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PROJECTIONS, MULTIPLIERS
AND DECOMPOSABLE MAPS
ON NONCOMMUTATIVE L*-SPACES

Cédric Arhancet, Christoph Kriegler

Abstract. — We introduce a noncommutative analogue of the absolute value of a
regular operator acting on a noncommutative LP-space. We equally prove that two
classical operator norms, the regular norm and the decomposable norm are identical.
We also describe precisely the regular norm of several classes of regular multipliers.
This includes Schur multipliers and Fourier multipliers on some unimodular locally
compact groups which can be approximated by discrete groups in various senses.
A main ingredient is to show the existence of a bounded projection from the space
of completely bounded LP operators onto the subspace of Schur or Fourier multi-
pliers, preserving complete positivity. On the other hand, we show the existence of
bounded Fourier multipliers which cannot be approximated by regular operators, on
large classes of locally compact groups, including all infinite abelian locally compact
groups. We finish by introducing a general procedure in order to prove positive results
on selfadjoint contractively decomposable Fourier multipliers, beyond the amenable
case.

Résumé (Projections, multiplicateurs et applications décomposables sur des LP-espaces
non commutatifs)

On introduit un analogue non commutatif de la valeur absolue d’un opérateur
régulier agissant sur un espace L? non commutatif. Nous prouvons également que
deux normes classiques d’opérateurs, la norme réguliére et la norme décomposable
sont identiques. On décrit aussi précisément la norme réguliére de plusieurs classes de
multiplicateurs réguliers. Cela inclut les multiplicateurs de Schur et les multiplicateurs
de Fourier sur certains groupes localement compacts unimodulaires qui peuvent é&tre
approximés par des groupes discrets dans des sens variés. Le principal ingrédient est
Pexistence d’une projection bornée de I’espace des opérateurs complétement bornés
sur ’espace des multiplicateurs de Schur ou de Fourier, préservant la positivité com-
pléte. Par ailleurs, on montre l'existence de multiplicateurs de Fourier bornés qui ne
peuvent étre approximés par des opérateurs réguliers, sur de larges classes de groupes
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localement compacts, incluant tous les groupes localement compacts abéliens infinis.
On termine en introduisant une procédure générale pour prouver des résultats po-
sitifs sur les multiplicateurs de Fourier contractivement décomposables autoadjoints,
au-dela du cas moyennable.
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CHAPTER 1

INTRODUCTION

The absolute value |T| and the regular norm || 7’|,
appear in the seminal work of Kantorovich [116] on operators on linear ordered spaces.
These constructions essentially rely on the structure of (Dedekind complete) Banach
lattices. These notions are of central importance in the theory of linear operators
between Banach lattices, including classical LP-spaces, since the absolute value is a
positive operator. Indeed it is well-known that positive contractions are well-behaved
operators. Actually, contractively regular operators on LP-spaces share in general the
same nice properties as contractions on Hilbert spaces. We refer to the books [1], [133]
and [156] and to the papers [147] and [142] for more information.

of a regular operator T already

Due to the lack of local unconditional structure, on a Schatten space and more gen-
erally on a noncommutative LP-space, the canonical order on the space of selfadjoint
elements does not induce a structure of a Banach lattice, see [57, Chapter 17| and
[148, page 1478]. Nevertheless, there exists a purely Banach space characterization of
regular operators on classical LP-spaces [101, Theorem 2.7.2] which says that a linear
operator T: LP(Q2) — LP(QY') is regular if and only if for any Banach space X the
map T ® Idx induces a bounded operator between the Bochner spaces L? (2, X) and
LP(Q, X). In this case, the regular norm is given by

def
(1.0.1) 1T eg,r(2)—Lr () = Sup 1T ® Idx [l (0, x)—Le (2, X) »

where the supremum runs over all Banach spaces X. Using this property, a nat-
ural extension of this notion for noncommutative LP-spaces is introduced in [143].
A linear map T': LP(M) — LP(N) between noncommutative LP-spaces, associated
with approximately finite-dimensional von Neumann algebras M and N, is called
regular if for any noncommutative Banach space E (that is, an operator space), the
map T'®Idg induces a bounded operator between the vector-valued noncommutative
LP-spaces LP(M, E) and LP(N, E). As in the commutative case, the regular norm is
defined by

def
(1.0.2) ||T||reg,LP(M)—>LP(N) = S%P IT® IdEHLP(M,E)—»LP(N,E)’
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2 CHAPTER 1. INTRODUCTION

where the supremum runs over all operator spaces E. For classical LP-spaces, this
norm coincides with (1.0.1). Nevertheless, the paper [143] does not give a definition of
the absolute value of a regular operator and the definition of the latter is only usable
for approximately finite-dimensional von Neumann algebras.

In this paper, we define a noncommutative analogue of the absolute value of a
regular operator acting on an arbitrary noncommutative LP-space for any 1 < p < oo.
For that, recall that a linear map T': LP(M) — LP(N) is decomposable [85, 112] if
there exist linear maps vy, vy: LP(M) — LP(N) such that the linear map

vi(e)  T(b)
T°(c) wa(d)

(103) o | T

V2

c d

 SE(LP(M)) — SE(LP(N)), l ”]H

is completely positive (a stronger condition than positivity of operators) where
T°(c) Lof T(c*)* and where SY(L?(M)) and S5(LP(N)) are vector-valued Schatten
spaces. In this case, v; and vy are completely positive and the decomposable norm

of T is defined by

def .
(1.0.4) 1T lgec, o (re)—ro(ny = inf { max{|fvs]l, [oa]l}},

where the infimum is taken over all maps v; and vy. See the books [29], [68] and [146]
for more information on this classical notion in the case p = co. If 1 < p < oo and
if M and N are approximately finite-dimensional, it is alluded in the introduction of
[112] that these maps coincide with the regular maps. First, we greatly strengthen this
statement by showing that the regular norm |7 ., 1 (M)—Lr(n) and the decompos-
able norm ||| 4. 1.0 (ar)— 10 () 2r€ identical for a regular map T' (see Theorem 3.24).
Hence, the decomposable norm is an extension of the regular norm for noncommu-
tative LP-spaces associated to arbitrary von Neumann algebras. Moreover, we prove
that if T: LP(2) — LP(Q) is a regular operator between classical LP-spaces then

the map [‘;:,‘ Igl} : SE(LP(Q)) — SE(LP(RY)) is completely positive (Theorem 3.27)
where |T|: LP(Q) — LP(Q’) denotes the absolute value of T'. In addition, we show that
the infimum (1.0.4) is actually a minimum (Proposition 3.5). Consequently, the map
(1.0.3) with some vy, v, which realize the infimum (1.0.4) can be seen as a natural
noncommutative analogue of the absolute value |T'| although we have no uniqueness
results for v; and vs.

The ingredients of the identification of the decomposable norm and the regular
norm involve a reduction of the problem on noncommutative LP-spaces to the case
of finite-dimensional Schatten spaces S? by approximation. Moreover, a 2x2-matrix
trick gives a second reduction to adjoint preserving maps between these spaces. Fi-
nally, the case of adjoint preserving maps acting on finite-dimensional Schatten spaces
is treated in Theorem 3.21. To conclude, note that the ideas of the manuscript [107]
(which seems definitely postponed) could be used to define a notion of regular op-
erator between vector-valued noncommutative LP-spaces associated with QWEP von
Neumann algebras. Of course, it is likely that the identification of the decompos-
able norm and the regular norm is true in this generalized context. Finally, we refer
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CHAPTER 1. INTRODUCTION 3

to the preprint [15] for a generalization of the notion of decomposable map and for
applications to contractively complemented subspaces of noncommutative LP-spaces.

The next task is devoted to identify precisely decomposable Fourier multipliers on
noncommutative LP-spaces L? (VN(G)) of a group von Neumann algebra VN(G) asso-
ciated to a unimodular locally compact group G. Recall that if G is a locally compact
group then VN(G) is the von Neumann algebra, whose elements act on the Hilbert
space L2(G), generated by the left translation unitaries \,: f — f(s71.), s € G. If
G is abelian, then VN(Q) is *-isomorphic to the algebra L>°(G) of essentially bounded
functions on the dual group G of G. As basic models of quantum groups, they play a
fundamental role in operator algebras and this task can be seen as an effort to develop
LP-Fourier analysis of non-abelian locally compact groups, see the contributions [39],
[109], [110], [111], [123] and [132] in this line of research and references therein. If G is
discrete, a Fourier multiplier M, : L?(VN(G)) — LP(VN(G)) is an operator which
maps \s to ¢(s)As, where ¢: G — C is the symbol function (see Definition 6.3 for
the general case of unimodular locally compact groups).

We connect this problem with several notions of approximation by discrete
groups of the underlying locally compact group GG. We are able to show that a symbol
¢: G — Cinducing a decomposable Fourier multiplier M, : L?(VN(G)) — L?(VN(G))
already induces a decomposable Fourier multiplier M,: VN(G) — VN(G) at the
level p = oo for some classes of locally compact groups. We also give a comparison
between the decomposable norm at the level p and the operator norm at the level co
in some cases (see Theorem 4.8, Theorem 4.10, Theorem 6.45, Theorem 6.47 and
Theorem 6.50). Our method for this last point relies on some constructions of
compatible bounded projections at the level p = 1 and p = oo from the spaces of
(weak* continuous if p = o) completely bounded operators on LP(VN(G)) onto
the spaces MMP°?(G) of completely bounded Fourier multipliers combined with an
argument of interpolation. We highlight that the nature of the group G seems to
play a central role in this problem. Indeed, mysteriously, our results are better for a
pro-discrete group G than for a non-abelian nilpotent Lie group G. More precisely,
let us consider the following definition (V).

DEFINITION 1.1. — Let G be a (unimodular) locally compact group. We say that G has
property (k) if there exist compatible bounded projections

P& : CBy- (VN(G)) — CBy,- (VN(G)) and P}: CB(L*(VN(G))) — CB(L'(VN(QG)))
onto M><P(G) and ML (G) preserving complete positivity. In this case, we introduce
the constant

def . - 1
K(G) = mfmax{ 1P& | oB,,. (vN(G)) =B (VN(G)) * PGHCB(L1(VN(G)))—»CB(Ll(VN(G))) }’

where the infimum is taken over all admissible couples (P&, PL) of compatible bounded
projections and we let K(G) = co if G does not have (k).

1. The subscript w* means “weak* continuous” and “CB” means completely bounded. The com-
patibility is taken in the sense of interpolation theory [22, 177].
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4 CHAPTER 1. INTRODUCTION

Haagerup has essentially proved that «(G) = 1 if G is a discrete group by a
well-known average argument using the unimodularity and the compactness of the
quantum group VN(G). The key novelty in our approach is the use of approximat-
ing methods by discrete groups in various senses to construct bounded projections
for non-discrete groups beyond the case of a dual of a unimodular compact quan-
tum group. If G is a second countable pro-discrete locally compact group, we are
able to show that x(G) = 1 (see Theorem 6.38). Another main result of the paper
gives kK(G) < oo for a certain class of locally compact groups G approximable by
lattice subgroups, see Corollary 6.25. Note that a straightforward duality argument
combined with some results of Derighetti [53, Theorem 5], Arendt and Voigt [5, The-
orem 1.1] says that if G is an abelian locally compact group then x(G) = 1 (see
Proposition 6.43). Furthermore, in most cases, we will show the existence of com-
patible projections P%: CB(LP(VN(G))) — CB(LP(VN(G))) onto 9MMP®(G) for all
1 < p < oco®. So we have a strengthening (k') of property (k) for some groups.
It is an open question whether (k') is really different from (k). Finally, in a paper
[14], examples of locally compact groups without (k) will be described and important
complementary results will be given.

Using classical results from approximation properties of discrete groups, it
is not difficult to see that there exist completely bounded Fourier multipliers
M,: LP(VN(G)) — LP(VN(G)) on some class of discrete groups which are not
decomposable (Proposition 3.32). In Chapter 7, we focus on a more difficult task. We
examine the problem to construct completely bounded operators T': LP(M) — LP(M)
which cannot be approximated by decomposable operators, in the sense that T' does
not belong to the closure Dec(LP(M)) of the space Dec(LP(M)) of decomposable
operators on LP(M) with respect to the operator norm ||| s(ns)—1p(ar) (OF the
completely bounded norm |||y, 1.0 ()10 (ar))-

We particularly investigate different types of multipliers. We show the existence
of such completely bounded Fourier multipliers, on large classes of locally compact
groups, including all infinite abelian locally compact groups (see Theorem 7.14). Note
that it is impossible to find such bad multipliers on finite groups by an argument of
finite dimensionality. Our strategy relies on the use of transference theorems which we
prove and structure theorems on groups. It consists in dealing with all possible cases.
In the abelian situation, the construction of our examples in the critical cases (e.g., if
the dual group G is an infinite totally disconnected group or an infinite torsion dis-
crete group) is proved by a Littlewood-Paley decomposition argument on the Bochner
space LP(G, X) where X is a UMD Banach space, which allows us to obtain in ad-
dition the complete boundedness of multipliers. We also examine the case of Schur
multipliers. In particular, we prove that the discrete noncommutative Hilbert trans-
form H: SP — SP on the Schatten space SP is not approximable by decomposable

2. If p = oo, replace CB(L?(VN(G))) by CBy=*(VN(Q)).
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CHAPTER 1. INTRODUCTION 5

operators (Corollary 7.22). We equally deal with convolutors (Section 7.3) and op-
erators on arbitrary noncommutative LP-spaces associated with infinite-dimensional
approximately finite-dimensional von Neumann algebras (Theorem 7.35).

In the case of an amenable group G, transference methods [36, 40, 134] between
Schur multipliers and Fourier multipliers can sometimes be used for proving theorems
on selfadjoint completely bounded Fourier multipliers on VN(G), see, e.g., [9, Corol-
lary 4.5] and [10]. We finish the paper by introducing a general procedure for proving
positive results on selfadjoint contractively decomposable Fourier multipliers on non-
amenable discrete groups relying on the new characterization of Proposition 8.2. This
result should allow with reasonable effort to generalize properties which are true for
unital completely positive selfadjoint Fourier multipliers by using unital completely
positive selfadjoint 2x2 block matrices of Fourier multipliers. Section 8.3 illustrates
this method by describing Fourier multipliers which satisfy the noncommutative Mat-
saev inequality (Theorem 8.6), using the new result of factorizability of such 2x2 block
matrices of Fourier multipliers (Theorem 8.5).

The paper is organized as follows. Chapter 2 gives background and preliminary
results. Some relations between matricial orderings and norms in Section 2.3 are
fundamental to reduce the problem of the comparison of the regular norm and the
decomposable norm to the adjoint preserving case. Moreover, in passing, we iden-
tify completely positive maps on classical LP-spaces (Proposition 2.23 and Proposi-
tion 2.24).

In Chapter 3, we will investigate the notions of decomposable maps and regular
maps on noncommutative LP-spaces. We will see in Theorem 3.24 that on approx-
imately finite-dimensional semifinite von Neumann algebras, the notions of decom-
posable and regular operators coincide isometrically. The proof of this result requires
several reduction intermediate steps, such as self-adjoint maps in place of general maps
(Section 3.4) and Schatten spaces in place of general noncommutative LP-spaces (The-
orem 3.21 in Section 3.5). Moreover, we investigate in this chapter the relation of the
(completely) bounded norm on noncommutative LP-spaces with the decomposable
norm. We will see in Theorem 3.26 that for completely positive maps on LP-spaces
over approximately finite-dimensional algebras, the bounded norm and the completely
bounded norm coincide. If the von Neumann algebra has QWEP, then we will see in
Proposition 3.30 that the completely bounded norm is dominated by the decompos-
able norm, so in case of completely positive maps, the completely bounded norm, the
bounded norm and the decomposable norm all coincide (Proposition 3.31). However,
we will exhibit a class of concrete examples where the decomposable norm is larger
than the completely bounded norm (Theorem 3.38). Finally, this chapter contains
information on the infimum of the decomposable norm (Section 3.2), the absolute
value |T'| and decomposability of an operator T' acting on a commutative LP-space
(Section 3.7) and examples of completely bounded but non decomposable Fourier
multipliers on group von Neumann algebras (Proposition 3.32). We also give explicit
examples of computations of the decomposable norm, see Theorem 3.37.
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6 CHAPTER 1. INTRODUCTION

In the following Chapter 4, we give a generalization of the average argument of
Haagerup. We will show the existence of contractive projections from some spaces of
completely bounded operators onto the spaces of Fourier multipliers, Schur multipliers
or even a mix of both (Theorem 4.2 and Section 4.2). This concerns discrete groups,
possibly deformed by a 2-cocycle and we will also show the independence of the
completely bounded norm and the complete positivity with respect to that 2-cocycle,
for a Fourier/Schur-multiplier. So the natural framework will be the one of twisted
(discrete) group von Neumann algebras, explained in Section 4.1. In particular, this
covers the case of noncommutative tori when the group equals Z?. As an application,
we will describe the decomposable norm of such Fourier and Schur multipliers on
the LP level and see that in the framework of this chapter, this norm equals the
(completely) bounded norm on the L level (Section 4.3).

In Chapter 5, we introduce and explore some approximation properties of locally
compact groups. We connect these to some notions of approximation introduced by
different authors. We clarify these properties in the large setting of second countable
compactly generated locally compact groups, see Theorem 5.13.

Hereafter, Chapter 6 contains an in-depth study of decomposability of Fourier mul-
tipliers on non-discrete locally compact groups. After having introduced these Fourier
multipliers and their basic properties in Section 6.1, we will show in Section 6.2 how
their completely bounded norm is changed under a continuous homomorphism be-
tween two locally compact groups. In Section 6.3, we describe an extension property
of Fourier multipliers which passes from a lattice subgroup to the locally compact
full group. In Section 6.4, we prove Theorem 6.16 which gives a complementation for
second countable unimodular locally compact groups which satisfy the approzima-
tion by lattice subgroups by shrinking (ALSS) property of Definition 5.3 together with
a crucial density condition (6.4.2). Then in Section 6.5, we describe some concrete
groups in which Theorem 6.16 applies. These examples contain direct and semidirect
products of groups, groups acting on trees, a large class of locally compact abelian
groups and the semi-discrete Heisenberg group. In Section 6.6, we show the comple-
mentation result for pro-discrete groups by a similar method as in Theorem 6.16, but
it turns out that there is no need of a density condition in this case.

There is another notion of generalization of Fourier multipliers on non-abelian
groups G, but acting on classical LP-spaces LP(G) instead of noncommutative
LP-spaces LP(VN(G)). These are the convolutors, that is, the bounded operators
commuting with left translations. In Section 6.7, we show a complementation result
for them on locally compact amenable groups. Then in Section 6.8 we apply our
complementation to describe the decomposable norm of multipliers.

In Chapter 7, we construct completely bounded operators T': LP(M) — LP(M)
which cannot be approximated by decomposable operators. In Proposition 3.32, we
shall see that in general, the class of completely bounded operators on a noncommu-
tative LP-space is larger than the class of decomposable operators. In Chapter 7, we
deepen this fact and show that in many situations of LP-spaces and classes of opera-
tors on them, there are (completely) bounded operators such that in a small (norm or
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CHAPTER 1. INTRODUCTION 7

CB-norm) neighborhood of the operator, there is no decomposable map. This notion
of (CB-)strongly non decomposable operator is defined in Section 7.1. Our first class
of objects are the Fourier multipliers on abelian locally compact groups. We show in
Theorem 7.14 that on all infinite locally compact abelian groups, there always exists a
(CB-)strongly non decomposable Fourier multiplier on LP(G). By a transference pro-
cedure, this theorem extends to convolutors acting on several non-abelian locally com-
pact groups containing infinite locally compact abelian groups (Section 7.3). Then our
next goal are Schur multipliers. In Section 7.4 (see Corollary 7.22) we will show that
the very classical discrete noncommutative Hilbert transform and the triangular trun-
cation 7 : SP — SP are CB-strongly non decomposable. Then we study CB-strongly
non decomposable Fourier multipliers on discrete non-abelian groups. We establish
some general results and apply them to Riesz transforms associated with cocycles and
to free Hilbert transforms (Section 7.5). Finally, we enlarge the class of spaces and
consider LP-spaces over general approximately finite-dimensional von Neumann alge-
bras (Section 7.6). Namely, in Theorem 7.35, we show that for 1 < p < 0o, p # 2 and
for any infinite-dimensional approximately finite-dimensional von Neumann algebra
M, there always exists a CB-strongly non decomposable operator on LP(M).

In Chapter 8, we study a certain property for operators on noncommutative
LP-spaces which is a combination of contractively decomposable and selfadjointness
on L2(M). In general, this notion is more restrictive than being separately contrac-
tively decomposable and selfadjoint. However, in Proposition 8.2, we will see that for
Fourier multipliers acting on twisted von Neumann algebras over discrete groups and
a T-valued 2-cocycle, this difference disappears. As a consequence, we show in the last
two Section 8.2 and Section 8.3 that for contractively decomposable and selfadjoint
Fourier multipliers on twisted von Neumann algebras, the noncommutative Matsaev
inequality holds.
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CHAPTER 2

PRELIMINARIES

2.1. Noncommutative LP-spaces and operator spaces

Let M be a von Neumann algebra equipped with a semifinite normal faithful
weight 7. We denote by m} the set of all positive z € M such that 7(z) < oo
and m, its complex linear span which is a weak* dense x-subalgebra of M. If n, is
the left ideal of all x € M such that 7(x*z) < oo then we have

(2.1.1) m, = span{y*z 1Y,z € n,.}.

Suppose 1 < p < oco. If 7 is in addition a trace then for any x € m,, the op-
1
erator |z|P belongs to m} and we set lZlLe (ary e 7(]z|P) ”. The noncommutative

LP-space LP(M) is the completion of m, with respect to the norm |||, 7). One sets

L (M) 4f M. We refer to [148], and the references therein, for more information on

these spaces. The subspace M NLP(M) is dense in LP?(M). The positive cone L? (M)
of LP(M) is given by

def *
(2.1.2) LP(M)y = {y*y : ye L*(M)}.
We also have the following dual description.
PROPOSITION 2.1. — Let M be a von Neumann algebra equipped with a normal semifi-
nite faithful trace. Suppose 1 < p < co. We have
(2.1.3) LP(M); = {z € LP(M) : (%, Y)1o(ar),Lo (ar) 2 0 for any y € L7 (M) }.
Proof. — Let x € LP(M) such that (x,y)r»(ar),1e* (1) > 0 for any y € LP"(M),. We

can write * = x1 + izo where x1,z2 are selfadjoint elements of L?(M). On the one
hand, for any y € L?" (M), we have

<xlay>LP,LP* +i<x27y>LP,LP* = (1 +il‘2,y>Lp,Lp* = <I»y>Lp,LP* > 0.

On the other hand (x1,y)1s 1o+ and (z2,y)ps 1o+ are real numbers. We deduce the
equality (z2,¥)1» 1+ = 0 for any y € L?" (M),. By duality, we infer that zo = 0. We
conclude that z is selfadjoint.
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Now, consider a decomposition © = z; — z2 with z1,29 € LP(M)4 such that
there exist (® projections e, f € M such that ef = 0, z;1 = exr; = z1e and x3 =
zof = fxo. Suppose 3 # 0. There exists @ a positive element z € L? (M) such
that (z2,2)pe 1o+ > 0. Then

<x,fzf>Lp7Lp* = <ac1 - mg,fzf>Lp’Lp* = —(xg,z)LpL,,* < 0.
That is impossible since fzf is a positive element of L?" (M ). O
At several times, we will use the following elementary () result.

LEMMA 2.2. — Let M be a von Neumann algebra equipped with a normal semifinite
faithful trace. Suppose 1 < p < oco. Then My NLP(M) is dense in LP(M)y for the
topology of LP(M).

The readers are referred to [68], [137] and [146] for details on operator spaces
and completely bounded maps. If T: £ — F' is a completely bounded map between
two operators spaces E and F', we denote by ||T|., g_ p its completely bounded

norm. If EQF is the operator space projective tensor product of F and F', we have a
canonical complete isometry (E®F)* = CB(E, F*), see [68, Chapter 7]. We will use
the notations E°P and E for the opposite operator space and the complex conjugate
of an operator space F.

The theory of vector-valued noncommutative LP-spaces was initiated by Pisier [145]
for the case where the underlying von Neumann algebra is hyperfinite and equipped
with a normal semifinite faithful trace (see [107] for the case where the von Neu-
mann algebra is QWEP). Under these assumptions, according to [145, page 37-38],
for any operator space E, the spaces M @min E and L'(M°P)®E can be embedded
by an injective continuous map into a common topological vector space, respecting
hereby (M NL*(M°P)) ® E. This compatibility in the sense of interpolation theory,
explained in [145, page 37| and [146, page 139] and based on results of Effros and
Ruan [67, 66], relies heavily on the fact that the von Neumann algebra is hyperfinite
(i.e., approximately finite-dimensional). Suppose 1 < p < co. Then we can define by
complex interpolation
(2.1.4) LP(M, E) ¥ (M ®uin E,L}(M°)RE) ,

1
P

3. If = w|z| is the polar decomposition of a selfadjoint element x then it is known that w* = w
and w|z| = |z|w. We can write w = e — f where e and f are two projections such that ef = 0. We
have e|z| = |z|e and f|z| = |z|f. We can take z1 = e|z| and z2 = f|z|. See [157, pages 138-139] for
useful information.

4. Any positive element of LP(M) admits a positive norming functional.

5. Let = be a positive element of LP(M). We can write # = y*y for some y € L2P(M). Since
M N L2P(M) is dense in L2P(M), there exists a sequence (yn) of elements of M N L2P(M) which
approximate y in L2P(M). Then we have

|l — y:yn”Lp(M) =ly"y — yZynlle(m <lly*(y - yn)HLp(M) +I(y™ — y:)ynHLp(M) —0.

n——+4oo
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2.1. NONCOMMUTATIVE LP-SPACES AND OPERATOR SPACES 11

where ®min and ® denote the injective and the projective tensor product of operator
spaces. When E = C, we get the noncommutative LP-space LP(M).
If Q is a measure space then we denote by B(L?(f2)) the von Neumann algebra

of bounded operators on the Hilbert space L?(Q2). Using its canonical trace, we ob-

tain the vector-valued Schatten space SE(E) def L?(B(L%(Q)), E). With Q = N or

Q ={1,...,n} equipped with the counting measure and E = C we recover the clas-
sical Schatten spaces SP and SZ.

Recall the following classical characterization of completely bounded maps, which
is essentially [145, Lemma 1.4].

PROPOSITION 2.3. — Let E and F be operator spaces. Suppose 1 < p < oo. A lin-
ear map T: E — F is completely bounded if and only if Idse ® T extends to a
bounded operator Idse @ T': SP(E) — SP(F). In this case, the completely bounded
norm |||, g is given by

(2.1.5) ||T||cb,E'—>F = [Ids» ® T”SP(E)—>SP(F) :

We will use the following result [106, page 984], [107] (see [16, Appendix] for a
proof for approximately finite-dimensional von Neumann algebras).

THEOREM 2.4. — Let My, My, N1, Ny be QWEP wvon Neumann algebras. Suppose
1<p<oo. Let Ty: LP(M;) — LP(Ny) and Tp: LP(My) — LP(N3) be completely
bounded maps. Then the map Th @ Ty: LP(M; ® Ny) — LP(N; ® Na) is completely
bounded and we have

(2.1.6) 1Ty ® T2||Cb7Lp(Lp)_>LP(LP) < ||T1||Cb,Lp_>Lp ||T2||cb,LP—>LP :

A measure space (€, ) (also denoted ) is called localizable if its measure alge-
bra (¥ is semifinite and Dedekind complete, see [135, Lemma 2.6], [77, Theorem 322B]
and [160, Corollary 3.2.1]. By [76, Theorem 243G], this is equivalent to the bijectiv-
ity of the canonical map L*>°(f2) — L!(€2)* (in which case it is an isometry). Recall
that a o-finite measure space [76, Theorem 211L], [160, Corollary 3.2.1] and a locally
compact group equipped with a left Haar measure [160, Corollary 5.2], [78, 443A (a)]
are localizable. We warn that there are several notions of localizable measure spaces,
see [135] and the recent paper [28] for more information.

The importance of these measure spaces comes from [160, Theorem 5.1] which
says that for a measure space (2, the algebra L°°(f2) is a von Neumann algebra if
and only if Q is a localizable measure space. Note that in this case, the integral
defines a semifinite (normal, faithful) trace on the von Neumann algebra L>*(Q),
and thus, LP(Q) carries, as any other noncommutative LP space, an operator space
structure. Thus, S?(L?(Q2)) is well-defined. Then, if 2 is a (localizable) measure space,
the Banach space SP(LP((2)) is isometric to the Bochner space LP(£2, S?) of SP-valued

6. The measure algebra [77, Definition 321I] of a measure space is defined as the quotient of the
ring of measurable sets by the ideal of null sets, with the measure of any residue class defined to be
the measure of any representative of the class.

SOCIETE MATHEMATIQUE DE FRANCE 2023



12 CHAPTER 2. PRELIMINARIES

functions. Thus, in particular, if ' is another (localizable) measure space then a linear
map T: LP(Q) — LP(Q) is completely bounded if and only if T ® Ids» extends to a
bounded operator T ® Idg»: LP(2, SP) — LP(, SP). In this case, we have

(2.1.7) 1Tl e, Lo (@)=L 02y = HT ® Ids» HLP(Q,SP)—»LP(Q’,SP)'

If F and F are operator spaces and if T: F — F' is a linear map, we will use the
map T°P: E°P — F°P g+ T'(z). Of course, since the underlying Banach spaces of E
and E°P and of F' and F°P are identical, the map T is bounded if and only if the
map T°P is bounded. The following lemma shows that the situation is similar for the
complete boundedness. Furthermore, this result is useful when we use duality since
in the category of operator spaces we have L?(M)* = L (M)°? if 1 < p < co. In
passing, recall that LP(M)°P = LP(M°P).

LEMMA 2.5. — Let T: E — F be a linear map between operator spaces. Then T is
completely bounded if and only if the map T°P: E°P — F°P is completely bounded.
Moreover, in this case we have | Ty, g p = TPl gov _, oo -

Proof. — Assume that T" is completely bounded and let [z;;] € M, (E°P). Then
||[T(xij)H|Mn(Fop) = ”[T(xji)]HMn(F)

< ||T||cb,E~>F ||[5L"ji]||Mn(E) = HT”cb,EHF H[xij]”Mn(E‘OP)'

We infer that || T°P|| ., gopr_ por < |T|lop g - Since (E°P)°P = E completely isomet-
rically, the reverse inequality follows by symmetry. O

2.2. Matrix ordered operator spaces

A complex vector space V is matrix ordered [44, page 173] if

1. V is a x-vector space (hence so is M,,(V) for any n > 1),

2. each M,,(V), n > 1, is partially ordered by a cone M, (V)4 C M,,(V)sa, and

3. if & = [oy5] € My m, then o*M, (V) o C Mp, (V) 4.
Now let V and W be matrix ordered vector spaces and let T: V. — W be a linear
map. If n > 1, we say that T is n-positive if Idy;, ® T': M, (V) — M, (W) is positive.

We say that T is completely positive if T' is n-positive for each n > 1. We denote the
set of completely positive maps from V to W by CP(V, W).

An operator space E is called a matrix ordered operator space [158, page 143] if it
is a matrix ordered vector space and if in addition

1. the x-operation is an isometry on M, (FE) for any integer n > 1 and

2. the cones M, (F), are closed in the norm topology.
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2.2. MATRIX ORDERED OPERATOR SPACES 13

For a matrix ordered operator space F and its dual operator space E*, we can define
an involution on E* by ¢*(v) = ¢(v*) for any ¢ € E* and a cone on M, (E*) for
each n > 1 by M,,(E*)* = CB(E,M,,) N CP(E,M,,). Note that we have an isometric
identification M, (E*) = CB(E,M,,). A lemma of Itoh [104] (see [159, Lemma 2.3.8|
for a complete proof) says that if F is a matrix ordered operator space, we have

(2.2.1) M, (E*)y = {[yij] € M, (E") : Z yij(xij) > 0 for any [z;;] € Mn(E)+}

ij=1

LEMMA 2.6. — Let E be a matriz ordered operator space. We have

M, (E); = {:v e M,(E): Z Yij(zi;) = 0 for any [y;;] € Mn(E*)+}
i,j=1
Proof. — Note that the dual cone S}(E*); of M,(E), is defined by S}(E*); =
{ly;5] € SLHE") : > i j=1Yij(zi5) > 0 for any [z5] € M, (E)+} and identifies
to M, (E*)+ by (2.2.1). Since M,,(E) is closed in the norm topology, hence weakly
closed, we conclude by the bipolar theorem. O

By [158, Corollary 3.2|, the operator space dual E* with this positive cone is
a matrix ordered operator space. The category of matrix ordered operator spaces
contains the class of C*-algebras.

Let M be a von Neumann algebra equipped with a faithful normal semifinite trace.
If 1 < p < o0, the noncommutative LP-space LP(M) is canonically equipped with an
isometric involution and we can define a cone on M,,(L?(M)) by letting

def

(22.2) M, (LP(M))+ = LP(Mu(M))+ (= SHLP(M))+).
Note the following easy (") observation.

PROPOSITION 2.7. — Let M be a von Neumann algebra equipped with a faithful normal
semifinite trace. Suppose 1 < p < co. Then the noncommutative LP-space LP (M) is a
matriz ordered operator space.

7. Consider z € Mu(LP(M))y, ie., z € SE(LP(M));. There exists y € S2F(L2P(M)) such
that y*y = . We can write y = Z?jzl e;; ® y;; for some y;; € LQP(M). For any matrix o € My m,
we have

n

* n
a*~x~a:a*-y*y-a:a*~<2eij@?ﬁj) (Z ekl@?}kl)'a
i,j=1 k,l=1

n n n
=a"- (Z €ji ®yfj) ( Z ekl ®ykl) a= Z Oé*ejiekzt)t@yijkz

=1 k=1 idkl=1
n n n * n
= ( E a*eji®yfj>( E ekla®ykz> = ( § eija®yij) ( E ekla®ykz>~
=1 k=1 =1 k=1

We conclude that a* - 2 - o is a positive element of M, (LP(M)) = Sh(LP(M)). We conclude
that LP(M) is matrix ordered. Moreover, for any z € My (L?(M)), using [143, Lemma 1.7] twice
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If N is another von Neumann algebra equipped with a faithful normal semifinite
trace then it is easy to see that a map T': LP(M) — LP(N) is completely positive if the
map Ids»®T induces a (completely) positive map Idg» ®T': SP(LP(M)) — SP(LP(N)).
Moreover, for any matrix o € M,, ,,,, the map

(2.2.3) LP(M,,(M)) - LPM,,(M)), =z oz«
is completely positive.

LEMMA 2.8. — Let M be a von Neumann algebra equipped with a faithful normal
semifinite trace. Suppose 1 < p < co. Ifb € M,,(LP(M)) and if b* is the transpose of b
we have b € M, (LP(M°P)), if and only if bt € M,,(LP(M)) .

Proof. — We start with the case p = co. We can identify M°P with M equipped
with the opposed product. We will use the notation o for some products where the
subscript indicates the space. Let b € M, (M°P) . Then we can write b = c* oy, (arer) €
for some ¢ € M,,(M). For any 1 < i,5 < n, we have
bi; = Z(C*)ik Opfop Chj = Z ki ()i =Y ()in(c™)ki = (¢ omt,, () ct*)t,
k=1 k=1 k=1

Hence b* = ¢! oy, (ar) ¢** belongs to M, (M),.. The reverse implication follows by
symmetry. Suppose that b € M, (LP(M°P)),, i.e., b € SE(LP(M°P)), by (2.2.2). By
Lemma 2.2, there exists a sequence (by) in M, (M°P). N SP(LP(M°P)) converging
to b for the topology of SP(LP(M)). By the first part of the proof, each (b;)? belongs
to M, (M) and of course to SE(LP(M)). In particular, (bx)* belongs to M, (LP(M)) .
Passing to the limit as k approaches infinity yields b € M, (LP(M)),. Again, a
symmetry argument completes the proof. O

We will often use the following observation.

LEMMA 2.9. — Let E and F be matriz ordered operator spaces. A bounded
map T: E — F is (completely) positive if and only if the adjoint map T*: F* — E* is
(completely) positive.

Proof. — By Lemma 2.6, a map T': E — F is positive if and only if (T'(z),y)rr- >0
for any z € E, and any y € F{ if and only if (z,T*(y))g,g- > 0 for all such =,y if
and only if T*: F* — E* is positive again by (2.2.1). The completely positive case is
similar. U

For further use in Lemma 3.22, we record the following.
and the isometric involution, we see that
le* g, e ey = sup { e &* - Bllsg oaryy ¢ lolgze < 1, 181520 < 1}
=sup{ 18"z a*llgro(nry : lellgze <1, [1Bllg20 < 1}

=sup {16 -2 allszwe(nmy : lallgze <1, [IBllg2e < 1} = ||zl (Lo ar)) -
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2.2. MATRIX ORDERED OPERATOR SPACES 15

LEMMA 2.10. — Let E and F' be matrix ordered operator spaces.

1. Let (T,) be a net of positive (resp. n-positive or completely positive) mappings
from E into F. Suppose that lim, T, = T in the weak operator topology. Then
T is also positive (resp. n-positive or completely positive).

2. Let (Ty) be a net of positive (resp. n-positive or completely positive) mappings
from E into F*. Suppose that lim, T, = T in the point weak* topology ®
of B(E, F*). Then T is also positive (resp. n-positive or completely positive).

Proof. — 1. Suppose that each T,: E — F is a positive map. By Lemma 2.6, the
map T: E — F is positive if and only if (T'(z),y)r r- > 0 for any z € E; and any
y € F}. Using again Lemma 2.6, we infer that (T'(z), y) p,r+ = limo(To(2),y) r,p+ > 0.
Thus we conclude that T' is positive.

Suppose that each T, is completely positive.

By Lemma 2.6, the map Idy, ® T: M, (E) — M, (F) is positive if and only if
i =1 (T(xi5),yij) p,pe for any [z4] € My (E)4 and any [y;] € M, (F*);. Using
again Lemma 2.6, we infer that

n n
> AT(i)), yi) ppe = lim > (Ta(®ij), yij) ppe > 0.
i,j=1 1,j=1
Letting n run over all integers, we conclude that T is completely positive. The argu-
ment is the same for the n-positive case.

2. Suppose that each T,: E — F* is a positive map. By (2.2.1), the map
T: E — F*is positive if and only if (T'(x), y) p« p > 0 for any z € E; and any y € F.
Using again (2.2.1), we infer that (T'(z),y)p~ r = lim (T (2),y)F r > 0. Thus we
conclude that T is positive.

Suppose that each Ty, is completely positive. By (2.2.1), Idm, ® T: M,,(E) — M, (F*)
is positive if and only if szzl(T(xij),yij)p*,F for any [z;;] € M,(E)y+ and
any [yi;] € M,(F)4. Using again (2.2.1), we infer that (T(zi;),yij)r-r =
lim,, sz=1<Ta(xij),yij>F*,F > 0. Letting n run over all integers, we conclude
that T is completely positive. The argument is the same for the n-positive case. [

If E is a matrix ordered operator space, by [159, page 80|, the vector-valued Schat-
ten space SE(E) =R, (1 — %) Qn E Qp Rn(%) admits a structure of a matrix ordered
operator space. The cones are defined by the closures

Mi(SE(E))s = {¢* 0y @@ € Mi(SA(B)) : @ € Mix(Ra(L)), y € My(E)5, L € NJ.

LEMMA 2.11. — Suppose 1 < p < co. Let E and F be matriz ordered operator spaces
and let T: E — F be a bounded completely positive map. Then for any integer n, the
map Idgr @ T': S?(E) — SP(F) is completely positive.

8. If X is a Banach space and Y is a dual Banach space, a net (Tw) in B(X,Y’) converges to an
operator T' € B(X,Y) in the point weak* topology if and only if for any z € X and any y« € Y we
have (To (), y+)v,v. o (T(2), y=)v,v. -
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Proof. — For any n € N, any x € Mlyk(Rn(%)) and any y € M;(E)4, the element
(Idgr @ T)(z* @y © ) = " © T(y) © = belongs to My(SE(E))4+. An argument of
continuity gives the result. O

2.3. Relations between matricial orderings and norms
For any z € SP(E) and any a,b € M, the result [145, Lemma 1.6 (i)] says that

(2.3.1) lazbllsp gy < llallse 12l sz gy 10l 5o -

Moreover, for any diagonal matrix z = diag(x1,...,z,) € SE(E), [145, Corollary 1.3]
gives

(2.3.2) Il sz m) = (Z ||sck||")

LEMMA 2.12. — Let E be an operator space. Suppose 1 < p < oo. Then for
1

any bee B, we have [[28)lgpp = (lbls + llels)? and 112815 (s

max { bl g, el g }-
Proof. — Using the inequality (2.3.1), we see that
100 Mg my = 52119 &y < LA Mz N9 31lsge = N2 Nl -
By symmetry, we conclude that ||[9 8”'55(}3) =[5 2]||SE(E). On the other hand, the

1
equality (2.3.2) yields ||[§ 2]||S§(E) = (|16l + llcl’% ) * . The case p = oo is similar, so
the lemma is proven. O

LEMMA 2.13. — Let M be a von Neumann algebra equipped with a faithful normal
semifinite trace. Suppose 1 < p < co. Let a,b and c be elements of LP (M) such that the

element [ & °] of SY(LP(M)) is positive. Then we have 1Bl (ar) < \/||a||Lp(M) el ary-

1
So in particular [|b]|ppr) < ﬁ( ||a||€,,(M) + ||c||fp(M) )7

Proof. — By Lemma 2.2, there exists a sequence ([Zf Z:D of elements in

My (M) NLP(M2(M)) converging to the positive element [% %] for the topol-
ogy of LP(My(M)). By adapting a classical argument [24, Proposition 1.3.2], [183,
Lemma 1.21], for each integer n there exists z, € M with ||z,|,, < 1 such
1 1 1 1 1 1

that b, = aiz,ci. Thus [|by, = Haﬁmncgﬂp < HaEHQPHCEHQP = /llaxll, llenll,,-
Passing to the limit as n approaches infinity, we obtain the inequality.

The last sentence of the statement follows from the inequality /Ty < 27w (zP+yP )%
for any reals z,y > 0. U

The following result is folklore. Unable to locate a proof in the literature, we give
a very short proof based on Lemma 2.13.
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PROPOSITION 2.14. — Let M be a von Neumann algebra equipped with a faithful
normal semifinite trace. Suppose 1 < p < co. Let b be an element of SE(L?(M)). Then
[0l s2 (1o (aryy < 1 if and only if there are a,c € SE(LP(M))4 with [lall gz o(nr) <1
and |[cl[gz 10 (aryy S 1 such that the element [ 8] of S5, (LP(M)) is positive.

Proof. — The implication < is Lemma 2.13. For the implication =, we only need the
case n = 1. Consider b € LP(M) with [[b]|,5;) < 1. There exists a sequence (by)
in M NL?(M) converging to b for the topology of LP(M). By [137, Exercise 8.8 (vi)],

o1 b

e b ‘] is a positive element. Using the continuity of the modulus and

b*] b
b* [o|
|||b|||Lp(M) = |||b*|||Lp(M) = [llLeary < 1. =

the matrix [

passing to the limit as n approaches infinity yields [ } > 0. Moreover, we have

LEMMA 2.15. — Suppose 1 < p < oco. Let M be a von Neumann algebra equipped
with a faithful normal semifinite trace. Let a and b be selfadjoint elements of LP (M)
satisfying —a < b < a. Then, in S5(LP(M)), we have [z 2] > 0.

Proof. — The case p = oo is well-known, see [68, Proposition 1.3.5]. Let us turn to
the case 1 < p < co. By Lemma 2.2, there exists a sequence (y,) in M, NLP(M)
converging to the positive element a—b for the topology of L?(M) and a sequence (z,)
of elements of M, N LP(M) converging to the positive element a + b. Note that

def y, 4z, def 2z, —y,
= Ty

converges to a and that b, = =25** converges to b. Moreover, we have

n
an bn

—a, < b, < ay,. According to the case p = oo, we have [bn an] > 0. Finally passing

to the limit as n approaches infinity yields [¢ 2] > 0. O

LEMMA 2.16. — Let M be a von Neumann algebra equipped with a faithful normal
semifinite trace. Suppose 1 < p < co. Let a, b and ¢ be elements of LP(M) satisfying
[¢5] >0 in SE(LP(M)). Then we have —3(a+c) <b< 1(a+c).

Proof. — Let A = [¢%]. Since A > 0, according to (2.2.3), we have uAu* > 0 for
w=[11] and for u = [1 —1]. The first choice of u then yields a + 2b 4+ ¢ > 0, so that
b> —1(a+ c). The second choice of u yields a —2b+c > 0, so that b < L(a+c¢). O

2.4. Positive and completely positive maps on noncommutative LP-spaces

LEMMA 2.17. — Let M and N be von Neumann algebras equipped with semifinite
faithful normal traces. Suppose 1 < p < oo. Then a map T: LP(M) — LP(N) is
completely positive if and only if T°P: LP(M)°P — LP(N)°P is completely positive.

Proof. — Assume that T': LP(M) — LP(N) is completely positive.

Let b€ (M,(LP(M)°P));. Then applying Lemma 2.8 twice, we deduce that
(Idw, ® TP)(b) = [T'(bij)] = [T((6")3;)] = ((Idm, ® T)(b"))" belongs to (M (LF(N)P)).
We infer that T°P: LP(M)°P — LP(N)°P is completely positive. The reverse statement
is obtained by symmetry. O
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The boundedness assumption of [143, Theorem 0.1 and Lemma 2.3] is unnecessary
since we have the following elementary result.

PROPOSITION 2.18. — Let M be a von Neumann algebra equipped with a faithful nor-
mal semifinite trace. Suppose 1 < p < oo. Any positive linear map T: LP(M) — LP(M)
is bounded.

Proof. — We first show that there exists a constant K > 0 satisfying for any
z € LP(M)4 with [|z]|, 5y <1 the inequality ||T'(z)||,» 5y < K. Suppose that it is
not the case then there exists a sequence (z,) of positive elements of LP(M) with
[ZnllLeary <1 and (I T(zn) | (ar) = 4™

We have Y7 | ||2%anLp(M) < Yoo 3w < oo. Hence the series Y. 7 | s-xy, is
convergent and defines a positive element = of L?(M). Now, for any integer n > 1,
we have 0 < 2%:1:" < x. We deduce that 0 < T (z,) < T(z). Hence we obtain

2n
2%||T(avn)||Lp(]V[) < ||T(x)||Lp(M) and finally 2" < ||T(x)||Lp(M). Impossible.
Now, if z € LP(M) we have a decomposition z = x; — z2 + i(z3 — z4) with

z1,22,23,24 € LP(M)y and |lz1llpeiary s 1220l ary s |1Z8lleany » 12allie(ar) less or
equal to [z, p- Hence

||T(x)||LP(M) = ||T(371) = T(x2) + i(T(w3) - T(x‘l)) HLp(M)
< ||T($1)||LP(M) + ||T(x2)||LP(M) + ||T($3)||LP(M) + ||T($4)||LP(M)

< K( ”xl”LP(M) + ”mQHLP(M) + ”x?)”LP(M) + ||x4||LP(M))
< 4K ||37||Lp(M) . L

This result will imply in particular that a decomposable map is bounded.

The following result is proved in [143, Proposition 2.2 and Lemma 2.3] for S?. It has
been long announced in [106, page 2] for QWEP von Neumann algebras (but seems
definitely postponed). We will give a proof for hyperfinite von Neumann algebras, see
Theorem 3.26. Only Proposition 3.10, Proposition 3.30 and Proposition 3.31 depend
on this result.

THEOREM 2.19. — Suppose 1 < p < oco. Let M, N be QWEP wvon Neumann al-
gebras equipped with faithful semifinite normal traces. Let T: LP(M) — LP(N) be
a completely positive map. Then T is completely bounded and ||T||LP(M)_)LP(N) =

17N b2 a1y — Lo () -

The next lemmas are important for the proof of Theorem 3.24.

LEMMA 2.20. — Let M and N be von Neumann algebras equipped with faithful normal
semifinite traces. Suppose 1 < p < co. LetT,S: LP(M) — LP(N) be adjoint preserving
maps® maps such that =S <cp T <¢p S.

Then the map [2 L] : LP(M) — S5(LP(N)) is completely positive.

9. This means that T(z*) = T'(z)* and S(z*) = S(z)*.
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Proof. — Suppose z € SE(LP(M))4.
Then —(Idgr ® S)(z) < (Idgr ®T)(x) < (Idgr ® S)(x). By Lemma 2.15, we deduce

(Id p®5’)(z) (Id p®T)(ac)
that (Idsﬁ ® [Erg* g]) (z) = {(Idjp ®T)(z) (Idzp ®S)(z) 2 0. O

LEMMA 2.21. — Let M and N be von Neumann algebras equipped with faithful normal
semifinite traces. Suppose 1 < p < oo. Let T,S1,52: LP(M) — LP(N) be adjoint
preserving maps. If the map [5;3 g] LP(M) — SE(LP(N)) is completely positive
then _%(Sl + Sz) <c T <cp 2(51 + Sg)

Proof. — Suppose z € S2(LP(M))+. We have

Ider ® S Ider ® T
[( sz @S)(@)  (dg; @ T)(@) | _ <Ids£: ® ) (z) > 0.

(s ®T)(z) (dsy ® S2)(x)
—5(Ids; @ 8)(2) + (ldsy © 52)(@)) < (Hdsg ©T)) < 5 (I @ S1)(x) + (s © 5)(a).

S1 T
T S

By Lemma 2.16, we deduce that

Hence we obtain

~5((ds; ® (81 +5:))(@)) < (Mg ®T)(a) < 3 ((dsy © (51 + 52)(x)).
We conclude that —1(S1 +52) <cp T <cp 3(S1 + S2). O

2.5. Completely positive maps on commutative LP-spaces

We start with a characterization of the positive cone of S2(LP(Q2)) where 2 is a
measure space.

LEMMA 2.22. — Let Q be a (localizable) measure space. Suppose 1 < p < oo. Then
an element [fi;] of SE(LP(QY)) is positive if and only if [fi;(w)] is a positive element
of M, for almost every w € Q.

Proof. — We have S?(L?(Q2)) = LP(Q, SE) isometrically. Consider f € LP(£2,SP),.
Using (2.1.2), there exists h € L?P(Q2, S?P) such that h*h = f. Hence, for almost
any w € 2, we have h(w)*h(w) = f(w) in the space SE. Consequently, for almost
any w € Q, we have f(w) € (S2);.

For the converse, consider an element f of L? (2, S2) such that for almost any w €
we have f(w) € (SB),. Let g € LP (2, S2") . By the first part of the proof, for almost
any w € Q, we have g(w) € (S2"),.. Using (2.1.3), we deduce that for almost any w € Q

we have Tr (f(w)g(w)) > 0. We infer that (/ ®Tr> (fg) = / Tr (f(w)g(w)) dw > 0.
Using again (2.1.3), we conclude that f € LP(£2, 7). O

PROPOSITION 2.23. — Let Q) be a (localizable) measure space and let M be a von Neu-
mann algebra equipped with a faithful normal semifinite trace. Suppose 1 < p < co. A
positive map T: LP(M) — LP(Q) into a commutative LP-space is completely positive.
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Proof. — The case p = oo is a particular case of [68, Theorem 5.1.4], so we can suppose
1 < p < o0. Let & = [z;5] be a positive element of SZ(LP(M)). Note that in SZ, for
almost any w € ), we have

((Idgz ® T)([z])) (W) = ([T(2:5)]) (w) = [T(zij)(w)].
By Proposition 2.7, for any matrix v € M,, 1, the element v*[z;;]u of L? (M) is positive.
By the positivity of T', we see that T(u*[zl]]u) is a positive element of L”(Q). Using
Lemma 2.22, we deduce that for almost every w € Q)

u* [T(xm)(w)]u = Z T (xi)(w)u; = T( Z uixijuj> (w) = T(u* [zi;]u) (w) > 0.
i,j=1 1,5=1

We infer that for almost every w € €, the matrix [T(z;;)(w)] is a positive element

of M,,. By Lemma 2.22, we conclude that [T'(z;;)] is a positive element of S%(LP(Q2)).

O

Using duality, we also have the following variant.

PROPOSITION 2.24. — Let Q be a (localizable) measure space and let M be a von Neu-
mann algebra equipped with o faithful normal semifinite trace. Suppose 1 < p < 0.
A positive mapping T: LP(Q) — LP(M) defined on a commutative LP-space is com-
pletely positive.

