u2 of (1.36). It follows that the gauge parameter
g = ω + j1 − j2 = 1 is resonant. Select some ι ∈ ]ι−, 1[ with ι− := (13 −

√
89)/8.

Then, for all time T ∈ [T , 2T ] and for all position z ∈ R, the expressions U (0)(T, ·)
and U (1)(T, ·) which are issued from (1.29) after solving (1.28a) and (1.36) have the
following asymptotic behaviors when ε goes to zero.

— Constructive interferences. When z = 2j for some j ∈ Z, the nonlinear interac-
tions have some effect at leading order. As a matter of fact, we find

(1.37)

W(1)(T, 2j) := U (1)(T, 2j)− U (0)(T, 2j)

= o(1) +A4
ε

∫ T

0

χ
(
3− 2

s

T
)

×
(∫ +∞

0

∫ +∞

0

e
−i ℓ

6
T−s

(σ1+σ2)2 b(σ1, s)b(σ2, s)dσ1dσ2

)
ds,

where A2
ε is as in (1.14) and b(σ, s) := e−i

ℓ
6 (

1
σ−

s
σ2 )a(σ, 0, 0).
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— Destructive interferences. By contrast, when z ∈ R \ 2Z, the nonlinear interac-
tions are still negligible at leading order in the sense that

(1.38) ∀z ∈ R \ 2Z, |W(1)(T, z)| = o(1).

Theorem 1.4 means that both constructive and destructive interferences persist in
the nonlinear framework.

The different wave packets uk composing U (0) interact through the quadratic term
of Equation (1.36). There are consequently additional nonlinear effects which are
reflected in the triple integral appearing in the right hand side of (1.37). The nonlinear
impact is not obtained, as could be expected by extrapolating (1.19), that is by just
multiplying the linear profiles b inherited from (1.33). It also involves the correlation
coefficient exp

(
−iℓ(T−s)
6(σ1+σ2)2

)
.

It should be emphasized that Theorem 1.4 cannot be inferred from Theorem 1.3,
even on a formal level, due to the fact that nonlinear effects are quite strong. We will
discuss more specifically these aspects at the end of Chapter 5, in Section 5.3, where
Theorem 1.4 is proved.

It may seem that the assumptions made to state Theorem 1.4 are quite restrictive,
for instance: the space and time localization of the nonlinearity (through the cut-off
function χ), a rather strange lower bound on the parameter ι related to the spatial
scale, and the fact that we consider only the first two iterates of a Picard’s scheme
(this last point was already motivated above). Nevertheless, to obtain Theorem 1.4,
we need already a rather involved analysis and careful estimates to deal with the
oscillatory integrals coming from Duhamel’s formula.

Pursuing the analysis in order to examine the “complete” nonlinear situation (1.20)
is beyond the scope of this article, see Remark 5.27.

In conclusion, the key innovation of the present article is, in the context of SMP
and NMR, a refined analysis of resonances, as well as a subsequent study of related
interferences and nonlinear interactions. This will be done first in a linear setting
(Chapter 4) and then in a nonlinear framework (Chapter 5).
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CHAPTER 2

THE ORIGIN OF THE MODEL

The equation (1.3) with φ as in (1.1) first appears in [8] as a textbook case when
it comes to studying plasma turbulence. It is a very elementary model aimed at
explaining wave-particle interaction [32]. In (1.3), the “wave” is represented by u while
the influence of “particles” is incorporated at the level of the source term, through the
special structure of the phase φ inside FL as well as the choice of the nonlinearity FNL.

The content of φ, of Equation (1.3), of FL and of FNL must be adjusted in connec-
tion with physics. In this section, we examine two frameworks. The first one deals with
strongly magnetized plasmas (SMP); the second is about nuclear magnetic resonance
(NMR). From these perspectives, the properties of φ, (1.3), FL and FNL selected in
Section 1.1 are far from sufficient.

Both SMP and NMR involve a strong varying external magnetic field B(·), and
both imply rapid oscillations around the field lines generated by B(·) at a Larmor
frequency which, in the time variable t, is ε−1 with ε ≪ 1. In SMP, the gyroscopic
motion refers to the dynamics of charged particles, and it is governed by the Vlasov
equation. In NMR, this motion concerns the magnetic moment M that is induced by
the spin of particles, and it is handled by Bloch equations.

These two applications share another remarkable feature. They both entail some
secondary slower periodic motion.

— In SMP like coronas, planetary magnetospheres or fusion devices, the latter
comes from the bouncing back and forth of charged particles between two mirror
points [6, 7].

— In NMR, it is generated by the repeated action of many radio frequency exci-
tations [21].

This second time periodic motion emerges at the level of the phase φ through the
presence of the periodic function “cos t” inside (1.1). It also appears through the two
time scales T/ε and T/ε2 in the right hand side of (1.6). But there is more: the spatial
inhomogeneities of the field B generate variations of the phase φ with respect to the
variable x. The graph G of the gradient of φ, which is defined by (1.31), is associated
with special Lagrangian manifolds, whose geometries reflect the peculiarities of B.
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In SMP, classical choices of B are the dipole model [6] and the axisymmetric
field [7] which are respectively adapted to the description of magnetospheres and
tokamaks. In both situations, the condition ∇xφ ̸= 0 results from some spreading of
the characteristics. The level surfaces of φ involve very specific patterns. They give
rise to wavefronts that are isolated and studied in [6, 7], where they are associated
with a self-organization into coherent structures.

In NMR, the applied field B is the sum of a background field B0, plus a gradient
field G of the form β · x with β ∈ R3 and x ∈ R3, plus a time dependent periodic
field B1. In other words

B(t, x) = B0 + G(x) + B1(t), G(x) = β · x.

In the course of an experiment, the static field G is turned on and off by selecting a
collection of data β ∈ R3 in view of signal processing. On the other hand, the radio
frequency excitation B1 is triggered again and again to counterbalance the effects of
noise in the measurements. The property ∇xφ ̸= 0 is due to the gradient fields G.
The corresponding structure of φ is identified (without exploitation) in the text [21].
It will be more highlighted in what follows, see Paragraph 2.2.

Whether for SMP or NMR, the function φ is the sum of a linear function in t, plus
(locally near the origin) a quadratic function in (t, x), plus a periodic function in t.
A representative selection of φ is the one given in (1.26). More details are given in
the course of this section. Section 2.1 is devoted to SMP, while Section 2.2 deals with
NMR.

2.1. Resonant wave-particle interactions

What happens inside collisionless plasmas is basically described by the Vlasov-
Maxwell system, see [11] for a specific study concerning the strongly magnetized case.
Simplified models (of fluid type) are also available through magnetohydrodynam-
ics, see for instance the PhD thesis [22, Appendix A.2] and the numerous references
therein. In the latter case, the equations take the form

(2.1) ∂tu+
1

ε
L(εDx)u+ F = 0, u|t=0

= 0.

In Paragraph 2.1.1, we exhibit some specificities of the differential operator L(εDx),
which acts on the wave u. In Paragraph 2.1.2, we explain the features of the source
term F , which result from the motion of charged particles (electrons or protons). The
coupling between u and F through (2.1) is a way to investigate phenomena related
to wave-particle interactions [32].
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2.1.1. Plasma dispersion relations. – In this subsection, the spatial dimension is d
with d = 3. The state variable is u = t(B,E,J ) ∈ R9. It involves the magnetic
field B ∈ R3, the electric field E ∈ R3, and the electric current J ∈ R3. Unlike the
external fixed magnetic field B, the electromagnetic field (E,B) is self-consistent, and
therefore it is unknown.

The wave propagation in strongly magnetized plasmas (SMP) is studied in detail
in the articles [9, 10]. It can be undertaken through the asymptotic analysis (when ε
goes to zero) of

∂tu+

d∑
j=1

Sj∂xju+
1

ε
Au+ F = 0, u|t=0

= 0.

In practice, the number ε−1 is a large parameter (ε−1 ≃ 105) that is issued from a
gyrofrequency. Now, to recover the formulation (2.1), it suffices to define

(2.2) L(εDx) :=

3∑
j=1

Sjε∂xj
+A = ε

 0 +∇x× 0

−∇x× 0 0

0 0 0

+A.

In (2.2), the differential operators ±∇x come from Maxwell’s equations in vacuum.
The matrix A can be decomposed into 9 blocks of size 3 × 3 given by (for some
constant be proportional to the strength of the external magnetic field)

(2.3) A =

0 0 0

0 0 +Id

0 −Id beΛ

 , Λ = e3× =

 0 −1 0

+1 0 0

0 0 0

 , e3 :=

0

0

1

 .

The skew-symmetric matrix A can be split into two distinct parts involving ±Id and
beΛ. The two components ±Id are due to the coupling between the charged particles
and E. They take into account one aspect of wave-particle interactions, arising in the
electron cyclotron regime when computing the electric current in the Vlasov-Maxwell
system. On the other hand, the skew-symmetric matrix beΛ captures the influence
of the Lorentz force. It corresponds to the effects of a strong external magnetic field
having (rescaled) amplitude be and fixed direction e3.

To underline the dependence of the semi-classical operator L(εDx) upon S and A,
we will sometimes denote by L(S,A, ξ) the symbol of this operator. Thus

L(ξ) ≡ L(S,A, ξ) := iξ1S1 + iξ2S2 + iξ3S3 +A.

In vacuum, when A = 0, the kernel of L(S, 0, ξ) is (for ξ ̸= 0) of dimension 5. The
situation is different in magnetized plasmas, when A ̸= 0. When A is as in (2.3), the
dimension of kerL(S,A, ξ) may be 2 or 3. In any case, it is strictly less than 5. This
means that some nonzero eigenvalue τj(S,A, ξ) of iL(S,A, ξ) is connected to 0 when
A goes to 0, while the corresponding dispersion relation τj(S,A, ξ) remains bounded
for large values of ξ. Emphasis will be placed on such eigenvalue.
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The characteristic variety associated with (2.1) is

CharL = Rt × R3
x ×

{
(τ, ξ) ∈ R× R3; det

(
iτ Id +L(ξ)

)
= 0
}
.

The analysis of CharL in the context of (2.2)-(2.3) is achieved in the article [9],
with explicit algebraic formulas. The general situation is rather complicated. But,
for parallel propagation, meaning that ξ = t(0, 0, ξ3) ∥ e3, the computations are
simplified. With this in mind, we consider solutions u which depend only on the
third coordinate x3 ∈ R so that x ≡ x3 ∈ R (we work in space dimension d = 1)
and ξ ≡ ξ3 ∈ R. Then, the dispersion relations issued from (2.2) are displayed in
this link [37], which presents basic features of electron waves. As usual in physics, in
[37], the functions τj are available through implicit relations involving the index of
refraction ξ/τ .

In particular, one can distinguish the right circular polarization corresponding to
R-waves (which are sometimes also called whistler modes)

(2.4)
c20ξ

2

τ2
= 1−

ω2
p/τ

2

1− (ωc/τ)
.

There is also the left circular polarization corresponding to L-waves

(2.5)
c20ξ

2

τ2
= 1−

ω2
p/τ

2

1 + (ωc/τ)
.

In (2.4) and (2.5), the three constants c0, ωp and ωc represent respectively the
speed of light in vacuum, the plasma frequency, and the electron cyclotron reso-
nance frequency. The two conditions (2.4) and (2.5) correspond to the selection of
two important branches inside CharL. The first is issued from (2.4); it is valid only
for 0 < τ < ωc; and it becomes physically relevant when τ becomes close to the
resonance frequency ωc. The second branch comes from (2.5); it operates when τ is
above a cutoff frequency.

The two conditions (2.4) and (2.5) can be written in dimensionless form (implying
that c0 = 1 and ωp = ωc = 1). Concerning the relation (2.4), this yields

(2.6)
1

ξ2
= G−(τ), G−(τ) :=

τ − 1

τ2(τ − 1)− τ
, 0 < τ < 1.

From (2.5), we can extract

(2.7)
1

ξ2
= G+(τ), G+(τ) :=

τ + 1

τ2(τ + 1)− τ
,

√
5− 1

2
< τ.

A simple calculation shows that

(2.8) ∀τ ∈ ]0, 1[, G′−(τ) =
( −τ + 2

τ2 − τ − 1
+

1

τ

)′
=

(τ − 1)(τ − 3)

(τ2 − τ − 1)2
− 1

τ2
≤ −1,

and that

(2.9) lim
τ→0+

G−(τ) = +∞, G−(1) = 0, G′−(1) = −1.
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The function G− is continuous and strictly decreasing from ]0, 1] onto [0,+∞[. There-
fore, it gives rise to a diffeomorphism between these two intervals, with inverse func-
tion G−1

− . The whistler dispersion relation expresses τ as a function of ξ, through
τ ≡ τw(ξ) := G−1

−
(
ξ−2
)
. This function τw(·) is even. This property does not come

from the general condition (3.3), but from other specificities related to (2.2). By con-
struction, we have

(2.10) lim
ξ→0±

G−1
−
(
ξ−2
)

= τw(0) = 0, lim
ξ→±∞

G−1
−
(
ξ−2
)

= lim
ξ→±∞

τw(ξ) = 1.

In (2.10), the first limit means that the whistler dispersion relation is linked to some
zero eigenvalue of L(S,A, 0) ≡ A. The second limit indicates, as noted before, that it
appears as a perturbation (in terms of A) of some zero eigenvalue of L(S, 0, ξ). This
is consistent with a bounded behavior of τ when |ξ| goes to infinity.

Figure 1. Graph of the function ξ 7−→ τw(ξ) on R+ in red. Asymptotic
direction of the dispersion relation in magenta.

The function τw connects 0 (for ξ = 0) to ωc ≡ 1 (for ξ = ±∞), in a one-to-one
smooth relation. Moreover, we can see on Figure 1 that the value τ becomes close
to ωc ≡ 1 on condition that |ξ| goes to infinity. In view of applications (see e.g.,
[20, 35]), the whistler dispersion relation τw has more impact near the resonance, that
is when |ξ| becomes large enough.

On the other hand, the regime is semiclassical. This means that the value ξ = 0

corresponds to a transition zone between spatial frequencies of size 1 and ε−1. What
happens near ξ = 0 is therefore physically less significant. For this reason and also
to avoid a possible singularity at ξ = 0, we can skip what occurs near ξ = 0. Thus,
we can multiply τw by 1 − χ where χ is an even, smooth cut-off function which, for
instance, is such that

∀|s| < 5/8, χ(s) = 1, ∀s ∈ ]5/8, 1[, 0 < χ(s) = χ(−s),(2.11a)
∀|s| > 1, χ(s) = 0, ∀s ∈ ]5/8, 1[, χ′(s) < 0.(2.11b)

Example 2.1 (The physical model of R-waves). – Take p ∈ C∞(R;R) with

(2.12) p(ξ) :=
(
1− χ(ξ)

)
G−1
−
(
ξ−2
)

=
(
1− χ(ξ)

)
τw(ξ).
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18 CHAPTER 2. THE ORIGIN OF THE MODEL

The function p inside (2.12) is even; it is equal to 0 in a neighborhood of ξ = 0; it
coincides with the function τw for 1 ≤ |ξ|. Applying Faà di Bruno’s formula, we can
also see that

(2.13) ∀n ∈ N∗, lim
ξ→+∞

ξ2+np(n)(ξ) = (−1)n+1(n+ 1)!

This article is a first mathematical approach of the subject. Thus, we will only
consider a scalar wave equation in one space dimension (d = 1), like (1.20). In what
follows, the special choice (2.12) of p will serve to guide the discussion.

2.1.2. The impact of charged particles. – The source term F inside (2.1) is aimed to
collect extra contributions appearing when passing from the Vlasov-Maxwell system
to MHD equations. Typically, the function F is built with moments

Mn(f) :=

∫
v ⊗ · · · ⊗ v︸ ︷︷ ︸
n times

f(t, x, v)dv, n ∈ N∗

of the distribution function f(t, x, v) satisfying the Vlasov equation. As explained in
[22, Appendix A.2], the content of F must take into account the underlying physics.
In the context of confined magnetized plasmas, the function F inherits from the
computation of Mn(f) a special set of characteristics.

We consider as a first approximation that the expression F takes the following form

(2.14) F ≡ F
(
ε, εt, t, x,

φ(t, x)

ε
, u
)
.

The function F (ε, T, t, x, θ, u) inside (2.14) depends on the parameter ε ∈ [0, 1], on
the long time variable T := εt with T ∈ [0, T ] for some T > 0, on the time variable
t ≥ 0, on the spatial position x ∈ R, on the periodic variable θ ∈ T := R/(2πZ), and
on the state variable u ∈ R. It is a smooth function of class C∞ of all these variables,
on the domain [0, 1]× [0, T ]× R2 × T× R.

We must specify more precisely the three-scale, oscillating and nonlinear structure
of F . In Paragraph 2.1.2.1, we explain the origin of φ. In Paragraph 2.1.2.2, we describe
the dependence of F (·) on θ and u.

2.1.2.1. The monophase context. – Under the influence of a strong external magnetic
field, the collective motion of charged particles creates coherent structures which in-
volve mesoscopic oscillations [6, 7]. Through a procedure detailed in [8], when comput-
ing the moments Mn(f), this furnishes macroscopic oscillations involving a specific
phase φ(t, x). As outlined in [8], see the lines (2.7) and (3.7) there, the relevant func-
tion φ is issued from a mesoscopic gyrophase after freezing the momentum v at mirror
points. It can be determined through

(2.15) φ(t, x) =

∫ t

0

be
(
Xr(s, x)

)
ds,

where the function Xr can be deduced from gyrokinetic equations or, as in [6, 7],
from a notion of reduced Hamiltonian (the subscript r in Xr stands for reduced). The
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function Xr is smooth, and it can be viewed as a flow on Rd, with d = 3 in the case of
applications. We refer to the articles [6, 7] for more details concerning the properties
of Xr in connection with plasma physics, and to [8] for a short presentation.

In what follows, we will just retain the basic representative features of Xr, and
therefore of φ. There is a remarkable fact concerning Xr, which is due to underlying
integrability conditions. For all x, the function Xr(·, x) is periodic with respect to the
first variable s. To simplify the discussion (or after reductions), we can even suppose
that the period of Xr(·, x) is uniform with respect to all positions x, say equal to 2π,
so that

(2.16) ∀(s, x) ∈ R× R3, Xr(0, x) = x, Xr(s+ 2π, x) = Xr(s, x).

The periodic function Xr(·, x) produces a spatial periodic trajectory, starting from x

at time s = 0. From (2.15), we can deduce a decomposition of φ separating average
and oscillatory parts. The average part is

⟨be ◦Xr⟩(x) :=
1

2π

∫ 2π

0

be
(
Xr(s, x)

)
ds.

The oscillatory part (be◦Xr)
∗(t, x) is 2π-periodic with zero average. It may be defined

according to

(2.17)
(be ◦Xr)

∗(t, x) =

∫ t

0

[
be ◦Xr(s, x)− ⟨be ◦Xr⟩(x)

]
ds

= φ(t, x)− ⟨be ◦Xr⟩(x)t.

Recall that the quantity be(x) represents the strictly positive amplitude of the external
magnetic field computed at x. In (2.17), the linear part ⟨be ◦Xr⟩(x)t is produced by
the mean effect of the bouncing back and forth of charged particles between the mirror
points.

On the other hand, the oscillating part (be ◦Xr)
∗(t, x) ̸≡ 0 takes into account the

variations around this mean value. By definition, given x ∈ R3, the latter term is of
mean value zero with respect to t ∈ T. Observe that

(2.18) ∂tφ(t, x) = be ◦Xr(t, x) = ⟨be ◦Xr⟩(x) + ∂t(be ◦Xr)
∗(t, x) > 0.

Working in the vicinity of a fixed position, say near the origin x = 0, we can roughly
replace the part ⟨be ◦Xr⟩(·) by

(2.19) ⟨be ◦Xr⟩(x) ≃ α+ β · x, (α, β) ∈ R× R3,

with the following identifications

(2.20) α = ⟨be ◦Xr⟩(0) > 0, β = ∇x⟨be ◦Xr⟩(0) ∈ R3 \ {0}.

In fact, for the purpose of our analysis, the choice of φ or −φ does not matter.
The remark (2.18) just says that ∂tφ has a constant sign which is positive under the
convention (2.15) since the function be is positive. As a consequence, we have to retain
that α > 0 at the level of (2.20).
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The dimensionless quantity α has a physical meaning. It is a measure of the ratio
between the size of the magnetic field and the cyclotron resonance frequency ωc.
Thus, when ωc = 1, as will be assumed later after rescaling (the aim of this arbitrary
choice is just to simplify notations), the number α indicates the average amplitude of
the (rescaled) external magnetic field. Now, resonances arise when α ∼ ωc. For this
reason, we select the value α = 1.

In practice, both functions be and Xr are nontrivial functions of x. This is why we
set β ̸= 0 at the level of (2.20). In fact, the inhomogeneities of the external magnetic
field induce some spreading of the integral curves which are associated to the Vlasov
equation. This is reflected in the term β · x ̸≡ 0 of (2.19). Without loss of generality,
after spatial rotations and rescalings, we can always adjust β so that β = (0, 0,−1).
For solutions which depend only on the direction x3, as it was supposed before, we
just find β = −1. Finally, as a prototype of a nontrivial periodic function with zero
mean, we can take

(2.21) ∂t(be ◦Xr)
∗(t, x) = −γ sin t.

Combining (2.19), (2.20) and (2.21), the positivity condition (2.18) is satisfied, at least
for small enough positions x, on condition that 0 < γ < α = 1. To work on a spatial
domain where the amplitude be(·) is expected to remain of magnitude comparable
to the mean value α, we fix γ in the interval ]0, 1/4[. This assumption turns out
to be rather convenient for the forthcoming computations. It ensures that only one
harmonic is resonant. The more general case γ > 0 would be more complicated. It
may lead to supplementary dynamics compared to the one described in this paper.
Since φ(0, ·) ≡ 0, the preceding discussion indicates that a choice of φ which should
be relevant from the viewpoint of applications is given by (1.26).

2.1.2.2. Nonlinear aspects. – In the articles [6, 7], the function f(t, x, v) is obtained
as the composition of a localized initial data f0(x, v) with the oscillatory flow that
is issued from the Vlasov equation. It follows that all harmonics mφ with m ∈ Z
are necessarily involved. Accordingly, the periodic function F (ε, T, t, x, ·, u) can be
decomposed in Fourier series

F (ε, T, t, x, θ, u) =
∑
m∈Z

Fm(ε, T, t, x, u)eimθ.

The MHD equations resulting from the Vlasov-Maxwell system are not closed. Some
approximations are needed to recover self-contained equations. They usually are made
in the form of nonlinearities. In the scalar setting (1.3), this means to consider that the
source term F is semilinear in u and ū. The function F is made up of a part FL which
is affine with respect to (u, ū), plus some nonlinear part FNL. We can decompose FL
into FL(·, u) = F 0

L + F 1
Lu+ F 1

Lū with

(2.22) F 0
L(·) := F (·, 0), F 1

L(·) := ∂uF (·, 0), F 1
L(·) := ∂ūF (·, 0).

Remark 2.2 (About the elimination of F 1
L). – The influence of F 1

L can sometimes be
removed. This can be achieved for instance by modifying the dependence on t inside
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F 0
L, F 1

L and FNL. To simplify, assume that F 1
L does not depend on (x, θ) but only

on (T, t). Then, define

(2.23) v(t, x) := e−iθ(t)/εu(t, x), θ(t) := −iε
∫ t

0

F 1
L(ε, εs, s)ds.

The new function v solves

∂tv −
i

ε
p(εDx)v + e−iθ(t)/εF 0

L + e−2iθ(t)/εF 1
Lv̄ + e−iθ(t)/εFNL

(
ε, εt, t, e+iθ(t)/εv

)
.

In particular, when F 1
L(ε, T, t) = ε−1F̃ 1

L(t) with a function F̃ 1
L purely imaginary and

periodic in t with mean zero, the above expression θ becomes a periodic real valued
function. This means that the gauge transformation (2.23) can introduce in the source
term of (1.3) oscillations with a phase similar to (1.1). In other words, the oscillations
of (1.1) can appear after a procedure aimed to absorb the “potential” F 1

L, even if
such oscillations are not visible at first sight. This provides another motivation for
implementing phases φ like in (1.26).

The nonlinear part FNL is chosen of the same form as in the introduction. As will
be seen, an oscillatory source term such as (2.14) does generate oscillations of the
solution u. By a mechanism similar to (1.11)-(1.13), the function u can be viewed as
a sum of oscillating waves uk. Note that, in the present context, nonlinear aspects
can be revealed at the level of the source term F (coming from Vlasov) through the
harmonics of φ but also inside the wave u itself (related to Maxwell) through the
harmonics of the phases involved by the uk’s.

In the case of the Earth’s magnetosphere, the emission of whistler waves uk is a
long-standing experimental evidence, coming back to works of H. Barkhausen in 1917,
T.L. Eckersley in 1935, and L.R.O. Storey in 1953 [36]. Thanks to progress in satellite
means, like Van Allen Probes of NASA or Cluster of ESA, whistler waves uk can be
today observed in detail. The internal mechanisms underlying the production of the
uk’s are clarified in [6].

In practice, the whistler waves uk accumulate and form a chorus. Theorems 1.3 and
1.4 describe intermittency phenomena that can occur during this process. It should be
stressed that our results deal with a plasma turbulence which by nature is anisotropic.
The energizing external field B points in special directions, which undergo variations
according to specific geometries (revealed by the Lagrangian manifold G). We will
not further investigate here the potential implications of our analysis in terms of
plasma physics. We just refer to the text [8] for preliminary comparisons between
mathematical previsions and concrete observations.

2.2. Nuclear magnetic resonance

The general framework concerning Nuclear Magnetic Resonance (NMR) is well ex-
plained in a paper of C.L. Epstein, see [21] and the references therein. The NMR ex-
periments are intended (for instance) to determine the distribution of water molecules

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2022

https://fr.wikipedia.org/wiki/Heinrich_Barkhausen
https://en.wikipedia.org/wiki/Thomas_Eckersley
https://fr.wikipedia.org/wiki/Van_Allen_Probes
https://fr.wikipedia.org/wiki/Cluster_(satellite)
https://science.nasa.gov/science-news/science-at-nasa/2012/28sep_earthsong/
https://en.wikipedia.org/wiki/Nuclear_magnetic_resonance


22 CHAPTER 2. THE ORIGIN OF THE MODEL

in an extended domain. To this end, an external magnetic field B(t, x) is repeatedly
applied to the object under examination. At a microscopic level, the spins of particles
react to the presence of B by producing a magnetization field M(t, x).

The time evolution of M is described by Bloch equations which, in the absence of
relaxation terms, take the following form

(2.24)
dM

dt
= gM×B.

The function B is usually viewed as a sum B = B0 + G(x) + B1(t), where B0 is a
constant background field, G is a gradient field which is collinear with B0, whereas
B1 is a time dependent radio frequency field which is orthogonal to B0 and G(x).
Typically [21], the components B0 and G can be adjusted according to

B0 = t(0, 0, b0), G(x) = t(0, 0, β · x),

where b0 > 0 is the strength of the external magnet, and where the vector β ∈ R3

comes from a collection of static fields that are turned on and off. In hospital magnetic
resonance imaging devices, acceptable orders of magnitude [21] are

(2.25) g ≃ 107 − 108rad/Tesla, b0 ≃ 1− 10Teslas.

In the absence of B1, at the position x, the magnetization M(·, x) undergoes a (coun-
terclockwise) precession about the z-axis with the angular frequency

ω(x) := ω0 + gβ · x, ω0 := gb0 ≃ 108.

This underscores the importance of the small parameter ε := ω−1
0 ≪ 1, which is the

inverse of the Larmor frequency ω0. The field B1 represents the repeated action during
the experiments of RF-excitations, which are all adjusted near the resonant frequency
ω(x). As explained in [21], this can be modeled by

(2.26) B1(t) = b1(t, x)

 + cos
(
ω(x)t+ c1(t, x)

)
− sin

(
ω(x)t+ c1(t, x)

)
0

 .

In (2.26), the amplitude b1 of the field B1 is a scalar function. On the other hand,
the phase shift c1 takes into account the small variations occurring when calibrating
the frequency of the RF-pulse.

To model the repetition of measurements, which is aimed to reduce noise effects,
the function b1(·, x) may be chosen periodic in t (say of period 2π). Define

(2.27) d1(t, x) := g

∫ t

0

b1(s, x)ds = gtb̄1(x) + gb∗1(t, x),

where

b̄1(x) :=
1

2π

∫ 2π

0

b1(s, x)ds, b∗1(t, x) := b1(t, x)− b̄1(t, x) = b∗1(t+ 2π, x).
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The equation (2.24) can be interpreted by following the motion of M(·, x) in a frame
rotating exactly at the frequency ω(x). This amounts to replacing M by the new
unknown

N(t, x) := e−ω(x)tΛM(t, x), Λ :=

 0 1 0

−1 0 0

0 0 0

 .

The equation satisfied by N is simply

dN

dt
= gb1(t, x)

 0 0 sin c1(t, x)

0 0 cos c1(t, x)

− sin c1(t, x) − cos c1(t, x) 0

N.

When c1 does not depend on t, for instance when c1 ≡ 0, the solution is explicit. With
d1 as in (2.27), the solution operator U associated with (2.24) is given by

(2.28) U(t, x) =

 + cos(ωt) sin(ωt) 0

− sin(ωt) cos(ωt) 0

0 0 1

 1 0 0

0 + cos d1 sin d1

0 − sin d1 cos d1

 .

The formula (2.28) reveals the role of the phase ω(x)t and also, after linearization,
the presence in the description of U(t, x) of the two extra phases ω(x)t ± d1(t, x).
In coherence with (2.25), we can take b0 = 1, so that ω0 ≡ g ≡ ε−1. In one space
dimension (when the vectors β have a fixed direction), there remains β · x = βx with
β ∈ R and x ∈ R. Then, for the special choices β = −1, b̄1 ≡ 0 and b∗1 ≡ γ(1− cos t),
we just find ωt− d1 = φ/ε with φ exactly as in (1.26).

The solution M to (2.24) does oscillate at the frequency ε−1 according to the
phase φ. Thus, by plugging M into Maxwell’s equations through the magnetization
current Jm := ∇ ×M, we end up with a model similar to (2.1). Note also that the
influence of such oscillating function M in the source term of Maxwell’s equations can
also appear in the context of Maxwell-Landau-Lifshitz equations [19].

Remark 2.3 (Dispersion relations in human tissues). – In the context of NMR,
the relevant functions p do not appear to have been modeled precisely. But, like in
SMP, the NMR experiments involve a magnetized medium. As a consequence, the
corresponding dispersion relations should share common characteristics. Be that as
it may, both situations involve hyperbolic systems to depict wave propagation. And,
as will be seen in the next section, the properties of p which have been introduced in
Section 2.1 are fairly general in such a framework.

The production of the uk’s corresponds to some electromagnetic radiation. When
dealing with magnetic resonance imaging, this may contribute to the heating of human
tissues in a way which could be a consequence of Theorems 1.3 and 1.4.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2022





CHAPTER 3

GENERAL SETTING AND ASSUMPTIONS

In this section, we present a general framework which includes the previous two ex-
amples: strongly magnetized plasmas and nuclear magnetic resonance. We also gather
the assumptions that will be retained in the rest of the analysis.

