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ELLIPSITOMIC ASSOCIATORS

Damien Calaque, Martin Gonzalez

Abstract. – We develop a notion of ellipsitomic associators by means of operad theory.
We take this opportunity to review the operadic point-of-view on Drinfeld associators
and to provide such an operadic approach for elliptic associators too. We then show
that ellipsitomic associators do exist, using the monodromy of the universal ellipsit-
omic KZB connection, that we introduced in a previous work. We finally relate the
KZB ellipsitomic associators to certain Eisenstein series associated with congruence
subgroups of SL2(Z), and to twisted elliptic multiple zeta values.

Résumé (Associateurs ellipsitomiques). – Nous développons la notion d’associateur
ellipsitomique au moyen de la théorie des opérades. Nous saisissons cette opportunité
pour revoir le point de vue opéradique sur les associateurs de Drinfeld, et pour fournir
également une telle approche opéradique pour les associateurs elliptiques. Nous mon-
trons ensuite que les associateurs ellipsitomiques existent, en utilisant la monodromie
de la connexion KZB ellipsitomique universelle, que nous avions introduite dans un
travail précédent. Nous relions pour finir les associateurs ellipsitomiques KZB à cer-
taines séries d’Eisenstein associées aux sous-groupes de congruence de SL2(Z), et aux
valeurs zêta multiples elliptiques tordues.
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INTRODUCTION

The torsor of associators was introduced by Drinfeld [17] in the early nineties, in the
context of quantum groups and prounipotent Grothendieck-Teichmuller theory. Since
then, it has proven to have deep connections with several areas of mathematics (and
physics): number theory [34], deformation quantization [22, 33, 39], Chern-Simons
theory and low-dimensional topology [32], algebraic topology and the little disks op-
erad [38], Lie theory and the Kashiwara-Vergne conjecture [1, 2] etc. In this paper we
are mostly interested in the operadic and also number theoretic aspects. For instance,

(a) The torsor of associators can be seen as the torsor of isomorphisms between two
operads in (prounipotent) groupoids related to the little disks operad, denoted
PaB and PaCD (for parenthesized braids and parenthesized chord diagrams).
These can be understood as the Betti and de Rham fundamental groupoids of
an operad of suitably compactified configuration spaces of points in the plane.
See Chapter 2 for more details, and accurate references.

(b) It is expected that associators can be seen as generating series for (variations
on motivic) multiple zeta values (MZVs), as was observed for the KZ associator
[34] and the Deligne associator [11].

The first example of an associator was produced by Drinfeld as the renormalized
holonomy of a universal version of the so-called Knizhnik-Zamolodchikov (KZ) con-
nection [17], which is defined on a trivial principal bundle over the configuration space
of points in the plane. The defining equations of an associator can be deduced from
intuitive geometric reasonings about paths on configuration spaces, and they lead to
representations of braid groups.

Enriquez, Etingof and the first author [12] introduced a universal version of an
elliptic variation on the KZ connection (known as Knizhnik-Zamolodchikov-Bernard,
or KZB, connection, as the extension to higher genus is due to Bernard [6, 5]). It is a
holomorphic connection defined on a non trivial principal bundle over configuration
spaces of points on an elliptic curve. They showed that

— The holonomy of the universal KZB connection along fundamental cycles of an
ellitpic curve satisfy relations which lead to representations of braid groups on
the (2-)torus.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2023



viii INTRODUCTION

— They also satisfy a modularity property, that is a consequence of the fact that
the (universal) KZB connection extends from configuration spaces of points on
an elliptic curve to moduli spaces of marked elliptic curves (see also [35] for
when there are at most 2 marked points).

Enriquez later introduced the notion of an elliptic associator [19], and proved that
the holonomy of the universal elliptic KZB connection does produce, for every elliptic
curve, an example of elliptic associator. The class of elliptic associators that are ob-
tained via this procedure are called KZB associators. In another work [21], Enriquez
defined and studied an elliptic version of MZVs; he showed that KZB associators are
generating series for elliptic MZVs (eMZVs).

In a recent paper [13] we introduced a generalization of the universal elliptic KZB
connection: the universal ellipsitomic KZB connection. It is defined over twisted con-
figuration spaces, where the twisting is by a finite quotient Γ of the fundamental group
of the elliptic curve. When Γ = 1 is trivial, one recovers the universal elliptic KZB
connection.

The aim of the present paper is two-fold.
(a) First we provide an operadic interpretation of elliptic associators. We extend

this approach to the ellipsitomic case, use the language of operads to define el-
lipsitomic associators, and sketch the rudiments of an ellipsitomic Grothendieck-
Teichmüller theory.

(b) Then we show that holonomies of the universal ellipsitomic KZB connection
along suitable paths produce examples of ellipsitomic associators, and are gener-
ating series for elliptic multiple polylogarithms at Γ-torsion points, that are sim-
ilar to the twisted elliptic MZVs (teMZVs) studied in [10] by Broedel-Matthes-
Richter-Schlotterer.

Our work fits in a more general program that aims at studying associators for
an oriented surface together with a finite group acting on it. We summarize in the
following table the contributions to this program that we are aware of:

gen. group associators operadic
approach

Universal connection /
existence proof

coefficients

0 trivial [17] [4, 23] rational KZ [17] / ibid. MZVs [34]
0 Z/NZ cyclotomic

associators [18]
[14] trigonometric KZ [18] /

ibid.
colored
MZVs [18]

0 fin. ⊂ PSU2(C) unknown unknown [36] / unknown unknown
1 trivial elliptic

associators [19]
this paper
(Sec. 3)

elliptic KZB [12] / [19] eMZVs [21]

1 Z/MZ× Z/NZ ellipsitomic
associators
(this paper)

this paper
(Sec. 4 &
5)

ellipsitomic KZB [13] / this
paper (Sec. 6)

this paper
(Sec. 7)

> 1 trivial [27] [27] KZB [20] / conj. in [27] maybe [25]
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DESCRIPTION OF THE PAPER ix

Description of the paper

The first chapter is devoted to some recollection on operads and operadic modules,
with some emphasis on specific features when the underlying category is the one
of groupoids. Chapter 2 also recollects known results, about the operadic approach
to (genuine) associators and to various Grothendieck-Teichmüller groups. The main
results we state are taken from the recent book [23].

The main goal of Chapter 3 is to provide a similar treatment of elliptic associators,
using operadic modules in place of sole operads. We show in particular that (a variant
of) the universal elliptic structure PaBeℓℓ (resp. its graded/de Rham counterpart
GPaCDeℓℓ) from [19] carries the structure of an operadic module in groupoids over
the operad in groupoid PaB (resp. GPaCD). We provide a generators and relations
presentation for PaBeℓℓ (Theorem 3.3), and deduce from it the following

Theorem (Theorem 3.15). – The torsor of elliptic associators from [19] coincides
with the torsor of isomorphisms from (a variant of) PaBeℓℓ to GPaCDeℓℓ that are the
identity on objects. Similarly, the elliptic Grothendieck-Teichmüller group (resp. its
graded version) is isomorphic to the group of automorphisms of PaBeℓℓ (resp. of
GPaCDeℓℓ) that are the identity on objects.

The fourth chapter introduces a generalization of PaBeℓℓ, with an additional la-
beling/twisting by elements of Γ (recall that Γ is the group of deck transformations
of a finite cover of the torus by another torus). We give a geometric definition of
the operadic module PaBΓ

eℓℓ of parenthesized ellipsitomic braids, and then provide
a presentation by generators and relations for it (Theorem 4.5). In the fifth chap-
ter we define an operadic module of ellipsitomic chord diagrams, that mixes features
of PaCDeℓℓ from Chapter 3, and of the moperad of cyclotomic chord diagrams from
[14]. This allows us to identify ellipsitomic associators, which we define in purely
operadic terms, with series satisfying certain algebraic equations (Theorem 5.9).

Chapter 6 is devoted to the proof of the following

Theorem (Theorem 6.1). – The set of ellipsitomic associators over C is non-empty.

The proof makes crucial use of the ellipsitomic KZB connection, introduced in our
previous work [13], and relies on a careful analysis of its monodromy. We actually
prove that one can associate an ellipsitomic associator with every element of the
upper half-plane (Theorem 6.1). In the last chapter we quickly explore some number
theoretic and modular aspects of the coefficients of the “KZB produced” ellipsitomic
associators from the previous chapter.

Finally, in an appendix we provide an alternative presentation for PaBΓ
eℓℓ.
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CHAPTER 1

BACKGROUND MATERIAL ON OPERADS AND GROUPOIDS

In this chapter we fix a symmetric monoidal category (C,⊗,1) having small colim-
its. Let us assume for simplicity of exposition that ⊗ commutes with these (1).

1.1. S-modules

An S-module (in C) is a functor S : Bij → C, where Bij denotes the category
of finite sets with bijections as morphisms. It can also be defined as a collection
(S(n))n≥0 of objects of C such that S(n) is endowed with a right action of the symmet-
ric group Sn for every n; one has S(n) := S({1, . . . , n}). A morphism of S-modules
φ : S → T is a natural transformation. It is determined by the data of a collection
φ(n) : S(n)→ T (n) of Sn-equivariant morphisms in C.