Proof. — The case p = oo follows from [68, Theorem 5.1.5], so we can suppose
1 < p < co. According to Lemma 2.9, the map T': LP(Q) — LP(M) is positive if and
only if T*: L?" (M) — L (Q) is positive. Thus, by Proposition 2.23, the map T* is
completely positive. Using again Lemma 2.9, we conclude that 7' is completely posi-
tive. 0

REMARK 2.25. — Note that the situation is different for the complete boundedness
between commutative LP-spaces. Indeed, there exists some example of a measure
space 2 and a bounded operator T': LP(2) — LP(Q) which is not completely bounded,
see 19) [145, Proposition 8.1.3] and [7].

2.6. Markov maps and selfadjoint maps

Let M and N be von Neumann algebras equipped with faithful normal semifinite
traces 7y and 7y. We say that a linear map T: M — N is a (7, 7n)-Markov
map if T is a normal unital completely positive map which is trace preserving, i.e.,
for any € mt we have 75 (T(z)) = 7a(x). When (M,7) = (N,7n), we say
that T is a 7ps-Markov map. It is not difficult to check that a (7as, 7v)-Markov map T
induces a completely positive and completely contractive map T,: L?(M) — LP(N)

10. We warn the reader that the proof of [64] is false. Indeed, the main argument of the paper
which begins page 7 with “therefore we can get a LP (H) multiplier” is really problematic since H can
be a finite subgroup (for example, consider the case G = Z).
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on the associated noncommutative LP-spaces LP(M) and LP(N) for any 1 < p < co.
Moreover, it is easy to prove that there exists a unique normal map 7*: N — M such
that

(2.6.1) ™w(T(2)y) = Tm (zT*(y)), =€ M NL'(M),y € NNnLY(N).
It is easy to show that T is a (7w, 7ar)-Markov map. In this case, by density, we have
(2.6.2) ™5 (Tp(2)y) = T: (2(T*)p+ (y)), x €LP(M),y € LY (V).

Let M be a von Neumann algebra equipped with a normal semifinite faithful trace
7. Let T: M — M be a normal contraction. We say that T is selfadjoint if

(2.6.3) (T(x)y*) = 7(=T(y)*), =z,y € M NLY(M).
In this case, for any z,y in M NLY(M), we have

I7(T(@)y)| = |7 (T (")) < N2lleran 1T Nar < Nzl an 19l -
Hence the restriction of 7' to MNL! (M) extends to a contraction T} : L'(M) — L(M).
It also extends by interpolation to a contraction T,: L?(M) — LP(M) for
any 1 < p < oo. Moreover, for any 1 < p < oo, we have (Tp)* = (Tp+)°. Fur-
thermore, the operator Ty: L2(M) — L2(M) is selfadjoint. If T is positive then
each T), is positive and hence (T},)° = T,. Thus in this case, for any 1 < p < oo,
we have (T,)* = Tp-. Finally, if T: M — M is a normal complete contraction, then
each T, is completely contractive.

Finally, it is easy to check that a 7),-Markov map T: M — M is selfadjoint if and
only if T* =T°.
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CHAPTER 3

DECOMPOSABLE MAPS AND REGULAR MAPS

In this chapter, we start by analyzing decomposable maps on noncommutative
LP-spaces. In particular, in Section 3.2, we prove that the infimum of the decom-
posable norm is actually a minimum. In Section 3.6, we state our first main result,
Theorem 3.24, and give the end of the proof of this result. In passing, we prove
that completely positive maps on noncommutative LP-spaces of approximately finite-
dimensional algebras are necessarily completely bounded. In Section 3.8, we compare
the space of completely bounded operators and the space of decomposable opera-
tors. We show that these are different in general. We also give explicit examples of
computations of the decomposable norm, see Theorem 3.37.

3.1. Preliminary results

We need some background on second dual algebras and we refer to [127], [29], [114],
[171] and [175] for more information. Let M be a von Neumann algebra of predual
M,. We can see M** as a von Neumann algebra. Since we have a canonical inclusion
M, C M*, we can consider the annihilator

(M,)* def {veM™*:{(p,v)pm =0 for any ¢ € M,}
of M, in M**. It is well-known [127, Proposition 4.2.3] that there exists a unique
central projection e of M** such that (M,)t = (1 — e)M**. Using the notation
(Re)(y) Lof o(yz) for any z,y € M and any ¢ € M*, we have M, = R.(M™*)
and Y M* = M, &1 Ri_.(M*). The non-zero elements of R;_.M* are the singular
functionals.

A bounded map T: M — N is called singular [171, p. 128] [175] if T*(N.) C Ri_M™.
By [175, Theorem 1], for any bounded map T: M — N there exists a unique cou-
ple (Ty+: M — N,Tgns: M — N) of bounded maps with Ty~ weak* continuous,
Tiing singular and such that

T = Ty + Thing.

11. That means that preduals of von Neumann algebras are L-summands in their biduals.
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Consider the completely contractive and completely positive map @, : M** — M**,
n — ne = ene and the completely isometric canonical map iy, : N, — N*. By the
proof of [175, Theorem 1], the map Ty« is given by

def = .
Ty = T o ®p o,

where ipr: M — M**| T def (in,)* o T**: M** — N is the unique weak* continuous
extension of T' given by [29, Lemma A.2.2] (and its proof). The formula of the weak*
extension of the proof of [175, Theorem 1] is formally different but equivalent to
ours. Indeed, in [175, Theorem 1], the weak* continuous extension 7T is given by

T = (T*|N.)* and we have (T*|N,)* = (T* oin.)* = (in.)* o T**.

ProrosiTioN 3.1. — Let M and N be von Neumann algebras. Then the map
Py«: B(IM,N) — B(M,N), T — Ty~ is a contractive projection. Moreover, if
T: M — N is completely positive then the map Py«(T) is completely positive.
Finally, if T: M — N is completely bounded then Py« (T) is also completely bounded
and Py+: CB(M,N) — CB(M, N) is a contractive projection.

Proof. — Tt is obvious that Py« is a projection. Note that by [29, Lemma A.2.2],

we have HT = ||T||,;— - Now, it is clear that, by composition, Py« is con-

tractive. If TJKM_)ﬁ N is completely positive, using Lemma 2.9, it is immediate to
see that Ty~ is completely positive. By [29, Section 1.4.8], if T: M — N is com-
pletely bounded, then 7': M** — N is completely bounded with the same completely
bounded norm. By composition, we deduce that Py« (T) is completely bounded and

that || Pox (T) || ey, ar—n < 1T Ml pr— N N

LEMMA 3.2. — Let M and N be von Neumann algebras equipped with semifinite faith-
ful normal traces. Suppose 1 < p < oco. Let T: LP(M) — LP(N) be a linear map.
Then T is decomposable if and only if T°P is decomposable. In this case, we have

||T||dec,LP(M)—>LP(N) = ”Top”dec,LP(M)OP—»LP(N)OP‘

Proof. — Assume that T: LP(M) — LP(N) is decomposable. By (1.0.4), there exist
linear maps vy, vy : LP(M) — LP(N) such that {;é 3;} : SP(LP(M)) — SE(LP(N)) is
completely positive with max{[[v1], [lv2ll} < [Tl gec,to(ar)—1r(vy) + & We claim
that [;ﬂ% 3:] : SP(LP(M)°P) — SE(LP(N)°P) is also completely positive. Indeed,
let b € M, (S5(LP(M)°P))y = S5 (LP(M°P)). Denoting b* the transposed matrix,
where transposition is executed in S} , i.e., both in the M,, and in the S} component,

an obvious computation gives
T° '
T (%1

(IdMn ®
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which is positive in M,, (S5 (L?(M)°P)) according to Lemma 2.8, applied twice, pro-
vided that we show that the map [15,2 :Z:] : SP(LP(M)) — SH(LP(N)) is completely
positive. But this can be seen using the identity

Vo T°
T U1

U1 T

=F
N T° V2

va

where Fpr: SY(LP(M)) — S5(LP(M)) denotes the flip mapping

I ) R R

which is completely positive according to (2.2.3) (and similarly for Fy). We infer that
the linear map 7°P: LP(M)°P — LP(N)°P is decomposable and that

||T°p||deC7L,,(M)Op_)Lp(N)Op < max{|lvz||, [loa]} < ||T||dec7Lp(M)_>Lp(N) +e.

Letting € — 0 and using symmetry, we can finish the proof of the lemma. O
We will use the following easy (!?) lemma, several times.

LEMMA 3.3. — Let M and N be von Neumann algebras equipped with semifinite faith-

ful normal traces. Suppose 1 < p < co. The Banach adjoint of a bounded operator

T Tia

o | SEIP() — SELN(N)

identifies to {g;; g;z;] : 55* (L (N)) — Sg* (LP"(M)) and the Banach preadjoint

of a weak* continuous operator [%i %;] : Mo (M) — Mo (N) identifies to the bounded

Ti1)« (T12)«
operator [ETﬂ;* gngg*} : SHLY(N)) — SI(LY(M)).

The following complements [112, Lemma 3.2] and completes a gap in the proof of
the case p = 1.

12. The first part is a consequence of the following computation (and the second part can be proved

similarly):
( [a b:| ) y] > N < [ y] >
c d z w SE(LP(N)),82" (L7* (V) z w

T The
To1 The

Ti1(a) Tiz2(b)
Tr1(c) Ta2(d)

(

= 7(T11(a)z) + 7(T12(b)y) + 7(T21(c)2z) + 7(T22(d)w)
= 1(aT7y(2)) + T(bT12(v)) + (T3 (2)) + T(dT55(w))

_ a b T oy
- c d z w » P '
S5 (LP(M)),S5 (LP™ (M)

* *

Tl 1 Tl 2
* *

T21 T22

)
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PROPOSITION 3.4. — Let M and N be two von Neumann algebras equipped with faith-
ful normal semifinite traces. Suppose 1 < p < co. A bounded map T': LP(M) — LP(N)
18 decomposable if and only if the Banach adjoint
T*: LP"(N) — L? (M) is decomposable. In this case, we have

(3.1.1) 1Tl qec, e (vy—Lo () = 1T lqee,Lo® (v) =107 (ar) -

Proof. — Suppose 1 < p < co. Suppose that T': LP(M) — LP(N) is decomposable. There
exist some maps vy, vy: LP(M) — LP(N) such that [;% 3;] is completely positive.
. . vi T * . vy T~ vy T~
Using Lemma 3.3, we obtain that ([To m]) = [(TO)* v;] [(T*)o v ]
By Lemma 2.9, this operator is completely positive as a map S (L?" (M) — S% (L?"(N))°P.

So by Lemma 2.17, it also defines a completely positive map Sg* P (M)) — Sg* (LP"(N)).
We conclude that T*: LP(M) — L?(N) is decomposable with

1T lgee,Lo a1y — Loy < max{l|or ]l [[og]]} = max{[joa ], [Jo2]}-

Taking the infimum, we obtain [|T*(| 4o 1.0 (vr)— 1o (8) < 1T ldec, o (avr)—1o(vy- P # 1,
a symmetric argument gives the result.
Suppose p = 1 and that the map T*: N — M is decomposable. There ex-

ist some maps wvi,v3: N — M such that [ (73’*1)0 Z}:} is completely positive.

Note that v; and v, are not necessarily weak* continuous. However, it is not

difficult to see by uniqueness that Py ([(Tvi)o ZD = {(:Tl)”)% (U:; *], where
Py : B(M3(N),Ma(M)) — B(M2(N),M2(M)) is the projection of Proposition 3.1.

(v1)wx T*
Moreover, the same result says that (TY)° (v2)e

that max{||(v1)w=|, |(v2)w=||} < max{|v1],]|lv2||}. Using Lemma 3.3, we obtain

that ([((I;ZV)VJ (vf)*w* D* = [((UIT)”O”*)* ((Uz)Tw*)* ] By Lemma 2.9 and Lemma 2.17, this

operator is completely positive as a map S3(L'(M)) — S3(L'(N)). We conclude
that T"is decomposable with [|Tgec, 11 (ar) 11 vy < max{[[((01)we)«ll [[((v2)w) |} =
max{||(v1)w= |, [|(v2)w+ |} < max{|v1],]|vz]|}. Taking the infimum, we obtain the
inequality [|7'l|ec 11 (ary—11(v) < 1T oo, n— - 0

} is still completely positive and

Let M;, My and M3 be von Neumann algebras equipped with faithful nor-
mal semifinite traces. Suppose 1 < p < oo. Let Ty: LP(M;) — LP(M3) and
Ty: LP(Msy) — LP(M3) be some decomposable maps. It is easy to see that the
composition T, o T is decomposable and that

(3.1.2) T2 © Tillgee < 1 T2llgee 1711l gec -

Let M;, Ms and M3 be approximately finite-dimensional von Neumann al-
gebras equipped with normal semifinite faithful traces. Suppose 1 < p < oo.
Let Ty: LP(M;) — LP(Ms) and T: LP(Ms) — LP(Mj3) be some regular maps. It is

easy to see that the composition T5 o T} is regular and that
(3.1.3) T2 0 Thllreg < [ T2llceq 1Tl

reg reg °
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Let M and N be approximately finite-dimensional von Neumann algebras equipped
with normal semifinite faithful traces. Suppose 1 < p < co. According to [143, Corol-
lary 3.3] and [143, Theorem 3.7| (see also [142, (6) page 264]), we have the isometric
interpolation identity (%)

(3.1.4) Reg(LP(M),LP(N)) = (CBy-(M, N),CB(Ll(M),Ll(N)))%,

where we use the Caldéron’s second method or upper method [22, page 88] and where
the subscript w* means “weak* continuous”. The replacement of the space CB(M, N)
of [143, Corollary 3.3] by CBy« (M, N) is irrelevant thanks to Proposition 3.1. We
prefer to use weak* continuous maps on von Neumann algebras in the sequel.

By Lemma 2.5 and (3.1.4), note that we have isometrically

Reg(L(M°P), LP (N°P)) = (CBy- (M°P, N°?), CB(L! (M°P), L} (N°F))) #
= (CBy+ (M, N),CB(L' (M), L!(N)))? = Reg(LP(M),L7(N)).

So a map T: LP(M) — LP(N) is regular if and only if the opposite map
T°P: LP(M°P) — LP(N°P) is regular with equality of regular norms.

Suppose 1 < p < co. Let M and N be hyperfinite von Neumann algebras equipped
with normal faithful semifinite traces. A bounded map 7': LP(M) — LP(N) is regular
if and only if the Banach adjoint map T7%: L?" (N) — L?" (M) is regular. In this case,
we have

(3.1.5) ||T||reg,LP(M)—>LP(N) = ||T*||mg,Lp* (N)oP—LP* (M)oP *

3.2. On the infimum of the decomposable norm

PROPOSITION 3.5. — Let M and N be two von Neumann algebras equipped with faith-
ful normal semifinite traces. Suppose 1 < p < co. Let T: LP(M) — LP(N) be a decom-
posable map. Then the infimum in the definition of ||T|| 4. is actually a minimum i.e.,
we can choose v and vz in (1.0.4) such that |T|gec 1.0 (ar)—1r vy = max{[va ], [lv2]l}-

Proof. — See (85, page 184] for the case p = oo. Suppose 1 < p < oo. For
any integer m, let v,,w,: LP(M) — LP(N) be bounded maps such that the

map [;ﬁé an] : SP(LP(M)) — SE(LP(N)) is  completely  positive  with
max{||vn |, lwnll} < [|T||lgec + =. Note that since LP(N) is reflexive, the closed
unit ball of the space B(LP(M),LP(N)) of bounded operators in the weak op-
erator topology is compact. Hence the bounded sequences (v,) and (w,) admit

convergent subnets (v,) and (w,) in the weak operator topology which converge to
some v,w € B(LP(M),LP(N)). Now, it is easy to see that [ % 7] = lim, {“‘* T }

T° w T° wq

in the weak operator topology of B(S5(LP(M)),S5(LP(N))). By Lemma 2.10, the

13. The compatibility means, roughly speaking, that the elements of the intersection
CB(M, N) N CB(L'(M),L*(N)) are the maps simultaneous bounded from M into N and from L (M)
into L1 ().

SOCIETE MATHEMATIQUE DE FRANCE 2023
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operator on the left hand side is completely positive as a weak limit of completely
positive mappings. Moreover, using the weak lower semicontinuity of the norm, we
see that ||v|| < liminf, ||va] < [T 4ee and |Jw| < liminf, |wa| < || T 40e- Hence, we
have max{[|v[|, [wll} = [Tl gec-

The case p = 1 can be proved by duality using the proof of Proposition 3.4. O

REMARK 3.6. — Suppose 1 < p < oo. If T: L?(M) — LP(N) is a contractively
decomposable map, we ignore if we can find some linear maps v1, vy such that the
map @ of (1.0.3) is completely positive and contractive.

3.3. The Banach space of decomposable operators

PROPOSITION 3.7. — Let M and N be von Neumann algebras equipped with faithful
normal semifinite traces. Suppose 1 < p < oo. If A € C and T: LP(M) — LP(N)
is decomposable then the map NI is decomposable and ||)\T||deC,Lp(M)HLp(N) =

|)‘| ||T||dec,Lp(M)—>Lp(N) .

Proof. — By symmetry, it suffices to prove |AT|| .. < |A| |7 gees since then | T[]y, =
32T .. < \%I AT || joo- We can write A = |A|0 where 6 is a complex number such
that |§] = 1. Assume that vy,ve: LP(M) — LP(N) are linear maps such that the
map [;2 3;} : SP(LP(M)) — SP(LP(N)) is completely positive. By (2.2.3), the linear

)
* | vi(r) T(-
map [§9)° [0 70 14

to check that the latter operator equals [éﬁo f} Thus the map || - [ggfo f} =

9] is also completely positive on S5(LP(M)). But it is easy

[(I;j\y)lo | ;\“P‘Z 2] is also completely positive. We deduce that T is decomposable and
that [|[AT|| 4o, < max { [|[Av]l, [[[AJv2]l } = [A|max { [|v1]|, [|v2] }. Passing to the infi-
mum yields the desired inequality [|AT|| 4o < A 17| goc- O

It is not proved in [112] that ||'||deC,Lp(M)_)Lp(N) is a norm.

PROPOSITION 3.8. — Let M and N be two von Neumann algebras equipped with faith-
ful normal semifinite traces. Suppose 1 < p < oco. Then Dec(LP(M),LP(N)) is a vector
space and ||| jec 10 (ar)— 1o () @8 @ norm on Dec(LP (M), LP(N)).

Proof. — Let Ty, To: LP(M) — LP(N) be decomposable maps. There exist some linear
maps v1, vg, wy,wy: LP(M) — LP(N) such that [’E’ f;} and [wl TQ} are completely

Tzo w2
.. . vy Ty wy T | _ | vitwr Th+T2 | _ vi+wy Ti1+T2
positive. We can write |:T10 v } + [T;’ wz} = |:T1°+T2° v2+w2} = |:(T1+T2)o v2+w2] More-

over, this map is completely positive. Hence T + T» is decomposable. Furthermore,
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we deduce that
|71 + Toll gee < max { [lv1 +wil], vz + wall }
< max { o] + [Jwi ], [Jvz|| + [lwz] }
< max { [v1], [[oz]l } + max { ][, lwe] }.
Passing to the infimum, we conclude that the sum T + T5 is decomposable and we
obtain the inequality |71 + T2 || joc < 171l gee + 172l goe- The absolute homogeneity is
Proposition 3.7. For the separation property, we can use Proposition 3.30 if the von

Neumann algebras are QWEP. If it is not the case, suppose ||T| .. = 0. By Propo-
sition 3.5, the map [ % 7] : SP(LP(M)) — SH(LP(N)) is completely positive. Now,
let b € LP(M) with [|b]|y, 5 < 1. By Proposition 2.14 there exist some a, ¢ € L?(M)
with [lall;sar) < 1 and [c[|lgs(pry < 1 such that the element [2°] of SY(LP(M)) is
positive. We deduce that the element [T(?))* T(()b)] is also positive. Using Lemma 2.13,

we infer that T'(b) = 0. We conclude that T' = 0. O

LEMMA 3.9. — Let M and N be von Neumann algebras equipped with faithful normal
semifinite traces. Suppose 1 < p < oo and let T: LP(M) — LP(N) be a decomposable
map. Then T°: LP(M) — LP(N) defined by T°(z) = (T(z*))* is also decomposable
and we have ||T| 4o = |1T° || dec-

Proof. — Consider some completely positive maps wvq,ve: LP(M) — LP(N) such

that [;&, 3;} is completely positive. Using (2.2.3), note that the map

a b 0 1| |a b||0 1 d c
— =
c d 1 0f|c d|lf1 O b a
is completely positive and similarly Fy: S5(LP(N)) — SE(LP(N)). We deduce that
the map

Fu: S(LP(M)) — S3(LP(M)),

(%] T°

T (%

is completely positive. Hence T° is decomposable and ||7°° < max{||lv; val|}.
p y P p dec ’

Passing to the infimum gives [[7°]|gec < [|T|gee- Since (1°)° = T, we even have
ITllaec = Tl gee- =

U1
:fNo

T

V2

PRrROPOSITION 3.10. — Let M and N be two von Neumann algebras equipped with faith-
ful normal semifinite traces. Suppose 1 < p < co. Then the space Dec(LP(M),LP(N))
is a Banach space with respect to the norm ||| jec 1.0 (ar)— 1.0 (N -

Proof. — Note first that |||, ()10 vy < 1T |l dgec, e (1) — 10 () for any decomposable

map T'. Indeed, for given € > 0, let vy, ve: LP(M) — LP(N) be completely positive
V1 T
T‘O V2

Let b € LP(M) of norm less than one. According to Proposition 2.14, there exist

maps such that ] is completely positive and max{||vi|, [|[v2|} < [|T||4ec + €-
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a,c € LP(M) of norm less than one such that [ 2 %] is positive. Thus, [ vi(a) T(b) ] is

T°(b") va(c)
positive. Then by Lemma 2.13,

17O, < \/llvl(a)Hp [va (I, < max{lor[[, [loal[}/llall, llell, < 1T Nlgee + -
Letting &€ — 0 shows that ||T||LP(M)—>LP(N) < ”T”dec,LP(M)—»LP(N)'
Thus, if (T;,) is a sequence in Dec(LP (M), LP(N)) such that -7, [|Th || 4ec < 00, We
have that >~ | T,, converges in B(L?(M),L?(N)) with sum 7. Let v1 ,,, va,, be maps
such that {vl’" n

o
Tn V2,n

1s complete ositive with maxq||v1.n Vonllt < ||4n +e27".
| is completely positive with max{|jvy.all, [v2,0ll} < |Tollgee + 227

V2

Then the series Z [v%'o” Tn] converges in B(SY(LP(M)), S5 (LP(N))) and is com-
n=1

pletely positive by Lemma 2.10. With v; def > oo [ vin where i = 1,2, we infer

n=1

that {;ﬁ 3;} is completely positive. So T' is decomposable with

oo oo
1Tl goc < max{[|oa]l, [[ozll} < Y max{florall, lloznll} < e+ D 1Tl e -

n=1 n=1
Finally, replacing T by T — 22;1 T, in the previous argument shows that
N [e9)
|7 - S, <o+ S Tl
Hence (Zi:jzl T,) converges in Dec(L?(M),L?(N)) to T O

ProprosITION 3.11. — Let M and N be two von Neumann algebras equipped with
faithful normal semifinite traces. Suppose 1 < p < co. Let T: LP(M) — LP(N) be a
completely positive map. Then T is decomposable and

1Tl gec, .o (ary—re vy S 1T MlLe (ar)— 1o ()

Proof. — Using Lemma 2.11, we see that the linear map [Z 1] : S5(L?(M)) — S5 (LP(N))
is completely positive. We infer that T is decomposable and that the inequality is
true. O

PROPOSITION 3.12. — Let M and N be von Neumann algebras equipped with faithful
normal semifinite traces. Suppose 1 < p < oo. Let T: LP(M) — LP(N) be a linear
map. Then the following are equivalent.

1. The map T is decomposable.

2. The map T belongs to the span of the completely positive maps from LP(M) into
LP(N).

3. There exist some completely positive maps Ty, T5,T3,Ty: LP(M) — LP(N) such
that
T=T,—1T5 +1(T3 — T4)

If the latter case is satisfied, we have

||T||dec,Lp(M)_,Lp(N) <ITi+ T2+ T+ T4||Lp(M)_,Lp(N) :
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Proof. — If there exist some completely positive maps 17, T, T3, Ty: LP(M) — LP(N)
such that T'= Ty — Ty + i(T5 — T4) then T belongs to to the span of the completely
positive maps from LP(M) into LP(N). If T belongs to the span of the completely
positive maps from LP(M) into LP(N), by Proposition 3.11 and Proposition 3.8, we
deduce that T is decomposable. Moreover, the proof of these results shows that if
T =T, —To+i(T3 — Ty) for some completely positive maps T1, T, T3, Ty then we can
use M vy = vy =Ty + T + T3 + Ty in (1.0.3).

Hence we have ||T'||jec 1.0 (ary—re(vy) < 1T1 + T2 + T3+ Tallpo (ary— e (-
Now, suppose that the map T is decomposable. There exist some completely posi-
tive maps vy, vq: LP(M) — LP(N) such that & = [“1 T] is completely positive. By

'I’Q v2
(2.2.3), the maps Ty = 2 [11]@[1], T» = 1[11]® [ 4], T3 = 1[1i] @[] and
Ty = 3 [1-1] ®[}] are completely positive from L?(M) into LP(N) and it is easy to
check that T'=T, — Ty + (T3 — Ty). O

REMARK 3.13. — Suppose 1 < p < co. Let T: LP(M) — LP(N) be a decomposable
operator. We can define

def .
I Tl = inf {IT2] + T2l + 1750 + 174l },

where the infimum runs over all the previous possible decompositions of T as
T =T — Ty +i(T3 — Ty) where each T; is completely positive. It is stated in [146,
page 230] that [|-[|; is a norm, but it is not correct. Indeed, let M = C. We have
LP(M) = C. Let T: C — C, z + «. Then we will prove that ||T; = 1 and

that [|(1+ )Ty =2 # V2 =141 [Tl 4 First, we have

HTH[d] = inf{a1 +azx+as+aq: ap > 0, 1= ax —a2+i(a3 —a,4)},

For such a decomposition, we have 1 = R(a; — as +i(az — a4)) = a1 — as. We deduce
that |75 = a1 = 1+ a2 > 1. The decomposition 1 = 1 — 0 +i(0 — 0) gives the
reverse inequality. Moreover, we have

||(1—|—i)TH[d]:inf{a1+a2—|—a3—|—a4: ar >0, 1—|—i:a1—a2+i(a3—a4)}.

For such a decomposition, we have 1 = R(a; — as + i(ag — a4)) = a1 — az and
1 = (a1 — a2 + i(az — a4)) = as — ag. We deduce that a; = 1+ a2 > 1 and
a3 = 1+aq = 1. Then |1 +1)T||y = a1 + a3 = 1+ 1 = 2. The decomposition
14+i=1-0+41i(1 —0) gives the reverse inequality.

However, it seems that ||-[|;; is a norm on the real vector space of decomposable
operators. The verification is left to the reader.

14. The argument is similar to the one of [68, Proposition 5.4.1] and uses a straightforward gener-
alization of a part of [68, Proposition 1.3.5].

SOCIETE MATHEMATIQUE DE FRANCE 2023



32 CHAPTER 3. DECOMPOSABLE MAPS AND REGULAR MAPS

ProrosiTiON 3.14. — Let M and N be von Neumann algebras equipped with
faithful normal semifinite traces. Suppose 1 < p < oco. Any finite rank bounded
map T: LP(M) — LP(N) is decomposable.

Proof. — Suppose 1 < p < oo. It suffices to prove that a rank one operator
T = Tr(y-) ® z is decomposable where y € L? (M) and z € LP(N). We can write
x =1z — 2o+ i(xs — x4) and y = y; — y2 + i(ys — y4) with z,yx > 0. Hence we
can suppose that y > 0 and = > 0. By Proposition 2.23, we deduce that the linear
form Tr (y-): LP(M) — C is completely positive. It is easy to deduce that Tr (y-) ® z is
completely positive, hence decomposable by Proposition 3.11. The case p = oo is
similar. O

3.4. Reduction to the adjoint preserving case

LEMMA 3.15. — Let E be an operator space and suppose 1 < p < oco. Then for

any a,b,c,d € E, we have
0 b a b
c 0 c d

Proof. — Consider the Schur multiplier M4: S° — S3° where A = [9]]. Using
Lemma 2.12 with £ = C and p = oo, we note that for any a,b,c,d € C
53°

N (RN
]

55°
> max {|al? + |c|, |b]> + |d]*} > max {|c|, b} =
We deduce that the Schur multiplier M4 is a contraction, hence a complete contrac-
tion. By duality, M 4: S3 — S} is also a complete contraction. Using Lemma 3.20, we
deduce that My is contractively regular on S5 and the lemma follows. O

S3(E) ‘ S3(E)

la]? +|c|> ab+cd
ab4cd |b]? + |d|?

55°
2

53°

LEMMA 3.16. — Let M and N be approximately finite-dimensional von Neumann
algebras equipped with faithful normal semifinite traces. Suppose 1 < p < oo and let
T:LP(M) — LP(N) be a regular map. Then T°: LP(M) — LP(N) defined by T°(z) =
(T'(x*))* is also regular and we have ||T°||reg = || Tl

reg”

Proof. — We recall that by (3.1.4), Reg(L?(M),LP(N)) is a complex interpola-
tion space following Calderén’s upper method. Choose now an analytic function
F:S — CB(M,N)+ CB(L'(M),L*(N)) of G defined on the usual complex interpo-
lation strip S = {2z € C: 0 < Rz < 1}, such that F'(0) =T with [|[F||; < [|T],., + -
Put G(z) = F(%)°. Then the function G also belongs to G with ||G||; = ||F|5 and we
have G'(0) = T°. Thus the map T is regular and ||7°||seg < ||T||,o +¢- Lettinge — 0
we obtain || T°||reg < ||T|l,e,- Since (T°)° =T, we even have ||T°||weq = ||| O

reg’ reg’
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ProproSITION 3.17. — Let M and N be approzimately finite-dimensional von Neu-
mann algebras equipped with faithful normal semiﬁnitejmces, Suppose 1 < p < oo and
that T': LP(M) — LP(N) is a linear mapping. Define T: S5(LP(M)) — S5(LP(N)) by

(e )

Then T is adjoint preserving in the sense that T(z*) = (T(a:)) . Moreover, T is
regular if and only if the map T: SY(LP(M)) — SE(LP(N)) is regular and in this
case, we have [T qq 1o (vry—rr(v) = T lveg, 52 (1e (b)) — 52 (LR (N)) -

0 T
T°(c) 0

Proof. — Let z = [ %] € S5(LP(M)). We have

- ~ * * 0 T * 0 T *
a7 (] <) - ()] _ ()
b* d* 7°(b*) 0 T(b)* 0
and also
o o 1M 0 T°()* 0 T(c)
T°(c) 0 T(b) 0 T(b) 0
We conclude that T is adjoint preserving, i.e., T° = T. Assume first that

1<p<oo. Let E be any operator space. Assume first that T is regular. For
any [24] € S5(LP(M, E)), according to Lemma 2.12 with E replaced by LP(N, E),
we have

Fem 2]

The previous quantity can be estimated by [|T'[| ., (||b||L,, mp) T ||c||L,, M E)) due

to Lemma 3.16. According to Lemmas 2.12 and 3.15 with E replaced by L?(M, E),
this in turn can be estimated by

a b

c d

o

This shows that | T®Idg I s2wr(ar,E))—s2r(N,B)) < IT || Passing to the supremum

0 (T ®Idg)(b)
(T° ® Idg)(c) 0

S2(LP(N,E)) H

1
= (H(T®IdE ||Lp NE)+||(TO®IdE ||LP NE)F'

SE(LP(N,E))

< T llreg
SE(L? (M, 2))

1T | g

S5 (Lr(M,E))
over all operator spaces F, we deduce that T is regular and that ||T||seg < |||

reg’
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For the converse inequality, assume that T is regular and let z € L? (M, E). Ap-
plying Lemma 2.12 twice, we have

0 0

|

<7 | reg

0 (T® IdE)(x)]

(T @ 1de) (@)l (v, ) = ‘
S2(LP(N,E))

ss) o7

0 =z
0 0

= ||T||reg ||x||LP(M,E) :

0 T
™0 S3(LP(N,E))

53 (Lr(M,E))

We conclude that T is regular and that ||T,., < [|Tlreg-

reg —

The case p = oo is similar, using in the second part of Lemma 2.12 each time. [

PROPOSITION 3.18. — Let M and N be von Neumann algebras equipped with faithful
normal semifinite traces. Suppose 1 < p < oo. Let T: LP(M) — LP(N) be a linear
map. Then T is decomposable if and only if the map T': SE(LP(M)) — SE(LP(N)) from
Proposition 8.17 is decomposable, and in this case, we have ||T||deC’Lp(M)_,Lp(N) =

||T”dec,Sg(LP(M))—>S§(LP(N)) .

Proof. — Suppose that T is decomposable. Choose some maps vy, ve: LP(M) — LP(N)
such that [”1 T} : SE(LP(M)) — SE(LP(N)) is completely positive. By (2.2.3), the

To V2

mapping

001 0[fu 7 0 o foo 1ol [[u o i

OIOOTOUQOO()OIOO_OUQ

100 0|0 0 v, T 1000 7 vy 0

000 1[|0 0 T° w 0 0 01 0 v
is also completely positive from S%(L?(M)) into S (L?(N)). Therefore the map T is
decomposable and [|Tlaec < ||[% UZ]H = max{||v1]|,||v2||}, the latter according to

[145, Corollary 1.3]. By passing to the infimum over all admissible vy, ve, we see
that [|T][aec < 17| gec-

Now suppose that the map 7" is decomposable. Let vy, vo: S5(LP(M)) — SH(LP(N))

such that the map [1}1 T} : SY(LP(M)) — SY(LP(N)) is completely positive. Put
V2

wy: LP(M) — LP(N), a = (v1 ([§8]))y; and wa: LP(M) — LP(N), d — (v2 ([g g]))ss-

Then each w; is also completely positive as a composition of completely positive
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mappings. We also define

J: SHIP(M) —  SPIP(M))

[aOOb-|

a b 00 0 0
|

¢ d 000 0

c 0 0 d

It is easy to see that J is a completely positive and completely isometric embedding.
Then an easy computation gives

oo ot

[a 0 0 b] [1 0]
[t o0 o] [ T[]0 0 0 0 0 0
_l0001] T w||]o0o0o0 0 0
c 0 0 d [0 1}
[ ([a 0 o Tw)| | [1 0]
[t o0 o0 7“([0 0_) 0 0 0 0
__0001]' 0 0] 1)2<[0 01>.00
| |T°(e) 0 o dl)| |o 1
_ |wila) T(b)
C[T(0) wa(d)

T
Using (2.2.3), we deduce by composition that the map [1%1 ] is completely posi-
Wz

tive. We infer that T is decomposable and that

1T gee < max{fws]l, [[wa|l} < max{lvs]], [Jvz]|}-

Passing to the infimum over all admissible vy, vg, we obtain that || T[4 < ||7|ldec. O

ProrosiTiION 3.19. — Let M and N be von Neumann algebras equipped with
faithful normal semifinite traces. Suppose 1 < p < oo. An adjoint preserving®
map T: LP(M) — LP(N) is decomposable if and only if one of the two following

15. That means that T'(z*) = T'(z)* for any z € LP(M).
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infimums is finite. In this case, we have
||T||dec,LP(M)—>LP(N) = lnf{ ||S|| Sk LP(M) - LP(N) Cp, -5 Scp T Scp S}
= 1nf{ ||T1 +T2” : Tl,TQZ LP(M) — LP(N) Cp, T = T1 —TQ}.
Proof. — The first equality is a consequence of Lemma 2.20 and Lemma 2.21. To
prove the second equality, first assume that there exists some completely positive
map S: LP(M) — LP(N) such that
—S5<p T <ep S.

Then Ty = £(S+T) and Ty = (S —T) are completely positive and we have Ty +T5 =
S+ +3(S-T)=Sand Ty - T =(S+T)—-3(S-T)="T.

Conversely, suppose that we can write T' = T; — T for some completely positive
maps T1,T5: LP(M) — LP(N). Then we have

_(Tl + T2) Scp T Scp (Tl +T2)

This proves the second equality. O

3.5. Decomposable vs regular on Schatten spaces

Similarly to the commutative case, an absolute contraction between noncommuta-
tive LP-spaces is contractively regular.

LEMMA 3.20. — Let M and N be approximately finite-dimensional von Neumann al-
gebras which are equipped with faithful normal semifinite traces. Let T: M — N be
a completely contractive map such that the restriction to M NLY(M) induces a com-
pletely contractive map from LY(M) into L1(N). Then for any 1 < p < oo, we have
TN cog, Lo vy — 1o () < 1-

Proof. — Let E be any operator space. According to [68, Proposition 8.1.5], the
map T ® Idg: L®°(M,E) = M ®uin E — L®°(N,E) = N ®uin F is completely
contractive. Moreover, by [68, Corollary 7.1.3] the map

T®Idg: LY(M,E) = LY(M)®E — LY(N,E) = L}(N)®E

is also completely contractive, where ® denotes the operator space projective tensor
product. By interpolation, we infer that the map T'® Idg: LP(M, E) — LP(N, E) is
completely contractive for any 1 < p < oo. Passing over the supremum of all operator
spaces, we obtain the lemma. O

Suppose 1 < p < co. If n and d are integers then a particular case of [143, Theo-
rem 1.5] gives for any z € SE(M,)

(3851)  llellsgny = inf { lallgzs Dyl 1852 7 = (@ ® L)y(5 © 1)}

THEOREM 3.21. — Let nnm € N and 1 < p < oo. Then any linear mapping
T:SP — SP satisfies

||T||reg,an—>SfL = ”T”dec,an—>S£ :
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Proof. — Assume that the theorem is true for all adjoint preserving maps 7': S?, — S&,
ie., T(z*) = T(x)*. Then we can deduce from Propositions 3.18 and 3.17, with the
adjoint preserving mapping 7: S5 — S% | that ||T||yoe = | Tlldec = | T|lreg = |7
Hence we can assume in addition that T is adjoint preserving.

First we show ||T,., < [|Tll4ec- The following proof is inspired by the proof
of [143, Lemma 2.3]. Let ¢ > 0. According to Proposition 3.19, there ex-
ist some completely positive maps T7,T%: SE, — SP such that T' = T — Tj
and [Ty +T2|| < [|T|lqoc + € According to Choi’s characterization [43, Theo-
rem 1], there exist ai,...,a;,b1,...,b € My, ,, such that T1(z) = 22:1 ajxa) and
To(z) = 22:1 bjzby. Let x be an element of ST, (Mg) with ||z g (nr,) < 1. By (3.5.1),
there exists a decomposition z = (a ® I4)y(8 ® 14) with o, 8 € S?P of norm less than
1 and y € M,, (M) which is also of norm less than 1. Using the notations

reg’

def def
a; = [aia,...,a]q], [ = (a1B8%,...,a;8"),

and

def ;% * def * Q% * %
as = [bla,...,bja], P2 = (b10%,...,b/0%)

of My ;(M,, ), we can write
(T ®Idwm,)(z) = (T @ Idy,) ((0 © La)y(8 © 1a))
Y e ® yz’j) B® Id)) = > (T®Tdw,)(aei;8 ® yi;)

7,j=1

(T ® Ide) ((a ® Id)<

1,j=1

m
T(aei;B) ® yij = Z T1(eiiB) ® yij — Ta(aeii B) @ yij

i,j=1

Il
IMS

B

&
Il
-

*

apae;ifag ® yij — bpoe;; Bbr ® yij

|
:MS
MN

ﬁ
<
Il
—
™
=~

1

(ara ® Ia)(ei; ® yij)(Bar ® 1a) — (bra ® 1a)(eij ® yij) (Bbr © 1a)

Il
:MS

1,j=1k=1
1 m m
=) (apa®]ly) < Z €ij ® yij> (Bar ®14) — (bra ®1y) < Z €ij ® Zﬁj) (B, ® 1)
k=1 i,j=1 i,j=1
l
= (a,’;a X Id)y(ﬁak (9 Id) — (bZa X Id)y(ﬁbk ® Id)
k=1
v 0 0] [ Be]
. . 0o . : :
:([a1a7...,ala]®1d) . el
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o o) (1]
_([b”{a,...,bi"a]®ld) 0 h : ® 14

: .0 :

0 -~ 0 y 8b
=) Loy Bl - (el Ley)- (8 @Ig).

The matrix [; ® y € M;(M,,,(Mg)) is of norm less than 1. A simple computation shows
that

(T ®1dy,)(z) 0
0 0

(@ ®L) GOy (Fol) —(eel) Loy (5ol o]

0 0
a;  —
:< 1 o2 ®Id)
_0 0 -

0
Bz 0
On the other hand, we have

a; —o a; —a a; 0 P\
0 0 520 g2 0 0 —a3 0

P\ 2p
* 0 b
- <[a1a1 + asa; ] ) =Tr ((a10f + azab)?) >

T®y 0
0 Loy

r q*
H a1 —Qg

0 0
l P i
=Tr ((Z apac*ag + bZaa*bk) ) = ||T1 (™) + Tr(aa® Hs”
k=1

1 « 1 1
ST+ T2llgs op llea™ |5 = [IT2 + T2l g gp el g2e

1
ST+ Tollge e -

1
< | Ty + T2l gp _, gp- Using (3.5.1), we
52p

In the same way, it follows that

5
gz 0

(T ®1dy, )(z) 0]

infer that

(T ®1dw,)(x)

1 1
ST+ Tallgr _gr 1Ty + Tallge _gr -

0 0 S5, (Ma)

Hsﬁ(Md) - H

This yields [|T'® Idw,llsr vy—srony) < 171+ Tollgr g2 < [ Tgec + € hence
1T 60 < IT|| goot€- Passing e — Oylelds one of the desired estlmates 1T ee < 1T gec-

Finally we shall show |74, < [T cq- Assume that ||T|
[146, Theorem 5.12], note that we have isometrically

reg — reg —

< 1. According to

reg

(3.5.2) CB(5%) = M, ®;, M,
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where ®;, denotes the Haagerup tensor product. Moreover, using the properties of
this tensor product [145, pages 95-97], we obtain

M @5 MPP = (C,, ®n Ry)® @1 (Cp, @1 Rp)P = RYP @4, CoP ®p, RYP @4, CoP
=C,9n R, ®rC, @R, =C,, Qp S,ll ®n Ry = Mn(S}l)
=M,, ®min S;. = CB(S}).
We have v4(T) < 1 with 6 = % and vy defined in [144, Theorem 8.5], according to
[143, Corollary 3.3]. Then since T is adjoint preserving, [144, Corollary 8.7] yields

that |7 e < 171 + T2llgz, ,s» < 1 where T' = T7 — T, and T1, T> are completely
positive mappings M,,, — M,, given there. The proof of the theorem is complete. [

3.6. Decomposable vs regular on approximately finite-dimensional algebras

In this chapter, we will extend by approximation Theorem 3.21 to approximately
finite-dimensional von Neumann algebras. We start with two lemmas which show
that, under suitable assumptions, the decomposability or the regularity of maps is
preserved under a passage to the limit.

LEMMA 3.22. — Let M and N be von Neumann algebras equipped with faithful nor-
mal semifinite traces. Suppose 1 < p < oo. Let (T,) be a net of decomposable
operators from LP(M) into LP(N) such that ||Tallgec 1o (ar)y—ro(vy < C for some
constant C' which converges to some T': LP(M) — LP(N) in the weak operator topol-
ogy (in the point weak* topology of B(M,N) if p=00). Then T is decomposable and
||T||dec,LP(M)—>LP(N) < lim inf,, ”TaHdec,LP(M)—)LP(N)‘

Proof. — We assume first that 1 < p < co. By Proposition 3.5, for any «, there exist
some maps Uy, Wy : LP(M) — LP(N) such that the map

(e} TOL
; (L7 (M) — SB(LP(N)
T, wq
is completel ositive with max{||v, We, = ||T < C. Note that since
p y P ) dec

LP(N) is reflexive, the closed unit ball of the space B(LP(M),LP(N)) of bounded
operators in the weak operator topology is compact. Hence the bounded nets (vy)
and (wo) admit convergent subnets (vg) and (wg) in the weak operator topology
which converge to some v, w € B(L?(M),LP(N)). Now, it is easy to see that

v T
T° w TE,’ wg
in the weak operator topology of B(S5(LP(M)),S5(LP(N))). By Lemma 2.10, the
operator on the left hand side is completely positive as a weak limit of completely
positive mappings. Hence the operator T' is decomposable. Moreover, using the weak

lower semicontinuity of the norm, we see that [[v|| < liminfg [lvg|| < liminfg |74,
and |lw|| < liminfg [|[wg| < liminfg || T3] ,,.-

v T,
= lim A A
B
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40 CHAPTER 3. DECOMPOSABLE MAPS AND REGULAR MAPS

Hence, we have ||T||4, < max{|lv|,|lw|} < liminfg|T}s|,... By considering a
priori only subnets 3 of « such that limg ||Tj]| . = liminf, || T | 4. (see [131, Exercise
2.55 (f)]), we finish the proof in the case 1 < p < 0.

Assume now that p = oo. Then the Banach space B(M, N) is still a dual space,
namely that of the projective tensor product M &L (). Consequently, the bounded
nets (v,) and (w,) admit convergent subnets (vg) and (wg) which converge in the
weak* topology of B(M, N) to some v,w, where vg, wg are constructed as previ-
ously. Note that the weak* convergence implies the point weak* convergence and
thus allows us to apply Lemma 2.10 and deduce that [ % L] : Ma(M) — My(N) is
completely positive. Using the weak® lower semicontinuity of the norm, we infer
that [|v|| < liminfg ||vg|| < liminfg || T4, and similarly ||w| < liminfg || T3], and
thus || T4, < max{|lv],|lw|} < liminfg||Tsy,, = liminfy |To| 4o, again under
suitable choices of subnets 3 of a.

Assume finally that p = 1. According to (3.1.1), we note that the case p = oo is
applicable 1% to T and T* and thus

”T”dec,Ll(M)_»Ll(N) = ||T*||dec,N_>M < limainf HTa*HdeC,N—»M = limainf HTa”dec,Ll(M)_)Ll(N) )
where we used again (3.1.1) in the last equality. O

LEMMA 3.23. — Let M and N be approximately finite-dimensional von Neumann
algebras which are equipped with faithful normal semifinite traces. Suppose 1 < p < 0.
Let (Ta) be a net of maps from LP (M) into LP(N) such that || T ||seq 1.0 (vry—10(v) < €
for some constant C' which converges to some T: LP(M) — LP(N) in the strong
operator topology.

Then the map T is regular and || T'|| o 1o (ar)—1e vy < Hminfo |70 | eq 10 (ar)— 1o (3) -

Proof. — Let E be an operator space. For any = € L?(M) ® E, an easy computation
gives (17)
lim(Ty ® ldp)(z) = (T ® Idg)(2).

16. If X is a dual Banach space with predual X, it is well-known that the mapping
B(X«) — By*(X), T — T* is a weak operator-point weak* homeomorphism onto the space By, (X)
of weak* continuous operators of B(X) and the point weak* topology and the weak* topology coin-
cide on bounded sets by [137, Lemma 7.2].

17. >0 ok Q@ yi € LP(M) ® E then

(Ta®IdE)<ZIk®yk> —(T®IdE)<Z$k ®yk>

k=1 k=1

L? (M,E)

(zk) ® yk — Y T(zk) ® i

LP(M,E)

<> ITa(@k) = T(@r) o ar llvalls — 0.
LP(M,E) k=1

Z (Ta(z) — T(zk)) ® Y
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We deduce *® that T ® Idg induces a bounded operator on L?(M, E) and that the
net (T, ® Idg) converges strongly to T ® Idg. By the strong lower semicontinuity of
the norm, we deduce that

1T ®© el v, g)—Le(v,p) < lim inf 1Te ® IdEll Lo (ar, 2y —Lr (v, B)
< limainf 1Tl eg 1.0 (M) — Lo () -

Taking the supremum, we get the desired conclusion. O

THEOREM 3.24. — Let M and N be approximately finite-dimensional von Neumann
algebras which are equipped with faithful normal semifinite traces. Suppose 1 < p < oco.
Let T: LP(M) — LP(N) be a linear mapping. Then T is regular if and only if T is
decomposable. In this case, we have

HT”dec,LT’(M)HLP(N) = ||T||reg,LP(M)HLP(N)'

Proof. — The case p = 0o is [68, Lemma 5.4.3] and a straightforward generalization of
[143, Remark following Definition 2.1] since L*° (M, E) = M ®muin E. The case p = 1 is
also true by duality using Lemma 2.17, (3.1.1) and (3.1.5).

Let us now turn to the case 1 < p < co. We denote by 7 and o the traces of M
and N.

Case 1: M and N are finite-dimensional. — By [171, Theorem 11.2] and [60,
proof of Proposition 7 page 109, Theorem 5 page 105, corollary page 103],
there exist my,...,mg,n1,...,n, € N and A1,..., g, p1,...,4 € (0,00) such
that (M,7) = Mp, & -+ & My, MM Tron, &+ & Ag Try,) and (N,0) =
(Mn1 ®"'®MnLvﬂlTrn1@"'@NLTrnL)'

Case 1.1: All A\, and p; belong to N. — Then let m = Zszl Axmi and n = ZZL:1 Hny.

Let further J: M — M,, be the normal unital trace preserving x-homomorphism
defined by

I

I 0
J(ml@"'@xK): ,

TK

L TE |

18. Let X be a Banach space and D a dense subset of X. Let (Tw) be a bounded net of bounded
linear operators in B(X). Suppose that, for each z € D, the net (To(x)) is convergent in X. By [63,
page 55|, there exists a bounded linear operator T: X — X such that (T ) converges strongly to 7.
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42 CHAPTER 3. DECOMPOSABLE MAPS AND REGULAR MAPS

where x; appears \; times on the diagonal, k = 1,..., K. Let moreover E: M,,, — M
be the associated conditional expectation. Moreover, we introduce similar maps
J': N — M, and E': M,, —» N. We denote by the same symbols the induced maps
on the associated LP-spaces.

Lemma 3.20 is applicable for both J' and E and we obtain the estimates
[ egrr(v)y—sz < 1 and [|Ell,ey g2 15(ary < 1. Moreover, by Proposition 3.11,
we also infer that |[J{|gecrrary—se, < 1 and [[E'|lgee sz povy < 1. Suppose
that T: LP(M) — LP(N) is regular. By Theorem 3.21 applied to J'TE: S?, — SP
together with (3.1.2) and (3.1.3), we obtain that T = E/(J'TE)J is decomposable
and that

||T||dec,LP(M)—>LT’(N) = ”EIJITEJHdeC < ”EI”dec ”JIT]E”dec ”J”dec
< ||JITE||reg < ||Jl||reg HT”reg ”EHreg < ”T“reg,LP(M)—»LP(N) :

Let T: LP(M) — LP(N) be a decomposable map. In a similar manner, we obtain the
inequalities ||J]| IE|| 19| dec » 1 Ellgee < 1 and that T" is regular and we have

reg ’ reg ’

1T seg Lo (ar)— Lo () = BT TET ||, 0 < [IE]|

reg —

vog 17 TElreq I 7]
< ”‘]ITE“dec < ”JI“dec ”T”dec ||E||dec < ||T||dec,LP(M)—>LP(N) :

Case 1.2: All M\, and p; belong to Q. — Then there exists a common denominator of
the A\x’s and the p;’s, that is, there exists t € N such that Ay = )\Tk’ Wy = % for some

reg reg

integers A} and ;. Since we have ||(|y,(rs, 47y = tr lZlle(azy,7y) for any semifinite
von Neumann algebra (My, 1), it is easy to deduce that

||T||dec,LP(M,tT)—>LP(N,tU) = ||T||deC,LP(M,T)—>LP(N,U)

and also that T': LP(M,¢7) — LP(N,to) is regular if and only if T': LP(M,7) — L?(N, o)
is regular with equal regular norms in this case. Thus, Case 1.2 follows from Case 1.1.

Case 1.8: A, w € (0,00). — For e >0, let Ay ¢, pu,c € Q4 be e-close to Ay and gy in
the sense that (14 ¢) 7' g < Mg < (1+¢€)\g, and similarly for p, ;.. We introduce
the trace 7. = A cTrpm, @ @ A Trm,e on M = My, @ --- ® My, .. Consider
the (non-isometric) identity mapping Id5,: LP?(M, 1) — LP(M, 7). Note that for any
element £ = 21 @ ... ®xk of LP(M, ), the definition of multiplication and adjoint in
the sum space M,,,, ®- - -®M,,, . yields immediately that |z|? = |z1|PD...®|zk|P. Thus,
1 gy = 7(21P) = 2, Ap Tt (|24 [7). By the same argument, [[2]o(ar.) =

S A Tr o, (|24 [P). Thus,

K
||Id§\/1 ”P _ su Zk:l )‘k’s Tr mg (|xk|p)
LP(M,r)—LP(M,r:) —
MDZEP AT ctn N0} Sy Ak TE i (2 ]P)

K P
< sup Ly (1 F N Ty () 1+e.

