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PROJECTIONS, MULTIPLIERS
AND DECOMPOSABLE MAPS

ON NONCOMMUTATIVE Lp-SPACES

Cédric Arhancet, Christoph Kriegler

Abstract. – We introduce a noncommutative analogue of the absolute value of a
regular operator acting on a noncommutative Lp-space. We equally prove that two
classical operator norms, the regular norm and the decomposable norm are identical.
We also describe precisely the regular norm of several classes of regular multipliers.
This includes Schur multipliers and Fourier multipliers on some unimodular locally
compact groups which can be approximated by discrete groups in various senses.
A main ingredient is to show the existence of a bounded projection from the space
of completely bounded Lp operators onto the subspace of Schur or Fourier multi-
pliers, preserving complete positivity. On the other hand, we show the existence of
bounded Fourier multipliers which cannot be approximated by regular operators, on
large classes of locally compact groups, including all infinite abelian locally compact
groups. We finish by introducing a general procedure in order to prove positive results
on selfadjoint contractively decomposable Fourier multipliers, beyond the amenable
case.

Résumé (Projections, multiplicateurs et applications décomposables sur des Lp-espaces
non commutatifs)

On introduit un analogue non commutatif de la valeur absolue d’un opérateur
régulier agissant sur un espace Lp non commutatif. Nous prouvons également que
deux normes classiques d’opérateurs, la norme régulière et la norme décomposable
sont identiques. On décrit aussi précisément la norme régulière de plusieurs classes de
multiplicateurs réguliers. Cela inclut les multiplicateurs de Schur et les multiplicateurs
de Fourier sur certains groupes localement compacts unimodulaires qui peuvent être
approximés par des groupes discrets dans des sens variés. Le principal ingrédient est
l’existence d’une projection bornée de l’espace des opérateurs complètement bornés
sur l’espace des multiplicateurs de Schur ou de Fourier, préservant la positivité com-
plète. Par ailleurs, on montre l’existence de multiplicateurs de Fourier bornés qui ne
peuvent être approximés par des opérateurs réguliers, sur de larges classes de groupes
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iv

localement compacts, incluant tous les groupes localement compacts abéliens infinis.
On termine en introduisant une procédure générale pour prouver des résultats po-
sitifs sur les multiplicateurs de Fourier contractivement décomposables autoadjoints,
au-delà du cas moyennable.
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CHAPTER 1

INTRODUCTION

The absolute value |T | and the regular norm ∥T∥reg of a regular operator T already
appear in the seminal work of Kantorovich [116] on operators on linear ordered spaces.
These constructions essentially rely on the structure of (Dedekind complete) Banach
lattices. These notions are of central importance in the theory of linear operators
between Banach lattices, including classical Lp-spaces, since the absolute value is a
positive operator. Indeed it is well-known that positive contractions are well-behaved
operators. Actually, contractively regular operators on Lp-spaces share in general the
same nice properties as contractions on Hilbert spaces. We refer to the books [1], [133]
and [156] and to the papers [147] and [142] for more information.

Due to the lack of local unconditional structure, on a Schatten space and more gen-
erally on a noncommutative Lp-space, the canonical order on the space of selfadjoint
elements does not induce a structure of a Banach lattice, see [57, Chapter 17] and
[148, page 1478]. Nevertheless, there exists a purely Banach space characterization of
regular operators on classical Lp-spaces [101, Theorem 2.7.2] which says that a linear
operator T : Lp(Ω) → Lp(Ω′) is regular if and only if for any Banach space X the
map T ⊗ IdX induces a bounded operator between the Bochner spaces Lp(Ω, X) and
Lp(Ω′, X). In this case, the regular norm is given by

(1.0.1) ∥T∥reg,Lp(Ω)→Lp(Ω′)
def
= sup

X
∥T ⊗ IdX∥Lp(Ω,X)→Lp(Ω′,X) ,

where the supremum runs over all Banach spaces X. Using this property, a nat-
ural extension of this notion for noncommutative Lp-spaces is introduced in [143].
A linear map T : Lp(M) → Lp(N) between noncommutative Lp-spaces, associated
with approximately finite-dimensional von Neumann algebras M and N , is called
regular if for any noncommutative Banach space E (that is, an operator space), the
map T ⊗ IdE induces a bounded operator between the vector-valued noncommutative
Lp-spaces Lp(M,E) and Lp(N,E). As in the commutative case, the regular norm is
defined by

(1.0.2) ∥T∥reg,Lp(M)→Lp(N)
def
= sup

E
∥T ⊗ IdE∥Lp(M,E)→Lp(N,E) ,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2023



2 CHAPTER 1. INTRODUCTION

where the supremum runs over all operator spaces E. For classical Lp-spaces, this
norm coincides with (1.0.1). Nevertheless, the paper [143] does not give a definition of
the absolute value of a regular operator and the definition of the latter is only usable
for approximately finite-dimensional von Neumann algebras.

In this paper, we define a noncommutative analogue of the absolute value of a
regular operator acting on an arbitrary noncommutative Lp-space for any 1 ≤ p ≤ ∞.
For that, recall that a linear map T : Lp(M) → Lp(N) is decomposable [85, 112] if
there exist linear maps v1, v2 : Lp(M)→ Lp(N) such that the linear map

(1.0.3) Φ
def
=

[
v1 T

T ◦ v2

]
: Sp2 (Lp(M))→ Sp2 (Lp(N)),

[
a b

c d

]
7→

[
v1(a) T (b)

T ◦(c) v2(d)

]
is completely positive (a stronger condition than positivity of operators) where
T ◦(c)

def
= T (c∗)∗ and where Sp2 (Lp(M)) and Sp2 (Lp(N)) are vector-valued Schatten

spaces. In this case, v1 and v2 are completely positive and the decomposable norm
of T is defined by

(1.0.4) ∥T∥dec,Lp(M)→Lp(N)
def
= inf

{
max{∥v1∥ , ∥v2∥}

}
,

where the infimum is taken over all maps v1 and v2. See the books [29], [68] and [146]
for more information on this classical notion in the case p = ∞. If 1 < p < ∞ and
if M and N are approximately finite-dimensional, it is alluded in the introduction of
[112] that these maps coincide with the regular maps. First, we greatly strengthen this
statement by showing that the regular norm ∥T∥reg,Lp(M)→Lp(N) and the decompos-
able norm ∥T∥dec,Lp(M)→Lp(N) are identical for a regular map T (see Theorem 3.24).
Hence, the decomposable norm is an extension of the regular norm for noncommu-
tative Lp-spaces associated to arbitrary von Neumann algebras. Moreover, we prove
that if T : Lp(Ω) → Lp(Ω′) is a regular operator between classical Lp-spaces then
the map

[
|T | T
T◦ |T |

]
: Sp2 (Lp(Ω)) → Sp2 (Lp(Ω′)) is completely positive (Theorem 3.27)

where |T | : Lp(Ω)→ Lp(Ω′) denotes the absolute value of T . In addition, we show that
the infimum (1.0.4) is actually a minimum (Proposition 3.5). Consequently, the map
(1.0.3) with some v1, v2 which realize the infimum (1.0.4) can be seen as a natural
noncommutative analogue of the absolute value |T | although we have no uniqueness
results for v1 and v2.

The ingredients of the identification of the decomposable norm and the regular
norm involve a reduction of the problem on noncommutative Lp-spaces to the case
of finite-dimensional Schatten spaces Spn by approximation. Moreover, a 2×2-matrix
trick gives a second reduction to adjoint preserving maps between these spaces. Fi-
nally, the case of adjoint preserving maps acting on finite-dimensional Schatten spaces
is treated in Theorem 3.21. To conclude, note that the ideas of the manuscript [107]
(which seems definitely postponed) could be used to define a notion of regular op-
erator between vector-valued noncommutative Lp-spaces associated with QWEP von
Neumann algebras. Of course, it is likely that the identification of the decompos-
able norm and the regular norm is true in this generalized context. Finally, we refer
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CHAPTER 1. INTRODUCTION 3

to the preprint [15] for a generalization of the notion of decomposable map and for
applications to contractively complemented subspaces of noncommutative Lp-spaces.

The next task is devoted to identify precisely decomposable Fourier multipliers on
noncommutative Lp-spaces Lp(VN(G)) of a group von Neumann algebra VN(G) asso-
ciated to a unimodular locally compact group G. Recall that if G is a locally compact
group then VN(G) is the von Neumann algebra, whose elements act on the Hilbert
space L2(G), generated by the left translation unitaries λs : f 7→ f(s−1·), s ∈ G. If
G is abelian, then VN(G) is ∗-isomorphic to the algebra L∞(Ĝ) of essentially bounded
functions on the dual group Ĝ of G. As basic models of quantum groups, they play a
fundamental role in operator algebras and this task can be seen as an effort to develop
Lp-Fourier analysis of non-abelian locally compact groups, see the contributions [39],
[109], [110], [111], [123] and [132] in this line of research and references therein. If G is
discrete, a Fourier multiplier Mφ : Lp(VN(G)) → Lp(VN(G)) is an operator which
maps λs to φ(s)λs, where φ : G → C is the symbol function (see Definition 6.3 for
the general case of unimodular locally compact groups).

We connect this problem with several notions of approximation by discrete
groups of the underlying locally compact group G. We are able to show that a symbol
φ : G→ C inducing a decomposable Fourier multiplierMφ : Lp(VN(G))→ Lp(VN(G))

already induces a decomposable Fourier multiplier Mφ : VN(G) → VN(G) at the
level p = ∞ for some classes of locally compact groups. We also give a comparison
between the decomposable norm at the level p and the operator norm at the level ∞
in some cases (see Theorem 4.8, Theorem 4.10, Theorem 6.45, Theorem 6.47 and
Theorem 6.50). Our method for this last point relies on some constructions of
compatible bounded projections at the level p = 1 and p = ∞ from the spaces of
(weak* continuous if p = ∞) completely bounded operators on Lp(VN(G)) onto
the spaces Mp,cb(G) of completely bounded Fourier multipliers combined with an
argument of interpolation. We highlight that the nature of the group G seems to
play a central role in this problem. Indeed, mysteriously, our results are better for a
pro-discrete group G than for a non-abelian nilpotent Lie group G. More precisely,
let us consider the following definition (1).

Definition 1.1. – Let G be a (unimodular) locally compact group. We say that G has
property (κ) if there exist compatible bounded projections

P∞G : CBw∗(VN(G))→ CBw∗(VN(G)) and P 1
G : CB(L1(VN(G)))→ CB(L1(VN(G)))

ontoM∞,cb(G) andM1,cb(G) preserving complete positivity. In this case, we introduce
the constant

κ(G)
def
= inf max

{
∥P∞G ∥CBw∗ (VN(G))→CBw∗ (VN(G)) ,

∥∥P 1
G

∥∥
CB(L1(VN(G)))→CB(L1(VN(G)))

}
,

where the infimum is taken over all admissible couples (P∞G , P 1
G) of compatible bounded

projections and we let κ(G) =∞ if G does not have (κ).

1. The subscript w* means “weak* continuous” and “CB” means completely bounded. The com-
patibility is taken in the sense of interpolation theory [22, 177].
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4 CHAPTER 1. INTRODUCTION

Haagerup has essentially proved that κ(G) = 1 if G is a discrete group by a
well-known average argument using the unimodularity and the compactness of the
quantum group VN(G). The key novelty in our approach is the use of approximat-
ing methods by discrete groups in various senses to construct bounded projections
for non-discrete groups beyond the case of a dual of a unimodular compact quan-
tum group. If G is a second countable pro-discrete locally compact group, we are
able to show that κ(G) = 1 (see Theorem 6.38). Another main result of the paper
gives κ(G) < ∞ for a certain class of locally compact groups G approximable by
lattice subgroups, see Corollary 6.25. Note that a straightforward duality argument
combined with some results of Derighetti [53, Theorem 5], Arendt and Voigt [5, The-
orem 1.1] says that if G is an abelian locally compact group then κ(G) = 1 (see
Proposition 6.43). Furthermore, in most cases, we will show the existence of com-
patible projections P pG : CB(Lp(VN(G))) → CB(Lp(VN(G))) onto Mp,cb(G) for all
1 ≤ p ≤ ∞ (2). So we have a strengthening (κ′) of property (κ) for some groups.
It is an open question whether (κ′) is really different from (κ). Finally, in a paper
[14], examples of locally compact groups without (κ) will be described and important
complementary results will be given.

Using classical results from approximation properties of discrete groups, it
is not difficult to see that there exist completely bounded Fourier multipliers
Mφ : Lp(VN(G)) → Lp(VN(G)) on some class of discrete groups which are not
decomposable (Proposition 3.32). In Chapter 7, we focus on a more difficult task. We
examine the problem to construct completely bounded operators T : Lp(M)→ Lp(M)

which cannot be approximated by decomposable operators, in the sense that T does
not belong to the closure Dec(Lp(M)) of the space Dec(Lp(M)) of decomposable
operators on Lp(M) with respect to the operator norm ∥·∥Lp(M)→Lp(M) (or the
completely bounded norm ∥·∥cb,Lp(M)→Lp(M)).

We particularly investigate different types of multipliers. We show the existence
of such completely bounded Fourier multipliers, on large classes of locally compact
groups, including all infinite abelian locally compact groups (see Theorem 7.14). Note
that it is impossible to find such bad multipliers on finite groups by an argument of
finite dimensionality. Our strategy relies on the use of transference theorems which we
prove and structure theorems on groups. It consists in dealing with all possible cases.
In the abelian situation, the construction of our examples in the critical cases (e.g., if
the dual group Ĝ is an infinite totally disconnected group or an infinite torsion dis-
crete group) is proved by a Littlewood-Paley decomposition argument on the Bochner
space Lp(G,X) where X is a UMD Banach space, which allows us to obtain in ad-
dition the complete boundedness of multipliers. We also examine the case of Schur
multipliers. In particular, we prove that the discrete noncommutative Hilbert trans-
form H : Sp → Sp on the Schatten space Sp is not approximable by decomposable

2. If p = ∞, replace CB(Lp(VN(G))) by CBw∗ (VN(G)).
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CHAPTER 1. INTRODUCTION 5

operators (Corollary 7.22). We equally deal with convolutors (Section 7.3) and op-
erators on arbitrary noncommutative Lp-spaces associated with infinite-dimensional
approximately finite-dimensional von Neumann algebras (Theorem 7.35).

In the case of an amenable group G, transference methods [36, 40, 134] between
Schur multipliers and Fourier multipliers can sometimes be used for proving theorems
on selfadjoint completely bounded Fourier multipliers on VN(G), see, e.g., [9, Corol-
lary 4.5] and [10]. We finish the paper by introducing a general procedure for proving
positive results on selfadjoint contractively decomposable Fourier multipliers on non-
amenable discrete groups relying on the new characterization of Proposition 8.2. This
result should allow with reasonable effort to generalize properties which are true for
unital completely positive selfadjoint Fourier multipliers by using unital completely
positive selfadjoint 2×2 block matrices of Fourier multipliers. Section 8.3 illustrates
this method by describing Fourier multipliers which satisfy the noncommutative Mat-
saev inequality (Theorem 8.6), using the new result of factorizability of such 2×2 block
matrices of Fourier multipliers (Theorem 8.5).

The paper is organized as follows. Chapter 2 gives background and preliminary
results. Some relations between matricial orderings and norms in Section 2.3 are
fundamental to reduce the problem of the comparison of the regular norm and the
decomposable norm to the adjoint preserving case. Moreover, in passing, we iden-
tify completely positive maps on classical Lp-spaces (Proposition 2.23 and Proposi-
tion 2.24).

In Chapter 3, we will investigate the notions of decomposable maps and regular
maps on noncommutative Lp-spaces. We will see in Theorem 3.24 that on approx-
imately finite-dimensional semifinite von Neumann algebras, the notions of decom-
posable and regular operators coincide isometrically. The proof of this result requires
several reduction intermediate steps, such as self-adjoint maps in place of general maps
(Section 3.4) and Schatten spaces in place of general noncommutative Lp-spaces (The-
orem 3.21 in Section 3.5). Moreover, we investigate in this chapter the relation of the
(completely) bounded norm on noncommutative Lp-spaces with the decomposable
norm. We will see in Theorem 3.26 that for completely positive maps on Lp-spaces
over approximately finite-dimensional algebras, the bounded norm and the completely
bounded norm coincide. If the von Neumann algebra has QWEP, then we will see in
Proposition 3.30 that the completely bounded norm is dominated by the decompos-
able norm, so in case of completely positive maps, the completely bounded norm, the
bounded norm and the decomposable norm all coincide (Proposition 3.31). However,
we will exhibit a class of concrete examples where the decomposable norm is larger
than the completely bounded norm (Theorem 3.38). Finally, this chapter contains
information on the infimum of the decomposable norm (Section 3.2), the absolute
value |T | and decomposability of an operator T acting on a commutative Lp-space
(Section 3.7) and examples of completely bounded but non decomposable Fourier
multipliers on group von Neumann algebras (Proposition 3.32). We also give explicit
examples of computations of the decomposable norm, see Theorem 3.37.
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In the following Chapter 4, we give a generalization of the average argument of
Haagerup. We will show the existence of contractive projections from some spaces of
completely bounded operators onto the spaces of Fourier multipliers, Schur multipliers
or even a mix of both (Theorem 4.2 and Section 4.2). This concerns discrete groups,
possibly deformed by a 2-cocycle and we will also show the independence of the
completely bounded norm and the complete positivity with respect to that 2-cocycle,
for a Fourier/Schur-multiplier. So the natural framework will be the one of twisted
(discrete) group von Neumann algebras, explained in Section 4.1. In particular, this
covers the case of noncommutative tori when the group equals Zd. As an application,
we will describe the decomposable norm of such Fourier and Schur multipliers on
the Lp level and see that in the framework of this chapter, this norm equals the
(completely) bounded norm on the L∞ level (Section 4.3).

In Chapter 5, we introduce and explore some approximation properties of locally
compact groups. We connect these to some notions of approximation introduced by
different authors. We clarify these properties in the large setting of second countable
compactly generated locally compact groups, see Theorem 5.13.

Hereafter, Chapter 6 contains an in-depth study of decomposability of Fourier mul-
tipliers on non-discrete locally compact groups. After having introduced these Fourier
multipliers and their basic properties in Section 6.1, we will show in Section 6.2 how
their completely bounded norm is changed under a continuous homomorphism be-
tween two locally compact groups. In Section 6.3, we describe an extension property
of Fourier multipliers which passes from a lattice subgroup to the locally compact
full group. In Section 6.4, we prove Theorem 6.16 which gives a complementation for
second countable unimodular locally compact groups which satisfy the approxima-
tion by lattice subgroups by shrinking (ALSS) property of Definition 5.3 together with
a crucial density condition (6.4.2). Then in Section 6.5, we describe some concrete
groups in which Theorem 6.16 applies. These examples contain direct and semidirect
products of groups, groups acting on trees, a large class of locally compact abelian
groups and the semi-discrete Heisenberg group. In Section 6.6, we show the comple-
mentation result for pro-discrete groups by a similar method as in Theorem 6.16, but
it turns out that there is no need of a density condition in this case.

There is another notion of generalization of Fourier multipliers on non-abelian
groups G, but acting on classical Lp-spaces Lp(G) instead of noncommutative
Lp-spaces Lp(VN(G)). These are the convolutors, that is, the bounded operators
commuting with left translations. In Section 6.7, we show a complementation result
for them on locally compact amenable groups. Then in Section 6.8 we apply our
complementation to describe the decomposable norm of multipliers.

In Chapter 7, we construct completely bounded operators T : Lp(M) → Lp(M)

which cannot be approximated by decomposable operators. In Proposition 3.32, we
shall see that in general, the class of completely bounded operators on a noncommu-
tative Lp-space is larger than the class of decomposable operators. In Chapter 7, we
deepen this fact and show that in many situations of Lp-spaces and classes of opera-
tors on them, there are (completely) bounded operators such that in a small (norm or
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CB-norm) neighborhood of the operator, there is no decomposable map. This notion
of (CB-)strongly non decomposable operator is defined in Section 7.1. Our first class
of objects are the Fourier multipliers on abelian locally compact groups. We show in
Theorem 7.14 that on all infinite locally compact abelian groups, there always exists a
(CB-)strongly non decomposable Fourier multiplier on Lp(G). By a transference pro-
cedure, this theorem extends to convolutors acting on several non-abelian locally com-
pact groups containing infinite locally compact abelian groups (Section 7.3). Then our
next goal are Schur multipliers. In Section 7.4 (see Corollary 7.22) we will show that
the very classical discrete noncommutative Hilbert transform and the triangular trun-
cation T : Sp → Sp are CB-strongly non decomposable. Then we study CB-strongly
non decomposable Fourier multipliers on discrete non-abelian groups. We establish
some general results and apply them to Riesz transforms associated with cocycles and
to free Hilbert transforms (Section 7.5). Finally, we enlarge the class of spaces and
consider Lp-spaces over general approximately finite-dimensional von Neumann alge-
bras (Section 7.6). Namely, in Theorem 7.35, we show that for 1 < p <∞, p ̸= 2 and
for any infinite-dimensional approximately finite-dimensional von Neumann algebra
M , there always exists a CB-strongly non decomposable operator on Lp(M).

In Chapter 8, we study a certain property for operators on noncommutative
Lp-spaces which is a combination of contractively decomposable and selfadjointness
on L2(M). In general, this notion is more restrictive than being separately contrac-
tively decomposable and selfadjoint. However, in Proposition 8.2, we will see that for
Fourier multipliers acting on twisted von Neumann algebras over discrete groups and
a T-valued 2-cocycle, this difference disappears. As a consequence, we show in the last
two Section 8.2 and Section 8.3 that for contractively decomposable and selfadjoint
Fourier multipliers on twisted von Neumann algebras, the noncommutative Matsaev
inequality holds.
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CHAPTER 2

PRELIMINARIES

2.1. Noncommutative Lp-spaces and operator spaces

Let M be a von Neumann algebra equipped with a semifinite normal faithful
weight τ . We denote by m+

τ the set of all positive x ∈ M such that τ(x) < ∞
and mτ its complex linear span which is a weak* dense ∗-subalgebra of M . If nτ is
the left ideal of all x ∈M such that τ(x∗x) <∞ then we have

(2.1.1) mτ = span
{
y∗z : y, z ∈ nτ

}
.

Suppose 1 ≤ p < ∞. If τ is in addition a trace then for any x ∈ mτ , the op-
erator |x|p belongs to m+

τ and we set ∥x∥Lp(M)
def
= τ

(
|x|p

) 1
p . The noncommutative

Lp-space Lp(M) is the completion of mτ with respect to the norm ∥·∥Lp(M). One sets

L∞(M)
def
= M . We refer to [148], and the references therein, for more information on

these spaces. The subspace M ∩Lp(M) is dense in Lp(M). The positive cone Lp(M)+
of Lp(M) is given by

(2.1.2) Lp(M)+
def
=
{
y∗y : y ∈ L2p(M)

}
.

We also have the following dual description.

Proposition 2.1. – Let M be a von Neumann algebra equipped with a normal semifi-
nite faithful trace. Suppose 1 ≤ p <∞. We have

(2.1.3) Lp(M)+ =
{
x ∈ Lp(M) : ⟨x, y⟩Lp(M),Lp∗ (M) ≥ 0 for any y ∈ Lp

∗
(M)+

}
.

Proof. – Let x ∈ Lp(M) such that ⟨x, y⟩Lp(M),Lp∗ (M) ≥ 0 for any y ∈ Lp
∗
(M)+. We

can write x = x1 + ix2 where x1, x2 are selfadjoint elements of Lp(M). On the one
hand, for any y ∈ Lp

∗
(M)+, we have

⟨x1, y⟩Lp,Lp∗ + i⟨x2, y⟩Lp,Lp∗ = ⟨x1 + ix2, y⟩Lp,Lp∗ = ⟨x, y⟩Lp,Lp∗ ≥ 0.

On the other hand ⟨x1, y⟩Lp,Lp∗ and ⟨x2, y⟩Lp,Lp∗ are real numbers. We deduce the
equality ⟨x2, y⟩Lp,Lp∗ = 0 for any y ∈ Lp

∗
(M)+. By duality, we infer that x2 = 0. We

conclude that x is selfadjoint.
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Now, consider a decomposition x = x1 − x2 with x1, x2 ∈ Lp(M)+ such that
there exist (3) projections e, f ∈ M such that ef = 0, x1 = ex1 = x1e and x2 =

x2f = fx2. Suppose x2 ̸= 0. There exists (4) a positive element z ∈ Lp
∗
(M) such

that ⟨x2, z⟩Lp,Lp∗ > 0. Then〈
x, fzf

〉
Lp,Lp∗

=
〈
x1 − x2, fzf

〉
Lp,Lp∗

= −⟨x2, z⟩Lp,Lp∗ < 0.

That is impossible since fzf is a positive element of Lp
∗
(M).

At several times, we will use the following elementary (5) result.

Lemma 2.2. – Let M be a von Neumann algebra equipped with a normal semifinite
faithful trace. Suppose 1 ≤ p < ∞. Then M+ ∩ Lp(M) is dense in Lp(M)+ for the
topology of Lp(M).

The readers are referred to [68], [137] and [146] for details on operator spaces
and completely bounded maps. If T : E → F is a completely bounded map between
two operators spaces E and F , we denote by ∥T∥cb,E→F its completely bounded
norm. If E⊗̂F is the operator space projective tensor product of E and F , we have a
canonical complete isometry (E⊗̂F )∗ = CB(E,F ∗), see [68, Chapter 7]. We will use
the notations Eop and E for the opposite operator space and the complex conjugate
of an operator space E.

The theory of vector-valued noncommutative Lp-spaces was initiated by Pisier [145]
for the case where the underlying von Neumann algebra is hyperfinite and equipped
with a normal semifinite faithful trace (see [107] for the case where the von Neu-
mann algebra is QWEP). Under these assumptions, according to [145, page 37-38],
for any operator space E, the spaces M ⊗min E and L1(Mop)⊗̂E can be embedded
by an injective continuous map into a common topological vector space, respecting
hereby

(
M ∩ L1(Mop)

)
⊗ E. This compatibility in the sense of interpolation theory,

explained in [145, page 37] and [146, page 139] and based on results of Effros and
Ruan [67, 66], relies heavily on the fact that the von Neumann algebra is hyperfinite
(i.e., approximately finite-dimensional). Suppose 1 ≤ p ≤ ∞. Then we can define by
complex interpolation

(2.1.4) Lp(M,E)
def
=
(
M ⊗min E,L

1(Mop)⊗̂E
)

1
p

,

3. If x = w|x| is the polar decomposition of a selfadjoint element x then it is known that w∗ = w
and w|x| = |x|w. We can write w = e − f where e and f are two projections such that ef = 0. We
have e|x| = |x|e and f |x| = |x|f . We can take x1 = e|x| and x2 = f |x|. See [157, pages 138-139] for
useful information.

4. Any positive element of Lp(M) admits a positive norming functional.
5. Let x be a positive element of Lp(M). We can write x = y∗y for some y ∈ L2p(M). Since

M ∩ L2p(M) is dense in L2p(M), there exists a sequence (yn) of elements of M ∩ L2p(M) which
approximate y in L2p(M). Then we have

∥x− y∗nyn∥Lp(M) = ∥y∗y − y∗nyn∥Lp(M) ≤ ∥y
∗(y − yn)∥Lp(M) + ∥(y∗ − y∗n)yn∥Lp(M) −−−−−→n→+∞

0.
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where ⊗min and ⊗̂ denote the injective and the projective tensor product of operator
spaces. When E = C, we get the noncommutative Lp-space Lp(M).

If Ω is a measure space then we denote by B(L2(Ω)) the von Neumann algebra
of bounded operators on the Hilbert space L2(Ω). Using its canonical trace, we ob-
tain the vector-valued Schatten space SpΩ(E)

def
= Lp(B(L2(Ω)), E). With Ω = N or

Ω = {1, . . . , n} equipped with the counting measure and E = C we recover the clas-
sical Schatten spaces Sp and Spn.

Recall the following classical characterization of completely bounded maps, which
is essentially [145, Lemma 1.4].

Proposition 2.3. – Let E and F be operator spaces. Suppose 1 ≤ p ≤ ∞. A lin-
ear map T : E → F is completely bounded if and only if IdSp ⊗ T extends to a
bounded operator IdSp ⊗ T : Sp(E) → Sp(F ). In this case, the completely bounded
norm ∥T∥cb,E→F is given by

(2.1.5) ∥T∥cb,E→F = ∥IdSp ⊗ T∥Sp(E)→Sp(F ) .

We will use the following result [106, page 984], [107] (see [16, Appendix] for a
proof for approximately finite-dimensional von Neumann algebras).

Theorem 2.4. – Let M1,M2, N1, N2 be QWEP von Neumann algebras. Suppose
1 ≤ p ≤ ∞. Let T1 : Lp(M1) → Lp(N1) and T2 : Lp(M2) → Lp(N2) be completely
bounded maps. Then the map T1 ⊗ T2 : Lp(M1 ⊗ N2) → Lp(N1 ⊗ N2) is completely
bounded and we have

∥T1 ⊗ T2∥cb,Lp(Lp)→Lp(Lp) ≤ ∥T1∥cb,Lp→Lp ∥T2∥cb,Lp→Lp .(2.1.6)

A measure space (Ω, µ) (also denoted Ω) is called localizable if its measure alge-
bra (6) is semifinite and Dedekind complete, see [135, Lemma 2.6], [77, Theorem 322B]
and [160, Corollary 3.2.1]. By [76, Theorem 243G], this is equivalent to the bijectiv-
ity of the canonical map L∞(Ω) → L1(Ω)∗ (in which case it is an isometry). Recall
that a σ-finite measure space [76, Theorem 211L], [160, Corollary 3.2.1] and a locally
compact group equipped with a left Haar measure [160, Corollary 5.2], [78, 443A (a)]
are localizable. We warn that there are several notions of localizable measure spaces,
see [135] and the recent paper [28] for more information.

The importance of these measure spaces comes from [160, Theorem 5.1] which
says that for a measure space Ω, the algebra L∞(Ω) is a von Neumann algebra if
and only if Ω is a localizable measure space. Note that in this case, the integral
defines a semifinite (normal, faithful) trace on the von Neumann algebra L∞(Ω),
and thus, Lp(Ω) carries, as any other noncommutative Lp space, an operator space
structure. Thus, Sp(Lp(Ω)) is well-defined. Then, if Ω is a (localizable) measure space,
the Banach space Sp(Lp(Ω)) is isometric to the Bochner space Lp(Ω, Sp) of Sp-valued

6. The measure algebra [77, Definition 321I] of a measure space is defined as the quotient of the
ring of measurable sets by the ideal of null sets, with the measure of any residue class defined to be
the measure of any representative of the class.
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functions. Thus, in particular, if Ω′ is another (localizable) measure space then a linear
map T : Lp(Ω) → Lp(Ω′) is completely bounded if and only if T ⊗ IdSp extends to a
bounded operator T ⊗ IdSp : Lp(Ω, Sp)→ Lp(Ω′, Sp). In this case, we have

(2.1.7) ∥T∥cb,Lp(Ω)→Lp(Ω′) =
∥∥T ⊗ IdSp

∥∥
Lp(Ω,Sp)→Lp(Ω′,Sp)

.

If E and F are operator spaces and if T : E → F is a linear map, we will use the
map T op : Eop → F op, x 7→ T (x). Of course, since the underlying Banach spaces of E
and Eop and of F and F op are identical, the map T is bounded if and only if the
map T op is bounded. The following lemma shows that the situation is similar for the
complete boundedness. Furthermore, this result is useful when we use duality since
in the category of operator spaces we have Lp(M)∗ = Lp

∗
(M)op if 1 ≤ p < ∞. In

passing, recall that Lp(M)op = Lp(Mop).

Lemma 2.5. – Let T : E → F be a linear map between operator spaces. Then T is
completely bounded if and only if the map T op : Eop → F op is completely bounded.
Moreover, in this case we have ∥T∥cb,E→F = ∥T op∥cb,Eop→F op .

Proof. – Assume that T is completely bounded and let [xij ] ∈ Mn(E
op). Then∥∥[T (xij)]

∥∥
Mn(F op)

=
∥∥[T (xji)]

∥∥
Mn(F )

≤ ∥T∥cb,E→F
∥∥[xji]∥∥Mn(E)

= ∥T∥cb,E→F
∥∥[xij ]∥∥Mn(Eop)

.

We infer that ∥T op∥cb,Eop→F op ≤ ∥T∥cb,E→F . Since (Eop)op = E completely isomet-
rically, the reverse inequality follows by symmetry.

2.2. Matrix ordered operator spaces

A complex vector space V is matrix ordered [44, page 173] if

1. V is a ∗-vector space (hence so is Mn(V ) for any n ≥ 1),

2. each Mn(V ), n ≥ 1, is partially ordered by a cone Mn(V )+ ⊂ Mn(V )sa, and

3. if α = [αij ] ∈ Mn,m, then α∗Mn(V )+α ⊂ Mm(V )+.

Now let V and W be matrix ordered vector spaces and let T : V → W be a linear
map. If n ≥ 1, we say that T is n-positive if IdMn

⊗ T : Mn(V )→ Mn(W ) is positive.
We say that T is completely positive if T is n-positive for each n ≥ 1. We denote the
set of completely positive maps from V to W by CP(V,W ).

An operator space E is called a matrix ordered operator space [158, page 143] if it
is a matrix ordered vector space and if in addition

1. the ∗-operation is an isometry on Mn(E) for any integer n ≥ 1 and

2. the cones Mn(E)+ are closed in the norm topology.
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For a matrix ordered operator space E and its dual operator space E∗, we can define
an involution on E∗ by φ∗(v) = φ(v∗) for any φ ∈ E∗ and a cone on Mn(E

∗) for
each n ≥ 1 by Mn(E

∗)+ = CB(E,Mn) ∩CP(E,Mn). Note that we have an isometric
identification Mn(E

∗) = CB(E,Mn). A lemma of Itoh [104] (see [159, Lemma 2.3.8]
for a complete proof) says that if E is a matrix ordered operator space, we have

(2.2.1) Mn(E
∗)+ =

{
[yij ] ∈ Mn(E

∗) :

n∑
i,j=1

yij(xij) ≥ 0 for any [xij ] ∈ Mn(E)+

}
.

Lemma 2.6. – Let E be a matrix ordered operator space. We have

Mn(E)+ =

{
x ∈ Mn(E) :

n∑
i,j=1

yij(xij) ≥ 0 for any [yij ] ∈ Mn(E
∗)+

}
.

Proof. – Note that the dual cone S1
n(E

∗)+ of Mn(E)+ is defined by S1
n(E

∗)+ ={
[yij ] ∈ S1

n(E
∗) :

∑n
i,j=1 yij(xij) ≥ 0 for any [xij ] ∈ Mn(E)+

}
and identifies

to Mn(E
∗)+ by (2.2.1). Since Mn(E)+ is closed in the norm topology, hence weakly

closed, we conclude by the bipolar theorem.

By [158, Corollary 3.2], the operator space dual E∗ with this positive cone is
a matrix ordered operator space. The category of matrix ordered operator spaces
contains the class of C∗-algebras.

Let M be a von Neumann algebra equipped with a faithful normal semifinite trace.
If 1 ≤ p ≤ ∞, the noncommutative Lp-space Lp(M) is canonically equipped with an
isometric involution and we can define a cone on Mn(L

p(M)) by letting

(2.2.2) Mn(L
p(M))+

def
= Lp(Mn(M))+ (= Spn(L

p(M))+).

Note the following easy (7) observation.

Proposition 2.7. – Let M be a von Neumann algebra equipped with a faithful normal
semifinite trace. Suppose 1 ≤ p ≤ ∞. Then the noncommutative Lp-space Lp(M) is a
matrix ordered operator space.

7. Consider x ∈ Mn(Lp(M))+, i.e., x ∈ Sp
n(Lp(M))+. There exists y ∈ S2p

n (L2p(M)) such
that y∗y = x. We can write y =

∑n
i,j=1 eij ⊗ yij for some yij ∈ L2p(M). For any matrix α ∈ Mn,m,

we have

α∗ · x · α = α∗ · y∗y · α = α∗ ·
( n∑

i,j=1

eij ⊗ yij

)∗( n∑
k,l=1

ekl ⊗ ykl

)
· α

= α∗ ·
( n∑

i,j=1

eji ⊗ y∗ij

)( n∑
k,l=1

ekl ⊗ ykl

)
· α =

n∑
i,j,k,l=1

α∗ejieklα⊗ y∗ijykl

=

( n∑
i,j=1

α∗eji ⊗ y∗ij

)( n∑
k,l=1

eklα⊗ ykl

)
=

( n∑
i,j=1

eijα⊗ yij

)∗( n∑
k,l=1

eklα⊗ ykl

)
.

We conclude that α∗ · x · α is a positive element of Mn(Lp(M)) = Sp
n(Lp(M)). We conclude

that Lp(M) is matrix ordered. Moreover, for any x ∈ Mn(Lp(M)), using [143, Lemma 1.7] twice
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If N is another von Neumann algebra equipped with a faithful normal semifinite
trace then it is easy to see that a map T : Lp(M)→ Lp(N) is completely positive if the
map IdSp⊗T induces a (completely) positive map IdSp⊗T : Sp(Lp(M))→ Sp(Lp(N)).
Moreover, for any matrix α ∈ Mn,m, the map

(2.2.3) Lp(Mn(M))→ Lp(Mm(M)), x 7→ α∗xα

is completely positive.

Lemma 2.8. – Let M be a von Neumann algebra equipped with a faithful normal
semifinite trace. Suppose 1 ≤ p ≤ ∞. If b ∈ Mn(L

p(M)) and if bt is the transpose of b
we have b ∈ Mn(L

p(Mop))+ if and only if bt ∈ Mn(L
p(M))+.

Proof. – We start with the case p = ∞. We can identify Mop with M equipped
with the opposed product. We will use the notation ◦ for some products where the
subscript indicates the space. Let b ∈ Mn(M

op)+. Then we can write b = c∗◦Mn(Mop)c

for some c ∈ Mn(M). For any 1 ≤ i, j ≤ n, we have

bij =

n∑
k=1

(c∗)ik ◦Mop ckj =

n∑
k=1

ckj(c
∗)ik =

n∑
k=1

(ct)jk(c
t∗)ki =

(
ct ◦Mn(M) c

t∗)t.
Hence bt = ct ◦Mn(M) c

t∗ belongs to Mn(M)+. The reverse implication follows by
symmetry. Suppose that b ∈ Mn(L

p(Mop))+, i.e., b ∈ Spn(Lp(Mop))+ by (2.2.2). By
Lemma 2.2, there exists a sequence (bk) in Mn(M

op)+ ∩ Spn(Lp(Mop)) converging
to b for the topology of Spn(Lp(M)). By the first part of the proof, each (bk)

t belongs
to Mn(M)+ and of course to Spn(Lp(M)). In particular, (bk)

t belongs to Mn(L
p(M))+.

Passing to the limit as k approaches infinity yields bt ∈ Mn(L
p(M))+. Again, a

symmetry argument completes the proof.

We will often use the following observation.

Lemma 2.9. – Let E and F be matrix ordered operator spaces. A bounded
map T : E → F is (completely) positive if and only if the adjoint map T ∗ : F ∗ → E∗ is
(completely) positive.

Proof. – By Lemma 2.6, a map T : E → F is positive if and only if ⟨T (x), y⟩F,F∗ ≥ 0

for any x ∈ E+ and any y ∈ F ∗+ if and only if ⟨x, T ∗(y)⟩E,E∗ ≥ 0 for all such x, y if
and only if T ∗ : F ∗ → E∗ is positive again by (2.2.1). The completely positive case is
similar.

For further use in Lemma 3.22, we record the following.

and the isometric involution, we see that

∥x∗∥Mn(Lp(M)) = sup
{
∥α · x∗ · β∥S

p
n(Lp(M)) : ∥α∥

S
2p
n
≤ 1, ∥β∥

S
2p
n
≤ 1
}

= sup
{
∥β∗ · x · α∗∥S

p
n(Lp(M)) : ∥α∥

S
2p
n
≤ 1, ∥β∥

S
2p
n
≤ 1
}

= sup
{
∥β · x · α∥S

p
n(Lp(M)) : ∥α∥

S
2p
n
≤ 1, ∥β∥

S
2p
n
≤ 1
}

= ∥x∥Mn(Lp(M)) .
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Lemma 2.10. – Let E and F be matrix ordered operator spaces.

1. Let (Tα) be a net of positive (resp. n-positive or completely positive) mappings
from E into F . Suppose that limα Tα = T in the weak operator topology. Then
T is also positive (resp. n-positive or completely positive).

2. Let (Tα) be a net of positive (resp. n-positive or completely positive) mappings
from E into F ∗. Suppose that limα Tα = T in the point weak* topology (8)

of B(E,F ∗). Then T is also positive (resp. n-positive or completely positive).

Proof. – 1. Suppose that each Tα : E → F is a positive map. By Lemma 2.6, the
map T : E → F is positive if and only if ⟨T (x), y⟩F,F∗ ≥ 0 for any x ∈ E+ and any
y ∈ F ∗+. Using again Lemma 2.6, we infer that ⟨T (x), y⟩F,F∗ = limα⟨Tα(x), y⟩F,F∗ ≥ 0.
Thus we conclude that T is positive.

Suppose that each Tα is completely positive.
By Lemma 2.6, the map IdMn

⊗ T : Mn(E)→ Mn(F ) is positive if and only if∑n
i,j=1⟨T (xij), yij⟩F,F∗ for any [xij ] ∈ Mn(E)+ and any [yij ] ∈ Mn(F

∗)+. Using
again Lemma 2.6, we infer that

n∑
i,j=1

⟨T (xij), yij⟩F,F∗ = lim
α

n∑
i,j=1

⟨Tα(xij), yij⟩F,F∗ ≥ 0.

Letting n run over all integers, we conclude that T is completely positive. The argu-
ment is the same for the n-positive case.

2. Suppose that each Tα : E → F ∗ is a positive map. By (2.2.1), the map
T : E → F ∗ is positive if and only if ⟨T (x), y⟩F∗,F ≥ 0 for any x ∈ E+ and any y ∈ F+.
Using again (2.2.1), we infer that ⟨T (x), y⟩F∗,F = limα⟨Tα(x), y⟩F∗,F ≥ 0. Thus we
conclude that T is positive.

Suppose that each Tα is completely positive. By (2.2.1), IdMn
⊗ T : Mn(E)→ Mn(F

∗)

is positive if and only if
∑n
i,j=1⟨T (xij), yij⟩F∗,F for any [xij ] ∈ Mn(E)+ and

any [yij ] ∈ Mn(F )+. Using again (2.2.1), we infer that ⟨T (xij), yij⟩F∗,F =

limα

∑n
i,j=1⟨Tα(xij), yij⟩F∗,F ≥ 0. Letting n run over all integers, we conclude

that T is completely positive. The argument is the same for the n-positive case.

If E is a matrix ordered operator space, by [159, page 80], the vector-valued Schat-
ten space Spn(E) = Rn(1− 1

p )⊗h E ⊗h Rn(
1
p ) admits a structure of a matrix ordered

operator space. The cones are defined by the closures

Mk(S
p
n(E))+ =

{
x∗ ⊙ y ⊙ x ∈ Mk(S

p
n(E)) : x ∈ Ml,k(Rn(

1
p )), y ∈ Ml(E)+, l ∈ N

}
.

Lemma 2.11. – Suppose 1 ≤ p ≤ ∞. Let E and F be matrix ordered operator spaces
and let T : E → F be a bounded completely positive map. Then for any integer n, the
map IdSpn ⊗ T : Spn(E)→ Spn(F ) is completely positive.

8. If X is a Banach space and Y is a dual Banach space, a net (Tα) in B(X,Y ) converges to an
operator T ∈ B(X,Y ) in the point weak* topology if and only if for any x ∈ X and any y∗ ∈ Y∗ we
have ⟨Tα(x), y∗⟩Y,Y∗ −→α ⟨T (x), y∗⟩Y,Y∗ .
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Proof. – For any n ∈ N, any x ∈ Ml,k(Rn(
1
p )) and any y ∈ Ml(E)+, the element

(IdSpn ⊗ T )(x∗ ⊙ y ⊙ x) = x∗ ⊙ T (y) ⊙ x belongs to Mk(S
p
n(E))+. An argument of

continuity gives the result.

2.3. Relations between matricial orderings and norms

For any x ∈ Spn(E) and any a, b ∈ Mn, the result [145, Lemma 1.6 (i)] says that

(2.3.1) ∥axb∥Spn(E) ≤ ∥a∥S∞n ∥x∥Spn(E) ∥b∥S∞n .

Moreover, for any diagonal matrix x = diag(x1, . . . , xn) ∈ Spn(E), [145, Corollary 1.3]
gives

(2.3.2) ∥x∥Spn(E) =

( n∑
k=1

∥xk∥pE

) 1
p

.

Lemma 2.12. – Let E be an operator space. Suppose 1 ≤ p < ∞. Then for
any b, c ∈ E, we have ∥[ 0 b

c 0 ]∥Sp2 (E) =
(
∥b∥pE + ∥c∥pE

) 1
p and ∥[ 0 b

c 0 ]∥S∞2 (E) =

max
{
∥b∥E , ∥c∥E

}
.

Proof. – Using the inequality (2.3.1), we see that

∥[ 0 b
c 0 ]∥Sp2 (E) = ∥[ b 0

0 c ] [
0 1
1 0 ]∥Sp2 (E) ≤ ∥[ b 0

0 c ]∥Sp2 (E) ∥[ 0 1
1 0 ]∥S∞2 = ∥[ b 0

0 c ]∥Sp2 (E) .

By symmetry, we conclude that ∥[ 0 b
c 0 ]∥Sp2 (E) = ∥[ b 0

0 c ]∥Sp2 (E). On the other hand, the

equality (2.3.2) yields ∥[ b 0
0 c ]∥Sp2 (E) =

(
∥b∥pE + ∥c∥pE

) 1
p . The case p =∞ is similar, so

the lemma is proven.

Lemma 2.13. – Let M be a von Neumann algebra equipped with a faithful normal
semifinite trace. Suppose 1 ≤ p ≤ ∞. Let a, b and c be elements of Lp(M) such that the
element

[
a b
b∗ c

]
of Sp2 (Lp(M)) is positive. Then we have ∥b∥Lp(M) ≤

√
∥a∥Lp(M) ∥c∥Lp(M).

So in particular ∥b∥Lp(M) ≤
1

2
1
p

(
∥a∥pLp(M) + ∥c∥pLp(M)

) 1
p .

Proof. – By Lemma 2.2, there exists a sequence
([

an bn
b∗n cn

])
of elements in

M2(M)+ ∩ Lp(M2(M)) converging to the positive element
[
a b
b∗ c

]
for the topol-

ogy of Lp(M2(M)). By adapting a classical argument [24, Proposition 1.3.2], [183,
Lemma 1.21], for each integer n there exists xn ∈ M with ∥xn∥M ≤ 1 such

that bn = a
1
2
nxnc

1
2
n . Thus ∥bn∥p =

∥∥a 1
2
nxnc

1
2
n

∥∥
p
≤
∥∥a 1

2
n

∥∥
2p

∥∥c 1
2
n

∥∥
2p

=
√
∥an∥p ∥cn∥p.

Passing to the limit as n approaches infinity, we obtain the inequality.
The last sentence of the statement follows from the inequality√xy ≤ 2−

1
p (xp+yp)

1
p

for any reals x, y ≥ 0.

The following result is folklore. Unable to locate a proof in the literature, we give
a very short proof based on Lemma 2.13.
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Proposition 2.14. – Let M be a von Neumann algebra equipped with a faithful
normal semifinite trace. Suppose 1 ≤ p ≤ ∞. Let b be an element of Spn(Lp(M)). Then
∥b∥Spn(Lp(M)) ≤ 1 if and only if there are a, c ∈ Spn(Lp(M))+ with ∥a∥Spn(Lp(M)) ≤ 1

and ∥c∥Spn(Lp(M)) ≤ 1 such that the element
[
a b
b∗ c

]
of Sp2n(L

p(M)) is positive.

Proof. – The implication ⇐ is Lemma 2.13. For the implication ⇒, we only need the
case n = 1. Consider b ∈ Lp(M) with ∥b∥Lp(M) ≤ 1. There exists a sequence (bn)

in M ∩ Lp(M) converging to b for the topology of Lp(M). By [137, Exercise 8.8 (vi)],
the matrix

[
|b∗n| bn
b∗n |bn|

]
is a positive element. Using the continuity of the modulus and

passing to the limit as n approaches infinity yields
[
|b∗| b
b∗ |b|

]
≥ 0. Moreover, we have∥∥|b|∥∥

Lp(M)
=
∥∥|b∗|∥∥

Lp(M)
= ∥b∥Lp(M) ≤ 1.

Lemma 2.15. – Suppose 1 ≤ p ≤ ∞. Let M be a von Neumann algebra equipped
with a faithful normal semifinite trace. Let a and b be selfadjoint elements of Lp(M)

satisfying −a ≤ b ≤ a. Then, in Sp2 (Lp(M)), we have
[
a b
b a

]
≥ 0.

Proof. – The case p = ∞ is well-known, see [68, Proposition 1.3.5]. Let us turn to
the case 1 ≤ p < ∞. By Lemma 2.2, there exists a sequence (yn) in M+ ∩ Lp(M)

converging to the positive element a−b for the topology of Lp(M) and a sequence (zn)

of elements of M+ ∩ Lp(M) converging to the positive element a + b. Note that
an

def
= yn+zn

2 converges to a and that bn
def
= zn−yn

2 converges to b. Moreover, we have
−an ≤ bn ≤ an. According to the case p = ∞, we have

[
an bn
bn an

]
≥ 0. Finally passing

to the limit as n approaches infinity yields
[
a b
b a

]
≥ 0.

Lemma 2.16. – Let M be a von Neumann algebra equipped with a faithful normal
semifinite trace. Suppose 1 ≤ p ≤ ∞. Let a, b and c be elements of Lp(M) satisfying[
a b
b c

]
≥ 0 in Sp2 (Lp(M)). Then we have − 1

2 (a+ c) ≤ b ≤ 1
2 (a+ c).

Proof. – Let A =
[
a b
b c

]
. Since A ≥ 0, according to (2.2.3), we have uAu∗ ≥ 0 for

u = [ 1 1 ] and for u = [ 1 −1 ]. The first choice of u then yields a+ 2b+ c ≥ 0, so that
b ≥ − 1

2 (a+ c). The second choice of u yields a− 2b+ c ≥ 0, so that b ≤ 1
2 (a+ c).

2.4. Positive and completely positive maps on noncommutative Lp-spaces

Lemma 2.17. – Let M and N be von Neumann algebras equipped with semifinite
faithful normal traces. Suppose 1 ≤ p ≤ ∞. Then a map T : Lp(M) → Lp(N) is
completely positive if and only if T op : Lp(M)op → Lp(N)op is completely positive.

Proof. – Assume that T : Lp(M)→ Lp(N) is completely positive.
Let b ∈ (Mn(L

p(M)op))+. Then applying Lemma 2.8 twice, we deduce that
(IdMn ⊗ T op)(b) = [T (bij)] = [T ((bt)ij)]

t = ((IdMn ⊗ T )(bt))t belongs to (Mn(L
p(N)op))+.

We infer that T op : Lp(M)op → Lp(N)op is completely positive. The reverse statement
is obtained by symmetry.
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The boundedness assumption of [143, Theorem 0.1 and Lemma 2.3] is unnecessary
since we have the following elementary result.

Proposition 2.18. – Let M be a von Neumann algebra equipped with a faithful nor-
mal semifinite trace. Suppose 1 ≤ p ≤ ∞. Any positive linear map T : Lp(M)→ Lp(M)

is bounded.

Proof. – We first show that there exists a constant K ≥ 0 satisfying for any
x ∈ Lp(M)+ with ∥x∥Lp(M) ≤ 1 the inequality ∥T (x)∥Lp(M) ≤ K. Suppose that it is
not the case then there exists a sequence (xn) of positive elements of Lp(M) with
∥xn∥Lp(M) ≤ 1 and ∥T (xn)∥Lp(M) ≥ 4n.

We have
∑∞
n=1

∥∥ 1
2nxn

∥∥
Lp(M)

≤
∑∞
n=1

1
2n < ∞. Hence the series

∑∞
n=1

1
2nxn is

convergent and defines a positive element x of Lp(M). Now, for any integer n ≥ 1,
we have 0 ≤ 1

2nxn ≤ x. We deduce that 0 ≤ 1
2nT (xn) ≤ T (x). Hence we obtain

1
2n

∥∥T (xn)
∥∥

Lp(M)
≤
∥∥T (x)

∥∥
Lp(M)

and finally 2n ≤
∥∥T (x)

∥∥
Lp(M)

. Impossible.
Now, if x ∈ Lp(M) we have a decomposition x = x1 − x2 + i(x3 − x4) with

x1, x2, x3, x4 ∈ Lp(M)+ and ∥x1∥Lp(M) , ∥x2∥Lp(M) , ∥x3∥Lp(M) , ∥x4∥Lp(M) less or
equal to ∥x∥Lp(M). Hence

∥T (x)∥Lp(M) =
∥∥T (x1)− T (x2) + i

(
T (x3)− T (x4)

)∥∥
Lp(M)

≤ ∥T (x1)∥Lp(M) + ∥T (x2)∥Lp(M) + ∥T (x3)∥Lp(M) + ∥T (x4)∥Lp(M)

≤ K
(
∥x1∥Lp(M) + ∥x2∥Lp(M) + ∥x3∥Lp(M) + ∥x4∥Lp(M)

)
≤ 4K ∥x∥Lp(M) .

This result will imply in particular that a decomposable map is bounded.
The following result is proved in [143, Proposition 2.2 and Lemma 2.3] for Sp. It has

been long announced in [106, page 2] for QWEP von Neumann algebras (but seems
definitely postponed). We will give a proof for hyperfinite von Neumann algebras, see
Theorem 3.26. Only Proposition 3.10, Proposition 3.30 and Proposition 3.31 depend
on this result.

Theorem 2.19. – Suppose 1 < p ≤ ∞. Let M,N be QWEP von Neumann al-
gebras equipped with faithful semifinite normal traces. Let T : Lp(M) → Lp(N) be
a completely positive map. Then T is completely bounded and ∥T∥Lp(M)→Lp(N) =

∥T∥cb,Lp(M)→Lp(N).

The next lemmas are important for the proof of Theorem 3.24.

Lemma 2.20. – Let M and N be von Neumann algebras equipped with faithful normal
semifinite traces. Suppose 1 ≤ p ≤ ∞. Let T, S : Lp(M)→ Lp(N) be adjoint preserving
maps (9) maps such that −S ≤cp T ≤cp S.

Then the map [ S T
T S ] : Lp(M)→ Sp2 (Lp(N)) is completely positive.

9. This means that T (x∗) = T (x)∗ and S(x∗) = S(x)∗.
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Proof. – Suppose x ∈ Spn(Lp(M))+.
Then −(IdSpn⊗S)(x) ≤ (IdSpn⊗T )(x) ≤ (IdSpn⊗S)(x). By Lemma 2.15, we deduce

that
(
IdSpn ⊗ [ S T

T S ]
)
(x) =

[
(IdSpn

⊗S)(x) (IdSpn
⊗T )(x)

(IdSpn
⊗T )(x) (IdSpn

⊗S)(x)

]
≥ 0.

Lemma 2.21. – Let M and N be von Neumann algebras equipped with faithful normal
semifinite traces. Suppose 1 ≤ p ≤ ∞. Let T, S1, S2 : Lp(M) → Lp(N) be adjoint
preserving maps. If the map

[
S1 T
T S2

]
: Lp(M) → Sp2 (Lp(N)) is completely positive

then − 1
2 (S1 + S2) ≤cp T ≤cp

1
2 (S1 + S2).

Proof. – Suppose x ∈ Spn(Lp(M))+. We have[
(IdSpn ⊗ S1)(x) (IdSpn ⊗ T )(x)

(IdSpn ⊗ T )(x) (IdSpn ⊗ S2)(x)

]
=

(
IdSpn ⊗

[
S1 T

T S2

])
(x) ≥ 0.

By Lemma 2.16, we deduce that

−1

2

(
(IdSpn ⊗ S1)(x) + (IdSpn ⊗ S2)(x)

)
≤ (IdSpn ⊗ T )(x) ≤ 1

2

(
(IdSpn ⊗ S1)(x) + (IdSpn ⊗ S2)(x)

)
.

Hence we obtain

−1

2

(
(IdSpn ⊗ (S1 + S2))(x)

)
≤ (IdSpn ⊗ T )(x) ≤ 1

2

(
(IdSpn ⊗ (S1 + S2))(x)

)
.

We conclude that − 1
2 (S1 + S2) ≤cp T ≤cp

1
2 (S1 + S2).

2.5. Completely positive maps on commutative Lp-spaces

We start with a characterization of the positive cone of Spn(Lp(Ω)) where Ω is a
measure space.

Lemma 2.22. – Let Ω be a (localizable) measure space. Suppose 1 ≤ p < ∞. Then
an element [fij ] of Spn(Lp(Ω)) is positive if and only if [fij(ω)] is a positive element
of Mn for almost every ω ∈ Ω.

Proof. – We have Spn(Lp(Ω)) = Lp(Ω, Spn) isometrically. Consider f ∈ Lp(Ω, Spn)+.
Using (2.1.2), there exists h ∈ L2p(Ω, S2p

n ) such that h∗h = f . Hence, for almost
any ω ∈ Ω, we have h(ω)∗h(ω) = f(ω) in the space Spn. Consequently, for almost
any ω ∈ Ω, we have f(ω) ∈ (Spn)+.

For the converse, consider an element f of Lp(Ω, Spn) such that for almost any ω ∈ Ω

we have f(ω) ∈ (Spn)+. Let g ∈ Lp
∗
(Ω, Sp

∗

n )+. By the first part of the proof, for almost
any ω ∈ Ω, we have g(ω) ∈ (Sp

∗

n )+. Using (2.1.3), we deduce that for almost any ω ∈ Ω

we have Tr (f(ω)g(ω)) ≥ 0. We infer that
(∫

Ω

⊗Tr

)
(fg) =

∫
Ω

Tr (f(ω)g(ω)) dω ≥ 0.

Using again (2.1.3), we conclude that f ∈ Lp(Ω, Spn)+.

Proposition 2.23. – Let Ω be a (localizable) measure space and let M be a von Neu-
mann algebra equipped with a faithful normal semifinite trace. Suppose 1 ≤ p ≤ ∞. A
positive map T : Lp(M)→ Lp(Ω) into a commutative Lp-space is completely positive.
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Proof. – The case p =∞ is a particular case of [68, Theorem 5.1.4], so we can suppose
1 ≤ p < ∞. Let x = [xij ] be a positive element of Spn(Lp(M)). Note that in Spn, for
almost any ω ∈ Ω, we have(

(IdSpn ⊗ T )([xij ])
)
(ω) =

(
[T (xij)]

)
(ω) =

[
T (xij)(ω)

]
.

By Proposition 2.7, for any matrix u ∈ Mn,1, the element u∗[xij ]u of Lp(M) is positive.
By the positivity of T , we see that T

(
u∗[xij ]u

)
is a positive element of Lp(Ω). Using

Lemma 2.22, we deduce that for almost every ω ∈ Ω

u∗
[
T (xij)(ω)

]
u =

n∑
i,j=1

uiT (xij)(ω)uj = T

( n∑
i,j=1

uixijuj

)
(ω) = T

(
u∗[xij ]u

)
(ω) ≥ 0.

We infer that for almost every ω ∈ Ω, the matrix
[
T (xij)(ω)

]
is a positive element

of Mn. By Lemma 2.22, we conclude that
[
T (xij)

]
is a positive element of Spn(Lp(Ω)).

Using duality, we also have the following variant.

Proposition 2.24. – Let Ω be a (localizable) measure space and let M be a von Neu-
mann algebra equipped with a faithful normal semifinite trace. Suppose 1 ≤ p ≤ ∞.
A positive mapping T : Lp(Ω) → Lp(M) defined on a commutative Lp-space is com-
pletely positive.

Proof. – The case p = ∞ follows from [68, Theorem 5.1.5], so we can suppose
1 ≤ p <∞. According to Lemma 2.9, the map T : Lp(Ω) → Lp(M) is positive if and
only if T ∗ : Lp

∗
(M) → Lp

∗
(Ω) is positive. Thus, by Proposition 2.23, the map T ∗ is

completely positive. Using again Lemma 2.9, we conclude that T is completely posi-
tive.

Remark 2.25. – Note that the situation is different for the complete boundedness
between commutative Lp-spaces. Indeed, there exists some example of a measure
space Ω and a bounded operator T : Lp(Ω)→ Lp(Ω) which is not completely bounded,
see (10) [145, Proposition 8.1.3] and [7].

2.6. Markov maps and selfadjoint maps

Let M and N be von Neumann algebras equipped with faithful normal semifinite
traces τM and τN . We say that a linear map T : M → N is a (τM , τN )-Markov
map if T is a normal unital completely positive map which is trace preserving, i.e.,
for any x ∈ m+

τM we have τN (T (x)) = τM (x). When (M, τM ) = (N, τN ), we say
that T is a τM -Markov map. It is not difficult to check that a (τM , τN )-Markov map T
induces a completely positive and completely contractive map Tp : Lp(M) → Lp(N)

10. We warn the reader that the proof of [64] is false. Indeed, the main argument of the paper
which begins page 7 with “therefore we can get a Lp(H) multiplier” is really problematic since H can
be a finite subgroup (for example, consider the case G = Z).
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on the associated noncommutative Lp-spaces Lp(M) and Lp(N) for any 1 ≤ p ≤ ∞.
Moreover, it is easy to prove that there exists a unique normal map T ∗ : N →M such
that

(2.6.1) τN
(
T (x)y

)
= τM

(
xT ∗(y)

)
, x ∈M ∩ L1(M), y ∈ N ∩ L1(N).

It is easy to show that T ∗ is a (τN , τM )-Markov map. In this case, by density, we have

(2.6.2) τN
(
Tp(x)y

)
= τM

(
x(T ∗)p∗(y)

)
, x ∈ Lp(M), y ∈ Lp

∗
(N).

Let M be a von Neumann algebra equipped with a normal semifinite faithful trace
τ . Let T : M →M be a normal contraction. We say that T is selfadjoint if

(2.6.3) τ(T (x)y∗) = τ(xT (y)∗), x, y ∈M ∩ L1(M).

In this case, for any x, y in M ∩ L1(M), we have∣∣τ(T (x)y
)∣∣ = ∣∣τ(xT (y∗)∗

)∣∣ ≤ ∥x∥L1(M) ∥T (y∗)∗∥M ≤ ∥x∥L1(M) ∥y∥M .

Hence the restriction of T toM∩L1(M) extends to a contraction T1 : L1(M)→ L1(M).
It also extends by interpolation to a contraction Tp : Lp(M) → Lp(M) for
any 1 ≤ p ≤ ∞. Moreover, for any 1 ≤ p < ∞, we have (Tp)

∗ = (Tp∗)
◦. Fur-

thermore, the operator T2 : L2(M) → L2(M) is selfadjoint. If T is positive then
each Tp is positive and hence (Tp)

◦ = Tp. Thus in this case, for any 1 ≤ p < ∞,
we have (Tp)

∗ = Tp∗ . Finally, if T : M → M is a normal complete contraction, then
each Tp is completely contractive.

Finally, it is easy to check that a τM -Markov map T : M →M is selfadjoint if and
only if T ∗ = T ◦.
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CHAPTER 3

DECOMPOSABLE MAPS AND REGULAR MAPS

In this chapter, we start by analyzing decomposable maps on noncommutative
Lp-spaces. In particular, in Section 3.2, we prove that the infimum of the decom-
posable norm is actually a minimum. In Section 3.6, we state our first main result,
Theorem 3.24, and give the end of the proof of this result. In passing, we prove
that completely positive maps on noncommutative Lp-spaces of approximately finite-
dimensional algebras are necessarily completely bounded. In Section 3.8, we compare
the space of completely bounded operators and the space of decomposable opera-
tors. We show that these are different in general. We also give explicit examples of
computations of the decomposable norm, see Theorem 3.37.