The category S-mod of S-modules is naturally endowed with a symmetric
monoidal product ⊗ defined as follows:

(S ⊗ T )(n) :=
∐

p+q=n

(S(p)⊗ T (q))
Sn

Sp×Sq
.

Here, if H ⊂ G is a group inclusion, then (−)G
H is left adjoint to the restriction functor

from the category of objects carrying a G-action to the category of objects carrying
an H-action.

The symmetric sequence 1⊗ defined by

1⊗(n) :=

{
1 if n = 0

∅ otherwise

is a monoidal unit for ⊗.

1. This latter assumption is not necessary (and we will have to get rid of it when considering
the monoidal structure given by the direct sum of Lie algebras): if the monoidal product does not
commute with colimits, the category of S-module still has enough structure so that one can define
monoids and modules in it. Characterizations in terms of partial compositions remain unchanged.
We refer to [15] for more details.
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2 CHAPTER 1. BACKGROUND MATERIAL ON OPERADS AND GROUPOIDS

There is another (non-symmetric) monoidal product ◦ on S-mod, defined as fol-
lows:

(S ◦ T )(n) :=
∐
k≥0

T (k) ⊗
Sk

(
S⊗k(n)

)
.

Here, if H is a group and X,Y are objects carrying an H-action, then

X ⊗
H

Y := coeq

∐
h∈H

X ⊗ Y

h⊗id−→
−→
id⊗h

X ⊗ Y

 .

The symmetric sequence 1◦ defined by

1◦(n) :=

{
1 if n = 1

∅ otherwise

is a monoidal unit for ◦.

1.2. Operads

An operad (in C) is a unital monoid in (S-mod, ◦,1◦). The category of operads
in C will be denoted Op C.

More explicitly, an operad structure on a S-module O is the data:

— of a unit map e : 1→ O(1);

— for every sets I, J and any element i ∈ I, of a partial composition

◦i : O(I)⊗O(J) −→ O (J ⊔ I − {i})

satisfying the following constraints:

— for every sets I, J, K, with elements i ∈ I, j ∈ J , the following diagram com-
mutes:

O(I)⊗O(J)⊗O(K)

id⊗◦j

��

◦i⊗id
// O (J ⊔ I − {i})⊗O(K)

◦j

��

O(I)⊗O (K ⊔ J − {j}) ◦i // O (K ⊔ J ⊔ I − {i, j})

— for every sets I, J1, J2, with elements i1, i2 ∈ I, the following diagram commutes:

O(I)⊗O(J1)⊗O(J2)

(◦i2
⊗id)(23)

��

◦i1
⊗id

// O (J1 ⊔ I − {i1})⊗O(J2)

◦i2

��

O (J2 ⊔ I − {i2})⊗O(J1)
◦i1 // O (J2 ⊔ J1 ⊔ I − {i1, i2})
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— for every sets I, I ′, J , i ∈ I, with a bijection σ : I → I ′, the following diagram
commutes:

O(I)⊗O(J)

◦i

��

O(σ)
// O(I ′)⊗O(J)

◦σ(i)

��

O (J ⊔ I − {i})
O(id⊔σ|I−{i})

// O (J ⊔ I ′ − {σ(i)})

— for every set I,with i ∈ I, the following diagrams commute:

1⊗O(I)

≃
''

e⊗id
// O({1})⊗O(I)

◦1
��

O(I)

O(I)⊗ 1

≃
��

id⊗e
// O(I)⊗O({1})

◦i

��

O(I)
i 7→1

≃ // O (I ⊔ {1} − {i}) .

Example 1.1. – Let X be an object of C. Then we define, for any finite set I, the
set End(X)(I) := HomC(X

⊗I , X). Composition of tensor products of maps provide
End(X) with the structure of an operad in sets.

Given an operad in sets O, an O-algebra in C is an object X of C together with a
morphism of operads O → End(X).

1.3. Example of an operad: Stasheff polytopes

To any finite set I we associate the configuration space

Conf(R, I) = {x = (xi)i∈I ∈ RI |xi ̸= xj if i ̸= j}

and its reduced version

C(R, I) := Conf(R, I)/R⋊ R>0.

The Axelrod-Singer-Fulton-MacPherson compactification (2) C(R, I) of C(R, I) is
a disjoint union of |I|-th Stasheff polytopes [37], indexed by SI . The bound-
ary ∂C(R, I) := C(R, I)− C(R, I) is the union, over all partitions I = J1

∐
· · ·
∐

Jk,
of

∂J1,...,Jk
C(R, I) :=

k∏
i=1

C(R, Ji)× C(R, k).

The inclusion of boundary components provides C(R,−) with the structure of an
operad in topological spaces (where the monoidal structure is given by the cartesian
product).

2. We are using the differential geometric compactification from [3], which is an analog of the
algebro-geometric one from [24].
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4 CHAPTER 1. BACKGROUND MATERIAL ON OPERADS AND GROUPOIDS

One can see that C(R, I) is actually a manifold with corners, and that, consid-
ering only zero-dimensional strata of our configuration spaces, we get a suboperad
Pa ⊂ C(R,−) that can be shortly described as follows:

— Pa(I) is the set of pairs (σ, p) with σ is a linear order on I and p a maximal
parenthesization of • · · · •︸ ︷︷ ︸

|I| times

,

— the operad structure is given by substitution.

Notice that Pa is actually an operad in sets, and that Pa-algebras are nothing else
than magmas.

1.4. Modules over an operad: Bott-Taubes polytopes

A module over an operadO (in C) is a rightO-module in (S-mod, ◦,1◦). Notice that
any operad is a module over itself. We let the reader find the very explicit description
of a module in terms of partial compositions, as for operads.

To any finite set I we associate the configuration space

Conf(S1, I) = {x = (xi)i∈I ∈ (S1)I |xi ̸= xj if i ̸= j}

and its reduced version
C(S1, I) := Conf(S1, I)/S1.

The Axelrod-Singer-Fulton-MacPherson compactification C(S1, I) of C(S1, I) is
a disjoint union of |I|-th Bott-Taubes polytopes [8], indexed by SI . The bound-
ary ∂C(S1, I) := C(S1, I)−C(S1, I) is the union, over all partitions I = J1

∐
· · ·
∐

Jk,
of

∂J1,...,Jk
C(S1, I) :=

k∏
i=1

C(R, Ji)× C(S1, k).

The inclusion of boundary components provides C(S1,−) with the structure of a
module over the operad C(R,−) in topological spaces.

One can see that C(S1, I) is actually a manifold with corners, and that, considering
only zero-dimensional strata of our configuration spaces, we get Pa ⊂ C(S1,−), which
is a module over Pa ⊂ C(R,−).

1.5. Convention: pointed versions

Observe that there is an operad Unit defined by

Unit(n) =

{
1 if n = 0, 1

∅ otherwise.

By convention, all our operads O will be Unit-pointed and reduced, in the sense
that they will come equipped with a specific operad morphism Unit → O that is an
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isomorphism in arity ≤ 1: O(n) ≃ 1 if n = 0, 1. Morphisms of operads are required
to be compatible with this pointing.

Now, if P is an O-module, then it naturally becomes a Unit-module as well, by
restriction. By convention, all our modules will be pointed as well, in the sense that
they will come equipped with a specific Unit-module morphism Unit→ P that is an
isomorphism in arity ≤ 1. Morphisms of modules are also required to be compatible
with the pointing.

The main reason for this convention is that we need the following features, that we
have in the case of compactified configuration spaces:

— For operads and modules, we want to have “deleting operations” O(n)→ O(n− 1)

that decrease arity.

— For modules, we want to be able to see the operad “inside” them, i.e., we want
to have distinguished morphism O → P of S-modules.

1.6. Group actions

Let G be a ∗-module in group, where ∗ is the terminal operad: the partial compo-
sition ◦i is a group morphism G(n)→ G(n + m− 1).

Example 1.2. – Let Γ be a group, we consider the S-module in groups
Γ := {Γn/Γdiag}n≥0, where Γdiag denotes the normal closure of the diagonal subgroup
in each Γn. It is equipped with the following ∗-module structure: the i-th partial
composition is given by the partial diagonal morphism

Γn/Γ −→ Γn+m−1/Γ

[γ1, . . . , γn] 7−→ [γ1, . . . , γi−1, γi, . . . , γi︸ ︷︷ ︸
m times

, γi+1, . . . , γn].

Given an operad O in C, we say that an O-module P carries a G-action if

— for every n ≥ 0, there is an Sn-equivariant left action G(n)× P(n)→ P(n),

— for every m ≥ 0, n ≥ 0, and 1 ≤ i ≤ n, the partial composition

◦i : P(n)⊗O(m) −→ P(n + m− 1)

is equivariant along the above group morphism G(n)→ G(n + m− 1).

A morphism P → Q of O-modules with G-action is said G-equivariant if, for ev-
ery n ≥ 0, the map P(n)→ Q(n) is G(n)-equivariant.