T aeLe(MrNO0}  Sopy Ak Tr o (J2i|P)

MEMOIRES DE LA SMF 177
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In the same manner, one obtains ||Idj, ||Cb Le(M,r)—Lr (M) < 1+ € Also, using
(14 &)7'A\x < Ak, one obtains that

|adas) =" <1l+e.

cb,LP(M,7.)—LP(M,r) =

We infer that ||Id'f\/[||cb,||(ld§v[)_1||cb — 1 as € — 0. In the case p = oo, this
convergence also holds, since [|z{ s,y = €[l (ar,r)- We also define the trace
0c = p1eTrp, ®--- ® preTryy,, on the algebra N. Moreover, we also have a
map Idy: LP(N,0) — LP(N,0.) and [Id% ||, ||(Idy) 1||Cb go to 1 when & ap-
proaches 0. Since 1d5,, Id%, and their inverses are completely positive (since they are
identity mappings and complete positivity is independent of the trace), by Propo-
sition 3.11, their decomposable norms approach 1 when e approaches 0. Moreover,
interpolating between p = 1 and p = oo, using Lemma 3.20, we also infer that their
regular norms approach 1 as € goes to 0. Suppose that T': LP(M,7) — LP(N,0) is
regular. Using Case 1.2 with the map Id%7(Id5,)~!: LP(M, 1.) — LP(N,0.), (3.1.2)
and (3.1.3), we see that

1T gec, Lo (at,r)— 1o v,y = 1) T IARTAA5,) T 1 || o 1o (17— 1 (W .0)
< M) ™ e 1TANTAd2) ™ | o 115 llgce
= [ (145) ™| gec [MANT (A1) ™o 1Tl g
< 1 AdN) 7| goe M4 Mlreg 1T Ml (| Ad3s)

Going to the limit, we obtain ||T'[| 4., < [|7]],c,- In the same vein, one shows that any

map T': LP(M, 1) — LP(N, 0) is regular and that we have || T[], < [|7'[| jo- The proof
of Case 1.3, and thus of Case 1, is complete.

115 [l gee -

~
reg reg | reg

Case 2: M and N are approzimately finite-dimensional and finite. — In this case [27,

page 291], M =J,, M, and N = Us Ngw where (M,,) and (Ng) are nets directed
by inclusion of finite dimensional unital *-subalgebras (as in Case 1). Moreover, we
denote by J,: M, — M, Jé: Ng — N the canonical unital *-homomorphisms and
by Eo: M — M, and E’ﬁz N — Ng the associated conditional expectations given
by [166, Corollary 10.6] since the traces are finite. All these maps induce completely
contractive and completely positive maps on the associated LP-spaces denoted by the
same notations such that (19

(3.6.1) liortn JoEq(x) =2 and lién JeEs(y) =y

(for the LP-norm) for any = € L?(M) and any y € LP(N). Let T': LP(M) — LP(N) be
a bounded map. The net ®” (J5E}, JoEq)(a,8) of B(LP(N)) x B(LP(M)) is obviously

19. Recall that UoLP (M) is dense in LP(M). Let z € LP(M) and € > 0. There exists ap and
y € LP(Ma,) such that ||z — yll;p(ps) < €. Hence for any o > ao, since y € LP(Mq), we have

le = JaEa(@) o < e = Ylloar + 16 = JaEa(@)lear < €+ 1JaEa(y = @)llus(ar < 2.

20. The index set A X B is directed by letting (o, 3) < (¢/,8') if a < o’ and B < 3.
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44 CHAPTER 3. DECOMPOSABLE MAPS AND REGULAR MAPS

convergent to (Idpr(ny, Idrs(ar)) Where each factor is equipped with the strong topol-
ogy. Using the strong continuity of the product on bounded sets, we infer that the
net (JéE%T JoE,) converges strongly to T'. Suppose that T is decomposable. Using
Case 1 with the operator E3TJ,: LP(M,) — LP(Ng), we deduce that 7' is regular
and that, using (3.1.2) and (3.1.3)

< lim inf | JEERT JoEa || < lim inf | 75]]

|E,13TJ04|| UEIaHreg

||T||reg,LP(M)—>LP(N) reg reg | reg |

< i T e < 0 0 ) 1 e e

S T gee,Lr (ary—Lp () -
For the converse inequality, suppose that the map T': L?(M) — LP(N) is regular. Since
T = lim, g JéE’gTJaEa is the strong, hence weak, limit of decomposable operators,
hence decomposable by Proposition 3.22, we obtain, using again (3.1.2) and (3.1.3),

1T llace, o (ary oy < lim inf || JGEGT JaBaly, < lminf [ 5|4, 1EGT Jalldec [EGllacc

< liminf |[B5T ol ,,, < liminf [[B5| ,, 1T eq 1 el

reg | reg | reg

< ||T||reg,LP(M)—>Ll”(N) .
Thus, Case 2 is proved.

Case 8: M and N are general approzimately finite-dimensional semifinite von Neu-
mann algebras. By [169, page 57|, there exist an increasing net of projections (e;)

which is strongly convergent to 1 with 7(e;) < oo for any i. We set M; &ef e;Me;.
The trace 7|y, is obviously finite. Moreover, it is well-known (?V) that M; is approxi-
mately finite-dimensional. We conclude that M; is a von Neumann algebra satisfying
the properties of Case 2. We also introduce the completely positive and completely
contractive adjoint preserving normal map @Q;: M — M;, x — e;ze; and the canon-
ical inclusion map J;: M; — M. We do the same construction on N and obtain
some maps Qj: N — N; and Ji: N; — N. All these maps induce completely pos-
itive and completely contractive maps on all LP levels, 1 < p < oco. Moreover, for
any 1 < p < oo and any x € LP(M) we have ®? z = lim; e;ze; = lim; J;Q;(x) and
similarly y = lim; JIQ’(y) for any y € LP(IV). We conclude by the same arguments
as in Case 2. O

REMARK 3.25. — Using Proposition 3.12, this theorem also shows that the space of
regular operators between L?(M) and LP(N) is precisely the span of the completely

21. This observation relies on the equivalence between “injective” and “approximately finite-
dimensional”.

22. Since the product of strongly convergent bounded nets of bounded operators on LP (M) define
a strongly convergent net, it suffices to prove that the net (e;z) converges to z in LP(M). Now
using the GNS representation 7: M — B(L2(M)) and [114, Corollary 7.1.16], we deduce that for
any x € L2(M), the net (e;x) converges to x in L2(M). Using interpolation between 2 and co, we
obtain the convergence for 2 < p < oo. For the case 1 < p < 2, it suffices to write an element
x € LP(M) as z = yz with y, z € L2P(M) and use Holder inequality.
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3.6. DECOMPOSABLE VS REGULAR 45

positive maps from L?(M) into LP?(NN). This assertion is alluded in [143, Theorem 3.7]
and proved % in [143, Lemma 2.3] and [144, Theorem 8.8] for L?(M) = LP(N) = SP.

With the same method, we can prove the particular case of Theorem 2.19. Using
the same notations, we only indicate the changes.

THEOREM 3.26. — Let M and N be approximately finite-dimensional von Neumann
algebras which are equipped with faithful normal semifinite traces. Suppose 1 < p < oco.
Let T: LP(M) — LP(N) be a completely positive map. Then T is completely bounded
and we have

1T Lo (ary—ro vy = 1T leb,Loary— Loy -

Proof. — Case 1. M and N are finite-dimensional — Then as explained in the proof of
Theorem 3.24, we can write (M, 7) = (M, @+ @ My, A1 Tron, @ & A Trony)
and (N,o)=M,, ®---dM,,,u1 Trp,, ®--- ® pr Try, ).

Case 1.1. All A and p; belong to N. — We thus have, as in the proof of Theorem 3.24,
unital trace preserving x-homomorphisms J: M — M,, and J': N — M,, as well
as associated conditional expectations E: M,, — M and E’: M,, — N. Suppose
that T': LP(M) — LP(N) is completely positive. By a straightforward extension of
[143, Proposition 2.2 and Lemma 2.3| applied to J'TE: S?, — S, we obtain that
T =FE/(J'TE)J is completely bounded and that

1T lleo o ay—ro a0y = [ETTET ||, < IElley 1T TEll g 17, < 17 TE|
<7 IHITIIE] < |17 -
Case 1.2. All M\, and p; belong to Q4. — It is easy to prove that T: LP(M,tr) — LP(N, to)
is bounded if and only if T: LP(M,7) — LP(N,o) is bounded with equal norms.

A similar result holds for the complete boundedness. Thus, Case 1.2 follows from
Case 1.1.

Case 1.8. Mg, i € (0,00). — Suppose that T: LP?(M,7) — LP(N, o) is completely
positive. Using Case 1.2 with the map I1d5,7(I1d3,) "' : LP(M,1.) — LP(N,0.), we see
that T is completely bounded and that
||T||Cb7LP(M,T)—>LP(N7O') = H IdE _1Id&1:VT(Id6]:\/[)_IId§\JHCb ,LP(M,7)—LP(N,o)
< (| (i) 7|y, TN T (Td5,) 7|, 1T e,
= [@d%) |, A5 T(Ad5,) 7| iy
< (@) 7|, IR I ]| (S ™| 1Ld5y s, -

23. The proof of [144, Theorem 8.8] for Schatten spaces does not generalize in a straightforward
manner to the case of noncommutative LP-spaces. Indeed, the equality (3.5.2) is not true with a von
Neumann algebra M instead of M,,. For example, by [146, page 97], the space £° ®, £° is isometric
to the space IMMS° of Schur multipliers on M, and the space CB(£2°) is isometric to B(£5°) by [68,
Proposition 2.2.6] and it is easy to see that 9S° is not isometric to B(€5P).
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Going to the limit, we obtain [|T'|| .y, 1.0 ()=o) < 1T llLe(ar)—1e (). Thus Case 1 is
complete.

Case 2. M and N are approximately finite-dimensional and finite. — Let
T:LP(M) — LP(N) be a completely positive map. The net (J3EZTJoEq) con-
verges strongly to T'. Using Case 1 with the operator E'ﬂTJa: LP(My) — LP(Ng) and
[137, Theorem 7.4] we deduce that T is completely bounded and that

I o2~ vy < i inf [ JZEGTJaEal|,, < liminf || T3], [E5TJall, IEalles
< liminf |57 o || < timinf [E5 [ 1711 all < ITllLoan)— Loy -
Thus, Case 2 is proved. The Case 3 is similar to the Case 2. O

3.7. Modulus of regular operators vs 2x2 matrix of decomposable operators

For any regular operator T': LP(2) — LP(2’) on classical LP-spaces, it is well-known
that |||T|HLP(Q)_}LP(Q) Tl eg, 1.0 (2)—1r (02)> S€€; €-8-, [133, Proposition 1.3.6]. We

recall that the modulus of a regular operator T between real-valued LP-spaces is

given by |T| 4 _T VT, in the sense that |T'| is the supremum of the set {—T,7}

in B(LP(£2),LP(2)), see [156, page 229|. For any positive f € LP(Q2), we have |T|(f) =
sup{|T(g)| : |g| < f}, see [133, Theorem 1.3.2] and [133, Proposition 2.2.6] in the case
of complex-valued LP-spaces.

THEOREM 3.27. — Let Q and Q' be (localizable) measure spaces. Suppose 1 < p < oo
(see Remark 3.29 for the case p = 00). Let T': LP(Q2) — LP(Q)') be a regular operator.

Then the map ® = [Igo‘ I;I} : SP(LP(Q)) — SE(LP(QY)) is completely positive, i.e.,
the infimum of (1.0.3) is attained with v; = vy = |T|.

Proof. — We say that a finite collection @ = {A4;,...,A,_} of disjoint measurable
subsets of 2 with finite measures is a semipartition of (2. We introduce a preorder
on the set A of semipartitions of Q by letting a < o' if each set in « is a union of
some sets in o’. It is not difficult to prove that A is a directed set. For any a € A,
we denote by {A1,..., A, } the elements of « of measure > 0. Similarly, we intro-
duce the set B of semipartitions of Q. It is not difficult to see (3 that the opera-

tor &£ — span{la,,...,1a, }, €j — T 14, is a positive isometric isomorphism
° ° u(A )P

24. Since the functions lAj are disjoint, for any complex numbers aq,...,an,, we have

Na p % 1
laj|?
(Z ) = <Z y ” Aj ||LP(Q))
LP () J=1

j=1

1
ne P
(Dw) _
Jj=1 j=1

Mo

Z - 114,

i=1 u(Aj)?

aj

Ay

14,

LP(Q)

No
E :ajej

o
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onto the subspace span{l4,,...,14,_} of L?(Q2). By composition with the canonical
identification of span{l4,,...,14,_} in L?(f2), we obtain a positive isometric embed-
ding Jo: 5 — LP(Q). We equally define the average operator P,: LP(Q) — £5

by
Pa(f) Z(MAl /A Fan)e, fer@)

1—1
j=1 i) P

We need the following folklore lemma.

LEMMA 3.28. — Suppose 1 < p < oo.

1. For any o € A, the map P,, is positive and contractive.
2. For any f € LP(Q), we have lim, J,P,(f) = f.

Proof. — 1. The positivity is obvious. Using Jensen’s inequality, it is elementary to
check the contractivity.

2. Since ||Ja'Pa||Lp(Q)_,L,,(Q) is uniformly bounded by 1, by [32, III 17.4, Proposi-
tion 5] it suffices to show this for f in the dense class of integrable simple functions
constructed with subsets of measure > 0. So let f be such a function, say with re-
spect to some semipartition ay. For any a € A which refines ay, it is easy to see
that J,P.(f) = f. Hence, for this f, the assertion is true. O

25 JsPp JsPp [T|JaPoa TJaPa
The net (25 <[Jﬁ7,ﬁ Jﬁpﬁ] , [T"JQPQ ITIJaPaD(a 5 of the product

B(S3(L7())) x B(S3(L7(2)), 55 (L"(€2)))

is obviously convergent to (Id S2(LP(Q1))> [lf:ol ‘;‘ ]) where each factor is equipped with
the strong operator topology. Using the strong continuity of the product on bounded
sets (see [69, Proposition C.19]), we infer that the net

JsPs|T|JaPa  JsPsTJaPa
JsPsT°JoPa JsPsIT1IaPal ),

converges strongly to the map [‘7{,‘ IZ:I} : SE(LP(Q)) — SE(LP(€Y)). By Lemma 2.10,

since we have the equality
JgPs|T|JaPs  JsPsTJo Py
JgPT°Jo Py JgPs|T|JaPau

Ps|T|Jo  PsTJq

PsT°Js  Ps|T|Ju

it suffices to show that the three linear maps Idgy ® Jg: S5(¢5,) — S5(LP(Q)),
Ps|T|Ja PsTJa

Do = [y Janle | sp(,) — SE(E,) and Tdgy © Pa: SE(IP(Q) — SE(E,)

are all completely positive. By Proposition 2.23, the positive maps Jg: £2 5 LP(QY)

] = (ldgy ® Jg) o o (Idgz ® Pa),

25. The index set A x B is directed by letting (o, 3) < (¢/,8') if a < o' and 8 < 3.
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and P, : LP(Q2) — (& are completely positive. It remains to show the second assertion.
For any 1 < j < ng,, we have

(PaTJa)(e;) = maT)(u (;); 1Aj) = j TPs(T0A)

u(jj)é g; V(Bil)l‘é </B T(lAj)dﬂ'> e;.

We deduce that the matrix [ta,g,i;] of the linear map PgT'Jo: €5 — 5 in the
T
n(A;) P v(Bi)

canonical basis is | [ T(14,)dp’]. Moreover, we have

3 ||

1Aj)= 1 Ps(T(14,))

(PaT* e = (Pa7°) N

u(A)7

- ; et U, T0a )

Hence the matrix of P,T°J, is [ta,,:5]i;- Finally, we equally have

(PIT1 ) (e;) = <Pﬁ|T|><mlAj) _

__ i 1)1_; (/B |T|(1Aj)du’>ei.

M(Aj) » o V(B

Py (IT|(1,
) 5(1T1(14,))

Now, we note that

/Bi IT|(14,)dp" > /B IT(1a,)dy’ > '/B T(1a,)

Thus, Ps|T|J, is associated with some matrix [sq g,i;] With S g,ij = [ta.8,ij| + Ta,8,i5
where ro g,;; > 0 for any 4, j. Further, let ¢, g;; € Csuch that to g i = [t 8,ij|¥a.8,ij-

1 _1
= u(A4;)?v(B;)" " 7 |ta,p,i5.

We denote by i,: £, ~ <— SP  the canonical diagonal embedding,
Jo Idgr ®iq: S5(5) - S5(St ) and by Qq: S5(SE ) — S5(#% ) the canonical
projection. Note that Q,J, = Idse (e ).

Now, we show that the map J5®, 3Qq: S5(Sh.) — S5(Sk,) is completely pos-
iti | VItasilva,sigeis 0  _ [ Fa e 0}
itive. If we take a;; = [ o e | by} = | Vet and

bgj?) = [8 \/ﬁew ], we obtain for any z € S5 (5% )

(J580,5Q0) (@) = (J5Ba,5Q0) ([xu me

T21  T22
_ <j[,

Na Na
PslT|Jo  PsTJa > qzjzl T11jj€5 Doy 90123‘16;'])
Na Na
Doty Tajie; 2ty Tazjje;
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= Js S w11y Pel Tl Jae; 2252 €125 PsT Jae;
2?21 221 PpT° Jae; 2?21 %22 Pp|T|Jne;
- ( F:?fl Zgg Lic S 1ui% Bz L ta,ﬂ,ijei] )
% n — o n
D 215 2501 ta,p,ij€i Doy Ta255 D il SanBiigei

ng Mg
_ Z lxlljgsa ,B,ij€id xl?]jta B, zgeu‘|

1 x21]]t ,B,ij€ii  X225jSa,B,ijCii

T11jjlta,pijlei  Tizjita,pijeii 4 |F11sT a5 0
T\ | Z21jjtapij€ii  T22j5lta,pijlei 0 T225jTa,B,ijCii
([\/Ita,ﬁ,ij|¢a,ﬁ,ijeij 0 ][xll 9612]
=i 0 Vltapiilei;

Vta,s,ijl Va,p,ij€5i 0 " VTagaj€ij Of |11 Zi2| |/Tapij€ii 0
0 Vlta,.i5l€ji 0 0 0 0

j=1<

Mo

3
@

1

.
Il

J

3

Mu

o

1 T21 T22

T21 T22

T11 £U121

0 0
NG ,ﬂmem] 0 \/Ta,ﬂ,ijejiD

Na NB
=ZZ aijzal; + 5 obD* 1 bDb®).

T22

We infer that J3®,, 5Qq is completely positive. Since @45 = Q5(J5P0 5Qu)Ju, We
conclude that ®, g is completely positive. The case 1 < p < co is proved. O

REMARK 3.29. — Theorem 3.27 seems to us to be true equally in the case
p=o00. That is, if T: L>*(Q) — L*(Q') is a (regular) operator, then the map
d = {lTTol Iil] 0 SP(L°(Q)) — S°(Le°(QY)) is completely positive. To prove this,
replace the mapping P,: L®(Q) — £ by Po(f) = iy da,(f|a,)es, where
¢4, is an arbitrary state on L*°(A4;) and Q is partitioned (not semipartitioned) into
Q =U;_, Ai. We equally take J,: £5° — L>(Q), e; — 14,. Then Lemma 3.28 admits
an L*-variant (the verification is entirely left to the reader), in particular J,P,
converges strongly to the identity on L°°(Q2) (the partitions are of course directed
by refinement). Also the proof of Theorem 3.27 works in a similar way. If T is in
addition weak* continuous, we can use a duality argument (26,

26. Assume in addition that T: L*°(Q) — L>®(Q’) is weak* continuous with pre-
adjoint Ti: LY(Q) — Ll(Q) Then by (3.1.5) and by the case p = 1 proved pre-

viously, the map [(qu:*)l . J SI(LY(QY)) — Si(LY(Q)) is completely positive. Note
that |Tu|* = |(T¥)*| = |T| where we use [1, Theorem 2.28 page 85] in the first equal-
ity and it is easily checked that ((7%)°)*=T7°. So by Lemma 2.9, its adjoint

[T " (T*)*,IT\T].oooo 00 (.00 (O i i
[((T*)o)* ‘T*‘*] = [To K S50 (L (2)) — S (L°(Q’)) is also completely positive.
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3.8. Decomposable vs completely bounded

The authors of [112] say that the following result is true without the QWEP
assumption (and without proof). However, we think that QWEP is necessary (27
for 1 < p < oo.

PRrOPOSITION 3.30. — Let M and N be two QWEP wvon Neumann algebras which
are equipped with faithful normal semifinite traces. Suppose 1 < p < oo. Let
T:LP(M) — LP(N) be a decomposable map. Then T is completely bounded and

1T ew re (ary— 1o (v) S NT e, Lo (ar)—1e () -

Proof. — By Proposition 3.5, there exist linear maps vq,vy: LP(M) — LP(N)
such that the map & % {”1 T} : SP(LP(M)) — SP(LP(N)) is completely pos-

T° vg
itive with max {||vi]|,[|v2]] } = [|T|lgec- Let b be an element of S?(LP(M))
with [[bllgz (1 s(ary)) £ 1. By Lemma 2.14, we can find a,c € SH(LP(M)) with

lallsz@raryy < 1 and |lcllgzpar) < 1 such that [2°%] is a positive element

of S% (LP(M)). We deduce that

l(ldsg ®uvi)(a) (dgy ®T)(b)
(Idgz ® T)(b)*  (Idgz ® v2)(c)

_ l (dgy ®vi)(a)  (ldgy @ T)(b)

( (Idsy ® T)°(b")  (Idsp ® v2)(c)
_ l (ldgy ® v1)(a)  (Idgy @ T)(b) a bb
(Idgr @ T°)(b*) (Idge ® va)(c) b ¢
is a positive element of S% (L?(N)). By Lemma 2.13, using Theorem 2.19, we obtain

- (4 o 0)

1 »
[(1dsy ® T)(b)Hsg(Lp(N)) < 2€<H(Idsﬁ ® Ul)(a)Hgg(Lp(N)) +||(dsz ® UZ)(C)||1;£(LP(N)))

1

1 =
<r (ol Nl o caryy + Hoali% el ogay )

3=

1
< max { |v1]|, ||v2||}2j(||a||gg(Lp(M)) + HCHZE(LP(M))>
p
<max { o1l [[v2]l } = 1T ]| gee -
We obtain ||IdS£ ®T||S£(LP(M))—>S£(LP(N)) < ”THdec'
We conclude that || T, < 1T ]| gee- -

PropPOSITION 3.31. — Let M and N be two QWEP wvon Neumann algebras equipped
with faithful normal semifinite traces. Suppose 1 < p < co.

Let T: LP(M) — LP(N) be a completely positive map. Then T is decomposable and
we have | T, = [T gec = ITl-

27. Another point of view is to replace the formula of Definition (1.0.4) by |T|lgec, e (ar)—1r (v) =

inf { max{|v1 oy, , lv2llep} }-
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Proof. — By Proposition 3.11, we know that 7" is decomposable and that || T'|| ;.. < [|T]-
If M and N are QWEP, by Proposition 3.30, we have ||T|., < |T|| joc- O

To complement the previous proposition, we observe that completely bounded op-
erators are not decomposable in general. For that, we give a result on group von
Neumann algebras of discrete groups, see Section 4.1 for background.

PRrROPOSITION 3.32. — 1. Let G be a non-amenable weakly amenable discrete group.
Then there exists a completely bounded Fourier multiplier M, : VN(G) — VN(G)
which is not decomposable.

2. Suppose 1 < p < oo. Let G be a non-amenable discrete group with AP and
such that VN(G) has QWEP. Then there exists a completely bounded Fourier
multiplier M, : LP(VN(G)) — L?(VN(QG)) which is not decomposable.

Proof. — 1. By the proofs of [37, Theorem 12.3.10] and [111, Theorem 4.4], there
exists a net (M, ) of finite-rank completely bounded Fourier multipliers on VN(G)
with ||[M,, ||, < C such that M, — Idyn(g) in the point weak* topology. If all
the completely bounded Fourier multipliers were decomposable, since two compara-
ble complete norms on a linear space are in fact equivalent, the von Neumann algebra
VN(G) would have the bounded normal decomposable approximation property of
[126, Theorem 4.3 (iv)] (see also [112, page 355]) and VN(G) would be injective. By
[162, Theorem 3.8.2], we conclude that G is amenable. This is the desired contradic-
tion.

2. By [111, Theorem 4.4], there exists a net of completely contractive finite-rank
Fourier multipliers M, : LP(VN(G)) — LP(VN(G)) such that M,, — Idi»vn(a))
in the point-norm topology. If all the Fourier multipliers were decomposable, again
since two comparable complete norms on a linear space are in fact equivalent, the
space L?(VN(G)) would have the bounded decomposable approximation property of
[112, page 356]. By [112, Theorem 5.2] the von Neumann algebra VN(G) would be
injective. By [162, Theorem 3.8.2], we conclude that G is amenable. This is a second
contradiction. O

REMARK 3.33. — Note that we can use the free group F,, where 2 < n < co (n count-
able) with the two parts of the last result. Indeed, by [83, Theorem 1.8] (see also [51,
Corollary 3.11]), the group F,, is weakly amenable, hence has AP by [87, page 677].
Moreover, it is well-known that VN(F,,) has QWEDP, see, e.g., [146, Theorem 9.10.4].

We will describe in Theorem 3.38 an explicit result in the same vein. For that, we
need intermediate results.
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LEMMA 3.34. — Let M be a von Neumann algebra equipped with a faithful normal
semifinite trace. Suppose 1 < p < oo. For any integer n > 2, the maps

an: LP(M) —  SH(LP(M))

SR M

and
On: SP, (LP(M)) —  SE(LP(M))
[odh - bl b, - bin] ]
b b bk b bil - bin
| : :
S (b, e bl ] et bon
b”% cee b prl ... pnn

are completely positive.

T T 1

Proof. — For any z € LP(M), we have a,(z) = [ } = [] z[1 - 1]. Moreover,
X - T i

for any b € S?,(LP(M)), we have 0, (b) = AbA* where A € M, .2 is defined by

[1 0 --- ()] [0 0 --- 0] [0 0 --- ()]
0 o0 -~ 0 [0 1 - 0 0 0 - 0]
A= . .
[0 0 0] [0 0 --- 0] [0 0 1]
Now, we appeal to (2.2.3). O

PROPOSITION 3.35. — Let M and N be von Neumann algebras equipped with faithful
normal semifinite traces. Suppose 1 < p < co. Let n > 2 be an integer and consider
some bounded maps T;;: LP(M) — LP(N) where 1 < i,j < n. If o, is the completely
positive map from Lemma 8.34 then the map

¢ SH(LP(M)) — SELP(N))
|Va11 Gln-l {Tn(an) Tln(aln)-|

\‘anl te ann| \‘Tnl (anl) oo Thn (ann)|
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is completely positive if and only if the map @ o o, is completely positive.

Proof. — One direction is obvious. For the reverse direction, we have

I_au aln-| |_<I>oan(a11) @oan(aln)-l

o (Idgp ® (® 0 ay)) l | =0on l : : |
ap1 " Qpn (I)oan(anl) (I)Oan(a’m’b)

[ | Tu1(a11) -+ Tln(an) Ti1(a1n) - Tln(aln)-|_

[ f
\‘Tm('an) T’rm(.a11| \‘nl(aln) Tnn('aln)J

[Tu(am) - Tm(am)] [Tu(am) L Tln(a,m)-l

L \‘Tnl(‘anl) o Tn (.a"1)| \‘Tnl('ann) o Tan (‘ann)| d
{Tn(all) T Tln(aln)-l [an T aln-|

N el
Tnl(anl) Tnn(ann) Gp1 - Qpp

Hence ® = 0, o (Idgr ® (® 0 ay,)). Note that if ® o o, is completely positive then
Idgr ® (® o o) is also completely positive by Lemma 2.11. In this case, since oy, is
completely positive we deduce that ® is completely positive. O

PROPOSITION 3.36. — Let M and N be von Neumann algebras equipped with faithful
normal semifinite traces. Suppose 1 < p < oo. Let T: LP(M) — LP(N) be a linear
map. Then T is decomposable if and only if the map T o ay: LP(M) — SH(LP(N))
where T is the map from Proposition 3.17 is decomposable. Moreover, in this case, we
have

1T | gec e (ar)—re vy < 1T 0 @2|ldec, Lo (ar)— 52 (Lr(v)) < 2v 1T | gec, .o (A= Lo () -

Furthermore, T o oy is adjoint preserving.

Proof. — Let x € LP(M). We have

To as(z*) = T ( T* x*]) _ 0 T(z*) _ 0 T(z*)
z* z* T°(z*) 0 T(x)* 0
and also
(To OQ(I))* _ <T ( z m]))* _ 0 T(z) " _ 0 T°(x)* _ 0 T(z*)
¢z T*(z) 0 T(z)* 0 T(z)* 0

We conclude that T o as is adjoint preserving, i.e., (T o)’ = T o as.

SOCIETE MATHEMATIQUE DE FRANCE 2023



54 CHAPTER 3. DECOMPOSABLE MAPS AND REGULAR MAPS

Suppose that T is decomposable. By Proposition 3.5, there exist some maps
vy,vg: LP(M) — LP(N) such that [”1 T} is completely positive with

TO V2

max { [lv1]], |v2]| } = Il 4ec- Using (2.2.3), we note that the map

SP(LP(M)) — SE(LP(M)), t Z]HE _01] [‘;‘ Z] Ll) _01]=l_ac _db]

is completely positive. By composition, we deduce that the map [f:,{o ;j] 0 @y is

completely positive. We define the map S Lef [ UOQ] oag: LP(M) — S5(LP(N)). Then

in the light of the foregoing, S is completely positive and it is easy to check using
1 ~

(2.3.2) that ||S|| < 27 ||T'|| 4. Moreover, —S <., T o o <¢p S. By Proposition 3.19,

we conclude that HT o agH < 2v 17| 4oc-
dec

Now suppose that the map Toay: LP(M) — S5(LP(N)) is decomposable. Moreover
let vy, vs: LP(M) — SE(LP(N)) such that the map [ o T°a2] . SP(LP(M)) — SP(LP(N))

oay Vg
is completely positive.

Put wy: LP(M) — LP(N), a — (vi(a))11 and wy: LP(M) — LP(N), a — (va(a))as.
Then each w; is also completely positive as a composition of completely positive
mappings. Then an easy computation gives

1 o)

1 000 vy Toay| [la b 0 0
lo 0 0 1]( Toas v <L dD>' 0 0
01
10
{1000 vi(@)  Toaz(®)| [0 0| |wi(a) T(b)
_lo 0 0 1| [Toas(e) w(d) ] 0 ol |T°%) ws(d)
01

Using (2.2.3), we deduce by composition that the map [;é 52} is completely positive.
We infer that T is decomposable and that ||T||gec < max{|jw: ]|, |we|} < max{|jvi||,]||v2]}

and passing to the infimum over all admissible vy, v, shows that ||T|,.. < |7 © a2||dec-
O

In the following result, we generalize the results of [68, Theorem 5.4.7] and [85,
page 204| done for p = oco.

THEOREM 3.37. — Let M be a von Neumann algebra equipped with a normal fi-
nite faithful normalized trace and let ui,...,u, € M be arbitrary unitaries. Sup-
pose 1 < p < oo. Consider the map T': (P — LP(M) defined by T(ex) = ug. Then

_1
||T||dec,€ﬁ—>LP(M) =n r.
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Proof. — As observed, we can suppose 1 < p < co. Note that the unit element 1 of M
belongs to L (M) since M is finite. The map ¢: £ — C, 37| cxex — Y p_q Ck IS
a positive linear functional. Since ¢2 is a commutative LP-space, by Proposition 2.24,
we deduce that the linear map
v: 1/ — LP(M)
Shoicker > (Xhoic)l

is completely positive. Moreover, using the normalization of the trace in the third
equality and Holder’s inequality in the last inequality, we have

n n n
v(Z ckek> (Z ck>1 ch
k=1 LP (M) k=1 k=1
n n L n %
Do <D ekl <ntTr (Z |Ck|p> :

k=1 k=1 k=1

We infer that ||v]| < n'"w.
We consider the map T = [ % 7] : S5(¢2) — S5(LP(M)) and the map ay: £5 — SE(¢2)
of Lemma 3.34 with M = £5°. Since e} = e, we have

IlLe ary

Le (M)

lv 0] 7 v(er) 0 0 T(ex) 1 0 0 w

0 0 T° 0 0 1 w; O
v o | (e) = v(ek) (ex) _ uj

7 v 0 0 T(er) v(ex) 0 0 w 1 0

0 v T°(ex) O 0 v(eg) up 0 0 1

The 2x2 matrix 4 = |:u0,: uo’“} is a (selfadjoint) unitary.

Hence we have ‘ ut 0
k

{ 0 u’“] HM o < 1. By |68, Proposition 1.3.2], we conclude that

the matrix on the right hand side of the previous equation is positive. Thus the

v 0 T
map [[OTU » 0]] o ay is positive. Using again Proposition 2.24, we obtain that
0w
this map is indeed completely positive. By Proposition 3.35, we deduce that the
v 0 T
map [[OTU » 0]] is completely positive.
0v

Hence T is decomposable with ”TH <8 9T < |lv]| where the last inequality is
easy to prove using [145, Corollary 1.3ﬁeﬁsing Proposition 3.18, we conclude that T is
decomposable and that ||T|| .. = HT”dec <|lv|| < n'"s.

On the other hand, let S: ¢ — SP(LP(M)) be a completely positive map sat-
isfying —S <.p T o ay <., S where ay: /2 — SE((R). If we let zy f S(ex) and
Uy, dZEfToag(ek), then 1, = |:u0;; "0’“} is a selfadjoint unitary with —x; < 4 < xk.
Thus we have

Ty = [(:Ek — ) + (zp + ﬂk)],

N | =
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with z, £ 4, > 0. Consider the finite trace 7 ey ® 7 on Ma(M) where 7 is the
normalized trace on M. Then it follows that

m1(Tk) =71 (; (ke — k) + (zk + ftk)]) = % [71 (zr — k) + 71 (2 + ﬂk)}

1 . 5 1 - - -
5[”% — gl + l|ze +uk||1] 2 5 llzn =@ = (r + )l = larllsy e any,

1
where ”ak”s;(Ll(M)) = 7'1((’112'5%)2) = 71(I ® 1) = 2. Moreover, we have

IIe ® 1||Sp*(LP*(M)) = 277 . By duality, we obtain
2

(T4 F 2y, Lb®1) T+ Fz,) o
e+ + allspwoary) = @ Lo T L@ 1w =2
S5 (LP" (M) 53 (LP* (M)
We deduce that
[E=1en]pet
SP(Lp(M)) _1
R T P slSex) + - + Stenl sy 1o anyy

-1 11— 1-151- 1
=n p||x1+"’+xn||S§(LP(M))Zn P2 TP n=mn »p2 p*,

Using Proposition 3.36 in the first inequality and Proposition 3.19 in the second
inequality, we conclude that

TOO[2

1
o o2
Tl gec,er —ro(ary = 277 dec,t8—S2(Lp(M)) —

Let n > 1 be an integer and let G = IF,, be a free group with n generators denoted

by g1,...,9n-

THEOREM 3.38. — Suppose 1 < p < oo. Let n > 2 be an integer. Consider the
map Ty, : 0P — LP(VN( n)) defined by Ty, (ex) = Ag,.. We have || Ty, < (2v/n — )

and || Ty goe = n'~%. In particular, if 1 < p < oo we have % e +o0.
" cb  n—-4o00

Proof. — The equality is a consequence of Theorem 3.37. For any 1 < k < n, using
the normalized trace 7, , note that

||)‘9k||L1 W) = T (Agel) = 7, (()\ZkAgk)%) =, (1) = 1.

For any Aj,...,A; € S, using the isometry S} (¢L) = ¢%(S}) in the last equality, we
deduce that

l
Ids’l ® T, (ZAkl@ek) ZAIC@)‘.%

Sh(LY(VN(Fn))) k=1 SL(LY(VN(Fn)))
l l l
< Z ”AkHS}L H/\gk ”Ll(VN(IE‘n)) = Z ||Ak||s}b = Z Ak ® ey
k=1 k=1 k=1 Sle ([}L)
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We deduce that [Ty, o1 11 (vn(r,)) < 1. Note that [68, Theorem 5.4.7] gives the
estimate [Ty ||y, g —yn(r,) < 2V/n — 1. Hence, by interpolation, we deduce that

1 1—1
||T””cb,€ﬁ—>Lp(VN(]Fn)) < ( ||T”||cb,€}L—>L1(VN(]Fn)) ) i ( ||T””Cb,£$f—>VN(]Fn) )

< (2vn—1)""7. O

In Chapter 7, we will continue these investigations.
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CHAPTER 4

DECOMPOSABLE SCHUR MULTIPLIERS
AND FOURIER MULTIPLIERS
ON DISCRETE GROUPS

In this chapter, we give a generalization of the average argument of Haagerup.
This construction simultaneously gives a complementation for spaces of completely
bounded Schur multipliers and completely bounded Fourier multipliers on discrete
groups, possibly deformed by a 2-cocycle and the independence of the completely
bounded norm and the complete positivity with respect to the 2-cocycle. In Sec-
tion 4.3 below, we give our first results on decomposable Fourier multipliers (and
Schur multipliers).

4.1. Twisted von Neumann algebras

A basic reference on this subject is [181]. See also [18] and references therein. Let
G be a discrete group. We first recall that a 2-cocycle on G with values in T is a
map o: G X G — T such that

(4.1.1) o(s,t)o(st,r) =o(t,r)o(s,tr)

for any s,t,7 € G. We will consider only normalized 2-cocycles, that is, satisfying
o(s,e) = o(e,s) = 1 for any s € G. This implies that o(s,s7!) = o(s7!,s) for
any s € G. The set Z2(G, T) of all normalized 2-cocycles becomes an abelian group un-
der pointwise product, the inverse operation corresponding to conjugation: ¢!
where 7(s,t) = o(s,t), and the identity element being the trivial cocycle on G denoted
by 1.

Now, suppose that G is equipped with a T-valued 2-cocycle. For any s € G, we
define the bounded operator A, s € B(¢%) by

:E’

(4.1.2) Aoser Lo (s, t)es,
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where (£¢)tcc is the canonical basis of £%. We define the twisted group von Neumann
algebra VN(G, o) as the von Neumann subalgebra of B(¢%) generated by the *-algebra

def

C(G,0) = span{A,s : s € G}.

For example, let d > 2 and set G = Z%. To each d x d real skew symmetric matrix 6,
one may associate gy € Z%(Z%,T) by og(m,n) = e*™™) where m,n € Z4. The
resulting algebras T¢ = VN(Z?, o) are the so-called d-dimensional noncommutative
tori. See [42] for a study of harmonic analysis on this algebra.

If o = 1, we obtain the left regular representation A\: G — B(¢%) and the group
von Neumann algebra VN(G) of G.

The von Neumann algebra VN(G,o0) is a finite algebra with trace given
by 7¢,.(z) = <Ee,.’13(€e)>£2 where z € VN(G,0). In particular 7¢ o(As,s) = dse-
G
The generators A, s satisfy the relations

(4.1.3) Aoshot = (8, ) Ao st (Noys) = (8,5 DA et
Moreover, we have

ex: ()\a,sAa,t) = o'(svt)(ss,t*l, Sat € G.

Given a discrete group G and a T-valued 2-cocycle o, we can consider the fun-
damental unitary W: e; ® €, — € ® €4 on Eé Ro Zé and another unitary opera-
tor : e ® &, — o(t,r)es ® €, representing o. We define the o-fundamental unitary
as the unitary operator

(4.1.4) W) =Ws: e, ®@¢, — o(t,r)es ® .
LEMMA 4.1. — Suppose that o and w are T-valued 2-cocycles on a discrete group G.
Then, for any s € G we have
(w) (WY*
w ()\U.w,s ® Idpc) (W ) =A5,s ® Au,s-

Proof. — On the one hand, for any s,t,r € G, using (4.1.2) in the second equality and
(4.1.4) in the third equality, we have

W (Ngs ® Idg ) (e ®e,) = W (g6t @ €1

= (0-w)(s, )W (est ® &) = 0 (s, )w(s, t)w(st,T)est @ Estr.

On the other hand, using (4.1.4) in the first equality and (4.1.2) in the third equality,
we have

()\a',s &® )\w,s)W(w) (Et ® 57’) = ()\0',5 & )\w,s)(w(ty T)gt ® Etr)
=w(t, ) (No,s6t ® Aw str) = 0(8, t)w(t, T)w(s, tr)es @ Espr.

Using (4.1.1) with w instead of o, we conclude that these quantities are equal. O
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Using this lemma, we obtain a well-defined kind of “twisted coproduct” which is a
unital normal *-monomorphism:

Asw: VN(G,0-w) — VN(G,0)QVN(G,w)

(4.1.5)
Ao‘-w,s I Aa‘,s ® Aw,s-

A very particular case of this construction is considered in [42, Corollary 2.2] for
noncommutative tori with ¢ = 1, under the notation x — 2.

Suppose 1 < p < oo. Then a linear map T': LP(VN(G,0)) — L?(VN(G,0)) is
a (completely) bounded Fourier multiplier on LP(VN(G,0)) if T is (completely)
bounded (and normal if p = o) and if there exists a complex function ¢: G — C
such that T()\U,S) = @sAs,s for any s € G. In this case, we denote T' by

M,: LP(VN(G,0)) — LP(VN(G,0))
)‘a,s L ‘ps)\a,s-

We denote by MMP (G, o) the space of bounded Fourier multipliers on L?(VN(G, o)) and
by MPP (G, o) the space of completely bounded Fourier multipliers on LP(VN(G, 0)).

More generally, if 1 is a set, we denote by EJJI?’Cb(G, o) the space of (normal if p = 00)
completely bounded operators ®: L?(B(¢2)®@VN(G, o)) — LP(B(¢2)®@VN(G, o)) such
that ® = [M,, ]; jer for some functions ¢;;: G — C. For a (normal if p = o0)
bounded operator ®, this is equivalent to the existence of a family of functions
(pij: G — C); jer such that

(4.1.6) (Tr ©7¢,0) (T(eij ® Ao,s) (et @ Aot)*) = @i;(5)s,40: 1051

for any s,t € G and any i, j, k,l € 1.

If o is a T-valued 2-cocycle on a discrete group G and if H is a subgroup of G, we
denote by o|H: H x H — T the restriction of ¢ to H x H. It follows from [181, Sec-
tion 4.26] that there is a canonical normal unital *-monomorphism J of VN(H, o|H)
into VN(G, o) sending A\, s to Ag,s for each s € H which is trace preserving. Its
LP-extension J,: LP(VN(H,o|H)) — LP(VN(G,0)), As|H,s = Aos,s is a complete con-
traction for 1 < p < oo.

Moreover, it is easy to see for 1 < p < oo that the adjoint of J,~ (preadjoint if
p = 1) is given by (Jp-)*: LP(VN(G,0)) — LP(VN(H,0|H)), Aos — dscHAo|H,s
which is again a complete contraction. Thus, for an element

T = [My,;lijer: S;(LP(VN(H, 0|H))) — S7(LP(VN(H, 0| H)))

of ‘.m‘;’Cb (H,o|H), we can consider the completely bounded map

S = (ldgr ® J,)T(Idgr @ (J,+)*): SH(LP(VN(G,0))) — S¥(LP(VN(G,0))).

We clearly have ||S||, < ||T|y, and using (Jp<)*Jp = Idis(vN(#,0|H)), We also have

IT)lo, < IS]le,- Thus we can identify isometrically Sm’;’Cb(H, o|H) as a subspace of
the Banach space CB(L?(B(£7)®VN(G, 0))) by identifying [M,, ]; jer to [Mgp,,lijer
where ¢: G — C denotes the extension of ¢: H — C on G which is zero off H.
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Moreover, we have a canonical contraction M>*(G,0) — MP°(H,o|H), sending
[Mtpij]ij to [MSOU|H]U‘ Indeed, note that [Mgai”H]ij = Ids;’ ® (Jp*)* . [MWij] . Idsf ® Jp.

4.2. Complementation for Schur multipliers and Fourier multipliers on discrete groups

The following theorem generalizes an average trick of Haagerup [86, proof of
Lemma 2.5] %), The important point of the proof (for 1 < p < oo) is the fact that
the map A below is trace preserving.

THEOREM 4.2. — Let I be an index set equipped with the counting measure. Let
G be a discrete group equipped with two normalized T-valued 2-cocycles o,w. Sup-
pose 1 < p < oo. If p # oo, we suppose that VN(G,w) has QWEP.

Let T: S¥(LP(VN(G,0))) — SY(LP(VN(G,0))) be a completely bounded operator.
For any i,j € I, we define the complex function ¢;;: G — C by

(pij(s) déf (TI‘ ®TG,U)(T(eij X )\U’s)(ei]‘ ® )\U,s)*), s €Q@.
Then the map
Prg: CB(S7(LP(VN(G,0)))) — CB(S;ILP(VN(G,0 - w))))
T — [Mtpij]

is a well-defined contractive map into SDT]}”Cb(G,a -w). There are the following addi-
tional properties of PﬁG.

L. Ifw =1, the map Pf  is a projection onto QJT’I”Cb(G, o).

2. For p = 0o, the same assertions are true by replacing CB(SY(LP(VN(G, 0))))
by the space CBy~ (B(£2)®VN(G,0)).

3. If T is completely positive then the map PﬁG(T) is completely positive.
4. For any values p,q € [1,00] and any
T € CB(SY(LP(VN(G,0)))) N CB(S}(LY(VN(G,0))))
we have (Pf o(T))([zi5]) = (Pf o(T))([zi;]) for any element [z;] of
ST(LP(VN(G, 0 - w))) N SHLI(VN(G, o - w))).
So the mappings PﬁG, 1 <p < o0, are compatible.

5. Furthermore, if p = oo and if T is selfadjoint then PPy (T) is selfadjoint.
If T =[T;;] is a normal operator where T;;: VN(G,0) — VN(G,o0) and if
each Tj; is unital then P (T) is unital.

6. We have an isometry

MP (@, o) = MPP(G, 0 - w).

28. We warn the reader that the assumption “normal” is lacking in [86, Lemma 2.5] for maps
defined on M(T).
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Proof. — Using the map (4.1.5), it is easy to see that we can define a well-defined
unital normal *-isomorphism

A: M (VN(G, 0 -w)) = M;(VN(G, 0))®M[(VN(G,w))
onto the sub-von Neumann algebra A(M;(VN(G, 0 - w))) of M;(VN(G,0))@M;(VN(G,w))
such that
A(eij ® )\a»w,s) = ei]’ (9 )\o',s ® €ij ® )\w,sy S € G.

Using the flip M;®VN(G,0)®M;®VN(G,w) — M;®M;®VN(G,s)®VN(G,w),
TRYR®zQt— x®2®yQt, it is not difficult to check with [166, Theorem 6.2] that
the operator A preserves the traces. Consequently A is a Markov map in the sense
of Section 2.6 and admits a canonical extension

A,: SY(LP(VN(G, 0 - w))) — LP(B(£3)®VN(G, 0)®B(£3)@VN(G,w)),
which is completely contractive and completely positive (and normal if p = c0).

Suppose that T: S¥(L?(VN(G,0))) — S¥(LP(VN(G, 0))) is a completely bounded
operator. If VN(G,w) is QWEP then by (2.1.6) the operator

PP o(T) = (A, (T ® Idgr (o vn(aw)) Bp
is a completely bounded map on the space ST(LP(VN(G, 0 - w))). Moreover, we have

||P1?7G(T)||cb,Sf(LI’(VN(G,a-w)))HSf(LP(VN(G,U-w))) < H(A*)P(T ® IdS?(LP(VN(G’w))))APHCb
ST lew,s2(1r (VN (G 00))— 87 (L2 (VN (G,0))) -

Thus PﬁG is contractive. For any 4,7, k,l € I and any s,s’ € G, we have

(Tr ®7¢,0w) (((A*)p(T ® Ids;’(Lp(VN(G,w))))Ap(eij ® Avw,s)) (Er1 ® )\crw,s/)*)
= (Tr ®76¢,0.0) (A)p (T @ Idgr (Lo (vN(Gw))) ) (€1 @ Aoys @ €ij @ Aws) (€1 @A)y s0))
= (Tr ®7¢,0-w) (((A*)p (T(eij ® Aos) ®eij @ /\w,s)) (elk ® (o - w)(s, 5171))\0_%8,_1))

= (0 w)(s, 5 D)(Tr @760 ® Tt ®76.0) ((T(e,-j D Aos) ® €5 @ Ao a) Ape (14 @ AUW,_I))
o-w)(s', s ) (Tr @7¢,0 @ Tr @7¢.w) (T(eij ® Aos) ® €5 @ Auy )

X (et ® Mg, -1 ® €1k @ Ay 57-1))

m('ﬁ RTq U)( (€ij ® Aos) (et ® )\075/71))(’:[‘1' ®Tglw)(eijelk ® )‘w,s)‘w,s/*l)

= (0-w)(s", s Dw (s, 8" )(Tr @76,0) (T(eij @ Aoys) €1k ® Mg 1)) 0i k65,185,

= (Tr ®76,0) (T(€i; @ Ao,s)(e1x @ 0 (', 8" Ay 0-1))8i 16,105, s7
=( (ei;

Tr ®TG )( J 2y )\a' s)(ekl 2y AU,S/)*)(Si,k(Sj,l(SS,S/'
Hence according to (4.1.6), Py 5(T) is the operator [M,,,,].
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1. If we choose w = 1, according to the discussion at the end of Section 4.1,
P? (T) belongs to MP"(G,0) C CB(SY(LP(VN(G,0)))). If T = [My,,] right from
the beginning, for some symbols v;;: G — C, then for s € G

¢ij(s) = (Tr ®76,0)(T(ei; ® Aoys)(€ij @ Aoys)”)
= 135 (s)(Tr ®76,0) ((€ij ® Aos) (€15 ® Aos)*)
= ;j (S)TG,U(AG,S)‘;,s) = ¢ij(5)0(5a s_l)TG,U(AO'yS)\O',S_l)
= 1;;(s)o(s, s Ho(s, s1)8,.6 = i;(s).

Thus, in this case P7 (T) = T, so that Pf ; is indeed a projection onto mﬁ’Cb(G, o).

2. We turn to the case p = co. Since multipliers on the level p = oo are by definition
normal mappings, we need to define Pr%;(T) = (A*)oo (P (T) ®Idps2)gvn(a,w)) oo
where Py~ : CB(M) — CB(M) with M = B(¢2)®VN(G, o) is the projection onto nor-
mal maps from Proposition 3.1. Note that Py« is contractive and preserves complete
positivity according to this proposition. Moreover, then Py«(T) ® Idp(se2)gvn(g,w) i
also normal, and since (A*), and A, are normal, and normality is preserved under
composition, we finally infer that PP% (7)) is normal.

Moreover, as e;; ® A\ss € Si(LY(VN(G,0))) for any i,5 € I and s € G,
Py« (T)(eij ® Ag,s) = T'(€ij @ Ag,s), so that PPG(T) is the multiplier with symbol ¢;;
from the statement.

3. Note that if T" is completely positive then Pﬁ (T) is also a completely positive
map by composition.
4. The statement about the compatibility of P}’, ¢ for different values of p € [1, 00]

follows directly from the defining formula of P7, and the fact that (A*),, A, and
Idsr Lr(vN(G,0))) are all compatible for two different values of p.

5. Suppose p = oo. If T: M;(VN(G,0)) — M;(VN(G,0)) is selfadjoint then for
any s € G and any i, € I we have
¢ij(s) = (Tt ®76,0) (T (eij ® Aos)(€ij ® Aoys)”)
= (Tr ®76,0) (€17 ® Ao,s (T(eij ® Ao,s))")
o).
It is not difficult to conclude that PP%(T) is selfadjoint.

Suppose that T' = [T};] is a matrix of operators such that each Tj; is unital, i.e.,
T(ei; ® Ao,e) = €15 ® Ag,e. We have

vii(e) = (Tr ®7¢,0) (T (€1 ® Aoe)(€ii ® Aoe)®)
= (TI‘ ®TG,0)((eii ® /\0—75)(61‘1' ® )\g,e)*) =1.
We conclude that PPG;(T) is unital.