3.1. Preliminary results

We need some background on second dual algebras and we refer to [127], [29], [114],
[171] and [175] for more information. Let M be a von Neumann algebra of predual
M∗. We can see M∗∗ as a von Neumann algebra. Since we have a canonical inclusion
M∗ ⊂M∗, we can consider the annihilator

(M∗)
⊥ def

=
{
ν ∈M∗∗ : ⟨φ, ν⟩M∗,M∗∗ = 0 for any φ ∈M∗

}
of M∗ in M∗∗. It is well-known [127, Proposition 4.2.3] that there exists a unique
central projection e of M∗∗ such that (M∗)

⊥ = (1 − e)M∗∗. Using the notation
(Rxφ)(y)

def
= φ(yx) for any x, y ∈ M and any φ ∈ M∗, we have M∗ = Re(M

∗)

and (11) M∗ = M∗ ⊕1 R1−e(M
∗). The non-zero elements of R1−eM

∗ are the singular
functionals.

A bounded map T : M → N is called singular [171, p. 128] [175] if T ∗(N∗) ⊂ R1−eM
∗.

By [175, Theorem 1], for any bounded map T : M → N there exists a unique cou-
ple (Tw∗ : M → N,Tsing : M → N) of bounded maps with Tw∗ weak* continuous,
Tsing singular and such that

T = Tw∗ + Tsing.

11. That means that preduals of von Neumann algebras are L-summands in their biduals.
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Consider the completely contractive and completely positive map ΦM : M∗∗ →M∗∗,
η 7→ ηe = eηe and the completely isometric canonical map iN∗ : N∗ → N∗. By the
proof of [175, Theorem 1], the map Tw∗ is given by

Tw∗
def
= T̃ ◦ ΦM ◦ iM ,

where iM : M → M∗∗, T̃ def
= (iN∗)

∗ ◦ T ∗∗ : M∗∗ → N is the unique weak* continuous
extension of T given by [29, Lemma A.2.2] (and its proof). The formula of the weak*
extension of the proof of [175, Theorem 1] is formally different but equivalent to
ours. Indeed, in [175, Theorem 1], the weak* continuous extension T̃ is given by
T̃ = (T ∗|N∗)∗ and we have (T ∗|N∗)∗ = (T ∗ ◦ iN∗)∗ = (iN∗)

∗ ◦ T ∗∗.

Proposition 3.1. – Let M and N be von Neumann algebras. Then the map
Pw∗ : B(M,N) → B(M,N), T 7→ Tw∗ is a contractive projection. Moreover, if
T : M → N is completely positive then the map Pw∗(T ) is completely positive.
Finally, if T : M → N is completely bounded then Pw∗(T ) is also completely bounded
and Pw∗ : CB(M,N)→ CB(M,N) is a contractive projection.

Proof. – It is obvious that Pw∗ is a projection. Note that by [29, Lemma A.2.2],
we have

∥∥∥T̃∥∥∥
M∗∗→N

= ∥T∥M→N . Now, it is clear that, by composition, Pw∗ is con-
tractive. If T : M → N is completely positive, using Lemma 2.9, it is immediate to
see that Tw∗ is completely positive. By [29, Section 1.4.8], if T : M → N is com-
pletely bounded, then T̃ : M∗∗ → N is completely bounded with the same completely
bounded norm. By composition, we deduce that Pw∗(T ) is completely bounded and
that ∥Pw∗(T )∥cb,M→N ≤ ∥T∥cb,M→N .

Lemma 3.2. – Let M and N be von Neumann algebras equipped with semifinite faith-
ful normal traces. Suppose 1 ≤ p ≤ ∞. Let T : Lp(M) → Lp(N) be a linear map.
Then T is decomposable if and only if T op is decomposable. In this case, we have
∥T∥dec,Lp(M)→Lp(N) = ∥T op∥dec,Lp(M)op→Lp(N)op .

Proof. – Assume that T : Lp(M) → Lp(N) is decomposable. By (1.0.4), there exist
linear maps v1, v2 : Lp(M) → Lp(N) such that

[
v1 T
T◦ v2

]
: Sp2 (Lp(M)) → Sp2 (Lp(N)) is

completely positive with max{∥v1∥ , ∥v2∥} ≤ ∥T∥dec,Lp(M)→Lp(N) + ε. We claim

that
[
v2 T
T◦ v1

]
: Sp2 (Lp(M)op) → Sp2 (Lp(N)op) is also completely positive. Indeed,

let b ∈ Mn(S
p
2 (Lp(M)op))+ = Sp2n(L

p(Mop))+. Denoting bt the transposed matrix,
where transposition is executed in Sp2n, i.e., both in the Mn and in the Sp2 component,
an obvious computation gives(

IdMn
⊗

[
v2 T

T ◦ v1

])
(b) =

((
IdMn

⊗

[
v2 T ◦

T v1

])
(bt)

)t
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which is positive in Mn(S
p
2 (Lp(M)op)) according to Lemma 2.8, applied twice, pro-

vided that we show that the map
[
v2 T

◦

T v1

]
: Sp2 (Lp(M)) → Sp2 (Lp(N)) is completely

positive. But this can be seen using the identity[
v2 T ◦

T v1

]
= FN

[
v1 T

T ◦ v2

]
FM ,

where FM : Sp2 (Lp(M))→ Sp2 (Lp(M)) denotes the flip mapping[
a b

c d

]
7→

[
0 1

1 0

][
a b

c d

][
0 1

1 0

]
=

[
d c

b a

]
,

which is completely positive according to (2.2.3) (and similarly for FN ). We infer that
the linear map T op : Lp(M)op → Lp(N)op is decomposable and that

∥T op∥dec,Lp(M)op→Lp(N)op ≤ max{∥v2∥ , ∥v1∥} ≤ ∥T∥dec,Lp(M)→Lp(N) + ε.

Letting ε→ 0 and using symmetry, we can finish the proof of the lemma.

We will use the following easy (12) lemma several times.

Lemma 3.3. – Let M and N be von Neumann algebras equipped with semifinite faith-
ful normal traces. Suppose 1 ≤ p <∞. The Banach adjoint of a bounded operator[

T11 T12

T21 T22

]
: Sp2 (Lp(M))→ Sp2 (Lp(N))

identifies to
[

(T11)
∗ (T12)

∗

(T21)
∗ (T22)

∗

]
: Sp

∗

2 (Lp
∗
(N))→ Sp

∗

2 (Lp
∗
(M)) and the Banach preadjoint

of a weak* continuous operator
[
T11 T12

T21 T22

]
: M2(M)→ M2(N) identifies to the bounded

operator
[

(T11)∗ (T12)∗
(T21)∗ (T22)∗

]
: S1

2(L1(N))→ S1
2(L1(M)).

The following complements [112, Lemma 3.2] and completes a gap in the proof of
the case p = 1.

12. The first part is a consequence of the following computation (and the second part can be proved
similarly):〈[

T11 T12

T21 T22

]([
a b

c d

])
,

[
x y

z w

]〉
S
p
2 (Lp(N)),S

p∗
2 (Lp

∗
(N))

=

〈[
T11(a) T12(b)

T21(c) T22(d)

]
,

[
x y

z w

]〉
= τ(T11(a)x) + τ(T12(b)y) + τ(T21(c)z) + τ(T22(d)w)

= τ(aT ∗11(x)) + τ(bT ∗12(y)) + τ(cT ∗21(z)) + τ(dT ∗22(w))

=

〈[
a b

c d

]
,

[
T ∗11 T ∗12
T ∗21 T ∗22

]([
x y

z w

])〉
S
p
2 (Lp(M)),S

p∗
2 (Lp

∗
(M))

.
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Proposition 3.4. – Let M and N be two von Neumann algebras equipped with faith-
ful normal semifinite traces. Suppose 1 ≤ p <∞. A bounded map T : Lp(M)→ Lp(N)

is decomposable if and only if the Banach adjoint
T ∗ : Lp

∗
(N)→ Lp

∗
(M) is decomposable. In this case, we have

(3.1.1) ∥T∥dec,Lp(M)→Lp(N) = ∥T ∗∥dec,Lp∗ (N)→Lp∗ (M) .

Proof. – Suppose 1 ≤ p <∞. Suppose that T : Lp(M)→ Lp(N) is decomposable. There
exist some maps v1, v2 : Lp(M)→ Lp(N) such that

[
v1 T
T◦ v2

]
is completely positive.

Using Lemma 3.3, we obtain that
([

v1 T
T◦ v2

])∗
=

[
v∗1 T∗

(T◦)∗ v∗2

]
=

[
v∗1 T∗

(T∗)◦ v∗2

]
.

By Lemma 2.9, this operator is completely positive as a map Sp
∗

2 (Lp
∗
(M))op → Sp

∗

2 (Lp
∗
(N))op.

So by Lemma 2.17, it also defines a completely positive map Sp
∗

2 (Lp
∗
(M))→ Sp

∗

2 (Lp
∗
(N)).

We conclude that T ∗ : Lp(M)→ Lp(N) is decomposable with

∥T ∗∥dec,Lp(M)→Lp(N) ≤ max{∥v∗1∥ , ∥v∗2∥} = max{∥v1∥ , ∥v2∥}.

Taking the infimum, we obtain ∥T ∗∥dec,Lp(M)→Lp(N) ≤ ∥T∥dec,Lp(M)→Lp(N). If p ̸= 1,
a symmetric argument gives the result.

Suppose p = 1 and that the map T ∗ : N → M is decomposable. There ex-
ist some maps v1, v2 : N → M such that

[
v1 T∗

(T∗)◦ v2

]
is completely positive.

Note that v1 and v2 are not necessarily weak* continuous. However, it is not
difficult to see by uniqueness that Pw∗

([
v1 T∗

(T∗)◦ v2

])
=

[
(v1)w∗ T∗

(T∗)◦ (v2)w∗

]
, where

Pw∗ : B(M2(N),M2(M)) → B(M2(N),M2(M)) is the projection of Proposition 3.1.
Moreover, the same result says that

[
(v1)w∗ T∗

(T∗)◦ (v2)w∗

]
is still completely positive and

that max{∥(v1)w∗∥ , ∥(v2)w∗∥} ≤ max{∥v1∥ , ∥v2∥}. Using Lemma 3.3, we obtain
that

([
(v1)w∗ T∗

(T∗)◦ (v2)w∗

])
∗

=
[

((v1)w∗ )∗ T
T◦ ((v2)w∗ )∗

]
. By Lemma 2.9 and Lemma 2.17, this

operator is completely positive as a map S1
2(L1(M)) → S1

2(L1(N)). We conclude
that T is decomposable with ∥T∥dec,L1(M)→L1(N) ≤ max{∥((v1)w∗)∗∥ , ∥((v2)w∗)∗∥} =

max{∥(v1)w∗∥ , ∥(v2)w∗∥} ≤ max{∥v1∥ , ∥v2∥}. Taking the infimum, we obtain the
inequality ∥T∥dec,L1(M)→L1(N) ≤ ∥T ∗∥dec,N→M .

Let M1, M2 and M3 be von Neumann algebras equipped with faithful nor-
mal semifinite traces. Suppose 1 ≤ p ≤ ∞. Let T1 : Lp(M1) → Lp(M2) and
T2 : Lp(M2)→ Lp(M3) be some decomposable maps. It is easy to see that the
composition T2 ◦ T1 is decomposable and that

(3.1.2) ∥T2 ◦ T1∥dec ≤ ∥T2∥dec ∥T1∥dec .

Let M1, M2 and M3 be approximately finite-dimensional von Neumann al-
gebras equipped with normal semifinite faithful traces. Suppose 1 ≤ p ≤ ∞.
Let T1 : Lp(M1) → Lp(M2) and T2 : Lp(M2) → Lp(M3) be some regular maps. It is
easy to see that the composition T2 ◦ T1 is regular and that

(3.1.3) ∥T2 ◦ T1∥reg ≤ ∥T2∥reg ∥T1∥reg .
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Let M and N be approximately finite-dimensional von Neumann algebras equipped
with normal semifinite faithful traces. Suppose 1 < p <∞. According to [143, Corol-
lary 3.3] and [143, Theorem 3.7] (see also [142, (6) page 264]), we have the isometric
interpolation identity (13)

(3.1.4) Reg
(
Lp(M),Lp(N)

)
=
(
CBw∗(M,N),CB(L1(M),L1(N))

) 1
p ,

where we use the Caldéron’s second method or upper method [22, page 88] and where
the subscript w* means “weak* continuous”. The replacement of the space CB(M,N)

of [143, Corollary 3.3] by CBw∗(M,N) is irrelevant thanks to Proposition 3.1. We
prefer to use weak* continuous maps on von Neumann algebras in the sequel.

By Lemma 2.5 and (3.1.4), note that we have isometrically

Reg(Lp(Mop),Lp(Nop)) = (CBw∗(M
op, Nop),CB(L1(Mop),L1(Nop)))

1
p

= (CBw∗(M,N),CB(L1(M),L1(N)))
1
p = Reg(Lp(M),Lp(N)).

So a map T : Lp(M) → Lp(N) is regular if and only if the opposite map
T op : Lp(Mop)→ Lp(Nop) is regular with equality of regular norms.

Suppose 1 ≤ p <∞. Let M and N be hyperfinite von Neumann algebras equipped
with normal faithful semifinite traces. A bounded map T : Lp(M)→ Lp(N) is regular
if and only if the Banach adjoint map T ∗ : Lp

∗
(N)→ Lp

∗
(M) is regular. In this case,

we have

(3.1.5) ∥T∥reg,Lp(M)→Lp(N) = ∥T ∗∥reg,Lp∗ (N)op→Lp∗ (M)op .

3.2. On the infimum of the decomposable norm

Proposition 3.5. – Let M and N be two von Neumann algebras equipped with faith-
ful normal semifinite traces. Suppose 1 ≤ p ≤ ∞. Let T : Lp(M)→ Lp(N) be a decom-
posable map. Then the infimum in the definition of ∥T∥dec is actually a minimum i.e.,
we can choose v1 and v2 in (1.0.4) such that ∥T∥dec,Lp(M)→Lp(N) = max{∥v1∥ , ∥v2∥}.

Proof. – See [85, page 184] for the case p = ∞. Suppose 1 < p < ∞. For
any integer n, let vn, wn : Lp(M) → Lp(N) be bounded maps such that the
map

[
vn T
T◦ wn

]
: Sp2 (Lp(M))→ Sp2 (Lp(N)) is completely positive with

max{∥vn∥ , ∥wn∥} ≤ ∥T∥dec + 1
n . Note that since Lp(N) is reflexive, the closed

unit ball of the space B(Lp(M),Lp(N)) of bounded operators in the weak op-
erator topology is compact. Hence the bounded sequences (vn) and (wn) admit
convergent subnets (vα) and (wα) in the weak operator topology which converge to
some v, w ∈ B(Lp(M),Lp(N)). Now, it is easy to see that

[
v T
T◦ w

]
= limα

[
vα T
T◦ wα

]
in the weak operator topology of B(Sp2 (Lp(M)), Sp2 (Lp(N))). By Lemma 2.10, the

13. The compatibility means, roughly speaking, that the elements of the intersection
CB(M,N) ∩ CB(L1(M),L1(N)) are the maps simultaneous bounded fromM intoN and from L1(M)
into L1(N).
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operator on the left hand side is completely positive as a weak limit of completely
positive mappings. Moreover, using the weak lower semicontinuity of the norm, we
see that ∥v∥ ≤ lim infα ∥vα∥ ≤ ∥T∥dec and ∥w∥ ≤ lim infα ∥wα∥ ≤ ∥T∥dec. Hence, we
have max{∥v∥ , ∥w∥} = ∥T∥dec.

The case p = 1 can be proved by duality using the proof of Proposition 3.4.

Remark 3.6. – Suppose 1 < p < ∞. If T : Lp(M) → Lp(N) is a contractively
decomposable map, we ignore if we can find some linear maps v1, v2 such that the
map Φ of (1.0.3) is completely positive and contractive.

3.3. The Banach space of decomposable operators

Proposition 3.7. – Let M and N be von Neumann algebras equipped with faithful
normal semifinite traces. Suppose 1 ≤ p ≤ ∞. If λ ∈ C and T : Lp(M)→ Lp(N)

is decomposable then the map λT is decomposable and ∥λT∥dec,Lp(M)→Lp(N) =

|λ| ∥T∥dec,Lp(M)→Lp(N).

Proof. – By symmetry, it suffices to prove ∥λT∥dec ≤ |λ| ∥T∥dec, since then ∥T∥dec =∥∥ 1
λλT

∥∥
dec
≤ 1

|λ| ∥λT∥dec. We can write λ = |λ|θ where θ is a complex number such
that |θ| = 1. Assume that v1, v2 : Lp(M) → Lp(N) are linear maps such that the
map

[
v1 T
T◦ v2

]
: Sp2 (Lp(M))→ Sp2 (Lp(N)) is completely positive. By (2.2.3), the linear

map [ 1 0
0 θ ]

∗
[
v1(·) T (·)
T◦(·) v2(·)

]
[ 1 0
0 θ ] is also completely positive on Sp2 (Lp(M)). But it is easy

to check that the latter operator equals
[
v1 θT

θT◦ v2

]
. Thus the map |λ| ·

[
v1 θT

θT◦ v2

]
=[

|λ|v1 λT
(λT )◦ |λ|v2

]
is also completely positive. We deduce that T is decomposable and

that ∥λT∥dec ≤ max
{
∥|λ|v1∥ , ∥|λ|v2∥

}
= |λ|max

{
∥v1∥ , ∥v2∥

}
. Passing to the infi-

mum yields the desired inequality ∥λT∥dec ≤ |λ| ∥T∥dec.

It is not proved in [112] that ∥·∥dec,Lp(M)→Lp(N) is a norm.

Proposition 3.8. – Let M and N be two von Neumann algebras equipped with faith-
ful normal semifinite traces. Suppose 1 ≤ p ≤ ∞. Then Dec(Lp(M),Lp(N)) is a vector
space and ∥·∥dec,Lp(M)→Lp(N) is a norm on Dec(Lp(M),Lp(N)).

Proof. – Let T1, T2 : Lp(M)→ Lp(N) be decomposable maps. There exist some linear
maps v1, v2, w1, w2 : Lp(M) → Lp(N) such that

[
v1 T1

T◦1 v2

]
and

[
w1 T2

T◦2 w2

]
are completely

positive. We can write
[
v1 T1

T◦1 v2

]
+
[
w1 T2

T◦2 w2

]
=
[
v1+w1 T1+T2

T◦1 +T◦2 v2+w2

]
=
[

v1+w1 T1+T2

(T1+T2)
◦ v2+w2

]
. More-

over, this map is completely positive. Hence T1 + T2 is decomposable. Furthermore,
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we deduce that

∥T1 + T2∥dec ≤ max
{
∥v1 + w1∥ , ∥v2 + w2∥

}
≤ max

{
∥v1∥+ ∥w1∥ , ∥v2∥+ ∥w2∥

}
≤ max

{
∥v1∥ , ∥v2∥

}
+ max

{
∥w1∥ , ∥w2∥

}
.

Passing to the infimum, we conclude that the sum T1 + T2 is decomposable and we
obtain the inequality ∥T1 + T2∥dec ≤ ∥T1∥dec + ∥T2∥dec. The absolute homogeneity is
Proposition 3.7. For the separation property, we can use Proposition 3.30 if the von
Neumann algebras are QWEP. If it is not the case, suppose ∥T∥dec = 0. By Propo-
sition 3.5, the map

[
0 T
T◦ 0

]
: Sp2 (Lp(M)) → Sp2 (Lp(N)) is completely positive. Now,

let b ∈ Lp(M) with ∥b∥Lp(M) ≤ 1. By Proposition 2.14 there exist some a, c ∈ Lp(M)

with ∥a∥Lp(M) ≤ 1 and ∥c∥Lp(M) ≤ 1 such that the element
[
a b
b∗ c

]
of Sp2 (Lp(M)) is

positive. We deduce that the element
[

0 T (b)
T (b)∗ 0

]
is also positive. Using Lemma 2.13,

we infer that T (b) = 0. We conclude that T = 0.

Lemma 3.9. – Let M and N be von Neumann algebras equipped with faithful normal
semifinite traces. Suppose 1 ≤ p ≤ ∞ and let T : Lp(M)→ Lp(N) be a decomposable
map. Then T ◦ : Lp(M) → Lp(N) defined by T ◦(x) = (T (x∗))∗ is also decomposable
and we have ∥T∥dec = ∥T ◦∥dec.

Proof. – Consider some completely positive maps v1, v2 : Lp(M) → Lp(N) such
that

[
v1 T
T◦ v2

]
is completely positive. Using (2.2.3), note that the map

FM : Sp2 (Lp(M))→ Sp2 (Lp(M)),

[
a b

c d

]
7→

[
0 1

1 0

][
a b

c d

][
0 1

1 0

]
=

[
d c

b a

]
is completely positive and similarly FN : Sp2 (Lp(N)) → Sp2 (Lp(N)). We deduce that
the map [

v2 T ◦

T v1

]
= FN ◦

[
v1 T

T ◦ v2

]
◦ FM

is completely positive. Hence T ◦ is decomposable and ∥T ◦∥dec ≤ max{∥v1∥ , ∥v2∥}.
Passing to the infimum gives ∥T ◦∥dec ≤ ∥T∥dec. Since (T ◦)◦ = T , we even have
∥T ◦∥dec = ∥T∥dec.

Proposition 3.10. – Let M and N be two von Neumann algebras equipped with faith-
ful normal semifinite traces. Suppose 1 ≤ p ≤ ∞. Then the space Dec(Lp(M),Lp(N))

is a Banach space with respect to the norm ∥·∥dec,Lp(M)→Lp(N).

Proof. – Note first that ∥T∥Lp(M)→Lp(N) ≤ ∥T∥dec,Lp(M)→Lp(N) for any decomposable
map T . Indeed, for given ε > 0, let v1, v2 : Lp(M) → Lp(N) be completely positive
maps such that

[
v1 T
T◦ v2

]
is completely positive and max{∥v1∥ , ∥v2∥} ≤ ∥T∥dec + ε.

Let b ∈ Lp(M) of norm less than one. According to Proposition 2.14, there exist
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a, c ∈ Lp(M) of norm less than one such that
[
a b
b∗ c

]
is positive. Thus,

[
v1(a) T (b)
T◦(b∗) v2(c)

]
is

positive. Then by Lemma 2.13,

∥T (b)∥p ≤
√
∥v1(a)∥p ∥v2(c)∥p ≤ max{∥v1∥ , ∥v2∥}

√
∥a∥p ∥c∥p ≤ ∥T∥dec + ε.

Letting ε→ 0 shows that ∥T∥Lp(M)→Lp(N) ≤ ∥T∥dec,Lp(M)→Lp(N).
Thus, if (Tn) is a sequence in Dec(Lp(M),Lp(N)) such that

∑∞
n=1 ∥Tn∥dec <∞, we

have that
∑∞
n=1 Tn converges in B(Lp(M),Lp(N)) with sum T . Let v1,n, v2,n be maps

such that
[
v1,n Tn
T◦n v2,n

]
is completely positive with max{∥v1,n∥ , ∥v2,n∥} ≤ ∥Tn∥dec + ε2−n.

Then the series
∞∑
n=1

[
v1,n Tn
T◦n v2,n

]
converges in B(Sp2 (Lp(M)), Sp2 (Lp(N))) and is com-

pletely positive by Lemma 2.10. With vi
def
=
∑∞
n=1 vi,n where i = 1, 2, we infer

that
[
v1 T
T◦ v2

]
is completely positive. So T is decomposable with

∥T∥dec ≤ max{∥v1∥ , ∥v2∥} ≤
∞∑
n=1

max{∥v1,n∥ , ∥v2,n∥} ≤ ε+

∞∑
n=1

∥Tn∥dec .

Finally, replacing T by T −
∑N
n=1 Tn in the previous argument shows that∥∥∥T −∑N

n=1 Tn

∥∥∥
dec
≤ ε+

∑∞
n=N+1 ∥Tn∥dec.

Hence (
∑N
n=1 Tn) converges in Dec(Lp(M),Lp(N)) to T .

Proposition 3.11. – Let M and N be two von Neumann algebras equipped with
faithful normal semifinite traces. Suppose 1 ≤ p ≤ ∞. Let T : Lp(M) → Lp(N) be a
completely positive map. Then T is decomposable and

∥T∥dec,Lp(M)→Lp(N) ≤ ∥T∥Lp(M)→Lp(N).

Proof. – Using Lemma 2.11, we see that the linear map [ T T
T T ] : Sp2 (Lp(M))→ Sp2 (Lp(N))

is completely positive. We infer that T is decomposable and that the inequality is
true.

Proposition 3.12. – Let M and N be von Neumann algebras equipped with faithful
normal semifinite traces. Suppose 1 ≤ p ≤ ∞. Let T : Lp(M) → Lp(N) be a linear
map. Then the following are equivalent.

1. The map T is decomposable.

2. The map T belongs to the span of the completely positive maps from Lp(M) into
Lp(N).

3. There exist some completely positive maps T1, T2, T3, T4 : Lp(M)→ Lp(N) such
that

T = T1 − T2 + i(T3 − T4).

If the latter case is satisfied, we have

∥T∥dec,Lp(M)→Lp(N) ≤ ∥T1 + T2 + T3 + T4∥Lp(M)→Lp(N) .
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Proof. – If there exist some completely positive maps T1, T2, T3, T4 : Lp(M)→ Lp(N)

such that T = T1 − T2 + i(T3 − T4) then T belongs to to the span of the completely
positive maps from Lp(M) into Lp(N). If T belongs to the span of the completely
positive maps from Lp(M) into Lp(N), by Proposition 3.11 and Proposition 3.8, we
deduce that T is decomposable. Moreover, the proof of these results shows that if
T = T1−T2 +i(T3−T4) for some completely positive maps T1, T2, T3, T4 then we can
use (14) v1 = v2 = T1 + T2 + T3 + T4 in (1.0.3).

Hence we have ∥T∥dec,Lp(M)→Lp(N) ≤ ∥T1 + T2 + T3 + T4∥Lp(M)→Lp(N).

Now, suppose that the map T is decomposable. There exist some completely posi-
tive maps v1, v2 : Lp(M) → Lp(N) such that Φ =

[
v1 T
T◦ v2

]
is completely positive. By

(2.2.3), the maps T1 = 1
4 [ 1 1 ] Φ [ 1

1 ], T2 = 1
4 [ 1 −1 ] Φ

[
1
−1

]
, T3 = 1

4 [ 1 i ] Φ
[

1
−i

]
and

T4 = 1
4 [ 1 −i ] Φ [ 1

i ] are completely positive from Lp(M) into Lp(N) and it is easy to
check that T = T1 − T2 + i(T3 − T4).

Remark 3.13. – Suppose 1 ≤ p ≤ ∞. Let T : Lp(M) → Lp(N) be a decomposable
operator. We can define

∥T∥[d]
def
= inf

{
∥T1∥+ ∥T2∥+ ∥T3∥+ ∥T4∥

}
,

where the infimum runs over all the previous possible decompositions of T as
T = T1 − T2 + i(T3 − T4) where each Ti is completely positive. It is stated in [146,
page 230] that ∥·∥[d] is a norm, but it is not correct. Indeed, let M = C. We have
Lp(M) = C. Let T : C → C, x 7→ x. Then we will prove that ∥T∥[d] = 1 and
that ∥(1 + i)T∥[d] = 2 ̸=

√
2 = |1 + i| ∥T∥[d]. First, we have∥∥T∥∥

[d]
= inf

{
a1 + a2 + a3 + a4 : ak ≥ 0, 1 = a1 − a2 + i(a3 − a4)

}
.

For such a decomposition, we have 1 = ℜ(a1 − a2 + i(a3 − a4)) = a1 − a2. We deduce
that ∥T∥[d] ≥ a1 = 1 + a2 ≥ 1. The decomposition 1 = 1 − 0 + i(0 − 0) gives the
reverse inequality. Moreover, we have∥∥(1 + i)T

∥∥
[d]

= inf

{
a1 + a2 + a3 + a4 : ak ≥ 0, 1 + i = a1 − a2 + i(a3 − a4)

}
.

For such a decomposition, we have 1 = ℜ(a1 − a2 + i(a3 − a4)) = a1 − a2 and
1 = ℑ(a1 − a2 + i(a3 − a4)) = a3 − a4. We deduce that a1 = 1 + a2 ≥ 1 and
a3 = 1 + a4 ≥ 1. Then ∥(1 + i)T∥[d] ≥ a1 + a3 ≥ 1 + 1 = 2. The decomposition
1 + i = 1− 0 + i(1− 0) gives the reverse inequality.

However, it seems that ∥·∥[d] is a norm on the real vector space of decomposable
operators. The verification is left to the reader.

14. The argument is similar to the one of [68, Proposition 5.4.1] and uses a straightforward gener-
alization of a part of [68, Proposition 1.3.5].
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Proposition 3.14. – Let M and N be von Neumann algebras equipped with
faithful normal semifinite traces. Suppose 1 ≤ p ≤ ∞. Any finite rank bounded
map T : Lp(M)→ Lp(N) is decomposable.

Proof. – Suppose 1 ≤ p < ∞. It suffices to prove that a rank one operator
T = Tr (y·)⊗ x is decomposable where y ∈ Lp

∗
(M) and x ∈ Lp(N). We can write

x = x1 − x2 + i(x3 − x4) and y = y1 − y2 + i(y3 − y4) with xk, yk ≥ 0. Hence we
can suppose that y ≥ 0 and x ≥ 0. By Proposition 2.23, we deduce that the linear
form Tr (y·) : Lp(M)→ C is completely positive. It is easy to deduce that Tr (y·)⊗x is
completely positive, hence decomposable by Proposition 3.11. The case p = ∞ is
similar.

3.4. Reduction to the adjoint preserving case

Lemma 3.15. – Let E be an operator space and suppose 1 ≤ p ≤ ∞. Then for
any a, b, c, d ∈ E, we have∥∥∥∥∥

[
0 b

c 0

]∥∥∥∥∥
Sp2 (E)

≤

∥∥∥∥∥
[
a b

c d

]∥∥∥∥∥
Sp2 (E)

.

Proof. – Consider the Schur multiplier MA : S∞2 → S∞2 where A = [ 0 1
1 0 ]. Using

Lemma 2.12 with E = C and p =∞, we note that for any a, b, c, d ∈ C∥∥∥∥∥
[
a b

c d

]∥∥∥∥∥
2

S∞2

=

∥∥∥∥∥
[
a b

c d

]∗ [
a b

c d

]∥∥∥∥∥
S∞2

=

∥∥∥∥∥
[
|a|2 + |c|2 ab+ cd

ab+ cd |b|2 + |d|2

]∥∥∥∥∥
S∞2

≥ max
{
|a|2 + |c|2, |b|2 + |d|2

}
≥ max

{
|c|, |b|

}2
=

∥∥∥∥∥
[
0 b

c 0

]∥∥∥∥∥
2

S∞2

.

We deduce that the Schur multiplier MA is a contraction, hence a complete contrac-
tion. By duality, MA : S1

2 → S1
2 is also a complete contraction. Using Lemma 3.20, we

deduce that MA is contractively regular on Sp2 and the lemma follows.

Lemma 3.16. – Let M and N be approximately finite-dimensional von Neumann
algebras equipped with faithful normal semifinite traces. Suppose 1 ≤ p ≤ ∞ and let
T : Lp(M)→ Lp(N) be a regular map. Then T ◦ : Lp(M)→ Lp(N) defined by T ◦(x) =

(T (x∗))∗ is also regular and we have ∥T ◦∥reg = ∥T∥reg.

Proof. – We recall that by (3.1.4), Reg(Lp(M),Lp(N)) is a complex interpola-
tion space following Calderón’s upper method. Choose now an analytic function
F : S → CB(M,N) + CB(L1(M),L1(N)) of G defined on the usual complex interpo-
lation strip S = {z ∈ C : 0 ≤ ℜz ≤ 1}, such that F ′(θ) = T with ∥F∥G ≤ ∥T∥reg + ε.
Put G(z) = F (z)◦. Then the function G also belongs to G with ∥G∥G = ∥F∥G and we
have G′(θ) = T ◦. Thus the map T ◦ is regular and ∥T ◦∥reg ≤ ∥T∥reg +ε. Letting ε→ 0

we obtain ∥T ◦∥reg ≤ ∥T∥reg. Since (T ◦)◦ = T , we even have ∥T ◦∥reg = ∥T∥reg.
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Proposition 3.17. – Let M and N be approximately finite-dimensional von Neu-
mann algebras equipped with faithful normal semifinite traces. Suppose 1 ≤ p ≤ ∞ and
that T : Lp(M)→ Lp(N) is a linear mapping. Define T̃ : Sp2 (Lp(M))→ Sp2 (Lp(N)) by

T̃

([
a b

c d

])
=

[
0 T (b)

T ◦(c) 0

]
.

Then T̃ is adjoint preserving in the sense that T̃ (x∗) =
(
T̃ (x)

)∗
. Moreover, T is

regular if and only if the map T̃ : Sp2 (Lp(M)) → Sp2 (Lp(N)) is regular and in this
case, we have ∥T∥reg,Lp(M)→Lp(N) = ∥T̃∥reg,Sp2 (Lp(M))→Sp2 (Lp(N)).

Proof. – Let x =
[
a b
c d

]
∈ Sp2 (Lp(M)). We have

T̃ (x∗) = T̃

([
a∗ c∗

b∗ d∗

])
=

[
0 T (c∗)

T ◦(b∗) 0

]
=

[
0 T (c∗)

T (b)∗ 0

]

and also(
T̃ (x)

)∗
=

[
0 T (b)

T ◦(c) 0

]∗
=

[
0 T ◦(c)∗

T (b)∗ 0

]
=

[
0 T (c∗)

T (b)∗ 0

]
.

We conclude that T̃ is adjoint preserving, i.e., T̃ ◦ = T̃ . Assume first that
1 ≤ p <∞. Let E be any operator space. Assume first that T is regular. For
any

[
a b
c d

]
∈ Sp2 (Lp(M,E)), according to Lemma 2.12 with E replaced by Lp(N,E),

we have∥∥∥∥∥(T̃ ⊗ IdE

)[a b

c d

]∥∥∥∥∥
Sp2 (Lp(N,E))

=

∥∥∥∥∥
[

0 (T ⊗ IdE)(b)

(T ◦ ⊗ IdE)(c) 0

]∥∥∥∥∥
Sp2 (Lp(N,E))

=
(∥∥(T ⊗ IdE)(b)

∥∥p
Lp(N,E)

+
∥∥(T ◦ ⊗ IdE)(c)

∥∥p
Lp(N,E)

) 1
p

.

The previous quantity can be estimated by ∥T∥reg
(
∥b∥pLp(M,E) + ∥c∥pLp(M,E)

) 1
p

due
to Lemma 3.16. According to Lemmas 2.12 and 3.15 with E replaced by Lp(M,E),
this in turn can be estimated by

∥T∥reg

∥∥∥∥∥
[
0 b

c 0

]∥∥∥∥∥
Sp2 (Lp(M,E))

≤ ∥T∥reg

∥∥∥∥∥
[
a b

c d

]∥∥∥∥∥
Sp2 (Lp(M,E))

.

This shows that ∥T̃⊗IdE∥Sp2 (Lp(M,E))→Sp2 (Lp(N,E)) ≤ ∥T∥reg. Passing to the supremum
over all operator spaces E, we deduce that T̃ is regular and that ∥T̃∥reg ≤ ∥T∥reg.
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For the converse inequality, assume that T̃ is regular and let x ∈ Lp(M,E). Ap-
plying Lemma 2.12 twice, we have

∥∥(T ⊗ IdE)(x)
∥∥

Lp(N,E)
=

∥∥∥∥∥
[
0 (T ⊗ IdE)(x)

0 0

]∥∥∥∥∥
Sp2 (Lp(N,E))

=

∥∥∥∥∥
([

0 T

T ◦ 0

]
⊗ IdE

)[
0 x

0 0

]∥∥∥∥∥
Sp2 (Lp(N,E))

≤ ∥T̃∥reg

∥∥∥∥∥
[
0 x

0 0

]∥∥∥∥∥
Sp2 (Lp(M,E))

= ∥T̃∥reg ∥x∥Lp(M,E) .

We conclude that T is regular and that ∥T∥reg ≤ ∥T̃∥reg.

The case p =∞ is similar, using in the second part of Lemma 2.12 each time.

Proposition 3.18. – Let M and N be von Neumann algebras equipped with faithful
normal semifinite traces. Suppose 1 ≤ p ≤ ∞. Let T : Lp(M) → Lp(N) be a linear
map. Then T is decomposable if and only if the map T̃ : Sp2 (Lp(M))→ Sp2 (Lp(N)) from
Proposition 3.17 is decomposable, and in this case, we have ∥T∥dec,Lp(M)→Lp(N) =

∥T̃∥dec,Sp2 (Lp(M))→Sp2 (Lp(N)).

Proof. – Suppose that T is decomposable. Choose some maps v1, v2 : Lp(M)→ Lp(N)

such that
[
v1 T
T◦ v2

]
: Sp2 (Lp(M)) → Sp2 (Lp(N)) is completely positive. By (2.2.3), the

mapping
0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1



v1 T 0 0

T ◦ v2 0 0

0 0 v1 T

0 0 T ◦ v2

 (·)


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 =


[
v1 0

0 v2

]
T̃

T̃

[
v1 0

0 v2

]


is also completely positive from Sp4 (Lp(M)) into Sp4 (Lp(N)). Therefore the map T̃ is
decomposable and ∥T̃∥dec ≤

∥∥[ v1 0
0 v2

]∥∥ = max{∥v1∥ , ∥v2∥}, the latter according to
[145, Corollary 1.3]. By passing to the infimum over all admissible v1, v2, we see
that ∥T̃∥dec ≤ ∥T∥dec.

Now suppose that the map T̃ is decomposable. Let v1, v2 : Sp2 (Lp(M))→ Sp2 (Lp(N))

such that the map
[
v1 T̃

T̃ v2

]
: Sp4 (Lp(M)) → Sp4 (Lp(N)) is completely positive. Put

w1 : Lp(M)→ Lp(N), a 7→ (v1 ([ a 0
0 0 ]))11 and w2 : Lp(M)→ Lp(N), d 7→ (v2 ([ 0 0

0 d ]))22.
Then each wi is also completely positive as a composition of completely positive
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mappings. We also define

J : Sp2 (Lp(M)) −→ Sp4 (Lp(M))

[
a b

c d

]
7−→


a 0 0 b

0 0 0 0

0 0 0 0

c 0 0 d

 .

It is easy to see that J is a completely positive and completely isometric embedding.
Then an easy computation gives

[
1 0 0 0

0 0 0 1

]
·

([
v1 T̃

T̃ v2

](
J

([
a b

c d

])))
·


1 0

0 0

0 0

0 1



=

[
1 0 0 0

0 0 0 1

]
·


[
v1 T̃

T̃ v2

]

a 0 0 b

0 0 0 0

0 0 0 0

c 0 0 d



 ·


1 0

0 0

0 0

0 1



=

[
1 0 0 0

0 0 0 1

]
·


v1

([
a 0

0 0

]) [
0 T (b)

0 0

]
[

0 0

T ◦(c) 0

]
v2

([
0 0

0 d

])
 ·


1 0

0 0

0 0

0 1


=

[
w1(a) T (b)

T ◦(c) w2(d)

]
.

Using (2.2.3), we deduce by composition that the map

[
w1 T

T̃ w2

]
is completely posi-

tive. We infer that T is decomposable and that

∥T∥dec ≤ max{∥w1∥ , ∥w2∥} ≤ max{∥v1∥ , ∥v2∥}.

Passing to the infimum over all admissible v1, v2, we obtain that ∥T∥dec ≤ ∥T̃∥dec.

Proposition 3.19. – Let M and N be von Neumann algebras equipped with
faithful normal semifinite traces. Suppose 1 ≤ p ≤ ∞. An adjoint preserving (15)

map T : Lp(M) → Lp(N) is decomposable if and only if one of the two following

15. That means that T (x∗) = T (x)∗ for any x ∈ Lp(M).
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infimums is finite. In this case, we have

∥T∥dec,Lp(M)→Lp(N) = inf
{
∥S∥ : S : Lp(M)→ Lp(N) cp, −S ≤cp T ≤cp S

}
= inf

{
∥T1 + T2∥ : T1, T2 : Lp(M)→ Lp(N) cp, T = T1 − T2

}
.

Proof. – The first equality is a consequence of Lemma 2.20 and Lemma 2.21. To
prove the second equality, first assume that there exists some completely positive
map S : Lp(M)→ Lp(N) such that

−S ≤cp T ≤cp S.

Then T1 = 1
2 (S+T ) and T2 = 1

2 (S−T ) are completely positive and we have T1+T2 =
1
2 (S + T ) + 1

2 (S − T ) = S and T1 − T2 = 1
2 (S + T )− 1

2 (S − T ) = T .
Conversely, suppose that we can write T = T1 − T2 for some completely positive

maps T1, T2 : Lp(M)→ Lp(N). Then we have

−(T1 + T2) ≤cp T ≤cp (T1 + T2).

This proves the second equality.

3.5. Decomposable vs regular on Schatten spaces

Similarly to the commutative case, an absolute contraction between noncommuta-
tive Lp-spaces is contractively regular.

Lemma 3.20. – Let M and N be approximately finite-dimensional von Neumann al-
gebras which are equipped with faithful normal semifinite traces. Let T : M → N be
a completely contractive map such that the restriction to M ∩ L1(M) induces a com-
pletely contractive map from L1(M) into L1(N). Then for any 1 ≤ p ≤ ∞, we have
∥T∥reg,Lp(M)→Lp(N) ≤ 1.

Proof. – Let E be any operator space. According to [68, Proposition 8.1.5], the
map T ⊗ IdE : L∞(M,E) = M ⊗min E → L∞(N,E) = N ⊗min E is completely
contractive. Moreover, by [68, Corollary 7.1.3] the map

T ⊗ IdE : L1(M,E) = L1(M)⊗̂E → L1(N,E) = L1(N)⊗̂E
is also completely contractive, where ⊗̂ denotes the operator space projective tensor
product. By interpolation, we infer that the map T ⊗ IdE : Lp(M,E) → Lp(N,E) is
completely contractive for any 1 ≤ p ≤ ∞. Passing over the supremum of all operator
spaces, we obtain the lemma.

Suppose 1 ≤ p < ∞. If n and d are integers then a particular case of [143, Theo-
rem 1.5] gives for any x ∈ Spn(Md)

(3.5.1) ∥x∥Spn(Md)
= inf

{
∥α∥S2p

n
∥y∥Mn(Md)

∥β∥S2p
n

: x = (α⊗ Id)y(β ⊗ Id)
}
.

Theorem 3.21. – Let n,m ∈ N and 1 ≤ p ≤ ∞. Then any linear mapping
T : Spm → Spn satisfies

∥T∥reg,Spm→Spn = ∥T∥dec,Spm→Spn .
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Proof. – Assume that the theorem is true for all adjoint preserving maps T : Spm → Spn,
i.e., T (x∗) = T (x)∗. Then we can deduce from Propositions 3.18 and 3.17, with the
adjoint preserving mapping T̃ : Sp2m → Sp2n, that ∥T∥dec = ∥T̃∥dec = ∥T̃∥reg = ∥T∥reg.
Hence we can assume in addition that T is adjoint preserving.

First we show ∥T∥reg ≤ ∥T∥dec. The following proof is inspired by the proof
of [143, Lemma 2.3]. Let ε > 0. According to Proposition 3.19, there ex-
ist some completely positive maps T1, T2 : Spm → Spn such that T = T1 − T2

and ∥T1 + T2∥ ≤ ∥T∥dec + ε. According to Choi’s characterization [43, Theo-
rem 1], there exist a1, . . . , al, b1, . . . , bl ∈ Mm,n such that T1(x) =

∑l
k=1 a

∗
kxak and

T2(x) =
∑l
k=1 b

∗
kxbk. Let x be an element of Spm(Md) with ∥x∥Spm(Md)

< 1. By (3.5.1),
there exists a decomposition x = (α⊗ Id)y(β ⊗ Id) with α, β ∈ S2p

m of norm less than
1 and y ∈ Mm(Md) which is also of norm less than 1. Using the notations

α1
def
= [a∗1α, . . . , a

∗
l α], β1

def
= (a∗1β

∗, . . . , a∗l β
∗),

and
α2

def
= [b∗1α, . . . , b

∗
l α], β2

def
= (b∗1β

∗, . . . , b∗l β
∗)

of M1,l(Mn,m), we can write

(T ⊗ IdMd
)(x) = (T ⊗ IdMd

)
(
(α⊗ Id)y(β ⊗ Id)

)
= (T ⊗ IdMd

)

(
(α⊗ Id)

( m∑
i,j=1

eij ⊗ yij
)

(β ⊗ Id)

)
=

m∑
i,j=1

(T ⊗ IdMd
)(αeijβ ⊗ yij)

=

m∑
i,j=1

T (αeijβ)⊗ yij =

m∑
i,j=1

T1(αeijβ)⊗ yij − T2(αeijβ)⊗ yij

=

m∑
i,j=1

l∑
k=1

a∗kαeijβak ⊗ yij − b∗kαeijβbk ⊗ yij

=

m∑
i,j=1

l∑
k=1

(a∗kα⊗ Id)(eij ⊗ yij)(βak ⊗ Id)− (b∗kα⊗ Id)(eij ⊗ yij)(βbk ⊗ Id)

=

l∑
k=1

(a∗kα⊗ Id)

(
m∑

i,j=1

eij ⊗ yij

)
(βak ⊗ Id)− (b∗kα⊗ Id)

(
m∑

i,j=1

eij ⊗ yij

)
(βbk ⊗ Id)

=

l∑
k=1

(a∗kα⊗ Id)y(βak ⊗ Id)− (b∗kα⊗ Id)y(βbk ⊗ Id)

=
(
[a∗1α, . . . , a

∗
l α]⊗ Id

)

y 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 y






βa1

...

...
βal

⊗ Id
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−
(
[b∗1α, . . . , b

∗
l α]⊗ Id

)

y 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 y






βb1
...
...
βbl

⊗ Id


= (α1 ⊗ Id) · (Il ⊗ y) · (β∗1 ⊗ Id)− (α2 ⊗ Id) · (Il ⊗ y) · (β∗2 ⊗ Id).

The matrix Il⊗y ∈ Ml(Mm(Md)) is of norm less than 1. A simple computation shows
that[
(T ⊗ IdMd

)(x) 0

0 0

]
=

[
(α1 ⊗ Id) · (Il ⊗ y) · (β∗1 ⊗ Id)− (α2 ⊗ Id) · (Il ⊗ y) · (β∗2 ⊗ Id) 0

0 0

]

=

([
α1 −α2

0 0

]
⊗ Id

)[
Il ⊗ y 0

0 Il ⊗ y

]([
β∗1 0

β∗2 0

]
⊗ Id

)
.

On the other hand, we have∥∥∥∥∥
[
α1 −α2

0 0

]∥∥∥∥∥
S2p

=

∥∥∥∥∥
[
α1 −α2

0 0

]∗∥∥∥∥∥
S2p

= Tr

(([
α1 −α2

0 0

][
α∗1 0

−α∗2 0

])p) 1
2p

= Tr

([
α1α

∗
1 + α2α

∗
2 0

0 0

]p) 1
2p

= Tr
(
(α1α

∗
1 + α2α

∗
2)
p
) 1

2p

= Tr

(( l∑
k=1

a∗kαα
∗ak + b∗kαα

∗bk

)p) 1
2p

=
∥∥T1(αα

∗) + T2(αα
∗)
∥∥ 1

2

Spn

≤ ∥T1 + T2∥
1
2

Spm→Spn
∥αα∗∥

1
2

Spm
= ∥T1 + T2∥

1
2

Spm→Spn
∥α∥S2p

m

≤ ∥T1 + T2∥
1
2

Spm→Spn
.

In the same way, it follows that

∥∥∥∥∥
[
β∗1 0

β∗2 0

]∥∥∥∥∥
S2p

≤ ∥T1 + T2∥
1
2

Spm→Spn
. Using (3.5.1), we

infer that∥∥(T ⊗ IdMd
)(x)

∥∥
Spn(Md)

=

∥∥∥∥∥
[
(T ⊗ IdMd

)(x) 0

0 0

]∥∥∥∥∥
Sp2n(Md)

≤ ∥T1 + T2∥
1
2

Spm→Spn
∥T1 + T2∥

1
2

Spm→Spn
.

This yields ∥T ⊗ IdMd
∥Spm(Md)→Spn(Md)

≤ ∥T1 + T2∥Spm→Spn ≤ ∥T∥dec + ε, hence
∥T∥reg ≤ ∥T∥dec+ε. Passing ε→ 0 yields one of the desired estimates ∥T∥reg ≤ ∥T∥dec.

Finally we shall show ∥T∥dec ≤ ∥T∥reg. Assume that ∥T∥reg ≤ 1. According to
[146, Theorem 5.12], note that we have isometrically

(3.5.2) CB(S∞n ) = Mn ⊗h Mn,
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where ⊗h denotes the Haagerup tensor product. Moreover, using the properties of
this tensor product [145, pages 95-97], we obtain

Mop
n ⊗h Mop

n = (Cn ⊗h Rn)
op ⊗h (Cn ⊗h Rn)

op = Rop
n ⊗h Cop

n ⊗h Rop
n ⊗h Cop

n

= Cn ⊗h Rn ⊗h Cn ⊗h Rn = Cn ⊗h S1
n ⊗h Rn = Mn(S

1
n)

= Mn ⊗min S
1
n = CB(S1

n).

We have γθ(T ) ≤ 1 with θ = 1
p and γθ defined in [144, Theorem 8.5], according to

[143, Corollary 3.3]. Then since T is adjoint preserving, [144, Corollary 8.7] yields
that ∥T∥dec ≤ ∥T1 + T2∥Spm→Spn ≤ 1 where T = T1 − T2 and T1, T2 are completely
positive mappings Mm → Mn given there. The proof of the theorem is complete.

3.6. Decomposable vs regular on approximately finite-dimensional algebras

In this chapter, we will extend by approximation Theorem 3.21 to approximately
finite-dimensional von Neumann algebras. We start with two lemmas which show
that, under suitable assumptions, the decomposability or the regularity of maps is
preserved under a passage to the limit.

Lemma 3.22. – Let M and N be von Neumann algebras equipped with faithful nor-
mal semifinite traces. Suppose 1 ≤ p ≤ ∞. Let (Tα) be a net of decomposable
operators from Lp(M) into Lp(N) such that ∥Tα∥dec,Lp(M)→Lp(N) ≤ C for some
constant C which converges to some T : Lp(M)→ Lp(N) in the weak operator topol-
ogy (in the point weak* topology of B(M,N) if p =∞). Then T is decomposable and
∥T∥dec,Lp(M)→Lp(N) ≤ lim infα ∥Tα∥dec,Lp(M)→Lp(N).

Proof. – We assume first that 1 < p <∞. By Proposition 3.5, for any α, there exist
some maps vα, wα : Lp(M)→ Lp(N) such that the map[

vα Tα

T ◦α wα

]
: Sp2 (Lp(M))→ Sp2 (Lp(N))

is completely positive with max{∥vα∥ , ∥wα∥} = ∥Tα∥dec ≤ C. Note that since
Lp(N) is reflexive, the closed unit ball of the space B(Lp(M),Lp(N)) of bounded
operators in the weak operator topology is compact. Hence the bounded nets (vα)

and (wα) admit convergent subnets (vβ) and (wβ) in the weak operator topology
which converge to some v, w ∈ B(Lp(M),Lp(N)). Now, it is easy to see that[

v T

T ◦ w

]
= lim

β

[
vβ Tβ

T ◦β wβ

]
in the weak operator topology of B(Sp2 (Lp(M)), Sp2 (Lp(N))). By Lemma 2.10, the
operator on the left hand side is completely positive as a weak limit of completely
positive mappings. Hence the operator T is decomposable. Moreover, using the weak
lower semicontinuity of the norm, we see that ∥v∥ ≤ lim infβ ∥vβ∥ ≤ lim infβ ∥Tβ∥dec

and ∥w∥ ≤ lim infβ ∥wβ∥ ≤ lim infβ ∥Tβ∥dec.
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Hence, we have ∥T∥dec ≤ max{∥v∥ , ∥w∥} ≤ lim infβ ∥Tβ∥dec. By considering a
priori only subnets β of α such that limβ ∥Tβ∥dec = lim infα ∥Tα∥dec (see [131, Exercise
2.55 (f)]), we finish the proof in the case 1 < p <∞.

Assume now that p = ∞. Then the Banach space B(M,N) is still a dual space,
namely that of the projective tensor product M⊗̂L1(N). Consequently, the bounded
nets (vα) and (wα) admit convergent subnets (vβ) and (wβ) which converge in the
weak* topology of B(M,N) to some v, w, where vβ , wβ are constructed as previ-
ously. Note that the weak* convergence implies the point weak* convergence and
thus allows us to apply Lemma 2.10 and deduce that

[
v T
T◦ w

]
: M2(M) → M2(N) is

completely positive. Using the weak* lower semicontinuity of the norm, we infer
that ∥v∥ ≤ lim infβ ∥vβ∥ ≤ lim infβ ∥Tβ∥dec and similarly ∥w∥ ≤ lim infβ ∥Tβ∥dec and
thus ∥T∥dec ≤ max{∥v∥ , ∥w∥} ≤ lim infβ ∥Tβ∥dec = lim infα ∥Tα∥dec, again under
suitable choices of subnets β of α.

Assume finally that p = 1. According to (3.1.1), we note that the case p =∞ is
applicable (16) to T ∗α and T ∗ and thus

∥T∥dec,L1(M)→L1(N) = ∥T ∗∥dec,N→M ≤ lim inf
α
∥T ∗α∥dec,N→M = lim inf

α
∥Tα∥dec,L1(M)→L1(N) ,

where we used again (3.1.1) in the last equality.

Lemma 3.23. – Let M and N be approximately finite-dimensional von Neumann
algebras which are equipped with faithful normal semifinite traces. Suppose 1 < p <∞.
Let (Tα) be a net of maps from Lp(M) into Lp(N) such that ∥Tα∥reg,Lp(M)→Lp(N) ≤ C
for some constant C which converges to some T : Lp(M) → Lp(N) in the strong
operator topology.

Then the map T is regular and ∥T∥reg,Lp(M)→Lp(N) ≤ lim infα ∥Tα∥reg,Lp(M)→Lp(N).

Proof. – Let E be an operator space. For any x ∈ Lp(M)⊗ E, an easy computation
gives (17)

lim
α

(Tα ⊗ IdE)(x) = (T ⊗ IdE)(x).

16. If X is a dual Banach space with predual X∗, it is well-known that the mapping
B(X∗) → Bw∗ (X), T 7→ T ∗ is a weak operator-point weak* homeomorphism onto the space Bw∗ (X)

of weak* continuous operators of B(X) and the point weak* topology and the weak* topology coin-
cide on bounded sets by [137, Lemma 7.2].

17. If
∑n

k=1 xk ⊗ yk ∈ Lp(M)⊗ E then∥∥∥∥∥(Tα ⊗ IdE)

(
n∑

k=1

xk ⊗ yk

)
− (T ⊗ IdE)

(
n∑

k=1

xk ⊗ yk

)∥∥∥∥∥
Lp(M,E)

=

∥∥∥∥∥
n∑

k=1

Tα(xk)⊗ yk −
n∑

k=1

T (xk)⊗ yk

∥∥∥∥∥
Lp(M,E)

=

∥∥∥∥∥
n∑

k=1

(Tα(xk)− T (xk))⊗ yk

∥∥∥∥∥
Lp(M,E)

≤
n∑

k=1

∥Tα(xk)− T (xk)∥Lp(M) ∥yk∥E −→
α

0.
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We deduce (18) that T ⊗ IdE induces a bounded operator on Lp(M,E) and that the
net (Tα ⊗ IdE) converges strongly to T ⊗ IdE . By the strong lower semicontinuity of
the norm, we deduce that

∥T ⊗ IdE∥Lp(M,E)→Lp(N,E) ≤ lim inf
α
∥Tα ⊗ IdE∥Lp(M,E)→Lp(N,E)

≤ lim inf
α
∥Tα∥reg,Lp(M)→Lp(N) .

Taking the supremum, we get the desired conclusion.

Theorem 3.24. – Let M and N be approximately finite-dimensional von Neumann
algebras which are equipped with faithful normal semifinite traces. Suppose 1 ≤ p ≤ ∞.
Let T : Lp(M) → Lp(N) be a linear mapping. Then T is regular if and only if T is
decomposable. In this case, we have

∥T∥dec,Lp(M)→Lp(N) = ∥T∥reg,Lp(M)→Lp(N) .

Proof. – The case p =∞ is [68, Lemma 5.4.3] and a straightforward generalization of
[143, Remark following Definition 2.1] since L∞(M,E) = M⊗minE. The case p = 1 is
also true by duality using Lemma 2.17, (3.1.1) and (3.1.5).

Let us now turn to the case 1 < p < ∞. We denote by τ and σ the traces of M
and N .

Case 1: M and N are finite-dimensional. – By [171, Theorem 11.2] and [60,
proof of Proposition 7 page 109, Theorem 5 page 105, corollary page 103],
there exist m1, . . . ,mK , n1, . . . , nL ∈ N and λ1, . . . , λK , µ1, . . . , µL ∈ (0,∞) such
that (M, τ) = (Mm1 ⊕ · · · ⊕ MmK , λ1 Trm1 ⊕ · · · ⊕ λK TrmK ) and (N, σ) =

(Mn1
⊕ · · · ⊕MnL , µ1 Tr n1

⊕ · · · ⊕ µL Tr nL).

Case 1.1: All λk and µl belong to N. – Then let m =
∑K
k=1 λkmk and n =

∑L
l=1 µlnl.

Let further J : M → Mm be the normal unital trace preserving ∗-homomorphism
defined by

J(x1 ⊕ · · · ⊕ xK) =



x1

. . .

x1 0

. . .

xK

0
. . .

xK


,

18. Let X be a Banach space and D a dense subset of X. Let (Tα) be a bounded net of bounded
linear operators in B(X). Suppose that, for each x ∈ D, the net (Tα(x)) is convergent in X. By [63,
page 55], there exists a bounded linear operator T : X → X such that (Tα) converges strongly to T .
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where xk appears λk times on the diagonal, k = 1, . . . ,K. Let moreover E : Mm →M

be the associated conditional expectation. Moreover, we introduce similar maps
J ′ : N → Mn and E′ : Mn → N . We denote by the same symbols the induced maps
on the associated Lp-spaces.

Lemma 3.20 is applicable for both J ′ and E and we obtain the estimates
∥J ′∥reg,Lp(N)→Spn ≤ 1 and ∥E∥reg,Spm→Lp(M) ≤ 1. Moreover, by Proposition 3.11,
we also infer that ∥J∥dec,Lp(M)→Spm ≤ 1 and ∥E′∥dec,Spn→Lp(N) ≤ 1. Suppose
that T : Lp(M) → Lp(N) is regular. By Theorem 3.21 applied to J ′TE : Spm → Spn
together with (3.1.2) and (3.1.3), we obtain that T = E′(J ′TE)J is decomposable
and that

∥T∥dec,Lp(M)→Lp(N) =
∥∥E′J ′TEJ∥∥

dec
≤ ∥E′∥dec ∥J

′TE∥dec ∥J∥dec

≤ ∥J ′TE∥reg ≤ ∥J
′∥reg ∥T∥reg ∥E∥reg ≤ ∥T∥reg,Lp(M)→Lp(N) .

Let T : Lp(M)→ Lp(N) be a decomposable map. In a similar manner, we obtain the
inequalities ∥J∥reg , ∥E′∥reg , ∥J ′∥dec , ∥E∥dec ≤ 1 and that T is regular and we have

∥T∥reg,Lp(M)→Lp(N) = ∥E′J ′TEJ∥reg ≤ ∥E
′∥reg ∥J

′TE∥reg ∥J∥reg
≤ ∥J ′TE∥dec ≤ ∥J

′∥dec ∥T∥dec ∥E∥dec ≤ ∥T∥dec,Lp(M)→Lp(N) .

Case 1.2: All λk and µl belong to Q+. – Then there exists a common denominator of
the λk’s and the µl’s, that is, there exists t ∈ N such that λk =

λ′k
t , µl =

µ′l
t for some

integers λ′k and µ′l. Since we have ∥x∥Lp(M1,tτ1)
= t

1
p ∥x∥Lp(M1,τ1)

for any semifinite
von Neumann algebra (M1, τ1), it is easy to deduce that

∥T∥dec,Lp(M,tτ)→Lp(N,tσ) = ∥T∥dec,Lp(M,τ)→Lp(N,σ)

and also that T : Lp(M, tτ)→ Lp(N, tσ) is regular if and only if T : Lp(M, τ)→ Lp(N, σ)

is regular with equal regular norms in this case. Thus, Case 1.2 follows from Case 1.1.

Case 1.3: λk, µl ∈ (0,∞). – For ε > 0, let λk,ε, µl,ε ∈ Q+ be ε-close to λk and µl in
the sense that (1+ ε)−1λk ≤ λk,ε ≤ (1+ ε)λk, and similarly for µl, µl,ε. We introduce
the trace τε = λ1,ε Trm1 ⊕ · · · ⊕ λK,ε TrmK on M = Mm1 ⊕ · · · ⊕ MmK . Consider
the (non-isometric) identity mapping IdεM : Lp(M, τ)→ Lp(M, τε). Note that for any
element x = x1⊕ . . .⊕ xK of Lp(M, τ), the definition of multiplication and adjoint in
the sum space Mm1⊕· · ·⊕MmK yields immediately that |x|p = |x1|p⊕. . .⊕|xK |p. Thus,
∥x∥pLp(M,τ) = τ(|x|p) =

∑K
k=1 λk Trmk(|xk|p). By the same argument, ∥x∥Lp(M,τε) =∑K

k=1 λk,ε Trmk(|xk|p). Thus,

∥IdεM∥
p
Lp(M,τ)→Lp(M,τε)

= sup
x∈Lp(M,τ)\{0}

∑K
k=1 λk,ε Trmk(|xk|p)∑K
k=1 λk Trmk(|xk|p)

≤ sup
x∈Lp(M,τ)\{0}

∑K
k=1(1 + ε)λk Trmk(|xk|p)∑K

k=1 λk Trmk(|xk|p)
= 1 + ε.
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In the same manner, one obtains ∥IdεM∥
p
cb,Lp(M,τ)→Lp(M,τε)

≤ 1 + ε. Also, using
(1 + ε)−1λk ≤ λk,ε, one obtains that∥∥(IdεM )−1

∥∥p
cb,Lp(M,τε)→Lp(M,τ)

≤ 1 + ε.