Given a group Γ, we say that an O-module P carries a diagonally trivial action of
Γ if it carries a Γ-action.

The quotient G\P of an O-module P with a G-action is defined as follows:

— For every n ≥ 0,
(
G(n)\P

)
(n) := G(n)\P(n);
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6 CHAPTER 1. BACKGROUND MATERIAL ON OPERADS AND GROUPOIDS

— The equivariance of the partial composition ◦i tels us that it descends to the
quotient (

G(n)\P(n)
)
⊗O(m) −→ G(n + m− 1)\P(n + m− 1).

1.7. Semi-direct products and fake pull-backs

Let Grpd be the category of groupoids. For a group G, we denote G-Grpd the
category of groupoids equipped with a G-action. There is a semi-direct product functor

G-Grpd −→ Grpd/G

P 7−→ P ⋊ G

where the group G is viewed as a groupoid with a single object, and where P ⋊ G is
defined as follows:

— Objects of P ⋊ G are just objects of P;

— In addition to the arrows of P, for every g ∈ G, and for every object p of P ,
there is an arrow g · p g→ p;

— These new arrows multiply together via the group multiplication of G;

— For every morphism f in P , and every g ∈ G, the relation gfg−1 = g · f holds.

Notation 1.3. – We warn the reader that we use all along the paper the following
rather unusual convention for arrows in a groupoid, and more generally in a category:
we often concatenate arrows rather than composing them.

In other words, f1f2 = f2 ◦ f1.

There is also a functor G going in the other direction

Grpd/G −→ G-Grpd

(Q φ→ G) 7−→ G(φ),

that one can describe as follows:

— The G-set of objects of G(φ) is the free G-set generated by Ob(Q);

— A morphism (g, x) → (h, y) in G(φ) is a morphism x
f→ y in Q such that

gφ(f) = h.

Example 1.4. – The groupoid G(Bn → Sn) is the colored braid groupoid CoB(n)

from [23, §5.2.8].

Remark 1.5. – Given an object q of Q, AutG(φ)(g, q) is the kernel of the mor-
phism AutQ(q)→ G for every g ∈ G.
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These constructions still make sense for modules over a given operad O whenever
G is an operadic ∗-module in groups.

Let P,Q be two operads (resp. modules) in groupoids. If we are given a mor-
phism f : Ob(P) → Ob(Q) between the operads (resp. operad modules) of objects
of P and Q, then (following [23]) we can define an operad (resp. operad module) f⋆Q
in the following way:

— Ob(f⋆Q) := Ob(P),

— Hom(f⋆Q)(n)(p, q) := HomQ(n)(f(p), f(q)).

In particular, f⋆Q, which we call the fake pull-back of Q along f , inherits the operad
structure of P for its operad of objects and that of Q for the morphisms.

Remark 1.6. – Notice that this is not a pull-back in the category of operads in
groupoids.

1.8. Prounipotent completion

Let k be a Q-ring. We denote by CoAlgk the symmetric monoidal category of com-
plete filtered topological coassociative cocommutative counital k-coalgebras, where
the monoidal product is given by the completed tensor product ⊗̂k over k.

Let Cat(CoAlgk) be the category of small CoAlgk-enriched categories. It is sym-
metric monoidal as well, with monoidal product ⊗ defined as follows:

— Ob(C ⊗ C ′) := Ob(C)×Ob(C ′).

— HomC⊗C′
(
(c, c′), (d, d′)

)
:= HomC(c, d)⊗̂k HomC′(c

′, d′).

All the constructions of the previous section still make sense, at the cost of replacing
the group G with its completed group algebra k̂G (which is a Hopf algebra) in the
semi-direct product construction.

Considering the cartesian symmetric monoidal structure on Grpd, there is a sym-
metric monoidal functor

Grpd −→ Cat(CoAlgk)

G 7−→ G(k),

defined as follows:

— Objects of P(k) are objects of P.
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8 CHAPTER 1. BACKGROUND MATERIAL ON OPERADS AND GROUPOIDS

— For a, b ∈ Ob(P),

HomP(k)(a, b) = ̂k ·HomP(a, b).

Here k · HomP(a, b) is equipped with the unique coalgebra structure such that
the elements of HomP(a, b) are grouplike (meaning that they are diagonal for
the coproduct and that their counit is 1), and the “ ̂ ” refers to the completion
with respect to the topology defined by the sequence (HomIk(a, b)

)
k≥0

, where
Ik is the category having the same objects as P and morphisms lying in the
k-th power (for the composition of morphisms) of kernels of the counits of k ·
HomP(a, b)’s.

— For a functor F : P → Q, F (k) : P(k) → Q(k) is the functor given by F on
objects and by k-linearly extending F on morphisms.

Being symmetric monoidal, this functor sends operads in groupoids to operads
in Cat(CoAlgk).

Example 1.7. – For instance, viewing Pa as an operad in groupoid (with only iden-
tities as morphisms), then Pa(k) is the operad in Cat(CoAlgk) with same objects
as Pa, and whose morphisms are

HomPa(k)(n)(a, b) =

{
k if a = b

0 otherwise,

with k being equipped with the coproduct ∆(1) = 1⊗ 1 and counit ϵ(1) = 1.

The functor we have just defined has a right adjoint

G : Cat(CoAlgk) −→ Grpd,

that we can describe as follows:

— For C in Cat(CoAlgk), objects of G(C) are objects of C.

— For a, b ∈ Ob(G), HomG(C)(a, b) is the subset of grouplike elements in HomC(a, b).

Being right adjoint to a symmetric monoidal functor, it is lax symmetric monoidal,
and thus it sends operads (resp. modules) to operads (resp. modules).

We thus get a k-prounipotent completion functor G 7→ Ĝ(k) := G
(
G(k)

)
for (oper-

ads and modules in) groupoids.

Remark 1.8. – Let φ : G→ S be a surjective group morphism, and assume that S is
finite. One can prove that the prounipotent completion Ĝ(φ)(k) of the construction
from the previous section is isomorphic to G(φ(k)), where φ(k) : G(φ,k) → S is
Hain’s relative completion [28]. This essentially follows from that, when S is finite,
the kernel of the relative completion is the completion of the kernel.
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CHAPTER 2

OPERADS ASSOCIATED
WITH CONFIGURATION SPACES

(ASSOCIATORS)

2.1. Compactified configuration space of the plane

To any finite set I we associate a configuration space

Conf(C, I) = {z = (zi)i∈I ∈ CI |zi ̸= zj if i ̸= j}.

We also consider its reduced version

C(C, I) := Conf(C, I)/C⋊ R>0.

We then consider the Axelrod-Singer-Fulton-MacPherson compactification C(C, I)

of C(C, I). The boundary ∂C(C, I) = C(C, I) − C(C, I) is made of the following
irreducible components: for any partition I = J1

∐
· · ·
∐

Jk there is a component

∂J1,...,Jk
C(C, I) ∼= C(C, k)×

k∏
i=1

C(C, Ji).

The inclusion of boundary components provides C(C,−) with the structure of
an operad in topological spaces. One can picture the partial operadic composition
morphisms as follows:

◦2

1 2

3

1

2

3 1

5

2 43
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2.2. A presentation for the pure braid group

The pure braid group PBn is generated by elementary pure braids Pij ,
1 ≤ i < j ≤ n, which satisfy the following relations:

(Pij , Pkl) = 1 if {i, j} and {k, l} are non crossing,(PB1)

(PkjPijP
−1
kj , Pkl) = 1 if i < k < j < l,(PB2)

(Pij , PikPjk) = (Pjk, PijPik) = (Pik, PjkPij) = 1 if i < j < k.(PB3)

In this article we will represent the generator Pij in the following two equivalent ways:

1

1

i

i

...

...

j

j

n

n

←→ ∢

n

i

j

1

There is another elementary braid Pi,j conjugated to Pi,j . We can represent two
incarnations of the generator Pi,j in the following way

1

1

i

i

...

...

j

j

n

n

←→ ∢

1
i

j

n

Indeed, one can define Oij = Pij · · ·Pi(i+2)Pi(i+1).
In other words, Pij = OijO

−1
i(j−1). And we define Pij := O−1

i(j−1)Oij =

O−1
i(j−1)PijOi(j−1).

2.3. The operad of parenthesized braids

There are inclusions of topological operads

Pa ⊂ C(R,−) ⊂ C(C,−).

Then it makes sense to define

PaB := π1

(
C(C,−),Pa

)
,

which is an operad in groupoids.
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Example 2.1 (Description of PaB(2)). – Let us first recall that Pa(2) = S2, and
that C(C, 2) ≃ S1. Besides the identity morphism in PaB(2) going from (12) to (12),
there is an arrow R1,2 in PaB(2) going from (12) to (21) which can be depicted as
follows (1):

1

2

2

1

2

1

Two incarnations of R1,2

We will denote R̃1,2 := (R2,1)−1.