6. It suffices to use the map Py clope-er (G0) and a symmetry argument. O
; ? ,
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REMARK 4.3. — This result admits a generalization for unimodular discrete quantum
groups. We warn the reader that the formula given in [49, Remark 7.6] for unimodular
locally compact quantum groups does not make sense ) already in the case of the
locally compact group R of real numbers.

The case G = {e} gives the following complementation for the space of completely
bounded Schur multipliers. Compare to [6, Proposition 2.6].

COROLLARY 4.4. — Suppose that I is equipped with the counting measure. Let
T: 57 — S? be a completely bounded operator. We define the matriz ¢ by
(421) WYij = Tr (T(eij)e;‘j), Z,] el.

Then the map Py : CB(SY) — CB(SY), T — M, is a well-defined contractive projec-
tion onto the subspace WI?’Cb of completely bounded Schur multipliers. Moreover, if
T is completely positive then the Schur multiplier PY(T) is completely positive. For
p = oo the same assertions are true by replacing CB(SY) by the space CBy+(B(¢£2)).

The case where I contains one element and a symmety argument show that the
complete positivity of a multiplier is independent from the T-valued 2-cocycle o (this
first point can be proved as the point 6 of the Theorem 4.2).

COROLLARY 4.5. — Let G be a discrete group. Let o be a T-valued 2-cocycle on G.
Suppose 1 < p < co. If p # 0o, we suppose that VN(G) and VN(G, o) have QWEP.
Let ¢: G — C be a complez function. Then,

1. ¢ induces a completely positive multiplier M,,: LP?(VN(G,0)) — L?(VN(G, o))
if and only if ¢ induces a completely positive multiplier

M,: LP(VN(G)) — LP(VN(G));

2. ¢ induces a completely bounded multiplier M,: LP(VN(G, o)) — LP(VN(G, 0))
if and only if ¢ induces a completely bounded multiplier

M,: LP(VN(G)) — L?(VN(G)).
In this case, we have the equality

) ||M<p||

(42.2) 1M, ”cb,LP(VN(G,a))—>LP(VN(G,a ¢b,LP(VN(G))—LP (VN(G))

Note that [18, Proposition 4.3] gives a proof of (4.2.2) for p = co.
In the following result, P7  is the map of Theorem 4.2 with w = 1.

29. With the notations of [49, Remark 7.6], if we identify L°°(G) with L*°(R), and z with a
function f, we obtain L(f) = fR[Q(ft)]_tduR(t) where ®: L°(R) — L°°(R) and where we use
translations by ¢t and —t. This integral is meaningless. We would like to thank Adam Skalski for his
confirmation of this problem by email on his own initiative.
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THEOREM 4.6. — Let I be an index set equipped with the counting measure. Let
G be a discrete group equipped with a normalized T-valued 2-cocycle o and H be a
subgroup of G. Suppose 1 < p < co. If p # o0, we suppose that VN(G, o) has QWEP.
Then we have a natural contraction Qb : MP®(G,0) — MP°(H,o|H) sending
[My,;] = [M, 5] and an isometric embedding Ji;: MP " (H, o|H) — M2(G, 0)

sending [My,;] = [My,5..,], s0 that Jir o QY is a projection. Then P75 o JpoQioPrg

defines a projection CB(ST(LP(VN(G,0)))) — CB(SY(LP(VN(G,0)))) having its
image in Jg(?ﬁ’;’Cb(H, o|H)) and satisfying the same properties as the previous
map PﬁG: it preserves complete positivity, is compatible for different values of p, and
preserves selfadjointness and unital mappings.

Proof. — For the fact that Q% is a contraction and that J7, is an isometric embed-

ding, we refer to the end of Section 4.1. It is elementary to check that J% Q% is
a projection. We have (P}'iH)2 = JuQuPl oJnQuPle = JRQulnQuPle =

Jy Q4P ¢ = Pl , since Pf ; is the identity on multipliers. Thus, P7 ; is a projec-
tion. As J3QY ([My,,]) = Idgr ® Jy(Jp+)* - [My,,]-1dgr ® J, (Jp+)* and the mapping J,
from the end of Section 4.1 is completely positive, thus by Lemma 2.9 also (J,+)*, we
infer that P, preserves complete positivity. The compatibility of Pf ; for different
values of p follows from that of P7 ; and of J7; and Q%. If p = co and T is selfadjoint,
PﬁG(T) is selfadjoint, i.e., its symbol ¢;;(s) takes real values for all ¢,j € I and
s € G. Then the symbol of P75, (T) is ¢;;(s) - 1u(s) which also has real values, so
that Pry; preserves selfadjointﬁess. In a similar way, if T is normal and all T;; are
unital, then PffG(T) is unital, which amounts in ¢;;(e) = 1 for all 4 € I. Since e € H,
we conclude that Pr%(T) is unital. O

The case where I contains one element and where 0 = w = 1 gives the following.

COROLLARY 4.7. — Let G be a discrete group and H be a subgroup of G.
Suppose 1 < p < oo. If p # oo, we suppose that VN(G) has QWEP. Let
T:LP(VN(G)) —» LP(VN(G)) be a completely bounded operator. We define the
complex function p: H — C by

o(s) = 7¢(T(Xs)(As)*), s € H.

Then the map P : CB(LP(VN(G))) — CB(L?(VN(G))), T — M, is a well-
defined contractive projection onto the subspace IMP°*(H) (identified as a subspace
of CB(LP(VN(G)))). Moreover, if T is completely positive then the map Py, (T') is com-
pletely positive. For p = 0o the same assertions are true by replacing CB(LP(VN(G)))
by the space CBy« (VN(QG)).

4.3. Description of the decomposable norm of multipliers

The following theorem is our first result describing decomposable multipliers on
noncommutative LP-spaces.
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THEOREM 4.8. — Let G be a discrete group equipped with a normalized T-val-
ued 2-cocycle o. Suppose 1 < p < oco. We suppose that VN(G) and VN(G, o)
have QWEP. Then a function ¢: G — C induces a decomposable Fourier multi-
plier on LP(VN(G, 0)) if and only if it induces a decomposable Fourier multiplier
on VN(G).

Proof. — =:Let My: LP(VN(G, 0)) — LP?(VN(G, 0)) be a decomposable Fourier mul-
tiplier. By Proposition 3.12, we can write My, = T — T +i(T5 — T4), where each Tj is
a completely positive map on L?(VN(G, ¢)). Using the projection P}, of Theorem 4.2
with G = H, I = {0} and w = 1, we obtain that

My = P§(My) = P5(Ty = T5 +i(Ty — T4)) = PA(Ty) — PA(T3) +i(P5(Ts) — P(Ty))

and that each P§(T;) = My, is a completely positive Fourier multiplier on L?(VN(G, 0)).
By Corollary 4.5, each ¢; also induces a completely positive Fourier multiplier
on L?(VN(G)). By the proof of [51, Proposition 4.2], we see that the (continuous)
function ¢; is ®® positive definite. Hence it induces a completely positive Fourier
multiplier on VN(G) again by [51, Proposition 4.2]. We conclude that ¢ induces a
decomposable Fourier multiplier on VN(G).

<: Let My: VN(G) — VN(G) be a decomposable Fourier multiplier. Simi-
larly, with Theorem 4.2, we can write My = My, — My, + i(My, — My,) where
each My, : VN(G) — VN(G) is completely positive. By [95, page 216] V), each
Fourier multiplier ¢, induces a completely positive 2 multiplier on L?(VN(G)) and
also on LP(VN(G, o)) by Corollary 4.5. Using Proposition 3.12, we conclude that
¢ induces a decomposable Fourier multiplier on L?(VN(G, 0)). O

The following is essentially [177, Section 1.17.1 Theorem 1], see also [146, page 58].

LEMMA 4.9. — Let (Eg, E1) be an interpolation couple (of operator spaces) and let
C be a complemented subspace of Ey+ E1. We assume that the corresponding bounded
projection P: Ey+ Ey — Eg+ Ey satisfies P(E;) C E; and that the restriction
P: E;, — E; is bounded for i = 0,1. Then (Ey N C,E; N C) is an interpolation
couple and the canonical inclusion J: C — FEy + Eq induces an isomorphim J
from (Eo N C,E,NC)? onto the subspace P((Ey, E1)?) = (Eo, E1)° N C of (Ey, E1)°.
More precisely, if x € (Eo N C,E; N C)?, we have

“J(x)"(EO,El)G < l#llmne,mncy < max {1Plg, s, 1Plp, -5, } HJ(JU)H(EO,EQS '

In particular, if max{||P|| g, _ g, [|1Plp, g} =1 then J is an isometry.

30. Here we use the inclusion VN(G) C LP(VN(G)) and the realization of LP(VN(G)) as a subspace
of measurable operators. See also Proposition 6.11 which is a more general result.

31. See also Lemma 6.6 which is a generalization.

32. We use here the fact, left to the reader, that if T: M — N is a completely positive map which
induces a bounded map T : L? (M) — LP(N) then T} is also completely positive.
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Let (Ey, E1) be an interpolation couple. If Ty: Eg — Ey, T1: E1 — E; are (com-
pletely) bounded maps such that Ty and T; agree on Ey N Eq, then we say that Tg
and 77 are compatible. In this case, it is elementary and well-known that there exists
a unique (completely) bounded map Ty + T1: Eg + E1 — Ey + E; which extends
Ty and Ty and we have | Ty + Till g,y 5, 5,1, < 05{I ol 5,5, » ITi I, ., } and
similarly for the completely bounded norms. Moreover, if T and 7; are projections
onto Fy and F; then Ty + T} is a projection onto Fy + Fj.

It allows us to deduce the following description of decomposable Fourier multipliers
on amenable groups.

Let G be a discrete group. Recall that the group von Neumann algebra VN(G) is
approximately finite-dimensional if and only if G is amenable, see [162, Theorem 3.8.2].
Using Corollary 4.7 with H = G, we obtain the following result.

THEOREM 4.10. — Let G be an amenable discrete group. Suppose 1 < p < co. Then
a function ¢: G — C induces a decomposable Fourier multiplier
My: LP(VN(G)) — LP(VN(G))
if and only if it induces a (completely) bounded Fourier multiplier
My: VN(G) — VN(G).
In this case, we have the isometric identity

||M¢Hdec,LP(VN(G))—>LP(VN(G)) = ||M¢||cb,VN(G)—>VN(G) = ||M¢||VN(G)—>VN(G)'

Proof. — By [51, Corollary 1.8], since G is amenable, we have I (G) = M><P(q)
isometrically. The first part is Theorem 4.8 using [85, Theorem 2.1] (which says that
the decomposable norm and the completely bounded norm coincide for operators on
approximately finite-dimensional von Neumann algebras). By [95], we have > (G) =
M (G) isometrically. Now, we use Lemma 4.9 with the interpolation couple (3.1.4)
and with C' = > (G) and we also use the projection from Corollary 4.7 with H = G.
Note that we have isometrically

(CBW* (VN(G)) N M>(G), CB(L}(VN(G))) N DJI‘XJ(G))% = (SIR"O(G),SDT"O(G))% = IM>*(G).
We infer that the space
Reg(L? (VN(G))) N9 (G) = (CBy- (VN(G)), CB(L' (VN(G))))» N9M>=(G),

equipped with the regular norm ||-||reg’Lp(VN(G))_}LP(VN(G)) is isometric to the
space M>°P(G). We finally employ Theorem 3.24 to pass isometrically from regular

operators to decomposable operators. O
Similarly, we obtain the following description of decomposable Schur multipliers

with the projection of Corollary 4.4.
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THEOREM 4.11. — Suppose 1 < p < oo. Then a function ¢: I x I — C induces a
decomposable Schur multiplier on SY if and only if it induces a (completely) bounded
Schur multiplier on B(£2). In this case, we have the isometric identity

||M¢||dec,s§—>sf = ||M¢||reg7sf—>s? = ||M¢>||Cb,}3(e§)_>13(z§) = ||M¢||B(e§)_>13(e§)-
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CHAPTER 5

APPROXIMATION BY DISCRETE GROUPS

The complementation Theorem 4.2 from Chapter 4 is stated only for a discrete
group G. In order to exhibit a suitable class of admissible non-discrete locally compact
groups, approximations by discrete subgroups of G become important. In this chapter,
we introduce and study several notions of approximation which are of independent
interest, but which will be important in the subsequent Chapter 6.

5.1. Preliminaries

Chabauty-Fell topology. — For a topological space Y, let .7 (Y') denote the set of closed
subsets of Y. For a compact subset K and an open subset U of Y, set 33

Ok Y {FeZ(Y): FNK=0} and O, ¥ {FeZ(Y): FNU+0}.
The finite intersections Ok, N ---N Ok, N Oy, N---N Oy constitute a basis of a
topology on % (Y), called the Chabauty-Fell topology, introduced in [73, page 472]
under the name of H-topology. By [73, Theorem 1], if ¥ is locally compact then
Z(Y) is a (Hausdorff) compact space. See also [20] and [96] for more information.

Geometric convergence. — The Chabauty-Fell topology is related to the geometric
convergence of Thurston. By [20, Proposition E.1.2], if Y is a locally compact metriz-
able space then a sequence (F},) of closed subsets of Y converges to an element F'
of #(Y) if and only if the two following conditions are satisfied:

— Let (F),, ) be a subsequence of (F,) and let z), € F,, such that the sequence (zy)
converges in Y to some x in Y. Then we have x € F'.

— Any point in F' is the limit in Y of a sequence (z,) with z,, € F,, for each n.

33. Note that OKl n---N OKm = OKlLJmUKm-
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Spaces of closed subgroups. — By [73, IV page 474] (see also [31, Chapitre VIII, §5,
no. 3, Théoréme 1]), if Y = G is a locally compact group, the space € (G) of closed
subgroups of G equipped with the induced topology is closed in .#(G), hence com-
pact. Moreover, in this case, it is folklore but not entirely obvious that a basis of
neighborhoods of a closed subgroup H € %'(G) is given by the sets

(5.1.1) NEH)E {H €¢(G) : HHNK C HU and HNK C H'U},

where K runs over the compact subsets of G and U runs over the neighborhoods
of eg. In words, H' is very close to H if, on a large compact set K, the elements
of H' belong uniformly to a small neighborhood of H, and conversely. In this specific
case, the convergence of a sequence was introduced by Chabauty [41, page 147] to
generalize Mahler’s well-known compactness criterion to lattices in locally compact
groups. The following is folklore, see, e.g., [26, Appendix A].

PROPOSITION 5.1. — Let G be a locally compact group. The sets Né( (H) generate the
neighborhood filter of H in the Chabauty-Fell topology.

Lattices and fundamental domains. — A lattice T in a locally compact group G is
a discrete subgroup for which G/T" has a bounded G-invariant Borel measure [19,
Definition B.2.1 page 332]. A locally compact G that admits a lattice is necessarily
unimodular [19, Proposition B.2.2 page 332|. The same reference says that if I" is a
cocompact 34 (i.e., G/T is compact) discrete subgroup of a locally compact group G
then I is a lattice of G.

Let T be a discrete group of a locally compact group G. If A is a subset of G and
v € I, then the set A7 is called an image of A. A fundamental domain X relative
to I' is a Borel measurable subset of G satisfying the following two properties:

(5.1.2) XT = G,
(5.1.3) Xy N X~y = for any distinct elements v,~" of T.

These properties say that every element x € G is covered by one and only one im-
age of X. These conditions are equivalent to the following statement: X is a Borel
measurable subset of G such that the restriction of the canonical mapping G — G/T’
of G onto left cosets, restricted to X, becomes a bijection onto G/I". We obtain a
set X with these two properties, if we select a representative s from every left coset
sI' of T relative to G. However, in general, such a set X is not a Borel set. If G is
o-compact the result [19, Proposition B.2.4 page 333] (see also [161, Lemma 2]) gives
the existence of a fundamental domain for any discrete subgroup I' and if in addition
T is a lattice in G then every fundamental domain for I" has finite Haar measure [19,
Proposition B.2.4 page 333].

34. The word uniform is also used.
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5.2. Different notions of groups approximable by discrete groups

Recall that a locally compact group G is approximable by a sequence (I';) of
discrete subgroups [121, Definition 1] [176, page 36] if for any non-empty open set O
of G, there exists an integer jo such that for any j > jo we have O NT'; # (). We say
that a locally compact group G is approximable by discrete subgroups (ADS) if G is
approximable by some sequence (I';) of discrete subgroups. It is obvious that a second
countable locally compact group G is approximable by a sequence (I';) of discrete
subgroups if and only if (I';) converges to G for the Chabauty-Fell topology. Using
the definition of the geometric convergence we obtain the following characterization.

PROPOSITION 5.2. — Let G be second countable locally compact group. Let (T';) be a
sequence of discrete subgroups of G. The following are equivalent.

1. The group G is approzimable by the sequence (T';).
2. Any s € G is the limit in G of a sequence (vy;) with v; € I'; for any integer j.

Moreover, note that a connected ADS locally compact group G is necessarily nilpo-
tent (see [92, Theorem 2.18]) and that a connected simply connected Lie group is ADS
if and only if G is nilpotent and if it admits a discrete cocompact subgroup ([94, The-
orem 1.6, 1.7 and 1.9]. We refer to [94], [93], [92], [121], [176] and [178] for more
information on this notion. Now, we introduce different notions of approximation by
discrete groups. These will be used in Chapter 6.

DEFINITION 5.3. — Let G be a second countable locally compact group.

1. The group G is said to be approzimable by lattice subgroups (ALS) if there exists
a sequence (I';) of lattices in G such that (I';) converges to G for the Chabauty-
Fell topology.

2. The group G is said to be (right) uniformly approzimable by a sequence (I';)
of discrete subgroups if there exists a right invariant metric dist such that for
any € > 0, there exists an integer jo such that for all j > jo and all s € G there
exists v; € I'; such that dist(s,7;) < €. The group G is said to be uniformly
ADS if G is uniformly approzimable by a sequence (I';) of discrete subgroups.
We also define the notion “uniformly ALS” where “discrete groups” is replaced
by “lattice subgroups”.

3. The group G is said to be approzimable by shrinking by a sequence (I';) of lattice
subgroups with associated fundamental domains (X;) if for any neighborhood V
of the identity e (equivalently, for any ball V = B(eg, &) with € > 0, associated
with a right invariant metric generating the topology of G) there exists some
integer jo such that X; C V for any j > jo. The group G is said to be approz-
imable by lattice subgroups by shrinking (ALSS) if there exists a sequence (I'j)j>1
of lattice subgroups in G and some associated fundamental domains (X;) such
that G is approzimable by shrinking by (T';) and (X;).
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REMARK 5.4. — 1. If we assume in Part 3 of Definition 5.3 that the subgroups I';
are only discrete subgroups instead of being lattices, we obtain the same defi-
nition. Indeed, for any sufficiently small € > 0 and any sufficiently large j, we
have X; C B(eg,e) where B(eg,¢) is relatively compact according to the lo-
cal compactness of G. Thus the closure Xij is compact. The canonical mapping

m: G — G/T'; being continuous, 7(X;) is also compact. But since X; is a funda-
mental domain, we have (X;) = G/I'; and a fortiori 7(X;) = G/T';. Therefore,
G/T'; is compact, and so by [19, Proposition B.2.2]|, the discrete subgroup I'; is

automatically a lattice.

2. We shall see in Part 3 of Proposition 5.9 that a second countable locally com-
pact group which is uniformly ADS with respect to a sequence (I';) of discrete
subgroups admits fundamental domains which are almost all included in small
balls. Therefore, combined with the first part of this remark, we deduce that if
G is uniformly ADS then G is uniformly ALS.

3. Part 3 of Definition 5.3 is inspired by the notion ADS from [39, page 3]. It is
formally slightly weaker since we assume that the X; are becoming smaller and
smaller around e instead of forming a neighborhood basis of eg as in [39].
Moreover, the authors of [39] use only lattice subgroups. However, we shall see
in Part 3 of Proposition 5.9 that our notion of ALSS is equivalent to ADS from
[39, page 3].

4. Tt is obvious that the property uniformly ADS implies the property ADS, that
uniformly ALS implies ALS and that ALS implies ADS.

Recall that any locally compact group G which contains a lattice subgroup T is
unimodular by [19, Proposition B.2.2] and that the subset of unimodular closed sub-
groups of G is closed in € (G) for the Chabauty topology, see [31, Chapitre VIII, §5,
no. 3, Théoréme 1].

We start with a result giving the existence of fundamental domains satisfy-
ing some inclusion constraint. In this proposition and the subsequent lemma,
we equip the group G with a left invariant metric dist generating its topology
and we consider the balls B(eg,r) o {s € G : dist(s,e¢) < r}. However, note
that the statement in Proposition 5.5 remains valid if one replaces the distance
dist by a right invariant one dist’, generating the topology of G, together with
balls B(eg,r) dof {s € G : dist'(s,eq) < r}. Indeed, note that since both dist and
dist’ generate the same topology, if D contains a ball é(eg,F), it will contain a
ball B(eg,r), so X will contain a ball B(eg,r’) and thus also a ball B(eg,").

PROPOSITION 5.5. — Let G be a second countable locally compact group together with a
discrete subgroup I' C G. Let D C G be a measurable subset satisfying U'yEF Dy =G.
Then there exists a fundamental domain X C D associated with T'. Moreover, if D
contains a ball B(eg,r) then X contains a ball B(eg,’).
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Proof. — Note first that since G is second countable, I' endowed with the trace topol-
ogy is again second countable. Since T' is discrete, this implies that I' is at most
countable, and we choose one enumeration (v;) of I'.

Consider the canonical map p: G — G/T. Since G is second countable, there exists
by [129, Lemma 1.1] (see also the discussions [30, page 11] and [79, page 67]) a locally
bounded Borel section ¢: G/T' — G. By [179, Corollary 4.49], the map v: G — T,
s+ (g(sT"))"1s is a (locally bounded) Borel function.

LEMMA 5.6. — There ezists some p > 0 such that v(B(e, p)) C {e}.

Proof. — Let dist be a left invariant metric on G generating its topology as a locally
compact group and distg,r the associated distance on G//I". Consider the strictly (35)
positive number ro = dist(T'\{e},e) > 0. Since B(e,rg) NT' = {e}, for any s € G,
the condition dist(y(s),e) < ro implies that v(s) = e. Now by definition of v, we
have dist(y(s),e) < ro if and only if dist(¢(sT')~'s,e) < r¢ and finally if and only if
dist(s, ¢(sT")) < ro by left invariance. Since ¢ is continuous in a neighborhood of el’,
there exists r; > 0 such that distg/p(sT',el') < ry implies dist(q(sT"),e) < =Z2. If
dist(s,e) < min{r;, %} we have
distgr(sT, el') < dist(s,e) < 71,

hence dist(e, g(sI")) < 7. Thus the triangle inequality gives
dist(s, g(sI)) < dist(s, e) + dist (e, g(sI)) < %0 + %0 = Try.
The lemma is proved. O

Define now A; % {s € D:v(s) =y} = DNy ({y1}), which is measurable as the
intersection of two measurable sets. Assuming without loss of generality that v; = e,
we have that B(e, ") C A; for ' = min(r, p) since B(e,r) C D. Define then recursively
for k > 2, the subsets

“seD: (s):ﬂyk,EIje{l,...,k—l},BleN: sy € A}

=Dy {mhn ﬂ ) A5
j=11eN
It can easily be shown recursively that Ay is measurable as the countable intersection
of measurable sets. Define finally X = ef Ui, A

We claim that X is a (measurable) fundamental domain of I" which is contained
in D. First, it is measurable as a countable union of measurable sets. Since by defini-
tion, we have Ax C D for any integer k > 1, we also have X C D.

LEMMA 5.7. — For any v € I'\{e}, we have XyNX = 0.

35. The subset {e} is open in I', so I'\{e} is closed.
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Proof. — Indeed, let s € X, so that s € Ay, for some ky € N. This implies that
v(8) = Yk, Put t = s7. Since v # e, we cannot have y(t) = 7(s), because otherwise
Y(t) = (tL,y(t)) = (sT',v(s)) = Y(s), and since Y is bijective, we obtain ¢ = s, which
is a contradiction. So y(t) = 7k, for some k1 # ko.

If k1 > ko, then ¢ cannot belong to Ayg,. Indeed, ¢ € Ag, implies that we cannot
find I € N such that ty; € Ay, since kg < ki. This implies with 7; = y~! that
s =ty 1 & A,, which is a contradiction.

If k1 < ko, then ¢ cannot belong to Ay, either. Indeed, since s € Ay, , we cannot find
l € N such that sy; € Ay, since k1 < ko. This implies with v, = 7 that ¢t = sy & Ay, .
Thus t € X, so we have Xy N X = (. O

LEMMA 5.8. — We have

(5.2.1) U Al ={seD: ~(s) € {m,72,...}}T.
k=1

Proof. — For the inclusion C, we note that if s € Ay for some k € N, then in particular
s € D and v(s) = 7, so that sI' is contained in the right hand side of (5.2.1). For
the inclusion D, if s € D and 7(s) = ~y for some k € N, then either s € Ay, which
implies that sI' is contained in the left hand side of (5.2.1) or there exists [ € N
and j € {1,...,k — 1} such that sy, € A;. Then sT' = syy;, 'T' C A,;T, so it is also
contained in the left hand side of (5.2.1). Whence, (5.2.1) is shown. O

The left hand side of (5.2.1) equals clearly XT', and the right hand side equals
DT, since v(s) must belong to {y1,72,...} for any s € D. Since DI' = G, we obtain
XT' = G, so that X is a fundamental domain. Since B(e,r’) C A, we also have
B(e,r") Cc X. O

PROPOSITION 5.9. — Let G be a second countable locally compact group.

1. If the group G is ALSS with respect to (I';) and (X;) then G is uniformly ALS
with respect to (T';).

2. Let G be an ADS group with respect to a sequence (I';) of discrete subgroups.
Suppose that for some jo € N, some compact K C G and any j > jo there exists
a fundamental domain X; with respect to I'; such that X; C K. Then the group
G is uniformly ADS with respect to (I';). We have a similar property for ALS
and uniformly ALS.

3. If the group G is uniformly ADS with respect to discrete subgroups (I';) then G is
ALSS with respect to (I';) and some particular sequence (X;) of fundamental
domains. Moreover, the X; can be chosen to be neighborhoods of eq if j is large
enough. In particular, if G is uniformly ALS then G is ALSS.

4. The group G is uniformly ADS if and only if it is uniformly ALS if and only if
it is ALSS.
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Proof. — 1. First assume that G is ALSS with respect to a sequence of lattice sub-
groups (I';) with associated fundamental domains (X;). Take a right invariant met-
ric dist on G generating its topology as a locally compact group. Fix € > 0. By the
ALSS property, there exists some integer jo such that the fundamental domains X
are contained in B(e,¢) for any j > jo. For any s € G and any j, there exists x € X
and v € I'; such that s = z. For any j > jo, we conclude that

dist(s,7y) = dist(xy,vy) = dist(z, e) < e.

Thus, the group G is uniformly ALS.

2. Let G be an ADS group with respect to a sequence (I';) of discrete subgroups
in G. Suppose that for some jo € N, some compact K C G and any j > jo, there exists
a fundamental domain X; with respect to I'; such that X; C K. Fix a right invariant
metric dist on G. The compact subset K is totally bounded. Then for any € > 0,
there exist some s1,...,sy € K such that for j > jo,

N
g
X; cchL_JlB<sk,2>.

Moreover, since G is ADS, for any 1 < k < N, there exists some j; € N such that for
all i > jj, there is some v; € I'; with dist(sg,v;) < 5. Note that this implies that if
x € B(sy, 5) we have
E €
dist(z, ;) < dist(z, sg) + dist(sg,v:) < 3 + 5 =¢
. def . . L L

Thus, for jmax = max{jo, j1,...,JN}, ANy § > jmax, any € X; and any % > jmax,
there exists some v; € I'; such that dist(z, ;) < e.

For an arbitrary s € G and any j > jmax, we write s = z;7; with z; € X; and

7; € I'; and we have (setting ¢ = j) dist(z;,v;) < € for some ~; € T'; so also

dist(s, v;7;) = dist(x7;,v;7;) = dist(z, ;) < e.
Note that 7,7; belongs to I';. Thus the group G is uniformly ADS. The proof of the
second property is identical.

3. Now assume that G is uniformly ADS with respect to a sequence (I';) of discrete
subgroups. We fix a right invariant metric dist of G which generates the topology of G
and with respect to which the uniformly ADS property holds. There exists § > 0 such
that any closed ball of radius < § is compact.

For any j, we introduce the Dirichlet cell

Dr, ={s € G : dist(s,e) < dist(s,) for any v € T;}.

We first show that for given & > 0, there exists jo € N such that Dr;, C B(e,¢)
for 5 > jo. Note that by the uniformly ADS property there exists a jo € N such
that for all s € G and any j > jo there exists v; € I'; such that dist(s,;) < 5. If
s € B(e,e)® and if j > jo we obtain

dist(s,v;) < = < e < dist(s, e).

N ™
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Hence s does not belong to Dr,. We deduce that B(e,e)® C Dlﬁj if 7 > jo. The claim
is proved.

Now we prove that the Dirichlet cell Dr, satisfies Uyerj
enough. Let s € G. For any j, consider the positive real number

def . .
r; = inf dist(s,~).
J +/€r; ( ) Y )

Dr,v = G if j is large

There exists j; such that for any j > j; and any s € G there exists v; € I'; such

that dist(s,v;) < g, hence r; < %.

LEMMA 5.10. — For any j > j1, there exists v € I'; such that dist(s,y) < dist(s,7’)
for any v € T;.

Proof. — If s € T';, it is obvious that the infimum is a minimum. Suppose s ¢ I';. We
have r; > 0. We let K = B’(z,2r;) NT';. This subset is nonempty and compact. If
7" € T;\K we have dist(z,v’) > 2r;. We deduce that

; = inf dist(s,7') = inf dist(s,v’).
Ty ’Y}Ielrj 1 (S,’Y) 'yl’IelK 1 (357)

Finally, the map ' — dist(s,’) is continuous on the compact K, hence attains its
infimum on K. O

In particular, for any 7" € T';, using the right-invariance of the distance, we obtain
dist(sy™ !, e) = dist(s, y) < dist(s,v"y) = dist(sy~1,~v").

Therefore, sy~ ! € Dr,, that is s € Dr 7.

Moreover, Dr; = ﬂverj{s € G : dist(s,e) < dist(s,v)} is an intersection of closed
sets, and hence itself closed, hence measurable.

Note that T';\{e} is closed. Hence we have r; = dist(e,I';\{e}) > 0. Thus the

ball B(e, %) is contained in Dr,. According to Proposition 5.5, there exists some
fundamental domain X; C Dr, associated with I';, which is a neighborhood of e € G.
Furthermore, if j > jo we have X; C Dr, C B(e,¢). Hence we conclude that the
group G is ALSS with respect to (I';) and (X;). The proof of the second property is
identical.

4. This statement is now obvious. O

5.3. The case of second countable compactly generated locally compact groups

The following uses a trick of the proof of [178, Lemma 5.7]. For the sake of complete-
ness, we give all the details. Recall that a topological group is compactly generated if
it has a compact generating set [98, Definition 5.12]. For example, a connected locally
compact group is compactly generated [46, Proposition 2.C.3 (2)].

LEMMA 5.11. — Let G be a compactly generated locally compact group and (T;) a
sequence of subgroups of G which converges to G for the Chabauty-Fell topology. Then
there exists a compact subset K of G and ig such that G = KT'; for any i > ig.

MEMOIRES DE LA SMF 177



5.3. THE CASE OF S. C. C. G. LOCALLY COMPACT GROUPS 79

Proof. — By the proof of [98, Theorem 5.13], there exists an open subset V of G

containing e with G = Un21(VUV_1)n such that V is compact. Welet U = VUV L.

The subset U is open and contains e. Moreover, the set K T =—vov-T =

Vu V_l is compact and we have G = J,,»; K". Since e belongs to U, we have
UG = G. Moreover, by [98, Theorem 4.4], the subset K3 is compact and included
in UG. Using [98, Theorem 4.4] again, we deduce that (Us)seq is an open covering
of K3. By compactness there exist some elements sq,...,s, € G such that

m
K3 C U USj.

j=1
Since (T';) approximates the group G, there exists some io such that for any i > i
we have {s1,...,8,} C UT;. For i > ig, we deduce that K3 C U’I'; C K°T;. By
induction @), we obtain K™ C K?2TI'; for any n > 3. Moreover, we have K2 C KT;.
For any ¢ > ig, we deduce that

G\K c | J K" c K°T;.
n>2

Note that K C KT;. Thus the compact K U K2 has the desired property. O

COROLLARY 5.12. — Let G be a compactly generated locally compact group and (T;)
a sequence of discrete subgroups which converges to G for the Chabauty-Fell topology.
For any large enough i, the subgroup I'; is a cocompact lattice.

Proof. — Use the previous Lemma 5.11 and recall that a discrete subgroup I' which
is cocompact 7 is a lattice. O

THEOREM 5.13. — Let G be a second countable compactly generated locally compact
group. The following are equivalent.

1. G is ADS.

2. G is ALS.

3. G is uniformly ALS.
4. G is ALSS.

Proof. — The implications 2. = 1. and 3. = 2. are obvious. By Corollary 5.12, we
have the implication 1. = 2. By the part 3 of Proposition 5.9, the properties 3. and
4. are equivalent.

Suppose that G is ALS with respect to a sequence (I';) of lattice subgroups in G.
Then by Lemma 5.11, there exists a compact subset K of G and ig such that G = KT;

36. If K™ C K?T; for some n > 3 then we have K"+! = KK" c KK?T; = K3I'; C K2I;T'; =
K2I;.

37. If G = KT; for a compact K, then for the canonical and continuous q: G — G/T';, we have
g(K) = G/T;, so that G/T'; is compact.
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for any i > 4. By Proposition 5.5, there exists ®® a fundamental domain X; for I';
in G such that X; C K for any i > iy. From part 2 of Proposition 5.9, we conclude
that G is ALSS and thus 2. implies 3. O

38. If G is a second countable locally compact group and if I" is a cocompact lattice in G then
there exists a relatively compact fundamental domain X for I' in G. This result [161, 8] of Siegel does
not suffice here.
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CHAPTER 6

DECOMPOSABLE FOURIER MULTIPLIERS
ON NON-DISCRETE LOCALLY COMPACT GROUPS

In this chapter, we start by giving general results on Fourier multipliers on noncom-
mutative LP-spaces. After this, we construct our projections by approximation. Then
we study (classes of) examples, including direct and semi-direct products of groups,
the semi-discrete Heisenberg group, groups acting on trees and pro-discrete groups.
We conclude by drawing the relevant consequences for decomposable multipliers.

6.1. Generalities on Fourier multipliers on unimodular groups

Group von Neumann algebras of locally compact groups. — Let G be a locally com-
pact group equipped with a left invariant Haar measure pg. For a complex func-
tion g: G — C, we write A(g) for the left convolution operator (in general unbounded)
by g on L?(G). This means that the domain of \(g) consists of all f of L2(G) for
which the integral (g * f)(¢) Lof Jo9(s)f(s7 ) dua(s) exists for almost all t € G
and for which the resulting function g * f belongs to L?(G), and for such f, we
let M(g)f def g* f. Finally, by [98, Corollary 20.14], each g € L!(G) induces a bounded
operator A(g): L%(G) — L%(G).

Let VN(G) be the von Neumann algebra generated by the set {A(g) : g € L'(G)}.
It is called the group von Neumann algebra of G and is equal to the von Neumann
algebra generated by the set {\; : s € G} where

N {L%G) — L%(C)
B VA (T (C))

is the left translation by s. Recall that for any g € L'(G) we have A(g) = [ g(s)As dpa(s),
where the latter integral is understood in the weak operator sense (39)

(6.1.1)

39. That means (see, e.g., [80, Theorem 5 page 289]) that A(g): L2(G) — L2(G) is the unique
bounded operator such that

M@ Wiz = /G 9() N fo )26y da(s), ok € LA(G).
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Let H be a closed subgroup of G equipped with a left Haar measure. The pre-
scription Ay s — Ag.s, s € H (where Ay s denotes the left translation by h on L2(H)
and Ag,s the corresponding left translation by h on L?(G)) extends to a normal injec-
tive *-homomorphism from VN(H) to VN(G), see, e.g., [115, Proposition 2.6.6], [56,
Theorem 2 page 113] and [50] for generalizations to quantum groups.

We also use the notation A\(u): L?(G) — L?(G) for the convolution operator by
the measure pu.

Plancherel weights. — Let G be a locally compact group. A function g € L2(G) is called
left bounded [84, Definition 2.1] if the convolution operator A(g) induces a bounded
operator on L2(G). The Plancherel weight 7¢: VN(G)T — [0, c0] is “©) defined by the
formula

e (@) def ||g||iz(G) if z2 = A(g) for some left bounded function g € L2(G)
400 otherwise.

By [84, Proposition 2.9] (see also [139, Theorem 7.2.7]), the canonical left
ideal n,, = {z € VN(G) : 7g(z*z) < oo} is given by

n, ={\g) : g€ L*G) is left bounded}.

Recall that m[, denotes the set {z € VN(G)" : 7¢(z) < oo} and that m., is the
complex linear span of m}, which is a *-subalgebra of VN(G). By [84, Proposition 2.9]
and [166, Proposition page 280]|, we have

m = {A(g) : g € L*(G) continuous and left bounded, A(g) > 0}.

By [84, page 125] or [139, Proposition 7.2.8], the Plancherel weight 7¢ on VN(G) is
tracial if and only if G is unimodular, which means that the left Haar measure of G
and the right Haar measure of G coincide. Now, in the sequel, we suppose that the

locally compact group G is unimodular.

We will use the involution f*(t) def f(t=1). By [120, Theorem 4], if f,g € L2(G)

are left bounded then f * g and f* are left bounded and we have
(6.1.2) MGASf) =Ag=*f) and A(f)" = A(f").

If f,g € L?(G) it is well-known [31, Corollaire page 168 and (17) page 166] that the
function f * g is continuous and that we have (f x g)(eq) = (g * f)(eg) = fG gf duc

where eg denotes the identity element of G and where §(s) Lef g(s™1). By [167, (4)
page 282], if f,g € L?(G) are left bounded, the operator A(g)*\(f) belongs to m,
and we have the fundamental “noncommutative Plancherel formula”

(6.1.3)
1¢(A(9)*A(f)) = (9, f)r2(q) which gives 7 (A(g)A(f)) = /Géfdua = (g% f)(ec)-

40. This is the natural weight associated with the left Hilbert algebra C.(G).
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In particular, this formula can be used with any functions f, g of L'(G) N L?(G). By

(2.1.1), if we consider the subset C.(G) ot span {g* * f : g, f € L?(G) left bounded}

of C(G), we have
(6.1.4) m, = ACe(G))

and we can see Tg as the functional that evaluates functions of C.(G) at eg € G.
Although the formula 7¢(A(h)) = h(e) seems to make sense for every function h
in C.(G), we warn the reader that it is not true “V in general that A(C.(G)) C m.,
contrary to what is unfortunately too often written in the literature.

Averaging projections. — If K is a compact subgroup of a locally compact group
G equipped with its normalized Haar measure pg, we can consider the element
DK def A (px) of VN(K). It is easy to see that it identifies to the element Ag(u%)
of VN(G) where uf is the canonical extension of the measure pux on the locally
compact space G. We say that it is the averaging projection associated with K. The
following lemma is folklore. For the sake of completeness, we give a short proof.

LEMMA 6.1. — If K is a normal compact subgroup then the averaging projection pg
associated with K is a central projection in VN(G) and finally the map

m: VN(G/K) — VN(G)pxk

(6.1.5)
)\sK — >\spK

is a well-defined x-isomorphism.

Proof. — For any s € G, we have sK = Ks and consequently A A(pd%) =
A(8s * u%) = A% )As. Hence pk is central. For any s € G, if sK = s'K, we have
Ao = AsA(p%) = A(6s * u%) = Ay * p%) = A A(pY%) = Aypk. Hence 7 is
well-defined. Other statements are obvious. O

If K is in addition an open subgroup, the following allows us to consider maps on
the associated noncommutative LP-spaces.

LEMMA 6.2. — Let K be a compact open normal subgroup of a unimodular locally com-
pact group G. We suppose that G is equipped with a Haar measure ug and that K is
equipped with its normalized Haar measure purx. We have pg = m)\(lK) and the
map pg(K)m: VN(G/K) — VN(G)pk is trace preserving. Finally if 1 < p < oo, the

41. In fact, suppose that G is compact. Since L2(G) C L(Q), any function of L2(Q) is left bounded.
Moreover, the group G is unimodular so the map f — f* is an anti-unitary operator on L2(G). We
infer that L2(G)* = L2(Q) and consequently that

Ce(G) = span L2(@) * L2(Q).

As already noted, we always have C.(G) C C(G). If in addition A(C(G)) C A(Ce(G)), we have
C(G) = Cc(G) C Ce(G) (if f,g € LY(G) and A(f) = A(g), we have f = g almost everywhere since
the regular representation A: L'(G) — B(L2(G)), f — A(f) is injective by [59, page 285]), then we
obtain span L2(G) * L2(G) = C(G). But this is true only if G is finite (see [97, 34.16, 34.40 (ii) and
37.4)).
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x-isomorphism 7 induces a complete isometry /,Lg(K)%ﬂ'p from LP(VN(G/K)) into

L?(VN(G)pk). In particular m, is of completely bounded norm less than — T
ra(K)P

Proof. — The subgroup K is open, so pug|x is a Haar measure on K and
1K = gomykeli- So

0
prc = Apk) = *((@“G'K) ) = i el

1 1
pa(R) ike) = oy M)
Note that the group G/K is discrete by [98, Theorem 5.21| since K is open and
that px = pgpj. For any s € G, using Plancherel Formula (6.1.3) in the second
equality, we obtain

7a(m(Ask)) = Ta(Aspk) = T¢ (PR AsPK) = uG(K)QTG(A(lx)*AsA(lK))

1 1 1
Ry ) = Gy ) = gy e

The statements on induced maps by m between LP-spaces are now standard
1
using interpolation. Indeed, if z € LP(VN(G/K)) we have (r¢(|n(z)?))? =

(ﬁTG/K(WP))E' N

Noncommutative LP-spaces of group von Neumann algebras. — By (6.1.3), the linear
map L'(G) N L3(G) — L%(VN(G)), g — X(g) is an isometric map which can be
extended to an isometry between L?(G) and L?(VN(G)) using [165, Corollary 9.3].

We need a convenient dense subspace of LP(VN(G)). If p = oo, [56, Corollary 7
page 51] says “? that A(C.(G)) is weak* dense in VN(G), so by Kaplansky’s density
theorem, the closed unit ball of A\(C.(G)) is weak* dense in the closed unit ball
of VN(G). Moreover, it is proved in [48, Proposition 4.7] (see [72, Proposition 3.4]
for the case p = 1) that A(spanC.(G) x C.(G)) is dense in L?(VN(G)) in the case
1<p<oo.

Fourier multipliers on noncommutative LP-spaces. — Note that if ¢ € Llloc(G) is a
locally integrable function and if f € C.(G) then the product ¢f belongs to L*(G)
and consequently induces a bounded operator A(¢f): L2(G) — L%(G). Recall that
this operator is equal to the weak integral [, ¢(s)f(s)Asdug(s). Finally, recall
that L2 _(G) C Li _(G).

loc loc

DEFINITION 6.3. — Let G be a unimodular locally compact group. Suppose 1 < p < co.
Then we say that a (weak* continuous if p = oo0) bounded operator
T: LP(VN(G)) — LP(VN(Q)) is a (LP) Fourier multiplier if there exists a locally

42. Note that PM2(G) = VN(G).
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2-integrable function ¢ € LIOC(G) such that for any f € C.(G) x C.(G) (f € C.(G) if
p = 00) the element [, ¢(s)f(s)As duc(s) belongs to LP(VN(G)) and

(6.1.6) (/ F(5)A diia (s ) |66 dua(e), e T = A1)
In this case, we let T = My.

Then MP(G) is defined to be the space of all bounded LP Fourier multipliers and
9MPP(G) to be the subspace consisting of completely bounded L? Fourier multipliers.

Note that we take symbols in L (@) to use Plancherel Formula (6.1.3) in the sequel
of this section. We will see in Proposition 6.5 combined with Lemma 6.6 that the sym-
bol ¢ of a bounded Fourier multiplier necessarily belongs to the smaller space L= (G).
So, we could replace L2 (G) by L*°(G) in the definition. It is not clear if we can re-
place LZ (G) by L .(G) for an arbitrary group G. Recall that the space L' (VN(G))
canonically identifies to the Fourier algebra A(G). Using the regularity of the Fourier
algebra [115, Th 2.3.8], it is not difficult in the case p = 1 to see that a Fourier mul-
tiplier ¢ is equal almost everywhere to a continuous complex function defined on G.
Moreover, there exists ®) at most one function ¢ (up to identity almost everywhere)
such that T' = My and we say that ¢ induces the bounded Fourier multiplier M.
Finally, it is obvious that the linear map MA(G) — 9! (G), ¢ — M, is an isometry,
where the space MA(G) of multipliers of the Fourier algebra A(G) is defined in [115,
pages 153-154].

Finally, note that we can see 9 (G) as a subset of the space B(C}(G), VN(G))
where C%(G) is the reduced C*-algebra of G. See [115, Remark 1.3].

The following results generalize the alluded observations of [95] done for discrete
groups.

LEMMA 6.4. — Let G be a unimodular locally compact group. Suppose 1 < p < oo.
We have the isometries MP(G) — MP" (G), My — M, and IMPP(G) — IMP<P(Q),
My + My. Moreover, the Banach adjoint (My)*: LP" (VN(G)) — LP"(VN(Q))
(preadjoint if p = o0) of My: LP(VN(G)) — LP(VN(G)) identifies to the Fourier
multiplier whose symbol is ¢. Moreover, the maps IMP(G) — MP(G), My — M
and IMPP(GQ) — MP"P(Q), My My are isometries. Finally, we can replace My
by M in the last sentence.

Proof. — Let My: LP(VN(G)) — LP(VN(G)) be an element of 9MMP(G). For
any f,9 € C.(G)*C.(G) (f € C.(G) and g € C.(G) * C.(G) if p = oo and
f € C.G) * C.(G) and g € C.(G) if p = 1), we have g,¢f € L(G) N L%(Q) since
¢ € L .(G). Using Plancherel Formula (6.1.3) in the second and third equalities, we
deduce that

r(MoDA@) = (@D = [ dFada = r(NDA(9)) = (MM (0).

43. This is clear since the regular representation A\: L1(G) — B(L2(G)), f — A(f) is injective by
[59, page 285].
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We conclude that the adjoint (My)*: LP"(VN(G)) — LP (VN(G)) (preadjoint if
p = 00) identifies to the multiplier M 4 Thus the map My — M provides an isometry
MP(G) — MP"(G).

On the other hand, note that the map x: VN(G) — VN(G), A\; — A,-1 is a x-anti-
automorphism of the algebra VN(G), hence weak* continuous. For any g € C.(G),
using [34, V1.3 Proposition 1] in the second equality, we see that

w0 = ([ s duc(s)) = [ gm0 dua(e)
- /G 95D a1 dpic(s) = /G 905~ dpia(s) = (@),

where we use that [, f(s)A\sduc(s) is a well-defined weak* integral (by [11,
Lemma 2.2] and [34, Corollary 2, II1.38]). For any f,g € C.(G), we deduce that

~ =
gx*f

(EA@NE)) = (5 * 1)) = T (MG = D) = T(MF *9)
- / fdduc = / Fodue = (Mg * ) = TM@AL)).
G G

We conclude with [166, Theorem 6.2] that « preserves the trace. Hence, it induces an
isometric map k,-: L?" (VN(G)) — L?" (VN(Q)). Now, if M, belongs to 9" (G) note
that the map k% o My, 0 ke : LP” (VN(G)) — LP" (VN(G)) identifies to the multiplier
M. We conclude that the map M (G) — MP" (G), M, — My is an isometry.
We conclude by composition that the map IMP(G) — MP" (G), M, — M, is an
isometry. To show the isometry PP (@) = MP P(G), we proceed in the same way
using Lemma 2.5 observing that k,-: L (VN(G))°® — LP"(VN(G)) is completely
isometric. Finally, with the isometric map ©: L?(VN(G)) — LP(VN(G)), = — z*,
it is easy to check that the map ©MyO: LP(VN(G)) — LP(VN(QG)) identifies to the
multiplier M5 Moreover, recall that ©: LP(VN(G))°? — LP(VN(G)) is a complete
isometry. Then it is not difficult to obtain the final assertions. O

LEMMA 6.5. — Let G be a unimodular locally compact group. We have the following
isometries
M*(G) = M>P(G) = L®(G).
Proof. — Suppose that ¢ € L2 _(G) induces a bounded Fourier multiplier. Using the
Plancherel isometry L2(VN(G)) = L2?(G), for any function f € C.(G) * C.(G), we
obtain (since ¢f € L}(G) NL2(G)) that ||M¢()\(f))||L2(VN(G)) = ||)\(¢f)||L2(VN(G)) =
¢flr2(c)- We deduce that
(M| R = sup £l = 8l e ) -
PILAVN(G) ~L2(VN(G) FEC(G)*Ce(G),lI fll2(q) <1 L) L@

Conversely, if ¢ € L°(G) then for any f € C.(G)*C.(G) we have ¢f € L'(G)NL?(G)
and consequently \(¢f) € L?(VN(G)). Moreover, we have ||)\(¢)f

)||L2(VN(G))
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l¢fllizey < N9l I flliz)- So ¢ induces a bounded Fourier multiplier
on L2(VN(G)). This shows that M?(G) = L>(G).

Moreover, the operator space structure of L2(VN(G)) turns it into an operator
Hilbert space [146, page 139], so that the completely bounded mappings on L?(VN(G))
coincide with the bounded ones by [146, page 127]. We conclude that IM%°*(G) =
M2(G) = L™(G). O

LEMMA 6.6. — Let G be a unimodular locally compact group. Suppose 1 < p < q < 2.
We have the contractive inclusions MH(G) C MP(G) C MY(G) C M*(G) and
ML (G) € MPeP(G) € MP°P(G) C M>°P(G).

Proof. — Note that the first inclusion is a particular case of the second inclusion. If
My belongs to MP(G) then by Lemma 6.4, it also belongs to IMP"(G), consequently,
by complex interpolation, M, belongs to MM?(G). Using again interpolation between
2 and p, we deduce that My belongs to 99(G). The second chain is proved in the
same manner. U

The first part of the following result generalizes [115, Lemma 5.1.4].

LEMMA 6.7. — Let G be a unimodular locally compact group. Suppose 1 < p < co.
Let (My,;) be a bounded net of bounded Fourier multipliers on LP(VN(G)) and sup-
pose that ¢ is an element of L°(G) such that (¢;) converges to ¢ for the weak*
topology of L®°(G). Then ¢ induces a bounded Fourier multiplier on LP(VN(Q)). In
addition if 1 < p < oo, the net (My,) converges to My for the weak operator topology
of B(LP(VN(G))) and

||M¢”LP(VN(G))HLP(VN(G)) < ergig;f ||Md>j ||LP(VN(G))—>LP(VN(G)) :
If p = o0, for any functions f € C.(G) and g € C.(G) x C.(G), we have
<M¢j ()‘(f))a )\(g)>VN(G),L1(VN(G)) T) <M¢()‘(f))’ A(g)>VN(G),L1(VN(G))'

A similar statement is true by replacing “bounded” by “completely bounded” and the

norms by ||l Lo (vN(G)—Lr (VN(G)) -

Proof. — For any functions f,g € C.(G) * C.(G) (to adapt if if p = 1), we have
fg € LY(G). For any j, we have

/G¢jf§ dpc

= ’<A(¢jf)’ M9 wo ey <VN<G>>‘

= ‘<M¢j (A M9 Lo vnie e (VN(G))‘

< ||M¢j HLP(VN(G))—>LP(VN(G)) ||)‘(f)||LP(VN(G)) ”)‘(g)”LP*(VN(G)) :

Passing to the limit, we obtain

] /G 69 dnc

< hjnl}gf ||M¢j ||LP(VN(G))—>LP(VN(G)) ||)‘(f)”LP(VN(G)) 1A - (VN(@))
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By density if p < oo, we conclude that ¢ induces a bounded Fourier multiplier
on L?(VN(G)) with the estimate on the norm (use duality if p = 00).

Using again Plancherel Formula (6.1.3) and the weak* convergence of the net (¢;),
we deduce that for any functions f, g € C.(G) * C.(G)

<(M¢ - M¢j)()\(f))7 )‘(g)>LP(VN(G)),LP*(VN(G)) = T((M¢ - M¢j)()\(f)))\(g))

= (M@= 0)N@) = [ (6= 613806 = (6= 05, 1Dy 0y 1000) 5 O

By density, using a §-argument and the boundedness of the net, we conclude “* the

proof. The case p = oo is similar.

