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ON THE PRO-p IWAHORI HECKE EXT-ALGEBRA OF SL2(Qp)

Rachel Ollivier, Peter Schneider

Abstract. – Let G = SL2(F) where F is a finite extension of Qp. We suppose that the
pro-p Iwahori subgroup I of G is a Poincaré group of dimension d. Let k be a field
containing the residue field of F.

In this volume, we study the graded Ext-algebra E∗ = Ext∗Mod(G)(k[G/I], k[G/I]).
Its degree zero piece E0 is the usual pro-p Iwahori-Hecke k-algebra H.

We study Ed as an H-bimodule and deduce that for an irreducible admissible
smooth k-representation V of G, we have Hd(I, V ) = 0 unless V is the trivial repre-
sentation.

When F = Qp with p ≥ 5, we have d = 3. In that case we describe E∗ as an
H-bimodule and give the structure as an algebra of the centralizer in E∗ of the center
of H. We deduce results on the values of the functor H∗(I,−) which attaches to a
(finite length) smooth k-representation V of G its cohomology with respect to I. We
prove that H∗(I, V ) is always finite dimensional. Furthermore, if V is irreducible,
then V is supersingular if and only if H∗(I, V ) is a supersingular H-module.

Résumé (Sur la Ext-algèbre de Hecke du pro-p Iwahori de SL2(Qp))
Soit G = SL2(F) où F est une extension finite Qp. On suppose que le sous-groupe

d’Iwahori I de G est un groupe de Poincaré de dimension d. Soit k un corps contenant
le corps résiduel de F.

Dans ce texte, nous étudions la Ext-algèbre graduée E∗ = Ext∗Mod(G)(k[G/I], k[G/I]).
Sa composante de degré zero est la k-algèbre de Hecke du pro-p Iwahori H.

Nous étudions le H-bimodule Ed et déduisons que, étant donnée une k-représen-
tation irréductible admissible lisse V de G, on a Hd(I, V ) = 0 à moins que V ne soit
la représentation triviale.

Lorsque F = Qp avec p ≥ 5, on a d = 3. Dans ce cas, nous décrivons le H-bimo-
dule E∗ et la structure d’algèbre du centralisateur dans E∗ du centre de H. Nous
en déduisons des résultats quant aux valeurs du foncteur qui attache à une k-repré-
sentation lisse (de longueur finie) V de G l’espace de I-cohomologie H∗(I, V ). Nous
montrons que H∗(I, V ) est toujours de dimension finie. De plus, si V est irréductible,
alors V est supersingulière si et seulement si H∗(I, V ) est un module supersingulier.
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CHAPTER 1

INTRODUCTION

Let F be a locally compact nonarchimedean field with residue characteristic p, and
let G be the group of F-rational points of a connected reductive group G over F. We
suppose that G is F-split.

Let k be a field of characteristic p and let Mod(G) denote the category of all
smooth representations of G in k-vector spaces. For a general G and F this category
is still poorly understood. One way of approaching it consists in considering the Hecke
algebra H of the pro-p Iwahori subgroup I ⊂ G. In this case the natural left exact
functor

h : Mod(G) −→ Mod(H)

V 7−→ V I = Homk[G](X, V )

sends a nonzero representation onto a nonzero module. Its left adjoint is

t : Mod(H) −→ ModI(G) ⊆ Mod(G)

M 7−→ X⊗H M.

Here X denotes the space of k-valued functions with compact support on G/I with
the natural left action of G. The functor t has values in the category ModI(G) of
all smooth k-representations of G generated by their I-fixed vectors. This category,
which a priori has no reason to be an abelian subcategory of Mod(G), contains all
irreducible representations. But in general t is not an equivalences of categories and
little is known about ModI(G) and Mod(G) unless G = GL2(Qp) or G = SL2(Qp)

([6], [11], [13], [16]).
The functor h, although left exact, is not right exact since p divides the pro-order

of I. It is therefore natural to consider the derived functor. In [17] the following result
is shown: When F is a finite extension of Qp and I is a torsion free pro-p group, there
exists a derived version of the functors h and t providing an equivalence between
the derived category D(G) of smooth representations of G in k-vector spaces and the
derived category of differential graded modules over a certain differential graded pro-p
Iwahori-Hecke algebra H•.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2022



2 CHAPTER 1. INTRODUCTION

The article [14] opened up the study of the Hecke differential graded algebra H•

by giving the first results on its cohomology algebra E∗ := Ext∗Mod(G)(X,X). This is
the pro-p Iwahori Hecke Ext-algebra we refer to in the title of the current article. We
suppose in this introduction that I is a torsion free p-adic Lie group which forces F to
be a finite extension of Qp. We denote by d the dimension of I as a Poincaré group.
The Ext algebra E∗ is supported in degrees 0 to d.

When G is almost simple and simply connected, the ideal JH which controls the
supersingularity (see §2.1) has finite codimension in H. We show that we have an
isomorphism of H-bimodules

(1) Extd
Mod(G)(X,X) ∼= χtriv ⊕ Inj((H/JH)∨),

where χtriv is the trivial character of H and Inj((H/JH)∨) is an injective envelope of
the dual module (H/JH)∨. When G = SL2, the center of H contains a polynomial
algebra k[ζ] and JH = ζH. The large injective module inside of Extd

Mod(G)(X,X) is
ξ-divisible for any ξ ∈ H which is a non-zero-divisor. This, together with the decom-
position (1), allows us to prove (Cor. 2.19) that given Q a nonzero polynomial in k[X],
we haveHd(I,X/XQ(ζ)) = 0 unless Q(1) = 0 in which caseHd(I,X/XQ(ζ)) ∼= χtriv.
But we remark that every irreducible admissible representation of SL2(F) is a quo-
tient X/XQ(ζ) for some Q as above and we prove:

Proposition (Proposition 2.20). – We have Hd(I, V ) = 0 for any irreducible ad-
missible representation of SL2(F) except when V is the trivial representation in which
case Hd(I, ktriv) ∼= χtriv as an H-bimodule.

In Sections 3 and 4, we move on to the study of E1 and Ed−1 respectively. Here we
fully use the Frobenius reciprocity recalled in §2.2 which allows to identify Ei with
Hi(I,X). We decompose the latter, via the Shapiro isomorphism, as a direct sum⊕

w∈W̃

Hi(Iw, k)

where w ranges over W̃ (defined at the beginning of Section 2, see also §2.4.1) and
Iw = I ∩wIw−1. We explain in §3.2 that we see elements of H1(Iw, k) as triples. This
is valid for G = SL2(F) with no restriction on F and stems from the computation
of the Frattini quotient of Iw. When I is a Poincaré group of dimension d, we use
the duality between E1 and Ed−1 (§14) to also express elements of Hd−1(Iw, k) as
triples in §4.1. When G = SL2(Qp), p ≥ 5, Remark §3.2 points out that the triples
of H1(Iw, k) are simply the elements in

Hom(Zp/pZp, k)×Hom((1 + pZp)
/
(1 + p2Zp), k)×Hom(Zp/pZp, k)

hence by duality the triples of H2(Iw, k) are the elements in

Zp/pZp ⊗Fp k × ((1 + pZp)
/
(1 + p2Zp))⊗Fp k × Zp/pZp ⊗Fp k.

In this context, the full left action of H on the triples of E1 and of E2 can be found in
§3.6 and §4.3 (the proof of the most technical formulas is postponed to the appendix).
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CHAPTER 1. INTRODUCTION 3

The right action of H on the triples can be deduced using the anti-involution J of E∗

(see §2.2.3 and Lemmas 3.7 and 4.1). We are especially interested in the left and right
action of the central element ζ ∈ H (which is fixed by J ).

In Section 5 we study the k[ζ]-torsion on the left in certain graded pieces of E∗ when
G = SL2(F), with various restrictive conditions on F depending on the graded piece
in question. Only for the computation of the k[ζ]-torsion in E2 do we use the explicit
formulas for the action of ζ hence we have to restrict ourselves to G = SL2(Qp), p ≥ 5.

Contemplating the formulas for the action of ζ on E1 and E2 (still when
G = SL2(Qp), p ≥ 5) emphasizes the role of the operators

f := ζ · idE∗ ·ζ − idE∗ and g := ζ · idE∗ − idE∗ ·ζ

as introduced in §6.1. The kernel of f is a k[ζ±1]-bimodule. Describing its structure
as an H-bimodule requires the technical Paragraph 3.7.3.2 (then see Propositions 6.8,
6.19 and Lemma 6.2). On the other hand, as the centralizer in E∗ of ζ, the kernel
of g is naturally a subalgebra of E∗. We describe this kernel precisely in §6.2.1 and
§6.3.1 (and Lemma 6.2) and conclude in Proposition 8.1 that it actually coincides
with the centralizer CE∗(Z) of the whole center Z := Z(H) of H in E∗. The product
in this natural subalgebra of E∗ is explicitly given in Section 8. (Note that the center
of H is no longer central in E∗).

Proposition 6.13 says that E2 is, as an H-bimodule, isomorphic to the direct sum
of the kernels of the operators f and g (restricted to E2) and Proposition 6.10 says
that it is also (essentially) the case for E1. This allows us to completely determine
the structure of E∗ as a left and right k[ζ]-module (Proposition 7.2) and to establish
results such as Proposition 7.6 where we study the k[ζ]-torsion on the left in spaces
of the form H∗(I,X/XQ(ζ)) for Q ∈ k[X]. This in particular leads to the following
theorem:

Theorem (Theorem 7.11). – Let G = SL2(Qp) with p ̸= 2, 3. For any representation
of finite length in Mod(G) we have:

i. The k-vector space H∗(I, V ) is finite dimensional;

ii. if V is generated by its subspace of I-fixed vectors V I and Q(ζ)V I = 0 for some
nonzero polynomial Q ∈ k[X], then the left H-module H∗(I, V ) is P (ζ)-torsion
for the polynomial P (X) := Q(X)Q( 1

X )Xdeg(Q).

The most interesting consequence of this theorem is that, under the same hypothe-
ses, an irreducible representation V in Mod(G) is supersingular if and only if the left
H-module H∗(I, V ) is supersingular (this is Corollary 7.12 which uses the theorem in
the case when Q = X). This strongly indicates that the notion of supersingularity for
general G can be extended to objects in the derived category D(G) by introducing a
theory of supports via the dg algebra H•. We hope to return to this in another paper.

In [13] §3.5 we studied the representation theoretic meaning of the localization Hζ

of the Hecke algebra in the central element ζ. Despite the fact that ζ is no longer
central in E∗ it turns out (Remark 7.7) that ζN0 is a left and right Ore set in E∗, so
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4 CHAPTER 1. INTRODUCTION

that the localization E∗ζ does exist. We will show elsewhere that E∗ζ again is a Yoneda
Ext-algebra and will investigate its meaning for the nonsupersingular SL2(Qp)-repre-
sentations.

After this paper was finished E. Bodon ([2]) gave in his thesis, building very much
on the computational methods developed in the present paper, two further structural
results in the case G = SL2(Qp) with p ̸= 2, 3. He describes explicitly the full graded
center of E∗. Even more remarkably he shows that the algebra E∗ as an algebra
over H is finitely presented.

In forthcoming work of the second author with K. Ardakov we develop a general
theory of central spaces for a certain class of Grothendieck categories which refines the
notion of the center of an abelian category. It was shown in [1] that the usual center
of the category Mod(G) is very small. For example, if G = SL2 then this center is the
group ring k[Z(G)] of the center of G. In contrast the central space in this case with
F = Qp is a projective variety over k which is a quotient of the affine variety Spec(Z)

by a relation which is given by the annihilator ideal of the Z ⊗k Z-bimodule E∗. The
results of the present paper allow to compute this ideal and therefore this projective
variety explicitly. Therefore we strongly believe that this bimodule and its support
variety play a basic role for the computation of the central space of Mod(G) for general
groups G.

This collaboration was partially funded by the NSERC Discovery Grant of the first
author and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy EXC 2044 390685587, Mathematics
Münster: DynamicsGeometryStructure. Both authors also acknowledge the support
of PIMS at UBC Vancouver.
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CHAPTER 2

NOTATIONS, PRELIMINARIES AND RESULTS
ON THE TOP COHOMOLOGY

Throughout the paper we fix a locally compact nonarchimedean field F (for now
of any characteristic) with ring of integers O, its maximal ideal M, and a prime
element π. The residue field O/πO of F is Fq for some power q = pf of the residue
characteristic p. We choose the valuation valF on F normalized by valF(π) = 1 We let
G := G(F) be the group of F-rational points of a connected reductive group G over F
which we always assume to be F-split. We will very soon specialize to the case when
G is almost simple and simply connected (starting Section 2.3) and in fact the core
of this article (starting Section 3) will focus on the case when G = SL2 and F = Qp

with p ̸= 2, 3.
We fix an F-split maximal torus T in G, put T := T(F), and let T 0 denote

the maximal compact subgroup of T and T 1 the pro-p Sylow subgroup of T 0. We
also fix a chamber C in the apartment of the semisimple Bruhat-Tits building X
of G which corresponds to T. The stabilizer P†C of C contains an Iwahori sub-
group J . Its pro-p Sylow subgroup I is called the pro-p Iwahori subgroup. We have
T ∩ J = T 0 and T ∩ I = T 1. If N(T ) is the normalizer of T in G, then we de-
fine the group W̃ := N(T )/T 1. In particular, it contains Ω := T 0/T 1. The quo-
tient W := N(T )/T 0 ∼= W̃/Ω is the extended affine Weyl group. The finite Weyl
group is W0 := N(T )/T . The length on W pulls back to a length function ℓ on W̃

(see [14] §2.1.4).
For any compact open subset A ⊆ G we let charA denote the characteristic function

of A.
The coefficient field for all representations in this paper is an arbitrary field k of

characteristic p > 0. For any open subgroup U ⊆ G we let Mod(U) denote the abelian
category of smooth representations of U in k-vector spaces.

2.1. The pro-p-Iwahori Hecke algebra

We consider the compact induction X := indG
I (1) of the trivial I-representation. It

can be seen as the space of compactly supported functions G→ k which are constant
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6 CHAPTER 2. NOTATIONS, PRELIMINARIES AND RESULTS

on the left cosets mod I. It lies in Mod(G). For Y a compact subset of G which is right
invariant under I, the characteristic function charY is an element of X. Equivalently
one may view X = k[G/I] as the k-vector space with basis the cosets gI ∈ G/I. The
pro-p Iwahori-Hecke algebra is defined to be the k-algebra

H := Endk[G](X)op.

We often will identify H, as a right H-module, via the map H → XI , h 7→ (charI)h

with the submodule XI of I-fixed vectors in X. The Bruhat-Tits decomposition of G
says that G is the disjoint union of the double cosets IwI for w ∈ W̃ . Hence we have
the I-equivariant decomposition

(2) X =
⊕

w∈W̃

X(w) with X(w) := indIwI
I (1),

where the latter denotes the subspace of those functions in X which are supported on
the double coset IwI. In particular, we have X(w)I = kτw where τw := charIwI and
hence H =

⊕
w∈W̃

kτw as a k-vector space.
The defining (braid and quadratic) relations of H are recalled in [14] §2.2. They

ensure in particular that we have a well defined trivial character of H denoted by χtriv

and defined by ([14] §2.2.2):
(3)
χtriv : τw 7−→ 0, τω 7−→ 1, for any w ∈ W̃ with ℓ(w) ≥ 1 and ω ∈ W̃ with ℓ(ω) = 0.

To define the notion of supersingularity for H-modules, we refer to [14] §2.3. Re-
call that there is a a central subalgebra Z0(H) of H which is isomorphic to the affine
semigroup algebra k[Xdom

∗ (T )], where Xdom
∗ (T ) denotes the semigroup of all dom-

inant cocharacters of T . The cocharacters λ ∈ Xdom
∗ (T ) \ (−Xdom

∗ (T )) generate a
proper ideal of k[Xdom

∗ (T )], the image of which in Z0(H) is denoted by J. We call an
H-module M supersingular if any element in M is annihilated by a power of J.

2.2. The Ext-algebra

We refer to [14] §3. We form the graded Ext-algebra

E∗ := Ext∗Mod(G)(X,X)op

over k with the multiplication being the (opposite of the) Yoneda product. Obviously

H := E0 = HomMod(G)(X,X)op

is the usual pro-p Iwahori-Hecke algebra over k. By using Frobenius reciprocity for
compact induction and the fact that the restriction functor from Mod(G) to Mod(I)

preserves injective objects we obtain the identification

(4) E∗ = Ext∗Mod(G)(X,X)op = H∗(I,X).

The only part of the multiplicative structure on E∗ which is still directly visible
on the cohomology H∗(I,X) is the right multiplication by elements in E0 = H,
which is functorially induced by the right action of H on X. In [14], we made the
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full multiplicative structure visible on H∗(I,X). We recall that for ∗ = 0 the above
identification is given by H

∼=−−→ XI , τ 7−→ (charI)τ .
Noting that the cohomology of profinite groups commutes with arbitrary sums, we

obtain from the I-equivariant decomposition (2) a decomposition of vector spaces

(5) H∗(I,X) =
⊕

w∈W̃

H∗(I,X(w)).

For w ∈ W̃ , we let Iw := I ∩ wIw−1 (see [14] §2.1.5). We call Shapiro isomorphism
and denote by Shw the composite map

(6) Shw : H∗(I,X(w))
res−−→ H∗(Iw,X(w))

H∗(Iw,evw)−−−−−−−−→ H∗(Iw, k),

where evw : X(w) −→ k, f −→ f(w) (see also [14] §3.2).

2.2.1. The cup product. – Recall from [14] §3.3 that there is a naive product struc-
ture on the cohomology H∗(I,X). By multiplying maps we obtain the G-equivariant
map X⊗k X −→ X, f ⊗ f ′ 7−→ ff ′. It gives rise to the cup product

(7) Hi(I,X)⊗k H
j(I,X)

∪−−→ Hi+j(I,X),

which has the property that Hi(I,X(v)) ∪ Hj(I,X(w)) = 0 whenever v ̸= w. On
the other hand, since evw(ff ′) = evw(f) evw(f ′) and since the cup product is func-
torial and commutes with cohomological restriction maps, we have the commutative
diagrams

(8) Hi(I,X(w))⊗k H
j(I,X(w))

Shw ⊗ Shw

��

∪ // Hi+j(I,X(w))

Shw

��

Hi(Iw, k)⊗k H
j(Iw, k)

∪ // Hi+j(Iw, k)

for any w ∈ W̃ , where the bottom row is the usual cup product on the cohomology
algebra H∗(Iw, k). In particular, the cup product (7) is anticommutative.

2.2.2. The Yoneda product. – The Yoneda product in E∗ ([14] §4.2) satisfies the fol-
lowing property:

(9) Hi(I,X(v)) ·Hj(I,X(w)) ⊆ Hi+j(I, indIvI·IwI
I (1)) for v, w ∈ W̃ .

The product of a ∈ Hi(I,X(v)) by b ∈ Hj(I,X(w)) is explicitly described in [14]
Prop. 5.3. We record here the following results.

Proposition 2.1. – Let v, w ∈ W̃ and a ∈ Hi(I,X(v)), b ∈ Hj(I,X(w)).

– if ℓ(vw) = ℓ(v) + ℓ(w), then

(10) a · b = (a · τw) ∪ (τv · b) ∈ Hi+j(I,X(vw)) ;
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– if ℓ(v) = 1 and ℓ(vw) = ℓ(w)− 1, then a · b lies in

Hi+j(I,X(vw))⊕
⊕

ω∈T 0/T 1

Hi+j(I,X(ωw)).

If furthermore G is semisimple and simply connected, then

(11) a · b− (a · τw) ∪ (τv · b) ∈ Hi+j(I,X(vw)).

Proof. – The first point is [14] Cor. 5.5. We prove the second point in §9.1 of the
appendix.

2.2.3. Anti-involution. – We refer to [14] §6. The graded algebra E∗ is equipped with
an involutive anti-automorphism. It is defined the following way. For w ∈ W̃ , we have
Iw−1 = w−1Iww and a linear isomorphism (w−1)∗ : Hi(Iw, k)

∼=→ Hi(Iw−1 , k), for all
i ≥ 0. Via the Shapiro isomorphism (6), this induces the linear isomorphism Jw:

(12) Hi(I,X(w))

Shw

��

Jw

∼=
// Hi(I,X(w−1))

Shw−1∼=
��

Hi(Iw, k)
(w−1)∗

∼=
// Hi(Iw−1 , k).

Summing over all w ∈ W̃ , the maps (Jw)
w∈W̃

induce a linear isomorphism

J : Hi(I,X)
∼=−→ Hi(I,X)

and it is proved in [14] Prop. 6.1 that J is an anti-automorphism of the graded
algebra E∗. Restricted to E0 = H, the map J coincides with the anti-involution
τg 7→ τg−1 for any g ∈ G of the algebra H.

We may twist the action of H on a left, resp. right, module Y by J and thus
obtain the right, resp. left module Y J , resp. J Y , with the twisted action of H given
by (y, h) 7→ J (h)y, resp. (h, y) 7→ yJ (h). If Y is an H-bimodule, then we may define
the twisted H-bimodule J Y J the obvious way and we recall that (J Y J )∨ ∼= J (Y ∨)J

([14] Rmk. 7.1), where (−)∨ = Homk(−, k).

2.2.4. Filtrations. – Let i ≥ 0. We define on Ei two filtrations:

— a decreasing filtration (FnEi)n≥0 where FnEi :=
⊕

w∈W̃ , ℓ(w)≥n
Hi(I,X(w));

— an increasing filtration (FnE
i)n≥0 where FnE

i :=
⊕

w∈W̃ , ℓ(w)≤n
Hi(I,X(w)).

When i = 0, we will often write FnH (resp. FnH) instead of FnE0 (resp. FnE
0).

Recall that (FnH)n≥0 is a filtration of H as an H-bimodule.
Moreover, FnE

∗ is an algebra filtration, which means that FnE
i · FmE

j ⊆ Fn+mE
i+j .

This follows from (9) together with the fact ([14] Cor. 2.5-ii and Remark 2.10) that

(13) IvI · IwI

{
= IvwI if ℓ(vw) = ℓ(v) + ℓ(w),

⊆
⋃

ℓ(v′)<ℓ(v)+ℓ(w) Iv
′I if ℓ(vw) < ℓ(v) + ℓ(w).
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2.2.5. Duality. – Recall that, given a vector space Y , we denote by Y ∨ the dual
space Y ∨ := Homk(Y, k) of Y . For Y a vector space which decomposes into a direct
sum Y =

⊕
w∈W̃

Yw, we denote by Y ∨,f the so-called finite dual of Y which is defined
to be the image in Y ∨ =

∏
w∈W̃

Y ∨w of ⊕
w∈W̃

Y ∨w .
In this paragraph, we always assume that the pro-p Iwahori group I is a torsion

free p-adic Lie group. This forces the field F to be a finite extension of Qp with p ≥ 5.
Then I, as well as every subgroup Iw for w ∈ W̃ , is a Poincaré group of dimension d
where d is the dimension of G as a p-adic Lie group. It implies that Hd(I, k) is
one-dimensional. Let η : Hd(I, k) ∼= k a fixed isomorphism (we will make a specific
choice for η when G := SL2(Qp), p ̸= 2, 3 in §3.2.3). Furthermore the Ext-algebra is
supported in degrees 0 to d. We refer to [14] §7.2. There is a duality between its i-th
and (d− i)-th pieces ([14] §7.2.4) which we recall here. Let S ∈ X∨ be the linear map
given by S :=

∑
g∈G/I evg. It is easy to check that S : X → k is G-equivariant when

k is endowed with the trivial action of G. We denote by Si := Hi(I,S) the maps
induced on cohomology. By [14] Prop. 7.18, the map

∆i : Ei = Hi(I,X) −→ Hd−i(I,X)∨ = (Ed−i)∨

a 7−→ la(b) := η ◦ Sd(a ∪ b)

induces an injective homomorphism of H-bimodules Ei −→ (J (Ed−i)J )∨ with
image (J (Ed−i)J )∨,f . Here we consider (as in §2.2.3) the twisted H-bimodule
J (Ed−i)J , namely the space Ed−i with the action of H on b ∈ Ed−i given by
(τ, b, τ ′) 7→ J (τ ′) · b · J (τ) for τ, τ ′ ∈ H. The anti-involution J was introduced in
§2.2.3. We still denote by ∆i the isomorphism

(14) ∆i : Ei −→ (J (Ed−i)J )∨,f .

Recall that the choice of η defines naturally a basis for Ed, namely, as in [14] §8,
we single out the unique element ϕw ∈ Hd(I,X(w)) such that (see also Rmk. 7.4 loc.
cit.)

(15) η ◦ Sd(ϕw) = η ◦ coresIw

I ◦Shw(ϕw) = 1.

2.2.6. Automorphisms of the pair (G,X). – For U a locally compact and totally dis-
connected group let Mod(U) be the abelian category of smooth U -representations
in k-vector spaces. It has enough injective objects.

We consider now a continuous group homomorphism ξ : U ′ → U between two such
groups. Any object M in Mod(U) can be viewed via ξ as an object ξ∗M in Mod(U ′).
An equivariant map f : M → M ′ between an object M in Mod(U) and an object
M ′ in Mod(U ′) is, by definition, a morphism f : ξ∗M → M ′ in Mod(U ′). In other
words f : M → M ′ is a k-linear map such that f(ξ(g′)m) = g′f(m) for any m ∈ M
and g′ ∈ U ′. We observe the following: Let M ∼−→ I•M and M ′ ∼−→ I•M ′ be injective
resolutions in Mod(U) and Mod(U ′), respectively. Then ξ∗M

∼−→ ξ∗I•M is a resolu-
tion in Mod(U ′) and f extends to a unique homotopy class of maps of resolutions
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ξ∗I•M
f̃−→ I•M ′ in Mod(U ′). This means that we may derive f to a map between any

appropriate cohomological functors on Mod(U) and Mod(U ′).

We will apply this in the following two contexts. First suppose that U and U ′ are
profinite groups. Then f extends to a map on cohomology

(ξ, f)∗ : Hi(U,M) −→ Hi(U ′,M ′).

Secondly, let U and U ′ be general again. For any further object L in Mod(U) we
obtain natural maps

(ξ, f)∗ : Exti
Mod(U)(L,M) −→ Exti

Mod(U ′)(ξ
∗L,M ′)

(I•L → I•M [i]) 7−→ (ξ∗I•L → ξ∗I•M [i]
f̃ [i]−−→ I•M ′ [i])

and, in particular,

ξ∗ := (ξ, idM )∗ : Exti
Mod(U)(L,M) −→ Exti

Mod(U ′)(ξ
∗L, ξ∗M).

The latter map is evidently compatible with the Yoneda product, since in the de-
rived category it is simply the composition product. Now suppose that ξ and f are
isomorphisms. Then we have the “conjugation” homomorphism

Exti
Mod(U)(M,M) −→ Exti

Mod(U ′)(M
′,M ′)

(I•M
τ−→ I•M [i]) 7−→ (I•M ′

f̃−1

−−→ ξ∗I•M [i]
ξ∗τ−−→ ξ∗I•M [i]

f̃ [i]−−→ I•M ′ [i]),

which again is compatible with the Yoneda product.

We now return to our group G and suppose given an automorphism ξ : G
∼=−→ G

with the property that ξ(I) = I. It induces the G-equivariant bijection X : ξ∗X
∼=−→ X,

which sends gI to ξ−1(g)I. We therefore obtain the k-linear graded bijections

Γξ : E∗
∼=−→ E∗ and Γξ : H∗(I,X)

∼=−→ H∗(I,X),

which correspond to each other under the identification (4). The left-hand one is an
algebra automorphism. Both are involutions provided we have ξ2 = idG. In terms of
elements of X as functions we have X (f) = f ◦ ξ. This immediately implies that Γξ is
compatible with the cup product (7) onH∗(I,X). In the following we list further prop-
erties, but for which we assume in addition that ξ(T ) = T . Then ξ(N(T )) = N(T ),
so that ξ induces an automorphism ξ of W̃ .

1. For all w ∈ W̃ , Γξ induces a map

H∗(I,X(w)) −→ H∗(I,X(ξ−1(w))).(16)

Since ξ(Iw) = Iξ(w) we correspondingly have a map

H∗(Iw,X(w)) −→ H∗(Iξ−1(w),X(ξ−1(w))).(17)
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2. Because evξ−1(w) ◦X |X(w)
= evw, the above maps are compatible with the

Shapiro isomorphism in the sense that the following diagram
(18)

H∗(I,X(w))

Shw

++

(16)
��

resI
Iw // H∗(Iw,X(w))

(17)
��

H∗(Iw,evw)
// H∗(Iw, k)

��

H∗(I,X(ξ−1(w)))

Shξ−1(w)

33

resI
I
ξ−1(w)

// H∗(Iξ−1(w),X(ξ−1(w)))
H∗(Iξ−1(w),evξ−1(w))

// H∗(Iξ−1(w), k)

commutes. Its horizontal arrows are the Shapiro isomorphisms (6) and the right-
hand side vertical arrow is induced by the isomorphism Iξ−1(w)

ξ−→∼= Iw.

3. Γξ commutes with J defined in (12); more precisely, each diagram

(19) H∗(I,X(w))

(16)
��

J
// H∗(I,X(w−1))

(16)
��

H∗(I,X(ξ−1(w)))
J
// H∗(I,X(ξ−1(w)−1))

is commutative.

4. We have noted already the compatibility of Γξ with the cup product
on H∗(I,X). It now holds in the more precise form of the commutativity
of the diagrams

(20) Hi(I,X(w))⊗k H
j(I,X(w))

(16)⊗(16)
��

∪ // Hi+j(I,X(w))

(16)
��

Hi(I,X(ξ−1(w)))⊗k H
j(I,X(ξ−1(w)))

∪ // Hi+j(I,X(ξ−1(w))).

2.3. The top cohomology Ed when G is almost simple simply connected

Without extra conditions on G or on F, we have the following. The ideal J (§2.1)
generates a two-sided ideal JH in H. Recall that we denote by V ∨ the k-linear dual
of a k-vector space V . We consider the obvious inclusion of H-bimodules

(H/JH)∨ −→ I((H/JH)∨) :=
⋃
m

(H/JmH)∨.

Lemma 2.2. – We have that I((H/JH)∨) is an injective H-module on the left
and on the right.
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— If furthermore G is semisimple, then I((H/JH)∨) is an injective hull
of (H/JH)∨ as a left as well as a right H-module.

Proof. – The following argument arose from a discussion with K. Ardakov. The other
case being entirely analogous we prove the statement as left H-modules.

Step 1. – We show that the left H-module I((H/JH)∨) is injective. By Baer’s crite-
rion it suffices to consider test diagrams of the form

L

α

��

⊆
// H

I((H/JH)∨),

where L ⊆ H is a left ideal. The ring H being noetherian the left ideal L is
finitely generated. Hence the image of α is contained in (H/JaH)∨ for any suffi-
ciently large a. The homomorphism then must factorize through a homomorphism
ᾱ : L/JaL→ (H/JaH)∨. Furthermore, since the ideal JH in the noetherian ring H is
centrally generated it has the Artin-Rees property (cf. [9] Prop. 4.2.6). This implies
that we find an integer b ≥ a such that JbH ∩ L ⊆ JaL. This reduces us to finding
the broken arrow in the diagram

L/JbH ∩ L

pr

��

// H/JbH

��

L/JaL

ᾱ

��

(H/JaH)∨

⊆
��

(H/JbH)∨.

We note that the horizontal arrow is injective and that this is a diagram
of H/JbH-modules. So it suffices to show that that the H/JbH-module (H/JbH)∨ is
injective. But the computation

HomH/JbH(M, (H/JbH)∨) = Homk(H/JbH ⊗H/JbH M,k) = Homk(M,k)

shows that these functors are exact in the H/JbH-module M .

Step 2. – Assume that the group G is semisimple. Then H/JmH is finite dimen-
sional over k for any m ≥ 1. We show that the inclusion (H/JH)∨ ⊆ I((H/JH)∨) is
essential, i.e., that any nonzero H-submodule Y of I((H/JH)∨) has nonzero inter-
section with (H/JH)∨. It, of course, suffices to consider the case when Y is a cyclic
module. We then have Y ⊆ (H/JmH)∨ for some large m. Let Y ⊥ ⊆ H/JmH be
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the orthogonal complement of Y . Suppose that Y ∩ (H/JH)∨ = 0. This means
that Y ⊥ + JH/JmH = H/JmH But JH/JmH is contained in the Jacobson radical
of H/JmH. Hence the Nakayama Lemma implies that Y ⊥ = H/JmH, which gives
rise to the contradiction that Y = 0.