Example 2.2 (Notable arrows in PaB(3)). – Let us first recall that
Pa(3) = S3 × {(••)•, •(••)} and that C(R, 3) ∼= S3 × [0, 1]. Therefore,there is
an arrow Φ1,2,3 (the identity path in [0, 1]) from (12)3 to 1(23) in PaB(3). It can be
depicted as follows:

(1

1

2)

(2

3

3)

1 2 3

Two incarnations of Φ1,2,3

The following result is borrowed from [23, Theorem 6.2.4], even though it perhaps
already appeared in [4] in a different form.

Theorem 2.3. – As an operad in groupoids having Pa as operad of objects, PaB is
freely generated by R := R1,2 and Φ := Φ1,2,3 together with the following relations:

Φ∅,1,2 = Φ1,∅,2 = Φ1,2,∅ = Id1,2

(
in HomPaB(2)

(
12, 12

))
,(U1)

R1,2Φ2,1,3R1,3 = Φ1,2,3R1,23Φ2,3,1
(
in HomPaB(3)

(
(12)3, 2(31)

))
,(H1)

R̃1,2Φ2,1,3R̃1,3 = Φ1,2,3R̃1,23Φ2,3,1
(
in HomPaB(3)

(
(12)3, 2(31)

))
,(H2)

Φ12,3,4Φ1,2,34 = Φ1,2,3Φ1,23,4Φ2,3,4
(
in HomPaB(4)

(
((12)3)4, 1(2(34))

))
.(P)

We now briefly explain the notation we have been using in the above statement,
which is quite standard.

1. We actually have another arrow, that can be obtained from the first one as (R2,1)−1 according
to the notation that is explained after Theorem 2.3, and which can be depicted as an undercrossing
braid.
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Notation 2.4. – In this article, we write the composition of paths from left to right
(and we draw the braids from top to bottom). If X is an arrow from p to q in PaB(n),
then

— for any r ∈ Pa(k), the identity of r in PaB(k) is also denoted r,

— for any r ∈ Pa(k), we write X1,...,n for r ◦1 X ∈ PaB(n + k − 1),

— we write X∅,2,...,n ∈ PaB(n + k − 2) for the image of X1,...,n by the first braid
deleting operation,

— for any σ ∈ Sn+k−1 we define Xσ1,...,σn := (X1,...,n) · σ,

— for any r ∈ Pa(k), Xr,k+1,...,k+n−1 := X ◦1 r ∈ PaB(n + k − 1),

— we allow ourselves to combine these in an obvious way.

This notation is unambiguous as soon as we specify the starting object of our arrows.

For example, the pentagon (P) and the first hexagon (H1) relations can be respec-
tively depicted as

((1 2) 3) 4

1 (2 (3 4))

=

((1 2) 3) 4

1 (2 (3 4))

(P)

and

(1

2

2)

(3

3

1)

=

(1

2

2)

(3

3

1)

(H2)

or, as commuting diagrams (giving the name of the relations)
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(12)(34)
Φ1,2,34

zz

(12)3 Φ1,2,3

//
(R2,1)−1
zz

1(23) (R23,1)−1
$$

1(2(34)) ((12)3)4
Φ12,3,4

dd

Φ1,2,3

��

and (21)3
Φ2,1,3

$$

(23)1
Φ2,3,1

zz
1((23)4)

Φ2,3,4

OO

(1(23))4Φ1,23,4

oo 2(13)(R3,1)−1// 2(31)

2.4. The operad of chord diagrams

The holonomy Lie algebra of the configuration space

Conf(C, n) := {z = (z1, . . . , zn) ∈ Cn|zi ̸= zj if i ̸= j}

of n points on the complex line is isomorphic to the graded Lie C-algebra tn(k)

generated by tij , 1 ≤ i ̸= j ≤ n, with relations

tij = tji,(S)

[tij , tkl] = 0 if #{i, j, k, l} = 4,(L)

[tij , tik + tjk] = 0 if #{i, j, k} = 3.(4T)

It is known as the Kohno-Drinfled Lie algebra.

In [4, 23] it is shown that the collection of Lie k-algebras tn(k) is provided with the
structure of an operad in the category grLiek of positively graded finite dimensional
Lie algebras over k, with symmetric monoidal strucure given by the direct sum ⊕.
Partial compositions are described as follows:

◦k : tI(k)⊕ tJ(k) −→ tJ⊔I−{k}(k)

(0, tαβ) 7−→ tαβ

(tij , 0) 7−→


tij if k /∈ {i, j}∑

p∈J

tpj if k = i∑
p∈J

tip if k = j.

Observe that there is a lax symmetric monoidal functor

Û : grLiek −→ Cat(CoAlgk),

sending a positively graded Lie algebra to the degree completion of its universal
envelopping algebra, which is a complete filtered cocommutative Hopf algebra, viewed
as a CoAlgk-enriched category with only one object.

We then consider the operad of chord diagrams CD(k) := Û(t(k)) in Cat(CoAlgk).
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Remark 2.5. – This denomination comes from the fact that morphisms in CD(k)(n)

can be represented as linear combinations of diagrams of chords on n vertical strands,
where the chord diagram corresponding to tij can be represented as

i j1 n

1 ni j

and the composition is given by vertical concatenation of diagrams. Partial compo-
sitions can easily be understood as “cabling and removal operations” on strands (see
[4, 23]). Relations (L) and (4T) defining each tn(k) can be represented as follows:

j ki l

i lj k

=

j ki l

i lj k

(L)

i j k

i j k

+

i j k

i j k

=

i j k

i j k

+

i j k

i j k

(4T)

2.5. The operad of parenthesized chord diagrams

Recall that the operad CD(k) has only one object in each arity. Hence we can
define the operad

PaCD(k) := ω⋆
1CD(k)

of parenthesized chord diagrams, where ω1 : Pa = Ob(Pa(k)) → Ob(CD(k)) is the
terminal morphism. Here is a self-explanatory example of how to depict a morphism
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in PaCD(k)(3):

f ·

(i j) k

i (k j)

where f ∈ CD(k)(3).

Example 2.6 (Notable arrows of PaCD(k)). – There are the following arrows
in PaCD(k)(2):

H1,2 := t12 · Id1,2 = t12·

1

1

2

2

=:

1

1

2

2

X1,2 = 1·

1

2

2

1

We also have the following arrow in PaCD(k)(3):

a1,2,3 = 1·

(1

1

2)

(2

3

3)

Remark 2.7. – The elements H1,2, X1,2 and a1,2,3 are generators of the operad
PaCD(k) and satisfy the following relations:

— X2,1 = (X1,2)−1,

— a12,3,4a1,2,34 = a1,2,3a1,23,4a2,3,4,

— X12,3 = a1,2,3X2,3(a1,3,2)−1X1,3a3,1,2,

— H1,2 = X1,2H2,1(X1,2)−1,

— H12,3 = a1,2,3
(
H2,3 + X2,3(a1,3,2)−1H1,3a1,3,2X3,2

)
(a1,2,3)−1.

In particular, even if PaCD(k) does not have a presentation in terms of generators
and relations (as is the case for PaB), one can show that PaCD(k) has a universal
property with respect to the generators H1,2, X1,2 and a1,2,3 and the above relations
(see [23, Theorem 10.3.4] for details).
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2.6. Drinfeld associators

Let us first introduce some terminology that we use in this paragraph, as well as
later in the paper:

— Let Grpdk denote the (symmetric monoidal) category of k-prounipotent
groupoids (which is the image of the completion functor G 7→ Ĝ(k));

— For C being Grpd, Grpdk, or Cat(CoAlgk), the notation

Aut+Op C (resp. Iso+
Op C)

refers to those automorphisms (resp. isomorphisms) which are the identity on
objects.

In the remainder of this section we recall some well known results on the operadic
point of view on associators and Grothendieck-Teichmüller groups, which will be useful
later on. Even though the statements and proofs of all the results in this section can
be found in [23], it is worth mentionning that a “pre-operadic” approach was initiated
by Bar-Natan in [4].

Definition 2.8. – A Drinfeld k-associator is an isomorphism between the operads
P̂aB(k) and GPaCD(k) in Grpdk, which is the identity on objects. We denote by

Assoc(k) := Iso+
OpGrpdk

(P̂aB(k), GPaCD(k)),

the set of k-associators.

Theorem 2.9 (Drinfeld [17], Bar-Natan [4], Fresse [23]). – There is a one-to-one
correspondence between the set of Drinfeld k-associators and the set Ass(k) of cou-
ples (µ, φ) ∈ k× × exp(̂f2(k)), such that

— φ3,2,1 = (φ1,2,3)−1 in exp(̂t3(k)),

— φ1,2,3eµt23/2φ2,3,1eµt31/2φ3,1,2eµt12/2 = eµ(t12+t13+t23)/2 in exp(̂t3(k)),

— φ1,2,3φ1,23,4φ2,3,4 = φ12,3,4φ1,2,34 in exp(̂t4(k)),

where φ1,2,3 = φ(t12, t23) is viewed as an element of exp(̂t3(k)) via the inclusion
f̂2(k) ⊂ t̂3(k) sending x to t12 and y to t23.