Now, we prove the last sentence, it suffices to show that ¢ induces a completely
bounded Fourier multiplier. For any fii, gkt € Co(G) * Co(G) (frr € Ce(G) if p = 00)
where 1 < k,I < N, we have fy,g1; € L'(G) and for any j

)([M% (A(sz))], [)‘(gkl)]>MN(LP(VN(G))),S}V(LP* (VN(G)))‘

< ||M¢j ||cb,LP(VN(G))ﬁLP(VN(G)) || [)‘(fkl)] ||MN(LP(VN(G))) || [)‘(gkl)] ||S}V(LP* (VN(G)))’

that is, using Plancherel Formula (6.1.3),

N
Z /G #5(8) fri(s)gri(s) duc(s)

k=1

< HM¢]. ch,LP(VN(G))—»LP(VN(G)) H [)‘(fkl)] HMN(LP(VN(G))) H P‘(gkl)] HS}V(LP* (VN(Q)))*

Passing to the limit, we obtain

N
Z /G B(5) fri(8)gri(s) dpa(s)

k=1
< 1ijf2§gf HM%- ||cb,LP(VN(G))HLP(VN(G)) H P‘(fkl)] ||MN(LP(VN(G))) H P‘(gkl)] HS}V (L™ (VN(Q)))"
We deduce that ¢ induces a completely bounded Fourier multiplier on L?(VN(G))
with the suitable estimate on the completely bounded norm. O

LEMMA 6.8. — Let G be a unimodular locally compact group and 1 < p < oco. Then
the space MP P (G) is weak* closed in CB(LP(VN(Q))). Similarly, the space MP(G) is
weak* closed in the space B(LP(VN(QG))). Finally, the spaces M>®(G) and IM><"(G)
are weak* closed in the spaces B(C}(G), VN(G)) and CB(C}(G), VN(G)).

44. More precisely, if X is a Banach space, if E; is dense subset of X, if E> is a dense subset of X*
and if (T;) is a bounded net of B(X) with an element T of B(X) such that (T} (), z*) — (T'(x), z*)
J

for any € E1 and any o* € Eo, then the net (T}) converges to T for the weak operator topology
of B(X).
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Proof. — By the Banach-Dieudonné theorem [100, page 154], it suffices to show that
the closed unit ball of MMP*(G) is weak* closed in CB(LP(VN(Q))). Let (My,) be a
net in that unit ball converging for the weak* topology to some completely bounded
map T: LP(VN(G)) — LP(VN(G)). By Lemma 6.5 and Lemma 6.6, for any j, we have

||¢j||Loo(G) < ||M¢j||cb,LP(VN(G))—>LP(VN(G)) <1l
Hence by Banach-Alaoglu’s theorem there exists a subnet of (¢;) converging for the
weak* topology to some ¢ € L*°(G). It remains to show that T' = M. Recall that the
predual of the space CB(LP(VN(G))) is given by L?(VN(G))®LP" (VN(G))°P, where
® denotes the operator space projective tensor product and the duality bracket is
given by

(T, 2 ® ) cpwr (vn(o) Lr (vN(@)BLr* (VN@) = (T @ ¥) 1o (v Lo (via)
This implies that (My,(z),y) — (T(z),y) for any 2 € LP(VN(G)) and any
J

y € LP" (VN(G)). By Lemma 6.7, the net (My,) converges in addition to My for the
weak operator topology. So by uniqueness of the limit, we obtain that T = M.

For the last sentence, we use a similar proof where here T': C}(G) — VN(G).
On the one hand, we have (Mg, (z),y) — (T(z),y) for any 2 € C3;(G) and
j

any y € L}(VN(G)). On the other hand by Lemma 6.7, for any f € C.(G)
and any g € C.(G) * C.(G), we have <M¢j()\(f)),)\(g)> — <M¢()\(f)),)\(g)>.

By uniqueness of the limit, we deduce that <T()\(f)),)\(g)>VN(G) LLVN(G))

<M¢(>\(f)),)\(g)>VN(G)7L1(VN(G)). Consequently, we obtain My(A(f)) = T(A(f)) for
any function f € C,(G). Finally T = M.

The statement on the space 9P(G) can be proved in a similar manner, using
the predual L?(VN(G))®L?" (VN(G)) of B(LP(VN(G))) where & denotes the Banach
space projective tensor product. The last sentence is similar. O

REMARK 6.9. — We do not know if 9P°P(G) and 9MP(G) are maximal commutative
subsets of CB(L?(VN(G))) and B(L?(VN(G))) which is a stronger assertion.

If G is an abelian locally compact group and if M, : LP(G) — LP(G) is a positive
multiplier in 9P (G’), note that ¢ is equal almost everywhere to a function of the

Fourier-Stieltjes algebra B(G), thus to a continuous function. The next lemma extends
this result to the noncommutative context.

LEMMA 6.10. — Let G be a unimodular locally compact group. Suppose 1 < p < oo.
Let p: G — C be a complex function which induces a positive Fourier multiplier
M, : LP(VN(G)) — L?(VN(G)). Then ¢ is equal almost everywhere to a continuous
function.

Proof. — We can suppose 1 < p < oo. Let ¢ € C.(G). Then the operator
Ag* * g) = Mg)*Mg): L23(G) — L?(G) is positive. Moreover, by (6.1.4), it be-
longs to m,, C LP(VN(G)). We conclude that A(¢* * g) belongs to LP(VN(G))+.
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We deduce that M, (A(g* * g)) is a positive element of L?(VN(G)). Since ¢(g* * g)
belongs to L'(G) N L2(G), the operator M, (A(g* * g)) = A(e(g* * g)) is bounded
on L2(G). Now, for any ¢ € L2(G), by positivity,

0 < (My(Mg™ *9))6:6) 1) = <</G @(s)(g" * 9)(s)Xs dua(S))£,§>

L2(G)

- /G ()" * D) (IN)8.) ,  duc(s)

L*(G)

= [ (] 5079 auelt) ) () (08,10, )
= [ (] #05(t5) du(®) ) (6108 €1, i)

- /G /G 9(0)g(8)e(t™"8) (A5, )12 ) A () dua(t).

Hence the function s — <p(s)<)\s§,§>L2(G) of L*°(G) is positive definite [172, VIL3,
Definition 3.20], [59, page 296]. By [172, VIIL.3, Corollary 3.22], we deduce that it
coincides almost everywhere with a continuous function on G. To conclude the lemma,
it suffices now to show that there exists a neighborhood K; of e € G such that

for any so € G, there exists ¢ € L2(G) such that <>\S§’§>L2(G) does not vanish for

s € Kisg. To this end, let Ky be a compact neighborhood of e and set K = K1_1 - Ky,
which is also compact. Let &, € L?(G) such that & > 0 almost everywhere and &y > 0
on K. Put £ =&, + )\50_150. Then

MOy = (Melbo + A180) 0+ A o0) > (Vo)

Z/Gfo(sos_lt)fo(t)d,uc(t) Z/ €o(sos™'t)&o(t) duc(t).

Ko

For t € Ky and s € K15y, we have sos™ 't € Kl_lKO = K, so that &(sos~t) > 0.
Also, &o(t) > 0 for such ¢. Thus, the last integral is strictly positive for s € K;s¢, and
the lemma is shown. O

PROPOSITION 6.11. — Let G be a wunimodular locally compact group. Suppose
1<p< . The following are equivalent for a compler measurable function
p: G — CU,

1. ¢ induces a completely positive Fourier multiplier M, : LP(VN(G)) — LP?(VN(G)).
2. ¢ induces a completely positive Fourier multiplier M,: VN(G) — VN(G).

3. @ is equal almost everywhere to a continuous positive definite function.

45. This proposition admits a generalization for n-positive maps.
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Proof. — 3. = 2.: This is [51, Proposition 4.3].

2. = 1.: Suppose first that M,: VN(G) — VN(G) is completely positive.
Since M, is bounded on VN(G), by Lemma 6.6, ¢ induces a Fourier multiplier
on L?(VN(QG)) which is 4% completely positive.

1. = 3.: According to Lemma 6.10, the function ¢ is continuous almost every-
where, so we can assume that ¢ is continuous without changing the operator M,,.
For i = 1,...,n let f; € C.(G). Note that by [124, Proposition 2.1] the matrix
M(fF = £3)] = [MSf)*A(f;)] is a positive element of M, (VN(G)) and an element
of M,,(L?(VN(G))) by (6.1.4), hence a positive element of M, (LP(VN(G))). Con-
sequently, (Idy, ® Mp)A(fF * £;)] = N(@(f7 * £;))] is an element of

M., (L? (VN(G))+ N M, (VN(G)).

In particular, for any g¢1,..., g, € C.(G) we have

n

> @ * £))T3. )16y 2 0

ij=1
that is
Z / x f5)(5)(gs * G5)(s) dug(s) > 0.
1,j=1

By [51, Proposition 4.3 and Proposition 4.2], we conclude that the function ¢ is
continuous and positive definite. O

PROPOSITION 6.12. — Let G be a unimodular locally compact group. Suppose
1<p<oo. Let (My,) be a bounded sequence of bounded Fourier multipliers
on LP(VN(G)) such that (¢n) converges almost everywhere to some function
¢ € L®(G). Then ¢ induces a bounded Fourier multiplier My on LP(VN(G))
and

||M¢||LP(VN(G))—>LP(VN(G)) < Bgﬁg ||M¢n ||LP(VN(G))—>LP(VN(G)) :

A similar result is true for completely bounded multipliers.

Proof. — By Lemma 6.5, the sequence (¢,) of functions is uniformly bounded in
the norm |[-[|j,«g)- Note that if f € L'(@), the sequence ([, ¢nfduc) converges
to fG ¢f dug by the dominated convergence theorem. Hence (¢,,) converges to ¢ for
the weak* topology of L*°(G). The conclusion is a consequence of Lemma 6.7. O

46. We use here the fact, left to the reader, that if T: M — N is a completely positive map which
induces a bounded map T : L? (M) — LP(N) then T} is also completely positive.
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6.2. The completely bounded homomorphism theorem for Fourier multipliers

Suppose 1 < p < oo. Let us remind the definition of a Schur multiplier on
SP o LP(B(L%(2))) where (9, ) is a (o-finite) measure space [123, Section 1.2].
If f € L*(Q x Q), we denote by K;: L?(Q) — L*(Q), u — [, f(z,)u(z) dz the inte-
gral operator with kernel f. We say that a measurable function ¢: Q2 x Q — C induces
a bounded Schur multiplier on S% if for any f € L?(Q x Q) satisfying K; € Sh we
have K,; € S and if the map S3 N SP — SH, K; — Ky extends to a bounded
map My from S§ into S§, called the Schur multiplier associated with ¢. We denote
by zmg’cb the space of completely bounded Schur multipliers on Sf. We refer to the
surveys [174] and [173] for the case p = oco.

Let G be a unimodular locally compact group. The right regular representation
p: G — B(L?(Q)) is given by (p:€)(s) = £(st). Recall that p is a strongly continuous
unitary representation. We will use the notation Adﬁsz St — S%, x = psxps-1.
A bounded Schur multiplier My: S¢; — S¢, is a Herz-Schur multiplier if MyAd}) =
Ad} M, for any s € G. In this case, there exists a measurable function ¢: G — C such
that ¢(r,s) = @(rs™"') for almost every r,s € G and we let MES = My. We denote

by Dﬁng’Hs the subspace of 9)?’2;’01) of completely bounded Herz-Schur multipliers.
In the sequel Ggisc stands for the group G equipped with the discrete topology.

PROPOSITION 6.13. — Let G and H be second countable locally compact groups and
o: G — H be a continuous homomorphism. Suppose 1 < p < oo. If p: H—C
is a continuous function which induces a completely bounded Herz-Schur multiplier
MES: S% — S%., then the continuous function p o o: G — C induces a completely
bounded Herz-Schur multiplier M5 . S, — S?. and

poo

1925 5, < IMES s

Moreover, if o(QG) is dense in H, we have an isometry 4" Mgs — MEOSU.

Proof. — Let G = G/ Ker(o) 2, Rano - H be the canonical decomposition of the
homomorphism o. By [39, Lemma 9.2|, we have

”Mgosioc?07r||cb,sg_>sg = ||Mgosio&||cb,sp

G/ Ker o5

» .
G/ Kero

. . . Qp P ~ ~
We have a natural isomorphism J; : S(G/ Ker 0)qioe S(Ran )aiee? E51252 T €5(s1),5(s2)
where the ey, ,’s are the matrix units.

Therefore, the group isomorphism &: G/ Ker ¢ — Ran o yields an isometric isomor-

phism from the space of completely bounded Herz-Schur multipliers over Sf’Ran ) aice

47. The proof shows that if Moo is completely bounded then M, is completely bounded.
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to the space of completely bounded Herz-Schur multipliers over S?G / Ker ) aioe by send-

ing each M};S to Mgosﬁ = JE,*IM,LI;SJ&. Thus, we obtain using [39, Lemma 9.2] three
times

”MEOSiO&HCb’Sg/KcrU*}Sg/Kcro - HAl;losmc}||Cb’SfG/ Kcra)diSCHSFG/Kcro)disc
_ HS
B ||M¢Oi ||Cb’S?Ran %)disc ésfﬁan 9)disc
< HMES||Cb,s§,diSC—>sgdisc = 1My 50 _sn

This shows the first part of the proposition.

It remains to show the isometric statement in the case where Ran o is dense in H.
In the light of the foregoing, we only need to show that

(621) ||M<IP:ISch,Sg—>SZ < ||Mg§||cb,sp

13
—S
(Ran o) gisc (Ran ) gjsc

According to [123, Theorem 1.19], we have

122 sup || M5 |

P p —
Su=50  pCH finite

cb,8%.—S8%"
Here, the restriction to F' means that one considers the mapping

Z Qsy,52€51,8, T Z 90(81_182)0‘81782681782‘
s1,82€F S81,52€F

We fix some finite subset F' = {s;,...,sny} C H and some £ > 0. Then for
any 1 <k,l <N, by continuity of ¢, there exist a neighborhood Vj; of s,;lsl
such that |p(t) — ¢(s;'s;)] < € if t € Vi, Since the mapping G x G — G,
(s,t) — s71t is continuous, there exist neighborhoods Wy ; of s;, and ng,l of s; such
that (Wi)"'W{, C Viy. For any 1 < k < N, let now Uy = (0, Wi 0L, WY,
which is a neighborhood U of s;. Since Rano is dense in H, there exists
tr € Rano N U, and we obtain a subset F. = {t1,...,tn} of Rano with the
same cardinality as F'. Moreover, t,;ltl belongs to U, U, ¢ Vi1 and consequently,
lo(t; ') — (s, 's1)| < € for any k,l € {1,...,N}.

Denote M4, Mp: SR — SR the Schur multipliers with symbols A = [ (¢, '#;)] and
B = [p(s;, 's1)]. Then, we obtain using the identifications S%E = 8% and S = S%, in
the first equality

| M5 5

= [ M7l

S w5y sn| = |1Mallcn s 52— IMBllen 53—t
£ 1>

N
”MA - MB”Cb,S%—»SJPV = Z (So(tlzltl) - (P(S;lsl))Mekl

IN

cb7S%—>S%

N
S ety ') — e(s; s [Meyillep 52— 52 < NZe.
k=1
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We have shown

HJ\/‘ra;I;IoSz|FE

— 1M1

cb,S;6—>Sp. 5_,0 cb,Sh—S%"

But again according to [123, Theorem 1.19], the left hand side is dominated by

HS
||Mv°l||cb S(Ranc)d sc S?Ran ) disc

Hence we obtain (6.2.1). O

Now, we state a completely bounded version of the classical homomorphism theo-
rem [65, page 184].

THEOREM 6.14. — Let G and H be locally compact groups and 0: G — H be a
continuous homomorphism. Suppose 1 < p < co. We suppose that G and H are second
countable and amenable if 1 < p < co. If p: H — C is a continuous function which
induces a completely bounded Fourier multiplier M, : LP(VN(H)) — L?(VN(H)), then
the continuous function poo: G — C induces a completely bounded Fourier multiplier
M, : LP(VN(G)) — LP(VN(G)) and

Moo | < [ M

cb,L? (VN(G))—=LP(VN(G)) b, L (VN(H))—LP(VN(H)) *

Moreover, if 0(G) is dense in H, we have an isometry*® M, — M,o,. Finally, if
M, is completely positive then M. is also completely positive.

Proof. — The case p = oo is [163, Theorem 6.2]. By duality, we obtain the case p = 1.
Now, we suppose that 1 < p < oco. Note that by Lemma 6.5 and Lemma 6.6, the
function ¢ is bounded. Then by amenability of G and H, using [40, Theorem 4.2 and
Corollary 5.3] *® with [39, Remark 9.3] and Proposition 6.13, we obtain

1Moo llen Locviviay—tocvniey = 1Moo ll a5 .52 < 1Ml

= ||Mgo||Cb,Lp(VN(H))_>Lp(VN(H)) ’

cb, S —S%,

The isometric statement is proved in the same way.

Finally, suppose that M, is completely positive. By Proposition 6.11, we deduce
that its symbol ¢ is a continuous positive definite function. Since ¢ is continuous, the
function ¢ o o is also continuous. Moreover, if ay,...,a, € C and s1,...,s, € G, we
infer that

Z axtip o o(sks; ! Z agagp(o(sk)o(s) ™) > 0.

k=1 k=1
We conclude that ¢ o o is positive definite. We conclude by using again Proposi-
tion 6.11. 0

48. The proof shows that if Moo is completely bounded then M, is completely bounded.

49. We warn the reader that the proof of [40, Theorem 5.2] is only valid for second countable
groups. The proof uses Lebesgue’s dominated convergence theorem in the last line of page 7007 and
this result does not admit a generalization for nets. See [113] for more information.
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6.3. Extension of Fourier multipliers

The following is an extension of [86, Lemma 2.1 (2)] and a variant of [39, Theo-
rem B.1]. In [39, Theorem B.1], we warn the reader that a factor ug(X)~! is missing.
Contrary to what is said, the alluded method does not give constant 1.

THEOREM 6.15. — Let I be a lattice of a second countable unimodular locally compact
group G and X be a fundamental domain associated with I'. We denote by v: G — T’
and z: G — X the measurable mappings uniquely determined by the decomposition
s = w(s)y(s) for any s € G. Suppose 1 < p < co. We assume that G is amenable
ifl < p < oo. Let ¢: T' — C be a compler function which induces a completely

bounded Fourier multiplier My: LP(VN(I")) — LP(VN(T")). Then the complez function

1) b uG(X) 1x * (pur) * 1x-1: G — C, where ur is the counting measure on I' defined

by

def 1
6.3.1 qﬁs:i/qb’yswd w), seG
(6.3.1) (s) MG(X)X(())MG()
is continuous and induces a completely bounded Fourier multiplier
Mg: LP(VN(GQ)) — LP(VN(Q))
and we have

(6.3.2) | M5

#llcb,Lr (VN(G))—L? (VN(G)) < HM¢||

cb,LP (VN(T))—LP (VN(I))"
Finally, if My is completely positive then M(; is also completely positive.

Proof. — The case p = oo is [86, Lemma 2.1 (2)] and the case p = 1 follows by duality.
The continuity of ¢ is alluded ®® in [86] and in the proof of [86, Lemma 2.1], the
Formula (6.3.1) is shown.

Now, we consider the remaining case 1 < p < co. Since G and I' are both amenable,
we obtain using [40, Theorem 4.2, Corollary 5.3] ) in the first and in the last equality

50. We have

S SLU -1 .
30 = g [ et duoe) = — [ ota ) dng(®)

Then for any si,s2 € G, we have

/ (v 11x(5710) — 1x (s M0)] ducs (t)

9(s1) = dls2)| <

hG (X)
Al (g
= T X() ) / Lox(®) = Lo x (D)l dua (?)
= |4l pG (s1XAs2X) 16l pe ((s5 1s1X)AX) .
Lo (G) pa(X) L0 (G) e (X) vl

where the last line follows from [91, Theorem A page 266].

51. We warn the reader that the proof of [40, Theorem 5.2] is only valid for second countable
groups. The proof uses Lebesgue’s dominated convergence theorem in the last line of page 7007 and
this result does not admit a generalization for nets. See [113] for more information.
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together with [39, Remark 9.3|, and [123, Lemma 2.6] in the inequality

||M¢||cb LP(VN(G))—LP(VN(Q)) ”Mgs ||cb,Sg—>Sg < ||Mgsl|cb,5fi—>5'§
= ||

¢b, L (VN(I'))—LP (VN(T)) "
Suppose that My is completely positive. According to the proof of [86, Lemma 2.1],
for any s,t € G, we have

e — 1 / n—1 /
(6.3.3) 3t = g | 0N 0 Aol

We will show that $ is positive definite. Let a1, ...,a, € C and s1,...,s, € G. Since
¢ is positive definite by Proposition 6.11, we obtain

Z OlkOTl(g(skSl = Z OékOéz/ Y(spw')y(siw’) ™) dpg (W)

k=1 kl 1

A(spe' Y (s16) ) dpa () > 0.
X k,i=1

Since the function gg is continuous, we conclude that Mg is completely positive by
using again Proposition 6.11. O

6.4. Groups approximable by lattice subgroups

If (Y,disty) and (Z,distz) are metric spaces and if f: Y — Z is uniformly con-
tinuous, we denote by w(f,-): [0,4+00[— [0,400[ a modulus of continuity of f. We
have lims_ow(f,d) = 0 and w(f,0) = 0. The function w(f,-) is increasing and for
any s,t € Y we have

(6.4.1) distz(f(s), f()) < w(f,disty(s,t)).

Let G be a topological group. We denote by v: G — G, s — s~ ! the inversion map.
The following theorem gives a variant of Theorem 4.2 for a particular class of

unimodular groups.

THEOREM 6.16. — Let G be a second countable unimodular locally compact group
which satisfies ALSS with respect to a sequence of lattices (I';);>1 and associated
fundamental domains (X;);>1. Suppose 1 < p < co. We assume that G is amenable
if 1 < p < co. Suppose that for some constant ¢ > 0 and any compact subset K of G

we have
1 (X5 N9yX;
/M(J2 7]8)(1/,&(8)—0:0,
wX;) Jo o pA(X;)
where u = pg s a Haar measure of G. Then for 1 < p < oo, there exists a linear
mapping

(6.4.2) lim sup
§—0 yel;NK

PZ: CB(LP(VN(QG))) — MP>(G)

of norm at most % with the properties:
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1. If T: LP(VN(G)) — LP(VN(G)) is completely positive, then P5(T) is completely
positive.

2. If T = My is a Fourier multiplier on LP(VN(G)) with bounded continuous
symbol ¥: G — C, then P%(My) = My. Moreover, if we have vX; = X;~ for
any j € N and any v € Ty, or alternatively, if X; is symmetric in the sense
that /,L(XjAXj_l) = 0 for any j € N, then P%(My) = My for any bounded
measurable symbol such that My € MPP(G).

For an element T belonging to CB(L?(VN(QG))) and to CB(LY(VN(QG))) for two val-
ues p, q € [1,00], we have P5(T)x = PL(T)x for € LP(VN(G)) N LI(VN(G)).

In the preceding lines, if p = oo, we can take CBy»(VN(G)) as the domain space
of P&°.

Proof. — If G is amenable, note that each I'; is amenable by [19, Proposition G.2.2].
So each VN(T';) is hyperfinite, hence QWEP.

For any j, we consider the element h; def AMx;) = fx- As du(s) of the group

von Neumann algebra VN(G) and define for 1 < p < oo the (normal ®?if p = o0)
completely positive map

@7: LP(VN(T,)) — LP(VN(G)), Ay > u(X;) "2 53N By

It is noted and shown in [39, page 19] that each <I>§’ is completely contrac-
tive. For any 1 < p < oo, we also consider the adjoint (preadjoint if p = 1)
vh = (q)?*)*: L?(VN(G)) — L?(VN(T;)) of <I>§.’* which is also completely contractive
and completely positive by Lemma 2.9. Now, use Theorem 4.2 for the discrete group
I'; and define for some completely bounded map T': L?(VN(G)) — LP(VN(G)), the
Fourier multiplier My, : LP(VN(T';)) — LP(VN(I';)) defined by

My, € LPE (99T97) if 1 <p < ooand
My, € LPR (U2 Py (T)DS°) if p = 00,

where the contractive map Py~ : CB(VN(G)) — CB(VN(Q)) is described in Proposi-
tion 3.1, whose symbol is (if T' is normal in the case p = c0)

1 1 *
(6.4.3) 65(7) = ~ 70, (VT ()N, ) = —76 (T(I)ﬁ.’()\n,)@f Ay ))
1 * *
_ WTG(T(hjxwhj)thW_lhj).

52. Recall that the product of a von Neumann algebra is separately weak* continuous, e.g., see
[29, Proposition 2.7.4 (1)].
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Then we have for 1 < p < o0

1
— D p D
||M¢J‘||cb,LP(VN(1"j))—»LP(VN(FJ)) - HCPFj(\I’qu)j)
cb,LP (VN(T';))—LP(VN(T;))

1

- P D
< c ||\Ileq>]'ch,LP(VN(F,-))—»LP(VN(FJ-))
< 1

c ”T||cb,LP(VN(G))—>LP(VN(G))
and similarly for p = co. Let further

~def 1
(644 gﬁ = 71)(3.* gﬁ/j,p])*l —1ZG—>(C,
) J M(Xj) ( J Xj
where pr; is the counting measure on the discrete subset I'; of G. According to Theo-
rem 6.15, M- : LP (VN(G)) — LP(VN(G)) is a completely bounded Fourier multiplier

with

||M$;-||cb,LP(VN(G))—>LP(VN(G)) ||M¢>jH
(6.4.5) 1

c
If 1 < p < o0, note that B(CB(LP(VN(G)))) is a dual Banach space and admits the
predual

(6.4.6) CB(LP(VN(G)))&(LP (VN(G))®LP" (VN(G))°P),

¢b,LP (VN(T'5)) = LP (VN(T;))

IN

1Tl b1 (VN (G -1 (VN(G)) -

where ® denotes the Banach space projective tensor product and where ® denotes
the operator space projective tensor product. The duality bracket is given by
(6.4.7) (PT®(z®y)) = <P(T)x,y>Lp(VN(G)),LP* —

The mappings P/: T + M% are linear and uniformly bounded in B(CB(L?(VN(G))))
(we use B(CB(VN(G)), CB(C3(G), VN(Q))) if p = 00). From now on, we restrict to

the case 1 < p < oo and we will return to the case p = 1 only at the end of the proof.

The elements P} belong to the space Y, dof 1Ball(B(CB(LP(VN(G))))) for p € (1, 00].

By Banach-Alaoglu’s theorem, note that each Y, is compact with respect to the
weak* topology of the underlying Banach space. Then by Tychonoff’s theorem,
Hpe (1,00] Y, is also compact. Thus, the net ((Pjp )pe(l,oo]) admits a convergent subnet
((Pﬁk))pé(l,oo])7 which converges to some element ((Pg)pe(1,00), &) of e 00 Yo
i.e., for any p the net (Pﬁk)) converges to P}, for the weak* topology. With (6.4.7),
we see that this implies that (Pf(k)(T)) converges for the weak operator topology
(in the point weak* topology if p = co) to P4(T). Observe that the weak* topology
on CB(LP(VN(G))) coincides on bounded subsets with the weak operator topology
(the point weak* topology if p = 00) essentially by the same argument as the one of
the proof of [137, Lemma 7.2] (which uses [61, Proposition 1.21]). We conclude by
Lemma 6.8 that P5(T) is itself a Fourier multiplier.
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Note that we clearly have

[

HPg < hmmeP

||CB(LP(VN(G)))—»CB(LP(VN(G))) ko o0 (k)”CB(LP(VN(G)))HCB(LP(VN(G))) ~— ¢

We next show that P2 preserves the complete positivity. Suppose that 7" is (normal
if p = 00) completely positive. Since ®? and W% are completely positive, ¥T®" is also
completely positive and thus, by Theorem 4.2, My, = 1Pp (\I/p T(IJp ) is completely
positive. Using Theorem 6.15, we conclude that M~ is completely positive. Since
PEZ(T) is the weak operator topology limit of M~ (pomt weak* topology limit if
p = 00), the complete positivity of Mf; carries over to that of P5(T') by Lemma 2.10.

We claim that P2 has the compatibility property stated in the theorem. Note
that the symbol ;5; of P’(T) does not depend on p if T' belongs to two differ-
ent spaces CB(L?(VN(G))) and CB(LY(VN(G))). If in addition z belongs to both
LP(VN(G)) and LI(VN(QG)) and if y belongs to both L?" (VN(G)) and L9 (VN(Q)),
then we have

(PE(T)z,y) = hm <P )z, y) = hm <P (D)=, y) = (P&(T)z,y).

Then it is immediate that the Pg’s are compatible as stated in the theorem.

We finally will show now that P& (M,) = M,y for any bounded continu-
ous symbol ¥: G — C (or 9 bounded measurable under the additional sym-
metry/commutativity assumption on X;) giving rise to a completely bounded
LP-multiplier. We start by computing the symbol ¢;. For any v € I';, note
that A h; = A\ A(1x;) = A(1,x,) and similarly A -1h; = A(1,-1x,). Consequently,
we have

1 y .
$i(v) = WTG (My (RS Ayhj) G A -1 hy)
1
= WTG (M’l/)A(lX]—l * ].»yX])A(].X;l * 1,},—lxj))
1
= WTG <)\(¢(1X;1 * ]Jyxj)))\(lle * 1'771Xj))

= C‘u(;(j)z”/gw(S)(lle * 17)(3.)(8)(1}(;1 * 1771Xj)(8_1>du(8)7

where the last equality follows from the Plancherel Formula (6.1.3) and from the fact
that the functions ¢(1y-1%1,x;) and 1y-1%1,-1x, belong to the space L' (G)NL*(G),
and thus are left bounded. Now, using [98, Theorem 20.10 (iv)], note that for any s € G
(1g-1%1yx,)(s) = / Iy—1 (1, (ts) du(t) = / Lyx, (ts) du(t) = p(X;nyX; 871
J G J )(‘7
and

(1X;1 * 17—1Xj)(3_1) = u(X; Ny X 8) = p(vX;s7 N Xy ).
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Thus, for any v € I';, we conclude that

1 1\ 2
(6.4.8) 400 = /G B()u(X; N X5 ) du(s).

Now, we examine the asymptotic behavior of the sequence of symbols ¢;. Since G is
second countable, it admits a right-invariant metric dist(:, -), i.e., dist(s,t) = dist(sr, tr)
for r,s,t € G, such that the closed balls are compact [89]. We denote by B(z,r)
the open ball centered on z with radius r and B’(z,r) the closed ball. We need the
following lemmas.

LEMMA 6.17. — For any neighborhood V of the identity e in G, any compact subset K
of G, any j sufficiently large and any v € K, we have

(6.4.9) X;NyX;s7t =0, seG\nV.

Proof. — Since K is compact, we have K C B(e, Rk) for some Rx > 0. Let j be so
large that X; C B(e, 3). If s € G\B(e, Rk + 1), then we have for w € X; and v € K

dist(e,yws™!) > dist(e, s7) — dist(s ™!, yws ™) = dist(s, e) — dist(e, yw)
> dist(s, e) — dist(e,w) — dist(w, yw) > dist(s,e) — dist(e,w) — dist(e, )

1 2
>R 1—-=-—Rg>—.
2 g + 3 K_3

Thus, for such an s, we have X; N7X;s~! = 0, since X; C B(e, %) So from now on,
we can assume s € B(e, Rk + 1), in other words, varying in a compact set.

Let ¢ > 0 such that B(e,e) C V. By [98, Theorem 4.9], there exists &/ > 0
such that yB(e,e)y~! contains the ball B(e,e’) for any v € K. Let v € K and
s € B(e, Rk + 1)\yV. Since s ¢ vB(e,¢), we have ys~ & vB(e,¢)"1y~! and finally
dist(y, s) = dist(e,ys~!) > ¢’. Consider the compact K’ = B'(e,1) - B'(e, Rx +1)7!
and some 0 < ¢’ < min{%e’,l} such that w(V|K’,5”) < %5’. Consider j so large
that X; C B(e,¢”). Let w € X;. Then

dist(e, yws ™) = dist(e, sw™ 1y 1) = dist(y, sw™1) > dist(y, s) — dist(s, sw™').

Note that s~! and ws™! vary in the compact K’ for w varying in X;. Now, using
(6.4.1), we have

dist(s, sw™") < w(v|K', dist(s ", ws™!)) = w(v|K',dist(e,w)) < w(v|K',e") < Z€.

N |

We deduce that dist(e,yws™!) > &’ — 2&/ = 1&’ > €”, so that yws™! & B(e,e”) and
thus X; NyX;s~! = 0 since X; C B(e,e”). We have shown (6.4.9). O

LEMMA 6.18. — Assume in addition that v is a continuous symbol. Then for any
compact subset K of G, we have

(6.4.10) sup [¢;(7) —¥(v)] —— 0.
ver,NK oo
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Proof. — We fix a compact subset K of G and a compact neighborhood V of e. Then,
for any j sufficiently large and any v € K, Lemma 6.17 implies the existence of the
integral fG w(’y),u(Xj n 'ijs_l)z dp(s). By definition of ¢, for any v € I'; N K, using
(6.4.8) in the first equality, we have

1 122
50 = ¥0)| = | i [ (% %) dn(s)—ww)‘
- ; (X5 NAX s~ 1) du(s) —Cu(Xj)3¢(7)'
1 _1\2
:W /Gi/)(S)N(XJQ’YXjS 1) du(s)

= [ w0l 9% dus)

/ B(X; N5 )Qdu(S)—cu(Xj)?’?/J(’Y)‘

TEe )3/ () — ()| (X, 17X~ duls)
+m|w |]/ (%, M%) du(s) — en(X,)?
T L 1)~ DO %) due)

du(s) —

1 / p(X; NaX;s1)?
a

w(X;) p(X;)?

The last summand converges to 0 as j — oo uniformly in v € I'; N K according to the
assumption (6.4.2) and the boundedness of 1. It remains to treat the first summand.
Then, for and j sufficiently large and v € I'; N K, using Lemma 6.17 in the first
equality, we obtain

+ E|¢(7)|

sup /|¢ (D (X5 N X;s71)* dpls)

WEI‘JOK CH

- c“’(Xj)S’YESTngK/yV [o(s) =M (X N7X;s™")" dus)

1 2
— <. N~X.s—12d B
< oy L, [ res ey aue) (e v - ve)

:< wp L[ “(XjMXJ’S‘l)ZdMs))( sup |¢(8)—¢(7)I)~

yeT;NK C/I'(XJ) /'I’(X])2 seyV, vel;NK

We will show that for V = B’(e,&’) the last supremum converges to 0 as ¢ — 0
uniformly in j. Since it is not difficult to see that the first factor is uniformly bounded
for j > 1 and v € I'; N K by the assumption (6.4.2) of the theorem, (6.4.10) follows.
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Consider some 0 < ¢ < 1. Define the compact K’ = K - B'(e,1). Let 0 < ¢/ <1 such
that w(v|K'~1,¢’) <e.If s,t € K’ and dist(s™!,¢t71) < &/, we have by (6.4.1)

dist(s,t) <w(v|K'~', dist(s 7, ¢t 7)) <w(v|K'TE) <e.

Note that the restriction ¥|K’ of the continuous function ¢ on K’ is uniformly con-
tinuous. For any j, using (6.4.1) in the first inequality, we deduce that

sup [¥(s) = (7)] < sup w(y|K', dist(s, 7))
s€yB'(e,e’), veT;NK s~leB/(y~ 1), yel;NK
< sup w(p|K' e) = w(y|K',e) —0>O. O
E—

seyV,vel';NK
We continue with the asymptotic behavior of the symbols ;ﬁ;

LEMMA 6.19. — Assume in addition that v is a continuous symbol. Then for any s €
G, we have

(6.4.11) i (5) —— B(s).

j—+o0

Proof. — Let s € G. Recall that we have a unique decomposition s = w;(s)v;(s) with
w;(s) € X; and ~;(s) € I';. Then, by (6.3.1), we have

6;(s) — z/1(3)‘ = #()1(])/}(] b (vi(st)) du(t) — (s)

1

;) ‘/x (6303 (s1)) = ¥ (s)) dpu(t)
1

< %) /Xj (165 (75 (st)) — (v, (s8))] + [, (s8)) — ()| ) dua(t)
1

< 5y 1900060~ v 601t

1
T oy MR CILOL

We start to prove that the first summand converges to 0 as j — oo. Indeed, according
to (6.4.10), it suffices to show that +,(st) remains in a fixed compact set independent
of j, for ¢t varying in X;. We will even show that dist(y;(st),s) — 0 as j — oo
uniformly in t € X;.

Let £ > 0. Consider the compact K = (s- B’(e, 1)) . There exists 0 < &’ < min{1,e}
such that w(V|Ks,s') < e. Then for some jy € N, we have X; C B(e,¢’) for all j > jo.
Note that s~! and (st)~! and vary in the compact set K, for j > jo and t varying
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in X;. For these j and any ¢ € X;, using (6.4.1), we see that
dist(v;(st), s) < dist(v;(st), st) + dist(st, s) = dist(w; (st) " 'st, st) + dist(st, s)
= dist(w; (st) ', e) + dist(st, s)
< dist(e,wj(st)) + w(v| K, dist ((st) "', s71))
< 4 w(vK,dist(t ™ e)) <e+w(v|Ks,e') <e+e.
We conclude that sup,cx dist(v;(st),s) — 0 as j — oco.

For the second summand, consider ¢ > 0. Note that the restriction |B’(s,1) is
uniformly continuous. There exists 0 < &’ < 1 such that w(v|B’(s,1),¢’) < ¢ and
there exists jo such that sup,cx dist(y;(st),s) < &’ for any j > jo. For these j, using
(6.4.1), we deduce that

sup [ (3(s1)) = ()| < sup w(W[B'(s, 1), dist(3(st). )

< sup w(¢|B'(s,1),¢') = w(y|B'(s,1),¢') <e.
teX;

That means that sup,cx [¢(7v;(st)) —9(s)| — 0 as j — co. Thus (6.4.11) follows. [

If f € L*®(G), the particular case p = 2 of (6.4.5) applied to M, in-
stead of T' together with Lemma 6.5 allows us to define a well-defined operator
Ej: L®(G) — L*(G), ¢ — ¢; for any j with

— 1
(6.4.12) Hﬁj(?ﬁ)HLm(G) < - ¥l Le () -
LEMMA 6.20. — Assume that vX; = X;v for any j € N and any v € T; or
that M(XjAXgl) =0 for any j € N.

1. Ify € LY(G) then the Formula (6.4.8) gives a well-defined function ¢;: I'; — C
for any j.

2. For any j, we have a well-defined bounded operator E;: L'(G) — LY(G), ¢ — ;b:
where ¢; is defined by the formula

—~ 1
(6.4.13) ¢; = rxj)lxj * (Pjpr;) * 1y

Moreover, for any ¢ € LY(G) and any j, we have
— 1
(6.4.14) ||:j(¢)||L1(G) <2 1%l ) -

Proof. — 1. If vX; = X, for any v € I';, then using (5.1.2) in the second equality
u(X; NaXys™h) = Xy NXgys™h) < X NXGTys™h) = p(X; N Gs™) = u(Xy).
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If ,u(XjAXj_l) = 0, then using unimodularity in the last equality, we see that

p(X; NyX;s™) < pXg NXGTH X s ™) + p((Xy = X5 NaX;s)

< (X5 N X NAX s + p((XAX ) NyXsh)

<p(XNXny(X N X5 s + u(X X ny(X - X s + u(XAX
=0 =0

< u(XNXTTNA(X NXTs ™) + p(v(XGAXG)s ™) + u(X;AXS )

(6.4.15)

< ,u,(Xj_l ﬂ'ij_ls_l) = u(X; NsXyh).

Using (5.1.2), we obtain
p(X; NAX;s™h) < p(Xy NsX;Ly) = u(Xy).

So the integrand of (6.4.8) is integrable in both cases since v € L!(G). We deduce
that the function ¢; is well-defined.

2. For any j, using (6.4.8) in the first equality, we have

DIOIEDY

CH(;J)P,/G?/)(S)N(XJ‘ m’Yst_l)zdﬂ(S)

~v€Er; 'yel"
S X /ZW )u(X; Ny Xgs™)2 du(s)
'YEF
= N( )3 ||1/}||L1(G) Sllp Z X N ’)/stil)2

761“

1 w(X; NyX,s~1)?2
= —= ¥l sup ’ S
cu(X) TS seG,y%;j p(X;)?

2
1 ,U,(Xj N 'ijsfl)
6.4.16 < —— | sup _ | .
(6.4.16) ol ||L1(G>SEG(W;J_ ,

If vX; = X, for any v € I';, then we estimate (6.4.16) further with the pairwise
disjointness (5.1.3) of the sets X;ys~! for different values of v € T'; in the second
equality and (5.1.2) in the third equality

wX;NaX s~ p(X;NXys™h)  p(X;NX;Ts™h)
7; Xy ; X)) wX;)
_uXnGsTh)  uXp) 1
w(X;) pXy)
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If ,u(XjAXj_l) = 0, then we estimate (6.4.16) using (6.4.15) in the first inequality and
(5.1.3) in the first equality and (5.1.2) in the last equality, giving

=1.

) pX;NyXysTh) ) pX;NsXy™h)  p(X; 0 sXTy)
w(X;) s w(X;) w(X;)

By [98, Theorem 19.15], we conclude that the measure ¢;ur; is bounded with

||¢j,upj HM(G) < cu(lixj) [¥ll1(g)- Therefore, using (6.4.8) and [98, Theorem 20.12] in

the first inequality and the unimodularity of G to write /,L(Xj_l) = pu(X;) in the third
inequality, we obtain

ver;

—~ 1
||¢JHL1(G) m ”1XJ'”L1(G) ||¢J'/‘Fj”M(G) Hlx.‘l HLl(G)

ans) e gl e <  llsco

Thus, (6.4.14) is shown. O

Next, observe that if 1) has a support away from the origin e € G then ;ﬁ;(r) =0
for r close to e. More precisely, we have the following observation. This lemma is not
useful if G is compact.

LEMMA 6.21. — Suppose that ¥(s) = 0 a.e. if dist(s,e) < R for some R > 4. Then
we have (2;4)(r) =0 for any r € B'(e, R — 4) and any j large enough.

Proof. — We pick jo € N and take j > jo such that X; C B’(e,1) for these j. By
(6.3.1) (the computation of [86, Lemma 2.1 (2)] is valid) and (6.4.8), we have

1 _1\2
500 = iy L a0 = e [ w0y r0%,5™) auto) )

Let r € B’ (e,R —4). If dist(s,e) < R the integrand is zero. On the other hand, if
dist(s,e) > R, writing rt = w;(rt)y;(rt) where w;(rt) € X;, we have for any w} € X;

dist(y; (rt)wfs ™", e) = dist(w; (rt) “'rtwjs ™", e) = dist(w;(rt) " 'rtw], s)

> dist(s, e) — dist(w,(rt)” rtw ,€)
> dist(s, e) — dist(w;(rt)” 1rtw]7wj) dist(wj, e)
> dist(s, e) — dist(w; (rt) "'rt,e) —
> dist(s, e) — dist(w;(rt) " 'rt,t) — dlst(t e)—1
(rt)~'r.e) —
(rt)”

> dist(s, e) — dist(w; (rt) "'r,7) — dlSt(’f‘, e)—2
= dist(s, e) — dist(w;(rt) "', e) — dist(r,e) — 2
= dist(s, e) — dist(e, w;(rt)) — dist(r,e) — 2

(s,
(
(
(
> dist(s, e) — dist(w;(rt
(
(
(
> dist(s,e) — dist(r,e) —=3>R—R+4-3=1.
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So the integrand is also zero. We infer that we have 5;(7«) =0. O

We turn to the weak* convergence (3 of the symbol ;5;

LEMMA 6.22. — Let ¢ € L*°(G). Assume in addition that vX; = Xy for any j € N
and any v € T'; or that u(XjAXj_l) = 0 for any j € N. Then Z;(¢p) — o for the
J

weak* topology of L=(G).

Proof. — Let g € L'(G) be a testing element of weak* convergence. By density
of C.(G) in L'(G) and the uniform estimate (6.4.12), we can assume in fact that
g € Cc(G).

Then if x € C.(G) is a cut-off function with x(s) = 1 for all s with ¢
dist(s,e) < R def 4 + exc(supp g, {e}), (recall that the metric dist used previously

is proper) we have ¢x = 1 on supp(g). So (¥, g)L~(q)L1(¢) = (¥X,>9)L>(@),L (@)
Moreover, we have

E;(¢) = &;(¥x) + E; (¥ (1 — X))
Recall that (1 — x) is zero if dist(s,e) < R. Hence by applying Lemma 6.21
with ¥(1 — x) instead of ¢, we deduce that the function =Z;(¢)(1 — x)) is zero if

r € B'(e,exc(suppg,{e})), in particular on suppg. We conclude that (¢;,g) =
(E;(¥x), 9)-

Now let 9. € C.(G) be an e-approximation in L' (G) norm of ¢x € L'(G)NL>(G).
Using (6.4.14), in the second equality, we obtain

‘(‘—‘J(w Loo(G) LY(G) <'¢)a >L°° (@),LY(G) ’— | =3 "/}X g> ¢X g>|
< (&) = Hdia(e)) (@x — ¥e), 9)| + [(E;(®e) — e, 9)]

1
< <c + 1) 1¥x = YellLa gy l9llLe ) + [(Zs(e) = ve, 9))|

1
= (C T 1) € ||g||L°°(G) + |<EJ(1/)5) - 1/15,9>| .

Thus the first term becomes small uniformly in j > jg. For the second term, we use the
pointwise convergence Z;1.(s) — 1.(s) from (6.4.11) together with the domination

E5%e(5)9(8)] < ¢ el ) 19(5)I- 0

If the assumptions of Lemma 6.22 are satisfied, we deduce by Lemma 6.7
that Mz — My in the weak operator topology of B(L”(VN(G))) (point weak* topol-
ogy if p = 00). Moreover, this convergence also holds if ¢ is a continuous and bounded
symbol. Indeed, according to (6.4.11), we have a pointwise convergence ¢;(s) — ¥(s),
which together with the uniform bound ||@; ||~ g) < %||M¢,||Cb7Lp(VN(G))éLp(VN(G))

of (6.4.5) also implies weak* convergence ¢; — 1, so that we can again appeal to

53. Note that if G is compact, the proof is more simple. No need to use x.
54. Recall that exc(A, B) = sup{dist(a, B) : a € A}.
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Lemma 6.7. According to the description of the predual space (6.4.6), we have for
the convergent subnet M Fyves of M(;; that
j J

— 4
(Mg f g>LP(VN(G),LP* Wy & FEML ) wnia i (vcan

for f € LP(VN(G)) and g € L?" (VN(Q)). Since a subnet of a convergent net converges
to the same limit, we deduce P& (My) = My.
Now, we turn to the case p = 1. We simply put
P}: CB(LY(VN(@))) — CB(LY(VN(Q))), T + P (T™)..

Note that PZ(T*) belongs to 9M°?(G), so that it admits indeed a preadjoint
P (T*). belonging to M1°*(G) by Lemma 6.4. We check now the claimed proper-
ties of P}. Linearity and boundedness are clear. If T: L' (VN(G)) — L}(VN(Q)) is
completely positive, then by Lemma 2.9, T™ is also completely positive and hence
also P°(T*). We conclude that PAL(T) = P& (T*). is completely positive. If
My € MLP(G), then we have PL(My) = P& ((My)*)« = (P& (My))e = (My)e = My.

It remains to check the claimed compatibility property. We need the following
lemma.

LEMMA 6.23. — For j € N and any completely bounded map
T: LY(VN(G)) — LY(VN(G)),
we have P} (T)* = P(T*).
Proof. — In this proof we denote by ¢I the symbol of %Pf?j (TETPY).

Let S: L'(VN(T;)) — L*(VN(T;)) be a completely bounded map. We denote by d)f
the symbol of the Fourier multiplier Pllj (S) given by Corollary 4.7 with G = H =T;.

The symbol 1/)5.5*) of the Fourier multiplier Pg?(S”) is given by (where v € I';)

s* * - - - - ¥
07 () =, (ST OWATY) = 1, (M SOATH) =, (SOTHA) = v (771 = ¥ (7).
Using Lemma 6.4 in the second equality, we obtain

(6.4.17) PE(8") = Mys = (Mys)" = (PE,(9))"
Note that WXT*®3° = (VIT®})*. This implies
M¢§T*) = %Pﬁj(\Ifj-"T*@?") = %Pf’j((\ﬂ}T@})*) = %Pﬁj (UiT®])" = (Md,]r)* = My,
where we use (6.4.17) in the central equality. Now, using (6.4.4), (1x,) = 1X;1 and
fr; = pr;, we deduce

1
(%)

¢§T*) _ M(Xj)lXj N (¢;‘T*),U'1"j) * 1X_7‘_1 = ]-Xj * ((]S?MFj) * 1X]'_1

A

= 71)(]. * qﬁTqu ¥ lo_1 = QST’
w(X;) (67 0r,) * 1x; !
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thus finishing the proof of the lemma since P}(T)* = (M(;T)* = M(ﬁ = M‘;&/)
J j '
P (7).

Now suppose that T belongs to both CB(L!(VN(G))) and CB(L?(VN(G))). Recall

that the symbol gbf of PP(T) does not depend on p if T belongs to two different
spaces CB(L?(VN(G))) and CB(LY(VN(G))). Consequently the symbols of P} (T)*

and P}(T)* are identical and the symbols of Py°(T*) and Py ’ (T*) are also identical.
Using the previous lemma, we conclude that

PP(T)* = PP (T™).

J

Passing to the limit when j — oo, we infer that P5(T)* = Pg (T*). Therefore, for
any z € L'(VN(G)) N L?(VN(G)) and any y € VN(G) N L?" (VN(G)), using the
compatibility of the P} already proven, we have

(P&(D)z,y) = (P& (T7)uz,y) = (&, P& (T")y) = (2, P§ (T")y) = (2, P&(T)"y)
= (PE(T)z,y).
This shows the compatibility on the L! level.

For the last sentence, use Proposition 3.1. O
REMARK 6.24. — We ignore if the condition (6.4.2) can be removed.

Since the symbol of a completely bounded Fourier multiplier My : VN(G) — VN(G)
is equal almost everywhere to a continuous function, see, e.g., [86, Corollary 3.3|, the
previous theorem gives projections at the level p = co and p = 1.

COROLLARY 6.25. — Let G be a second countable unimodular locally compact
group satisfying ALSS such that (6.4.2) holds. Then there exist projections
P& : CBy~(VN(G)) — CBy+(VN(GQ)) and PL: CB(L'(VN(G))) — CB(L*(VN(Q)))
which are compatible, onto M>*<P(G) and M>P(G) of norm at most % preserving
complete positivity.

6.5. Examples of computations of the density
In this chapter, we will describe some concrete non-abelian groups in which The-

orem 6.16 applies. Before that, we start by recalling some information on semidirect
products.
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Semidirect products. — Let G and G be topological groups and consider some group
homomorphism 7: Go — Aut(G;) such that the map %

(6.5.1) G1 x Go — G4, (s,t) — n(s) is continuous.

The semidirect product G1 %, G2 [74, page 183] is the topological group with the
underlying set G; X G2 equipped with the product topology and with the group
operations given by
(6.5.2) (s,t) 3y (8", ') = (sm(s),tt') and (s,t)"" = (m-1 (s ), t71).
The group G identifies to a closed normal subgroup of G; %, G2 and G2 as a closed
subgroup [74, page 183| and we have (G1 %, G2)/G1 = Go.

If G1 and G are locally compact groups then G X, G2 is a locally compact group.
If G; and G4 are in addition equipped with some left Haar measures pg, and pa,, by
[74, Proposition 9.5 Chapter III] (see also [98, 15.29]) a left Haar measure of G is given
by pe = pe, ®(0pa,) where §: Go — (0, 00) is defined by §(t) = mod n; where ¢t € G».
By [74, Chapter III, (9.6)], a right Haar measure is given by Ag, ua, ® Ag,pa,- It is
folklore and easy to deduce from [128, pages 119-120] that if G; and G5 are unimodular
and if each automorphism 7; of G; is measure-preserving, i.e., if

. f(ne(s)) due, (s) = ; f(s)dpg,(s), te Gy, feCelG),

then the group G1 X, G2 is unimodular. In this case, ug = pg, ® pg, gives a Haar
measure on G.
We will use the following lemma.