We infer that ∥IdεM∥cb,
∥∥(IdεM )−1

∥∥
cb
→ 1 as ε → 0. In the case p = ∞, this

convergence also holds, since ∥x∥L∞(M,τε)
= ∥x∥L∞(M,τ). We also define the trace

σε = µ1,ε Tr n1
⊕ · · · ⊕ µL,ε TrmL on the algebra N . Moreover, we also have a

map IdεN : Lp(N, σ) → Lp(N, σε) and ∥IdεN∥cb ,
∥∥(IdεN )−1

∥∥
cb

go to 1 when ε ap-
proaches 0. Since IdεM , IdεN and their inverses are completely positive (since they are
identity mappings and complete positivity is independent of the trace), by Propo-
sition 3.11, their decomposable norms approach 1 when ε approaches 0. Moreover,
interpolating between p = 1 and p = ∞, using Lemma 3.20, we also infer that their
regular norms approach 1 as ε goes to 0. Suppose that T : Lp(M, τ) → Lp(N, σ) is
regular. Using Case 1.2 with the map IdεNT (IdεM )−1 : Lp(M, τε)→ Lp(N, σε), (3.1.2)
and (3.1.3), we see that

∥T∥dec,Lp(M,τ)→Lp(N,σ) =
∥∥(IdεN )−1IdεNT (IdεM )−1IdεM

∥∥
dec,Lp(M,τ)→Lp(N,σ)

≤
∥∥(IdεN )−1

∥∥
dec

∥∥IdεNT (IdεM )−1
∥∥

dec
∥IdεM∥dec

=
∥∥(IdεN )−1

∥∥
dec

∥∥IdεNT (IdεM )−1
∥∥

reg
∥IdεM∥dec

≤
∥∥(IdεN )−1

∥∥
dec
∥IdεN∥reg ∥T∥reg

∥∥(IdεM )−1
∥∥

reg
∥IdεM∥dec .

Going to the limit, we obtain ∥T∥dec ≤ ∥T∥reg. In the same vein, one shows that any
map T : Lp(M, τ)→ Lp(N, σ) is regular and that we have ∥T∥reg ≤ ∥T∥dec. The proof
of Case 1.3, and thus of Case 1, is complete.

Case 2: M and N are approximately finite-dimensional and finite. – In this case [27,

page 291], M =
⋃
αMα

w∗
and N =

⋃
β Nβ

w∗
where (Mα) and (Nβ) are nets directed

by inclusion of finite dimensional unital ∗-subalgebras (as in Case 1). Moreover, we
denote by Jα : Mα → M , J ′β : Nβ → N the canonical unital ∗-homomorphisms and
by Eα : M → Mα and E′β : N → Nβ the associated conditional expectations given
by [166, Corollary 10.6] since the traces are finite. All these maps induce completely
contractive and completely positive maps on the associated Lp-spaces denoted by the
same notations such that (19)

(3.6.1) lim
α
JαEα(x) = x and lim

β
J ′βE′β(y) = y

(for the Lp-norm) for any x ∈ Lp(M) and any y ∈ Lp(N). Let T : Lp(M)→ Lp(N) be
a bounded map. The net (20) (J ′βE′β , JαEα)(α,β) of B(Lp(N))×B(Lp(M)) is obviously

19. Recall that ∪αLp(Mα) is dense in Lp(M). Let x ∈ Lp(M) and ε > 0. There exists α0 and
y ∈ Lp(Mα0 ) such that ∥x− y∥Lp(M) ≤ ε. Hence for any α ≥ α0, since y ∈ Lp(Mα), we have

∥x− JαEα(x)∥Lp(M) ≤ ∥x− y∥Lp(M) + ∥y − JαEα(x)∥Lp(M) ≤ ε+ ∥JαEα(y − x)∥Lp(M) ≤ 2ε.

20. The index set A×B is directed by letting (α, β) ≤ (α′, β′) if α ≤ α′ and β ≤ β′.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2023



44 CHAPTER 3. DECOMPOSABLE MAPS AND REGULAR MAPS

convergent to (IdLp(N), IdLp(M)) where each factor is equipped with the strong topol-
ogy. Using the strong continuity of the product on bounded sets, we infer that the
net (J ′βE′βTJαEα) converges strongly to T . Suppose that T is decomposable. Using
Case 1 with the operator E′βTJα : Lp(Mα) → Lp(Nβ), we deduce that T is regular
and that, using (3.1.2) and (3.1.3)∥∥T∥∥

reg,Lp(M)→Lp(N)
≤ lim inf

α,β

∥∥J ′βE′βTJαEα∥∥reg
≤ lim inf

α,β

∥∥J ′β∥∥reg

∥∥E′βTJα∥∥reg
∥E′α∥reg

≤ lim inf
α,β

∥∥E′βTJα∥∥dec
≤ lim inf

α,β

∥∥E′β∥∥dec
∥T∥dec ∥Jα∥dec

≤ ∥T∥dec,Lp(M)→Lp(N) .

For the converse inequality, suppose that the map T : Lp(M)→ Lp(N) is regular. Since
T = limα,β J

′
βE′βTJαEα is the strong, hence weak, limit of decomposable operators,

hence decomposable by Proposition 3.22, we obtain, using again (3.1.2) and (3.1.3),

∥T∥dec,Lp(M)→Lp(N) ≤ lim inf
α,β

∥∥J ′βE′βTJαEα∥∥dec
≤ lim inf

α,β

∥∥J ′β∥∥dec
∥E′βTJα∥dec∥E′α∥dec

≤ lim inf
α,β

∥∥E′βTJα∥∥reg
≤ lim inf

α,β

∥∥E′β∥∥reg
∥T∥reg ∥Jα∥reg

≤ ∥T∥reg,Lp(M)→Lp(N) .

Thus, Case 2 is proved.

Case 3: M and N are general approximately finite-dimensional semifinite von Neu-
mann algebras. By [169, page 57], there exist an increasing net of projections (ei)

which is strongly convergent to 1 with τ(ei) < ∞ for any i. We set Mi
def
= eiMei.

The trace τ |Mi
is obviously finite. Moreover, it is well-known (21) that Mi is approxi-

mately finite-dimensional. We conclude that Mi is a von Neumann algebra satisfying
the properties of Case 2. We also introduce the completely positive and completely
contractive adjoint preserving normal map Qi : M → Mi, x 7→ eixei and the canon-
ical inclusion map Ji : Mi → M . We do the same construction on N and obtain
some maps Q′j : N → Nj and J ′j : Nj → N . All these maps induce completely pos-
itive and completely contractive maps on all Lp levels, 1 ≤ p ≤ ∞. Moreover, for
any 1 ≤ p < ∞ and any x ∈ Lp(M) we have (22) x = limi eixei = limi JiQi(x) and
similarly y = limj J

′
jQ

′
j(y) for any y ∈ Lp(N). We conclude by the same arguments

as in Case 2.

Remark 3.25. – Using Proposition 3.12, this theorem also shows that the space of
regular operators between Lp(M) and Lp(N) is precisely the span of the completely

21. This observation relies on the equivalence between “injective” and “approximately finite-
dimensional”.

22. Since the product of strongly convergent bounded nets of bounded operators on Lp(M) define
a strongly convergent net, it suffices to prove that the net (eix) converges to x in Lp(M). Now
using the GNS representation π : M → B(L2(M)) and [114, Corollary 7.1.16], we deduce that for
any x ∈ L2(M), the net (eix) converges to x in L2(M). Using interpolation between 2 and ∞, we
obtain the convergence for 2 < p < ∞. For the case 1 ≤ p < 2, it suffices to write an element
x ∈ Lp(M) as x = yz with y, z ∈ L2p(M) and use Hölder inequality.
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positive maps from Lp(M) into Lp(N). This assertion is alluded in [143, Theorem 3.7]
and proved (23) in [143, Lemma 2.3] and [144, Theorem 8.8] for Lp(M) = Lp(N) = Sp.

With the same method, we can prove the particular case of Theorem 2.19. Using
the same notations, we only indicate the changes.

Theorem 3.26. – Let M and N be approximately finite-dimensional von Neumann
algebras which are equipped with faithful normal semifinite traces. Suppose 1 ≤ p ≤ ∞.
Let T : Lp(M)→ Lp(N) be a completely positive map. Then T is completely bounded
and we have

∥T∥Lp(M)→Lp(N) = ∥T∥cb,Lp(M)→Lp(N) .

Proof. – Case 1. M and N are finite-dimensional – Then as explained in the proof of
Theorem 3.24, we can write (M, τ) = (Mm1

⊕ · · · ⊕MmK , λ1 Trm1
⊕ · · · ⊕ λk TrmK )

and (N, σ) = (Mn1 ⊕ · · · ⊕MnL , µ1 Tr n1 ⊕ · · · ⊕ µL Tr nL).

Case 1.1. All λk and µl belong to N. – We thus have, as in the proof of Theorem 3.24,
unital trace preserving ∗-homomorphisms J : M → Mm and J ′ : N → Mn as well
as associated conditional expectations E : Mm → M and E′ : Mn → N . Suppose
that T : Lp(M) → Lp(N) is completely positive. By a straightforward extension of
[143, Proposition 2.2 and Lemma 2.3] applied to J ′TE : Spm → Spn, we obtain that
T = E′(J ′TE)J is completely bounded and that

∥T∥cb,Lp(M)→Lp(N) =
∥∥E′J ′TEJ∥∥

cb
≤ ∥E′∥cb ∥J

′TE∥cb ∥J∥cb ≤ ∥J
′TE∥

≤ ∥J ′∥ ∥T∥ ∥E∥ ≤ ∥T∥ .

Case 1.2. All λk and µl belong to Q+. – It is easy to prove that T : Lp(M, tτ)→ Lp(N, tσ)

is bounded if and only if T : Lp(M, τ) → Lp(N, σ) is bounded with equal norms.
A similar result holds for the complete boundedness. Thus, Case 1.2 follows from
Case 1.1.

Case 1.3. λk, µl ∈ (0,∞). – Suppose that T : Lp(M, τ) → Lp(N, σ) is completely
positive. Using Case 1.2 with the map IdεNT (IdεM )−1 : Lp(M, τε)→ Lp(N, σε), we see
that T is completely bounded and that

∥T∥cb,Lp(M,τ)→Lp(N,σ) =
∥∥(IdεN )−1IdεNT (IdεM )−1IdεM

∥∥
cb,Lp(M,τ)→Lp(N,σ)

≤
∥∥(IdεN )−1

∥∥
cb

∥∥IdεNT (IdεM )−1
∥∥

cb
∥IdεM∥cb

=
∥∥(IdεN )−1

∥∥
cb

∥∥IdεNT (IdεM )−1
∥∥ ∥IdεM∥cb

≤
∥∥(IdεN )−1

∥∥
cb
∥IdεN∥ ∥T∥

∥∥(IdεM )−1
∥∥ ∥IdεM∥cb .

23. The proof of [144, Theorem 8.8] for Schatten spaces does not generalize in a straightforward
manner to the case of noncommutative Lp-spaces. Indeed, the equality (3.5.2) is not true with a von
Neumann algebra M instead of Mn. For example, by [146, page 97], the space ℓ∞n ⊗h ℓ

∞
n is isometric

to the space M∞
n of Schur multipliers on Mn and the space CB(ℓ∞n ) is isometric to B(ℓ∞n ) by [68,

Proposition 2.2.6] and it is easy to see that M∞
n is not isometric to B(ℓ∞n ).
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Going to the limit, we obtain ∥T∥cb,Lp(M)→Lp(N) ≤ ∥T∥Lp(M)→Lp(N). Thus Case 1 is
complete.

Case 2. M and N are approximately finite-dimensional and finite. – Let
T : Lp(M)→ Lp(N) be a completely positive map. The net (J ′βE′βTJαEα) con-
verges strongly to T . Using Case 1 with the operator E′βTJα : Lp(Mα)→ Lp(Nβ) and
[137, Theorem 7.4] we deduce that T is completely bounded and that∥∥T∥∥

cb,Lp(M)→Lp(N)
≤ lim inf

α,β

∥∥J ′βE′βTJαEα∥∥cb
≤ lim inf

α,β

∥∥J ′β∥∥cb

∥∥E′βTJα∥∥cb
∥Eα∥cb

≤ lim inf
α,β

∥∥E′βTJα∥∥ ≤ lim inf
α,β

∥∥E′β∥∥ ∥T∥ ∥Jα∥ ≤ ∥T∥Lp(M)→Lp(N) .

Thus, Case 2 is proved. The Case 3 is similar to the Case 2.

3.7. Modulus of regular operators vs 2×2 matrix of decomposable operators

For any regular operator T : Lp(Ω)→ Lp(Ω′) on classical Lp-spaces, it is well-known
that

∥∥|T |∥∥
Lp(Ω)→Lp(Ω′)

= ∥T∥reg,Lp(Ω)→Lp(Ω′), see, e.g., [133, Proposition 1.3.6]. We
recall that the modulus of a regular operator T between real-valued Lp-spaces is
given by |T | def

= −T ∨ T , in the sense that |T | is the supremum of the set {−T, T}
in B(Lp(Ω),Lp(Ω′)), see [156, page 229]. For any positive f ∈ Lp(Ω), we have |T |(f) =

sup{|T (g)| : |g| ≤ f}, see [133, Theorem 1.3.2] and [133, Proposition 2.2.6] in the case
of complex-valued Lp-spaces.

Theorem 3.27. – Let Ω and Ω′ be (localizable) measure spaces. Suppose 1 ≤ p <∞
(see Remark 3.29 for the case p =∞). Let T : Lp(Ω)→ Lp(Ω′) be a regular operator.
Then the map Φ =

[
|T | T
T◦ |T |

]
: Sp2 (Lp(Ω)) → Sp2 (Lp(Ω′)) is completely positive, i.e.,

the infimum of (1.0.3) is attained with v1 = v2 = |T |.

Proof. – We say that a finite collection α = {A1, . . . , Anα} of disjoint measurable
subsets of Ω with finite measures is a semipartition of Ω. We introduce a preorder
on the set A of semipartitions of Ω by letting α ≤ α′ if each set in α is a union of
some sets in α′. It is not difficult to prove that A is a directed set. For any α ∈ A,
we denote by {A1, . . . , Anα} the elements of α of measure > 0. Similarly, we intro-
duce the set B of semipartitions of Ω′. It is not difficult to see (24) that the opera-
tor ℓpnα → span{1A1

, . . . , 1Anα }, ej 7→
1

µ(Aj)
1
p
1Aj is a positive isometric isomorphism

24. Since the functions 1Aj are disjoint, for any complex numbers a1, . . . , anα , we have∥∥∥∥∥∥
nα∑
j=1

aj

µ(Aj)
1
p

1Aj

∥∥∥∥∥∥
Lp(Ω)

=

(
nα∑
j=1

∥∥∥∥∥ aj

µ(Aj)
1
p

1Aj

∥∥∥∥∥
p

Lp(Ω)

) 1
p

=

(
nα∑
j=1

|aj |p

µ(Aj)

∥∥1Aj

∥∥p

Lp(Ω)

) 1
p

=

(
nα∑
j=1

|aj |p
) 1
p

=

∥∥∥∥∥∥
nα∑
j=1

ajej

∥∥∥∥∥∥
ℓ
p
nα

.
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onto the subspace span{1A1 , . . . , 1Anα } of Lp(Ω). By composition with the canonical
identification of span{1A1

, . . . , 1Anα} in Lp(Ω), we obtain a positive isometric embed-
ding Jα : ℓpnα → Lp(Ω). We equally define the average operator Pα : Lp(Ω) → ℓpnα
by

Pα(f)
def
=

nα∑
j=1

(
1

µ(Aj)
1− 1

p

∫
Aj

f dµ

)
ej , f ∈ Lp(Ω).

We need the following folklore lemma.

Lemma 3.28. – Suppose 1 ≤ p <∞.

1. For any α ∈ A, the map Pα is positive and contractive.

2. For any f ∈ Lp(Ω), we have limα JαPα(f) = f .

Proof. – 1. The positivity is obvious. Using Jensen’s inequality, it is elementary to
check the contractivity.

2. Since ∥JαPα∥Lp(Ω)→Lp(Ω) is uniformly bounded by 1, by [32, III 17.4, Proposi-
tion 5] it suffices to show this for f in the dense class of integrable simple functions
constructed with subsets of measure > 0. So let f be such a function, say with re-
spect to some semipartition αf . For any α ∈ A which refines αf , it is easy to see
that JαPα(f) = f . Hence, for this f , the assertion is true.

The net (25)
([

JβPβ JβPβ
JβPβ JβPβ

]
,
[
|T |JαPα TJαPα
T◦JαPα |T |JαPα

])
(α,β)

of the product

B(Sp2 (Lp(Ω′)))× B(Sp2 (Lp(Ω)), Sp2 (Lp(Ω′)))

is obviously convergent to
(
IdSp2 (Lp(Ω′)),

[
|T | T
T◦ |T |

])
where each factor is equipped with

the strong operator topology. Using the strong continuity of the product on bounded
sets (see [69, Proposition C.19]), we infer that the net([

JβPβ |T |JαPα JβPβTJαPα
JβPβT ◦JαPα JβPβ |T |JαPα

])
(α,β)

converges strongly to the map
[
|T | T
T◦ |T |

]
: Sp2 (Lp(Ω)) → Sp2 (Lp(Ω′)). By Lemma 2.10,

since we have the equality[
JβPβ |T |JαPα JβPβTJαPα
JβPβT ◦JαPα JβPβ |T |JαPα

]
= (IdSp2 ⊗ Jβ) ◦

[
Pβ |T |Jα PβTJα
PβT ◦Jα Pβ |T |Jα

]
◦ (IdSp2 ⊗Pα),

it suffices to show that the three linear maps IdSp2 ⊗ Jβ : Sp2 (ℓpnβ ) → Sp2 (Lp(Ω′)),

Φα,β =
[
Pβ |T |Jα PβTJα
PβT◦Jα Pβ |T |Jα

]
: Sp2 (ℓpnα)→ Sp2 (ℓpnβ ) and IdSp2 ⊗Pα : Sp2 (Lp(Ω))→ Sp2 (ℓpnα)

are all completely positive. By Proposition 2.23, the positive maps Jβ : ℓpnβ → Lp(Ω′)

25. The index set A×B is directed by letting (α, β) ≤ (α′, β′) if α ≤ α′ and β ≤ β′.
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and Pα : Lp(Ω)→ ℓpnα are completely positive. It remains to show the second assertion.
For any 1 ≤ j ≤ nα, we have

(PβTJα)(ej) = (PβT )

(
1

µ(Aj)
1
p

1Aj

)
=

1

µ(Aj)
1
p

Pβ
(
T (1Aj )

)
=

1

µ(Aj)
1
p

nβ∑
i=1

1

ν(Bi)
1− 1

p

(∫
Bi

T (1Aj ) dµ′
)
ei.

We deduce that the matrix [tα,β,ij ] of the linear map PβTJα : ℓpnα → ℓpnβ in the
canonical basis is

[
1

µ(Aj)
1
p

1

ν(Bi)
1− 1

p

∫
Bi
T (1Aj ) dµ′

]
. Moreover, we have

(PβT ◦Jα)(ej) = (PβT ◦)
(

1

µ(Aj)
1
p

1Aj

)
=

1

µ(Aj)
1
p

Pβ
(
T (1Aj )

)
=

1

µ(Aj)
1
p

nβ∑
i=1

1

ν(Bi)
1− 1

p

(∫
Bi

T (1Aj ) dµ′
)
ei.

Hence the matrix of PαT ◦Jα is [tα,β,ij ]ij . Finally, we equally have

(Pβ |T |Jα)(ej) = (Pβ |T |)
(

1

µ(Aj)
1
p

1Aj

)
=

1

µ(Aj)
1
p

Pβ
(
|T |(1Aj )

)
=

1

µ(Aj)
1
p

nβ∑
i=1

1

ν(Bi)
1− 1

p

(∫
Bi

|T |(1Aj ) dµ′
)
ei.

Now, we note that∫
Bi

|T |(1Aj ) dµ′ ≥
∫
Bi

|T (1Aj )|dµ′ ≥
∣∣∣∣∫
Bi

T (1Aj ) dµ′
∣∣∣∣ = µ(Aj)

1
p ν(Bi)

1− 1
p |tα,β,ij |.

Thus, Pβ |T |Jα is associated with some matrix [sα,β,ij ] with sα,β,ij = |tα,β,ij |+ rα,β,ij
where rα,β,ij ≥ 0 for any i, j. Further, let ψα,β,ij ∈ C such that tα,β,ij = |tα,β,ij |ψα,β,ij .

We denote by iα : ℓpnα ↪→ Spnα the canonical diagonal embedding,

J̃α
def
= IdSp2 ⊗ iα : Sp2 (ℓpnα)→ Sp2 (Spnα) and by Qα : Sp2 (Spnα) → Sp2 (ℓpnα) the canonical

projection. Note that QαJ̃α = IdSp2 (ℓpnα ).

Now, we show that the map J̃βΦα,βQα : Sp2 (Spnα) → Sp2 (Spnβ ) is completely pos-

itive. If we take aij =

[√
|tα,β,ij |ψα,β,ijeij 0

0
√
|tα,β,ij |eij

]
, b

(1)
ij =

[√
rα,β,ijeij 0

0 0

]
and

b
(2)
ij =

[
0 0
0
√
rα,β,ijeij

]
, we obtain for any x ∈ Sp2 (Spnα)

(J̃βΦα,βQα)(x) = (J̃βΦα,βQα)

([
x11 x12

x21 x22

])

=

(
J̃β

[
Pβ |T |Jα PβTJα
PβT ◦Jα Pβ |T |Jα

])([∑nα
j=1 x11jjej

∑nα
j=1 x12jjej∑nα

j=1 x21jjej
∑nα
j=1 x22jjej

])
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= J̃β

([∑nα
j=1 x11jjPβ |T |Jαej

∑nα
j=1 x12jjPβTJαej∑nα

j=1 x21jjPβT ◦Jαej
∑nα
j=1 x22jjPβ |T |Jαej

])

= J̃β

([∑nα
j=1 x11jj

∑nβ
i=1 sα,β,ijei

∑nα
j=1 x12jj

∑nβ
i=1 tα,β,ijei∑nα

j=1 x21jj

∑nβ
i=1 tα,β,ijei

∑nα
j=1 x22jj

∑nβ
i=1 sα,β,ijei

])

=

nα∑
j=1

nβ∑
i=1

[
x11jjsα,β,ijeii x12jjtα,β,ijeii

x21jjtα,β,ijeii x22jjsα,β,ijeii

]

=

nα∑
j=1

nβ∑
i=1

([
x11jj |tα,β,ij |eii x12jjtα,β,ijeii

x21jjtα,β,ijeii x22jj |tα,β,ij |eii

]
+

[
x11jjrα,β,ijeii 0

0 x22jjrα,β,ijeii

])

=

nα∑
j=1

nβ∑
i=1

([√
|tα,β,ij |ψα,β,ijeij 0

0
√
|tα,β,ij |eij

][
x11 x12

x21 x22

]
[√
|tα,β,ij |ψα,β,ijeji 0

0
√
|tα,β,ij |eji

]
+

[√
rα,β,ijeij 0

0 0

][
x11 x12

x21 x22

][√
rα,β,ijeji 0

0 0

]

+

[
0 0

0
√
rα,β,ijeij

][
x11 x12

x21 x22

][
0 0

0
√
rα,β,ijeji

])

=

nα∑
j=1

nβ∑
i=1

(
aijxa

∗
ij + b

(1)
ij xb

(1)∗
ij + b

(2)
ij xb

(2)∗
ij

)
.

We infer that J̃βΦα,βQα is completely positive. Since Φα,β = Qβ(J̃βΦα,βQα)J̃α, we
conclude that Φα,β is completely positive. The case 1 ≤ p <∞ is proved.

Remark 3.29. – Theorem 3.27 seems to us to be true equally in the case
p =∞. That is, if T : L∞(Ω) → L∞(Ω′) is a (regular) operator, then the map
Φ =

[
|T | T
T◦ |T |

]
: S∞2 (L∞(Ω)) → S∞2 (L∞(Ω′)) is completely positive. To prove this,

replace the mapping Pα : L∞(Ω) → ℓ∞n by Pα(f) =
∑n
i=1 ϕAi(f |Ai)ei, where

ϕAi is an arbitrary state on L∞(Ai) and Ω is partitioned (not semipartitioned) into
Ω =

⋃n
i=1Ai. We equally take Jα : ℓ∞n → L∞(Ω), ei 7→ 1Ai . Then Lemma 3.28 admits

an L∞-variant (the verification is entirely left to the reader), in particular JαPα
converges strongly to the identity on L∞(Ω) (the partitions are of course directed
by refinement). Also the proof of Theorem 3.27 works in a similar way. If T is in
addition weak* continuous, we can use a duality argument (26).

26. Assume in addition that T : L∞(Ω) → L∞(Ω′) is weak* continuous with pre-
adjoint T∗ : L1(Ω′) → L1(Ω). Then by (3.1.5) and by the case p = 1 proved pre-

viously, the map
[
|T∗| T∗

(T∗)
◦ |T∗|

]
: S1

2(L1(Ω′)) → S1
2(L1(Ω)) is completely positive. Note

that |T∗|∗ = |(T∗)∗| = |T | where we use [1, Theorem 2.28 page 85] in the first equal-
ity and it is easily checked that ((T∗)◦)∗ = T ◦. So by Lemma 2.9, its adjoint[

|T∗|∗ (T∗)
∗

((T∗)
◦)∗ |T∗|∗

]
=
[
|T | T

T◦ |T |

]
: S∞2 (L∞(Ω)) → S∞2 (L∞(Ω′)) is also completely positive.
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3.8. Decomposable vs completely bounded

The authors of [112] say that the following result is true without the QWEP

assumption (and without proof). However, we think that QWEP is necessary (27)

for 1 < p <∞.

Proposition 3.30. – Let M and N be two QWEP von Neumann algebras which
are equipped with faithful normal semifinite traces. Suppose 1 ≤ p ≤ ∞. Let
T : Lp(M) → Lp(N) be a decomposable map. Then T is completely bounded and
∥T∥cb,Lp(M)→Lp(N) ≤ ∥T∥dec,Lp(M)→Lp(N).

Proof. – By Proposition 3.5, there exist linear maps v1, v2 : Lp(M) → Lp(N)

such that the map Φ
def
=
[
v1 T
T◦ v2

]
: Sp2 (Lp(M)) → Sp2 (Lp(N)) is completely pos-

itive with max
{
∥v1∥ , ∥v2∥

}
= ∥T∥dec. Let b be an element of Spn(L

p(M))

with ∥b∥Spn(Lp(M)) ≤ 1. By Lemma 2.14, we can find a, c ∈ Spn(L
p(M)) with

∥a∥Spn(Lp(M)) ≤ 1 and ∥c∥Spn(Lp(M)) ≤ 1 such that
[
a b
b∗ c

]
is a positive element

of Sp2n(L
p(M)). We deduce that[
(IdSpn ⊗ v1)(a) (IdSpn ⊗ T )(b)

(IdSpn ⊗ T )(b)∗ (IdSpn ⊗ v2)(c)

]
=

[
(IdSpn ⊗ v1)(a) (IdSpn ⊗ T )(b)

(IdSpn ⊗ T )◦(b∗) (IdSpn ⊗ v2)(c)

]

=

[
(IdSpn ⊗ v1)(a) (IdSpn ⊗ T )(b)

(IdSpn ⊗ T ◦)(b∗) (IdSpn ⊗ v2)(c)

]
= (IdSpn ⊗ Φ)

([
a b

b∗ c

])
is a positive element of Sp2n(L

p(N)). By Lemma 2.13, using Theorem 2.19, we obtain∥∥(IdSpn ⊗ T )(b)
∥∥
Spn(Lp(N))

≤ 1

2
1
p

(∥∥(IdSpn ⊗ v1)(a)∥∥pSpn(Lp(N))
+
∥∥(IdSpn ⊗ v2)(c)∥∥pSpn(Lp(N))

) 1
p

≤ 1

2
1
p

(
∥v1∥pcb ∥a∥

p
Spn(Lp(M)) + ∥v2∥pcb ∥c∥

p
Spn(Lp(M))

) 1
p

≤ max
{
∥v1∥ , ∥v2∥}

1

2
1
p

(
∥a∥pSpn(Lp(M)) + ∥c∥pSpn(Lp(M))

) 1
p

≤ max
{
∥v1∥ , ∥v2∥

}
= ∥T∥dec .

We obtain
∥∥IdSpn ⊗ T∥∥Spn(Lp(M))→Spn(Lp(N))

≤ ∥T∥dec.

We conclude that ∥T∥cb ≤ ∥T∥dec.

Proposition 3.31. – Let M and N be two QWEP von Neumann algebras equipped
with faithful normal semifinite traces. Suppose 1 ≤ p ≤ ∞.

Let T : Lp(M)→ Lp(N) be a completely positive map. Then T is decomposable and
we have ∥T∥cb = ∥T∥dec = ∥T∥.

27. Another point of view is to replace the formula of Definition (1.0.4) by ∥T∥dec,Lp(M)→Lp(N) =

inf
{

max{∥v1∥cb , ∥v2∥cb}
}
.
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Proof. – By Proposition 3.11, we know that T is decomposable and that ∥T∥dec ≤ ∥T∥.
If M and N are QWEP, by Proposition 3.30, we have ∥T∥cb ≤ ∥T∥dec.

To complement the previous proposition, we observe that completely bounded op-
erators are not decomposable in general. For that, we give a result on group von
Neumann algebras of discrete groups, see Section 4.1 for background.

Proposition 3.32. – 1. Let G be a non-amenable weakly amenable discrete group.
Then there exists a completely bounded Fourier multiplier Mφ : VN(G)→ VN(G)

which is not decomposable.

2. Suppose 1 < p < ∞. Let G be a non-amenable discrete group with AP and
such that VN(G) has QWEP. Then there exists a completely bounded Fourier
multiplier Mφ : Lp(VN(G))→ Lp(VN(G)) which is not decomposable.

Proof. – 1. By the proofs of [37, Theorem 12.3.10] and [111, Theorem 4.4], there
exists a net

(
Mφα

)
of finite-rank completely bounded Fourier multipliers on VN(G)

with ∥Mφα∥cb ≤ C such that Mφα → IdVN(G) in the point weak* topology. If all
the completely bounded Fourier multipliers were decomposable, since two compara-
ble complete norms on a linear space are in fact equivalent, the von Neumann algebra
VN(G) would have the bounded normal decomposable approximation property of
[126, Theorem 4.3 (iv)] (see also [112, page 355]) and VN(G) would be injective. By
[162, Theorem 3.8.2], we conclude that G is amenable. This is the desired contradic-
tion.

2. By [111, Theorem 4.4], there exists a net of completely contractive finite-rank
Fourier multipliers Mφα : Lp(VN(G)) → Lp(VN(G)) such that Mφα → IdLp(VN(G))

in the point-norm topology. If all the Fourier multipliers were decomposable, again
since two comparable complete norms on a linear space are in fact equivalent, the
space Lp(VN(G)) would have the bounded decomposable approximation property of
[112, page 356]. By [112, Theorem 5.2] the von Neumann algebra VN(G) would be
injective. By [162, Theorem 3.8.2], we conclude that G is amenable. This is a second
contradiction.

Remark 3.33. – Note that we can use the free group Fn where 2 ≤ n ≤ ∞ (n count-
able) with the two parts of the last result. Indeed, by [83, Theorem 1.8] (see also [51,
Corollary 3.11]), the group Fn is weakly amenable, hence has AP by [87, page 677].
Moreover, it is well-known that VN(Fn) has QWEP, see, e.g., [146, Theorem 9.10.4].

We will describe in Theorem 3.38 an explicit result in the same vein. For that, we
need intermediate results.
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Lemma 3.34. – Let M be a von Neumann algebra equipped with a faithful normal
semifinite trace. Suppose 1 ≤ p ≤ ∞. For any integer n ≥ 2, the maps

αn : Lp(M) −→ Spn(L
p(M))

x 7−→


x · · · x
...

...
x · · · x


and

σn : Spn2(L
p(M)) −→ Spn(L

p(M))


b1111 · · · b1n11
...

...
bn1
11 · · · bnn11

 · · ·


b111n · · · b1n1n
...

...
bn1
1n · · · bnn1n


...

...
b11n1 · · · b1nn1

...
...

bn1
n1 · · · bnnn1

 · · ·


b11nn · · · b1nnn
...

...
bn1
nn · · · bnnnn




7−→


b1111 · · · b1n1n
...

...
bn1
n1 · · · bnnnn



are completely positive.

Proof. – For any x ∈ Lp(M), we have αn(x) =

[ x ··· x
...

...
x ··· x

]
=

[
1
...
1

]
x [ 1 ··· 1 ]. Moreover,

for any b ∈ Spn2(L
p(M)), we have σn(b) = AbA∗ where A ∈ Mn,n2 is defined by

A =


[
1 0 · · · 0

] [
0 0 · · · 0

]
· · ·

[
0 0 · · · 0

][
0 0 · · · 0

] [
0 1 · · · 0

]
. . .

[
0 0 · · · 0

]
...

...[
0 0 · · · 0

]
· · ·

[
0 0 · · · 0

] [
0 · · · 0 1

]

 .
Now, we appeal to (2.2.3).

Proposition 3.35. – Let M and N be von Neumann algebras equipped with faithful
normal semifinite traces. Suppose 1 ≤ p ≤ ∞. Let n ≥ 2 be an integer and consider
some bounded maps Tij : Lp(M)→ Lp(N) where 1 ≤ i, j ≤ n. If αn is the completely
positive map from Lemma 3.34 then the map

Φ: Spn(L
p(M)) −→ Spn(L

p(N))
a11 · · · a1n

...
...

an1 · · · ann

 7−→


T11(a11) · · · T1n(a1n)

...
...

Tn1(an1) · · · Tnn(ann)
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is completely positive if and only if the map Φ ◦ αn is completely positive.

Proof. – One direction is obvious. For the reverse direction, we have

σn ◦
(
IdSpn ⊗ (Φ ◦ αn)

)

a11 · · · a1n

...
...

an1 · · · ann


 = σn




Φ ◦ αn(a11) · · · Φ ◦ αn(a1n)
...

...
Φ ◦ αn(an1) · · · Φ ◦ αn(ann)




= σn






T11(a11) · · · T1n(a11)

...
...

Tn1(a11) · · · Tnn(a11)

 · · ·


T11(a1n) · · · T1n(a1n)

...
...

Tn1(a1n) · · · Tnn(a1n)


...

...
T11(an1) · · · T1n(an1)

...
...

Tn1(an1) · · · Tnn(an1)

 · · ·


T11(ann) · · · T1n(ann)

...
...

Tn1(ann) · · · Tnn(ann)







=


T11(a11) · · · T1n(a1n)

...
...

Tn1(an1) · · · Tnn(ann)

 = Φ



a11 · · · a1n

...
...

an1 · · · ann


 .

Hence Φ = σn ◦ (IdSpn ⊗ (Φ ◦ αn)). Note that if Φ ◦ αn is completely positive then
IdSpn ⊗ (Φ ◦ αn) is also completely positive by Lemma 2.11. In this case, since σn is
completely positive we deduce that Φ is completely positive.

Proposition 3.36. – Let M and N be von Neumann algebras equipped with faithful
normal semifinite traces. Suppose 1 ≤ p ≤ ∞. Let T : Lp(M) → Lp(N) be a linear
map. Then T is decomposable if and only if the map T̃ ◦ α2 : Lp(M) → Sp2 (Lp(N))

where T̃ is the map from Proposition 3.17 is decomposable. Moreover, in this case, we
have

∥T∥dec,Lp(M)→Lp(N) ≤ ∥T̃ ◦ α2∥dec,Lp(M)→Sp2 (Lp(N)) ≤ 2
1
p ∥T∥dec,Lp(M)→Lp(N) .

Furthermore, T̃ ◦ α2 is adjoint preserving.

Proof. – Let x ∈ Lp(M). We have

T̃ ◦ α2(x
∗) = T̃

([
x∗ x∗

x∗ x∗

])
=

[
0 T (x∗)

T ◦(x∗) 0

]
=

[
0 T (x∗)

T (x)∗ 0

]
and also(
T̃ ◦ α2(x)

)∗
=

(
T̃

([
x x

x x

]))∗
=

[
0 T (x)

T ◦(x) 0

]∗
=

[
0 T ◦(x)∗

T (x)∗ 0

]
=

[
0 T (x∗)

T (x)∗ 0

]
.

We conclude that T̃ ◦ α2 is adjoint preserving, i.e., (T̃ ◦ α2)
◦ = T̃ ◦ α2.
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Suppose that T is decomposable. By Proposition 3.5, there exist some maps
v1, v2 : Lp(M) → Lp(N) such that

[
v1 T
T◦ v2

]
is completely positive with

max
{
∥v1∥ , ∥v2∥

}
= ∥T∥dec. Using (2.2.3), we note that the map

Sp2 (Lp(M))→ Sp2 (Lp(M)),

[
a b

c d

]
7→

[
1 0

0 −1

][
a b

c d

][
1 0

0 −1

]
=

[
a −b
−c d

]

is completely positive. By composition, we deduce that the map
[
v1 −T
−T◦ v2

]
◦ α2 is

completely positive. We define the map S def
=
[
v1 0
0 v2

]
◦α2 : Lp(M)→ Sp2 (Lp(N)). Then

in the light of the foregoing, S is completely positive and it is easy to check using
(2.3.2) that ∥S∥ ≤ 2

1
p ∥T∥dec. Moreover, −S ≤cp T̃ ◦ α2 ≤cp S. By Proposition 3.19,

we conclude that
∥∥∥T̃ ◦ α2

∥∥∥
dec
≤ 2

1
p ∥T∥dec.

Now suppose that the map T̃ ◦α2 : Lp(M)→ Sp2 (Lp(N)) is decomposable. Moreover
let v1, v2 : Lp(M)→ Sp2 (Lp(N)) such that the map

[
v1 T̃◦α2

T̃◦α2 v2

]
: Sp2 (Lp(M))→ Sp4 (Lp(N))

is completely positive.
Put w1 : Lp(M)→ Lp(N), a 7→ (v1(a))11 and w2 : Lp(M)→ Lp(N), a 7→ (v2(a))22.

Then each wi is also completely positive as a composition of completely positive
mappings. Then an easy computation gives

[
1 0 0 0

0 0 0 1

]
·

([
v1 T̃ ◦ α2

T̃ ◦ α2 v2

]([
a b

c d

]))
·


1 0

0 0

0 0

0 1



=

[
1 0 0 0

0 0 0 1

]
·

[
v1(a) T̃ ◦ α2(b)

T̃ ◦ α2(c) v2(d)

]
·


1 0

0 0

0 0

0 1

 =

[
w1(a) T (b)

T ◦(c) w2(d)

]
.

Using (2.2.3), we deduce by composition that the map
[
w1 T
T◦ w2

]
is completely positive.

We infer that T is decomposable and that ∥T∥dec ≤ max{∥w1∥ , ∥w2∥} ≤ max{∥v1∥ , ∥v2∥}
and passing to the infimum over all admissible v1, v2 shows that ∥T∥dec ≤ ∥T̃ ◦ α2∥dec.

In the following result, we generalize the results of [68, Theorem 5.4.7] and [85,
page 204] done for p =∞.

Theorem 3.37. – Let M be a von Neumann algebra equipped with a normal fi-
nite faithful normalized trace and let u1, . . . , un ∈ M be arbitrary unitaries. Sup-
pose 1 ≤ p ≤ ∞. Consider the map T : ℓpn → Lp(M) defined by T (ek) = uk. Then
∥T∥dec,ℓpn→Lp(M) = n1− 1

p .
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Proof. – As observed, we can suppose 1 ≤ p <∞. Note that the unit element 1 of M
belongs to Lp(M) since M is finite. The map φ : ℓpn → C,

∑n
k=1 ckek 7→

∑n
k=1 ck is

a positive linear functional. Since ℓpn is a commutative Lp-space, by Proposition 2.24,
we deduce that the linear map

v : ℓpn −→ Lp(M)∑n
k=1 ckek 7−→

(∑n
k=1 ck

)
1

is completely positive. Moreover, using the normalization of the trace in the third
equality and Hölder’s inequality in the last inequality, we have∥∥∥∥∥v

( n∑
k=1

ckek

)∥∥∥∥∥
Lp(M)

=

∥∥∥∥∥
( n∑
k=1

ck

)
1

∥∥∥∥∥
Lp(M)

=

∣∣∣∣∣
n∑
k=1

ck

∣∣∣∣∣ ∥1∥Lp(M)

=

∣∣∣∣∣
n∑
k=1

ck

∣∣∣∣∣ ≤
n∑
k=1

|ck| ≤ n1− 1
p

( n∑
k=1

|ck|p
) 1
p

.

We infer that ∥v∥ ≤ n1− 1
p .

We consider the map T̃ =
[

0 T
T◦ 0

]
: Sp2 (ℓpn)→ Sp2 (Lp(M)) and the map α4 : ℓpn → Sp4 (ℓpn)

of Lemma 3.34 with M = ℓ∞n . Since e∗k = ek, we have

[
v 0

0 v

]
T̃

T̃

[
v 0

0 v

]
 ◦ α4

 (ek) =


v(ek) 0 0 T (ek)

0 v(ek) T ◦(ek) 0

0 T (ek) v(ek) 0

T ◦(ek) 0 0 v(ek)

 =


1 0 0 uk

0 1 u∗k 0

0 uk 1 0

u∗k 0 0 1

 .
The 2×2 matrix ũk =

[
0 uk
u∗k 0

]
is a (selfadjoint) unitary.

Hence we have
∥∥∥[ 0 uk

u∗k 0

]∥∥∥
M2(M)

≤ 1. By [68, Proposition 1.3.2], we conclude that

the matrix on the right hand side of the previous equation is positive. Thus the

map
[

[ v 0
0 v ] T̃

T̃ [ v 0
0 v ]

]
◦ α4 is positive. Using again Proposition 2.24, we obtain that

this map is indeed completely positive. By Proposition 3.35, we deduce that the

map
[

[ v 0
0 v ] T̃

T̃ [ v 0
0 v ]

]
is completely positive.

Hence T̃ is decomposable with
∥∥∥T̃∥∥∥

dec
≤ ∥[ v 0

0 v ]∥ ≤ ∥v∥ where the last inequality is
easy to prove using [145, Corollary 1.3]. Using Proposition 3.18, we conclude that T is
decomposable and that ∥T∥dec =

∥∥∥T̃∥∥∥
dec
≤ ∥v∥ ≤ n1− 1

p .

On the other hand, let S : ℓpn → Sp2 (Lp(M)) be a completely positive map sat-
isfying −S ≤cp T̃ ◦ α2 ≤cp S where α2 : ℓpn → Sp2 (ℓpn). If we let xk

def
= S(ek) and

ũk
def
= T̃ ◦ α2(ek), then ũk =

[
0 uk
u∗k 0

]
is a selfadjoint unitary with −xk ≤ ũk ≤ xk.

Thus we have
xk =

1

2

[
(xk − ũk) + (xk + ũk)

]
,
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with xk ± ũk ≥ 0. Consider the finite trace τ1
def
= Tr ⊗ τ on M2(M) where τ is the

normalized trace on M . Then it follows that

τ1(xk) = τ1

(
1

2

[
(xk − ũk) + (xk + ũk)

])
=

1

2

[
τ1
(
xk − ũk

)
+ τ1

(
xk + ũk

)]
=

1

2

[
∥xk − ũk∥1 + ∥xk + ũk∥1

]
≥ 1

2
∥xk − ũk − (xk + ũk)∥1 = ∥ũk∥S1

2(L1(M)),

where ∥ũk∥S1
2(L1(M)) = τ1

((
ũ∗kũk

) 1
2

)
= τ1(I2 ⊗ 1) = 2. Moreover, we have

∥I2 ⊗ 1∥
Sp
∗

2 (Lp∗ (M))
= 2

1
p∗ . By duality, we obtain

∥x1 + · · ·+ xn∥Sp2 (Lp(M)) ≥
⟨x1 + · · ·+ xn, I2 ⊗ 1⟩
∥I2 ⊗ 1∥

Sp
∗

2 (Lp∗ (M))

=
τ1(x1 + · · ·+ xn)

∥I2 ⊗ 1∥
Sp
∗

2 (Lp∗ (M))

= 21− 1
p∗ n.

We deduce that

∥S∥ℓpn→Sp2 (Lp(M)) ≥

∥∥S(1)
∥∥
Sp2 (Lp(M))

∥1∥ℓpn
= n−

1
p

∥∥S(e1) + · · ·+ S(en)
∥∥
Sp2 (Lp(M))

= n−
1
p ∥x1 + · · ·+ xn∥Sp2 (Lp(M)) ≥ n

− 1
p 21− 1

p∗ n = n1− 1
p 21− 1

p∗ .

Using Proposition 3.36 in the first inequality and Proposition 3.19 in the second
inequality, we conclude that

∥T∥dec,ℓpn→Lp(M) ≥ 2−
1
p

∥∥∥T̃ ◦ α2

∥∥∥
dec,ℓpn→Sp2 (Lp(M))

≥ 2−
1
pn1− 1

p 21− 1
p∗ = n1− 1

p .

Let n ≥ 1 be an integer and let G = Fn be a free group with n generators denoted
by g1, . . . , gn.

Theorem 3.38. – Suppose 1 ≤ p ≤ ∞. Let n ≥ 2 be an integer. Consider the
map Tn : ℓpn → Lp(VN(Fn)) defined by Tn(ek) = λgk . We have ∥Tn∥cb ≤

(
2
√
n− 1

)1− 1
p

and ∥Tn∥dec = n1− 1
p . In particular, if 1 < p ≤ ∞ we have ∥Tn∥dec

∥Tn∥cb
−−−−−→
n→+∞

+∞.

Proof. – The equality is a consequence of Theorem 3.37. For any 1 ≤ k ≤ n, using
the normalized trace τFn , note that∥∥λgk∥∥L1(VN(Fn))

= τFn(|λgk |) = τFn

((
λ∗gkλgk

) 1
2

)
= τFn(1) = 1.

For any A1, . . . , Al ∈ S1
n, using the isometry S1

n(ℓ
1
n) = ℓ1n(S

1
n) in the last equality, we

deduce that∥∥∥∥∥(IdS1
n
⊗ Tn

)( l∑
k=1

Ak ⊗ ek
)∥∥∥∥∥

S1
n(L1(VN(Fn)))

=

∥∥∥∥∥
l∑

k=1

Ak ⊗ λgk

∥∥∥∥∥
S1
n(L1(VN(Fn)))

≤
l∑

k=1

∥Ak∥S1
n

∥∥λgk∥∥L1(VN(Fn))
=

l∑
k=1

∥Ak∥S1
n

=

∥∥∥∥∥
l∑

k=1

Ak ⊗ ek

∥∥∥∥∥
S1
n(ℓ1n)

.
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We deduce that ∥Tn∥cb,ℓ1n→L1(VN(Fn)) ≤ 1. Note that [68, Theorem 5.4.7] gives the
estimate ∥Tn∥cb,ℓ∞n →VN(Fn) ≤ 2

√
n− 1. Hence, by interpolation, we deduce that

∥Tn∥cb,ℓpn→Lp(VN(Fn)) ≤
(
∥Tn∥cb,ℓ1n→L1(VN(Fn))

) 1
p
(
∥Tn∥cb,ℓ∞n →VN(Fn)

)1− 1
p

≤
(
2
√
n− 1

)1− 1
p .

In Chapter 7, we will continue these investigations.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2023





CHAPTER 4

DECOMPOSABLE SCHUR MULTIPLIERS
AND FOURIER MULTIPLIERS

ON DISCRETE GROUPS

In this chapter, we give a generalization of the average argument of Haagerup.
This construction simultaneously gives a complementation for spaces of completely
bounded Schur multipliers and completely bounded Fourier multipliers on discrete
groups, possibly deformed by a 2-cocycle and the independence of the completely
bounded norm and the complete positivity with respect to the 2-cocycle. In Sec-
tion 4.3 below, we give our first results on decomposable Fourier multipliers (and
Schur multipliers).

4.1. Twisted von Neumann algebras

A basic reference on this subject is [181]. See also [18] and references therein. Let
G be a discrete group. We first recall that a 2-cocycle on G with values in T is a
map σ : G×G→ T such that

(4.1.1) σ(s, t)σ(st, r) = σ(t, r)σ(s, tr)

for any s, t, r ∈ G. We will consider only normalized 2-cocycles, that is, satisfying
σ(s, e) = σ(e, s) = 1 for any s ∈ G. This implies that σ(s, s−1) = σ(s−1, s) for
any s ∈ G. The set Z2(G,T) of all normalized 2-cocycles becomes an abelian group un-
der pointwise product, the inverse operation corresponding to conjugation: σ−1 = σ,
where σ(s, t) = σ(s, t), and the identity element being the trivial cocycle on G denoted
by 1.

Now, suppose that G is equipped with a T-valued 2-cocycle. For any s ∈ G, we
define the bounded operator λσ,s ∈ B(ℓ2G) by

(4.1.2) λσ,sεt
def
= σ(s, t)εst,
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where (εt)t∈G is the canonical basis of ℓ2G. We define the twisted group von Neumann
algebra VN(G, σ) as the von Neumann subalgebra of B(ℓ2G) generated by the ∗-algebra

C(G, σ)
def
= span

{
λσ,s : s ∈ G

}
.

For example, let d ≥ 2 and set G = Zd. To each d× d real skew symmetric matrix θ,
one may associate σθ ∈ Z2(Zd,T) by σθ(m,n) = e2iπ⟨m,θn⟩ where m,n ∈ Zd. The
resulting algebras Tdθ = VN(Zd, σθ) are the so-called d-dimensional noncommutative
tori. See [42] for a study of harmonic analysis on this algebra.

If σ = 1, we obtain the left regular representation λ : G → B(ℓ2G) and the group
von Neumann algebra VN(G) of G.

The von Neumann algebra VN(G, σ) is a finite algebra with trace given
by τG,σ(x) =

〈
εe, x(εe)

〉
ℓ2G

where x ∈ VN(G, σ). In particular τG,σ(λσ,s) = δs,e.
The generators λσ,s satisfy the relations

(4.1.3) λσ,sλσ,t = σ(s, t)λσ,st,
(
λσ,s

)∗
= σ(s, s−1)λσ,s−1 .

Moreover, we have

τG,σ
(
λσ,sλσ,t

)
= σ(s, t)δs,t−1 , s, t ∈ G.

Given a discrete group G and a T-valued 2-cocycle σ, we can consider the fun-
damental unitary W : εt ⊗ εr 7→ εt ⊗ εtr on ℓ2G ⊗2 ℓ

2
G and another unitary opera-

tor σ̃ : εt ⊗ εr → σ(t, r)εt ⊗ εr representing σ. We define the σ-fundamental unitary
as the unitary operator

(4.1.4) W (σ) = Wσ̃ : εt ⊗ εr 7→ σ(t, r)εt ⊗ εtr.

Lemma 4.1. – Suppose that σ and ω are T-valued 2-cocycles on a discrete group G.
Then, for any s ∈ G we have

W (ω)
(
λσ·ω,s ⊗ Idℓ2G

)(
W (ω)

)∗
= λσ,s ⊗ λω,s.

Proof. – On the one hand, for any s, t, r ∈ G, using (4.1.2) in the second equality and
(4.1.4) in the third equality, we have

W (ω)
(
λσ·ω,s ⊗ Idℓ2G

)
(εt ⊗ εr) = W (ω)

(
λσ·ω,sεt ⊗ εr

)
= (σ · ω)(s, t)W (ω)

(
εst ⊗ εr

)
= σ(s, t)ω(s, t)ω(st, r)εst ⊗ εstr.

On the other hand, using (4.1.4) in the first equality and (4.1.2) in the third equality,
we have

(λσ,s ⊗ λω,s)W (ω)(εt ⊗ εr) = (λσ,s ⊗ λω,s)(ω(t, r)εt ⊗ εtr)
= ω(t, r)(λσ,sεt ⊗ λω,sεtr) = σ(s, t)ω(t, r)ω(s, tr)εst ⊗ εstr.

Using (4.1.1) with ω instead of σ, we conclude that these quantities are equal.
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Using this lemma, we obtain a well-defined kind of “twisted coproduct” which is a
unital normal ∗-monomorphism:

(4.1.5)
∆σ,ω : VN(G, σ · ω) −→ VN(G, σ)⊗VN(G,ω)

λσ·ω,s 7−→ λσ,s ⊗ λω,s.

A very particular case of this construction is considered in [42, Corollary 2.2] for
noncommutative tori with σ = 1, under the notation x 7→ x̃.

Suppose 1 ≤ p ≤ ∞. Then a linear map T : Lp(VN(G, σ)) → Lp(VN(G, σ)) is
a (completely) bounded Fourier multiplier on Lp(VN(G, σ)) if T is (completely)
bounded (and normal if p =∞) and if there exists a complex function φ : G → C
such that T

(
λσ,s

)
= φsλσ,s for any s ∈ G. In this case, we denote T by

Mφ : Lp(VN(G, σ)) −→ Lp(VN(G, σ))

λσ,s 7−→ φsλσ,s.

We denote byMp(G, σ) the space of bounded Fourier multipliers on Lp(VN(G, σ)) and
byMp,cb(G, σ) the space of completely bounded Fourier multipliers on Lp(VN(G, σ)).

More generally, if I is a set, we denote byMp,cb
I (G, σ) the space of (normal if p =∞)

completely bounded operators Φ: Lp(B(ℓ2I)⊗VN(G, σ))→ Lp(B(ℓ2I)⊗VN(G, σ)) such
that Φ = [Mφij ]i,j∈I for some functions φij : G → C. For a (normal if p = ∞)
bounded operator Φ, this is equivalent to the existence of a family of functions
(φij : G→ C)i,j∈I such that

(4.1.6) (Tr ⊗τG,σ)
(
T (eij ⊗ λσ,s)(ekl ⊗ λσ,t)∗

)
= φij(s)δs,tδi,kδj,l

for any s, t ∈ G and any i, j, k, l ∈ I.
If σ is a T-valued 2-cocycle on a discrete group G and if H is a subgroup of G, we

denote by σ|H : H ×H → T the restriction of σ to H ×H. It follows from [181, Sec-
tion 4.26] that there is a canonical normal unital ∗-monomorphism J of VN(H,σ|H)

into VN(G, σ) sending λσ|H,s to λσ,s for each s ∈ H which is trace preserving. Its
Lp-extension Jp : Lp(VN(H,σ|H))→ Lp(VN(G, σ)), λσ|H,s 7→ λσ,s is a complete con-
traction for 1 ≤ p ≤ ∞.

Moreover, it is easy to see for 1 ≤ p ≤ ∞ that the adjoint of Jp∗ (preadjoint if
p = 1) is given by (Jp∗)

∗ : Lp(VN(G, σ)) → Lp(VN(H,σ|H)), λσ,s 7→ δs∈Hλσ|H,s,
which is again a complete contraction. Thus, for an element

T = [Mφij ]i,j∈I : SpI (L
p(VN(H,σ|H)))→ SpI (L

p(VN(H,σ|H)))

of Mp,cb
I (H,σ|H), we can consider the completely bounded map

S
def
= (IdSpI ⊗ Jp)T (IdSpI ⊗ (Jp∗)

∗) : SpI (L
p(VN(G, σ)))→ SpI (L

p(VN(G, σ))).

We clearly have ∥S∥cb ≤ ∥T∥cb and using (Jp∗)
∗Jp = IdLp(VN(H,σ|H)), we also have

∥T∥cb ≤ ∥S∥cb. Thus we can identify isometrically Mp,cb
I (H,σ|H) as a subspace of

the Banach space CB(Lp(B(ℓ2I)⊗VN(G, σ))) by identifying [Mφij ]i,j∈I to [Mφ̃ij ]i,j∈I
where φ̃ : G → C denotes the extension of φ : H → C on G which is zero off H.
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Moreover, we have a canonical contraction Mp,cb
I (G, σ) → Mp,cb

I (H,σ|H), sending
[Mφij ]ij to [Mφij |H ]ij . Indeed, note that [Mφij |H ]ij = IdSpI ⊗ (Jp∗)

∗ · [Mφij ] · IdSpI ⊗Jp.

4.2. Complementation for Schur multipliers and Fourier multipliers on discrete groups

The following theorem generalizes an average trick of Haagerup [86, proof of
Lemma 2.5] (28). The important point of the proof (for 1 ≤ p ≤ ∞) is the fact that
the map ∆ below is trace preserving.

Theorem 4.2. – Let I be an index set equipped with the counting measure. Let
G be a discrete group equipped with two normalized T-valued 2-cocycles σ, ω. Sup-
pose 1 ≤ p ≤ ∞. If p ̸=∞, we suppose that VN(G,ω) has QWEP.

Let T : SpI (L
p(VN(G, σ))) → SpI (L

p(VN(G, σ))) be a completely bounded operator.
For any i, j ∈ I, we define the complex function φij : G→ C by

φij(s)
def
= (Tr ⊗τG,σ)

(
T (eij ⊗ λσ,s)(eij ⊗ λσ,s)∗

)
, s ∈ G.

Then the map

P pI,G : CB(SpI (L
p(VN(G, σ)))) −→ CB(SpI (L

p(VN(G, σ · ω))))

T 7−→ [Mφij ]

is a well-defined contractive map into Mp,cb
I (G, σ · ω). There are the following addi-

tional properties of P pI,G.

1. If ω = 1, the map P pI,G is a projection onto Mp,cb
I (G, σ).

2. For p = ∞, the same assertions are true by replacing CB(SpI (L
p(VN(G, σ))))

by the space CBw∗(B(ℓ2I)⊗VN(G, σ)).

3. If T is completely positive then the map P pI,G(T ) is completely positive.

4. For any values p, q ∈ [1,∞] and any

T ∈ CB(SpI (L
p(VN(G, σ)))) ∩ CB(SqI (L

q(VN(G, σ))))

we have (P pI,G(T ))([xij ]) = (P qI,G(T ))([xij ]) for any element [xij ] of

SpI (L
p(VN(G, σ · ω))) ∩ SqI (L

q(VN(G, σ · ω))).

So the mappings P pI,G, 1 ≤ p ≤ ∞, are compatible.

5. Furthermore, if p = ∞ and if T is selfadjoint then P∞I,G(T ) is selfadjoint.
If T = [Tij ] is a normal operator where Tij : VN(G, σ) → VN(G, σ) and if
each Tii is unital then P∞I,G(T ) is unital.

6. We have an isometry

Mp,cb
I (G, σ) =Mp,cb

I (G, σ · ω).

28. We warn the reader that the assumption “normal” is lacking in [86, Lemma 2.5] for maps
defined on M(Γ).
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Proof. – Using the map (4.1.5), it is easy to see that we can define a well-defined
unital normal ∗-isomorphism

∆: MI(VN(G, σ · ω))→ MI(VN(G, σ))⊗MI(VN(G,ω))

onto the sub-von Neumann algebra ∆
(
MI(VN(G, σ · ω))

)
of MI(VN(G, σ))⊗MI(VN(G,ω))

such that

∆(eij ⊗ λσ·ω,s) = eij ⊗ λσ,s ⊗ eij ⊗ λω,s, s ∈ G.

Using the flip MI⊗VN(G, σ)⊗MI⊗VN(G,ω) → MI⊗MI⊗VN(G, σ)⊗VN(G,ω),

x⊗ y ⊗ z ⊗ t 7→ x⊗ z ⊗ y ⊗ t, it is not difficult to check with [166, Theorem 6.2] that
the operator ∆ preserves the traces. Consequently ∆ is a Markov map in the sense
of Section 2.6 and admits a canonical extension

∆p : SpI (L
p(VN(G, σ · ω)))→ Lp(B(ℓ2I)⊗VN(G, σ)⊗B(ℓ2I)⊗VN(G,ω)),

which is completely contractive and completely positive (and normal if p =∞).

Suppose that T : SpI (L
p(VN(G, σ)))→ SpI (L

p(VN(G, σ))) is a completely bounded
operator. If VN(G,ω) is QWEP then by (2.1.6) the operator

P pI,G(T ) = (∆∗)p
(
T ⊗ IdSpI (Lp(VN(G,ω)))

)
∆p

is a completely bounded map on the space SpI (L
p(VN(G, σ · ω))). Moreover, we have∥∥P pI,G(T )

∥∥
cb,SpI (Lp(VN(G,σ·ω)))→SpI (Lp(VN(G,σ·ω)))

≤
∥∥(∆∗)p

(
T ⊗ IdSpI (Lp(VN(G,ω)))

)
∆p

∥∥
cb

≤ ∥T∥cb,SpI (Lp(VN(G,σ)))→SpI (Lp(VN(G,σ))) .

Thus P pI,G is contractive. For any i, j, k, l ∈ I and any s, s′ ∈ G, we have

(Tr ⊗τG,σ·ω)
((

(∆∗)p
(
T ⊗ IdSpI (Lp(VN(G,ω)))

)
∆p(eij ⊗ λσ·ω,s)

)
(ekl ⊗ λσ·ω,s′)∗

)
= (Tr ⊗τG,σ·ω)

(
(∆∗)p

(
T ⊗ IdSpI (Lp(VN(G,ω)))

)
(eij ⊗ λσ,s ⊗ eij ⊗ λω,s)(e∗kl ⊗ λ∗σ·ω,s′)

)
= (Tr ⊗τG,σ·ω)

((
(∆∗)p

(
T (eij ⊗ λσ,s)⊗ eij ⊗ λω,s

))(
elk ⊗ (σ · ω)(s′, s′−1)λσ·ω,s′−1

))
= (σ · ω)(s′, s′−1)(Tr ⊗τG,σ ⊗ Tr ⊗τG,ω)

((
T (eij ⊗ λσ,s)⊗ eij ⊗ λω,s

)
∆p∗

(
elk ⊗ λσ·ω,s′−1

))
= (σ · ω)(s′, s′−1)(Tr ⊗τG,σ ⊗ Tr ⊗τG,ω)

(
(T (eij ⊗ λσ,s)⊗ eij ⊗ λω,s)

× (elk ⊗ λσ,s′−1 ⊗ elk ⊗ λω,s′−1)
)

= (σ · ω)(s′, s′−1)(Tr ⊗τG,σ)
(
T (eij ⊗ λσ,s)(elk ⊗ λσ,s′−1)

)
(Tr ⊗τG,ω)

(
eijelk ⊗ λω,sλω,s′−1

)
= (σ · ω)(s′, s′−1)ω(s′, s′−1)(Tr ⊗τG,σ)

(
T (eij ⊗ λσ,s)(elk ⊗ λσ,s′−1)

)
δi,kδj,lδs,s′

= (Tr ⊗τG,σ)
(
T (eij ⊗ λσ,s)(elk ⊗ σ(s′, s′−1)λσ,s′−1)

)
δi,kδj,lδs,s′

= (Tr ⊗τG,σ)
(
T (eij ⊗ λσ,s)(ekl ⊗ λσ,s′)∗

)
δi,kδj,lδs,s′ .

Hence according to (4.1.6), P pI,G(T ) is the operator [Mφij ].
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1. If we choose ω = 1, according to the discussion at the end of Section 4.1,
P pI,G(T ) belongs to Mp,cb

I (G, σ) ⊂ CB(SpI (L
p(VN(G, σ)))). If T = [Mψij ] right from

the beginning, for some symbols ψij : G→ C, then for s ∈ G

φij(s) = (Tr ⊗τG,σ)
(
T (eij ⊗ λσ,s)(eij ⊗ λσ,s)∗

)
= ψij(s)(Tr ⊗τG,σ)

(
(eij ⊗ λσ,s)(eij ⊗ λσ,s)∗

)
= ψij(s)τG,σ(λσ,sλ

∗
σ,s) = ψij(s)σ(s, s−1)τG,σ(λσ,sλσ,s−1)

= ψij(s)σ(s, s−1)σ(s, s−1)δs,s = ψij(s).

Thus, in this case P pI,G(T ) = T , so that P pI,G is indeed a projection ontoMp,cb
I (G, σ).

2. We turn to the case p =∞. Since multipliers on the level p =∞ are by definition
normal mappings, we need to define P∞I,G(T ) = (∆∗)∞(Pw∗(T )⊗IdB(ℓ2I)⊗VN(G,ω))∆∞,
where Pw∗ : CB(M)→ CB(M) with M = B(ℓ2I)⊗VN(G, σ) is the projection onto nor-
mal maps from Proposition 3.1. Note that Pw∗ is contractive and preserves complete
positivity according to this proposition. Moreover, then Pw∗(T ) ⊗ IdB(ℓ2I)⊗VN(G,ω) is
also normal, and since (∆∗)∞ and ∆∞ are normal, and normality is preserved under
composition, we finally infer that P∞I,G(T ) is normal.