Three observations are in order:

— The free Lie k-algebra f2(k) in two generators x, y is graded, with generators
having degree 1, and its degree completion is denoted by f̂2(k);

— The k-prounipotent group exp(̂f2(k)) is thus isomorphic to the k-prounipotent
completion F̂2(k) of the free group F2 on two generators;
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2.7. GROTHENDIECK-TEICHMULLER GROUP 17

— The quotient ˆ̄t3(k)of the Lie algebra t̂3(k) by its center, generated by
t12 + t13 + t23, is isomorphic to f̂2(k). Thus, the second relation in the above
theorem is equivalent to

φ1,2,3eµy/2φ2,3,1eµz/2φ3,1,2eµx/2 = 1

in exp(̂f2(k)), where x, y, z are variables subject to relation x + y + z = 0.

This theorem was originally proven by Drinfeld in [17], though it was phrased
without the operadic language. As stated, it can be found in [23, Theorem 10.2.9],
and its proof relies on the universal property of PaB from Theorem 2.3. In partic-
ular, a morphism F : P̂aB(k) −→ GPaCD(k) is uniquely determined by a scalar
parameter µ ∈ k and φ ∈ exp(̂f2(k)):

— F (R1,2) = eµt12/2 ·X1,2,

— F (Φ1,2,3) = φ(t12, t23) · a1,2,3,

where R and Φ are the ones from Examples 2.1 and 2.2.

Example 2.10 (The KZ Associator). – The first associator was constructed by
Drinfeld using the KZ connection and is known as the KZ associator ΦKZ. It is
defined as the the renormalized holonomy from 0 to 1 of G′(z) = ( t12

z + t23
z−1 )G(z),

i.e., ΦKZ := G−1
0+ G1− ∈ exp(̂t3(C)), where G0+ , G1− are the solutions such that

G0+(z) ∼ zt12 when z → 0+ and G1−(z) ∼ (1− z)t23 when z → 1−. We have

ΦKZ(V,U) = ΦKZ(U, V )−1, ΦKZ(U, V )eπ i V ΦKZ(V,W )eπ i W ΦKZ(W, U)eπ i U = 1,

where U = t12 ∈ f2(C) ≃ t̄3(C) := t3(C)/(t12 + t13 + t23), V = t23 ∈ t̄3(C) and
U + V + W = 0, and

Φ12,3,4
KZ Φ1,2,34

KZ = Φ1,2,3
KZ Φ1,23,4

KZ Φ2,3,4
KZ ,

hence (2π i, ΦKZ) is an element of Ass(C).

2.7. Grothendieck-Teichmuller group

Definition 2.11. – The Grothendieck-Teichmüller group is defined as the group

GT := Aut+OpGrpd(PaB)

of automorphisms of the operad in groupoids PaB which are the identity of objects.
One defines similarly its k-pro-unipotent version

ĜT(k) := Aut+OpGrpdk

(
P̂aB(k)

)
.

There are also pro-ℓ and profinite versions, denoted GTℓ and ĜT, that we do not
consider in this paper.
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We can also characterize elements of GT and ĜT(k) as solutions of certain explicit
algebraic equations. This characterization proves that the above operadic definition
of GT coincides with the one given by Drinfeld in his original paper [17]. In this
article we will focus on the k-pro-unipotent version of this group in genus 0 and 1,
and twisted situations.

Definition 2.12. – Drinfeld’s Grothendieck-Teichmüller group ĜT(k) consists of
pairs

(λ, f) ∈ k× × F̂2(k)

which satisfy the following equations:

— f(x, y) = f(y, x)−1 in F̂2(k),

— xν
1f(x1, x2)x

ν
2f(x2, x3)x

ν
3f(x3, x1) = 1 in F̂2(k),

— f(x13x23, x34)f(x12, x23x24) = f(x12, x23)f(x12x13, x24x34)f(x23, x34) in P̂B4(k),

where x1, x2, x3 are 3 variables subject only to x1x2x3 = 1, ν = λ−1
2 , and xij is the

elementary pure braid Pi,j from § 2.2. The multiplication law is given by

(λ1, f1)(λ2, f2) = (λ1λ2, f1(x
λ2 , f2(x, y)yλ2f2(x, y)−1)f2(x, y)).

Theorem 2.13. – There is an isomorphism between the groups ĜT(k) and ĜT(k).

This was first implicitely shown by Drinfeld in [17]. An explicit proof of this theorem
can be found for example in [23, Theorem 11.1.7]. In particular, one obtains the
couple (λ, f) from an automorphism F ∈ ĜT(k) as follows. We have

F


1

2

2

1

 =


1

1

2

2



ν

·

1

2

2

1

=


1

2

2

1



2ν+1

(2.1)

F


(1

1

2)

(2

3

3)


= f


(1

(1

2)

2)

3

3

,

(1

(1

2)

2)

3

3


·

(1

1

2)

(2

3

3)

(2.2)

In other words, if we set λ = 2ν + 1, we get the assignment

— F (R1,2) = (R1,2)λ,

— F (Φ1,2,3) = f(x12, x23) · Φ1,2,3.
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Next, one obtains the composition law of ĜT(k) from the composition of automor-
phisms F1 and F2 in Aut+OpGrpdk

(P̂aB(k)) as follows: the associated couples (λ1, f1)

and (λ2, f2) in k× × F̂2(k) satisfy (F1F2)(R
1,2) = (F2 ◦ F1)(R

1,2) = (R1,2)λ1λ2 , and

(F1F2)(Φ
1,2,3) = (F2 ◦ F1)(Φ

1,2,3) = F2(f1(x12, x23)Φ
1,2,3)

= F2(f1(x12, x23))F2(Φ
1,2,3)

= f1(F2(x12), F2(x23))f2(x12, x23)Φ
1,2,3

= f1(x
λ2
12 , f2(x12, x23)x

λ2
23f2(x12, x23)

−1)f2(x12, x23)Φ
1,2,3.

Remark 2.14. – There are also profinite and pro-ℓ versions of the Grothendieck-
Teichmüller group, denoted ĜT and GTℓ, respectively. There are morphisms

GT −→ ĜT ↠ GTℓ ↪→ ĜT(Qℓ) and GT −→ ĜT(k).

It is important to keep in mind that the profinite, pro-ℓ, k-pro-unipotent versions of
the Grothendieck-Teichmüller group do not coincide with the profinite, pro-ℓ, k-pro-
unipotent completions of the “thin” Grothendieck-Teichmüller group GT which only
consists of the pairs (1, 1) and (−1, 1).

2.8. Graded Grothendieck-Teichmuller group

Definition 2.15. – The graded Grothendieck-Teichmüller group is the group

GRT(k) := Aut+OpGrpdk
(GPaCD(k))

of automorphisms of GPaCD(k) that are the identity on objects.

Remark 2.16. – When restricted to the full subcategory Cat(CoAlgconn
k )

of CoAlgk-enriched categories for which the hom-coalgebras are connected, the
functor G leads to an equivalence between Cat(CoAlgconn

k ) and Grpdk. Hence
there is an isomorphism

GRT(k) ≃ Aut+OpCat(CoAlgk)(PaCD(k)).

Again, the operadic definition of GRT(k) happens to coincide with the one origi-
nally given by Drinfeld.

Definition 2.17. – Let GRT1 be the set of elements in g ∈ exp(̂f2(k)) ⊂ exp(̂t3(k))

such that

• g3,2,1 = g−1 and g1,2,3g2,3,1g3,1,2 = 1, in exp(̂t3(k)),

• g1,2,3g1,23,4g2,3,4 = g12,3,4g1,2,34, in exp(̂t4(k)).

One has the following multiplication law on GRT1:

(g1 ∗ g2)(t12, t23) := g1(t12, Ad(g2(t12, t23))(t23))g2(t12, t23).
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Drinfeld showed in [17] that GRT1 is stable under ∗, which defines a group structure
on it, and that rescaling transformations g(x, y) 7→ λ · g(x, y) = g(λx, λy) define an
action of k× of GRT1 by automorphisms.

Theorem 2.18. – There is a group isomorphism GRT(k) ∼= k×⋊GRT1 =: GRT(k).

This was first implicitely shown by Drinfeld in [17]. An explicit proof of this theo-
rem can be found for example in [23, Theorem 10.3.10]. In particular, we obtain the
couple (λ, g) from an automorphism G ∈ GRT(k) by the assignment

— G(X1,2) = X1,2,

— G(H1,2) = eλt12H1,2,

— G(a1,2,3) = g(t12, t23) · a1,2,3.

The composition of automorphisms G1 and G2 in Aut+
Op Ĝ(GPaCD(k)) is given as

follows: the associated couples (λ, g1) and (µ, g2) in k× × exp(̂̄t3(k)) satisfy

(G1G2)(H
1,2) = (G2 ◦G1)(H

1,2) = λµH1,2,

(G1G2)(a
1,2,3) = (G2 ◦G1)(a

1,2,3)

= g1

(
µt12, g2(t12, t23)(µt23)g2(t12, t23)

−1
)
g2(t12, t23) · a1,2,3.