LEMMA 6.26. — Let Gy and G4 be locally compact groups. Let T'y and T's be lattices
in G1 and Go. Suppose that n: Gy — Aut(G1) is a homomorphism satisfying (6.5.1).
If 4(T1) C Ty for any t € Go then T =Ty Xpr, T2 is a lattice of Gy %, Go. If
in addition X1 and Xo are associated fundamental domains, then X = X1 X X5 is a
fundamental domain associated with T'.

Proof. — The first part is [19, Exercise B.3.5]. It remains to show that X is a funda-
mental domain of I". Indeed, this subset is clearly Borel measurable. Consider some
arbitrary element (s1, s2) of G. Since X; is a fundamental domain of I';, we can write
$1 = wyy; with wi € X3 and v; € I'; and similarly ss = waeys with wy € X5 and
v2 € T's. Consequently, using (6.5.2), we have

(51, 82) = (w171, w2Y2) = (wlﬁwz (%2—1(’71)),01272) = (w1, w2) Xy (770,;1(’71),’72),

where (w1,wz) € X and (77%—1(71),’)’2) € I'. So we obtain (5.1.2).
Consider some (w1,ws), (w],wh) € X where wy,w] € X; and wy,w) € X3 and
some elements (v1,72) and (71,73) of [ If (w1, w2) Xy (71,72) = (w1, wh) Xy (71,72)

55. If Aut(G1) is equipped with the well-known Braconnier topology, the continuity of the
map (s,t) — n¢(s) from G1 X G2 onto G1 is equivalent to the continuity of the homomorphism
n: Ga — Aut(G’l).
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then (winw,(71),w2y2) = (Wiﬂw; (71), whv5). Therefore waye = whj. Since Xy is a
fundamental domain we deduce by (5.1.3) that wy = wj and 2 = 74. Inserting into
the previous first variable, we get winw, (1) = winw,(71). Since X; is a fundamental
domain we have by (5.1.3), wy; = w] and 7, (71) = Nw,(71)- So v1 = ;. We conclude
that X satisfies (5.1.3). O

Groups acting on locally finite trees. — We give now some examples of compact non-
discrete ALSS groups acting on locally finite trees for which Theorem 6.16 yields a
bounded map P%: CB(LP(VN(G))) — 9MPP(G) with sharp norm, i.e., with a norm
equal to one.

Let (m;);>1 be a sequence of integers with m; > 2. Let Y = (Y;);>1 be a sequence
of alphabets with |Y;| = m; and Y; = {y;1,...,¥jm, }- If n > 0, a word of length n
over Y is a sequence of letters of the form w = wiws...w, with w; € Y; for all j.
The unique word of length 0, the empty word, is denoted by @. The set of words of
length n is called the nth level.

Now we introduce the prefix relation < on the set of all words over Y. Namely, we
let w < z if w is an initial segment of the sequence z,ie.,ifw =wy ... wy, 2 =21...2;
with n < k and w; = z; for all j € {1,...,n}. This relation is a partial order and the
partially ordered set 7 of words over Y is called the spherically homogeneous tree
over Y. We refer to [17] and [82] for more information.

Let us give now the graph-theoretical interpretation of 7. Every word over Y
represents a vertex in a rooted tree. Namely, the empty word () represents the root,

the m; one-letter words y11,...,¥y1,m, represent the m; children of the root, the ms
two-letter words y1,192,1,-..,Y1,1¥2,m, represent the my children of the vertex y; 1,
etc.
0
T | .
/ | T

Y1,1¥92.1 ‘y1.1y2.2 Y1.1Y2,m2 C Y1,my Y21 .”yl.meQQ Y1,my1Y2,mg

An automorphism of 7 is a bijection of 7 which preserves the prefix relation. From
the graph-theoretical point of view, an automorphism is a bijection which preserves
edge incidence and the distinguished root vertex (). We denote by Aut(7) the group
of automorphisms of 7 and if j > 0 by Aut(;;(7) the subgroup of automorphisms
whose vertex permutations at level j and below (°®) are trivial.

56. The action is trivial on the levels 5,5 + 1,57+ 2,....
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We equip 7 with the discrete topology and Aut(7") with the topology of pointwise
convergence. By [82, page 133], the sequence (Aut;1(7));>0 of finite groups and the
canonical inclusions ¢;;: Aut(;(7) — Autj;)(7) where j > i > 0 define an inverse
system and we have an isomorphism
(6.5.3) Aut(7) = lim Aut;)(7).

In particular, Aut(7) is a profinite group, hence compact and totally disconnected by
[180, Corollary 1.2.4].

If j > 0, we denote by St(j) the jth level stabilizer consisting of automorphisms

of 7 which fix all the vertices on the level j (and of course on the levels 0,1,...,5—1).

Then St(j) is a normal subgroup of Aut(7") which is open if j > 1. By [17, page 20],
for any j > 0, we have an isomorphism

(6.5.4) Aut(T) = St(j) x Aut(;(T).

PROPOSITION 6.27. — The compact group Aut(7T) is second countable and ALSS
with respect to the sequence (Aut(;(7));>1 of finite lattice subgroups and to the se-
quence (St(j));j>1 of symmetric fundamental domains. Moreover, (6.4.2) holds with
c = 1. More precisely, for any integer j € N and any v € Auty;)(7), we have

| p(SHG) 9SG
(6.55) M@ﬂﬁf&mg) ) A

Consequently, Theorem 6.16 applies.

Proof. — Since the inverse system is indexed by N, by [180, Proposition 4.1.3], the
group Aut(7) is second countable. By (6.5.4), we have Aut(7) = St(j)Aut;(7). Sup-
pose that 1,72 belong to Aut(;)(7) and that w1, ws € St(j) satisfy w1y = way2. Then
wy tw; = yoy7 . Using again (6.5.4), we infer that v, = 2. Moreover, St(j) is open
hence Borel measurable, and a subgroup hence symmetric. We conclude that St(j) is
a symmetric fundamental domain for Aut; (7).

Now, we have a homeomorphism

Aut(T)/Autg(T) = (St(5) x Autyy(T))/Auty(T) = St(5).

Note that the subgroup St(j) is open, hence closed in the compact group Aut(7) by
[98, Theorem 5.5] and finally compact. We conclude that Aut(;;(7) is a cocompact
lattice. Moreover, by [82, page 133], the sequence (St(j);>1 is an open neighborhood
basis of Id7 in Aut(7).

It remains to compute (6.5.5). By normality of St(j), for any v € Aut;(7), we
have vSt(j) = St(j)v. Using that u is a left Haar measure of Aut(7) in the last
equality, for any v € Aut(;(7), we deduce that

| W(SHG) NSt 1 p(SHG) NSt
M@ﬂﬁ%&ma) W(SH0)? d(@‘u@wﬂxémg> GG )
o p(SHG) NS

_M@Wﬁ%AmU) PC) e
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For any s € Aut(7), the sets St(j) and St(j)s are right cosets of the subgroup St(j)
in Aut(7). Since two right cosets are either identical or disjoint, we deduce that

&meuﬁs:{&O) if s € St(j)

0 if s & St(5).
Now, we can conclude since
| P ASD? 1 pSt0)?
E) /Autm ) R ) /sm a(Si(5))? )
_usG) .
WGt "

REMARK 6.28. — By [82, page 134], note that we have an isomorphism Aut(7) =
lim(Sym(Y;) ¢ -+ -1 Sym(Y2) ¢ Sym(Y1)). If (G;,Y;);>1 denotes a sequence of finite
permutation groups (such that the actions are faithful), the same method gives a
generalization for the inverse limit G = liLn(Gj 1+ -0G21Gy) of iterated permutational
wreath products. The verification is left to the reader.

Stability under products. — The (good) behavior of (6.4.2) under direct products is
described in the following result.

PROPOSITION 6.29. — Let Gy and Ga be two second countable (unimodular) locally
compact groups satisfying ALSS with respect to the sequences (I'1 ;), (I'2,;) of lattices
and to the sequences (X1 ;), (Xo,;) of associated fundamental domains. Suppose that
(6.4.2) holds for both groups G1 and G4 with constants c; and co. Then G = G1 x G is
ALSS with respect to the lattices (I';) = (T'1; x T'a ;) and associated fundamental
domains (X;) = (Xq,;xXo ;) and it satisfies (6.4.2) with constant ¢ = c¢1-co. Moreover,
if X1,; and Xo ; are symmetric (resp. vk Xk,; = Xi ;v fork =1,2 and vy, € Ty ;) then
X, is symmetric (resp. vX; = X,y for v € ;). Let 1 < p < 0o and suppose that G4
and G are amenable if 1 < p < co. Then Theorem 6.16 applies to G = G, X Gs.

Proof. — If G1 and G5 are second countable then G X G5 is also second countable. By
Lemma 6.26, I'; = I'y ; x I'y ; is a lattice subgroup of G; x G2 and X; = X; ; X Xg ; is
an associated fundamental domain. If y; and po are Haar measures on GG; and Go
then p = p; ® pe is a Haar measure on G. We check that G; x G5 is ALSS with
respect to (I';) and (X;). Let V be a neighborhood of e € G1 x G3. Then there exist
neighborhoods U; of e; € Gy and U, of e5 € G2 such that Uy x Uy C V. Since Gy and
Go are ALSS, there exists jo € N such that X; ; C U; and X3 ; C Us for any j > jo.
Consequently, X; = X; ; x Xo ; C Uy x Uy C V. Consequently G; x G2 is ALSS. Now
for v; € I'y 5, we put

2
def 1 p1(X1,; N Xy, j81
/ 1(Xes J )dﬂl(sl)
G

him) = 1 (X1,5) 13 (Xy,5)

MEMOIRES DE LA SMF 177



6.5. EXAMPLES OF COMPUTATIONS OF THE DENSITY 113

and similarly, for given v € I'y ; resp. v € I';, we define I5(y2) resp. I(7y). We claim
that I((y1,72)) = I1(71)I2(72). Indeed, using the elementary fact (Ax B)N(C x D) =
(AN C) x (BN D), we have

2((X1s % Xa X1 x Xa,
H(1,72)) = ;/ w2 (X, x 2,3)2(71772)( 1,j X Xa,5)(s1,52)) du(s1, 52)
/'L(lej X Xz»j) GIXGZ ,U/ (lej X X27j)
1 / 12 (Xy,; x X2,5) N (11 X1,581) X (72X2,552)) d
= 5 2 /,L(S],Sz)
1 (Xa5)p2(Xe,5) Jo,xas 13 (Xa,5) 13 (Xa,5)
1 / 12 ((X1; N1 Xy js1) X (Xa,; N y2Xa js2)) 1
= B} 2 /14(81782)
1 (X1,5) 2 (Xa,5) Jarxas 13 (X1,5) 13 (Xa,5)
1 / 13 (X1, N Xy js1) / 15 (X5 N 72Xy j52)
= dus(s dus(s
Hl(XLj)MQ(XQ,j) G H%(XLJ’) (=) Ga N%(XZJ‘) 2(52)
= I (71)12(72)-

Now let K be a compact subset of G; x G2. We check (6.4.2), that is

lim sup H((71,72)) — c1e2| = 0.
I (y1,12) €N NK

Denoting 7,: G; X G — Gy the canonical continuous projection, we have
that 7, (K) C Gy, is compact (k = 1,2). Then

sup  [I((71,72)) — crca] < sup [1((71,72)) — c1cal
(71,72)€ET;NK (71,72) €T N1 (K) x 2 (K)
= sup sup |11 (y1)I2(2) — cical
v1€T1 jNm1 (K) v2€T2 jN72(K)
< sup sup |11 (71)12(v2) — c1la(y2)] + |e1l2(v2) — cico

V1€, ;N1 (K) v2€D2, jN72 (K)
< sup (11 (1) — e sup [12(72)] + 1 sup [I2(72) — c2f
Y1€T, ;N7 (K) Y2€T2 jNma(K) Y2€T2 jNma(K)
——— 0-ca4+c¢1-0=0.
Jj—+oo
Thus, (6.4.2) follows for G; X G5 and constant ¢jcs. The statement about preservation
of symmetric fundamental domains (resp. commutation yX; = X;v) is easy to check.
For the application of Theorem 6.16, we only note that G; x G5 is amenable once
that G; and G5 are amenable. O

REMARK 6.30. — Let G be a countable discrete group. The group G is ALSS with
respect to the constant sequences (I';) and (X;) defined by I'; = G and by X; = {e}
for any j. Moreover, for any v € G and any j, it is obvious that

e (X5 N yX;s) _
X)/ X, onels) =1
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Semidirect products of abelian groups by discrete groups. — For semidirect products,
the situation is not as good as direct products.

PROPOSITION 6.31. — Let G1 be a second countable abelian locally compact group
which is ALSS with respect to a sequence (I'1 ;) of lattice subgroups associated to a
sequence (X1,;) of fundamental domains such that (6.4.2) is satisfied. Let G2 be a
countable discrete group. Suppose that n: Go — Aut(G1) is a homomorphism sat-
isfying n:(I'1;) C T'v; for any t € Gy and any j. Then the semidirect product
G = Gy %, Gy is second countable and ALSS with respect to the sequences (I';) and
(X;) defined by T'; =T ; x G2 and X; = X3 ; x {eq, }. If in addition n,(X; ;) C X1;
for any t € G and any j then (6.4.2) holds with some ¢ € (0,1]. If the Xy, are
symmetric (resp. 11X1,; = X171 for any v1 € I'1 ;) then the X; are symmetric (resp.
vX; = X;7v for any v € T;). Consequently, Theorem 6.16 applies in the case p =1
and p = oo. If G5 is in addition amenable, the result applies in the case 1 < p < oo.

Proof. — It is obvious that G is second countable. By Lemma 6.26, each I'; is a lattice
of G and each X; is an associated fundamental domain. We check that G; x Gy is
ALSS with respect to (I';) and (X;). Let V be a neighborhood of the neutral element
e of G; X Ga. Then there exist neighborhood U; of e; € G such that Uy x {es} C V.
Since G is ALSS, there exists jo € N such that X; ; C U; for any j > jo. Conse-
quently, X; = X; ; x {e2} C Ur x {e2} C V. Thus G; x G4 is ALSS.

Using [19, Proposition B.2.2 page 332], the existence of a lattice implies that G is
unimodular and pg = pe, ® pe, gives a Haar measure on G. It remains to
check (6.4.2). To this end, consider v = (71,72) € I, w = (w1,eq,) € X; and
s = (81, 82) € G. Then using (6.5.2)

Yws = (71,72) Xn (W1,€6,) Xy (51,52) = (Y1,72) Xy (w1 + 81, 82) = (’71 + 1y, (w1 + 51)77282)~
This element belongs to X; = X;; x {eg,} if and only if s = ~;' and

Y1 + My, (w1 + 81) € X1 ;. By the assumption 7,,(X;;) C Xi;, the latter condi-
tion is equivalent with

77;21 (71 + Mye (w1 + 51)) € Xy,

that is ' (1) + w1 + s1 € Xy;. For any v = (71,72) € Tj and s = (s1,52) € G, we
infer that

(X NX;8) = (he, ® pe,) (X1 x {ea,}) NX;s)
= pe, (fwr € Xuj :m, (1) + w1 + 51 € Xu5}).

Moreover, we have /"’G(XJ) = HG1®G: (XL]‘ X {er}) = K&, (Xl:j):u’G2({er}) =
pa, (X1,5). Therefore, with a change of variable in the second equality and using the
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fact that G satisfies (6.4.2) in the passage to the limit, we finally obtain

X; NyX;s)? pe, ({wr € Xyt wi+s1+n3, (1) € Xy 51)?
/wdﬂa(s):/ J 37 J d,UG1(51)
o ral) 2 o)
X, . Xi1,3})?
:/ pe, (fwr € Xy, + wr +381 € X)) dpg, (s1)
o s, (X1,5)
Xy N (X1, ?
:/ ‘uGl( Lj m( 17]3_}— 81)) d/”’G1(81)
G pe (Xa,)
—cC S (07 1]
Jj—+o00

The statement about the symmetry (resp. commutativity with elements of I';) of
the fundamental domain is easy to check with (6.5.2). If G5 is amenable then G is
an amenable group by [19, Proposition G.2.2 (ii)], being a group extension of an
amenable group by an abelian (hence also amenable) group. O

For applying the previous result, we compute the density (6.4.2) for some abelian
groups. By [52, Corollary 4.2.6], the groups described in the following proposition are
the compactly generated locally compact abelian groups of Lie type.

PROPOSITION 6.32. — Suppose that G = Z! x R® x T™ x F where I,n,m € N and
where F is a finite abelian group. For any integer j, consider the lattice subgroup

def
;=

I; 72 x (2797)" x {279 re{0,...,27 —1}}" x F

and the associated symmetric fundamental domain
X; €0} x [—27971 27y i [—27I L 97y o (o)

Then the group G is ALSS with respect to the sequences (I';) and (X;). Moreover, for
any j and any v € I';, we have

1 pE (XN (v + X +5)) o (2 e
ot ey = (3)

Proof. — Using Lemma 6.26, it is clear that the I';’s are lattice subgroups and that
the X;’s are associated fundamental domains. It is obvious that G is ALSS with
respect to these sequences. For any j, a simple computation gives

pa(X5) = (prn @ ppm) ([— 2797127971 x [— 27971 279 1)™)
= (m([—2771,2797Y) (pn([ - 27971, 27971 ) " = g,

Now, note that if —2a < x < 2a then we have

pz([—a,a] N [~a + 2,0+ a]) = 2 — |a.

Further, for any j and any v € I';, we have, writing s = (z1,...,Zn, Y1, -, Ym, 21, ---» 2, f),

/ p(X;N(y+X;+ 5))2 dpc(s) = / pe (X5 N (X5 + 3))2 duc(s)
e e
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= / H LR ([—273'*1,277'*1) N [—2*]'*1 +xp, 2777 4 xk))Qd(ml, ey L)X
R

" k=1
X/ [Tec (=27 2 ) n[=27 " g, 277 ) d(ur, -, Ym)
T =1
o—i n 9—i m 90— n+m
=\ er-mrar) ([ eT-wra) = (2] @70
—92-3J —2-3J 0
2—J n+m 9 n+m
= 2/ w?du = <> 2 —3i(ntm)
0 3

Thus

2 n+m
/ pe (X5 N (y+ X5+ 5)) dpug(s) = 2%9(+m) . <2> 9=3j(n+m)
3
G

e (X;)3
= (;)n+m € (0,1]. O

REMARK 6.33. — The assumptions of Proposition 6.31 are satisfied in the following
situation. Assume that G; = Z' x R” x T™ x F where I,n,m € N and where F is
a finite abelian group. Let G2 be a subgroup of Sym(n) x Sym(m) where Sym(n)
and Sym(m) are the permutation groups of n and m elements. For (o1,02) € G2, let
further

(6.5.6) Nor,o0) (2155 2,815+ Ty Y1y -+ s Yms f)
= (21, s 2L Tay (1) -3 Tay(n)s Yoo (1) - -+ s Yoa(m)s f)
For any integer j, consider the lattice
Ti;=7'x (272" x {279r: r€{0,...,22 —=1}}" x F
of G1 and the symmetric fundamental domain
Xy ;= {0} x [-2797 1 27I ) i 279t 2mimhym o Lept

It is easy to check that the transformation (6.5.6) preserves both I'; ; and X; ;. Then
G, Go, (I'1;), (X1,;) and 7 satisfy all the assumptions of Proposition 6.31 and con-
sequently Theorem 6.16 applies to the group G = G1 %, Ga.

More generally, G2 can be any countable discrete (amenable) group such that 7, is
given by a coordinate permutation as in (6.5.6) for any s € Gs.

Now, we give a natural semidirect product for which we can apply Proposition 6.31
and 6.32. Let H,, = R?"*! be the (continuous) Heisenberg group with group opera-
tions
(6.5.7)

(a,b,t)-(a/,b/,t") = (a+a',b+b,t+t'+a-b') and (a,b,t)"" = (—a,—b,—t+a-b),
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where a,b,a/,b' € R™ and ¢,t’ € R and where - denotes the canonical scalar product
on R". Recall that H,, is unimodular and the Haar measure on H, is just usual
Lebesgue measure on R™. We can use our results with the semi-discrete Heisenberg
group described in the following result, see [136, page 1459 for more information on
this group.

PROPOSITION 6.34. — Let H,, = {(z,y,t) € H,, : z,y € Z",t € R} be the (amenable)
closed subgroup of the Heisenberg group H,. For any integer j, we consider the lat-
tice subgroup I'; = Z™ X Z™ X 2797 of H,, and the associated symmetric fundamental
domain X; = {0} x {0} x [-27971,27971). Then H,, is ALSS with respect to the in-
creasing sequence (I';) and to the sequence (X;). Moreover, for any j and any v € T,
we have

1 pA(X; N9X;s) _2
(658 o o,y e = 5

In particular, Theorem 6.16 applies.

Proof. — Using (6.5.7), it is easy to see that H,, is a closed subgroup of H,, so it is
locally compact. If G; = {(0,b,¢) : b € Z",t € R} and G2 = {(a,0,0) : a € Z™}, it is
not difficult to check by using again (6.5.7) that G; and G are closed subgroups of H,,,
H, = G1G2, G1 N G2 = {(0,0,0)} and that G; is normal in H,,. By [74, Proposition
page 184], we deduce an isomorphism H,, = G; x,, G2 of topological groups where

(6.5.9) Ma.0.0)(0,b,8) = (0,b,t +b-a), a,beZ" teR.

Note that G is isomorphic to Z™ x R and that G5 is isomorphic to Z™. For
any j, we consider I'y; = Z" x 2797 and X,; = {0}" x [-27971,27971). For
any (a,0,0) € G2 and any integer j, using (6.5.9), we see that 7(,,0,0)(I'1,;) C I'1;
and 1)(q,0,0(X1,;) C X1,5. By Proposition 6.31, we deduce that I'; is a lattice sub-
group of H,,, that X; is an associated fundamental domain and that the group H, is
ALSS with respect to the sequences (I';) and (X;). Finally the equality (6.5.8) is a
consequence of Proposition 6.32 and Proposition 6.31. O

We finish by bringing to light a bad behavior of (6.4.2) with respect to the Heisen-
berg group Hs.

PROPOSITION 6.35. — For any integer j, we consider the lattice subgroup I'; =
2797 x 2797 x 2727 of the Heisenberg group Hs and the associated fundamen-
tal domain X; = [—27971 27971y x [—279=1 27071y % 2721 272/=1) Then the
Heisenberg group Hs is ALSS with respect to the increasing sequence (I';) and to the
sequence (X;). Moreover, for every fized v = (71,72,73) € I'j, for some jo € N with
(v1,72) # (0,0) and 1 - v2 = 0 we have

2
(6.5.10) Jim o / KX 07%55) Gus) = 0.

i—too p(X5) Ju,  #2(Xy)

In particular, for this choice of group, and sequences of lattices and fundamental
domains, Theorem 6.16 is not applicable.
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Proof. — Note that it is obvious that Hj is ALSS with respect to the sequences (I';)
and (X;). First observe that for any s € H3 and any integer j we have

pX507%59) = [ 1O dut) = [ 1, (015,00 duct)
_ /H Ix, (B)1x, (v~ s~ 1) dp(t).

For any s € Hj, any j and any v € I';, we have using the invariance of the Haar
measure in the third equality (to use u = y~1ts71)

(6.5.11)
1 (X<ﬂfyX-s) 1 /
du(s) = ——= XiNyXs)u(X; NyX;s)du(s
(X)H3 L2 w(s) PERE ng(g vX;8)p(X; N yXjs) du(s)
lx (t)1x, (r)1x, (v "ts™H1x, (v 'rs™h) dpu(r) du(t) du(s)
Hs JH;
1, ()1, (r) L, ()1, (v~ e~ ) dpa(r) dpa(t) ()
Hs JH3 v Hg
Lx, (vt~ yw) dpa(r) dps(w) dp(t)
X; x5 JX;
6512
/ / / Liry | ual e L Ira L uzl 2] <2791 Lrg | Jus | [t <221 1 (O trt” ’yu)
RrR3 JR3 JR3

dr du dt.

If v = (71,72,73) € T and if r,u,t € X;, by (6.5.7), a tedious yet elementary
calculation yields
(6.5.13)

Yt = (ug 4y — tyup + ry — by, ug 73 — B3 — ra + tity =ty — by + 112 4 Tty — ity + Yita).
We estimate from above. The last indicator function in the previous triple integral can
be majorized by 1|(771M717u)35272j71. If |(’y_1rt_1’yu)3| < 2-2/=1 and T, u,t € Xj,
then by triangle inequality and (6.5.13), we have

| = mira = tiye + e + o] < (It yw)s| + Jug + s — 3+ tity — trug + Trug — 11ty

§2—2j—1(1+1+1+1+2+2+2+2> =6-27%,

Using the equality m = 2'2J this says that (6.5.11) is less than
J

125 ) .
2 /RS /R3 /R3 Lirsluslital ral Jusl 2 <273 =4 Liral Jual fta| <2291

L qira—tiyatriye+ita <6.2-2 dr dudt.
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We cheaply integrate over uj, us,r3,us and t3 and obtain

— 912j9—8j ) )
=272 /R4 1\7“1|v\t1|»|?”2|,|t2|S2*3*11\—71T2—t172+7“1’Yz+’Ylt2\§6~2’2’ dry drg diy dis.

Now suppose first that 72 = 0 and 7; # 0. Then the last indicator function can be
simplified and we can cheaply integrate over r; and t; to estimate further

4j0—27
<292 J/ 1|T2||t2\<2 - 1]_| ratta| <62 25 drg dto

2—Ji-1

=it
— 92j
=2 / 1/ . \tz 2| < 576272 drodty = - / / [ty —r|< g 12-2- adrzdtm
2—J— 2—i—

where we have performed the change of variables ry = 29+1ry, ), = 2771¢,. Now the
last double integral is easily seen to converge to 0 as j — co. The case y; = 0 and
~2 # 0 can be treated in the same way by symmetry. O

6.6. Pro-discrete groups

An inverse system of topological groups indexed by a directed set I consists of a
family (G;);er of topological groups and a family (v;;: G; — Gi)i jer,j>i of contin-
uous homomorphisms such that v;; = Idg, and ;9 = ¥, whenever k > j > i
[180, Definition 1.1.1]. An inverse system is called a surjective inverse system if each
map 1;; is surjective. Now let (G;,;;) be an inverse system of topological groups
and let G be a topological group. We shall call a family of continuous homomorphisms
¥j: G — G, compatible with the inverse system if 1;;19; = v; whenever j > i. An
inverse limit of an inverse system (G}, 1;;) of topological groups is a topological group
G together with a compatible family 1;: G — G of continuous homomorphisms with
the following universal property: whenever 1/)3 : G’ — G; is a compatible family of con-
tinuous homomorphisms from a topological group G’, there exists a unique continuous
homomorphism ¢: G’ — G such that 1 = 9] for each j. Each inverse system admits
an inverse limit, given by the following construction [180, Proposition 1.1.4]:

(6.6.1) llnGJ = {8 S H Gj :pi(s) = wl](pj(s)) for all 4 < j}

jelI
with the subspace topology from the product topology and with projection maps %;
given by the restrictions to liLIlGj of the projection maps p;: HJ—GI G; — G; from
the product.

We say that a topological group G is pro-discrete if it is isomorphic to the inverse
limit of an inverse system of discrete groups. We have the following characterization
for locally compact groups which is a variation of [155, Lemma 1.3]. For the sake of
completeness, we give a complete proof.

PROPOSITION 6.36. — A locally compact group G is pro-discrete if and only if it admits
a basis (X;) of neighborhoods of the identity eq consisting of open compact normal
subgroups. In this case, we have G = liLnGj where the inverse system is given by the
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groups G; = G/X; and by the homomorphisms ¢;;: G; — G;, sX; — sX; for j > 1
and where the preorder is the opposite of inclusion ®? of the X;’s. Moreover, if G is
first countable then there exists a countable basis of open compact normal subgroups.
Finally, a pro-discrete locally compact group G is always totally disconnected.

Proof. — Suppose that G admits a family (X;) of open compact normal subgroups

forming a neighborhood basis of eq. For any j € I, we set G; Lef G/X;, which is

discrete by [98, Theorem 5.21] since X, is open. We use the preorder defined in the
statement of the result. For j > i, i.e., X; C X;, we also consider the well-defined ho-
momorphism ¢;;: G; — G;, sX; — sX;. It is plain to check ®® that the (1;;);>; is an
inverse system. We consider the construction (6.6.1) of the inverse limit lim G;. Note
that the family of continuous homomorphisms ¢}: G — G/X;, s+ sX; is compati-
ble 59, According to the universal property, there exists a continuous homomorphism
p: G— @1 G satisfying the compatibility w;- = ;. For any s € G, this means that

sX; = ¥j(s) = ¥;(p(s)) = p;(p(s)),
so that ¢(s) is equal to the element (sX;);er of the product [];.; G/X;.

It remains to check that ¢ is bijective. For the injectivity, suppose that ¢(s) = e, so
sX; = X; for all j. Thus, s € X; for all j. Since G is Hausdorff and since the X;’s form
a basis of neighborhoods, we obtain s = eg. For the surjectivity, let t = (s,;X;);er be
an element of lim G;. Let F be a finite subset of I. Consider some ¢ € I such that i > j
for any j € F. For j € F, we have

5;X; = p;i(t) = ¥5i(pi(t)) = ji(s:Xs) = 8:X;,
so s; € s;X;. Hence s; belongs to Njcrs;X;. We infer that the collection of the
compact subsets s;X; has the finite intersection property. We conclude that there
exists s € N;ers;X;. Consequently ¢(s) = (sX;)jer = (s;X;)jer = t. We conclude
that G = @ Gj.

Assume now that G is an inverse limit lim G; of discrete groups G;. Again, we use
the description (6.6.1). Since each 1; is continuous, each kernel Ker ¢; = 1/1371({ej}) is
the preimage of an open set, hence open in G. We also know that Ker; is normal
and closed as a kernel of a continuous homomorphism. It only remains to check that
the Ker);’s form a neighborhood basis of the identity eg. Indeed since Ker; will
fall within any given compact neighborhood of eg for big enough j, Ker; will also
be compact for such j.

Let U be any neighborhood of eg in G. Then by trace topology, there exists a
neighborhood U of e in Hjel G; with U = U N G. By the definition of the product
topology, there exists some finite subset F of I such that the subset V = I1 jer A;j
of [[;c; G satisfies V c U with Aj={e;}if je Fand A; =G, if j € F. Since I is

57. We let j > i if and only if X; C X;.
58. If k Z ] 2 i we have ’(/J”’IZ)J]C(SX]C) = ’([Jij(SXj) = SXi = ¢v1k(st)
59. If j > i we have ;9] (s) = 1i;(sX;) = sX; = ¥j(s).
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directed, we can choose ¢ € I such that ¢ > j for any j € F. Then for any s € Ker v
and any j € F', we have

P;(8) = ¥5i(pi(s)) = ¥5i(i(s)) = Pji(e:) = e;.
Hence Kery; C V. Consequently, we have Ker P; C V NG C U. We have shown that
the Ker;’s form a neighborhood basis of the identity.

If G is first countable, there exists a countable neighborhood basis of e, so we can
also extract a sequence of the Ker; forming a neighborhood basis of eg.

We turn to the last claim. Recall that the intersection of all open subgroups of a
locally compact group is the connected component of the identity eg by [98, Theo-
rem 7.8]. Since G is Hausdorff, the intersection of closed neighborhoods of eg is {eg}.
Since an open subgroup is always closed [98, Theorem 5.5], we infer that the com-
ponent of the identity is equal to {eg}. By [98, Theorem 7.3], we conclude that G is
totally disconnected. O

In particular, by [31, Proposition 3 page 20|, a pro-discrete locally compact group
G is unimodular.

REMARK 6.37. — Note that a locally compact group G is totally disconnected if and
only if the compact open subgroups form a basis of neighborhoods of the identity eg.
The end of the proof of Proposition 6.36 proves the more general implication <. The
converse is [98, Theorem 7.7].

There is the following variant of Theorem 6.16.

THEOREM 6.38. — Let G = liLnGj be a second countable pro-discrete locally compact
group with respect to an inverse system indexed by N. Suppose 1 < p < co. Assume
that G is amenable if 1 < p < co. Then there exists a contractive map

P%: CB(LP(VN(QG))) — MMP>(G)
with the properties:
1. If T is completely positive, then P%(T) is also completely positive.
2. If T = My is a Fourier multiplier on LP(VN(G)) with bounded measurable
symbol 1: G — C then P& (My) = My.
Moreover, P has the following compatibility: if T € CB(L?(VN(G))) N CB(LY(VN(G)))
for some 1 < p,q < oo, then P5(T) being twice defined as an element of MP(G)

and ML (G) coincides on LP(VN(G)) N LI(VN(G)). Note that in the case p = oo,
we can take CBy+(VN(G)) as the domain space of P .

Proof. — Let G = 1&1 G be a second countable pro-discrete locally compact group. By
Proposition 6.36, G admits a (countable) basis (X;) of neighborhoods of the identity
e consisting of open compact normal subgroups. By (6.1.5), we have an isomorphism
from the group von Neumann algebra VN(G/X;) onto px; VN(G). Using Lemma 6.2,
we obtain a completely positive and completely contractive map

LP(VN(G/X;)) — L?(px, VN(G)) = px,LP(VN(G)).
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By composing this map with the identification L?(px,VN(G)) C LP(VN(G)), we
obtain a (normal if p = 00) completely positive and completely contractive map

P LP(VN(G/X;)) — LP(VN(G)), Ag/x, sx; = pe(X; )ppx AG,s-
Furthermore, we consider the adjoint (preadjoint if p = 1)
P = (®7)": LP(VN(G)) — LP(VN(G/X;))

of <I>§7 " which is also (normal if p = c0) completely contractive and completely positive
by Lemma 2.9 for any 1 < p < oo.

Let T: L?(VN(G)) — LP(VN(G)) be some completely bounded map. Now, using
Theorem 4.2 for the discrete group G/X; (since X; is open; note that if p # oo,
G/X; is amenable by [19, Proposition G.2.2]), we define the completely bounded
Fourier multiplier

M,, = P

i1 < p < ooand My, = Pgy (VPP (T)3): VN(G/X;) — VN(G/X;)
if p = oo, where the contractive map Py~: CB(VN(G)) — CB(VN(G)) is de-
scribed in Proposition 3.1. Note that ¢;: G/X; — C is defined by ¢;(s/X;) =
TG/X, (\IIPT<D’.’()\SXJ.))\871X.) (if T is normal in the case p = 00). Then

(\P?T(I)?): LP(VN(G/X;)) — LP(VN(G/X;))

||M50J ||cb LP(VN(G/X;))—LP(VN(G/X;) H G/X; (\I/?T(I)?) H
< ||ebTer|

<7l

cb,LP (VN(G/X;))—LP (VN(G/X;))
b, LP (VN(G/X,;))—LP (VN(G/X;))
b, LP (VN(G))—LP(VN(G)) 1

in the case 1 < p < oo and similarly in the case p = oco. Note that each func-
tion ¢; is continuous since G/X; is discrete. Now, we define the continuous complex
function @; = ¢, om;j: G — C where 7;: G — G/X; is the canonical surjective map.
Since the homomorphism 7; is continuous, according to Proposition 6.14, the sym-
bol @; induces a completely bounded Fourier multiplier on L?(VN(G)) and we have
the estimate

M, |

”M?ﬁj ch,LP(VN(G))—>LP(VN(G)) = H cb,LP (VN(G/X;))—L? (VN(G/X;))

ST llep, e (viviey —Le(vnee)) -

Now, we suppose that T" = M, for a (bounded) measurable symbol ¢: G — C
giving rise to a completely bounded LP Fourier multiplier. We start by giving a de-
scription of the symbol ¢; as an average of .

LEMMA 6.39. — For any s € G, we have

(6.6.2) Fi(e) = | wlot)di, 0
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Proof. — The subgroup X; is open, so ug|x, is a left Haar measure on X; and
px; = cjpalx, where ¢; = m Moreover, for any s € G, the indicator func-
tion 1,x; belongs to C.(G) since sX; is an open and compact subset of G. For
any s,t € G, note that

(Lex, *1x,)(t) = /G Lx, (r)ix, (r ') dpc(r) = /X Lx,(t7'r) dpc(r)

= pa(sX; NtX;) = pa(sX;)lx, (b).
We conclude that 1,x, € C.(G) * Co(G). Then, for any s € G, using the definition of
a Fourier multiplier and Lemma 6.2, we see that
My(Ae,spx;) = My (Ac,scira(lx,)) = ¢; My (Ae(Lsx,)) = ¢jAc(¥lax,)
and similarly
AG,s1Px; = ¢jAg,s-1Ac(lx;) = ¢ A(Ls-1x;).
For any s € G, using the Plancherel Formula (6.1.3), we obtain

i(s) = pjomi(s) = ta/x, (LT My®] (A x, 5%, ) Aa/x,5-1%,)
e (Mw‘I’ (Aa/x; 5%, )‘1’5* (AG/XJ"S‘IXJ»

= /LG(Xj)EuG(Xj)l—;TG (My (AG,sPx,) AG,s-1PX;)
=Gi7a (/\G(wlsz))\G(lsflxj)) .

Now, using the normality of the subgroup X;, we see that

5i(s) = ¢; /zz)(r)lsxj(r)ls*lxj( Y dpe(r / $(r)1x, o(r) du(r)

_CJ/ ¥(r) dpc(r —Cg/"l/)SthG /"/fstdux (t). O

Let E3°: L*°(G) — L*°(G) be the normal conditional expectation associated with
the o-algebra generated by the left cosets of X; in G considered in [105, page 182-183]
(see also [103, page 69]) and E}: L'(G) — L'(G) the contractive associated map. The
previous lemma says that for any integer j we have ¢; = Ejoo(d)) Now, we prove the
following convergence result.

LEMMA 6.40. — Let G be a pro-discrete locally compact group and let (X;) be a de-
creasing basis of neighborhoods of the identity eq consisting of open compact normal
subgroups. Let 3 L*°(G) — L*®°(G) be the normal conditional expectation associ-
ated with the o-algebra generated by the left cosets of X; in G. For any ¢ € L™(G),
the net (E°(¢)) converges to 1 for the weak* topology of L*°(G).

Proof. — By [101, Proposition 2.6.32], for any f € L°°(G) and any g € L*(G), we have

oo — 1
<Ej (f)’g>L°°(G),L1(G) - <fa Ej (g)>Loo(G)7L1(G)'
Consequently, the map ES°: L°°(G) — L°°(G) admits as preadjoint the contractive

map Ej: L'(G) — L'(G). So it suffices to show that the net (Ej) converges to the
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identity for the weak operator topology. Actually, we will show that the convergence
is true 0 for the norm topology of L'(G). Since the net (E) is uniformly bounded,
by [32, Proposition 5, Chapt. III, 17.4], it suffices to show that ]EJ1 (g) converges to g
in L}(G) for any g belonging to some total subset of L'(G). By [35, Lemma 2 a),
VII.15], the subset of positive functions with compact support constant on the left
cosets of some X is total. So let g be such a function. If 7 > j, i.e., if X; C X, each
left coset of X; in G is a subset of a left coset of X; in G. Then for almost all s € G
we have
EH@)E) = [ s dux(® = [ (s dux.t) = 900

So El(g) = g. Hence, for this g, the assertion is true. The proof is complete. O

Using Lemma 6.40 together with Lemma 6.7, we deduce that the sequence (M3;)
converges to My, in the weak operator topology of B(L?(VN(G))) (in the point weak™*
topology if p = o0). Then we proceed as in the proof of Theorem 6.16 to con-
struct the contractive linear maps P%: CB(L?(VN(G))) — 9MP°(G) and to show
that P%(My) = M, whenever M, € IMP°(G).

Finally, we show that the map P2 preserves the complete positivity. Suppose
that T is (normal if p = 0o) completely positive. The operator \Ilﬁ-7 T‘b? is completely
positive. Hence the multiplier M,,, = P}, /X, (\IlgTCIJf ) is also completely positive. By
Theorem 6.14, we infer that Mz = M ox; is completely positive. Using Lemma 2.10,
it is easy to deduce that P5(T) is completely positive. O

REMARK 6.41. — According to [136, Theorem 12.3.26], a second countable nilpo-
tent 1) compactly generated totally disconnected locally compact group admits a
sequence (X;) satisfying the assumptions of the theorem. Moreover, any second count-
able compactly generated uniscalar () p-adic Lie group admits such a sequence (X;)
by [81, Theorem 5.2]. Moreover, p-adic can be replaced by pro-p-adic [81, Proposi-
tion 7.4]. Finally, there exists an example of a compactly generated totally discon-
nected uniscalar locally compact group which does not have an open compact normal
subgroup, see [25] and [117].

REMARK 6.42. — Note that the result applies to the profinite groups acting on locally
finite trees described in Section 6.5.

60. This fact is proved in the second countable case in [105, Theorem 3.3] and seesms alluded
without proof in the general case in [105, page 184] (see also [103, page 71] for a proof). Here, we
give an alternative argument. Finally, Bourbaki transformed this into an exercise [35, Exercise 10
page 89|, as usual without giving any reference.

61. Recall that nilpotent implies unimodular by [130].

62. Note that uniscalar implies unimodular, see [136, Theorem 12.3.26].
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6.7. Amenable groups and convolutors

In this chapter, we observe that we can obtain compatible projections on spaces of
Fourier multipliers associated to abelian locally compact groups and more generally
on spaces of convolutors associated to amenable locally compact groups.

Convolution operators. — Let G be a locally compact group and 1 < p < oo. Here
we use the left translation A\;: LP(G) — LP(G) with a similar definition to the one
of (6.1.1). A bounded linear operator T': L?(G) — LP(G) (supposed to be weak*
continuous in the case p = 00 (%9) is said to be a p-convolution operator of G [56,
page 8] if for every s € G we have \;T = TA;. The set of all convolution operators
(or convolutors) of G is denoted CV,(G). If G is abelian then CV,(G) = M?(G)
isometrically, see [56, Chapter 1].

If X is a Banach space, the subset CV,(G, X) of B(LP(G, X)) is defined as the
space of convolution operators T such that T ® Idx extends to a bounded opera-
tor on L?(G, X). The space CV,, o,(G) of completely bounded convolutors on L?(G)
coincides with CV,(G, S?).

Proposition 6.43 is slight generalization of a particular case of the result [53, Corol-
laire page 79] (rediscovered in part in [5, Theorem 1.1]). We will thank Antoine De-
righetti to communicate this reference.

PRrROPOSITION 6.43. — Let G be an amenable locally compact group. Suppose
1 < p < co. Then there exists a contractive projection Pg: B(LP(G)) — B(LP(G))
(in the case p = oo, we have P : By« (L*(G)) — By« (L*(G))) onto CV,(G)
such that if T: LP(G) — LP(G) is positive ®® then PE(T) is positive. Further-
more, all these mappings are compatible with each other. Moreover, if 1 < p < oo,
the restriction of P% to CB(LP(G)) induces a well-defined contractive projec-
tion P%°": CB(L?(G)) — CB(LP(G)) onto CV, o (Q).

Proof. — The case 1 < p < oo is [53, Theorem 5] and [5, Theorem 1.1]. The case p = 1
of [S, Theorem 1.1]) gives a projection P}: B(L'(G)) — B(L'(G)). Now for a weak*
continuous operator T': L*°(G) — L*®(G), we let P2 (T) = PL(T.)*. We obtain the
desired projection. The verifications are left to the reader.

Suppose 1 < p < oo. Let T': LP(G) — LP(G) be a completely bounded operator. For
any f € LP(G) and any g € L?" (G), we consider the complex function hr s ,: G — C,
s <T()\S(f)),)\s(g)>Lp(G))Lp*(G) defined on G. The function hr ;4 is ®® bounded.

63. If G is not compact, note that there exist bounded operators T': L>°(G) — L°°(G) which
commute with left translations and which are not weak* continuous. We refer to [125] for more
information.

64. Recall that the notions of “positivity” and “complete positivity” are identical on commutative
LP-spaces by Proposition 2.24 and a completely positive map is completely bounded by Theorem 3.26.

65. For any s € G, we have

‘<T(>\S(f))7As(g)>Lp(G),Lp* (@ < ||T||Lp(c)_>Lp(c) ||>\S(f)||Lp(G) 1As (@)l 1,p (@)

= ||T||Lp(c)_,Lp(G) ||f||Lp(G) ||9||Lp*(c) :
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By [98, Theorem 20.4], the maps G — LP(G), s — T(\s(f)) and G — L¥ (G),
s+ As(g) are continuous. Using the continuity of the duality bracket (-, ) 1» () L (&)
[2, Corollary 6.40] on bounded subsets, we deduce that the map hr s 4 is continuous,
hence measurable.

Since G is amenable, by [141, Proposition 4.23], there exists a right invari-
ant mean 9 9: L>°(G) — C. Since L°(G) is a unital commutative C*-al-
gebra, the map 2 is completely contractive by [68, Lemma 5.1.1]. The map
B:LP(G) x LP" (G) = C, (f,g) — M (hr,s,4) is clearly bilinear. Moreover, for any
integer n, any [fi;] € M,,(L?(G)) and any [gri] € M,,(L?" (G)), we have

1B (fiz> 98.0)] || s e [ 1.y 90)] [l S [{LE] 2(L(G))
= H |:8 = <T fZ])) As (gkl)>LP(G) Lr* (G)] ‘M 2 (L (G))
5 [<T()‘s(fij))’)‘S(gkl»Lp(G),LP*(G)] HLOO(GM 2)

= sup (KaENEE)wwen) Sms— .

Now, using [68, (3.2.3)] in the first inequality and the fact left to the reader (to use
[143, Proposition 2.1]) that each A,: LP(G) — LP(G) is completely isometric in the
last equality, we obtain for any s € G

H{ s(fij)) gkl)>Lp(G),Lp*(G)}HMn _H< T(As(fi5) ] [)‘S(gkl)]»HM

< tro

n2
s(fi5)] HMH(LP(G)) [IRNE72)] || .

S T lew () —1r(@) [P Uil g, o 1P @0l 1o+ (69

= 1T lleb,Lo(0)—ro (@) i, oo N gm |, o (-

Taking the supremum, we infer that

}|[%(fij»9k,l)]HMn2 < ”T”cb,LP(G)—»LP(G) H[fij]HMn(LP(G))||[gkl]||Mn(LP*(G))'

We conclude that 9B is completely bounded in the sense of [68, page 126] with
Blet, < 1Tl ch 1.0 (6)—10(c)- Hence, by [68, Proposition 7.1.2] there exists a unique

completely bounded operator Pg’Cb(T): LP(G) — LP(G) such that

B(f,9) = <P§’Cb(T)(f),g>Lp(G),Lp* @ FELMG),gel”(G).

66. That is a unital positive bounded linear form 9: L°°(G) — C such that M(f:) = M(f) for
any t € G where fi(s) = f(st).
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,cb .
Moreover, we have ||P% (T)”cb,LP(G)—»LP(G) = Bl < TNy 1r(6)—1r(c)- This
operator coincides with the operator P%(T') provided by a slightly simplified (¢ proof
of [5, Theorem 1.1]. The compatibility is left to the reader. O

REMARK 6.44. — Consider a locally compact group G. It would be interesting to
know if the amenability of G is characterized by the property of Proposition 6.43.

6.8. Description of the decomposable norm of multipliers
The following is a variant of Theorem 4.10.

THEOREM 6.45. — Let G be an amenable second countable unimodular locally com-
pact group which is ALSS satisfying the assumption (6.4.2). Suppose 1 < p < oo.
Then a measurable function ¢: G — C induces a decomposable Fourier multiplier
on LP(VN(Q)) if and only if it induces a (completely) bounded Fourier multiplier
on VN(G). In this case, we have

(6.8.1) C”M‘i’”VN(G)HVN(G) < ||M¢”dec,LP(VN(G))HLP(VN(G)) < ||M¢”VN(G)HVN(G)‘

Proof. — =: We start with the case of a decomposable Fourier multiplier
My: LP(VN(G)) — LP(VN(G)) with a continuous symbol. By Proposition 3.12,
we can write My = T1 — T +i(T3 — Ty), where each Tj is a completely positive map
on LP(VN(G)). Using the map P& of Theorem 6.16 (since G is amenable) and the
continuity of ¢, we obtain that

My = P%(My) = P, (T1 — Ty +i(T5 — T4)) = PL(Th) — P(T») +i(Pg(T3) — Pg(ﬂ)),

where each P5(Tj) is a completely positive Fourier multiplier on L?(VN(G)). Hence,
by Proposition 6.11, it induces a completely positive Fourier multiplier on VN(G).
We conclude that ¢ induces a decomposable Fourier multiplier on VN(G). If ¢ is
only bounded and measurable, but the approximating fundamental domains X; are
symmetric (resp. yX; = X;v for v € T';), then according to Theorem 6.16, we can
argue in the same way.

Without the assumption of continuity (resp. symmetry or commutativity of the
fundamental domains), we adapt the method of approximation of [39, Remark 9.3]
by completely bounded multipliers on VN(G). Let M, : LP(VN(G)) — LP(VN(G)) be
a decomposable Fourier multiplier. Since G is amenable, by Leptin Theorem [141,
Theorem 10.4], there exists a contractive approximative unit (¢;) of the Fourier alge-
bra A(G) such that each 1; has compact support. In addition, consider a contractive
approximate unit (x;) of L'(G) such that each x; is a function belonging to C.(G)
with ||xj||L1(G) =1 and x; > 0 satisfying the properties of [58, (14.11.1)] (see [58,
Example 14.11.2] for the existence). For any ¢, j, we let ¢; ; = x; * (¥;¢).

67. We can replace the space of right uniformly continuous functions by L°°(G). Moreover, note
that translations of [5, Theorem 1.1] differ from our notation.

SOCIETE MATHEMATIQUE DE FRANCE 2023



128 CHAPTER 6. DECOMPOSABLE FOURIER MULTIPLIERS

We claim that for any i, j, we have

(6.8.2) HMd)i’J ’reg L?(VN(G))—Lr(VN(G)

) S 1Mol og vy —rrvniey) -

Indeed, since G is amenable, the von Neumann algebra VN(G) is approximately finite-
dimensional by [45, Corollary 6.9 (a)]. Using Theorem 3.24, [143, Definition 2.1], the
duality [145, Theorem 4.7] and Plancherel Formula (6.1.3), we need to show that for
any N € N, and any fx;, gri € Cc(G) * C.(G) where 1 < k,I < N we have

N
‘([M¢i,j()\(fkl))]’l:)\(gkl):l>Lp(VN(G),MN),Lp*(VN(G),S}I\]) Z /G¢i,j(5)fkl(5)gkl(s)dNG(s)

< HM¢>||reg,LP(VN(G))—>LP(VN(G)) ||[A(fkl)]HLP(VN(G),MN)”[)\(gkl)]||LP*(VN(G),S}V)'
Note that
N
3 [ 5060 a0 duc®)] = | 3 (Moo M(fu). o)
k=1 k=1

< ||M¢i”reg,Lp(VN(G))ﬁLp(VN(G)) ||M¢||reg,Lp_,Lp H[)‘(fkl)]“ “[)‘(gkl)]H
By the second and the last part of the proof, we have

| My,

reg,LP—Lp = ”Mwl VN(G)—VN(G) < ||7/)i||A(G) <1l

Using the fact that ||[As-16k]ll\r, (vn(ey) = 1, it is not difficult to prove that the
regular norm is translation invariant, so that

Z/Tﬁz sTH)d(s ™) fra(O)gra (8) dpc ()| < (1Molleg 1o—ro MO [TAgr]]]-

k,l=1

Consequently, since ||Xj||L1(G) <1

/GXj(

/ I (s Z / Bi(sT)9(s™ ) fra () (8) da(8)| dpic (s)

( [ 700067 0 (0300 anc¢ >) dpic(s)

k,l=1

< ||M¢||reg,Lp~>Li" H (frt) ]H H (gx1)] H
But by Fubini Theorem, we have

R ( 7000670 u0300) i ©)) ()

Z / (/ (s7't)o(s7'1) duc(3)>fkl(t)§kl(t) duc(t)|.

k=1

MEMOIRES DE LA SMF 177



6.8. DESCRIPTION OF THE DECOMPOSABLE NORM OF MULTIPLIERS 129

We deduce that

2:/ D) FrO31(8) A (t)]| < 1Mollog 11 [N |G
k=1
and finally, (6.8.2) follows.