3.1. The evolution equation

In this subsection, we start with N ∈ N∗ state variables, so that u ∈ RN . The
time variable is t ∈ R. The spatial dimension is d ≥ 1, so that x ∈ Rd. The general
context is based on dispersive nonlinear geometric optics [17, 33]. Consider a system
of equations having the form

(3.1) ∂tu+
1

ε
L(εDx)u+ F = 0, u|t=0

= 0.

The real number ε ∈ ]0, 1] is a small parameter (ε ≪ 1). The dual variables of t and
x are denoted by τ ∈ R and ξ ∈ Rd, respectively. In Paragraph 3.1.1, we describe
precisely the content of L(εDx). In Paragraph 3.1.2, we decompose (3.1) into a di-
agonal system of transport equations, which are coupled through semilinear terms.
Then, we make a strong decoupling assumption to work with N = 1, and we restrict
our attention to one dimensional effects so that d = 1. This reduction process leads to
(1.20). At the end of this subsection, in Paragraph 3.1.3, we explain how to express
the solution to (1.20) as an oscillatory integral.

3.1.1. The pseudo-differential operator L(εDx). – The semiclassical symbol that is
associated to L(εDx) is a matrix L(ξ). We suppose that (3.1) is symmetrizable, that
is, L(ξ) is antihermitian. Typically, we work with systems that can be reduced to the
following symmetric form

(3.2) ∂tu+

d∑
j=1

Sj∂xju+
1

ε
Au+ F = 0, u|t=0

= 0.
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In (3.2), the letters Sj represent real-valued symmetric matrices. On the other hand,
the matrix A may be complex-valued and is antihermitian. In other words

(3.3) ∀j ∈ {1, . . . , d}, Sj = tSj , A∗ = tĀ = −A.

The symbol associated to (3.2) is

L(S,A, ξ) :=

d∑
j=1

iξjSj +A = −L(S,A, ξ)∗.

The matrix-valued symbol iL(S,A, ξ) is hermitian. It is therefore diagonalizable, with
real eigenvalues τj(S,A, ξ) satisfying

(3.4) τj(S,A, ξ) = τj(S, 0, ξ) + |ξ|
{
τj

(
S,

A

|ξ|
,
ξ

|ξ|

)
− τj

(
S, 0,

ξ

|ξ|

)}
.

The function τj is Lipschitz continuous on compact sets, including the compact neigh-
borhoods of

{
(S, 0)

}
×Sd−1. With this in mind, exploiting (3.4) and assuming a little

more regularity in the variable A near the position (S, 0, σ) with σ = ξ/|ξ|, we can
infer that

(3.5) τj(S,A, ξ) = τj(S, 0, ξ) + (A · ∇A)τj(S, 0, σ) +O
(
|ξ|−1

)
.

By this way, the expression τj(S,A, ξ) appears for large values of |ξ| as a bounded
perturbation of the eigenvalue τj(S, 0, ξ). Since τj(S, 0, ·) is homogeneous of degree
one in ξ, the directions σ ∈ Sd−1 with τj(S, 0, σ) ̸= 0 give rise to symbols τj(S,A, ξ)
which tend to ±∞ when ξ = λσ goes to infinity (when λ → +∞). On the contrary,
the directions σ ∈ Sd−1 such that

(3.6) τj(S, 0, σ) = 0

furnish eigenvalues τj(S,A, ξ) of iL(S,A, ξ) satisfying

(3.7) lim
λ→+∞

τj(S,A, λσ) = τ∞j (S,A, σ) := (A · ∇A)τj(S, 0, σ).

The condition (3.7) appears already in Paragraph 2.1.1 at the level of (2.10) when
studying wave propagation in magnetized plasmas. It is reflected at the level of Fig-
ure 1 by the horizontal asymptotic line. In what follows, the focus will be on such
situations, which in fact have a general scope.

Remark 3.1 (Omnipresence of a finite limit). – Zero eigenvalues τj(S, 0, ξ) = 0

of iL(S, 0, ξ) are nearly always present in the evolution equations of mathematical
physics. In the most favorable cases, there is a number of indices j such that (3.6)
is verified for all directions σ ∈ Sd−1. Otherwise, fix any σ ∈ Sd−1. Then, change x
into x − tτj(S, 0, σ)σ, and modify the solution u accordingly. By this way, it can be
ensured that τj(S, 0, σ) ≡ 0. Consequently, given σ ∈ Sd−1, the existence of a finite
limit as in (3.7) is (modulo adequate transformations) systematic.
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From now on, the matrices Sj and A are fixed, with A ̸= 0. The symbol L(S,A, ξ) is
simply denoted by L ≡ L(ξ). We assume that, for ξ ̸= 0, the matrix L(ξ) has exactly
Ñ ≥ 1 (with Ñ ≤ N) distinct eigenvalues which are of constant multiplicity, denoted
by −iτj(ξ) with j = 1, . . . , Ñ . The characteristic variety which is issued from L(εDx)

is Char(L) := Rt × Rdx × V with

(3.8) V :=
{
(τ, ξ) ∈ R× Rd; det

(
iτ Id +L(ξ)

)
= 0
}
.

By construction, the set V consists of a finite number Ñ of smooth sheets, which
correspond to different branches of Char(L), and which are nonintersecting except
possibly at the position ξ = 0.

We have (t, x, τ, ξ) ∈ Char(L) if and only if τ = τj(ξ) for some j. The functions τj
are called dispersion relations. They are smooth away from the origin ξ = 0. Retain
that τj ∈ C∞

(
Rd \ {0};R

)
.

3.1.2. Reduction to a scalar equation. – The aim here is to explain how to pass from
the system (3.1) to a finite number of scalar equations.

Lemma 3.2. – For all ξ ∈ Rd \ {0}, the normal matrix L(ξ) is unitarily similar to a
diagonal matrix D(ξ). In other words

∃U(ξ) ∈ U(N); U(ξ)−1 = U(ξ)∗, U(ξ)L(ξ)U(ξ)∗ = D(ξ).

In addition, the function U can be chosen smooth away from {ξ = 0}, bounded as well
as all its derivatives, and it has a non-zero limit in each direction

(3.9) ∀σ ∈ Sd−1, ∃Uσ ∈ U(N); lim
λ→+∞

U(λσ) = Uσ.

Proof. – The diagonalisation is straightforward since L(ξ) is antihermitian. On the
other hand, the smoothness of the map ξ 7→ U(ξ) follows easily from the constant
multiplicity assumption. It remains to focus on (3.9).

In the case A = 0, the function U is homogeneous of degree zero, and we have (3.9)
with Uσ = U(σ). The lemma then follows from perturbative arguments. For large
values of |ξ|, the contribution issued from introducing A yields only O(1/|ξ|) terms,
as in the previous paragraph.

To avoid a possible singularity of p at ξ = 0, we introduce a cut-off function χ
c

near the zero frequency. In the absence of singularity at ξ = 0, just take ξc = 0 and
χ
c
≡ 0. In the presence of a singularity at ξ = 0, fix some ξc > 0, and select a smooth

even cut-off function χ
c

satisfying

(3.10) 1[−ξc,ξc] ≤ χ
c
≤ 1[−2ξc,2ξc].

The diagonal entries of the matrix D(ξ) are the imaginary numbers −iτj(ξ). Apply
the operator

[
1 − χ

c
(εDx)

]
U(εDx) on the left side of (3.2). Accordingly, define the

modal decomposition
t(u1, . . . , uN ) :=

[
1− χ

c
(εDx)

]
U(εDx)u ∈ RN .
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We emphasize again that this (possible) cut-off near ξ = 0 is consistent with physical
approaches. In practice, the dispersion relation near the zero frequency requires often
a distinct treatment. Examples include the Alfvén wave regime as opposed to the
Whistler wave regime, see e.g., [20, 35]. By this way, the PDE (3.2) is reduced to a
coupled system of N scalar equations

(3.11) ∂tun −
i

ε
pn(εDx)un +

[
1− χ

c
(εDx)

][
U(εDx)F

]
n

= 0, 1 ≤ n ≤ N.

In (3.11), the pseudo-differential operator pn(εDx) involves a symbol pn which is a
smooth function that comes from a dispersion relation τj . More precisely

(3.12) ∃j ∈ {1, . . . , Ñ}; pn(ξ) =
[
1− χ

c
(ξ)
]
τj(ξ).

The multiplication by 1 − χ
c
(ξ) inside (3.12) allows a smooth connection of the val-

ues τj(ξ) for ξ ̸= 0 to the value pn(0) = 0 for ξ = 0. Now, we can remove the index n.
The above polarization and microlocalization procedure does highlight the important
role of scalar equations of the type

(3.13) ∂tu−
i

ε
p(εDx)u+ ζ(εDx)F = 0, u|t=0

= 0,

where ζ(ξ) :=
(
1− χ

c
(ξ)
)
U(ξ). In (3.13), there is only one mode of propagation. We

have u ∈ R and N = 1. Moreover, assuming that the function F depends only on u,
there is no more coupling between the different modes uj ’s.

Of course, the passage from (3.11) to (3.13) is a great simplification. Nonetheless,
the equation (3.13) is very interesting. It is a simplified model giving a good indication
of many mechanisms occurring at the level of systems like (3.2). Of special interest
are the symbols p which, like in Chapter 2, stem from realistic models. Indeed, they
allow to identify key physical phenomena.

3.1.3. Solving the scalar equation. – In a first stage, we consider (3.13) when the source
term F reduces to

(3.14) F (ε, t, x) ≡ F 0
L(ε, t, x) = −ε3/2am(εt, t, x)eimφ(t,x)/ε.

The function am is a smooth profile, which is compactly supported with respect to
the spatial variable x; the function φ is defined in (1.26), and m ∈ Z. More general
choices of F will be presented in Section 3.2. By interpreting the equation (3.13) on
the Fourier side, we can extract

û(t, ξ) = −
∫ t

0

∫
ei[−(s−t)p(εξ)−εyξ]/εζ(−εξ)F (ε, s, y)dsdy,

where the Fourier transform is defined as

(3.15) f̂(ξ) = Ff(ξ) =

∫
R
e−ixξf(x)dx, F−1f(x) =

1

2π

∫
R
eixξ f̂(ξ)dξ.
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Since ζ is smooth and bounded, and am(εs, s, ·) is in the Schwartz space, the expres-
sion û(t, ·) is rapidly decreasing and therefore integrable (in ξ). The inverse Fourier
transform of û(t, ·) furnishes

u(t, x) = − 1

2π

∫
eixξ

(∫ t

0

∫
ei[−(s−t)p(εξ)−y(εξ)]/εζ(−εξ)F (ε, s, y)dsdy

)
dξ.

Replacing F as indicated in (3.14), and changing the variable ξ into −ξ/ε in the
resulting integral yields u(t, x) = I(ε, t, x;mφ, ζ, a) where the oscillatory integral I is
given by

(3.16) I :=

√
ε

2π

∫ (∫ t

0

∫
e−iΦ(t,x;s,y,ξ)/εζ(ξ)a(εs, s, y)dsdy

)
dξ,

and where, assuming that p is even, the function Φ stands for the phase

(3.17) Φ(t, x; s, y, ξ) := (s− t)p(ξ) + (x− y)ξ −mφ(s, y).

The notation Φ(t, x; s, y, ξ) emphasizes the dependence of the function of (s, y, ξ)

upon the parameters (t, x). A large part of our work will focus on the asymptotic
behavior when ε goes to zero of expressions like (3.16). Note that the application
a(εt, t, ·) 7→ u(t, ·) belongs to the general category of Fourier integral operators, see
the book [18]. Non-standard features come here from the large domain of integration
in time (of size s ∼ ε−1) and from the unusual properties of the phase Φ (during large
times s ∼ ε−1). Typically, the phase φ(s, y) is linear in y for fixed time, but with an
increasing coefficient s, which enhances new phenomena.

3.2. Main assumptions

Consider (3.13). By incorporating the action of ζ(εDx) inside the definition of F ,
we find a scalar equation in one space dimension like

(3.18) ∂tu−
i

ε
p (εDx)u+ F = 0, u|t=0

= 0.

As in Paragraph 2.1.2.2, we can decompose the source term F into F = FL + FNL
with FL as in (2.22). Below, we state our general assumptions regarding the terms
which are present in (3.18).

3.2.1. Assumptions on the dispersion relation. – We select some j giving rise to (3.6),
and we consider the subset of Char(L) which is associated to the choice of the eigen-
value τj(S,A, ξ) ≡ τj . For convenience, we will sometimes omit to mention j when
dealing with τj or related expressions. The surface

V ≡ Vj :=
{(
τj(ξ), ξ); ξ ∈ Rd

}
⊂ R1+d

does not depend on (t, x), and it is contained in all sections of Char(L). Our aim
is to study the equation (3.18) with a pseudo-differential operator p(−iε∂x) whose
symbol p = (1 − χ

c
)τ is satisfying assumptions which are inspired by (2.12). With

this in mind, we impose the following conditions.
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Assumption 3.3 (Existence of a resonance). – The symbol p ∈ C∞(R;R) satisfies:

(a) There exists ξc ∈ [0, 1/2] such that p|[0,ξc]
≡ 0;

(b) The function p′ is positive on the interval ]ξc,+∞[;

(c) The derivative p′(ξ) converges to zero when ξ tends to +∞;

(d) The function p is such that

(3.19) ∃q ≥ 2 and ℓ < 0; lim
ξ→+∞

ξq+2p′′(ξ) = ℓ;

(e) The function p is even.

In other words, we have (3.19) together with

∀ξ ∈ [0, ξc], p(ξ) = 0,(3.20a)

∀ξ ∈ ]ξc,+∞[, 0 < p′(ξ),(3.20b)

∀ξ ∈ [0,+∞[, 0 ≤ p(ξ) = p(−ξ),(3.20c)

as well as

(3.21) lim
ξ→+∞

p′(ξ) = 0.

As seen in Chapter 2, the formula (2.12) furnishes a typical example of symbol p,
which is issued from electromagnetism.

Lemma 3.4. – Assumption 3.3 is satisfied by the function p of (2.12).

Proof. – Recall that G−1
− is strictly decreasing from [0,+∞[ to ]0, 1]. Taking into

account (2.11) and (2.12), we have (a) with ξc = 5/8. Compute

p′(ξ) = −χ′(ξ)G−1
−
(
ξ−2
)
− 2
(
1− χ(ξ)

)
ξ−3G′− ◦G−1

−
(
ξ−2
)−1

.

For ξ > ξc, in view of (2.8) and (2.11b), p′(ξ) is the sum of two positive expressions.
This furnishes (b). On the other hand, using (2.9), we find

lim
ξ→+∞

ξ3p′(ξ) = −2 lim
ξ→+∞

G′− ◦G−1
−
(
ξ−2
)−1

= −2G′−(1)−1 = 2.

As a direct consequence, we have (c). For ξ > 1, there remains

p′′(ξ) = 6ξ−4G′− ◦G−1
−
(
ξ−2
)−1 − 4ξ−6G′′− ◦G−1

−
(
ξ−2
)
G′− ◦G−1

−
(
ξ−2
)−3

.

Passing to the limit ξ → +∞, we recover (3.19) with q = 2 and ℓ = −6 < 0. Finally,
by construction, the function p is the product of two even functions, and therefore we
have (e).
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Remark 3.5 (About the optimality of Assumption 3.3). – Most of our results remain
valid when q ≥ 1, and some of them hold true when (3.19) is relaxed according to

(3.22) ∃(q, ℓ) ∈]0,+∞[×R−; lim
ξ→+∞

ξq+2p′′(ξ) = ℓ.

For instance, with χ as in (2.11) and p(ξ) =
[
1−χ(ξ)

]
τ(ξ) as in (3.12), we could also

consider the following choices

τ(ξ) =
2

π
arctan |ξ|, q = 1, ℓ = − 4

π
,

τ(ξ) =

∫ ξ

0

ds

1 + |s|1+q
, q > 0, ℓ = −1− q.

However, the precise description of the large time behavior of u (for t of order 1/ε,
as in Proposition 4.16) does require ℓ < 0. As a matter of fact, the case ℓ = 0 is an
option which does not allow to quantify the dispersive effects (as in Lemma 4.7).

From (3.19), we obtain that p′′ is integrable on R+. Using (3.21), this yields

p′(ξ) = −
∫ +∞

ξ

p′′(s)ds.

Then, exploiting (3.22), we can obtain

(3.23) lim
ξ→+∞

ξq+1p′(ξ) = − ℓ

q + 1
> 0.

Note that the condition (3.20b) implies that the limit in the right hand side of (3.23)
should be nonnegative. This is compatible with the condition ℓ < 0 of (3.19) or with
the condition ℓ ≤ 0 of (3.22). Now, from (3.23), we know that p′ is integrable on R+.
Thus, we can find a number ω∞+ > 0 such that

(3.24) lim
ξ→+∞

p(ξ) = ω∞+ :=

∫ +∞

0

p′(ξ)dξ > 0.

The limit ω∞+ has clear physical meaning, in the sense of a resonance frequency. In
the context of SMP, the number ω∞+ coincides with the electron cyclotron resonance
frequency ωc introduced at the level of (2.4) and (2.5). In the text [8], it is called a
resonance of the first type.

In the scalar framework (3.18) which involves only one dispersion relation, changing
the time scale t into ω∞+ t, the symbol p and the source term F are respectively replaced
by (ω∞+ )−1p and (ω∞+ )−1F . By this way, we can ensure that ω∞+ = 1.

Assumption 3.6 (Normalization of the resonance). – The resonance frequency, that
is the limit ω∞+ , is normalized to unity.

(3.25) lim
ξ→+∞

p(ξ) = 1.
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Consequently, for ξ large enough, the dispersion relation τ = p(ξ) does mimic the
choice p ≡ 1 of (1.3). However, in Assumption 3.3, due to (b), the function p is
definitely not constant, and therefore the variety V is curved. Again, this is a hint
that some kind of dispersive effects are present. Let us clarify this point. On the one
hand, combining (3.23) and (3.25), we get easily

lim
ξ→+∞

p′(ξ)ξp(ξ)−1 = 0 ̸= 1.

In the vocabulary of geometric optics, this means that the group velocity p′(ξ) and
the phase velocity p(ξ)/ξ are (asymptotically) different, and hence dispersive effects
persist (see e.g., [34]). On the other hand, because the symbol p is bounded, there are
no (local in time) Strichartz estimates which could be associated to the propagator
eitp(Dx), improving Sobolev embeddings, in the sense that if

∥eitp(Dx)f∥La([0,T ];Lb(R)) ≤ C(T )∥f∥Hk(R), ∀f ∈ Hk(R),

for some T > 0 and (a, b) satisfying 2
a = 1

2 −
1
b (admissible pair), then necessarily,

k ≥ 1
2 −

1
b (see [4]). On the other hand, frequency localized Strichartz estimates

are available (see [5]): since we consider high frequency phenomena, these localized
estimates are not helpful. One thus has to be cautious about the notion of dispersive
effects that is involved. In this article, it refers to the first interpretation.

Remark 3.7. – The Equation (1.3) of the introduction can be put in the form (3.18)
with p ≡ 1. It is also dispersive since, for ξ ̸= 0, the derivative p′(ξ) = 0 is different
from ξ−1p(ξ) = ξ−1. It satisfies Assumption 3.6 but not Assumption 3.3. Indeed, in
contradiction with (3.20b), the group velocity p′(ξ) is simply zero.

Now, let us come back to the content of (a), (b), (c), (d) and (e).
– (a). By multiplying the eigenvalue τ by the cut-off function 1− χ

c
with χ

c
as in

(3.10), we can always guarantee (a) for p = (1− χ
c
)τ .

– (b). To better understand the origin of (b) and the conditions under which the
property (b) is indeed accessible, we can examine what happens in the one dimensional
framework (d = 1). Starting from (3.2), this means to fix σ ∈ Sd−1, to identify
L(S, 0, σ) with some symmetric matrix S, and to look at

(3.26) ∂tu+ S∂xu+ ε−1Au+ F = 0, u|t=0
= 0, x ∈ R.

As already explained, to obtain (3.6) for some index j, zero must be an eigenvalue of
the symmetric matrix iL(S, 0, 1), which coincides with −S. Let P be the orthogonal
projector onto the kernel of S. If the matrix S commutes with A, that is if [S,A] = 0,
the two matrices S and A are simultaneously diagonalizable, and the system (3.26)
can be decoupled into distinct transport equations. In particular, from (3.26), we can
extract

(3.27) ∂tPu+ ε−1(PAP )Pu+ PF = 0, Pu|t=0
= 0.

Among the eigenvalues τj(S,A, ξ) of iL(S,A, ξ), we can distinguish those coming from
(3.27), which are simply eigenvalues of PAP , and therefore constant in ξ. Then, the
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condition (b) is not verified. This means that interesting situations may arise only on
condition that [S,A] ̸= 0.

In fact, in order to have the condition (b), the important thing is the presence
asymptotically, say for ξ ≥ ξp with ξp ∈ R+, of some nontrivial monotone behavior
of τ . Then, changing t into −t if necessary, we get the growth criterion p′(ξ) ≥ 0

for ξ ≥ ξp. Changing x into µx with µ ∈ R, we can obtain 0 ≤ ξp ≤ ξc ≤ 1/2.
Then, multiplying τj by 1 − χ

c
as in (3.12), the situation does fit in with (b). The

supplementary restriction p′(ξ) > 0 is aimed to guarantee that dispersive effects
associated with the variations of p actually occur.

– (c). The condition (c) is useful to infer (3.24) from (3.19). Subject to (3.6), it
is an easy consequence of (b). Let us briefly explain why. In view of Remark 3.1,
the condition (3.6) gives rise to the existence of a finite limit τ∞j ≡ τ∞j (S,A, σ). At
this stage, there is no sign condition on τ∞j ∈ R. Now, given any λ ∈ R, we can
change the solution u(t, ·) into ũ(t, ·) := exp(iλt/ε)u(t, ·). This gauge transformation
is not without consequence on the source term F (see Paragraph 2.1.2.2), which must
be adjusted accordingly. It also modifies the matrix A into Ã := A − iλ, and the
symbol τj(S,A, ξ) into

τ̃j(S, Ã, ξ) := τj(S, Ã, ξ) = τj(S,A, ξ) + λ.

It follows that τ∞j and τj(S,A, 0) are respectively turned into

τ̃∞j := τ∞j + λ, τ̃j(S, Ã, 0) = τj(S,A, 0) + λ.

For the choice of a sufficiently large number λ, the new limit τ̃∞j becomes positive,
like ω∞+ in (3.24). Moreover, provided that τj(S,A, ·) is increasing on R+, which
means that we can take ξp = 0 as well as ξc > 0 arbitrarily small, by selecting
λ = −τj(S,A, 0), we can ensure that τ̃j(S, Ã, 0) = 0 and τ̃∞j ≡ ω∞+ > 0. Then, as in
the whistler case, the function τ̃j(S, Ã, ·) connects some zero eigenvalue of S (when
ξ → +∞) to some zero eigenvalue of Ã (when ξ = 0).

– (d). The condition (3.19) does not only guarantee the existence of a resonance
frequency. It is much more restrictive. It provides information about the asymptotic
behavior inside (3.7). Indeed, from (3.23), we can extract the rate of convergence

(3.28) lim
ξ→+∞

ξq
[
ω∞+ − p(ξ)

]
= − ℓ

q(q + 1)
> 0.

– (e). The last restriction (e) is not essential. It is inspired by the whistler dispersion
relation τw which is an even function, and for which a global analysis up to the zero
frequency ξp = 0 is directly available, without involving a cut-off function χ

c
with

ξc large. It is imposed here for the sake of simplicity. It can be avoided, albeit with
technicalities to distinguish what happens in the two directions ±σ.

To conclude, let us illustrate the above discussion in the context of equation (3.26),
when N = 2. After adequate rescalings, the framework can be reduced to

S =

(
0 0

0 −1

)
, A =

(
−ia −b− ic

b− ic −id

)
, (a, b, c, d) ∈ R4.
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The pertinent eigenvalue τ(ξ) of

iL(s,A, ξ) = −ξS + iA =

(
a c− ib

c+ ib d+ ξ

)
is the one issued from the zero eigenvalue of S. Thus, it must be zero when A = 0.
For ξ ≥ 0, this means to select

τ(ξ) :=
1

2

(
ξ + a+ d−

√
(ξ − a+ d)2 + 4b2 + 4c2

)
, lim

ξ→+∞
τ(ξ) = a.

For large values of ξ ≥ 0, the function τ is constant (equal to a) if and only if b = c = 0,
or equivalently if and only if [S,A] = 0. We have to address the opposite case, when
[S,A] ̸= 0 or when bc ̸= 0. By adjusting the gauge parameter λ, we can work with
a = 1. Multiply τ by 1− χ

c
to form p = (1− χ

c
)τ . Then, for all choice of ξc > 0, we

obtain (a), (b) and (c). We also find the substitute (3.22) for (3.19) - or (d) - with
q = 1. We do not have (e) but, as seen before, this is just a simplifying assumption.

For technical reasons, we need to highlight the following condition.

Assumption 3.8 (Control of derivatives of p). – We have

(3.29) ∃D ∈ N \ {0, 1}; ∀n ∈ {2, . . . , D}, lim sup
ξ→+∞

|p(n)(ξ)|
p′(ξ)

< +∞.

Lemma 3.9. – Assumption 3.3 implies Assumption 3.8.

Proof. – When ℓ < 0 as required in (3.19), from (3.19) and (3.23), we deduce that

lim
ξ→+∞

ξ
p′′(ξ)

p′(ξ)
= −q − 1,

and hence
lim sup
ξ→+∞

|p′′(ξ)|
p′(ξ)

= 0.

By this way, we find (3.29) for n = D = 2.

Come back to (2.12) with G− as in (2.6). In this case, comparing (2.13) and (3.23),
we see that the finiteness condition in Assumption 3.8 is verified for all D. However,
in the general case, when D > 2, Assumption 3.8 is adding new information, as shown
by the example

p′′(ξ) =
ℓ

(1 + ξ2)2

(
1 +

1

1 + ξ2
cos ξ6

)
, q = 2, ℓ < 0 and D = 3.

In order to examine the role of D, we will keep track of D in the various estimates.

Remark 3.10 (About other nonlinear effects). – The model (3.18) does not see the
interactions that occur between the different modes un inside (3.11). Just a quick
comment on this. In view of (2.6), the set V is symmetric with respect to the τ -axis.
Consider a phase ψ(t, 0, 0, x3) satisfying the eikonal equation associated to R-waves

(3.30) ∂tψ = p
(
∂x3

ψ(t, 0, 0, x3)
)
, ∀x3 ∈ R.
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The function ψ(t, 0, 0,−x3) is also a solution to (3.30). On the other hand, the di-
rection (τ, ξ) is subject to (2.6) if and only if its opposite (−τ,−ξ), and (−τ, ξ), is
satisfying (2.7). If a phase ψ(t, 0, 0, x3) is as in (3.30), the function −ψ(t, 0, 0, x3)

satisfies the eikonal equation associated to L-waves.
The same would apply for extended functions ψ(t, x) which could be issued

from ψ(t, 0, 0, x3) by the resolution of the complete eikonal equation, related to
some ξ ∈ Rd \{0}. Now, due to possible nonlinear interactions, a non oscillating term
can be produced by combining the phases −ψ and +ψ. Since the value τ = 0 is still
characteristic when ξ3 = 0 (the zero eigenvalue is not completely eliminated, see [9,
Lemma 6.1]), this term may propagate and be amplified. There would be at the level
of the full system (2.2) a three-wave resonance to study.

The two conditions N = 1 and d = 1 are of course quite restrictive. They do not
allow to take into account a number of multidimensional and nonlinear aspects. But
again, the focus here is on resonances, intermittencies and related nonlinear effects,
in a framework as accessible as possible.

3.2.2. The source term FL. – After adequate gauge transformations, see Remarks 2.2
and 2.3 as well as the comment about (c) in the preceding Section 3.2.1, we look
at the equation (3.18) under Assumption 3.3. To simplify matters, we can suppose
that FL ≡ F 0

L. On the other hand, to take into account the cut-off by χ
c

and the
possible pseudo-differential action ζ(−εDx) introduced in (3.13), we extend below
the choice made in (3.14). Given M ∈ N∗, we consider

(3.31) FL ≡ F 0
L = ε3/2

∑
m∈[−M,M ]

Am(εt, t, x,−iε∂x)∗eimφ(t,x)/ε,

where the phase φ is given by (1.26), that is φ(t, x) = t − xt + γ(cos t − 1) with
0 < γ < 1/4, and the action of the adjoint A∗m of the semi-classical pseudo-differential
operator Am(εt, t, x,−iε∂x) corresponds to the right quantization

(3.32) Am(εt, t, x,−iε∂x)∗u(x) :=

∫∫
ei(x−y)ξAm(εt, t, y, εξ)u(y)dydξ.

Assumption 3.11 (Choice of the coefficients Am). – For all integers m ∈ [−M,M ],
we impose Am(T, t, x, ξ) = ζm(−ξ)am(T, t, x) where the functions ζm ∈ C∞(R;R) and
am ∈ C∞b (R3) satisfy the following conditions.

— ζm goes to 1 at infinity with

ζm(ξ) = 1 +O
(

1

|ξ|

)
, |ξ| → ∞;

— for m = 0, ζ0 is identically zero near the origin,

∃ξ0 > 0, ζ0|[−ξ0,ξ0] ≡ 0;

— there exists some T > 0 and some r ∈ ]0, γ/2[ such that

(3.33) ∀m ∈ [−M,M ], suppam ⊂ ]−∞, T ]× [1,+∞[× [−r, r].
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Since ζm is multiplied by am, the asymptotic value lim|ξ|→∞ ζm(ξ) = 1 is somehow
arbitrary. It could be replaced by any non-zero constant. Also, some coefficients am
may very well be identically zero. We will see that the most important coefficient is a1.
All other coefficients will have a negligible contribution in the regime we consider in
this paper (this is Fact 1).

As explained in [6, 7], when dealing with strongly magnetized confined plasmas
(SMP), the solution to the Vlasov equation is transported by an oscillating flow,
see for instance (2.4) and (2.9) in [8]. This induces special structures of the electric
current Je which does enter in the composition of F at the level of (3.18).

Again, due to the bouncing back and forth (of charged particles) between the
mirror points at a frequency which has been normalized in (2.16) to the value 2π,
it is expected that the profiles am inherit similar periodic structures with respect
to t ∈ R. The same applies in the case of nuclear magnetic resonance (NMR). Ac-
cording to (2.28), the profiles am would be constant. But, in practice, they should be
periodic due to relaxation phenomena between the repeated action of radio frequency
(RF-)excitations.

In fact, the periodicity property is important for our results only as far as the
coefficient a1 is concerned. That is why we just impose the following condition, which
is a relaxed version of (1.25).

Assumption 3.12 (a1 is 2π-periodic in t for large times). – There exists ts > 0 and
a function a ∈ C∞(R× T× R) such that

(3.34) ∀t ≥ ts, ∀n ∈ N, a1(·, t+ 2nπ, ·) ≡ a(·, t+ 2nπ, ·) ≡ a(·, t, ·).

3.2.3. The nonlinearity FNL. – The coupling between “particles” and “waves” could
also be described by nonlinear source terms. This induces an additional mixing, and
provides a further complication. In the same vein as (1.2) or (1.27), the expres-
sion FNL is chosen as a polynomial function in ε−1, ε, u and ū.