2.9. Bitorsors

Recall first that there is a free and transitive left action of ĜT(k) on Ass(k),
defined, for (λ, f) ∈ ĜT(k) and (µ, φ) ∈ Ass(k), by

((λ, f) ∗ (µ, φ))(t12, t23) := (λµ, f(eµt12 , Ad(φ(t12, t23))(e
µt23))φ(t12, t23)),

where Ad(f)(g) := fgf−1, for any symbols f, g.
Recall that there is also a free and transitive right action of GRT(k) on Ass(k)

defined as follows: for (λ, g) ∈ GRT(k) and (µ, φ) ∈ Ass(k), given by

((µ, φ) ∗ (λ, g))(t12, t23) := (λµ, φ(λt12, Ad(g)(λt23))g(t12, t23)).

The two actions commute making
(
ĜT(k), Ass(k), GRT(k)

)
into a bitorsor.

Theorem 2.19. – There is a torsor isomorphism

(2.3) (ĜT(k),Assoc(k),GRT(k)) −→ (ĜT(k), Ass(k), GRT(k)).

Proof. – On the one hand, in [23, Theorem 10.3.13] it is shown that the natural free
and transitive left action of ĜT(k) on Assoc(k) coincides with the action of GT(k)

on Ass(k) via the correspondence of Theorem 2.13. On the other hand, in [23, Theo-
rem 11.2.1], it is shown that the natural free and transitive right action of GRT(k)

on Assoc(k) coincides with the action of GRT(k) over Ass(k) via the correspondence
of Theorem 2.18.
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CHAPTER 3

MODULES ASSOCIATED
WITH CONFIGURATION SPACES

(ELLIPTIC ASSOCIATORS)

3.1. Compactified configuration space of the torus

Let T be the topological (2-)torus. To any finite set I we associate a configuration
space

Conf(T, I) = {z = (zi)i∈I ∈ TI |zi ̸= zj if i ̸= j}.

We also consider its reduced version

C(T, I) := Conf(T, I)/T.

We then consider the Axelrod-Singer-Fulton-MacPherson compactification C(T, I)

of C(T, I). The boundary ∂C(T, I) = C(T, I) − C(T, I) is made up of the following
irreducible components: for any partition I = J1

∐
· · ·
∐

Jk there is a component

∂J1,...,Jk
C(T, I) ∼= C(T, k)×

k∏
i=1

C(C, Ji).

The inclusion of boundary components provide C(T,−) with the structure of a module
over the operad C(C,−) in topological spaces.

�3 =

5

3

1

4

2 2
1

7

3

43

21

4

6
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3.2. The pure braid group on the torus

The reduced pure braid group PB1,n with n strands on the torus (that is the
fundamental group of C(T, n)) is generated by paths Xi’s and Yi’s (i = 1, . . . , n),
which can be represented as follows

nYj

Xi

i
1

j

Moreover, the following relations are satisfied in PB1,n:

(Xi, Xj) = 1 = (Yi, Yj), for i < j,(T1)

(Xi, Yj) = Pij and (X−1
j , Y −1

i ) = Pij , for i < j,(T2)

(X1, Y
−1
1 ) = P1n · · ·P12,(T3)

(Xi, Pjk) = 1 = (Yi, Pjk), for all i, j < k,(T4)

(XiXj , Pij) = 1 = (YiYj , Pij), for i < j,(T5)

X1 · · ·Xn = 1 = Y1 · · ·Yn.(TR)

There are also the following relations, satisfied in the fundamental group B1,n

of C(T, n)/Sn:

(N) Xi+1 = σ−1
i Xiσ

−1
i , Yi+1 = σ−1

i Yiσ
−1
i ,

where σi are the generators of the braid group Bn with geometric convention as
follows:

n

i
1

i+1

�i

3.3. The PaB-module PaBeℓℓ of parenthesized elliptic (or beak) braids

In a similar manner as in §2.3, there are inclusions of topological modules (1)

Pa ⊂ C(S1,−) ⊂ C(T,−).

1. The second one depends on the choice of an embedding S1 ↪→ T: we choose by convention the
“horizontal embedding,” which corresponds to S1 × {∗}.

MÉMOIRES DE LA SMF 179



3.3. THE PaB-MODULE PaBeℓℓ OF PARENTHESIZED ELLIPTIC (OR BEAK) BRAIDS 23

Then it makes sense to define

PaBeℓℓ := π1

(
C(T,−),Pa

)
,

which is a PaB-module in groupoids.

As said in Section 1.5, there is a map of S-modules PaB −→ PaBeℓℓ and we
abusively denote R1,2 and Φ1,2,3 the images in PaBeℓℓ of the corresponding arrows
in PaB.

Example 3.1 (Structure of PaBeℓℓ(2)). – As in Example 2.1 there is an arrow R1,2

going from (12) to (21). Additionnally, we also have two automorphisms of (12),
denoted A1,2 and B1,2, corresponding to the following loops on C(T, 2):

A1;2

1 2 1 2

B1;2

21

1 2

By global translation of the torus, these are the same loops as the following

1 2 1 2

A1;2

B1;2

21

1 2

In particular, A1,2R̃1,2 and B1,2R̃1,2, which are morphisms from (12) to (21), corre-
spond to the following paths C(T, 2):

A1;2R~1;2

1 2

12

B1;2R~1;2

21

2 1

Remark 3.2. – The arrows A1,2 and B1,2 correspond to A±1,2 in [19, §1.3]. Thus we
will respectively depict A1,2 and B1,2 as

1

1

2

2

+ and

1

1

2

2

−
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The images of R1,2 and Φ1,2,3 by the S--module morphism PaB −→ PaBeℓℓ will
still be denoted the same way. One can rephrase [19, Proposition 1.3] in the following
way:

Theorem 3.3. – As a PaB-module in groupoids having Pa as Pa-module of objects,
PaBeℓℓ is freely generated by A := A1,2 and B := B1,2, together with the following
relations:

Φ1,2,3A1,23R̃1,23Φ2,3,1A2,31R̃2,31Φ3,1,2A3,12R̃3,12 = Id(12)3,(N1)

Φ1,2,3B1,23R̃1,23Φ2,3,1B2,31R̃2,31Φ3,1,2B3,12R̃3,12 = Id(12)3,(N2)

R1,2R2,1 =
(
Φ1,2,3A1,23(Φ1,2,3)−1, R̃1,2Φ2,1,3B2,13(Φ2,1,3)−1R̃2,1

)
.(E)

All these relations hold in the automorphism group of (12)3 in PaBeℓℓ(3).

Proof. – Let Qeℓℓ be the PaB-module with the above presentation. We first show
that there is a morphism of PaB-modules Qeℓℓ → PaBeℓℓ. We have already seen that
there are two automorphisms A, B of (12) in PaBeℓℓ(2) (see Example 3.1). We have
to prove that they indeed satisfy the relations (N1), (N2) and (E).

Relations (N1) and (N2) are satistfied: the two nonagon relations (N1) and (N2) can
be depicted as

(1

(1

2)

2)

3

3

=

(1

(1

2)

2)

3

3

±

±

±

(N1,N2)

It is satisfied in PaBeℓℓ, expressing the fact that when all (here, three) points move
in the same direction on the torus, this corresponds to a constant path in the reduced
configuration space of points on the torus. The same is true with the second nonagon
relation (N2).
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Relation (E) is satisfied: below one sees the path that is obtained from the right-
hand-side of the mixed relation (E):

— Φ1,2,3A1,23(Φ1,2,3)−1 is the path

1 12 3

— R̃1,2Φ2,1,3B2,13(Φ2,1,3)−1R̃2,1 is the path

1 3

3

2

2

1

One can see that the commutator of these loops is homotopic to the pure braiding
of the first two points in the clockwise direction, that is R1,2R2,1, by means of the
following picture:

1

1

2

2 3

3

Thus, by the universal property of Qeℓℓ, there is a morphism of PaB-modules
Qeℓℓ → PaBeℓℓ, which is the identity on objects. To show that this map is in fact an
isomorphism, it suffices to show that it is an isomorphism at the level of automorphism
groups of objects arity-wise, as all groupoids are connected. Let n ≥ 0, and p be the
object (· · · ((12)3) · · · · · · )n of Qeℓℓ(n) and PaBeℓℓ(n). We want to show that the
induced morphism

AutQeℓℓ(n)(p) −→ AutPaBeℓℓ(n)(p) = π1

(
C(T, n), p

)
is an isomorphism.

On the one hand, as C̄(T, n) is a manifold with corners, we are allowed to move the
basepoint p to a point preg which is included in the simply connected subset obtained
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as the image of (2)

Dn,τ :=
{
z ∈ Cn

∣∣ zj = aj + bjτ, aj , bj ∈ R, 0 < a1 < a2 < · · · < an < a1 + 1,

0 < bn < · · · < b1 < bn + 1
}

in C(T, n), where T = C/(Z + τZ). We then have an isomorphism of fundamental
groups π1(C̄(T, n), p) ≃ π1(C(T, n), preg).