Recall that 9; € C.(G) and ¢ € L>*°(G), so ;¢ € L*>°(G) with compact support,
so ;¢ € L%(G). Moreover, each function y; belongs to L%(G). We conclude that
$i; = X; * (¥i¢) belongs to L?(G) * L(G), which equals A(G) [72, théoréme p. 218,
so it is a continuous symbol. Then the first part of the proof and the last part show
that each function ¢; ; induces a (completely) bounded multiplier on VN(G) with a
uniform completely bounded norm. Thus, there exists a constant C' < oo such that
for any 4, j, we have for f,g € C.(G) * C.(G) (to adapt if p = 00 or p =1)

/ 615 (D F(0)3(1) duc(®)] < CIAD lvnie IND Il va -

If ¢; ; converges to ¢ in the weak™® topology of L*°(G), then this will yield

/ H() F(1)3(t) dua (t)

and consequently, that ||M¢||VN(G)_)VN(G) < C. We show the claimed weak* conver-

< ClIIAN v MDD vneay

gence. For a given h € L1(G), we write

(bijs P)Le (@), L1 (a) = (X5 * (Vi®) — Vi, h) + (ip — &, h).

For the second summand, note that |[¢illc < [[%illo(q) < 1, so that 1;¢ — ¢ is
uniformly bounded in L*°(G). Moreover, 1;(s) — 1 for any s € G, since it is an
approximate unit. By dominated convergence, we deduce (1);¢ — ¢, h) — 0 as i — oo.
Now for a fixed large ¢, we have that (x; * (¥;¢) — ¥;¢,h) — 0 according to [58,
(14.11.1)].

<: Let My: VN(G) — VN(G) be a decomposable Fourier multiplier. Simi-
larly, with Corollary 6.25, we can write My = My, — My, + i(My, — My,) where
each My : VN(G) — VN(G) is completely positive. By Proposition 6.11, each
Fourier multiplier ¢; induces a completely positive multiplier on L?(VN(G)). Using
Proposition 3.12, we conclude that ¢ induces a decomposable Fourier multiplier
on LP(VN(G)).

The proof of last part is similar to the proof to the one of Theorem 4.10 together
with Theorem 3.24 when one remembers that the von Neumann algebra VN(G) is
approximately finite-dimensional. O

REMARK 6.46. — If we replace the amenability assumption by supposing that VN(G)
is approximately finite-dimensional then the end of the proof shows that for any
function ¢ inducing a completely bounded Fourier multiplier on VN(G) we have the
inequalities (6.8.1).

Similarly, we obtain the following result:
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THEOREM 6.47. — Let G be a second countable amenable pro-discrete locally com-
pact group. Suppose 1 < p < co. Then a function ¢: G — C induces a decomposable
Fourier multiplier My: LP(VN(G)) — LP(VN(G)) if and only if it induces a (com-
pletely) bounded Fourier multiplier on My: VN(G) — VN(G). In this case, we have

||M¢”dec,LP(VN(G))—>LP(VN(G)) = ||M¢ch,VN(G)—>VN(G) = ||M¢||VN(G)—>VN(G)'

REMARK 6.48. — In both situations, a function ¢: G — C which induces a decom-
posable Fourier multiplier M,: LP(VN(G)) — LP(VN(G)) is equal to a continuous
function almost everywhere, see, e.g., [86, Corollary 3.3].

The following observation was communicated ® to us by Sven Raum whom we
thank for this. It shows that in the pro-discrete case, a similar remark to Remark 6.46
is useless.

PROPOSITION 6.49. — A second countable pro-discrete locally compact group G is
amenable if and only if its von Neumann algebra VN(G) is approzimately finite-
dimensional.

Proof. — Consider a pro-discrete locally compact group G such that VN(G) is approx-
imately finite-dimensional. By Proposition 6.36, there exists an open compact normal
subgroup K of G. Using the central projection px of Lemma 6.1, we have a *-isomor-
phism 7: VN(G/K) — VN(G)pk, Ask — Aspk- It is well-known (°9 that this implies
that VN(G)pk is approximately finite-dimensional and thus that VN(G/K) is approx-
imately finite-dimensional. Furthermore, since K is open, the group G/K is discrete
by [98, Theorem 5.26]. By [162, Theorem 3.8.2], we infer that G/K amenable. Since
K is amenable, by [19, Proposition G.2.2], we conclude that the group G is amenable.

The converse is [45, Corollary 6.9 (a)]. O

Similarly, we obtain a proof of the next result. The first part is (" essentially stated
in [4, Proposition 3.3].

THEOREM 6.50. — Let G be an amenable locally compact group. Suppose 1 < p < co.
Then a convolutor T': LP(G) — LP(G) of CV,(G) is regular if and only if it induces
a bounded convolutor T': L (G) — L*°(G). In this case, we have
||T||reg,LP(G)—>LP(G) = ||T||L°°(G)—>L°°(G) (= ||T||cb,L°°(G)—>L°°(G))'
This result applies to decomposable Fourier multipliers
My: LP(VN(GQ)) — LP(VN(G))

on an abelian locally compact group G.

68. In [14], we will give another argument.

69. This observation relies on the equivalence between “injective” and “approximately finite-
dimensional”.

70. We warn the reader that the proof [4, Proposition 3.3] is really problematic. The proof of the
fundamental point (the surjectivity of the map 73) is lacking.
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REMARK 6.51. — Consider a locally compact group G. It would be interesting to
know if the amenability of G is characterized by the property of Theorem 6.50.
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CHAPTER 7

STRONGLY AND CB-STRONGLY
NON DECOMPOSABLE OPERATORS

In this chapter, we construct completely bounded operators T': LP(M) — LP(M)
which cannot be approximated by decomposable operators. We particularly investi-
gate different types of multipliers. We also give explicit examples of such operators on
the noncommutative LP-spaces associated to the free groups (see Theorem 7.28 and
Theorem 7.29).

7.1. Definitions

The following definition is an extension of the one of [5, Remark, page 163] on
classical LP-spaces to noncommutative LP-spaces since the regular norm and the de-
composable norm are identical by Theorem 3.24.

DEFINITION 7.1. — We say that an operator T: LP(M) — LP(M) is strongly non
decomposable if T does not belong to the closure Dec(LP(M)) of the space Dec(LP(M))
with respect to the operator norm ||| ary— e (ar)-

It means that 7" cannot be approximated by decomposable operators. We also
introduce the following variation of this definition.

DEFINITION 7.2. — We say that a completely bounded operator T: LP(M) — LP(M) is

CB-strongly non decomposable if T does not belong to the closure Dec(LP(M))CB of
the space Dec(LP (M) with respect to the completely bounded norm |||, 1.0 ()10 (1) -

If M is approximately finite-dimensional, we also use the words strongly non reqular
and CB-strongly non regular.

REMARK 7.3. — These two notions are related. Indeed, let T': LP(M) — LP(M) be
- CB
a completely bounded operator in Dec(LP(M)) . There exists a sequence (T,) of
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decomposable operators acting on L?(M) such that ||T" — Ty ||, 1.0(ar)—1e (ar) tends to
zero when n approaches +o0o. Hence, we have

- <||T - .
T TTLHLP(M)HLP(M) <|IT Tn”cb,LP(M)HLI’(M) ot 0

Hence T belongs to the closure Dec(L?(M)). We deduce that if T' is completely
bounded and strongly non decomposable then T' is CB-strongly non decomposable.

7.2. Strongly non regular completely bounded Fourier multipliers on abelian groups

Arendt and Voigt proved that the Hilbert transforms on the groups R, Z and
T are strongly non regular [5, Example 3.3, 3.4, 3.9]. In the case of an arbitrary
abelian locally compact group G, a notion of Hilbert transform is not available in
general. Nevertheless, we prove in this section that there exists a strongly non regular
completely bounded Fourier multiplier acting on L?(G).

Complements on convolution operators. — If u € M(G) is a bounded Borel measure

1
on G, then pf,(u) denotes the element of CV,(G), defined by pf(1)(f) = f* A& i
for any continuous function f: G — C with compact support, [56, page 8]. Moreover,
if 4 € M(G) and if H is a closed subgroup of G note that

(7.2.1) 1gp = i(Resgp),

where i(r) denotes the image of the measure v under the inclusion map % of H in G.

If X is a Banach space, the subset CV,(G, X) of B(LP(G, X)) is defined as the
space of convolution operators 7' such that T'® Idx extends to a bounded operator
on L?(G, X).

Positive convolution operators. — The following is [141, Theorem 9.6] (see also [56,
page 8|, and [4, pages 280-281] for a good explanation). Let G be an amenable locally
compact group and suppose 1 < p < oo. Let T: LP(G) — LP(G) be a positive
convolution operator. Theln there exists a positive bounded measure g € M(G) on G
such that T(f) = f * Ag? [ for any continuous function f: G — C with compact
support (™). Moreover, we have [|T'l|y»g)_1»(q) = Il1l-

Canonical isometry from CV,(H, X) into CV,(G, X). — Let G be a locally compact
group, H a closed subgroup of G, X a Banach space and 1 < p < oo. There exists a
canonical linear isometry

(7.2.2) it CV,(H, X) — CV,(G, X).

It is a vectorial extension of [56, Theorem 2 page 113], (see also [7, Theorem 2.6])
which can be proven with a similar proof. Note that the remark [56, Remark page
106] gives for any p € M(H) the equality

(7.2.3) i(ph () = pe(i(w)),

71. If s € G we have by [56, page 7| (f * Aé’?ﬂ) (s) = fG f(st)AG(t)% du(t).
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where 4(u) denotes the image of the measure p under the inclusion map ¢ of H in G.
Suppose in addition that G is abelian. Using the isomorphism G/H' = H given
by X — x|H we can reformulate [56, Theorem 1 page 123] under the equality

i(My) = Myor,
where 7: G — G’/HL is the canonical map.

Isometry from CV,(G/H) into CV,(G). — Let G be an amenable locally compact

group and H be a normal closed subgroup of G such that G/H is compact. By [54,

page 4 and 11], there exist an isometry 2: CV,(G/H) — CV,(G) and a contraction

R: CV,(G) — CV,(G/H) satisfying RQ) = Idcv, (g m) such that for any p € M(G)
R(pg(1) = Py (T,

where the measure Ty (1) is defined by (see [151, 8.2.12 page 233])

/ 9d(Ty (k) =/907eruc,
G/H G

for all continuous functions g: G/H — C with compact support.

Let G be a locally compact abelian group and H be a compact subgroup of G.
We denote by m: G — G/H the canonical map. The mapping x — x o7 is an

isomorphism of G/H onto Ht. If ¢: H- — C is a complex function, we denote
by @: G — C the extension of ¢ on G which is zero off H+. Let X be a Banach space.
By [7, Proposition 2.8], the linear map

(7.2.4) CV,(G/H,X) — CV,(G,X), M,— Mg
is an isometry.

Projection from B(LP(G)) onto CV,(G). — Let G be an amenable group and suppose
1 < p < oo. The result [5, Theorem 1.1] says that there exists a positive contractive
projection

(7.2.5) Pg: B(LP(G)) — B(LP(G)).
onto CV,(G).

Projection from CV,(G) onto CV,(H). — Let G be a locally compact group and H
be an amenable closed subgroup. Suppose 1 < p < co. By [55, Theorems 12 and 15],
there exists a projection P: CV,(G) — CV,(G) onto {S € CV,(G) : suppS C H}
such that if Qg =i~ o P: CV,(G) — CV,(H) we have the following properties:

1. P(p%(w)) = p(1mp) for every bounded measure p € M(G),

2. ||QH(T)||LP(H)*>LP(H) < ”THLP(G)HLP(G)y
3. Qu(i(S)) = S for S € CV,(H).
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Restriction of multipliers. — Let G be a locally compact abelian group. Let H be
a closed subgroup of the dual group G. Suppose 1 < p < oo. Let ¢: G — C be
a continuous complex function which induces a bounded Fourier multiplier (i.e., a
convolutor) M, : LP(G) — LP(G). Then, by [154, Corollary 4.6] (see also [47, ab-
stract and page 6]), the restriction ¢, : H — C induces a bounded Fourier multiplier

M, - LP(H) — LP(H) and we have

(7.2.6) || M,

“M‘P\H ||Lp(f1)_>Lp(H) < ||LP(G)—>LP(G)'

We start with a useful observation.

LEMMA 7.4. — Let G be a unimodular amenable locally compact group and H be a
closed subgroup of G. Suppose 1 < p < co. The map Qp: CV,(G) — CV,(H) is
positive.

Proof. — Let T': LP(G) — LP(G) be a positive convolution operator. There exists a
positive measure v € M(G) such that T = pZ (7). We consider p = ». We have
T = p(p). Using (7.2.3) and (7.2.1), we see that

P(re(w) = p&(Lap) = pg(i(Resup)) = i(pj(Resup)).
Using the definition Qg =i~ ! o P of Qp, we obtain finally

Qu(T) = Qu (ph(1) =i " (P(og(n)) = ph(Respp).

Since Resyp is a positive measure, we deduce that Qg (T') is a positive operator. [J
Similarly, we can prove the two following results.

LEMMA 7.5. — Let G be a unimodular amenable locally compact group and H be a
normal closed subgroup of G such that G/H is compact. Suppose 1 < p < oo. The
map R: CV,(G) — CV,(G/H) is positive.

LEMMA 7.6. — Let G be a unimodular amenable locally compact group and H be a
closed subgroup of G. Suppose 1 < p < co. The map i: CV,(H) — CV,(G) is positive.

Now, we state our first transference result.

PROPOSITION 7.7. — Let G be a unimodular amenable locally compact group and H be
a closed subgroup of G. Then a convolution operator T': LP(H) — LP(H) is a strongly
non regular Fourier multiplier if and only if the convolutor i(T): LP(G) — LP(G) is
strongly non regular.
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Proof. — Note that H is also amenable since it is a subgroup of the amenable group G.
——_B(LP(H
<: Suppose that T belongs to Reg(LP(H)) L )). Let ¢ > 0. Then there

exist some positive operators R, Rs,R3,Ry: LP(H) — LP(H) and a bounded
map R: LP(H) — L?(H) of norm less than € such that T'= Ry — Ry +i(Rs — R4) + R.
Since H is amenable, we can use the map (7.2.5) and suppose that Ry, Ry, R3, R4 and
R are convolution operators. Using the isometry i: CV,(H) — CV,(G) we obtain

i(T) = i(R1) — i(R2) +i(i(R3) — i(Ra)) + i(R).
Using Lemma 7.6, we see that the operators i(R;) are positive. Moreover, note that

we have [|i(R)|1»)=rec) = IBllLe(ay—reay < € It follows that the convolution
operator i(T') is e-close to Reg(L?(G)) in the Banach space B(LP(G)). So letting e — 0

- _BLPG
yields that i(T") € Reg(LP(G)) ") This is the desired contradiction.

=: Suppose that ¢(T") belongs to Reg(LP(G))B(Lp(G)). Let ¢ > 0. Then there
exist some positive maps Ri, Rs,R3, Ry: LP(G) — LP(G) and a bounded map
R: L?(G) — L?(G) of norm less than € such that i(T") = Ry — R2 +i(R3s — R4) + R.
Since G is amenable, using the map (7.2.5), we can suppose that Ry, Re, R3, Ry and
R are convolution operators.

Since H is amenable, we can use the contraction Qp: CV,(G) — CV,(H). We
obtain

T = Qu(i(T)) = Qu(By — Ry +i(Rs — Ry) + R)
=Qu(R1) — Qu(R2) +i1(Qu(Rs) — Qu(R4)) + Qu(R).

Moreover, by the contractivity of @, the convolution operator Qg (R): LP(H) — LP(H)
is bounded of norm less than . Furthermore, by Lemma 7.4, each convolution op-
erator Qg (Ry): LP(H) — LP(H) is a positive operator. It follows that T is e-close
to Reg(L?(H)) in the Banach space B(LP(H)). So letting ¢ — 0 yields that

T e Reg(LP(H))B(L (H)). This is the desired contradiction. O

PROPOSITION 7.8. — Let G be a unimodular amenable locally compact group and
H be a normal closed subgroup of G such that G/H is compact. If the convolution
operator T: LP(G/H) — LP(G/H) is strongly non regular then the convolution oper-
ator Q(T): LP(G) — LP(G) is strongly non regular.
p 5~ BLP(G)

roof. — Suppose that Q(T) belongs to Reg(LP(G)) . Let ¢ > 0. Then
there exist some positive maps Sy, Ss,S53,54: LP(G) — LP(G) and a bounded
map S: L?(G) — LP(G) of norm less than € such that Q(T) = S — Sz +i(S5—54)+S.
Since G is amenable, using the map (7.2.5), we can suppose that S, Ss,S3,54 and
S are convolution operators. Using the contraction R: CV,(G) — CV,(G/H), we
obtain

T = R(T)) = R(S1) — R(S2) +i(R(S3) — R(S4)) + R(S).

Moreover, by R’s contractivity, the convolution operator R(S): LP(G/H) — LP(G/H)
is bounded of norm less than e¢. By Lemma 7.5, each convolution operator
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R(Sy): L?(G/H) — L?(G/H) is positive. It follows that T is e-close to Reg(LP(G/H))
in the Banach space B(L?(G/H)).

So letting € — 0 yields that T € Reg(LP(G/H)) . This is the desired
contradiction. O

B(L?(G/H))

PROPOSITION 7.9. — Let G be a compact abelian group and let H be a closed subgroup
of G. If o: H+ — C is a complex function, we denote by @: G — C the extension
of ¢ on G which is zero off H+. If the function ¢ induces a strongly non regular
Fourier multiplier M,: LP(G/H) — LP(G/H) then the function ¢ induces a strongly
non reqular Fourier multiplier Mz: LP(G) — LP(G).

=~ BL"(G))
Proof. — Suppose that M belongs to Reg(LP(G)) . Let € > 0. Then there
exist some positive maps Ry, Rs, R3, Ry: LP(G) — LP(G) and a bounded map
R: LP(G) — LP(G) of norm less than e such that Mz = R; — Ry +i(R3 — R4) + R.

Since G is amenable, the linear map (7.2.5) yields the existence of some complex
functions @y, ¢, ds, b4 and ¢ on G such that Mz = My, — Mg, +i(Mg, — My,) + M,
such that the Fourier multipliers My, are positive on L?(G) and M, is again of norm
less than e.

By Proposition 6.11, each (continuous ("?) function ¢, induces a positive linear op-
erator My, : L°(G) — L*°(G) and ¢y, is positive definite. We infer that the restriction
ér|H*: G — C is (continuous and) positive definite, and thus by [51, Proposition 4.2],
induces a positive operator My, g1 : L°(G/H) — L*°(G/H). Then by Proposi-
tion 6.11, it follows that the Fourier multiplier My, g1 : LP(G/H) — LP(G/H) is
positive.

Note that the group H+ = G{/?I is discrete. By (7.2.6), since the function ¢ is
continuous, the Fourier multiplier My, 51 : LP(G/H) — LP(G/H) is bounded of norm
less than €. Since

My = My e — Moy e +1(Mjre — My, jge) + Myje
it follows that M, is e-close to Reg(L?(G/H)) in the Banach space B(L?(G/H)), so

that letting ¢ — 0 yields that M, € Reg(LT’(G/H))B(L G This is the desired
contradiction. O

Let (ex)k>0 be a sequence of independent Rademacher variables on some
probability space €y. Let X be a Banach space and let 1 < p < oo. We let
Rad,(X) C LP(0, X) be the closure of span{e; ® z | k > 0, z € X} in the Bochner
space L?(Qo, X). Thus, for any finite family (zx)o<r<n of elements of X, we have

n n D %
Z €k ® Tk = (/ Z ex(w)zg dw) .
k=0 Rad, (X) - X

72. Note that the group G is discrete.
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We simply write Rad(X) = Rady(X). By Kahane’s inequalities (see, e.g., [57, Theo-
rem 11.1]), the Banach spaces Rad(X) and Rad,(X) are canonically isomorphic. We
will use the following result which is a variant of [65, Theorem 4.1.9].

PROPOSITION 7.10. — Let X be a UMD Banach space. Suppose 1 < p < co.

1. Let G be a countably infinite discrete abelian group. Assume Athat there exists a
sequence (Hp)n>0 of subgroups of the (compact) dual group G such that
(a) each H, is open,
(b) Hpy g H,,
(©) Nuso Hn = {0} and Ho = G.
For any integer n > 0, consider the subset A, = Hy\Hp41 of G. Then

for any f € LP(G,X), the series Y, - jen ® (M1, ® Idx)(f) converges
in Rad(LP(G, X)) and we have the norm equivalence

(727) ||f||Lp(G7X) ~ Z En ® (MlAn 02y IdX)(f)
n=0

Rad(L?(G,X))
2. Let G be a compact abelian group. Assume that there exists a sequence (Yy,)n>0
of subgroups of the (discrete) dual group G such that
(a) each Y, is finite
(b) Yn ; Yn+1;
(c) Yo={0} and U,5qYn = G.

Let Ag =Yy and A, = Y,\Y,_1 for n > 1. Then for any f € LP(G, X), the
series Y 0 en ® (M1, ® Idx)(f) converges in Rad(L*(G, X)) and we have
the norm equivalence

(7.2.8) [ llLe 6, x) =

D en® (M, ®1dx)(f)
n=0

Rad(L?(G,X))

Proof. — 1. Let F = P(G) denote the full o-algebra of subsets of G. For n > 0, con-

sider the annihilator G, def H:- in G. Since each H,, is open and compact, each G, is

compact and open by [151, Remark 4.2.22], hence finite (G is discrete).

For any negative integer £ < 0 consider the o-algebra Fj generated by the cosets
of G_i in G. Since G is countably infinite, there are only countably many cosets
of G_; in G. So by [1, Exercice 4 (a) page 227] the elements of Fj are the sets
which are a union of cosets of G_ in G. Since H_py1 C H_j for all £ < 0, by
[151, Proposition 4.2.24], we have G_ C G_g+1. Then it is not difficult to see that
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Fr—1 C Fy, if & < 0. We conclude that (Fy)r<o is a filtration in G. It is elementary
to check (™ that U,>oGy, = G.

Moreover, since G is countable, the counting measure pg is o-finite. Since the G_y,
are finite, so the restriction of pug to each Fy is also o-finite. So, by [101, Corol-
lary 2.6.30], the conditional expectation E(-|F;) with respect to F is well-defined
and it is explicitly described in [105, page 183] (see also [103, page 69]), since G_j is
compact, by

E(f|Fr) =Te_,.(f) omp (almost everywhere),

where 7, : G — G/G_}, is the canonical map and where T _, is essentially defined in
[151, page 100]. For any integer k < 0, since H_j, is open, the Poisson formula [151,
5.5.4] says that

(T (D) om)(s) = [

H_y

~

X(5) 700 durr_, () = / 3L 00 F () dag (0)-

G

We conclude that the conditional expectation E(:|F): LP(G) — LP(G) is (™ a Fourier
multiplier whose symbol is the indicator function 1z _,. Hence for any n > 0

MlAn = ]MlHn\Hn+1 = MlHn - ]MlHM_1 = E(|]:—n) _E('|]:—n—1)

as bounded operators on LP(G). Note that the right hand side is regular on LP(G).

Consequently, their tensor products with the identity Idx also coincide.

For any f € LP(G,X) and any integer k < 0, we let fj e (E(-|Fk) ® Idx) (f)-

By [101, Proposition 2.6.3 and Example 3.1.2], we obtain a martingale (fx)r<o with
respect to the filtration (Fj)r<o. Note that since Gy = Hy = G+ = {0} we have
Fo = F and thus fy = (]E(-|.7-"0) ® Idx)(f) = f. Consequently, for any integer N > 1,
we have 33,y dfi = Yo _nya(fe = fam) = fo— fon = f — fon and dfi =
fo— fro1 = (IE(|.7'_k) ® Idx)(f) — (E(-|.7:k_1) ® Idx)(f). By [101, Proposition 4.2.3]
with the change of index n = —k, we infer that

If - f—NHLp(G,X) =

N-1
> en® (M, ®1dx)(f)
n=0

Rad(L?(G,X))

73. Let s € G and let I, s(Hpn) be the subgroup of T where we identify s with 7n(s) where
n:G— G is the canonical map. Since H,, is compact, I, is a closed subgroup of T. Any decreasing
sequence of closed subgroups of T stabilizes (each closed subgroup is finite or equal to T). So there
exists N > 0 such that I,, is the same for all n > N. Let I be this common value. We have
I C I, =s(Hp) for any n > 0.

If I = {1}, then s annihilates H, for n > N. Hence s € G, for n > N.

Suppose that I is not trivial. Let ¢ € T\ {1} and let Cy def s71({i}) N Hy,. Then the sets Cp,
are nonempty for any n > 0 and form a decreasing sequence of compact subsets of G. The inter-
section C def ﬂn>0 Cy, is thus nonempty. But C C ﬂn>0 H,, = {0}, so this means 0 € C. Hence
0 € s71(4). This is a contradiction, since i # 1 and s(0) = 1.

74. We can alternatively compute the conditional expectation with [1, Exercice 4 (c) page 227]
instead of the Poisson formula.
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It is straightforward to check (™ that (), Fr = {0,G}. We conclude that the
restriction of the measure pg to [, <o Fk is purely infinite in the sense of [101, Defini-

tion 1.2.27 (c)] on the o-algebra F_ &f Ni<o Fk- According to [101, Theorem 3.3.5
(3)], f-n converges to zero in LP(G, X) when N goes to co. Since X is UMD, X does
not contain the Banach space ¢y. Using Hoffmann-Jorgensen-Kwapien Theorem [99],
[122], it is not difficult to conclude that the series Y ° [ e, ®(M;, ®Idx)(f) converges
in Rad(LP(G, X)) and to obtain the claimed norm equivalence of Littlewood-Paley
type.

2. Let F denote the Borel o-algebra generated by the open subsets of G. For n > 0,

consider the annihilator G, def Yl in G and the o-algebra F, generated by the
cosets of G, in G. Since each Y,, is open and compact, each G,, is compact and
open by [151, Remark 4.2.22]. Since Y,, C Y, 4; for all n > 0, we have G,,+1 C G,
and finally F,, C F,41. We conclude that (F,),>o0 is a filtration in G. Since G is
compact, the Haar measure u¢ is finite, so trivially o-finite on each F,,. So, by [101,
Corollary 2.6.30], the conditional expectation E(-|F,) with respect to F, is well-

defined and it is explicitly described in [103, page 69] (since G,, is compact) by
E(f|Fn) =Tq, (f) omn  (almost everywhere),

where m,: G — G/G, is the canonical map and where T, is essentially defined in
[151, page 100]. For any integer n > 0, since Y,, is open, the Poisson formula [151,
(5.5.4)] says that

(Te (£ om)(s) = [ X()F 0y, (0 = [ X511y, 00 F 00 dng (o)

n

We conclude that the conditional expectation E(-|F,): L?(G) — LP(G) is a Fourier
multiplier whose symbol is the indicator function 1y, . Hence for any n > 1

My, =M, =My, — M, = E(-|Fn) — E(-[Fn-1)

\Yn—l
as bounded operators on L?(G). Note that the right hand side is regular on L?(G).

Consequently, their tensor products with the identity Idx also coincide. Similarly, we
have MlAO ®Idx = M1Y0 ®Idx = E(|.7:()) ®Idx.

75. Let A € ()g<oFk- Suppose that A # 0. Now, we construct a sequence (si) of ele-
ments of G by induction. There exists some sp € G such that {so} = soGo C A. Suppose
that s_p € G for some k < 0 satisfy s_yG_; C A. Since we can write A = Usel,kﬂ
for some index set I_p4; and since G_j is a subgroup of G_j41, we can choose s_j41 € G

sG_gt1

such that s_pG_p C s_gy1G_ry+1 C A. Moreover, we have s_,G_; = s_p_1G_j. Indeed,
since s_p_1G_x_1 C s_pG_k, we have s_p_1 € s_pG_i. Hence there exists r_p € G_g
such that s_p_1 = s_gr_i. We deduce that s_; = S—k—ﬂ‘:;lc and consequently s_;G_p =

s_k_lr:iG_k = s_k_1G_. Finally, we obtain

EN) U G_p = U soG_i C U s_xG_ C A.

k<0 k<0 k<0

On the other hand, we have already observed that the first set equals G.
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For any f € LP(G, X) and any integer n > 0, we let f, def (E(-|F,) ® Idx) (f).

By [101, Proposition 2.6.3 and Example 3.1.2], we obtain a martingale (f,),>0 with
respect to the filtration (F,)n>o0. -

For any integer N > 1, we have 25:1 df, = 227:1(fn — fn-1) = fn — fo and
dfp, = fn = fam1 = (E(|F,) ® 1dx)(f) — (E(:|Faz1) ® Idx) (f) if n > 1 and dfy =
fo = (E(|Fo) ® Idx) ().

Note that (), Gn = {0}. Indeed, if t € G,, then for any x € V,, = G5 we
have x(t) = 1. So if t € (), Gn, then x(t) = 1 for all £ € U, >, Yy = G. Thus
t = 0 and the claim is proved. Then it is not difficult to check ("® that (Gr)n>o is
a neighborhood system at 0. Now by [98, (4.21)] (see also [33, Example page 223]),
the family of subsets of the form sG,, where n > 0 and where s runs through G is an
open basis for G. So the limit o-algebra F, = o <Un>0 Fn) equals F.

According to [101, Theorem 3.3.2 (2)], fn converges to (E(-|Fs) ® Idx)(f) = f
in L?(G, X) when N goes to co. Similarly to the case 1, we obtain the convergence of
the series Y " (e, ® (Mi1,, ®Idx)(f) and the equivalence

”f - fOHLp(G,X) =

D en® (M, ®1dx)(f)
n=1

Rad(L?(G,X))

One easily incorporates | follr»(q,x) = ||(M1AO ® IdX)(f)“Lp(Qx) on both sides with

[102, page 5] to deduce the claimed Littlewood-Paley norm equivalence. O

Note that in the case X = C, using the Maurey-Khintchine inequalities [57, 16.11]
the equivalences (7.2.7) and (7.2.8) become

(7'2-9) ||f||LP(G) ~ <Z |M1Anf|2>

=0 L#(G)

We need the following characterization [150] of the closure B(G) of the Fourier-
Stieltjes algebra B(G) def {ft : p € M(G)} of the dual of a locally compact abelian

group G in the space Cy(G) of bounded continuous complex-valued functions on @
equipped with the norm |[|-|| . If f: G — C is a bounded continuous function then

f belongs to B(G) if and only if for any sequence (u,) of bounded Borel measures
on G the conditions sup,,>; [[ta] < oo and fin(z) P 0 for all x € G imply

ProrosiTiON 7.11. — Let G be an infinite compact abelian group. Suppose
1 < p<oo. Then there exists a strongly nmon regular Fourier completely bounded

Fourier multiplier on LP(G).

76. If U is an open subset of G containing 0, consider the decreasing sequence of compact sub-
sets (G — U) N Gy and conclude that Gy, C U if n is large enough.

MEMOIRES DE LA SMF 177



7.2. STRONGLY NON REGULAR COMPLETELY BOUNDED FOURIER MULTIPLIERS 143

Proof. — Since G is compact, its dual G is discrete. Suppose first that G con-
tains an element of infinite order, thus a (necessarily closed) subgroup isomorphic
with Z. Consider the closed subgroup H = Z* of G. Then we have an isomorphism
6/?] = H' = 7. Hence G/H is isomorphic to T. According to [5, Example 3.9], the
Hilbert transform on T defines a strongly non regular Fourier multiplier on LP(G/H).

Since SP is UMD, the Hilbert transform induces a bounded operator on LP(R, SP)
by [101, Theorem 5.1.1]. According to the estimate [101, Proposition 5.2.5], the Hilbert
transform on T induces a bounded operator L?(G/H, SP) — LP(G/H, S?). Then by
the canonical isometry L?(G/H,SP) = SP(L?(G/H)) of [145, (3.6)] and Proposi-
tion 2.3, we deduce that the Hilbert transform is completely bounded on LP(G/H).
Thus, by Proposition 7.9 and using the isometry (7.2.4), we deduce that there exists
a strongly non regular Fourier multiplier on L?(G).

Now suppose that no element in G has infinite order, i.e., G is an infinite abelian
torsion group. Then it contains a countably infinite abelian torsion group (consider
some countably infinite collection of elements in G and take the subgroup spanned
by this collection, which is again countably infinite). Arguing as before with Propo-
sition 7.9 and the isometry (7.2.4), it suffices to find a strongly non regular Fourier
multiplier on a group having as dual this countable group, so we assume now that Gis
a countably infinite abelian torsion discrete group.

It is (really) elementary to see there exists a sequence (Y,),>0 of subgroups of G
with the properties:

1. each Y, is finite,
2. Yn % Yn-l—la

3. Yo ={0} and J°, Y, = C.

Consider now Ay def Yo, A, def Y, \Y,_1 for n > 1. According to Proposition 7.10,

the Littlewood-Paley equivalence (7.2.9) holds. This in turn is equivalent [65, 1.2.5
pages 8 and 14] to the property that any ¢ € L>°(G) which is constant on any A,,,
n = 0,1,2,... and vanishes on all but finitely many A, induces a bounded Fourier

multiplier My, on L?(G) with ||Mw||Lp(G)HLp(G) < Cp [[¥lly, (- For any integer n,
consider the function ¢, e >0 1as,,, defined on G. Since [énll @) <1, we have
Mg, ll10(G)—1r(q)y < Cp- Consider the function ¢ Lof Yool o(1venyy — 1y, ) of L (@).

Since ¢n(z) — ¢(x) as n — oo for any = € G, we conclude using Proposition 6.12
that the Fourier multiplier M, is bounded on L?(G), 1 < p < oo.

Now, we prove that My, is strongly non regular. According to [5, Theorem 3.1], it
suffices to shoyv that ¢ does not belong to the closure of the Fourier-Stieltjes algebra

B(G) in L*®(G)-norm. For this in turn, it suffices to find a sequence of measures f,,
on GG with the properties

L lpnllyagey < 2

2. fin(s) ——— 0 for any s € G,
n—-+4o0o
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3. / ¢ dp,———0
el n—+00

We choose the sequence (p,,) defined by
def 1 1
i Wl ; *T vl ZY ’
TEYn 41 zC Yy

Then property 1 is clearly satisfied, since the Haar measure on G is the counting
measure.

For property 2, we have i, = 1, ,, — lg,,, where G, is the annihilator of Y, in G,
ie, G, =Yl ={s€G: &s)=1forall £ €Y,}.
— If s = 0 then fi,(s) = 1a,,,(0) — 1g,(0) = 0 for all n € N.

— Consider now the case s € G\{0}. Recall that we have seen in the proof of
Proposition 7.10 that (,~,G» = {0}. Hence, by the fact that the Y;, increase
and thus the G,, decrease, there exists an index ny such that s ¢ G,, for any
n > ng. Therefore, [, (s) = 0 for any n > ny.

It remains to show property 3. We have

dpign =
/¢u2 lYMZQs |Yn|

> ()

€Y, T€Y2n
1
= |Y | Z (Z 1Y2k+1 1Y2k)> (.’E) |Y | Z (Z(1Y2k+1 1Y2k))(x)
2n+1 €€Yan 11 — 2n rE€Ya2n
1
= |Y | Z (Z 1Y2k+1 1Y2k(1’l)> |Y | Z (Z 1Y2k+1 lyzk(x)>
2n+1 €€Yan11 _ 2n TEY2n
1
:ﬁ Z Z 1Y2k+1 1Y2k | | Z Z ]‘Y2k+1 ]‘YZk( ))
2n+1 x€Y2n+1k 0 2n €Yoy, k=
1 n
(X Y mew- ¥ 1y%<x>)
2n+1 k=0x€Y2n 41 TE€Y2n 41
(2 E b ¥ )
Il \k=02€Ys, ©€Yan
- Z (I¥ar1| — [Yorl) — . ni:l (1Yak41] — [Yazl)
|}/2n+1| k=0 |Y2’ﬂ| k=0
n—1
1 1 1
(L Yorre] = [Yarl) + ——— ([Yansa] — [Yan
(P |Y2n|>k2_0(' il = V) + 5 (Vo = ¥ul)
n—1
—1— + - |Yort1| — |Yor|
Yanial = \[Yania|  [Yonl ,; ( )
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|Yan| 1 =

2n

>1- - E Yort1| — [Yok|)-
|Y2n+1| |Y2n| Pt (l 2 +1| | 2 |)

The second term in the last line is smaller than 1/2 in modulus by the fact that the Y,
increase strictly and the fact that the order of a subgroup divides the order of the
whole group. For the third term, we note that by skipping several indices n we can
assume recursively that |Y2,| is so large that ﬁ Zz;é (|Y2k41| — [Yar|) < 3. Thus
the whole expression in the last line is bigger than 1 — % - i = % and hence does not
converge to 0.

According to Proposition 2.3, it suffices now to show that My ® Ids» extends
to a bounded operator on the Bochner space LP(G, SP). Using both inequalities of
Proposition 7.10, the fact that S? has UMD and Kahane’s contraction principle [119,

Proposition 2.5] for the scalars d,, even, We get

[
||(M¢> ® Idsp)fHLp(G,Sp) SJ E Z En ® (MlAn ® IdSP)(M¢> ® IdSP)(f)
n=0 L?(G,SP)

=E Z En ® On even(MlAn & IdSp)(f)

n=0

Lr(G,SP)

S lmgusm -

o0
<E Z en ® (Mi1,, ®1ds»)(f)
n=0 Lr(G,SP)

The proof is complete. O

Recall that a topological space X is 0-dimensional if X is a non-empty Ti-space
and if the family of all sets that are both open and closed is a basis for the topology
[98, page 11] [70, page 360]. By [70, Theorem 6.2.1], every O-dimensional space is
totally disconnected, i.e., X does not contain any connected subsets of cardinality
larger than one.

PROPOSITION 7.12. — Let G be an infinite discrete abelian group. Suppose 1 < p < oo.

Then there exists a strongly non regular completely bounded Fourier multiplier
on LP(G).

Proof. — Suppose first that G contains an element of infinite order, so a (closed) sub-
group H isomorphic with Z. Then by [5, Example 3.4], the Hilbert transform induces
a strongly non regular Fourier multiplier on L?(H). Since S? is UMD and according
to [23, Theorem 2.8], the Hilbert transform is bounded on LP(H, SP) so completely
bounded on LP(H) by Proposition 2.3. Now, using Proposition 7.7 and the isometry
(7.2.2), the composed Fourier multiplier Mo, on L?(G), where 7: G — G/H™ is the
canonical map, is a strongly non regular completely bounded Fourier multiplier.
Now suppose that every element of G is of finite order, so G is a torsion group. We
can assume that G is countably infinite. Indeed, otherwise choose a countably infinite
number of elements in G, and let H be the subgroup of G generated by these elements.
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Then H is again countably infinite. If there is a strongly non regular completely
bounded Fourier multiplier on L?(H) then Proposition 7.7 and the isometry (7.2.2)
yield a strongly non regular Fourier multiplier on LP(G).

Note that since G is countably infinite, by [98, Theorem 24.15], its dual G is metriz-
able. The fact that G is torsion implies by [98, Theorem 24.21] that G is O-dimensional.
This in turn implies that G is totally disconnected.

So G is an infinite compact abelian metrizable totally disconnected group. By
the second part of [65, remark page 68], there exists a sequence (Hy)n>o of closed
subgroups of G such that

1. each H, is open,

2. Hoy1 G Hy,

3. N2y Hn = {0}, Hy=G.

Then the sets A,, = H,,\ H,,+1 enjoy the Littlewood-Paley equivalence (7.2.9) accord-
ing to Proposition 7.10. With ¢ = >  (1g,, , — la,,), as in the proof of Proposi-
tion 7.11, we see that My is a bounded Fourier multiplier on L?(G), 1 < p < co.

It remains to show that M, is strongly non regular. Invoking [5, Theorem 3.1 and
Remark 3.2], it suffices to show that ¢ is not equal almost everywhere to a continuous
function.

So assume that ¢: G — C is a continuous function with ¢ = ¢ almost everywhere.
We will show a contradiction, which will end the proof. Since the H,, are closed and
open by the point 1, H,,_1\ H, is open. As it is also non-empty by the point 2, it must
be of positive Haar measure. Therefore, there exists z,, € H,,_1\H, with

0 n even

Vlzn) = ¢lzn) = {1 n odd.

Consider now the sequence y, = z2,_1. By compactness, there exists a subsequence
of y, which converges against some £ € G. Since Yn belongs to Hs,,_1, by the point 2,
Ym belongs to Hs,_q for all m > n. As Hy,_1 is closed, £ belongs to Hs,_1, SO
to Moo, Han—1 =(\,—, Hn, = {0}. Therefore, a subsequence of y,, converges to 0.

In the same manner, one shows that a subsequence of x5, converges to 0. However,
1) applied to these two subsequences is constant to 1 and to 0 respectively, so does
not converge. Hence 1 cannot be continuous.

Now use Proposition 7.10 in a similar fashion to the compact case to deduce
that My is completely bounded on L?(G). The proof is complete. O

Recall the following structure theorem for locally compact abelian groups, see, e.g.,
[98, Theorem 24.30] and [151, Theorem 4.2.31].

THEOREM 7.13. — Any locally compact abelian group is isomorphic to a product
R™ x Gy where n > 0 is an integer and Gq is a locally compact abelian group contain-
ing a compact subgroup K such that Go/K 1s discrete.

With the help of the previous theorem, we can now prove the following.
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THEOREM 7.14. — Let G be an infinite locally compact abelian group. Suppose 1 <
p < oo. Then there exists a strongly non regular Fourier multiplier on LP(G) which
is completely bounded and CB-strongly non decomposable.

Proof. — We use the previous structure Theorem 7.13 to decompose G and we distin-
guish three cases.

If n > 1 then G has a closed subgroup H isomorphic to R and we consider the
Hilbert transform on LP(H) which is strongly non regular by [5, Example 3.3]. Since
the Schatten class SP has UMD, the Hilbert transform is bounded on L?(H, S”) and
hence completely bounded on L?(H) according to Proposition 2.3. Now appeal to the
isometry (7.2.2) and Proposition 7.7 to extend the Hilbert transform to a strongly
non regular and completely bounded Fourier multiplier on L?(G).

If n = 0 then G = Gg. Suppose first that the compact subgroup K is infinite.
Using Proposition 7.11, there exists a completely bounded Fourier multiplier which is
strongly non regular. Again, using the isometry (7.2.2) and Proposition 7.7, we obtain
a strongly non regular and completely bounded Fourier multiplier on L?(G).

If n = 0 and if the compact subgroup K is finite, then it is itself discrete (since it
is Hausdorfl) and thus G = Gy is discrete and infinite. Now, use Proposition 7.12 to
find a strongly non regular completely bounded Fourier multiplier on LP(G).

The last assertion is a consequence of Section 7.1. U

7.3. Strongly non regular completely bounded convolutors on non-abelian groups

THEOREM 7.15. — Let G be a unimodular amenable locally compact group which con-
tains an infinite abelian subgroup. Suppose 1 < p < oo. There exists a strongly non
reqular completely bounded convolution operator T': LP(G) — LP(G).

Proof. — Suppose that G contains an infinite abelian group H. Note that the closure H
of H is a closed abelian infinite subgroup of G. By Theorem 7.14, there exists a

strongly non regular completely bounded Fourier multiplier on LP(H). Since G is
amenable and unimodular, we conclude by using Proposition 7.7. O

COROLLARY 7.16. — Let G be an infinite compact group. Suppose 1 < p < 0.

There exists a strongly non regular completely bounded convolution operator
T:LP(G) — LP(G).

Proof. — Note that G is amenable [141, Proposition 12.1] and unimodular [35, VII.12].
By [182, Theorem 2|, the infinite compact group G contains an infinite abelian sub-
group. Hence, we can use Theorem 7.15. O

A group G is locally finite if each finitely generated subgroup is finite, see [153,
page 422]. A locally compact group G is called topologically locally finite if the closure
of every finitely generated subgroup of G is compact [38, Section 2].
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COROLLARY 7.17. — Let G be an infinite unimodular locally finite locally compact
group. Suppose 1 < p < oo. There exists a strongly non reqular completely bounded
convolution operator T: LP(G) — LP(G).

Proof. — Observe that a locally finite locally compact group is topologically locally
finite, hence amenable by [38, Corollary 2.4]. By [153, Theorem 14.3.7], such a group
has an infinite abelian subgroup. We conclude with Theorem 7.15. O

COROLLARY 7.18. — Let G be an infinite nilpotent locally compact group. Suppose
1 < p < oo. There exists a strongly non regular completely bounded convolution
operator T': LP(G) — LP(G).

Proof. — Such a group is unimodular [130] (see also [75, page 53] in the connected case)
and amenable [141, Corollary 13.5] since it is solvable. Now, if G is locally finite we
can use Corollary 7.17. Otherwise, G contains an infinite finitely generated subgroup
which is nilpotent as a subgroup of a nilpotent group. By [71, Lemma 8.2.2], this group
has an element of infinite order, so also contains an infinite abelian subgroup. O

Finally, since a discrete group is unimodular [35, VII.12], we obtain the following
result.

COROLLARY 7.19. — Let G be an amenable discrete group which contains an infinite
abelian subgroup. Suppose 1 < p < 0o. There exists a strongly non reqular completely
bounded convolution operator T: LP(G) — LP(G).

7.4. CB-strongly non decomposable Schur multipliers

We start with a result which gives a manageable condition which is necessary to
ensure that a completely bounded Schur multiplier belongs to the closure of the space
of decomposable operators.

PROPOSITION 7.20. — Suppose 1 < p < co. If the Schur multiplier My: S¥ — S¥ is

CB(S?
D of the space Dec(SY)

p— Ao
with respect to the completely bounded norm then My belongs to the closure M "'
of the space MM} in the Banach space £33 ;.

completely bounded and belongs to the closure Dec(S7)

Proof. — Let R: 87 — S7 be a decomposable operator. By Proposition 3.12, we can
write R = Ry — Ry + i(R3 — R4) where each R; is a completely positive map on S¥.
Using the projection P;: CB(S?) — 9MM>® of Corollary 4.4, we obtain

Pr(R) = Pi(R1 — Ry +i(R3 — R4)) = Pr(R1) — P(R2) +i(Pr(R3) — Pr(Ry)).

By Proposition 3.12, we conclude that the Schur multiplier P;(R) is decomposable.
By Proposition 4.11, we infer that P;(R) is bounded on S¢°, i.e., belongs to 9.
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co,cb

According to Proposition 4.11, it also belongs to 91
the contractivity of Pr, we have

with same norm. Now, using

[ — R“cb,s;us;’ > || Pr (M — R)ch,SfHSf = [|Pr(ay) - PI(R)HCb,s;’Hs’;
= M5 = Pr(B)|| oy, 5750 = Mo = Pr(B) ]| 53
> distees (Mg, M7°).
Hence, we deduce that
distCB(S?)(M(p,Dec(Sf)) > distyes (Mg, MT). O

It is folklore that if M,: B(¢?) — B(¢?) is a bounded Schur multiplier and the
limits
lim lim a;; = s and lim lim a;; =t
1—00 j—00 J—00 1—00

exist then s = ¢, see [137, Ex 8.15 page 118|. This property turns out to be also true

for Schur multipliers belonging to the closure 9t b

PROPOSITION 7.21. — Let M4 € imooés"m' If the limits

lim lim a;; =s and lim lim a;; =t
’L—’()O_]—’OO ]—700 1—00

exist then s = t.

Proof. — Let € > 0 and let [b;;] be a matrix corresponding to a bounded Schur mul-
tiplier Mp: B(¢?) — B(£?), such that |b;; — a;j| < € for any i,j € N. By the de-
scription [137, Corollary 8.8] of bounded Schur multipliers B(¢2) — B(¢?), there exist
a Hilbert space H, some bounded sequences (z;) and (y;) of elements of H such
that b;; = (z;,y;) for any ¢, € N. By the weak compactness of closed bounded
subsets of H, there exist subsequences (ix) and (j;) and z,y € H such that weak-
limy, x;, = x and weak-lim; y;, = y. Thus, we have

kgr—ﬁ{loo bikjl = kgrfoo<xik7yjl> = <$7yjz>

and finally

z-lé-rgloo kEI-J'I-loo irir = ! li-IPoo<I’yjl> = (z,9).

By the same reasoning, we also have lim lim b;,; = (z,y). Now, we infer that

k—+o0 =400
kEI—F birj — kEToo a;ij,| <€ and thus ‘l—l}fi-noo kEI-iI-loo biyjy —t| < e
Similarly, we have
lim lim b;,; —s| <e.
k— o0 l—+4o0
We infer that |s — t| < 2e. Letting £ go to zero yields the proposition. O
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Recall [134, Section 6] that the triangular truncation 7 : S? — S? and the discrete
noncommutative Hilbert transform H: SP — SP are completely bounded Schur mul-
tipliers defined by 7 ([a;;]) = [di<jas;] and that H([ai;]) = [—i0icjasj + i0;>;a45] for
any [a;;] € SP where i? = —1. The fact that 7 and H are completely bounded on SP
can be found in [134, Section 6].

From the last two propositions, we deduce the following result.

COROLLARY 7.22. — The triangular truncation T : SP — SP and the discrete non-
commutative Hilbert transform H: SP — SP are CB-strongly non decomposable.

7.5. CB-strongly non decomposable Fourier multipliers

We start with a transference result.

PROPOSITION 7.23. — Let G and H be two discrete groups such that H is a subgroup
of G. If p: H — C is a complex function, we denote by p: G — C the extension
of ¢ on G which is zero off H. Suppose 1 < p < oo and that VN(G) has QWEP.
If ¢ induces a CB-strongly mnon  decomposable  Fourier  multiplier
M,: LP(VN(H)) — LP(VN(H)) then ¢ induces a CB-strongly non decomposable
Fourier multiplier Mz: LP(VN(G)) — LP(VN(G)).

Proof. — Let E be the trace preserving conditional expectation from VN(G) onto
VN(H) and J be the canonical inclusion of VN(H) into VN(G). The map JME is
completely bounded on LP(VN(G)) and is clearly equal to the Fourier multiplier M

induced by @. Suppose that Mz belongs to Dec(LP(VN(G)))ﬂB(L VO 16 e>0.
Then there exist some completely positive maps
Rl, R27 R37 R4 : LP(VN(G)) - LP(VN(G))

and a completely bounded map R: L?(VN(G)) — LP(VN(G)) of completely bounded
norm less than € such that Mz = Ry — Ry +i(R3 — R4) + R. For any h € H, we have

7¢(Mz(AR)(An)*) = &(R)1a (An(An)*) = ¢(h).
Hence, using the map P}, given by Corollary 4.7 since VN(G) is QWEP, we obtain
M, = P§(Mg) = P5(R1 — Ry +i(Rs — Ry) + R)
= Py(Ry) — Py(Rz) +i(Pg(Rs) — Pp(Ra)) + PR (R).
Moreover, by Py’s contractivity, the Fourier multiplier P§(R): L?(VN(H)) — LP?(VN(H))
is completely bounded of completely bounded norm less than . Furthermore, each
Fourier multiplier P} (R;): LP(VN(H)) — LP(VN(H)) is completely positive. It
follows that M, is e-close to Dec(LP(VN(H))) in the Banach space CB(LP(VN(H))).

CB(LP(VN(H
So letting € — 0 yields that M, belongs to Dec(LP(VN(H))) (L VNED)) This is

the desired contradiction. O
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COROLLARY 7.24. — Let G be a discrete group which contains an infinite abelian
subgroup such that VN(G) is QWEP. Suppose 1 < p < co. There exists a CB-strongly
non decomposable Fourier multiplier on LP(VN(G)).

Proof. — It suffices to use Proposition 7.23, Theorem 7.14 and Remark 7.3. O

For example, consider 1 < p < oo, n € N and the free group G = F,, of n genera-
tors. Since VN(F,,) is QWEP, there exists a CB-strongly non decomposable Fourier
multiplier on LP(VN(F,,)). The next criterion allows us to give concrete examples in
Proposition 7.28 and Proposition 7.29.

PROPOSITION 7.25. — Let G be a unimodular locally compact group. Suppose
1<p<oo.

1. Let p: G — C be a compler function inducing a completely bounded Fourier
multiplier on LP(VN(G)). Suppose that there exists a bounded, complete
positivity preserving mapping P%: CB(LP(VN(GQ))) — MMP<(G), such that

CB(LP (VN(G
PL(M,) = M,. If MSDOOE Dec(LP(VN(G))) TN hen the multiplier M,

— LG

belongs to moo,cb(G)L @

2. Assume that the limits lirf p(s™) and lirf p(s™") exist for some s € G and
L>=(@)

that M, belongs to the closure 9M>-<b(G)
Then

for some measurable p: G — C.

lim ¢(s")= lm @(s™").

n—-+o0o n——+o0o

Proof. — 1. Let R: LP(VN(G)) — LP(VN(Q)) be a decomposable operator. By Propo-
sition 3.12, we can write

R=R; — Ry +i(Rs — Ry),

where each R; is a completely positive map on LP(VN(G)). Using the mapping P%
from the statement of the proposition, we obtain

PE(R) = P§(R1 — Ry +1(R3 — Ra)) = P&(R1) — P&(Rs) +1(P&(Rs) — PE(Ra)).