Remark 2.3. – The anti-involution J : H → H yields an isomorphism of H-bi-
modules H ∼= JHJ . By [14] Remark 6.3, it preserves the central ideal J, as
well as the central ideal Jm for any m ≥ 1. Therefore, we have an isomor-
phism of H-bimodules H/JmH ∼= J (H/JmH)J . By [14] Remark 7.1, we also
have (H/JmH)∨ ∼=J ((H/JmH))∨)J .

Until the end of this paragraph, we assume as in §2.2.5 that the pro-p Iwahori
group I is torsion free. Therefore it is a Poincaré group of dimension d. The map Sd :

Hd(I,X) → k was introduced in §2.2.5. Assume also that G is almost simple and
simply connected. Then in [14] §8, we studied Ed using the isomorphism

(21) Ed ∼=−→ (JE0 J )∨,f

recalled in (14). (Notice that some of the results there are true under weaker hy-
potheses than the ones of the current context). By Prop. 8.6 loc. cit., we have an
isomorphism of H-bimodules

(22) Ed ∼= ker(Sd)⊕ χtriv.

Proposition 2.4. – Suppose that G is almost simple and simply connected. Then
we have an isomorphism of H-bimodules

ker(Sd) ∼=
⋃
m

(H/JmH)∨.

In particular, ker(Sd) is an injective hull of the left (resp. right) H-module (H/JH)∨

and is supersingular as a left (resp. right) H-module.

Proof. – In fact, via (21), we have the isomorphism ker(Sd) ∼= (J ker(χtriv)
J )∨,f

where (ker(χtriv))
∨,f is the image of (E0)∨,f in the natural restriction map

(E0)∨ → (ker(χtriv))
∨. This gives the alternate description of ker(Sd) as an H-bi-

module:

(23) J (ker(Sd))J ∼=
⋃
m

(ker(χtriv)/F
mH ∩ ker(χtriv))

∨.

Recall indeed that G being semisimple, H/FmH is a finite dimensional vector space.
On the other hand, the character χtriv is not supersingular ([14] Remark 2.12.iv and
Lemma 2.13) and therefore we have JmH + ker(χtriv) = H for any m ≥ 1. Hence

(24)
⋃
m

(H/JmH)∨ =
⋃
m

(ker(χtriv)/J
mH ∩ ker(χtriv))

∨.

But, since G is almost simple simply connected, [14] Lemma 2.14 says that

JmH ∩ ker(χtriv) = Jm · ker(χtriv) ⊆ FmH ⊆ ker(χtriv) for any m ≥ 1
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(the left equality coming from JmH+ker(χtriv) = H). Furthermore, the braid relations
imply that F jmH ⊆ (F jH)m.

Fact 2.5. – There is a j ≥ 1 such that F jH ⊆ JH.

Proof. – By a finite base extension of k we may assume that Fq ⊆ k. Then any
simple supersingularH-module is a character ([13] Lemma 3.8). But any supersingular
character of H must vanish on τs for at least one simple affine reflection s. There is a
sufficiently large integer r ≥ 1 such that in a reduced decomposition of an element w
of length ≥ r every simple affine reflection occurs. This implies that F rH is contained
in the intersection R of all the supersingular characters.

But R/JH is the Jacobson radical of the artinian ring H/JH. In any artinian ring
the Jacobson radical is nilpotent. Hence we find an n ≥ 1 such that Rn ⊆ JH. Now
take j := nr.

The fact implies that F jmH ⊆ JmH for any m ≥ 1. It follows that the
two filtrations JmH ∩ ker(χtriv) and FmH ∩ ker(χtriv) of ker(χtriv) are cofinal.
Hence, the right-hand sides of (23) and of (24) are isomorphic and we have
J (ker(Sd))J ∼=

⋃
m(H/JmH)∨ as H-bimodules. Now using Remark 2.3:

ker(Sd) ∼=
⋃
m

(H/JmH)∨

as H-bimodules and by Lemma 2.2 we have proved that ker(Sd) is an injective hull
of the left (resp. right) H-module (H/JH)∨.

2.4. The pro-p-Iwahori Hecke algebra of SL2

For §2.4.1–2.4.6 we refer to [13] §3.

2.4.1. Root datum. – To fix ideas we consider I =
(

1+M O
M 1+M

)
(by abuse of notation,

here and later in this paragraph, all matrices are understood to have determinant one).
We let T ⊆ G be the torus of diagonal matrices, T 0 its maximal compact subgroup,
T 1 its maximal pro-p subgroup, and N(T ) the normalizer of T in G. We choose the
positive root with respect to T to be α(

(
t 0
0 t−1

)
) := t2, which corresponds to the Borel

subgroup of upper triangular matrices. The affine Weyl group W sits in the short
exact sequence

0 −→ Ω = T 0/T 1 −→ W̃ = N(T )/T 1 −→W = N(T )/T 0 −→ 0.

Let s0 := sα :=
(

0 1
−1 0

)
, s1 :=

(
0 −π−1

π 0

)
, and θ :=

(
π 0
0 π−1

)
, such that s0s1 = θ. The

images of s0 and s1 in W are the two reflections corresponding to the two vertices
of the standard edge fixed by I in the tree of G. They generate W , i.e., we have
W = ⟨s0, s1⟩ = θZ∪̇s0θZ (by abuse of notation we do not distinguish in the notation
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between a matrix and its image in W or W̃ ). We let ℓ denote the length function
on W corresponding to these generators as well as its pull-back to W̃ . One has

ℓ(θi) = |2i| and ℓ(s0θ
i) = |1− 2i|.

Remark 2.6. – Consider SL2(F) as a subgroup of GL2(F). Then the matrix
ϖ := ( 0 1

π 0 ) normalizes I; furthermore, s1 = ϖs0ϖ
−1.

2.4.2. Generators and relations. – The characteristic functions τw := charIwI of the
double cosets IwI form a k-basis of H when w ranges over W̃ . Let e1 := −

∑
ω∈Ω τω.

The relations in H are

τvτw = τvw whenever ℓ(w) + ℓ(v) = ℓ(wv) and(25)

τ2
si

= −e1τsi
for i = 0, 1.(26)

The elements τω, τsi
, for ω ∈ Ω and i = 0, 1, generate H as a k-algebra. Note that the

k-algebra k[Ω] identifies naturally with a subalgebra of H via ω 7→ τω.
The trivial character of H (see (3)) may be defined by

(27) χtriv : τs 7−→ 0, τω 7−→ 1, for s ∈ {s0, s1} and ω ∈ Ω.

The sign character χsign of H, which can be introduced in general as in [14] §2.2.2, is
easy to describe in the current context when G = SL2:

(28) χsign : τs 7−→ −1, τω 7−→ 1, for s ∈ {s0, s1} and ω ∈ Ω.

2.4.3. The involution ι. – There is an involutive automorphism ι of H satisfying

(29) ι(τs) = −e1 − τs for s ∈ {s0, s1} and ι(τω) = τω for ω ∈ Ω

(see [12] §4.8). For ϵ = 0, 1, the following sequence of left H-modules is exact:

(30) 0 −→ Hτsϵ −→ H −→ Hι(τsϵ) −→ 0

(see the remark after the proof of [13] Prop. 3.54).

For a left (resp. right) H-module M , we denote by ιM (resp. M ι) the H-mod-
ule on the space M with the action of H twisted by ι.

2.4.4. The central element ζ. – We refer to [13] §3.2.2. Consider the element

(31) ζ := (τs0
+ e1)(τs1

+ e1) + τs1
τs0

= (τs1
+ e1)(τs0

+ e1) + τs0
τs1
.

Notice that J (ζ) = ζ and that χtriv(ζ) = χsign(ζ) = 1. The element ζ is central
in H, and the subalgebra k[ζ] of H generated by ζ is the algebra of polynomials in
the variable ζ. Furthermore, ζ is not a zero divisor in H and the k-algebra H/Hζ is
finite dimensional (see for example [13] Lemma 1.3). We will denote by Hζ the algebra
obtained by localizing H in ζ. The anti-involution J extends to Hζ . The involution ι
also fixes ζ and induces an involutive automorphism of Hζ .

For ϵ = 0, 1, define Hϵ to be the subalgebra of H generated by τsϵ
, τω, ω ∈ Ω. The

following result is [13] Cor. 3.4.
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Lemma 2.7. – Let ϵ = 0 or 1; the morphism of (Hϵ, k[ζ])-bimodules

Hϵ ⊗k k[ζ] ⊕ Hϵ ⊗k k[ζ] −→ H

1⊗ 1 7−→ 1

1⊗ 1 7−→ τs1−ϵ

is an isomorphism. In particular, H is a free and finitely generated k[ζ]-module of
rank 4(q − 1).

Fact 2.8. – Suppose that Fq ⊆ k and that p ̸= 2 or F = Qp. Then for V an irreducible
quotient of Xe1/Xe1(ζ − 1) we have V I ∼= χtriv or V I ∼= χsign as a left H-module.

Proof. – A basis of He1/He1(ζ − 1) is given by the image in the quotient of

ι(τs0
)τs1

e1, τs0
ι(τs1

)e1, ι(τs0
)e1, τs0

e1

(compare with Lemma 2.7). The elements ι(τs0
)τs1

e1 and τs0
ι(τs1

)e1 support
respectively the characters χtriv and χsign. This follows from using repeat-
edly ι(τs0

)τs1
e1 + ι(τs1

)τs0
e1 = (−ζ + 1)e1 ≡ 0 in He1/He1(ζ − 1) and likewise

τs0
ι(τs1

)e1 + τs1
ι(τs0

)e1 ≡ 0 in He1/He1(ζ − 1). Then it is easy to see that in the
resulting quotient, ι(τs0)e1 and τs0e1 support respectively the characters χtriv and
χsign. So we have an exact sequence of left H-modules

(32) 0 → χtriv ⊕ χsign → He1/He1(ζ − 1) → χtriv ⊕ χsign → 0.

All the modules in question are annihilated by ζ − 1 so they are Hζ-modules.
Suppose furthermore that Fq ⊆ k and that F = Qp or p ̸= 2. We may apply [13]
Thm. 3.33 which ensures that the functor X⊗H − is exact on (32), provides an exact
sequence of G representations

0 → X⊗H χtriv ⊕X⊗H χsign → Xe1/Xe1(ζ − 1) → X⊗H χtriv ⊕X⊗H χsign → 0

and that for χ ∈ {χsign, χtriv} we have (X ⊗H χ)I ∼= χ and therefore X ⊗H χ is an
irreducible representation of G. Therefore any irreducible quotient of Xe1/Xe1(ζ − 1)

is isomorphic to X⊗H χtriv or X⊗H χsign.

Remark 2.9. – After localizing (30) in ζ we get an exact sequence of left Hζ-modules

(33) 0 −→ Hζτsϵ
−→ Hζ −→ Hζ ι(τsϵ

) −→ 0.

Notice that the map h 7→ ζ−1hτs1−ϵ
τsϵ

splits the inclusion Hζτsϵ
−→ Hζ because

ζτsϵ
= τsϵ

τs1−ϵ
τsϵ

(compare with the proof of [13] Lemma 3.30). So we have
Hζ

∼= Hζτsϵ ⊕Hζ ι(τsϵ) as left Hζ-modules.

Remark 2.10. – The element ζ depends on the choice of the uniformizer π. Let
u ∈ O×. We verify that if we pick uπ as a uniformizer, the new corresponding central
element ζu is

(34) ζu := τωu−1 (τs0 +e1)(τs1 +e1)+τωuτs1τs0 = τωu(τs1 +e1)(τs0 +e1)+τωu−1 τs0τs1

where ωu is the element
(

u−1 0
0 u

)
T 1 ∈ Ω. Of course we have ζ = ζ1. A system of

generators of the center Z of H as a k-vector space is given by the set of all ζu for u
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ranging over a system of representatives of (O/M)× (to which one has to add τ1 if
p = 2) (see [13] (24) in Remark 3.5).

We have the formula: ζu1
ζu2

= ζu1u2
ζ for any u1, u2 ∈ O×. In particular

(35) ζu ζu−1 = ζ2 and ζu2 ζ = ζ2
u.

These identities ensure that the localized algebra Hζ does not depend on the choice
of the uniformizer.

2.4.5. Supersingularity. – In the current context where G = SL2, the ideal J intro-
duced in §2.1 is the central ideal ζk[ζ]. Following the definition introduced in that
paragraph, an H-module M is called supersingular if any element in M is annihilated
by a power of ζ.

Remark 2.11. – Let u ∈ O×. From (35), one easily deduces that an element in M is
annihilated by a power of ζ if and only if it is annihilated by a power of ζu. Therefore,
even if ζ does depend on the choice of a uniformizer, the notion of supersingularity
does not.

2.4.6. Idempotents. – The element e1 is a central idempotent in H. More generally,
to any k-character λ : Ω → k× of Ω, we associate the following idempotent in H:

(36) eλ := −
∑
ω∈Ω

λ(ω−1)τω.

Note that J (eλ) = eλ−1 and eλτω = τωeλ = λ(ω)eλ for any ω ∈ Ω. We parameterize Ω

by the isomorphism

(O/M)×
∼=−−→ Ω(37)

u 7−→ ωu :=
(

[u]−1 0
0 [u]

)
T 1,

where [u] is a lift in O for u ∈ (O/M)×, and we pick the multiplicative Teichmüller
lift.

Remark 2.12. – Given a homomorphism of groups Λ : (O/M)× → k×, we may
consider the character λ : Ω → k× obtained via composition with the inverse of (??)
and the corresponding idempotent as in (36). We will then use the shortcut eΛ to
denote the latter. This will be used in the following context:

If q = p we have the homomorphism id : (O/M)× = F×p
⊆−→ k×, which will play an

important role later on. For m ∈ Z, we will consider the idempotent element

(38) eidm ∈ k[Ω]

with the above convention. When m = 0 this is consistent with the notation e1 in
§2.4.2.
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Suppose for a moment that Fq ⊆ k. Then all simple modules of k[Ω] are one di-
mensional. The set Ω̂ of all k-characters of Ω has cardinality q − 1 which is prime
to p. This implies that the family {eλ}λ ∈ Ω̂ is a family of orthogonal idempo-
tents with sum equal to 1. It gives the ring decomposition k[Ω] =

∏
λ∈Ω̂ keλ. Let

Γ := {{λ, λ−1} : λ ∈ Ω̂} denote the set of s0-orbits in Ω̂. To γ ∈ Γ we attach the ele-
ment eγ := eλ + eλ−1 (resp. eγ := eλ) if γ = {λ, λ−1} with λ ̸= λ−1 (resp. γ = {λ}).
Using the braid relations, one sees that eγ is a central idempotent in H and we have
the ring decomposition H =

∏
γ∈ΓHeγ . If q = p then the idempotent

(39) eγ0
:= eid + eid−1

will be of particular importance (see (38)).

2.4.7. Certain H-modules. – For later purposes we construct in this section certain
families of H-modules. The reader may skip this at first reading coming back to it
only when needed. We fix a homomorphism of k-algebras κ : H → R as well as an
element z ∈ Z(R) in the center of R. Let M2(R) denote, as usual, the algebra of 2

by 2 matrices over R. We also fix a character µ : Ω → k×. With these choices we
define the matrices

M0 :=
(
−κ(eµ) 0
zκ(τs1

) 0

)
, M1 :=

(
0 zκ(τs0

)

0 −κ(eµ−1 )

)
, and Mω :=

(
µ−1(ω)κ(τω) 0

0 µ(ω)κ(τω)

)
for ω ∈ Ω.

It is straightforward to check that these matrices satisfy the relations

M2
i =

∑
ω∈Ω

MωMi, MωMi = MiMω−1 , and MωMω′ = Mωω′ .

Hence we obtain a k-algebra homomorphism κ2 : H → M2(R) by sending τsi
to Mi

and τω to Mω. By using this homomorphism to equip the left R-module R⊕R with a
right H-module structure we obtain an (R,H)-bimodule denoted by (R⊕R)[κ, z, µ].

2.4.8. Frobenius extensions. – The space Homk[ζ](H, k[ζ]) is naturally an H-bimodule
via (h,Λ, h′) 7→ Λ(h′−h).

Proposition 2.13. – We have an isomorphism of H-bimodules

ιH ∼= Hι ∼= Homk[ζ](H, k[ζ]).

Proof. – The first isomorphism is given by the map ι : H → H. From Lemma 2.7 we
know that H is a free k[ζ]-module with basis the set of all τw for w ranging over the
set

(40) ω, ωs0, ωs1, ωs0s1 when ω ∈ Ω.

We define in Homk[ζ](H, k[ζ]) the dual basis, namely for each x ∈ (40), we define
the map Λx ∈ Homk[ζ](H, k[ζ]) which sends each τy with y ∈ (40) to 0 except
Λx(τx) = 1 ∈ k[ζ]. We check that

(41) Λs0s1
(ττ ′) = Λs0s1

(ι(τ ′)τ),
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which ensures that

f : ιH −→ Homk[ζ](H, k[ζ])(42)

τ 7−→ f(τ)(τ ′) := Λs0s1(ττ
′)

defines a homomorphism of H-bimodules.
Let w,w′ ∈ W̃ and τ := τw, τ ′ := τw′ . Since Λs0s1

is k[ζ]-linear it is enough to verify
(41) when w,w′ ∈ (40). And in fact it is easy to see that both sides of (41) are then
zero except possibly in the following cases. Let ω, ω′ ∈ Ω. The verifications below rely
on the quadratic Formulas (26) and the expression ζ = (τs0

+ e1)(τs1
+ e1) + τs1

τs0
=

(τs1 + e1)(τs0 + e1) + τs0τs1 . We spell out a few of them.

— If w = ωs0 and w′ = ω′s1, we have Λs0s1(ττ
′) = Λs0s1(τωω′−1τs0s1) which

is equal to 1 if ω = ω′ and to 0 otherwise. We have Λs0s1
(ι(τ ′)τ) =

−Λs0s1
(τω′ω−1(τs1

+ e1)τs0
) = −Λs0s1

(τω′ω−1(ζ − (τs1
e1 + e1) − τs0s1

)) =

Λs0s1(τω′ω−1s0s1
) which is also equal to 1 if ω = ω′ and to 0 otherwise.

— If w = ωs1 and w′ = ω′s0, we easily check that both Λs0s1
(ττ ′) and

Λs0s1(ι(τ
′)τ)are equal to −1 if ω = ω′ and to 0 otherwise.

— If w = ωs0 and w′ = ω′s0s1, we have Λs0s1
(ττ ′) = −Λs0s1

(τωω′−1e1τs0s1
) =

−Λs0s1(e1τs0s1) which is equal to 1.
We compute

Λs0s1(ι(τ
′)τ) = Λs0s1(τω′ω(τs0 + e1)(τs1 + e1)τs0) = Λs0s1(τω′ω(ζ − τs1s0)τs0)

= Λs0s1
(τω′ωe1τs1s0

) = Λs0s1
(e1τs1s0

) = −Λs0s1
(
∑
u∈Ω

τuτs1s0
),

which is equal to 1 (see the previous case).

— If w = ωs0s1 and w′ = ω′s1, we check that Λs0s1(ττ
′) = Λs0s1(ι(τ

′)τ) = 1.

— If w = ωs1 and w′ = ω′s0s1, we have Λs0s1
(ττ ′) = Λs0s1

(τωω′−1τs1s0s1
) =

Λs0s1(τωω′−1ζτs1) = 0.
We have Λs0s1(ι(τ

′)τ) = Λs0s1(τω′ω(τs0 + e1)(τs1 + e1)τs1) = 0.

— If w = ωs0s1 and w′ = ω′s0, we have likewise Λs0s1
(ττ ′) = Λs0s1

(ι(τ ′)τ) = 0.

— If w = ωs0s1 and w′ = ω′s0s1, we have Λs0s1
(ττ ′) = Λs0s1

(τωω′τs0s1s0s1
) =

Λs0s1
(τωω′ζτs0s1

) which is equal to ζ if ω′ = ω−1 and to 0 otherwise. We have
Λs0s1(ι(τ

′)τ) = Λs0s1(τω′ω(τs0+e1)(τs1+e1)τs0s1) = Λs0s1(τω′ω(ζ−τs1s0)τs0s1) =

Λs0s1
(τω′ω(ζτs0s1

− ζe1τs1
)) which is also equal to ζ if ω′ = ω−1 and to 0 oth-

erwise.

To prove that (42) is surjective, we verify the following. We have

a) −τs0
· Λs0s1

= Λs1
.

b) (τs1
+ e1) · Λs0s1

= Λs0
.

c) −(τs1
+ e1)τs0

· Λs0s1
= Λ1.

d) for all w ∈ (40) and ω ∈ Ω, we have Λw · τω−1 = Λωw.
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Property d) is immediate. The other properties are easily verified by evaluating ex-
plicitly the left-hand side at all elements of the form τw for w ∈ (40). For example
−(τs1

+e1)τs0
·Λs0s1

(τω) = −Λs0s1
(τω(τs1

+e1)τs0
) which we already computed above

is equal to 1 if ω = 1 and to 0 otherwise.
Once it is proved that (42) is surjective, the injectivity is immediate since both

spaces are free k[ζ]-modules of the same rank.

Using a free resolution of any arbitrary left (resp. right) k[ζ]-module, and since
H is finitely generated free hence projective over k[ζ], it follows immediately:

Corollary 2.14. – Let M be a left, resp. right, k[ζ]-module. We have an isomor-
phism of left, resp. right, H-modules

H ⊗k[ζ] M ∼= ιH ⊗k[ζ] M ∼= Homk[ζ](H,M)

resp. M ⊗k[ζ] H ∼= M ⊗k[ζ] Hι ∼= Homk[ζ](H,M).

Proof. – For the left-hand isomorphisms note that ιH (resp. Hι) is naturally isomor-
phic to H as an (H, k[ζ])-bimodule (resp as a (k[ζ], H)-bimodule) since ι fixes ζ.

Corollary 2.15. – For a ∈ k, the finite dimensional k-algebra H/(ζ−a)H is Frobe-
nius.

Proof. – The isomorphism of H-bimodules (42) clearly factors through an isomomor-
phism of H/(ζ − a)H-bimodules

(43) ι(H/(ζ − a)H) ∼= Homk[ζ](H/(ζ − a)H, k[ζ]/(ζ − a)) ∼= Homk(H/(ζ − a)H, k).

2.4.9. Finite duals. – We consider the finite dual H∨,f of H (see §2.2.5) with basis
(τ∨w )

w∈W̃
defined to be the dual of (τw)

w∈W̃
. When I is a Poincaré group of dimen-

sion d, we have an isomorphism between Ed and the twisted H-bimodule J (H∨,f )J

given by (14). In §2.2.5, just like in[14] §8, we denoted by ϕw the element of Ed

corresponding to τ∨w and we computed in Prop. 8.2 loc. cit that the structure of H-bi-
module of J (H∨,f )J is given by the following formulas. Let w ∈ W̃ , ω ∈ Ω and
s ∈ {s0, s1}.

(44) τ∨w · τω = τ∨wω, τω · τ∨w = τ∨ωw,

τ∨w · τs =

{
τ∨ws − τ∨w · e1 if ℓ(ws) = ℓ(w)− 1,
0 if ℓ(ws) = ℓ(w) + 1,

(45)

τs · τ∨w =

{
τ∨sw − e1 · τ∨w if ℓ(sw) = ℓ(w)− 1,
0 if ℓ(sw) = ℓ(w) + 1.
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Remark 2.16. – For all w ∈ W̃ with length ≥ 1, there is a unique ϵ ∈ {0, 1} such
that ℓ(sϵw) = ℓ(w) − 1. We let ψw := τsϵ · ϕw = ϕsϵw − e1 · ϕw. From the formulas
above we get ζ · ψw = ψs1−ϵsϵw if ℓ(w) ≥ 3 and ζ · ψw = 0 if ℓ(w) = 1, 2. So the
subspace Ψ generated by the ψw is of ζ-torsion and contained in ker(Sd). We show
that this subspace is in fact equal to ker(Sd). First of all we recall from the proof of
[14] Prop. 8.6 that Ed = ker(Sd) ⊕ ke1 · ϕ1. Then we notice that Ψ is stable under
the left action of τω for ω ∈ Ω. So Ψ = e1 ·Ψ⊕ (1− e1) ·Ψ, and it is enough to show
that (1 − e1) · Ψ = (1 − e1) · Ed and e1 · Ψ ⊕ ke1 · ϕ1 = e1 · Ed. The first identity
is true because, for w ∈ W̃ , there exists η ∈ {0, 1} such that ℓ(sηw) = ℓ(w) + 1 and
(1−e1) ·ϕw = (1−e1) ·ψs−1

η w. To prove the second identity, we let w ∈ W̃ . If ℓ(w) = 0,
then e1 · ϕw = e1 · ϕ1. If ℓ(w) > 1, let ϵ ∈ {0, 1} such that ℓ(sϵw) = ℓ(w) − 1. Then
e1 · ϕw = e1 · ϕsϵw − e1 · ψw lies in e1 ·Ψ⊕ ke1 · ϕ1 by induction on ℓ(w).

Let m ≥ 1. The restriction map H∨,f → (FmH)∨,f is a homomorphism
of H-bimodules and makes the finite dual (FmH)∨,f of FmH a quotient of the H-bi-
module H∨,f . Furthermore, (FmH/Fm+1H)∨ identifies with the sub-H-bimodule
of (FmH)∨,f of the linear forms which are trivial on Fm+1H. We consider the linear
map defined by

FmH/Fm+1H −→ J ((FmH/Fm+1H)∨)J(46)

τw 7−→ τ∨w |F mH
for w ∈ W̃ such that ℓ(w) = m.

By the above formulas, it is an isomorphism of H-bimodules.

2.4.10. The equivalence of categories. – When G = SL2(Qp), the functors H0(I,−)

and X ⊗H − are quasi-inverse equivalences between the category ModI(G) of all
smooth representations generated by their I-fixed vectors and the category of left
H-modules. In particular, H0(I,−) is exact in ModI(G). (See [13] Prop. 3.25).

2.5. On some values of the functor Hd(I,− ) when G = SL2

We assume that G = SL2 and that I is torsion free and therefore a Poincaré group
of dimension d. It follows, in particular, that p ≥ 5. By (22) and Proposition 2.4 we
have

Ed ∼= ker(Sd)⊕ χtriv

as H-bimodules where ker(Sd) ∼=
⋃

n≥1(H/ζ
nH)∨. As a left or right H-module,

ker(Sd) is an injective envelope of (H/ζH)∨. Being injective, this is a ξ-divisible
module on the left, resp. right, for any ξ ∈ H which is a non-zero-divisor. For exam-
ple, we know that H is free over k[ζ] (Lemma 2.7) so Q(ζ) is a non-zero-divisor for
any nonzero polynomial Q(X) ∈ k[X]. If furthermore χtriv(ξ) ̸= 0, then the whole
space Ed is ξ-divisible. Recall that χtriv(ζ) = 1.

Remark 2.17. – χtriv is the only nontrivial finite dimensional quotient of Ed as a
left or right H-module.
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Proof. – Since ker(Sd) is left and right ζ-torsion, a finite dimensional quotient
of ker(Sd) as a left, resp. right, module is annihilated by a power ζm of ζ from the
left, resp. right. But ker(Sd) · ζm = ζm ·ker(Sd) = ker(Sd) since ker(Sd) is ζ-divisible.
Therefore any finite dimensional module quotient of ker(Sd) is zero.

Recall that Hd(I,−) is a right exact functor which commutes with arbitrary direct
sums. By choosing a free presentation of an arbitrary left H-module M this easily
implies the formula

Hd(I,X⊗H M) ∼= Ed ⊗H M.

This is an isomorphism of left H-modules.

Proposition 2.18. – Let G = SL2(F). For any non-zero-divisor ξ ∈ H such that ξ is
central in H and χtriv(ξ) ̸= 0, we have Hd(I,X/Xξ) = 0.

Proof. – Using the equality X/Xξ = X⊗H H/Hξ we compute

Hd(I,X/Xξ) = Ed ⊗H H/Hξ = χtriv ⊗H H/Hξ ⊕ ker(Sd)⊗H H/Hξ

= k/χtriv(ξ)k ⊕ ker(Sd)/ ker(Sd)ξ = 0.

Corollary 2.19. – Let Q(X) ∈ k[X] be a nonzero polynomial.
Then Hd(I,X/XQ(ζ)) = 0, resp. ∼= χtriv as an H-bimodule, if Q(1) ̸= 0, resp.

Q(1) = 0.

Proof. – For the 2nd part of the result, we simply notice that χtriv ⊗H H/HQ(ζ) ∼= χtriv

as a left H-module. Therefore, proceeding as above, we obtain an isomorphism of
left H-modules Hd(I,X/XQ(ζ)) ∼= χtriv. By Remark 2.17 this is an isomorphism
of H-bimodules because Hd(I,X/XQ(ζ)) is a one-dimensional quotient of Ed.

Proposition 2.20. – We have Hd(I, V ) = 0 for any irreducible admissible represen-
tation of G := SL2(F) except when V = ktriv is the trivial representation in which
case:

Hd(I, ktriv) ∼= χtriv as an H-bimodule.

Proof. – The case when V = ktriv is the trivial representation of G is a particular
case of [14] Prop. 8.4.i. For the rest of the proof we therefore assume that V ≇ ktriv.
We first make we the following observations. Let k̄/k denote an algebraic closure of k.
Then the scalar extension Vk̄ := k̄ ⊗k V is a smooth G-representation over k̄.

— Since Hd(I,−) commutes with arbitrary direct sums we have
Hd(I, Vk̄) = Hd(I, V )⊗k k̄.

— Since V is admissible EndMod(G)(V ) is finite dimensional over k.

— The G-representation Vk̄ is of finite length with each irreducible constituent
being admissible and not isomorphic to ktriv ([3] Thm. III.4.1)-2), which needs
the previous point as input).
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By an argument with the exact cohomology sequence these observations reduce us to
proving our assertion over k̄. In fact, all we need in the following is that Fq ⊆ k.

Given an irreducible admissible representation V of G, the space V I is finite dimen-
sional. Let Q ∈ k[X] denote the minimum polynomial of ζ on V I , so that Q(ζ)V I = 0.
We claim that V is a quotient representation of X/XQ(ζ). For this we choose a
nonzero vector v0 ∈ V I , which gives rise to the surjective G-equivariant map X ↠ V

sending gI to gv0. It restricts to the mapH → V I sending charI to v0. But (gI)Q(ζ) =

gQ(ζ) 7→ gQ(ζ)v0 = 0. It follows that the initial map factors over X/XQ(ζ).
If Q(1) ̸= 0, then we have Hd(I,X/XQ(ζ)) = 0, but Hd(I, V ) being a quotient of

that space is also zero. It remains to treat the case Q(1) = 0. Then we can choose
the above vector v0 so that (ζ − 1)v0 = 0 and M := Hv0 is a simple H-submodule
of V I . Since ζ is the identity on M , it follows from [13] Thm. 3.33 that X⊗H M is an
irreducible G-representation with (X ⊗H M)I = M . The inclusion M ⊆ V I induces
a nonzero map X ⊗H M → V which by irreducibility must be an isomorphism. It
follows that V = X⊗H V

I and that V I is a simple H-module. Hence there is a unique
γ ∈ Γ such that V I = eγV

I (notation in §2.4.6). It further follows that Hd(I, V ) =

Hd(I,X ⊗H V I) = Ed ⊗H V I ∼= χtriv ⊗H V I ⊕ ker(Sd) ⊗H V I = χtriv ⊗H V I , the
latter equality since ker(Sd) is divisible by ζ − 1.

— If γ ̸= {1}, then the idempotent eγ satisfies χtriv(eγ) = 0, so Hd(I, V ) = {0}.
— If γ = {1}, then we use Fact 2.8 to deduce that V I ∼= χtriv or V I ∼= χsign. If

V I ∼= χsign, then χtriv ⊗H V I = {0} because χtriv(τs0
) = 0 and χsign(τs0

) = −1.
If V I = χtriv, then by [15] Lemma 2.25 we know that X ⊗H V I ∼= ktriv so
V = ktriv.