Assumption 3.13 (Choice of the nonlinearity). – Given J ∈ N with 2 ≤ J ∈ N and
K ∈ N, as well as complex numbers λj1j2ν ∈ C, we impose

(3.35) FNL(ε, t, x, u) :=
∑

2≤j1+j2≤J

K∑
ν=2−j1−j2

λj1j2νFj1j2ν(ε, t, x, u),

where (j1, j2, ν) ∈ N2 × Z, whereas

(3.36) Fj1j2ν(ε, t, x, u) = ενeiωj1j2νt/εχ

(
3− 2

εt

T

)
χ
( x

rει

)
uj1 ūj2 ,

for a frequency ωj1j2ν ∈ R and parameters T , r and ι satisfying as before the condi-
tions 0 < T , 0 < r < γ/2 < 1/8 and ι ∈ [0, 1].
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We could assume more generally ν ∈ R (taking finitely many values), provided that
the size of the nonlinear coupling is at most critical, in the sense that j1 + j2 + ν ≤ 2.
Since the critical case corresponds to the choice j1+j2+ν = 2, assuming that ν ∈ Z is
not a strong restriction.

At the level of (3.36), the nonlinearity undergoes extra time and space localizations.
The reasons for doing so will become clear in Chapter 5. They are related to the nature
of the information established in the linear case (Chapter 4). Indeed, we will get a
precise pointwise description of the linear solution only for sufficiently large time
(t ≳ 1/ε), and only in a small neighborhood of the origin (|x| ≤ r).

The amplitude ε3/2 of the source term FL and the nonlinearity (3.35) are inspired
by Section 1.1. They are adjusted so that nonlinear effects can actually be critical in
the limit ε→ 0 on the long time scale T ∼ 1 under consideration.

3.3. The notion of quasi-rectification

The term rectification has been first introduced in [30] in the context of nonlinear
diffractive geometric optics where it means the creation of non-oscillatory waves from
highly oscillatory sources. A distinction is made between hyperplanes which are in
the characteristic variety (contained in the section V) and curved sheets.

For wave vectors belonging to flat parts inside V, the interaction cannot be ig-
nored, while for wave vectors on curved parts, it is negligible at leading order. In the
subsequent articles [13, 33], these ideas are extended to dispersive equations and to
situations of “almost rectification” (when the resonance comes from the tangent space
to the characteristic variety).

In what follows, the expression quasi-rectification will be used in reference to the
pioneering work [30]. As a matter of fact, as detailed in Paragraph 3.3.1, our approach
presents certain similarities with that of [30]. But there are also significant differences
that will be emphasized in Paragraph 3.3.2. In order to avoid confusion, it is important
to explain clearly what the situation is. In Paragraph 3.3.3, we provide an overview
of what quasi-rectification is. The last Paragraph 3.3.4 is aimed to summarize the
discussion.

3.3.1. Analogies. – As in [30], we study a nonlinear hyperbolic equation for long time
scales at which nonlinear effects are present. As in [30], the characteristic variety
is a mix of curved and flat features. In Figure 1, the red graph is curved while its
magenta asymptote is flat. As in [30], amplification phenomena can occur (on small
sets). Moreover, in the spirit of [33], we deal with a kind of “almost-rectification” (at
infinity in our case), which is addressed in our title through the expression “quasi-
rectification”. But here is where the comparisons stop.
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3.3.2. Differences. – The first change involves (2.2). In [30], the authors impose the
condition A = 0, and they investigate diffractive effects. On the contrary, we work
here with A ̸= 0, and we consider dispersive effects. When A = 0 and d = 1, the
characteristic variety is a union of lines. By contrast, when A ̸= 0 and d = 1, the
section V does contain curved parts.

Since N = 1 and d = 1, many aspects of [30] are not present here. For instance,
we will not discuss problems related to the interaction of different modes (N > 1) of
propagation (the interaction between the un). Nor are we going to manage the multi-
dimensional (d > 1) spreading of waves. However, there will be many new difficulties
to deal with.

There is another distinction. In the article [30], the oscillations of the source term
come from the oscillations of the initial data after a selection process implying the
properties of the differential operator L(εDx). That is not the case here. As a matter
of fact, at the level of (3.2), the Cauchy data are simply zero.

Here, the oscillations are imposed from outside, as a part of the source term F .
They are issued from the concrete considerations exposed in Chapter 2. They do not
at all involve the differential operator L(εDx). As a matter of fact, the phase φ has no
link with L(εDx). In particular, the function φ is not solution to the eikonal equation
that is associated with L(εDx).

In [30], there is a clear dichotomy between the flat and curved sheets contained in
the characteristic variety V. In Figure 1, there is no such strict separation. Instead,
in view of (3.19), the function p is concave for large values of ξ. Hence, there is no
flat part. But there is a progressive transition between a curved dispersion relation
and its flat asymptote (for ξ large). While the rectification would refer, among other
things, to the presence inside V of branches without curvature, the quasi-rectification
exploits the property that the curvature of the section V asymptotically approaches
zero.

3.3.3. Underlying mechanisms. – The eikonal equation associated to p, the one which
could be obtained at the first step of a WKB analysis, would give the value of ∂tψ in
terms of ∂xψ through

(3.37) ∂tψ(t, x) = p
(
∂xψ(t, x)

)
⇐⇒ (∂tψ, ∂xψ)(t, x) ∈ V.

Given a generic position (t, x), the phase φ that is involved in the source term F

will not satisfy (3.37). But remark that the spatial derivative ∂xφ(t, x) = −t becomes
large when t is growing, while the time derivative ∂tφ(t, x) = 1− x− γ sin t remains
close to 1 (at least for |x| ≪ 1 and t ≃ 0 modulo π). Taking into account (3.25), it
follows that p

(
∂xφ(t, x)

)
= p(−t) = p(t) is not far from ∂tφ(t, x) when t = nπ with

n going to infinity. This is the type of resonance which has been illustrated in the
introduction through (1.16). This is the reason why the asymptotic direction τ = 1

of V is physically so important.
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Now, let us compare the position of ∇t,xφ relative to V more precisely. When φ is
as in (1.26), the gradient of φ gives rise to a folded Lagrangian manifold G(φ) (see
Figure 3 in [8]), which is

G(φ) :=
{
(t, x, ∂tφ, ∂xφ)(t, x) = (t, x, 1− x− γ sin t,−t); (t, x) ∈ R× R

}
.

In general, the direction (∂tφ, ∂xφ)(t, x) is away from V. But, near x = 0 and for large
values of t, it will repeatedly cross the section V in the course of time. Given some
small x, denote by tk ≡ tk(x) with tk < tk+1 and k ∈ N∗ the successive intersection
points. The tk’s form a countably infinite set. By this way, wave packets uk may be
generated. As in (1.13), they look like

uk(t, x) =
√
εak(t, x)e

iψk(t,x)/ε + o
(√
ε
)
, k ∈ N,

with ψk subject to the eikonal equation (3.37).
The phase ψk and the profile ak are determined by the local geometrical properties

of V near the position (∂tφ, ∂xφ)
(
tk(x), x

)
∈ V. Since p′(ξ) with ξ = −t is very small

for large values of t, especially when t ∼ ε−1, the waves uk become almost stationary
for large integers k. Their group velocity is not zero, but it tends to zero. It follows
that the emitted waves uk with k large can strongly interact and produce important
local effects during long times t ∼ ε−1.

Since the accumulation process of the uk’s is related to the asymptotic shape of the
set V (for large values of ξ) and of the set G(φ) (for large values of t), what happens
ultimately depends on the global geometrical properties of V and G(φ). As will be
seen, amplification phenomena can occur, but not everywhere.

The creation, propagation, accumulation and nonlinear interaction at the level of
the evolution equation (3.2) of almost standing waves generated near a resonance by
highly oscillatory sources like (2.14), with φ as in (1.26), is what is called here quasi-
rectification. As alluded to above, the study of quasi-rectification requires to combine
local and global geometrical features of G(φ) and V. From a physics viewpoint, the
notion of quasi-rectification is well adapted to describe the observed production of
quasi-electrostatic waves in SMP [1] or NMR [21], and to measure the relative impacts.

Note that certain mechanisms which are involved show also similarities with what
is observed about surface plasmons [29].

The same applies for vortex filaments [2, 3, 15] with Talbot effect. In this case,
specific spatial structures appear at special times, while in the present context, we
will obtain specific spatial structures which remain over long time intervals. In Theo-
rems 1.3 and 1.4, the wave function U is of size O(1) at integer points only, over large
time intervals.

We would also like to cite the recent works of Y. Colin de Verdière and L. Saint-
Raymond, see [14] and references therein. The motivations (fluid mechanics/SMP and
NMR), the mechanisms (periodic medium/oscillating phase), the structures (PDEs
involving variable/constant coefficients, flat/corrugated Lagrangian) and the tools
(semiclassical/WKB methods) are distinct. But still, there are similarities and deep
connections. The two viewpoints are complementary.
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3.3.4. Back to the physical models, and summary. – In SMP, the motion of charged
particles generates an electric current Je. In NMR, the precession of the magnetic
moment M creates a magnetization current Jm. These two sorts of currents oscillate
according to the phase φ, and they both appear as a source term inside equations of
Maxwell’s type. But since the plasmas (in SMP) and the human tissues (in NMR)
are inhomogeneous media, dispersion phenomena occur.

The characteristic variety CharL :=
{(
t, x, p(ξ), ξ

)
; (t, x, ξ) ∈ R3

}
⊂ R2 × R2 is

more complicated than hyperplanes such as τ = p(ξ) = 1. In real situations, there
are dispersive effects which are encoded in the variations of the symbol p. As we have
seen in Section 3.1, this happens generically.

In the context of SMP, the dispersive effects can be specified in details. Indeed, the
dielectric tensor of magnetized plasmas can be computed, both in the cold case [9]
and in the hot case [10]. In SMP, the pertinent function p is available, and it is such
that p′(ξ) ̸≡ 0. Less information exists concerning NMR, but the situation should be
similar.

The reason why the model p ≡ 1 is so important is the following. On the one hand,
after normalization, the function p will converge to 1 when |ξ| goes to infinity; thus,
for large values of |ξ|, the dispersion relation τ = p(ξ) mimics the choice p ≡ 1 of
(1.3). On the other hand, from (1.26), we can deduce that the derivative ∂tφ remains
close to 1 and that ∂xφ = −t; thus, for large values of t and especially during long
times t ∼ ε−1, the eikonal equation is almost satisfied. Due to the periodic part inside
φ, it is in fact repeatedly verified. By this way, two-dimensional oscillating waves uk
may be emitted.

Vlasov and Bloch equations are completely distinct from Maxwell’s equations. The
two objects φ and p are issued from different physical laws. As a consequence, the
phase φ has nothing to do with the symbol p. But they can intersect incidentally, in
the sense of G ∩ V. For the foregoing reasons, they can even cross again and again.
Such a configuration is a facet of what can be a resonance.

As explained in [8], the cyclotron resonances and the internal repeated emissions
of electromagnetic signals are both important phenomena which are involved in all
collisionless magnetized plasmas. Applied in the context of SMP, our work helps to
better understand the underlying mechanisms which are known to generate in coronas,
magnetospheres and fusion devices some heating and some anomalous transport. It
also sheds a new light on some aspects of NMR.
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CHAPTER 4

LINEAR ANALYSIS

In this section, we look at the evolution equation (3.18) with a source term F not
involving u, that is when F ≡ FL with FL as in Paragraph 3.2.2 and φ as in (1.26).
Since the problem is linear, we can study separately each term of the sum present
in FL. Accordingly, we consider here what happens when F reduces to

(4.1) F

(
ε, εt, t, x,

φ(t, x)

ε
, u

)
= ε3/2Am(εt, t, x,−iε∂x)∗eimφ(t,x)/ε.

We denote by um the solution to (3.18) issued from the choice (4.1). As usual, it is
referred as the mode m. The purpose is to study the subsequent oscillatory integral
I(ε, t, x;mφ, am), which is given by (3.16), with ζ = ζm. In Section 4.1, we examine
the case of a non-resonant phase. The rest of Chapter 4 is devoted to the analysis of the
resonant situation. This starts in Section 4.2 with a presentation of the strategy and
results. Then, Sections 4.3, 4.4 and 4.5 give the details. Given a phase ψ ∈ C∞(R2;R),
consider a generalization of (3.16)–(3.17) which is

(4.2) I(ε, t, x;ψ, ζ, a) =

√
ε

2π

∫ (∫ t

0

∫
e−iΦ(t,x;s,y,ξ)/εζ(ξ)a(εs, s, y)dsdy

)
dξ,

where

(4.3) Φ(t, x; s, y, ξ) := (s− t)p(ξ) + (x− y)ξ − ψ(s, y).

We assume that the phase ψ is at most quadratic, in the sense that (for all n ≥ 2)

(4.4) sup
2≤|α|≤n

sup
(t,x)∈R2

|∂αt,xψ(t, x)| =: Bψn <∞.

Such a notion is quite standard (see e.g., [23, 31]) in the construction of fundamental
solutions which are issued from Schrödinger equations involving a potential that is at
most quadratic in space. Then, Hamilton-Jacobi equations with phases which are at
most quadratic in space come into play. Here, the right variable is (t, x). In the case
of φ, see (1.26), the phase is of the form linear+quadratic+bounded. The quadratic
part corresponds to the factor tx, and the function φ is indeed at most quadratic. The
asymptotic behavior of I when ε goes to 0 depends heavily on the existence or not
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of stationary points when looking at the phase Φ(t, x; ·) as a function of the variables
(s, y, ξ). In view of (4.2), we have

∂sΦ(t, x; s, y, ξ) ≡ ∂sΦ(s, y, ξ) := p(ξ)− ∂sψ(s, y),(4.5a)
∂yΦ(t, x; s, y, ξ) ≡ ∂yΦ(s, y, ξ) := −ξ − ∂yψ(s, y).(4.5b)

4.1. Non-resonant oscillatory integrals

Unlike the derivative ∂ξΦ(t, x; ·), the right hand sides of (4.5) do not involve the
parameter t. This makes things easier in the perspective of nonstationary phase argu-
ments (in s and y) applied with t ∼ ε−1. For this reason, we introduce the following
notion.

Definition 4.1 (Non-resonant phase). – Let r ∈ ]0, γ/2[ be the number allowing at
the level of (3.31) to control uniformly the spatial supports of the profiles Am inside
(3.31). Fix some domain N satisfying

(4.6) N ⊂ {(s, y, ξ) ∈ ]0,∞[× ]−r, r[× R}.

The phase ψ is said to be non-resonant on the domain N if there exists a positive
constant η > 0 such that

(4.7) ∀(s, y, ξ) ∈ N , |p(ξ)− ∂sψ(s, y)|+ |ξ + ∂yψ(s, y)| ≥ η.

As a subset of the characteristic variety Char(L), one can distinguish

Char(L,N ) :=
{(
s, y, p(ξ), ξ

)
; (s, y, ξ) ∈ N

}
⊂ T ∗(R2).

As a subset of the Lagrangian manifold G(ϕ) ⊂ T ∗(R2), one can identify

Gr(ψ) :=
{
(s, y, ∂sψ, ∂yψ)(s, y); s ∈ ]0,+∞[, y ∈ ]−r, r[

}
.

The geometrical interpretation of Definition 4.1 is the following. The phase ψ is non-
resonant on the domain N if and only if the two subsets Char(L,N ) and Gr(ψ) of the
cotangent bundle T ∗(R2) stay a positive distance η away from each other. We now
address the various harmonics ψ = mφ, where φ is given by (1.26). We will see that
two values play a special role, namely m = 0 and m = 1.

Lemma 4.2 (Non-resonant harmonics mφ). – Take

N = {(s, y, ξ) ∈ ]0,∞[× ]−r, r[× R}.

Let φ as in (1.26). For m ∈ Z \ {0, 1}, the phase mφ is non-resonant on N .

Proof. – In the case of ψ = mφ, the condition (4.7) becomes

∀(s, y, ξ) ∈ Nm, 0 < η ≤ |p(ξ)−m+my + γm sin s|+ |ξ −ms|.

For m < 0, the properties p ≥ 0, and r < γ/2 from Assumption 3.11, yield

|p(ξ)−m+my + γm sin s| ≥ |p(ξ)−m| − |my + γm sin s|
≥ |m|(1− r − γ) > 5/8.
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For m ≥ 2, the property 0 ≤ p(ξ) ≤ 1 yields

|p(ξ)−m+my + γm sin s| ≥ m (1− r − γ)− 1 > 1/4.

It suffices to take η = 1/4 to get the result.

The phase ψ ≡ 0, which corresponds to the choice mφ with m = 0, requires a
different treatment, which explains the hypothesis on ζ0 in Assumption 3.11.

Lemma 4.3 (The non-resonant zero-phase). – For δ > 0, set

N δ
0 = {(s, y, ξ) ∈ ]0,∞[× ]−r, r[× R, |ξ| ≥ δ}.

Then, for all δ > 0, the phase ψ ≡ 0 is non-resonant on N δ
0 .

Proof. – It suffices to remark that

∀(s, y, ξ) ∈ N δ
0 , 0 < δ ≤ |ξ| ≤ |p(ξ)|+ |ξ|.

This yields (4.7) in the case ψ ≡ 0.

Remark 4.4. – The above lemma becomes wrong when δ = 0, even if ξc = 0. Indeed,
in view of Assumption 3.3, the sum |p(ξ)|+ |ξ| vanishes at ξ = 0.

Finally, the remaining case m = 1 turns out to be the richest. It will be analyzed
in details in Section 4.2.

The above notion of non-resonant phase is motivated by the following result.

Proposition 4.5 (Vanishing oscillatory integrals in the non-resonant situation). –
Let ψ ∈ C∞(R2;R) be an at most quadratic phase in the sense of (4.4). We assume
that ψ is non-resonant on a domain N satisfying (4.6). Let ζ and a be two smooth
functions which satisfy the conditions enumerated in Assumption 3.11. We also as-
sume that the product ζ(ξ)a(T, t, x) allows to localize inside N , in the sense that

(4.8) ∀T ∈ R+, supp
(
ζ(·)a(T, ·)

)
⊂ N .

Then, for all time t ≥ ε−1T , the Fourier integral operator I(ε, t, x;ψ, ζ, a) issued from
(4.2) is well-defined as an oscillatory integral. In addition, for all n ≥ 2, there exists
a constant Cn > 0 such that, for all t ≤ 2T /ε and for all x ∈ R, we have

|I(ε, t, x;ψ, ζ, a)| ≤ CnrT εn−
1
2 η1−4n(1 +Bψn)n ∥ a ∥Wn,∞(N ) .

As a corollary, we can assert that I = O(ε∞).

Proof. – The notion of non-resonant phase is designed to apply nonstationary phase
arguments with respect to the variables s and y. But the details remain to be worked
out. The main problems when dealing with (4.2) are due to the domain of integration
which, knowing that t ∼ ε−1, is of size ε−1, as well as to the quadratic behavior of ψ.

Due to (3.33) and (4.8), we have to deal with

I =
ε

1
2

2π

∫∫∫
N
e−iΦ/εζ(ξ)a(εs, s, y)dsdydξ.
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As a consequence of (4.5) and (4.7), we find that (∂sΦ)2 + (∂yΦ)2 ̸= 0 on the domain
of integration N . Thus, we can introduce on N the differential operator

Q(s, y, ξ; ∂s, ∂y) := i
(
(∂sΦ)2 + (∂yΦ)2

)−1
(∂sΦ∂s + ∂yΦ∂y).

By construction, we have

(4.9) ∀(s, y, ξ) ∈ N , εQ(s, y, ξ; ∂s, ∂y)e
−iΦ/ε = e−iΦ/ε.

Select some n ≥ 1. After n integrations by parts (with respect to s and y only) using
the identity (4.9), the expression I of (4.2) is transformed into

(4.10) I = (−1)n
εn+ 1

2

2π

∫ (∫∫
e−iΦ/ε(Q∗)n (ζ(ξ)a(εs, s, y)) dsdy

)
dξ,

where Q∗ is the adjoint operator of Q.
We start by focusing on the expression which inside (4.10) is put between brackets.

Thus, we can look at ξ as a parameter which may be not mentioned. Still, it will
be reintroduced at the level of (4.14) in the perspective of the integration in ξ. We
emphasize again that only values (s, y, ξ) inside N are involved.

To evaluate the size of I using (4.10), we have to compute Q∗. First remark that

(4.11) ∂2
ssΦ = −∂2

ssψ, ∂2
syΦ = −∂2

syψ, ∂2
yyΦ = −∂2

yyψ.

Recall the standard conventions

α = (α1, α2) ∈ N2, |α| := α1 + α2, X = (X1, X2), Xα = Xα1
1 Xα2

2 .

Introduce the rational functions

R1
1,0(X) :=

P 1
1,0(X)

X2
1 +X2

2

, P 1
1,0(X) := X1, R1

0,1(X) :=
P 1

0,1(X)

X2
1 +X2

2

, P 1
0,1(X) := X2,

as well as

R1
0,0(X) :=

P 1
0,0(X)

(X2
1 +X2

2 )2
, P 1

0,0(X) := (−∂2
ssψ + ∂2

yyψ)(X2
1 −X2

2 ) + 4∂2
syψX1X2.

Using (4.11) and the above definitions, we get

−iQ∗ = R1
1,0(∂sΦ, ∂yΦ)∂s +R1

0,1(∂sΦ, ∂yΦ)∂y +R1
0,0(∂sΦ, ∂yΦ).

Since ψ is at most quadratic, the functions P 1
⋆ (X1, X2) are in the polynomial ring

C∞b (R2)[X1, X2], whose elements of degree less than j take the following form

P (X) =
∑
|α|≤j

Cα(s, y) Xα, Cα ∈ C∞b (R2).

The derivative ∂⋆, with ∂⋆ = ∂s or ∂⋆ = ∂y, can act on the coefficients of P . Define

∂⋆P (X) =
∑
|α|≤j

(∂⋆Cα)(s, y)Xα, ∂⋆Cα ∈ C∞b (R2), deg(∂⋆P ) ≤ j.
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The two polynomials P 1
1,0 and P 1

0,1 are of degree 1, whereas P 1
0,0 is of degree 2. All the

coefficients of these polynomials are bounded by a constant multiplied by Bψ2 , with
Bψ2 as in (4.4). Introduce the graded ring

R :=

∞⊕
j=1

Rj , Rj :=

{
R(X) =

P (X)

(X2
1 +X2

2 )j
;P ∈ C∞b [X1, X2],degP ≤ j

}
.

We have R1
1,0 ∈ R1 and R1

0,1 ∈ R1. On the other hand, we find R1
0,0 ∈ R2. Now,

given R ∈ Rj as above, we can compute

∂⋆

[
P (∂sΦ, ∂yΦ)

((∂sΦ)2 + (∂yΦ)2)j

]
= −

(∂2
⋆sψ∂X1P + ∂2

⋆yψ∂X2P )(∂sΦ
2 + ∂yΦ

2)

((∂sΦ)2 + (∂yΦ)2)j+1

+ 2j
P (∂2

⋆sψ∂sΦ + ∂2
⋆yψ∂yΦ)

((∂sΦ)2 + (∂yΦ)2)j+1
+

∂⋆P (∂sΦ, ∂yΦ)

((∂sΦ)2 + (∂yΦ)2)j
.

This implies that ∂⋆Rj ⊂ Rj ⊕Rj+1. Now, a simple induction on n shows that

(4.12) (−i)nQ∗(s, y; ∂s, ∂y)n =
∑
|α|≤n

Rnα(∂sΦ, ∂yΦ)∂αs,y,

with

(4.13) Rnα(X) =

2n−|α|∑
j=n

Pn,jα (X)

(X2
1 +X2

2 )j
, degPn,jα ≤ j, Rnα ∈

2n−|α|⊕
j=n

Rj .

In view of (4.10), (4.12) and (4.13), to get a control on I, we have to estimate terms
which look like

εn+ 1
2

∫ (∫ 2T /ε

0

∫ +r

−r

|Pn,jα (∂sΦ, ∂yΦ)|
((∂sΦ)2 + (∂yΦ)2)j/2

∥ a ∥Wn,∞(N )

((∂sΦ)2 + (∂yΦ)2)j/2
dsdy

)
dξ.

From (4.7), we can deduce that

(4.14) 0 <
1

(∂sΦ)2 + (∂yΦ)2
≤ inf

( 2

η2
;

1

|ξ + ∂yψ(s, y)|2
)
.

On the other hand, the coefficients of Pn,jα can be roughly controlled by a constant
multiplied by (1 + Bψn)n. Note that ∂sΦ and ∂yΦ are not necessarily bounded in ε

for s ∼ ε−1. Actually, the expression ∂yΦ is not at all bounded in the case of φ. This
is why the information degPn,jα ≤ j is important. Exploiting (4.14), we can find a
constant Cn,j such that

∀(s, y, ξ) ∈ N , |Pn,jα (∂sΦ, ∂yΦ)|
((∂sΦ)2 + (∂yΦ)2)j/2

≤ Cn,j

ηj
(1 +Bψn)n.
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Now, the idea is to use the right hand side of (4.14) and the condition 2 ≤ n ≤ j

inside (4.13) to recover some integrability in ξ. As a matter of fact, we have∫ (∫ 2T /ε

0

∫ +r

−r

dsdy

((∂sΦ)2 + (∂yΦ)2)j/2

)
dξ

≤
∫ 2T /ε

0

∫ +r

−r

(∫
inf
(2

j
2

ηj
;

1

|ξ + ∂yψ(s, y)|j
)
dξ

)
dsdy

≤ 4rT
εηj−1

∫
inf
(
2

j
2 ;

1

|ξ|j
)
dξ < +∞.

Combining all the above information, we get the expected result.

Preliminary conclusion. – In view of Lemma 4.2 together with Proposition 4.5, for
all m ∈ Z \ {0, 1}, we get um = O(ε∞). In the case m = 0, the property ξ0 > 0

in Assumption 3.11, Lemma 4.3 (with δ = ξ0) as well as Proposition 4.5 also yield
u0 = O(ε∞). This means that all modes um with m ̸= 1 are negligible.

The harmonic m = 1 is the only choice which may give rise to interesting phenom-
ena from the viewpoint of quasi-rectification. This is Fact 1 in the PDE context (1.3).
With this in mind, in the rest of this section, we focus on the case m = 1. We work
with ψ ≡ φ and a ≡ a1. Unless otherwise specified, for m = 1, we will simply use
the notations a ≡ a1 and u ≡ u1. Thus, in the next Subsection 4.2, the function u

represents the solution to

(4.15) ∂tu−
i

ε
p (εDx)u+ ε3/2A∗1e

iφ(t,x)/ε = 0, u|t=0
= 0.

4.2. Resonant oscillatory integrals

The analysis of the expression I defined by (4.2)-(4.3) with ψ = φ relies quite
heavily on the explicit formula (1.26). The aim here is to give an overview of next
Sections 4.3, 4.4 and 4.5, where precise results will be established. The reader who is
not interested in the details of proofs can read this Section 4.2, and then go directly
to Chapter 5. In Paragraph 4.2.1, we clarify what is new in comparison with the
phenomena which have been exhibited in the introduction. In Paragraph 4.2.2, we
introduce a well-adapted partition of the long time interval [0, T /ε] with T > 0. Then,
in Paragraph 4.2.3, this leads to a distinction between a dispersive and some almost
stationary regime. What happens in these two regimes is described in Paragraphs 4.2.4
and 4.2.5, successively.

4.2.1. Basic mechanisms. – The toy model presented in Section 1.1 explains how wave
packets can be produced over large time. It shows that the creation of wave packets is
basically due to the combination of two factors: the first is the presence of a resonance;
the second is the introduction as a source term of well-adjusted oscillations. In the
toy model of the introduction, the discussion involves basic choices of L (p ≡ 1) and
φ (which does not depend on x). Now, we want to better understand what happens
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under the more realistic geometrical conditions, which are Assumptions 3.3 and 3.11,
together with Formulas (1.26) and (3.31).

When the symbol p is not constant, the emitted signals do propagate spatially. The
form of the wave packets is determined by the local geometrical characteristics of V
at the intersection points between Char(L) and G(φ). But the way in which these
wave packets propagate and can accumulate over time depends on the asymptotic
properties of V when |ξ| goes to +∞ and of G(φ) when t goes to +∞.

It follows that the whole picture is a combination of local and global geometrical
features of Char(L) and G(φ). The resulting effects are constructive and destructive
interferences. They appear in the absence of nonlinearity.

4.2.2. Decomposition into wave packets. – The function Φ of (3.17) with m = 1 - or
equivalently the function Φ of (4.3) with ψ = φ - can be separated into two parts,
according to Φ = ϕ+ γ − t. Since the symbol p is even, we find

ϕ(t, x; s, y, ξ) := (s− t)
[
p(ξ)− 1

]
+ (x− y)ξ + ys− γ cos s.

Accordingly, another way to formulate (4.2) is to write

(4.16) I :=

√
ε

2π
ei(t−γ)/ε

∫ (∫ t

0

∫
e−iϕ(t,x;s,y,ξ)/εζ(ξ)a(εs, s, y)dsdy

)
dξ.

From now on, it is implicitly assumed that t (or T = εt) runs over a finite period of
long times, in coherence with (3.33). More precisely, we wait until the action of the
perturbation through a is completed, that is

(4.17) T /ε ≤ t ≤ 2T /ε, or equivalently T ≤ T ≤ 2T .

Given t0 > 0, with χ as in (2.11), define

(4.18) ∀s ∈ R, χt0(s) := χ(s/t0).

In addition, we can tune χ so that it generates a partition of unity with

(4.19)
∑
k∈Z

χ2π/3(x− kπ) = 1.

We introduce some truncation near the diagonal s = ξ, namely

(4.20) v(t, x) :=

∫ t

0

∫∫
e−iϕ(t,x;s,y,ξ)/εζ(ξ)a(εs, s, y)χ1/4(s− ξ)dsdydξ.

The above expression v(t, x) is given by the integral in (s, y, ξ) on the compact do-
main [0, t]× [−r, r]× [−1/4, 1/4+ t] of functions depending smoothly on (ε, t, x). It is
therefore a well-defined smooth function of (ε, t, x). This choice is motivated by the
following lemma.

Lemma 4.6. – For all δ > 0, the phase φ given by (1.26) is non-resonant on the set

N δ
1 = {(s, y, ξ) ∈ ]0,∞[× R× R, |ξ − s| ≥ δ}.
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Proof. – Requiring φ being non-resonant on N δ
1 amounts to finding η > 0 such that

∀(s, y, ξ) ∈ N δ
1 , 0 < η ≤ |p(ξ)− 1 + y + γ sin s|+ |ξ − s|.

Now, by definition, we have δ ≤ |ξ− s| for all (s, y, ξ) ∈ N δ
1 . Thus, the choice η = δ is

suitable.

In view of Lemma 4.6 with δ = 1/4, Proposition 4.5 yields

(4.21) u(t, x) =

√
ε

2π
ei(t−γ)/εv(t, x) +O (ε∞) , x ∈ R,

T
ε
≤ t ≤ 2T

ε
.