Using Proposition 6.11, we see that the Fourier multiplier P%(R) is decomposable
on VN(G) and in particular completely bounded by Proposition 3.30. Now, using the
boundedness of P5, and Lemma 6.5, we obtain

“PgH ||M¢ - R||cb,LP(VN(G))—>LP(VN(G)) = ||Pg(M¢ - R)H
:”Pg(MH_Pg :HMv_Pg
> || M, - Pg

¢b,L? (VN(G))—LP (VN(G))
(R)“cb,LP(VN(G))—»Lp(VN(G)) (R)ch,LP(VN(G))—»LP(VN(G))

. oo,cb
(R)”L2(VN(G))—>L2(VN(G)) > disty=(c) (M, MG).
Hence, we deduce that

||Pg|| diStCB(LP(VN(G))) (Mw, Dec(Lp(VN(G)))) > distreo (@) (Md,, W?’Cb).
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— L™
2. Suppose that M, belongs to MM><b(G) ( ). Let ¢ > 0 and My, € IM>>P(Q)

with ||¢ — 1|, < €. According to [164, page 2|, there exist a Hilbert space H and two
maps P,Q: G — H with |[P|, = sup,cq [|P(r)|a, Qo = supeq QW) z < o0

such that ¢(rt=1) = <P(r),Q(t)>H for any r,t € G. The sequences (P(s*));>o and
(Q(s7)) >0 are bounded in H and thus admit weak* convergent subsequences (P(s%))
and (Q(s?')) to some elements h; and hy of H. Thus, for any [, we have

lim (s™77) = lim (P(s™),Q(s")) = (b1, Q(s™)),

k—+o0

which implies

lim  lim (s™7) = Tim (he, Q(s")) = (ha, ho).

l—+o00 k—+o0

We obtain similarly that limy_ oo limy_ oo % (8% 771) = (hy, ha).
But by ||¢ — ||, <€, we deduce that

lim <p(si’“_j‘) — lim w(sik_j‘)

k—4o00 k—400

<e andthus | lim ¢(s")— lim lim (s 7)| <e.

n—-+00 l—+400 k—+00

Similarly, we have

<e.

lim @(s™")— lim lim (s %)

n—-+o0o k——+o0o l—+o0

Hence the limit lim,, ;o ¢(s™) is 2e-close to lim, 4o @(s™™). We deduce 2. by
letting € — 0. O

THEOREM 7.26. — Let G be a second countable amenable locally compact group
and H be a normal open (and then also closed) subgroup of G (so G/H is
discrete). Let m: G — G/H be the canonical map and ¢: G/H — C be a con-
tinuous bounded complex function. Suppose 1 < p < oo. If the complex func-
tion p o m: G — C induces a CB-strongly non decomposable Fourier multiplier
Myor: LP(VN(G)) — LP(VN(G)) then ¢ induces a CB-strongly non decomposable
Fourier multiplier M,: L?(VN(G/H)) — LP(VN(G/H)).

Proof. — Note that the Fourier multiplier M, is completely bounded by The-

orem 6.14. Suppose that M, belongs to Dec(LP(VN(G/H)))hB(LP(VN(G/H))).
Let ¢ > 0. Then, by Proposition 3.12, there exist some completely positive
maps Ry, R, R, Ry: LP(VN(G/H)) — LP(VN(G/H)) and a completely bounded
map R: LP(VN(G/H)) — LP(VN(G/H)) of completely bounded norm less than &
such that M, = Ry — Ry +i(R3s — R4) + R.

Corollary 4.7 yields the existence of some complex functions 1, 2, ©3, ¢4 and ¥
such that M, = M, — M., +i(M,, — M,,) + M, such that the Fourier multipliers
M, are completely positive on L?(VN(G/H)) and My is again of completely bounded
norm less than e. Since G/ H is discrete, the functions 1, ¢1, @2, p3, @4 are continuous.
Then by Theorem 6.14 it follows that M, o : LP(VN(G)) — LP(VN(G)) is completely
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positive and the Fourier multiplier Myo.: LP(VN(G)) — LP(VN(G)) is completely
bounded of completely bounded norm less than e. Since

M(pOTr = M(p107'r - Mapgmr + i(M<P307I' - M<p407r) + M'Lpow
it follows that M., is e-close to Dec(L?(VN(G))) in the Banach space CB(L?(VN(G))),

CB(LP(VN(G
so that letting ¢ — 0 yields that M., € Dec(LP(VN(Q))) NG This is the

desired contradiction. O

Riesz transforms. — An affine representation (H,«,b) of a discrete group G is an
orthogonal representation a: G — O(H) over a real Hilbert space H together with
a mapping b: G — H satisfying the cocycle condition b(st) = as(b(t)) + b(s) for
any s,t € G, see [138, Definition 10.6] and [19]. In this situation, by [138, Theo-
rem 10.10] the function s — ||b(s) ||${ is conditionally of negative type, vanishes at the
identity e and is symmetric. We also refer to [12] for related information. By [110,
page 532|, for any normalized vector h € H, we can consider the Riesz transform
Rj, = My whose symbol ¢: G — R is defined by

{b(s), M
(7.5.1) (s) %< L To(s)lly, if b(s) #0
0 if b(s) = 0.

We will use the subgroup Gp < {s € G : b(s) =0} of G.

LEMMA 7.27. — Let G be a discrete group equipped with an affine representation
(H, a,b). Suppose 1 < p < oo. The symbol ¢ from (7.5.1) induces a completely bounded
operator R, = My: LP(VN(G)) — LP(VN(G)).

Proof. — Tt is essentially shown in [110] that R}, is completely bounded on the sub-
space LE(VN(Q)) & Ran(Idrr(vn(e)) — Mig,) of LP(VN(G)). Indeed, consider some
orthonormal basis (e;) of H with e; = h and some independent Rademacher vari-
ables €1, €9, ... on some probability space Q. For any z € S?, (LE(VN(G))), using the
inequalities [110, Theorem A1l and Remark 1.8] for p € [2,00), we have

(s, ® Ra) (@)l s, 1o oy <

> e @ (ldgs, ® Re,)(x)

LP (0,87 (LP(VN(G))))
~ ||((Id5£'; ® Rei)l’)“ch(s:;,(Lv(VN(G)))) S ||$||s%(LP(VN(G))) )

Thus Ry, is completely bounded on LE(VN(Q)) for p € [2, 0).

Since G is discrete, the indicator function 1g, is continuous. Let G/Gy denote
the discrete space of left cosets of Gy and consider the quasi-left regular represen-
tation 7g,: G — B(EQG/GO) given by 7g,(s)0t¢, = dstq,- For any s € G, we can
write 1g,(s) = (7g, (8)dG,,dc, ). Consequently the indicator function 1¢g, is a contin-
uous positive definite function. According to Proposition 6.11, this function induces
a completely positive Fourier multiplier on L?(VN(G)).
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We deduce that Idps(vn(g)) — Mig, is completely bounded on LP(VN(G)). If s € G
satisfies ¢(s) # 0, then s does not belong to Gy, so ¢ = ¢ - (1 — 1¢,). Hence we can
write

Ry = Rp(Ide(vn(ey) — Miya,) = My.(1-16,)-

We conclude that Ry, is completely bounded on LP(VN(G)) for p € [2,00), and by
duality and selfadjointness (note that ¢ is real-valued) also for p € (1,2]. O

Let H be a real Hilbert space and fix some non-zero vectors hq,...,h, in H (or a
sequence if n = co0). We introduce the affine representation (H, , b) of the free group
F,, defined by as = Idy for all s € G and

j i def . . . .
b(gfllgz;\,v) é.71hi1_|""_}']Nhi1\ra ]1,-~-,]N€Z,

where g1, ..., g, stand for the generators of IF,,.

PROPOSITION 7.28. — Let G = T, the free group on n generators. Suppose 1 < p < co.
The previous Riesz transform Ry, associated with a family (h;) where h = hy

is normalized, is a CB-strongly mon decomposable selfadjoint Fourier multiplier
on LP(VN(F,,)).

Proof. — We have shown in Lemma 7.27 that Ry, is completely bounded on LP(VN(TF,,)).
On the other hand, for any m € Z\{0}, we have

¢(g1n) — <b(gin)7hl>H — <mhl7hl>H _ Slgn(m)w

[16(97") 1l lImhally (171l
So we have limy, 400 #(g7") = ||h1llyy # — [|h1lly = limy— 400 ¢(g7 ™). Using Propo-
sition 7.25 (since G = F, is discrete and that VN(F.,) is QWEP), we conclude
that Ry is CB-strongly non decomposable. O

= sign(m) || bl -

Free Hilbert transform. — A different class of linear operators which are CB-strongly
non decomposable on LP(VN(F.,)) is given in [132]. Namely, let G = F,, be
the free group with a countable sequence of generators gi,gs,.... For n € N, let
LE: L3(VN(Fy)) — L2(VN(F)) be the orthogonal projection such that

LEO) = X; s starts with the letter g!
mae 0  otherwise.

Let further €, ,e;; € {—1,1} for any n € N. Following [132], we define the free Hilbert
transform associated with ¢ = (¢f) as H, = Y nenén Lt + €, Ly, . Clearly, since the
ranges of the L} are mutually orthogonal, H. is bounded on L?(VN(F,.)). The far
reaching generalization in [132, Section 4] is that H. induces a completely bounded

map on LP?(VN(F)) for any 1 < p < oo.

PROPOSITION 7.29. — Let 1 < p < oo and € as previously. If € is not identically
constant 1 or —1, then H. is CB-strongly non decomposable on LP(VN(F,)).
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Proof. — Clearly, H. = My_ is a Fourier multiplier with symbol ¢.(s) depending only
on the first letter of s. This implies that ¢.(s") = ¢(s) for n € N. According to
Proposition 7.25, it suffices now to find some s € Fy, such that ¢.(s) # ¢(s71).
Take n,m € N and a,b € {£} such that €? # e’ , whose existence is guaranteed
by He # +ldp»(vner..))- Take further s = g2grg,? for some k € N\{n,m}. Then

Pe(s) = e # e, = pe(s7H). =

7.6. CB-strongly non decomposable operators on approximately finite-dimen. algebras
We start with a transference result.

PROPOSITION 7.30. — Let M be a von Neumann algebra and N be a sub-von Neumann
algebra equipped with o faithful normal semifinite trace such that the inclusion N C M
is trace preserving. Suppose 1 < p < oco. We denote by E: LP(M) — LP(N) the
canonical conditional expectation and J: LP(N) — LP(M) the canonical embedding
map. Then

1. The map
Z: CB(L’(N)) — CB(LP(M))
T — JTE
is an tsometry and the map
Q: CB(L?(M)) — CB(LP(N))
S — ESJ
is a contraction. Both maps preserve the complete positivity and satisfy the equal-
ity QT = IdcBLr(wv))-

2. We have Q(Dec(LP(M))) = Dec(LP(N)) and I(Dec(L?(N))) C Dec(LP(M)).
Moreover, the previous maps induce an isometry Z: Dec(LP(N)) — Dec(L?(M))
and a contraction Q: Dec(LP?(M)) — Dec(LP(N)).

3. For any completely bounded operator T': LP(N) — LP(N), we have

distcp (s () (T, Dec(LP(N))) = distcpwe(ary) (Z(T), Dec(LP(M))).

In particular, T is CB-strongly non decomposable if and only if T(T) is
CB-strongly non decomposable.

Proof. — 1. Recall that EJ = Idp»(n). We have QI(T) = Q(JTE) = EJTEJ = T.
Now, it is obvious that Q is a contraction and that 7 is an isometry. Since E and J
are completely positive, the maps Q and Z preserve the complete positivity.

2. Let T: LP(N) — LP(N) be a decomposable operator. Since E and J are
contractively decomposable, we deduce by composition that Z(T) is decomposable.
Hence we have Z(Dec(LP(N))) C Dec(LP(M)). Similarly, we have the inclusion
Q(Dec(LP(M))) C Dec(LP(N)). Moreover, we have

Dec(LP(N)) = QT (Dec(L?(N))) C Q(Dec(LP(M))).
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We conclude that Q(Dec(LP(M))) = Dec(LP(N)). Other statements are obvious.

3. Let T': LP(N) — LP(NN) be a completely bounded operator. Using the isometric
map Z and the inclusion Z(Dec(L?(N))) C Dec(LP(M)) we see that

distcp (e (v)) (T, Dec(Lp(N))) = distop e (M) (I(T) (Dec(Lp(N)))
> distcp(re(an) (Z(T), Dec(LP (M))).
Now, consider a sequence (T},) of decomposable operators acting on LP(M) with
IZ(T) = Tolle, Lo (vr)—Le (a1 P distop(we(ary) (Z(T), Dec(LP (M))).
By part 2, the operator Q(T,): L?(N) — LP(N) is decomposable. Moreover, we have
distopLe (n)) (T, Dec(LP(N))) < |T' = Q(To) | ety 1o (v) -0 ()
= ||Q(I T) - T”)||cb,LP(N)—>LP(N)

< NZ(T) = Tall ey, Lo (ay -1 (1) -
Letting n go to infinity, we obtain that

diStCB(Lp(N)) (T, Dec(Lp(N))) < diStCB(Lp(M)) (I(T), Dec(Lp(M))) . O
We will use the following elementary lemma.

LEMMA 7.31. — Suppose 1 < p < oco. For any matrix A € M,,, we have

1
[Mallgeo,g0c <7 [|Mallgr_ g -

Proof. — Let B € S°. We denote by s1(B),...,sn(B) the singular values of B. We
have

i 1

n P 1 \ l

|Blls» = Zsi(B)p < <n sup si(B)p) =nr - sup s;(B)=mnr ||B||Soo .
i=1 1<i<n 1<i<n

We deduce that

IMa(B)lg < [Ma(B) O

PROPOSITION 7.32. — Let R be the hyperfinite factor of type I1; with separable predual
equipped with a normal finite faithful trace. Let 1 < p < co. There exists a CB-strongly
non decomposable operator T: LP(R) — LP(R).

Proof. — Let G be the discrete group of permutations of the integers that leave fixed
all but a finite set of integers (the set may vary with the permutation). By [114,
page 902], the von Neumann algebra VN(G) is *-isomorphic to the hyperfinite fac-
tor R of type II;. Moreover, by [114, page 902|, the group G is locally finite. By
[153, Theorem 14.3.7], it has an infinite abelian subgroup. Now, it suffices to use
Corollary 7.24. O
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We introduce the sub-von Neumann algebra Ko, = ®,>1M,, of B(€2®2€2) equipped

with its canonical trace and its noncommutative LP-space K? = @ZZISQ. We denote
by J: Koo — B(£? ®5 £?) the canonical inclusion and E: B({? ®, £?) — K., the

canonical trace preserving faithful normal conditional expectation.

PROPOSITION 7.33. — Let 1 < p < o0, p # 2. There exists a CB-strongly non decom-
posable operator T': KP — KP.

Proof. — If n = 2™, by [62, page 53], there exists a positive constant C' and matrices
D,, € M,, such that Cnz < [Mp, |lgee 50 and [[Mp, [lgp _,gr < nlz=3l for n large
enough. Since the argument of [62] of the latter inequality is based on interpolation
and duality, we have the better estimate

1_ 1
IMp, [l 50_gr < nlz75l.

Still working with n = 2™ we consider the matrix

By Proposition 3.4, we can suppose p > 2. For n large enough, we have

1 1 11 1
||MAn||sToLo_>s;o = [ Dy, = 1-1] ||MDn||sglo_>sglo > cn? [1-1] =cne
nlz7» Se—Se  nl2Tr nlz27%r
Moreover, we have the estimate
1
[Ma,|lep,s2 57 = ﬁMDn <L
ntz »r cb,SF —SP

Now, we introduce the well-defined completely bounded linear operator

d: KPP — KP
(Bn) I (OaMAz(B2)707MA4(B4)7070707MA8(BS)707--~)

Using the map Z of Proposition 7.30, we note that the map
I(®) = JOE: SP(£* @4 £%) — SP(1* ®4 £2)

is a completely bounded Schur multiplier M4 on SP({? ®, £2). Now, we will use the
following lemma.

LEMMA 7.34. — There ezists € > 0 small enough such that if a completely bounded
Schur multiplier Mg : SP(£2 @4 £?) — SP(£% ®4 (?) satisfies

IMp — Mallop, 50 (e20,02)— 57 (e20002) < €

then Mp is not decomposable.
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Proof. — If n = 2™, let B,, the n X n-submatrix of the matrix B occupying the same
place as A,, in A. The triangular inequality and Lemma 7.31 give

1M, s 50 2 1M, lsze 50 = 1M, = Ma,llse 5o
1
2 [Ma,llsg—s =7 1Mp, = Ma, sy
1
2 1Ma,llsz -5 =7 [1Mp, = Ma, lloy, sz -

We take 0 < & < ¢. Suppose ||Mp — MA||cb,Sp(22®2€2)—>Sp(£2®222) < ¢. In particular,
b2 gz < €. If n is large enough we obtain

for any integer n, we have | Mp, — Ma,

1 1 1
||MBn”Sg°—>Sg° >cnr —enr = (c—e)nr P +o0.

Hence the matrix B does not induces a bounded Schur multiplier Mg on B(¢? ®, ¢?).
By Theorem 4.11, we conclude that Mp is not decomposable. O

Now, suppose that there exists a decomposable operator T': SP(£? ®q £2) — SP(£% @ (%)

such that [T — Malla, sv(p20,02)— 50 (e20502) < €- We can write
T=T—Ty+i(T5 — Ty),

where each 7} is a completely positive map acting on SP(¢? ®5 £?). Using the pro-
jection P of Theorem 4.2, we obtain P(T) = P(T1) — P(Ts) + i(P(T3) — P(Ty)).
Since each P(T}) is completely positive, we conclude that the Schur multiplier
P(T): SP(£? ®4 £?) — SP(£%2 ®, £?) is decomposable. Note also that

||P(T) - MA||Cb’Sp(£2®2€2)_>Sp(ZZ®262) = ||P(T — MA)||cb,Sp(€2®252)—>Sp(82®2€2)

ST = Malley sp(20,02) 57 (220502) < €

This is impossible by Lemma 7.34. Hence the map M4 = Z(®) is CB-strongly non

decomposable. By the point 3 of Proposition 7.30, we conclude that ® is CB-strongly
non decomposable. O

THEOREM 7.35. — Let M be an infinite-dimensional approximately finite-dimensional
von Neumann algebra equipped with a faithful normal semifinite trace. Let 1 < p < oo,
p # 2. There exists a CB-strongly non decomposable operator T: LP(M) — LP(M).

Proof. — By the classification given by [90, Theorem 5.1] (see also [149, Theorem 10.1]
and [168]), the operator space LP(M) is completely isomorphic to precisely one of the
following thirteen operator spaces:

£ 1P([0,1]), SP, KP, KPeLP([0,1]), SPe&L”([0,1]),
LP([0,1], K?), SPeLP([0,1],K?), LP([0,1],S7), LP(R),
SP e LP(R), LP([0,1],87)® LP(R), LP(R,SP).
A careful examination of the proofs of [90, pages 59-60] and [168, pages 143-145] shows

that we can replace “completely isomorphic” by “completely order and completely
isomorphic”.
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By [5, Examples 3.4 and 3.9], the Hilbert transforms ¢, — ¢/ and L*(T) — L?(T)
are strongly non regular. Since the Schatten space SP is UMD, by Proposition 2.3,
these operators are also completely bounded (use [23, Theorem 2.8] for the discrete
case). Using Proposition 7.30, Proposition 7.33, Proposition 7.32 and Corollary 7.22,
it is not difficult to conclude using a reasoning by cases. O

COROLLARY 7.36. — Suppose 1 < p < oo, p # 2. Let M be an infinite-dimensional
approzimately finite-dimensional von Neumann algebra equipped with a faithful normal
semifinite trace. The following properties are equivalent

1. p=1.
2. CB(LP(M)) = Dec(LP(M)).
3. CB(L?(M)) = Dec(Lr(3)) "M,

Proof. — Implications 1. = 2. = 3. are obvious. Theorem 7.35 says that the contra-
position of 3. = 1. is true. O

For the case p = oo, the situation is well-known for every von Neumann algebra.
Indeed, by [85, page 171], if M is a von Neumann algebra then we have the equality
CB(M) = Dec(M) if and only if M is approximately finite-dimensional. Moreover,
Haagerup showed that the following properties are equivalent.

1. M is approximately finite-dimensional.

2. For every C*-algebra A and every completely bounded map T: A — M we have

1Tl gee = 1T llcp-
3. For every integer n > 1 and for every linear map 7': £5° — M we have
||T||dec = ||T||cb

4. There exists a positive constant C' > 1, such that for every integer n > 1 and
every linear map T': £;° — M we have || T .. < C||T||p-

Now, we show that these equivalences do not admit extensions to the case 1 < p < oo.
It suffices to use the following proposition and the completely positive and completely
isometric inclusion ¢2 C ¢P.

ProPoOSITION 7.37. — Suppose 1 < p < oo. There exists an integer n large
enough and a (completely bounded) linear map T: (2. — (P such that we have
1T ep,er —or < 1Tl gec ez —en - More precisely, there does mot exist a positive constant
C > 1 satisfying for every integer n > 1 and every linear map T: (2 — P the
inequality || 1| gee o2 —op < C T ||y 02 pn -

Proof. — By Theorem 7.14, there exists a strongly non regular Fourier multiplier
M, : LP(T) — LP(T) which is completely bounded. We can suppose || M|, < 1. Now,
we approximate M., using the method of the proof [7, Proposition 3.8] (and [9, proof of
Theorem 3.5]). We deduce the existence of Fourier multipliers C,, on LP(Z/nZ) = ¢?,
with [|Cq, |4, < 1 and arbitrary large [|C, ||, When n goes to the infinity. We can
apply this method since ||T|4e. = T ||,eq = supx 1T ® Idx [0 (0, x)—1r(,x)- O
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CHAPTER 8

PROPERTY (P) AND DECOMPOSABLE FOURIER MULTIPLIERS

In this chapter, we give a proof of Proposition 8.2 which is our characterization of
selfadjoint contractively decomposable Fourier multipliers. Section 8.3 describes new
Fourier multipliers which satisfy the noncommutative Matsaev inequality, relying on
Theorem 8.5 which gives the new result of factorizability.

8.1. A characterization of selfadjoint contractively decomposable multipliers

Let M be a von Neumann algebra equipped with a normal semifinite faithful
trace and T: M — M be a weak* continuous operator. Recall the following def-
inition from [118, Definition 3]. We say that T satisfies (P) if there exist linear

maps v1,v2: M — M such that the linear map [;2 3;} : Mg (M) — Ma(M) is com-
pletely positive, completely contractive, weak* continuous and selfadjoint ("”). In this
case, v; and vy are completely positive, weak* continuous and selfadjoint. An opera-
tor T satisfying (P) is necessarily contractively decomposable, weak* continuous and
selfadjoint. The converse statement is false by [118, Example 2] in general.

We start to show that the converse is true for Fourier multipliers on discrete groups.
If My: VN(G,0) — VN(G, 0) is a bounded Fourier multiplier on a discrete group G
equipped with a T-valued 2-cocycle o, it is not difficult to check that (M,)° = Mz and
that My is selfadjoint in the sense of Section 2.6 if and only if its symbol ¢: G — C
is a real-valued function. Finally, it is straightforward to prove that the preadjoint
(My).: LY(VN(G,0)) — L'(VN(G, 0)) of My identifies to M.

LEMMA 8.1. — Let G be a discrete group equipped with a T-valued 2-cocycle o. Suppose
that Y1, Y2, P3,104: G — C are some complez-valued functions inducing some bounded
Fourier multipliers My, , My,,, My, and My, on the von Neumann algebra VN(G, o).
If the operator

Miﬁl Miﬁz
Mi/’3 M1P4

T =

] : My(VN(G,0)) — Ma(VN(G, 0))

77. The assumption selfadjoint is equivalent to the selfadjointness of v1, vo and T'.
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is completely contractive then it induces a completely contractive operator Ty on the
space S3(L(VN(G, 0))).
Finally the Banach adjoint (T1)*: My(VN(G,0)) — My(VN(G,0)) identifies
My, Md;z]
to [M% My, |-

Proof. — According to Theorem 4.2, we have
1Tl b Mo (v(G0)) Mo (vN(G o)) = DT leb s (e —Ma (VN (G))

and similarly, |||y, 51 (11 (vi(@,0)) =510 (vN(@.0)) = 1T leb, 51w (vivie))—si(vnia))
provided that one of these terms is finite. So if we prove the first statement of
the lemma for the trivial cocycle o = 1, then it follows for a general T-valued
2-cocycle o. We thus suppose now that ¢ = 1 is trivial. Consider the x-anti-
automorphism x: VN(G) — VN(G), As — A,—1. An easy computation gives
My, M Mg My 7 _ .
(Idp, ® k) {Mz; Mfﬁi] (Idy, ® k) = [M:; Mzﬂ where 1;(s) = ;(s™!). Since
the map x: VN(G) — VN(G)°? is a complete isometry, we conclude that the
linear map [ﬁzl ]\AZIZ] : M2(VN(G)) — M2(VN(GQ)) is completely contractive.
3 4
Moreover, by Lemma 6.4, each symbol 1, induces a bounded Fourier multiplier
My, : LY(VN(G)) — L' (VN(G)). Consequently, [%Z; %:ﬂ induces a bounded oper-
ator on S3(L!(VN(G))). Furthermore, by Proposition 3.3 and Lemma 6.4, we see that
the Banach adjoint of the operator []A\;I[Z; %zﬂ : S2(LY(VN(G))) — S3(LY(VN(G)))
identifies to the complete contraction
My, )* (My,)* M; M;
[( wl)* ( ’”2)*] = [ v 1/’2] : Mp(VN(G)) — Ma(VN(G)).
(My,)* (My,) M, My,

My, M .

We conclude that the operator [Mz; Miﬂ : SHLY(VN(G))) — SILYVN(Q))) is

completely contractive. Finally, the last statement of the lemma for a general T-valued
2-cocycle o follows from

TG0 (My)" (Aos)Aot) = TG0 (Ao,s My (Aot)) = V(1) TG,0 (Ao,s Ao t)
= (t)o(s, t)(ss,t*1 = 1/’(5_1)0(& 8_1)5371‘/*1
and
760 (Mg Qo)) = D)7, asho) = s~ )or(s, 5718, 4o O
PROPOSITION 8.2. — Let G be a discrete group equipped with a T-valued 2-cocycle o.
Let ¢: G — C be a complex-valued function. The following assertions are equivalent.

1. The complex function ¢ induces a selfadjoint contractively decomposable Fourier
multiplier My: VN(G,0) — VN(G, o) on the twisted group von Neumann alge-
bra VN(G, o).

2. The function ¢ induces a Fourier multiplier My,: VN(G,0) — VN(G,0)
with (P).
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3. There exist some real-valued functions ¢1,p2: G — R such that
M M
21 T My (VN(G, o)) — Ma(VN(G, o))
M; Mipz

s unital, completely positive, weak* continuous and selfadjoint.

Proof. — The statements 3. = 2. and 2. = 1. are obvious. Now, we show the
last implication 1. = 3. The multiplier My is selfadjoint thus we have ¢ = ¢

and finally (My)° = My = M. Since the operator My is contractively de-
composable there exist linear maps v1,v2: VN(G,0) — VN(G, o) such that the

map [1‘?43 A;I;’} : Ma(VN(G,0)) — M2(VN(G,0)) is completely positive and com-

pletely contractive. By using the same reasoning as the one in the proof of Proposi-
tion 3.4, we can suppose that this map is in addition weak* continuous. Since G is
discrete, we can use the projection PgY,, o+ CBy+ (M2(VN(G, 0))) — sm‘;jg‘; (G,0)
from Theorem 4.2. We obtain that

V1 M¢,
P =
ke <[M¢3 b2 ])

We deduce that there exist some complex functions 1,%: G — C such that the
map T &' [1\]/\1/;;1 1\]/\1?2] : M2(VN(G, o)) — M2(VN(G, o)) is completely positive, com-

pletely contractive and weak* continuous.

PE(v) P& (M)
Pg(Mg) P& (va)

PE(v) My ]
My PE(v)

By Lemma 8.1, the operator T induces a completely positive and com-
pletely contractive operator Tj: Si(L'(VN(G,0))) — SYLY(VN(G,0))). The
operator (T1)*: M3(VN(G,0)) — M2(VN(G,0)) is also completely contrac-
tive and completely positive by Lemma 2.9. Again by Lemma 8.1, we have
(T)* = [Af/}il AJZZS] = [Jf/f? A]/\I/[wi]’ where we used [19, Proposition C.4.2] and
the fact that arid 1y are definite positive since My, : VN(G,0) — VN(G, o) and
My, : VN(G, o) — VN(G, o) are completely positive.

Consider the transpose map (™ n: My — M3P, A — tA, which is an algebra
isomorphism, hence a complete isometry and a completely positive map (see also

Lemma 2.8). An easy computation gives

M-— M; M— M
®Id v P1 ¢ ®Id o) = Y1 4 .
(n VN(G, )) lM¢ Mw (n VN(G, )) qu; M
2 P2

We conclude that the linear map R ef “@T J\Zi] : Ma(VN(G, o)) — Ma(VN(G, 0)) is

completely contractive and completely positive.
Now, 3(T + R): Ma(VN(G,0)) — M3(VN(G,0)) is a matrix block multiplier

[AI/\[Z; Z&{P ¢4 ] which is completely positive, completely contractive and selfadjoint with

78. Here M;p identifies to the algebra My with the multiplication reversed.
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My in the corner. Note that My, and M,, are completely positive. So 3(e) =
My, (1) = || My,|| <1 and similarly for 4. Hence the linear maps

w1 = My, +76,0(-)(1 — ¥3(e))lyn(g,s) and wa = My, + 76,0 (-)(1 — Ya(e))lyna,o)
are completely positive, selfadjoint and weak* continuous. We have
wl()‘a,s) = (Mws + TG,J(')(]- - w3(e))]~VN(a,a))()\a,s)
= My;(Aos) + 76,0(Ao,s) (1 — ¥3(e)) Lvn(a,o0)
P3(s) ifs#e
= 1/)3(3))\0,3 + 68,6(1 - 1/)3(6))1VN(G,0) = )\U,s 3( ) .
1 ifs=e

and similarly for wo. We deduce that these maps are selfadjoint unital Fourier multipli-
ers M, and M,,. Now, the map & = [Afé by ] . My (VN(G, o)) — Ma(VN(G, 0))

is obviously unital, selfadjoint and weak* continuous. Moreover

P = M‘Pl M¢
M; M<P2
_ My M| 76,0 () (1 = ¥3(e))lvniG,0) 0
Mg My, 0 76,0 ()(1 — Y4(€))1yn(G,0)
It is easy to conclude that ® is completely positive. O

REMARK 8.3. — Let G be an amenable discrete group. By [51, Corollary 1.8], a
contractive Fourier multiplier M,,: VN(G) — VN(G) is completely contractive and
finally contractively decomposable by [85, Theorem 2.1] since VN(G) is approximately
finite-dimensional.

8.2. Factorizability of some matrix block multipliers

Second quantization. — We denote by Sym(n) the symmetric group of order n. If ¢ is
a permutation of Sym(n) we denote by |o| the number

card {(4,j) : 1<i<j<m,o(i)>a(j)}
of inversions of o.

Let H be a complex Hilbert space. The antisymmetric (or fermionic) Fock space
over His F_1(H) = CQ & (B,,~, H®"), where Q is a unit vector called the vacuum
and where the scalar product on H®" is given, after dividing out the null space, by

(M ®.. . @hy k1@ @kn)o1= Y (=11, ko)) (hny ko) )n-
o€Sym(n)
The creation operator c(e) for e € H is given by c(e): F_1(H) — F-1(H),
h1®...0hy, — e®h; ®...® h,. We have c(e)? = 0. Moreover, they satisfy the
g-commutation relation

(8.2.1) c(f) cle) + cle)e(f)" = (f, e)nldr_, (30).-
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We denote by w(e): F_1(H) — F_1(H) the selfadjoint operator c(e) +c(e)*. If e € H
has norm 1, then (8.2.1) says that the operator w(e) satisfies

(8.2.2) w(e)® =1dx , ().

Let H be a real Hilbert space with complexification Hc. We let H = H¢. The fermion
von Neumann algebra I'_; (H) is the von Neumann algebra generated by the opera-
tors w(e) where e € H. It is a finite von Neumann algebra with the trace 7 defined
by 7(z) = (Q,2Q) 5 _, () where x € I'_;(H).

Let H and K be real Hilbert spaces and T: H — K be a contraction with com-
plexification T¢: H = He — K¢ = K. We define the following linear map

]:_1(T)2 .7:_1(7'[) — .7:_1(IC)
hM®...0h, +— Tch1®...0Tchy,.

Then there exists a unique map I' 1 (T): I'_1(H) — I'_1(K) such that for every
z € I'_1(H) we have (I'_1(T)(z))Q = F_1(T)(z2). This map is normal, unital, com-
pletely positive and trace preserving. If T': H — K is a surjective isometry, I'_ (T') is
a *-isomorphism from I'_; (H) onto I'_; (K).

Finally for any e, f € H, we have the covariance formula
(8.2.3) r(w(ew(f)) = (e, fa-

Kernels of positive type. — Let X be a topological space. A (real) kernel of positive
type on X [19, Definition C.1.1] is a continuous function ®: X x X — C (into R)
such that, for any integer n € N, any elements x4, ...,z, € X and any (real) complex
numbers c1, ..., ¢y, the following inequality holds:

n
E ¢k ®(zg, ;) > 0.
k,l=1

In this case, we have ®(z,y) = ®(y, z) for any =,y € X by [19, Proposition C.1.2]. If
® is such a kernel, by [21, page 82| and [19, Theorem C.1.4], then there exists a (real)
Hilbert space H and a continuous mapping e: X — H with the following properties:

1. &(z,y) = <e$,ey>H for any z,y € X,

2. the linear span of {e, : x € X} is dense in H.
Factorizable maps. — Let M be a von Neumann equipped with a faithful normal
finite trace Tps. A Tp-Markov map T: M — M is called factorizable (™ [3], [88],
[108], [152] if there exists a von Neumann algebra N equipped with a faithful normal
finite trace 7, and *-monomorphisms Jy: M — N and J;: M — N such that Jy is

(Tar, 7 )-Markov and Ji is (7ar, Tnv )-Markov, satisfying moreover T' = J§ o J;. We say
that T: M — M is QWEP-factorizable [8] if N has additionally QWEP.

79. The definition given here is slightly different but equivalent by [88, Remark 1.4 (a)].
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Twisted crossed products. — In order to prove our results we need the notion of
crossed product. Let H be a Hilbert space and M be a sub-von Neumann algbra
of B(H). We consider a discrete group G equipped with a T-valued 2-cocycle o. Let
a: G — Aut(M) be a representation of G on M. The twisted crossed product von
Neumann algebra M %, o G [170, Definition 2.1] (see also [181] for a unitary trans-
form of this definition) is generated by the operators 7, (z) and A, s acting on ¢%(H)
where z € M and s € G, defined by

(7o (2)€)(s) = as-1(2)&(s), zeM, E€lg(H), s
(Aos€)(t) = o(t™1, 5)8(s ™), §ELG(H), s,t€G.
We have the following relations of commutation [170, Proposition 2.2]:

(8.2.4)
Ty (as(ac)))\g,s = Ao sTo(x), and Agshor = 0(S,t) Ao st re M, s,ted.

We can identify M and VN(G, o) as subalgebras of M x, 4 G.

Suppose that 7 is a G-invariant normal semi-finite faithful trace on M. If E is the
normal conditional expectation from M X, , G onto M then Ty 4f - 6 E defines a
normal semifinite faithful trace on M %, o G, see [181, Proposition 8.16]. For any
xz € M and any s € G, we have

(8.2.5) Tx (CL')\J,S) = 58,6(;7-(37)'

Moreover, Ty is finite if and only if 7 is finite. Finally we will use the notation
MxoaG=M x1,G.

The following proposition generalizes a part of [51, Proposition 4.2]. It probably
admits a groupoid generalization (see also [14]).

PROPOSITION 8.4. — Suppose that I is a finite set. Let G be a discrete group equipped
with a T-valued 2-cocycle o. Let (vi5)ijer be a family of complex functions on G.
Let ¥: M;(VN(G,0)) — M;(VN(G,0)) be a normal completely positive map such
that W([Ao,s,,]) = [@ij(5ij)Aa,s,, ] for any family (si;)ijer of elements of G. Then the
map ®: I x G x I x G — C, (i,s,],8) — ij(s™'s') is a kernel of positive type, that
is: for any integer n € N, any elements i1,...,i, € I, any s1,...,8, € G and any
complex numbers ¢y, ..., cn, the following inequality holds:

n
g CLCIPi i, sk sl) > 0.
k=1

Proof. — Consider 41,...,i, € I and s1,...,8, € G and some complex num-
bers ci,...,c, € C. Let £ be a unit vector of L?(VN(G, 0)). For any integer 1 < k < n,

we let & i Cx A, 5, & Then using (4.1.3) several times, we have

n

n
Z ekt (55, " s1) Z Piri (s ' s1)erer (€, €) = Z Pirii (57 ' 81) (e, @)

k=1 k=1 k=1
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Piriy (3;;131) <)\U,sk£k7 Aa,slgl> = Z Pipiy (8;;131) <£k) (Aa,sk)*)\o,slgl>

1 k,l=1

I
NE

l

=

[
M=

init (85, 51) 0 (s, 5% ) (€ Ag =1 Ao &)

=
Il
—

I
M=

Piriy (Sglsl)U(Ska 5];1)0'(8];13 Sl)<£ka A075;13l§l>

=
I
-

[
M=

O'(TS;) (Sk » Sl <§k7 Sﬁzkzl( a,sglsl)§l>

=
Il
—

I
M=

W(Ska (‘lell ( (8;1,81)A075;181)51>

>
Il
-

U(skask <fka ‘Plkll()\d, Jsl fl Z gka iy )\a,sk)*)\a,sl)gl>a

1 k=1

I
NE

B

1

where the brackets denote scalar products in the Hilbert space L2(VN(G, o)). Now,
we consider the vector n = (mi4)ieqi,n]ter € £2((3(L*(VN(G,0)))), where each n;
belongs to L2(VN(G, 7)), defined by

Mt = 01,0, 81-
We consider
Idv, ® ¥ = [M,,,], tenmtert M, nlx1(VN(G,0)) = M1 n)x1(VN(G, 7))
and the matrix
C= [()‘msk)*)‘f’vsl]k,le[[1,n]],r,te1 € M1 <1 (VN(G, 0)).

Note that C' is positive (a matrix [a}a;];; of M,,(A) is positive [137, page 34] and we
use [24, Lemma 1.3.6]) and that

(i, © 0)(C) = [Mo, (o) Ao o

= [bk,i,rtlk
Jdorst |k le[1,n],r tel -
kle[1,n],rtel " [t.nlr

We have
777 IdM ® \II (C) >g2 (52(€ ))
(77k T)keﬂl n],r€l> [bk lr t]k lef1,n],r, tel(nl t)l€|[1 n], t€1>£2 (£2(L2(VN(G,0))))

<(77k,r)ke[[1,n]],rez, <Z Z bk,z,r,mz,t>

=1 tel keﬂl»nﬂf61>zz<4§<L2<VN<G,0>>>>

Z Z <nk,rabk,l,r,tnl,t> = Z Z <77k,'raMLpN (()\a,sk)*)\a,sl)nl,t>

ki=1rtel kl=1rtel

<
=
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n

Z Z rzkgka Ort ((Aa,sk)*Ao,sl)dt,iL£l>
k,l=1rtel

n

Z Z 5”k5t iy §k7 %t(()\a,sk)*)\o,sl)fl>

= <§k7M<Pz‘kil ((AG,Sk)*)‘U,Sl)&%

where the brackets denote scalar products in the Hilbert space L2(VN(G, 0)). O
The following result generalizes the results of [152].

THEOREM 8.5. — Let G be a discrete group equipped with a T-valued 2-cocycle o
on G and I be a finite set. Let (p;5)ijer be a family of real-valued functions on G
such that p;i(e) = 1 for any i € I. If the (selfadjoint unital trace preserving %)
map [M,,,;]: M;(VN(G,0)) — M[(VN(G,0)) is completely positive then [M,, ;] is
factorizable on a von Neumann algebra of the form Mj (F,l(H) Moo G) where o is
an action of G on the von Neumann algebra I' _1(H) for some Hilbert space H.

Proof. — By Proposition 8.4, the map ®: IXGxIxG — R, (i,s,],5') — ¢;;(s71s') is

a real kernel of positive type. Hence for any 7,5 € I and any s,s’ € G we have

@i (s7s") = ¢ji(s'1s) in particular

(8.2.6) ij(s) = pji(s™").
Moreover, there exists a real Hilbert space H and amap e: I x G — H, (i,8) — ¢e; ¢
such that the linear span of {e;, : ¢ € I,s € G} is dense in H and such that for
any 1,7 € I and any s,s' € G
®(i,s,5,8') = <ei757ej75'>H’ e, @ij(s7's) = <ei7s,ej7s/>H.

In particular, we have
(8.2.7)

0ij(s) = (€ie,€js), and e, s||H (€isr€is) = @ii(s7's) = piile) = 1.
Note that for any family of real numbers (a; +)ic1,tec With only finitely many non-zero
terms, we have

2
_ S _ S —1y
E Q;t€ist|| = E E ai,taj,t’<ei,st, ej,st’>H = E E ;15 i (t 1)
i€l teG H i,jel t,t'€G i,jel t,t’'€eG
2
=Y Y angaein ey =| D, aieis
i,jEl t,t'€G i€l teG H

Hence, we can define the following surjective isometric operator 6,: H — H,
e+ — €; st. Consequently, we obtain a group action 6 of G on the Hilbert space H.

80. Hence (Tr ®7¢,,)-Markovian.
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In order to simplify the notations in the sequel of the proof, in the von Neumann
algebra I'_; (H), we use the notation w; ; instead of w(e; s). For any s € G, we define
the trace preserving x-automorphism

' (H I'.(H

a(s) = T_(6): { (H) —T_y(H)

Wit — Wi st-
The group homomorphism a: G — Aut(I'_1(H)) allows us to define the twisted
crossed product von Neumann algebra I'_i(H) X, o G. We identify I'_1(H) and
VN(G, o) as subalgebras of I'_1 (H) X4, G. We can write the first relations of com-
mutation 8.2.4 as

(8.2.8) Ao,sWit = Wi stAo,s

We denote by 7 the faithful finite normal trace on I'_;(H). Recall that, for any
s € G, the map «(s) is trace preserving. Thus, the trace 7 is a-invariant. We equip
I'_1(H) X4,o G with the induced canonical finite trace 7. Now, we introduce the von
Neumann algebra

(8.2.9) M =M[(T_1(H) x50 G).

equipped with its canonical trace Tr ®7, and we consider the element d =
Yicris ® wie of M. By 82.7 and (8.2.2), it is easy to see®! that a2 = 1.
We let J;: Mj(VN(G,0)) — M the canonical unital *-monomorphism and we define
the unital *-monomorphism

Jo: M[(VN(G,O’)) i M
el ® Aot — d(eg @ Aot)d = ert @ Wi e Ao 1w e

It is not difficult to check that the maps Jy and J; are trace preserving, hence marko-
vian. Now, for any 4,j,k,l € I and any s,t € G we have

(Tr ®72) (J1(eij ® Ao,s) Jo(ert ® Aoyt)) = (Tr @7x) (€5 ® Ao,s)(€kt @ Wi e Ao, wie))
= (Tr ®7y) (€ijer ® Ao,swWh,eAaiwie) = Tr (€55€k1)Tx (Ao, sWh e Ao, tWi,e)

= 0jk0i Tx(Wk,s Ao, sWi,tAst) by (8.2.8)

= 00t Tx(Wk,sWi,st Ao sAo,t) Dy (8.2.8)

= 05010 (8,t) T (Wk,swi,stA5,5t) = 0jk0i10e,5t0(S,t) T(Wk swist) by (8.2.5)

= 8;k0i10e,5t0(5,t)(€x,s, €1,5t) by (8.2.3)

= 0;10i10c,5t0 (8, ) Pri(t) = 005105 4-10(s, 1) wji(s_l)

= 6k0uds-10(s,t) @ij(s) by (8.2.6)

= 0i;(8) Tr (esjer1) TG0 (Ao,sAot) = 9ij (8)(Tr ®7c,0) (€ij€kt ® Ao sAo,t)

81. We have

d? = Z (esi ® wiye)(ejj ®wje) = Z (esi ®w?,) = Z (i ® 1r_1(H)>4(,7aG) =1um.
ijel iel iel
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= 0i;(8)(Tr ®7c,0) (€15 ® Aoys) (€kt ® Aot))
= (TI' ®TG,0‘)(([MLpij](eij ® Ao,s))(ekl ® )\cr,t))-

Hence, for any z,y € My(VN(G, 0)), we deduce that

(Tr ®7¢,0) (([My,,](2))y) = (Tr @7x) (J1(x)Jo(y)) = (Tr ®7¢,0) (5 J1()y).

We conclude that [M,, | = J§ o Ji, i.e., that the map [M,,] is factorizable. O

8.3. Application to the noncommutative Matsaev inequality

In this chapter, we give an application of Theorem 8.5. Other applications will be
given in subsequent publications. If 1 < p < oo we denote by S: P — /P the right
shift operator defined by S(ag, a1, az,...) def (0,a0,a1,a2,...). f 1 < p < o0, p # 2,
the validity of the following inequality

(831) ||P(T) HLP(M)HLP(M) < ||P(S) ||cb,€i”~>ll’

is open within the class of all contractions T': LP(M) — LP(M) on a noncommutative
LP-space LP(M) and all complex polynomials P. We refer to the papers [9], [13] and
[140] for more information on this problem. The following result allows us to generalize
[9, Corollary 4.5 and Corollary 4.7].

THEOREM 8.6. — Let G be a discrete group and o be a T-valued 2-cocycle on G such
that for any real Hilbert space H, any action « from G onto I'_1(H) the crossed prod-
uct I'_1(H) X4 G has QWEP. Let p: G — R be a real function which induces a (self-
adjoint) contractively decomposable Fourier multiplier M,: VN(G,0) — VN(G,0).
Suppose 1 < p < oo. Then, the induced completely contractive Fourier multiplier
M,: LP(VN(G, o)) — LP(VN(G,0)) satisfies the noncommutative Matsaev inequal-
ity (8.3.1). More precisely, for any complezx polynomial P, we have

||P(M<p)||Cb,Lp(VN(G,U))—)LP(VN(G,U)) < HP(S)ch,epﬂZP'

Proof. — Using (4.2.2), we can suppose that o = 1. Using Proposition 8.2, we see that
there exist Fourier multipliers My, , My, : VN(G) — VN(G) such that the map

M’ll’l M<P . N
lM; M%] : M2 (VN(G)) — M2(VN(G))

is unital, completely positive, selfadjoint and weak* continuous. Note that by
Lemma 8.1 and interpolation, the previous map induces a (completely contractive)
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well-defined map on S%(L?(VN(G))). For any complex polynomial P, we obtain

P(My,) P(Mga)]
P(M2)  P(My,)

P ( Mdﬁl M‘P ] )
Mg My,
By Theorem 8.5, the operator {A](Ifol ]J\ZZ’ } : M2 (VN(G)) — M3 (VN(G)) is QWEP-fac-
torizable. Using [88, Theorem 4.4]f we fieduce that this operator is dilatable on a von
Neumann algebra and it is left to the reader to check that this von Neumann al-

gebra is QWEP. Finally, it is not difficult to deduce that the operator Idp(s) ®
[Af/}g 1\1\4{;2] : B(£2)@M,(VN(G)) — B(£2)@My(VN(G)) is also dilatable on a QWEP
von Neumann algebra. We conclude by using [9, Corollary 2.6 and (1.5)] that

([ )

HP(M‘P)ch,LP(VN(G))—>LP(VN(G)) = ‘

cb, S5 (LP(VN(G)))— S5 (LP(VN(G)))

cb, 57 (L? (VN(G))) S (L? (VN(G)))

cb,SE(LP(VN(Q)))— S5 (LP(VN(G)))

M, M
P (Idsp N D
Mg My, §7(S7(LP(VN(G))))— 8P (S5 (LP(VN(G))))
< (1P
The proof is complete. U
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We introduce a noncommutative analogue of the absolute value of a regular
operator acting on a noncommutative LP-space. We equally prove that two
classical operator norms, the regular norm and the decomposable norm are
identical. We also describe precisely the regular norm of several classes of
regular multipliers. This includes Schur multipliers and Fourier multipliers
on some unimodular locally compact groups which can be approximated by
discrete groups in various senses. A main ingredient is to show the existence of
a bounded projection from the space of completely bounded LP operators onto
the subspace of Schur or Fourier multipliers, preserving complete positivity.
On the other hand, we show the existence of bounded Fourier multipliers
which cannot be approximated by regular operators, on large classes of locally
compact groups, including all infinite abelian locally compact groups. We
finish by introducing a general procedure in order to prove positive results
on selfadjoint contractively decomposable Fourier multipliers, beyond the
amenable case.

On introduit un analogue non commutatif de la valeur absolue d’un
opérateur régulier agissant sur un espace LP non commutatif. Nous prouvons
également que deux normes classiques d’opérateurs, la norme réguliére et la
norme décomposable sont identiques. On décrit aussi précisément la norme
réguliére de plusieurs classes de multiplicateurs réguliers. Cela inclut les
multiplicateurs de Schur et les multiplicateurs de Fourier sur certains groupes
localement compacts unimodulaires qui peuvent étre approximés par des
groupes discrets dans des sens variés. Le principal ingrédient est 1’existence
d’une projection bornée de ’espace des opérateurs complétement bornés sur
I’espace des multiplicateurs de Schur ou de Fourier, préservant la positivité
compléte. Par ailleurs, on montre ’existence de multiplicateurs de Fourier
bornés qui ne peuvent étre approximés par des opérateurs réguliers, sur
de larges classes de groupes localement compacts, incluant tous les groupes
localement compacts abéliens infinis. On termine en introduisant une procédure
générale pour prouver des résultats positifs sur les multiplicateurs de Fourier
contractivement décomposables autoadjoints, au-deld du cas moyennable.



	Chapter 1. Introduction
	Chapter 2. Preliminaries
	2.1. Noncommutative Lp-spaces and operator spaces
	2.2. Matrix ordered operator spaces
	2.3. Relations between matricial orderings and norms
	2.4. Positive and completely positive maps on noncommutative Lp-spaces
	2.5. Completely positive maps on commutative Lp-spaces
	2.6. Markov maps and selfadjoint maps

	Chapter 3. Decomposable maps and regular maps
	3.1. Preliminary results
	3.2. On the infimum of the decomposable norm
	3.3. The Banach space of decomposable operators
	3.4. Reduction to the adjoint preserving case
	3.5. Decomposable vs regular on Schatten spaces
	3.6. Decomposable vs regular on approximately finite-dimensional algebras
	3.7. Modulus of regular operators vs 22 matrix of decomposable operators
	3.8. Decomposable vs completely bounded

	Chapter 4. Decomposable Schur multipliers and Fourier multipliers on discrete groups
	4.1. Twisted von Neumann algebras
	4.2. Complementation for Schur multipliers and Fourier multipliers on discrete groups
	4.3. Description of the decomposable norm of multipliers

	Chapter 5. Approximation by discrete groups
	5.1. Preliminaries
	5.2. Different notions of groups approximable by discrete groups
	5.3. The case of second countable compactly generated locally compact groups

	Chapter 6. Decomposable Fourier multipliers on non-discrete locally compact groups
	6.1. Generalities on Fourier multipliers on unimodular groups
	6.2. The completely bounded homomorphism theorem for Fourier multipliers
	6.3. Extension of Fourier multipliers
	6.4. Groups approximable by lattice subgroups
	6.5. Examples of computations of the density
	6.6. Pro-discrete groups
	6.7. Amenable groups and convolutors
	6.8. Description of the decomposable norm of multipliers

	Chapter 7. Strongly and CB-strongly non decomposable operators
	7.1. Definitions
	7.2. Strongly non regular completely bounded Fourier multipliers on abelian groups
	7.3. Strongly non regular completely bounded convolutors on non-abelian groups
	7.4. CB-strongly non decomposable Schur multipliers
	7.5. CB-strongly non decomposable Fourier multipliers
	7.6. CB-strongly non decomposable operators on approximately finite-dimen. algebras

	Chapter 8. Property (P) and decomposable Fourier multipliers
	8.1. A characterization of selfadjoint contractively decomposable multipliers
	8.2. Factorizability of some matrix block multipliers
	8.3. Application to the noncommutative Matsaev inequality

	Bibliography