Moreover, as eij ⊗ λσ,s ∈ S1
I (L

1(VN(G, σ))) for any i, j ∈ I and s ∈ G,
Pw∗(T )(eij ⊗ λσ,s) = T (eij ⊗ λσ,s), so that P∞I,G(T ) is the multiplier with symbol φij
from the statement.

3. Note that if T is completely positive then P pI,G(T ) is also a completely positive
map by composition.

4. The statement about the compatibility of P pI,G for different values of p ∈ [1,∞]

follows directly from the defining formula of P pI,G and the fact that (∆∗)p,∆p and
IdSpI (Lp(VN(G,σ))) are all compatible for two different values of p.

5. Suppose p = ∞. If T : MI(VN(G, σ)) → MI(VN(G, σ)) is selfadjoint then for
any s ∈ G and any i, j ∈ I we have

φij(s) = (Tr ⊗τG,σ)
(
T (eij ⊗ λσ,s)(eij ⊗ λσ,s)∗

)
= (Tr ⊗τG,σ)

(
eij ⊗ λσ,s(T (eij ⊗ λσ,s))∗

)
= φij(s).

It is not difficult to conclude that P∞I,G(T ) is selfadjoint.
Suppose that T = [Tij ] is a matrix of operators such that each Tii is unital, i.e.,

T (eii ⊗ λσ,e) = eii ⊗ λσ,e. We have

φii(e) = (Tr ⊗τG,σ)
(
T (eii ⊗ λσ,e)(eii ⊗ λσ,e)∗

)
= (Tr ⊗τG,σ)

(
(eii ⊗ λσ,e)(eii ⊗ λσ,e)∗

)
= 1.

We conclude that P∞I,G(T ) is unital.

6. It suffices to use the map P pI,G|Mp,cb
I (G,σ) and a symmetry argument.
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Remark 4.3. – This result admits a generalization for unimodular discrete quantum
groups. We warn the reader that the formula given in [49, Remark 7.6] for unimodular
locally compact quantum groups does not make sense (29) already in the case of the
locally compact group R of real numbers.

The case G = {e} gives the following complementation for the space of completely
bounded Schur multipliers. Compare to [6, Proposition 2.6].

Corollary 4.4. – Suppose that I is equipped with the counting measure. Let
T : SpI → SpI be a completely bounded operator. We define the matrix φ by

(4.2.1) φij = Tr
(
T (eij)e

∗
ij

)
, i, j ∈ I.

Then the map P pI : CB(SpI )→ CB(SpI ), T 7→Mφ is a well-defined contractive projec-
tion onto the subspace Mp,cb

I of completely bounded Schur multipliers. Moreover, if
T is completely positive then the Schur multiplier P pI (T ) is completely positive. For
p =∞ the same assertions are true by replacing CB(SpI ) by the space CBw∗(B(ℓ2I)).

The case where I contains one element and a symmety argument show that the
complete positivity of a multiplier is independent from the T-valued 2-cocycle σ (this
first point can be proved as the point 6 of the Theorem 4.2).

Corollary 4.5. – Let G be a discrete group. Let σ be a T-valued 2-cocycle on G.
Suppose 1 ≤ p ≤ ∞. If p ̸= ∞, we suppose that VN(G) and VN(G, σ) have QWEP.
Let φ : G→ C be a complex function. Then,

1. φ induces a completely positive multiplier Mφ : Lp(VN(G, σ))→ Lp(VN(G, σ))

if and only if φ induces a completely positive multiplier

Mφ : Lp(VN(G))→ Lp(VN(G));

2. φ induces a completely bounded multiplier Mφ : Lp(VN(G, σ))→ Lp(VN(G, σ))

if and only if φ induces a completely bounded multiplier

Mφ : Lp(VN(G))→ Lp(VN(G)).

In this case, we have the equality

(4.2.2) ∥Mφ∥cb,Lp(VN(G,σ))→Lp(VN(G,σ)) = ∥Mφ∥cb,Lp(VN(G))→Lp(VN(G)) .

Note that [18, Proposition 4.3] gives a proof of (4.2.2) for p =∞.
In the following result, P pI,G is the map of Theorem 4.2 with ω = 1.

29. With the notations of [49, Remark 7.6], if we identify L∞(Ĝ) with L∞(R), and x with a
function f , we obtain L(f) =

∫
R[Φ(ft)

]
−t

dµR(t) where Φ: L∞(R) → L∞(R) and where we use
translations by t and −t. This integral is meaningless. We would like to thank Adam Skalski for his
confirmation of this problem by email on his own initiative.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2023



66 CHAPTER 4. DECOMPOSABLE SCHUR MULTIPLIERS AND FOURIER MULTIPLIERS

Theorem 4.6. – Let I be an index set equipped with the counting measure. Let
G be a discrete group equipped with a normalized T-valued 2-cocycle σ and H be a
subgroup of G. Suppose 1 ≤ p ≤ ∞. If p ̸=∞, we suppose that VN(G, σ) has QWEP.
Then we have a natural contraction QpH : Mp,cb

I (G, σ) → Mp,cb
I (H,σ|H) sending

[Mφij ] 7→ [Mφij |H ] and an isometric embedding JpH : Mp,cb
I (H,σ|H)→Mp,cb

I (G, σ)

sending [Mφij ] 7→ [Mφijδ·∈H ], so that JpH ◦Q
p
H is a projection. Then P pI,H

def
= JpH ◦Q

p
H ◦ P

p
I,G

defines a projection CB(SpI (L
p(VN(G, σ))))→ CB(SpI (L

p(VN(G, σ)))) having its
image in JpH(Mp,cb

I (H,σ|H)) and satisfying the same properties as the previous
map P pI,G: it preserves complete positivity, is compatible for different values of p, and
preserves selfadjointness and unital mappings.

Proof. – For the fact that QpH is a contraction and that JpH is an isometric embed-
ding, we refer to the end of Section 4.1. It is elementary to check that JpHQ

p
H is

a projection. We have (P pI,H)2 = JpHQ
p
HP

p
I,GJ

p
HQ

p
HP

p
I,G = JpHQ

p
HJ

p
HQ

p
HP

p
I,G =

JpHQ
p
HP

p
I,G = P pI,H , since P pI,G is the identity on multipliers. Thus, P pI,H is a projec-

tion. As JpHQ
p
H([Mφij ]) = IdSpI ⊗Jp(Jp∗)

∗ · [Mφij ] ·IdSpI ⊗Jp(Jp∗)
∗ and the mapping Jp

from the end of Section 4.1 is completely positive, thus by Lemma 2.9 also (Jp∗)
∗, we

infer that P pI,H preserves complete positivity. The compatibility of P pI,H for different
values of p follows from that of P pI,G and of JpH and QpH . If p =∞ and T is selfadjoint,
P pI,G(T ) is selfadjoint, i.e., its symbol φij(s) takes real values for all i, j ∈ I and
s ∈ G. Then the symbol of P∞I,H(T ) is φij(s) · 1H(s) which also has real values, so
that P∞I,H preserves selfadjointness. In a similar way, if T is normal and all Tii are
unital, then P∞I,G(T ) is unital, which amounts in φii(e) = 1 for all i ∈ I. Since e ∈ H,
we conclude that P∞I,H(T ) is unital.

The case where I contains one element and where σ = ω = 1 gives the following.

Corollary 4.7. – Let G be a discrete group and H be a subgroup of G.
Suppose 1 ≤ p < ∞. If p ̸= ∞, we suppose that VN(G) has QWEP. Let
T : Lp(VN(G))→ Lp(VN(G)) be a completely bounded operator. We define the
complex function φ : H → C by

φ(s) = τG
(
T (λs)(λs)

∗), s ∈ H.

Then the map P pH : CB(Lp(VN(G))) → CB(Lp(VN(G))), T 7→ Mφ is a well-
defined contractive projection onto the subspace Mp,cb(H) (identified as a subspace
of CB(Lp(VN(G)))). Moreover, if T is completely positive then the map P pH(T ) is com-
pletely positive. For p =∞ the same assertions are true by replacing CB(Lp(VN(G)))

by the space CBw∗(VN(G)).

4.3. Description of the decomposable norm of multipliers

The following theorem is our first result describing decomposable multipliers on
noncommutative Lp-spaces.
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Theorem 4.8. – Let G be a discrete group equipped with a normalized T-val-
ued 2-cocycle σ. Suppose 1 ≤ p ≤ ∞. We suppose that VN(G) and VN(G, σ)

have QWEP. Then a function ϕ : G → C induces a decomposable Fourier multi-
plier on Lp(VN(G, σ)) if and only if it induces a decomposable Fourier multiplier
on VN(G).

Proof. – ⇒: Let Mϕ : Lp(VN(G, σ))→ Lp(VN(G, σ)) be a decomposable Fourier mul-
tiplier. By Proposition 3.12, we can write Mϕ = T1−T2 +i(T3−T4), where each Tj is
a completely positive map on Lp(VN(G, σ)). Using the projection P pG of Theorem 4.2
with G = H, I = {0} and ω = 1, we obtain that

Mϕ = P pG(Mϕ) = P pG
(
T1− T2 + i(T3− T4)

)
= P pG(T1)−P pG(T2) + i

(
P pG(T3)−P pG(T4)

)
and that each P pG(Tj) = Mϕj is a completely positive Fourier multiplier on Lp(VN(G, σ)).
By Corollary 4.5, each ϕj also induces a completely positive Fourier multiplier
on Lp(VN(G)). By the proof of [51, Proposition 4.2], we see that the (continuous)
function ϕj is (30) positive definite. Hence it induces a completely positive Fourier
multiplier on VN(G) again by [51, Proposition 4.2]. We conclude that ϕ induces a
decomposable Fourier multiplier on VN(G).
⇐: Let Mϕ : VN(G) → VN(G) be a decomposable Fourier multiplier. Simi-

larly, with Theorem 4.2, we can write Mϕ = Mϕ1
− Mϕ2

+ i(Mϕ3
− Mϕ4

) where
each Mϕj : VN(G) → VN(G) is completely positive. By [95, page 216] (31), each
Fourier multiplier ϕj induces a completely positive (32) multiplier on Lp(VN(G)) and
also on Lp(VN(G, σ)) by Corollary 4.5. Using Proposition 3.12, we conclude that
ϕ induces a decomposable Fourier multiplier on Lp(VN(G, σ)).

The following is essentially [177, Section 1.17.1 Theorem 1], see also [146, page 58].

Lemma 4.9. – Let (E0, E1) be an interpolation couple (of operator spaces) and let
C be a complemented subspace of E0 +E1. We assume that the corresponding bounded
projection P : E0 + E1 → E0 + E1 satisfies P (Ei) ⊂ Ei and that the restriction
P : Ei → Ei is bounded for i = 0, 1. Then (E0 ∩ C,E1 ∩ C) is an interpolation
couple and the canonical inclusion J : C → E0 + E1 induces an isomorphim J̃

from (E0 ∩C,E1 ∩C)θ onto the subspace P ((E0, E1)
θ) = (E0, E1)

θ ∩C of (E0, E1)
θ.

More precisely, if x ∈ (E0 ∩ C,E1 ∩ C)θ, we have∥∥∥J̃(x)
∥∥∥

(E0,E1)θ
≤ ∥x∥(E0∩C,E1∩C)θ ≤ max

{
∥P∥E0→E0

, ∥P∥E1→E1

}∥∥∥J̃(x)
∥∥∥

(E0,E1)θ
.

In particular, if max{∥P∥E0→E0
, ∥P∥E1→E1

} = 1 then J̃ is an isometry.

30. Here we use the inclusion VN(G) ⊂ Lp(VN(G)) and the realization of Lp(VN(G)) as a subspace
of measurable operators. See also Proposition 6.11 which is a more general result.

31. See also Lemma 6.6 which is a generalization.
32. We use here the fact, left to the reader, that if T : M → N is a completely positive map which

induces a bounded map Tp : Lp(M) → Lp(N) then Tp is also completely positive.
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Let (E0, E1) be an interpolation couple. If T0 : E0 → E0, T1 : E1 → E1 are (com-
pletely) bounded maps such that T0 and T1 agree on E0 ∩ E1, then we say that T0

and T1 are compatible. In this case, it is elementary and well-known that there exists
a unique (completely) bounded map T0 + T1 : E0 + E1 → E0 + E1 which extends
T0 and T1 and we have ∥T0 + T1∥E0+E1→E0+E1

≤ max{∥T0∥E0→E0
, ∥T1∥E1→E1

} and
similarly for the completely bounded norms. Moreover, if T0 and T1 are projections
onto F0 and F1 then T0 + T1 is a projection onto F0 + F1.

It allows us to deduce the following description of decomposable Fourier multipliers
on amenable groups.

Let G be a discrete group. Recall that the group von Neumann algebra VN(G) is
approximately finite-dimensional if and only ifG is amenable, see [162, Theorem 3.8.2].
Using Corollary 4.7 with H = G, we obtain the following result.

Theorem 4.10. – Let G be an amenable discrete group. Suppose 1 ≤ p ≤ ∞. Then
a function ϕ : G→ C induces a decomposable Fourier multiplier

Mϕ : Lp(VN(G))→ Lp(VN(G))

if and only if it induces a (completely) bounded Fourier multiplier

Mϕ : VN(G)→ VN(G).

In this case, we have the isometric identity

∥Mϕ∥dec,Lp(VN(G))→Lp(VN(G)) = ∥Mϕ∥cb,VN(G)→VN(G) = ∥Mϕ∥VN(G)→VN(G) .

Proof. – By [51, Corollary 1.8], since G is amenable, we have M∞(G) = M∞,cb(G)

isometrically. The first part is Theorem 4.8 using [85, Theorem 2.1] (which says that
the decomposable norm and the completely bounded norm coincide for operators on
approximately finite-dimensional von Neumann algebras). By [95], we haveM∞(G) =

M1(G) isometrically. Now, we use Lemma 4.9 with the interpolation couple (3.1.4)
and with C =M∞(G) and we also use the projection from Corollary 4.7 with H = G.
Note that we have isometrically(
CBw∗(VN(G)) ∩M∞(G),CB(L1(VN(G))) ∩M∞(G)

) 1
p =

(
M∞(G),M∞(G)

) 1
p =M∞(G).

We infer that the space

Reg(Lp(VN(G))) ∩M∞(G) = (CBw∗(VN(G)),CB(L1(VN(G))))
1
p ∩M∞(G),

equipped with the regular norm ∥·∥reg,Lp(VN(G))→Lp(VN(G)) is isometric to the
space M∞,cb(G). We finally employ Theorem 3.24 to pass isometrically from regular
operators to decomposable operators.

Similarly, we obtain the following description of decomposable Schur multipliers
with the projection of Corollary 4.4.
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Theorem 4.11. – Suppose 1 ≤ p ≤ ∞. Then a function ϕ : I × I → C induces a
decomposable Schur multiplier on SpI if and only if it induces a (completely) bounded
Schur multiplier on B(ℓ2I). In this case, we have the isometric identity

∥Mϕ∥dec,SpI→S
p
I

= ∥Mϕ∥reg,SpI→SpI = ∥Mϕ∥cb,B(ℓ2I)→B(ℓ2I)
= ∥Mϕ∥B(ℓ2I)→B(ℓ2I)

.
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CHAPTER 5

APPROXIMATION BY DISCRETE GROUPS

The complementation Theorem 4.2 from Chapter 4 is stated only for a discrete
group G. In order to exhibit a suitable class of admissible non-discrete locally compact
groups, approximations by discrete subgroups of G become important. In this chapter,
we introduce and study several notions of approximation which are of independent
interest, but which will be important in the subsequent Chapter 6.

5.1. Preliminaries

Chabauty-Fell topology. – For a topological space Y , let F (Y ) denote the set of closed
subsets of Y . For a compact subset K and an open subset U of Y , set (33)

OK
def
= {F ∈ F (Y ) : F ∩K = ∅} and O′U

def
= {F ∈ F (Y ) : F ∩ U ̸= ∅}.

The finite intersections OK1
∩ · · · ∩ OKm ∩ O′U1

∩ · · · ∩ O′Un constitute a basis of a
topology on F (Y ), called the Chabauty-Fell topology, introduced in [73, page 472]
under the name of H-topology. By [73, Theorem 1], if Y is locally compact then
F (Y ) is a (Hausdorff) compact space. See also [20] and [96] for more information.

Geometric convergence. – The Chabauty-Fell topology is related to the geometric
convergence of Thurston. By [20, Proposition E.1.2], if Y is a locally compact metriz-
able space then a sequence (Fn) of closed subsets of Y converges to an element F
of F (Y ) if and only if the two following conditions are satisfied:

— Let (Fnk) be a subsequence of (Fn) and let xk ∈ Fnk such that the sequence (xk)

converges in Y to some x in Y . Then we have x ∈ F .

— Any point in F is the limit in Y of a sequence (xn) with xn ∈ Fn for each n.

33. Note that OK1
∩ · · · ∩ OKm = OK1∪···∪Km .
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Spaces of closed subgroups. – By [73, IV page 474] (see also [31, Chapitre VIII, §5,
no. 3, Théorème 1]), if Y = G is a locally compact group, the space C (G) of closed
subgroups of G equipped with the induced topology is closed in F (G), hence com-
pact. Moreover, in this case, it is folklore but not entirely obvious that a basis of
neighborhoods of a closed subgroup H ∈ C (G) is given by the sets

(5.1.1) NK
U (H)

def
=
{
H ′ ∈ C (G) : H ′ ∩K ⊂ HU and H ∩K ⊂ H ′U

}
,

where K runs over the compact subsets of G and U runs over the neighborhoods
of eG. In words, H ′ is very close to H if, on a large compact set K, the elements
of H ′ belong uniformly to a small neighborhood of H, and conversely. In this specific
case, the convergence of a sequence was introduced by Chabauty [41, page 147] to
generalize Mahler’s well-known compactness criterion to lattices in locally compact
groups. The following is folklore, see, e.g., [26, Appendix A].

Proposition 5.1. – Let G be a locally compact group. The sets NK
U (H) generate the

neighborhood filter of H in the Chabauty-Fell topology.

Lattices and fundamental domains. – A lattice Γ in a locally compact group G is
a discrete subgroup for which G/Γ has a bounded G-invariant Borel measure [19,
Definition B.2.1 page 332]. A locally compact G that admits a lattice is necessarily
unimodular [19, Proposition B.2.2 page 332]. The same reference says that if Γ is a
cocompact (34) (i.e., G/Γ is compact) discrete subgroup of a locally compact group G
then Γ is a lattice of G.

Let Γ be a discrete group of a locally compact group G. If A is a subset of G and
γ ∈ Γ, then the set Aγ is called an image of A. A fundamental domain X relative
to Γ is a Borel measurable subset of G satisfying the following two properties:

XΓ = G,(5.1.2)

Xγ ∩Xγ′ = ∅ for any distinct elements γ, γ′ of Γ.(5.1.3)

These properties say that every element x ∈ G is covered by one and only one im-
age of X. These conditions are equivalent to the following statement: X is a Borel
measurable subset of G such that the restriction of the canonical mapping G→ G/Γ

of G onto left cosets, restricted to X, becomes a bijection onto G/Γ. We obtain a
set X with these two properties, if we select a representative s from every left coset
sΓ of Γ relative to G. However, in general, such a set X is not a Borel set. If G is
σ-compact the result [19, Proposition B.2.4 page 333] (see also [161, Lemma 2]) gives
the existence of a fundamental domain for any discrete subgroup Γ and if in addition
Γ is a lattice in G then every fundamental domain for Γ has finite Haar measure [19,
Proposition B.2.4 page 333].

34. The word uniform is also used.
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5.2. Different notions of groups approximable by discrete groups

Recall that a locally compact group G is approximable by a sequence (Γj) of
discrete subgroups [121, Definition 1] [176, page 36] if for any non-empty open set O
of G, there exists an integer j0 such that for any j ≥ j0 we have O ∩ Γj ̸= ∅. We say
that a locally compact group G is approximable by discrete subgroups (ADS) if G is
approximable by some sequence (Γj) of discrete subgroups. It is obvious that a second
countable locally compact group G is approximable by a sequence (Γj) of discrete
subgroups if and only if (Γj) converges to G for the Chabauty-Fell topology. Using
the definition of the geometric convergence we obtain the following characterization.

Proposition 5.2. – Let G be second countable locally compact group. Let (Γj) be a
sequence of discrete subgroups of G. The following are equivalent.

1. The group G is approximable by the sequence (Γj).

2. Any s ∈ G is the limit in G of a sequence (γj) with γj ∈ Γj for any integer j.

Moreover, note that a connected ADS locally compact group G is necessarily nilpo-
tent (see [92, Theorem 2.18]) and that a connected simply connected Lie group is ADS
if and only if G is nilpotent and if it admits a discrete cocompact subgroup ([94, The-
orem 1.6, 1.7 and 1.9]. We refer to [94], [93], [92], [121], [176] and [178] for more
information on this notion. Now, we introduce different notions of approximation by
discrete groups. These will be used in Chapter 6.

Definition 5.3. – Let G be a second countable locally compact group.

1. The group G is said to be approximable by lattice subgroups (ALS) if there exists
a sequence (Γj) of lattices in G such that (Γj) converges to G for the Chabauty-
Fell topology.

2. The group G is said to be (right) uniformly approximable by a sequence (Γj)

of discrete subgroups if there exists a right invariant metric dist such that for
any ε > 0, there exists an integer j0 such that for all j ≥ j0 and all s ∈ G there
exists γj ∈ Γj such that dist(s, γj) < ε. The group G is said to be uniformly
ADS if G is uniformly approximable by a sequence (Γj) of discrete subgroups.
We also define the notion “uniformly ALS” where “discrete groups” is replaced
by “lattice subgroups”.

3. The group G is said to be approximable by shrinking by a sequence (Γj) of lattice
subgroups with associated fundamental domains (Xj) if for any neighborhood V
of the identity eG (equivalently, for any ball V = B(eG, ε) with ε > 0, associated
with a right invariant metric generating the topology of G) there exists some
integer j0 such that Xj ⊂ V for any j ≥ j0. The group G is said to be approx-
imable by lattice subgroups by shrinking (ALSS) if there exists a sequence (Γj)j≥1

of lattice subgroups in G and some associated fundamental domains (Xj) such
that G is approximable by shrinking by (Γj) and (Xj).
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Remark 5.4. – 1. If we assume in Part 3 of Definition 5.3 that the subgroups Γj
are only discrete subgroups instead of being lattices, we obtain the same defi-
nition. Indeed, for any sufficiently small ε > 0 and any sufficiently large j, we
have Xj ⊂ B(eG, ε) where B(eG, ε) is relatively compact according to the lo-
cal compactness of G. Thus the closure Xj is compact. The canonical mapping
π : G→ G/Γj being continuous, π(Xj) is also compact. But since Xj is a funda-
mental domain, we have π(Xj) = G/Γj and a fortiori π(Xj) = G/Γj . Therefore,
G/Γj is compact, and so by [19, Proposition B.2.2], the discrete subgroup Γj is
automatically a lattice.

2. We shall see in Part 3 of Proposition 5.9 that a second countable locally com-
pact group which is uniformly ADS with respect to a sequence (Γj) of discrete
subgroups admits fundamental domains which are almost all included in small
balls. Therefore, combined with the first part of this remark, we deduce that if
G is uniformly ADS then G is uniformly ALS.

3. Part 3 of Definition 5.3 is inspired by the notion ADS from [39, page 3]. It is
formally slightly weaker since we assume that the Xj are becoming smaller and
smaller around eG instead of forming a neighborhood basis of eG as in [39].
Moreover, the authors of [39] use only lattice subgroups. However, we shall see
in Part 3 of Proposition 5.9 that our notion of ALSS is equivalent to ADS from
[39, page 3].

4. It is obvious that the property uniformly ADS implies the property ADS, that
uniformly ALS implies ALS and that ALS implies ADS.

Recall that any locally compact group G which contains a lattice subgroup Γ is
unimodular by [19, Proposition B.2.2] and that the subset of unimodular closed sub-
groups of G is closed in C (G) for the Chabauty topology, see [31, Chapitre VIII, §5,
no. 3, Théorème 1].

We start with a result giving the existence of fundamental domains satisfy-
ing some inclusion constraint. In this proposition and the subsequent lemma,
we equip the group G with a left invariant metric dist generating its topology
and we consider the balls B(eG, r)

def
= {s ∈ G : dist(s, eG) < r}. However, note

that the statement in Proposition 5.5 remains valid if one replaces the distance
dist by a right invariant one dist′, generating the topology of G, together with
balls B̃(eG, r)

def
= {s ∈ G : dist′(s, eG) < r}. Indeed, note that since both dist and

dist′ generate the same topology, if D contains a ball B̃(eG, r̃), it will contain a
ball B(eG, r), so X will contain a ball B(eG, r

′) and thus also a ball B̃(eG, r
′′).

Proposition 5.5. – Let G be a second countable locally compact group together with a
discrete subgroup Γ ⊂ G. Let D ⊂ G be a measurable subset satisfying

⋃
γ∈ΓDγ = G.

Then there exists a fundamental domain X ⊂ D associated with Γ. Moreover, if D
contains a ball B(eG, r) then X contains a ball B(eG, r

′).
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Proof. – Note first that since G is second countable, Γ endowed with the trace topol-
ogy is again second countable. Since Γ is discrete, this implies that Γ is at most
countable, and we choose one enumeration (γj) of Γ.

Consider the canonical map p : G→ G/Γ. Since G is second countable, there exists
by [129, Lemma 1.1] (see also the discussions [30, page 11] and [79, page 67]) a locally
bounded Borel section q : G/Γ → G. By [179, Corollary 4.49], the map γ : G → Γ,
s 7→ (q(sΓ))−1s is a (locally bounded) Borel function.

Lemma 5.6. – There exists some ρ > 0 such that γ(B(e, ρ)) ⊂ {e}.

Proof. – Let dist be a left invariant metric on G generating its topology as a locally
compact group and distG/Γ the associated distance on G/Γ. Consider the strictly (35)

positive number r0 = dist(Γ\{e}, e) > 0. Since B(e, r0) ∩ Γ = {e}, for any s ∈ G,
the condition dist(γ(s), e) < r0 implies that γ(s) = e. Now by definition of γ, we
have dist(γ(s), e) < r0 if and only if dist(q(sΓ)−1s, e) < r0 and finally if and only if
dist(s, q(sΓ)) < r0 by left invariance. Since q is continuous in a neighborhood of eΓ,
there exists r1 > 0 such that distG/Γ(sΓ, eΓ) < r1 implies dist(q(sΓ), e) < r0

2 . If
dist(s, e) < min{r1, r02 } we have

distG/Γ(sΓ, eΓ) ≤ dist(s, e) < r1,

hence dist(e, q(sΓ)) < r0
2 . Thus the triangle inequality gives

dist
(
s, q(sΓ)

)
≤ dist(s, e) + dist

(
e, q(sΓ)

)
<
r0
2

+
r0
2

= r0.

The lemma is proved.

Define now A1
def
= {s ∈ D : γ(s) = γ1} = D∩γ−1({γ1}), which is measurable as the

intersection of two measurable sets. Assuming without loss of generality that γ1 = e,
we have thatB(e, r′) ⊂ A1 for r′ = min(r, ρ) sinceB(e, r) ⊂ D. Define then recursively
for k ≥ 2, the subsets

Ak
def
=
{
s ∈ D : γ(s) = γk, ∃ j ∈ {1, . . . , k − 1}, ∃ l ∈ N : sγl ∈ Aj

}
= D ∩ γ−1({γk}) ∩

k−1⋂
j=1

⋂
l∈N

Acjγ
−1
l .

It can easily be shown recursively that Ak is measurable as the countable intersection
of measurable sets. Define finally X

def
=
⋃∞
k=1Ak.

We claim that X is a (measurable) fundamental domain of Γ which is contained
in D. First, it is measurable as a countable union of measurable sets. Since by defini-
tion, we have Ak ⊂ D for any integer k ≥ 1, we also have X ⊂ D.

Lemma 5.7. – For any γ ∈ Γ\{e}, we have Xγ ∩X = ∅.

35. The subset {e} is open in Γ, so Γ\{e} is closed.
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Proof. – Indeed, let s ∈ X, so that s ∈ Ak0 for some k0 ∈ N. This implies that
γ(s) = γk0 . Put t = sγ. Since γ ̸= e, we cannot have γ(t) = γ(s), because otherwise
Y (t) = (tΓ, γ(t)) = (sΓ, γ(s)) = Y (s), and since Y is bijective, we obtain t = s, which
is a contradiction. So γ(t) = γk1 for some k1 ̸= k0.

If k1 > k0, then t cannot belong to Ak1 . Indeed, t ∈ Ak1 implies that we cannot
find l ∈ N such that tγl ∈ Ak0 since k0 < k1. This implies with γl = γ−1 that
s = tγ−1 ̸∈ Ak0 , which is a contradiction.

If k1 < k0, then t cannot belong to Ak1 either. Indeed, since s ∈ Ak0 , we cannot find
l ∈ N such that sγl ∈ Ak1 since k1 < k0. This implies with γl = γ that t = sγ ̸∈ Ak1 .
Thus t ̸∈ X, so we have Xγ ∩X = ∅.

Lemma 5.8. – We have

(5.2.1)
∞⋃
k=1

AkΓ =
{
s ∈ D : γ(s) ∈ {γ1, γ2, . . .}

}
Γ.

Proof. – For the inclusion ⊂, we note that if s ∈ Ak for some k ∈ N, then in particular
s ∈ D and γ(s) = γk, so that sΓ is contained in the right hand side of (5.2.1). For
the inclusion ⊃, if s ∈ D and γ(s) = γk for some k ∈ N, then either s ∈ Ak, which
implies that sΓ is contained in the left hand side of (5.2.1) or there exists l ∈ N
and j ∈ {1, . . . , k − 1} such that sγl ∈ Aj . Then sΓ = sγlγ

−1
l Γ ⊂ AjΓ, so it is also

contained in the left hand side of (5.2.1). Whence, (5.2.1) is shown.

The left hand side of (5.2.1) equals clearly XΓ, and the right hand side equals
DΓ, since γ(s) must belong to {γ1, γ2, . . .} for any s ∈ D. Since DΓ = G, we obtain
XΓ = G, so that X is a fundamental domain. Since B(e, r′) ⊂ A1, we also have
B(e, r′) ⊂ X.

Proposition 5.9. – Let G be a second countable locally compact group.

1. If the group G is ALSS with respect to (Γj) and (Xj) then G is uniformly ALS

with respect to (Γj).

2. Let G be an ADS group with respect to a sequence (Γj) of discrete subgroups.
Suppose that for some j0 ∈ N, some compact K ⊂ G and any j ≥ j0 there exists
a fundamental domain Xj with respect to Γj such that Xj ⊂ K. Then the group
G is uniformly ADS with respect to (Γj). We have a similar property for ALS

and uniformly ALS.

3. If the group G is uniformly ADS with respect to discrete subgroups (Γj) then G is
ALSS with respect to (Γj) and some particular sequence (Xj) of fundamental
domains. Moreover, the Xj can be chosen to be neighborhoods of eG if j is large
enough. In particular, if G is uniformly ALS then G is ALSS.

4. The group G is uniformly ADS if and only if it is uniformly ALS if and only if
it is ALSS.
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Proof. – 1. First assume that G is ALSS with respect to a sequence of lattice sub-
groups (Γj) with associated fundamental domains (Xj). Take a right invariant met-
ric dist on G generating its topology as a locally compact group. Fix ε > 0. By the
ALSS property, there exists some integer j0 such that the fundamental domains Xj

are contained in B(e, ε) for any j ≥ j0. For any s ∈ G and any j, there exists x ∈ Xj

and γ ∈ Γj such that s = xγ. For any j ≥ j0, we conclude that

dist(s, γ) = dist(xγ, γ) = dist(x, e) < ε.

Thus, the group G is uniformly ALS.
2. Let G be an ADS group with respect to a sequence (Γj) of discrete subgroups

in G. Suppose that for some j0 ∈ N, some compact K ⊂ G and any j ≥ j0, there exists
a fundamental domain Xj with respect to Γj such that Xj ⊂ K. Fix a right invariant
metric dist on G. The compact subset K is totally bounded. Then for any ε > 0,
there exist some s1, . . . , sN ∈ K such that for j ≥ j0,

Xj ⊂ K ⊂
N⋃
k=1

B

(
sk,

ε

2

)
.

Moreover, since G is ADS, for any 1 ≤ k ≤ N , there exists some jk ∈ N such that for
all i ≥ jk there is some γi ∈ Γi with dist(sk, γi) <

ε
2 . Note that this implies that if

x ∈ B(sk,
ε
2 ) we have

dist(x, γi) ≤ dist(x, sk) + dist(sk, γi) <
ε

2
+
ε

2
= ε.

Thus, for jmax
def
= max{j0, j1, . . . , jN}, any j ≥ jmax, any x ∈ Xj and any i ≥ jmax,

there exists some γi ∈ Γi such that dist(x, γi) < ε.
For an arbitrary s ∈ G and any j ≥ jmax, we write s = xj γ̃j with xj ∈ Xj and

γ̃j ∈ Γj and we have (setting i = j) dist(xj , γj) < ε for some γj ∈ Γj so also

dist(s, γj γ̃j) = dist(xγ̃j , γj γ̃j) = dist(x, γj) < ε.

Note that γj γ̃j belongs to Γj . Thus the group G is uniformly ADS. The proof of the
second property is identical.

3. Now assume that G is uniformly ADS with respect to a sequence (Γj) of discrete
subgroups. We fix a right invariant metric dist of G which generates the topology of G
and with respect to which the uniformly ADS property holds. There exists δ > 0 such
that any closed ball of radius < δ is compact.

For any j, we introduce the Dirichlet cell

DΓj =
{
s ∈ G : dist(s, e) ≤ dist(s, γ) for any γ ∈ Γj

}
.

We first show that for given ε > 0, there exists j0 ∈ N such that DΓj ⊂ B(e, ε)

for j ≥ j0. Note that by the uniformly ADS property there exists a j0 ∈ N such
that for all s ∈ G and any j ≥ j0 there exists γj ∈ Γj such that dist(s, γj) ≤ ε

2 . If
s ∈ B(e, ε)c and if j ≥ j0 we obtain

dist(s, γj) ≤
ε

2
< ε ≤ dist(s, e).
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Hence s does not belong to DΓj . We deduce that B(e, ε)c ⊂ Dc
Γj

if j ≥ j0. The claim
is proved.

Now we prove that the Dirichlet cell DΓj satisfies
⋃
γ∈Γj

DΓjγ = G if j is large
enough. Let s ∈ G. For any j, consider the positive real number

rj
def
= inf

γ′∈Γj
dist(s, γ′).

There exists j1 such that for any j ≥ j1 and any s ∈ G there exists γj ∈ Γj such
that dist(s, γj) <

δ
3 , hence rj < δ

3 .

Lemma 5.10. – For any j ≥ j1, there exists γ ∈ Γj such that dist(s, γ) ≤ dist(s, γ′)

for any γ′ ∈ Γj.

Proof. – If s ∈ Γj , it is obvious that the infimum is a minimum. Suppose s /∈ Γj . We
have rj > 0. We let K = B′(x, 2rj) ∩ Γj . This subset is nonempty and compact. If
γ′ ∈ Γj\K we have dist(x, γ′) > 2rj . We deduce that

rj = inf
γ′∈Γj

dist(s, γ′) = inf
γ′∈K

dist(s, γ′).

Finally, the map γ′ 7→ dist(s, γ′) is continuous on the compact K, hence attains its
infimum on K.

In particular, for any γ′′ ∈ Γj , using the right-invariance of the distance, we obtain

dist(sγ−1, e) = dist(s, γ) ≤ dist(s, γ′′γ) = dist(sγ−1, γ′′).

Therefore, sγ−1 ∈ DΓj , that is s ∈ DΓjγ.
Moreover, DΓj =

⋂
γ∈Γj
{s ∈ G : dist(s, e) ≤ dist(s, γ)} is an intersection of closed

sets, and hence itself closed, hence measurable.
Note that Γj\{e} is closed. Hence we have r′j = dist(e,Γj\{e}) > 0. Thus the

ball B(e,
r′j
2 ) is contained in DΓj . According to Proposition 5.5, there exists some

fundamental domain Xj ⊂ DΓj associated with Γj , which is a neighborhood of e ∈ G.
Furthermore, if j ≥ j0 we have Xj ⊂ DΓj ⊂ B(e, ε). Hence we conclude that the
group G is ALSS with respect to (Γj) and (Xj). The proof of the second property is
identical.

4. This statement is now obvious.

5.3. The case of second countable compactly generated locally compact groups

The following uses a trick of the proof of [178, Lemma 5.7]. For the sake of complete-
ness, we give all the details. Recall that a topological group is compactly generated if
it has a compact generating set [98, Definition 5.12]. For example, a connected locally
compact group is compactly generated [46, Proposition 2.C.3 (2)].

Lemma 5.11. – Let G be a compactly generated locally compact group and (Γi) a
sequence of subgroups of G which converges to G for the Chabauty-Fell topology. Then
there exists a compact subset K of G and i0 such that G = KΓi for any i ≥ i0.
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Proof. – By the proof of [98, Theorem 5.13], there exists an open subset V of G
containing e with G =

⋃
n≥1(V ∪V −1)n such that V is compact. We let U = V ∪V −1.

The subset U is open and contains e. Moreover, the set K def
= U = V ∪ V −1 =

V ∪ V −1
is compact and we have G =

⋃
n≥1K

n. Since e belongs to U , we have
UG = G. Moreover, by [98, Theorem 4.4], the subset K3 is compact and included
in UG. Using [98, Theorem 4.4] again, we deduce that (Us)s∈G is an open covering
of K3. By compactness there exist some elements s1, . . . , sm ∈ G such that

K3 ⊂
m⋃
j=1

Usj .

Since (Γi) approximates the group G, there exists some i0 such that for any i ≥ i0
we have {s1, . . . , sm} ⊂ UΓi. For i ≥ i0, we deduce that K3 ⊂ U2Γi ⊂ K2Γi. By
induction (36), we obtain Kn ⊂ K2Γi for any n ≥ 3. Moreover, we have K2 ⊂ K2Γi.
For any i ≥ i0, we deduce that

G\K ⊂
⋃
n≥2

Kn ⊂ K2Γi.

Note that K ⊂ KΓi. Thus the compact K ∪K2 has the desired property.

Corollary 5.12. – Let G be a compactly generated locally compact group and (Γi)

a sequence of discrete subgroups which converges to G for the Chabauty-Fell topology.
For any large enough i, the subgroup Γi is a cocompact lattice.

Proof. – Use the previous Lemma 5.11 and recall that a discrete subgroup Γ which
is cocompact (37) is a lattice.

Theorem 5.13. – Let G be a second countable compactly generated locally compact
group. The following are equivalent.

1. G is ADS.

2. G is ALS.

3. G is uniformly ALS.

4. G is ALSS.

Proof. – The implications 2. ⇒ 1. and 3. ⇒ 2. are obvious. By Corollary 5.12, we
have the implication 1. ⇒ 2. By the part 3 of Proposition 5.9, the properties 3. and
4. are equivalent.

Suppose that G is ALS with respect to a sequence (Γj) of lattice subgroups in G.
Then by Lemma 5.11, there exists a compact subset K of G and i0 such that G = KΓi

36. If Kn ⊂ K2Γi for some n ≥ 3 then we have Kn+1 = KKn ⊂ KK2Γi = K3Γi ⊂ K2ΓiΓi =
K2Γi.

37. If G = KΓi for a compact K, then for the canonical and continuous q : G → G/Γi, we have
q(K) = G/Γi, so that G/Γi is compact.
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for any i ≥ i0. By Proposition 5.5, there exists (38) a fundamental domain Xi for Γi
in G such that Xi ⊂ K for any i ≥ i0. From part 2 of Proposition 5.9, we conclude
that G is ALSS and thus 2. implies 3.

38. If G is a second countable locally compact group and if Γ is a cocompact lattice in G then
there exists a relatively compact fundamental domain X for Γ in G. This result [161, 8] of Siegel does
not suffice here.
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CHAPTER 6

DECOMPOSABLE FOURIER MULTIPLIERS
ON NON-DISCRETE LOCALLY COMPACT GROUPS

In this chapter, we start by giving general results on Fourier multipliers on noncom-
mutative Lp-spaces. After this, we construct our projections by approximation. Then
we study (classes of) examples, including direct and semi-direct products of groups,
the semi-discrete Heisenberg group, groups acting on trees and pro-discrete groups.
We conclude by drawing the relevant consequences for decomposable multipliers.

6.1. Generalities on Fourier multipliers on unimodular groups

Group von Neumann algebras of locally compact groups. – Let G be a locally com-
pact group equipped with a left invariant Haar measure µG. For a complex func-
tion g : G→ C, we write λ(g) for the left convolution operator (in general unbounded)
by g on L2(G). This means that the domain of λ(g) consists of all f of L2(G) for
which the integral (g ∗ f)(t)

def
=
∫
G
g(s)f(s−1t) dµG(s) exists for almost all t ∈ G

and for which the resulting function g ∗ f belongs to L2(G), and for such f , we
let λ(g)f

def
= g ∗f . Finally, by [98, Corollary 20.14], each g ∈ L1(G) induces a bounded

operator λ(g) : L2(G)→ L2(G).
Let VN(G) be the von Neumann algebra generated by the set

{
λ(g) : g ∈ L1(G)

}
.

It is called the group von Neumann algebra of G and is equal to the von Neumann
algebra generated by the set {λs : s ∈ G} where

(6.1.1) λs :

{
L2(G) −→ L2(G)

f 7−→ (t 7→ f(s−1t))

is the left translation by s. Recall that for any g ∈ L1(G) we have λ(g) =
∫
G
g(s)λs dµG(s),

where the latter integral is understood in the weak operator sense (39).

39. That means (see, e.g., [80, Theorem 5 page 289]) that λ(g) : L2(G) → L2(G) is the unique
bounded operator such that

⟨λ(g)f, h⟩L2(G) =

∫
G

g(s)⟨λsf, h⟩L2(G) dµG(s), f, h ∈ L2(G).
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Let H be a closed subgroup of G equipped with a left Haar measure. The pre-
scription λH,s 7→ λG,s, s ∈ H (where λH,s denotes the left translation by h on L2(H)

and λG,s the corresponding left translation by h on L2(G)) extends to a normal injec-
tive ∗-homomorphism from VN(H) to VN(G), see, e.g., [115, Proposition 2.6.6], [56,
Theorem 2 page 113] and [50] for generalizations to quantum groups.

We also use the notation λ(µ) : L2(G) → L2(G) for the convolution operator by
the measure µ.

Plancherel weights. – LetG be a locally compact group. A function g ∈ L2(G) is called
left bounded [84, Definition 2.1] if the convolution operator λ(g) induces a bounded
operator on L2(G). The Plancherel weight τG : VN(G)+ → [0,∞] is (40) defined by the
formula

τG(x)
def
=

{
∥g∥2L2(G) if x

1
2 = λ(g) for some left bounded function g ∈ L2(G)

+∞ otherwise.

By [84, Proposition 2.9] (see also [139, Theorem 7.2.7]), the canonical left
ideal nτG =

{
x ∈ VN(G) : τG(x∗x) <∞

}
is given by

nτG =
{
λ(g) : g ∈ L2(G) is left bounded

}
.

Recall that m+
τG denotes the set

{
x ∈ VN(G)+ : τG(x) < ∞

}
and that mτG is the

complex linear span of m+
τG which is a ∗-subalgebra of VN(G). By [84, Proposition 2.9]

and [166, Proposition page 280], we have

m+
τG =

{
λ(g) : g ∈ L2(G) continuous and left bounded, λ(g) ≥ 0

}
.

By [84, page 125] or [139, Proposition 7.2.8], the Plancherel weight τG on VN(G) is
tracial if and only if G is unimodular, which means that the left Haar measure of G
and the right Haar measure of G coincide. Now, in the sequel, we suppose that the
locally compact group G is unimodular.

We will use the involution f∗(t)
def
= f(t−1). By [120, Theorem 4], if f, g ∈ L2(G)

are left bounded then f ∗ g and f∗ are left bounded and we have

(6.1.2) λ(g)λ(f) = λ(g ∗ f) and λ(f)∗ = λ(f∗).

If f, g ∈ L2(G) it is well-known [31, Corollaire page 168 and (17) page 166] that the
function f ∗ g is continuous and that we have (f ∗ g)(eG) = (g ∗ f)(eG) =

∫
G
ǧf dµG

where eG denotes the identity element of G and where ǧ(s) def
= g(s−1). By [167, (4)

page 282], if f, g ∈ L2(G) are left bounded, the operator λ(g)∗λ(f) belongs to mτG
and we have the fundamental “noncommutative Plancherel formula”
(6.1.3)

τG
(
λ(g)∗λ(f)

)
= ⟨g, f⟩L2(G) which gives τG

(
λ(g)λ(f)

)
=

∫
G

ǧf dµG = (g ∗f)(eG).

40. This is the natural weight associated with the left Hilbert algebra Cc(G).
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In particular, this formula can be used with any functions f, g of L1(G) ∩ L2(G). By
(2.1.1), if we consider the subset Ce(G)

def
= span

{
g∗ ∗ f : g, f ∈ L2(G) left bounded

}
of C(G), we have

(6.1.4) mτG = λ
(
Ce(G)

)
and we can see τG as the functional that evaluates functions of Ce(G) at eG ∈ G.
Although the formula τG

(
λ(h)

)
= h(e) seems to make sense for every function h

in Cc(G), we warn the reader that it is not true (41) in general that λ
(
Cc(G)

)
⊂ mτG

contrary to what is unfortunately too often written in the literature.

Averaging projections. – If K is a compact subgroup of a locally compact group
G equipped with its normalized Haar measure µK , we can consider the element
pK

def
= λK(µK) of VN(K). It is easy to see that it identifies to the element λG(µ0

K)

of VN(G) where µ0
K is the canonical extension of the measure µK on the locally

compact space G. We say that it is the averaging projection associated with K. The
following lemma is folklore. For the sake of completeness, we give a short proof.

Lemma 6.1. – If K is a normal compact subgroup then the averaging projection pK
associated with K is a central projection in VN(G) and finally the map

(6.1.5)
π : VN(G/K) −→ VN(G)pK

λsK 7−→ λspK

is a well-defined ∗-isomorphism.

Proof. – For any s ∈ G, we have sK = Ks and consequently λsλ(µ0
K) =

λ(δs ∗ µ0
K) = λ(µ0

K)λs. Hence pK is central. For any s ∈ G, if sK = s′K, we have
λspK = λsλ(µ0

K) = λ(δs ∗ µ0
K) = λ(δs′ ∗ µ0

K) = λs′λ(µ0
K) = λs′pK . Hence π is

well-defined. Other statements are obvious.

If K is in addition an open subgroup, the following allows us to consider maps on
the associated noncommutative Lp-spaces.

Lemma 6.2. – Let K be a compact open normal subgroup of a unimodular locally com-
pact group G. We suppose that G is equipped with a Haar measure µG and that K is
equipped with its normalized Haar measure µK . We have pK = 1

µG(K)λ(1K) and the
map µG(K)π : VN(G/K)→ VN(G)pK is trace preserving. Finally if 1 ≤ p ≤ ∞, the

41. In fact, suppose that G is compact. Since L2(G) ⊂ L1(G), any function of L2(G) is left bounded.
Moreover, the group G is unimodular so the map f 7→ f∗ is an anti-unitary operator on L2(G). We
infer that L2(G)∗ = L2(G) and consequently that

Ce(G) = spanL2(G) ∗ L2(G).

As already noted, we always have Ce(G) ⊂ C(G). If in addition λ(C(G)) ⊂ λ(Ce(G)), we have
C(G) = Cc(G) ⊂ Ce(G) (if f, g ∈ L1(G) and λ(f) = λ(g), we have f = g almost everywhere since
the regular representation λ : L1(G) → B(L2(G)), f 7→ λ(f) is injective by [59, page 285]), then we
obtain spanL2(G) ∗ L2(G) = C(G). But this is true only if G is finite (see [97, 34.16, 34.40 (ii) and
37.4]).
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∗-isomorphism π induces a complete isometry µG(K)
1
pπp from Lp(VN(G/K)) into

Lp(VN(G)pK). In particular πp is of completely bounded norm less than 1

µG(K)
1
p
.

Proof. – The subgroup K is open, so µG|K is a Haar measure on K and
µK = 1

µG(K)µG|K . So

pK = λ
(
µ0
K

)
= λ

((
1

µG(K)
µG|K

)0)
=

1

µG(K)
λ
(
(µG|K)0

)
=

1

µG(K)
λ(1KµG) =

1

µG(K)
λ(1K).

Note that the group G/K is discrete by [98, Theorem 5.21] since K is open and
that pK = pKp

∗
K . For any s ∈ G, using Plancherel Formula (6.1.3) in the second

equality, we obtain

τG(π(λsK)) = τG(λspK) = τG(p∗KλspK) =
1

µG(K)2
τG(λ(1K)∗λsλ(1K))

=
1

µG(K)2
⟨1K , 1sK⟩L2(G) =

1

µG(K)
1K(s) =

1

µG(K)
τG/K(λsK).

The statements on induced maps by π between Lp-spaces are now standard
using interpolation. Indeed, if x ∈ Lp(VN(G/K)) we have

(
τG(|π(x)|p)

) 1
p =(

1
µG(K)τG/K(|x|p)

) 1
p .

Noncommutative Lp-spaces of group von Neumann algebras. – By (6.1.3), the linear
map L1(G) ∩ L2(G) → L2(VN(G)), g 7→ λ(g) is an isometric map which can be
extended to an isometry between L2(G) and L2(VN(G)) using [165, Corollary 9.3].

We need a convenient dense subspace of Lp(VN(G)). If p = ∞, [56, Corollary 7
page 51] says (42) that λ(Cc(G)) is weak* dense in VN(G), so by Kaplansky’s density
theorem, the closed unit ball of λ(Cc(G)) is weak* dense in the closed unit ball
of VN(G). Moreover, it is proved in [48, Proposition 4.7] (see [72, Proposition 3.4]
for the case p = 1) that λ(span Cc(G) ∗ Cc(G)) is dense in Lp(VN(G)) in the case
1 ≤ p <∞.

Fourier multipliers on noncommutative Lp-spaces. – Note that if ϕ ∈ L1
loc(G) is a

locally integrable function and if f ∈ Cc(G) then the product ϕf belongs to L1(G)

and consequently induces a bounded operator λ(ϕf) : L2(G) → L2(G). Recall that
this operator is equal to the weak integral

∫
G
ϕ(s)f(s)λs dµG(s). Finally, recall

that L2
loc(G) ⊂ L1

loc(G).

Definition 6.3. – Let G be a unimodular locally compact group. Suppose 1 ≤ p ≤ ∞.
Then we say that a (weak* continuous if p = ∞) bounded operator
T : Lp(VN(G)) → Lp(VN(G)) is a (Lp) Fourier multiplier if there exists a locally

42. Note that PM2(G) = VN(G).
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2-integrable function ϕ ∈ L2
loc(G) such that for any f ∈ Cc(G) ∗ Cc(G) (f ∈ Cc(G) if

p =∞) the element
∫
G
ϕ(s)f(s)λs dµG(s) belongs to Lp(VN(G)) and

(6.1.6) T

(∫
G

f(s)λs dµG(s)

)
=

∫
G

ϕ(s)f(s)λs dµG(s), i.e., T (λ(f)) = λ(ϕf).

In this case, we let T = Mϕ.

Then Mp(G) is defined to be the space of all bounded Lp Fourier multipliers and
Mp,cb(G) to be the subspace consisting of completely bounded Lp Fourier multipliers.

Note that we take symbols in L2
loc(G) to use Plancherel Formula (6.1.3) in the sequel

of this section. We will see in Proposition 6.5 combined with Lemma 6.6 that the sym-
bol ϕ of a bounded Fourier multiplier necessarily belongs to the smaller space L∞(G).
So, we could replace L2

loc(G) by L∞(G) in the definition. It is not clear if we can re-
place L2

loc(G) by L1
loc(G) for an arbitrary group G. Recall that the space L1(VN(G))

canonically identifies to the Fourier algebra A(G). Using the regularity of the Fourier
algebra [115, Th 2.3.8], it is not difficult in the case p = 1 to see that a Fourier mul-
tiplier ϕ is equal almost everywhere to a continuous complex function defined on G.
Moreover, there exists (43) at most one function ϕ (up to identity almost everywhere)
such that T = Mϕ and we say that ϕ induces the bounded Fourier multiplier Mϕ.
Finally, it is obvious that the linear map MA(G)→M1(G), φ 7→Mφ is an isometry,
where the space MA(G) of multipliers of the Fourier algebra A(G) is defined in [115,
pages 153-154].

Finally, note that we can see M∞(G) as a subset of the space B(C∗λ(G),VN(G))

where C∗λ(G) is the reduced C∗-algebra of G. See [115, Remark 1.3].
The following results generalize the alluded observations of [95] done for discrete

groups.

Lemma 6.4. – Let G be a unimodular locally compact group. Suppose 1 ≤ p ≤ ∞.
We have the isometries Mp(G) →Mp∗(G), Mϕ 7→ Mϕ and Mp,cb(G) →Mp∗,cb(G),
Mϕ 7→ Mϕ. Moreover, the Banach adjoint (Mϕ)

∗ : Lp
∗
(VN(G)) → Lp

∗
(VN(G))

(preadjoint if p = ∞) of Mϕ : Lp(VN(G)) → Lp(VN(G)) identifies to the Fourier
multiplier whose symbol is ϕ̌. Moreover, the maps Mp(G) → Mp(G), Mϕ 7→ Mϕ

and Mp,cb(G) → Mp∗,cb(G), Mϕ 7→ Mϕ are isometries. Finally, we can replace Mϕ

by Mϕ̌ in the last sentence.

Proof. – Let Mϕ : Lp(VN(G)) → Lp(VN(G)) be an element of Mp(G). For
any f, g ∈ Cc(G) ∗ Cc(G) (f ∈ Cc(G) and g ∈ Cc(G) ∗ Cc(G) if p = ∞ and
f ∈ Cc(G) ∗ Cc(G) and g ∈ Cc(G) if p = 1), we have g, ϕf ∈ L1(G) ∩ L2(G) since
ϕ ∈ L2

loc(G). Using Plancherel Formula (6.1.3) in the second and third equalities, we
deduce that

τ
(
Mϕ(λ(f))λ(g)

)
= τ

(
λ(ϕf)λ(g)

)
=

∫
G

ϕ̌f̌g dµG = τ
(
λ(f)λ

(
ϕ̌g
))

= τ
(
λ(f)Mϕ̌

(
λ(g)

))
.

43. This is clear since the regular representation λ : L1(G) → B(L2(G)), f 7→ λ(f) is injective by
[59, page 285].
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We conclude that the adjoint (Mϕ)
∗ : Lp

∗
(VN(G)) → Lp

∗
(VN(G)) (preadjoint if

p =∞) identifies to the multiplier Mϕ̌. Thus the map Mϕ 7→Mϕ̌ provides an isometry
Mp(G)→Mp∗(G).

On the other hand, note that the map κ : VN(G)→ VN(G), λs 7→ λs−1 is a ∗-anti-
automorphism of the algebra VN(G), hence weak* continuous. For any g ∈ Cc(G),
using [34, VI.3 Proposition 1] in the second equality, we see that

κ(λ(g)) = κ

(∫
G

g(s)λs dµG(s)

)
=

∫
G

g(s)κ(λs) dµG(s)

=

∫
G

g(s)λs−1 dµG(s) =

∫
G

g(s−1)λs dµG(s) = λ(ǧ),

where we use that
∫
G
f(s)λs dµG(s) is a well-defined weak* integral (by [11,

Lemma 2.2] and [34, Corollary 2, III.38]). For any f, g ∈ Cc(G), we deduce that

τ(κ(λ(g)λ(f))) = τ(κ(λ(g ∗ f))) = τ(λ(

ˇ︷︸︸︷
g ∗ f)) = τ

(
λ(f̌ ∗ ǧ)

)
=

∫
G

fǧ dµG =

∫
G

f̌g dµG = τ(λ(g ∗ f)) = τ(λ(g)λ(f)).

We conclude with [166, Theorem 6.2] that κ preserves the trace. Hence, it induces an
isometric map κp∗ : Lp

∗
(VN(G))→ Lp

∗
(VN(G)). Now, if Mϕ belongs toMp∗(G) note

that the map κop
p∗ ◦Mφ ◦ κp∗ : Lp

∗
(VN(G))→ Lp

∗
(VN(G)) identifies to the multiplier

Mϕ̌. We conclude that the map Mp∗(G) → Mp∗(G), Mφ 7→ Mφ̌ is an isometry.
We conclude by composition that the map Mp(G) → Mp∗(G), Mϕ 7→ Mϕ is an
isometry. To show the isometry Mp,cb(G) =Mp∗,cb(G), we proceed in the same way
using Lemma 2.5 observing that κp∗ : Lp

∗
(VN(G))op → Lp

∗
(VN(G)) is completely

isometric. Finally, with the isometric map Θ: Lp(VN(G)) → Lp(VN(G)), x 7→ x∗,
it is easy to check that the map ΘMϕΘ: Lp(VN(G)) → Lp(VN(G)) identifies to the
multiplier Mˇ

ϕ
. Moreover, recall that Θ: Lp(VN(G))op → Lp(VN(G)) is a complete

isometry. Then it is not difficult to obtain the final assertions.

Lemma 6.5. – Let G be a unimodular locally compact group. We have the following
isometries

M2(G) =M2,cb(G) = L∞(G).

Proof. – Suppose that ϕ ∈ L2
loc(G) induces a bounded Fourier multiplier. Using the

Plancherel isometry L2(VN(G)) ∼= L2(G), for any function f ∈ Cc(G) ∗ Cc(G), we
obtain (since ϕf ∈ L1(G) ∩ L2(G)) that

∥∥Mϕ(λ(f))
∥∥

L2(VN(G))
=
∥∥λ(ϕf)

∥∥
L2(VN(G))

=

∥ϕf∥L2(G). We deduce that

∥Mϕ∥L2(VN(G))→L2(VN(G)) = sup
f∈Cc(G)∗Cc(G),∥f∥L2(G)≤1

∥ϕf∥L2(G) = ∥ϕ∥L∞(G) .

Conversely, if ϕ ∈ L∞(G) then for any f ∈ Cc(G)∗Cc(G) we have ϕf ∈ L1(G)∩L2(G)

and consequently λ(ϕf) ∈ L2(VN(G)). Moreover, we have
∥∥λ(ϕf)

∥∥
L2(VN(G))

=
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∥ϕf∥L2(G) ≤ ∥ϕ∥L∞(G) ∥f∥L2(G). So ϕ induces a bounded Fourier multiplier
on L2(VN(G)). This shows that M2(G) = L∞(G).

Moreover, the operator space structure of L2(VN(G)) turns it into an operator
Hilbert space [146, page 139], so that the completely bounded mappings on L2(VN(G))

coincide with the bounded ones by [146, page 127]. We conclude that M2,cb(G) =

M2(G) = L∞(G).

Lemma 6.6. – Let G be a unimodular locally compact group. Suppose 1 ≤ p ≤ q ≤ 2.
We have the contractive inclusions M1(G) ⊂ Mp(G) ⊂ Mq(G) ⊂ M2(G) and
M1,cb(G) ⊂Mp,cb(G) ⊂Mq,cb(G) ⊂M2,cb(G).

Proof. – Note that the first inclusion is a particular case of the second inclusion. If
Mϕ belongs to Mp(G) then by Lemma 6.4, it also belongs to Mp∗(G), consequently,
by complex interpolation, Mϕ belongs to M2(G). Using again interpolation between
2 and p, we deduce that Mϕ belongs to Mq(G). The second chain is proved in the
same manner.

The first part of the following result generalizes [115, Lemma 5.1.4].

Lemma 6.7. – Let G be a unimodular locally compact group. Suppose 1 ≤ p ≤ ∞.
Let (Mϕj ) be a bounded net of bounded Fourier multipliers on Lp(VN(G)) and sup-
pose that ϕ is an element of L∞(G) such that (ϕj) converges to ϕ for the weak*
topology of L∞(G). Then ϕ induces a bounded Fourier multiplier on Lp(VN(G)). In
addition if 1 < p <∞, the net (Mϕj ) converges to Mϕ for the weak operator topology
of B(Lp(VN(G))) and

∥Mϕ∥Lp(VN(G))→Lp(VN(G)) ≤ lim inf
j→∞

∥∥Mϕj

∥∥
Lp(VN(G))→Lp(VN(G))

.

If p =∞, for any functions f ∈ Cc(G) and g ∈ Cc(G) ∗ Cc(G), we have〈
Mϕj (λ(f)), λ(g)

〉
VN(G),L1(VN(G))

−−→
j

〈
Mϕ(λ(f)), λ(g)

〉
VN(G),L1(VN(G))

.

A similar statement is true by replacing “bounded” by “completely bounded” and the
norms by ∥·∥cb,Lp(VN(G))→Lp(VN(G)).

Proof. – For any functions f, g ∈ Cc(G) ∗ Cc(G) (to adapt if if p = 1), we have
fǧ ∈ L1(G). For any j, we have∣∣∣∣∫

G

ϕjfǧ dµG

∣∣∣∣ = ∣∣∣〈λ(ϕjf), λ(g)
〉
Lp(VN(G)),Lp∗ (VN(G))

∣∣∣
=
∣∣∣〈Mϕj (λ(f)), λ(g)

〉
Lp(VN(G)),Lp∗ (VN(G))

∣∣∣
≤
∥∥Mϕj

∥∥
Lp(VN(G))→Lp(VN(G))

∥λ(f)∥Lp(VN(G)) ∥λ(g)∥Lp∗ (VN(G)) .

Passing to the limit, we obtain∣∣∣∣∫
G

ϕfǧ dµG

∣∣∣∣ ≤ lim inf
j→∞

∥∥Mϕj

∥∥
Lp(VN(G))→Lp(VN(G))

∥λ(f)∥Lp(VN(G)) ∥λ(g)∥Lp∗ (VN(G)) .
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By density if p < ∞, we conclude that ϕ induces a bounded Fourier multiplier
on Lp(VN(G)) with the estimate on the norm (use duality if p =∞).

Using again Plancherel Formula (6.1.3) and the weak* convergence of the net (ϕj),
we deduce that for any functions f, g ∈ Cc(G) ∗ Cc(G)〈

(Mϕ −Mϕj )(λ(f)), λ(g)
〉
Lp(VN(G)),Lp∗ (VN(G))

= τ
(
(Mϕ −Mϕj )(λ(f))λ(g)

)
= τ

(
λ((ϕ− ϕj)f)λ(g)

)
=

∫
G

(ϕ− ϕj)fǧ dµG =
〈
ϕ− ϕj , f ǧ

〉
L∞(G),L1(G)

−−→
j

0.

By density, using a ε
4 -argument and the boundedness of the net, we conclude (44) the

proof. The case p =∞ is similar.

Now, we prove the last sentence, it suffices to show that ϕ induces a completely
bounded Fourier multiplier. For any fkl, gkl ∈ Cc(G) ∗ Cc(G) (fkl ∈ Cc(G) if p =∞)
where 1 ≤ k, l ≤ N , we have fklǧkl ∈ L1(G) and for any j∣∣∣〈[Mϕj (λ(fkl))

]
,
[
λ(gkl)

]〉
MN (Lp(VN(G))),S1

N (Lp∗ (VN(G)))

∣∣∣
≤
∥∥Mϕj

∥∥
cb,Lp(VN(G))→Lp(VN(G))

∥∥[λ(fkl)
]∥∥

MN (Lp(VN(G)))

∥∥[λ(gkl)
]∥∥
S1
N (Lp∗ (VN(G)))

,

that is, using Plancherel Formula (6.1.3),∣∣∣∣∣∣
N∑

k,l=1

∫
G

ϕj(s)fkl(s)ǧkl(s) dµG(s)

∣∣∣∣∣∣
≤
∥∥Mϕj

∥∥
cb,Lp(VN(G))→Lp(VN(G))

∥∥[λ(fkl)
]∥∥

MN (Lp(VN(G)))

∥∥[λ(gkl)
]∥∥
S1
N (Lp∗ (VN(G)))

.