Remark 2.21. – Let z ∈ H be a central element H. Then J (z) is also a central
element and from the isomorphism ∆d : Ed

∼=−→ (JE0 J )∨,f (see (14)) we deduce
that z centralizes the elements of the H-bimodule Ed, namely z · ϕ = ϕ · z for any
ϕ ∈ Ed. In particular the left and the right actions on Ed of the central element ζ ∈ H
coincide.

Lemma 2.22. – The kernel of the (left or right) action of ζ on Ed is isomorphic
to ι(H/ζH) as an H-bimodule.

Proof. – By (22) and Proposition 2.4, we have Ed ∼=
⋃

n≥1 (H/ζnH)∨⊕χtriv as H-bi-
modules. Recall that χtriv(ζ) = 1.

The kernel of the action of ζ on
⋃

n≥1 (H/ζnH)∨ ⊕ χtriv is isomorphic to the
H-bimodule (H/ζH)∨ which, by (43), is isomorphic to ι(H/ζH).
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CHAPTER 3

FORMULAS FOR THE LEFT ACTION OF H ON E1

WHEN G = SL2(Qp), p ̸= 2, 3

There is no hypothesis on F and G = SL2(F) in §3.1 –§3.5 with the exception that
we assume p ̸= 2 from §3.2 on.

3.1. Conjugation by ϖ

Recall the matrix ϖ := ( 0 1
π 0 ) (Remark 2.6) which normalizes the Iwahori sub-

group J and its pro-p Sylow I as well as the torus T . We apply Section 2.2.6 to the
following automorphism of the pair (G,X):
(47)
ξ : G −→ G, g 7−→ ϖ−1gϖ and X : X −→ X, f 7−→ f ◦ ξ (resp. gI 7→ ϖgϖ−1I).

It gives rise to the involutive automorphism

Γϖ := Γξ : E∗ = H∗(I,X) −→ E∗ = H∗(I,X),(48)

which is multiplicative for the Yoneda product as well as the cup product. It has
all the properties listed in Section 2.2.6. In the following we sometimes abbreviate
ϖw := ϖwϖ−1 for any w ∈ W̃ . We need the following additional fact. Recall that
ϕw ∈ Hd(I,X(w)) was defined in (15).

Lemma 3.1. – Assume I is a Poincaré group of dimension d. For w ∈ W̃ we have

(49) Γϖ(ϕw) = ϕϖwϖ−1 .

Proof. – We recall from (18) that we have the commutative diagram

Hd(I,X(w))
Shw //

Γϖ

��

Hd(Iw, k)
cores //

ϖ∗

��

Hd(I, k)

ϖ∗

��

Hd(I,X(ϖw))
Shϖw // Hd(Iϖw, k)

cores // Hd(I, k),
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where ϖ∗ = (ϖ−1)∗ is the conjugation operator given on cocycles by sending c

to c(ϖ−1
−ϖ). We will prove that the operator ϖ∗ on Hd(I, k) is the identity. For this

we follow the same idea as in [14] §7.2.3 and [7] Thm. 7.1.
For any m ≥ 1 we have the open subgroup KC,m :=

(
1+M Mm

Mm+1 1+M

)
of I. It is nor-

malized by ϖ. Since cores
KC,m

I : Hd(KC,m, k)
∼=−→ Hd(I, k) is an isomorphism ([14]

Rmk. 7.3) and ϖ∗ commutes with corestriction we are reduced to showing that the
operator ϖ∗ on Hd(KC,m, k) is the identity. But for m large enough the pro-p group
KC,m is uniform by [14] Cor. 7.8 and Rmk. 7.10. So by [8] V.2.2.6.3 and V.2.2.7.2, the
one dimensional k-vector space Hd(KC,m, k) is the maximal exterior power (via the
cup product) of the d-dimensional k-vector space H1(KC,m, k). Conjugation commut-
ing with the cup product, the action of ϖ∗ on Hd(KC,m, k) is the determinant of ϖ∗
on H1(KC,m, k). The latter is the dual of the Frattini quotient (KC,m)Φ. This reduces
us further to showing that the determinant of ϖ∗ on (KC,m)Φ is equal to 1. For this we
consider the subgroups U−m+1 =

(
1 0

Mm+1 1

)
, U+

m =
(

1 Mm

0 1

)
, and Tm :=

(
1+Mm 0

0 1+Mm

)
of KC,m. According to [14] Cor. 7.9 multiplication gives an isomorphism

U−m+1/(U
−
m+1)

p × Tm/(Tm)p × U+
m/(U+

m)p ∼=−−→ (KC,m)Φ.

One easily checks that ϖ∗ restricts to an involutive isomorphism U−m+1/(U
−
m+1)

p ∼=
U+

m/(U+
m)p. These are Fp-vector spaces of dimension equal to [F : Qp]. Hence the

determinant of ϖ∗ on U−m+1/(U
−
m+1)

p × U+
m/(U+

m)p is equal to (−1)[F:Qp]. On the
other hand, for m large enough, the logarithm induces an isomorphism Tm/(Tm)p ∼=
1+πmO/(1+πmO)p ∼= πmO/pπmO ∼= O/pO with respect to whichϖ∗ corresponds to
multiplication by −1. Hence its determinant on this factor is again equal to (−1)[F:Qp].

3.2. Elements of E1 as triples

From now on we assume p ̸= 2 unless it is specifically stated otherwise.

3.2.1. Definition. – We refer to the notation introduced in §2.4.1. We introduce the
following subsets of W̃ :

W̃ 0 := {w ∈ W̃ , ℓ(s0w) = ℓ(w) + 1} and

W̃ 1 := {w ∈ W̃ , ℓ(s1w) = ℓ(w) + 1}.

Note that the intersection of these two subsets coincides with the set Ω = T 0/T 1 of all
elements in W̃ with length 0. Recall as in [13, 3.3], we define for m ≥ 0 the subgroups

(50) I+
m :=

(
1+M O

Mm+1 1+M

)
and I−m = ϖI+

mϖ
−1 = ϖ−1I+

mϖ =
(

1+M Mm

M 1+M

)
of I and recall that

(51) Iw = I ∩ wIw−1 =

{
I+
ℓ(w) if w ∈ W̃ 0,

I−ℓ(w) if w ∈ W̃ 1.
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We abbreviate h1 := H1(I,X) and h1(w) := H1(I,X(w)) for w ∈ W̃ . Recall the
Shapiro isomorphism h1(w) ∼= H1(Iw, k) = Hom((Iw)Φ, k) (§2.2) where (Iw)Φ denotes
the Frattini quotient of Iw ([13] §3.8). By [13] Prop. 3.62 we have isomorphisms

(Iw)Φ
∼=−−→ O/M× (1 +M)

/
(1 +Mℓ(w)+1)(1 +M)p ×O/M

for any w ∈ W̃ (depending on a choice of a prime element in M). More precisely,
when w ∈ W̃ 0:

(I+
ℓ(w))Φ

∼=−−→ O/M× (1 +M)
/
(1 +Mℓ(w)+1)(1 +M)p ×O/M(52)(

1+πx y

πℓ(w)+1z 1+πt

)
mod Φ(Iw) 7−→ (z modM, 1 + πx mod (1 +Mℓ(w)+1)(1 +M)p, y modM)

and when w ∈ W̃ 1:

(I−ℓ(w))Φ
∼=−−→ O/M× (1 +M)

/
(1 +Mℓ(w)+1)(1 +M)p ×O/M(53)(

1+πx πℓ(w)y
πz 1+πt

)
mod Φ(Iw) 7−→ (z modM, 1 + πx mod (1 +Mℓ(w)+1)(1 +M)p, y modM).

By applying Hom(−, k) and using the Shapiro isomorphism we deduce, for any w ∈ W̃ ,
a decomposition

h1(w) = h1
−(w)⊕ h1

0(w)⊕ h1
+(w),

such that
h1
−(w)

h1
0(w)

h1
+(w)

∼= Hom

 left factor
middle factor

right factor
, k

 .

For any element c ∈ h1(w) we write this decomposition as

Shw(c) = (c−, c0, c+) with(54)

c± ∈ Hom(O/M, k) and c0 ∈ Hom((1 +M)
/
(1 +Mℓ(w)+1)(1 +M)p, k).

We will often denote by

(55) (c−, c0, c+)w

the element in h1(w) which has image the triple (c−, c0, c+) ∈ H1(Iw, k) via the
Shapiro isomorphism (with c0 implicitly equal to 0 when ℓ(w) = 0).

Remark 3.2. – When F = Qp and p ̸= 2, we have 1 + p2Zp = (1 + pZp)
p since

log : 1 + pZp

∼=−→ pZp. Therefore, when ℓ(w) ≥ 1, the identifications (52) and (53)
become:

(Iw)Φ = (I+
ℓ(w))Φ

∼=−−→ Zp/pZp × (1 + pZp)
/
(1 + p2Zp)× Zp/pZp(56)(

1+px y

pℓ(w)+1z 1+pt

)
mod Φ(Iw) 7−→ (z mod pZp, 1 + px mod 1 + p2Zp, y mod pZp)
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when w ∈ W̃ 0 (in particular, for w ∈ W̃ 0, ℓ(w) ≥ 1 we have res
Is1

Iw
(Shs1

(0, c0, c+)s1
) =

Shw((0, c0, c+)w) and

(Iw)Φ = (I−ℓ(w))Φ
∼=−−→ Zp/pZp × (1 + pZp)

/
(1 + p2Zp)× Zp/pZp(57)(

1+px pℓ(w)y
pz 1+pt

)
mod Φ(Iw) 7−→ (z mod pZp, 1 + px mod 1 + p2Zp, y mod pZp)

when w ∈ W̃ 1 (in particular, for w ∈ W̃ 1, ℓ(w) ≥ 1 we have res
Is0

Iw
(Shs0

(c−, c0, 0)s0
) =

Shw(c−, c0, 0)w). When ℓ(w) = 0, we have (Iw)Φ = IΦ
∼=−−→ Zp/pZp × Zp/pZp.

Notation 3.3. – For any subset U ⊆ W̃ we have the k-subspaces

h1
−(U) :=

⊕
w∈U

h1
−(w), h1

0(U) :=
⊕
w∈U

h1
0(w), and h1

+(U) :=
⊕
w∈U

h1
+(w)

of h1. We also let h1
±(U) := h1

−(U)⊕h1
+(U) and h1(U) := h1

0(U)⊕h1
±(U). The subsets

of most interest to us are:

W̃ ϵ := {w ∈ W̃ : ℓ(sϵw) = ℓ(w) + 1} for ϵ ∈ {0, 1} as defined above, and,

W̃ ϵ,odd := {w ∈ W̃ ϵ : ℓ(w) is odd},

W̃ ϵ,even := {w ∈ W̃ ϵ : ℓ(w) is even},

W̃ ϵ,+even := W̃ ϵ,even \ Ω.

We also define, for k ≥ 0 and ϵ ∈ {0, 1}:

W̃ ℓ≥k := {w ∈ W̃ : ℓ(w) ≥ k}

W̃ ϵ,ℓ≥k := {w ∈ W̃ : ℓ(sϵw) = ℓ(w) + 1 and ℓ(w) ≥ k} for ϵ ∈ {0, 1}.

3.2.2. Triples and conjugation by ϖ

Lemma 3.4. – Let w ∈ W̃ and (c−, c0, c+)w ∈ h1(w). Its image by the map Γϖ of
conjugation by ϖ defined in (48) is

(c+,−c0, c−)ϖwϖ−1 ∈ h1(ϖwϖ−1)

and if w ∈ W̃ ϵ, then ϖwϖ−1 ∈ W̃ 1−ϵ.

Proof. – See Remark (2.6) for the second claim. By definition of the triples and by
commutativity of diagram (18), the first claim follows directly from the observation
that the matrices(

1+πx πℓ(w)y
πz 1+πt

)
∈ I−ℓ(w) and

(
1+πt z

πℓ(w)+1y 1+πx

)
∈ I+

ℓ(w)

are conjugate to each other via ϖ.
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3.2.3. Triples and cup product. – Suppose F = Qp, p ̸= 2, 3. We introduce the isomor-
phism

(58) ι : 1 + pZp/1 + p2Zp
≃−→ Zp/pZp, 1 + px 7→ x mod pZp.

We choose and fix elements with the following constraints
(59)
α ∈ Zp/pZp\{0}, α0 = ι−1(α), c ∈ Hom(Zp/pZp, k) such that c(α) = 1, c0 := cι.

When ℓ(w) > 0, the dimension of the Frattini quotient of Iw is 3, namely the dimen-
sion of Iw as a p-adic manifold. By [5] Cor. 1.8 this means that Iw is uniform. There-
fore, the algebra H∗(Iw, k) is the exterior power (via the cup product) of the 3-dimen-
sional k-vector space H1(Iw, k). In particular, (c, 0, 0)s0 ∪ (0, c0, 0)s0 ∪ (0, 0, c)s0 is a
nonzero element of H3(I,X(s0)) and its image via

H3(I,X(s0))
Shs0−−−→ H3(Is0 , k)

cores
Is0
I−−−−−→ H3(I, k)

is a nonzero element of the one dimensional vector space H3(I, k) (see [14] Rmk.
7.3). We choose the isomorphism η : H3(I, k)

≃→ k sending that element to 1. As in
§2.2.5, this choice of η yields a choice of a basis (ϕw)

w∈W̃
of Hd(I,X) which is dual

to (τw)
w∈W̃

via (14). By definition, we have

(c, 0, 0)s0 ∪ (0, c0, 0)s0 ∪ (0, 0, c)s0 = ϕs0 .

Lemma 3.5. – For any w ∈ W̃ with ℓ(w) ≥ 1, we have

(60) (c, 0, 0)w ∪ (0, c0, 0)w ∪ (0, 0, c)w = ϕw.

Proof. – By Definition (15) of ϕw, it is enough to prove that

coresIw

I ◦Shw

(
(c, 0, 0)w ∪ (0, c0, 0)w ∪ (0, 0, c)w

)
= cores

Is0

I ◦ Shs0

(
(c, 0, 0)s0

∪ (0, c0, 0)s0
∪ (0, 0, c)s0

)
.

First suppose that w ∈ W̃ 1. Recall (see [14] §3.3), that the Shapiro isomorphism
commutes with the cup product.

We compute that coresIw

Is0
◦ Shw

(
(c, 0, 0)w ∪ (0, c0, 0)w ∪ (0, 0, c)w

)
is equal to

coresIw

Is0
[Shw

(
(c, 0, 0)w

)
∪ Shw

(
(0, c0, 0)w

)
∪ Shw

(
(0, 0, c)w

)
]

= coresIw

Is0
[res

Is0

Iw

(
Shs0

(
(c, 0, 0)s0

)
∪ Shs0

(
(0, c0, 0)s0

))
∪ Shw

(
(0, 0, c)w

)
]

by Remark 3.2

= Shs0

(
(c, 0, 0)s0

)
∪ Shs0

(
(0, c0, 0)s0

)
∪ coresIw

Is0
[Shw

(
(0, 0, c)w

)
]

by the projection formula ([14] §4.6)

= Shs0

(
(c, 0, 0)s0

)
∪ Shs0

(
(0, c0, 0)s0

)
∪ Shs0

(
(0, 0, c)s0

)
by [13] Lemma 3.68-iv

= Shs0

(
(c, 0, 0)s0 ∪ (0, c0, 0)s0 ∪ (0, 0, c)s0

)
= Shs0

(
ϕs0),
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which proves the expected statement after applying cores
Is0

I .
If w ∈ W̃ 0, we conjugate by ϖ using Γϖ (see (48)):

Γϖ

(
(c, 0, 0)w ∪ (0, c0, 0)w ∪ (0, 0, c)w

)
= −(0, 0, c)ϖwϖ−1 ∪ (0, c0, 0)ϖwϖ−1 ∪ (c, 0, 0)ϖwϖ−1 by (20) and Lemma 3.4

= (c, 0, 0)ϖwϖ−1 ∪ (0, c0, 0)ϖwϖ−1 ∪ (0, 0, c)ϖwϖ−1 by anticommutativity of ∪

= ϕϖwϖ−1 since ϖwϖ−1 ∈ W̃ 1

= Γϖ(ϕw) by (49),

which concludes the proof since Γϖ is bijective.

Example 3.6. – The subalgebra H∗(I,X(1)) of E∗:

— H0(I,X(1)) has dimension 1;

— H3(I,X(1)) has dimension 1 with basis ϕ1 which satisfies η(ϕ1) = 1;

— H1(I,X(1)) has dimension 2 and basis (c, 0, 0)1 and (0, 0, c)1;

— H2(I,X(1)) is dual to H1(I,X(1)) via the cup product. We denote by (α, 0, 0)1
and (0, 0, α)1 the dual of the basis of H1(I,X(1)) given above, it satisfies by
definition:

— (α, 0, 0)1 ∪ (c, 0, 0)1 = (c, 0, 0)1 ∪ (α, 0, 0)1 = ϕ1 = (0, 0, α)1 ∪ (0, 0, c)1 =

(0, 0, c)1 ∪ (0, 0, α)1, while

— (c, 0, 0)1 ∪ (0, 0, c)1 = (0, 0, c)1 ∪ (c, 0, 0)1 = 0.

3.3. Image of a triple under the anti-involution J

Let c ∈ h1(w) seen as a triple (c−, c0, c+)w as in (54). Its image by J is an element
in h1(w−1) whose image by the Shapiro isomorphism is given by (see (12))

(Shw c)(w−w
−1) : Iw−1 → k .

Lemma 3.7. – Let w ∈ W̃ and c = (c−, c0, c+)w ∈ h1(w).
If ℓ(w) is even then

(61) J (c) = (c−(u2
−), c0, c+(u−2

−))w−1 .

If ℓ(w) is odd then

(62) J (c) = (−c+(u−2
−),−c0,−c−(u2

−))w−1 ,

where u ∈ (O/M)× is such that ω−1
u w lies in the subgroup of W̃ generated by s0

and s1.

Proof. – Notice that the intersection of Ω and of the subgroup of W̃ generated by s0
and s1 is equal to {±1}, therefore u2 is determined by w.
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— If w = ωu(s0s1)
n, then Iw−1 = I+

2n and for X =
(

1+πx y

π1+2nz 1+πt

)
∈ Iw−1 we have

wXw−1 = ωu

(
1+πx π2ny

πz 1+πt

)
ω−1

u =
(

1+πx [u]−2π2ny

[u]2πz 1+πt

)
so

Shw−1(J (c)) = (c−(u2
−), c0, c+(u−2

−))w−1 .

— If w = ωu(s1s0)
n, then Iw−1 = I−2n and for X =

(
1+πx π2ny

πz 1+πt

)
∈ Iw−1 we have

wXw−1 = ωu

(
1+πx y

π1+2nz 1+πt

)
ω−1

u =
(

1+πx [u]−2y

[u]2π1+2nz 1+πt

)
so

Shw−1(J (c)) = (c−(u2
−), c0, c+(u−2

−))w−1 .

— If w = ωu(s1s0)
ns1, then Iw−1 = I+

2n+1 and for X =
(

1+πx y

π2+2nz 1+πt

)
∈ Iw−1 we

have wXw−1 = ωu

(
1+πt −z

−π2+2ny 1+πx

)
ω−1

u =
(

1+πt −[u]−2z

−π2+2n[u]2y 1+πx

)
so

Shw−1(J (c)) = (−c+(u−2
−),−c0,−c−(u2

−))w−1 .

— If w = ωu(s0s1)
ns0, then Iw−1 = I−2n+1 and for X =

(
1+πx π2n+1y

πz 1+πt

)
∈ Iw−1 we

have wXw−1 = ωu

(
1+πt −π1+2nz
−πy 1+πz

)
ω−1

u =
(

1+πt −π1+2n[u]−2z

−π[u]2y 1+πx

)
so

Shw−1(J (c)) = (−c+(u−2
−),−c0,−c−(u2

−))w−1 .

3.4. Action of τω on E1 for ω ∈ Ω

Let w ∈ W̃ , ω ∈ T 0/T 1 and c ∈ hi(w) for some i ≥ 0. By [14] Prop. 5.6, the left
action of τω on c corresponds to the following transformation, where again we identify
c with its image in Hi(Iw, k) by the Shapiro isomorphism:

(63) hi(w)

Shw

��

τω

∼=
// hi(ωw)

Shωw

��

Hi(Iw, k)
ω∗(c)=c(ω−1

−ω)
// Hi(Iw, k).

In other words, for ω ∈ Ω, we have τω · c ∈ hi(ωw) and

(64) Shωw(τω · c) = ω∗ Shw(c).

Using c · τω = J (τω−1 · J (c)), we also obtain c · τω ∈ hi(wω) and

(65) Shwω(c · τω) = Shw(c).

Now we suppose i = 1. We identify c ∈ h1(w) with a triple (c−, c0, c+)w as in (54).
For u ∈ (O/M)× and ( x y

z t ) ∈ Iw we have ω−1
u ( x y

z t )ωu =
(

x [u]2y

[u]−2z t

)
and therefore

(66) τωu · (c−, c0, c+)w = (c−(u−2
−), c0, c+(u2

−))ωuw ∈ h1(ωuw).

In particular,

(67) τs2 · (c−, c0, c+)w = (c−, c0, c+)s2w ∈ h1(s2w)
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for s ∈ {s0, s1} since s2 = ω−1. For the right action, it follows from (65) that

(68) (c−, c0, c+)w · τωu = (c−, c0, c+)wωu ∈ h1(wωu).

3.5. Action of the idempotents eλ

For λ : Ω → k× and w ∈ W̃ , recall that we defined the idempotent eλ ∈ k[Ω] (see
(36)) and that, for any ω ∈ Ω we have eλτω = τωeλ = λ(ω)eλ.

Lemma 3.8. – Let λ, µ : Ω → k×, w ∈ W̃ . We consider an element c ∈ hi(w) with
image cw ∈ Hi(Iw, k) by the Shapiro isomorphism. We have

eλ · c = c · eµ if and only if cw = µ(w−1ωw)λ(ω−1)ω∗(cw) for any ω ∈ Ω.

Proof. – The element eλ · c lies in
⊕

ω∈ΩH
i(I,X(ωw)) and its component

in Hi(I,X(ωw)) is
−λ(ω−1) Sh−1

ωw

(
ω∗cw

)
.

The element c · eµ lies in
⊕

t∈ΩH
i(I,X(wt)) and its component in Hi(I,X(wt)) =

Hi(I,X(wtw−1w)) is

−µ(t−1) Sh−1
wt

(
cw

)
= −µ(w−1(wt−1w−1)w) Sh−1

wtw−1w

(
cw

)
.

These two elements are equal if and only if for any ω ∈ Ω we have λ(ω−1)ω∗cw =

µ(w−1ω−1w)cw.

In the same context as in the lemma, we suppose that i = 1. Then we may see
the image in H1(Iw, k) by the Shapiro isomorphism of c ∈ h1(w) as a (c−, c0, c+) as
in (54). For u ∈ (O/M)×, we know from the calculation that gave (66) that

ωu∗(c
−, c0, c+) = (c−(u−2

−) , c0, c+(u2
−)) ∈ H1(Iw, k).

If ℓ(w) is even, then the conjugation of µ by w is equal to µ and therefore eλ ·c = c ·eµ

if and only if c = µλ−1(ωu)ωu∗(c) for any u ∈ (O/M)×. So

(69) (ℓ(w) even) : eλ · c = c · eµ if and only if


c− = µλ−1(ωu)c−(u−2

−)

c0 = µλ−1(ωu)c0

c+ = µλ−1(ωu)c+(u2
−),

for any u ∈ (O/M)×. If ℓ(w) is odd, then the conjugation of µ by w is equal to µ−1

and therefore eλ · c = c · eµ if and only if cw = (µλ)−1(ωu)ω∗(c) for any u ∈ (O/M)×

which is equivalent to

(70) (ℓ(w) odd) : eλ · c = c · eµ if and only if


c− = (µλ)−1(ωu)c−(u−2

−)

c0 = (µλ)−1(ωu)c0

c+ = (µλ)−1(ωu)c+(u2
−),
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for any u ∈ (O/M)×. An important special case of the above is the following. Suppose
that q = p; for any m ∈ Z and w ∈ W̃ we then have

(71) (c−, c0, c+)w · eidm

= e
idm(−1)ℓ(w)−2 · (c−, 0, 0)w + e

idm(−1)ℓ(w) · (0, c0, 0)w + e
idm(−1)ℓ(w)+2 · (0, 0, c+)w.

3.6. Action of H on E1 when G = SL2(Qp), p ̸= 2, 3

In this whole subsection, G = SL2(Qp) with p ̸= 2, 3. We also choose π = p. This is
required in the proof of Lemma 9.1 which is used in the proof of Proposition 3.9. The
isomorphism ι was introduced in (58). The following proposition is proved in §9.3.
Together with (66), it gives the explicit left action of H on E1 when G = SL2(Qp)

with p ̸= 2, 3.

Proposition 3.9. – Let w ∈ W̃ and (c−, c0, c+)w ∈ h1(w).

τs0 · (c−, c0, c+)w

=



(0,−c0,−c−)s0w if w ∈ W̃ 0, ℓ(w) ≥ 1,
e1 · (−c−,−c0,−c+)w + eid · (0,−2c−ι, 0)w

+(0, 0,−c−)s0w if w ∈ W̃ 1, ℓ(w) ≥ 2,
e1 · (−c−,−c0,−c+)w + eid · (0,−2c−ι, c0ι−1)w

+ eid2 · (0, 0, c−)w + (0, 0,−c−)s0w if w ∈ W̃ 1, ℓ(w) = 1.

τs1
· (c−, c0, c+)w

=



(−c+,−c0, 0)s1w if w ∈ W̃ 1, ℓ(w) ≥ 1,

e1 · (−c−,−c0,−c+)w + eid−1 · (0, 2c+ι, 0)w

+(−c+, 0, 0)s1w if w ∈ W̃ 0, ℓ(w) ≥ 2,

e1 · (−c−,−c0,−c+)w + eid−1 · (−c0ι−1, 2c+ι, 0)w

+ eid−2 · (c+, 0, 0)w + (−c+, 0, 0)s1w if w ∈ W̃ 0, ℓ(w) = 1.

τs0 · (c−, 0, c+)ω = (0, 0,−c−)s0ω for ω ∈ Ω.

τs1
· (c−, 0, c+)ω = (−c+, 0, 0)s1ω for ω ∈ Ω.

In these formulas, we use the notation eidm as introduced in (38) for m ∈ Z.
Recall, using (66), that for (d−, d0, d+)w ∈ h1(w), the component in h1(ωuw) of
eidm · (d−, d0, d+)w ∈

⊕
u∈F×p h

1(ωuw) is given by

(72) − idm(u−1) τωu
· (d−, d0, d+)w = −u−m(d−(u−2

−), d0(−), d+(u2
−))ωuw.
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Corollary 3.10. – Let w ∈ W̃ , ω ∈ Ω, and (c−, c0, c+)w ∈ h1(w).

ζ · (c−, 0, c+)ω

= (c−, 0, 0)s1s0ω + (0, 0, c+)s0s1ω

+ e1 · (0, 0,−c−)s0ω + e1 · (−c+, 0, 0)s1ω + e1 · (c−, 0, c+)ω

ζ · (c−, c0, c+)w

=



(c−, c0, 0)s1s0w + eid · (0,−2c+ι, 0)s0w

+ eid · (0, 2c+ι, 0)s1w + (0, 0, c+)s0s1w if w ∈ W̃ 0, ℓ(w) ≥ 3,
(c−, c0, 0)s1s0w + eid · (0,−2c+ι, 0)s0w + eid · (0, 2c+ι, 0)s1w

+eid2 · (0, 0,−c+)s1w + (0, 0, c+)s0s1w if w ∈ W̃ 0, ℓ(w) = 2,
(c−, c0, 0)s1s0w + eid · (0,−2c+ι, c0ι−1)s0w + eid2 · (0, 0,−c+)s0w

+(0, 0, c+)s0s1w + e1 · (−c+, 0, 0)s1w if w ∈ s1Ω.

ζ · (c−, c0, c+)w

=



(0, c0, c+)s0s1w + eid−1 · (0, 2c−ι, 0)s1w

+ eid−1 · (0,−2c−ι, 0)s0w + (c−, 0, 0)s1s0w if w ∈ W̃ 1, ℓ(w) ≥ 3,
(0, c0, c+)s0s1w + eid−1 · (0, 2c−ι, 0)s1w + eid−1 · (0,−2c−ι, 0)s0w

+eid−2 · (−c−, 0, 0)s0w + (c−, 0, 0)s1s0w if w ∈ W̃ 1, ℓ(w) = 2,
(0, c0, c+)s0s1w + eid−1 · (−c0ι−1, 2c−ι, 0)s1w + eid−2 · (−c−, 0, 0)s1w

+(c−, 0, 0)s1s0w + e1 · (0, 0,−c−)s0w if w ∈ s0Ω.

The decreasing filtration (FmE1)m≥1 was introduced in §2.2.4.

Corollary 3.11. – We have ζ · E1 ⊇ F 3E1

Proof. – It is easy to see that ζ · E1 contains h1
−(W̃ 0,ℓ≥3) and h1

+(W̃ 1,ℓ≥3). Notic-
ing that it also contains h1

0(W̃
ℓ≥4), we deduce that it contains h1

−(W̃ 1,ℓ≥3) and
h1

+(W̃ 0,ℓ≥3).
But for c0 as above and ω ∈ Ω, we have

ζ · (0, c0, 0)s0ω = (0, c0, 0)s0s1s0ω + eid−1 · (−c0ι−1, 0, 0)s1s0ω

= (0, c0, 0)s0s1s0ω + ζeid−1 · (−c0ι−1, 0, 0)ω,

so (0, c0, 0)s0s1s0ω ∈ ζ · E1 and likewise we would obtain (0, c0, 0)s1s0s1ω ∈ ζ · E1.

Using the anti-involution J , we would obtain the explicit right action of H on E1.
For example, using (c−, 0, c+)1 · ζ = J (ζ · J ((c−, 0, c+)1)) = J (ζ · (c−, 0, c+)1) we can
compute:

(c−, 0, c+)1 · ζ = (c−, 0, 0)s0s1 + (0, 0, c+)s1s0

+ eid−2(c−, 0, 0)s0
+ eid2(0, 0, c+)s1

+ eid−2(c−, 0, 0)1 + eid2(0, 0, c+)1.(73)

We give now further partial results on the right action of H on E1.

MÉMOIRES DE LA SMF 175



3.6. ACTION OF H ON E1 WHEN G = SL2(Qp), p ̸= 2, 3 35

Lemma 3.12. – Let v, w ∈ W̃ such that ℓ(w) ≥ 1 and (c−, c0, c+)v ∈ h1(v).

i. Suppose ℓ(v) + ℓ(w) = ℓ(vw).

Then (c−, c0, c+)v · τw =

{
(c−, c0, 0)vw if vw ∈ W̃ 1,
(0, c0, c+)vw if vw ∈ W̃ 0.

ii. In the case when v ∈ {s0, s1} and ℓ(vw) = ℓ(w)− 1 we have:

(0, c0, 0)s0
· τw = −e1 · (0, c0, 0)w − eid−1 · (c0ι−1, 0, 0)w

(0, c0, 0)s1
· τw = −e1 · (0, c0, 0)w + eid · (0, 0, c0ι−1)w.

Proof. – i. Using (68), we see that we may restrict the proof to the case when v belongs
to the set {(sis1−i)

n, s1(sis1−i)
n : i = 0, 1, n ≥ 0}. We treat the case v ∈ W 1. First

suppose v = (s0s1)
n. Then, using Lemma 3.7, (67) and Proposition 3.9:

(c−, c0, c+)v · τs0
= J (τs−1

0
· (c−, c0, c+)v−1) = J (τs0

· (c−, c0, c+)s2
0v−1)

= J ((0,−c0,−c−)s−1
0 v−1) = (c−, c0, 0)vs0

.

Next suppose that v = s0(s1s0)
n. Then

(c−, c0, c+)v · τs1
= J (τs−1

1
· (−c+,−c0,−c−)v−1) = J (τs1

· (−c+,−c0,−c−)s2
1v−1)

= J ((c−, c0, 0)s−1
1 v−1) = (c−, c0, 0)vs1

.