There remains to analyze v. Using again (3.33) with m = 1 and a ≡ a1, we can replace
(4.20) by an integral on the whole domain R3, which is

(4.22) v(t, x) =

∫∫∫
e−iϕ(t,x;s,y,ξ)/εζ(ξ)a(εs, s, y)χ1/4(s− ξ)dsdydξ.

Using (4.17) and (4.19), we can write

(4.23) v(t, x) =
∑
k∈K

vk(t, x), K :=
{
k ∈ N; k ≤ 2

3
+
T
πε

}
,

where, for k ∈ K, we have introduced the signal

(4.24) vk(t, x) :=

∫∫∫
e−iϕ(t,x;s,y,ξ)/εζ(ξ)a(εs, s, y)×χ1/4(s−ξ)χ2π/3(s−kπ)dsdydξ.

Fix k ∈ Z, and change s into s− kπ and ξ into ξ − kπ in order to obtain

(4.25) vk(t, x) = e−i(t−kπ+kπx)/εwk(t, x),

with

(4.26) wk(t, x) :=

∫∫∫
e−iΦk(t,x;s,y,ξ)/εak(ε, s, y, ξ)χ1/4(s− ξ)χ2π/3(s)dsdydξ,

and where

ak(ε, s, y, ξ) := ζ(kπ + ξ)a(εkπ + εs, kπ + s, y),(4.27a)

Φk(t, x; s, y, ξ) := (kπ − t)p(kπ + ξ) + s
[
p(kπ + ξ)− 1

]
(4.27b)

+ (x− y)ξ + sy − (−1)kγ cos s.

In view of (4.23), the expression v is the sum of the wave packets vk. Now, the
advantage when working with vk (or wk) is that the domain of integration in (s, y, ξ) is
compact and independent of ε, k and t. As a counterpart, at the level of line (4.26),
the phase Φk and the profile ak involve ε, k and t as parameters.

The expression FL of (3.31) looks like the one of (1.2). By analogy with (1.8)-(1.16),
the expected amplitude of u is O(ε). In comparison to this reference threshold, all
terms of smaller size o(ε) will be considered negligible.
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4.2.3. Dispersive vs. almost stationary regime. – The asymptotic behavior of wk when
ε goes to 0 depends heavily on the size of k. In view of (2.11) and (3.33), it suffices
to deal with integers k such that k ∈ K, with K as in (4.23). Let q be the integer of
Assumption 3.3. Given some c > 0, we can decompose K into two separate parts Kcd
and Kcs with

Kcd ≡ Kcd
( 1

q + 1

)
:=
{
k ∈ N; k ≤ c

ε1/(q+1)

}
,(4.28a)

Kcs ≡ Kcs
( 1

q + 1

)
:=
{
k ∈ N;

c

ε1/(q+1)
< k ≤ 2

3
+
T
πε

}
.(4.28b)

In (4.28), the symbol K has exponent c and subscripts d or s. The exponent c is aimed
to specify the choice of the constant c, while the subscripts d or s are used to refer
respectively to the words dispersion and almost stationary.

— In Section 4.3, by adjusting c > 0 small enough, we can ensure some strong
d ispersion of the wave packets wk for values of k in Kcd and for t of order 1/ε.
The contribution of these wave packets is negligible. They mainly emerge from
the ball |x| < r, with r as in Assumption 3.11.

— In Section 4.4, we consider the case k ∈ Kcs, for which signals may be emitted
at a higher order. Such signals are almost stationary, and therefore they can be
detected during long times t ∼ ε−1 inside the ball |x| < r. In Section 4.5, we
study the local accumulation (near the position x = 0) of these wave packets.

4.2.4. Dispersive regime (k ∈ Kcd). – Using a non-stationary phase argument in ξ,
we will establish in Lemma 4.7 that for any given choice of R > 0, we can find a
constant c > 0 such that

sup
{
|wk(t, x)|; 0 ≤ k ≤ c

ε1/(q+1)
,
T
ε
≤ t ≤ 2T

ε
, |x| ≤ R

}
= O

(
εD−1

)
,

where D ≥ 2 is the integer appearing in Assumption 3.8. Therefore, since q ≥ 2, the
terms wk with k ∈ Kcd enter into the composition of u through a contribution which
can be estimated according to

(4.29)
√
ε

2π

∑
0≤k≤cε−1/(q+1)

|wk(t, x)| ≲ ε
1
2+D−1− 1

q+1 ≲ ε7/6 ≪ ε.

4.2.5. Stationary regime (k ∈ Kcs). – The absence of dispersion may be revealed
through the existence of critical points when looking at the phase Φk. Accordingly,
for k ∈ Kcs, the asymptotic behavior of wk when ε goes to 0 will be analyzed by
stationary phase arguments:

— For all k ∈ Kcs, the phase Φk involved in the definition of wk in (4.26) has at
most one critical point in the domain of integration (Lemma 4.8).

— For all k ∈ Kcs, the above mentioned possible critical point is necessarily non-
degenerate (Lemma 4.11).
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— Possible values of k such that c ≤ ε
1

q+1 k < c1 with c1 large enough belong to a
transition zone, treated as a black box. For all k ∈ Kc1s , the phase Φk has indeed
a unique critical point (Lemma 4.12).

— When D ≥ 3, the solution u to (4.15) can be viewed modulo O
(
ε5/3

)
as a sum

of wave packets uk with k ∈ Kc1s (Lemma 4.15).

4.2.6. Accumulation of the wave packets. – At this stage, Assumption 3.12 (about the
property of periodicity for large times) on the amplitude a is needed. Then, a clear
asymptotic dichotomy occurs regarding the order of magnitude of u. According to the
position in time and space, different orders of magnitude are possible for the wave
function u, with a precise expression when u reaches its maximal order of magnitude.

— Constructive interference (Proposition 4.16). For x = 2jε with j ∈ Z—as fore-
cast by (1.16) with u1 multiplied by ε3/2—the solution u to (4.15) is of order ε
exactly, see (4.78) and (4.79).

— Destructive interference (Proposition 4.18). On the contrary, for x = αε with
α ̸∈ 2Z, we find that the amplitude of u is o(ε), see (4.92).

4.3. The dispersive regime

This is when k ∈ Kcd with Kcd defined as in (4.28a). In the sum (4.22), the associated
waves vk or wk are emitted by the source term during relatively small times s. Thus,
for t large enough, that is for t as indicated at the level of (4.17), these waves have
enough time to (partially) disperse away from any ball |x| < R.

It is this idea that is developed and quantified in Lemma 4.7 below. The notations
have been set up in Section 4.2. In particular, the wave packets vk and wk are given
by (4.24) and (4.26), respectively.

Lemma 4.7 (Dispersion of waves when k ∈ Kcd). – Let wk be defined as in (4.26).
With D as in Assumption 3.8, and for R > 0 fixed, there exists a constant c > 0

(depending on R) such that

(4.30) sup

{
|wk(t, x)|; 0 ≤ k ≤ c

ε1/(q+1)
,
T
ε
≤ t ≤ 2T

ε
, |x| ≤ R

}
= O

(
εD−1

)
.

Note that since |vk(t, x)| = |wk(t, x)|, the same applies to vk.

Proof. – Observe first that the integral defining wk at the level of (4.26) is restricted
to the compact set

(4.31) Υ :=
{
(s, y, ξ) ∈ R3; |s| ≤ 2π/3, |y| ≤ r, |s− ξ| ≤ 1/4

}
,

where r comes from Assumption 3.11. We apply the principle of non-stationary phase,
but this time through integrations by parts involving ξ. To this end, with Φk as in
(4.27b), we have to compute

(4.32) ∂ξΦk(t, x; s, y, ξ) = (kπ + s− t)p′(kπ + ξ) + x− y.
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The situation is the following. Knowing (3.23), for k ≲ ε1/(q+1) and t ≳ 1/ε, since
s, x and y are bounded, we find

∂ξΦk(t, x; s, y, ξ) ≈ −tp′(kπ + ξ) +O(1) ≈ t

kq+1
+O(1) ≳

εt

cq+1
− C0.

For c small enough, the right hand side becomes positive. The rest of the proof consists
in making this heuristical computation more quantitative.

In view of (3.33), on the domain of integration giving rise to wk, we have 1 ≤ kπ+s

as well as (in view of the support of χ1/4) the inequality −1/4 ≤ ξ − s. It follows
that ξc ≤ 1/2 < 3/4 ≤ kπ + ξ. Taking into account (3.20b) and (3.23), knowing
that ℓ < 0, for such values of ξ, we have

(4.33) ∃δ0 > 0, δ0 ≤ sup
3/4≤η

ηq+1p′(η) ≤ (kπ + ξ)q+1p′(kπ + ξ).

For t as in (4.17), for (s, y, ξ) as in (4.31), and for |x| ≤ R, we have
T
ε
− kπ − 2π

3
≤ t− kπ − s, kπ + ξ ≤ kπ +

2π

3
+ 1, |x− y| ≤ r +R.

It follows that

(4.34) δ0

(T
ε
− kπ − 2π

3

)(
kπ +

2π

3
+ 1
)−q−1

− r −R ≤ |∂ξΦk(t, x; s, y, ξ)|.

Define

(4.35) ε0 :=
3q+1

(6 + 4π)q+1

δ0T
2(δ0 + r +R)

, c :=
1

2π

(
δ0T

2(δ0 + r +R)

) 1
q+1

.

By this way, for ε ≤ ε0 and k ≤ cε−1/(q+1), we can assert that

ε
1

q+1

(
2π

3
+ 1

)
≤ 1

2

(
δ0T

2(δ0 + r +R)

) 1
q+1

, ε
1

q+1 kπ ≤ 1

2

(
δ0T

2(δ0 + r +R)

) 1
q+1

.

Sum these two inequalities and rearrange the terms to get

(4.36) (δ0 + r +R)

(
kπ +

2π

3
+ 1

)q+1

≤ δ0T
2ε

.

In particular

δ0

(
kπ +

2π

3
+ 1

)
≤ (δ0 + r +R)

(
kπ +

2π

3
+ 1
)q+1

≤ δ0T
2ε

,

and hence
T
2ε
≥ kπ +

2π

3
,

T
2ε
≤ T

ε
− kπ − 2π

3
.

Exploiting (4.36), it follows that

(δ0 + r +R)
(
kπ +

2π

3
+ 1
)q+1

≤ δ0T
2ε

≤ δ0

(T
ε
− kπ − 2π

3

)
.

Coming back to (4.34), this yields

(4.37) ∀ε ∈ (0, ε0], ∀k ∈ N ∩ [0, cε−1/(q+1)], δ0 ≤ |∂ξΦk(t, x; s, y, ξ)|.
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As long as ∂ξΦk ̸= 0, the following identity may be used

(4.38) e−iΦk/ε = Dξe−iΦk/ε, Dξ ≡ D(k)ξ :=
εi

∂ξΦk
∂ξ.

The differential operator Dξ is not self-adjoint. We have to deal with

(4.39) D∗ξ ≡ D(k)∗ξ =
εi

∂ξΦk(t, x; s, y, ξ)
∂ξ −

εi∂2
ξξΦk(t, x; s, y, ξ)

(∂ξΦk)(t, x; s, y, ξ)2
.

Knowing that (4.37) is verified on the domain of integration giving rise to wk, an
integration by parts (in the variable ξ) using Dξ yields

|wk(t, x)| :=
∣∣∣∫∫∫ e−iΦk(t,x;s,y,ξ)/εD∗ξ

[
ak(ε, s, y)χ 1

4
(s− ξ)χ 2π

3
(s)
]
dsdydξ

∣∣∣.
Taking (4.37) into account, the application of D∗ξ allows to gain a power of ε on
condition that

(4.40)
|∂2
ξξΦk(t, x; s, y, ξ)|
∂ξΦk(t, x; s, y, ξ)2

=
|(kπ + s− t)p′′(kπ + ξ)|

|(kπ + s− t)p′(kπ + ξ) + x− y|2
= O(1).

The difficulty is that, at the level of (4.30), neither k nor t can be bounded uniformly
in ε ∈ ]0, 1]. However, with X := (kπ + s− t)p′(kπ + ξ), remark that

|x− y|
|X|

≤ 1

2
=⇒

|∂2
ξξΦk|
|∂ξΦk|

=
∣∣∣1 +

x− y

X

∣∣∣−1 |p′′(kπ + ξ)|
p′(kπ + ξ)

≤ 2 sup
s≥3/4

|p′′(s)|
p′(s)

.

On the other hand, using (4.37) and then |x− y| ≤ r +R, we have

|x− y|
|X|

≥ 1

2
=⇒

|∂2
ξξΦk|
|∂ξΦk|

≤ |X|
δ0

|p′′(kπ + ξ)|
p′(kπ + ξ)

≤ 2(r +R)

δ0
sup
s≥3/4

|p′′(s)|
p′(s)

.

From (3.19) and (3.23), we can deduce that

C(p) := sup
s≥3/4

{|p′′(s)|/p′(s)} < +∞.

In short, we have (4.40) with

|∂2
ξξΦk(t, x; s, y, ξ)|
∂ξΦk(t, x; s, y, ξ)2

≤ 2

δ0
max

(
1;
r +R

δ0

)
C(p) < +∞.

By extension, the action of (D∗ξ )n−1 with n ≤ D involves the quotients ∂jξΦk/∂ξΦk
with 0 ≤ j ≤ n. Under Assumption 3.8, the above argument can be repeated D − 1

times, leading to the estimate (4.30).

Note that (4.21) allows to capture any position x ∈ R. On the contrary, to obtain
uniform O(εN ) bounds and to measure more precisely the quantitative aspects of the
dispersive effects, we need to restrict the size of the spatial domain, as in (4.30). This
is why we will work with R = r, where r is fixed as in Assumption 3.11. In agreement
with Lemma 4.2, we restrict the discussion to the ball |x| < r. From now on, the
values of ε0 and c are adjusted as indicated in (4.35) with R = r.
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4.4. The regime of standing waves

This is when k ∈ Kcs with Kcs as in (4.28b) and c as in (4.35). The novelty when
k ∈ Kcs is that the oscillatory integral (4.26) defining wk may involve stationary points,
which are positions (s, y, ξ) satisfying

∇s,y,ξΦk(t, x; s, y, ξ) = 0,

or equivalently

∂sΦk(t, x; s, y, ξ) = p(kπ + ξ)− 1 + y + (−1)kγ sin s = 0,(4.41a)
∂yΦk(t, x; s, y, ξ) = s− ξ = 0,(4.41b)
∂ξΦk(t, x; s, y, ξ) = (kπ + s− t)p′(kπ + ξ) + x− y = 0.(4.41c)

In Paragraph 4.4.1, we show that there exists inside Υ, with Υ as in (4.31), at most
one critical point which is denoted by (sk, yk, ξk)(t, x). This means that (sk, yk, ξk) is
as in (4.41), together with

(4.42) −2π/3 ≤ sk ≤ 2π/3, −r ≤ yk ≤ r, sk − 1/4 ≤ ξk ≤ sk + 1/4.

In Paragraph 4.4.2, we derive asymptotic formulas describing the behavior of sk when
k goes to infinity. In Paragraph 4.4.3, we remark that the critical points are all non-
degenerate. In Paragraph 4.4.4, we take k ∈ Kc1s with c1 ≥ c large enough to find that
there exists indeed a critical point. In Paragraph 4.4.5, we consider conditions under
which stationary phase arguments can be employed.

4.4.1. Possible existence of critical points. – The phase Φk(t, x; ·) depends on (k, t, x)

and also (implicitly) on ε ∈ ]0, ε0] through the condition 0 ≤ t ≤ 2T /ε. The same
applies to (sk, yk, ξk)(t, x).

Lemma 4.8 (At most one signal may be emitted from any value k ∈ Kcs). – Let us
start by fixing ε0 as in (4.35). Up to decreasing this value of ε0, for all ε ∈ ]0, ε0],

for all k ∈ Kcs and for all (t, x) ∈ [0, 2T /ε]× [−r, r], there is inside Υ, in the sense of
(4.41), at most one critical point (sk, yk, ξk)(t, x) of the phase Φk(t, x; ·), with positions
yk and ξk determined by

(4.43) yk = 1− p(kπ + sk)− (−1)kγ sin sk, ξk = sk.

Proof. – The constraint (4.41b) reads s = ξ. Thus, we can focus on the positions
(s, y, s) satisfying (4.42) together with (4.41a) and (4.41c), which become

y = 1− p(kπ + s)− (−1)kγ sin s,(4.44a)

x = hk(t; s) := 1− p(kπ + s)− (−1)kγ sin s(4.44b)

− (kπ + s− t)p′(kπ + s).

This furnishes already (4.43). Now, we can consider the determination of s. The time
s is a priori localized as indicated in (4.42). But, using (4.44a), it is possible to get a
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more precise information on s. We know that |y| ≤ r ≤ 1/8. On the other hand, from
(3.28), we can infer that

(4.45) ∃C2 > 0, ∀ξ ≥ 1, 0 ≤ ξq
[
1− p(ξ)

]
≤ C2.

Using the condition cε−1/(q+1) < k inside the definition of Kcs, as well as (4.45), since
r < γ/2, we have from (4.44a) that

(4.46) | sin s| ≤ r

γ
+

C2

γ(kπ + s)q
≤ 1

2
+O

(
εq/(q+1)

)
.

In view of (4.46), for ε ∈ ]0, ε0] with ε0 small enough, we have to deal with the
necessary condition | sin s| <

√
3/2. Since |s| ≤ 2π/3, this means that 1/2 < cos s.

Given this, we can deduce the preliminary information

(4.47) −π/3 < s < π/3.

Compute

∂shk(t; s) := −2p′(kπ + s)− (kπ + s− t)p′′(kπ + s)− (−1)kγ cos s.

Exploiting (3.19) and (3.23), as well as |t− kπ − s| ≤ 2T /ε, we find

|∂shk(t; s)| = γ| cos s|+O
(
(kπ + s)−q−1

)
+ ε−1O

(
(kπ + s)−q−2

)
.

Knowing that s must satisfy (4.47) and that k ∈ Kcs is bounded from below as indi-
cated in (4.28b), there remains

|∂shk(t; s)| = γ| cos s|+O
(
ε1/(q+1)

)
= O(1).

Thus, for ε ∈ ]0, ε0] with ε0 small enough, we can assert that

(4.48) ∀k ∈ Kcs, ∀s ∈ , 0 <
γ

4
≤ |∂shk(t; s)|.

It follows that the function hk(t; ·) is one-to-one from the interval ]−π/3, π/3[ onto its
image, which may or may not contain the real number x. At all events, there exists
at most one position sk(t, x) ∈ ]−π/3, π/3[ such that

(4.49) hk
(
t; sk(t, x)

)
= x.

In short, any position (s, y, ξ) satisfying (4.41) and (4.42) is subject to |s| < π/3.
Knowing this, as claimed in Lemma 4.8, there exists inside Υ at most one critical
point (sk, yk, ξk)(t, x) and, if any, the value of sk(t, x) is determined through the
implicit relation (4.49), while (yk, ξk)(t, x) is given by (4.43).

By construction, the function sk(t, ·) is, for all t ∈ [0, 2T /ε], defined on the interval

(4.50) Isk(t) :=
{
hk(t; s);−

π

3
< s <

π

3

}
.

Lemma 4.9 (Properties of sk). – Let ε0 as in Lemma 4.8, as well as ε ∈]0, ε0] and
k ∈ Kcs. The function sk determined by (4.49) with hk as in (4.44b) is smooth on its
domain of definition, which is

Dsk :=
{
(t, x) ∈ [0, 2T /ε]× R;x ∈ Isk(t)

}
.
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For all α ∈ N2, we can find Cα > 0 giving rise to the uniform estimate

(4.51) sup
k∈Kc

s

sup
(t,x)∈Dsk

|∂αt,xsk(t, x)| ≤ Cα, ∀ε ∈ ]0, ε0].

For α = (1, 0), we get the following more precise estimate

(4.52) sup
(t,x)∈Dsk

|∂tsk(t, x)| = O(k−q−1) = O(ε).

Proof. – The bound (4.51) is, for α = (0, 0), a direct consequence of (4.42). Compute

(4.53) ∂tsk(t, x) = −
p′
(
kπ + sk(t, x)

)
∂sh
(
k, t; sk(t, x)

) , ∂xsk(t, x) =
1

∂sh
(
k, t; sk(t, x)

) .
In view of (3.23) and (4.48), this furnishes (4.52) for α = (1, 0), and also (4.51)
for α = (0, 1). The general case |α| > 1 can be obtained by induction. As a matter of
fact, for |α| > 1, the expression

∂sh
(
k, t; sk(t, x)

)|α|
∂αt,xsk(t, x)

is a finite linear combination of products involving pi(kπ+sk), ∂jsh(k, t; sk) and ∂βt,xsk
with i ≤ |α|, j ≤ |α| and |β| < |α|. It suffices to remark that all these quantities are
uniformly bounded. This comes from Assumption 3.8 concerning pi and ∂jsh. This is
due to the inductive hypothesis regarding ∂βt,xsk.

4.4.2. Asymptotic formulas related to the critical points. – In the rest of this section
and in Chapter 5, we need to identify the asymptotic behavior of sk and yk for large
values of k. To this end, introduce

(4.54) τk(t; s) := 1− p(kπ + s)− (kπ + s− t)p′(kπ + s),

and remark that (4.49) can also be formulated as

(4.55) sk(t, x) = (−1)k+1 arcsin
(x
γ
−
τk
(
t; sk(t, x)

)
γ

)
.

Lemma 4.10 (Asymptotic formulas). – Let ε0 as in Lemma 4.8 as well as ε ∈ ]0, ε0].
Uniformly in k ∈ Kcs and t ∈ [0, 2T /ε], the critical point (sk, yk, ξk)(t, x), if any, is
such that

sk(t, x) = (−1)k+1 arcsin
(x
γ

+
τ0
k (t)

γ

)
+O

( 1

εkq+2

)
,(4.56a)

yk(t, x) = x+ (kπ − t)p′(kπ) +O
( 1

εkq+2

)
= O

( 1

εkq+1

)
,(4.56b)

where

(4.57) τ0
k (t) := τk(t; 0) = 1− p(kπ)− (kπ − t)p′(kπ) = O

( 1

εkq+1

)
.
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Recall that

∀k ∈ Kcs, O
( 1

εkq+2

)
= O

(1

k

)
= O

(
ε

1
q+1
)
,

so that (4.56) furnishes indeed an explicit description of sk(t, x) and yk(t, x) modulo
a small remainder. Remark that τ0

k (t) = O(1) as long as k ∼ ε−1/(q+1) and t ∼ ε−1.
By contrast, when εkq+1 is large, we can exploit the following information

(4.58) sk(t, x) = ξk(t, x) = sxk +O
( 1

εkq+1

)
, yk(t, x) = x+O

( 1

εkq+1

)
with

(4.59) sxk := (−1)k+1 arcsin
(x
γ

)
.

Proof. – It suffices to write

τk(t; s) = τ0
k (t) +

[
p(kπ)− p(kπ + s)

]
− (kπ − t)

[
p′(kπ + s)− p′(kπ)

]
− sp′(kπ + s).

(4.60)

On the one hand, we have |s| ≤ 2π/3. On the other hand, we can exploit (3.19) and
(3.23) to obtain (since εk is bounded when k ∈ Kcs)

τk(t; s) = τ0
k (t) +O

( 1

kq+1

)
+O

( 1

εkq+2

)
= τ0

k (t) +O
( 1

εkq+2

)
,(4.61a)

τ0
k (t) = O

( 1

kq

)
+O

( 1

εkq+1

)
= O

( 1

εkq+1

)
.(4.61b)

We can deduce (4.56a) from (4.55) and (4.61a). Similarly, (4.56b) is a consequence
of the relation (4.41c).

4.4.3. All critical points are non-degenerate. – In view of stationary phase arguments,
introduce the Hessian matrix Sk(t, x) of the scalar function Φk(t, x; ·), that is

Sk(t, x) := Hess(Φk)
(
t, x; sk(t, x), yk(t, x), ξk(t, x)

)
=

 ∂2
ssΦk ∂2

syΦk ∂2
sξΦk

∂2
ysΦk ∂2

yyΦk ∂2
yξΦk

∂2
ξsΦk ∂2

ξyΦk ∂2
ξξΦk

(t, x; sk(t, x), yk(t, x), ξk(t, x)).
It is notable that a control on the invertibility of Sk turns out to be available for

all k ∈ Kcs. What is even more remarkable is that such a control can be obtained with
uniform bounds with respect to k ∈ Kcs and t as in (4.17).

Lemma 4.11 (The critical points are uniformly non-degenerate). – Up to decreasing
again the value of ε0 ∈ ]0, 1], for all ε ∈ ]0, ε0], for all k ∈ Kcs as well as for all
(t, x) ∈ [0, 2T /ε] × [−r, r], the possible critical point (sk, yk, ξk)(t, x) of Φk(t, x; ·) is
non-degenerate, such that |sk(t, x)| ≤ π/3, and there exists C ∈ R∗+ such that

(4.62) ∀(k, t, x) ∈ Kcs × [0, 2T /ε]× [−r, r], 0 < C ≤ |detSk(t, x)|.
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In addition, the signature of the matrix Sk(t, x), that is the number of positive eigen-
values minus the number of negative eigenvalues, is given by

(4.63) sign
(
Sk(t, x)

)
= (−1)k.

Proof. – We have already proven the condition |sk| ≤ π/3, see (4.47). Now, taking
into account (4.27), we find

(4.64)
Sk =

(−1)kγ cos sk 1 p′(kπ + ξk)

1 0 −1

p′(kπ + ξk) −1 (kπ + sk − t)p′′(kπ + ξk)


= Sδk

(−1)k +O
( 1

εkq+2

)
with the conventions

(4.65) Sδk
± (t, x) :=

±δk 1 0

1 0 −1

0 −1 0

 ,
γ

2
< δk ≡ δk(t, x) := γ cos sk <

1

4
.

For k ∈ Kcs, we find ε−1k−q−2 ≲ ε1/(q+1) ≪ 1. This furnishes

(4.66) detSk = det
(
Sδk

(−1)k

)
+ o(1) = −(−1)kδk + o(1).

In particular, this implies (4.62). On the other hand, we have the algebraic property

(4.67) Tr(Sδk
± ) = ±δk = −det(Sδk

± ) ̸= 0.

The trace is the sum of the eigenvalues, and the determinant is their product. In view
of (4.67), the eigenvalues cannot all have the same sign. Since Sδk

± is a 3× 3 matrix,
we have only two possibilities:

— The integer k is even. From (4.66), the determinant must be negative. Two
eigenvalues are positive and one is negative. The signature is 1.

— The integer k is odd. From (4.66), the determinant must be positive. One eigen-
value is positive and two are negative. The signature is −1.

Both results are consistent with (4.63).

4.4.4. The existence for sure of critical points when k is large enough. – Let c1 ≥ c.
Define Kc1s as in (4.28b). The inequality c ≤ c1 implies that Kc1s ⊂ Kcs. For c1 large
enough, the content of Lemma 4.8 can be refined.

Lemma 4.12 (Signals from Kc1s with c1 large enough are always detected). – Let ε0
as in Lemma 4.11 as well as ε ∈ ]0, ε0]. There exists c1 ≥ c such that, for all k ∈ Kc1s
and for all (t, x) ∈ [0, 2T /ε] × [−r, r], there is exactly one position (sk, yk, ξk)(t, x)

satisfying the two conditions (4.41) and (4.42).
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Proof. – First observe that, given ε0 as in Lemma 4.11, all preceding estimates remain
valid if, like in the case of c1, we fix the value of c above the one of (4.35). Consider
(4.44b), and remark that

(4.68) hk(t; s) = (−1)k+1γ sin s+O(k−q) + ε−1O(k−q−1).

Since c1ε−1/(q+1) ≤ k, it follows that

hk(t;±π/3) = ±(−1)k+1
√

3γ/2 +O
(
ε

q
q+1
)

+O
(
c−q−1
1

)
.

In particular, for c1 large enough and ε sufficiently small, we find

±(−1)k+1hk(t;±π/3) > γ/2.

Taking into account (4.50), we have

x ∈ [−r, r] ⊂ [−γ/2, γ/2] ⊂ Isk(t).

Since hk(t; ·) is continuous, we can apply the intermediate value theorem. It says
that we can find sk(t, x) ∈ ]−π/3, π/3[ satisfying (4.49). Lemma 4.8 guarantees that
such sk(t, x) is unique in the interval ]−2π/3, 2π/3[.

4.4.5. Towards stationary phase results. – Below, we recall a standard statement,
which can be found e.g., in [16, Proposition 5.2] or [38, Theorem 3.16]. It will be
used in this section and in the nonlinear analysis of Chapter 5.3.

Theorem 4.13 (From [16, 38]). – Select ϕ ∈ C∞(Rn;R) and a ∈ C∞c (Rn) satisfying
supp a = Υ. Let h > 0. Denote

Ih = Ih(a, ϕ) :=

∫
Rn

e−iϕ(x)/ha(x)dx.

Suppose that
x0 ∈ Υ, ∇xϕ(x0) = 0, det ∂2ϕ(x0) ̸= 0.

Assume further that ∇xϕ(x) ̸= 0 on Υ \ {x0}. Then, for all N ∈ N∗, there exist
differential operators M2j(x;D) of order less than or equal to 2j such that∣∣∣Ih − hn/2

N−1∑
j=0

hj
[
M2j(x;D)a(·)

]
x=x0

e−iϕ(x0)/h
∣∣∣

≤ CNh
n/2+N

∑
|α|≤2N+n+1

∥∂αa∥L∞ .

The constant CN depends on the compact Υ and also on the L∞ norm of ϕ and its
derivatives on Υ. In particular, denoting by signS the signature of S, we find

(4.69) M0 =
(2π)n/2

|det ∂2ϕ(x0)|1/2
e−i

π
4 sign ∂2ϕ(x0).

MÉMOIRES DE LA SMF 174



4.5. THE ACCUMULATION OF WAVE PACKETS 59

Theorem 4.13 is aimed to be applied to the oscillatory integral defining wk. When
doing this, it is important to get uniform estimates with respect to all parameters k, t
and x. Lemma 4.11 is a first indication that this works well. Another aspect is related
to the uniform control of the constants CN . As mentioned above, this can be achieved
by looking at the derivatives of Φk on Υ.

Lemma 4.14 (Estimates on the derivatives of Φk). – Let ε0 as in Lemma 4.11 as well
as ε ∈ ]0, ε0]. With the compact set Υ given by (4.31), for all N ≥ 2, there exists a
constant CN such that uniformly in t as in (4.17) and in x with |x| ≤ r, we have

(4.70) sup
k∈Kc

s

sup
(s,y,ξ)∈Υ

∑
1≤|α|≤N

|∂αs,y,ξΦk(t, x; s, y, ξ)| ≤ CN .

Proof. – Looking at (4.31) and (4.41b), we have indeed (4.70) for the terms which are
involving multi-indices α = (α1, α2, α3) with 1 ≤ α2. For α2 = 0 and 1 ≤ α1, consider
the line (4.41a). When α1 = 1, just apply (3.25). For 1 < α1, combine the property
(3.23) together with (3.29). Now, assume that α1 = α2 = 0 and 1 ≤ α3 ≤ N . Then,
exploiting (3.29), we find

|kπ + s− t||p(α3)(kπ + ξ)| ≲ ε−1p′(kπ + ξ) = ε−1O(k−q−1).