Passing to the limit, we obtain∣∣∣∣∣∣
N∑

k,l=1

∫
G

ϕ(s)fkl(s)ǧkl(s) dµG(s)

∣∣∣∣∣∣
≤ lim inf

j→∞

∥∥Mϕj

∥∥
cb,Lp(VN(G))→Lp(VN(G))

∥∥[λ(fkl)
]∥∥

MN (Lp(VN(G)))

∥∥[λ(gkl)
]∥∥
S1
N (Lp∗ (VN(G)))

.

We deduce that ϕ induces a completely bounded Fourier multiplier on Lp(VN(G))

with the suitable estimate on the completely bounded norm.

Lemma 6.8. – Let G be a unimodular locally compact group and 1 < p < ∞. Then
the spaceMp,cb(G) is weak* closed in CB(Lp(VN(G))). Similarly, the spaceMp(G) is
weak* closed in the space B(Lp(VN(G))). Finally, the spaces M∞(G) and M∞,cb(G)

are weak* closed in the spaces B(C∗λ(G),VN(G)) and CB(C∗λ(G),VN(G)).

44. More precisely, if X is a Banach space, if E1 is dense subset of X, if E2 is a dense subset of X∗

and if (Tj) is a bounded net of B(X) with an element T of B(X) such that ⟨Tj(x), x
∗⟩ −−→

j
⟨T (x), x∗⟩

for any x ∈ E1 and any x∗ ∈ E2, then the net (Tj) converges to T for the weak operator topology
of B(X).
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Proof. – By the Banach-Dieudonné theorem [100, page 154], it suffices to show that
the closed unit ball of Mp,cb(G) is weak* closed in CB(Lp(VN(G))). Let (Mϕj ) be a
net in that unit ball converging for the weak* topology to some completely bounded
map T : Lp(VN(G))→ Lp(VN(G)). By Lemma 6.5 and Lemma 6.6, for any j, we have

∥ϕj∥L∞(G) ≤
∥∥Mϕj

∥∥
cb,Lp(VN(G))→Lp(VN(G))

≤ 1.

Hence by Banach-Alaoglu’s theorem there exists a subnet of (ϕj) converging for the
weak* topology to some ϕ ∈ L∞(G). It remains to show that T = Mϕ. Recall that the
predual of the space CB(Lp(VN(G))) is given by Lp(VN(G))⊗̂Lp

∗
(VN(G))op, where

⊗̂ denotes the operator space projective tensor product and the duality bracket is
given by

⟨T, x⊗ y⟩CB(Lp(VN(G))),Lp(VN(G))⊗̂Lp∗ (VN(G)) =
〈
T (x), y

〉
Lp(VN(G)),Lp∗ (VN(G))

.

This implies that
〈
Mϕj (x), y

〉
−→
j
⟨T (x), y⟩ for any x ∈ Lp(VN(G)) and any

y ∈ Lp
∗
(VN(G)). By Lemma 6.7, the net (Mϕj ) converges in addition to Mϕ for the

weak operator topology. So by uniqueness of the limit, we obtain that T = Mϕ.
For the last sentence, we use a similar proof where here T : C∗λ(G) → VN(G).

On the one hand, we have
〈
Mϕj (x), y

〉
−→
j
⟨T (x), y⟩ for any x ∈ C∗λ(G) and

any y ∈ L1(VN(G)). On the other hand by Lemma 6.7, for any f ∈ Cc(G)

and any g ∈ Cc(G) ∗ Cc(G), we have
〈
Mϕj (λ(f)), λ(g)

〉
→

〈
Mϕ(λ(f)), λ(g)

〉
.

By uniqueness of the limit, we deduce that
〈
T (λ(f)), λ(g)

〉
VN(G),L1(VN(G))

=〈
Mϕ(λ(f)), λ(g)

〉
VN(G),L1(VN(G))

. Consequently, we obtain Mϕ(λ(f)) = T (λ(f)) for
any function f ∈ Cc(G). Finally T = Mϕ.

The statement on the space Mp(G) can be proved in a similar manner, using
the predual Lp(VN(G))⊗̂Lp

∗
(VN(G)) of B(Lp(VN(G))) where ⊗̂ denotes the Banach

space projective tensor product. The last sentence is similar.

Remark 6.9. – We do not know if Mp,cb(G) and Mp(G) are maximal commutative
subsets of CB(Lp(VN(G))) and B(Lp(VN(G))) which is a stronger assertion.

If G is an abelian locally compact group and if Mφ : Lp(G) → Lp(G) is a positive
multiplier in Mp(Ĝ), note that φ is equal almost everywhere to a function of the
Fourier-Stieltjes algebra B(Ĝ), thus to a continuous function. The next lemma extends
this result to the noncommutative context.

Lemma 6.10. – Let G be a unimodular locally compact group. Suppose 1 ≤ p ≤ ∞.
Let φ : G → C be a complex function which induces a positive Fourier multiplier
Mφ : Lp(VN(G)) → Lp(VN(G)). Then φ is equal almost everywhere to a continuous
function.

Proof. – We can suppose 1 < p < ∞. Let g ∈ Cc(G). Then the operator
λ(g∗ ∗ g) = λ(g)∗λ(g) : L2(G)→ L2(G) is positive. Moreover, by (6.1.4), it be-
longs to mτG ⊂ Lp(VN(G)). We conclude that λ(g∗ ∗ g) belongs to Lp(VN(G))+.
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We deduce that Mφ

(
λ(g∗ ∗ g)

)
is a positive element of Lp(VN(G)). Since φ(g∗ ∗ g)

belongs to L1(G) ∩ L2(G), the operator Mφ

(
λ(g∗ ∗ g)

)
= λ(φ(g∗ ∗ g)) is bounded

on L2(G). Now, for any ξ ∈ L2(G), by positivity,

0 ≤
〈
Mφ

(
λ(g∗ ∗ g)

)
ξ, ξ
〉
L2(G)

=

〈(∫
G

φ(s)(g∗ ∗ g)(s)λs dµG(s)

)
ξ, ξ

〉
L2(G)

=

∫
G

〈(
φ(s)(g∗ ∗ g)(s)λs

)
ξ, ξ
〉
L2(G)

dµG(s)

=

∫
G

(∫
G

g(t−1)g(t−1s) dµG(t)

)
φ(s)

〈
λsξ, ξ

〉
L2(G)

dµG(s)

=

∫
G

(∫
G

g(t)g(ts) dµG(t)

)
φ(s)

〈
λsξ, ξ

〉
L2(G)

dµG(s)

=

∫
G

∫
G

g(t)g(s)φ(t−1s)
〈
λt−1sξ, ξ

〉
L2(G)

dµG(s) dµG(t).

Hence the function s 7→ φ(s)
〈
λsξ, ξ

〉
L2(G)

of L∞(G) is positive definite [172, VII.3,
Definition 3.20], [59, page 296]. By [172, VII.3, Corollary 3.22], we deduce that it
coincides almost everywhere with a continuous function on G. To conclude the lemma,
it suffices now to show that there exists a neighborhood K1 of e ∈ G such that
for any s0 ∈ G, there exists ξ ∈ L2(G) such that

〈
λsξ, ξ

〉
L2(G)

does not vanish for
s ∈ K1s0. To this end, let K0 be a compact neighborhood of e and set K = K−1

1 ·K0,

which is also compact. Let ξ0 ∈ L2(G) such that ξ0 ≥ 0 almost everywhere and ξ0 > 0

on K. Put ξ = ξ0 + λs−1
0
ξ0. Then〈

λsξ, ξ
〉
L2(G)

=
〈
λs
(
ξ0 + λs−1

0
ξ0
)
, ξ0 + λs−1

0
ξ0

〉
L2(G)

≥
〈
λss−1

0
ξ0, ξ0

〉
L2(G)

=

∫
G

ξ0
(
s0s

−1t
)
ξ0(t) dµG(t) ≥

∫
K0

ξ0
(
s0s

−1t
)
ξ0(t) dµG(t).

For t ∈ K0 and s ∈ K1s0, we have s0s−1t ∈ K−1
1 K0 = K, so that ξ0(s0s−1t) > 0.

Also, ξ0(t) > 0 for such t. Thus, the last integral is strictly positive for s ∈ K1s0, and
the lemma is shown.

Proposition 6.11. – Let G be a unimodular locally compact group. Suppose
1 ≤ p ≤ ∞. The following are equivalent for a complex measurable function
φ : G→ C (45).

1. φ induces a completely positive Fourier multiplier Mφ : Lp(VN(G))→ Lp(VN(G)).

2. φ induces a completely positive Fourier multiplier Mφ : VN(G)→ VN(G).

3. φ is equal almost everywhere to a continuous positive definite function.

45. This proposition admits a generalization for n-positive maps.
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Proof. – 3. ⇒ 2.: This is [51, Proposition 4.3].

2. ⇒ 1.: Suppose first that Mφ : VN(G) → VN(G) is completely positive.
Since Mφ is bounded on VN(G), by Lemma 6.6, φ induces a Fourier multiplier
on Lp(VN(G)) which is (46) completely positive.

1. ⇒ 3.: According to Lemma 6.10, the function φ is continuous almost every-
where, so we can assume that φ is continuous without changing the operator Mφ.
For i = 1, . . . , n let fi ∈ Cc(G). Note that by [124, Proposition 2.1] the matrix
[λ(f∗i ∗ fj)] = [λ(fi)

∗λ(fj)] is a positive element of Mn(VN(G)) and an element
of Mn(L

p(VN(G))) by (6.1.4), hence a positive element of Mn(L
p(VN(G))). Con-

sequently, (IdMn ⊗Mφ)[λ(f∗i ∗ fj)] = [λ(φ(f∗i ∗ fj))] is an element of

Mn(L
p(VN(G))+ ∩Mn(VN(G)).

In particular, for any g1, . . . , gn ∈ Cc(G) we have

n∑
i,j=1

〈
λ
(
φ(f∗i ∗ fj)

)
gj , gi

〉
L2(G)

≥ 0

that is
n∑

i,j=1

∫
G

φ(s)(f∗i ∗ fj)(s)(gi ∗ g̃j)(s) dµG(s) ≥ 0.

By [51, Proposition 4.3 and Proposition 4.2], we conclude that the function φ is
continuous and positive definite.

Proposition 6.12. – Let G be a unimodular locally compact group. Suppose
1 ≤ p <∞. Let (Mϕn) be a bounded sequence of bounded Fourier multipliers
on Lp(VN(G)) such that (ϕn) converges almost everywhere to some function
ϕ ∈ L∞(G). Then ϕ induces a bounded Fourier multiplier Mϕ on Lp(VN(G))

and

∥Mϕ∥Lp(VN(G))→Lp(VN(G)) ≤ lim inf
n→+∞

∥Mϕn∥Lp(VN(G))→Lp(VN(G)) .

A similar result is true for completely bounded multipliers.

Proof. – By Lemma 6.5, the sequence (ϕn) of functions is uniformly bounded in
the norm ∥·∥L∞(G). Note that if f ∈ L1(G), the sequence (

∫
G
ϕnf dµG) converges

to
∫
G
ϕf dµG by the dominated convergence theorem. Hence (ϕn) converges to ϕ for

the weak* topology of L∞(G). The conclusion is a consequence of Lemma 6.7.

46. We use here the fact, left to the reader, that if T : M → N is a completely positive map which
induces a bounded map Tp : Lp(M) → Lp(N) then Tp is also completely positive.
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6.2. The completely bounded homomorphism theorem for Fourier multipliers

Suppose 1 ≤ p < ∞. Let us remind the definition of a Schur multiplier on
SpΩ

def
= Lp(B(L2(Ω))) where (Ω, µ) is a (σ-finite) measure space [123, Section 1.2].

If f ∈ L2(Ω× Ω), we denote by Kf : L2(Ω) → L2(Ω), u 7→
∫
Ω
f(z, ·)u(z) dz the inte-

gral operator with kernel f . We say that a measurable function ϕ : Ω×Ω→ C induces
a bounded Schur multiplier on SpΩ if for any f ∈ L2(Ω × Ω) satisfying Kf ∈ SpΩ we
have Kϕf ∈ SpΩ and if the map S2

Ω ∩ S
p
Ω → SpΩ, Kf 7→ Kϕf extends to a bounded

map Mϕ from SpΩ into SpΩ called the Schur multiplier associated with ϕ. We denote
by Mp,cb

Ω the space of completely bounded Schur multipliers on SpΩ. We refer to the
surveys [174] and [173] for the case p =∞.

Let G be a unimodular locally compact group. The right regular representation
ρ : G→ B(L2(G)) is given by (ρtξ)(s) = ξ(st). Recall that ρ is a strongly continuous
unitary representation. We will use the notation Adpρs : SpG → SpG, x 7→ ρsxρs−1 .
A bounded Schur multiplier Mϕ : SpG → SpG is a Herz-Schur multiplier if MϕAdpρs =

AdpρsMϕ for any s ∈ G. In this case, there exists a measurable function φ : G→ C such
that ϕ(r, s) = φ(rs−1) for almost every r, s ∈ G and we let MHS

φ = Mϕ. We denote
by Mp,cb,HS

G the subspace of Mp,cb
G of completely bounded Herz-Schur multipliers.

In the sequel Gdisc stands for the group G equipped with the discrete topology.

Proposition 6.13. – Let G and H be second countable locally compact groups and
σ : G → H be a continuous homomorphism. Suppose 1 ≤ p ≤ ∞. If φ : H → C
is a continuous function which induces a completely bounded Herz-Schur multiplier
MHS
φ : SpH → SpH , then the continuous function φ ◦ σ : G → C induces a completely

bounded Herz-Schur multiplier MHS
φ◦σ : SpG → SpG and∥∥MHS

φ◦σ
∥∥

cb,SpG→S
p
G

≤
∥∥MHS

φ

∥∥
cb,SpH→S

p
H

.

Moreover, if σ(G) is dense in H, we have an isometry (47) MHS
φ 7→MHS

φ◦σ.

Proof. – Let G π−→ G/Ker(σ)
σ̃−→ Ranσ

i−→ H be the canonical decomposition of the
homomorphism σ. By [39, Lemma 9.2], we have∥∥MHS

φ◦i◦σ̃◦π
∥∥

cb,SpG→S
p
G

=
∥∥MHS

φ◦i◦σ̃
∥∥

cb,Sp
G/Ker σ

→Sp
G/Ker σ

.

We have a natural isomorphism Jσ̃ : Sp(G/Kerσ)disc
→ Sp(Ranσ)disc

, es1,s2 7→ eσ̃(s1),σ̃(s2)

where the es1,s2 ’s are the matrix units.

Therefore, the group isomorphism σ̃ : G/Kerσ → Ranσ yields an isometric isomor-
phism from the space of completely bounded Herz-Schur multipliers over Sp(Ranσ)disc

47. The proof shows that if Mφ◦σ is completely bounded then Mφ is completely bounded.

MÉMOIRES DE LA SMF 177



6.2. THE COMPLETELY BOUNDED HOMOMORPHISM THEOREM 93

to the space of completely bounded Herz-Schur multipliers over Sp(G/Kerσ)disc
by send-

ing each MHS
ψ to MHS

ψ◦σ̃ = Jσ̃−1MHS
ψ Jσ̃. Thus, we obtain using [39, Lemma 9.2] three

times∥∥MHS
φ◦i◦σ̃

∥∥
cb,Sp

G/Ker σ
→Sp

G/Ker σ

=
∥∥MHS

φ◦i◦σ̃
∥∥

cb,Sp
(G/Ker σ)disc

→Sp
(G/Ker σ)disc

=
∥∥MHS

φ◦i
∥∥

cb,Sp
(Ran σ)disc

→Sp
(Ran σ)disc

≤
∥∥MHS

φ

∥∥
cb,SpHdisc

→SpHdisc

=
∥∥MHS

φ

∥∥
cb,SpH→S

p
H

.

This shows the first part of the proposition.
It remains to show the isometric statement in the case where Ranσ is dense in H.

In the light of the foregoing, we only need to show that

(6.2.1)
∥∥MHS

φ

∥∥
cb,SpH→S

p
H

≤
∥∥MHS

φ◦i
∥∥

cb,Sp
(Ran σ)disc

→Sp
(Ran σ)disc

.

According to [123, Theorem 1.19], we have∥∥MHS
φ

∥∥
cb,SpH→S

p
H

= sup
F⊂H finite

∥∥MHS
φ |F

∥∥
cb,SpF→S

p
F

.

Here, the restriction to F means that one considers the mapping∑
s1,s2∈F

as1,s2es1,s2 7→
∑

s1,s2∈F
φ(s−1

1 s2)as1,s2es1,s2 .

We fix some finite subset F = {s1, . . . , sN} ⊂ H and some ε > 0. Then for
any 1 ≤ k, l ≤ N , by continuity of φ, there exist a neighborhood Vk,l of s−1

k sl
such that |φ(t) − φ(s−1

k sl)| < ε if t ∈ Vk,l. Since the mapping G × G → G,
(s, t) 7→ s−1t is continuous, there exist neighborhoods Wk,l of sk and W ′

k,l of sl such
that (Wk,l)

−1W ′
k,l ⊂ Vk,l. For any 1 ≤ k ≤ N , let now Uk =

⋂N
l=1Wk,l ∩

⋂N
l=1W

′
l,k

which is a neighborhood Uk of sk. Since Ranσ is dense in H, there exists
tk ∈ Ranσ ∩ Uk and we obtain a subset F̃ε = {t1, . . . , tN} of Ranσ with the
same cardinality as F . Moreover, t−1

k tl belongs to U−1
k Ul ⊂ Vk,l and consequently,

|φ(t−1
k tl)− φ(s−1

k sl)| < ε for any k, l ∈ {1, . . . , N}.
Denote MA,MB : SpN → SpN the Schur multipliers with symbols A = [φ(t−1

k tl)] and
B = [φ(s−1

k sl)]. Then, we obtain using the identifications Sp
F̃ε

= SpN and SpF = SpN in
the first equality∣∣∣∣∥∥MHS

φ◦i|F̃ε
∥∥

cb,Sp
F̃ε
→Sp

F̃ε

−
∥∥MHS

φ |F
∥∥

cb,SpF→S
p
F

∣∣∣∣ = ∣∣∣∥MA∥cb,SpN→SpN − ∥MB∥cb,SpN→SpN
∣∣∣

≤ ∥MA −MB∥cb,SpN→SpN =

∥∥∥∥∥∥
N∑

k,l=1

(
φ(t−1

k tl)− φ(s−1
k sl)

)
Mekl

∥∥∥∥∥∥
cb,SpN→S

p
N

=

N∑
k,l=1

∣∣φ(t−1
k tl)− φ(s−1

k sl)
∣∣ ∥Mekl∥cb,SpN→SpN < N2ε.
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We have shown ∥∥MHS
φ◦i|F̃ε

∥∥
cb,Sp

F̃ε
→Sp

F̃ε

−−−→
ε→0

∥∥MHS
φ |F

∥∥
cb,SpF→S

p
F

.

But again according to [123, Theorem 1.19], the left hand side is dominated by∥∥MHS
φ◦i
∥∥

cb,Sp
(Ran σ)disc

→Sp
(Ran σ)disc

.

Hence we obtain (6.2.1).

Now, we state a completely bounded version of the classical homomorphism theo-
rem [65, page 184].

Theorem 6.14. – Let G and H be locally compact groups and σ : G → H be a
continuous homomorphism. Suppose 1 ≤ p ≤ ∞. We suppose that G and H are second
countable and amenable if 1 < p < ∞. If φ : H → C is a continuous function which
induces a completely bounded Fourier multiplier Mφ : Lp(VN(H))→ Lp(VN(H)), then
the continuous function φ◦σ : G→ C induces a completely bounded Fourier multiplier
Mφ : Lp(VN(G))→ Lp(VN(G)) and

∥Mφ◦σ∥cb,Lp(VN(G))→Lp(VN(G)) ≤ ∥Mφ∥cb,Lp(VN(H))→Lp(VN(H)) .

Moreover, if σ(G) is dense in H, we have an isometry (48) Mφ 7→ Mφ◦σ. Finally, if
Mφ is completely positive then Mφ◦σ is also completely positive.

Proof. – The case p =∞ is [163, Theorem 6.2]. By duality, we obtain the case p = 1.
Now, we suppose that 1 < p < ∞. Note that by Lemma 6.5 and Lemma 6.6, the
function φ is bounded. Then by amenability of G and H, using [40, Theorem 4.2 and
Corollary 5.3] (49) with [39, Remark 9.3] and Proposition 6.13, we obtain

∥Mφ◦σ∥cb,Lp(VN(G))→Lp(VN(G)) =
∥∥MHS

φ◦σ
∥∥

cb,SpG→S
p
G

≤
∥∥MHS

φ

∥∥
cb,SpH→S

p
H

= ∥Mφ∥cb,Lp(VN(H))→Lp(VN(H)) .

The isometric statement is proved in the same way.
Finally, suppose that Mφ is completely positive. By Proposition 6.11, we deduce

that its symbol φ is a continuous positive definite function. Since σ is continuous, the
function φ ◦ σ is also continuous. Moreover, if α1, . . . , αn ∈ C and s1, . . . , sn ∈ G, we
infer that

n∑
k,l=1

αkαlφ ◦ σ(sks
−1
l ) =

n∑
k,l=1

αkαlφ
(
σ(sk)σ(sl)

−1
)
≥ 0.

We conclude that φ ◦ σ is positive definite. We conclude by using again Proposi-
tion 6.11.

48. The proof shows that if Mφ◦σ is completely bounded then Mφ is completely bounded.
49. We warn the reader that the proof of [40, Theorem 5.2] is only valid for second countable

groups. The proof uses Lebesgue’s dominated convergence theorem in the last line of page 7007 and
this result does not admit a generalization for nets. See [113] for more information.
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6.3. Extension of Fourier multipliers

The following is an extension of [86, Lemma 2.1 (2)] and a variant of [39, Theo-
rem B.1]. In [39, Theorem B.1], we warn the reader that a factor µG(X)−1 is missing.
Contrary to what is said, the alluded method does not give constant 1.

Theorem 6.15. – Let Γ be a lattice of a second countable unimodular locally compact
group G and X be a fundamental domain associated with Γ. We denote by γ : G→ Γ

and x : G → X the measurable mappings uniquely determined by the decomposition
s = ω(s)γ(s) for any s ∈ G. Suppose 1 ≤ p ≤ ∞. We assume that G is amenable
if 1 < p < ∞. Let ϕ : Γ → C be a complex function which induces a completely
bounded Fourier multiplier Mϕ : Lp(VN(Γ))→ Lp(VN(Γ)). Then the complex function
ϕ̃

def
= 1

µG(X)1X ∗ (ϕµΓ) ∗ 1X−1 : G→ C, where µΓ is the counting measure on Γ defined
by

(6.3.1) ϕ̃(s)
def
=

1

µG(X)

∫
X

ϕ(γ(sω)) dµG(ω), s ∈ G

is continuous and induces a completely bounded Fourier multiplier

Mϕ̃ : Lp(VN(G))→ Lp(VN(G))

and we have

(6.3.2)
∥∥Mϕ̃

∥∥
cb,Lp(VN(G))→Lp(VN(G))

≤
∥∥Mϕ

∥∥
cb,Lp(VN(Γ))→Lp(VN(Γ))

.

Finally, if Mϕ is completely positive then Mϕ̃ is also completely positive.

Proof. – The case p =∞ is [86, Lemma 2.1 (2)] and the case p = 1 follows by duality.
The continuity of ϕ̃ is alluded (50) in [86] and in the proof of [86, Lemma 2.1], the
Formula (6.3.1) is shown.

Now, we consider the remaining case 1 < p <∞. Since G and Γ are both amenable,
we obtain using [40, Theorem 4.2, Corollary 5.3] (51) in the first and in the last equality

50. We have

ϕ̃(s) =
1

µG(X)

∫
X

ϕ(γ(sω)) dµG(ω) =
1

µG(X)

∫
G

ϕ(γ(t))1X(s−1t) dµG(t).

Then for any s1, s2 ∈ G, we have∣∣∣ϕ̃(s1)− ϕ̃(s2)
∣∣∣ ≤ 1

µG(X)

∫
G

|ϕ(γ(t))| |1X(s−1
1 t)− 1X(s−1

2 t)| dµG(t)

≤
∥ϕ∥L∞(G)

µG(X)

∫
G

|1s1X(t)− 1s2X(t)| dµG(t)

= ∥ϕ∥L∞(G)

µG

(
s1X∆s2X

)
µG(X)

= ∥ϕ∥L∞(G)

µG

(
(s−1

2 s1X)∆X
)

µG(X)
−−−−−→
s2→s1

0,

where the last line follows from [91, Theorem A page 266].
51. We warn the reader that the proof of [40, Theorem 5.2] is only valid for second countable

groups. The proof uses Lebesgue’s dominated convergence theorem in the last line of page 7007 and
this result does not admit a generalization for nets. See [113] for more information.
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together with [39, Remark 9.3], and [123, Lemma 2.6] in the inequality∥∥Mϕ̃

∥∥
cb,Lp(VN(G))→Lp(VN(G))

=
∥∥MHS

ϕ̃

∥∥
cb,SpG→S

p
G

≤
∥∥MHS

ϕ

∥∥
cb,SpΓ→S

p
Γ

=
∥∥Mϕ

∥∥
cb,Lp(VN(Γ))→Lp(VN(Γ))

.

Suppose that Mϕ is completely positive. According to the proof of [86, Lemma 2.1],
for any s, t ∈ G, we have

ϕ̃(st−1) =
1

µG(X)

∫
X

ϕ
(
γ(sω′)γ(tω′)−1

)
dµG(ω′).(6.3.3)

We will show that ϕ̃ is positive definite. Let α1, . . . , αn ∈ C and s1, . . . , sn ∈ G. Since
ϕ is positive definite by Proposition 6.11, we obtain

n∑
k,l=1

αkαlϕ̃(sks
−1
l ) =

1

µG(X)

n∑
k,l=1

αkαl

∫
X

ϕ
(
γ(skω

′)γ(slω
′)−1

)
dµG(ω′)

=
1

µG(X)

∫
X

n∑
k,l=1

αkαlϕ
(
γ(skω

′)γ(slω
′)−1

)
dµG(ω′) ≥ 0.

Since the function ϕ̃ is continuous, we conclude that Mϕ̃ is completely positive by
using again Proposition 6.11.

6.4. Groups approximable by lattice subgroups

If (Y,distY ) and (Z,distZ) are metric spaces and if f : Y → Z is uniformly con-
tinuous, we denote by ω(f, ·) : [0,+∞[→ [0,+∞[ a modulus of continuity of f . We
have limδ→0 ω(f, δ) = 0 and ω(f, 0) = 0. The function ω(f, ·) is increasing and for
any s, t ∈ Y we have

(6.4.1) distZ
(
f(s), f(t)

)
≤ ω

(
f, distY (s, t)

)
.

Let G be a topological group. We denote by ν : G→ G, s 7→ s−1 the inversion map.
The following theorem gives a variant of Theorem 4.2 for a particular class of

unimodular groups.

Theorem 6.16. – Let G be a second countable unimodular locally compact group
which satisfies ALSS with respect to a sequence of lattices (Γj)j≥1 and associated
fundamental domains (Xj)j≥1. Suppose 1 ≤ p ≤ ∞. We assume that G is amenable
if 1 < p <∞. Suppose that for some constant c > 0 and any compact subset K of G
we have

(6.4.2) lim
j→∞

sup
γ∈Γj∩K

∣∣∣∣ 1

µ(Xj)

∫
G

µ2(Xj ∩ γXjs)

µ2(Xj)
dµ(s)− c

∣∣∣∣ = 0,

where µ = µG is a Haar measure of G. Then for 1 ≤ p ≤ ∞, there exists a linear
mapping

P pG : CB(Lp(VN(G)))→Mp,cb(G)

of norm at most 1
c with the properties:
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1. If T : Lp(VN(G))→ Lp(VN(G)) is completely positive, then P pG(T ) is completely
positive.

2. If T = Mψ is a Fourier multiplier on Lp(VN(G)) with bounded continuous
symbol ψ : G → C, then P pG(Mψ) = Mψ. Moreover, if we have γXj = Xjγ for
any j ∈ N and any γ ∈ Γj, or alternatively, if Xj is symmetric in the sense
that µ(Xj∆X−1

j ) = 0 for any j ∈ N, then P pG(Mψ) = Mψ for any bounded
measurable symbol such that Mψ ∈Mp,cb(G).

For an element T belonging to CB(Lp(VN(G))) and to CB(Lq(VN(G))) for two val-
ues p, q ∈ [1,∞], we have P pG(T )x = P qG(T )x for x ∈ Lp(VN(G)) ∩ Lq(VN(G)).

In the preceding lines, if p = ∞, we can take CBw∗(VN(G)) as the domain space
of P∞G .

Proof. – If G is amenable, note that each Γj is amenable by [19, Proposition G.2.2].
So each VN(Γj) is hyperfinite, hence QWEP.

For any j, we consider the element hj
def
= λ(1Xj ) =

∫
Xj
λs dµ(s) of the group

von Neumann algebra VN(G) and define for 1 ≤ p ≤ ∞ the (normal (52)if p = ∞)
completely positive map

Φpj : Lp(VN(Γj))→ Lp(VN(G)), λγ 7→ µ(Xj)
−2+ 1

ph∗jλγhj .

It is noted and shown in [39, page 19] that each Φpj is completely contrac-
tive. For any 1 ≤ p ≤ ∞, we also consider the adjoint (preadjoint if p = 1)
Ψp
j =

(
Φp

∗

j

)∗
: Lp(VN(G))→ Lp(VN(Γj)) of Φp

∗

j which is also completely contractive
and completely positive by Lemma 2.9. Now, use Theorem 4.2 for the discrete group
Γj and define for some completely bounded map T : Lp(VN(G)) → Lp(VN(G)), the
Fourier multiplier Mϕj : Lp(VN(Γj))→ Lp(VN(Γj)) defined by{

Mϕj
def
= 1

cP
p
Γj

(
Ψp
jTΦpj

)
if 1 ≤ p <∞ and

Mϕj
def
= 1

cP
∞
Γj

(
Ψ∞j Pw∗(T )Φ∞j

)
if p =∞,

where the contractive map Pw∗ : CB(VN(G))→ CB(VN(G)) is described in Proposi-
tion 3.1, whose symbol is (if T is normal in the case p =∞)

ϕj(γ) =
1

c
τΓj
(
Ψp
jTΦpj (λγ)λγ−1

)
=

1

c
τG

(
TΦpj (λγ)Φ

p∗

j (λγ−1)
)

(6.4.3)

=
1

c µ(Xj)3
τG
(
T (h∗jλγhj)h

∗
jλγ−1hj

)
.

52. Recall that the product of a von Neumann algebra is separately weak* continuous, e.g., see
[29, Proposition 2.7.4 (1)].
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Then we have for 1 ≤ p <∞∥∥Mϕj

∥∥
cb,Lp(VN(Γj))→Lp(VN(Γj))

=

∥∥∥∥1

c
P pΓj (Ψ

p
jTΦpj )

∥∥∥∥
cb,Lp(VN(Γj))→Lp(VN(Γj))

≤ 1

c

∥∥Ψp
jTΦpj

∥∥
cb,Lp(VN(Γj))→Lp(VN(Γj))

≤ 1

c
∥T∥cb,Lp(VN(G))→Lp(VN(G))

and similarly for p =∞. Let further

(6.4.4) ϕ̃j
def
=

1

µ(Xj)
1Xj ∗ (ϕjµΓj ) ∗ 1X−1

j
: G→ C,

where µΓj is the counting measure on the discrete subset Γj of G. According to Theo-
rem 6.15, M

ϕ̃j
: Lp(VN(G))→ Lp(VN(G)) is a completely bounded Fourier multiplier

with ∥∥M
ϕ̃j

∥∥
cb,Lp(VN(G))→Lp(VN(G))

≤
∥∥Mϕj

∥∥
cb,Lp(VN(Γj))→Lp(VN(Γj))

≤ 1

c
∥T∥cb,Lp(VN(G))→Lp(VN(G)) .

(6.4.5)

If 1 < p ≤ ∞, note that B(CB(Lp(VN(G)))) is a dual Banach space and admits the
predual

(6.4.6) CB(Lp(VN(G)))⊗̂
(
Lp(VN(G))⊗̂Lp

∗
(VN(G))op

)
,

where ⊗̂ denotes the Banach space projective tensor product and where ⊗̂ denotes
the operator space projective tensor product. The duality bracket is given by

(6.4.7)
〈
P, T ⊗ (x⊗ y)

〉
=
〈
P (T )x, y

〉
Lp(VN(G)),Lp∗ (VN(G))

.

The mappings P pj : T 7→M
ϕ̃j

are linear and uniformly bounded in B(CB(Lp(VN(G))))

(we use B(CB(VN(G)),CB(C∗λ(G),VN(G))) if p = ∞). From now on, we restrict to
the case 1 < p ≤ ∞ and we will return to the case p = 1 only at the end of the proof.
The elements P pj belong to the space Yp

def
= 1

cBall(B(CB(Lp(VN(G))))) for p ∈ (1,∞].
By Banach-Alaoglu’s theorem, note that each Yp is compact with respect to the
weak* topology of the underlying Banach space. Then by Tychonoff’s theorem,∏
p∈(1,∞] Yp is also compact. Thus, the net

(
(P pj )p∈(1,∞]

)
admits a convergent subnet(

(P pj(k))p∈(1,∞]

)
, which converges to some element ((P pG)p∈(1,∞), P

∞
G ) of

∏
p∈(1,∞] Yp,

i.e., for any p the net (P pj(k)) converges to P pG for the weak* topology. With (6.4.7),
we see that this implies that (P pj(k)(T )) converges for the weak operator topology
(in the point weak* topology if p = ∞) to P pG(T ). Observe that the weak* topology
on CB(Lp(VN(G))) coincides on bounded subsets with the weak operator topology
(the point weak* topology if p =∞) essentially by the same argument as the one of
the proof of [137, Lemma 7.2] (which uses [61, Proposition 1.21]). We conclude by
Lemma 6.8 that P pG(T ) is itself a Fourier multiplier.
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Note that we clearly have∥∥P pG∥∥CB(Lp(VN(G)))→CB(Lp(VN(G)))
≤ lim inf

k→+∞

∥∥P pj(k)∥∥CB(Lp(VN(G)))→CB(Lp(VN(G)))
≤ 1

c
.

We next show that P pG preserves the complete positivity. Suppose that T is (normal
if p =∞) completely positive. Since Φpj and Ψp

j are completely positive, Ψp
jTΦpj is also

completely positive and thus, by Theorem 4.2, Mϕj = 1
cP

p
Γj

(Ψp
jTΦpj ) is completely

positive. Using Theorem 6.15, we conclude that M
ϕ̃j

is completely positive. Since
P pG(T ) is the weak operator topology limit of M

ϕ̃j
(point weak* topology limit if

p =∞), the complete positivity of M
ϕ̃j

carries over to that of P pG(T ) by Lemma 2.10.

We claim that P pG has the compatibility property stated in the theorem. Note
that the symbol ϕ̃j of P pj (T ) does not depend on p if T belongs to two differ-
ent spaces CB(Lp(VN(G))) and CB(Lq(VN(G))). If in addition x belongs to both
Lp(VN(G)) and Lq(VN(G)) and if y belongs to both Lp

∗
(VN(G)) and Lq

∗
(VN(G)),

then we have〈
P pG(T )x, y

〉
= lim

k

〈
P pj(k)(T )x, y

〉
= lim

k

〈
P qj(k)(T )x, y

〉
=
〈
P qG(T )x, y

〉
.

Then it is immediate that the P pG’s are compatible as stated in the theorem.
We finally will show now that P pG(Mψ) = Mψ for any bounded continu-

ous symbol ψ : G → C (or ψ bounded measurable under the additional sym-
metry/commutativity assumption on Xj) giving rise to a completely bounded
Lp-multiplier. We start by computing the symbol ϕj . For any γ ∈ Γj , note
that λγhj = λγλ(1Xj ) = λ(1γXj ) and similarly λγ−1hj = λ(1γ−1Xj ). Consequently,
we have

ϕj(γ) =
1

c µ(Xj)3
τG
(
Mψ(h∗jλγhj)h

∗
jλγ−1hj

)
=

1

c µ(Xj)3
τG

(
Mψλ

(
1X−1

j
∗ 1γXj

)
λ
(
1X−1

j
∗ 1γ−1Xj

))
=

1

c µ(Xj)3
τG

(
λ
(
ψ(1X−1

j
∗ 1γXj )

)
λ
(
1X−1

j
∗ 1γ−1Xj

))
=

1

c µ(Xj)3

∫
G

ψ(s)
(
1X−1

j
∗ 1γXj

)
(s)
(
1X−1

j
∗ 1γ−1Xj

)
(s−1) dµ(s),

where the last equality follows from the Plancherel Formula (6.1.3) and from the fact
that the functions ψ(1X−1

j
∗1γXj ) and 1X−1

j
∗1γ−1Xj belong to the space L1(G)∩L2(G),

and thus are left bounded. Now, using [98, Theorem 20.10 (iv)], note that for any s ∈ G(
1X−1

j
∗1γXj

)
(s) =

∫
G

1X−1
j

(t−1)1γXj (ts) dµ(t) =

∫
Xj

1γXj (ts) dµ(t) = µ(Xj∩γXjs
−1)

and (
1X−1

j
∗ 1γ−1Xj

)
(s−1) = µ(Xj ∩ γ−1Xjs) = µ(γXjs

−1 ∩Xj).
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Thus, for any γ ∈ Γj , we conclude that

(6.4.8) ϕj(γ) =
1

c µ(Xj)3

∫
G

ψ(s)µ
(
Xj ∩ γXjs

−1
)2

dµ(s).

Now, we examine the asymptotic behavior of the sequence of symbols ϕj . Since G is
second countable, it admits a right-invariant metric dist(·, ·), i.e., dist(s, t) = dist(sr, tr)

for r, s, t ∈ G, such that the closed balls are compact [89]. We denote by B(x, r)

the open ball centered on x with radius r and B′(x, r) the closed ball. We need the
following lemmas.

Lemma 6.17. – For any neighborhood V of the identity e in G, any compact subset K
of G, any j sufficiently large and any γ ∈ K, we have

(6.4.9) Xj ∩ γXjs
−1 = ∅, s ∈ G\γV.

Proof. – Since K is compact, we have K ⊂ B(e,RK) for some RK > 0. Let j be so
large that Xj ⊂ B(e, 1

3 ). If s ∈ G\B(e,RK + 1), then we have for ω ∈ Xj and γ ∈ K

dist(e, γωs−1) ≥ dist(e, s−1)− dist(s−1, γωs−1) = dist(s, e)− dist(e, γω)

≥ dist(s, e)− dist(e, ω)− dist(ω, γω) ≥ dist(s, e)− dist(e, ω)− dist(e, γ)

≥ RK + 1− 1

3
−RK ≥

2

3
.

Thus, for such an s, we have Xj ∩ γXjs
−1 = ∅, since Xj ⊂ B(e, 1

3 ). So from now on,
we can assume s ∈ B(e,RK + 1), in other words, varying in a compact set.

Let ε > 0 such that B(e, ε) ⊂ V . By [98, Theorem 4.9], there exists ε′ > 0

such that γB(e, ε)γ−1 contains the ball B(e, ε′) for any γ ∈ K. Let γ ∈ K and
s ∈ B(e,RK + 1)\γV . Since s ̸∈ γB(e, ε), we have γs−1 ̸∈ γB(e, ε)−1γ−1 and finally
dist(γ, s) = dist(e, γs−1) ≥ ε′. Consider the compact K ′ = B′(e, 1) ·B′(e,RK + 1)−1

and some 0 < ε′′ ≤ min{ 1
2ε
′, 1} such that ω

(
ν|K ′, ε′′

)
≤ 1

2ε
′. Consider j so large

that Xj ⊂ B(e, ε′′). Let ω ∈ Xj . Then

dist(e, γωs−1) = dist(e, sω−1γ−1) = dist(γ, sω−1) ≥ dist(γ, s)− dist(s, sω−1).

Note that s−1 and ωs−1 vary in the compact K ′ for ω varying in Xj . Now, using
(6.4.1), we have

dist(s, sω−1) ≤ ω
(
ν|K ′,dist(s−1, ωs−1)

)
= ω

(
ν|K ′,dist(e, ω)

)
≤ ω

(
ν|K ′, ε′′

)
≤ 1

2
ε′.

We deduce that dist(e, γωs−1) ≥ ε′ − 1
2ε
′ = 1

2ε
′ ≥ ε′′, so that γωs−1 ̸∈ B(e, ε′′) and

thus Xj ∩ γXjs
−1 = ∅ since Xj ⊂ B(e, ε′′). We have shown (6.4.9).

Lemma 6.18. – Assume in addition that ψ is a continuous symbol. Then for any
compact subset K of G, we have

(6.4.10) sup
γ∈Γj∩K

|ϕj(γ)− ψ(γ)| −−−−→
j→+∞

0.
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Proof. – We fix a compact subset K of G and a compact neighborhood V of e. Then,
for any j sufficiently large and any γ ∈ K, Lemma 6.17 implies the existence of the
integral

∫
G
ψ(γ)µ

(
Xj ∩ γXjs

−1
)2

dµ(s). By definition of c, for any γ ∈ Γj ∩K, using
(6.4.8) in the first equality, we have

|ϕj(γ)− ψ(γ)| =
∣∣∣∣ 1

c µ(Xj)3

∫
G

ψ(s)µ
(
Xj ∩ γXjs

−1
)2

dµ(s)− ψ(γ)

∣∣∣∣
=

1

c µ(Xj)3

∣∣∣∣∫
G

ψ(s)µ
(
Xj ∩ γXjs

−1
)2

dµ(s)− cµ(Xj)
3ψ(γ)

∣∣∣∣
=

1

c µ(Xj)3

∣∣∣∣∫
G

ψ(s)µ
(
Xj ∩ γXjs

−1
)2

dµ(s)

−
∫
G

ψ(γ)µ
(
Xj ∩ γXjs

−1
)2

dµ(s)

+

∫
G

ψ(γ)µ
(
Xj ∩ γXjs

−1
)2

dµ(s)− cµ(Xj)
3ψ(γ)

∣∣∣∣
≤ 1

c µ(Xj)3

∫
G

|ψ(s)− ψ(γ)|µ
(
Xj ∩ γXjs

−1
)2

dµ(s)

+
1

c µ(Xj)3
|ψ(γ)|

∣∣∣∣∫
G

µ
(
Xj ∩ γXjs

−1
)2

dµ(s)− cµ(Xj)
3

∣∣∣∣
≤ 1

c µ(Xj)3

∫
G

|ψ(s)− ψ(γ)|µ
(
Xj ∩ γXjs

−1
)2

dµ(s)

+
1

c
|ψ(γ)|

∣∣∣∣∣ 1

µ(Xj)

∫
G

µ
(
Xj ∩ γXjs

−1
)2

µ(Xj)2
dµ(s)− c

∣∣∣∣∣ .
The last summand converges to 0 as j →∞ uniformly in γ ∈ Γj ∩K according to the
assumption (6.4.2) and the boundedness of ψ. It remains to treat the first summand.
Then, for and j sufficiently large and γ ∈ Γj ∩ K, using Lemma 6.17 in the first
equality, we obtain

sup
γ∈Γj∩K

1

c µ(Xj)3

∫
G

|ψ(s)− ψ(γ)|µ
(
Xj ∩ γXjs

−1
)2

dµ(s)

=
1

c µ(Xj)3
sup

γ∈Γj∩K

∫
γV

|ψ(s)− ψ(γ)|µ
(
Xj ∩ γXjs

−1
)2

dµ(s)

≤ 1

c µ(Xj)3

(
sup

γ∈Γj∩K

∫
γV

µ
(
Xj ∩ γXjs

−1
)2

dµ(s)

)(
sup

s∈γV, γ∈Γj∩K
|ψ(s)− ψ(γ)|

)

=

(
sup

γ∈Γj∩K

1

c µ(Xj)

∫
G

µ
(
Xj ∩ γXjs

−1
)2

µ(Xj)2
dµ(s)

)(
sup

s∈γV, γ∈Γj∩K
|ψ(s)− ψ(γ)|

)
.

We will show that for V = B′(e, ε′) the last supremum converges to 0 as ε′ → 0

uniformly in j. Since it is not difficult to see that the first factor is uniformly bounded
for j ≥ 1 and γ ∈ Γj ∩K by the assumption (6.4.2) of the theorem, (6.4.10) follows.
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Consider some 0 < ε ≤ 1. Define the compact K ′ = K · B′(e, 1). Let 0 < ε′ ≤ 1 such
that ω(ν|K ′−1, ε′) ≤ ε. If s, t ∈ K ′ and dist(s−1, t−1) ≤ ε′, we have by (6.4.1)

dist(s, t) ≤ ω
(
ν|K ′−1,dist(s−1, t−1)

)
≤ ω(ν|K ′−1, ε′) ≤ ε.

Note that the restriction ψ|K ′ of the continuous function ψ on K ′ is uniformly con-
tinuous. For any j, using (6.4.1) in the first inequality, we deduce that

sup
s∈γB′(e,ε′), γ∈Γj∩K

|ψ(s)− ψ(γ)| ≤ sup
s−1∈B′(γ−1,ε′), γ∈Γj∩K

ω
(
ψ|K ′,dist(s, γ)

)
≤ sup
s∈γV, γ∈Γj∩K

ω
(
ψ|K ′, ε

)
= ω

(
ψ|K ′, ε

)
−−−→
ε→0

0.

We continue with the asymptotic behavior of the symbols ϕ̃j .

Lemma 6.19. – Assume in addition that ψ is a continuous symbol. Then for any s ∈
G, we have

(6.4.11) ϕ̃j(s) −−−−→
j→+∞

ψ(s).

Proof. – Let s ∈ G. Recall that we have a unique decomposition s = ωj(s)γj(s) with
ωj(s) ∈ Xj and γj(s) ∈ Γj . Then, by (6.3.1), we have∣∣∣ϕ̃j(s)− ψ(s)

∣∣∣ = ∣∣∣∣∣ 1

µ(Xj)

∫
Xj

ϕj(γj(st)) dµ(t)− ψ(s)

∣∣∣∣∣
=

1

µ(Xj)

∣∣∣∣∣
∫

Xj

(
ϕj(γj(st))− ψ(s)

)
dµ(t)

∣∣∣∣∣
≤ 1

µ(Xj)

∫
Xj

(
|ϕj(γj(st))− ψ(γj(st))|+ |ψ(γj(st))− ψ(s)|

)
dµ(t)

≤ 1

µ(Xj)

∫
Xj

|ϕj(γj(st))− ψ(γj(st))|dµ(t)

+
1

µ(Xj)

∫
Xj

|ψ(γj(st))− ψ(s)|dµ(t).

We start to prove that the first summand converges to 0 as j →∞. Indeed, according
to (6.4.10), it suffices to show that γj(st) remains in a fixed compact set independent
of j, for t varying in Xj . We will even show that dist(γj(st), s) → 0 as j → ∞
uniformly in t ∈ Xj .

Let ε > 0. Consider the compact Ks = (s ·B′(e, 1))−1. There exists 0 < ε′ ≤ min{1, ε}
such that ω

(
ν|Ks, ε

′) ≤ ε. Then for some j0 ∈ N, we have Xj ⊂ B(e, ε′) for all j ≥ j0.
Note that s−1 and (st)−1 and vary in the compact set Ks for j ≥ j0 and t varying
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in Xj . For these j and any t ∈ Xj , using (6.4.1), we see that

dist(γj(st), s) ≤ dist(γj(st), st) + dist(st, s) = dist(ωj(st)
−1st, st) + dist(st, s)

= dist(ωj(st)
−1, e) + dist(st, s)

≤ dist(e, ωj(st)) + ω
(
ν|Ks,dist

(
(st)−1, s−1

))
≤ ε′ + ω

(
ν|Ks,dist

(
t−1, e

))
≤ ε+ ω

(
ν|Ks, ε

′) ≤ ε+ ε.

We conclude that supt∈Xj dist(γj(st), s)→ 0 as j →∞.

For the second summand, consider ε > 0. Note that the restriction ψ|B′(s, 1) is
uniformly continuous. There exists 0 < ε′ ≤ 1 such that ω

(
ψ|B′(s, 1), ε′

)
≤ ε and

there exists j0 such that supt∈Xj dist(γj(st), s) ≤ ε′ for any j ≥ j0. For these j, using
(6.4.1), we deduce that

sup
t∈Xj

|ψ(γj(st))− ψ(s)| ≤ sup
t∈Xj

ω
(
ψ|B′(s, 1),dist(γj(st), s)

)
≤ sup
t∈Xj

ω
(
ψ|B′(s, 1), ε′

)
= ω

(
ψ|B′(s, 1), ε′

)
≤ ε.

That means that supt∈Xj |ψ(γj(st))−ψ(s)| → 0 as j →∞. Thus (6.4.11) follows.

If f ∈ L∞(G), the particular case p = 2 of (6.4.5) applied to Mψ in-
stead of T together with Lemma 6.5 allows us to define a well-defined operator
Ξj : L∞(G)→ L∞(G), ψ 7→ ϕ̃j for any j with

(6.4.12)
∥∥Ξj(ψ)

∥∥
L∞(G)

≤ 1

c
∥ψ∥L∞(G) .

Lemma 6.20. – Assume that γXj = Xjγ for any j ∈ N and any γ ∈ Γj or
that µ(Xj∆X−1

j ) = 0 for any j ∈ N.

1. If ψ ∈ L1(G) then the Formula (6.4.8) gives a well-defined function ϕj : Γj → C
for any j.

2. For any j, we have a well-defined bounded operator Ξj : L1(G)→ L1(G), ψ 7→ ϕ̃j

where ϕ̃j is defined by the formula

(6.4.13) ϕ̃j =
1

µ(Xj)
1Xj ∗ (ϕjµΓj ) ∗ 1X−1

j
.

Moreover, for any ψ ∈ L1(G) and any j, we have

(6.4.14)
∥∥Ξj(ψ)

∥∥
L1(G)

≤ 1

c
∥ψ∥L1(G) .

Proof. – 1. If γXj = Xjγ for any γ ∈ Γj , then using (5.1.2) in the second equality

µ(Xj ∩ γXjs
−1) = µ(Xj ∩Xjγs

−1) ≤ µ(Xj ∩XjΓjs
−1) = µ(Xj ∩Gs−1) = µ(Xj).
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If µ(Xj∆X−1
j ) = 0, then using unimodularity in the last equality, we see that

µ(Xj ∩ γXjs
−1) ≤ µ(Xj ∩X−1

j ∩ γXjs
−1) + µ

(
(Xj −X−1

j ) ∩ γXjs
−1
)

≤ µ(Xj ∩X−1
j ∩ γXjs

−1) + µ
(
(Xj∆X−1

j ) ∩ γXjs
−1
)

≤ µ
(
Xj ∩X−1

j ∩ γ(Xj ∩X−1
j )s−1

)
+ µ

(
Xj ∩X−1

j ∩ γ(Xj −X−1
j )s−1

)
+ µ

(
Xj∆X

−1
j )

≤ µ
(
Xj ∩X−1

j ∩ γ(Xj ∩X−1
j )s−1

)
+

=0︷ ︸︸ ︷
µ
(
γ(Xj∆X−1

j )s−1
)
+

=0︷ ︸︸ ︷
µ(Xj∆X−1

j )

≤ µ(X−1
j ∩ γX

−1
j s−1) = µ(Xj ∩ sXjγ

−1).

(6.4.15)

Using (5.1.2), we obtain

µ(Xj ∩ γXjs
−1) ≤ µ(Xj ∩ sXjΓj) = µ(Xj).

So the integrand of (6.4.8) is integrable in both cases since ψ ∈ L1(G). We deduce
that the function ϕj is well-defined.

2. For any j, using (6.4.8) in the first equality, we have

∑
γ∈Γj

|ϕj(γ)| =
∑
γ∈Γj

∣∣∣∣ 1

c µ(Xj)3

∫
G

ψ(s)µ
(
Xj ∩ γXjs

−1
)2

dµ(s)

∣∣∣∣
≤ 1

c µ(Xj)3

∫
G

∑
γ∈Γj

|ψ(s)|µ(Xj ∩ γXjs
−1)2 dµ(s)

≤ 1

cµ(Xj)3
∥ψ∥L1(G) sup

s∈G

∑
γ∈Γj

µ(Xj ∩ γXjs
−1)2

=
1

cµ(Xj)
∥ψ∥L1(G) sup

s∈G

∑
γ∈Γj

µ(Xj ∩ γXjs
−1)2

µ(Xj)2

≤ 1

cµ(Xj)
∥ψ∥L1(G) sup

s∈G

( ∑
γ∈Γj

µ(Xj ∩ γXjs
−1)

µ(Xj)

)2

.(6.4.16)

If γXj = Xjγ for any γ ∈ Γj , then we estimate (6.4.16) further with the pairwise
disjointness (5.1.3) of the sets Xjγs

−1 for different values of γ ∈ Γj in the second
equality and (5.1.2) in the third equality

∑
γ∈Γj

µ(Xj ∩ γXjs
−1)

µ(Xj)
=
∑
γ∈Γj

µ(Xj ∩Xjγs
−1)

µ(Xj)
=
µ(Xj ∩XjΓjs

−1)

µ(Xj)

=
µ(Xj ∩Gs−1)

µ(Xj)
=
µ(Xj)

µ(Xj)
= 1.

MÉMOIRES DE LA SMF 177



6.4. GROUPS APPROXIMABLE BY LATTICE SUBGROUPS 105

If µ(Xj∆X−1
j ) = 0, then we estimate (6.4.16) using (6.4.15) in the first inequality and

(5.1.3) in the first equality and (5.1.2) in the last equality, giving∑
γ∈Γj

µ(Xj ∩ γXjs
−1)

µ(Xj)
≤
∑
γ∈Γj

µ(Xj ∩ sXjγ
−1)

µ(Xj)
=
µ(Xj ∩ sXjΓj)

µ(Xj)
= 1.

By [98, Theorem 19.15], we conclude that the measure ϕjµΓj is bounded with∥∥ϕjµΓj

∥∥
M(G)

≤ 1
cµ(Xj)

∥ψ∥L1(G). Therefore, using (6.4.8) and [98, Theorem 20.12] in
the first inequality and the unimodularity of G to write µ(X−1

j ) = µ(Xj) in the third
inequality, we obtain∥∥ϕ̃j∥∥L1(G)

≤ 1

µ(Xj)

∥∥1Xj

∥∥
L1(G)

∥∥ϕjµΓj

∥∥
M(G)

∥∥1X−1
j

∥∥
L1(G)

≤ 1

c µ(Xj)
∥ψ∥L1(G)

∥∥1X−1
j

∥∥
L1(G)

≤ 1

c
∥ψ∥L1(G) .

Thus, (6.4.14) is shown.

Next, observe that if ψ has a support away from the origin e ∈ G then ϕ̃j(r) = 0

for r close to e. More precisely, we have the following observation. This lemma is not
useful if G is compact.

Lemma 6.21. – Suppose that ψ(s) = 0 a.e. if dist(s, e) < R for some R > 4. Then
we have (Ξjψ)(r) = 0 for any r ∈ B′(e,R− 4) and any j large enough.

Proof. – We pick j0 ∈ N and take j ≥ j0 such that Xj ⊂ B′(e, 1) for these j. By
(6.3.1) (the computation of [86, Lemma 2.1 (2)] is valid) and (6.4.8), we have

ϕ̃j(r) =
1

µ(Xj)

∫
Xj

ϕj(γj(rt)) dµ(t) =
1

cµ(Xj)4

∫
Xj

∫
G

ψ(s)µ
(
Xj ∩ γj(rt)Xjs

−1
)2

dµ(s) dµ(t).

Let r ∈ B′(e,R − 4). If dist(s, e) < R the integrand is zero. On the other hand, if
dist(s, e) ≥ R, writing rt = ωj(rt)γj(rt) where ωj(rt) ∈ Xj , we have for any ω′j ∈ Xj

dist(γj(rt)ω
′
js
−1, e) = dist(ωj(rt)

−1rtω′js
−1, e) = dist(ωj(rt)

−1rtω′j , s)

≥ dist(s, e)− dist(ωj(rt)
−1rtω′j , e)

≥ dist(s, e)− dist(ωj(rt)
−1rtω′j , ω

′
j)− dist(ω′j , e)

≥ dist(s, e)− dist(ωj(rt)
−1rt, e)− 1

≥ dist(s, e)− dist(ωj(rt)
−1rt, t)− dist(t, e)− 1

≥ dist(s, e)− dist(ωj(rt)
−1r, e)− 2

≥ dist(s, e)− dist(ωj(rt)
−1r, r)− dist(r, e)− 2

= dist(s, e)− dist(ωj(rt)
−1, e)− dist(r, e)− 2

= dist(s, e)− dist(e, ωj(rt))− dist(r, e)− 2

≥ dist(s, e)− dist(r, e)− 3 ≥ R−R+ 4− 3 = 1.
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So the integrand is also zero. We infer that we have ϕ̃j(r) = 0.

We turn to the weak* convergence (53) of the symbol ϕ̃j .

Lemma 6.22. – Let ψ ∈ L∞(G). Assume in addition that γXj = Xjγ for any j ∈ N
and any γ ∈ Γj or that µ(Xj∆X−1

j ) = 0 for any j ∈ N. Then Ξj(ψ) −→
j
ψ for the

weak* topology of L∞(G).

Proof. – Let g ∈ L1(G) be a testing element of weak* convergence. By density
of Cc(G) in L1(G) and the uniform estimate (6.4.12), we can assume in fact that
g ∈ Cc(G).

Then if χ ∈ Cc(G) is a cut-off function with χ(s) = 1 for all s with (54)

dist(s, e) < R
def
= 4 + exc(supp g, {e}), (recall that the metric dist used previously

is proper) we have ψχ = 1 on supp(g). So ⟨ψ, g⟩L∞(G),L1(G) = ⟨ψχ, g⟩L∞(G),L1(G).
Moreover, we have

Ξj(ψ) = Ξj(ψχ) + Ξj(ψ(1− χ)).

Recall that ψ(1 − χ) is zero if dist(s, e) < R. Hence by applying Lemma 6.21
with ψ(1 − χ) instead of ψ, we deduce that the function Ξj(ψ(1 − χ)) is zero if
r ∈ B′(e, exc(supp g, {e})), in particular on supp g. We conclude that ⟨ϕ̃j , g⟩ =

⟨Ξj(ψχ), g⟩.
Now let ψε ∈ Cc(G) be an ε-approximation in L1(G) norm of ψχ ∈ L1(G)∩L∞(G).

Using (6.4.14), in the second equality, we obtain∣∣∣〈Ξj(ψ), g
〉
L∞(G),L1(G)

− ⟨ψ, g⟩L∞(G),L1(G)

∣∣∣ = ∣∣〈Ξj(ψχ), g
〉
− ⟨ψχ, g⟩

∣∣
≤
∣∣〈(Ξj − IdL1(G))(ψχ− ψε), g

〉∣∣+ ∣∣〈Ξj(ψε)− ψε, g〉∣∣
≤
(

1

c
+ 1

)
∥ψχ− ψε∥L1(G) ∥g∥L∞(G) +

∣∣〈Ξj(ψε)− ψε, g〉∣∣
≤
(

1

c
+ 1

)
ε ∥g∥L∞(G) +

∣∣〈Ξj(ψε)− ψε, g〉∣∣ .
Thus the first term becomes small uniformly in j ≥ j0. For the second term, we use the
pointwise convergence Ξjψε(s) → ψε(s) from (6.4.11) together with the domination
|Ξjψε(s)g(s)| ≤ 1

c ∥ψε∥L∞(G) |g(s)|.

If the assumptions of Lemma 6.22 are satisfied, we deduce by Lemma 6.7
that M

ϕ̃j
→Mψ in the weak operator topology of B(Lp(VN(G))) (point weak* topol-

ogy if p =∞). Moreover, this convergence also holds if ψ is a continuous and bounded
symbol. Indeed, according to (6.4.11), we have a pointwise convergence ϕ̃j(s)→ ψ(s),
which together with the uniform bound ∥ϕ̃j∥L∞(G) ≤ 1

c∥Mψ∥cb,Lp(VN(G))→Lp(VN(G))

of (6.4.5) also implies weak* convergence ϕ̃j → ψ, so that we can again appeal to

53. Note that if G is compact, the proof is more simple. No need to use χ.
54. Recall that exc(A,B) = sup{dist(a,B) : a ∈ A}.
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Lemma 6.7. According to the description of the predual space (6.4.6), we have for
the convergent subnet M

ϕ̃j(k)
of M

ϕ̃j
that〈

M
ϕ̃j(k)

f, g
〉

Lp(VN(G),Lp∗ (VN(G))
−→
k

〈
P pG(Mψ)f, g

〉
Lp(VN(G),Lp∗ (VN(G))

for f ∈ Lp(VN(G)) and g ∈ Lp
∗
(VN(G)). Since a subnet of a convergent net converges

to the same limit, we deduce P pG(Mψ) = Mψ.
Now, we turn to the case p = 1. We simply put

P 1
G : CB(L1(VN(G)))→ CB(L1(VN(G))), T 7→ P∞G (T ∗)∗.

Note that P∞G (T ∗) belongs to M∞,cb(G), so that it admits indeed a preadjoint
P∞G (T ∗)∗ belonging to M1,cb(G) by Lemma 6.4. We check now the claimed proper-
ties of P 1

G. Linearity and boundedness are clear. If T : L1(VN(G)) → L1(VN(G)) is
completely positive, then by Lemma 2.9, T ∗ is also completely positive and hence
also P∞G (T ∗). We conclude that P 1

G(T ) = P∞G (T ∗)∗ is completely positive. If
Mψ ∈M1,cb(G), then we have P 1

G(Mψ) = P∞G ((Mψ)∗)∗ = (P∞G (Mψ̌))∗ = (Mψ̌)∗ = Mψ.
It remains to check the claimed compatibility property. We need the following

lemma.

Lemma 6.23. – For j ∈ N and any completely bounded map

T : L1(VN(G))→ L1(VN(G)),

we have P 1
j (T )∗ = P∞j (T ∗).

Proof. – In this proof we denote by ϕTj the symbol of 1
cP

p
Γj

(Ψp
jTΦpj ).

Let S : L1(VN(Γj))→ L1(VN(Γj)) be a completely bounded map. We denote by ψSj
the symbol of the Fourier multiplier P 1

Γj
(S) given by Corollary 4.7 with G = H = Γj .

The symbol ψ(S∗)
j of the Fourier multiplier P∞Γj (S

∗) is given by (where γ ∈ Γj)

ψ
(S∗)
j (γ) = τΓj

(
S∗(λγ)λ

−1
γ

)
= τΓj

(
λγS(λ−1

γ )
)

= τΓj
(
S(λ−1

γ )λγ
)

= ψSj (γ−1) = ψ̌Sj (γ).

Using Lemma 6.4 in the second equality, we obtain

(6.4.17) P∞Γj (S
∗) = Mψ̌Sj

= (MψSj
)∗ =

(
P 1

Γj (S)
)∗
.