This is enough to conclude the proof when v ∈ W̃ 1 by induction on ℓ(w).
ii. We treat the case v = s0 and suppose first that w = s0. Then, using (62),

Proposition 3.9, (67) and (70)

(0, c0, 0)s0
· τs0

= −J (τs−1
0
· (0, c0, 0)s−1

0
) = −J (τs0

· (0, c0, 0)s0
)

= −J ((0,−c0, 0)s0
· e1 + (0, 0, c0ι−1)s0

· eid)

= −e1 · (0, c0, 0)s−1
0
− eid−1 · (−c0ι−1, 0, 0)s−1

0

= −e1 · (0, c0, 0)s0
− eid−1 · (c0ι−1, 0, 0)s0

.

For w = s0ω with ω ∈ Ω, apply τω on the right to the above formula and use (68).
For general w such that ℓ(s0w) = ℓ(w) − 1, apply τs−1

0 w on the right to the above
formula and use Point i.

The increasing filtration (FnE
1)n≥0 was defined in §2.2.4.

Lemma 3.13. – If ω ∈ Ω, we have

ζ · (c−, 0, c+)ω − (c−, 0, c+)ω · ζ
≡ (0, 0, c+)s0s1ω + (c−, 0, 0)s1s0ω

− (0, 0, c+)s1s0ω − (c−, 0, 0)s0s1ω mod F1E
1.

If w ∈ W̃ 1 of length ≥ 1,

ζ · (c−, c0, c+)w − (c−, c0, c+)w · ζ ≡ (0, 0, c+)s0s1w − (c−, 0, 0)s0s1w mod Fℓ(w)+1E
1.
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If w ∈ W̃ 0 of length ≥ 1,

ζ · (c−, c0, c+)w − (c−, c0, c+)w · ζ ≡ (c−, 0, 0)s1s0w − (0, 0, c+)s1s0w mod Fℓ(w)+1E
1.

Proof. – We use Cor. 3.10. Recall from (68) that (c−, c0, c+)wω = (c−, c0, c+)wτω
for ω ∈ Ω. So it is enough to prove the lemma for ω = 1 and for w of the
form (sϵs1−ϵ)

nsϵ or (sϵs1−ϵ)
n where ϵ ∈ {0, 1}. By (73) we have

ζ · (c−, 0, c+)1 − (c−, 0, c+)1 · ζ
≡ (0, 0, c+)s0s1

+ (c−, 0, 0)s1s0
− (c−, 0, 0)s0s1

− (0, 0, c+)s1s0
mod F1E

1.

Now for w = (s0s1)
n with n ≥ 1 we have

ζ · (c−, c0, c+)w ≡ (0, c0, c+)s0s1w mod F2n+1E
1 and

ζ · (c−, c0, c+)w−1 ≡ (c−, c0, 0)s1s0w−1 mod F2n+1E
1.

Since J preserves F2n+1E
1 we have, using (61):

(c−, c0, c+)w · ζ = J (ζ · (c−, c0, c+)w−1)

≡ J ((c−, c0, 0)s1s0w−1) ≡ (c−, c0, 0)ws0s1 ≡ (c−, c0, 0)s0s1w mod F2n+1E
1,

which gives the expected formula. Using J , we then obtain the expected result for
w = (s1s0)

n. Likewise we treat the case w = (s0s1)
ns0 with n ≥ 0. We have

ζ · (c−, c0, c+)w ≡ (0, c0, c+)s0s1w mod F2n+2E
1

and

(c−, c0, c+)w · ζ = J (ζ · (−c+,−c0,−c−)w−1)

≡ J ((0,−c0,−c−)s0s1w−1) ≡ (c−, c0, 0)ws1s0
≡ (c−, c0, 0)s0s1w mod F2n+2E

1,

which gives the expected result for w = (s0s1)
ns0 and similarly we would treat the

case w = (s1s0)
ns1.

3.7. Sub-H-bimodules of E1

3.7.1. TheH-bimodule F 1H . – In this Paragraph 3.7.1, there is no condition on F (in
fact we may even have p = 2).

The elements xi := τsi
∈ F 1H satisfy the relations:

1) τsi
xi = −e1xi = xiτsi

for i ∈ {0, 1};
2) τωxi = xiτω−1 for i ∈ {0, 1} and ω ∈ Ω;

3) τs0
x1 = x0τs1

and τs1
x0 = x1τs0

.

Given any H-bimodule M , a pair of elements x0, x1 ∈M which satisfy the relations
1)–3) will be called an F 1H-pair in M . The F 1H-pair in M form a k-vector subspace
of M ×M .
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Example 3.14. – For any ℓ ≥ 0 the elements τs0(τs1τs0)
ℓ and τs1(τs0τs1)

ℓ form an
F 1H-pair in F 1H.

Lemma 3.15. – i. Given an F 1H-pair (x0, x1) ∈M ×M , there is a unique H-bi-
module homomorphism f(x0,x1) : F 1H →M satisfying

f(x0,x1)(τs0) = x0, and f(x0,x1)(τs1) = x1.

ii. The map f 7→ (f(τs0
), f(τs1

)) yields a bijection between the space of all H-bi-
module homomorphism F 1H → M and the space of all F 1H-pairs in M . The
inverse map is given by (x0, x1) 7→ f(x0,x1).

Proof. – As a rightH-module, we have F 1H = τs0
H⊕τs1

H and τsi
H ≃ H/(τsi

+e1)H

for i = 0, 1. Let (x0, x1) ∈ M ×M satisfying xi(τsi
+ e1) = 0 for i = 0, 1. There is a

unique homomorphism of right H-modules

f : F 1H −→M such that f(τs0
) = x0 and f(τs1

) = x1.

We prove that f is a homomorphism of H-bimodules if and only if x0, x1 is an
F 1H-pair in M . The direct implication is clear. Now suppose that x0, x1 ∈M satisfy
the relations 1) - 3). Let w ∈ W̃ . We want to show that the maps τ 7→ τw · f(τ) and
τ 7→ f(τwτ) are equal. Since they are both homomorphisms of right H-modules, it is
enough to show that they coincide at τsi for i = 0, 1, namely that τwxi = f(τwτsi).
We proceed by induction on ℓ(w). Using relations 2), it is easy to check that this
equality holds when w has length 0. Now let w ∈ W̃ with length ≥ 1.

— If u := ws−1
1−i has length < ℓ(w) we have:

τwxi = τuτs1−ixi = τux1−iτsi by 3)

= f(τuτs1−i)τsi = f(τuτs1−iτsi) = f(τwτsi)

by induction and then right H-equivariance.

— Otherwise, v := ws−1
i has length < ℓ(w) and we have

τwxi = τvτsixi = −τvxie1 by 1) and 2)

= −f(τvτsi
)e1 by induction

= f(−τvτsi
e1) = f(τvτ

2
si

) = f(τwτsi
) by right H-equivariance.

The map f(x0,x1) of the lemma is the map f studied above.

Remark 3.16. – For any F 1H-pair (x0, x1) in M we have

im(f(x0,x1)) ⊆ {m ∈M : ζm = mζ}.
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3.7.2. F 1H-pairs in E1. – In this paragraph we assume that F = Qp with p ≥ 5 and
that π = p.

Lemma 3.17. – The F 1H-pairs (x0, x1) in E1 which are contained in
h1(s0)⊕ h1(s1)⊕ h1(Ω) are given by

x0 := −(0, c0, 0)s0 − eid−1 · (c0ι−1, 0, 0)1 and x1 := (0, c0, 0)s1 − eid · (0, 0, c0ι−1)1,

where c0 runs over the 1-dimensional k-vector space Hom((1 + pZp)
/
(1 + p2Zp), k).

Proof. – To check that the pairs (x0, x1) in the assertion are indeed F 1H-pairs is an
explicit computation based on the formulas in Sections 3.4 and 3.6.

As noted in Remark 3.16, an element which satisfies the relations 1), 2) and 3)
commutes with the action of ζ. We determine the elements in h1(s0)⊕h1(s1)⊕h1(Ω)

which commute with the action of ζ. Let x be such an element. Since the elements in
the assertion of the lemma do commute with the action of ζ, we may assume that x is
of the form

x = (c−0 , 0, c
+
0 )s0

+ (c−1 , 0, c
+
1 )s1

+
∑
ω∈Ω

(c−ω , 0, c
+
ω )ω ∈ h1(s0)⊕ h1(s1)⊕ h1(Ω).

By Lemma 3.13, we know that

ζ ·x−x·ζ ≡ (0, 0, c+0 )s0s1s0−(c−0 , 0, 0)s0s1s0+(c−1 , 0, 0)s1s0s1−(0, 0, c+1 )s1s0s1 mod F2E
1.

Therefore we have c−0 = c+0 = c+1 = c−1 = 0 and x =
∑

ω∈Ω(c−ω , 0, c
+
ω )ω ∈ h1(Ω). By

Lemma 3.13 again,

ζ · x− x · ζ ≡
∑
ω∈Ω

(
(0, 0, c+ω )s0s1ω + (c−ω , 0, 0)s1s0ω − (0, 0, c+ω )s1s0ω − (c−ω , 0, 0)s0s1ω

)
mod F1E

1

and therefore x = 0. This proves that the only elements in E1 which are contained
in h1(s0) ⊕ h1(s1) ⊕ h1(Ω) and commute with the action of ζ are given by the for-
mulas announced in the lemma. Therefore, these are also the only F 1H-pairs (x0, x1)

in h1(s0)⊕ h1(s1)⊕ h1(Ω).

In the following we choose c0 ∈ Hom((1 + pZp)
/
(1 + p2Zp), k) as in §3.2.3 and

let (x0,x1) be the corresponding F 1H-pair in E1 of Lemma 3.17. Recall that the
H-bimodule homomorphism f(x0,x1) was introduced in Lemma 3.15.

Proposition 3.18. – i. For τw ∈ F 1H we have

f(x0,x1)(τw) =


(0, c0, 0)w if w ∈ W̃ 0 and ℓ(w) ≥ 2,

−(0, c0, 0)w if w ∈ W̃ 1 and ℓ(w) ≥ 2,

(0, c0, 0)s1ω − eid · (0, 0, c0ι−1)ω if w = s1ω ∈ s1Ω,
−(0, c0, 0)s0ω − eid−1 · (c0ι−1, 0, 0)ω if w = s0ω ∈ s0Ω.

ii. The H-bimodule homomorphism f(x0,x1) : F 1H −→ E1 is injective.

iii. The image of f(x0,x1) is contained in the centralizer of ζ.

iv. J ◦ f(x0,x1) = −f(x0,x1) ◦ J .
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v. Γϖ ◦ f(x0,x1)(τw) = f(x0,x1)(τϖwϖ−1) for any τw ∈ F 1H.

Proof. – i. For ω ∈ Ω we have by definition that f(x0,x1)(τsiω) = xiτω. Hence the last
two equalities follow directly from (68).

For the first two equalities we first consider the cases w = s0s1 and w = s1s0. By
the left H-equivariance of f(x0,x1) we have

f(x0,x1)(τw) =

{
τs0

· x1 if w = s0s1,

τs1
· x0 if w = s1s0.

Using Prop. 3.9 one easily checks that τs0 ·x1 = −(0, c0, 0)w and τs1 ·x0 = (0, c0, 0)w.
The assertion for a general w follows from this by using again the left H-equivari-
ance together with the following general observation. For any v, w ∈ W̃ such that
ℓ(v) + ℓ(w) = ℓ(vw) and ℓ(w) ≥ 1 we have, by (66) and Prop. 3.9:

τv · (0, c0, 0)w = (0, (−1)ℓ(v)c0, 0)vw.

ii. It is immediate from i. that the set {f(x0,x1)(τw)}w∈F 1H is a k-basis
of im(f(x0,x1)).

iii. This is obvious, as noted in Remark 3.16.
iv. We first check that J (xi) = −τs2

i
·xi holds true. The case i = 1 being analogous

we only compute

J (x0) = −J ((0, c0, 0)s0
)− J ((c0ι−1, 0, 0)1)J (eid−1)

= (0, c0, 0)s−1
0
− (c0ι−1, 0, 0)1 · eid by Lemma 3.7

= (0, c0, 0)s2
0s0

− eid−1 · (c0ι−1, 0, 0)1 by (66) and (68)

= τs2
0
· (0, c0, 0)s0

− eid−1 · (c0ι−1, 0, 0)1 by (67)

= τs2
0
· (0, c0, 0)s0

+ τs2
0
eid−1 · (c0ι−1, 0, 0)1 by −eid−1 = τs2

0
· eid−1

= −τs2
0
· x0.

For a general w ∈ W̃ 1−i,ℓ≥1 we have τw = τsi
τs−1

i w and we deduce that

J (f(x0,x1)(τw)) = J (xi · τs−1
i w) = J (τs−1

i w) · J (xi) = −τw−1si
τs2

i
· xi = −τw−1s−1

i
· xi

= −f(x0,x1)(τw−1) = −f(x0,x1)(J (τw))

using left H-equivariance in the fifth equality.

v. Lemma 3.4 easily implies that Γϖ(xi) = x1−i. For a general w ∈ W̃ 1−i,ℓ≥1 we
have ϖwϖ−1 ∈ W̃ i,ℓ≥1 and we deduce that

Γϖ(f(x0,x1)(τw)) = Γϖ(xi · τs−1
i w) = Γϖ(xi) · Γϖ(τs−1

i w) = x1−i · τϖs−1
i wϖ−1

= x1−i · τs−1
1−iϖwϖ−1 = f(x0,x1)(τϖwϖ−1)

using in the second equality that Γϖ is multiplicative (cf. §2.2.6).
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In Prop. 6.3 we will see that the inclusion in part ii. of the above proposition, in
fact, is an equality. This, in particular, shows that there are no nonzero F 1H-pairs
in E1 \ im(f(x0,x1)).

Remark 3.19. – Recalling that eγ0 was introduced in (39) we have

(1− eγ0
) · im(f(x0,x1)) = im(f(x0,x1)) · (1− eγ0

) = (1− eγ0
) · im(f(x0,x1)) · (1− eγ0

)

= (1− eγ0
) · h1

0(W̃ ).

Proof. – Since 1 − eγ0 is central in H it also must centralize im(f(x0,x1)). Recall
that eγ0

= eid + eid−1 . The last equality then is immediate from Prop. 3.18-i.

3.7.3. An Hζ-bimodule inside E1. –

3.7.3.1. A left Hζ-bimodule inside E1. – Let M be any H-bimodule. To give a ho-
momorphism of left (or right) H-modules f : H −→ M simply means to give any
element x ∈ M as the image x = f(1). We state a simple sufficient condition on x

such that the corresponding f extends to the localization Hζ .

Lemma 3.20. – Let x ∈M be such that ζ · x · ζ = x. Then

Hζ −→M

ζ−iτ 7−→ fx(ζ−iτ) := τ · x · ζi, resp. xf(ζ−iτ) := ζi · x · τ , for i ≥ 0 and τ ∈ H,

is a well defined homomorphism of left, resp. right, H-modules; its image is contained
in the space {y ∈M : ζ · y · ζ = y}.

Proof. – Easy exercise.

Assume that F = Qp with p ≥ 5 and that π = p. We will apply the above lemma
to the bimodule E1.

Lemma 3.21. – The elements x ∈ E1 which satisfy ζ · x · ζ = x and lie in
h1(1) ⊕ eidh

1(s0) ⊕ eidh
1(s1s0) with τs0

· x = 0, resp. in h1(1) ⊕ eid−1h1(s1) ⊕
eid−1h1(s0s1) with τs1 · x = 0, are

x+ := (0, 0, c+)1 − eid · (0, 2c+ι, 0)s0 − eid · (0, 0, c+)s1s0 , resp.

x− := (c−, 0, 0)1 + eid−1 · (0, 2c−ι, 0)s1
− eid−1 · (c−, 0, 0)s0s1

,

where c+ and c− run over the 1-dimensional k-vector space Hom(Zp

/
pZp, k).

Proof. – We treat the first case, the other one being analogous. Consider any

x = (c−, 0, c+)1 + eid · (b−, b0, b+)s0
+ eid · (d−, d0, d+)s1s0

,
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such that τs0 · x = 0. Using Prop. 3.9 we compute

0 = τs0
· x = τs0

· (c−, 0, c+)1 + eid−1τs0
· (b−, b0, b+)s0

+ eid−1τs0
· (d−, d0, d+)s1s0

= (0, 0,−c−)s0
+ eid−1 ·

(
− e1 · (b−, b0, b+)s0

+ eid · (0,−2b−ι, b0ι−1)s0

+ eid2 · (0, 0, b−)s0
− (0, 0, b−)s2

0

)
− eid−1 · (0, d0, d−)s0s1s0

= (0, 0,−c−)s0
− eid−1 · (0, 0, b−)s2

0
− eid−1 · (0, d0, d−)s0s1s0

.

It follows that c− = b− = d0 = d− = 0 and hence that

(74) x = (0, 0, c+)1 + eid · (0, b0, b+)s0 + eid · (0, 0, d+)s1s0 .

Now we assume in addition that ζ · x · ζ = x. From Cor. 3.10 we deduce that

ζ · x = ζ · (0, 0, c+)1 + eidζ · (0, b0, b+)s0
+ eidζ · (0, 0, d+)s1s0

= (0, 0, c+)s0s1
− e1 · (c+, 0, 0)s1

+ e1 · (0, 0, c+)1 + eid · (0, b0, b+)s0s1s0

− eid · (0, 2d+ι, 0)s0s1s0 + eid · (0, 2d+ι, 0)s2
1s0

+ eid · (0, 0, d+)1.

Using Lemma 3.7, Cor. 3.10, Section 3.4, and (71) we compute

(0, 0, c+)s0s1 · ζ = −eid · (0, 2c+ι, 0)s0s1s0 − eid · (0, 2c+ι, 0)s0(75)

+ e1 · (c+, 0, 0)s0
+ (0, 0, c+)1

−e1 · (c+, 0, 0)s1
· ζ = −e1 · (0, 0, c+)s1s0

− e1 · (c+, 0, 0)s0

eid · (0, 2d+ι, 0)s2
1s0

· ζ = −eid · (0, 2d+ι, 0)s0s1s0

e1 · (0, 0, c+)1 · ζ = e1 · (0, 0, c+)s1s0

eid · (0, 0, d+)1 · ζ = eid · (0, 0, d+)s1s0

eid · (0, b0, b+)s0s1s0 · ζ = −eid · (0, b0, 0)(s1s0)2s2
0
+ eid · (0, 2b+ι, 0)(s0s1)2 + eid · (0, 0, b+)s0

−eid · (0, 2d+ι, 0)s0s1s0 · ζ = eid · (0, 2d+ι, 0)(s1s0)2s2
0
.

Comparing the sum of these equations with (74) shows that d+ = −c+, b0 = −2c+ι,
and b+ = 0. We conclude that x = x+.

We now choose c+ := c− := c ∈ Hom(Zp

/
pZp, k) as in §3.2.3 and let (x+,x−) be

the corresponding elements of Lemma 3.21. By Lemma 3.20 they give rise to the left
H-module homomorphisms

(76) fx± : Hζ −→ E1.

Remark 3.22. – 1. We have Γϖ(ζ) = ζ. Hence Γϖ extends to an automorphism
of Hζ . The multiplicativity of Γϖ, the formula Γϖ(eλ) = eλ−1 , and Lemma 3.4
then imply that

Γϖ ◦ fx+ = fx− ◦ Γϖ and Γϖ ◦ fx− = fx+ ◦ Γϖ

and, in particular, Γϖ(x+) = x−.
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2. Here and in the subsequent points let x− and x+ be as in Lemma 3.21. We
compute

J (x+) = J ((0, 0, c+)1)− J ((0, 2c+ι, 0)s0
) · J (eid)− J ((0, 0, c+)s1s0

) · J (eid)

= (0, 0, c+)1 + (0, 2c+ι, 0)s−1
0
· eid−1 − (0, 0, c+)s0s1

· eid−1 by Lemma 3.7

= (0, 0, c+)1 + eid · (0, 2c+ι, 0)s−1
0
− eid · (0, 0, c+)s0s1

by (66) and (68)

= (0, 0, c+)1 + eidτs2
0
· (0, 2c+ι, 0)s0

− eid · (0, 0, c+)s0s1
by (67)

= (0, 0, c+)1 − eid · (0, 2c+ι, 0)s0
− eid · (0, 0, c+)s0s1

by −eidτs2
0

= eid

= x+ + eid · (0, 0, c+)s1s0
− eid · (0, 0, c+)s0s1

= (1− eid − eidτs0s1
) · x+ by Prop. 3.9

= (1− eid − eidζ) · x+.

and similarly
J (x−) = (1− eid−1 − eid−1ζ) · x−.

Lemma 3.23. – 1. For any u ∈ F×p we have x+ · τωu
= u−2τωu

· x+ and
x− · τωu = u2τωu · x−.

2. We have x+ · τs0
= τs0

· x+ = 0 and x− · τs1
= τs1

· x− = 0.

3. We have

x− · ι(τs1) = −eid−2 · x− and

x+ · ι(τs0
) = −eid2 · x+,

while, for x+ and x− as above,

x+ · ι(τs1
) = −τω−1

ι(τs0
) · x− · ζ and

x− · ι(τs0) = −τω−1 ι(τs1) · x+ · ζ,

where we recall that the involution ι was introduced in (29).

Proof. – 1. For any u ∈ F×p we compute using (66) and (68)

x+ · τωu
= (0, 0, c+)1 · τωu

− eid · (0, 2c+ι, 0)s0
· τωu

− eid · (0, 0, c+)s1s0
· τωu

= (0, 0, c+)ωu − eid · (0, 2c+ι, 0)ω−1
u s0

− eid · (0, 0, c+)ωus1s0

= u−2τωu
· (0, 0, c+)1 − eidτω−1

u
· (0, 2c+ι, 0)s0

− u−2eidτωu
· (0, 0, c+)s1s0

= u−2τωu · (0, 0, c+)1 − u−1eid · (0, 2c+ι, 0)s0 − u−2eidτωu · (0, 0, c+)s1s0

= u−2τωu
· (0, 0, c+)1 − u−2τωu

eid · (0, 2c+ι, 0)s0
− u−2eidτωu

· (0, 0, c+)s1s0

= u−2τωu · x+

and, by an analogous computation (or by applying Remark 3.22-1), we obtain
x− · τωu

= u2τωu
· x−.
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2. For the identity τs0 · x+ = 0, see Lemma 3.21. Now we compute:

x+ · τs0
= J (J (τs0

) · J (x+)) = J (τs2
0
τs0

· (x+ + eid(0, 0, c+)s1s0
− eid · (0, 0, c+)s0s1

))

by Remark 3.22-2

= J (τs2
0
(τs0 · x+ + eid−1τs0 · (0, 0, c+)s1s0 − eid−1τs0 · (0, 0, c+)s0s1))

= 0 by Lemma 3.21 and Prop. 3.9

We obtain the analogous statements for x− using Remark 3.22-1.
3. The first identities easily come from Points 1 and 2. We treat the second equa-

tion of the last statement. The first one can either be established by an analogous
computation or by applying Remark 3.22-1 to the second equation. Both sides of the
second equation lie in the sub-H-bimodule ker(ζ · idE1 ·ζ − idE1) of E1 on which left
multiplication by ζ is injective. Hence we may instead check the equation

−ζ · x− · (τs0 + e1) = τω−1 · (τs1 + e1) · x+.

For the left-hand side we first have, using Lemma 3.12 and Point 1:

x− · (τs0 + e1) = (c−, 0, 0)s0 + eid−1 · (0, 2c−ι, 0)s1s0 − eid−1 · (c−, 0, 0)s0s1s0 + eid−2 · x−

= (c−, 0, 0)s0
+ eid−1 · (0, 2c−ι, 0)s1s0

− eid−1 · (c−, 0, 0)s0s1s0

+ eid−2 · (c−, 0, 0)1

and then by Cor. 3.10

−ζ · x− · (τs0 + e1) = eid−2 · (c−, 0, 0)s1s0 − (c−, 0, 0)s1ω−1

+ eid−1 · (c−, 0, 0)s0
+ e1 · (0, 0, c−)1 − eid−2 · (c−, 0, 0)s1s0

= −(c−, 0, 0)s1ω−1
+ eid−1 · (c−, 0, 0)s0

+ e1 · (0, 0, c−)1.

For the right-hand side we first compute using Prop. 3.9

τs1s2
0
· x+ = −(c+, 0, 0)s1ω−1

+ eid−1 · (c+, 0, 0)s0

e1 · x+ = e1 · (0, 0, c+)1

and then see, by adding up, that it coincides with the above computation for the
left-hand side when c+ = c− = c.

Lemma 3.24. – The maps fx+ and fx− defined in (76) induce an injective homo-
morphism of left H-modules

Hζ/Hζτs0
⊕Hζ/Hζτs1

f±:=fx++fx−−−−−−−−−−−→ E1

the image of which is contained in the kernel of the endomorphism ζ · idE1 ·ζ − idE1 .

Proof. – By Lemma 3.23-2, the map is well defined. By definition of x+and x−,
the last statement of the lemma is clear. We prove that the map is the injective.
We first observe that it suffices to check the injectivity of the restriction of f± to
H/Hτs0

⊕H/Hτs1
. The elements τw with w ∈ W̃ such that ℓ(ws0) = ℓ(w)+1 form a
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k-basis of H/Hτs0 ; they are of the form w = ω(s0s1)
m or = ωs1(s0s1)

m with m ≥ 0

and ω ∈ Ω. Using (66) and Prop. 3.9 we obtain

τw · (0, 0, c+)1 ∈

{
F×p (0, 0, c+)w if w = ω(s0s1)

m,

F×p (c+, 0, 0)w if w = ωs1(s0s1)
m,

and
τw · (0, c0, 0)s0

= (0, (−1)ℓ(w)c0, 0)ws0
∈ h1

0(W̃ ) for any w as above,

and

τweid·(0, 0, c+)s1s0
∈


Fℓ(w)−2E

1 + h1
0(W̃ ) for any w as above with m ≥ 1,

F×p eid−1 · (c+, 0, 0)s0
+ h1

0(W̃ ) if w = ωs1,

F×p eid · (0, 0, c+)ωs1s0
if w = ω.

It follows that
(77)

τw ·x+ ∈


k×(0, 0, c)w + Fℓ(w)−2E

1 + h1
0(W̃ ) if w = ω(s0s1)

m with m ≥ 1,

k×(c, 0, 0)w + Fℓ(w)−2E
1 + h1

0(W̃ ) if w = ωs1(s0s1)
m with m ≥ 1,

k×(c, 0, 0)w + k×eid−1(c, 0, 0)s0 + h1
0(W̃ ) if w = ωs1,

k×(0, 0, c)w + k×eid(0, 0, c)ωs1s0 + h1
0(W̃ ) if w = ω.

Similarly the elements τw with w ∈ W̃ such that ℓ(ws1) = ℓ(w) + 1 form a k-basis
of H/Hτs1 ; they are of the form w = ω(s1s0)

m or = ωs0(s1s0)
m with m ≥ 0 and

ω ∈ Ω. In this case we obtain
(78)

τw·x− ∈


k×(c, 0, 0)w + Fℓ(w)−2E

1 + h1
0(W̃ ) if w = ω(s1s0)

m, m ≥ 1,

k×(0, 0, c)w + Fℓ(w)−2E
1 + h1

0(W̃ ) if w = ωs0(s1s0)
m, m ≥ 1,

k×(0, 0, c)w + k×eid · (0, 0, c)s1 + h1
0(W̃ ) if w = ωs0,

k×(c, 0, 0)w + k×eid−1 · (c, 0, 0)ωs0s1
+ h1

0(W̃ ) if w = ω.

By comparing the lists (77) and (78) we easily see that the elements

{τw · x+ : ℓ(ws0) = ℓ(w) + 1} ∪ {τw · x− : ℓ(ws1) = ℓ(w) + 1}

in E1 are k-linearly independent even in E1/h1
0(W̃ ).

3.7.3.2. Structure of Hζ-bimodule on Hζ/Hζτs0 ⊕Hζ/Hζτs1 .– In this paragraph, the
only condition on F is that it has residue field Fp. Recall the involution ι of H defined
in (29).

We consider the homomorphism of k-algebras κ : H → Hζ given by the com-
position of the involution ι : H → H and the inclusion H → Hζ , the element
−τω−1

ζ−1 ∈ Z(Hζ) in the center of Hζ and the character µ : Ω → k×, ωu 7→ u2.
Recall that as in Remark 2.12, we may refer to the idempotent corresponding to
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the latter as eid2 instead of eµ. As in §2.4.7, this yields a homomorphism of k-al-
gebras κ2 : H → M2(Hζ) and an (Hζ , H)-bimodule structure on Hζ ⊕ Hζ denoted
by (Hζ ⊕Hζ)[κ,−τω−1

ζ−1, µ] where h ∈ H acts on (σ+, σ−) ∈ Hζ ⊕Hζ via

((σ+, σ−), h) 7−→ (σ+, σ−)κ2(h).

We consider the composite map κ2 ◦ ι−1. Again, it is a homomorphism of algebras
H → M2(Hζ) and it yields an (Hζ , H)-bimodule structure on Hζ ⊕ Hζ denoted
by (Hζ⊕Hζ)

±. We spell out below the action on (σ+, σ−) ∈ Hζ⊕Hζ of the generators
ι(τs0), ι(τs1), τωu for u ∈ F×p of H

(σ+, σ−)ι(τs0
) := (−σ+eid2 − σ−τω−1

ι(τs1
)ζ−1, 0)

(σ+, σ−)ι(τs1
) := (0,−σ−eid−2 − σ+τω−1 ι(τs0)ζ

−1)(79)

(σ+, σ−)τωu
:= (u−2σ+τωu

, u2σ−τωu
).

One easily checks that

(τs0
, 0)ι(τs1

) = (0, τs1
)ι(τs0

) = 0,

(τs0 , 0)ι(τs0) = −eid−2(τs0 , 0) and (0, τs1)ι(τs1) = −eid2(0, τs1), and lastly

(τs0
, 0)τωu

= u−2τω−1
u

(τs0
, 0) and (0, τs1

)τωu
= u2τω−1

u
(0, τs1

).

Hence this bimodule structure passes to the quotient (Hζ/Hζτs0 ⊕Hζ/Hζτs1)
±.

Remark 3.25. – In (Hζ/Hζτs0
⊕Hζ/Hζτs1

)±, we have

(80) τs0(1, 0) = (1, 0)τs0 = 0 and τs1(1, 0) = (0, 0)τs1 = 0.

The only non obvious statement is for the right actions. We prove it in the first case
(it is actually a computation in (Hζ ⊕Hζ)

±):

(1, 0)τs0
= −(1, 0)ι(τs0

)− (1, 0)e1 = (eid2 , 0) +
∑

u

(1, 0)τωu

= (eid2 , 0) +
∑

u

(u−2τωu
, 0) = (eid2 , 0)− (eid2 , 0) = 0.

Lemma 3.26. – For any σ ∈ (Hζ/Hζτs0
⊕Hζ/Hζτs1

)± we have ζσζ = σ In particular,
(Hζ/Hζτs0

⊕Hζ/Hζτs1
)± is an (Hζ , Hζ)-bimodule.

Proof. – It suffices to show that ζ(1, 0)ζ ≡ (1, 0) and ζ(0, 1)ζ ≡ (0, 1). Here
and in the following we write ≡ and =, for greater clarity, if an equality holds in
σ ∈ (Hζ/Hζτs0

⊕Hζ/Hζτs1
)± and (Hζ⊕Hζ)

±, respectively. We give the computation
in the first case:

ζ(1, 0)ζ = ζ(1, 0)ι(τs1
)ι(τs0

) by (80)

= ζ(1, 0)(0,−τω−1 ι(τs0)ζ
−1)ι(τs0)

= ζ(1, 0)(τω−1
ι(τs0

)ζ−1τω−1
ι(τs1

)ζ−1, 0) = ζ(ι(τs0
)ι(τs1

)ζ−2, 0)

= ζ(ζ−2(ζ − τs1τs0), 0) ≡ ζ(ζ−1, 0) = (1, 0).
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Lemma 3.27. – We have an isomorphism of right Hζ-modules

β : Hζ/τs0
Hζ ⊕Hζ/τs1

Hζ

∼=−−→ (Hζ/Hζτs0
⊕Hζ/Hζτs1

)±

sending (1, 0) and (0, 1) to (1, 0) and (0, 1), respectively.
In particular, (Hζ/Hζτs0

⊕ Hζ/Hζτs1
)± is a free k[ζ±1]-module of rank 4(p − 1)

on the left and on the right.