Since k ∈ Kcs, the right hand side is bounded. Summing the preceding upper bounds
over multi-indices α yields (4.70).

4.5. The accumulation of wave packets

In Paragraph 4.5.1, the solution u to the equation (4.15) is represented mod-
ulo some o(ε) as a sum of wave packets uk with k ∈ Kc1s . Then, the purpose
is to distinguish between situations where constructive interferences occur (Para-
graph 4.5.2) from those where, on the contrary, destructive interferences take place
(Paragraph 4.5.3).

4.5.1. The solution as a sum of wave packets. – Combining (4.21), (4.22) and (4.25),
the solution u to (4.15) can be put in the form

(4.71) u(t, x) =
∑
k∈N

uk(t, x) +O(ε∞),

with

(4.72) uk(t, x) :=

√
ε

2π
ei(−γ+kπ−kπx)/εwk(t, x).

Lemma 4.15. – Fix c1 as in Lemma 4.12. Under Assumption 3.8 with D ≥ 3, we
can expand u according to

(4.73) u(t, x) =
∑
k∈Kc1

s

uk(t, x) +O
(
ε2−

1
q+1
)
.
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The wave packets uk are of size O(ε2). Assuming that D ≥ 4, they have the form

(4.74) uk(t, x) = ε2bk(ε, t, x)e
iΨk(t,x,sk)/ε +O

(
ε2+

1
q+1
)

= O
(
ε2
)
,

with phases Ψk and profiles bk given by

Ψk(t, x, sk) := −γ + t+ (−1)kγ cos sk(4.75a)
+
[
1− p(kπ + sk)

]
(kπ + sk − t)− (kπ + sk)x,

bk(ε, t, x) := (2π)1/2
e−i(−1)k π

4

|detSk|1/2
a(εkπ + εsk, kπ + sk, yk).(4.75b)

Proof. – The sum inside (4.71) can be split into

u(t, x) =
∑
k∈Kc

d

uk(t, x)

︸ ︷︷ ︸
1

+
∑

c

ε1/(q+1)
<k≤ c1

ε1/(q+1)

uk(t, x)

︸ ︷︷ ︸
2

+
∑
k∈Kc1

s

uk(t, x)

︸ ︷︷ ︸
3

+O(ε∞).

We may recognize here the dispersive part 1, the transitional part 2 which is pos-
sibly absent (when c = c1), and the cumulative part3. Not all k ∈ N have a leading
order contribution, and not all with the same size. We will explain separately how to
estimate each part.

1 For k ∈ Kcd, it suffices to apply Lemma 4.7 to get∣∣∣ ∑
k∈Kc

d

uk(t, x)
∣∣∣ ≤ √

ε

2π

∑
k∈Kc

d

|wk(t, x)| ≤ C
√
ε
∑
k∈Kc

d

εD−1 = O
(
εD−

1
2−

1
q+1
)
.

2 For k ∈ Kcs with c as in (4.35), the idea is to exploit Lemma 4.11 to implement
Theorem 4.13 at the level of the oscillatory integral (4.26). To do this, all assumptions
must be checked:

– The first, and most important, is (4.31) which guarantees that the integration is
on a compact set (independent of k, t or ε).

– The second is (4.70) which enables, away from (sk, yk, ξk), to perform D − 1

integrations by parts, and still to obtain some O(εD−1) error term. When doing this,
a major difficulty is that the phase Φk still depends on (t, x). And therefore, according
to (4.17), since t may be of size ε−1, it does depend on ε. The aim of the control (4.70)
is precisely to overcome this difficulty.

– The main contribution is provided by a small neighborhood of (sk, yk, ξk). The
implementation of Morse Lemma (usually used when proving Theorem 4.13) is made
possible by Lemma 4.11. It requires three derivatives of Φk to obtain a C1-diffeomor-
phism. This implies that D must be at least equal to 3.

– The phase Φk(t, x; ·) depends on the three variables (s, y, ξ) ∈ R3, and therefore
the leading-order term is of amplitude ε3/2 modulo some small o(ε3/2). Then, any
extra derivative on Φk allows to gain a power of ε in the asymptotic expansion. We
must take D ≥ 4 to be sure of some O(ε5/2) precision.
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Now, the expression wk of (4.26) can be expanded in powers of ε through The-
orem 4.13. To this end, taking into account the definitions (2.11), (4.18) and (4.43)
together with Lemma 4.11 which implies |sk| ≤ π/3, first remark that

(4.76) χ1/4(sk − ξk)χ2π/3(sk) = χ1/4(0)χ2π/3(sk) = 1.

By Assumption 3.11, ζ(ξ) = 1 +O(1/|ξ|) as |ξ| → ∞, so

∀k ∈ Kcs, ζ(kπ + sk) = 1 +O
(
1/k
)
, 1− χ(kπ + sk) = 1.

Therefore, for all k ∈ Kcs, we find

A(εkπ + εsk, kπ + sk, yk, kπ + sk) = a(εkπ + εsk, kπ + sk, yk) +O
(
ε1/(q+1)

)
.

On the other hand, the signature is given by (4.63). Combining all the above infor-
mation, Theorem 4.13 yields (with N = 1)

(4.77)
wk(t, x) = (2πε)

3/2 e
−i(−1)k π

4

|detSk|1/2
e−iΦk(t,x;sk,yk,ξk)/ε

× a(εkπ + εsk, kπ + sk, yk) +O
(
ε

3
2+ 1

q+1
)
,

where the remainder term, larger than the one provided by Theorem 4.13, stems from
the above approximation of A. In (4.77), the O is uniform with respect to k ∈ Kcs or
t as in (4.17). Whether there exists a stationary point or not, we have wk = O(ε3/2),
hence uk = O(ε2). This rough estimation gives rise to∣∣∣ ∑

cε−1/(q+1)<k<c1ε−1/(q+1)

uk(t, x)
∣∣∣ = O

(
ε2−

1
q+1
)
.

3 For k ∈ Kc1s with c1 as in Lemma 4.12, the content of uk can be specified.
Using the definition of uk at the level of (4.72) together with (4.77), we find (4.74),
with (4.75). Integers k ∈ Kc1s are the most numerous; they may provide the main
contribution; and therefore they are set aside at the level of (4.73). Since D−1/2 ≥ 2

when D = 3, we can retain (4.73).

In a similar way to the elementary model of Chapter 1.1, the superposition of the
wave packets uk can induce a time growth of the solution u to (4.15). The source term
of (3.18) is of size ε3/2; in view of (4.74), it can trigger signals uk of amplitude ε2; at
first sight, it can produce during long times t ∼ ε−1T a contribution which may be of
size ε2t ∼ εT .

That being said, this cumulative effect is only likely but not certain to occur, due
to possible cancelations. The aim of the next Paragraphs 4.5.2 and 4.5.3 is to check
what is actually happening.
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4.5.2. Constructive interferences. – In this paragraph, we show that the amplification
phenomenon of the preamble does apply at special positions.

Proposition 4.16 (Asymptotic behavior of the solution on some moving lattice).
– Under Assumptions 3.3, 3.6 and 3.8 (with D ≥ 4) on the symbol p, as well as
Assumption 3.12 on the profile a ≡ a1, for all T ∈ [T , 2T ] and all j ∈ Z, the solution
u to (4.15) is such that

— If q = 2,

(4.78)
u

(
T

ε
, 2jε

)
= o(ε) +

ε√
2πγ

ei
T
ε2

(
e−i

π
4

∫ +∞

0

e−i
ℓ
6 ( 1

s−
T
s2

)a(s, 0, 0)ds

+ e−i(
2γ
ε −

π
4 )

∫ +∞

0

e−i
ℓ
6 ( 1

s−
T
s2

)a(s, π, 0)ds
)
.

— If q > 2,

(4.79)
u

(
T

ε
, 2jε

)
= O

(
ε1+

q−2
q+1

)
+

ε√
2πγ

ei
T
ε2

(
e−i

π
4

∫ +∞

0

a(s, 0, 0)ds

+ e−i(
2γ
ε −

π
4 )

∫ +∞

0

a(s, π, 0)ds
)
.

The leading term in the right hand side of (4.78) and (4.79) does not depend on j.
On the other hand, for j = 0, the formula (4.78) provides the asymptotic behavior
of u(T/ε, ·) at a fixed position, which is the origin x = 0.

Now, compare (1.16) multiplied by ε3/2 with (4.79). When q > 2 and in the (ex-
tended) situation where a(·, 0, 0) ≡ 1[0,T ], the two formulas coincide. However, in the
critical case q = 2, there are some differences. The wave packets uk have larger group
velocities; their wave front sets can mix; they can interact meaningfully. As a matter
of fact, the identity (4.78) is more complicated, and the amplification effect can be
altered by the oscillatory factor in front of a.

We also note that if a is not only 2π-periodic in its second argument, but π-periodic,
then the above formula boils down to the one stated in Theorem 1.3.

Proof. – The starting point is (4.73) together with (4.74). Select some α ∈ R. Since
the O(ε2) inside (4.74) is uniform with respect to k and t, a rough estimate yields

(4.80) ε−1u(t, εα) =
∑
k∈Kc1

s

εbk(ε, t, εα)eiΨk(t,εα,sk)/ε +O
(
ε

q
q+1

)
.

Recall the definitions inside (4.75). The ingredients Ψk and bk of (4.80) are not free
from a dependence on ε which may arise when specifying the choice of k, when replac-
ing t by T/ε, or when substituting x with εα. A first step in the analysis is to simplify
modulo small error terms the content of Ψk and bk. Let us start by reducing Ψk. With
sxk as in (4.59), coming back to (4.75a), compute

Ψk(t, x, sk)−Ψk(t, x, s
x
k) = (−1)kγ(cos sk − cos sxk)− (sk − sxk)x

+
[
1− p(kπ + sxk)

]
(sk − sxk) + (kπ + sk − t)

[
p(kπ + sxk)− p(kπ + sk)

]
.
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Combine the mean value theorem with (3.28) and (3.23). For large values of k, this
gives rise to

Ψk(t, x, sk)−Ψk(t, x, s
x
k) =

[
1 +O

(
1

kq

)
+

1

ε
O
(

1

kq+1

)]
O (|sk − sxk|) .

Then, knowing that k ∈ Kc1s , we can apply (4.58) to just retain

(4.81) Ψk(t, x, sk) = Ψk(t, x, s
x
k) +O

(
1

εkq+1

)
.

For k ∈ Kc1s and ε small enough to be sure that ts ≤ kπ + sk with ts as in (3.34),
using (3.34) and (4.58), we find

(4.82) a(εkπ + εsk, kπ + sk, yk) = a(εkπ, kπ + sxk, x) +O(ε) +O
(

1

εkq+1

)
.

Examine (4.75b). To interpret the quantity |detSk|, exploit Lemma 4.11 (and its
proof). There remains

(4.83)
bk(ε, t, x) = (2π)1/2e−i(−1)k π

4 (γ cos sxk)
−1/2

×a(εkπ, kπ + sxk, x) +O(ε) +O
(

1

εkq+1

)
.

Replace x by εα. Coming back to (4.59), this yields

sεαk = (−1)k+1 arcsin

(
εα

γ

)
= (−1)k+1 εα

γ
+O(ε2).

It follows that

Ψk(t, εα, sk) = Ψ0
k(t)− kπαε+O

(
ε2
)

+O
(
ε−1k−q−1

)
,(4.84a)

bk(ε, t, εα) = b0k +O (ε) +O
(
ε−1k−q−1

)
,(4.84b)

with:

Ψ0
k(t) := −γ + t+ (−1)kγ +

[
1− p(kπ)

]
(kπ − t),(4.84c)

b0k := (2π)1/2e−i(−1)k π
4 γ−1/2a(εkπ, kπ, 0).(4.84d)

For k ∈ Kc1s , a precision like O(1/εkq+1) is not enough, since for k ∼ ε−1/(q+1),
it is not necessarily small. By contrast, for larger k’s, assuming that ε−1η ≤ k for
some η ∈ (0, 1], since q > 1, we have O(1/εkq+1) = O(εq/ηq+1), and therefore

(4.85) eiΨk(t,εα,sk)/ε = eiΨ
0
k(t)/εe−ikπα +O(ε) +O

(
εq−1

ηq+1

)
.

Note the loss of precision by the power ε−1 when dividing Ψk by ε, as well as a bad
dependence upon η near η = 0 inside the last term above. For the moment, we fix
some η ∈ ]0, 1]. Back to (4.80), for k ∈ Kc1s with k ≤ ε−1η, just apply (4.74) in the
rough form uk = O(ε2) to get

(4.86)
∑

Kc1
s ∋k≤ε−1η

εbk(ε, t, εα)eiΨk(t,εα,sk)/ε = O (η) .
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For k ∈ Kc1s with ε−1η ≤ k, we can separate even numbers k from odd numbers k. In
other words, we can split Kcs into Kcs(e) ∪ Kcs(o) with

Kcs(e) := {k ∈ Kcs; kis even}, Kcs(o) := {k ∈ Kcs; kis odd}.

By this way, using (4.80), (4.84b), (4.85) and (4.86), we get

(4.87)

ε−1u(t, εα) =
∑

par∈{e,o}

∑
ε−1η≤k∈Kc1

s (par)

εb0ke
iΨ0

k(t)/εe−ikπα

+O(η) +O
(
εq−1

ηq+1

)
+O

(
ε

q
q+1

)
.

Now, we consider the dependence on k when computing the two sums inside (4.87):

i) For α = 2j as required in (4.78), we have to deal with e−ikπα = e−i2(kj)π = 1.
The phase shift induced by the spatial inhomogeneities of φ is not detected;

ii) For par = e or par = o, the power (−1)k inside (4.84c) is simply 1 or −1;

iii) According to k ∈ Kc1s (e) or k ∈ Kc1s (o), we can replace a(εkπ, kπ, 0)

by a(εkπ, 0, 0), or by a(εkπ, π, 0), respectively.

After that, a dependence upon k remains inside (4.87). It is examined in detail
below. In view of (3.28), remark that

(4.88)

[
1− p(kπ)

]
(kπ − t) = − ℓ

q(q + 1)

(
1

(kπ)q−1
− t

(kπ)q

)
+

(
t

kq
− π

kq−1

)
o(1).

For k with ε−1η ≤ k ∈ Kc1s (e), since 2 ≤ q, exploiting (4.84c) and (4.88) together
with ii) and iii), we can deduce that

(4.89)
b0ke

i
ε Ψ0

k( T
ε ) =

√
2π

γ
a(εkπ, 0, 0)e−i

π
4 + iT

ε2 e
−i ℓ

q(q+1)

(
1

ε(kπ)q−1− T
ε2(kπ)q

)

+
T

ηq
o(εq−2) +

1

ηq−1
o(εq−2).

Introduce the symbols Oη(εk) and oη(ε
k) to mean respectively C(η)O(εk) and

C(η)o(εk) for some constant C(η) which may go to +∞ when η goes to zero. When
summing even k at the level of the first sum inside (4.87), with par = e, we recognize a
Riemann sum with small width ε2π. Since the regularity of the integrand degenerates
at s = 0, the rate of convergence is simply Oη(ε). By this way, in view of (4.89),
when q = 2, we obtain∑

ε−1η≤k∈Kc
s(e)

εb0ke
i
ε Ψ0

k( T
ε ) =

ei(
T
ε2−π

4 )

√
2πγ

∫ +∞

πη

e−i
ℓ
6 ( 1

s−
T
s2

)a(s, 0, 0)ds

+oη(ε
0) +Oη(ε),
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where we have used the property that kπε goes up to T , so the integral carries over
the whole support of a(·, 0, 0). When q > 2, since η ≤ εk ≤ T , observe that (4.89)
involves the factor

e
−i ℓ

q(q+1)

(
1

ε(kπ)q−1− T
ε2(kπ)q

)
= e

−i ℓ
q(q+1)

(
1

(πεk)q−1− T
(πεk)q

)
εq−2

= 1 +O
(
εq−2

ηq

)
.

Hence, when q > 2, the Riemann sum argument together with (4.89) yields simply∑
ε−1η≤k∈Kc

s(e)

εb0ke
i
ε Ψ0

k( T
ε ) =

ei(
T
ε2−π

4 )

(2π)1/2γ1/2

∫ +∞

πη

a(s, 0, 0)ds+O(ε) +O
(
εq−2

ηq

)
,

where we have used the fact that for a smooth integrand (as it is the case with a only,
that is, without the above singular phase term), a convergence rate (of the order of the
discretization parameter) is available in Riemann sums. In the two preceding integrals,
the integrand is bounded near s = 0. Modulo some O(η), we can integrate from 0

to +∞. Similar considerations apply when dealing with odd values of k. Summing
up, we find the leading-order term of (4.78).

Now, come back to (4.87). From the preceding estimates, when q = 2, the error
term is of the type

ε
[
O(η) +O

(
εq−1

ηq+1

)
+O

(
ε

q
q+1

)
+ oη(ε

0) +Oη(ε)
]

= ε
[
O(η) + oη(ε

0)
]
.

This is valid for all η ∈ ]0, 1]. By fixing η increasingly smaller and then letting ε go to
zero, this implies the bound o(ε), as expected in (4.78). On the contrary, when q > 2,
we have to deal with an error term like

ε

(
O(η) +O

(
εq−1

ηq+1

)
+O

(
ε

q
q+1

)
+O(ε) +O

(
εq−2

ηq

))
.

Setting η = ε
q−2
q+1 then yields (4.79).

The set C0
c (R+) of all continuous functions having a compact support is a Banach

space when it is equipped with the sup-norm. Define λ(q) = ℓ if q = 2 (with ℓ as in
Assumption 3.3) and λ(q) = 0 if q > 2. Given T ≥ 0 and q ≥ 2, consider the nontrivial
continuous linear form

L(T ) : C0
c (R+) −→ R

a 7−→ L(T )(a) :=

∫ +∞

0

e−i
λ(q)

6 ( 1
s−

T
s2

)a(s)ds.

Its kernel kerL(T ) is a closed vector space of codimension one. Obviously, the com-
plement

(
kerL(T )

)c of kerL(T ) is dense so that, generically, a ∈
(
kerL(T )

)c.
Corollary 4.17 (Constructive interference). – Fix any T ∈ [T , 2T ]. Select a as in
Assumption 3.12, with moreover a(·, 0, 0) or a(·, π, 0) in

(
kerL(T )

)c. Looking at the
solution u to (4.2) at the time T/ε and at well chosen positions (which may depend on
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the parameter ε), one can observe some amplification of the sup norm. As a matter
of fact, for all j ∈ Z, we have:

(4.90) lim sup
ε→0+

∣∣∣1
ε
u
(T
ε
, 2εj

)∣∣∣ = ℓas ̸= 0

with
ℓas :=

1√
2πγ

[|L(T )(a(·, 0, 0))|+ |L(T )(a(·, π, 0))|] .

Assume moreover that a(·, 0, 0) is π-periodic. Then, (4.78) gives rise to

(4.91)
∣∣∣1
ε
u
(T
ε
, 2εj

)∣∣∣ = 2√
2πγ

|L(T )(a(·, 0, 0))|
∣∣∣cos(γ − π

4
)
1

ε

∣∣∣+ o(1).

Therefore, any number contained in the interval [0, ℓ
a
s ] is an adherent point of the

family
{
ε−1|u(ε−1T, 2εj)|

}
ε
. This is typical of a highly oscillating behavior. As men-

tioned before, the formula (1.16) looks like (4.78) and (4.79). But, as will be seen in the
next paragraph, outside the moving lattice {2εj; j ∈ Z}, the situation is completely
different.

4.5.3. Destructive interferences. – In this paragraph, we consider the situation where
x = αε with α ∈ R \ {2Z}. Then, the property i) in the proof of Proposition 4.16
no longer applies. The definition (4.72) of uk does contain the factor e−ikπα which
comes from the spatial inhomogeneities of the phase φ and which, after summation,
can induce additional cancelations.

Proposition 4.18 (Destructive interference). – Select any α ∈ R \ {2Z}. Suppose
that Assumptions 3.3, 3.6, 3.8 (with D ≥ 4) and 3.12 are satisfied. Then for all
T ∈ [T , 2T ], the solution u to (4.15) is such that

(4.92) u

(
T

ε
, αε

)
=

 o(ε) if q = 2,

O
(
ε

6q−2
5q

)
if q > 2.

Proof. – We resume (4.87), which holds for all η > 0. Exploiting (4.88) and (4.89),
this becomes

1

ε
u

(
T

ε
, αε

)
= (2π)1/2γ−1/2ei(

T
ε2−π

4 )
∑

η
ε≤keven≤

T
πε

εe−ikπαGeq(ε, εkπ)

+ (2π)1/2γ−1/2ei(
T
ε2−π

4−
2γ
ε )

∑
η
ε≤kodd≤ T

πε

εe−ikπαGoq(ε, εkπ)

+O(η) +O
(
εq−1

ηq+1

)
+O

(
ε

q
q+1

)
+ o

(
εq−2

ηq

)
,

where by definition

Geq(ε, s) := e−i
ℓ
6 ( 1

s−
T
s2

)εq−2

a(s, 0, 0), Goq(ε, s) := e−i
ℓ
6 ( 1

s−
T
s2

)εq−2

a(s, π, 0).
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We consider separately the two above sums. We discuss the case k even, the case k
odd being similar. The idea is to use Abel’s summation formula. To this end, given
some δ ∈ ]0, 1], we interpret the sum as follows∑

η
ε≤keven≤

T
πε

εe−ikπαGeq(ε, εkπ) =
∑

η
δ≤j≤

T
2πδ

∑
jδ
ε ≤keven≤

(j+1)δ
ε

εe−ikπαGeq(ε, εkπ).

For all j, fix some kj even inside
[
jδ
ε ,

(j+1)δ
ε

]
. For all k in this interval, Taylor’s formula

gives rise to

|Geq(ε, εkπ)−Geq(ε, εkjπ)| ≤ πδ sup
s≥πη

|∂sGeq(ε, s)| = δO
(
εq−2

η3

)
+ δO(1).

It follows that∑
η
ε≤keven≤

T
πε

εe−ikπαGeq(ε, εkjπ) = Eer +
∑

η
δ≤j≤

T
2πδ

εGeq(ε, εkjπ)×
∑

jδ
ε ≤keven≤

(j+1)δ
ε

e−ikπα.

The error term Eer can be estimated according to

Eer =
T

2πδ

δ

ε
ε

[
δO
(
εq−2

η3

)
+ δO(1)

]
= δO

(
εq−2

η3

)
+ δO(1).

Since e−iπα ̸= 1, we have∣∣∣∣∣∣∣
∑

η
δ≤j≤

T
2πδ

εGeq(ε, εkjπ)×
∑

jδ
ε ≤keven≤

(j+1)δ
ε

e−ikπα

∣∣∣∣∣∣∣ =
1

δ
O(ε).

In short, we have

1
ε

∣∣∣u(Tε , αε)∣∣∣ = O(η) +O
(
εq−1

ηq+1

)
+O

(
ε

q
q+1

)
+ o

(
εq−2

ηq

)
+δO

(
εq−2

η3

)
+ δO(1) +

1

δ
O(ε).

This is valid for all (η, δ) ∈ ]0, 1]
2. We fix δ = η4 so that

O(η) + δO
(
εq−2

η3

)
+ δO(1) +

1

δ
O(ε) = O(η) +

1

η4
O(ε).

By fixing η increasingly smaller and then letting ε goes to zero, we can recover
some o(ε0) or, after multiplication by ε, some o(ε) as announced in (4.92). When q > 2,
a better estimate is available by optimizing the choice of η. Just take η = ε(q−2)/5q to
obtain (4.92).

Remark 4.19 (Contrast between constructive and destructive interferences). – The
controls of the error terms inside (4.78), (4.79) and (4.92) are not claimed to be sharp.
For instance, by specifying a rate of convergence at the level of (3.22), the precision
o(ε) in (4.78) and (4.92) could be improved into O(ε1+κ) for some κ > 0. At all
events, the amplitude of the solution u to (4.2) is asymptotically maximal on a set
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of Lebesgue measure zero, which is the lattice εZ moving with ε ∈ ]0, 1]. Everywhere
else, it is smaller.
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CHAPTER 5

NONLINEAR ANALYSIS

In this chapter, we prove the nonlinear information (2) of Theorem 1.3, as well
as Theorem 1.4. In Chapter 5.1, we precise the framework, and we collect various
estimates about the solution u(0) of (1.28a). In Chapter 5.2, we measure the influence
of different types of nonlinearity according to gauge parameters g that characterize
them. We prove that nonlinear effects are not detected at leading order as long as
g ̸= 1. This is Fact 2 in the PDE context. As a consequence, when g ̸= 1, the distinction
between constructive and destructive interferences remains in the same state as in
the linear case. This dichotomy does persist when g = 1. But, as will be seen in
Chapter 5.3, the profiles exhibited in (4.78) must be modified accordingly, in order to
take into account the nontrivial effects of nonlinearity.

5.1. General setting

In Paragraph 5.1.1, we recall the main assumptions, and we start the discussion
about nonlinear effects. In Paragraph 5.1.2, we study the kernel of a singular opera-
tor, which appears when seeking sup norm estimates. In Paragraph 5.1.3, we classify
the different sorts of gauge parameters, and we illustrate them by examples. In Para-
graph 5.1.4, we establish various estimates concerning the solution u(0) of (1.28a).

5.1.1. Main assumptions. – We work under the hypotheses of Theorems 1.3 and 1.4
concerning p and φ. In particular, we suppose that q = 2 and D ≥ 4. The phase
φ is subject to Assumption 1.2. The expression u(0) is obtained by solving the linear
Equation (1.28a), with FL as in (3.31). In (3.31), the sum is assumed to be finite, to
avoid extra discussions about the convergence of infinite sums which can appear in
the approximating process.

In view of Propositions 4.16 and 4.18, the function u(0) is of size ε in L∞. It follows
that the quadratic nonlinearity of (1.36) can be expected to play a role at leading
order for long times t ∼ ε−1. The right hand side of (1.36) may seem quite specific. It is
adjusted in order to generate through (1.36) a solution u(1) of size comparable to u(0).
To understand why, and also to discern the possible effects of other nonlinearities, it
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is interesting to generalize (1.36) up to some extent. With this in mind, we replace
(1.36) by (1.28b) with FNL satisfying Assumption 3.13. Following (1.29), we introduce

(5.1) u(j)(t, x) = εeit/εU (j)
(
εt,

x

ε

)
, U (j)(T, z) =

1

ε
e−iT/ε

2

u(j)
(T
ε
, εz
)
.

The solution u(1) to (1.28b) is a superposition of the contributions brought by the
different terms Fj1j2ν composing FNL, see (3.36). Thus, we can study separately what
happens for a fixed choice of (j1, j2, ν) ∈ N2 × Z. With this in mind, we focus our
attention on a single monomial having the form

(5.2) FNL ≡ Fj1j2ν = ενeiωt/εχ
(
3− 2

εt

T

)
χ
( x

rει

)
uj1 ūj2 .

We have seen in Section 1.1 that the gauge parameter g is a good indicator of the
time oscillations which remain in the source term of equation (1.5) after filtering out
of the equation (1.3) through the change (1.4). When dealing with (5.2), a similar
definition applies.

Definition 5.1 (Gauge parameter). – The gauge parameter associated with Fj1j2ν is
the real number gj1j2ν defined by gj1j2ν := ω + j1 − j2.

From now on, we fix FNL as in (5.2) with indices ν, j1 and j2 adjusted in such a
way that ν + j1 + j2 ≥ 2. We will sometimes simply note g ≡ gj1j2ν ∈ R. In (5.2), the
coefficient which appears in front of uj1 ūj2 is the product of three factors.

In the light of the first factor eiωt/ε, in the case of a non-zero frequency ω ̸= 0, the
source term FNL does involve time oscillations. Reasons for introducing eiωt/ε have
been explained in Remark 2.2, and also in Paragraph 3.2.1 when adjusting p in order
to recover (3.24).

Looking at the second factor, the source term FNL is switched on after all signals
have been emitted, that is during the long time interval [T /ε, 2T /ε], which could
be replaced by [η/ε, 1/(ηε)] for any η ∈ ]0, 1]. But a positive gap (η > 0) seems to
be needed. Indeed, Lemma 4.7 makes a first group of wave packets which, due to
a dispersive phenomenon, is negligible in the limit ε → 0. It requires to consider
sufficiently large times, so the phase Φk could be uniformly non-stationary in ξ.

In the light of the third factor, the source term FNL is spatially localized in a
ball of size rει. The impact of FNL is potentially all the more stronger that ι is
small. The choice of a large negative parameter ι, with ι ≪ −1, involves almost no
spatial localization. The case ι = 0 corresponds to a diluted source which acts on the
domain where Propositions 4.16 and 4.18 furnish some refined information. Finally,
the selection of the limiting value ι = 1 implies a concentrated source which, for
convenience, is placed here at the origin. Larger values of ι, with ι ≥ 1, will not be
investigated because they have little interest.

The impact of the nonlinearity (5.2) can be measured by looking at the difference
W := U (1) − U (0). From (1.28a) and (1.28b), it is easy to deduce that

(5.3) ∂TW − i

ε2
(p(−i∂z)− 1)W = εν+j1+j2−2ei(g−1)T/ε2Gε, W|t=0

≡ 0,
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where g ≡ gj1j2ν is as in Definition 5.1, and the source term Gε is determined by

(5.4) Gε(T, z) = χ
(
3− 2

T

T

)
χ
( z

rει−1

)
U (0)(T, z)j1 Ū (0)(T, z)j2 .

By construction, the function Gε is smooth and compactly supported in (T, z). We
have seen in Chapter 4 that U (0)(T, z), and therefore Gε(T, z), is some O(1) as long
as (T, z) is such that T ≤ T ≤ 2T and |z| ≤ r/ε. Moreover, this control is sharp when
z ∈ Z. Coming back to (5.3), Duhamel’s formula reads

(5.5)
W(T, z) = εν+j1+j2−2(2π)−1

×
∫ T

0

∫∫
e−i(z−y)ξ+i

T−s

ε2 (p(ξ)−1)+i(g−1) s
ε2 Gε(s, y)dsdydξ.

Our aim is to study W(T, z) through (5.5). As a first step, we would like to establish
that, for Gε as in (5.4), we have

(5.6)
∫ T

0

∫∫
e−i(z−y)ξ+i

T−s

ε2 (p(ξ)−1)+i(g−1) s
ε2 Gε(s, y)dsdydξ = O(1) in L∞.

We know already that the function Gε is of size 1 at integer points, and that it is of
smaller amplitude at all other spatial positions. Thus, the matter is to understand
how the integral operator inside (5.6) acts on L∞. The main problem when dealing
with (5.6) is the global domain of integration in ξ and (for ι < 1) the large domain
(of size ει−1) of integration in y. This difficulty is examined, and partly solved, in the
next paragraph.

5.1.2. A singular integral operator. – Following the convention (3.15), denote by F⋆
the partial Fourier transform with respect to the variable ⋆ ∈ {y, ξ}. Given τ ∈ R and
Λ ∈ L∞(R), define the operator BΛ

τ by

BΛ
τ Gε(z) := Fξ

(
2π
(
eiτ(p(ξ)−1) − 1

)
Λ(ξ)(F−1

y Gε)(ξ)
)
(z)(5.7)

=

∫∫
e−i(z−y)ξ

(
eiτ(p(ξ)−1) − 1

)
Λ(ξ)Gε(y)dydξ.