Note that Ψ∞j T
∗Φ∞j = (Ψ1

jTΦ1
j )
∗. This implies

M
ϕ

(T∗)
j

=
1

c
P∞Γj

(
Ψ∞j T

∗Φ∞j
)

=
1

c
P∞Γj

(
(Ψ1

jTΦ1
j )
∗) =

1

c
P 1

Γj

(
Ψ1
jTΦ1

j

)∗
=
(
MϕTj

)∗
= Mϕ̌Tj

,

where we use (6.4.17) in the central equality. Now, using (6.4.4), (1Xj )̌ = 1X−1
j

and
µ̌Γj = µΓj , we deduce

ϕ̃
(T∗)
j =

1

µ(Xj)
1Xj ∗

(
ϕ

(T∗)
j µΓj

)
∗ 1X−1

j
=

1

µ(Xj)
1Xj ∗

(
ϕ̌Tj µΓj

)
∗ 1X−1

j

=
1

µ(Xj)

ˇ︷ ︸︸ ︷
1Xj ∗

(
ϕTj µΓj

)
∗ 1X−1

j
=

ˇ̃
ϕTj ,
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thus finishing the proof of the lemma since P 1
j (T )∗ =

(
M
ϕ̃Tj

)∗
= M ˇ̃

ϕTj
= M

ϕ̃
(T∗)
j

=

P∞j (T ∗).

Now suppose that T belongs to both CB(L1(VN(G))) and CB(Lp(VN(G))). Recall
that the symbol ϕ̃Tj of P pj (T ) does not depend on p if T belongs to two different
spaces CB(Lp(VN(G))) and CB(Lq(VN(G))). Consequently the symbols of P pj (T )∗

and P 1
j (T )∗ are identical and the symbols of P∞j (T ∗) and P p

∗

j (T ∗) are also identical.
Using the previous lemma, we conclude that

P pj (T )∗ = P p
∗

j (T ∗).

Passing to the limit when j → ∞, we infer that P pG(T )∗ = P p
∗

G (T ∗). Therefore, for
any x ∈ L1(VN(G)) ∩ Lp(VN(G)) and any y ∈ VN(G) ∩ Lp

∗
(VN(G)), using the

compatibility of the P qG already proven, we have〈
P 1
G(T )x, y

〉
=
〈
P∞G (T ∗)∗x, y

〉
=
〈
x, P∞G (T ∗)y

〉
=
〈
x, P p

∗

G (T ∗)y
〉

=
〈
x, P pG(T )∗y

〉
=
〈
P pG(T )x, y

〉
.

This shows the compatibility on the L1 level.

For the last sentence, use Proposition 3.1.

Remark 6.24. – We ignore if the condition (6.4.2) can be removed.

Since the symbol of a completely bounded Fourier multiplier Mϕ : VN(G)→ VN(G)

is equal almost everywhere to a continuous function, see, e.g., [86, Corollary 3.3], the
previous theorem gives projections at the level p =∞ and p = 1.

Corollary 6.25. – Let G be a second countable unimodular locally compact
group satisfying ALSS such that (6.4.2) holds. Then there exist projections
P∞G : CBw∗(VN(G))→ CBw∗(VN(G)) and P 1

G : CB(L1(VN(G))) → CB(L1(VN(G)))

which are compatible, onto M∞,cb(G) and M1,cb(G) of norm at most 1
c preserving

complete positivity.

6.5. Examples of computations of the density

In this chapter, we will describe some concrete non-abelian groups in which The-
orem 6.16 applies. Before that, we start by recalling some information on semidirect
products.
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Semidirect products. – Let G1 and G2 be topological groups and consider some group
homomorphism η : G2 → Aut(G1) such that the map (55)

(6.5.1) G1 ×G2 → G1, (s, t) 7→ ηt(s) is continuous.

The semidirect product G1 ⋊η G2 [74, page 183] is the topological group with the
underlying set G1 × G2 equipped with the product topology and with the group
operations given by

(6.5.2) (s, t) ⋊η (s′, t′) =
(
sηt(s

′), tt′
)

and (s, t)−1 =
(
ηt−1(s−1), t−1

)
.

The group G1 identifies to a closed normal subgroup of G1 ⋊η G2 and G2 as a closed
subgroup [74, page 183] and we have (G1 ⋊η G2)/G1 = G2.

If G1 and G2 are locally compact groups then G1⋊ηG2 is a locally compact group.
If G1 and G2 are in addition equipped with some left Haar measures µG1

and µG2
, by

[74, Proposition 9.5 Chapter III] (see also [98, 15.29]) a left Haar measure of G is given
by µG = µG1

⊗(δµG2
) where δ : G2 → (0,∞) is defined by δ(t) = mod ηt where t ∈ G2.

By [74, Chapter III, (9.6)], a right Haar measure is given by ∆G1
µG1
⊗∆G2

µG2
. It is

folklore and easy to deduce from [128, pages 119-120] that ifG1 andG2 are unimodular
and if each automorphism ηt of G1 is measure-preserving, i.e., if∫

G1

f(ηt(s)) dµG1
(s) =

∫
G1

f(s) dµG1
(s), t ∈ G2, f ∈ Cc(G1),

then the group G1 ⋊η G2 is unimodular. In this case, µG = µG1
⊗ µG2

gives a Haar
measure on G.

We will use the following lemma.

Lemma 6.26. – Let G1 and G2 be locally compact groups. Let Γ1 and Γ2 be lattices
in G1 and G2. Suppose that η : G2 → Aut(G1) is a homomorphism satisfying (6.5.1).
If ηt(Γ1) ⊂ Γ1 for any t ∈ G2 then Γ = Γ1 ⋊η|Γ2

Γ2 is a lattice of G1 ⋊η G2. If
in addition X1 and X2 are associated fundamental domains, then X = X1 × X2 is a
fundamental domain associated with Γ.

Proof. – The first part is [19, Exercise B.3.5]. It remains to show that X is a funda-
mental domain of Γ. Indeed, this subset is clearly Borel measurable. Consider some
arbitrary element (s1, s2) of G. Since X1 is a fundamental domain of Γ1, we can write
s1 = ω1γ1 with ω1 ∈ X1 and γ1 ∈ Γ1 and similarly s2 = ω2γ2 with ω2 ∈ X2 and
γ2 ∈ Γ2. Consequently, using (6.5.2), we have

(s1, s2) = (ω1γ1, ω2γ2) =
(
ω1ηω2

(ηω−1
2

(γ1)), ω2γ2

)
= (ω1, ω2) ⋊η

(
ηω−1

2
(γ1), γ2

)
,

where (ω1, ω2) ∈ X and
(
ηω−1

2
(γ1), γ2

)
∈ Γ. So we obtain (5.1.2).

Consider some (ω1, ω2), (ω
′
1, ω

′
2) ∈ X where ω1, ω

′
1 ∈ X1 and ω2, ω

′
2 ∈ X2 and

some elements (γ1, γ2) and (γ′1, γ
′
2) of Γ. If (ω1, ω2) ⋊η (γ1, γ2) = (ω′1, ω

′
2) ⋊η (γ′1, γ

′
2)

55. If Aut(G1) is equipped with the well-known Braconnier topology, the continuity of the
map (s, t) 7→ ηt(s) from G1 × G2 onto G1 is equivalent to the continuity of the homomorphism
η : G2 → Aut(G1).
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then
(
ω1ηω2(γ1), ω2γ2

)
=
(
ω′1ηω′2(γ

′
1), ω

′
2γ
′
2

)
. Therefore ω2γ2 = ω′2γ

′
2. Since X2 is a

fundamental domain we deduce by (5.1.3) that ω2 = ω′2 and γ2 = γ′2. Inserting into
the previous first variable, we get ω1ηω2

(γ1) = ω′1ηω2
(γ′1). Since X1 is a fundamental

domain we have by (5.1.3), ω1 = ω′1 and ηω2(γ1) = ηω2(γ
′
1). So γ1 = γ′1. We conclude

that X satisfies (5.1.3).

Groups acting on locally finite trees. – We give now some examples of compact non-
discrete ALSS groups acting on locally finite trees for which Theorem 6.16 yields a
bounded map P pG : CB(Lp(VN(G))) → Mp,cb(G) with sharp norm, i.e., with a norm
equal to one.

Let (mj)j≥1 be a sequence of integers with mj ≥ 2. Let Y = (Yj)j≥1 be a sequence
of alphabets with |Yj | = mj and Yj = {yj,1, . . . , yj,mj}. If n ≥ 0, a word of length n

over Y is a sequence of letters of the form w = w1w2 . . . wn with wj ∈ Yj for all j.
The unique word of length 0, the empty word, is denoted by ∅. The set of words of
length n is called the nth level.

Now we introduce the prefix relation ≤ on the set of all words over Y . Namely, we
let w ≤ z if w is an initial segment of the sequence z, i.e., if w = w1 . . . wn, z = z1 . . . zk
with n ≤ k and wj = zj for all j ∈ {1, . . . , n}. This relation is a partial order and the
partially ordered set T of words over Y is called the spherically homogeneous tree
over Y . We refer to [17] and [82] for more information.

Let us give now the graph-theoretical interpretation of T . Every word over Y
represents a vertex in a rooted tree. Namely, the empty word ∅ represents the root,
the m1 one-letter words y1,1, . . . , y1,m1

represent the m1 children of the root, the m2

two-letter words y1,1y2,1, . . . , y1,1y2,m2
represent the m2 children of the vertex y1,1,

etc.

An automorphism of T is a bijection of T which preserves the prefix relation. From
the graph-theoretical point of view, an automorphism is a bijection which preserves
edge incidence and the distinguished root vertex ∅. We denote by Aut(T ) the group
of automorphisms of T and if j ≥ 0 by Aut[j](T ) the subgroup of automorphisms
whose vertex permutations at level j and below (56) are trivial.

56. The action is trivial on the levels j, j + 1, j + 2, . . ..
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We equip T with the discrete topology and Aut(T ) with the topology of pointwise
convergence. By [82, page 133], the sequence (Aut[j](T ))j≥0 of finite groups and the
canonical inclusions ψij : Aut[j](T ) → Aut[i](T ) where j ≥ i ≥ 0 define an inverse
system and we have an isomorphism

(6.5.3) Aut(T ) = lim←−Aut[j](T ).

In particular, Aut(T ) is a profinite group, hence compact and totally disconnected by
[180, Corollary 1.2.4].

If j ≥ 0, we denote by St(j) the jth level stabilizer consisting of automorphisms
of T which fix all the vertices on the level j (and of course on the levels 0, 1, . . . , j−1).
Then St(j) is a normal subgroup of Aut(T ) which is open if j ≥ 1. By [17, page 20],
for any j ≥ 0, we have an isomorphism

(6.5.4) Aut(T ) = St(j) ⋊ Aut[j](T ).

Proposition 6.27. – The compact group Aut(T ) is second countable and ALSS

with respect to the sequence (Aut[j](T ))j≥1 of finite lattice subgroups and to the se-
quence (St(j))j≥1 of symmetric fundamental domains. Moreover, (6.4.2) holds with
c = 1. More precisely, for any integer j ∈ N and any γ ∈ Aut[j](T ), we have

(6.5.5)
1

µ(St(j))

∫
Aut(T )

µ(St(j) ∩ γSt(j)s)2

µ(St(j))2
dµ(s) = 1.

Consequently, Theorem 6.16 applies.

Proof. – Since the inverse system is indexed by N, by [180, Proposition 4.1.3], the
group Aut(T ) is second countable. By (6.5.4), we have Aut(T ) = St(j)Aut[j](T ). Sup-
pose that γ1, γ2 belong to Aut[j](T ) and that ω1, ω2 ∈ St(j) satisfy ω1γ1 = ω2γ2. Then
ω−1

2 ω1 = γ2γ
−1
1 . Using again (6.5.4), we infer that γ1 = γ2. Moreover, St(j) is open

hence Borel measurable, and a subgroup hence symmetric. We conclude that St(j) is
a symmetric fundamental domain for Aut[j](T ).

Now, we have a homeomorphism

Aut(T )/Aut[j](T ) = (St(j) ⋊ Aut[j](T ))/Aut[j](T ) = St(j).

Note that the subgroup St(j) is open, hence closed in the compact group Aut(T ) by
[98, Theorem 5.5] and finally compact. We conclude that Aut[j](T ) is a cocompact
lattice. Moreover, by [82, page 133], the sequence (St(j)j≥1 is an open neighborhood
basis of IdT in Aut(T ).

It remains to compute (6.5.5). By normality of St(j), for any γ ∈ Aut[j](T ), we
have γSt(j) = St(j)γ. Using that µ is a left Haar measure of Aut(T ) in the last
equality, for any γ ∈ Aut[j](T ), we deduce that

1

µ(St(j))

∫
Aut(T )

µ(St(j) ∩ γSt(j)s)2

µ(St(j))2
dµ(s) =

1

µ(St(j))

∫
Aut(T )

µ(St(j) ∩ St(j)γs)2

µ(St(j))2
dµ(s)

=
1

µ(St(j))

∫
Aut(T )

µ(St(j) ∩ St(j)s)2

µ(St(j))2
dµ(s).
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For any s ∈ Aut(T ), the sets St(j) and St(j)s are right cosets of the subgroup St(j)

in Aut(T ). Since two right cosets are either identical or disjoint, we deduce that

St(j) ∩ St(j)s =

{
St(j) if s ∈ St(j)

∅ if s ̸∈ St(j).

Now, we can conclude since

1

µ(St(j))

∫
Aut(T )

µ(St(j) ∩ St(j)s)2

µ(St(j))2
dµ(s) =

1

µ(St(j))

∫
St(j)

µ(St(j))2

µ(St(j))2
dµ(s)

=
µ(St(j))

µ(St(j))
= 1.

Remark 6.28. – By [82, page 134], note that we have an isomorphism Aut(T ) =

lim←−(Sym(Yj) ≀ · · · ≀ Sym(Y2) ≀ Sym(Y1)). If (Gj , Yj)j≥1 denotes a sequence of finite
permutation groups (such that the actions are faithful), the same method gives a
generalization for the inverse limit G = lim←−(Gj ≀ · · · ≀G2 ≀G1) of iterated permutational
wreath products. The verification is left to the reader.

Stability under products. – The (good) behavior of (6.4.2) under direct products is
described in the following result.

Proposition 6.29. – Let G1 and G2 be two second countable (unimodular) locally
compact groups satisfying ALSS with respect to the sequences (Γ1,j), (Γ2,j) of lattices
and to the sequences (X1,j), (X2,j) of associated fundamental domains. Suppose that
(6.4.2) holds for both groups G1 and G2 with constants c1 and c2. Then G = G1×G2 is
ALSS with respect to the lattices (Γj) = (Γ1,j × Γ2,j) and associated fundamental
domains (Xj) = (X1,j×X2,j) and it satisfies (6.4.2) with constant c = c1·c2. Moreover,
if X1,j and X2,j are symmetric (resp. γkXk,j = Xk,jγk for k = 1, 2 and γk ∈ Γk,j) then
Xj is symmetric (resp. γXj = Xjγ for γ ∈ Γj). Let 1 ≤ p ≤ ∞ and suppose that G1

and G2 are amenable if 1 < p <∞. Then Theorem 6.16 applies to G = G1 ×G2.

Proof. – If G1 and G2 are second countable then G1×G2 is also second countable. By
Lemma 6.26, Γj = Γ1,j×Γ2,j is a lattice subgroup of G1×G2 and Xj = X1,j×X2,j is
an associated fundamental domain. If µ1 and µ2 are Haar measures on G1 and G2

then µ = µ1 ⊗ µ2 is a Haar measure on G. We check that G1 × G2 is ALSS with
respect to (Γj) and (Xj). Let V be a neighborhood of e ∈ G1 ×G2. Then there exist
neighborhoods U1 of e1 ∈ G1 and U2 of e2 ∈ G2 such that U1×U2 ⊂ V . Since G1 and
G2 are ALSS, there exists j0 ∈ N such that X1,j ⊂ U1 and X2,j ⊂ U2 for any j ≥ j0.
Consequently, Xj = X1,j ×X2,j ⊂ U1×U2 ⊂ V . Consequently G1×G2 is ALSS. Now
for γ1 ∈ Γ1,j , we put

I1(γ1)
def
=

1

µ1

(
X1,j

) ∫
G1

µ2
1

(
X1,j ∩ γ1X1,js1

)
µ2

1

(
X1,j

) dµ1(s1)
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and similarly, for given γ2 ∈ Γ2,j resp. γ ∈ Γj , we define I2(γ2) resp. I(γ). We claim
that I((γ1, γ2)) = I1(γ1)I2(γ2). Indeed, using the elementary fact (A×B)∩(C×D) =

(A ∩ C)× (B ∩D), we have

I((γ1, γ2)) =
1

µ
(
X1,j ×X2,j

) ∫
G1×G2

µ2
(
(X1,j ×X2,j) ∩ (γ1, γ2)(X1,j ×X2,j)(s1, s2)

)
µ2
(
X1,j ×X2,j

) dµ(s1, s2)

=
1

µ1

(
X1,j

)
µ2

(
X2,j

) ∫
G1×G2

µ2
(
(X1,j ×X2,j) ∩ (γ1X1,js1)× (γ2X2,js2)

)
µ2

1

(
X1,j

)
µ2

2

(
X2,j

) dµ(s1, s2)

=
1

µ1

(
X1,j

)
µ2

(
X2,j

) ∫
G1×G2

µ2
(
(X1,j ∩ γ1X1,js1)× (X2,j ∩ γ2X2,js2)

)
µ2

1

(
X1,j

)
µ2

2

(
X2,j

) dµ(s1, s2)

=
1

µ1

(
X1,j

)
µ2

(
X2,j

) ∫
G1

µ2
1

(
X1,j ∩ γ1X1,js1

)
µ2

1

(
X1,j

) dµ1(s1)

∫
G2

µ2
2

(
X2,j ∩ γ2X2,js2

)
µ2

2

(
X2,j

) dµ2(s2)

= I1(γ1)I2(γ2).

Now let K be a compact subset of G1 ×G2. We check (6.4.2), that is

lim
j→∞

sup
(γ1,γ2)∈Γj∩K

|I((γ1, γ2))− c1c2| = 0.

Denoting πk : G1 × G2 → Gk the canonical continuous projection, we have
that πk(K) ⊂ Gk is compact (k = 1, 2). Then

sup
(γ1,γ2)∈Γj∩K

|I((γ1, γ2))− c1c2| ≤ sup
(γ1,γ2)∈Γj∩π1(K)×π2(K)

|I((γ1, γ2))− c1c2|

= sup
γ1∈Γ1,j∩π1(K)

sup
γ2∈Γ2,j∩π2(K)

|I1(γ1)I2(γ2)− c1c2|

≤ sup
γ1∈Γ1,j∩π1(K)

sup
γ2∈Γ2,j∩π2(K)

|I1(γ1)I2(γ2)− c1I2(γ2)|+ |c1I2(γ2)− c1c2|

≤ sup
γ1∈Γ1,j∩π1(K)

|I1(γ1)− c1| sup
γ2∈Γ2,j∩π2(K)

|I2(γ2)|+ c1 sup
γ2∈Γ2,j∩π2(K)

|I2(γ2)− c2|

−−−−→
j→+∞

0 · c2 + c1 · 0 = 0.

Thus, (6.4.2) follows for G1×G2 and constant c1c2. The statement about preservation
of symmetric fundamental domains (resp. commutation γXj = Xjγ) is easy to check.
For the application of Theorem 6.16, we only note that G1 × G2 is amenable once
that G1 and G2 are amenable.

Remark 6.30. – Let G be a countable discrete group. The group G is ALSS with
respect to the constant sequences (Γj) and (Xj) defined by Γj = G and by Xj = {e}
for any j. Moreover, for any γ ∈ G and any j, it is obvious that

1

µG(Xj)

∫
G

µ2
G(Xj ∩ γXjs)

µ2
G(Xj)

dµG(s) = 1.
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Semidirect products of abelian groups by discrete groups. – For semidirect products,
the situation is not as good as direct products.

Proposition 6.31. – Let G1 be a second countable abelian locally compact group
which is ALSS with respect to a sequence (Γ1,j) of lattice subgroups associated to a
sequence (X1,j) of fundamental domains such that (6.4.2) is satisfied. Let G2 be a
countable discrete group. Suppose that η : G2 → Aut(G1) is a homomorphism sat-
isfying ηt(Γ1,j) ⊂ Γ1,j for any t ∈ G2 and any j. Then the semidirect product
G = G1 ⋊η G2 is second countable and ALSS with respect to the sequences (Γj) and
(Xj) defined by Γj = Γ1,j ×G2 and Xj = X1,j ×{eG2

}. If in addition ηt(X1,j) ⊂ X1,j

for any t ∈ G2 and any j then (6.4.2) holds with some c ∈ (0, 1]. If the X1,j are
symmetric (resp. γ1X1,j = X1,jγ1 for any γ1 ∈ Γ1,j) then the Xj are symmetric (resp.
γXj = Xjγ for any γ ∈ Γj). Consequently, Theorem 6.16 applies in the case p = 1

and p =∞. If G2 is in addition amenable, the result applies in the case 1 < p <∞.

Proof. – It is obvious that G is second countable. By Lemma 6.26, each Γj is a lattice
of G and each Xj is an associated fundamental domain. We check that G1 × G2 is
ALSS with respect to (Γj) and (Xj). Let V be a neighborhood of the neutral element
e of G1×G2. Then there exist neighborhood U1 of e1 ∈ G1 such that U1 × {e2} ⊂ V .
Since G1 is ALSS, there exists j0 ∈ N such that X1,j ⊂ U1 for any j ≥ j0. Conse-
quently, Xj = X1,j × {e2} ⊂ U1 × {e2} ⊂ V . Thus G1 ×G2 is ALSS.

Using [19, Proposition B.2.2 page 332], the existence of a lattice implies that G is
unimodular and µG = µG1

⊗ µG2
gives a Haar measure on G. It remains to

check (6.4.2). To this end, consider γ = (γ1, γ2) ∈ Γj , ω = (ω1, eG2) ∈ Xj and
s = (s1, s2) ∈ G. Then using (6.5.2)

γωs = (γ1, γ2) ⋊η (ω1, eG2
) ⋊η (s1, s2) = (γ1, γ2) ⋊η (ω1 + s1, s2) =

(
γ1 + ηγ2(ω1 + s1), γ2s2

)
.

This element belongs to Xj = X1,j × {eG2} if and only if s2 = γ−1
2 and

γ1 + ηγ2(ω1 + s1) ∈ X1,j . By the assumption ηγ2(X1,j) ⊂ X1,j , the latter condi-
tion is equivalent with

η−1
γ2

(
γ1 + ηγ2(ω1 + s1)

)
∈ X1,j ,

that is η−1
γ2 (γ1) + ω1 + s1 ∈ X1,j . For any γ = (γ1, γ2) ∈ Γj and s = (s1, s2) ∈ G, we

infer that

µG(Xj ∩ γXjs) = (µG1
⊗ µG2

)
(
(X1,j × {eG2

}) ∩ γXjs
)

= µG1

(
{ω1 ∈ X1,j : η−1

γ2 (γ1) + ω1 + s1 ∈ X1,j}
)
.

Moreover, we have µG(Xj) = µG1⊗G2
(X1,j × {eG2

}) = µG1
(X1,j)µG2

({eG2
}) =

µG1(X1,j). Therefore, with a change of variable in the second equality and using the
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fact that G1 satisfies (6.4.2) in the passage to the limit, we finally obtain∫
G

µG(Xj ∩ γXjs)
2

µG(Xj)3
dµG(s) =

∫
G1

µG1
({ω1 ∈ X1,j : ω1 + s1 + η−1

γ2 (γ1) ∈ X1,j})2

µG1
(X1,j)3

dµG1
(s1)

=

∫
G1

µG1
({ω1 ∈ X1,j : ω1 + s1 ∈ X1,j})2

µG1(X1,j)3
dµG1

(s1)

=

∫
G1

µG1(X1,j ∩ (X1,j + s1))
2

µG1
(X1,j)3

dµG1
(s1)

−−−−→
j→+∞

c ∈ (0, 1].

The statement about the symmetry (resp. commutativity with elements of Γj) of
the fundamental domain is easy to check with (6.5.2). If G2 is amenable then G is
an amenable group by [19, Proposition G.2.2 (ii)], being a group extension of an
amenable group by an abelian (hence also amenable) group.

For applying the previous result, we compute the density (6.4.2) for some abelian
groups. By [52, Corollary 4.2.6], the groups described in the following proposition are
the compactly generated locally compact abelian groups of Lie type.

Proposition 6.32. – Suppose that G = Zl × Rn × Tm × F where l, n,m ∈ N and
where F is a finite abelian group. For any integer j, consider the lattice subgroup

Γj
def
= Zl × (2−jZ)n ×

{
2−jr : r ∈ {0, . . . , 2j − 1}

}m × F
and the associated symmetric fundamental domain

Xj
def
= {0}l × [−2−j−1, 2−j−1)n × [−2−j−1, 2−j−1)m × {eF }.

Then the group G is ALSS with respect to the sequences (Γj) and (Xj). Moreover, for
any j and any γ ∈ Γj, we have

1

µG(Xj)

∫
G

µ2
G (Xj ∩ (γ + Xj + s))

µ2
G(Xj)

dµG(s) =

(
2

3

)n+m

.

Proof. – Using Lemma 6.26, it is clear that the Γj ’s are lattice subgroups and that
the Xj ’s are associated fundamental domains. It is obvious that G is ALSS with
respect to these sequences. For any j, a simple computation gives

µG(Xj) = (µRn ⊗ µTm)
([
− 2−j−1, 2−j−1

)n × [− 2−j−1, 2−j−1
)m)

=
(
µR
([
− 2−j−1, 2−j−1

))n(
µT
([
− 2−j−1, 2−j−1

))m
= 2−j(n+m).

Now, note that if −2a ≤ x ≤ 2a then we have

µR([−a, a] ∩ [−a+ x, a+ x]) = 2a− |x|.

Further, for any j and any γ ∈ Γj , we have, writing s = (x1, . . . , xn, y1, . . . , ym, z1, . . . , zl, f),∫
G

µ
(
Xj ∩ (γ + Xj + s)

)2
dµG(s) =

∫
G

µG
(
Xj ∩ (Xj + s)

)2
dµG(s)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2023



116 CHAPTER 6. DECOMPOSABLE FOURIER MULTIPLIERS

=

∫
Rn

n∏
k=1

µR
(
[−2−j−1, 2−j−1) ∩ [−2−j−1 + xk, 2

−j−1 + xk)
)2

d(x1, . . . , xn)×

×
∫
Tm

m∏
l=1

µT
(
[−2−j−1, 2−j−1) ∩ [−2−j−1 + yl, 2

−j−1 + yl)
)2

d(y1, . . . , ym)

=

(∫ 2−j

−2−j
(2−j − |x|)2 dx

)n(∫ 2−j

−2−j
(2−j − |y|)2 dy

)m
=

(
2

∫ 2−j

0

(2−j − x)2 dx

)n+m

=

(
2

∫ 2−j

0

u2 du

)n+m

=

(
2

3

)n+m

2−3j(n+m).

Thus ∫
G

µG (Xj ∩ (γ + Xj + s))
2

µG(Xj)3
dµG(s) = 23j(n+m) ·

(
2

3

)n+m

2−3j(n+m)

=

(
2

3

)n+m

∈ (0, 1].

Remark 6.33. – The assumptions of Proposition 6.31 are satisfied in the following
situation. Assume that G1 = Zl × Rn × Tm × F where l, n,m ∈ N and where F is
a finite abelian group. Let G2 be a subgroup of Sym(n) × Sym(m) where Sym(n)

and Sym(m) are the permutation groups of n and m elements. For (σ1, σ2) ∈ G2, let
further

η(σ1,σ2)(z1, . . . , zl, x1, . . . , xn, y1, . . . , ym, f)(6.5.6)

=
(
z1, . . . , zl, xσ1(1), . . . , xσ1(n), yσ2(1), . . . , yσ2(m), f

)
.

For any integer j, consider the lattice

Γ1,j = Zl × (2−jZ)n ×
{
2−jr : r ∈ {0, . . . , 2j − 1}

}m × F
of G1 and the symmetric fundamental domain

X1,j = {0}l × [−2−j−1, 2−j−1)n × [−2−j−1, 2−j−1)m × {eF }.

It is easy to check that the transformation (6.5.6) preserves both Γ1,j and X1,j . Then
G1, G2, (Γ1,j), (X1,j) and η satisfy all the assumptions of Proposition 6.31 and con-
sequently Theorem 6.16 applies to the group G = G1 ⋊η G2.

More generally, G2 can be any countable discrete (amenable) group such that ηt is
given by a coordinate permutation as in (6.5.6) for any s ∈ G2.

Now, we give a natural semidirect product for which we can apply Proposition 6.31
and 6.32. Let Hn = R2n+1 be the (continuous) Heisenberg group with group opera-
tions
(6.5.7)
(a, b, t) · (a′, b′, t′) = (a+a′, b+ b′, t+ t′+a · b′) and (a, b, t)−1 = (−a,−b,−t+a · b),
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where a, b, a′, b′ ∈ Rn and t, t′ ∈ R and where · denotes the canonical scalar product
on Rn. Recall that Hn is unimodular and the Haar measure on Hn is just usual
Lebesgue measure on Rn. We can use our results with the semi-discrete Heisenberg
group described in the following result, see [136, page 1459] for more information on
this group.

Proposition 6.34. – Let Hn = {(x, y, t) ∈ Hn : x, y ∈ Zn, t ∈ R} be the (amenable)
closed subgroup of the Heisenberg group Hn. For any integer j, we consider the lat-
tice subgroup Γj = Zn × Zn × 2−jZ of Hn and the associated symmetric fundamental
domain Xj = {0} × {0} × [−2−j−1, 2−j−1). Then Hn is ALSS with respect to the in-
creasing sequence (Γj) and to the sequence (Xj). Moreover, for any j and any γ ∈ Γj,
we have

(6.5.8)
1

µ(Xj)

∫
Hn

µ2(Xj ∩ γXjs)

µ2(Xj)
dµ(s) =

2

3
.

In particular, Theorem 6.16 applies.

Proof. – Using (6.5.7), it is easy to see that Hn is a closed subgroup of Hn, so it is
locally compact. If G1 = {(0, b, t) : b ∈ Zn, t ∈ R} and G2 = {(a, 0, 0) : a ∈ Zn}, it is
not difficult to check by using again (6.5.7) that G1 and G2 are closed subgroups of Hn,
Hn = G1G2, G1 ∩G2 = {(0, 0, 0)} and that G1 is normal in Hn. By [74, Proposition
page 184], we deduce an isomorphism Hn = G1 ⋊η G2 of topological groups where

(6.5.9) η(a,0,0)(0, b, t) = (0, b, t+ b · a), a, b ∈ Zn, t ∈ R.

Note that G1 is isomorphic to Zn × R and that G2 is isomorphic to Zn. For
any j, we consider Γ1,j = Zn × 2−jZ and Xj,1 = {0}n × [−2−j−1, 2−j−1). For
any (a, 0, 0) ∈ G2 and any integer j, using (6.5.9), we see that η(a,0,0)(Γ1,j) ⊂ Γ1,j

and η(a,0,0)(X1,j) ⊂ X1,j . By Proposition 6.31, we deduce that Γj is a lattice sub-
group of Hn, that Xj is an associated fundamental domain and that the group Hn is
ALSS with respect to the sequences (Γj) and (Xj). Finally the equality (6.5.8) is a
consequence of Proposition 6.32 and Proposition 6.31.

We finish by bringing to light a bad behavior of (6.4.2) with respect to the Heisen-
berg group H3.

Proposition 6.35. – For any integer j, we consider the lattice subgroup Γj =

2−jZ × 2−jZ × 2−2jZ of the Heisenberg group H3 and the associated fundamen-
tal domain Xj = [−2−j−1, 2−j−1)× [−2−j−1, 2−j−1)× [−2−2j−1, 2−2j−1). Then the
Heisenberg group H3 is ALSS with respect to the increasing sequence (Γj) and to the
sequence (Xj). Moreover, for every fixed γ = (γ1, γ2, γ3) ∈ Γj0 for some j0 ∈ N with
(γ1, γ2) ̸= (0, 0) and γ1 · γ2 = 0 we have

(6.5.10) lim
j→+∞

1

µ(Xj)

∫
H3

µ2(Xj ∩ γXjs)

µ2(Xj)
dµ(s) = 0.

In particular, for this choice of group, and sequences of lattices and fundamental
domains, Theorem 6.16 is not applicable.
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Proof. – Note that it is obvious that H3 is ALSS with respect to the sequences (Γj)

and (Xj). First observe that for any s ∈ H3 and any integer j we have

µ(Xj ∩ γXjs) =

∫
H3

1Xj∩γXjs(t) dµ(t) =

∫
H3

1Xj (t)1γXjs(t) dµ(t)

=

∫
H3

1Xj (t)1Xj (γ
−1ts−1) dµ(t).

For any s ∈ H3, any j and any γ ∈ Γj , we have using the invariance of the Haar
measure in the third equality (to use u = γ−1ts−1)

1

µ(Xj)

∫
H3

µ(Xj ∩ γXjs)

µ2(Xj)
dµ(s) =

1

µ(Xj)3

∫
H3

µ(Xj ∩ γXjs)µ(Xj ∩ γXjs) dµ(s)

(6.5.11)

=
1

µ(Xj)3

∫
H3

∫
H3

∫
H3

1Xj (t)1Xj (r)1Xj (γ
−1ts−1)1Xj (γ

−1rs−1) dµ(r) dµ(t) dµ(s)

=
1

µ(Xj)3

∫
H3

∫
H3

∫
H3

1Xj (t)1Xj (r)1Xj (u)1Xj (γ
−1rt−1γu) dµ(r) dµ(t) dµ(u)

=
1

µ(Xj)3

∫
Xj

∫
Xj

∫
Xj

1Xj (γ
−1rt−1γu) dµ(r) dµ(u) dµ(t)

=
1

µ(Xj)3

∫
R3

∫
R3

∫
R3

1|r1|,|u1|,|t1|,|r2|,|u2|,|t2|≤2−j−11|r3|,|u3|,|t3|≤2−2j−11Xj (γ
−1rt−1γu)

(6.5.12)

dr dudt.

If γ = (γ1, γ2, γ3) ∈ Γj and if r, u, t ∈ Xj , by (6.5.7), a tedious yet elementary
calculation yields
(6.5.13)
γ−1rt−1γu = (u1 + r1 − t1, u2 + r2 − t2, u3 + r3 − t3 − γ1r2 + t1t2 − t1γ2 − t1u2 + r1γ2 + r1u2 − r1t2 + γ1t2).

We estimate from above. The last indicator function in the previous triple integral can
be majorized by 1|(γ−1rt−1γu)3|≤2−2j−1 . If |(γ−1rt−1γu)3| ≤ 2−2j−1 and r, u, t ∈ Xj ,
then by triangle inequality and (6.5.13), we have

| − γ1r2 − t1γ2 + r1γ2 + γ1t2| ≤
∣∣(γ−1rt−1γu)3

∣∣+ |u3 + r3 − t3 + t1t2 − t1u2 + r1u2 − r1t2|

≤ 2−2j−1

(
1 + 1 + 1 + 1 + 2 + 2 + 2 + 2

)
= 6 · 2−2j .

Using the equality 1
µ(Xj)3

= 212j , this says that (6.5.11) is less than

212j

∫
R3

∫
R3

∫
R3

1|r1|,|u1|,|t1|,|r2|,|u2|,|t2|≤2−j−11|r3|,|u3|,|t3|≤2−2j−1

1|−γ1r2−t1γ2+r1γ2+γ1t2|≤6·2−2j dr dudt.
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We cheaply integrate over u1, u2, r3, u3 and t3 and obtain

= 212j2−8j

∫
R4

1|r1|,|t1|,|r2|,|t2|≤2−j−11|−γ1r2−t1γ2+r1γ2+γ1t2|≤6·2−2j dr1 dr2 dt1 dt2.

Now suppose first that γ2 = 0 and γ1 ̸= 0. Then the last indicator function can be
simplified and we can cheaply integrate over r1 and t1 to estimate further

≤ 24j2−2j

∫
R2

1|r2|,|t2|≤2−j−11|−r2+t2|≤ 1
|γ1|

6·2−2j dr2 dt2

= 22j

∫ 2−j−1

−2−j−1

∫ 2−j−1

−2−j−1

1|t2−r2|≤ 1
|γ1|

6·2−2j dr2 dt2 =
1

4

∫ 1

−1

∫ 1

−1

1|t′2−r′2|≤ 1
|γ1|

12·2−j dr′2 dt′2,

where we have performed the change of variables r′2 = 2j+1r2, t′2 = 2j+1t2. Now the
last double integral is easily seen to converge to 0 as j → ∞. The case γ1 = 0 and
γ2 ̸= 0 can be treated in the same way by symmetry.

6.6. Pro-discrete groups

An inverse system of topological groups indexed by a directed set I consists of a
family (Gj)j∈I of topological groups and a family (ψij : Gj → Gi)i,j∈I,j≥i of contin-
uous homomorphisms such that ψii = IdGi and ψijψjk = ψik whenever k ≥ j ≥ i

[180, Definition 1.1.1]. An inverse system is called a surjective inverse system if each
map ψij is surjective. Now let (Gj , ψij) be an inverse system of topological groups
and let G be a topological group. We shall call a family of continuous homomorphisms
ψj : G → Gj compatible with the inverse system if ψijψj = ψi whenever j ≥ i. An
inverse limit of an inverse system (Gj , ψij) of topological groups is a topological group
G together with a compatible family ψj : G→ Gj of continuous homomorphisms with
the following universal property: whenever ψ′j : G′ → Gj is a compatible family of con-
tinuous homomorphisms from a topological group G′, there exists a unique continuous
homomorphism φ : G′ → G such that ψjφ = ψ′j for each j. Each inverse system admits
an inverse limit, given by the following construction [180, Proposition 1.1.4]:

(6.6.1) lim←−Gj =

{
s ∈

∏
j∈I

Gj : pi(s) = ψij(pj(s)) for all i ≤ j
}

with the subspace topology from the product topology and with projection maps ψj
given by the restrictions to lim←−Gj of the projection maps pi :

∏
j∈I Gj → Gi from

the product.
We say that a topological group G is pro-discrete if it is isomorphic to the inverse

limit of an inverse system of discrete groups. We have the following characterization
for locally compact groups which is a variation of [155, Lemma 1.3]. For the sake of
completeness, we give a complete proof.

Proposition 6.36. – A locally compact group G is pro-discrete if and only if it admits
a basis (Xj) of neighborhoods of the identity eG consisting of open compact normal
subgroups. In this case, we have G = lim←−Gj where the inverse system is given by the
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groups Gj = G/Xj and by the homomorphisms ψij : Gj → Gi, sXj 7→ sXi for j ≥ i

and where the preorder is the opposite of inclusion (57) of the Xj’s. Moreover, if G is
first countable then there exists a countable basis of open compact normal subgroups.
Finally, a pro-discrete locally compact group G is always totally disconnected.

Proof. – Suppose that G admits a family (Xj) of open compact normal subgroups
forming a neighborhood basis of eG. For any j ∈ I, we set Gj

def
= G/Xj , which is

discrete by [98, Theorem 5.21] since Xj is open. We use the preorder defined in the
statement of the result. For j ≥ i, i.e., Xj ⊂ Xi, we also consider the well-defined ho-
momorphism ψij : Gj → Gi, sXj 7→ sXi. It is plain to check (58) that the (ψij)j≥i is an
inverse system. We consider the construction (6.6.1) of the inverse limit lim←−Gj . Note
that the family of continuous homomorphisms ψ′j : G → G/Xj , s 7→ sXj is compati-
ble (59). According to the universal property, there exists a continuous homomorphism
φ : G→ lim←−Gj satisfying the compatibility ψ′j = ψjφ. For any s ∈ G, this means that

sXj = ψ′j(s) = ψj(φ(s)) = pj(φ(s)),

so that φ(s) is equal to the element (sXj)j∈I of the product
∏
j∈I G/Xj .

It remains to check that φ is bijective. For the injectivity, suppose that φ(s) = e, so
sXj = Xj for all j. Thus, s ∈ Xj for all j. Since G is Hausdorff and since the Xj ’s form
a basis of neighborhoods, we obtain s = eG. For the surjectivity, let t = (sjXj)j∈I be
an element of lim←−Gj . Let F be a finite subset of I. Consider some i ∈ I such that i ≥ j
for any j ∈ F . For j ∈ F , we have

sjXj = pj(t) = ψji(pi(t)) = ψji(siXi) = siXj ,

so si ∈ sjXj . Hence si belongs to ∩j∈F sjXj . We infer that the collection of the
compact subsets sjXj has the finite intersection property. We conclude that there
exists s ∈ ∩j∈IsjXj . Consequently φ(s) = (sXj)j∈I = (sjXj)j∈I = t. We conclude
that G ∼= lim←−Gj .

Assume now that G is an inverse limit lim←−Gj of discrete groups Gj . Again, we use
the description (6.6.1). Since each ψj is continuous, each kernel Kerψj = ψ−1

j ({ej}) is
the preimage of an open set, hence open in G. We also know that Kerψj is normal
and closed as a kernel of a continuous homomorphism. It only remains to check that
the Kerψj ’s form a neighborhood basis of the identity eG. Indeed since Kerψj will
fall within any given compact neighborhood of eG for big enough j, Kerψj will also
be compact for such j.

Let U be any neighborhood of eG in G. Then by trace topology, there exists a
neighborhood Ũ of eG in

∏
j∈I Gj with U = Ũ ∩G. By the definition of the product

topology, there exists some finite subset F of I such that the subset Ṽ =
∏
j∈I Aj

of
∏
j∈I Gj satisfies Ṽ ⊂ Ũ with Aj = {ej} if j ∈ F and Aj = Gj if j ̸∈ F . Since I is

57. We let j ≥ i if and only if Xj ⊂ Xi.
58. If k ≥ j ≥ i we have ψijψjk(sXk) = ψij(sXj) = sXi = ψik(sXk).
59. If j ≥ i we have ψijψ

′
j(s) = ψij(sXj) = sXi = ψ′i(s).
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directed, we can choose i ∈ I such that i ≥ j for any j ∈ F . Then for any s ∈ Kerψi
and any j ∈ F , we have

pj(s) = ψji(pi(s)) = ψji(ψi(s)) = ψji(ei) = ej .

Hence Kerψj ⊂ Ṽ . Consequently, we have Kerψj ⊂ Ṽ ∩G ⊂ U . We have shown that
the Kerψj ’s form a neighborhood basis of the identity.

If G is first countable, there exists a countable neighborhood basis of eG, so we can
also extract a sequence of the Kerψj forming a neighborhood basis of eG.

We turn to the last claim. Recall that the intersection of all open subgroups of a
locally compact group is the connected component of the identity eG by [98, Theo-
rem 7.8]. Since G is Hausdorff, the intersection of closed neighborhoods of eG is {eG}.
Since an open subgroup is always closed [98, Theorem 5.5], we infer that the com-
ponent of the identity is equal to {eG}. By [98, Theorem 7.3], we conclude that G is
totally disconnected.

In particular, by [31, Proposition 3 page 20], a pro-discrete locally compact group
G is unimodular.

Remark 6.37. – Note that a locally compact group G is totally disconnected if and
only if the compact open subgroups form a basis of neighborhoods of the identity eG.
The end of the proof of Proposition 6.36 proves the more general implication ⇐. The
converse is [98, Theorem 7.7].

There is the following variant of Theorem 6.16.

Theorem 6.38. – Let G = lim←−Gj be a second countable pro-discrete locally compact
group with respect to an inverse system indexed by N. Suppose 1 ≤ p ≤ ∞. Assume
that G is amenable if 1 < p <∞. Then there exists a contractive map

P pG : CB(Lp(VN(G)))→Mp,cb(G)

with the properties:
1. If T is completely positive, then P pG(T ) is also completely positive.
2. If T = Mψ is a Fourier multiplier on Lp(VN(G)) with bounded measurable

symbol ψ : G→ C then P pG(Mψ) = Mψ.
Moreover, P pG has the following compatibility: if T ∈ CB(Lp(VN(G))) ∩ CB(Lq(VN(G)))

for some 1 ≤ p, q ≤ ∞, then P pG(T ) being twice defined as an element of Mp,cb(G)

and Mq,cb(G) coincides on Lp(VN(G)) ∩ Lq(VN(G)). Note that in the case p = ∞,
we can take CBw∗(VN(G)) as the domain space of P∞G .

Proof. – LetG = lim←−Gj be a second countable pro-discrete locally compact group. By
Proposition 6.36, G admits a (countable) basis (Xj) of neighborhoods of the identity
eG consisting of open compact normal subgroups. By (6.1.5), we have an isomorphism
from the group von Neumann algebra VN(G/Xj) onto pXjVN(G). Using Lemma 6.2,
we obtain a completely positive and completely contractive map

Lp(VN(G/Xj))→ Lp(pXjVN(G)) = pXjL
p(VN(G)).
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By composing this map with the identification Lp(pXjVN(G)) ⊂ Lp(VN(G)), we
obtain a (normal if p =∞) completely positive and completely contractive map

Φpj : Lp(VN(G/Xj))→ Lp(VN(G)), λG/Xj ,sXj 7→ µG(Xj)
1
p pXjλG,s.

Furthermore, we consider the adjoint (preadjoint if p = 1)

Ψp
j =

(
Φp

∗

j

)∗
: Lp(VN(G))→ Lp(VN(G/Xj))

of Φp
∗

j which is also (normal if p =∞) completely contractive and completely positive
by Lemma 2.9 for any 1 ≤ p ≤ ∞.

Let T : Lp(VN(G)) → Lp(VN(G)) be some completely bounded map. Now, using
Theorem 4.2 for the discrete group G/Xj (since Xj is open; note that if p ̸= ∞,
G/Xj is amenable by [19, Proposition G.2.2]), we define the completely bounded
Fourier multiplier

Mφj = P pG/Xj

(
Ψp
jTΦpj

)
: Lp(VN(G/Xj))→ Lp(VN(G/Xj))

if 1 ≤ p < ∞ and Mφj = P∞G/Xj
(
Ψ∞j Pw∗(T )Φ∞j

)
: VN(G/Xj) → VN(G/Xj)

if p = ∞, where the contractive map Pw∗ : CB(VN(G)) → CB(VN(G)) is de-
scribed in Proposition 3.1. Note that φj : G/Xj → C is defined by φj(s/Xj) =

τG/Xj
(
Ψp
jTΦpj (λsXj )λs−1Xj

)
(if T is normal in the case p =∞). Then∥∥Mφj

∥∥
cb,Lp(VN(G/Xj))→Lp(VN(G/Xj))

=
∥∥P pG/Xj(Ψp

jTΦpj
)∥∥

cb,Lp(VN(G/Xj))→Lp(VN(G/Xj))

≤
∥∥Ψp

jTΦpj
∥∥

cb,Lp(VN(G/Xj))→Lp(VN(G/Xj))

≤ ∥T∥cb,Lp(VN(G))→Lp(VN(G)) ,

in the case 1 ≤ p < ∞ and similarly in the case p = ∞. Note that each func-
tion φj is continuous since G/Xj is discrete. Now, we define the continuous complex
function φ̃j = φj ◦ πj : G→ C where πj : G→ G/Xj is the canonical surjective map.
Since the homomorphism πj is continuous, according to Proposition 6.14, the sym-
bol φ̃j induces a completely bounded Fourier multiplier on Lp(VN(G)) and we have
the estimate∥∥Mφ̃j

∥∥
cb,Lp(VN(G))→Lp(VN(G))

=
∥∥Mφj

∥∥
cb,Lp(VN(G/Xj))→Lp(VN(G/Xj))

≤ ∥T∥cb,Lp(VN(G))→Lp(VN(G)) .

Now, we suppose that T = Mψ for a (bounded) measurable symbol ψ : G→ C
giving rise to a completely bounded Lp Fourier multiplier. We start by giving a de-
scription of the symbol φ̃j as an average of ψ.

Lemma 6.39. – For any s ∈ G, we have

(6.6.2) φ̃j(s) =

∫
Xj

ψ(st) dµXj (t).
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Proof. – The subgroup Xj is open, so µG|Xj is a left Haar measure on Xj and
µXj = cjµG|Xj where cj = 1

µG(Xj)
. Moreover, for any s ∈ G, the indicator func-

tion 1sXj belongs to Cc(G) since sXj is an open and compact subset of G. For
any s, t ∈ G, note that

(1sXj ∗ 1̌Xj )(t) =

∫
G

1sXj (r)1̌Xj (r
−1t) dµG(r) =

∫
sXj

1Xj (t
−1r) dµG(r)

= µG(sXj ∩ tXj) = µG(sXj)1sXj (t).

We conclude that 1sXj ∈ Cc(G) ∗Cc(G). Then, for any s ∈ G, using the definition of
a Fourier multiplier and Lemma 6.2, we see that

Mψ

(
λG,spXj

)
= Mψ

(
λG,scjλG(1Xj )

)
= cjMψ

(
λG(1sXj )

)
= cjλG(ψ1sXj )

and similarly
λG,s−1pXj = cjλG,s−1λG(1Xj ) = cjλ(1s−1Xj ).

For any s ∈ G, using the Plancherel Formula (6.1.3), we obtain

φ̃j(s) = φj ◦ πj(s) = τG/Xj
(
Ψp
jMψΦpj

(
λG/Xj ,sXj

)
λG/Xj ,s−1Xj

)
= τG

(
MψΦpj

(
λG/Xj ,sXj

)
Φp

∗

j (λG/Xj ,s−1Xj )
)

= µG(Xj)
1
pµG(Xj)

1− 1
p τG

(
Mψ

(
λG,spXj

)
λG,s−1pXj

)
= cjτG

(
λG(ψ1sXj )λG

(
1s−1Xj

))
.

Now, using the normality of the subgroup Xj , we see that

φ̃j(s) = cj

∫
G

ψ(r)1sXj (r)1s−1Xj (r
−1) dµG(r) = cj

∫
sXj

ψ(r)1Xjs(r) dµG(r)

= cj

∫
sXj

ψ(r) dµG(r) = cj

∫
Xj

ψ(st) dµG(t) =

∫
Xj

ψ(st) dµXj (t).

Let E∞j : L∞(G)→ L∞(G) be the normal conditional expectation associated with
the σ-algebra generated by the left cosets of Xj in G considered in [105, page 182-183]
(see also [103, page 69]) and E1

j : L1(G)→ L1(G) the contractive associated map. The
previous lemma says that for any integer j we have φ̃j = E∞j (ψ). Now, we prove the
following convergence result.

Lemma 6.40. – Let G be a pro-discrete locally compact group and let (Xj) be a de-
creasing basis of neighborhoods of the identity eG consisting of open compact normal
subgroups. Let E∞j : L∞(G) → L∞(G) be the normal conditional expectation associ-
ated with the σ-algebra generated by the left cosets of Xj in G. For any ψ ∈ L∞(G),
the net (E∞j (ψ)) converges to ψ for the weak* topology of L∞(G).

Proof. – By [101, Proposition 2.6.32], for any f ∈ L∞(G) and any g ∈ L1(G), we have〈
E∞j (f), g

〉
L∞(G),L1(G)

=
〈
f,E1

j (g)
〉
L∞(G),L1(G)

.
Consequently, the map E∞j : L∞(G)→ L∞(G) admits as preadjoint the contractive

map E1
j : L1(G) → L1(G). So it suffices to show that the net (E1

j ) converges to the
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identity for the weak operator topology. Actually, we will show that the convergence
is true (60) for the norm topology of L1(G). Since the net (E1

j ) is uniformly bounded,
by [32, Proposition 5, Chapt. III, 17.4], it suffices to show that E1

j (g) converges to g
in L1(G) for any g belonging to some total subset of L1(G). By [35, Lemma 2 a),
VII.15], the subset of positive functions with compact support constant on the left
cosets of some Xj is total. So let g be such a function. If i ≥ j, i.e., if Xi ⊂ Xj , each
left coset of Xi in G is a subset of a left coset of Xj in G. Then for almost all s ∈ G
we have (

E1
i (g)

)
(s) =

∫
Xi

g(st) dµXi(t) =

∫
Xi

g(s) dµXi(t) = g(s).

So E1
i (g) = g. Hence, for this g, the assertion is true. The proof is complete.

Using Lemma 6.40 together with Lemma 6.7, we deduce that the sequence (Mφ̃j )

converges to Mψ in the weak operator topology of B(Lp(VN(G))) (in the point weak*
topology if p = ∞). Then we proceed as in the proof of Theorem 6.16 to con-
struct the contractive linear maps P pG : CB(Lp(VN(G))) → Mp,cb(G) and to show
that P pG(Mψ) = Mψ whenever Mψ ∈Mp,cb(G).

Finally, we show that the map P pG preserves the complete positivity. Suppose
that T is (normal if p = ∞) completely positive. The operator Ψp

jTΦpj is completely
positive. Hence the multiplier Mφj = P pG/Xj

(
Ψp
jTΦpj

)
is also completely positive. By

Theorem 6.14, we infer that Mφ̃j = Mφj◦πj is completely positive. Using Lemma 2.10,
it is easy to deduce that P pG(T ) is completely positive.

Remark 6.41. – According to [136, Theorem 12.3.26], a second countable nilpo-
tent (61) compactly generated totally disconnected locally compact group admits a
sequence (Xj) satisfying the assumptions of the theorem. Moreover, any second count-
able compactly generated uniscalar (62) p-adic Lie group admits such a sequence (Xj)

by [81, Theorem 5.2]. Moreover, p-adic can be replaced by pro-p-adic [81, Proposi-
tion 7.4]. Finally, there exists an example of a compactly generated totally discon-
nected uniscalar locally compact group which does not have an open compact normal
subgroup, see [25] and [117].

Remark 6.42. – Note that the result applies to the profinite groups acting on locally
finite trees described in Section 6.5.

60. This fact is proved in the second countable case in [105, Theorem 3.3] and seesms alluded
without proof in the general case in [105, page 184] (see also [103, page 71] for a proof). Here, we
give an alternative argument. Finally, Bourbaki transformed this into an exercise [35, Exercise 10
page 89], as usual without giving any reference.

61. Recall that nilpotent implies unimodular by [130].
62. Note that uniscalar implies unimodular, see [136, Theorem 12.3.26].
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6.7. Amenable groups and convolutors

In this chapter, we observe that we can obtain compatible projections on spaces of
Fourier multipliers associated to abelian locally compact groups and more generally
on spaces of convolutors associated to amenable locally compact groups.

Convolution operators. – Let G be a locally compact group and 1 ≤ p ≤ ∞. Here
we use the left translation λs : Lp(G) → Lp(G) with a similar definition to the one
of (6.1.1). A bounded linear operator T : Lp(G) → Lp(G) (supposed to be weak*
continuous in the case p = ∞ (63)) is said to be a p-convolution operator of G [56,
page 8] if for every s ∈ G we have λsT = Tλs. The set of all convolution operators
(or convolutors) of G is denoted CVp(G). If G is abelian then CVp(G) = Mp(Ĝ)

isometrically, see [56, Chapter 1].
If X is a Banach space, the subset CVp(G,X) of B(Lp(G,X)) is defined as the

space of convolution operators T such that T ⊗ IdX extends to a bounded opera-
tor on Lp(G,X). The space CVp,cb(G) of completely bounded convolutors on Lp(G)

coincides with CVp(G,S
p).

Proposition 6.43 is slight generalization of a particular case of the result [53, Corol-
laire page 79] (rediscovered in part in [5, Theorem 1.1]). We will thank Antoine De-
righetti to communicate this reference.

Proposition 6.43. – Let G be an amenable locally compact group. Suppose
1 ≤ p ≤ ∞. Then there exists a contractive projection P pG : B(Lp(G)) → B(Lp(G))

(in the case p = ∞, we have P∞G : Bw∗(L
∞(G)) → Bw∗(L

∞(G))) onto CVp(G)

such that if T : Lp(G) → Lp(G) is positive (64) then P pG(T ) is positive. Further-
more, all these mappings are compatible with each other. Moreover, if 1 < p < ∞,
the restriction of P pG to CB(Lp(G)) induces a well-defined contractive projec-
tion P p,cbG : CB(Lp(G))→ CB(Lp(G)) onto CVp,cb(G).

Proof. – The case 1 < p <∞ is [53, Theorem 5] and [5, Theorem 1.1]. The case p = 1

of [5, Theorem 1.1]) gives a projection P 1
G : B(L1(G))→ B(L1(G)). Now for a weak*

continuous operator T : L∞(G) → L∞(G), we let P∞G (T ) = P 1
G(T∗)

∗. We obtain the
desired projection. The verifications are left to the reader.

Suppose 1 < p <∞. Let T : Lp(G)→ Lp(G) be a completely bounded operator. For
any f ∈ Lp(G) and any g ∈ Lp

∗
(G), we consider the complex function hT,f,g : G→ C,

s 7→
〈
T (λs(f)), λs(g)

〉
Lp(G),Lp∗ (G)

defined on G. The function hT,f,g is (65) bounded.

63. If G is not compact, note that there exist bounded operators T : L∞(G) → L∞(G) which
commute with left translations and which are not weak* continuous. We refer to [125] for more
information.

64. Recall that the notions of “positivity” and “complete positivity” are identical on commutative
Lp-spaces by Proposition 2.24 and a completely positive map is completely bounded by Theorem 3.26.

65. For any s ∈ G, we have∣∣∣〈T (λs(f)), λs(g)
〉
Lp(G),Lp

∗
(G)

∣∣∣ ≤ ∥T∥Lp(G)→Lp(G) ∥λs(f)∥Lp(G) ∥λs(g)∥Lp∗ (G)

= ∥T∥Lp(G)→Lp(G) ∥f∥Lp(G) ∥g∥Lp∗ (G) .
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By [98, Theorem 20.4], the maps G → Lp(G), s 7→ T (λs(f)) and G → Lp
∗
(G),

s 7→ λs(g) are continuous. Using the continuity of the duality bracket ⟨·, ·⟩Lp(G),Lp∗ (G)

[2, Corollary 6.40] on bounded subsets, we deduce that the map hT,f,g is continuous,
hence measurable.

Since G is amenable, by [141, Proposition 4.23], there exists a right invari-
ant mean (66) M : L∞(G) → C. Since L∞(G) is a unital commutative C*-al-
gebra, the map M is completely contractive by [68, Lemma 5.1.1]. The map
B : Lp(G)× Lp

∗
(G)→ C, (f, g) 7→ M

(
hT,f,g

)
is clearly bilinear. Moreover, for any

integer n, any [fij ] ∈ Mn(L
p(G)) and any [gkl] ∈ Mn(L

p∗(G)), we have∥∥[B(fij , gk,l)
]∥∥

Mn2
=
∥∥[M(hT,fij ,gkl)

]∥∥
Mn2
≤
∥∥[hT,fij ,gkl]∥∥Mn2 (L∞(G))

=
∥∥∥[s 7→ 〈

T (λs(fij)), λs(gkl)
〉
Lp(G),Lp∗ (G)

]∥∥∥
Mn2 (L∞(G))

=
∥∥∥s 7→ [〈

T (λs(fij)), λs(gkl)
〉
Lp(G),Lp∗ (G)

]∥∥∥
L∞(G,Mn2 )

= sup
s∈G

∥∥∥[〈T (λs(fij)), λs(gkl)
〉
Lp(G),Lp∗ (G)

]∥∥∥
Mn2

.

Now, using [68, (3.2.3)] in the first inequality and the fact left to the reader (to use
[143, Proposition 2.1]) that each λs : Lp(G) → Lp(G) is completely isometric in the
last equality, we obtain for any s ∈ G∥∥∥[〈T (λs(fij)), λs(gkl)

〉
Lp(G),Lp∗ (G)

]∥∥∥
Mn2

=
∥∥∥〈〈[T (λs(fij))

]
,
[
λs(gkl)

]〉〉∥∥∥
Mn2

≤
∥∥∥[T (λs(fij))

]∥∥∥
Mn(Lp(G))

∥∥[λs(gkl)]∥∥Mn(Lp∗ (G))

≤ ∥T∥cb,Lp(G)→Lp(G)

∥∥[λs(fij)]∥∥Mn(Lp(G))

∥∥[λs(gkl)]∥∥Mn(Lp∗ (G))

= ∥T∥cb,Lp(G)→Lp(G)

∥∥[fij ]∥∥Mn(Lp(G))

∥∥[gkl]∥∥Mm(Lp∗ (G))
.

Taking the supremum, we infer that∥∥[B(fij , gk,l)]
∥∥

Mn2
≤ ∥T∥cb,Lp(G)→Lp(G)

∥∥[fij ]∥∥Mn(Lp(G))

∥∥[gkl]∥∥Mn(Lp∗ (G))
.

We conclude that B is completely bounded in the sense of [68, page 126] with
∥B∥cb ≤ ∥T∥cb,Lp(G)→Lp(G). Hence, by [68, Proposition 7.1.2] there exists a unique
completely bounded operator P p,cbG (T ) : Lp(G)→ Lp(G) such that

B(f, g) =
〈
P p,cbG (T )(f), g

〉
Lp(G),Lp∗ (G)

, f ∈ Lp(G), g ∈ Lp
∗
(G).

66. That is a unital positive bounded linear form M : L∞(G) → C such that M(ft) = M(f) for
any t ∈ G where ft(s) = f(st).
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Moreover, we have
∥∥P p,cbG (T )

∥∥
cb,Lp(G)→Lp(G)

= ∥B∥cb ≤ ∥T∥cb,Lp(G)→Lp(G). This
operator coincides with the operator P pG(T ) provided by a slightly simplified (67) proof
of [5, Theorem 1.1]. The compatibility is left to the reader.

Remark 6.44. – Consider a locally compact group G. It would be interesting to
know if the amenability of G is characterized by the property of Proposition 6.43.

6.8. Description of the decomposable norm of multipliers

The following is a variant of Theorem 4.10.

Theorem 6.45. – Let G be an amenable second countable unimodular locally com-
pact group which is ALSS satisfying the assumption (6.4.2). Suppose 1 ≤ p ≤ ∞.
Then a measurable function ϕ : G → C induces a decomposable Fourier multiplier
on Lp(VN(G)) if and only if it induces a (completely) bounded Fourier multiplier
on VN(G). In this case, we have

(6.8.1) c ∥Mϕ∥VN(G)→VN(G) ≤ ∥Mϕ∥dec,Lp(VN(G))→Lp(VN(G)) ≤ ∥Mϕ∥VN(G)→VN(G) .

Proof. – ⇒: We start with the case of a decomposable Fourier multiplier
Mϕ : Lp(VN(G)) → Lp(VN(G)) with a continuous symbol. By Proposition 3.12,
we can write Mϕ = T1 − T2 + i(T3 − T4), where each Tj is a completely positive map
on Lp(VN(G)). Using the map P pG of Theorem 6.16 (since G is amenable) and the
continuity of ϕ, we obtain that

Mϕ = P pG(Mϕ) = P pG
(
T1−T2 +i(T3−T4)

)
= P pG(T1)−P pG(T2)+ i

(
P pG(T3)−P pG(T4)

)
,

where each P pG(Tj) is a completely positive Fourier multiplier on Lp(VN(G)). Hence,
by Proposition 6.11, it induces a completely positive Fourier multiplier on VN(G).
We conclude that ϕ induces a decomposable Fourier multiplier on VN(G). If ϕ is
only bounded and measurable, but the approximating fundamental domains Xj are
symmetric (resp. γXj = Xjγ for γ ∈ Γj), then according to Theorem 6.16, we can
argue in the same way.