Proof. – That the rule given to define β yields a well defined module homomorphism
is immediate from the fact that (1, 0)τs0

= (0, 1)τs1
= 0 (see (80)). To check the

bijectivity we start by observing that, as a consequence of Lemma 2.7, a k-basis
of Hζ/τsi

Hζ as well as Hζ/Hζτsi
is given by

{ζjτωu
: j ∈ Z, u ∈ F×q } ∪ {ζjτωu

ι(τs1−i
) : j ∈ Z, u ∈ F×q },

where we use the involution (29) of H. It follows that Hζ/τs0Hζ ⊕ Hζ/τs1Hζ and
(Hζ/Hζτs0

⊕Hζ/Hζτs1
)± both have the k-basis

{(ζjτωu
, 0), (ζjτωu

ι(τs1
), 0), (0, ζjτωu

), (0, ζjτωu
ι(τs0

)) : j ∈ Z, u ∈ F×q }.
The image under β of this set is

{u−2(ζ−jτωu
, 0),−u−2(0, ζ−j−1τω−u

ι(τs0
)), u2(0, ζ−jτωu

),−u2(ζ−j−1τω−u
ι(τs1

), 0) :

j ∈ Z, u ∈ F×q },

which is a basis for (Hζ/Hζτs0
⊕Hζ/Hζτs1

)±.
The k[ζ±1]-modules Hζ/Hζτs0

⊕ Hζ/Hζτs1
and Hζ/τs0

Hζ ⊕ Hζ/τs1
Hζ are free

k[ζ±1]-modules of rank 4(p − 1) (respectively on the left and on the right). The last
statement follows.

3.7.3.3. On im(f±).– In this paragraph we assume that F = Qp with p ≥ 5 and
that π = p.

Proposition 3.28. – The map f± in Lemma 3.24 yields an injective homomorphism
of H-bimodules

(Hζ/Hζτs0
⊕Hζ/Hζτs1

)± −→ E1

which we still denote by f±. Its image im(f±) is contained in the kernel of the en-
domorphism ζ · idE1 ·ζ − idE1 and is a sub-H-bimodule of E1 on which ζ acts in-
vertibly from the left and the right. Furthermore, im(f±) is a free k[ζ±1]-module of
rank 4(p− 1) on the left and on the right.

Proof. – From Lemma 3.24 we know that

Hζ/Hζτs0
⊕Hζ/Hζτs1

f±=fx++fx−−−−−−−−−−−→ E1

is an injective homomorphism of left H-modules the image of which is contained in
the kernel of the endomorphism ζ · idE1 ·ζ − idE1 . The right H-equivariance of

(Hζ/Hζτs0 ⊕Hζ/Hζτs1)
± f±−→ E1

MÉMOIRES DE LA SMF 175



3.7. SUB-H-BIMODULES OF E1 47

is immediately seen by comparing the Definition (79) with Lemma 3.23. The last
statement follows directly from Lemma 3.27

In Prop. 6.8 we will see that the image of f± coincides in fact with the kernel
of ζ · idE1 ·ζ − idE1 .

Remark 3.29. – 1. It follows from Remark 3.22-1 that the diagram

(Hζ/Hζτs0 ⊕Hζ/Hζτs1)
±

(σ+,σ−) 7→(Γϖ(σ−),Γϖ(σ+))

��

f±
// E1

Γϖ

��

(Hζ/Hζτs0 ⊕Hζ/Hζτs1)
± f±

// E1

is commutative.

2. The maps

δ0 : Hζ/Hζτs0
−→ Hζ/Hζτs0

, h 7−→ h(1− eid − eidζ
−1)

δ1 : Hζ/Hζτs1 −→ Hζ/Hζτs1 , h 7−→ h(1− eid−1 − eid−1ζ−1)

are well defined isomorphisms of left Hζ-modules.
Note that on the component Hζ(1 − eid)/Hζτs0

(1 − eid)

(resp. Hζ(1 − eid−1)/Hζτs1
(1 − eid−1)), the map δ0 (resp. δ1) is the iden-

tity map. On Hζeid/Hζτs0eid (resp. Hζeid−1/Hζτs1eid−1), the map δ0 (resp. δ1)
is the multiplication by ζ−1.

Consider
(81)
(Hζ/Hζτs0⊕Hζ/Hζτs1)

± J⊕J−−−→ Hζ/τs0Hζ⊕Hζ/τs1Hζ
β−→ (Hζ/Hζτs0⊕Hζ/Hζτs1)

±.

We have

f± ◦ β ◦ (J ⊕ J )(σ+, σ−) = f± ◦ β(J (σ+),J (σ−))

= x+ · J (σ+) + x− · J (σ−),

since f± ◦ β is right H-equivariant. Let

(82) J± := β ◦ (J ⊕ J ) ◦ (δ0 ⊕ δ1).

Then

f± ◦ J±(σ+, σ−) = x+ · J (σ+(1− eid − eidζ
−1)) + x− · J (σ−(1− eid−1 − eid−1ζ−1))

= x+ · (1− eid−1 − eid−1ζ−1)J (σ+) + x− · (1− eid − eidζ
−1)J (σ−)

= (1− eid − eidζ) · x+ · J (σ+) + (1− eid−1 − eid−1ζ) · x− · J (σ−)

by Lemma 3.23-1

= J (x+) · J (σ+) + J (x−) · J (σ−) by Remark 3.22-2

= J (σ+ · x+ + σ− · x−) = J (f±(σ+, σ−)).
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It follows that the diagram

(Hζ/Hζτs0
⊕Hζ/Hζτs1

)±

J±

��

f±
// E1

J
��

(Hζ/Hζτs0
⊕Hζ/Hζτs1

)±
f±
// E1

is commutative.
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CHAPTER 4

FORMULAS FOR THE LEFT ACTION OF H ON Ed−1

WHEN G = SL2(Qp), p ̸= 2, 3

For the moment, G = SL2(F) and I is a Poincaré group of dimension d (hence
p ≥ 5).

4.1. Elements of Ed−1 as triples

Recall (see (14)) the isomorphism of H-bimodules ∆d−1 : Ed−1 → J ((E1)∨,f )J .
The left action of h ∈ H on α ∈ J ((E1)∨,f )J ∼= Ed−1 is given by

(83) (h, α) 7→ α(J (h)−).

The anti-involution J on Ed−1 corresponds to the transformation
J ((E1)∨,f )J −→ J ((E1)∨,f )J(84)

α 7−→ α ◦ J .

Proof. – We prove that for α0 ∈ Ed−1 we have ∆d−1(J (α0)) = ∆d−1(α0) ◦ J
in (E1)∨,f . Let β ∈ (E1)∨,f . By definition of ∆d−1 we have

[∆d−1(α0) ◦ J ](β) = η ◦ Sd(α0 ∪ J (β)) = η ◦ Sd(J (J (α0) ∪ β)) by [14] Rmk. 6.2

= η ◦ Sd(J (α0) ∪ β) by [14] Cor. 7.17

= [∆d−1(J (α0))](β).

We will abbreviate hd−1(w) := Hd−1(I,X(w)) for w ∈ W̃ and will identify it with
h1(w)∨ ⊆ J ((E1)∨,f )J . Recall from (54) that an element c in h1(w) ⊂ E1 may be
seen as a triple (c−, c0, c+)w with

c± ∈ Hom(O/M, k) and c0 ∈ Hom((1 +M)
/
(1 +Mℓ(w)+1)(1 +M)p, k).

For a given finite dimensional Fp-vector space V , the k-dual of HomFp
(V, k) identifies

canonically with V ⊗Fp
k so we will see an element α of (h1(w))∨ as a triple

(85) (α−, α0, α+)w ∈ O/M⊗Fp
k×((1+M)/(1+Mℓ(w)+1)(1+M)p)⊗Fp

k×O/M⊗Fp
k
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such that α(c) = c−(α−) + c0(α0) + c+(α+). We still denote by (α−, α0, α+)w the
image of this element in hd−1(w) via the inverse of ∆d−1 and then we have

(86) (α−, α0, α+)w ∪ (c−, c0, c+)w = (c−(α−) + c0(α0) + c+(α+))ϕw,

where ϕw ∈ hd(w) was defined in §2.2.5. Since J respects the cup product and since
J (ϕw) = ϕw−1 ([14] Rmk. 6.2 and (8.2)), we obtain from Lemma 3.7 the following
result:

Lemma 4.1. – Let w ∈ W̃ and α = (α−, α0, α+)w ∈ hd−1(w).
If ℓ(w) is even then

(87) J (α) = (u−2α−, α0, u2α+)w−1 .

If ℓ(w) is odd then

(88) J (α) = (−u2α+,−α0,−u−2α−)w−1 ,

where u ∈ (O/M)× is such that ω−1
u w lies in the subgroup of W̃ generated by s0

and s1.

From (20), (49) and Lemma 3.4 we obtain:

Lemma 4.2. – Let w ∈ W̃ and (α−, α0, α+)w ∈ hd−1(w). Its image by conjugation
by ϖ defined in (48) is

Γϖ((α−, α0, α+)w) = (α+,−α0, α−)ϖwϖ−1 ∈ h2(ϖwϖ−1).

In the next lemma we refer to the notation in §3.2.3.

Lemma 4.3. – Assume G = SL2(Qp), p ̸= 2, 3. For w ∈ W̃ , ℓ(w) ≥ 1 we have

(0, α0, 0)w = −(c, 0, 0)w ∪ (0, 0, c)w,

(α, 0, 0)w = (0, c0, 0)w ∪ (0, 0, c)w,(89)

(0, 0, α)w = (c, 0, 0)w ∪ (0, c0, 0)w.

Proof. – By definition, (0, α0, 0)w is the unique element in h2(w) such that

η ◦ Sd
(
(0, α0, 0)w ∪ (0, c0, 0)w

)
= c0(α0) = 1,

η ◦ Sd
(
(0, α0, 0)w ∪ (c, 0, 0)w

)
= 0,

η ◦ Sd
(
(0, α0, 0)w ∪ (0, 0, c)w

)
= 0,

namely (0, α0, 0)w ∪ (0, c0, 0)w = ϕw while

(0, α0, 0)w ∪ (c, 0, 0)w = (0, α0, 0)w ∪ (0, 0, c)w = 0.

By (60), we obtain the first formula of the lemma. The other formulas are obtained
similarly.
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For any subset U ⊆ W̃ we define as in §3.2 the k-subspaces

hd−1
− (U) :=

⊕
w∈U

hd−1
− (w), hd−1

0 (U) :=
⊕
w∈U

hd−1
0 (w), and hd−1

+ (U) :=
⊕
w∈U

hd−1
+ (w)

of hd−1. We also let hd−1
± (U) := hd−1

− (U)⊕ hd−1
+ (U).

4.2. Left action of τω on Ed−1 for ω ∈ Ω

Let w ∈ W̃ . The action of τω on the left on an element α ∈ hd−1(w) ⊆ Ed−1 was
given at the beginning of §3.4. Here we make this action explicit when α is given by
a triple

α = (α−, α0, α+)w ∈ (h1(w))∨ ⊂ J ((E1)∨,f )J ∼= Ed−1

as in (85). For u ∈ (O/M)×, we compute τωu
· α ∈ h1(ωuw).

For c = (c−, c0, c+)ωuw ∈ h1(ωuw) we have

(τωu · α)(c) = c−(u2α−) + c0(α0) + c+(u−2α+)

(see (66)) therefore

(90) τωu
· (α−, α0, α+)w = (u2α−, α0, u−2α+)ωuw.

In particular, for s ∈ {s0, s1} we have (compare with (67))

(91) τs2 · (α−, α0, α+)w = (α−, α0, α+)s2w.

Remark 4.4. – Using (83) and the formulas in §3.5, we have for w ∈ W̃ and
α = (α−, α0, α+)w ∈ hd−1(w):

(92) (ℓ(w) even)) : eλ · α = α · eµ if and only if


α− = µ−1λ(ωu)α−(u−2

−)

α0 = µ−1λ(ωu)α0

α+ = µ−1λ(ωu)α+(u2
−)

for any u ∈ (O/M)×, and

(93) (ℓ(w) odd)) : eλ · α = α · eµ if and only if


α− = µλ(ωu)α−(u−2

−)

α0 = µλ(ωu)α0

α+ = µλ(ωu)α+(u2
−)

for any u ∈ (O/M)×.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2022



52 CHAPTER 4. FORMULAS FOR THE LEFT ACTION OF H ON Ed−1 WHEN G = SL2(Qp)

4.3. Left action of H on E2 when G = SL2(Qp), p ̸= 2, 3

Suppose that G = SL2(Qp), p ̸= 2, 3 and π = p. Then d = 3. The isomorphism ι

was defined in (58). The following proposition is proved in §9.4. Together with (90),
these formulas give the left action of H on E2.

Proposition 4.5. – Let w ∈ W̃ , ω ∈ Ω and α = (α−, α0, α+)w ∈ (h1(w))∨ seen as
an element of E2. We have:

τs0 · (α−, α0, α+)w

=



(−α+, 0, 0)s0w if w ∈ W̃ 0 with ℓ(w) ≥ 1,
e1 · (−α−,−α0,−α+)w + eid · (2ι(α0), 0, 0)w

+(−α+,−α0, 0)s0w if w ∈ W̃ 1 with ℓ(w) ≥ 2,
e1 · (−α−,−α0,−α+)w + eid · (2ι(α0),−ι−1(α+), 0)w

+eid2 · (α+, 0, 0)w + (−α+, 0, 0)s0w if w ∈ W̃ 1 with ℓ(w) = 1.

τs1
· (α−, α0, α+)w

=



(0, 0,−α−)s1w if w ∈ W̃ 1 with ℓ(w) ≥ 1,
−e1 · (α−, α0, α+)w + eid−1 · (0, 0,−2ι(α0))w

+(0,−α0,−α−)s1w if w ∈ W̃ 0 with ℓ(w) ≥ 2,
−e1 · (α−, α0, α+)w + eid−1 · (0, ι−1(α−),−2ι(α0))w

+eid−2 · (0, 0, α−)w + (0, 0,−α−)s1w if w ∈ W̃ 0 with ℓ(w) = 1.

τs0
· (α−, 0, α+)ω = (−α+, 0, 0)s0ω

τs1
· (α−, 0, α+)ω = (0, 0,−α−)s1ω.

Corollary 4.6. – Let w ∈ W̃ , ω ∈ Ω and α = (α−, α0, α+)w ∈ (h1(w))∨ seen as
an element of E2.

ζ · (α−, 0, α+)ω = (α−, 0, 0)s0s1ω + (0, 0, α+)s1s0ω

+ e1 · (−α+, 0, 0)s0ω + e1 · (0, 0,−α−)s1ω + e1 · (α−, 0, α+)ω.

ζ · (α−, α0, α+)w =


(α−, 0, 0)s0s1w + (0, 0, α+)s1s0w + e1 · (−α+, 0, 0)s0w

+eid−1 · (0, 0,−2ι(α0))s1w + eid−2 · (0, 0,−α+)s1w if w ∈ s0Ω
(α−, 0, 0)s0s1w + (0, 0, α+)s1s0w + e1 · (0, 0,−α−)s1w

+eid · (2ι(α0), 0, 0)s0w + eid2 · (−α−, 0, 0, )s0w if w ∈ s1Ω
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ζ · (α−, α0, α+)w =



(α−, 0, 0)s0s1w + (0, 0, α+)s1s0w + eid−1 · (0, 0,−2ι(α0))s1w

+eid−1 · (0,−ι−1(α+), 2ι(α0))s0w + eid−2 · (0, 0,−α+)s0w

if w ∈ W̃ 1, ℓ(w) = 2,

(0, 0, α+)s1s0w + (α−, 0, 0)s0s1w + eid · (2ι(α0), 0, 0)s0w

+eid · (−2ι(α0), ι−1(α−), 0)s1w + eid2 · (−α−, 0, 0)s1w

if w ∈ W̃ 0, ℓ(w) = 2,

ζ · (α−, α0, α+)w =



(α−, 0, 0)s0s1w + (0, α0, α+)s1s0w

+eid−1 · (0, 0,−2ι(α0))s1w + eid−1 · (0, 0, 2ι(α0))s0w

if w ∈ W̃ 1, ℓ(w) ≥ 3,

(0, 0, α+)s1s0w + (α−, α0, 0)s0s1w

+eid · (2ι(α0), 0, 0)s0w + eid · (−2ι(α0), 0, 0)s1w

if w ∈ W̃ 0, ℓ(w) ≥ 3.
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k[ζ]-TORSION IN E∗ WHEN G = SL2(Qp), p ̸= 2, 3

In this whole section G = SL2(F).
A) Without any assumption on F, we know that E0 is a free left (resp. right)

k[ζ]-module (Lemma 2.7). Therefore it is k[ζ]-torsion free on the left (resp. right).
B) Here we suppose that the group I is torsion free and its dimension as a Poincaré

group is d. We study the k[ζ]-torsion in Ed. We know by Remark 2.21 that the left
and right actions of ζ on Ed coincide. Recall that we have the following isomorphism
of H-bimodules

(94) Ed ∼= ker(Sd)⊕ χtriv

and by Proposition 2.4, we have ker(Sd) ∼=
⋃

m(H/ζmH)∨ as H-bimodules. Therefore
Ed is the direct sum of its one-dimensional subspace of (ζ − 1)-torsion and of its
subspace ker(Sd) of ζ-torsion. This applies in particular when G = SL2(Qp), p ̸= 2, 3

and d = 3.
C) We study the k[ζ]-torsion in E1.

Lemma 5.1. – Suppose that G = SL2(F).

i Suppose that p ̸= 2. For any P ∈ k[X] such that P (0) ̸= 0 there is no left (resp.
right) P (ζ)-torsion in E1.

ii. If F = Qp, given any 0 ̸= P ∈ k[X], there is no left (resp. right) P (ζ)-torsion
in E1.

Proof. – Let 0 ̸= P ∈ k[X]. Suppose that we know that (X/XP (ζ))I ∼= H/HP (ζ).

Then the exact sequence of (G,H)-bimodules 0 → X
·P (ζ)−−−→ X → X/XP (ζ) → 0

induces the long exact sequence of H-bimodules

0 → E1 ·P (ζ)−−−→ E1 → H1(I,X/XP (ζ)) → E2 → · · · .
In particular, there is no right P (ζ)-torsion in E1. Since P (ζ) · c = J (J (c) ·P (ζ)) for
any c ∈ E∗, there is no left P (ζ)-torsion in E1 either.

i. For any field extension k′/k and any V ∈ Mod(G) we have (V ⊗k k
′)I = V I⊗k k

′.
Therefore we may assume that Fq ⊆ k (and that p ̸= 2). Suppose that P (0) ̸= 0. Then
H/HP (ζ) is an Hζ-module.
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Hence by [13] Thm. 3.33 we know that (X/XP (ζ))I ∼= H/HP (ζ).
ii. Suppose F = Qp. Then (X/XP (ζ))I ∼= H/HP (ζ) (see §2.4.10).

D) Here we suppose that the group I is torsion free and its dimension as a Poincaré
group is d. We study the k[ζ]-torsion subspace in Ed−1.
Let i ∈ {0, . . . , d} and ℓ ≥ 1. Recall that the left action of ζ on J ((Ei)∨,f )J ∼= Ed−i is
given by (ζ, φ) 7→ φ(ζ·−) : Ei → k. In particular, coker(ζℓ· : Ei → Ei) = {0} implies
ker(ζℓ· : Ed−i → Ed−i) = {0}. We explore the converse implication in the lemma
below where we refer to the decreasing filtration (FmEi)m≥0 introduced in §2.2.4.

Lemma 5.2. – Suppose that G = SL2(F) and I is a Poincaré group of dimension d.
Let i ∈ {0, . . . , d}. Suppose that there is m ≥ 0 such that ζℓ · Ei ⊇ FmEi, then we
have an isomorphism of H-bimodules:

ker(ζℓ· : Ed−i → Ed−i) ∼= J ((Ei/ζℓ · Ei)∨)J .

In particular, ker(ζℓ· : Ed−i → Ed−i) = 0 if and only if coker(ζℓ· : Ei → Ei) = 0.

The same statements are valid for the right action of ζℓ.

Proof. – The kernel of the left action of ζℓ on J ((Ei)∨,f )J is the space of all
φ ∈ (Ei)∨,f which are trivial on ζℓ · Ei. Suppose that there is m ≥ 0 such
that ζℓ · Ei ⊇ FmEi. Then any φ ∈ (Ei)∨ which is trivial on ζℓ · Ei lies in (Ei)∨,f .
Therefore, the kernel of the right action of ζℓ on J ((Ei)∨,f )J is the space of all
φ ∈ (Ei)∨ which are trivial on ζℓ·Ei, namely ker(·ζℓ : J ((Ei)∨,f )J → J ((Ei)∨,f )J ) =
J ((Ei/ζℓ · Ei)∨)J .

Remark 5.3. – It is easy to check that ζℓ ·E0 ⊃ ζℓ ·F 1E0 = F 2ℓ+1E0. So we recover
ker(ζℓ· : Ed → Ed) ∼= J ((H/ζℓH)∨)J which is isomorphic to (H/ζℓH)∨. (compare
with B) above).

Using Corollary 3.11 we obtain immediately:

Corollary 5.4. – Suppose that G = SL2(Qp), p ̸= 2, 3. We have an isomorphism
of H-bimodules:

ker(ζ· : E2 → E2) ∼= J ((E1/ζ · E1)∨)J .

Remark 5.5. – We will see in Proposition 6.15 that this space is nontrivial.

Lemma 5.6. – Suppose that G = SL2(Qp), p ̸= 2, 3 and π = p. There is no left (resp.
right) P (ζ)-torsion in E2 for any P ∈ k[X] with P (0) ̸= 0.

Proof. – We may prove the assertion after a base extension of k. Hence it suffices to
consider the case P (X) = X − a for some a ∈ k×. As in the proof of Lemma 5.1, it is
enough to prove that there is no left (ζ − a)-torsion in E2 or equivalently that there
is no right (ζ − a)-torsion in (E1)∨,f (see (14)). We prove that for a given m ≥ 1, we
have

(ζ − a) · E1 + FmE1 = E1.

By our assumption that π = p, we may use the formulas of Cor. 3.10.
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— If w ∈ W̃ 0, ℓ(w) ≥ 2, we have (ζ−a)·(c−, c0, 0)w = (c−, c0, 0)s1s0w−a·(c−, c0, 0)w

and if ℓ(w) ≥ 1, we have (ζ − a) · (c−, 0, 0)w = (c−, 0, 0)s1s0w − a · (c−, 0, 0)w.
So by induction h1

−(W̃ 0,ℓ≥1) + h1
0(W̃

0,ℓ≥2) ⊆ (ζ − a) · E1 + FmE1. Using
conjugation by ϖ, we have proved h1

−(W̃ 0,ℓ≥1) + h1
0(W̃

ℓ≥2) + h1
+(W̃ 1,ℓ≥1) ⊆

(ζ − a) · E1 + FmE1.

— If w ∈ W̃ 0, ℓ(w) ≥ 3, we have

(ζ − a) · (0, 0, c+)w ∈ (0, 0, c+)s0s1w − a(0, 0, c+)w + h1
0(W̃

ℓ≥2),

therefore h1
−(W̃ 1,ℓ≥1) + h1

+(W̃ 0,ℓ≥1) ⊆ (ζ − a) · E1 + FmE1 by induction and
conjugation by ϖ.

So at this point we have h1
0(W̃

ℓ≥2) + h1
±(W̃ ℓ≥1) ⊆ (ζ − a) · E1 + FmE1.

— But if ℓ(w) = 1 we have (ζ−a)(0, c0, 0)w ∈ −a(0, c0, 0)w+h1
0(W̃

ℓ≥2)+h1
±(W̃ ℓ≥1)

so h1
0(W̃ ) + h1

±(W̃ ℓ≥1) ⊆ (ζ − a) · E1 + FmE1.

— Lastly, (c−, 0, c+)ω ∈ (ζ − a) · (c−, 0, 0)s0s1ω + (ζ − a) · (0, 0, c+)s1s0ω + h1
0(W̃ ) +

h1
±(W̃ ℓ≥1) for ω ∈ Ω. So h1

0(W̃ ) + h1
±(W̃ ) ⊆ (ζ − a) · E1 + FmE1.
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CHAPTER 6

STRUCTURE OF E1 AND E2 WHEN G = SL2(Qp), p ̸= 2, 3

6.1. Preliminaries

We define the following endomorphisms of H-bimodules of E∗:

f := ζ · idE∗ ·ζ − idE∗ : c 7→ ζ · c · ζ − c

and
g := ζ · idE∗ − idE∗ ·ζ : c 7→ ζ · c− c · ζ.

We will restrict them to the graded pieces Ei and will then use the notation fi and gi.
The following remarks are easy to check. Here G = SL2(F).

Remark 6.1. – i. f and g commute. In fact,

f ◦ g = (ζ2 + 1) · idE∗ ·ζ − ζ · idE∗ ·(ζ2 + 1) = g ◦ f.

ii. It is clear that the left (resp. right) action of ζ on ker(f) induces a bijective
map. Hence ker(f) is naturally a Hζ-bimodule.

iii. We have the following inclusions of subalgebras of E∗:

ker(g) ⊆ ker(f) + ker(g) ⊆ E∗.

We have indeed ker(f) · ker(f) ⊆ ker(g) as well as ker(f) · ker(g) ⊆ ker(f) and
ker(g) · ker(f) ⊆ ker(f).

iv. The spaces ker(f) and ker(g) are stable by conjugation by ϖ (see (48) and use
that Γϖ(ζ) = ζ).

v. The spaces ker(f) and ker(g) are stable by J (use that J (ζ) = ζ).

Lemma 6.2. – Suppose G = SL2(F). We have

i. ker(f0) = {0} and ker(g0) = E0 .

ii. If I is a Poincaré group of dimension d, then ker(gd) = Ed and ker(fd) ∼= χtriv

as a left (resp. right) H-module.

iii. Suppose that p ̸= 2 or F = Qp. Then ker(f1) ∩ ker(g1) = {0}.
iv. Suppose that F = Qp with p ̸= 2, 3. Assume π = p. Then ker(f2)∩ker(g2) = {0}.
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Proof. – The first point is clear, using in particular the freeness of H as a k[ζ]-module.
For the second point: we saw in §5B) that ζ centralizes the elements in Ed, therefore
ker(gd) = Ed and the kernel of fd coincides with the kernel of the action of ζ2 − 1

on Ed. But Ed is the direct sum of its one-dimensional subspace of (ζ−1)-torsion and
of its subspace of ζ-torsion. So ker(fd) coincides with the subspace of (ζ − 1)-torsion
and is isomorphic to χtriv as a left (resp. right) H-module.

The last two points come from the fact that for any i the space ker(fi)∩ ker(gi) is
contained in the ζ2 − 1 torsion space in Ei. But for i = 1, 2 and under the respective
hypotheses, this torsion space is trivial by Lemmas 5.1 and 5.6.

6.2. Structure of E1

We suppose that G = SL2(Qp) with p ̸= 2, 3 and we choose π = p. Here we focus
on the graded piece E1 and work with the endomorphisms of H-bimodules

f1 := ζ · idE1 · ζ − idE1 : c 7→ ζ · c · ζ − c

and
g1 := ζ · idE1 − idE1 · ζ : c 7→ ζ · c− c · ζ.

6.2.1. On ker(g1). – In Prop. 3.18 we established the injectivity of the H-bimodule
homomorphism

(95) f(x0,x1) : F 1H −→ ker(g1).

Proposition 6.3. – Assume G = SL2(Qp) with p ̸= 2, 3 and π = p. The map (95)
is bijective, so ker(g1) is isomorphic to F 1H as an H-bimodule. In particular, as a
left (resp. right) k[ζ]-module, ker(g1) is free of rank 4(p− 1).

Proof. – It is immediate from Prop. 3.18-i that E1 = im(f(x0,x1))⊕h1
±(W̃ ). Therefore

we only need to check that g1 is injective on h1
±(W̃ ). From §2.2.4 we know that,

for n ≥ 0, we have

ζ · FnE
1 + FnE

1 · ζ ⊆ Fn+2E
1 and hence g1(FnE

1) ⊆ Fn+2E
1.

But Lemma 3.13 tells us that modulo Fℓ(w)+1E
1 we have

g1((c
−, 0, c+)w) ≡


(0, 0, c+)s0s1w − (c−, 0, 0)s0s1w if w ∈W 1,ℓ≥1,

(c−, 0, 0)s1s0w − (0, 0, c+)s1s0w if w ∈W 0,ℓ≥1,

(0, 0, c+)s0s1ω + (c−, 0, 0)s1s0ω

−(c−, 0, 0)s0s1ω − (0, 0, c+)s1s0ω if w = ω ∈ Ω.

This shows that g1 is injective on h1
±(W̃ ).

Remark 6.4. – The above proposition implies in particular that ker(g1) is the cen-
tralizer in E1 of the full center Z of H.
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6.2.2. On ker(f1). – In Prop. 3.28 we introduced and established the injectivity of the
Hζ-bimodule homomorphism

(96) f± : (Hζ/Hζτs0 ⊕Hζ/Hζτs1)
± −→ ker(f1).

To show that this map is actually also surjective we need to introduce the vector
subspace V ⊆ E1 with basis

x := eid · (0, 0, c)1 · eid−1 , eid · (0, 0, c)s1
· eid = x · τs1

,(97)

y := eid−1 · (c, 0, 0)1 · eid, eid−1 · (c, 0, 0)s0
· eid−1 = y · τs0

.

Temporarily we put
U := V+ im(f(x0,x1)) + im(f±).

But note that im(f(x0,x1)) + im(f±) = im(f(x0,x1))⊕ im(f±) by Lemma 6.2-iii.

Lemma 6.5. – We have:

a) (x · τs1
) · τs1

= 0 and (y · τs0
) · τs0

= 0;

b) x · τs0 = 0 and y · τs1 = 0;

c) τs0
· x = 0 = τs0

· (x · τs1
) and τs1

· y = 0 = τs1
· (y · τs0

);

d) τs1
· x = y · τs0

+ eid−1τs1
fx+(1), τs0

· y = x · τs1
+ eidτs0

· fx−(1);

e) ζ · x− x = eidτs0s1 · fx+(1) + 2eid · f(x0,x1)(τs0);

f) ζ · y − y = eid−1τs1s0
· fx−(1) + 2eid−1 · f(x0,x1)(τs1

);

g) x · ζ − x, y · ζ − y ∈ im(f(x0,x1))⊕ im(f±);

h) (x · τs1
) · τs0

− x, (y · τs0
) · τs1

− y ∈ im(f(x0,x1))⊕ im(f±);

i) τs1
·(x ·τs1

)−y ∈ im(f(x0,x1))⊕ im(f±), τs0
·(y ·τs0

)−x ∈ im(f(x0,x1))⊕ im(f±);

j) U is a sub-H-bimodule of E1.

Proof. – a) is obvious. For the subsequent computations it is useful to note that we
have
(98)
x = eid ·(0, 0, c)1, x ·τs1 = eid ·(0, 0, c)s1 , y = eid−1 ·(c, 0, 0)1, y ·τs0 = eid−1 ·(c, 0, 0)s0 .

We also recall that im(f(x0,x1))⊕ im(f±) is a sub-H-bimodule of E1.
Points b), c), d), e), and f) are a straightforward computation based on the for-

mulas in Prop. 3.9. Point g) follows from e) and f) by applying J . By b) we have
x · ζ = (x · τs1

) · τs0
and y ·ζ = (y ·τs0

) ·τs1
; hence h) follows from g). i) follows from d)

and h). j) follows from a) - d), h), and i).

Remark 6.6. – By direct calculation, we have

ζ · (x · τs1) · ζ − (x · τs1) = −eid · ((0, 2cι, 0)(s0s1)2 + (0, 2cι, 0)s0s1) · eid
= −(ζ + 1)eid · (0, 2cι, 0)s0s1

· eid.