When Λ ≡ 1R, the operator BΛ
τ is simply denoted by Bτ := B1R

τ . Looking at (5.7), it
is clear that BΛ

τ : Hσ(R) → Hσ(R) is a bounded operator for all σ ∈ R, with

(5.8) ∥BΛ
τ Gε∥Hσ(R) ≤ 2∥Λ∥L∞(R)∥Gε∥Hσ(R).

In (5.7), we first integrate in y and then in ξ. Another viewpoint, which is more
adapted to get L∞-estimates, is to first integrate in ξ and then in y. By this way, we
find BΛ

τ Gε = KΛ
τ ∗ Gε with a kernel KΛ

τ given by

(5.9) KΛ
τ (y) :=

∫
e−iyξ

(
eiτ(p(ξ)−1) − 1

)
Λ(ξ)dξ, Kτ := K1R

τ .

In view of (3.28), where ω∞+ = 1 and q = 2, the integrand inside (5.9) is integrable,
and it depends smoothly on the parameters τ and y. The expressionKΛ

τ (y) is therefore
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well defined. It is continuous with respect to (τ, y), and in view of (3.28),

(5.10) |KΛ
τ (y)| ≤ C|τ |

(∫
dξ

1 + ξ2

)
∥Λ∥L∞(R).

Now, the solution W to (5.3) can be decomposed into Wl +Wnl with

Wl(T, z) := εν+j1+j2−2

∫ T

0

ei(g−1)s/ε2Gε(s, z)ds,(5.11)

Wnl(T, z) :=
εν+j1+j2−2

2π

∫ T

0

ei(g−1)s/ε2B(T−s)/ε2Gε(s, z)ds.(5.12)

By this way, the improper integral inside (5.5) is defined without ambiguity. Indeed,
both (5.11) and (5.12) involve local integrals with respect to s of bounded functions.
For (5.11), this is obvious since Gε(s, z) = O(1). Concerning (5.12), this results from
the pointwise estimate

|B(T−s)/ε2Gε(s, z)| ≤ ∥K(T−s)/ε2∥L∞(R)∥Gε(s, ·)∥L1(R) ≲ ει−3.

Let us look more closely at Wl(T, z). To get Wl(T, z), it suffices to know Gε(·, z),
that is U (0)(·, z). In this sense, the action on Gε leading to Wl is local in space, and
therefore it is consistent with the dichotomy between constructive and destructive
interferences exhibited in Propositions 4.16 and 4.18. In fact, a precise asymptotic
description of Wl is available.

Lemma 5.2 (Description of the part Wl). – We work under Assumption 3.12,
with moreover a(T, ·, x) periodic of period π. Then, for all z ∈ R \ {2Z}, we find
that Wl(T, z) = o(1). When ν + j1 + j2 > 2 or when g ̸= 1, for all z = 2j with j ∈ Z,
we have again Wl(T, 2j) = o(1). On the contrary, when ι ∈ [0, 1[, ν + j1 + j2 = 2 and
g = 1, we obtain that

Wl(T, 2j) = o(1) +
[√ 2

πγ
cos
�γ

ε
− π

4

�]j1+j2
ei(j2−j1)γ/ε

∫ T

0

χ
�
3− 2

s

T

�
(5.13)

×
�∫ +∞

0

e
−i ℓ

6
( 1

σ1
− s

σ2
1

)
a(σ1, 0, 0)dσ1

�j1
�∫ +∞

0

e
i ℓ
6
( 1

σ2
− s

σ2
2

)
a(σ2, 0, 0)dσ2

�j2
ds.

Lemma 5.2 is instructive. It indicates, among other things, that the constructive
interferences do not impact Wl when g ̸= 1. As will be seen, this principle also applies
to Wnl.

Proof. – First, recall that Wl(T, z) = 0 when 0 ≤ T ≤ T . For T ≤ T , observe that

(5.14) |Wl(T, z)| ≤ εν+j1+j2−2

∫ T

T
|U (0)(s, z)|j1+j2ds = O

(
εν+j1+j2−2

)
.

When ν + j1 + j2 > 2, the smallness of Wl(T, z) follows directly from (5.14). Now,
assume that ν + j1 + j2 = 2. The first assertion of Lemma 5.2, the one implying posi-
tions z ∈ R \ {2Z}, is a direct consequence of (5.14), Proposition 4.18 and Lebesgue’s
dominated convergence theorem. Finally, consider the case z = 2j with j ∈ Z. From
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the forthcoming bound (5.29), that will be derived independently in Paragraph 5.1.4,
we know that

|∂sGε(s, z)| = O
(
|∂sU (0)(s, z)|

)
= O

(
ε−2/3

)
.

When g ̸= 1, an integration by parts in s performed at the level of (5.11) indicates
that |Wl(s, z)| = O(ε4/3). When g = 1, the time oscillating factor disappears from
(5.11). Plug (4.78) into (5.1) to recover an asymptotic description of U (0). When
ι ∈ [0, 1[, for small values of ε, we find χ(2j/rει−1) = 1, yielding (5.13).

It should be noticed that the formula (5.13) with (j1, j2) = (2, 0) differs from (1.37).
In (5.13), the two integrals in dσ1 and dσ2 are separated while, at the level of (1.37),
they are correlated through a nontrivial factor. The reason of this difference is that
the contribution Wnl is not at all a small perturbation of Wl. As will be seen, the
decomposition of W into Wl and Wnl is suitable to show (at least when g ̸= 1) the sup
norm decreasing of W. But it is not sufficiently precise to obtain (1.37). When g = 1,
the two terms Wl and Wnl combine asymptotically to form (1.37), which provides
with the correct prediction.

There remains to study Wnl. The access to Wnl is more complicated than for Wl.
Indeed, in (5.12), the action of Bτ is non local in space, and it is also singular in
terms of ε when ε goes to zero. Let us examine this in more detail. From Young’s
convolution inequality, we know that

(5.15) ∥BΛ
τ Gε∥L∞(R) ≤ ∥KΛ

τ ∥Lp(R)∥Gε∥Lp/(p−1)(R), ∀p ∈ [1,+∞].

Come back to (5.12). Since τ is aimed to be replaced by (T −s)/ε2, the access to Wnl

needs to consider large values of τ , say τ ∈ [1,+∞[.

Lemma 5.3 (Estimates on the L2 and L∞ norms of the kernel KΛ
τ ). – Fix ρ ≥ 0, and

assume that Λ ∈ L∞(R) is such that Λ(ξ) = O(|ξ|−ρ) when |ξ| goes to +∞. Denote
by q̃ := p̃/(p̃ − 1) the Hölder conjugate of p̃. By convention, we have q̃ = 1 when
p̃ = +∞, and q̃ = 2 when p̃ = 2. Then, for large values of τ , we find

(5.16) ∀p̃ ∈ {+∞, 2}, ∥KΛ
τ ∥Lp̃(R) ≲ 1 + τ (1/qq̃)−(ρ/q),

where q ≥ 2 is the number stemming from (3.19).

When Λ is just bounded (ρ = 0), the estimate (5.16) helps control the explosion
when τ → +∞ of the Lp̃(R)-norm of KΛ

τ . The situation is improving when ρ > 0. In
particular, when q̃ = 1 and ρ = 1, the family (KΛ

τ )τ is bounded in L∞(R).

Proof. – We can assert that

∥KΛ
τ ∥Lp̃(R) ≲

(
1 +

∫ +∞

1

∣∣1− cos
(
τ(1− p(ξ))

)∣∣q̃/2|Λ(ξ)|q̃dξ
)1/q̃

.
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This is obvious when p̃ = +∞. This is a consequence of (5.9) and Plancherel theorem
when p̃ = 2. The change of variables η = 1 − p(ξ) sends ξ = 1 to the positive
value η1 := 1− p(1), and ξ = +∞ to η∞ = 0. It gives rise to

∥KΛ
τ ∥Lp̃(R) ≲

(
1 +

∫ η1

0

|1− cos(τη)|q̃/2

p′ ◦ (1− p)−1(η)
|Λ ◦ (1− p)−1(η)|q̃dη

)1/q̃

,

where (1 − p)−1 : ]0, η1] → [1,+∞[ is the inverse function of 1 − p. From (3.23) and
(3.28), it is easy to infer that

∃C > 0, p′ ◦ (1− p)−1(η) ≥ Cη(q+1)/q, ∀η ∈ ]0, η1],

∃C > 0, |Λ ◦ (1− p)−1(η)|q̃ ≤ Cηρq̃/q, ∀η ∈ ]0, η1].

It follows that

(5.17) ∥KΛ
τ ∥Lp̃(R) ≲

(
1 + τ (1−ρq̃)/q

∫ τη1

0

|1− cos η|q̃/2η(−q−1+ρq̃)/qdη
)1/q̃

.

The integral on the right hand side of (5.17) is convergent near η∞ = 0 because

∀q̃ ∈ {1, 2}, q̃ − 1− (1/q) + (ρq̃/q) > −1.

When ρq̃ = 1, (5.16) is a direct consequence of (5.17). Otherwise, remark that

(5.18)
∫ τη1

η1

|1− cos η|q̃/2η(−q−1+ρq̃)/qdη ≤ 2q

1− ρq̃
η
(ρq̃−1)/q
1

(
1− τ−(1−ρq̃)/q).

From (5.17) and (5.18), we can deduce (5.16).

Lemma 5.4 (Pointwise estimates on the kernel Kτ ). – In the case Λ ≡ 1R and q = 2,
we find (for some c ∈ C) that

(5.19) Kτ (0) ∼ cτ1/2, whereas: ∀y ̸= 0, Kτ (y) = O(τ1/6).

Proof. – For large values of |ξ|, we know that 1 − p(ξ) ∼ cξ−2 for some positive
constant c, say c = 1. In what follows, to simplify the discussion, we directly replace
1− p(ξ) by ξ−2. Then, the change of variables τξ−2 = η gives rise to

Kτ (0) = τ1/2

∫ +∞

0

(e−iη − 1)η−3/2dη ∼ cτ1/2.

This furnishes the left part of (5.19), and this indicates that (5.16) is sharp (at least
when p̃ = +∞ and ρ = 0). Now, fix some y ̸= 0, and decompose Kτ (y) into

Kτ (y) =

∫
|ξ|≤1

e−iyξ(e−iτξ
−2

− 1)dξ +
1

iy

∫
1<|ξ|≤cτ1/3

∂ξ
(
e−iyξ

)
dξ

+

∫
1<|ξ|≤cτ1/3

e−i(yξ+τξ
−2)dξ +

∫
cτ1/3≤|ξ|

e−iyξ(e−iτξ
−2

− 1)dξ.

The first line is clearly some O(1). An integration by parts in the last term yields,
modulo O(1), a better decreasing in ξ, namely∫

cτ1/3≤|ξ|
e−iyξ(e−iτξ

−2

− 1)dξ = O(1) +
2τ

y

∫
cτ1/3≤|ξ|

ξ−3e−i(yξ+τξ
−2)dξ.
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Then, apply the change of variables ξ = τ1/3η to obtain

Kτ (y) = O(1) + τ1/3

∫
1<|η|≤c

e−iτ
1/3(yη+η−2)dη +

2τ1/3

y

∫
c≤|η|

η−3e−iτ
1/3(yη+η−2)dη.

Use the principle of non-stationary phase to restrict the domain of integration near
the (unique) critical point η = (2/y)1/3. When doing this, note that the boundary
terms can be avoided by smoothing the above localizations. After stationary phase
approximation, there remains some O(τ1/6) as expected.

Lemma 5.4 indicates that, when |τ | goes to +∞, the function Kτ may explode
more rapidly near the origin than elsewhere. In view of (5.19), the L2-information
contained in (5.16) appears as an intermediate information between the two extreme
behaviors at y = 0 and y ̸= 0. It is more precise than the local L2-estimate that could
be deduced from (5.16) when p̃ = +∞.

Corollary 5.5. – Fix ρ ≥ 0, and assume that Λ ∈ L∞(R) is such that Λ(ξ) =

O(|ξ|−ρ) when |ξ| goes to +∞. Let h ∈ L∞(R). Define

Gε(z) := χ
( εz
rει

)
h(z).

Then, for all ι ∈ [0, 1], we have

(5.20) ∥BΛ
(T−s)/ε2G

ε∥L∞(R) ≲ ∥h∥L∞(R)

(
ε(ι−1)/2 + ε(ι/2)+ρ−1

)
.

The loss in the right hand side of (5.20) is decreasing when ρ is growing to ρ = 1/2,
and then it is saturated for ρ = 1/2 at the value ε(ι−1)/2. As will be seen in the proof
below, this residual loss (when ι ∈ [0, 1]) is coming from the L2-impact of the spatial
localization in a domain of size ει−1.

Proof. – Exploit (5.15) with p = 2, and then (5.16) with p̃ = 2 (and q = 2) to get

∥BΛ
(T−s)/ε2G

ε∥L∞(R) ≲

(
1 +

T − s

ε2

)(1/4)−(ρ/2) [∫
χ
( z

rει−1

)2

h(z)2dz
]1/2

≲ ∥h∥L∞(R)

(
1 + ε−(1/2)+ρ

)
ε(ι−1)/2,

which yields (5.20) since ι ≤ 1.

Applied in the context of Wnl, this furnishes

(5.21) ∥Wnl(T, ·)∥L∞(R) ≲ εν+j1+j2−2∥U (0)∥j1+j2L∞([0,T ]×R)(1 + ε(ι/2)−1).

The influence of nonlinearities is clearly stronger when ν + j1 + j2 is small. In view
of (5.21), for ν + j1 + j2 + ι

2 − 3 > 0, it may be neglected. On the contrary, when
ν + j1 + j2 + ι

2 − 3 < 0, the control (5.21) does not help to extract some uniform
bound in L∞. For instance, it is clearly insufficient when ν + j1 + j2 = 2, even in the
most favorable case ι = 1.

The preceding analysis does not take into account the time oscillations (with respect
to the variable s) which can lead to further cancelations when computing the integral
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term inside (5.12). Observe that the time derivative (in s) of the phase involved in
(5.5) is g−p(ξ). This is why the discussion in the next paragraph is organized around
the zeroes of this function.

5.1.3. Classification of gauge parameters. – Recall that the gauge parameter g has
been introduced at the level of Definition 1.1 (or 5.1). Compare the oscillating integral
(3.16) with (5.5). For the choice φ(s, y) = gs in (3.17), the phase Φ of (3.16) coincides
with the one which is coming from (5.5). But, in comparison with Chapter 3, the
novelty is that the expression Gε(T, z), in contrast to a(T, s, x), is not strictly speaking
a “profile”. The spatial variables z and x are not the same. The support of Gε(T, ·) is
(at least when ι < 1) of size ει−1 ≫ 1, while the support of a(T, s, ·) is of size one.
Dealing with Gε in the original variable x (instead of z) would mean to involve an
expression that is expected to be rapidly oscillating in x, and therefore that is not
compatible with integrations by parts in x.

Much less information is available on Gε than on a. However, due to the filtering
procedure (5.1), it could be expected that ∂sGε is (to some extent) under control. This
forecast, that will be confirmed in what follows, explains why integrations by parts
in s should remain effective. But, to this end, the criterion (4.7) must be restricted.
We must now focus on the role of ∂sΦ ≡ p(ξ) − g. In place of η in (4.7), define the
threshold

(5.22) cg := inf
{
|p(ξ)− g|; ξ ∈ R

}
.

Different situations can occur.

Definition 5.6. – The gauge parameter g is said:

— non resonant when g ̸∈ [0, 1] so that cg > 0;

— transitionally resonant when g = 0 so that cg = 0. Then, p ≡ g = 0 on the whole
interval [−ξc, ξc], and it becomes non zero near ±ξc;

— pointwise resonant when g ∈ ]0, 1[ so that cg = 0, and we can find a unique
position ξg ∈ ]ξc,+∞[ such that p(ξg) = p(−ξg) = g;

— completely resonant when g = 1 so that cg = 0. Then, the function p(ξ) can
become arbitrarily closed to g = 1 when |ξ| goes to +∞.

Below, we list some examples of FNL, where for the simplicity of the presentation,
we leave out the localizations involving the function χ.

Example 5.7 (A standard choice). – Just take FNL = u2 so that (j1, j2, ν) = (2, 0, 0)

and ω = 0. We find ν + j1 + j2 = 2 (critical size). The gauge parameter is g = 2. It is
non resonant.

Example 5.8 (Quadratic nonlinearity in |u|). – For the selection of FNL = |u|2 = uū,
we find (j1, j2, ν) = (1, 1, 0) and ω = 0. We still have ν + j1 + j2 = 2 (critical size),
but this time, the gauge parameter is g = 0. It is transitionally resonant.

MÉMOIRES DE LA SMF 174



5.1. GENERAL SETTING 77

Example 5.9 (Presence of time oscillations). – For FNL = eiωt/ε|u|2 with ω ∈ ]0, 1[,
we find g ∈ ]0, 1[. The gauge parameter is pointwise resonant.

Example 5.10 (The nonlinearity investigated in Theorem 1.3 and 1.4). – The choice
made in Equation (1.36), that is FNL = e−it/εu2, is built with (j1, j2, ν) = (2, 0, 0)

and ω = −1, so that ν + j1 + j2 = 2 and g = 1. The size is critical and the gauge
parameter is completely resonant.

Example 5.11 (Critical cubic nonlinearity). – The critical size can be achieved for
a cubic nonlinearity like FNL = ε−1eiωt/ε|u|2u, in which case (j1, j2, ν) = (2, 1,−1).
When ω = 0, the gauge parameter is completely non resonant. This situation is
expected to involve leading order nonlinear effects, like in Example 5.10.

5.1.4. Various estimates involving U (0). – The purpose of this paragraph is to list
estimates that are accessible concerning U (0), and therefore that could be used when
dealing with Gε at the level of (5.5). Propositions 4.16 and 4.18 already furnish the
following optimal local (for |x| ≤ r or |z| ≤ r/ε) sup norm estimate

(5.23) ∃C > 0, ∀T ∈ [T , 2T ], ∀|z| ≤ r/ε, |U (0)(T, z)| ≤ C.

Global L2 and L∞ controls are also available. Unlike (5.23), they may not be sharp.

Lemma 5.12 (Global control in L2 and L∞-norm). – For all (j, n) ∈ N2, we have

∀T ∈ [0, 2T ], ∥∂jT∂
n
z U (0)(T, ·)∥L2(R) = O(ε−2j−n−1),(5.24)

∀T ∈ [0, 2T ], ∥∂jT∂
n
z U (0)(T, ·)∥L∞(R) = O(ε−2j−n− 3

2 ).(5.25)

We emphasize the discrepancy between the optimal uniform L∞-bound inside
(5.23) (for data localized in space), and the bound (5.25) with j = n = 0, which
holds globally in space. This loss of an ε−3/2 factor is most likely “only” technical. It
explains why in the forthcoming analysis, the presence at the level of (5.4) of some
spatial cut-off (driven by ι with 0 ≤ ι ≤ 1) is needed.

The derivatives ∂t and ∂x applied to oscillations of the form (3.31) with φ as in
(1.26) produce respectively the factors ε−1∂tφ ∼ ε−1 and ε−1∂xφ ∼ ε−1t. Thus, for
long times t ∼ ε−1, it could be expected that the action of ∂αTz takes the form of a
loss similar to

(5.26) ∀α = (α1, α2) ∈ N2, ∂αTz ∼ ε−α1+α2∂αtx ∼ ε−2α1tα2 ∼ ε−2α1−α2 .

The bounds (5.24) and (5.25) are both in agreement with this prediction since the
application of ∂T = ε−1∂t and ∂z = ε∂x cost respectively ε−2 and ε−1.

Proof. – Consider the equation (1.28a) with FL ≡ F as in (4.1). Since p(εDx) is
a pseudo-differential operator with constant coefficients, it does commute with the
derivative ∂jt ∂nx . Thus, through usual L2-energy estimates, we can infer that

∂t∥∂jt ∂nxu(0)∥2L2(R) ≲ ε3/2
∑

|m|≤M

∥∂jt ∂nxu(0)∥L2(R)∥∂jt ∂nxA∗meimφ/ε∥L2(R).
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Remark that

∂jt ∂
n
xA

∗
m =

n∑
in=0

j∑
ij=0

(
n

in

)(
j

ij

)
(∂
ij
t ∂

in
x Am)∗∂

j−ij
t ∂n−inx .

By assumption, the symbol ∂ijt ∂inx Am(εt, t, , ·) is smooth, and its derivatives with
respect to x and ξ are uniformly bounded in ε. From the Calderón-Vaillancourt The-
orem, we know that (∂

ij
t ∂

in
x Am)∗ acts continuously on L2(R). On the other hand,

the function am, and therefore ∂ijt ∂inx Am, is spatially supported in the ball |x| < r.
Thus, we can replace eimφ/ε by the L2-function χ(|x|/r̃)eimφ/ε where r̃ := 8r/5. And
thereby, we have to estimate a sum of terms similar to

∥∂j−ijt ∂n−inx

(
χ(x/r̃)eimφ/ε

)
∥L2(R).

The derivatives ∂t and ∂x, when they are applied to the oscillation eimφ/ε, produce
respectively the singular factors ε−1∂tφ ∼ ε−1 and ε−1∂xφ ∼ tε−1. The worst term
arises when (ij , in) = (0, 0). As a consequence, we find that

∂t∥∂jt ∂nxu(0)∥2L2(R) ≲ ε3/2ε−jtnε−n∥∂jt ∂nxu(0)∥L2(R),

and therefore, by Grönwall’s lemma, that

∥∂jt ∂nxu(0)(t, ·)∥L2(R) ≲ tn+1ε(3/2)−j−n.

Then, in line with (5.24), we get that

∥∂jT∂
n
z U (0)(T, ·)∥L2(R) =

1

ε

∥∥∥∥∥∥
j∑

ij=0

(
j

ij

)
∂
ij
T

[
e−iT/ε

2]
× ∂

j−ij
T ∂nz

[
u(0)

(
T

ε
, ε·
)]∥∥∥∥∥∥

L2(R)

≲ ε−1+n−j
j∑

ij=0

ε−ij
∥∥∥∥(∂j−ijt ∂nxu

(0))

(
T

ε
, ε·
)∥∥∥∥

L2(R)

≲ ε−1+n−j
j∑

ij=0

ε−ij
1√
ε

∥∥∥∥(∂j−ijt ∂nxu
(0))

(
T

ε
, ·
)∥∥∥∥

L2(R)

≲ ε−1+n−j
j∑

ij=0

ε−ij
1√
ε

T

ε
ε3/2ε−(j−ij)

(
T

ε

)n
ε−n = O(ε−2j−n−1).

This furnishes (5.24). The sup norm control (5.25) is then a consequence of the stan-
dard one-dimensional Gagliardo-Nirenberg inequality

(5.27) ∥V∥L∞(R) ≤
√

2∥V∥1/2L2(R)∥∂zV∥
1/2
L2(R).

The interest of using U (0) instead of u(0) is twofold. First, as noted in (5.23), the
amplitude of the wave becomes of size one. Secondly, when passing from u(0) to U (0),
the main temporal oscillations are locally filtered out in the following sense.
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Lemma 5.13 (Local sup norm controls involving derivatives of U (0)). –

∃C > 0, ∀T ∈ [T , 2T ], ∀|z| ≤ r/ε, |∂zU (0)(T, z)| ≤ Cε−1,(5.28)

∃C > 0, ∀T ∈ [T , 2T ], ∀|z| ≤ r/ε, |∂TU (0)(T, z)| ≤ Cε−2/3,(5.29)

∃C > 0, ∀T ∈ [T , 2T ], ∀|z| ≤ r/ε, |∂2
TzU (0)(T, z)| ≤ Cε−3/2.(5.30)

Proposition 4.16 implies that the information (5.23) is sharp. Starting from (5.23),
the two controls (5.29) and (5.30), which both involve time derivatives, represent
improvements in comparison to what would be provided by (5.26). This means that
the time oscillations contained in u(0) have indeed been somewhat filtered out when
passing from u(0) to U (0).

Proof. – Denote by u(j)
m with j ∈ {0, 1} the mth harmonic of u(j). In particular, u(0)

m

can be obtained by solving

(5.31) ∂tu
(0)
m − i

ε
p(−iε∂x)u(0)

m = ε3/2Am(εt, t, x,−iε∂x)∗eimφ(t,x)/ε,

with initial data u(0)
m |t=0

≡ 0. The situation is as in Paragraph 3.1.3, see (3.14) and
(3.17), with

Φ(t, x; s, y, ξ) := (s− t)p(ξ) + (x− y)ξ −mφ(s, y).

In order to lighten the notations, we drop the dependence of the phase upon m. As
in Paragraph 4.2.2, we can separate Φ according to Φ = ϕ+m(γ − t) to deal with

ϕ(t, x; s, y, ξ) := (s− t)
[
p(ξ)−m

]
+ (x− y)ξ +mys−mγ cos s.

The function u(0)
m looks like u in (4.16), that is

u(0)
m (t, x) =

√
ε

2π
eim(t−γ)/ε

∫ t

0

∫∫
e−iϕ(t,x;s,y,ξ)/εζm(ξ)am(εs, s, y)dsdydξ.

Apply the derivative ∂x to the above relation. This introduces a factor ξ/ε in the
integral. Since ξ is like ≲ ε−1 at the critical points, a rough estimate furnishes

(5.32)
∣∣∣∂xu(0)

m (t, x)
∣∣∣ ≲ √

εε3/2ε−2ε−1 = ε−1,

where the products of powers of ε follows, one after another, from the amplitude,
the stationary phase approximation (in dimension 3), the term ξ/ε ∼ ε−2, and the
number ε−1 of critical points. The bound (5.32) is equivalent to (5.28).

From (5.31), we can deduce that

∂t
(
e−it/εu(0)

m

)
= ε3/2A∗me

i(mφ−t)/ε +
i

ε
e−it/ε (p(−iε∂x)− 1)u(0)

m .
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Then, from the above integral representation of u(0)
m , we get

∂t
(
e−it/εu(0)

m (t, x)
)

= ε3/2A∗me
i(mφ−t)/ε +

i

2π
√
ε
ei(mt−t−mγ)/ε(5.33)

×
∫ t

0

∫∫
e−iϕ(t,x;s,y,ξ)/ε (p(ξ)− 1) ζm(ξ)am(εs, s, y)dsdydξ︸ ︷︷ ︸

=:Pm(t,x)

.

Coming back to (3.32) where u is replaced adequately, the first term in (5.33) can be
expressed as

|A∗mei(mφ−t)/ε| =
1

ε

∣∣∣∫∫ ei(xξ−yξ−myt)/εζm(ξ)am(εt, t, y)dydξ
∣∣∣.

The phase involved has only one critical point (y, ξ) = (x,−mt) which is non degen-
erate. Since the dimension is two, this allows to gain the factor ε so that

(5.34) ε3/2Am(εt, t, x,−iε∂x)∗ei(mφ(t,x)−t)/ε = O(ε3/2).

Let us now consider the expression Pm emphasized in (5.33). In view of Lemma 4.2
and Lemma 4.3, and since ζ0 = 0 near the origin (Assumption 3.11), Proposition 4.5
implies that Pm = O(ε∞) when m ̸= 1, so that

(5.35) ∀m ̸= 1, ∂t
(
e−it/εu(0)

m (t, x)
)

= O
(
ε3/2

)
, |x| ≤ r,

T
ε
≤ t ≤ 2T

ε
.

We thus focus on the resonant case m = 1. We decompose P1 as we did concerning v
at the level of (4.23) and (4.24), to get

(5.36) P1(t, x) =
∑
k∈K

P1,k(t, x), K =
{
k ∈ N; k ≤ 2

3
+
T
πε

}
.

The analysis of Chapter 4.3 readily shows that we can find a constant c > 0 such that
(recall that here, q = 2)

(5.37)
∑

0≤k≤cε−1/3

|P1,k(t, x)| ≲
∑

0≤k≤cε−1/3

εD−1 ≲ εD−4/3.

For k ∈ K with cε−1/3 ≤ k, as in Chapter 4.4, we can rely on a stationary phase
argument. The only difference in the treatment of P1 compared to the preceding
analysis of u(0) is the presence of the factor p(ξ)− 1 in the integral. Remark that

|p(kπ + ξ)− 1| = O(k−2), uniformly in |ξ| ≤ 1.

This property allows to improve the convergence of the sum of wave packets. As a
matter of fact, resuming the stationary phase argument in (s, y, ξ) and relying on the
decay in k which is provided by the factor to gain the convergence of the series in k,
we come up with

(5.38)
∑

cε−1/3≤k∈K

|P1,k(t, x)| ≲ ε3/2
∑

cε−1/3≤k∈K

1

k2
≲ ε3/2ε1/3 = ε11/6.
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As prescribed at the level of (5.33), divide (5.37) and (5.38) by
√
ε. Since D ≥ 4, we

can retain that

(5.39) ∂t
(
e−it/εu

(0)
1 (t, x)

)
= O

(
ε4/3

)
, |x| ≤ r, 0 ≤ t ≤ 2T

ε
.

Compute

∂TU (0)(T, z) =
1

ε2
∂t

(
e−it/εu(0) (t, εz)

) ∣∣∣
t=T/ε

.

To estimate ∂TU (0), it suffices to multiply (5.35) and (5.39) by ε−2, and to sum on
the finite number of integers m satisfying |m| ≤M . This yields (5.29).

Now, in order to get (5.30), just take the derivative of (5.33) with respect to x.
Since ∂xφ/ε ∼ t/ε ∼ 1/ε2, we have

ε3/2∂x

(
Am(εt, t, x,−iε∂x)∗ei(mφ(t,x)−t)/ε

)
= O(ε−1/2).

This term turns out to bring the largest contribution. As a matter of fact, at the level
of the oscillating integral in the second line of (5.33), the x-derivative produces the
factor ∂xϕ/ε = ξ/ε. The multiplication by ξ is compensated by the decreasing of p−1.
Due to the assumptions on p, the symbol ξ

(
p(ξ) − 1

)
ζm(ξ) remains in a convenient

class. We can still apply Lemma 4.7, except that the control inside (5.37) must be
replaced by some O(εD−7/3). On the other hand, at the critical points, ξ/ε behaves
like k/ε, so the estimate (5.38) becomes

ε3/2
∑

cε−1/3≤k∈K

1

k2

k

ε
= ε1/2

∑
cε−1/3≤k∈K

1

k
≲
√
ε ln

1

ε
.

Gathering the above three estimates and recalling that ∂z = ε∂x, we can easily infer
the content of (5.30).

So far, we have not exploited the fact that (5.23) is achieved on a set of zero
Lebesgue measure. This property is useful for what follows.

Lemma 5.14 (Local vanishing properties). – Let (m,n) ∈ N∗×N. Given a function w
in the Schwartz space S(R), define

Jε ≡ Jε(T ) ≡ Jε(m,n,w;T ) :=

∫
|w(y)||U (0)(T, y)|m|ε2/3∂TU (0)(T, y)|ndy.

Then, for all T ∈ [T , 2T ], we have Jε = o(1).

Proof. – Decompose Jε into Jε = J +
ε + J−ε with

J±ε :=

∫
±ε|y|≤±r

|w(y)||U (0)(T, y)|m|ε2/3∂TU (0)(T, y)|ndy.