On the other hand, in [19, Proposition 1.4], Enriquez constructs a universal elliptic
structure PaBEn

eℓℓ , that by definition carries an action of the (algebraic version of the)
reduced braid group on the torus B1,n in the following sense:

— PaBEn
eℓℓ is a category;

— for every object p of Pa(n), there is a corresponding object [p] in PaBEn
eℓℓ , and

[p] = [q] if p and q only differ by a permutation (but have the same underlying
parenthesization);

— there are group morphisms B1,n→̃AutPaBEn
eℓℓ

(p)→ Sn.

Moreover, one has by constuction of PaBEn
eℓℓ that AutQeℓℓ(n)(p) is the kernel of the

map AutPaBEn
eℓℓ

([p])→ Sn. One can actually show that there is a commuting diagram

PB1,n
≃ //

��

AutQeℓℓ(n)(p) //

��

π1

(
C(T, n), p

)
��

π1 (C(T, n), preg)
≃oo

��

B1,n
≃ //

��

AutPaBEn
eℓℓ

(p) //

��

π1

(
C(T, n)/Sn, [p]

)
��

π1 (C(T, n)/Sn, [preg])
≃oo

��

Sn Sn Sn Sn,

where all vertical sequences are short exact sequences. Thus, in order to show that
the map AutQeℓℓ(n)(p)→ π1

(
C(T, n), p

)
is an isomorphism, we are left to show that

B1,n −→ π1(C(T, n), preg)

is indeed an isomorphism. But this map is nothing else than a conjugate of the map
constructed in [7, Theorem 5], identifying the algebraic and topological versions of
the braid group on the torus.

2. We have already done so for the proof of relation (E).
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3.4. The CD(k)-module of elliptic chord diagrams

For any n ≥ 0, recall that t1,n(k) is defined as the bigraded Lie k-algebra freely
generated by x1, . . . , xn in degree (1, 0), y1, . . . , yn in degree (0, 1) (for i = 1, . . . , n),
and tij in degree (1, 1) (for 1 ≤ i ̸= j ≤ n), together with the relations (S), (L), (4T),
and the following additional elliptic relations as well:

[xi, yj ] = tij for i ̸= j,(Seℓℓ)

[xi, xj ] = [yi, yj ] = 0 for i ̸= j,(Neℓℓ)

[xi, yi] = −
∑
j|j ̸=i

tij ,(Teℓℓ)

[xi, tjk] = [yi, tjk] = 0 if #{i, j, k} = 3,(Leℓℓ)

[xi + xj , tij ] = [yi + yj , tij ] = 0 for i ̸= j.(4Teℓℓ)

The
∑

i xi and
∑

i yi are central in t1,n(k), and we also consider the quotient

t̄1,n(k) := t1,n(k)

/
(
∑

i

xi,
∑

i

yi) .

Example 3.4. – t̄1,2(k) is equal to the free Lie k-algebra f2(k) on two generators
x = x1 and y = y2.

Both t1,n and t̄1,n are acted on by the symmetric group Sn, and one can show that
the S-modules in grLiek

teℓℓ(k) := {t1,n(k)}n≥0 and t̄eℓℓ(k) := {̄t1,n(k)}n≥0,

actually are t(k)-modules in grLiek. Partial compositions are defined as follows: for I

a finite set and i ∈ I,

◦k : t1,I(k)⊕ tJ(k) −→ t1,J⊔I−{i}(k)

(0, tαβ) 7−→ tαβ

(tij , 0) 7−→


tij if k /∈ {i, j}∑

p∈J tpj if k = i∑
p∈J tip if j = k

(xi, 0) 7−→

{
xi if k ̸= i∑

p∈J xp if k = i

(yi, 0) 7−→

{
yi if k ̸= i∑

p∈J yp if k = i.

We call teℓℓ(k), resp. t̄eℓℓ(k), the module of infinitesimal elliptic braids, resp. of in-
finitesimal reduced elliptic braids.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2023



28 CHAPTER 3. MODULES ASSOCIATED WITH CONFIGURATION SPACES

We finally define the CD(k)-module CDeℓℓ(k) := Û (̄teℓℓ(k)) of elliptic chord dia-
grams. Similarly to the genus 0 situation, morphisms in CDeℓℓ(k)(n) can be repre-
sented as chords on n vertical strands, with extra chords correponding to the gener-
ators xi and yi as in the following picture:

+

i

i

and −
i

i

The elliptic relations introduced above can be represented as follows, analogously as
for the genus 0 case:

−

+

i

i

j

j

−

+

−

i

i

j

j

=

+

−

i

i

j

j

−

−

+

i

i

j

j

=

i

i

j

j

(Seℓℓ)

±

±

i

i

j

j

=

±

±

i

i

j

j

(Neℓℓ)

+

−

i

i

−

A−

+

i

i

= −
∑
j;j ̸=i

i j

i j

(Teℓℓ)
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±
i

i

j

j

k

k

=
±

i

i

j

j

k

k

(Leℓℓ)

±
i

i

j

j

+

±
i

i

j

j

=
±

i

i

j

j

+
±

i

i

j

j

(4Teℓℓ)

Remark 3.5. – The relation between (a closely related version of) CDeℓℓ(k) and the
elliptic Kontsevich integral was studied in Philippe Humbert’s thesis [29].

3.5. The PaCD(k)-module of parenthesized elliptic chord diagrams

As in the genus zero case, the module of objects Ob(CDeℓℓ(k)) of CDeℓℓ(k) is ter-
minal. Hence there is a morphism of modules ω2 : Pa = Ob(Pa(k))→ Ob(CDeℓℓ(k))

over the morphism of operads ω1 from §2.5, and thus we can define the PaCD(k)-mod-
ule (3)

PaCDeℓℓ(k) := ω⋆
2CDeℓℓ(k),

in Cat(CoAssk), of so-called parenthesized elliptic chord diagrams.

Example 3.6 (Notable arrows in PaCDeℓℓ(k)(2)). – There are the following arrows
X1,2

eℓℓ , Y 1,2
eℓℓ in PaCDeℓℓ(k)(2):

X1,2
eℓℓ = x1·

1

1

2

2

=
+

1

1

2

2

Y 1,2
eℓℓ = y1·

1

1

2

2

=
−

1

1

2

2

3. Recall that PaCD(k) is defined as ω⋆
1CD(k).
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Remark 3.7. – As said in Section 1.5, there is a map of S-modules
PaCD(k) −→ PaCDeℓℓ(k) and we abusively denote X1,2, H1,2 and a1,2,3 the
images in PaCDeℓℓ(k) of the corresponding arrows in PaCD(k). The elements
X1,2

eℓℓ , Y
1,2
eℓℓ are generators of the PaCD(k)-module PaCDeℓℓ(k) and satisfy the

following relations in EndPaCDeℓℓ(k)(2)(12):

• X1,2
eℓℓ + X1,2X2,1

eℓℓ(X
1,2)−1 = 0,

• Y 1,2
eℓℓ + X1,2Y 2,1

eℓℓ (X1,2)−1 = 0.

They also satisfy the following relations in EndPaCDeℓℓ(k)(3)((12)3):

• X12,3
eℓℓ + a1,2,3X1,23X23,1

eℓℓ (a1,2,3X1,23)−1

+ X12,3(a3,1,2)−1X31,2
eℓℓ (X12,3(a3,1,2)−1)−1 = 0,

• Y 12,3
eℓℓ + a1,2,3X1,23Y 23,1

eℓℓ (a1,2,3X1,23)−1

+ X12,3(a3,1,2)−1Y 31,2
eℓℓ (X12,3(a3,1,2)−1)−1 = 0,

• H1,2 = [a1,2,3X1,23
eℓℓ (a1,2,3)−1, X1,2a2,1,3Y 2,13

eℓℓ (a2,1,3)−1(X1,2)−1].

3.6. Elliptic associators

Let us introduce some terminology, complementing the one of §2.6. Let us write
OpR C for the category of pairs (P,M), where P is an operad and M is a right
O-module, in C. A morphism (P,M) → (Q,N ) is a pair (f, g), where f : P → Q is
a morphism between operads and g :M→N is a morphism of P-modules.

The superscript “+” still indicates that we consider morphisms that are the identity
on objects.

Definition 3.8. – An elliptic associator over k is a couple (F,G) where F is a
k-associator and G is an isomorphism between the P̂aB(k)-module P̂aBeℓℓ(k) and
the GPaCD(k)-module GPaCDeℓℓ(k) which is the identity on objects and which is
compatible with F :

Ell(k) := Iso+
OpRGrpdk

((
P̂aB(k), P̂aBeℓℓ(k)

)
,
(
GPaCD(k), GPaCDeℓℓ(k)

))
.

The following theorem identifies our definition of elliptic associators with the orig-
inal one introduced by Enriquez in [19].