Without the assumption of continuity (resp. symmetry or commutativity of the
fundamental domains), we adapt the method of approximation of [39, Remark 9.3]
by completely bounded multipliers on VN(G). Let Mϕ : Lp(VN(G))→ Lp(VN(G)) be
a decomposable Fourier multiplier. Since G is amenable, by Leptin Theorem [141,
Theorem 10.4], there exists a contractive approximative unit (ψi) of the Fourier alge-
bra A(G) such that each ψi has compact support. In addition, consider a contractive
approximate unit (χj) of L1(G) such that each χj is a function belonging to Cc(G)

with ∥χj∥L1(G) = 1 and χj ≥ 0 satisfying the properties of [58, (14.11.1)] (see [58,
Example 14.11.2] for the existence). For any i, j, we let ϕi,j = χj ∗ (ψiϕ).

67. We can replace the space of right uniformly continuous functions by L∞(G). Moreover, note
that translations of [5, Theorem 1.1] differ from our notation.
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We claim that for any i, j, we have

(6.8.2)
∥∥Mϕi,j

∥∥
reg,Lp(VN(G))→Lp(VN(G))

≤ ∥Mϕ∥reg,Lp(VN(G))→Lp(VN(G)) .

Indeed, since G is amenable, the von Neumann algebra VN(G) is approximately finite-
dimensional by [45, Corollary 6.9 (a)]. Using Theorem 3.24, [143, Definition 2.1], the
duality [145, Theorem 4.7] and Plancherel Formula (6.1.3), we need to show that for
any N ∈ N, and any fkl, gkl ∈ Cc(G) ∗ Cc(G) where 1 ≤ k, l ≤ N we have∣∣∣〈[Mϕi,j (λ(fkl))

]
,
[
λ(gkl)

]〉
Lp(VN(G),MN ),Lp∗ (VN(G),S1

N )

∣∣∣ =
∣∣∣∣∣∣
N∑

k,l=1

∫
G

ϕi,j(s)fkl(s)ǧkl(s) dµG(s)

∣∣∣∣∣∣
≤ ∥Mϕ∥reg,Lp(VN(G))→Lp(VN(G))

∥∥[λ(fkl)]
∥∥

Lp(VN(G),MN )

∥∥[λ(gkl)]
∥∥

Lp∗ (VN(G),S1
N )
.

Note that∣∣∣∣∣∣
N∑

k,l=1

∫
G

ψi(t)ϕ(t)fkl(t)ǧkl(t) dµG(t)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
N∑

k,l=1

〈
Mψiϕ(λ(fkl)), λ(gkl)

〉∣∣∣∣∣∣
≤ ∥Mψi∥reg,Lp(VN(G))→Lp(VN(G)) ∥Mϕ∥reg,Lp→Lp

∥∥[λ(fkl)]
∥∥∥∥[λ(gkl)]

∥∥.
By the second and the last part of the proof, we have

∥Mψi∥reg,Lp→Lp ≤ ∥Mψi∥VN(G)→VN(G) ≤ ∥ψi∥A(G) ≤ 1.

Using the fact that ∥[λs−1δkl]∥MN (VN(G)) = 1, it is not difficult to prove that the
regular norm is translation invariant, so that∣∣∣∣∣∣

N∑
k,l=1

∫
G

ψi(s
−1t)ϕ(s−1t)fkl(t)ǧkl(t) dµG(t)

∣∣∣∣∣∣ ≤ ∥Mϕ∥reg,Lp→Lp

∥∥[λ(fkl)]
∥∥∥∥[λ(gkl)]

∥∥.
Consequently, since ∥χj∥L1(G) ≤ 1∣∣∣∣∣∣

∫
G

χj(s)

N∑
k,l=1

(∫
G

ψi(s
−1t)ϕ(s−1t)fkl(t)ǧkl(t) dµG(t)

)
dµG(s)

∣∣∣∣∣∣
≤
∫
G

|χj(s)|

∣∣∣∣∣∣
∑
k,l

∫
G

ψi(s
−1t)ϕ(s−1t)fkl(t)ǧkl(t) dµG(t)

∣∣∣∣∣∣ dµG(s)

≤ ∥Mϕ∥reg,Lp→Lp

∥∥[λ(fkl)]
∥∥∥∥[λ(gkl)]

∥∥.
But by Fubini Theorem, we have∣∣∣∣∣∣

∫
G

χj(s)
∑
k,l

(∫
G

ψi(s
−1t)ϕ(s−1t)fkl(t)ǧkl(t) dµG(t)

)
dµG(s)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N∑

k,l=1

∫
G

(∫
G

χj(s)ψi(s
−1t)ϕ(s−1t) dµG(s)

)
fkl(t)ǧkl(t) dµG(t)

∣∣∣∣∣∣ .
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We deduce that∣∣∣∣∣∣
N∑

k,l=1

∫
G

(χj ∗ (ψiϕ))(t)fkl(t)ǧkl(t) dµG(t)

∣∣∣∣∣∣ ≤ ∥Mϕ∥reg,Lp→Lp

∥∥[λ(fkl)]
∥∥∥∥[λ(gkl)]

∥∥,
and finally, (6.8.2) follows.

Recall that ψi ∈ Cc(G) and ϕ ∈ L∞(G), so ψiϕ ∈ L∞(G) with compact support,
so ψiϕ ∈ L2(G). Moreover, each function χj belongs to L2(G). We conclude that
ϕi,j = χj ∗ (ψiϕ) belongs to L2(G) ∗ L2(G), which equals A(G) [72, théorème p. 218],
so it is a continuous symbol. Then the first part of the proof and the last part show
that each function ϕi,j induces a (completely) bounded multiplier on VN(G) with a
uniform completely bounded norm. Thus, there exists a constant C < ∞ such that
for any i, j, we have for f, g ∈ Cc(G) ∗ Cc(G) (to adapt if p =∞ or p = 1)∣∣∣∣∫

G

ϕi,j(t)f(t)ǧ(t) dµG(t)

∣∣∣∣ ≤ C ∥λ(f)∥VN(G) ∥λ(g)∥L1(VN(G)) .

If ϕi,j converges to ϕ in the weak* topology of L∞(G), then this will yield∣∣∣∣∫
G

ϕ(t)f(t)ǧ(t) dµG(t)

∣∣∣∣ ≤ C ∥λ(f)∥VN(G) ∥λ(g)∥L1(VN(G))

and consequently, that ∥Mϕ∥VN(G)→VN(G) ≤ C. We show the claimed weak* conver-
gence. For a given h ∈ L1(G), we write

⟨ϕi,j , h⟩L∞(G),L1(G) = ⟨χj ∗ (ψiϕ)− ψiϕ, h⟩+ ⟨ψiϕ− ϕ, h⟩.

For the second summand, note that ∥ψi∥∞ ≤ ∥ψi∥A(G) ≤ 1, so that ψiϕ − ϕ is
uniformly bounded in L∞(G). Moreover, ψi(s) → 1 for any s ∈ G, since it is an
approximate unit. By dominated convergence, we deduce ⟨ψiϕ−ϕ, h⟩ → 0 as i→∞.
Now for a fixed large i, we have that ⟨χj ∗ (ψiϕ) − ψiϕ, h⟩ → 0 according to [58,
(14.11.1)].
⇐: Let Mϕ : VN(G) → VN(G) be a decomposable Fourier multiplier. Simi-

larly, with Corollary 6.25, we can write Mϕ = Mϕ1
−Mϕ2

+ i(Mϕ3
−Mϕ4

) where
each Mϕj : VN(G) → VN(G) is completely positive. By Proposition 6.11, each
Fourier multiplier ϕj induces a completely positive multiplier on Lp(VN(G)). Using
Proposition 3.12, we conclude that ϕ induces a decomposable Fourier multiplier
on Lp(VN(G)).

The proof of last part is similar to the proof to the one of Theorem 4.10 together
with Theorem 3.24 when one remembers that the von Neumann algebra VN(G) is
approximately finite-dimensional.

Remark 6.46. – If we replace the amenability assumption by supposing that VN(G)

is approximately finite-dimensional then the end of the proof shows that for any
function φ inducing a completely bounded Fourier multiplier on VN(G) we have the
inequalities (6.8.1).

Similarly, we obtain the following result:
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Theorem 6.47. – Let G be a second countable amenable pro-discrete locally com-
pact group. Suppose 1 ≤ p ≤ ∞. Then a function ϕ : G → C induces a decomposable
Fourier multiplier Mϕ : Lp(VN(G)) → Lp(VN(G)) if and only if it induces a (com-
pletely) bounded Fourier multiplier on Mϕ : VN(G)→ VN(G). In this case, we have

∥Mϕ∥dec,Lp(VN(G))→Lp(VN(G)) = ∥Mϕ∥cb,VN(G)→VN(G) = ∥Mϕ∥VN(G)→VN(G) .

Remark 6.48. – In both situations, a function ϕ : G → C which induces a decom-
posable Fourier multiplier Mϕ : Lp(VN(G)) → Lp(VN(G)) is equal to a continuous
function almost everywhere, see, e.g., [86, Corollary 3.3].

The following observation was communicated (68) to us by Sven Raum whom we
thank for this. It shows that in the pro-discrete case, a similar remark to Remark 6.46
is useless.

Proposition 6.49. – A second countable pro-discrete locally compact group G is
amenable if and only if its von Neumann algebra VN(G) is approximately finite-
dimensional.

Proof. – Consider a pro-discrete locally compact group G such that VN(G) is approx-
imately finite-dimensional. By Proposition 6.36, there exists an open compact normal
subgroup K of G. Using the central projection pK of Lemma 6.1, we have a ∗-isomor-
phism π : VN(G/K)→ VN(G)pK , λsK 7→ λspK . It is well-known (69) that this implies
that VN(G)pK is approximately finite-dimensional and thus that VN(G/K) is approx-
imately finite-dimensional. Furthermore, since K is open, the group G/K is discrete
by [98, Theorem 5.26]. By [162, Theorem 3.8.2], we infer that G/K amenable. Since
K is amenable, by [19, Proposition G.2.2], we conclude that the group G is amenable.

The converse is [45, Corollary 6.9 (a)].

Similarly, we obtain a proof of the next result. The first part is (70) essentially stated
in [4, Proposition 3.3].

Theorem 6.50. – Let G be an amenable locally compact group. Suppose 1 < p <∞.
Then a convolutor T : Lp(G) → Lp(G) of CVp(G) is regular if and only if it induces
a bounded convolutor T : L∞(G)→ L∞(G). In this case, we have

∥T∥reg,Lp(G)→Lp(G) = ∥T∥L∞(G)→L∞(G) (= ∥T∥cb,L∞(G)→L∞(G)).

This result applies to decomposable Fourier multipliers

Mϕ : Lp(VN(G))→ Lp(VN(G))

on an abelian locally compact group G.

68. In [14], we will give another argument.
69. This observation relies on the equivalence between “injective” and “approximately finite-

dimensional”.
70. We warn the reader that the proof [4, Proposition 3.3] is really problematic. The proof of the

fundamental point (the surjectivity of the map τp) is lacking.
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Remark 6.51. – Consider a locally compact group G. It would be interesting to
know if the amenability of G is characterized by the property of Theorem 6.50.
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CHAPTER 7

STRONGLY AND CB-STRONGLY
NON DECOMPOSABLE OPERATORS

In this chapter, we construct completely bounded operators T : Lp(M) → Lp(M)

which cannot be approximated by decomposable operators. We particularly investi-
gate different types of multipliers. We also give explicit examples of such operators on
the noncommutative Lp-spaces associated to the free groups (see Theorem 7.28 and
Theorem 7.29).

7.1. Definitions

The following definition is an extension of the one of [5, Remark, page 163] on
classical Lp-spaces to noncommutative Lp-spaces since the regular norm and the de-
composable norm are identical by Theorem 3.24.

Definition 7.1. – We say that an operator T : Lp(M) → Lp(M) is strongly non
decomposable if T does not belong to the closure Dec(Lp(M)) of the space Dec(Lp(M))

with respect to the operator norm ∥·∥Lp(M)→Lp(M).

It means that T cannot be approximated by decomposable operators. We also
introduce the following variation of this definition.

Definition 7.2. – We say that a completely bounded operator T : Lp(M)→ Lp(M) is
CB-strongly non decomposable if T does not belong to the closure Dec(Lp(M))

CB
of

the space Dec(Lp(M)) with respect to the completely bounded norm ∥·∥cb,Lp(M)→Lp(M).

IfM is approximately finite-dimensional, we also use the words strongly non regular
and CB-strongly non regular.

Remark 7.3. – These two notions are related. Indeed, let T : Lp(M) → Lp(M) be
a completely bounded operator in Dec(Lp(M))

CB
. There exists a sequence (Tn) of
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decomposable operators acting on Lp(M) such that ∥T − Tn∥cb,Lp(M)→Lp(M) tends to
zero when n approaches +∞. Hence, we have

∥T − Tn∥Lp(M)→Lp(M) ≤ ∥T − Tn∥cb,Lp(M)→Lp(M) −−−−−→n→+∞
0.

Hence T belongs to the closure Dec(Lp(M)). We deduce that if T is completely
bounded and strongly non decomposable then T is CB-strongly non decomposable.

7.2. Strongly non regular completely bounded Fourier multipliers on abelian groups

Arendt and Voigt proved that the Hilbert transforms on the groups R, Z and
T are strongly non regular [5, Example 3.3, 3.4, 3.9]. In the case of an arbitrary
abelian locally compact group G, a notion of Hilbert transform is not available in
general. Nevertheless, we prove in this section that there exists a strongly non regular
completely bounded Fourier multiplier acting on Lp(G).

Complements on convolution operators. – If µ ∈ M(G) is a bounded Borel measure

on G, then ρpG(µ) denotes the element of CVp(G), defined by ρpG(µ)(f) = f ∗∆
1
p∗

G µ̌

for any continuous function f : G→ C with compact support, [56, page 8]. Moreover,
if µ ∈ M(G) and if H is a closed subgroup of G note that

(7.2.1) 1Hµ = i(ResHµ),

where i(ν) denotes the image of the measure ν under the inclusion map i of H in G.
If X is a Banach space, the subset CVp(G,X) of B(Lp(G,X)) is defined as the

space of convolution operators T such that T ⊗ IdX extends to a bounded operator
on Lp(G,X).

Positive convolution operators. – The following is [141, Theorem 9.6] (see also [56,
page 8], and [4, pages 280–281] for a good explanation). Let G be an amenable locally
compact group and suppose 1 < p < ∞. Let T : Lp(G) → Lp(G) be a positive
convolution operator. Then there exists a positive bounded measure µ ∈ M(G) on G

such that T (f) = f ∗ ∆
1
p∗

G µ̌ for any continuous function f : G → C with compact
support (71). Moreover, we have ∥T∥Lp(G)→Lp(G) = ∥µ∥.

Canonical isometry from CVp(H,X) into CVp(G,X). – Let G be a locally compact
group, H a closed subgroup of G, X a Banach space and 1 < p <∞. There exists a
canonical linear isometry

(7.2.2) i : CVp(H,X)→ CVp(G,X).

It is a vectorial extension of [56, Theorem 2 page 113], (see also [7, Theorem 2.6])
which can be proven with a similar proof. Note that the remark [56, Remark page
106] gives for any µ ∈ M(H) the equality

(7.2.3) i
(
ρpH(µ)

)
= ρpG(i(µ)),

71. If s ∈ G we have by [56, page 7]
(
f ∗∆

1
p∗
G µ̌

)
(s) =

∫
G
f(st)∆G(t)

1
p dµ(t).
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where i(µ) denotes the image of the measure µ under the inclusion map i of H in G.
Suppose in addition that G is abelian. Using the isomorphism Ĝ/H⊥ = Ĥ given
by χ 7→ χ|H we can reformulate [56, Theorem 1 page 123] under the equality

i(Mφ) = Mφ◦π,

where π : Ĝ→ Ĝ/H⊥ is the canonical map.

Isometry from CVp(G/H) into CVp(G). – Let G be an amenable locally compact
group and H be a normal closed subgroup of G such that G/H is compact. By [54,
page 4 and 11], there exist an isometry Ω: CVp(G/H)→ CVp(G) and a contraction
R : CVp(G)→ CVp(G/H) satisfying RΩ = IdCVp(G/H) such that for any µ ∈ M(G)

R(ρpG(µ)) = ρpG/H(THµ),

where the measure TH(µ) is defined by (see [151, 8.2.12 page 233])∫
G/H

g d
(
TH(µ)

)
=

∫
G

g ◦ πH dµG,

for all continuous functions g : G/H → C with compact support.

Let G be a locally compact abelian group and H be a compact subgroup of G.
We denote by π : G → G/H the canonical map. The mapping χ 7→ χ ◦ π is an
isomorphism of Ĝ/H onto H⊥. If φ : H⊥ → C is a complex function, we denote
by φ̃ : Ĝ→ C the extension of φ on Ĝ which is zero off H⊥. Let X be a Banach space.
By [7, Proposition 2.8], the linear map

(7.2.4) CVp(G/H,X)→ CVp(G,X), Mφ →Mφ̃

is an isometry.

Projection from B(Lp(G)) onto CVp(G). – Let G be an amenable group and suppose
1 ≤ p < ∞. The result [5, Theorem 1.1] says that there exists a positive contractive
projection

(7.2.5) PG : B(Lp(G))→ B(Lp(G)).

onto CVp(G).

Projection from CVp(G) onto CVp(H). – Let G be a locally compact group and H
be an amenable closed subgroup. Suppose 1 < p <∞. By [55, Theorems 12 and 15],
there exists a projection P : CVp(G) → CVp(G) onto {S ∈ CVp(G) : suppS ⊂ H}
such that if QH = i−1 ◦ P : CVp(G)→ CVp(H) we have the following properties:

1. P(ρpG(µ)) = ρpG(1Hµ) for every bounded measure µ ∈ M(G),

2. ∥QH(T )∥Lp(H)→Lp(H) ≤ ∥T∥Lp(G)→Lp(G),

3. QH(i(S)) = S for S ∈ CVp(H).
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Restriction of multipliers. – Let G be a locally compact abelian group. Let H be
a closed subgroup of the dual group Ĝ. Suppose 1 ≤ p ≤ ∞. Let φ : Ĝ → C be
a continuous complex function which induces a bounded Fourier multiplier (i.e., a
convolutor) Mφ : Lp(G) → Lp(G). Then, by [154, Corollary 4.6] (see also [47, ab-
stract and page 6]), the restriction φ|H : H → C induces a bounded Fourier multiplier
Mφ|H

: Lp(Ĥ)→ Lp(Ĥ) and we have

(7.2.6)
∥∥Mφ|H

∥∥
Lp(Ĥ)→Lp(Ĥ)

≤
∥∥Mφ

∥∥
Lp(G)→Lp(G)

.

We start with a useful observation.

Lemma 7.4. – Let G be a unimodular amenable locally compact group and H be a
closed subgroup of G. Suppose 1 < p < ∞. The map QH : CVp(G) → CVp(H) is
positive.

Proof. – Let T : Lp(G) → Lp(G) be a positive convolution operator. There exists a
positive measure ν ∈ M(G) such that T = ρpG(ν̌). We consider µ = ν̌. We have
T = ρpG(µ). Using (7.2.3) and (7.2.1), we see that

P
(
ρpG(µ)

)
= ρpG(1Hµ) = ρpG

(
i(ResHµ)

)
= i
(
ρpH(ResHµ)

)
.

Using the definition QH = i−1 ◦ P of QH , we obtain finally

QH(T ) = QH
(
ρpG(µ)

)
= i−1

(
P(ρpG(µ))

)
= ρpH(ResHµ).

Since ResHµ is a positive measure, we deduce that QH(T ) is a positive operator.

Similarly, we can prove the two following results.

Lemma 7.5. – Let G be a unimodular amenable locally compact group and H be a
normal closed subgroup of G such that G/H is compact. Suppose 1 < p < ∞. The
map R : CVp(G)→ CVp(G/H) is positive.

Lemma 7.6. – Let G be a unimodular amenable locally compact group and H be a
closed subgroup of G. Suppose 1 < p <∞. The map i : CVp(H)→ CVp(G) is positive.

Now, we state our first transference result.

Proposition 7.7. – Let G be a unimodular amenable locally compact group and H be
a closed subgroup of G. Then a convolution operator T : Lp(H)→ Lp(H) is a strongly
non regular Fourier multiplier if and only if the convolutor i(T ) : Lp(G) → Lp(G) is
strongly non regular.
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Proof. – Note that H is also amenable since it is a subgroup of the amenable group G.

⇐: Suppose that T belongs to Reg(Lp(H))
B(Lp(H))

. Let ε > 0. Then there
exist some positive operators R1, R2, R3, R4 : Lp(H) → Lp(H) and a bounded
map R : Lp(H)→ Lp(H) of norm less than ε such that T = R1−R2 +i(R3−R4)+R.
Since H is amenable, we can use the map (7.2.5) and suppose that R1, R2, R3, R4 and
R are convolution operators. Using the isometry i : CVp(H)→ CVp(G) we obtain

i(T ) = i(R1)− i(R2) + i(i(R3)− i(R4)) + i(R).

Using Lemma 7.6, we see that the operators i(Rj) are positive. Moreover, note that
we have ∥i(R)∥Lp(G)→Lp(G) = ∥R∥Lp(H)→Lp(H) ≤ ε. It follows that the convolution
operator i(T ) is ε-close to Reg(Lp(G)) in the Banach space B(Lp(G)). So letting ε→ 0

yields that i(T ) ∈ Reg(Lp(G))
B(Lp(G))

. This is the desired contradiction.

⇒: Suppose that i(T ) belongs to Reg(Lp(G))
B(Lp(G))

. Let ε > 0. Then there
exist some positive maps R1, R2, R3, R4 : Lp(G) → Lp(G) and a bounded map
R : Lp(G)→ Lp(G) of norm less than ε such that i(T ) = R1 − R2 + i(R3 − R4) + R.
Since G is amenable, using the map (7.2.5), we can suppose that R1, R2, R3, R4 and
R are convolution operators.

Since H is amenable, we can use the contraction QH : CVp(G) → CVp(H). We
obtain

T = QH
(
i(T )

)
= QH

(
R1 −R2 + i(R3 −R4) +R

)
= QH(R1)−QH(R2) + i

(
QH(R3)−QH(R4)

)
+QH(R).

Moreover, by the contractivity of QH , the convolution operator QH(R) : Lp(H)→ Lp(H)

is bounded of norm less than ε. Furthermore, by Lemma 7.4, each convolution op-
erator QH(Rk) : Lp(H) → Lp(H) is a positive operator. It follows that T is ε-close
to Reg(Lp(H)) in the Banach space B(Lp(H)). So letting ε → 0 yields that

T ∈ Reg(Lp(H))
B(Lp(H))

. This is the desired contradiction.

Proposition 7.8. – Let G be a unimodular amenable locally compact group and
H be a normal closed subgroup of G such that G/H is compact. If the convolution
operator T : Lp(G/H)→ Lp(G/H) is strongly non regular then the convolution oper-
ator Ω(T ) : Lp(G)→ Lp(G) is strongly non regular.

Proof. – Suppose that Ω(T ) belongs to Reg(Lp(G))
B(Lp(G))

. Let ε > 0. Then
there exist some positive maps S1, S2, S3, S4 : Lp(G) → Lp(G) and a bounded
map S : Lp(G)→ Lp(G) of norm less than ε such that Ω(T ) = S1−S2+i(S3−S4)+S.
Since G is amenable, using the map (7.2.5), we can suppose that S1, S2, S3, S4 and
S are convolution operators. Using the contraction R : CVp(G) → CVp(G/H), we
obtain

T = R(Ω(T )) = R(S1)−R(S2) + i(R(S3)−R(S4)) +R(S).

Moreover, by R’s contractivity, the convolution operator R(S) : Lp(G/H)→ Lp(G/H)

is bounded of norm less than ε. By Lemma 7.5, each convolution operator
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R(Sk) : Lp(G/H)→ Lp(G/H) is positive. It follows that T is ε-close to Reg(Lp(G/H))

in the Banach space B(Lp(G/H)).

So letting ε → 0 yields that T ∈ Reg(Lp(G/H))
B(Lp(G/H))

. This is the desired
contradiction.

Proposition 7.9. – Let G be a compact abelian group and let H be a closed subgroup
of G. If φ : H⊥ → C is a complex function, we denote by φ̃ : Ĝ→ C the extension
of φ on Ĝ which is zero off H⊥. If the function φ induces a strongly non regular
Fourier multiplier Mφ : Lp(G/H)→ Lp(G/H) then the function φ̃ induces a strongly
non regular Fourier multiplier Mφ̃ : Lp(G)→ Lp(G).

Proof. – Suppose that Mφ̃ belongs to Reg(Lp(G))
B(Lp(G))

. Let ε > 0. Then there
exist some positive maps R1, R2, R3, R4 : Lp(G) → Lp(G) and a bounded map
R : Lp(G)→ Lp(G) of norm less than ε such that Mφ̃ = R1 −R2 + i(R3 −R4) +R.

Since G is amenable, the linear map (7.2.5) yields the existence of some complex
functions ϕ1, ϕ2, ϕ3, ϕ4 and ψ on Ĝ such that Mφ̃ = Mϕ1

−Mϕ2
+i(Mϕ3

−Mϕ4
)+Mψ

such that the Fourier multipliers Mϕk are positive on Lp(G) and Mψ is again of norm
less than ε.

By Proposition 6.11, each (continuous (72)) function ϕk induces a positive linear op-
erator Mϕk : L∞(G)→ L∞(G) and ϕk is positive definite. We infer that the restriction
ϕk|H⊥ : G→ C is (continuous and) positive definite, and thus by [51, Proposition 4.2],
induces a positive operator Mϕk|H⊥ : L∞(G/H) → L∞(G/H). Then by Proposi-
tion 6.11, it follows that the Fourier multiplier Mϕk|H⊥ : Lp(G/H) → Lp(G/H) is
positive.

Note that the group H⊥ = Ĝ/H is discrete. By (7.2.6), since the function ψ is
continuous, the Fourier multiplier Mψ|H⊥ : Lp(G/H)→ Lp(G/H) is bounded of norm
less than ε. Since

Mφ = Mφ1|H⊥ −Mφ2|H⊥ + i
(
Mφ|H⊥ −Mφ4|H⊥

)
+Mψ|H⊥

it follows that Mφ is ε-close to Reg(Lp(G/H)) in the Banach space B(Lp(G/H)), so

that letting ε → 0 yields that Mφ ∈ Reg(Lp(G/H))
B(Lp(G/H))

. This is the desired
contradiction.

Let (εk)k≥0 be a sequence of independent Rademacher variables on some
probability space Ω0. Let X be a Banach space and let 1 < p < ∞. We let
Radp(X) ⊂ Lp(Ω0, X) be the closure of span

{
εk ⊗ x | k ≥ 0, x ∈ X

}
in the Bochner

space Lp(Ω0, X). Thus, for any finite family (xk)0≤k≤n of elements of X, we have∥∥∥∥∥
n∑
k=0

εk ⊗ xk

∥∥∥∥∥
Radp(X)

=

(∫
Ω0

∥∥∥∥ n∑
k=0

εk(ω)xk

∥∥∥∥p
X

dω

) 1
p

.

72. Note that the group Ĝ is discrete.
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We simply write Rad(X) = Rad2(X). By Kahane’s inequalities (see, e.g., [57, Theo-
rem 11.1]), the Banach spaces Rad(X) and Radp(X) are canonically isomorphic. We
will use the following result which is a variant of [65, Theorem 4.1.9].

Proposition 7.10. – Let X be a UMD Banach space. Suppose 1 < p <∞.

1. Let G be a countably infinite discrete abelian group. Assume that there exists a
sequence (Hn)n≥0 of subgroups of the (compact) dual group Ĝ such that

(a) each Hn is open,

(b) Hn+1 ⫋ Hn,

(c)
⋂
n≥0Hn = {0} and H0 = Ĝ.

For any integer n ≥ 0, consider the subset ∆n = Hn\Hn+1 of Ĝ. Then
for any f ∈ Lp(G,X), the series

∑∞
n=0 εn ⊗ (M1∆n

⊗ IdX)(f) converges
in Rad(Lp(G,X)) and we have the norm equivalence

(7.2.7) ∥f∥Lp(G,X) ≈

∥∥∥∥∥
∞∑
n=0

εn ⊗ (M1∆n
⊗ IdX)(f)

∥∥∥∥∥
Rad(Lp(G,X))

.

2. Let G be a compact abelian group. Assume that there exists a sequence (Yn)n≥0

of subgroups of the (discrete) dual group Ĝ such that

(a) each Yn is finite

(b) Yn ⫋ Yn+1,

(c) Y0 = {0} and
⋃
n≥0 Yn = Ĝ.

Let ∆0 = Y0 and ∆n = Yn\Yn−1 for n ≥ 1. Then for any f ∈ Lp(G,X), the
series

∑∞
n=0 εn ⊗ (M1∆n

⊗ IdX)(f) converges in Rad(Lp(G,X)) and we have
the norm equivalence

(7.2.8) ∥f∥Lp(G,X) ≈

∥∥∥∥∥
∞∑
n=0

εn ⊗ (M1∆n
⊗ IdX)(f)

∥∥∥∥∥
Rad(Lp(G,X))

.

Proof. – 1. Let F = P(G) denote the full σ-algebra of subsets of G. For n ≥ 0, con-
sider the annihilator Gn

def
= H⊥

n in G. Since each Hn is open and compact, each Gn is
compact and open by [151, Remark 4.2.22], hence finite (G is discrete).

For any negative integer k ≤ 0 consider the σ-algebra Fk generated by the cosets
of G−k in G. Since G is countably infinite, there are only countably many cosets
of G−k in G. So by [1, Exercice 4 (a) page 227] the elements of Fk are the sets
which are a union of cosets of G−k in G. Since H−k+1 ⊂ H−k for all k ≤ 0, by
[151, Proposition 4.2.24], we have G−k ⊂ G−k+1. Then it is not difficult to see that
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Fk−1 ⊂ Fk if k ≤ 0. We conclude that (Fk)k≤0 is a filtration in G. It is elementary
to check (73) that ∪n≥0Gn = G.

Moreover, since G is countable, the counting measure µG is σ-finite. Since the G−k
are finite, so the restriction of µG to each Fk is also σ-finite. So, by [101, Corol-
lary 2.6.30], the conditional expectation E(·|Fk) with respect to Fk is well-defined
and it is explicitly described in [105, page 183] (see also [103, page 69]), since G−k is
compact, by

E(f |Fk) = TG−k(f) ◦ πk (almost everywhere),

where πk : G→ G/G−k is the canonical map and where TG−k is essentially defined in
[151, page 100]. For any integer k ≤ 0, since H−k is open, the Poisson formula [151,
5.5.4] says that(

TG−k(f) ◦ πk
)
(s) =

∫
H−k

χ(s)f̂(χ) dµH−k(χ) =

∫
Ĝ

χ(s)1H−k(χ)f̂(χ) dµĜ(χ).

We conclude that the conditional expectation E(·|Fk) : Lp(G)→ Lp(G) is (74) a Fourier
multiplier whose symbol is the indicator function 1H−k . Hence for any n ≥ 0

M1∆n
= M1Hn\Hn+1

= M1Hn
−M1Hn+1

= E(·|F−n)− E(·|F−n−1)

as bounded operators on Lp(G). Note that the right hand side is regular on Lp(G).
Consequently, their tensor products with the identity IdX also coincide.

For any f ∈ Lp(G,X) and any integer k ≤ 0, we let fk
def
=
(
E(·|Fk) ⊗ IdX

)
(f).

By [101, Proposition 2.6.3 and Example 3.1.2], we obtain a martingale (fk)k≤0 with
respect to the filtration (Fk)k≤0. Note that since G0 = H⊥

0 = Ĝ⊥ = {0} we have
F0 = F and thus f0 =

(
E(·|F0)⊗ IdX

)
(f) = f . Consequently, for any integer N ≥ 1,

we have
∑0
k=−N+1 dfk =

∑0
k=−N+1(fk − fk−1) = f0 − f−N = f − f−N and dfk =

fk − fk−1 =
(
E(·|Fk)⊗ IdX

)
(f)−

(
E(·|Fk−1)⊗ IdX

)
(f). By [101, Proposition 4.2.3]

with the change of index n = −k, we infer that

∥f − f−N∥Lp(G,X)
∼=

∥∥∥∥∥
N−1∑
n=0

εn ⊗ (M1∆n
⊗ IdX)(f)

∥∥∥∥∥
Rad(Lp(G,X))

.

73. Let s ∈ G and let In
def
= s(Hn) be the subgroup of T where we identify s with η(s) where

η : G→ ˆ̂
G is the canonical map. Since Hn is compact, In is a closed subgroup of T. Any decreasing

sequence of closed subgroups of T stabilizes (each closed subgroup is finite or equal to T). So there
exists N ≥ 0 such that In is the same for all n ≥ N . Let I be this common value. We have
I ⊂ In = s(Hn) for any n ≥ 0.

If I = {1}, then s annihilates Hn for n ≥ N . Hence s ∈ Gn for n ≥ N .

Suppose that I is not trivial. Let i ∈ I \ {1} and let Cn
def
= s−1({i}) ∩ Hn. Then the sets Cn

are nonempty for any n ≥ 0 and form a decreasing sequence of compact subsets of Ĝ. The inter-
section C

def
=
⋂

n≥0 Cn is thus nonempty. But C ⊂
⋂

n≥0Hn = {0}, so this means 0 ∈ C. Hence
0 ∈ s−1(i). This is a contradiction, since i ̸= 1 and s(0) = 1.

74. We can alternatively compute the conditional expectation with [1, Exercice 4 (c) page 227]
instead of the Poisson formula.
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It is straightforward to check (75) that
⋂
k≤0 Fk = {∅, G}. We conclude that the

restriction of the measure µG to
⋂
k≤0 Fk is purely infinite in the sense of [101, Defini-

tion 1.2.27 (c)] on the σ-algebra F−∞
def
=
⋂
k≤0 Fk. According to [101, Theorem 3.3.5

(3)], f−N converges to zero in Lp(G,X) when N goes to∞. Since X is UMD, X does
not contain the Banach space c0. Using Hoffmann-Jorgensen-Kwapien Theorem [99],
[122], it is not difficult to conclude that the series

∑∞
n=0 εn⊗(M1∆n

⊗IdX)(f) converges
in Rad(Lp(G,X)) and to obtain the claimed norm equivalence of Littlewood-Paley
type.

2. Let F denote the Borel σ-algebra generated by the open subsets of G. For n ≥ 0,
consider the annihilator Gn

def
= Y ⊥n in G and the σ-algebra Fn generated by the

cosets of Gn in G. Since each Yn is open and compact, each Gn is compact and
open by [151, Remark 4.2.22]. Since Yn ⊂ Yn+1 for all n ≥ 0, we have Gn+1 ⊂ Gn
and finally Fn ⊂ Fn+1. We conclude that (Fn)n≥0 is a filtration in G. Since G is
compact, the Haar measure µG is finite, so trivially σ-finite on each Fn. So, by [101,
Corollary 2.6.30], the conditional expectation E(·|Fn) with respect to Fn is well-
defined and it is explicitly described in [103, page 69] (since Gn is compact) by

E(f |Fn) = TGn(f) ◦ πn (almost everywhere),

where πn : G → G/Gn is the canonical map and where TGn is essentially defined in
[151, page 100]. For any integer n ≥ 0, since Yn is open, the Poisson formula [151,
(5.5.4)] says that(

TGn(f) ◦ πn
)
(s) =

∫
Yn

χ(s)f̂(χ) dµYn(χ) =

∫
Ĝ

χ(s)1Yn(χ)f̂(χ) dµĜ(χ).

We conclude that the conditional expectation E(·|Fn) : Lp(G) → Lp(G) is a Fourier
multiplier whose symbol is the indicator function 1Yn . Hence for any n ≥ 1

M1∆n
= M1Yn\Yn−1

= M1Yn
−M1Yn−1

= E(·|Fn)− E(·|Fn−1)

as bounded operators on Lp(G). Note that the right hand side is regular on Lp(G).
Consequently, their tensor products with the identity IdX also coincide. Similarly, we
have M1∆0

⊗ IdX = M1Y0
⊗ IdX = E(·|F0)⊗ IdX .

75. Let A ∈
⋂

k≤0 Fk. Suppose that A ̸= ∅. Now, we construct a sequence (sk) of ele-
ments of G by induction. There exists some s0 ∈ G such that {s0} = s0G0 ⊂ A. Suppose
that s−k ∈ G for some k ≤ 0 satisfy s−kG−k ⊂ A. Since we can write A =

⋃
s∈I−k+1

sG−k+1

for some index set I−k+1 and since G−k is a subgroup of G−k+1, we can choose s−k+1 ∈ G
such that s−kG−k ⊂ s−k+1G−k+1 ⊂ A. Moreover, we have s−kG−k = s−k−1G−k. Indeed,
since s−k−1G−k−1 ⊂ s−kG−k, we have s−k−1 ∈ s−kG−k. Hence there exists r−k ∈ G−k

such that s−k−1 = s−kr−k. We deduce that s−k = s−k−1r
−1
−k and consequently s−kG−k =

s−k−1r
−1
−kG−k = s−k−1G−k. Finally, we obtain

s0
⋃
k≤0

G−k =
⋃
k≤0

s0G−k ⊂
⋃
k≤0

s−kG−k ⊂ A.

On the other hand, we have already observed that the first set equals G.
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For any f ∈ Lp(G,X) and any integer n ≥ 0, we let fn
def
=
(
E(·|Fn) ⊗ IdX

)
(f).

By [101, Proposition 2.6.3 and Example 3.1.2], we obtain a martingale (fn)n≥0 with
respect to the filtration (Fn)n≥0.

For any integer N ≥ 1, we have
∑N
n=1 dfn =

∑N
n=1(fn − fn−1) = fN − f0 and

dfn = fn − fn−1 =
(
E(·|Fn) ⊗ IdX

)
(f) −

(
E(·|Fn−1) ⊗ IdX

)
(f) if n ≥ 1 and df0 =

f0 =
(
E(·|F0)⊗ IdX

)
(f).

Note that
⋂
n≥0Gn = {0}. Indeed, if t ∈ Gn, then for any χ ∈ Yn = G⊥n we

have χ(t) = 1. So if t ∈
⋂
n≥0Gn, then χ(t) = 1 for all ξ ∈

⋃
n≥0 Yn = Ĝ. Thus

t = 0 and the claim is proved. Then it is not difficult to check (76) that (Gn)n≥0 is
a neighborhood system at 0. Now by [98, (4.21)] (see also [33, Example page 223]),
the family of subsets of the form sGn where n ≥ 0 and where s runs through G is an
open basis for G. So the limit σ-algebra F∞ = σ

(⋃
n≥0 Fn

)
equals F .

According to [101, Theorem 3.3.2 (2)], fN converges to
(
E(·|F∞) ⊗ IdX

)
(f) = f

in Lp(G,X) when N goes to ∞. Similarly to the case 1, we obtain the convergence of
the series

∑∞
n=0 εn ⊗ (M1∆n

⊗ IdX)(f) and the equivalence

∥f − f0∥Lp(G,X)
∼=

∥∥∥∥∥
∞∑
n=1

εn ⊗ (M1∆n
⊗ IdX)(f)

∥∥∥∥∥
Rad(Lp(G,X))

.

One easily incorporates ∥f0∥Lp(G,X) =
∥∥(M1∆0

⊗ IdX)(f)
∥∥

Lp(G,X)
on both sides with

[102, page 5] to deduce the claimed Littlewood-Paley norm equivalence.

Note that in the case X = C, using the Maurey-Khintchine inequalities [57, 16.11]
the equivalences (7.2.7) and (7.2.8) become

(7.2.9) ∥f∥Lp(G) ≈

∥∥∥∥∥∥
( ∞∑
n=0

|M1∆n
f |2
) 1

2

∥∥∥∥∥∥
Lp(G)

.

We need the following characterization [150] of the closure B(Ĝ) of the Fourier-
Stieltjes algebra B(Ĝ)

def
= {µ̂ : µ ∈ M(G)} of the dual of a locally compact abelian

group G in the space Cb(Ĝ) of bounded continuous complex-valued functions on Ĝ

equipped with the norm ∥·∥∞. If f : Ĝ → C is a bounded continuous function then
f belongs to B(Ĝ) if and only if for any sequence (µn) of bounded Borel measures
on Ĝ the conditions supn≥1 ∥µn∥ < ∞ and µ̂n(x) −−−−−→

n→+∞
0 for all x ∈ G imply

that
∫
Ĝ
f dµn −−−−−→

n→+∞
0.

Proposition 7.11. – Let G be an infinite compact abelian group. Suppose
1 < p <∞. Then there exists a strongly non regular Fourier completely bounded
Fourier multiplier on Lp(G).

76. If U is an open subset of G containing 0, consider the decreasing sequence of compact sub-
sets (G− U) ∩Gn and conclude that Gn ⊂ U if n is large enough.
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Proof. – Since G is compact, its dual Ĝ is discrete. Suppose first that Ĝ con-
tains an element of infinite order, thus a (necessarily closed) subgroup isomorphic
with Z. Consider the closed subgroup H = Z⊥ of G. Then we have an isomorphism
Ĝ/H = H⊥ = Z. Hence G/H is isomorphic to T. According to [5, Example 3.9], the
Hilbert transform on T defines a strongly non regular Fourier multiplier on Lp(G/H).

Since Sp is UMD, the Hilbert transform induces a bounded operator on Lp(R, Sp)
by [101, Theorem 5.1.1]. According to the estimate [101, Proposition 5.2.5], the Hilbert
transform on T induces a bounded operator Lp(G/H,Sp) → Lp(G/H,Sp). Then by
the canonical isometry Lp(G/H,Sp) = Sp(Lp(G/H)) of [145, (3.6)] and Proposi-
tion 2.3, we deduce that the Hilbert transform is completely bounded on Lp(G/H).
Thus, by Proposition 7.9 and using the isometry (7.2.4), we deduce that there exists
a strongly non regular Fourier multiplier on Lp(G).

Now suppose that no element in Ĝ has infinite order, i.e., Ĝ is an infinite abelian
torsion group. Then it contains a countably infinite abelian torsion group (consider
some countably infinite collection of elements in Ĝ and take the subgroup spanned
by this collection, which is again countably infinite). Arguing as before with Propo-
sition 7.9 and the isometry (7.2.4), it suffices to find a strongly non regular Fourier
multiplier on a group having as dual this countable group, so we assume now that Ĝ is
a countably infinite abelian torsion discrete group.

It is (really) elementary to see there exists a sequence (Yn)n≥0 of subgroups of Ĝ
with the properties:

1. each Yn is finite,

2. Yn ⫋ Yn+1,

3. Y0 = {0} and
⋃∞
n=0 Yn = Ĝ.

Consider now ∆0
def
= Y0, ∆n

def
= Yn\Yn−1 for n ≥ 1. According to Proposition 7.10,

the Littlewood-Paley equivalence (7.2.9) holds. This in turn is equivalent [65, 1.2.5
pages 8 and 14] to the property that any ψ ∈ L∞(Ĝ) which is constant on any ∆n,
n = 0, 1, 2, . . . and vanishes on all but finitely many ∆n induces a bounded Fourier
multiplier Mψ on Lp(G) with ∥Mψ∥Lp(G)→Lp(G) ≤ Cp ∥ψ∥L∞(Ĝ). For any integer n,

consider the function ϕn
def
=
∑n
k=0 1∆2k+1

defined on Ĝ. Since ∥ϕn∥L∞(Ĝ) ≤ 1, we have

∥Mϕn∥Lp(G)→Lp(G) ≤ Cp. Consider the function ϕ def
=
∑∞
n=0(1Y2n+1 − 1Y2n) of L∞(Ĝ).

Since ϕn(x) → ϕ(x) as n → ∞ for any x ∈ Ĝ, we conclude using Proposition 6.12
that the Fourier multiplier Mϕ is bounded on Lp(G), 1 < p <∞.

Now, we prove that Mϕ is strongly non regular. According to [5, Theorem 3.1], it
suffices to show that ϕ does not belong to the closure of the Fourier-Stieltjes algebra
B(Ĝ) in L∞(Ĝ)-norm. For this in turn, it suffices to find a sequence of measures µn
on Ĝ with the properties

1. ∥µn∥M(Ĝ) ≤ 2,

2. µ̂n(s) −−−−−→
n→+∞

0 for any s ∈ G,
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3.
∫
Ĝ

ϕ dµn−−−−−→
n→+∞

0.

We choose the sequence (µn) defined by

µn
def
=

1

|Yn+1|
∑

x∈Yn+1

δx −
1

|Yn|
∑
x∈Yn

δx.

Then property 1 is clearly satisfied, since the Haar measure on Ĝ is the counting
measure.

For property 2, we have µ̂n = 1Gn+1 −1Gn , where Gn is the annihilator of Yn in G,
i.e., Gn = Y ⊥n = {s ∈ G : ξ(s) = 1 for all ξ ∈ Yn}.

— If s = 0 then µ̂n(s) = 1Gn+1(0)− 1Gn(0) = 0 for all n ∈ N.

— Consider now the case s ∈ G\{0}. Recall that we have seen in the proof of
Proposition 7.10 that

⋂
n≥0Gn = {0}. Hence, by the fact that the Yn increase

and thus the Gn decrease, there exists an index n0 such that s ̸∈ Gn for any
n ≥ n0. Therefore, µ̂n(s) = 0 for any n ≥ n0.

It remains to show property 3. We have∫
Ĝ

ϕdµ2n =
1

|Y2n+1|
∑

x∈Y2n+1

ϕ(x)− 1

|Y2n|
∑
x∈Y2n

ϕ(x)

=
1

|Y2n+1|
∑

x∈Y2n+1

( ∞∑
k=0

(1Y2k+1
− 1Y2k

)

)
(x)− 1

|Y2n|
∑
x∈Y2n

( ∞∑
k=0

(1Y2k+1
− 1Y2k

)

)
(x)

=
1

|Y2n+1|
∑

x∈Y2n+1

( ∞∑
k=0

1Y2k+1
(x)− 1Y2k

(x)

)
− 1

|Y2n|
∑
x∈Y2n

( ∞∑
k=0

1Y2k+1
(x)− 1Y2k

(x)

)

=
1

|Y2n+1|
∑

x∈Y2n+1

n∑
k=0

(
1Y2k+1

(x)− 1Y2k
(x)
)
− 1

|Y2n|
∑
x∈Y2n

n−1∑
k=0

(
1Y2k+1

(x)− 1Y2k
(x)
)

=
1

|Y2n+1|

( n∑
k=0

∑
x∈Y2n+1

1Y2k+1
(x)−

∑
x∈Y2n+1

1Y2k
(x)

)

− 1

|Y2n|

(n−1∑
k=0

∑
x∈Y2n

1Y2k+1
(x)−

∑
x∈Y2n

1Y2k
(x)

)

=
1

|Y2n+1|

n∑
k=0

(
|Y2k+1| − |Y2k|

)
− 1

|Y2n|

n−1∑
k=0

(
|Y2k+1| − |Y2k|

)
=

(
1

|Y2n+1|
− 1

|Y2n|

) n−1∑
k=0

(
|Y2k+1| − |Y2k|

)
+

1

|Y2n+1|
(
|Y2n+1| − |Y2n|

)
= 1− |Y2n|

|Y2n+1|
+

(
1

|Y2n+1|
− 1

|Y2n|

) n−1∑
k=0

(
|Y2k+1| − |Y2k|

)
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≥ 1− |Y2n|
|Y2n+1|

− 1

|Y2n|

n−1∑
k=0

(
|Y2k+1| − |Y2k|

)
.

The second term in the last line is smaller than 1/2 in modulus by the fact that the Yn
increase strictly and the fact that the order of a subgroup divides the order of the
whole group. For the third term, we note that by skipping several indices n we can
assume recursively that |Y2n| is so large that 1

|Y2n|
∑n−1
k=0 (|Y2k+1| − |Y2k|) < 1

4 . Thus
the whole expression in the last line is bigger than 1− 1

2 −
1
4 = 1

4 and hence does not
converge to 0.

According to Proposition 2.3, it suffices now to show that Mϕ ⊗ IdSp extends
to a bounded operator on the Bochner space Lp(G,Sp). Using both inequalities of
Proposition 7.10, the fact that Sp has UMD and Kahane’s contraction principle [119,
Proposition 2.5] for the scalars δn even, we get∥∥(Mϕ ⊗ IdSp)f

∥∥
Lp(G,Sp)

≲ E

∥∥∥∥∥
∞∑
n=0

εn ⊗ (M1∆n
⊗ IdSp)(Mϕ ⊗ IdSp)(f)

∥∥∥∥∥
Lp(G,Sp)

= E

∥∥∥∥∥
∞∑
n=0

εn ⊗ δn even(M1∆n
⊗ IdSp)(f)

∥∥∥∥∥
Lp(G,Sp)

≤ E

∥∥∥∥∥
∞∑
n=0

εn ⊗ (M1∆n
⊗ IdSp)(f)

∥∥∥∥∥
Lp(G,Sp)

≲ ∥f∥Lp(G,Sp) .

The proof is complete.

Recall that a topological space X is 0-dimensional if X is a non-empty T1-space
and if the family of all sets that are both open and closed is a basis for the topology
[98, page 11] [70, page 360]. By [70, Theorem 6.2.1], every 0-dimensional space is
totally disconnected, i.e., X does not contain any connected subsets of cardinality
larger than one.

Proposition 7.12. – Let G be an infinite discrete abelian group. Suppose 1 < p <∞.
Then there exists a strongly non regular completely bounded Fourier multiplier
on Lp(G).

Proof. – Suppose first that G contains an element of infinite order, so a (closed) sub-
group H isomorphic with Z. Then by [5, Example 3.4], the Hilbert transform induces
a strongly non regular Fourier multiplier on Lp(H). Since Sp is UMD and according
to [23, Theorem 2.8], the Hilbert transform is bounded on Lp(H,Sp) so completely
bounded on Lp(H) by Proposition 2.3. Now, using Proposition 7.7 and the isometry
(7.2.2), the composed Fourier multiplier Mϕ◦π on Lp(G), where π : Ĝ→ Ĝ/H⊥ is the
canonical map, is a strongly non regular completely bounded Fourier multiplier.

Now suppose that every element of G is of finite order, so G is a torsion group. We
can assume that G is countably infinite. Indeed, otherwise choose a countably infinite
number of elements in G, and let H be the subgroup of G generated by these elements.
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Then H is again countably infinite. If there is a strongly non regular completely
bounded Fourier multiplier on Lp(H) then Proposition 7.7 and the isometry (7.2.2)
yield a strongly non regular Fourier multiplier on Lp(G).

Note that since G is countably infinite, by [98, Theorem 24.15], its dual Ĝ is metriz-
able. The fact that G is torsion implies by [98, Theorem 24.21] that Ĝ is 0-dimensional.
This in turn implies that Ĝ is totally disconnected.

So Ĝ is an infinite compact abelian metrizable totally disconnected group. By
the second part of [65, remark page 68], there exists a sequence (Hn)n≥0 of closed
subgroups of Ĝ such that

1. each Hn is open,

2. Hn+1 ⫋ Hn,

3.
⋂∞
n=0Hn = {0}, H0 = Ĝ.

Then the sets ∆n = Hn\Hn+1 enjoy the Littlewood-Paley equivalence (7.2.9) accord-
ing to Proposition 7.10. With ϕ =

∑∞
n=1(1H2n−1

− 1H2n
), as in the proof of Proposi-

tion 7.11, we see that Mϕ is a bounded Fourier multiplier on Lp(G), 1 < p <∞.
It remains to show that Mϕ is strongly non regular. Invoking [5, Theorem 3.1 and

Remark 3.2], it suffices to show that ϕ is not equal almost everywhere to a continuous
function.

So assume that ψ : Ĝ→ C is a continuous function with ψ = ϕ almost everywhere.
We will show a contradiction, which will end the proof. Since the Hn are closed and
open by the point 1, Hn−1\Hn is open. As it is also non-empty by the point 2, it must
be of positive Haar measure. Therefore, there exists xn ∈ Hn−1\Hn with

ψ(xn) = ϕ(xn) =

{
0 n even
1 n odd.

Consider now the sequence yn = x2n−1. By compactness, there exists a subsequence
of yn which converges against some ξ ∈ Ĝ. Since yn belongs to H2n−1, by the point 2,
ym belongs to H2n−1 for all m ≥ n. As H2n−1 is closed, ξ belongs to H2n−1, so
to
⋂∞
n=1H2n−1 =

⋂∞
n=1Hn = {0}. Therefore, a subsequence of yn converges to 0.

In the same manner, one shows that a subsequence of x2n converges to 0. However,
ψ applied to these two subsequences is constant to 1 and to 0 respectively, so does
not converge. Hence ψ cannot be continuous.

Now use Proposition 7.10 in a similar fashion to the compact case to deduce
that Mϕ is completely bounded on Lp(G). The proof is complete.

Recall the following structure theorem for locally compact abelian groups, see, e.g.,
[98, Theorem 24.30] and [151, Theorem 4.2.31].

Theorem 7.13. – Any locally compact abelian group is isomorphic to a product
Rn ×G0 where n ≥ 0 is an integer and G0 is a locally compact abelian group contain-
ing a compact subgroup K such that G0/K is discrete.

With the help of the previous theorem, we can now prove the following.
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Theorem 7.14. – Let G be an infinite locally compact abelian group. Suppose 1 <

p < ∞. Then there exists a strongly non regular Fourier multiplier on Lp(G) which
is completely bounded and CB-strongly non decomposable.

Proof. – We use the previous structure Theorem 7.13 to decompose G and we distin-
guish three cases.

If n ≥ 1 then G has a closed subgroup H isomorphic to R and we consider the
Hilbert transform on Lp(H) which is strongly non regular by [5, Example 3.3]. Since
the Schatten class Sp has UMD, the Hilbert transform is bounded on Lp(H,Sp) and
hence completely bounded on Lp(H) according to Proposition 2.3. Now appeal to the
isometry (7.2.2) and Proposition 7.7 to extend the Hilbert transform to a strongly
non regular and completely bounded Fourier multiplier on Lp(G).

If n = 0 then G = G0. Suppose first that the compact subgroup K is infinite.
Using Proposition 7.11, there exists a completely bounded Fourier multiplier which is
strongly non regular. Again, using the isometry (7.2.2) and Proposition 7.7, we obtain
a strongly non regular and completely bounded Fourier multiplier on Lp(G).

If n = 0 and if the compact subgroup K is finite, then it is itself discrete (since it
is Hausdorff) and thus G = G0 is discrete and infinite. Now, use Proposition 7.12 to
find a strongly non regular completely bounded Fourier multiplier on Lp(G).

The last assertion is a consequence of Section 7.1.

7.3. Strongly non regular completely bounded convolutors on non-abelian groups

Theorem 7.15. – Let G be a unimodular amenable locally compact group which con-
tains an infinite abelian subgroup. Suppose 1 < p < ∞. There exists a strongly non
regular completely bounded convolution operator T : Lp(G)→ Lp(G).

Proof. – Suppose thatG contains an infinite abelian groupH. Note that the closureH
of H is a closed abelian infinite subgroup of G. By Theorem 7.14, there exists a
strongly non regular completely bounded Fourier multiplier on Lp(H). Since G is
amenable and unimodular, we conclude by using Proposition 7.7.

Corollary 7.16. – Let G be an infinite compact group. Suppose 1 < p < ∞.
There exists a strongly non regular completely bounded convolution operator
T : Lp(G)→ Lp(G).

Proof. – Note that G is amenable [141, Proposition 12.1] and unimodular [35, VII.12].
By [182, Theorem 2], the infinite compact group G contains an infinite abelian sub-
group. Hence, we can use Theorem 7.15.

A group G is locally finite if each finitely generated subgroup is finite, see [153,
page 422]. A locally compact group G is called topologically locally finite if the closure
of every finitely generated subgroup of G is compact [38, Section 2].
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Corollary 7.17. – Let G be an infinite unimodular locally finite locally compact
group. Suppose 1 < p < ∞. There exists a strongly non regular completely bounded
convolution operator T : Lp(G)→ Lp(G).

Proof. – Observe that a locally finite locally compact group is topologically locally
finite, hence amenable by [38, Corollary 2.4]. By [153, Theorem 14.3.7], such a group
has an infinite abelian subgroup. We conclude with Theorem 7.15.

Corollary 7.18. – Let G be an infinite nilpotent locally compact group. Suppose
1 < p < ∞. There exists a strongly non regular completely bounded convolution
operator T : Lp(G)→ Lp(G).

Proof. – Such a group is unimodular [130] (see also [75, page 53] in the connected case)
and amenable [141, Corollary 13.5] since it is solvable. Now, if G is locally finite we
can use Corollary 7.17. Otherwise, G contains an infinite finitely generated subgroup
which is nilpotent as a subgroup of a nilpotent group. By [71, Lemma 8.2.2], this group
has an element of infinite order, so also contains an infinite abelian subgroup.

Finally, since a discrete group is unimodular [35, VII.12], we obtain the following
result.

Corollary 7.19. – Let G be an amenable discrete group which contains an infinite
abelian subgroup. Suppose 1 < p <∞. There exists a strongly non regular completely
bounded convolution operator T : Lp(G)→ Lp(G).

7.4. CB-strongly non decomposable Schur multipliers

We start with a result which gives a manageable condition which is necessary to
ensure that a completely bounded Schur multiplier belongs to the closure of the space
of decomposable operators.

Proposition 7.20. – Suppose 1 < p < ∞. If the Schur multiplier Mϕ : SpI → SpI is

completely bounded and belongs to the closure Dec(SpI )
CB(SpI )

of the space Dec(SpI )

with respect to the completely bounded norm then Mϕ belongs to the closure M∞
I

ℓ∞I×I

of the space M∞
I in the Banach space ℓ∞I×I .

Proof. – Let R : SpI → SpI be a decomposable operator. By Proposition 3.12, we can
write R = R1 − R2 + i(R3 − R4) where each Rj is a completely positive map on SpI .
Using the projection PI : CB(SpI )→M

p,cb
I of Corollary 4.4, we obtain

PI(R) = PI
(
R1 −R2 + i(R3 −R4)

)
= PI(R1)− PI(R2) + i

(
PI(R3)− PI(R4)

)
.

By Proposition 3.12, we conclude that the Schur multiplier PI(R) is decomposable.
By Proposition 4.11, we infer that PI(R) is bounded on S∞I , i.e., belongs to M∞

I .
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According to Proposition 4.11, it also belongs toM∞,cb
I with same norm. Now, using

the contractivity of PI , we have∥∥Mϕ −R
∥∥

cb,SpI→S
p
I

≥
∥∥PI(Mϕ −R)

∥∥
cb,SpI→S

p
I

=
∥∥PI(Mϕ)− PI(R)

∥∥
cb,SpI→S

p
I

=
∥∥Mϕ − PI(R)

∥∥
cb,SpI→S

p
I

≥
∥∥Mϕ − PI(R)

∥∥
S2
I→S2

I

≥ distℓ∞I×I (Mϕ,M
∞
I ).

Hence, we deduce that

distCB(SpI )

(
Mϕ,Dec(SpI )

)
≥ distℓ∞I×I (Mϕ,M

∞
I ).

It is folklore that if MA : B(ℓ2) → B(ℓ2) is a bounded Schur multiplier and the
limits

lim
i→∞

lim
j→∞

aij = s and lim
j→∞

lim
i→∞

aij = t

exist then s = t, see [137, Ex 8.15 page 118]. This property turns out to be also true
for Schur multipliers belonging to the closure M∞ℓ∞N×N .

Proposition 7.21. – Let MA ∈M∞ℓ∞N×N . If the limits

lim
i→∞

lim
j→∞

aij = s and lim
j→∞

lim
i→∞

aij = t

exist then s = t.

Proof. – Let ε > 0 and let [bij ] be a matrix corresponding to a bounded Schur mul-
tiplier MB : B(ℓ2) → B(ℓ2), such that |bij − aij | ≤ ε for any i, j ∈ N. By the de-
scription [137, Corollary 8.8] of bounded Schur multipliers B(ℓ2)→ B(ℓ2), there exist
a Hilbert space H, some bounded sequences (xi) and (yj) of elements of H such
that bij = ⟨xi, yj⟩ for any i, j ∈ N. By the weak compactness of closed bounded
subsets of H, there exist subsequences (ik) and (jl) and x, y ∈ H such that weak-
limk xik = x and weak-liml yjl = y. Thus, we have

lim
k→+∞

bikjl = lim
k→+∞

⟨xik , yjl⟩ = ⟨x, yjl⟩

and finally
lim

l→+∞
lim

k→+∞
bikjl = lim

l→+∞
⟨x, yjl⟩ = ⟨x, y⟩.

By the same reasoning, we also have lim
k→+∞

lim
l→+∞

bikjl = ⟨x, y⟩. Now, we infer that∣∣∣∣ lim
k→+∞

bikjl − lim
k→+∞

aikjl

∣∣∣∣ ≤ ε and thus
∣∣∣∣ lim
l→+∞

lim
k→+∞

bikjl − t
∣∣∣∣ ≤ ε.

Similarly, we have ∣∣∣∣ lim
k→+∞

lim
l→+∞

bikjl − s
∣∣∣∣ ≤ ε.

We infer that |s− t| ≤ 2ε. Letting ε go to zero yields the proposition.
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Recall [134, Section 6] that the triangular truncation T : Sp → Sp and the discrete
noncommutative Hilbert transform H : Sp → Sp are completely bounded Schur mul-
tipliers defined by T ([aij ]) = [δi≤jaij ] and that H([aij ]) = [−iδi<jaij + iδi>jaij ] for
any [aij ] ∈ Sp where i2 = −1. The fact that T and H are completely bounded on Sp

can be found in [134, Section 6].
From the last two propositions, we deduce the following result.

Corollary 7.22. – The triangular truncation T : Sp → Sp and the discrete non-
commutative Hilbert transform H : Sp → Sp are CB-strongly non decomposable.

7.5. CB-strongly non decomposable Fourier multipliers

We start with a transference result.

Proposition 7.23. – Let G and H be two discrete groups such that H is a subgroup
of G. If φ : H → C is a complex function, we denote by φ̃ : G→ C the extension
of φ on G which is zero off H. Suppose 1 < p < ∞ and that VN(G) has QWEP.
If φ induces a CB-strongly non decomposable Fourier multiplier
Mφ : Lp(VN(H))→ Lp(VN(H)) then φ̃ induces a CB-strongly non decomposable
Fourier multiplier Mφ̃ : Lp(VN(G))→ Lp(VN(G)).

Proof. – Let E be the trace preserving conditional expectation from VN(G) onto
VN(H) and J be the canonical inclusion of VN(H) into VN(G). The map JMφE is
completely bounded on Lp(VN(G)) and is clearly equal to the Fourier multiplier Mφ̃

induced by φ̃. Suppose that Mφ̃ belongs to Dec(Lp(VN(G)))
CB(Lp(VN(G)))

. Let ε > 0.
Then there exist some completely positive maps

R1, R2, R3, R4 : Lp(VN(G))→ Lp(VN(G))

and a completely bounded map R : Lp(VN(G))→ Lp(VN(G)) of completely bounded
norm less than ε such that Mφ̃ = R1 −R2 + i(R3 −R4) +R. For any h ∈ H, we have

τG
(
Mφ̃(λh)(λh)

∗) = φ̃(h)τG
(
λh(λh)

∗) = φ(h).

Hence, using the map P pH given by Corollary 4.7 since VN(G) is QWEP, we obtain

Mφ = P pH
(
Mφ̃

)
= P pH

(
R1 −R2 + i(R3 −R4) +R

)
= P pH(R1)− P pH(R2) + i

(
P pH(R3)− P pH(R4)

)
+ P pH(R).

Moreover, by PH ’s contractivity, the Fourier multiplier P pH(R) : Lp(VN(H))→ Lp(VN(H))

is completely bounded of completely bounded norm less than ε. Furthermore, each
Fourier multiplier P pH(Ri) : Lp(VN(H)) → Lp(VN(H)) is completely positive. It
follows that Mφ is ε-close to Dec(Lp(VN(H))) in the Banach space CB(Lp(VN(H))).