Exploit the global estimate (5.25) and the decreasing of w ∈ S(R) to obtain

|J−ε | ≤ Cε−(3m/2)−(17n/6)∥w∥L1(r≤ε|y|) = O(ε∞).

On the other hand, due to (5.23) and (5.29), the family

1[−r/ε,r/ε](y)|w(y)||U (0)(T, y)|m|ε2/3∂TU (0)(T, y)|n, ε ∈ ]0, 1]
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is uniformly bounded by C|w| ∈ L1(R). Applying Proposition 4.18, it converges to
zero out of the set 2Z, which is of Lebesgue measure 0 in R. Under such hypotheses,
the Lebesgue dominated convergence theorem guarantees that J +

ε = o(1).

5.1.5. General estimates involvingW = U (1)−U (0). – Depending on the choice of the
parameters ν, j1, j2, ω and ι, the source term FNL can bring a contribution which
is of the same size of U (0), or not. To understand what happens, it is interesting to
first investigate a situation implying no condition on ν, j1, j2, ω, and no particular
assumptions (through ι) on the spatial localization. To this end, we could directly
exploit (5.25) with j = n = 0 at the level of (5.21) to obtain a preliminary sup norm
control on W. But, knowing (5.28), it is possible to improve this first bound.

Lemma 5.15 (Global sup norm control on U (1)−U (0)). – Fix any ι ∈ ]−∞, 1]. Then

(5.40) ∥(U (1) − U (0))(T, ·)∥L∞(R) = O(εν−
j1
2 −

j2
2 −2).

Proof. – Recall (5.27) and (5.8) which allow to control BΛ
τ V in sup norm uniformly

in τ through the L2-norms of V and ∂zV as indicated below

∥BΛ
τ V∥L∞(R) ≲ ∥BΛ

τ V∥
1/2
L2(R)∥∂z(B

Λ
τ V)∥1/2L2(R)(5.41)

≲ ∥Λ∥L∞(R)∥V∥
1/2
L2(R)∥∂zV∥

1/2
L2(R).

On the other hand, using (5.24) and (5.25) with j = 0 and n ∈ {0, 1}, we can infer
that, for all k ∈ {0, 1}, we have

∥∂ky
[
χ(ε1−ιr−1| · |)U (0)(s, ·)j1 Ū (0)(s, ·)j2

]
∥L2(R)(5.42)

≲ ∥U (0)(s, ·)∥j1+j2−1
L∞(R)

(
∥U (0)(s, ·)∥L2(R) + ∥∂kyU (0)(s, ·)∥L2(R)

)
≲ (ε−

3
2 )j1+j2−1(ε−1 + ε−k−1).

Recall that W = U (1) − U (0) = Wl +Wnl with Wl and Wnl as in (5.11) and (5.12).
The part Wl can be controlled according to

∥Wl∥L∞(R) ≲ εν+j1+j2−2∥Gε∥L∞(R).

From (5.4) and (5.25) with j = n = 0, we can easily deduce (5.40). On the other
hand, combine (5.41) and (5.42) at the level of (5.12) to get

∥Wnl∥L∞(R) ≲ εν+j1+j2−2∥Gε∥1/2L2(R)∥∂zG
ε∥1/2L2(R)

≲ εν+j1+j2−2(ε−
3
4 )j1+j2−1ε−

1
2 (ε−

3
4 )j1+j2−1ε−1,

which leads directly to (5.40).

The preliminary estimate (5.40) is far from enough to reach some O(1) or less,
under the sole condition ν+j1 +j2 ≥ 2. More specific arguments (involving especially
the spatial localization) are needed to improve the above analysis.
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5.2. Sorting of gauge parameters

The constructive interferences of Theorem 1.3 occur on a set of Lebesgue measure
zero. From this viewpoint, comparisons in Lp-norms with p < +∞ cannot be relevant.
We must stick to the use of the sup norm. This motivates the following definition,
which is inspired by a notion of linearizability introduced in [25].

Definition 5.16 (Linearizability during long times). – We say that the nonlinearity
plays no role at leading order during long times when

(5.43) sup
0≤T≤2T

∥(U (1) − U (0))(T, ·)∥L∞(R) = o(1) as ε→ 0.

In this subsection, we show that when g ̸= 1, nonlinear effects are absent at lead-
ing order during long times (in the sense of Definition 5.16), provided that ι = 1.
When g ̸∈ {0, 1}, the assumption ι = 1 may be relaxed to ι ∈ [0, 1]. In the next
Paragraphs 5.2.1, 5.2.2 and 5.2.3, following the distinctions which have been made in
Definition 5.6, we examine successively the cases g ̸∈ [0, 1], g ∈ ]0, 1[, and g = 0.

Remark 5.17. – The results of this subsection, Propositions 5.18, 5.19 and 5.20, rely
on the estimates (5.23), (5.28), (5.29) and (5.30), which have been established only
for T ≥ T , hence the time localizing factor χ(3− 2εt/T ) in Gε. We will see later that
these estimates could be adapted for T ≥ η with η > 0. But the case of smaller times
t≪ η/ε is not straightforward.

5.2.1. The case of non resonant gauge parameters. – This is when g ̸∈ [0, 1]. Then,
the distance from p(ξ) to g remains bounded below by a positive constant. In other
words, the function

Γ : R −→ R
ξ 7−→ Γ(ξ) :=

(
p(ξ)− g

)−1

is bounded, that is Γ ∈ L∞(R).

Proposition 5.18. – Assume that g ̸∈ [0, 1] and ι ∈ [0, 1]. Then, the nonlinearity
plays no role at leading order during long times. More precisely

(5.44) ∀T ∈ [0, 2T
]
, ∥(U (1) − U (0))(T, ·)∥L∞(R) = O

(
ει/2+1/3

)
.

Proof. – It suffices to examine the critical size case, where ν + j1 + j2 = 2. In the
case ν + j1 + j2 > 2, the above O

(
ει/2+1/3

)
is readily improved to O

(
ει/2+1/3+ν+j1+j−2

)
.
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The idea is to come back to Duhamel’s Formula (5.5), and to exploit the oscillations
occurring with respect to the time variable s. Integrating by parts in s, we find

W(T, z) =
1

2π

∫ T

0

∫∫
e−i(z−y)ξ+i

T−s

ε2 (p(ξ)−1)+i(g−1) s
ε2 Gε(s, y)dsdydξ

=
iε2

2π

∫∫
e−i(z−y)ξ+i

T−s

ε2 (p(ξ)−1)+i(g−1) s
ε2 Γ(ξ)Gε(s, y)dydξ

∣∣∣T
s=0

− iε2

2π

∫ T

0

∫∫
e−i(z−y)ξ+i

T−s

ε2 (p(ξ)−1)+i(g−1) s
ε2 Γ(ξ)∂sGε(s, y)dsdydξ.

Given s ∈ [0, T ], for j ∈ {0, 1}, write the integral in (y, ξ) in the more concise form
1

2π

∫∫
e−i(z−y)ξ+i

σ
ε2 (p(ξ)−1)Γ(ξ)∂jsGε(s, y)dydξ = Fξ

(
ei

σ
ε2 (p(ξ)−1)Γ(ξ)F−1

y (∂jsGε)
)
.

Set apart the weight

Γ̃(σ, ξ) ≡ Γ̃ε(σ, ξ) := ei
σ
ε2 (p(ξ)−1)Γ(ξ), sup

ε∈]0,1]

∥Γ̃ε∥L∞(R2) < +∞.

To estimate such a term in L∞, we use the L2-norms as intermediary norms, so we
lose as little information as possible at the level of Fourier transforms, thanks to
Plancherel identity. To do so, we invoke Gagliardo-Nirenberg inequality,∥∥∥Fξ(Γ̃F−1

y (∂jsGε)
)∥∥∥
L∞(R)

≲
∥∥∥Fξ(Γ̃F−1

y (∂jsGε)
)∥∥∥1/2

L2

∥∥∥∂zFξ(Γ̃F−1
y (∂jsGε)

)∥∥∥1/2

L2

≲
∥∥∂jsGε∥∥1/2

L2

∥∥∂y∂jsGε∥∥1/2

L2 .

The assumption ι ≥ 0 is needed to later invoke the L∞ estimates of Lemma 5.13,
concerning U (0). Below, to simplify notations, we can drop the exponent in U (0).
For j ∈ {0, 1}, since ι ∈ [0, 1], we can assert that∥∥∥∂jy [χ( ·

ει−1r

)
∂s(U j1 Ū j2)

]∥∥∥
L2(R)

≲ ε(1−ι)/2∥U(s)∥j1+j2−1
L∞(|z|≤r/ε)∥∂sU(s)∥L∞(|z|≤r/ε)

+ ε(ι−1)/2∥U(s)∥j1+j2−2
L∞(|z|≤r/ε)∥∂

j
yU(s)∥L∞(|z|≤r/ε)∥∂sU(s)∥L∞(|z|≤r/ε)

+ ε(ι−1)/2∥U(s)∥j1+j2−1
L∞(|z|≤r/ε)∥∂

(1,j)
sy U(s)∥L∞(|z|≤r/ε).

Since ι ∈ [0, 1], we can exploit the local sup norm estimates (5.23), (5.28), (5.29) and
(5.30), so the above estimate yields∥∥∥∂jy [χ( ·

ει−1r

)
∂s
(
U j1 Ū j2

)
)
]∥∥∥
L2(R)

≲ ε(1−ι)/2ε−2/3 + ε(ι−1)/2ε−jε−2/3 + ε(ι−1)/2ε−2/3−5j/6 ≲ ει/2ε−jε−7/6.

We conclude that

(5.45) |(U (1) − U (0))(T, z)| ≲ ε2 × ει/4ε−7/12 × ει/4ε−1/2ε−7/12,

which is exactly (5.44).
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5.2.2. The case of pointwise resonant gauge parameters. – This is when g ∈ ]0, 1[. In
view of (3.20), we can assert that

(5.46) ∃!ξg ∈ ]ξc,+∞[; p(ξg) = g, 0 < p′(ξg).

Proposition 5.19. – Assume that g ∈ ]0, 1[ and that ι ∈ [0, 1]. Then, the nonlinearity
plays no role at leading order during long times. More precisely, for all µ < 1/6, we
have

(5.47) ∀T ∈ [0, 2T
]
, ∥(U (1) − U (0))(T, ·)∥L∞(R) = O(ε3ι/4+µ).

This furnishes again some o(1) in line with Definition 5.16. When ι = 0, this bound
is weaker than (5.44).

Proof. – We can still work with ν+j1 +j2 = 2. Fix η ∈ [0, 1[. We perform a frequency
localization of size εη near the two problematic positions ±ξg. In practice, we insert
in the integral (5.5) defining the error U (1) − U (0) the decomposition

(5.48) 1 = (1− χ)

(
ξ2 − ξ2g
εη

)
+ χ

(
ξ2 − ξ2g
εη

)
.

Concerning the left part of (5.48), that is away from the values ξ = ±ξg, the proof of
Proposition 5.18 can be repeated with Γ replaced by

Γη(ξ) :=
1

p(ξ)− g
(1− χ)

(
ξ2 − ξ2g
εη

)
.

By construction, the function Γη is zero on some set of size εη containing ±ξg. It
follows from (3.20) and (5.46) that Γη is globally bounded by Cε−η. The integration
by parts with respect to the time variable s can still be performed, but now we have
to take into account this singular estimate for ∥Γη∥L∞ . As a consequence, the gain is
ε2−η instead of ε2. The corresponding contribution is therefore of size ε

ι
2−η+

1
3 instead

of being of size ε
ι
2+ 1

3 as in (5.44).
From now on, we fix η ∈ [0, ι2 + 1

3 [ (so the above estimate yields a small contribu-
tion), and we study the contribution coming from the right part of (5.48). The idea
is to exploit at the level of (5.5) the oscillations with respect to ξ. To this end, the
identity (5.5) may be reformulated as

(5.49) W(T, z) =
1

2π

∫ T

0

∫
ei(gs−T )/ε2J (ε, T − s, y, z)Gε(s, y)dsdy,

where we have put aside the oscillatory integral

(5.50) J (ε, s, y, z) :=

∫
eiψ(ξ)/ε2χ

(
ξ2 − ξ2g
εη

)
dξ,

built with the phase ψ(ξ) ≡ ψ(ε, s, y, z; ξ) given by

(5.51) ψ(ξ) := sp(ξ)− ε2(z − y)ξ, ψ′(ξ) = sp′(ξ)− ε2(z − y).
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Due to the presence of χ, we have the obvious estimate |J | ≲ εη. Fix δ ∈ [η, 1[. Since
p′(ξg) > 0, for all time s ≳ εδ, we have ψ′(ξ) ≳ εδ for all ξ at a distance ∼ εη from ξg,
and for all y and z located at a distance less than ∼ ε−1 from the origin. For s ≳ εδ,
an integration by parts with respect to ξ yields

J = iε2
∫
eiψ(ξ)/ε2

[
− ψ′′(ξ)

ψ′(ξ)2
χ

(
ξ2 − ξ2g
εη

)
+

2ξ

εηψ′(ξ)
χ′

(
ξ2 − ξ2g
εη

)]
dξ.

This indicates a gain of ε2−2δ when computing J . Since this operation may be re-
peated indefinitely, we deduce that J = O(ε∞) for s ≳ εδ.

There remains to control the contribution which, in (5.49), is brought by the times s
satisfying T −Cεδ ≤ s ≤ T . For such s, a rough estimate based on (5.23) yields, since
|J | ≲ εη, some O(εδ+η+ι−1) error term. By optimizing the smallness of ε

ι
2−η+

1
3 and

εδ+η+ι−1 through the selection of η = 2
3−

δ
2−

ι
4 , we get some ε

3ι
4 −

1
3+ δ

2 estimate. Since
δ < 1 can be chosen arbitrarily closed to 1, we obtain (5.47).

5.2.3. The case of the transitional gauge parameter. – This is when g = 0. In this case,
for all ξ in the interval [−ξc, ξc], we have p(ξ) = g = 0. On the other hand, in the
case ξc > 0 (which we shall assume in this paragraph), the transitional region near
the extreme positions ±ξc is much more degenerate than in Paragraph 5.2.2. The
function p is flat near ±ξc. Consequently, there is no way to exploit as before, in the
vicinity of ±ξc, the oscillations with respect to ξ. Still, we can show the following
result, by restricting the order of the spatial localization.

Proposition 5.20. – Assume that g = 0 and that ι = 1. Then, the nonlinearity plays
no role at leading order during long times, in the sense of Definition 5.16.

Proof. – Again, we can suppose that the order of magnitude of the nonlinearity is
critical, ν + j1 + j2 = 2. We recall that we assume here ξc > 0. If ξc = 0, the proof
of Proposition 5.19 can be repeated. The argument of Paragraph 5.2.1, that is an
integration by parts with respect to the time variable, does apply for frequencies ξ
located away from [−2ξc, 2ξc]. Then, it suffices to consider

(5.52) W(T, z) =
1

2π

∫ T

0

∫
e−iT/ε

2

J̃ (ε, T − s, y, z)Gε(s, y)dsdy,

where, with ψ as in (5.51), we have put aside

(5.53) J̃ (ε, s, y, z) :=

∫
eiψ(ξ)/ε2χ

(
ξ

4ξc

)
dξ = O(1).

By this way, using the uniform boundedness of U (0) and (5.23), we find

|(U (1) − U (0))(T, z)| ≲
∫
χ
(y
r

)
|U (0)(s, y)|dy.

From Lemma 5.14 with m = 1 and n = 0, the integral on the right hand side goes to 0

with ε. This argument based on the Dominated Convergence Theorem breaks down
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when 0 ≤ ι < 1 because the localizing function χ(y/(ει−1r)) is no longer integrable
uniformly in ε.

The condition ι = 1 is quite restrictive because it requires a concentrated source.
In fact, the difficulties raised by the value g = 0 are somewhat artificial. They are
induced by the localization procedure of Paragraph 3.1.2. At the level of (3.12), the
symbol is multiplied by 1 − χ(ξ). This operation does not correspond to a physical
phenomenon but rather to a technical simplification.

In the next subsection, we examine the remaining situation g = 1, especially in the
interesting and representative framework of equation (1.36).

5.3. The completely resonant situation

We now prove Theorem 1.4, along with some generalizations. When g = 1, there
exists no ξ ∈ R such that p(ξ) = g. But, due to (3.25), the quantity p(ξ) becomes
arbitrarily close to the limiting value g = 1 when |ξ| goes to infinity. Since large values
of ξ are addressed when dealing with (5.5), the effects of this approximated resonance
are enhanced in the actual context. The study of (1.36) corresponds to the choice
(j1, j2, ν) = (2, 0, 0) with ω = −1, so that indeed g = 1. The expression Gε of (5.4)
reduces to

(5.54) Gε(T, z) := χ

(
3− 2

T

T

)
χ
( εz
rει

)
U (0)(T, z)2.

And, in this context, Duhamel’s formula (5.5) simply reads

(5.55) W (T, z) = Op(G)(T, z),

where we have introduced the integral operator

(5.56) Op(G)(T, z) :=
1

2π

∫ T

0

∫∫
e−i(z−y)ξ+i

T−s

ε2 (p(ξ)−1)G(s, y)dsdydξ.

To lighten the notations, we will often write u for u(0) and U for U (0). The above
integral involves the extended spatial cut-off |y| ≤ rει−1, through the introduction
of χ(ε · /rει) inside Gε. Like in the previous subsection, we impose ι ∈ [0, 1]. This
condition is needed because precise information regarding U(s, y) is available on con-
dition that |y| ≤ rε−1. Indeed, Chapter 4 provides a description of the solution u(t, x)
to (1.28a) only for |x| ≤ r, that is only for |y| ≤ rε−1.

The formula (5.54) also involves, through the implementation of χ(3 − 2s/T ),
the time cut-off T ≤ s ≤ 2T . The choice of [T , 2T ] is inherited from (5.23) and
Lemma 5.13. It is introduced for convenience. It could be relaxed by expanding the
time domain of integration to any compact set inside ]0,∞[. For instance, it could be
adapted to any interval of the form [ηT , η−1T ] with η ∈ ]0, 1].
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When g = 1, the estimates of Lemma 5.13 do not suffice to show the smallness
ofW. And for good reason: the nonlinearity plays a role at leading order, and modifies
the asymptotic behavior by a nontrivial O(1)-effect that is revealed by (1.37). To see
why, the idea is to use the fine description of the function U ≡ U (0) which is provided
by Chapter 4, and to inject it into (5.55). Thus, like in Chapter 4, we impose q ≥ 2

and D ≥ 4.

In Paragraph 5.3.1, we explain how to exchange U2 inside (5.54)-(5.55)-(5.55) with
a more tractable expression made of a sum of wave packets, without changing the
content of W modulo o(1). In Paragraph 5.3.2, we simplify the content of these wave
packets, and we exploit their specific structure in order to replace the triple inte-
gral (5.56) by a simple integral in time. In the last Paragraph 5.3.3, we perform the
asymptotic analysis, showing Theorem 1.4.

5.3.1. Reduction to a sum of oscillating waves. – The strategy to analyze W when
g = 1 is to approximate U by a sum of oscillating waves indexed by k ∈ Kcs. Looking
at U2, this yields a bilinear form indexed by (k1, k2) ∈ Kcs × Kcs. Given β ∈ [0, 1],
define

(5.57) DKcs(β) :=
{
(k1, k2) ∈ Kcs ×Kcs; cε−β < k1 + k2

}
.

In Chapter 4.4, we have seen that, for all k ∈ Kcs, the function Φk(t, x; ·) has at
most one critical point (sk, yk, ξk) which satisfies (4.42), which is non-degenerate, and
which is such that ξk = sk. Recall that sk and yk depend smoothly on (t, x). Using
the function sk(t, x) issued from Lemma 4.8, we define the auxiliary function

ψk(t, x) := −xkπ − xsk(t, x) + (−1)kγ cos sk(t, x)

+
[
1− p

(
kπ + sk(t, x)

)](
kπ + sk(t, x)− t

)
.

(5.58)

In the statement below, we eliminate from (5.55) a number of terms which seem
difficult to identify precisely, but which are small enough.

Proposition 5.21 (The difference W = U (1) − U (0) as a sum of interacting terms).
– Fix ι ∈ [0, 1], and β such that

(5.59)
1

q + 1
≤ β <

3 + ι

5
≤ 1.

Then, the difference W = U (1) − U (0) is such that

(5.60) W(T, z) = o(1) +
∑

(k1,k2)∈DKc
s(β)

Wε
k1,k2(T, z),

where DKcs(β) is as in (5.57), whereas

(5.61) Wε
k1,k2(T, z) := ε2e−2iγ/ε Op(Gεk1,k2)(T, z).

With ψk as in (5.58), the bilinear interaction term Gεk1,k2 of (5.61) is given by

(5.62) Gεk1,k2(s, y) := χ
(
3− 2

s

T

)
χ
( εy
rει

)
ei(ψk1

+ψk2
)(s/ε,εy)/εBεk1,k2(s/ε, εy).
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The functions Bεk1,k2(t, x) are defined on [0, 2T ]× [−r, r]. They take the form

(5.63) Bεk1,k2 := (2π)−2Aεk1A
ε
k2 , Aεk = Aεk,0 + εAεk,1,

with

Aεk,0(t, x) := (2π)3/2e−i(−1)k π
4 |detSk(t, x)|−1/2

× ãk
(
ε, sk(t, x), yk(t, x), sk(t, x)

)
,

(5.64)

where the matrix Sk is defined at the beginning of Paragraph 4.4.3, with detSk(t, x)

as in (4.62), whereas ãk is as in (5.67). For all i ∈ {0, 1}, we can find a positive
constant Ci such that

(5.65) sup
ε∈]0,1]

sup
k∈Kc

s

sup
t∈[0,2T ]

sup
x∈[−r,r]

|Aεk,i(t, x)| ≤ Ci.

Moreover, for all α ∈ N2, we can find a constant Cα > 0 such that

(5.66) sup
ε∈]0,1]

sup
(k1,k2)∈DKc

s(β)

sup
t∈[0,2T ]

sup
x∈[−r,r]

|∂αt,xBεk1,k2(t, x)| ≤ Cα.

The double sum inside (5.60) is actually finite since k = O(ε−1) when k ∈ Kcs:
it runs over at most O(ε−2) terms. It involves fewer terms when β becomes close to
the upper bound (3 + ι)/5 which is important because, as will be seen later, other
conditions will be needed on β. In comparison to U2, the advantage of working with
an expression like G in (5.62) is a clear separation between an “explicit phase” ψ and,
in view of (5.66), a “generalized profile” B. Knowing ψ, this will allow us to compute
more precisely the content of W.

Proof. – To prepare the analysis of W, we have first to resume the stationary phase
arguments playing a central role in Chapter 4. As already explained, see Lemmas 4.2
and 4.3 together with Proposition 4.5, the harmonic m = 1 inside (3.31) is the only
one which may contribute to u ≡ u(0) or U ≡ U (0) modulo O(ε∞). Thus, it suffices to
deal with a ≡ a1. In coherence with (4.27), we work with

ak(ε, s, y, ξ) = ζ(kπ + ξ)a(εkπ + εs, kπ + s, y),

ãk(ε, s, y, ξ) := ak(ε, s, y, ξ)χ1/4(s− ξ)χ2π/3(s),(5.67)

Φk(t, x; s, y, ξ) = (kπ − t)p(kπ + ξ) + s
[
p(kπ + ξ)− 1

]
+ (x− y)ξ

+ sy − (−1)kγ cos s.

Taking into account (5.67), the wave packet wk of (4.26) becomes

(5.68) wk(t, x) :=

∫∫∫
e−iΦk(t,x;s,y,ξ)/εãk(ε, s, y, ξ)dsdydξ.

Back to u through (4.21), (4.23) and (4.25), we find

(5.69) u(t, x) = O(ε∞) +

√
ε

2π

∑
0≤k≤2/3+T /(πε)

ei(−γ+kπ−kπx)/εwk(t, x).
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Recall the distinction (4.28) between Kcd and Kcs. Then, use (5.1) to translate (5.69)
in terms of U according to

(5.70)

U(T, z) =
1

ε
e−iT/ε

2

u
(T
ε
, εz
)

= O(ε∞) +
1

2π
√
ε
e−iT/ε

2

×
(∑
k∈Kc

d

+
∑
k∈Kc

s

)
ei(−γ+kπ−kπεz)/εwk

(T
ε
, εz
)
.

We have proved in Chapter 4.3, see Lemma 4.7, that for c > 0 sufficiently small and
for T /ε ≤ t ≤ 2T /ε, we have wk = O(εD−1) uniformly on Kcd. Since q ≥ 2 and D ≥ 4,
in (5.70), the sum on Kcd accounts for some

O
(
ε−

1
2−

1
q+1+D−1

)
= O(ε2).

Rearranging the terms, we can retain that

(5.71) U(T, z) = O(ε2) +
e−iγ/ε

2π
√
ε

∑
k∈Kc

s

e−iT/ε
2

ei(kπ−kπεz)/εwk

(T
ε
, εz
)
.

When k ∈ Kcs, the content of the wk’s can be more detailed through asymptotic
expansions in powers of ε. In the absence of a critical point, by nonstationary phase
arguments, we just find wk = O(ε∞). Otherwise, we can apply Theorem 4.13 to (5.68)
in space dimension n = 3, with variables (s, y, ξ) ∈ R3. This time, by stationary phase
arguments, there exist differential operators denoted by Mk

2j(s, y, ξ;Ds,y,ξ), giving rise
to functions

(5.72) Aεk,j(t, x) :=
[
Mk

2j(s, y, ξ,Ds,y,ξ)ãk(ε, ·)
]
|(s,y,ξ)=(sk,yk,ξk)(t,x)

such that∣∣∣∣∣∣wk(t, x)− ε3/2
N−1∑
j=0

εjAεk,j(t, x)e−iΦk(t,x;sk(t,x),yk(t,x),ξk(t,x))/ε

∣∣∣∣∣∣ = O(ε3/2+N ).

The expressions Aεk,j depend smoothly on ε ∈ [0, 1] through ãk(ε, ·). In fact, taking
into account (4.43), they can be viewed as smooth functions of ε ∈ [0, 1] and sk.
Then, the smoothness of ãk and sk is communicated to Aεk,j . The expressions Aεk,0
and Aεk,1 of (5.63) are defined by (5.72). In particular, combining (4.63) and (4.69),
we find (5.64).

As a result of Lemma 4.14, the coefficients of the differential operator Mk
2j are

uniformly bounded with respect to k ∈ Kcs. Due to Assumption 3.11, the same applies
to all derivatives of ãk and to the preceding O(ε3/2+N ). Applying Lemma 4.9, we
can assert that the quantities ∂αt,xAεk,j(t, x) are, for all α ∈ N2, uniformly bounded
with respect to ε ∈ [0, 1], k ∈ Kcs, t ∈ [0, 2T ] and x ∈ [−r, r]. And therefore the
functions Aεk,j can be viewed as “generalized profiles” satisfying the condition (5.66),
which defines an algebra. As a consequence, coming back to the definition (5.63)
of Bεk1,k2 , we have (5.66).
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Plug the above expansion of wk with N = 2 inside (5.71). The different phases
combine to produce in coherence with the definition (5.58) the new phase

ψk(t, x) = −t+ kπ − kπx− Φk
(
t, x; sk(t, x), yk(t, x), ξk(t, x)

)
.

When N = 2, the remainder is of size
1√
ε

∑
k∈Kc

s

O(ε3/2+2) = ε−1/2ε−1O(ε3/2+2) = O(ε2).

Recalling the definition Aεk = Ak,0 + εAk,1, there remains

(5.73) U(T, z) = O(ε2) + ε
e−iγ/ε

2π

∑
k∈Kc

s

eiψk(T/ε,εz)/εAεk(T/ε, εz),

where, by convention, we set Aεk ≡ 0 when there is no critical point. In (5.73), the
sum on Kcs runs over O(1/ε) terms which are all uniformly of size O(1). Since ε is in
factor of the sum, this may furnish some O(1). Now, we can compute

U(T, z)2 = ε2Rε(T, z) + ε2e−2iγ/ε
∑
k1∈Kc

s

∑
k2∈Kc

s

Bεk1,k2(T/ε, εz)e
i(ψk1

+ψk2
)(T/ε,εz)/ε,

whereRε = O(1) and Bk1,k2 = (2π)−2Ak1Ak2 . Define

RGε(T, z) := χ

(
3− 2

T

T

)
χ
( εz
rει

)
Rε(T, z).

Replace U2 as given by the above representation inside (5.54) and (5.55). This explains
the origin of the bilinear interaction term Gεk1,k2 = O(1) of (5.62). Also, with Wε

k1,k2

as in (5.61), this gives rise to

(5.74) W = ε2 Op(RGε) +
∑
k1∈Kc

s

∑
k2∈Kc

s

Wε
k1,k2 .

To go further, we have now to evaluate the amplitude of Wε
k1,k2

. To this end, we
interpret (5.61) as we did with W at the level of (5.11) and (5.12). In other words,
we write Wε

k1,k2
= Wε

k1,k2,l
+Wε

k1,k2,nl
with

Wε
k1,k2,l(T, z) := ε2(2π)e−2iγ/ε

∫ T

T
Gεk1,k2(s, z)ds = O(ε2),(5.75)

Wε
k1,k2,nl(T, z) := ε2e−2iγ/ε

∫ T

T
B(T−s)/ε2Gεk1,k2(s, z)ds.(5.76)

At the level of (5.76), we perform integrations by parts in y, based on the identity

Λ(ξ)(1− ∂2
y)

1/4eiyξ = eiyξ, Λ(ξ) := (1 + |ξ|2)−1/4 = O(|ξ|−1/2),

to get

Wk1,k2,nl(T, z) := ε2e−2iγ/ε

∫ T

T
BΛ

(T−s)/ε2
(
(1− ∂2

y)
1/4Gεk1,k2

)
(s, z)ds,
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where we recall that the operator BΛ
τ is defined in (5.7). Coming back to (5.58), (5.62)

and (5.66), we see that a spatial derivative ∂y applied on Gεk1,k2(s, y) induces some
loss of size O(k1 + k2), where the O is uniform in ε whereas its argument k1 + k2,
which comes from the plane wave part xkπ inside ψk(·), is not, since k1, k2 ∈ Kcs. By
interpolation, (

(1− ∂2
y)

1/4Gεk1,k2
)
(s, y) = O

(
(k1 + k2)

1/2
)
.

Then, from Corollary 5.5 applied with the optimal choice ρ = 1/2, we obtain that

(5.77) k1 + k2 ≤ ε−β =⇒ Wk1,k2,nl(T, z) = O
(
ε2+(ι−1−β)/2

)
.

Concerning RGε, the same type of arguments (this time involving Corollary 5.5 with
simply ρ = 0) yields a single contribution of the type

(5.78) ε2 Op(RGε) = O(ε2) +O(ε1+(ι/2)) = O(ε1+(ι/2)).

In (5.74), given β as in (5.59), we split the double sum into∑
k1∈Kc

s

∑
k2∈Kc

s

=
∑

k1+k2≤ε−β

+
∑

(k1,k2)∈DKc
s(β)

.

In the above right hand side, the first sum involves at most O(ε−2β) terms. Thus,
using successively (5.78), (5.75) and (5.77), we obtain

(5.79)
W(T, z) = O

(
ε1+(ι/2)

)
+ ε−2βO

(
ε2
)

+ ε−2βO
(
ε2+(ι−1−β)/2)

)
+

∑
(k1,k2)∈DKc

s(β)

Wε
k1,k2(T, z).