Lemma 6.7. – We have E1 = im(f(x0,x1))⊕ im(f±)⊕V = ker(g1)⊕ im(f±)⊕V.
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Proof. – We remind the reader of the following consequences of (66) which we will
silently use in the following:

eid · (0, 0, c)ωuw = u−1eid · (0, 0, c)w and eid−1 · (c, 0, 0)ωuw = ueid−1 · (c, 0, 0)w

for any w ∈ W̃ and u ∈ F×p . We also recall, using (69) and (70) that

x = eid ·(0, 0, c)1, y = eid−1 ·(c, 0, 0)1, x ·τs1
= eid ·(0, 0, c)s1

, y ·τs0
= eid−1 ·(c, 0, 0)s0

.

Prop. 3.18-i tells us that

im(f(x0,x1)) = h1
0(W̃

ℓ≥2)⊕ (
⊕

u∈F×p

k
(
(0, cι, 0)s1ωu

− u−1eid · (0, 0, c)1
)
)

⊕ (
⊕

u∈F×p

k
(
(0, cι, 0)s0ωu

+ ueid−1 · (c, 0, 0)1
)
)(99)

= h1
0(W̃

ℓ≥2)⊕ (
⊕

u∈F×p

k
(
(0, cι, 0)s1ωu

− u−1x
)
)

⊕ (
⊕

u∈F×p

k
(
(0, cι, 0)s0ωu

+ uy
)
).

This implies

(100) U ⊇ im(f(x0,x1))⊕ kx⊕ ky = h1
0(W̃

ℓ≥1)⊕ kx⊕ ky.

Next we observe that, by Lemma 3.12, we have

(0, 0, c)w = (0, 0, c)1 · τw and eid · (0, 0, c)w = x · τw for any w ∈ W̃ 0, and

(c, 0, 0)w = (c, 0, 0)1 · τw and eid−1 · (c, 0, 0)w = y · τw for any w ∈ W̃ 1.

Furthermore, Prop. 3.9 implies

(0, 0, c)w =

{
τw · (0, 0, c)1,
−τw · (c, 0, 0)1,

and eid · (0, 0, c)w =

{
τw · x if w = (s0s1)

m with m ≥ 0,

−τw · y if w = (s0s1)
ms0 with m ≥ 0,

(c, 0, 0)w =

{
τw · (c, 0, 0)1,

−τw · (0, 0, c)1,

and eid−1 · (c, 0, 0)w =

{
τw · y if w = (s1s0)

m with m ≥ 0,

−τw · x if w = (s1s0)
ms1 with m ≥ 0.

It follows, recalling that U is a sub-H-bimodule of E1 (Lemma 6.5-j), that

H ·
(
k(0, 0, c)1 ⊕ k(c, 0, 0)1

)
·H ⊇ h1

−(W̃ )⊕ h1
+(W̃ ) and(101)

U ⊇ H ·V ·H ⊇ eid−1h1
−(W̃ )⊕ eidh

1
+(W̃ ).(102)
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By looking at the definition of x± and using (100) and (102) we see that
(0, 0, c)1, (c, 0, 0)1 ∈ U. So (101) implies that h1

−(W̃ ) ⊕ h1
+(W̃ ) ⊆ U, and together

with (100) we obtain U = E1.
It remains to check that

(103) V ∩ (im(f(x0,x1))⊕ im(f±)) = 0.

If z = r1x + r2y + r3xτs1
+ r4yτs0

∈ V with ri ∈ k is an arbitrary element then
eid ·z ·eid−1 = r1x, eid−1 ·z ·eid = r2y, eid ·z ·eid = r3x·τs1

, and eid−1 ·z ·eid−1 = r4y ·τs0
.

Hence it suffices to show that none of the elements x, y, x · τs1 , y · τs0 is contained
in im(f(x0,x1))⊕ im(f±). Obviously we need to check this only for x · τs1

and y · τs0
.

First notice using (98) and (70) that

x · τs1
= eid · (0, 0, c)s1

· eid, y · τs0
= eid−1 · (c, 0, 0)s0

· eid−1 .

Therefore we only need to study

eid · (im(f(x0,x1)) + im(f±)) · eid ⊕ eid−1 · (im(f(x0,x1)) + im(f±)) · eid−1

and show that it does not contain x · τs1 and y · τs0 . We focus on the case of x · τs1 , the
case of y · τs0

being analogous. It is immediate from Prop. 3.18 that eid · im(f(x0,x1)) ·
eid = eid · h1

0(W̃
ℓ≥1) · eid. Now assume that

x · τs1
= yx0,x1

+ y± ∈ eid · (im(f(x0,x1))⊕ im(f±)) · eid.

Applying the operator ζ · − · ζ − 1 on both sides and using Remark 6.6, we have

(ζ + 1) · z = (ζ2 − 1) · yx0,x1 ,

where z := −eid · (0, 2cι, 0)s0s1 · eid = −fx0,x1(eidτs0s1) by Prop. 3.18-i. So both z and
yx0,x1

lie in im(f(x0,x1)). Recall that f(x0,x1) induces an isomorphism between F 1H

and im(f(x0,x1)) hence the latter is a free k[ζ]-module. The identity above therefore
implies that z = (ζ − 1) · yx0,x1

. This is impossible because eidτs0s1
/∈ (ζ − 1)F 1H.

This concludes the proof of the first equality of Lemma 6.7. The second equality
then follows from Prop. 6.3.

Proposition 6.8. – Suppose G = SL2(Qp) with p ̸= 2, 3 and π = p. We have:

i. The map f± described in (96) is bijective;

ii. f1 ◦ g1 = g1 ◦ f1 = 0 on E1.

In particular (cf. Remark 3.29), as a left (resp. right) k[ζ±1]-module, ker(f1) is free
of rank 4(p− 1).

Proof. – By [13] Remark 3.2.ii we have

ζτwζ = ζ2τw =

{
τ(s0s1)2w if w ∈ W̃ 1,ℓ≥1,

τ(s1s0)2w if w ∈ W̃ 0,ℓ≥1.
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We deduce that

f1(f(x0,x1)(τw)) = f(x0,x1)(ζ
2τw)− f(x0,x1)(τw)

=

{
f(x0,x1)(τ(s0s1)2w)− f(x0,x1)(τw) if w ∈ W̃ 1,ℓ≥1,

f(x0,x1)(τ(s1s0)2w)− f(x0,x1)(τw) if w ∈ W̃ 0,ℓ≥1

and, using Prop. 3.18-i, see that

(104) f1(f(x0,x1)(τw)) ∈

{
k×(0, cι, 0)(s0s1)2w + Fℓ(w)+3E

1 if w ∈ W̃ 1,ℓ≥1,

k×(0, cι, 0)(s1s0)2w + Fℓ(w)+3E
1 if w ∈ W̃ 0,ℓ≥1.

On the other hand we observe that

f1(x) = ζ · x · ζ − x = eid · (0, 0, c)s0s1
by Lemma 6.5-i and Prop. 3.9

= −eid · (0, 2cι, 0)s0s1s0 − eid · (0, 2cι, 0)s0 by (75)

∈ F3E
1 ∩ im(f(x0,x1)) by Prop. 3.18-i

and, by an analogous computation, f1(y) ∈ F3E
1 ∩ im(f(x0,x1)) as well. By Prop. 2.1

we conclude that f1(V) ⊆ F4E
1 ∩ im(f(x0,x1)) = F4E

1 ∩ ker(g1) using Prop. 6.3. This
together with (104) shows that f1 is injective on im(f(x0,x1)) ⊕ V. Lemma 6.7 then
implies that im(f±) = ker(f1), which establishes Point i of the proposition. Further-
more, we have f1(ker(g1)) ⊆ ker(g1) since f1 and g1 commute (Remark 6.1-i). The fact
that f1(V) ⊆ ker(g1) then shows, again invoking Lemma 6.7, that f1(E1) ⊆ ker(g1)

which amounts to our assertion ii.

Remark 6.9. – We have (1− eγ0) · ker(f1) = (1− eγ0) · h1
±(W̃ ).

Proof. – We deduce from Cor. 3.10 that left multiplication by ζ preserves (1− eγ0
) ·

h1
±(W̃ ) as well as h1

±(W̃ ) · (1− eγ0
); for the latter use in addition that eγ0

centralizes
h1

0(W̃ ) by (71). Applying J , which preserves h1
±(W̃ ) by Lemma 3.7, one sees that

also right multiplication by ζ preserves (1− eγ0) · h1
±(W̃ ). We now compute

(1− eγ0
) · ker(f1) = (1− eγ0

) · im(f±) by Prop. 6.8-i

= (1− eγ0
)H · x− · ζN + (1− eγ0

)H · x+ · ζN

= H(1− eγ0
) · x− · ζN +H(1− eγ0

) · x+ · ζN

= H(1− eγ0) · (c, 0, 0)1 · ζN +H(1− eγ0) · (0, 0, c)1 · ζN

= (1− eγ0
)H · (c, 0, 0)1 · ζN + (1− eγ0

)H · (0, 0, c)1 · ζN

= (1− eγ0
) · h1

−(W̃ ) · ζN + (1− eγ0
) · h1

+(W̃ ) · ζN by (66) and Prop. 3.9

⊆ (1− eγ0
) · h1

±(W̃ ) by the initial consideration.

Since (1− eγ0
) ·V = 0 we conclude from Lemma 6.7 the second equality in

(1− eγ0
) · h1

0(W̃ )⊕ (1− eγ0
) · h1

±(W̃ ) = (1− eγ0
) · E1

= (1− eγ0
) · im(f(x0,x1))⊕ (1− eγ0

) · im(f±).
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The left-hand summands are equal by Remark 3.19, of the right-hand summands
one contains the other by the above calculation since im(f±) = ker(f1). Hence the
right-hand summands must be equal as well.

6.2.3. Structure of E1 as an H-bimodule. – Recall the central idempotent
eγ0

= eid + eid−1 in H.

Proposition 6.10. – Let G = SL2(Qp) with p ̸= 2, 3 and assume π = p. We have
the following.

1. As an H-bimodule, E1 sits in an exact sequence of the form

0 → ker(f1)⊕ ker(g1) → E1 → E1/ ker(f1)⊕ ker(g1) → 0,

where E1/ ker(f1)⊕ ker(g1) is a 4-dimensional H-bimodule.

2. As a left (resp. right) H-module, E1/ ker(f1) ⊕ ker(g1) is isomorphic to the
direct sum of two copies of a simple 2-dimensional left (resp. right) H-module
on which ζ and eγ0 act by 1.

3. E1/ ker(g1) is an Hζ-bimodule.

Proof. – The first assertion follows from Lemma 6.7 and Prop. 6.8-i. As observed
before we trivially have f1(ker(g1)) ⊆ ker(g1). Hence f1 induces a well defined endo-
morphism of E1/ ker(g1). But Prop. 6.8-ii implies that this latter map is actually the
zero map. It follows that z ≡ ζ · z · ζ mod ker(g1) for any z ∈ E1, which implies the
third assertion.

It remains to determine the module structure of the 4-dimensional quo-
tient E1/ ker(f1) ⊕ ker(g1) which has as a k-basis the cosets of x, y, x · τs1

,
and y · τs0 . Obviously eγ0 acts by 1 on these elements from the left and the right.
It follows from Lemma 6.5 that ζ acts by 1 from the left and the right on this
quotient. The same lemma also implies that x and x · τs1

generate a 2-dimensional
right H-submodule in E1/ ker(f1)⊕ker(g1). It is necessarily a simple module because
the only one-dimensional modules on which eγ0

acts by 1 are supersingular, namely
annihilated by ζ (see (26)). Correspondingly one sees that y and y · τs0

generate
another 2-dimensional simple right H-submodule in E1/ ker(f1) ⊕ ker(g1). It is easy
to check that these two simple right modules are isomorphic to each other via the
map x 7→ y · τs1

, x · τs0
7→ y. This proves in particular that E1/ ker(f1) + ker(g1) is

semisimple isotypic as a right H-module, and therefore also as a left H-module
using J .

6.3. Structure of E2

We still assume that G = SL2(Qp) with p ̸= 2, 3 and that π = p. Here we focus on
the graded piece E2 and work with the endomorphisms of H-bimodules

f2 := ζ · idE2 · ζ− idE2 : c 7→ ζ ·c ·ζ−c and g2 := ζ · idE2 − idE2 · ζ : c 7→ ζ ·c−c ·ζ
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as introduced in §6.1. By Prop. 6.10 we have an exact sequence of H-bimodules

0 −→ ker(f1)⊕ ker(g1) −→ E1 −→ E1/(ker(f1)⊕ ker(g1)) −→ 0,

where E1/(ker(f1) ⊕ ker(g1)) is a 4-dimensional H-bimodule. Passing to duals, this
gives an exact sequence of H-bimodules

0 −→ (E1/(ker(f1)⊕ ker(g1)))
∨ −→ (E1)∨ −→ (ker(f1)⊕ ker(g1))

∨ −→ 0.

We define the sub-H-bimodules

(E1)∨f1
:= {ξ ∈ (E1)∨ : ξ| ker(g1) = 0} and (E1)∨g1

:= {ξ ∈ (E1)∨ : ξ| ker(f1) = 0}.
Then

(E1)∨ = (E1)∨f1
+ (E1)∨g1

and (E1)∨f1
∩ (E1)∨g1

= (E1/(ker(f1)⊕ ker(g1)))
∨.

Lemma 6.11. – The composed map

(E1)∨,f ⊆−→ (E1)∨ −→ (ker(f1)⊕ ker(g1))
∨

is injective.

Proof. – We have to prove, for m ≥ 1, that

ker(f1) + ker(g1) + FmE1 = E1.

Because of Lemma 6.7 this boils down to proving that x, x · τs1
, y, y · τs0

all lie
in im(f(x0,x1)) ⊕ im(f±) ⊕ FmE1. Since y = Γϖ(x) it is enough to prove this for
x = eid · (0, 0, c)1 and x ·τs1

= eid ·(0, 0, c)s1
. By Lemma 6.5-e) we know that ζm ·x−x

and ζm · x · τs1
− x · τs1

lie in ker(f1) + ker(g1) for any m ≥ 1. But, using Cor.
3.10, we have ζm · x = eidζ

m · (0, 0, c)1 = eid · (0, 0, c)(s0s1)m ∈ F 2mE1 and then
ζm ·x ·τs1 = eid ·(0, 0, c)(s0s1)mτs1

∈ F 2m−1E1 by applying J and using Prop. 3.9.

We put Kf1
:= (E1)∨,f ∩ (E1)∨f1

and Kg1
:= (E1)∨,f ∩ (E1)∨g1

. Because of
Lemma 6.11 we have Kf1

⊕Kg1
⊆ (E1)∨,f . Since Kf1

and Kg1
inject into ker(f1)

∨

and ker(g1)
∨, respectively, we have ζ ·η ·ζ = η for η ∈ Kf1

and ζ ·η = η ·ζ for η ∈ Kg1
.

Lemma 6.12. – (E1)∨,f = Kf1 ⊕Kg1 .

Proof. – Let ξ ∈ (E1)∨,f . We claim that there exists a linear map η ∈ Kg1
such

that η|ker(g1)
= ξ|ker(g1)

. This implies that ξ − η ∈ Kf1
.

— Suppose ξ = ξ(1 − eγ0). Then we can see ξ as an element in ((1 − eγ0)E
1)∨,f .

Since (1−eγ0
)E1 = (1−eγ0

) ker(f1)⊕ (1−eγ0
) ker(g1) where (1−eγ0

) ker(f1) =

(1 − eγ0
)h1
±(W̃ ) by Remark 6.9 and (1 − eγ0

) ker(g1) = (1 − eγ0
)h1

0(W̃ ) by
Remark 3.19 and Prop. 6.3, we may define η to be zero on (1− eγ0

) ker(f1) and
η|(1−eγ0 ) ker(g1)

= ξ|(1−eγ0 ) ker(g1)
.

— Suppose ξ = (1−eγ0
)ξeγ0

. Then we can see ξ as an element in (eγ0
E1(1−eγ0

))∨,f .
Since eγ0 ker(g1)(1−eγ0) = 0 by Remark 3.19 and Prop. 6.3, the linear form ξ is
already in Kf1

.
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— Now suppose ξ = eγ0ξeγ0 . We may consider separately two cases, namely
ξ = eidξeid and ξ = eidξeid−1 (the other cases following by conjugation by ϖ).
We treat the first case, the second one being similar. If ξ = eidξeid, then we can
see ξ as a linear map on eidE1eid (recall that we are working in the H-bimodule
(E1)∨). By Lemma 6.7 and (97) we have

eidE
1eid = eid(ker(f1)⊕ ker(g1))eid ⊕ keid(0, 0, c)s1 .

Define the linear map η : E1 → k by

η|eid ker(f1)eid
:= 0, η|eid ker(g1)eid

:= ξ|eid ker(g1)eid
, and

η(eid(0, 0, c)s1) :=

+∞∑
j=1

ξ
(
eid(0, 2cι, 0)(s0s1)j

)
,

which is well defined because ξ ∈ (E1)∨,f . From (71) we have

eidE
1eid = eidh

1
0(W̃

even) + eidh
1
+(W̃ odd).

It remains to check that η ∈ (E1)∨,f . Since h1
0(W̃

ℓ≥2) is contained in ker(g1) by
Prop. 3.18, we only need to check that η is trivial on eid · h1

+(W̃ odd,ℓ≥m) for m
large enough. From Cor. 3.10 we deduce that ζm+1 ·x·τs1

= ζm+1eid ·(0, 0, c)s1
=

−eid(0, 2cι, 0)(s0s1)m+1 − eid · (0, 0, c)(s0s1)ms0
for any m ≥ 0. Hence

eid · (0, 0, c)(s0s1)ms0

= −ζm+1 · x · τs1
− eid · (0, 2cι, 0)(s0s1)m+1

= −eid · (0, 0, c)s1
− (ζm+1 · x · τs1

− x · τs1
)− eid · (0, 2cι, 0)(s0s1)m+1

= −eid · (0, 0, c)s1
− (

m∑
j=0

ζj)(ζ · x− x) · τs1
− eid · (0, 2cι, 0)(s0s1)m+1

∈ ker(f1)− eid · (0, 0, c)s1 + (

m∑
j=0

ζj)eid · (0, 2cι, 0)s0 · τs1 − eid · (0, 2cι, 0)(s0s1)m+1

by Lemma 6.5-e

= ker(f1)− eid · (0, 0, c)s1
+ (

m∑
j=0

ζj)eid · (0, 2cι, 0)s0s1
− eid · (0, 2cι, 0)(s0s1)m+1

by Lemma 3.12-i

= ker(f1)− eid · (0, 0, c)s1
+ (

m∑
j=0

eid · (0, 2cι, 0)(s0s1)j+1 − eid · (0, 2cι, 0)(s0s1)m+1)

by Cor. 3.10

= ker(f1)− eid · (0, 0, c)s1 + (

m∑
j=1

eid · (0, 2cι, 0)(s0s1)j ).
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Since η is zero on ker(f1) it follows that

η(eid · (0, 0, c)(s0s1)ms0
) = η(−eid · (0, 0, c)s1 +

m∑
j=1

eid · (0, 2cι, 0)(s0s1)j )

= −ξ(
∞∑

j=m+1

eid · (0, 2cι, 0)(s0s1)j ).

An analogous computation gives

η(eid · (0, 0, c)(s1s0)ms1
) = η(eid · (0, 0, c)s1

−
m∑

j=1

eid · (0, 2cι, 0)(s0s1)j )

= ξ(

∞∑
j=m+1

eid · (0, 2cι, 0)(s0s1)j ).

Both are zero for m large enough.

Recall from (14) that we have an isomorphism of H-bimodules

(105) E2 ∼=−−→ J ((E1)∨,f )J .

Proposition 6.13. – Suppose G = SL2(Qp) with p ̸= 2, 3 and π = p. Via the
isomorphism (105), we have ker(f2) ∼= Kf1

and ker(g2) ∼= Kg1
and as H-bimodules

E2 = ker(f2)⊕ ker(g2).

In particular, f2 ◦ g2 = g2 ◦ f2 = 0.

Proof. – Let us denote the isomorphism (105) temporarily by j. We had observed
already that ζηζ = η for η ∈ Kf1

and ζη = ηζ for η ∈ Kg1
.

It follows that j−1(Kf1
) ⊆ ker(f2) and j−1(Kg1

) ⊆ ker(g2). We also know from
Lemma 6.2-iv that ker(f2) ∩ ker(g2) = {0}. Therefore, our assertion is a consequence
of Lemma 6.12.

From Lemma 6.2-i-ii, Propositions 6.8-ii and 6.13 we get:

Corollary 6.14. – Under the same assumptions, we have f ◦ g = g ◦ f = 0 on E∗.

In the following two sections we determine the H-bimodule structure of the two
summands ker(g2) and ker(f2).
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6.3.1. On ker(g2). – The surjective restriction map (E1)∨ −→ ker(g1)
∨ induces the

injective map of H-bimodules

ker(g2) ∼= J (Kg1
)J −→ J (ker(g1)

∨)J .

We have to determine the image of this map. From Prop. 3.18-i we know
that h1

0(W̃
ℓ≥2) ⊆ ker(g1) ⊆ h1

0(W̃ )⊕ h1
±(Ω). Hence the decreasing filtration

Fn ker(g1) :=

{
ker(g1) if n = 1,

h1
0(W̃

ℓ≥n) if n ≥ 2

is well defined as well as the corresponding finite dual

ker(g1)
∨,f :=

⋃
n≥1

(ker(g1)/F
n ker(g1))

∨.

If ξ ∈ (E1)∨,f satisfies ξ|FnE1 = 0 for some n ≥ 2 then obviously ξ|ker(g1)
|Fn ker(g1) = 0

and hence ξ|ker(g1)
∈ ker(g1)

∨,f . Vice versa, let η ∈ ker(g1)
∨,f such that η|Fn ker(g1) = 0

for some n ≥ 2. We first choose an extension η̇ of η to h1
0(W̃ ) ⊕ h1

±(Ω) and then ex-
tend η̇ further to η̈ on E1 by setting η̈|h1

±(W̃ ℓ≥1) := 0. Then clearly η̈|FnE1 = 0, i.e.,
η̈ ∈ (E1)∨,f . This shows that our η has an extension in (E1)∨,f . By Prop. 6.13 it then
must also have an extension ξ ∈ (E1)∨,f which satisfies ξ|ker(f1)

= 0, i.e., ξ ∈ Kg1
.

We see that the above restriction map induces an isomorphism of H-bimodules

(106) ker(g2) ∼= J (Kg1)
J ∼=−−→ J (ker(g1)

∨,f )J .

Proposition 6.15. – Suppose G = SL2(Qp) with p ̸= 2, 3 and π = p. The
space ker(g2) is the subspace of ζ-torsion in E2 on the left and on the right. We have
an isomorphism of H-bimodules

(107) ker(g2) ∼= (F 1H)∨,f ∼=
⋃
n≥1

(F 1H/ζnF 1H)∨.

In particular, ker(g2) is k[ζ]-divisible.

Proof. – Prop. 3.18-i makes it directly visible that the isomorphism of H-bimodules
F 1H ∼= ker(g1) in Prop. 6.3 respects the filtrations on both sides. Combined with
(106) we therefore obtain an isomorphism of H-bimodules

ker(g2) ∼= J ((F 1H)∨,f )J ∼= (J (F 1H)J )∨,f ∼= (F 1H)∨,f ,

where the last isomorphism is induced by J : H → H. Since ζn · F 1H = F 2n+1H

for n ≥ 1 by [13] Remark 3.2.ii, we also have

ker(g2) ∼=
⋃
n≥1

(F 1H/ζnF 1H)∨.

In particular, this makes visible that ker(g2) is ζ-torsion. On the other hand ker(f2)

does not contain any left or right ζ-torsion since it is an Hζ-bimodule. It therefore
follows from Prop. 6.13 that ker(g2) is the full subspace of left (or right) ζ-tor-
sion in E2. By Lemma 2.7 F 1H is a finitely generated free k[ζ]-module. Hence
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⋃
n≥1(F

1H/ζnF 1H)∨ ∼= k[ζ±1]/k[ζ]⊗k[ζ]F
1H noncanonically as a k[ζ]-module, which

shows that ker(g2) is k[ζ]-divisible.

Corollary 6.16. – Under the same assumptions, we have ker(f1) · ker(g2) = 0 =

ker(g2) · ker(f1).

Proof. – Let a ∈ ker(f1) and b ∈ ker(g2). By Prop. 6.15 we find an m ≥ 1 such
that ζm · b = 0 = b · ζm. Then a · b = ζm · a · ζm · b = 0 = b · ζm · a · ζm.

6.3.2. On ker(f2). – We proceed in a way which is entirely analogous to section §3.7.3.
Consider the following elements of E2:

a+ := (α, 0, 0)1 − eid · (0, ι−1α, 0)s0
= (α, 0, 0)1 − (0, ι−1α, 0)s0

· eid−1 and

a− := (0, 0, α)1 + eid−1 · (0, ι−1α, 0)s1
= (0, 0, α)1 + (0, ι−1α, 0)s1

· eid,

where α is chosen as in (59) (see also (93)). It is easy to verify that

(108) J (a+) = a+ and J (a−) = a−

using Lemma 4.1 and (91). In order to check that a+ lies in ker(f2) we compute

a+ · ζ = J (ζ · J (a+)) = J (ζ · a+)

= J ((α, 0, 0)s0s1
+ e1 · (0, 0,−α)s1

+ e1 · (α, 0, 0)1) by Cor. 4.6

= (α, 0, 0)s1s0
+ (α, 0, 0)s−1

1
· e1 + (α, 0, 0)1 · e1 by Lemma 4.1

= (α, 0, 0)s1s0
+ τω−1

· (α, 0, 0)s1
· e1 + (α, 0, 0)1 · e1 by (91)

= (α, 0, 0)s1s0
+ eid2 · (α, 0, 0)s1

+ eid2 · (α, 0, 0)1 by (92) and (93).

Hence

ζ · a+ · ζ = ζ ·
(
(α, 0, 0)s1s0

+ eid2 · (α, 0, 0)s1
+ eid2 · (α, 0, 0)1

)
= (α, 0, 0)1 + eid · (0, ι−1(α), 0)s2

1s0
+ eid2(−α, 0, 0)s2

1s0

+ eid2 · (α, 0, 0)s0s2
1
+ eid2 · (−α, 0, 0, )s0s1 + eid2 · (α, 0, 0)s0s1 by Cor. 4.6

= (α, 0, 0)1 + eid · (0, ι−1(α), 0)s2
1s0

= (α, 0, 0)1 − eid · (0, ι−1(α), 0)s0 by (91)

= a+.

Using Lemma 4.2 we notice that Γϖ(a+) = a−. Hence Remark 6.1-iv implies that
also a− ∈ ker(f2). As in Lemma 3.20 we therefore have the homomorphism of left
Hζ-modules

(109) Hζ ⊕Hζ
fa++fa−−−−−−−→ ker(f2)

sending (1, 0) and (0, 1) to a+ and a−, respectively.
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Remark 6.17. – Let w ∈ W̃ with ℓ(w) ≥ 1. From Proposition 4.5 we obtain

τw · a+ =


0 if w−1 ∈ W̃ 1

(0, 0,−α)w if w−1 ∈ W̃ 0, ℓ(w) odd
(α, 0, 0)w if w−1 ∈ W̃ 0, ℓ(w) even

and(110)

τw · a− =


0 if w−1 ∈ W̃ 0

(−α, 0, 0)w if w−1 ∈ W̃ 1, ℓ(w) odd
(0, 0, α)w if w−1 ∈ W̃ 1, ℓ(w) even.

Lemma 6.18. – 1. For any u ∈ F×p we have a+ · τωu
= u−2τωu

· a+ and
a− · τωu

= u2τωu
· a−.

2. We have a+ · τs0 = τs0 · a+ = 0 and a− · τs1 = τs1 · a− = 0.

3. We have

a+ · ι(τs1
) = −τω−1

ι(τs0
) · a− · ζ and

a− · ι(τs0) = −τω−1 ι(τs1) · a+ · ζ.

Proof. – 1. Using using (66), (68) we compute:

a+ · τωu = J (τω−1
u
· ((α, 0, 0)1 + eid · (0, ι−1α, 0)s−1

0
))

= J ((u−2α, 0, 0)ω−1
u

+ u−1eid · (0, ι−1α, 0)s−1
0

)

= (α, 0, 0)ωu − u−1(0, ι−1α, 0)s0 · eid−1

= u−2(τωu
· (α, 0, 0)1 − τωu

eid · (0, ι−1α, 0)s0
)

= u−2τωu · a+

and, by an analogous computation (or by conjugation by ϖ), we obtain the second
claim of Point 1.

2. Point 2 follows from (110) and (108).
3. We check the first identity. Since a−,a+ ∈ ker(f2), we may as well check the

following

(111) −ζ · a+ · (τs1
+ e1) = (τs−1

0
+ e1) · a−.

For the left-hand side, we have using Lemma 4.1, Prop. 4.5, (91) and (92), (93)

a+ · (τs1
+ e1) = J ((τs1

+ e1) · ((α, 0, 0)ω−1
− eid · (0, ι−1α, 0)s−1

0
))

= J ((0, 0,−α)s−1
1

+ e1 · (α, 0, 0)1) = (α, 0, 0)s1
+ eid2 · (α, 0, 0)1

and then using Corollary 4.6:

−ζ · a+ · (τs1 + e1) = −(α, 0, 0)s0s2
1
+ e1 · (0, 0, α)s2

1
+ eid2 · (α, 0, 0, )s0s1 − eid2 · (α, 0, 0, )s0s1

= −(α, 0, 0)s−1
0

+ e1 · (0, 0, α)1.
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For the right-hand side we have, using Remark 6.17:

τs−1
0
· a− = (−α, 0, 0)s−1

0
, e1 · a− = e1 · (0, 0, α)1.

By adding up, we see that (111) holds.

By Lemma 6.18-2, the map (109) factors through a homomorphism of left Hζ-mod-
ules

(112) Hζ/Hζτs0
⊕Hζ/Hζτs1

fa++fa−−−−−−−→ ker(f2).

Proposition 6.19. – Suppose G = SL2(Qp) with p ̸= 2, 3 and π = p. The map (112)
induces an isomorphism of Hζ-bimodules

(113) (Hζ/Hζτs0 ⊕Hζ/Hζτs1)
± ≃−→ ker(f2).

Proof. – We need to verify that the map is bijective and right H-equivariant. We
may compare with the proof of Proposition 3.28. Just like in that proof, the right
H-equivariance is seen by comparing the Definition (79) with Lemma 6.18.

Concerning the injectivity we first observe that it suffices to check the injectivity of
the restriction of the map to H/Hτs0 ⊕H/Hτs1 . The elements τw with w ∈ W̃ such
that ℓ(ws0) = ℓ(w) + 1 from a k-basis of H/Hτs0

; they are of the form w = ω(s0s1)
m

or = ωs1(s0s1)
m with m ≥ 0 and ω ∈ Ω. Using (90) and (110), we see that

(114)

τw · a+ ∈


k×(α, 0, 0)w if w = ω(s0s1)

m with m ≥ 1,

k×(0, 0, α)w if w = ωs1(s0s1)
m with m ≥ 0,

k×(α, 0, 0)w + k×eid(0, ι−1α, c, 0)s0
if w = ω.

Similarly the elements τw with w ∈ W̃ such that ℓ(ws1) = ℓ(w) + 1 form a k-basis
of H/Hτs1

; they are of the form w = ω(s1s0)
m or = ωs0(s1s0)

m with m ≥ 0 and
ω ∈ Ω. In this case we obtain
(115)

τw · a− ∈


k×(0, 0, α)w if w = ω(s1s0)

m with m ≥ 1,

k×(α, 0, 0)w if w = ωs0(s1s0)
m with m ≥ 0,

k×(0, 0, α)w + k×eid−1(0, ι−1α, c, 0)s1 if w = ω.

By comparing the lists (114) and (115) we easily see that the elements

{τw · a+ : ℓ(ws0) = ℓ(w) + 1} ∪ {τw · a− : ℓ(ws1) = ℓ(w) + 1}

in E2 are k-linearly independent. This concludes the proof of the injectivity. For the
surjectivity, we gather the following arguments:

— A basis for ker(g1) is given by the set of all f(x0,x1)(τw), w ∈ W̃ , ℓ(w) ≥ 1.
These elements are spelled out in Proposition 3.18.