So letting ε → 0 yields that Mφ belongs to Dec(Lp(VN(H)))
CB(Lp(VN(H)))

. This is
the desired contradiction.
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Corollary 7.24. – Let G be a discrete group which contains an infinite abelian
subgroup such that VN(G) is QWEP. Suppose 1 < p <∞. There exists a CB-strongly
non decomposable Fourier multiplier on Lp(VN(G)).

Proof. – It suffices to use Proposition 7.23, Theorem 7.14 and Remark 7.3.

For example, consider 1 < p < ∞, n ∈ N and the free group G = Fn of n genera-
tors. Since VN(Fn) is QWEP, there exists a CB-strongly non decomposable Fourier
multiplier on Lp(VN(Fn)). The next criterion allows us to give concrete examples in
Proposition 7.28 and Proposition 7.29.

Proposition 7.25. – Let G be a unimodular locally compact group. Suppose
1 ≤ p ≤ ∞.

1. Let φ : G → C be a complex function inducing a completely bounded Fourier
multiplier on Lp(VN(G)). Suppose that there exists a bounded, complete
positivity preserving mapping P pG : CB(Lp(VN(G))) → Mp,cb(G), such that

P pG(Mφ) = Mφ. If Mφ ∈ Dec(Lp(VN(G)))
CB(Lp(VN(G)))

then the multiplier Mφ

belongs to M∞,cb(G)
L∞(G)

.

2. Assume that the limits lim
n→+∞

φ(sn) and lim
n→+∞

φ(s−n) exist for some s ∈ G and

that Mφ belongs to the closureM∞,cb(G)
L∞(G)

for some measurable φ : G→ C.
Then

lim
n→+∞

φ(sn) = lim
n→+∞

φ(s−n).

Proof. – 1. Let R : Lp(VN(G))→ Lp(VN(G)) be a decomposable operator. By Propo-
sition 3.12, we can write

R = R1 −R2 + i(R3 −R4),

where each Rj is a completely positive map on Lp(VN(G)). Using the mapping P pG
from the statement of the proposition, we obtain

P pG(R) = P pG
(
R1 −R2 + i(R3 −R4)

)
= P pG(R1)− P pG(R2) + i

(
P pG(R3)− P pG(R4)

)
.

Using Proposition 6.11, we see that the Fourier multiplier P pG(R) is decomposable
on VN(G) and in particular completely bounded by Proposition 3.30. Now, using the
boundedness of P pG and Lemma 6.5, we obtain∥∥P pG∥∥∥∥Mφ −R

∥∥
cb,Lp(VN(G))→Lp(VN(G))

≥
∥∥P pG(Mφ −R)

∥∥
cb,Lp(VN(G))→Lp(VN(G))

=
∥∥P pG(Mφ)− P pG(R)

∥∥
cb,Lp(VN(G))→Lp(VN(G))

=
∥∥Mφ − P pG(R)

∥∥
cb,Lp(VN(G))→Lp(VN(G))

≥
∥∥Mφ − P pG(R)

∥∥
L2(VN(G))→L2(VN(G))

≥ distL∞(G)

(
Mφ,M

∞,cb
G

)
.

Hence, we deduce that∥∥P pG∥∥distCB(Lp(VN(G)))

(
Mφ,Dec(Lp(VN(G)))

)
≥ distL∞(G)

(
Mϕ,M

∞,cb
G

)
.
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2. Suppose that Mφ belongs to M∞,cb(G)
L∞(G)

. Let ε > 0 and Mψ ∈ M∞,cb(G)

with ∥φ− ψ∥∞ ≤ ε. According to [164, page 2], there exist a Hilbert space H and two
maps P,Q : G → H with ∥P∥∞ = supr∈G ∥P (r)∥H , ∥Q∥∞ = supt∈G ∥Q(t)∥H < ∞
such that ψ(rt−1) =

〈
P (r), Q(t)

〉
H

for any r, t ∈ G. The sequences (P (si))i≥0 and
(Q(sj))j≥0 are bounded in H and thus admit weak* convergent subsequences (P (sik))

and (Q(sjl)) to some elements h1 and h2 of H. Thus, for any l, we have

lim
k→+∞

ψ
(
sik−jl

)
= lim
k→+∞

〈
P (sik), Q(sjl)

〉
=
〈
h1, Q(sjl)

〉
,

which implies

lim
l→+∞

lim
k→+∞

ψ(sik−jl) = lim
l→+∞

〈
h1, Q(sjl)

〉
= ⟨h1, h2⟩.

We obtain similarly that limk→+∞ liml→+∞ ψ(sik−jl) = ⟨h1, h2⟩.
But by ∥φ− ψ∥∞ ≤ ε, we deduce that∣∣∣∣ lim

k→+∞
φ
(
sik−jl

)
− lim
k→+∞

ψ
(
sik−jl

)∣∣∣∣ ≤ ε and thus
∣∣∣∣ lim
n→+∞

φ(sn)− lim
l→+∞

lim
k→+∞

ψ
(
sik−jl

)∣∣∣∣ ≤ ε.
Similarly, we have ∣∣∣∣ lim

n→+∞
φ(s−n)− lim

k→+∞
lim

l→+∞
ψ
(
sik−jl

)∣∣∣∣ ≤ ε.
Hence the limit limn→+∞ φ(sn) is 2ε-close to limn→+∞ φ(s−n). We deduce 2. by
letting ε→ 0.

Theorem 7.26. – Let G be a second countable amenable locally compact group
and H be a normal open (and then also closed) subgroup of G (so G/H is
discrete). Let π : G → G/H be the canonical map and φ : G/H → C be a con-
tinuous bounded complex function. Suppose 1 < p < ∞. If the complex func-
tion φ ◦ π : G → C induces a CB-strongly non decomposable Fourier multiplier
Mφ◦π : Lp(VN(G)) → Lp(VN(G)) then φ induces a CB-strongly non decomposable
Fourier multiplier Mφ : Lp(VN(G/H))→ Lp(VN(G/H)).

Proof. – Note that the Fourier multiplier Mφ is completely bounded by The-

orem 6.14. Suppose that Mφ belongs to Dec(Lp(VN(G/H)))
CB(Lp(VN(G/H)))

.
Let ε > 0. Then, by Proposition 3.12, there exist some completely positive
maps R1, R2, R3, R4 : Lp(VN(G/H)) → Lp(VN(G/H)) and a completely bounded
map R : Lp(VN(G/H)) → Lp(VN(G/H)) of completely bounded norm less than ε

such that Mφ = R1 −R2 + i(R3 −R4) +R.
Corollary 4.7 yields the existence of some complex functions φ1, φ2, φ3, φ4 and ψ

such that Mφ = Mφ1
−Mφ2

+ i(Mφ3
−Mφ4

) +Mψ such that the Fourier multipliers
Mφk are completely positive on Lp(VN(G/H)) andMψ is again of completely bounded
norm less than ε. Since G/H is discrete, the functions ψ,φ1, φ2, φ3, φ4 are continuous.
Then by Theorem 6.14 it follows thatMφk◦π : Lp(VN(G))→ Lp(VN(G)) is completely
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positive and the Fourier multiplier Mψ◦π : Lp(VN(G)) → Lp(VN(G)) is completely
bounded of completely bounded norm less than ε. Since

Mφ◦π = Mφ1◦π −Mφ2◦π + i
(
Mφ3◦π −Mφ4◦π

)
+Mψ◦π

it follows that Mφ◦π is ε-close to Dec(Lp(VN(G))) in the Banach space CB(Lp(VN(G))),

so that letting ε → 0 yields that Mφ◦π ∈ Dec(Lp(VN(G)))
CB(Lp(VN(G)))

. This is the
desired contradiction.

Riesz transforms. – An affine representation (H, α, b) of a discrete group G is an
orthogonal representation α : G → O(H) over a real Hilbert space H together with
a mapping b : G → H satisfying the cocycle condition b(st) = αs(b(t)) + b(s) for
any s, t ∈ G, see [138, Definition 10.6] and [19]. In this situation, by [138, Theo-
rem 10.10] the function s 7→ ∥b(s)∥2H is conditionally of negative type, vanishes at the
identity e and is symmetric. We also refer to [12] for related information. By [110,
page 532], for any normalized vector h ∈ H, we can consider the Riesz transform
Rh = Mϕ whose symbol ϕ : G→ R is defined by

(7.5.1) ϕ(s)
def
=


⟨b(s), h⟩H
∥b(s)∥H

if b(s) ̸= 0

0 if b(s) = 0.

We will use the subgroup G0
def
= {s ∈ G : b(s) = 0} of G.

Lemma 7.27. – Let G be a discrete group equipped with an affine representation
(H, α, b). Suppose 1 < p <∞. The symbol ϕ from (7.5.1) induces a completely bounded
operator Rh = Mϕ : Lp(VN(G))→ Lp(VN(G)).

Proof. – It is essentially shown in [110] that Rh is completely bounded on the sub-
space Lp0(VN(G))

def
= Ran(IdLp(VN(G)) −M1G0

) of Lp(VN(G)). Indeed, consider some
orthonormal basis (ej) of H with e1 = h and some independent Rademacher vari-
ables ε1, ε2, . . . on some probability space Ω0. For any x ∈ Spm(Lp0(VN(G))), using the
inequalities [110, Theorem A1 and Remark 1.8] for p ∈ [2,∞), we have∥∥(IdSpm ⊗Rh)(x)∥∥Spm(Lp(VN(G)))

≤

∥∥∥∥∥∑
i

εi ⊗ (IdSpm ⊗Rei)(x)

∥∥∥∥∥
Lp(Ω0,S

p
m(Lp(VN(G))))

≈
∥∥((IdSpm ⊗Rei)x)∥∥RCp(S

p
m(Lp(VN(G))))

≲ ∥x∥Spm(Lp(VN(G))) .

Thus Rh is completely bounded on Lp0(VN(G)) for p ∈ [2,∞).
Since G is discrete, the indicator function 1G0 is continuous. Let G/G0 denote

the discrete space of left cosets of G0 and consider the quasi-left regular represen-
tation πG0

: G → B
(
ℓ2G/G0

)
given by πG0

(s)δtG0
= δstG0

. For any s ∈ G, we can
write 1G0

(s) = ⟨πG0
(s)δG0

, δG0
⟩. Consequently the indicator function 1G0

is a contin-
uous positive definite function. According to Proposition 6.11, this function induces
a completely positive Fourier multiplier on Lp(VN(G)).
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We deduce that IdLp(VN(G))−M1G0
is completely bounded on Lp(VN(G)). If s ∈ G

satisfies ϕ(s) ̸= 0, then s does not belong to G0, so ϕ = ϕ · (1 − 1G0). Hence we can
write

Rh = Rh
(
IdLp(VN(G)) −M1NG0

)
= Mϕ·(1−1G0

).

We conclude that Rh is completely bounded on Lp(VN(G)) for p ∈ [2,∞), and by
duality and selfadjointness (note that ϕ is real-valued) also for p ∈ (1, 2].

Let H be a real Hilbert space and fix some non-zero vectors h1, . . . , hn in H (or a
sequence if n =∞). We introduce the affine representation (H, α, b) of the free group
Fn defined by αs = IdH for all s ∈ G and

b
(
gj1i1 · · · g

jN
iN

) def
= j1hi1 + · · ·+ jNhiN , j1, . . . , jN ∈ Z,

where g1, . . . , gn stand for the generators of Fn.

Proposition 7.28. – Let G = Fn the free group on n generators. Suppose 1 < p <∞.
The previous Riesz transform Rh, associated with a family (hi) where h = h1

is normalized, is a CB-strongly non decomposable selfadjoint Fourier multiplier
on Lp(VN(Fn)).

Proof. – We have shown in Lemma 7.27 thatRh is completely bounded on Lp(VN(Fn)).
On the other hand, for any m ∈ Z\{0}, we have

ϕ(gm1 ) =
⟨b(gm1 ), h1⟩H
∥b(gm1 )∥H

=
⟨mh1, h1⟩H
∥mh1∥H

= sign(m)
⟨h1, h1⟩H
∥h1∥H

= sign(m) ∥h1∥H .

So we have limm→+∞ ϕ(gm1 ) = ∥h1∥H ̸= −∥h1∥H = limm→+∞ ϕ(g−m1 ). Using Propo-
sition 7.25 (since G = F∞ is discrete and that VN(F∞) is QWEP), we conclude
that Rh is CB-strongly non decomposable.

Free Hilbert transform. – A different class of linear operators which are CB-strongly
non decomposable on Lp(VN(F∞)) is given in [132]. Namely, let G = F∞ be
the free group with a countable sequence of generators g1, g2, . . .. For n ∈ N, let
L±n : L2(VN(F∞))→ L2(VN(F∞)) be the orthogonal projection such that

L±n (λs) =

{
λs s starts with the letter g±1

n

0 otherwise.

Let further ε+n , ε−n ∈ {−1, 1} for any n ∈ N. Following [132], we define the free Hilbert
transform associated with ε = (ε±n ) as Hε =

∑
n∈N ε

+
nL

+
n + ε−nL

−
n . Clearly, since the

ranges of the L±n are mutually orthogonal, Hε is bounded on L2(VN(F∞)). The far
reaching generalization in [132, Section 4] is that Hε induces a completely bounded
map on Lp(VN(F∞)) for any 1 < p <∞.

Proposition 7.29. – Let 1 < p < ∞ and ε as previously. If ε is not identically
constant 1 or −1, then Hε is CB-strongly non decomposable on Lp(VN(F∞)).
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Proof. – Clearly, Hε = Mϕε is a Fourier multiplier with symbol ϕε(s) depending only
on the first letter of s. This implies that ϕε(sn) = ϕε(s) for n ∈ N. According to
Proposition 7.25, it suffices now to find some s ∈ F∞ such that ϕε(s) ̸= ϕε(s

−1).
Take n,m ∈ N and a, b ∈ {±} such that εan ̸= εbm, whose existence is guaranteed
by Hε ̸= ±IdLp(VN(F∞)). Take further s = gangkg

−b
m for some k ∈ N\{n,m}. Then

ϕε(s) = εan ̸= εbm = ϕε(s
−1).

7.6. CB-strongly non decomposable operators on approximately finite-dimen. algebras

We start with a transference result.

Proposition 7.30. – Let M be a von Neumann algebra and N be a sub-von Neumann
algebra equipped with a faithful normal semifinite trace such that the inclusion N ⊂M
is trace preserving. Suppose 1 < p < ∞. We denote by E : Lp(M) → Lp(N) the
canonical conditional expectation and J : Lp(N) → Lp(M) the canonical embedding
map. Then

1. The map
I : CB(Lp(N)) −→ CB(Lp(M))

T 7−→ JTE
is an isometry and the map

Q : CB(Lp(M)) −→ CB(Lp(N))

S 7−→ ESJ

is a contraction. Both maps preserve the complete positivity and satisfy the equal-
ity QI = IdCB(Lp(N)).

2. We have Q(Dec(Lp(M))) = Dec(Lp(N)) and I(Dec(Lp(N))) ⊂ Dec(Lp(M)).
Moreover, the previous maps induce an isometry I : Dec(Lp(N))→ Dec(Lp(M))

and a contraction Q : Dec(Lp(M))→ Dec(Lp(N)).

3. For any completely bounded operator T : Lp(N)→ Lp(N), we have

distCB(Lp(N))

(
T,Dec(Lp(N))

)
= distCB(Lp(M))

(
I(T ),Dec(Lp(M))

)
.

In particular, T is CB-strongly non decomposable if and only if I(T ) is
CB-strongly non decomposable.

Proof. – 1. Recall that EJ = IdLp(N). We have QI(T ) = Q(JTE) = EJTEJ = T .
Now, it is obvious that Q is a contraction and that I is an isometry. Since E and J

are completely positive, the maps Q and I preserve the complete positivity.
2. Let T : Lp(N) → Lp(N) be a decomposable operator. Since E and J are

contractively decomposable, we deduce by composition that I(T ) is decomposable.
Hence we have I(Dec(Lp(N))) ⊂ Dec(Lp(M)). Similarly, we have the inclusion
Q(Dec(Lp(M))) ⊂ Dec(Lp(N)). Moreover, we have

Dec(Lp(N)) = QI
(
Dec(Lp(N))

)
⊂ Q

(
Dec(Lp(M))

)
.
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We conclude that Q(Dec(Lp(M))) = Dec(Lp(N)). Other statements are obvious.
3. Let T : Lp(N)→ Lp(N) be a completely bounded operator. Using the isometric

map I and the inclusion I(Dec(Lp(N))) ⊂ Dec(Lp(M)) we see that

distCB(Lp(N))

(
T,Dec(Lp(N))

)
= distCB(Lp(M))

(
I(T ), I(Dec(Lp(N))

)
≥ distCB(Lp(M))

(
I(T ),Dec(Lp(M))

)
.

Now, consider a sequence (Tn) of decomposable operators acting on Lp(M) with

∥I(T )− Tn∥cb,Lp(M)→Lp(M) −−−−−→n→+∞
distCB(Lp(M))

(
I(T ),Dec(Lp(M))

)
.

By part 2, the operator Q(Tn) : Lp(N)→ Lp(N) is decomposable. Moreover, we have

distCB(Lp(N))(T,Dec(Lp(N))) ≤ ∥T −Q(Tn)∥cb,Lp(N)→Lp(N)

=
∥∥Q(I(T )− Tn)

∥∥
cb,Lp(N)→Lp(N)

≤ ∥I(T )− Tn∥cb,Lp(M)→Lp(M) .

Letting n go to infinity, we obtain that

distCB(Lp(N))

(
T,Dec(Lp(N))

)
≤ distCB(Lp(M))

(
I(T ),Dec(Lp(M))

)
.

We will use the following elementary lemma.

Lemma 7.31. – Suppose 1 < p <∞. For any matrix A ∈ Mn, we have

∥MA∥S∞n →S∞n ≤ n
1
p ∥MA∥Spn→Spn .

Proof. – Let B ∈ S∞n . We denote by s1(B), . . . , sn(B) the singular values of B. We
have

∥B∥Spn =

(
n∑
i=1

si(B)p

) 1
p

≤
(
n · sup

1≤i≤n
si(B)p

) 1
p

= n
1
p · sup

1≤i≤n
si(B) = n

1
p · ∥B∥S∞n .

We deduce that

∥MA(B)∥S∞n ≤ ∥MA(B)∥Spn ≤ ∥MA∥Spn→Spn ∥B∥Spn ≤ n
1
p ∥MA∥Spn→Spn ∥B∥S∞n .

Proposition 7.32. – Let R be the hyperfinite factor of type II1 with separable predual
equipped with a normal finite faithful trace. Let 1 < p <∞. There exists a CB-strongly
non decomposable operator T : Lp(R)→ Lp(R).

Proof. – Let G be the discrete group of permutations of the integers that leave fixed
all but a finite set of integers (the set may vary with the permutation). By [114,
page 902], the von Neumann algebra VN(G) is ∗-isomorphic to the hyperfinite fac-
tor R of type II1. Moreover, by [114, page 902], the group G is locally finite. By
[153, Theorem 14.3.7], it has an infinite abelian subgroup. Now, it suffices to use
Corollary 7.24.
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We introduce the sub-von Neumann algebraK∞ = ⊕n≥1Mn of B(ℓ2⊗2ℓ
2) equipped

with its canonical trace and its noncommutative Lp-space Kp = ⊕pn≥1S
p
n. We denote

by J : K∞ → B(ℓ2 ⊗2 ℓ
2) the canonical inclusion and E : B(ℓ2 ⊗2 ℓ

2) → K∞ the
canonical trace preserving faithful normal conditional expectation.

Proposition 7.33. – Let 1 < p <∞, p ̸= 2. There exists a CB-strongly non decom-
posable operator T : Kp → Kp.

Proof. – If n = 2m, by [62, page 53], there exists a positive constant C and matrices
Dn ∈ Mn such that Cn

1
2 ≤ ∥MDn∥S∞n →S∞n and ∥MDn∥Spn→Spn ≤ n|

1
2−

1
p | for n large

enough. Since the argument of [62] of the latter inequality is based on interpolation
and duality, we have the better estimate

∥MDn∥cb,Spn→Spn ≤ n
| 12− 1

p |.

Still working with n = 2m, we consider the matrix

An =
1

n|
1
2−

1
p |
Dn.

By Proposition 3.4, we can suppose p > 2. For n large enough, we have

∥MAn∥S∞n →S∞n =

∥∥∥∥ 1

n|
1
2−

1
p |
MDn

∥∥∥∥
S∞n →S∞n

=
1

n|
1
2−

1
p |
∥MDn∥S∞n →S∞n ≥ cn

1
2

1

n|
1
2−

1
p |

= cn
1
p .

Moreover, we have the estimate

∥MAn∥cb,Spn→Spn =

∥∥∥∥ 1

n|
1
2−

1
p |
MDn

∥∥∥∥
cb,Spn→Spn

≤ 1.

Now, we introduce the well-defined completely bounded linear operator

Φ: Kp −→ Kp

(Bn) 7−→ (0,MA2(B2), 0,MA4(B4), 0, 0, 0,MA8(B8), 0, . . .)

Using the map I of Proposition 7.30, we note that the map

I(Φ) = JΦE : Sp(ℓ2 ⊗2 ℓ
2)→ Sp(ℓ2 ⊗2 ℓ

2)

is a completely bounded Schur multiplier MA on Sp(ℓ2 ⊗2 ℓ
2). Now, we will use the

following lemma.

Lemma 7.34. – There exists ε > 0 small enough such that if a completely bounded
Schur multiplier MB : Sp(ℓ2 ⊗2 ℓ

2)→ Sp(ℓ2 ⊗2 ℓ
2) satisfies

∥MB −MA∥cb,Sp(ℓ2⊗2ℓ2)→Sp(ℓ2⊗2ℓ2)
≤ ε

then MB is not decomposable.
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Proof. – If n = 2m, let Bn the n× n-submatrix of the matrix B occupying the same
place as An in A. The triangular inequality and Lemma 7.31 give

∥MBn∥S∞n →S∞n ≥ ∥MAn∥S∞n →S∞n − ∥MBn −MAn∥S∞n →S∞n
≥ ∥MAn∥S∞n →S∞n − n

1
p ∥MBn −MAn∥Spn→Spn

≥ ∥MAn∥S∞n →S∞n − n
1
p ∥MBn −MAn∥cb,Spn→Spn .

We take 0 < ε < c. Suppose ∥MB −MA∥cb,Sp(ℓ2⊗2ℓ2)→Sp(ℓ2⊗2ℓ2)
≤ ε. In particular,

for any integer n, we have ∥MBn −MAn∥cb,Spn→Spn ≤ ε. If n is large enough we obtain

∥MBn∥S∞n →S∞n ≥ cn
1
p − εn

1
p = (c− ε)n

1
p −−−−−→

n→+∞
+∞.

Hence the matrix B does not induces a bounded Schur multiplier MB on B(ℓ2⊗2 ℓ
2).

By Theorem 4.11, we conclude that MB is not decomposable.

Now, suppose that there exists a decomposable operator T : Sp(ℓ2 ⊗2 ℓ
2)→ Sp(ℓ2 ⊗2 ℓ

2)
such that ∥T −MA∥cb,Sp(ℓ2⊗2ℓ2)→Sp(ℓ2⊗2ℓ2)

≤ ε. We can write

T = T1 − T2 + i(T3 − T4),

where each Tj is a completely positive map acting on Sp(ℓ2 ⊗2 ℓ
2). Using the pro-

jection P of Theorem 4.2, we obtain P (T ) = P (T1) − P (T2) + i(P (T3) − P (T4)).
Since each P (Tj) is completely positive, we conclude that the Schur multiplier
P (T ) : Sp(ℓ2 ⊗2 ℓ

2)→ Sp(ℓ2 ⊗2 ℓ
2) is decomposable. Note also that

∥P (T )−MA∥cb,Sp(ℓ2⊗2ℓ2)→Sp(ℓ2⊗2ℓ2)
= ∥P (T −MA)∥cb,Sp(ℓ2⊗2ℓ2)→Sp(ℓ2⊗2ℓ2)

≤ ∥T −MA∥cb,Sp(ℓ2⊗2ℓ2)→Sp(ℓ2⊗2ℓ2)
≤ ε.

This is impossible by Lemma 7.34. Hence the map MA = I(Φ) is CB-strongly non
decomposable. By the point 3 of Proposition 7.30, we conclude that Φ is CB-strongly
non decomposable.

Theorem 7.35. – Let M be an infinite-dimensional approximately finite-dimensional
von Neumann algebra equipped with a faithful normal semifinite trace. Let 1 < p <∞,
p ̸= 2. There exists a CB-strongly non decomposable operator T : Lp(M)→ Lp(M).

Proof. – By the classification given by [90, Theorem 5.1] (see also [149, Theorem 10.1]
and [168]), the operator space Lp(M) is completely isomorphic to precisely one of the
following thirteen operator spaces:

ℓp, Lp([0, 1]), Sp, Kp, Kp ⊕ Lp([0, 1]), Sp ⊕ Lp([0, 1]),

Lp([0, 1],Kp), Sp ⊕ Lp([0, 1],Kp), Lp([0, 1], Sp), Lp(R),

Sp ⊕ Lp(R), Lp([0, 1], Sp)⊕ Lp(R), Lp(R, Sp).

A careful examination of the proofs of [90, pages 59-60] and [168, pages 143-145] shows
that we can replace “completely isomorphic” by “completely order and completely
isomorphic”.
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By [5, Examples 3.4 and 3.9], the Hilbert transforms ℓpZ → ℓpZ and Lp(T)→ Lp(T)

are strongly non regular. Since the Schatten space Sp is UMD, by Proposition 2.3,
these operators are also completely bounded (use [23, Theorem 2.8] for the discrete
case). Using Proposition 7.30, Proposition 7.33, Proposition 7.32 and Corollary 7.22,
it is not difficult to conclude using a reasoning by cases.

Corollary 7.36. – Suppose 1 ≤ p < ∞, p ̸= 2. Let M be an infinite-dimensional
approximately finite-dimensional von Neumann algebra equipped with a faithful normal
semifinite trace. The following properties are equivalent

1. p = 1.
2. CB(Lp(M)) = Dec(Lp(M)).

3. CB(Lp(M)) = Dec(Lp(M))
CB(Lp(M))

.

Proof. – Implications 1. ⇒ 2. ⇒ 3. are obvious. Theorem 7.35 says that the contra-
position of 3. ⇒ 1. is true.

For the case p = ∞, the situation is well-known for every von Neumann algebra.
Indeed, by [85, page 171], if M is a von Neumann algebra then we have the equality
CB(M) = Dec(M) if and only if M is approximately finite-dimensional. Moreover,
Haagerup showed that the following properties are equivalent.

1. M is approximately finite-dimensional.
2. For every C*-algebra A and every completely bounded map T : A→M we have
∥T∥dec = ∥T∥cb.

3. For every integer n ≥ 1 and for every linear map T : ℓ∞n → M we have
∥T∥dec = ∥T∥cb.

4. There exists a positive constant C ≥ 1, such that for every integer n ≥ 1 and
every linear map T : ℓ∞n →M we have ∥T∥dec ≤ C ∥T∥cb.

Now, we show that these equivalences do not admit extensions to the case 1 < p <∞.
It suffices to use the following proposition and the completely positive and completely
isometric inclusion ℓpn ⊂ ℓp.

Proposition 7.37. – Suppose 1 < p < ∞. There exists an integer n large
enough and a (completely bounded) linear map T : ℓpn → ℓpn such that we have
∥T∥cb,ℓpn→ℓpn < ∥T∥dec,ℓpn→ℓpn . More precisely, there does not exist a positive constant
C ≥ 1 satisfying for every integer n ≥ 1 and every linear map T : ℓpn → ℓpn the
inequality ∥T∥dec,ℓpn→ℓpn ≤ C ∥T∥cb,ℓpn→ℓpn .

Proof. – By Theorem 7.14, there exists a strongly non regular Fourier multiplier
Mφ : Lp(T)→ Lp(T) which is completely bounded. We can suppose ∥Mφ∥cb ≤ 1. Now,
we approximateMφ using the method of the proof [7, Proposition 3.8] (and [9, proof of
Theorem 3.5]). We deduce the existence of Fourier multipliers Can on Lp(Z/nZ) = ℓpn
with ∥Can∥cb ≤ 1 and arbitrary large ∥Can∥reg when n goes to the infinity. We can
apply this method since ∥T∥dec = ∥T∥reg = supX ∥T ⊗ IdX∥Lp(Ω,X)→Lp(Ω,X).
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CHAPTER 8

PROPERTY (P) AND DECOMPOSABLE FOURIER MULTIPLIERS

In this chapter, we give a proof of Proposition 8.2 which is our characterization of
selfadjoint contractively decomposable Fourier multipliers. Section 8.3 describes new
Fourier multipliers which satisfy the noncommutative Matsaev inequality, relying on
Theorem 8.5 which gives the new result of factorizability.

8.1. A characterization of selfadjoint contractively decomposable multipliers

Let M be a von Neumann algebra equipped with a normal semifinite faithful
trace and T : M → M be a weak* continuous operator. Recall the following def-
inition from [118, Definition 3]. We say that T satisfies (P) if there exist linear
maps v1, v2 : M →M such that the linear map

[
v1 T
T◦ v2

]
: M2(M) → M2(M) is com-

pletely positive, completely contractive, weak* continuous and selfadjoint (77). In this
case, v1 and v2 are completely positive, weak* continuous and selfadjoint. An opera-
tor T satisfying (P) is necessarily contractively decomposable, weak* continuous and
selfadjoint. The converse statement is false by [118, Example 2] in general.

We start to show that the converse is true for Fourier multipliers on discrete groups.
If Mϕ : VN(G, σ)→ VN(G, σ) is a bounded Fourier multiplier on a discrete group G

equipped with a T-valued 2-cocycle σ, it is not difficult to check that (Mϕ)
◦ = Mˇ

ϕ
and

that Mϕ is selfadjoint in the sense of Section 2.6 if and only if its symbol ϕ : G→ C
is a real-valued function. Finally, it is straightforward to prove that the preadjoint
(Mϕ)∗ : L1(VN(G, σ))→ L1(VN(G, σ)) of Mϕ identifies to Mϕ̌.

Lemma 8.1. – Let G be a discrete group equipped with a T-valued 2-cocycle σ. Suppose
that ψ1, ψ2, ψ3, ψ4 : G→ C are some complex-valued functions inducing some bounded
Fourier multipliers Mψ1

,Mψ2
,Mψ3

and Mψ4
on the von Neumann algebra VN(G, σ).

If the operator

T =

[
Mψ1

Mψ2

Mψ3
Mψ4

]
: M2(VN(G, σ))→ M2(VN(G, σ))

77. The assumption selfadjoint is equivalent to the selfadjointness of v1, v2 and T .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2023



162 CHAPTER 8. PROPERTY (P) AND DECOMPOSABLE FOURIER MULTIPLIERS

is completely contractive then it induces a completely contractive operator T1 on the
space S1

2(L1(VN(G, σ))).
Finally the Banach adjoint (T1)

∗ : M2(VN(G, σ)) → M2(VN(G, σ)) identifies
to
[
Mψ̌1

Mψ̌2

Mψ̌3
Mψ̌4

]
.

Proof. – According to Theorem 4.2, we have

∥T∥cb,M2(VN(G,σ))→M2(VN(G,σ)) = ∥T∥cb,M2(VN(G))→M2(VN(G))

and similarly, ∥T∥cb,S1
2(L1(VN(G,σ)))→S1

2(L1(VN(G,σ))) = ∥T∥cb,S1
2(L1(VN(G)))→S1

2((VN(G)))

provided that one of these terms is finite. So if we prove the first statement of
the lemma for the trivial cocycle σ = 1, then it follows for a general T-valued
2-cocycle σ. We thus suppose now that σ = 1 is trivial. Consider the ∗-anti-
automorphism κ : VN(G) → VN(G), λs 7→ λs−1 . An easy computation gives
(IdM2

⊗ κ)
[
Mψ1

Mψ2

Mψ3
Mψ4

]
(IdM2

⊗ κ) =
[
Mψ̌1

Mψ̌2

Mψ̌3
Mψ̌4

]
where ψ̌i(s) = ψi(s

−1). Since
the map κ : VN(G) → VN(G)op is a complete isometry, we conclude that the
linear map

[
Mψ̌1

Mψ̌2

Mψ̌3
Mψ̌4

]
: M2(VN(G)) → M2(VN(G)) is completely contractive.

Moreover, by Lemma 6.4, each symbol ψi induces a bounded Fourier multiplier
Mψi : L1(VN(G))→ L1(VN(G)). Consequently,

[
Mψ1

Mψ2

Mψ3
Mψ4

]
induces a bounded oper-

ator on S1
2(L1(VN(G))). Furthermore, by Proposition 3.3 and Lemma 6.4, we see that

the Banach adjoint of the operator
[
Mψ1

Mψ2

Mψ3
Mψ4

]
: S1

2(L1(VN(G))) → S1
2(L1(VN(G)))

identifies to the complete contraction[
(Mψ1)

∗ (Mψ2)
∗

(Mψ3
)∗ (Mψ4

)∗

]
=

[
Mψ̌1

Mψ̌2

Mψ̌3
Mψ̌4

]
: M2(VN(G))→ M2(VN(G)).

We conclude that the operator
[
Mψ1

Mψ2

Mψ3
Mψ4

]
: S1

2(L1(VN(G))) → S1
2(L1(VN(G))) is

completely contractive. Finally, the last statement of the lemma for a general T-valued
2-cocycle σ follows from

τG,σ ((Mψ)∗(λσ,s)λσ,t) = τG,σ (λσ,sMψ(λσ,t)) = ψ(t)τG,σ (λσ,sλσ,t)

= ψ(t)σ(s, t)δs,t−1 = ψ(s−1)σ(s, s−1)δs,t−1

and
τG,σ

(
Mψ̌(λσ,s)λσ,t

)
= ψ̌(s)τG,σ (λσ,sλσ,t) = ψ(s−1)σ(s, s−1)δs,t−1 .

Proposition 8.2. – Let G be a discrete group equipped with a T-valued 2-cocycle σ.
Let ϕ : G→ C be a complex-valued function. The following assertions are equivalent.

1. The complex function ϕ induces a selfadjoint contractively decomposable Fourier
multiplier Mϕ : VN(G, σ)→ VN(G, σ) on the twisted group von Neumann alge-
bra VN(G, σ).

2. The function ϕ induces a Fourier multiplier Mϕ : VN(G, σ) → VN(G, σ)

with (P).
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3. There exist some real-valued functions φ1, φ2 : G→ R such that[
Mφ1

Mϕ

M◦
ϕ Mφ2

]
: M2(VN(G, σ))→ M2(VN(G, σ))

is unital, completely positive, weak* continuous and selfadjoint.

Proof. – The statements 3. ⇒ 2. and 2. ⇒ 1. are obvious. Now, we show the
last implication 1. ⇒ 3. The multiplier Mϕ is selfadjoint thus we have ϕ = ϕ

and finally (Mϕ)
◦ = Mˇ

ϕ
= Mϕ̌. Since the operator Mϕ is contractively de-

composable there exist linear maps v1, v2 : VN(G, σ) → VN(G, σ) such that the
map

[
v1 Mϕ

Mϕ̌ v2

]
: M2(VN(G, σ)) → M2(VN(G, σ)) is completely positive and com-

pletely contractive. By using the same reasoning as the one in the proof of Proposi-
tion 3.4, we can suppose that this map is in addition weak* continuous. Since G is
discrete, we can use the projection P∞{1,2},G,σ : CBw∗(M2(VN(G, σ)))→M∞,cb

{1,2}(G, σ)

from Theorem 4.2. We obtain that

P∞{1,2},G,σ

([
v1 Mϕ

Mϕ̌ v2

])
=

[
P∞G (v1) P∞G (Mϕ)

P∞G (Mϕ̌) P∞G (v2)

]
=

[
P∞G (v1) Mϕ

Mϕ̌ P∞G (v2)

]
.

We deduce that there exist some complex functions ψ1, ψ2 : G → C such that the
map T

def
=
[
Mψ1

Mϕ

Mϕ̌ Mψ2

]
: M2(VN(G, σ))→ M2(VN(G, σ)) is completely positive, com-

pletely contractive and weak* continuous.
By Lemma 8.1, the operator T induces a completely positive and com-

pletely contractive operator T1 : S1
2(L1(VN(G, σ))) → S1

2(L1(VN(G, σ))). The
operator (T1)

∗ : M2(VN(G, σ)) → M2(VN(G, σ)) is also completely contrac-
tive and completely positive by Lemma 2.9. Again by Lemma 8.1, we have
(T1)

∗ =
[
Mψ̌1

Mϕ̌

Mϕ Mψ̌2

]
=
[
Mψ1

Mϕ̌

Mϕ Mψ2

]
, where we used [19, Proposition C.4.2] and

the fact that ψ1 and ψ1 are definite positive since Mψ1
: VN(G, σ) → VN(G, σ) and

Mψ2
: VN(G, σ)→ VN(G, σ) are completely positive.

Consider the transpose map (78) η : M2 → Mop
2 , A 7→ tA, which is an algebra

isomorphism, hence a complete isometry and a completely positive map (see also
Lemma 2.8). An easy computation gives

(η ⊗ IdVN(G,σ))

[
Mψ1

Mϕ̌

Mϕ Mψ2

]
(η ⊗ IdVN(G,σ)) =

[
Mψ1

Mϕ

Mϕ̌ Mψ2

]
.

We conclude that the linear mapR def
=
[
Mψ1

Mϕ

Mϕ̌ Mψ2

]
: M2(VN(G, σ))→ M2(VN(G, σ)) is

completely contractive and completely positive.
Now, 1

2 (T + R) : M2(VN(G, σ)) → M2(VN(G, σ)) is a matrix block multiplier[
Mψ3

Mϕ

Mϕ̌ Mψ4

]
which is completely positive, completely contractive and selfadjoint with

78. Here Mop
2 identifies to the algebra M2 with the multiplication reversed.
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Mϕ in the corner. Note that Mψ3 and Mψ4 are completely positive. So ψ3(e) =

Mψ3
(1) = ∥Mψ3

∥ ≤ 1 and similarly for ψ4. Hence the linear maps

w1 = Mψ3
+ τG,σ(·)(1− ψ3(e))1VN(G,σ) and w2 = Mψ4

+ τG,σ(·)(1− ψ4(e))1VN(G,σ)

are completely positive, selfadjoint and weak* continuous. We have

w1(λσ,s) =
(
Mψ3 + τG,σ(·)(1− ψ3(e))1VN(σ,σ)

)
(λσ,s)

= Mψ3(λσ,s) + τG,σ(λσ,s)(1− ψ3(e))1VN(G,σ)

= ψ3(s)λσ,s + δs,e(1− ψ3(e))1VN(G,σ) = λσ,s

{
ψ3(s) if s ̸= e

1 if s = e

and similarly for w2. We deduce that these maps are selfadjoint unital Fourier multipli-
ers Mφ1

and Mφ2
. Now, the map Φ =

[
Mφ1

Mϕ

M◦
ϕ Mφ2

]
: M2(VN(G, σ)) → M2(VN(G, σ))

is obviously unital, selfadjoint and weak* continuous. Moreover

Φ =

[
Mφ1

Mϕ

M◦
ϕ Mφ2

]

=

[
Mψ3

Mϕ

M◦
ϕ Mψ4

]
+

[
τG,σ(·)(1− ψ3(e))1VN(G,σ) 0

0 τG,σ(·)(1− ψ4(e))1VN(G,σ)

]
.

It is easy to conclude that Φ is completely positive.

Remark 8.3. – Let G be an amenable discrete group. By [51, Corollary 1.8], a
contractive Fourier multiplier Mφ : VN(G) → VN(G) is completely contractive and
finally contractively decomposable by [85, Theorem 2.1] since VN(G) is approximately
finite-dimensional.

8.2. Factorizability of some matrix block multipliers

Second quantization. – We denote by Sym(n) the symmetric group of order n. If σ is
a permutation of Sym(n) we denote by |σ| the number

card
{
(i, j) : 1 ≤ i < j ≤ n, σ(i) > σ(j)

}
of inversions of σ.

Let H be a complex Hilbert space. The antisymmetric (or fermionic) Fock space
over H is F−1(H) = CΩ⊕ (

⊕
n≥1H⊗n), where Ω is a unit vector called the vacuum

and where the scalar product on H⊗n is given, after dividing out the null space, by

⟨h1 ⊗ . . .⊗ hn, k1 ⊗ · · · ⊗ kn⟩−1 =
∑

σ∈Sym(n)

(−1)|σ|⟨h1, kσ(1)⟩H · · · ⟨hn, kσ(n)⟩H.

The creation operator c(e) for e ∈ H is given by c(e) : F−1(H) → F−1(H),
h1 ⊗ . . . ⊗ hn 7→ e ⊗ h1 ⊗ . . . ⊗ hn. We have c(e)2 = 0. Moreover, they satisfy the
q-commutation relation

(8.2.1) c(f)∗c(e) + c(e)c(f)∗ = ⟨f, e⟩HIdF−1(H).
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We denote by ω(e) : F−1(H)→ F−1(H) the selfadjoint operator c(e)+ c(e)∗. If e ∈ H
has norm 1, then (8.2.1) says that the operator ω(e) satisfies

(8.2.2) ω(e)2 = IdF−1(H).

Let H be a real Hilbert space with complexification HC. We let H = HC. The fermion
von Neumann algebra Γ−1(H) is the von Neumann algebra generated by the opera-
tors ω(e) where e ∈ H. It is a finite von Neumann algebra with the trace τ defined
by τ(x) = ⟨Ω, xΩ⟩F−1(H) where x ∈ Γ−1(H).

Let H and K be real Hilbert spaces and T : H → K be a contraction with com-
plexification TC : H = HC → KC = K. We define the following linear map

F−1(T ) : F−1(H) −→ F−1(K)

h1 ⊗ . . .⊗ hn 7−→ TCh1 ⊗ . . .⊗ TChn.

Then there exists a unique map Γ−1(T ) : Γ−1(H) → Γ−1(K) such that for every
x ∈ Γ−1(H) we have (Γ−1(T )(x))Ω = F−1(T )(xΩ). This map is normal, unital, com-
pletely positive and trace preserving. If T : H → K is a surjective isometry, Γ−1(T ) is
a ∗-isomorphism from Γ−1(H) onto Γ−1(K).

Finally for any e, f ∈ H, we have the covariance formula

(8.2.3) τ
(
ω(e)ω(f)

)
= ⟨e, f⟩H .

Kernels of positive type. – Let X be a topological space. A (real) kernel of positive
type on X [19, Definition C.1.1] is a continuous function Φ: X × X → C (into R)
such that, for any integer n ∈ N, any elements x1, . . . , xn ∈ X and any (real) complex
numbers c1, . . . , cn, the following inequality holds:

n∑
k,l=1

ckclΦ(xk, xl) ≥ 0.

In this case, we have Φ(x, y) = Φ(y, x) for any x, y ∈ X by [19, Proposition C.1.2]. If
Φ is such a kernel, by [21, page 82] and [19, Theorem C.1.4], then there exists a (real)
Hilbert space H and a continuous mapping e : X → H with the following properties:

1. Φ(x, y) =
〈
ex, ey

〉
H

for any x, y ∈ X,

2. the linear span of {ex : x ∈ X} is dense in H.

Factorizable maps. – Let M be a von Neumann equipped with a faithful normal
finite trace τM . A τM -Markov map T : M → M is called factorizable (79) [3], [88],
[108], [152] if there exists a von Neumann algebra N equipped with a faithful normal
finite trace τN , and ∗-monomorphisms J0 : M → N and J1 : M → N such that J0 is
(τM , τN )-Markov and J1 is (τM , τN )-Markov, satisfying moreover T = J∗0 ◦J1. We say
that T : M →M is QWEP-factorizable [8] if N has additionally QWEP.

79. The definition given here is slightly different but equivalent by [88, Remark 1.4 (a)].
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Twisted crossed products. – In order to prove our results we need the notion of
crossed product. Let H be a Hilbert space and M be a sub-von Neumann algbra
of B(H). We consider a discrete group G equipped with a T-valued 2-cocycle σ. Let
α : G→ Aut(M) be a representation of G on M . The twisted crossed product von
Neumann algebra M ⋊σ,α G [170, Definition 2.1] (see also [181] for a unitary trans-
form of this definition) is generated by the operators πσ(x) and λσ,s acting on ℓ2G(H)

where x ∈M and s ∈ G, defined by

(πσ(x)ξ)(s) = αs−1(x)ξ(s), x ∈M, ξ ∈ ℓ2G(H), s ∈ G
(λσ,sξ)(t) = σ(t−1, s)ξ(s−1t), ξ ∈ ℓ2G(H), s, t ∈ G.

We have the following relations of commutation [170, Proposition 2.2]:
(8.2.4)

πσ
(
αs(x)

)
λσ,s = λσ,sπσ(x), and λσ,sλσ,t = σ(s, t)λσ,st x ∈M, s, t ∈ G.

We can identify M and VN(G, σ) as subalgebras of M ⋊σ,α G.
Suppose that τ is a G-invariant normal semi-finite faithful trace on M . If E is the

normal conditional expectation from M ⋊σ,α G onto M then τ⋊
def
= τ ◦ E defines a

normal semifinite faithful trace on M ⋊σ,α G, see [181, Proposition 8.16]. For any
x ∈M and any s ∈ G, we have

(8.2.5) τ⋊
(
xλσ,s

)
= δs,eGτ(x).

Moreover, τ⋊ is finite if and only if τ is finite. Finally we will use the notation
M ⋊α G = M ⋊1,α G.

The following proposition generalizes a part of [51, Proposition 4.2]. It probably
admits a groupoid generalization (see also [14]).

Proposition 8.4. – Suppose that I is a finite set. Let G be a discrete group equipped
with a T-valued 2-cocycle σ. Let (φij)i,j∈I be a family of complex functions on G.
Let Ψ: MI(VN(G, σ)) → MI(VN(G, σ)) be a normal completely positive map such
that Ψ([λσ,sij ]) =

[
φij(sij)λσ,sij

]
for any family (sij)i,j∈I of elements of G. Then the

map Φ: I ×G× I ×G→ C, (i, s, j, s′) 7→ φij(s
−1s′) is a kernel of positive type, that

is: for any integer n ∈ N, any elements i1, . . . , in ∈ I, any s1, . . . , sn ∈ G and any
complex numbers c1, . . . , cn, the following inequality holds:

n∑
k,l=1

ckclφikil
(
s−1
k sl

)
≥ 0.

Proof. – Consider i1, . . . , in ∈ I and s1, . . . , sn ∈ G and some complex num-
bers c1, . . . , cn ∈ C. Let ξ be a unit vector of L2(VN(G, σ)). For any integer 1 ≤ k ≤ n,
we let ξk

def
= ckλ

−1
σ,sk

ξ. Then using (4.1.3) several times, we have
n∑

k,l=1

ckclφikil
(
s−1
k sl

)
=

n∑
k,l=1

φikil
(
s−1
k sl

)
ckcl⟨ξ, ξ⟩ =

n∑
k,l=1

φikil
(
s−1
k sl

)〈
ckξ, clξ

〉
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=

n∑
k,l=1

φikil
(
s−1
k sl

)〈
λσ,skξk, λσ,slξl

〉
=

n∑
k,l=1

φikil
(
s−1
k sl

)〈
ξk, (λσ,sk)

∗λσ,slξl
〉

=

n∑
k,l=1

φikil
(
s−1
k sl

)
σ(sk, s

−1
k )
〈
ξk, λσ,s−1

k
λσ,slξl

〉
=

n∑
k,l=1

φikil
(
s−1
k sl

)
σ(sk, s

−1
k )σ(s−1

k , sl)
〈
ξk, λσ,s−1

k sl
ξl
〉

=

n∑
k,l=1

σ(sk, s
−1
k )σ(s−1

k , sl)
〈
ξk,Mφikil

(
λσ,s−1

k sl

)
ξl
〉

=

n∑
k,l=1

σ(sk, s
−1
k )
〈
ξk,Mφikil

(
σ(s−1

k , sl)λσ,s−1
k sl

)
ξl
〉

=

n∑
k,l=1

σ(sk, s
−1
k )
〈
ξk,Mφikil

(
λσ,s−1

k
λσ,sl

)
ξl
〉

=

n∑
k,l=1

〈
ξk,Mφikil

(
(λσ,sk)

∗λσ,sl
)
ξl
〉
,

where the brackets denote scalar products in the Hilbert space L2(VN(G, σ)). Now,
we consider the vector η = (ηl,t)l∈[[1,n]],t∈I ∈ ℓ2n(ℓ

2
I(L

2(VN(G, σ)))), where each ηl,t
belongs to L2(VN(G, σ)), defined by

ηl,t = δt,ilξl.

We consider

IdMn ⊗Ψ =
[
Mφrt

]
k,l∈[[1,n]],r,t∈I : M[[1,n]]×I(VN(G, σ))→ M[[1,n]]×I(VN(G, σ))

and the matrix

C =
[
(λσ,sk)

∗λσ,sl
]
k,l∈[[1,n]],r,t∈I ∈ M[[1,n]]×I(VN(G, σ)).

Note that C is positive (a matrix [a∗i aj ]ij of Mn(A) is positive [137, page 34] and we
use [24, Lemma 1.3.6]) and that

(IdMn
⊗Ψ)(C) =

[
Mφrt

(
(λσ,sk)

∗λσ,sl
)]
k,l∈[[1,n]],r,t∈I

def
= [bk,l,r,t]k,l∈[[1,n]],r,t∈I .

We have

0 ≤
〈
η, (IdMn ⊗Ψ)(C)η

〉
ℓ2n(ℓ2I(ℓ

2
G))

=
〈
(ηk,r)k∈[[1,n]],r∈I , [bk,l,r,t]k,l∈[[1,n]],r,t∈I(ηl,t)l∈[[1,n]],t∈I

〉
ℓ2n(ℓ2I(L

2(VN(G,σ))))

=

〈
(ηk,r)k∈[[1,n]],r∈I ,

( n∑
l=1

∑
t∈I

bk,l,r,tηl,t

)
k∈[[1,n]],r∈I

〉
ℓ2n(ℓ2I(L

2(VN(G,σ))))

=

n∑
k,l=1

∑
r,t∈I

〈
ηk,r, bk,l,r,tηl,t

〉
=

n∑
k,l=1

∑
r,t∈I

〈
ηk,r,Mφrt

(
(λσ,sk)

∗λσ,sl
)
ηl,t
〉
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=

n∑
k,l=1

∑
r,t∈I

〈
δr,ikξk,Mφrt

(
(λσ,sk)

∗λσ,sl
)
δt,ilξl

〉
=

n∑
k,l=1

∑
r,t∈I

δr,ikδt,il
〈
ξk,Mφrt

(
(λσ,sk)

∗λσ,sl
)
ξl
〉

=

n∑
k,l=1

〈
ξk,Mφikil

(
(λσ,sk)

∗λσ,sl
)
ξl
〉
,

where the brackets denote scalar products in the Hilbert space L2(VN(G, σ)).

The following result generalizes the results of [152].

Theorem 8.5. – Let G be a discrete group equipped with a T-valued 2-cocycle σ

on G and I be a finite set. Let (φij)i,j∈I be a family of real-valued functions on G

such that φii(e) = 1 for any i ∈ I. If the (selfadjoint unital trace preserving (80))
map [Mφij ] : MI(VN(G, σ)) → MI(VN(G, σ)) is completely positive then [Mφij ] is
factorizable on a von Neumann algebra of the form MI

(
Γ−1(H) ⋊σ,α G

)
where α is

an action of G on the von Neumann algebra Γ−1(H) for some Hilbert space H.

Proof. – By Proposition 8.4, the map Φ: I×G×I×G→ R, (i, s, j, s′) 7→ φij(s
−1s′) is

a real kernel of positive type. Hence for any i, j ∈ I and any s, s′ ∈ G we have
φij(s

−1s′) = φji(s
′−1s) in particular

(8.2.6) φij(s) = φji(s
−1).

Moreover, there exists a real Hilbert space H and a map e : I ×G→ H, (i, s) 7→ ei,s
such that the linear span of {ei,s : i ∈ I, s ∈ G} is dense in H and such that for
any i, j ∈ I and any s, s′ ∈ G

Φ(i, s, j, s′) =
〈
ei,s, ej,s′

〉
H
, i.e., φij(s

−1s′) =
〈
ei,s, ej,s′

〉
H
.

In particular, we have
(8.2.7)

φij(s) =
〈
ei,e, ej,s

〉
H

and
∥∥ei,s∥∥2

H
=
〈
ei,s, ei,s

〉
H

= φii
(
s−1s

)
= φii(e) = 1.

Note that for any family of real numbers (ai,t)i∈I,t∈G with only finitely many non-zero
terms, we have∥∥∥∥∥ ∑

i∈I,t∈G
ai,tei,st

∥∥∥∥∥
2

H

=
∑
i,j∈I

∑
t,t′∈G

ai,taj,t′
〈
ei,st, ej,st′

〉
H

=
∑
i,j∈I

∑
t,t′∈G

ai,taj,t′φij(t
−1t′)

=
∑
i,j∈I

∑
t,t′∈G

ai,taj,t′
〈
ei,t, ej,t′

〉
H

=

∥∥∥∥∥ ∑
i∈I,t∈G

ai,tei,t

∥∥∥∥∥
2

H

.

Hence, we can define the following surjective isometric operator θs : H → H,
ei,t 7→ ei,st. Consequently, we obtain a group action θ of G on the Hilbert space H.

80. Hence (Tr ⊗τG,σ)-Markovian.
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In order to simplify the notations in the sequel of the proof, in the von Neumann
algebra Γ−1(H), we use the notation ωi,s instead of ω(ei,s). For any s ∈ G, we define
the trace preserving ∗-automorphism

α(s) = Γ−1(θs) :

{
Γ−1(H) −→ Γ−1(H)

ωi,t 7−→ ωi,st.

The group homomorphism α : G → Aut(Γ−1(H)) allows us to define the twisted
crossed product von Neumann algebra Γ−1(H) ⋊σ,α G. We identify Γ−1(H) and
VN(G, σ) as subalgebras of Γ−1(H) ⋊σ,α G. We can write the first relations of com-
mutation 8.2.4 as

(8.2.8) λσ,sωi,t = ωi,stλσ,s

We denote by τ the faithful finite normal trace on Γ−1(H). Recall that, for any
s ∈ G, the map α(s) is trace preserving. Thus, the trace τ is α-invariant. We equip
Γ−1(H)⋊σ,αG with the induced canonical finite trace τ⋊. Now, we introduce the von
Neumann algebra

(8.2.9) M = MI

(
Γ−1(H) ⋊σ,α G

)
.

equipped with its canonical trace Tr ⊗τ⋊ and we consider the element d =∑
i∈I eii ⊗ ωi,e of M . By 8.2.7 and (8.2.2), it is easy to see (81) that d2 = 1M .

We let J1 : MI(VN(G, σ))→M the canonical unital ∗-monomorphism and we define
the unital ∗-monomorphism

J0 : MI(VN(G, σ)) −→ M

ekl ⊗ λσ,t 7−→ d(ekl ⊗ λσ,t)d = ekl ⊗ ωk,eλσ,tωl,e.
It is not difficult to check that the maps J0 and J1 are trace preserving, hence marko-
vian. Now, for any i, j, k, l ∈ I and any s, t ∈ G we have

(Tr ⊗τ⋊)
(
J1(eij ⊗ λσ,s)J0(ekl ⊗ λσ,t)

)
= (Tr ⊗τ⋊)

(
(eij ⊗ λσ,s)(ekl ⊗ ωk,eλσ,tωl,e)

)
= (Tr ⊗τ⋊)

(
eijekl ⊗ λσ,sωk,eλσ,tωl,e

)
= Tr (eijekl)τ⋊(λσ,sωk,eλσ,tωl,e)

= δjkδil τ⋊(ωk,sλσ,sωl,tλσ,t) by (8.2.8)

= δjkδil τ⋊(ωk,sωl,stλσ,sλσ,t) by (8.2.8)

= δjkδilσ(s, t) τ⋊(ωk,sωl,stλσ,st) = δjkδilδe,stσ(s, t) τ(ωk,sωl,st) by (8.2.5)

= δjkδilδe,stσ(s, t)
〈
ek,s, el,st

〉
by (8.2.3)

= δjkδilδe,stσ(s, t)φkl(t) = δjkδilδs,t−1σ(s, t) φji(s
−1)

= δjkδilδs,t−1σ(s, t) φij(s) by (8.2.6)

= φij(s) Tr
(
eijekl

)
τG,σ

(
λσ,sλσ,t

)
= φij(s)(Tr ⊗τG,σ)

(
eijekl ⊗ λσ,sλσ,t

)
81. We have

d2 =
∑

i,j∈I

(eii ⊗ ωi,e)(ejj ⊗ ωj,e) =
∑
i∈I

(
eii ⊗ ω2

i,e

)
=
∑
i∈I

(
eii ⊗ 1Γ−1(H)⋊σ,αG

)
= 1M .
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= φij(s)(Tr ⊗τG,σ)
(
(eij ⊗ λσ,s)(ekl ⊗ λσ,t)

)
= (Tr ⊗τG,σ)

((
[Mφij ](eij ⊗ λσ,s)

)
(ekl ⊗ λσ,t)

)
.

Hence, for any x, y ∈ M2(VN(G, σ)), we deduce that

(Tr ⊗τG,σ)
((

[Mφij ](x)
)
y
)

= (Tr ⊗τ⋊)
(
J1(x)J0(y)

)
= (Tr ⊗τG,σ)

(
J∗0J1(x)y

)
.

We conclude that [Mφij ] = J∗0 ◦ J1, i.e., that the map [Mφij ] is factorizable.

8.3. Application to the noncommutative Matsaev inequality

In this chapter, we give an application of Theorem 8.5. Other applications will be
given in subsequent publications. If 1 ≤ p ≤ ∞ we denote by S : ℓp → ℓp the right
shift operator defined by S(a0, a1, a2, . . .)

def
= (0, a0, a1, a2, . . .). If 1 < p < ∞, p ̸= 2,

the validity of the following inequality

(8.3.1)
∥∥P (T )

∥∥
Lp(M)→Lp(M)

≤
∥∥P (S)

∥∥
cb,ℓp→ℓp

is open within the class of all contractions T : Lp(M)→ Lp(M) on a noncommutative
Lp-space Lp(M) and all complex polynomials P . We refer to the papers [9], [13] and
[140] for more information on this problem. The following result allows us to generalize
[9, Corollary 4.5 and Corollary 4.7].

Theorem 8.6. – Let G be a discrete group and σ be a T-valued 2-cocycle on G such
that for any real Hilbert space H, any action α from G onto Γ−1(H) the crossed prod-
uct Γ−1(H)⋊αG has QWEP. Let φ : G→ R be a real function which induces a (self-
adjoint) contractively decomposable Fourier multiplier Mφ : VN(G, σ) → VN(G, σ).
Suppose 1 ≤ p ≤ ∞. Then, the induced completely contractive Fourier multiplier
Mφ : Lp

(
VN(G, σ)

)
→ Lp

(
VN(G, σ)

)
satisfies the noncommutative Matsaev inequal-

ity (8.3.1). More precisely, for any complex polynomial P , we have∥∥P (Mφ)
∥∥

cb,Lp(VN(G,σ))→Lp(VN(G,σ))
≤
∥∥P (S)

∥∥
cb,ℓp→ℓp .

Proof. – Using (4.2.2), we can suppose that σ = 1. Using Proposition 8.2, we see that
there exist Fourier multipliers Mψ1 ,Mψ2 : VN(G)→ VN(G) such that the map[

Mψ1
Mφ

M◦
φ Mψ2

]
: M2(VN(G))→ M2(VN(G))

is unital, completely positive, selfadjoint and weak* continuous. Note that by
Lemma 8.1 and interpolation, the previous map induces a (completely contractive)
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well-defined map on Sp2 (Lp(VN(G))). For any complex polynomial P , we obtain∥∥P (Mφ)
∥∥

cb,Lp(VN(G))→Lp(VN(G))
≤

∣∣∣∣∣
∣∣∣∣∣
[
P (Mψ1

) P (Mφ)

P (M◦
φ) P (Mψ2

)

]∣∣∣∣∣
∣∣∣∣∣
cb,Sp2 (Lp(VN(G)))→Sp2 (Lp(VN(G)))

=

∣∣∣∣∣
∣∣∣∣∣P
([

Mψ1
Mφ

M◦
φ Mψ2

])∣∣∣∣∣
∣∣∣∣∣
cb,Sp2 (Lp(VN(G)))→Sp2 (Lp(VN(G)))

.

By Theorem 8.5, the operator
[
Mψ1

Mφ

M◦
φ Mψ2

]
: M2(VN(G))→ M2(VN(G)) is QWEP-fac-

torizable. Using [88, Theorem 4.4], we deduce that this operator is dilatable on a von
Neumann algebra and it is left to the reader to check that this von Neumann al-
gebra is QWEP. Finally, it is not difficult to deduce that the operator IdB(ℓ2) ⊗[
Mψ1

Mφ

M◦
φ Mψ2

]
: B(ℓ2)⊗M2(VN(G)) → B(ℓ2)⊗M2(VN(G)) is also dilatable on a QWEP

von Neumann algebra. We conclude by using [9, Corollary 2.6 and (1.5)] that∣∣∣∣∣
∣∣∣∣∣P
([

Mψ1
Mφ

M◦
φ Mψ2

])∣∣∣∣∣
∣∣∣∣∣
cb,Sp2 (Lp(VN(G)))→Sp2 (Lp(VN(G)))

=

∣∣∣∣∣
∣∣∣∣∣P
(

IdSp ⊗

[
Mψ1

Mφ

M◦
φ Mψ2

])∣∣∣∣∣
∣∣∣∣∣
Sp(Sp2 (Lp(VN(G))))→Sp(Sp2 (Lp(VN(G))))

≤
∥∥P (S)

∥∥
cb,ℓp→ℓp .

The proof is complete.
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We introduce a noncommutative analogue of the absolute value of a regular
operator acting on a noncommutative Lp-space. We equally prove that two
classical operator norms, the regular norm and the decomposable norm are
identical. We also describe precisely the regular norm of several classes of
regular multipliers. This includes Schur multipliers and Fourier multipliers
on some unimodular locally compact groups which can be approximated by
discrete groups in various senses. A main ingredient is to show the existence of
a bounded projection from the space of completely bounded Lp operators onto
the subspace of Schur or Fourier multipliers, preserving complete positivity.
On the other hand, we show the existence of bounded Fourier multipliers
which cannot be approximated by regular operators, on large classes of locally
compact groups, including all infinite abelian locally compact groups. We
finish by introducing a general procedure in order to prove positive results
on selfadjoint contractively decomposable Fourier multipliers, beyond the
amenable case.

On introduit un analogue non commutatif de la valeur absolue d’un
opérateur régulier agissant sur un espace Lp non commutatif. Nous prouvons
également que deux normes classiques d’opérateurs, la norme régulière et la
norme décomposable sont identiques. On décrit aussi précisément la norme
régulière de plusieurs classes de multiplicateurs réguliers. Cela inclut les
multiplicateurs de Schur et les multiplicateurs de Fourier sur certains groupes
localement compacts unimodulaires qui peuvent être approximés par des
groupes discrets dans des sens variés. Le principal ingrédient est l’existence
d’une projection bornée de l’espace des opérateurs complètement bornés sur
l’espace des multiplicateurs de Schur ou de Fourier, préservant la positivité
complète. Par ailleurs, on montre l’existence de multiplicateurs de Fourier
bornés qui ne peuvent être approximés par des opérateurs réguliers, sur
de larges classes de groupes localement compacts, incluant tous les groupes
localement compacts abéliens infinis. On termine en introduisant une procédure
générale pour prouver des résultats positifs sur les multiplicateurs de Fourier
contractivement décomposables autoadjoints, au-delà du cas moyennable.
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