Computing

2 + (ι− 1− β)/2− 2β = (3 + ι− 5β)/2,

we obtain a positive number provided (5.59) is satisfied, hence (5.60).

At this stage, it is instructive to revisit the proof of Lemma 5.13 on the basis of the
representation (5.73) of U . When computing ∂TU through (5.73), we can focus on the
sum involving k ∈ Kcs, and neglect the O(ε2) term which is presumed to be negligible.
Coming back to the definition (5.58) of ψk and because Aεk can be viewed as a smooth
function of ε ∈ [0, 1] and sk, the most significant contributions are brought by

∂T
[
ψk(T/ε, εz)/ε

]
= ε−2(∂tψk)(T/ε, εz)

≲ ε−2
[(

1 +O(ε−1k−q−1 + k−q)
)
|∂tsk|+ |1− p(kπ + sk)|

]
≲ O(ε−2)|∂tsk|+O(ε−2k−q),

∂T
[
Aεk(T/ε, εz)/ε

]
≲ ε−1|∂tsk|.

Using (4.52), we can see that the right hand sides are O(ε−2k−q). This means that
the wave packets composing U inside (5.73) contain less and less time oscillations as k
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becomes large. This also implies that the derivative ∂TU appears as a sum of terms
which may be controlled according to (with q = 2)

|∂TU(T, z)| ≲ ε
∑
k∈Kc

s

ε−2k−q ≲ ε−1(ε−1/(q+1))−q+1 ≲ ε−1ε1/3 ≲ ε−2/3.

This corresponds exactly to (5.29), which should be therefore optimal. In the same
way, starting from (5.58) and exploiting (4.51) with α = (0, 1), we find that

∂z
[
ψk(T/ε, εz)/ε

]
= O(k).

This yields
|∂zU(T, z)| ≲ ε

∑
k∈Kc

s

k ≲ ε−1,

which indicates that (5.28) could not be improved any further.

5.3.2. Analysis of the bilinear interaction term. – We now come back to the study of
the operator Op given by (5.56). Since p(ξ) − 1 ∼ 0 when |ξ| goes to +∞, for large
values of ξ, there is no way to gain some smallness in ε by performing integrations
by parts with respect to s. Thus, the strategy is to fix s, to integrate in (y, ξ), and
to exploit the special form of Gεk1,k2 in order to get a more tractable expression. The
formula (5.62) reveals the role of the phase

pk1,k2(t, x) := ψk1(t, x) + ψk2(t, x).

On the other hand, since |x| = ε|y| ≲ ει on the domain of integration, for ι ∈ ]0, 1],
only small values of x are involved. This remark indicates that the impact of pk1,k2
should be mainly driven by its Taylor expansion near x = 0, which may be written

(5.80) pk1,k2(t, x) = p0k1,k2(t) + xp1k1,k2(t) + x2rk1,k2(t, x),

where rk1,k2 is the smooth function which is issued from the Lagrange remainder at
second order.

On the other hand, we find

p0k1,k2(t) := ψk1(t, 0) + ψk2(t, 0) =

2∑
i=1

{
(−1)kiγ cos ski

(t, 0)(5.81a)

+
[
1− p

(
kiπ + ski

(t, 0)
)](

kiπ + ski
(t, 0)− t

)}
,

p1k1,k2(t) := ∂xψk1(t, 0) + ∂xψk2(t, 0) = −(k1 + k2)π(5.81b)

+

2∑
i=1

{
−ski(t, 0)− (−1)kiγ∂xski(t, 0) sin ski(t, 0)

+
[
1− p

(
kiπ + ski

(t, 0)
)]
∂xski

(t, 0)

− p′
(
kiπ + ski

(t, 0)
)
∂xski

(t, 0)
(
kiπ + ski

(t, 0)− t
)}
.

As stated below, both p0k1,k2(t) and p1k1,k2(t) are involved in the asymptotic behavior
of Wε

k1,k2
at leading order.
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Proposition 5.22 (Simplification of the bilinear interaction terms). – Fix ι ∈ ]ι−, 1]

with ι− := (13−
√

89)/8 < 1/2, and select β such that

(5.82)


3

2(q + 1)
≤ 3ι+ (3/ι)(1− 2ι)

q + 1
< β <

3 + ι

5
< 1 if ι ∈ ]ι−, 1/2],

3

2(q + 1)
≤ 1 + ι

q + 1
< β <

3 + ι

5
< 1 if ι ∈ [1/2, 1].

Then, uniformly in (k1, k2) ∈ DKcs(β), with Aεk,0 as in (5.64), we have

Wε
k1,k2(T, z) = o(ε2) + ε2(2π)−2e−2iγ/ε

∫ T

0

χ
(
3− 2

s

T

)
eip

0
k1,k2

(s/ε)/ε

× eizp
1
k1,k2

(s/ε)ei(T−s)[p◦p
1
k1,k2

(s/ε)−1]/ε2(Aεk1,0A
ε
k2,0)(s/ε, 0)ds.

(5.83)

Note that the reduction of (5.61)-(5.62) to (5.83) is quite striking. As a matter of
fact, we got rid of the nonlocal aspect in dydξ that is involved by the operator Op

of (5.56). Indeed, knowing that G is as in (5.62), the integral in dydξ reduces to
a multiplication by the factor exhibited in (5.83). This new presentation has many
advantages. The action of Op on L∞ is not uniformly controlled in ε ∈ ]0, 1] with
apparently, in view of Corollary 5.5, an optimal loss of the type ε(ι−1)/2 when ρ = 1/2.
Looking at (5.61), we can only say that Wε

k1,k2
= O(ε(3+ι)/2). But, looking at (5.83),

as a direct consequence of (5.65), we can assert that

(5.84) ∀(k1, k2) ∈ DKcs(β), Wε
k1,k2(T, z) = O(ε2).

Proof. – The oscillating part inside (5.62) can be decomposed according to

(5.85)

ei(ψk1
+ψk2

)(s/ε,εy)/ε = eip
0
k1,k2

(s/ε)/ε
}
1

×eip
1
k1,k2

(s/ε)y
}
2

×eir2ε2ι−1rk1,k2
(s/ε,εy)(r−1ε1−ιy)2 .

}
3

The general idea of the proof is the following. At s fixed, the contribution 1 does
not participate to the integration in (y, ξ), and hence appears as a simple factor at
the level of (5.83). The oscillation 2 may be combined with eiyξ to produce after
integration with respect to y a phase shift of size p1k1,k2(s/ε) on the Fourier side, that
is in ξ. Knowing that ε1−ι|y| ≲ 1, the contribution 3 may be associated with the
cut-off χ(r−1ε1−ιy) to produce, for ι ≥ 1/2 in the spatial variable ỹ := r−1ε1−ιy, a
localized non oscillating term that may be viewed as a profile (ι = 1/2), or a some
modulation (ι > 1/2). The other case ι < 1/2 is slightly different, more difficult,
and will be considered separately. Finally, the integration in ξ operates as an inverse
Fourier transform, which is reminiscent of a Dirac mass at ξ = p1k1,k2(s/ε).
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Now, let us get into the specifics. Using Fubini’s theorem together with (5.85), we
can interpret (5.56), (5.61) and (5.62) according to

(5.86)

Wε
k1,k2(T, z) =

ε2e−2iγ/ε

2π

∫ T

0

χ
(
3− 2

s

T

)
eip

0
k1,k2

(s/ε)/ε

×
{∫

e−izξ+i(T−s)(p(ξ)−1)/ε2

×
{∫

eiy(ξ+p
1
k1,k2

(s/ε))Eεk1,k2(s/ε, r
−1ε1−ιy)dy

}
dξ

}
ds,

where, taking ỹ = r−1ε1−ιy as a new variable to work with a spatial localization of
size one, we have introduced

(5.87) Eεk1,k2(t, ỹ) := χ(ỹ)eir
2ε2ι−1rk1,k2

(t,rειỹ)ỹ2

Bεk1,k2(t, rε
ιỹ).

Obviously, we have

∀t ≥ 0, suppEεk1,k2(t, ·) ⊂ suppχ ⊂ [−1, 1].

As long as ι ∈ [1/2, 1], the expression Eεk1,k2(t, ·) does not oscillate in ỹ. Otherwise,
when ι ∈ [0, 1/2[, each derivative in ỹ causes a loss of ε2ι−1. On the other hand, the
Lagrange remainder rk1,k2 is built with second order derivatives of ψk(t, ·) which, in
view of (4.51), may be uniformly bounded in (k1, k2) ∈ DKcs(β). We can combine this
information with (5.66) to see that, for all j ∈ N, we can find a constant Cj > 0 such
that

sup
(k1,k2)∈DKc

s(β)

sup
t≥0

sup
ε∈]0,1]

sup
ỹ∈R

|∂jỹE
ε
k1,k2(t, ỹ)| ≤ Cj

(
1 + ε(2ι−1)j

)
.

By integration by parts in y and then interpolation, it follows that for all ρ ≥ 0 we
can find a constant Cρ > 0 such that, uniformly in (k1, k2) ∈ DKcs(β), we have

(5.88) sup
t≥0

sup
ε∈]0,1]

sup
ξ̃∈R

|(1 + |ξ̃|2)ρ/2F
(
Eεk1,k2(t, ·)

)
(ξ̃)| ≤ Cρ

(
1 + ε(2ι−1)ρ

)
.

In (5.86), the integral with respect to y is exactly

rει−1F
(
Eεk1,k2(s/ε, ·)

)
(ξ̃), ξ̃ := −rει−1

(
ξ + p1k1,k2(s/ε)

)
.

In the interest of simplifying notation, we sometimes note p1 in place of p1k1,k2(s/ε).
Then, the last two lines of (5.86) become∫

eiz(p
1+r−1ε1−ιξ̃)ei(T−s)[p(−p

1−r−1ε1−ιξ̃)−1]/ε2F
(
Eεk1,k2(s/ε, ·)

)
(ξ̃)dξ̃ =4+5,

with, since the function p is even

4 := eizp
1

ei(T−s)(p(−p
1)−1)/ε2

∫
eizr

−1ε1−ιξ̃F
(
Eεk1,k2(s/ε, ·)

)
(ξ̃)dξ̃,

= eizp
1

ei(T−s)(p(−p
1)−1)/ε2(2π)F−1 ◦ F

(
Eεk1,k2(s/ε, ·)

)
(ε1−ιr−1z)

= eizp
1

ei(T−s)(p(p
1)−1)/ε2(2π)Eεk1,k2(s/ε, ε

1−ιr−1z).
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In view of the definition (5.87) together with (5.66), we have

Eεk1,k2(t, ε
1−ιr−1z) = χ(ε1−ιr−1z)eiεz

2rk1,k2
(t,εz)Bεk1,k2(t, εz)

= χ(ε1−ιr−1z)
(
1 +O(ε)

)(
Bεk1,k2(t, 0) +O(ε)

)
= χ(ε1−ιr−1z)Bεk1,k2(t, 0) +O(ε).

With (5.63) and (5.65), this becomes

Eεk1,k2(t, ε
1−ιr−1z) = χ(ε1−ιr−1z)(2π)−2(Aεk1,0A

ε
k2,0)(t, 0) +O(ε).

Plug 4 with Eεk1,k2 as above in place of the integral in dydξ (the two last lines) of
(5.86). This furnishes the leading-order term of (5.83). Thus, it remains to control
the part 5, which is

5 :=

∫
eiz(p

1+r−1ε1−ιξ̃)F
(
Eεk1,k2(s/ε, ·)

)
(ξ̃)

×
[
ei(T−s)(p(−p

1−r−1ε1−ιξ̃)−1)/ε2 − ei(T−s)(p(−p
1)−1)/ε2

]
dξ̃.

Since p is even, we have

(5.89)

|ei(T−s)(p(−p
1−r−1ε1−ιξ̃)−1)/ε2 − ei(T−s)(p(−p

1)−1)/ε2 |

≤ 2
∣∣∣sin(T − s

2ε2
(
p(p1 + r−1ε1−ιξ̃)− p(p1)

))∣∣∣
≤ |T − s|

ε2
∣∣p(p1 + r−1ε1−ιξ̃)− p(p1)

∣∣.
For the moment, we assume that 0 < ι < 1. In the integral defining 5, we can
distinguish a part where ε1−ι|ξ̃| ≤ 1 to take advantage of the smallness of the difference
|p(p1 + r−1ε1−ιξ̃) − p(p1)|, and a part where 1 ≤ ε1−ι|ξ̃| to benefit from the rapid
decreasing of F

(
Eεk1,k2(s/ε, ·)

)
. In other words, we use the fact that

(5.90)
∣∣5∣∣ ≤5ι

− + 5
ι
+,

with (for 0 < ι < 1):

5
ι
± :=

|T − s|
ε2

∫
±ε1−ι|ξ̃|≤±1

∣∣p(p1 + r−1ε1−ιξ̃)− p(p1)
∣∣|F(Eεk1,k2(s/ε, ·))(ξ̃)|dξ̃.

Since |p| is bounded by 1, exploiting (5.88), we find

5
ι
− ≤

|T − s|
ε2

∫
1≤ε1−ι|ξ̃|

2Cρ
(
1 + ε(2ι−1)ρ

)
(1 + |ξ̃|2)−ρ/2dξ̃

≤ 2Cρ
|T − s|
ε2

(∫
1≤ε1−ι|ξ̃|

|ε1−ιξ̃|−ρd(ε1−ιξ̃)
)
ε(1−ι)(ρ−1)

(
1 + ε(2ι−1)ρ

)
≤ 2Cρ|T − s|

(∫
1≤|ξ|

|ξ|−ρdξ
)
ε(1−ι)(ρ−1)−2

(
1 + ε(2ι−1)ρ

)
.
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From now on, we fix some ρ satisfying

(5.91)
{
ρ > −1 + 3/ι ≥ 5 if ι ∈ ]0, 1/2],

ρ > 1 + 2/(1− ι) ≥ 5 if ι ∈ [1/2, 1[.

By this way, we can recover 5ι
− = o(1).

To control 5ι
+, we remark that

5
ι
+ ≤

|T − s|
ε2

(
sup

|ξ|≤r−1

|p′(p1 + ξ)|
)∫

|ξ̃|≤ει−1

r−1ε1−ι|ξ̃|Cρ
(
1 + ε(2ι−1)ρ

)
(1 + |ξ̃|2)+ρ/2

dξ̃

≤ Cρ
r
|T − s|

(∫
(1 + |ξ̃|2)(1−ρ)/2dξ̃

)(
sup

|ξ|≤r−1

|p′(p1 + ξ)|
)1 + ε(2ι−1)ρ

ε1+ι
.

Since (1− ρ)/2 ≤ −2, the above integral in ξ̃ is finite. Now, we want to extract some
additional smallness from the sup term. To this end, we come back to the definition
(5.81b) of p1. Knowing that (k1, k2) ∈ DKcs(β), we get

|p1k1,k2(t)| ≥ cπε−β −
2∑
i=1

{
|ski

(t, 0)|+ γ|∂xski
(t, 0)|

+
[
1− p (kiπ + ski

(t, 0))
]
|∂xski

(t, 0)|

+ 2T ε−1p′
(
kiπ + ski

(t, 0)
)
|∂xski

(t, 0)|
}
.

Since ki ∈ Kcs, we can exploit (4.51) and (3.23) to obtain

(5.92)
|p1k1,k2(t)| ≥ cπε−β − 2C(0,0) − 2(γ + 1)C(0,1) −

2∑
i=1

2T ε−1O(k−q−1
i )C(0,1)

≥ cπε−β −O(1) ≳ ε−β .

Then, from (3.23), we get

(5.93) sup
|ξ|≤r−1

|p′(p1 + ξ)| ≲ εβ(q+1).

It follows that we can find ρ satisfying (5.91) and so that 5ι
+ = o(1) if{

−3ι+ (3/ι)(2ι− 1) + β(q + 1) > 0 if ι ∈ ]0, 1/2],

−1− ι+ β(q + 1) > 0 if ι ∈ [1/2, 1[.

This provides with a lower bound for β which must be compatible with (5.59). When
ι ∈ [1/2, 1[, we demand

−1− ι+ (q + 1)
3 + ι

5
> 0,

a condition which is always satisfied for q ≥ 2 and ι ≤ 1. When ι ∈ ]0, 1/2], we require

−3ι+ (3/ι)(2ι− 1) + (q + 1)
3 + ι

5
> 0,

a condition which boils down, in the less favorable case q = 2, to

12ι2 − 39ι+ 15 < 0.
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Recalling that ι < 1, this condition implies that ι− < ι. This is where the specific
value ι− appears.

There remains to discuss the limiting case ι = 1. The definition of5ι
− for 0 < ι < 1

could be extended in the case ι = 1. But the preceding argument does not work when
ι = 1, because there is no finite choice of ρ satisfying (5.91). For this reason, we adopt
the following alternative definition

5
1
± :=

|T − s|
ε2

∫
±|ξ̃|≤±ε−µ

∣∣p(p1 + r−1ξ̃)− p(p1)
∣∣|F(Eεk1,k2(s/ε, ·))(ξ̃)|dξ̃.

Use (5.88) with ρ > 1 + (2/µ) > 3. When dealing with the sign −, the above shift
toward high frequencies ε−µ ≤ |ξ̃| allows to recover some smallness. Indeed:

5
1
− ≤

|T − s|
ε2

∫
ε−µ≤|ξ̃|

2Cρ
(
1 + ε(2ι−1)ρ

)
(1 + |ξ̃|2)−ρ/2dξ̃

≲
|T − s|
ε2

(∫
1≤|εµξ̃|

|εµξ̃|−ρd(εµξ̃)
)
εµ(ρ−1)

≲ |T − s|
(∫

1≤|ξ|
|ξ|−ρdξ

)
εµ(ρ−1)−2 = o(1).

On the other hand, this does not affect the control of the part with the sign +. Taking
into account (5.92), we find that

(5.94) ∀|ξ̃| ≤ r−1ε−µ, |p1 + r−1ξ̃| ≳ ε−β ,

and therefore, as before, we have

5
1
+ ≤

|T − s|
ε2

(
sup

|ξ|≤r−1ε−µ

|p′(p1 + ξ)|
)∫

|ξ̃|≤ε−µ

r−1|ξ̃|Cρ
2

(1 + |ξ̃|2)ρ/2
dξ̃

≤ 2Cρr
−1|T − s|

(∫
(1 + |ξ̃|2)(1−ρ)/2dξ̃

)
εβ(q+1)−2,

which is some o(1) for β as in (5.82). Note that the above argument applied in the
case 0 < ι < 1 would not improve (5.82). As a matter of fact, the condition (5.82) is
issued from the analysis of 51

+ which is not modified by using (5.94).

At this stage, we have proved

Wε
k1,k2(T, z) = o(ε2) + ε2(2π)−2e−2iγ/εχ(ε1−ιr−1z)

∫ T

0

χ
(
3− 2

s

T

)
eip

0
k1,k2

(s/ε)/ε

× eizp
1
k1,k2

(s/ε)ei(T−s)[p◦p
1
k1,k2

(s/ε)−1]/ε2(Aεk1,0A
ε
k2,0)(s/ε, 0)ds.

Since ι > 0, we can substitute inside the term χ(ε1−ιr−1z) with χ(0) = 1, hence (5.83).
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5.3.3. The asymptotic analysis. – From now on, we fix β as indicated in (5.82). As a
consequence of (5.84), for j = 1 or j = 2, we have∑

kj≤ε−β (k1,k2)∈DKc
s(β)

|Wε
k1,k2(T, z)| ≲ ε−βε−1ε2 = O(ε1−β) = o(1).

Knowing this, we can replace (5.60) by

(5.95) W(T, z) = o(1) +
∑

ε−β≤k1∈Kc
s

∑
ε−β≤k2∈Kc

s

Wε
k1,k2(T, z).

The final stage is to exploit the tools and the arguments of Chapter 4 in order to pass
to the limit at the level of (5.95) when ε goes to zero.

Proposition 5.23 (Proof of Theorem 1.4). – Fix ι ∈ ]ι−, 1] and β as in (5.82).
Then, the limit of W(T, z) when ε goes to zero is given by (1.37) when z = 2j with
j ∈ Z, and by (1.38) otherwise.

Proof. – The starting point is (5.83) together with (5.95). The information ε−β ≤ kj
inside (5.95) is crucial because it allows to simplify the content of p0, p1 and Aεkj ,0

at the level of (5.83). All these expressions depend on sk and yk. But, knowing that
ε−β ≤ k, from (4.56a) (4.56b) and (4.57), we have

(5.96) sk(t, 0) = O(ε(q+1)β−1), yk = O(ε(q+1)β−1),

where, taking into account (5.82), we are sure that

(5.97) 2(q + 1)β − 2 > 1, qβ > (q + 1)β − 1.

Now, look at (5.81a) to extract

p0k1,k2(t) =

2∑
i=1

{
(−1)kiγ +O

(
ski(t, 0)2

)
+
[
1− p

(
kiπ + ski

(t, 0)
)](

kiπ − t
)

+O(k−qi )|ski
(t, 0)|

}
.

From (3.28) and (5.96), we can deduce that

p0k1,k2(t) =

2∑
i=1

{
(−1)kiγ +O(ε2(q+1)β−2)

− ℓ

q(q + 1)

( 1

(kiπ)q−1
− t

(kiπ)q

)(
1 + o(1)

)
+O(εqβ+(q+1)β−1)

}
.

Using (5.97), there remains

(5.98)

p0k1,k2(s/ε)/ε = o(1) +
(
(−1)k1 + (−1)k2

)
(γ/ε)

−
2∑
i=1

{
ℓεq−2

q(q + 1)

(
1

(εkiπ)q−1
− s

(εkiπ)q

)
(1 + o(1))

}
.
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Next, consider (5.81b). Taking into account (4.51) with again (5.96) and (5.97), this
gives rise to

p1k1,k2(t) = −(k1 + k2)π +

2∑
i=1

{
O
(
|ski

(t, 0)|
)

+O(k−qi ) +O(ε−1k−q−1
i )

}
= −(k1 + k2)π +O(ε(q+1)β−1) = −(k1 + k2)π + o(1).

With (3.23), this implies that

p ◦ p1k1,k2(t) = p (−(k1 + k2)π) +O
(
(k1 + k2)

−q−1
)
×O

(
ε(q+1)β−1

)
,

and therefore

(5.99)

(
p ◦ p1k1,k2(s/ε)− 1

)
ε2

=

(
p(k1π + k2π)− 1)

ε2
+O(ε2(q+1)β−3)

=

(
p(k1π + k2π)− 1)

ε2
+ o(1)

= − ℓεq−2

q(q + 1)

1

(εk1π + εk2π)q
(
1 + o(1)

)
+ o(1).

Finally, we examine (5.64). From (4.64), (5.96) and (5.97), we get easily

detSk = (−1)k+1γ cos sk +O
(

1

εkq+2

)
= (−1)k+1γ +O(ε2(q+1)β−2) +O

(
ε−1+β(q+2)

)
= (−1)k+1γ +O(

√
ε).

On the other hand, combining (5.67) and (5.96), we find that

ãk
(
ε, sk(t, 0), yk(t, 0), sk(t, 0)

)
= ζ(kπ)a(εkπ, kπ, 0) +O(

√
ε).

From Assumption 3.11, we know that ζ(kπ) = 1 + O(k−1) = 1 + O(εβ). To make
things easier, we replace Assumption 3.12 by the more restrictive condition (1.25).
Then, we can infer that

(5.100)
ãk (ε, sk(t, 0), yk(t, 0), sk(t, 0)) = a(εkπ, kπ, 0) + o(1)

= a(εkπ, 0, 0) + o(1).

From now on, we work with the case q = 2, which is the most interesting and also
the most difficult situation, because (5.98) and (5.99) contain supplementary contri-
butions modulo o(1). We can decompose the sum inside (5.95) into∑

ε−β≤k1∈Kc
s

∑
ε−β≤k2∈Kc

s

=
∑

{(▷,◁);▷is even or odd
◁is even or odd}

∑
ε−β≤k1∈Kc

s
k1is of type▷

∑
ε−β≤k2∈Kc

s
k2is of type◁

.

We deal below with the sum corresponding to the choice (▷,◁) = (even, even), the
other cases being completely similar. When k1 and k2 are even, by combining (5.98),
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(5.99) and (5.100), the product inside (5.83) can be reworded into

eip
0
k1,k2

(s/ε)/εeizp
1
k1,k2

(s/ε)ei(T−s)(p◦p
1
k1,k2

(s/ε)−1)/ε2(Aεk1,0A
ε
k2,0)(s/ε, 0)

= o(1)− i(2π)3γ−1e2iγ/εe−iz(k1+k2)πdε(επk1, επk2, s),

with

(5.101)
dε(σ1, σ2, s) := e

−i ℓ
6 ( 1

σ1
− s

σ2
1
)(1+o(1))

e
−i ℓ

6 ( 1
σ2
− s

σ2
2
)(1+o(1))

× e
−i ℓ

6
T−s

(σ1+σ2)2
(1+o(1))

a(σ1, 0, 0)a(σ2, 0, 0),

where the dependence on ε is hidden in the o(1). Passing to the limit when ε goes
to 0, the o(1) disappears from (5.101). There remains

(5.102) d0(σ1, σ2, s) := e
−i ℓ

6
T−s

(σ1+σ2)2 b(σ1, s)b(σ2, s),

where, in coherence with the introduction, we have introduced

b(σ, s) := e−i
ℓ
6 (

1
σ−

s
σ2 )a(σ, 0, 0).

When z ̸∈ 2Z, the Abel sum argument can be readily repeated. As before, the
terms e−izk1π or e−izk2π compensate (locally in k1 or in k2) after summation. By
this way, we can recover (1.38). Otherwise, we can recognize a double Riemann sum
with a width of επ, which is

− 2i

γπ

∫ T

0

χ
(
3− 2

s

T

) ∑
ε−β≤k1∈Kc

s
k1is even

∑
ε−β≤k2∈Kc

s
k2is even

(επ)2dε(επk1, επk2, s)ds.

For all s ∈ [0, T ], the function dε(·, s) is defined on the quadrant Q := R∗+ ×R∗+. It is
smooth and bounded on the open domain Q. The singularities of the exponents near
σ1 = 0 or σ2 = 0 translate only into fast oscillations. Moreover, due to (3.33), the sup-
port of the function dε(·, s) is uniformly bounded. In particular, the function d0(·, s) is
integrable on Q. As a consequence, the double Riemann sum does converge (when
ι < 1) towards

− 2i

γπ

∫ T

0

χ
(
3− 2

s

T

)(∫ +∞

0

∫ +∞

0

d0(σ1, σ2, s)dσ1dσ2

)
ds.

The other choices of (▷,◁) combine to form (1.37).

We conclude with a series of comments.

Remark 5.24 (The origin of the correlation coefficient). – As is well known, the
weak limit of a product is in general different from the product of the weak limits.
Comparing (1.33) and (1.37), this principle applies in the present context. Indeed, the
function d0 of (5.102) is not the product of b(σ1, s) and b(σ2, s). There is a correlation
coefficient which is issued from the multiplication inside (5.83) by

ei(T−s)(p◦p
1
k1,k2

(s/ε)−1)/ε2 .
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Looking at (5.99), we see that this nonlinear effect depends on dispersive properties
through the asymptotic behavior of the symbol p when |ξ| goes to +∞. It measures
how the various frequencies k1 and k2 interact asymptotically (through their sum) in
order to affect the profile.

Remark 5.25 (About the spatial localization). – The limiting case ι = 1 could be
incorporated just by multiplying (1.37) by χ(r−1z). By contrast, the case ι < ι−
seems more difficult to assess. By pushing the Taylor expansion (5.80) up to the
next order 3, for ι ∈ [1/3, 1/2[, it would be still possible to separate some explicit
“oscillating part” from some “generalized profile”. But then, explicit formulas are no
more available, and the presence of some extra oscillations can really change the
asymptotic behavior (1.37).

Remark 5.26 (About the critical cubic nonlinearity). – Come back to Example 5.11.
This corresponds to the study of

U (1) (T, z) = U (0)(T, z)

+
1

2π

∫ T

0

∫∫
e−i(z−y)ξ+i

T−s

ε2 (p(ξ)−1)χ
( y

rει−1

)
|U (0)(s, y)|2U (0)(s, y)dsdydξ.

The above trilinear interaction involves the phase

pk1,k2,k3(t, x) := ψk1(t, x)−ψk2(t, x)+ψk3(t, x) = p0k1,k2,k3(t, x)− (k1−k2 +k3)π+ · · ·
and thereby, the Dirac mass argument should select the position (k1 − k2 + k3)π. It
could be expected to obtain triple integrals of the form∫ T

0

χ
(
3− 2

s

T

)∫ +∞

0

∫ +∞

0

∫ +∞

0

e
−i ℓ

6
T−s

(σ1±σ2±σ3)2 b(σ1, s)b̄(σ2, s)b(σ3, s)dsdσ1dσ2dσ3.

But the presence of two wave-numbers (k1 and k2) with opposite signs may change
the situation. Indeed, for large values of k1 and k2 with k1−k2 = O(1), the asymptotic
behavior of p is no more involved when computing p ◦ p. The analysis is apparently
different. It should require further development.

Remark 5.27 (About the full nonlinear case). – The description of the solution u to
(1.20) with FNL as in (1.27) is a far more complicated task for a number of reasons.
Consider for instance the non completely resonant case, when g ̸= 1. The linearizabil-
ity has been established by nonstationary phase arguments relying on Lemma 5.13.
From this perspective, the global controls provided by Lemma 5.12 do not suffice.
As a consequence, to prove Theorem 1.4 in the case of the complete nonlinear equa-
tion (as opposed to the first two Picard iterates), we would need estimates similar to
those from Lemma 5.13. However, those do not seem to be propagated in an easy way
by an iterative scheme. Since the proof of Lemma 5.13 actually relies on the wave
packets decomposition of Chapter 4, extending this wave packets decomposition to a
nonlinear framework (like in e.g., [12, 24], or [26, 27, 28], which may be understood as
generalizations of WKB methods) might be a way to treat the full nonlinear equation.
As evoked in the introduction, we will not pursue this question here.
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This article introduces a physically realistic model for explaining how
electromagnetic waves can be internally generated, propagate and interact in
strongly magnetized plasmas or in nuclear magnetic resonance experiments.
It studies high frequency solutions of nonlinear hyperbolic equations for time
scales at which dispersive and nonlinear effects can be present in the leading
term of the solutions. It explains how the produced waves can accumulate
during long times to produce constructive and destructive interferences which,
in the above contexts, are part of turbulent effects.

Cet article introduit un modèle physiquement réaliste qui explique
comment, dans des plasmas fortement magnétisés ou lors d’expériences de
résonance magnétique nucléaire, des ondes électromagnétiques peuvent être
créées, se propager et interagir. Il étudie des solutions haute fréquence de
systèmes hyperboliques non linéaires pour lesquelles des effets dispersifs et
non linéaires sont impliqués à l’ordre principal. Il explique les modalités selon
lesquelles les ondes produites peuvent s’accumuler dans le temps long pour
produire des interférences constructives et destructives qui, dans ce contexte,
peuvent être interprétés comme des phénomènes de turbulence.
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