From these formulas, we see that an element in ker(f2) lies necessarily in the
space h2

±(W̃ ℓ≥2) + h2(s1Ω) + h2(s0Ω) + h2(Ω).
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— From (114) and (115), we deduce that

h2
−(W̃ 1,ℓ≥1) + h2

+(W̃ 0,ℓ≥1) =
∑

w∈W̃ ,ℓ(w)≥1

kτw · a− + kτw · a+

is contained in the image of the map of the proposition.

— So it is contained in ker(f2) which is invariant under J . Therefore by
Lemma 4.1, the whole space h2

±(W̃ ℓ≥1) is contained in ker(f2).

— But this map is also right H-equivariant. So for w ∈ W̃ with length ≥ 1,
the elements a+ · τw−1 = J (τw · a+) and a− · τw−1 = J (τw · a−) also lie in
this image (see (108)). Therefore the whole space h2

±(W̃ ℓ≥1) is contained
in the image of the map.

— The component in
h2(Ω) + h2

0(s1Ω) + h2(s0Ω)

of ker(f2) is spanned by all τω · a+ and τω · a− for ω ∈ Ω.
To verify this statement we notice, using the third lines of (114) and (115),

that it is equivalent to saying that the component in h2
0(s1Ω)+h2(s0Ω) of ker(f2)

is zero. But the latter follows easily from the formulas for f(x0,x1)(sϵτω), ω ∈ Ω,
ϵ = 0, 1 given in Proposition 3.18.

— We have proved that ker(f2) = h2
±(W̃ ℓ≥1)⊕

⊕
ω∈Ω k τω · a−⊕ k τω · a+ and this

space is contained in the image of the map.

Corollary 6.20. – Suppose G = SL2(Qp) with p ̸= 2, 3 and π = p.

i. The Hζ-bimodules ker(f1) and ker(f2) are isomorphic.
ii. ker(f2) is a free k[ζ±1]-module of rank 4(p− 1) on the left and on the right.

Proof. – Combine Propositions 6.8 and 6.19.

Remark 6.21. – 1. It follows from Γϖ(a+) = a− (see also Remark 6.1-iv) that
the diagram

(Hζ/Hζτs0 ⊕Hζ/Hζτs1)
±

(σ+,σ−)7→(Γϖ(σ−),Γϖ(σ+))

��

(113)
// ker(f2)

Γϖ

��

(Hζ/Hζτs0
⊕Hζ/Hζτs1

)±
(113)

// ker(f2)

is commutative.
2. It follows from (108) (see also Remark 6.1-v) that the diagram

(Hζ/Hζτs0
⊕Hζ/Hζτs1

)±

β◦(J⊕J )

��

(113)
// ker(f2)

J
��

(Hζ/Hζτs0 ⊕Hζ/Hζτs1)
± (113)

// ker(f2)
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is commutative. Compare with Remark 3.29-2. The maps in the diagram are all
bijective.
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CHAPTER 7

ON THE LEFT H-MODULE H∗(I, V ) WHEN G = SL2(Qp)

WITH p ̸= 2, 3 AND V IS OF FINITE LENGTH

We suppose that G = SL2(Qp) with p ̸= 2, 3. The goal of this section is to inves-
tigate the cohomology H∗(I, V ) = Ext∗Mod(G)(X, V ) for any finite length representa-
tion V in Mod(G).

Remark 7.1. – Recall that our assumption on G guarantees that the pro-p Iwahori
subgroup I has cohomological dimension 3. We therefore have Hi(I, V ) = 0 for i ≥ 4

and any V in Mod(G).

In a first step we fix a nonzero polynomial Q ∈ k[X] and consider the smooth
G-representation X/XQ(ζ). SinceH is free over k[ζ] (Lemma 2.7), right multiplication
by Q(ζ) induces an injective map on XI and therefore on X. So we have the short
exact sequence of smooth G-representations

0 → X
·Q(ζ)−−−→ X −→ X/XQ(ζ) → 0.

Hence we obtain the long exact cohomology sequence (of H-bimodules)

0 −→ E0 ·Q(ζ)−−−→ E0 −→ (X/XQ(ζ))I −→ E1 ·Q(ζ)−−−→ E1 −→ H1(I,X/XQ(ζ))

(116)

−→ E2 ·Q(ζ)−−−→ E2 −→ H2(I,X/XQ(ζ)) −→ E3 ·Q(ζ)−−−→ E3 −→ H3(I,X/XQ(ζ)) −→ 0

and therefore the short exact sequences

(117) 0 → Ei/EiQ(ζ) −→ Hi(I,X/XQ(ζ)) −→ ker(Ei+1 ·Q(ζ)−−−→ Ei+1) → 0.

Note that all three terms in these short exact sequences are annihilated by Q(ζ) from
the right. Next we collect in the following proposition what we have proved in the
previous sections about E∗ as a left or a right k[ζ]-module.

Proposition 7.2. – As left or right k[ζ]-modules we have the following isomorphisms
(for 2. and 3. we need π = p):

1. H ∼= k[ζ]4(p−1);
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2. E1 ∼= k[ζ±1]4(p−1) ⊕ k[ζ]4(p−1);

3. E2 ∼= k[ζ±1]4(p−1) ⊕
(
k[ζ±1]/k[ζ]

)4(p−1);

4. E3 ∼= k ⊕
(
k[ζ±1]/k[ζ]

)4(p−1) with ζ acting by 1 on the summand k.

Proof. – 1. See Lemma 2.7.
4. According to (22) and Prop. 2.4 we have

E3 ∼= k ⊕
⋃

m≥1

(H/ζmH)∨ as H-bimodules.

Using 1. we obtain⋃
m≥1

(H/ζmH)∨ ∼=
( ⋃

m≥1

(k[ζ]/ζmk[ζ])∨
)4(p−1) ∼=

( ⋃
m≥1

(
1

ζm
k[ζ]/k[ζ])∨

)4(p−1)

∼=
(
k[ζ±1]/k[ζ]

)4(p−1)
.

3. By Propositions 6.13 and 6.15 and Corollary 6.20, we have E2 = A ⊕ B with
A ∼= k[ζ±1]4(p−1) and B ∼=

⋃
m≥1(F

1H/ζmF 1H)∨, the latter even as an H-bimodule.
But F 1H is of finite codimension in H. Hence the elementary divisor theorem implies
that also F 1H ∼= k[ζ]4(p−1). Therefore the same computation as in the proof of 4.
above shows that B ∼=

(
k[ζ±1]/k[ζ]

)4(p−1).
2. According to Propositions 6.10, 6.3, and 6.8 the H-bimodule E1 has the two

sub-H-bimodules A := ker(f1) and B := ker(g1) which have the following properties:

a. A⊕B ⊆ E1 with E1/(A⊕B) being 4-dimensional;

b. A ∼= k[ζ±1]4(p−1) and B ∼= F 1H ∼= k[ζ]4(p−1) as left or as right k[ζ]-modules;

c. E1/B is a k[ζ±1]-module;

d. ζ acts on E1/A⊕B from the left and from the right by 1.

We give the argument for the left k[ζ]-action, the other case being entirely analogous.
Again the elementary divisor theorem implies that E1/A as a k[ζ]-module is of the
form E1/A = F⊕D̄ with F being free of rank 4(p−1) and D̄ being finite dimensional.
Since the natural map D̄ ↪→ E1/A ⊕ B is injective ζ must act by 1 on D̄. Suppose
that D̄ = 0. Then we have the short exact sequence 0 → A → E1 → F → 0 which
splits since F is free. We therefore assume in the following that D̄ ̸= 0, and we let
D ⊂ E1 denote the preimage of D̄ in E1. Then ζ acts bijectively on D which therefore
is a k[ζ±1]-module, which contains the free k[ζ±1]-module A with a finite dimensional
quotient. Applying this time the elementary divisor theorem to the k[ζ±1]-module D
we see that it must be of the form D = F ′ ⊕ D′ with F ′ ∼= k[ζ±1]4(p−1) and finite
dimensional D′. This D′ then is a k[ζ]-submodule of E1 on which ζ acts by 1 so
that (ζ − 1)D′ = 0. It therefore follows from Lemma 5.1.ii that D′ = 0. Hence we
have a short exact sequence 0 → F ′ → E1 → F → 0, which also must split.
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Lemma 7.3. – The multiplication by Q(ζ) on k[ζ] and on k[ζ±1] has zero kernel and
a finite dimensional cokernel whereas on k[ζ±1]/k[ζ] it has a finite dimensional kernel
and zero cokernel.

Proof. – The only part of the statement which might not be entirely obvious is the
surjectivity of the multiplication on k[ζ±1]/k[ζ]. This is clear ifQ(ζ) is a power of ζ. We
therefore assume thatQ(ζ) is prime to ζ. But then k[ζ]/Q(ζ)k[ζ] = k[ζ±1]/Q(ζ)k[ζ±1].

In the three next statements we assume in addition that π = p.

Corollary 7.4. – The multiplication by Q(ζ) from the right on E∗ has finite di-
mensional kernel and cokernel.

Using (117) we deduce the following result.

Corollary 7.5. – The k-vector space H∗(I,X/XQ(ζ)) is finite dimensional.

Next we consider the left k[ζ]-action on H∗(I,X/XQ(ζ)). For this we introduce
the polynomial P (X) := Q(X)Q( 1

X )Xdeg(Q).

Proposition 7.6. – H∗(I,X/XQ(ζ)) is left P (ζ)-torsion.

Proof. – We start with the following observation. By Corollary 6.14, we know that
for any x ∈ E∗, we have ζ · x · ζ − x ∈ ker(g). We deduce, for any m ≥ 0 and
0 ≤ i ≤ m, that ζm · x · ζi ≡ ζm−i · x mod ker(g). We choose m to be 2 deg(Q) which
is ≥ deg(P ). The coefficients of the polynomial P =

∑m
i=0 aiX

i satisfy am−i = ai for
any i. For x ∈ E∗, we have

P (ζ) · x− ζm · x · P (ζ) =

m∑
i=0

aiζ
i · x−

m∑
i=0

aiζ
m · x · ζi(118)

≡
m∑

i=0

aiζ
i · x−

m∑
i=0

aiζ
m−i · x mod ker(g)

=

m∑
i=0

aiζ
i · x−

m∑
i=0

am−iζ
m−i · x ≡ 0 mod ker(g).

Now we prove the proposition. Because of the exact sequences (117) it suffices to show

that E∗/E∗Q(ζ) and ker(E∗
·Q(ζ)−−−→ E∗) are left P (ζ)-torsion. Obviously both modules

are annihilated by P (ζ) from the right. That ker(E∗
·Q(ζ)−−−→ E∗) is of left P (ζ)-torsion

follows from the above observation: suppose x · Q(ζ) = 0, then x · P (ζ) = 0 and
P (ζ) · x ∈ ker(g) so P (ζ)2 · x = P (ζ) · x · P (ζ) = 0. Now let x ∈ E∗. From (??), we
deduce that P (ζ)2 · x− ζmP (ζ) · x · P (ζ) = P (ζ) · x · P (ζ)− ζm · x · P (ζ)2 so

P (ζ)2 · x = (ζmP (ζ) · x+ P (ζ) · x− ζm · x · P (ζ)) · P (ζ) ∈ E∗ ·Q(ζ).

This shows that E∗/E∗Q(ζ) is left P (ζ)-torsion.
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Remark 7.7. – The Formula (??) actually holds true for any nonzero polynomial
P (X) ∈ k[X] with the property that XmP ( 1

X ) = P (X) for some integer m ≥ deg(P ).
It shows that, for any x ∈ E∗ and any j ≥ 1, we have

P (ζ)j · x ≡ ζmj · x · P (ζ)j mod ker(g)

and symmetrically
x · P (ζ)j ≡ P (ζ)j · x · ζmj mod ker(g).

This easily implies that the multiplicative subset {P (ζ)n : n ≥ 0} of H = E0 satisfies
the left and right Ore conditions inside the full algebra E∗. Therefore the correspond-
ing classical ring of fractions E∗P (ζ) exists. This applies in particular to P (X) = X

so that Hζ is part of the larger ring E∗ζ . We will come back to these localizations
elsewhere.

Lemma 7.8. – i. ModI(G) is closed under the formation of subrepresentations
and quotient representations.

ii. The functor V −→ V I is exact on ModI(G).

Proof. – i. For quotient representations the assertion is obvious. For a subrepresenta-
tion U of a representation V in ModI(G) we consider the commutative diagram

0 // X⊗H U I

��

// X⊗H V I

∼=
��

// X⊗H (V/U)I

∼=
��

0 // U // V // V/U // 0.

The upper horizontal row is exact by the left exactness of the functor (−)I and the
fact that X is projective as a (right) H-module (cf. the proof of [13] Prop. 3.25). By
the equivalence of categories in §2.4.10 the middle and right perpendicular arrows are
isomorphisms. Hence the left one is an isomorphism as well. This shows that U lies
in ModI(G).

ii. This a consequence of the equivalence of categories in §2.4.10.

Lemma 7.9. – The G-representation X/XQ(ζ) is of finite length. Furthermore, the
following sets of isomorphism classes of G-representations coincide:

a. irreducible smooth G-representations V such that Q(ζ)V I = 0;

b. irreducible quotient representations of X/XQ(ζ);

c. irreducible subquotient representations of X/XQ(ζ).

Proof. – First of all we have, by Lemma 7.8, that (X/XQ(ζ))I = H/HQ(ζ). This is
finite dimensional over k by Prop. 7.2.1 and hence is an H-module of finite length.
The equivalence of categories in §2.4.10 then implies that X/XQ(ζ) is of finite length.

Also by Lemma 7.8 the H-module V I , for any irreducible subquotient V

of X/XQ(ζ), is a subquotient of H/HQ(ζ) and hence satisfies Q(ζ)V I = 0.
On the other hand consider any irreducible smooth G-representation V such
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that Q(ζ)V I = 0. By the equivalence of categories V I is a simple H-module. We
therefore have a surjection H ↠ V I , which factors over H/HQ(ζ) and then gives rise
to a surjection X/XQ(ζ) = X⊗H H/HQ(ζ) ↠ X⊗H V I = V .

Remark 7.10. – As pointed out in the proof of the previous lemma the H-mod-
ule V I is finite dimensional for any irreducible smooth G-representation V . Hence
there always is a nonzero polynomial Q ∈ k[X] such that Q(ζ)V I = 0.

Combining all of the above we may now establish in a second step our main result.

Theorem 7.11. – Let G = SL2(Qp) with p ̸= 2, 3. For any representation V of finite
length in Mod(G) we have:

i. The k-vector space H∗(I, V ) is finite dimensional;

ii. Assume π = p. If V lies in ModI(G) and Q(ζ)V I = 0 for some nonzero poly-
nomial Q ∈ k[X], then the left H-module H∗(I, V ) is P (ζ)-torsion for the poly-
nomial P (X) := Q(X)Q( 1

X )Xdeg(Q).

Proof. – Let Q(ζ) ∈ k[ζ] \ {0} and U a subquotient representation of X/XQ(ζ). We
show by downwards induction w.r.t. the cohomology degree i = 3, . . . , 0 that Hi(I, U)

is a finite dimensional left H-module which, when π = p, is of P (ζ)-torsion.

— Here i = 3. First assume that U is irreducible. According to Lemma 7.9 we have
a surjection X/XQ(ζ) ↠ U . Because of the bound 3 for the cohomological dimension
of I this surjection induces a surjection H3(I,X/XQ(ζ)) ↠ H3(I, U). By Cor. 7.5
and Prop. 7.6, the left H-module H3(I, U) is finite dimensional and, when π = p,
of P (ζ)-torsion. By another induction it is easy to see that the result still holds when
U is a subquotient representation of X/XQ(ζ).

— Assume the statement is true at rank i for 1 ≤ i ≤ 3.

Consider again first the case of an irreducible subquotient of X/XQ(ζ). We call
it V and write it as part of an exact sequence 0 → U → X/XQ(ζ) → V → 0, which
gives rise to an exact sequence of H-modules

Hi−1(I,X/XQ(ζ)) → Hi−1(I, V ) → Hi(I, U).

By induction and by Cor. 7.5 and Prop. 7.6, it follows that Hi−1(I, V ) is finite dimen-
sional and P (ζ)-torsion when π = p. As above it is then easy to see that the result
still holds when V is any subquotient representation of X/XQ(ζ).

Now we turn to the proof of the assertion of the theorem. By a straightforward
induction using the long exact cohomology sequence as well as Lemma 7.8 (for ii.) we
may assume that V is irreducible. According to Remark 7.10 and Lemma 7.9, there
is a nonzero polynomial Q(ζ) and a surjection X/XQ(ζ) ↠ V . So V is a quotient
of X/XQ(ζ) and the above result applies.
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Over an algebraically closed field k we refer to [15] §5 for the notion of an ir-
reducible admissible supercuspidal representation. Note that for our group G every
irreducible representation is admissible as a consequence of the equivalence of cat-
egories in §2.4.10. We extend this notion as follows to arbitrary k. Let V be an
irreducible representation in Mod(G). By this equivalence of categories V I is a finite
dimensional H-module. Hence, if k̄ denotes an algebraic closure of k, the base ex-
tension k̄ ⊗k V is still generated by its I-fixed vectors and (k̄ ⊗k V )I = k̄ ⊗K V I is
a finite dimensional k̄ ⊗k H-module. The equivalence of categories over k̄ therefore
implies that k̄ ⊗k V is a representation of finite length of G over k̄. We will call V
supersingular if all irreducible constituents of k̄ ⊗k V are supersingular in the sense
of [15] §5.

Corollary 7.12. – Let G = SL2(Qp) with p ̸= 2, 3. An irreducible representation V
in Mod(G) is supersingular if and only if the left H-module H∗(I, V ) is supersingular.

Proof. – It is shown in [15] Thm. 5.3 that, when k is algebraically closed, an irre-
ducible (admissible) representation V0 in Mod(G) is supersingular if and only V I

0 is
ζ-torsion, namely if and only V I

0 is supersingular. Hence V is supersingular if and
only if V I

0 is ζ-torsion for all irreducible constituents V0 of k̄ ⊗k V . By Lemma 7.8
the latter is equivalent to (k̄ ⊗k V )I being ζ-torsion hence to V I being ζ-torsion,
i.e., being supersingular (see §2.4.5). But by the equivalence of categories in §2.4.10
the H-module V I is simple. If it is ζ-torsion it must satisfy ζV I = 0. So we apply
Thm. 7.11.ii with Q := X to see that then all of H∗(I, V ) is ζ-torsion and hence
supersingular.

We remind the reader that in Prop. 2.20 we had determined for which irreducible
representations V the top cohomology Hd(I, V ) vanishes.
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CHAPTER 8

THE COMMUTATOR IN E∗ OF THE CENTER OF H

WHEN G = SL2(Qp), p ̸= 2, 3

We assume in this section that G = SL2(Qp), p ̸= 2, 3 and π = p. Recall that we
denote by Z the center of H. In this section we consider the subalgebra

CE∗(Z) = {E ∈ E∗, z · E = E · z ∀z ∈ Z}

of E∗. We are going to describe the product in this algebra. We denote by CEi(Z) its
i-th graded piece.

Proposition 8.1. – CE∗(Z) coincides with the commutator of ζ in E∗, namely with
ker(g):

CE∗(Z) = {E ∈ E∗, ζ · E = E · ζ}.

Proof. – As H-bimodules, we have

ker(g0) ∼= H, ker(g1) ∼= F 1H, and ker(g2) ∼= (F 1H)∨,f ∼=
⋃
n≥1

(F 1H/ζnF 1H)∨

(see Propositions 6.3 and 6.15). So these spaces are contained in CE∗(Z). Lastly we
explained in Remark 2.21 (see also §5B)) that the elements of Z centralize the elements
of E3 = ker(g3).

We recall some notations and results from §2.4.9, §6.2.1 and §6.3.1:

— CE0(Z) = H.

— We have an isomorphism of H-bimodules f(x0,x1) : F 1H −→ CE1(Z). We keep
track of its inverse

(119) f−1
(x0,x1)

: CE1(Z)
≃−→ F 1H.

— We have an isomorphism of H-bimodules (see (106))

(120) CE2(Z)
≃−→ J ((F 1H)∨,f )J

and we denote by α⋆
w the preimage of τ∨w |F 1H

by this map for w ∈ W̃ , ℓ(w) ≥ 1.
The set of all these α⋆

ws forms a basis of CE2(Z).
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— CE3(Z) ∼= J (H∨,f )J as H-bimodules. As in §2.4.9, the element in E3 corre-
sponding to τ∨w is denoted by ϕw.

Remark 8.2. – Let w ∈ W̃ with ℓ(w) ≥ 1, ω ∈ Ω. Using Formulas (45), we obtain
immediately

τω · α⋆
w = α⋆

ωw;

τsϵ
· α⋆

w =


0 if w ∈ W̃ ϵ with ℓ(w) ≥ 1,
−e1 · α⋆

w + α⋆
s0w if w ∈ W̃ 1−ϵ with ℓ(w) ≥ 2,

−e1 · α⋆
w if w ∈ W̃ 1−ϵ with ℓ(w) = 1;

ζ · α⋆
w =

{
0 if ℓ(w) ≤ 2,
α⋆

sϵs1−ϵw if w ∈ W̃ ϵ with ℓ(w) ≥ 3.

Remark 8.3. – i. We have α⋆
w ∪ f−1

(x0,x1)
(τw) = δv,wϕw for all v, w ∈ W̃ with

ℓ(v), ℓ(w) ≥ 1.

— In particular, using (49) and Proposition 3.18-v we see that the image
of α⋆

w by conjugation by ϖ is α⋆
ϖwϖ−1 .

— Using Proposition 3.18-iv and recalling by [14] (89) (8.2) that J (ϕw) = ϕw−1 ,
we deduce (see also [14] Rmk. 6.2) that J (α⋆

w) = −α⋆
w−1 .

ii. Recall that the element α0 ∈ 1+pZp/1+p2Zp was chosen in (59). For w ∈ W̃ with
ℓ(w) ≥ 1, there is a unique element in ker(g2) which, when seen as a linear form
in (E1)∨,f , coincides with (0, α0, 0)w if w ∈ W̃ 0 (resp. −(0, α0, 0)w if w ∈ W̃ 1)
on ker(g1) (see Lemma 6.12 and Proposition 6.13). By Proposition 3.18-i, this
element is α⋆

w. By definition, it is zero on ker(f1).
When w ∈ W̃ 0, the element α⋆

w − (0, α0, 0)w is an element of ker(f2) which
coincides with −(0, α0, 0)w on ker(f1). But Remark 6.9 implies that (1 − eγ0) ·
(0, α0, 0)w is trivial on ker(f1). Therefore, and by conjugation byϖ (Lemma 4.2),

α⋆
w − (0, α0, 0)w ∈ eγ0

· ker(f2) if w ∈ W̃ 0(121)

α⋆
w + (0, α0, 0)w ∈ eγ0

· ker(f2) if w ∈ W̃ 1.

8.1. The product (CE1(Z), CE1(Z)) → CE2(Z)

Recall using (46) that we have a homomorphism of H-bimodules

F 1H −→ J ((F 1H/F 2H)∨)J(122)

τw 7−→

{
−τ∨w |F 1H

if ℓ(w) = 1,

0 if ℓ(w) ≥ 2,
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which is trivial on F 2H. Identifying (F 1H/F 2H)∨ with the sub-H-bimodule of the
linear forms in (F 1H)∨,f which are trivial on F 2H, we obtain a homomorphism
of H-bimodules

cccF 1H ⊗H F 1H −→ J ((F 1H/F 2H)∨)J ↪→ J ((F 1H)∨,f )J

τv ⊗ τw 7−→

{
−τv · τ∨w |F 1H

if ℓ(w) = 1,

0 if ℓ(w) ≥ 2 .

(123)

Remark 8.4. – Let v, w ∈ W̃ with length ≥ 1, ω, ω′ ∈ Ω and ϵ ∈ {0, 1}. Using (45),
we see that the map above has the following outputs:

τωsϵ
⊗ τω′sϵ

7−→ e1 · τ∨sϵ |F 1H
= τ∨sϵ |F 1H

· e1
τωsϵ

⊗ τω′s1−ϵ
7−→ 0

and

τv ⊗ τw 7−→ 0 if ℓ(v) ≥ 2 or ℓ(w) ≥ 2.

We see that (123) is a symmetric bilinear map onto a 2-dimensional k-vector space.

Proposition 8.5. – Assume that G = SL2(Qp), p ̸= 2, 3 and π = p. We have a
commutative diagram of H-bimodules

(124) CE1(Z)⊗H CE1(Z)

∼=(119)⊗(119)
��

Yoneda product
// CE2(Z)

∼=(120)
��

F 1H ⊗H F 1H
(123)

// J ((F 1H)∨,f )J .

Proof. – Because of the isomorphism (119), the H-bimodule CE1(Z) ⊗H CE1(Z) is
generated by the elements of the form f−1

(x0,x1)
(τsϵ) ⊗ f−1

(x0,x1)
(τs′ϵ) = xϵ ⊗ xϵ′ for

ϵ, ϵ′ ∈ {0, 1}. Therefore, using Remark 8.2, it is enough to prove that

xϵ · x1−ϵ = 0 and xϵ · xϵ = e1 · α⋆
sϵ
.

We verify these identities now. In the calculations below, we use Formulas (66), (68),
(69) the definition of the idempotents (36), Proposition 3.9, Lemma 3.12-i and Propo-
sition 2.1.

— First we check that

x0 · x1 = −((0, c0, 0)s0
+ eid−1 · (c0ι−1, 0, 0)1) · ((0, c0, 0)s1

− (0, 0, c0ι−1)1 · eid−1)

= −(0, c0, 0)s0
· (0, c0, 0)s1

+ (0, c0, 0)s0
· (0, 0, c0ι−1)1 · eid−1

− eid−1 · (c0ι−1, 0, 0)1 · (0, c0, 0)s1
+ eid−1 · (c0ι−1, 0, 0)1 · (0, 0, c0ι−1)1 · eid−1

= −((0, c0, 0)s0
· τs1

∪ τs0
· (0, c0, 0)s1

) + ((0, c0, 0)s0
∪ τs0

· (0, 0, c0ι−1)1) · eid−1

− eid−1 · ((c0ι−1, 0, 0)1 · τs1
∪ (0, c0, 0)s1

)

+ eid−1 · ((c0ι−1, 0, 0)1 ∪ (0, 0, c0ι−1)1) · eid−1
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= (0, c0, 0)s0s1 ∪ (0, c0, 0)s0s1 + eid−1 · ((c0ι−1, 0, 0)1 ∪ (0, 0, c0ι−1)1) · eid−1

= 0 by Example 3.6.

Likewise, by conjugation by ϖ (see Proposition 3.18-v) we have x1 · x0 = 0.
— Next we compute

x0 · x0 = [(0, c0, 0)s0 + eid−1 · (c0ι−1, 0, 0)1] · [(0, c0, 0)s0 + eid−1 · (c0ι−1, 0, 0)1]

= (0, c0, 0)s0
· (0, c0, 0)s0

+ (0, c0, 0)s0
· (c0ι−1, 0, 0)1 · eid

+ eid−1 · (c0ι−1, 0, 0)1 · (0, c0, 0)s0 (using (69))

= (0, c0, 0)s0
· (0, c0, 0)s0

−
∑

u∈F×p

(
u−1[(0, c0, 0)s0

· τωu
∪ τs0

· (c0ι−1, 0, 0)ωu
]

− u−1[(c0ι−1, 0, 0)ωu
· τs0

∪ τωu
(0, c0, 0)s0

]
)

= (0, c0, 0)s0 · (0, c0, 0)s0 +
∑

u∈F×p

u−1[(0, c0, 0)s0ωu ∪ (0, 0, c0ι−1)s0ωu ]

−
∑

u∈F×p

u[(c0ι−1, 0, 0)s0ωu ∪ (0, c0, 0)s0ωu ].

But by (11), there exists γs2
0
∈ H2(I,X(s20)) such that (see Lemma 3.12-ii)

(0, c0, 0)s0
· (0, c0, 0)s0

= [(0, c0, 0)s0
· τs0

∪ τs0
· (0, c0, 0)s0

] + γs2
0

= [(−e1 · (0, c0, 0)s0
− eid−1 · (c0ι−1, 0, 0)s0

)

∪ ((0,−c0, 0)s0
· e1 + (0, 0, c0ι−1)s0

· eid)] + γs2
0

= −[(e1 · (0, c0, 0)s0
) ∪ ((0, 0, c0ι−1)s0

· eid)]

+ [(eid−1 · (c0ι−1, 0, 0)s0
) ∪ ((0, c0, 0)s0

· e1)]
− [(eid−1 · (c0ι−1, 0, 0)s0

) ∪ ((0, 0, c0ι−1)s0
· eid)] + γs2

0

= −[(
∑

u∈F×p

(0, c0, 0)ωus0
) ∪ (

∑
v∈F×p

v−1(0, 0, c0ι−1)s0ωv
)]

+ [(
∑

u∈F×p

u−1(c0ι−1, 0, 0)ωus0
) ∪ (

∑
v∈F×p

(0, c0, 0)s0ωv
)]

− [(eid−1 · (c0ι−1, 0, 0)s0
) ∪ ((0, 0, c0ι−1)s0

· eid)] + γs2
0

= −
∑

u∈F×p

u−1(0, c0, 0)s0ωu
∪ (0, 0, c0ι−1)s0ωu

+
∑

u∈F×p

u(c0ι−1, 0, 0)s0ωu
∪ (0, c0, 0)s0ωu

− [(eid−1 · (c0ι−1, 0, 0)s0
) ∪ ((0, 0, c0ι−1)s0

· eid)] + γs2
0
.

So

x0 · x0 = −[(eid−1 · (c0ι−1, 0, 0)s0
) ∪ ((0, 0, c0ι−1)s0

· eid)] + γs2
0
.
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Compute that

(eid−1 · (c0ι−1, 0, 0)s0) ∪ ((0, 0, c0ι−1)s0 · eid)

= (
∑

u∈F×p

u−1(c0ι−1, 0, 0)ωus0
) ∪ (

∑
v∈F×p

v−1(0, 0, c0ι−1)s0ωv
)

= (
∑

u∈F×p

u−1(c0ι−1, 0, 0)ωus0
) ∪ (

∑
v∈F×p

v(0, 0, c0ι−1)ωvs0
)

=
∑

u∈F×p

(c0ι−1, 0, 0)ωus0
∪ (0, 0, c0ι−1)ωus0

= −
∑

u∈F×p

(0, α0, 0)ωus0
by (89)

= e1 · (0, α0, 0)s0
= −e1 · α⋆

s0
by (121).

Since x0 and α⋆
s0

both lie in the kernel of the left action of (τs0
+e1) (Remark 8.2)

we obtain directly, using the formulas of Prop. 4.5, that γs2
0

= 0. So as expected
x0·x0 = e1·α⋆

s0
. The same result is valid with s1 instead of s0 by conjugation byϖ

(Remark 8.3 and proof of Proposition 3.18-v which says that Γω(x0) = x1).

8.2. The products (CEi(Z), CE3−i(Z)) → CE3(Z) for i = 1, 2

For τ ∈ F 1H, we have the homomorphisms of left, resp. right, H-modules

Lτ : JHJ → J (F 1H)J , h 7→ h · τ = J (τ)h

and Rτ : JHJ → J (F 1H)J , h 7→ τ · h = hJ (τ),

which by pullback give homomorphisms of right, resp. left, H-modules

L∗τ : J ((F 1H)∨)J → J (H∨)J , α 7→ α ◦ Lτ

and R∗τ : J ((F 1H)∨)J → J (H∨)J , α 7→ α ◦Rτ ,

such that L∗xτy(α) = x · (L∗τ (y · α)) and R∗xτy(α) = (R∗τ (α · x)) · y for x, y ∈ H and
α ∈ J ((F 1H)∨)J . We therefore have natural homomorphisms of H-bimodules

F 1H ⊗H
J ((F 1H)∨)J −→ J (H∨)J

τ ⊗ α 7−→ −L∗τ (α) = −α(J (τ)−)

J ((F 1H)∨)J ⊗ F 1H −→ J (H∨)J

α⊗ τ 7−→ −R∗τ (α) = −α(−J (τ)),

which respectively induce homomorphisms of H-bimodules

F 1H ⊗H
J ((F 1H)∨,f )J −→ J (H∨,f )J(125)

J ((F 1H)∨,f )J ⊗H F 1H −→ J (H∨,f )J .(126)
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Proposition 8.6. – Assume that G = SL2(Qp), p ̸= 2, 3 and π = p. We have
commutative diagrams of H-bimodules

(127) CE1(Z)⊗H CE2(Z)

∼=(119)⊗(120)
��

Yoneda product
// CE3(Z) = E3

∆3(see (14))∼=
��

F 1H ⊗H
J ((F 1H)∨,f )J

(125)
// J (H∨,f )J

(128) CE2(Z)⊗H CE1(Z)

∼=(120)⊗(119)
��

Yoneda product
// CE3(Z) = E3

∆3(see (14))∼=
��

J ((F 1H)∨,f )J ⊗H F 1H
(126)

// J (H∨,f )J .

Both these Yoneda product maps have image ker(S3), namely the space of ζ-torsion
in E3.

Proof. – Preliminary observations:

A) For s ∈ {s0, s1} and w ∈ W̃ , ℓ(w) ≥ 1, the map (125) sends τs ⊗ τ∨w |F 1H

to −τs · τ∨w ∈ J (H∨,f )J . and (126) sends τ∨w |F 1H
⊗ τs to −τ∨w · τs ∈ J (H∨,f )J .

B) By Remark 6.1-iii, we have ker(g1) · ker(f2) ⊆ ker(f3) and likewise
ker(f2) · ker(g1) ⊆ ker(f3). But ker(f3) is a one dimensional vector space
with basis e1 · ϕ1 and supporting the character χtriv of H (Lemma 6.2).
Therefore, eλ · ker(g1) · ker(f2) = {0} and eλ · ker(f2) · ker(g1) = {0} for
any λ ̸= 1.

We now turn to the proof of the commutativity of the diagrams. The left H-module
CE1(Z) is generated by x0 and x1. Hence, and observation A) and (45) above, it is
enough to prove, for ϵ ∈ {0, 1} and w ∈ W̃ , ℓ(w) ≥ 1:

xϵ · α⋆
w = −τsϵ

· ϕw =

{
−ϕsϵw + e1 · ϕw if w ∈ W̃ 1−ϵ

0 if w ∈ W̃ ϵ,

α⋆
w · xϵ = −ϕw · τsϵ =

{
−ϕwsϵ

+ e1 · ϕw if w−1 ∈ W̃ 1−ϵ

0 if w−1 ∈ W̃ ϵ.

Using Remark 2.16, these identities show that the Yoneda product maps have image
ker(S3).

By the proof of Proposition 3.18-iv, we know that J (xϵ) = −τs2
ϵ
·xϵ and this is equal

to −xϵ · τs2
ϵ

(since f(x0,x1)) is a homomorphism of H-bimodules). By Remark 8.3-i we
have, that J (α⋆

w) = −α⋆
w−1 . Lastly, J (ϕw) = ϕw−1 by [14] (8.2). Since J is an anti-

involution of the graded algebra E∗, it is therefore enough to prove the first identity
above (namely we focus on the commutativity of (127)).
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— Suppose w ∈ W̃ ϵ with ℓ(w) ≥ 1.
Then by Remark 8.2 we have α⋆

w = (τsϵ
+ e1) · α⋆

s−1
ϵ w

. But xϵ · (τsϵ
+ e1) = 0.

Therefore xϵ · α⋆
w = 0.

— Suppose w ∈ W̃ 1−ϵ with ℓ(w) ≥ 1. We know from (121) that{
α⋆

w ∈ −(0, α0, 0)w + eγ0
· ker(f2) if ϵ = 0

α⋆
w ∈ (0, α0, 0)w + eγ0

· ker(f2) if ϵ = 1

so by observation B) above, we have

xϵ · α⋆
w =

{
−xϵ · (0, α0, 0)w if ϵ = 0

xϵ · (0, α0, 0)w if ϵ = 1.

Therefore, when ϵ = 0 we compute, using Proposition 2.1 and Lemma 3.12-i,

x0 · α⋆
w = ((0, c0, 0)s0 + eid−1 · (c0ι−1, 0, 0)1) · (0, α0, 0)w

= (0, c0, 0)s0
· (0, α0, 0)w + eid−1 · [(c0ι−1, 0, 0)1 · τw ∪ (0, α0, 0)w]

= (0, c0, 0)s0 · (0, α0, 0)w + eid−1 · [(c0ι−1, 0, 0)w ∪ (0, α0, 0)w]

= (0, c0, 0)s0
· (0, α0, 0)w

= [(0, c0, 0)s0 · τw ∪ τs0 · (0, α0, 0)w] + µwϕs0w where µw ∈ k.

Now using Lemma 3.12-ii, Proposition 4.5, and (90), we compute

(0, c0, 0)s0
· τw ∪ τs0

· (0, α0, 0)w

= (e1 · (0, c0, 0)w) ∪ (e1 · (0, α0, 0)w)− (eid−1 · (c0ι−1, 0, 0)w) ∪ (eid · (2ι(α0), 0, 0)w)

= [
∑

u,v∈F×p

(0, c0, 0)ωuw ∪ (0, α0, 0)ωvw]− [
∑

u,v∈F×p

u−1(c0ι−1, 0, 0)ωuw ∪ v(2ι(α0), 0, 0)ωvw]

= [
∑

u∈F×p

(0, c0, 0)ωuw ∪ (0, α0, 0)ωuw]− [
∑

u∈F×p

(c0ι−1, 0, 0)ωuw ∪ (2ι(α0), 0, 0)ωuw]

= [
∑

u∈F×p

ϕωuw]− 2[
∑

u∈F×p

ϕωuw] = e1 · ϕw by (86).

So x0 · α⋆
w = e1 · ϕw + µwϕs0w.

But (τs0 + e1) · (e1 · ϕw + µwϕs0w) = e1 · ϕs0w + µwe1 · ϕs0w (see (45)) and
x0 being in the kernel of τs0

+ e1, we obtain µw = −1. Therefore, as expected,
x0 · α⋆

w = e1 · ϕw − ϕs0w = −τs0
· ϕw. The case when ϵ = 1 may then be

obtained by conjugation by ϖ ((49), the proof of Proposition 3.18-v which says
that Γω(x0) = x1), and 8.3-i).

Remark 8.7. – For w ∈ W̃ with length 1 and ϵ ∈ {0, 1} the map (125) satisfies:

τsϵ
⊗ τ∨w |F 1H

7−→

{
0 if w ∈ W̃ ϵ

−ψw if w ∈ W̃ 1−ϵ,
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where ψw was defined in Remark 2.16.
Together with Remark 8.4 and using Propositions 8.5 and 8.6, this completely

describes the triple Yoneda product CE1(Z) ⊗H CE1(Z) ⊗H CE1(Z) → CE3(Z) = E3

with image the subspace ke1 · ψs0 ⊕ ke1 · ψs1 ⊆ ker(S3).
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CHAPTER 9

APPENDIX

9.1. Proof of Proposition 2.1

This proposition is written in the general context of G := G(F) being the group
of F-rational points of a connected reductive group G over F which we assume to be
F-split. The first point was proved in [14] Cor. 5.5. To prove the second point, we
recall some notations of [14]. The affine Coxeter system (Waff , Saff ) attached to G
was introduced in §2.1.3 loc. cit. Recall that Waff is a subgroup of W = NG(T )/T 0

and that W̃ = NG(T )/T 0 (see §2).
The action of τω where ω ∈ W̃ has length zero is given in [14] Prop. 5.6 (it is the

same formula as (63)). Using this formula together with (9), we see that it is enough
to prove the second point of Proposition 2.1 in the case when v is a lift in N(T )/T 1

of s ∈ Saff . For s ∈ Saff , we pick the element ns ∈ N(T ) as defined in §2.1.6 loc. cit.
and let v := nsT

1. Recall that each s ∈ Saff corresponds to an affine simple root of
the form (α, h). As in (2.13) loc. cit., the corresponding cocharacter α̌ carves out the
finite subgroup α̌([F×q ]) = {α̌([z]), z ∈ F×q } of T 0, where [−] : F×q → O× denotes the
multiplicative Teichmüller lift. By (2.18) loc. cit., we have

nsIn
−1
s I = I ∪̇

⋃̇
z∈F×q

xα(πh[z])α̌([z])n−1
s I ⊂ I ∪̇

⋃
z∈F×q

Iα̌([z])n−1
s I

= I ∪̇
⋃̇

ω∈α̌([F×q ])
Iωn−1

s I,

where xα(πh[z]) ∈ I is defined in loc. cit. (2.14). We choose a lift ẇ ∈ N(T ) of
w ∈ W̃ . Because of the condition on the length (namely ℓ(vw) = ℓ(w)− 1), we know
that IẇI = In−1

s InsẇI and therefore

nsIẇI = InsẇI ∪̇
⋃

z∈F×q

xα(πh[z])α̌([z])n−1
s InsẇI(129)

⊆ InsẇI ∪̇
⋃

z∈F×q

Iα̌([z])ẇI = InsẇI ∪̇
⋃̇

ω∈α̌([F×q ])
IωẇI.
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This shows a result which is more precise than the one announced in Proposition 2.1.
Namely, when v = nsT

1, we have

a · b ∈ Hi+j(I,X(vw))⊕
⊕

ω∈α̌([F×q ])

Hi+j(I,X(ωẇ)).

Let ω ∈ α̌([F×q ]) and uω := ωẇ. We study the component cuω
of a · b

in Hi+j(I,X(uω)). We have n−1
s IuωI ∩ IẇI = n−1

s (IωẇI ∩ nsIẇI). From (129)
we obtain that

n−1
s IuωI ∩ IẇI =

⋃
z∈F×q ,α̌([z])=ω

n−1
s xα(πh[z])α̌([z])n−1

s InsẇI

=
⋃

z∈F×q ,α̌([z])=ω

Insn
−1
s xα(πh[z])uωI.

The second identity comes from the fact that Ins = In−1
s

is normalized by J by
Cor. 2.5-iii. and from (2.7) in Lemma 2.2 (still in [14]). Now suppose that G is semisim-
ple and simply connected, then by the proof of Lemma 2.8 loc. cit., the map α̌ is
injective. Therefore there is a unique z ∈ F×q such that α̌([z]) = ω and

n−1
s IuωI ∩ IẇI = Ins

n−1
s xα(πh[z])uωI.

To apply the formula of Prop. 5.3 of [14], we need to study the double cosets
Ins
\(n−1

s Iuω ∩ IẇI)/Iu−1
ω

. But from Lemma 5.2 loc. cit. and the above identity, we
obtain immediately:

n−1
s Iuω ∩ IẇI = Ins

n−1
s xα(πh[z])uωIu−1

ω
.

Let h := n−1
s xα(πh[z])uω. We have uωh

−1Ihu−1
ω = xα(πh[z])−1nsIn

−1
s xα(πh[z]).

Since xα(πh[z]) ∈ I normalizes Ins
and since Iw ⊂ Is (Lemma 2.2 loc. cit.), we

obtain:

Iuω
∩ uωh

−1Ihu−1
ω = I ∩ wIw−1 ∩

(
xα(πh[z])−1nsIn

−1
s xα(πh[z])

)
= xα(πh[z])−1Ins

xα(πh[z]) ∩ wIw−1

= Ins ∩ wIw−1 = Is ∩ Iw = Iw = Iuω .

By Remark 5.4 loc. cit., it implies that the component of a · b − a · τw ∪ τns · b
in Hi+j(I,X(uω)) is zero. So

a · b− a · τw ∪ τns
· b ∈ Hi+j(I,X(nsw)).

This concludes the proof. We add the computation of this element. Using Lemma 2.2
and Lemma 5.2-i loc. cit., we obtain the following.

Let u := nsẇ. We have n−1
s Insẇ ⊂ Ins

ẇI therefore n−1
s Insẇ I∩IẇI = Ins

ẇI and
Ins
\(n−1

s Iu∩IẇI)/Iu−1 is made of only one double coset Ins
ẇIu−1 . We have Iu = Insẇ

and Iu∩uẇ−1Iẇu = nsIwn
−1
s while I∩uẇ−1Iẇu−1 = Is and uIu−1∩uẇ−1Iẇu−1 =
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nsIwn
−1
s . So, by Prop. 5.3 loc. cit., the component cnsẇ in Hi+j(I,X(nsẇ)) of a · b

is given by

Shnsẇ(cnsẇ) = cores
nsIwn−1

s

Insw

(
res

Ins

nsIwn−1
s

(
Shns

(a)
)
∪

(
ns∗ Shw(b)

))
.

In particular if G is semisimple and simply connected, then the image by Shnsẇ of
the element

a · b− a · τw ∪ τns · b,

which lies in Hi+j(I,X(nsẇ)), is

cores
nsIwn−1

s

Insw

(
res

Ins

nsIwn−1
s

(
Shns

(a)
)
∪

(
ns∗ Shw(b)

))
− cores

nsIwn−1
s

Insw

(
res

Ins

nsIwn−1
s

(
Shns(a)

))
∪ cores

nsIwn−1
s

Insw

(
ns∗ Shw(b)

)
.

9.2. Computation of some transfer maps

We use notations introduced in §2.4.1 and §3.2, see in particular Remark 3.2.

Lemma 9.1. – Suppose p ̸= 2 and G = SL2(F). Let w ∈ W̃ with length
m := ℓ(w) which we suppose ≥ 1. Let s ∈ {s0, s1} be the unique element such
that ℓ(sw) = ℓ(w)− 1.

i. Suppose F ̸= Qp. If m ≥ 2 or m = 1 and q ̸= 3, then the transfer map
(Isw)Φ → (sIws

−1)Φ is the zero map.

ii. Suppose that F = Qp. If m ≥ 2 or m = 1 and p ̸= 3 then the transfer
map (Isw)Φ → (sIws

−1)Φ is(
1+πx y
πmz 1+πt

)
7→

(
1 py
0 1

)
mod

(
1+π2Zp π2Zp

πm+1Zp 1+π2Zp

)
if s = s0(

1+πx πm−1y
πz 1+πt

)
7→

(
1 0

pπz 1

)
mod

(
1+π2Zp πmZp

π3Zp 1+π2Zp

)
if s = s1.

Proof. – Compare with [13, Prop. 3.65]. We let m := ℓ(w). By conjugation by ϖ, it
is enough to treat the case of the transfer map (I+

m−1)Φ → (s0I
−
ms

−1
0 )Φ in both the

proofs of i. and ii. We denote this map by tr. Recall that when s = s0, then Iw = I−m
and Isw = I+

m−1 where

I+
m−1 :=

(
1+M O
Mm 1+M

)
, s0I

−
ms

−1
0 =

(
1+M M
Mm 1+M

)
.

By the Iwahori factorization of I+
m−1, it suffices to compute the transfer of elements

of the form
(

1 0
πmv 1

)
,
(

t 0
0 t−1

)
, and ( 1 u

0 1 ) of I+
m−1. Let S ⊆ O be a set of representatives

for the cosets inO/M. Then the matrices ( 1 b
0 1 ), for b ∈ S, form a set of representatives

in the right cosets s0I−ms
−1
0 \I+

m−1.
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— Since
(

1 0
πmv 1

)
∈ s0I−ms−1

0 , which is normal in I+
m−1, we have

tr(
(

1 0
πmv 1

)
) ≡

∏
b∈S

( 1 b
0 1 )

(
1 0

πmv 1

) (
1 −b
0 1

)
≡

∏
b∈S

(
1+bπmv −b2πmv

πmv 1−bπmv

)
mod Φ(s0I

−
ms

−1
0 ),

where Φ(s0I
−
ms

−1
0 ) denotes the Frattini subgroup of s0I

−
ms

−1
0 . From [13,

Prop. 3.62] we get [s0I
−
ms

−1
0 , s0I

−
ms

−1
0 ] = s0[I

−
m, I

−
m]s−1

0 =
(

1+Mm+1 M2

Mm+1 1+Mm+1

)
so

(s0I
−
ms

−1
0 )Φ ∼=Mm/Mm+1 × (1 +M/((1 +Mm+1)(1 +M)p)×M/M2.

In this isomorphism the above element corresponds to

(qπmv modMm+1,
∏
b

(1 + bπmv) mod (1 +Mm+1)(1 +M)p, −πmv
∑

b

b2 modM2)

= (0, 1 + πmv
∑

b

b mod (1 +Mm+1)(1 +M)p, −πmv
∑

b

b2 modM2).

The zero coordinate comes from the fact that for any choice of F we have
qMm ⊆Mm+1.

View b 7−→ b and b 7−→ b2 as Fq-valued characters of the group F×q of order
prime to p. By the orthogonality relation for characters the sum

∑
b∈F×q b, resp.∑

b∈F×q b
2, vanishes if and only if the respective character is nontrivial if and

only if q ̸= 2, resp. q ̸= 2, 3. Since we assume p ̸= 2 the second component is
zero whereas the last component is zero if either m ≥ 2, or m = 1 and q ̸= 3.

— For t ∈ 1 +M, the element
(

t 0
0 t−1

)
again lies in s0I−ms

−1
0 so we have

tr(
(

t 0
0 t−1

)
) ≡

∏
b∈S

( 1 b
0 1 )

(
t 0
0 t−1

) (
1 −b
0 1

)
≡

∏
b∈S

(
t b(t−1−t)

0 t−1

)
mod Φ(s0I

−
ms

−1
0 ).

The above element seen in (s0I
−
ms

−1
0 )Φ corresponds to

(0, tq mod (1 +Mm+1)(1 +M)p, (t−1 − t)
∑

b

b modM2).

Since tq is a pth power, the second component is zero. The last component is
zero since q ̸= 2.

— To compute tr(( 1 u
0 1 )), where u ∈ O, we follow the argument of the proof

of [13, Lemma 3.40.i.a)]. Let U(M) := ( 1 M
0 1 ) and U(O) := ( 1 O

0 1 ). Since
I+
m−1 = U(O)s0I

−
ms

−1
0 we obtain the commutative diagram ([10] Cor. 1.5.8)

H1(s0I
−
ms

−1
0 , k)

res

��

cores // H1(I+
m−1, k)

res

��

H1(U(M), k)
cores // H1(U(O), k)

or dually U(O)Φ

��

// U(M)Φ

��

(I+
m−1)Φ

tr // (s0I
−
ms

−1
0 )Φ.

The upper right horizontal arrow is the transfer map U(O)Φ → U(M)Φ and it
coincides with the qth power map g 7−→ gq ([4] Lemma IV.2.1). So we study
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the image of u ∈ O under the map O −→ M, x 7→ qx. If F ̸= Qp, then we
have qO ⊆ M2. Therefore tr(( 1 u

0 1 )) ≡ 0 mod Φ(s0I
−
ms

−1
0 ). If F = Qp, then

tr(( 1 u
0 1 )) ≡

(
1 pu
0 1

)
mod Φ(s0I

−
ms

−1
0 ).

Under the hypotheses p ̸= 2, and m ≥ 2 or m = 1 and q ̸= 3 we have proved: if
F ̸= Qp then the transfer map (I+

m−1)Φ → (s0I
−
ms

−1
0 )Φ is trivial; if F = Qp, then the

image of (
1+πx y
πmz 1+πt

)
=

(
1 0

πmz
1+πx 1

) (
1+πx 0

0 (1+πx)−1

) (
1 y

1+πx

0 1

)
∈ I+

m−1

by the transfer map (I+
m−1)Φ → (s0I

−
ms

−1
0 )Φ is

(
1 py
0 1

)
mod Φ(s0I

−
ms

−1
0 ).

9.3. Proof of Proposition 3.9

Here G = SL2(Qp) with p ̸= 2, 3 and π = p. Let w ∈ W̃ with length m := ℓ(w).
For s ∈ {s0, s1} we compute the action of τs on an element c ∈ H1(I,X(w)) seen as a
triple (c−, c0, c+)w. Using Lemma 3.4 and knowing that the map (48) of conjugation
by ϖ is compatible with the Yoneda product hence the action of H, it is enough
to prove the formulas for s = s0. We recall the following result from [14] Prop. 5.6.
There we worked with nsi

(instead of the matrices si of the current article) where
ns0

= s0 (but ns1
= s−1

1 ). Recall s0 =
(

0 1
−1 0

)
. We have either ℓ(s0w) = ℓ(w) + 1 and

τs0
· c ∈ h1(s0w) with

(130) Shs0w(τs0
· c) = res

s0Iws−1
0

Is0w

(
s0∗ Shw(c)

)
,

or ℓ(s0w) = ℓ(w)− 1 and

(131) τs0
· c = γs0w +

∑
ω∈Ω

γωw ∈ h1(s0w)⊕
⊕
ω∈Ω

h1(ωw)

with

Shs0w(γs0w) = cores
s0Iws−1

0

Is0w

(
s0∗ Shw(c)

)
and(132)

Shωuw(γωuw) =
(
s0ω

−1
u

(
1 [u]−1

0 1

)
s0
−1

)
∗ Shw(c).(133)

A) Case when ℓ(s0w) = ℓ(w)+1. – It means that w ∈ W̃ 0, Iw = I+
m and Is0w = I−m+1.

We compute the composite map H1(I+
m, k)

s0∗−→ H1(s0I
+
ms

−1
0 , k)

res−→ H1(I−m+1, k).

Let X =
(

1+px pm+1y
pz 1+pt

)
∈ I−m+1. Then s−1

0 Xs0 =
(

1+pt −pz

−pm+1y 1+px

)
. Its image in (I+

m)Φ

(see (52)) corresponds to

(−y, 1− px, 0) = (−y, 1 + pt, 0) ∈ Zp/pZp × (1 + pZp)
/
(1 + p2Zp)× Zp/pZp.

This proves that Shs0w(τs0
·c) is given by (y, 1+px, z) 7→ −c−(y)−c0(1+px), namely

τs0
· c = (0,−c0,−c−)s0w if m ≥ 1

and if m = 0 then τs0
· c = (0, 0,−c−)s0w.
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B) Now suppose ℓ(s0w) = ℓ(w)− 1. – Then τs0 · c has a component γs0w ∈ h1(s0w)

and a component
∑

u∈F×p γωuw ∈
⊕

ω∈Ω h
1(ωw). Recall that ωu was defined in (??).

1) We compute
∑

u∈F×p γωuw ∈
⊕

ω∈Ω h
1(ωw).

In fact, for all u ∈ F×p , we compute the elements εu ∈ H1(Iw, k) defined by

e1 · c+
∑

u∈F×p

γωuw =
∑

u∈F×p

Sh−1
ωuw(εu) ∈

⊕
u∈F×p

h1(ωuw),

namely εu = Shωuw(γωuw)− (ωu)∗ Shw(c).

Recall Iωw = I−m =
(

1+pZp pmZp

pZp 1+pZp

)
for any ω ∈ Ω.

Compute s0ω−1
u

(
1 [u]−1

0 1

)
s−1
0 =

(
1 0

−[u] 1

)
ωu. Therefore, by (133)

Shωuw(γωuw)− (ωu)∗ Shw(c) : X 7→ (ωu)∗ Shw(c)
( (

1 0
−[u] 1

)−1
X

(
1 0

−[u] 1

)
X−1

)
for any X :=

(
1+px pmy

pz 1+pt

)
∈ Iw. We have(

1 0
−[u] 1

)−1
X

(
1 0

−[u] 1

)
X−1 =

(
1+px−pmy[u] pmy

pz+p(x−t)[u]−pmy[u2] 1+pt+pmy[u]

)
X−1.

Via (57) the image of this element in (I−m)Φ corresponds to

(2x[u]− pm−1y[u]2, 1− pmy[u], 0) ∈ Zp/pZp × (1 + pZp)
/
(1 + p2Zp)× Zp/pZp.

So for u ∈ F×p , we just computed that Shωuw(γωuw)− (ωu)∗ Shw(c) is the element εu

in Hom(Iw, k) sending X ∈ Iw to

(ωu)∗ Shw(c)((2x[u]− pm−1y[u]2, 1− pmy[u], 0))

= Shw(c)((2x[u]−1 − pm−1y, 1− pmy[u], 0))

= c−(2x[u]−1 − pm−1y) + c0(1− pmy[u]).

If m = 1, then εu sends X onto (see notation (58)):

[u]−12c−ι(1 + px) − [u]−2c−([u]2y) − [u]−1c0ι−1(y[u]2).

Using (72) we see that its preimage by Shωuw is the component in h1(ωuw) of
eid · (0,−2c−ι, 0)w + eid2 · (0, 0, c−)w + eid · (0, 0, c0ι−1)w so when m = 1, we have∑

u∈F×p

γωuw = −e1 · (c−, c0, c+)w + eid · (0,−2c−ι, c0ι−1)w + eid2(0, 0, c−)w.

If m ≥ 2, then the only remaining component of εu is X 7→ [u]−12c−ι(1 + px) so we
obtain ∑

u∈F×p

γωuw = −e1 · (c−, c0, c+)w + eid · (0,−2c−ι, 0)w.

2) We compute γs0w ∈ h1(s0w).
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By (132) we have Shs0w(γs0w) = cores
s0Iws−1

0

Is0w

(
s0∗ Shw(c)

)
. By Lemma 9.1, the

composite map (Is0w)Φ
tr−→ (s0Iws

−1
0 )Φ

s−1
0 −s0

−−−−−→ (Iw)Φ is

(z, 1 + px, y) 7→ (−y, 0, 0) ∈ Zp/pZp × (1 + pZp)
/
(1 + p2Zp)× Zp/pZp.

This shows that γs0w = (0, 0,−c−)s0w.

9.4. Proof of Proposition 4.5

Let w ∈ W̃ and α = (α−, α0, α+)w ∈ h1(w)∨ ⊂ J ((E1)∨,f )J . We suppose that
s = s0, the case s = s1 following by conjugation by ϖ (by the map (48) which is
compatible with the Yoneda product).

— Suppose that ℓ(s0w) = ℓ(w) + 1. By (9) we know that τs−1
0
· α = α(τs0

· −)

has support in h1(s−1
0 w). Let c = (c−, c0, c+)s−1

0 w ∈ h1(s−1
0 w). We compute

(τs−1
0
· α)(c) = α(τs0 · c). By Proposition 3.9, the component in h1(w) of τs0 · c

is (0, 0,−c−)w. Therefore (τs−1
0
· α)(c) = α((0, 0,−c−)w) = −c−(α+) and

τs−1
0
· α = (−α+, 0, 0)s−1

0 w. Using (91), it gives τs0
· α = (−α+, 0, 0)s0w.

— Suppose that ℓ(s0w) = ℓ(w) − 1. By Proposition 2.1 (or (9)) we know that
τs−1

0
· α = α(τs0

· −) has support in h1(s−1
0 w)⊕

⊕
ω∈Ω h

1(ωw).

— Compute its component in (h1(s−1
0 w))∨:

We compute (τs−1
0
· α)(c) = α(τs0

· c) for c = (c−, c0, c+)s−1
0 w ∈ h1(s−1

0 w)

with c0 = 0 if ℓ(w) = 1. By Proposition 3.9, the element τs0 ·c lies in h1(w)

and is equal to (0,−c0,−c−)w. Therefore (τs−1
0
·α)(c) = −c0(α0)−c−(α+),

and the component in (h1(s−1
0 w))∨ of τs−1

0
· α is (−α+,−α0, 0)s−1

0 w if
ℓ(w) ≥ 2 and (−α+, 0, 0)s−1

0 w if ℓ(w) = 1. Using (91), the component
in (h1(s0w))∨ of τs0 ·α is (−α+,−α0, 0)s0w if ℓ(w) ≥ 2 and (−α+, 0, 0)s0w

if ℓ(w) = 1.

— Compute the component
∑

u∈F×p βωuw in
⊕

u∈F×p (h1(ωuw))∨ of τs−1
0
· α:

The component in (h1(w))∨ of (τωu
−1τs−1

0
·α) is τωu

−1 ·βωuw. We therefore
compute (τ−1

ωu
· βωuw)(c) = α(τs0

τωu
· c) for c = (c−, c0, c+)w ∈ h1(w).

By Proposition 3.9 and the definition of the idempotents (36) (see also
(2.12)), the component in h1(w) of τs0τωu · c = τω−1

u
τs0 · c is{

(c−, c0, c+)w + u−1(0, 2c−ι, 0)w if ℓ(w) ≥ 2,
(c−, c0, c+)w + u−1(0, 2c−ι,−c0ι−1)w + u−2(0, 0,−c−)w if ℓ(w) = 1 .

Therefore

α(τs0τωu · c) =


c−(α−) + c0(α0) + c+(α+) + u−12c−ι(α0) if ℓ(w) ≥ 2,
c−(α−) + c0(α0) + c+(α+) + u−12c−ι(α0)

−u−1c0ι−1(α+)− u−2c−(α+) if ℓ(w) = 1.
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So

βωuw =


τωu

· (α−, α0, α+)w + u−1τωu
· (2ι(α0), 0, 0)w if ℓ(w) ≥ 2,

τωu
· (α−, α0, α+)w + u−1τωu

· (2ι(α0),−ι−1(α+), 0)w

−u−2τωu
· (α+, 0, 0)w if ℓ(w) = 1

and

∑
u∈F×p

βωuw =


−e1 · (α−, α0, α+)w − eid · (2ι(α0), 0, 0)w if ℓ(w) ≥ 2,
−e1 · (α−, α0, α+)w

−eid · (2ι(α0),−ι−1(α+), 0)w + eid2 · (α+, 0, 0)w if ℓ(w) = 1.

The component in
⊕

u∈F×p (h1(ωuw))∨ of τs0
· α is

τs2
0
·

∑
u∈F×p

βωuw =


−e1 · (α−, α0, α+)w + eid · (2ι(α0), 0, 0)w if ℓ(w) ≥ 2,
−e1 · (α−, α0, α+)w

+eid · (2ι(α0),−ι−1(α+), 0)w + eid2 · (α+, 0, 0)w if ℓ(w) = 1.
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Let G = SL2(F) where F is a finite extension of Qp. We suppose that the
pro-p Iwahori subgroup I of G is a Poincaré group of dimension d. Let k be a
field containing the residue field of F.

In this book, we study the graded Ext-algebra

E∗ = Ext∗Mod(G)(k[G/I], k[G/I]).

Its degree zero piece E0 is the usual pro-p Iwahori-Hecke k-algebra H.
We study Ed as an H-bimodule and deduce that for an irreducible

admissible smooth k-representation V of G, we have Hd(I, V ) = 0 unless
V is the trivial representation.

When F = Qp with p ≥ 5, we have d = 3. In that case we describe E∗

as an H-bimodule and give the structure as an algebra of the centralizer
in E∗ of the center of H. We deduce results on the values of the functor
H∗(I,−) which attaches to a (finite length) smooth k-representation V of G
its cohomology with respect to I. We prove that H∗(I, V ) is always finite
dimensional. Furthermore, if V is irreducible, then V is supersingular if and
only if H∗(I, V ) is a supersingular H-module.

Soit G = SL2(F) où F est une extension finite Qp. On suppose que le
sous-groupe d’Iwahori I de G est un groupe de Poincaré de dimension d. Soit
k un corps contenant le corps résiduel de F.

Dans cet livre, nous étudions la Ext-algèbre graduée

E∗ = Ext∗Mod(G)(k[G/I], k[G/I]).

Sa composante de degré zero est la k-algèbre de Hecke du pro-p Iwahori H.
Nous étudions le H-bimodule Ed et déduisons que, étant donnée une

k-représentation irréductible admissible lisse V de G, on a Hd(I, V ) = 0 à
moins que V ne soit la représentation triviale.

Lorsque F = Qp avec p ≥ 5, on a d = 3. Dans ce cas, nous décrivons
le H-bimodule E∗ et la structure d’algèbre du centralisateur dans E∗ du
centre de H. Nous en déduisons des résultats quant aux valeurs du foncteur
qui attache à une k-représentation lisse (de longueur finie) V de G l’espace
de I-cohomologie H∗(I, V ). Nous montrons que H∗(I, V ) est toujours de
dimension finie. De plus, si V est irréductible, alors V est supersingulière si et
seulement si H∗(I, V ) est un module supersingulier.
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