Theorem 3.9. – There is a one-to-one correspondence between the set Ell(k) and the
set Ell(k) of quadruples (µ, φ,A+, A−), where (µ, φ) ∈ Ass(k) and A± ∈ exp(̂̄t1,2(k)),
such that:

(3.1) α1,2,3
± α2,3,1

± α3,1,2
± = 1, where α± = φ1,2,3A1,23

± e−µ(t12+t13)/2,

(3.2) eµt12 =
(
φA1,23

+ φ−1, e−µt12/2φ2,1,3A2,13
− (φ2,1,3)−1e−µt12/2

)
.

All these relations hold in the group exp(̂̄t1,3(k)).
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Proof. – An associator F corresponds uniquely to a couple (µ, φ) ∈ Ass(k) and an
isomorphism G between P̂aBeℓℓ(k) and GPaCDeℓℓ(k) sends the arrows A1,2 and
B1,2 of End

P̂aBeℓℓ(k)(2)
(12) to A+ ·X1,2

eℓℓ and A− · Y 1,2
eℓℓ with A± ∈ exp(̂̄t1,2(k)) (recall

that ˆ̄t1,2(k) is the completed free Lie algebra over k in two generators). The image of
relations (N1), (N2) and (E) are precisely the relations (3.1) and (3.2).

Example 3.10 (Elliptic KZB Associators). – Let us fix τ ∈ h. Recall that the Lie
algebra t̄1,2(C) is isomorphic to the free Lie algebra f2(C) generated by two elements
x := x1 and y := y1. We define the elliptic KZB associators e(τ) := (A(τ), B(τ)) as
the renormalized holonomies from 0 to 1 and 0 to τ of the differential equation

(3.3) G′(z) = −θτ (z + ad x) adx

θτ (z)θτ (ad x)
(y) ·G(z),

with values in the group exp(̂̄t1,2(C)) More precisely, this equation has a unique solu-
tion G(z) defined over {a+bτ | a, b ∈ (0, 1)} such that G(z) ≃ (−2π i z)−[x,y] at z → 0.
In this case,

A(τ) := G(z)G(z + 1)−1, B(τ) := G(z)G(z + τ)−1e−2π i x.

These are elements of the group exp(̂̄t1,2(C)). More precisely, Enriquez showed in [19]
that the element (2π i, ΦKZ, A(τ), B(τ)) is in Ell(C).

3.7. Elliptic Grothendieck-Teichmüller group

Definition 3.11. – The (k-prounipotent version of the) elliptic Grothendieck-
Teichmüller group is defined as the group

ĜTeℓℓ(k) := Aut+OpRGrpdk

(
P̂aB(k), P̂aBeℓℓ(k)

)
.

Again, we now show that our definition coincides with the original one defined by
Enriquez in [19]. Recall that the set ĜTeℓℓ(k) is the set of tuples (λ, f, g±), where
(λ, f) ∈ ĜT(k), g± ∈ F̂2(k) such that, in ̂̄B1,3(k),

(3.4) (f(σ2
1 , σ2

2)g±(A, B)(σ1σ
2
2σ1)

−λ−1
2 σ−1

1 σ−1
2 )3 = 1,

(3.5) u2 = (g+, u−1g−u−1),

where u = f(σ2
1 , σ2

2)−1σλ
1 f(σ2

1 , σ2
2) and g± = g±(A, B).

For (λ, f, g±), (λ′, f ′, g′±) ∈ ĜTeℓℓ(k), we set

(λ, f, g±) ∗ (λ′, f ′, g′±) := (λ′′, f ′′, g′′±),

where g′′±(A, B) = g±(g′+(A, B), g′−(A, B)). This gives ĜTeℓℓ(k) a group structure.
Moreover, for (λ, f, g+, g−) ∈ ĜTell(k) and (µ, φ,A+, A−) ∈ Ell(k), we set

(λ, f, g+, g−) ∗ (µ, φ,A+, A−) := (µ′, φ′, A′+, A′−),
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where A′± := g±(A+, A−). In [19], it is shown that this defines a free and transitive
left action of ĜTeℓℓ(k) on Ell(k).

Proposition 3.12. – There is an isomorphism ĜTeℓℓ(k) −→ ĜTeℓℓ(k) such that
the bijection Ell(k)−̃→Ell(k) becomes a torsor isomorphism.

Proof. – Suppose that we are given an automorphism (F,G) of
(
P̂aB(k), P̂aBeℓℓ(k)

)
which is the identity on objects. We already know (see §2.7) that F is determined by
a pair (λ, f) ∈ ĜT(k), and that any such pair determines an F . Moreover, the images
of the two generators A1,2, B1,2 ∈ Aut

P̂aBeℓℓ(k)(2)
(12) = ̂̄PB1,2(k) are

G(A1,2) = g+(A1,2, B1,2) and G(B1,2) = g−(A1,2, B1,2),

with g± ∈ F̂2(k) ≃ ̂̄PB1,2(k). It therefore follows from Theorem 3.3 that (λ, f, g±)

satisfies relations (3.4) and (3.5) if and only it determines an automorphism (F,G).

Let us then prove that the bijective assignement (F,G) 7→ (λ, f, g±) that we just de-
scribed is a group morphism. For this we show that the composition of automorphisms
corresponds to the group law of GTeℓℓ(k). We already know (see §2.7) that the com-
position of automorphisms of P̂aB(k) corresponds to the group law in GT(k). Now,
given automorphisms (F1, G) and (F2, H), and there respective images (λ1, f1, g±)

and (λ2, f2, h±), we have that

(H ◦G)(A) = H(g+(A, B)) = g+(H(A), H(B)) = g+(h+(A, B), h−(A, B)),

and, likewise, (H ◦G)(B) = g−(h+(A, B), h−(A, B)).

We finally prove the equivariance statement. Let (F,G) ∈ GTeℓℓ(k), with image
(λ, f, g±) ∈ GTeℓℓ(k), and let (K, H) ∈ Elleℓℓ(k), with image (µ, φ,A±). It is known
(see §2.9) that K ◦ F is sent to (µ, ϖ) ∗ (λ, f). It remains to compute:

(H ◦G)(A) = H(g+(A, B)) = g+(H(A), H(B)) = g+(A+, A−),

and, similarly, (H ◦G)(B) = g−(A+, A−).

3.8. Graded elliptic Grothendieck-Teichmüller group

Definition 3.13. – The graded elliptic Grothendieck-Teichmüller group is the group

GRTeℓℓ(k) := Aut+OpRCat(CoAlgk)

(
PaCD(k),PaCDeℓℓ(k)

)
.

Notice that there is an isomorphism

Aut+OpRCat(CoAlgk)

(
PaCD(k),PaCDeℓℓ(k)

)
≃ Aut+OpRGrpdk

(
GPaCD(k), GPaCDeℓℓ(k)

)
.
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As before, our goal in this paragraph is to show that our definition coincides
with the one of Enriquez [19]. Recall that he defines GRTell

1 (k) as the set of triples

(g, u+, u−) ∈ GRT1(k)×
(
ˆ̄t1,2(k)

)×2

, satisfying

Ad(g1,2,3)(u1,23
± ) + Ad(g2,1,3)(u2,13

± ) + u3,12
± = 0,(3.6)

[Ad(g1,2,3)(u1,23
± ), u3,12

± ] = 0,(3.7)

[Ad(g1,2,3)(u1,23
+ ), Ad(g2,1,3)(u2,13

− )] = t12,(3.8)

as relations in ˆ̄t1,3(k). He defines a group structure as follows:

(g, u+, u−) ∗ (h, v+, v−) := (g ∗ h, w+, w−),

where

w±(x1, y1) := u±(v+(x1, y1), v−(x1, y1)).

The group k× acts on GRTell
1 (k) by rescaling: c · (g, u±) := (c · g, c ·u±), where c · g is

as before, and

— (c · u+)(x1, y1) := u+(x1, c
−1y1),

— (c · u−)(x1, y1) := cu−(x1, c
−1y1).

We then set GRTeℓℓ(k) := GRTell
1 (k) ⋊ k×.

Moreover, there is a right action of GRTell
1 (k) on Ell(k): for (g, u±) ∈ GRTell

1 (k)

and (µ, φ,A±) ∈ Ell(k), we set (µ, φ,A±) ∗ (g, u±) := (µ, φ̃, Ã±), where

Ã±(x1, y1) := A±(u+(x1, y1), u−(x1, y1))

and, for c ∈ k×, we set (µ, φ,A±) ∗ c := (µ, c ∗ φ, c♯A±), where (c♯A±)(x1, y1) :=

A±(x1, cy1). In [19] this action is shown to be free and transitive. Notice that
Ã± = θ(A±), where θ ∈ Aut(̂̄tk1,2) is defined by x1 7→ u+(x1, y1) and y1 7→ u−(x1, y1).

Proposition 3.14. – There is an injective group morphism

GRTeℓℓ(k)→ GRTeℓℓ(k).

Moreover, the bijection Ell(k) → Ell(k) from Theorem 3.9 is equivariant along this
morphism.

Proof. – For every (G, U) ∈ GRTeℓℓ(k), there are (λ, g) ∈ GRT(k) and u± ∈ ˆ̄t1,2(k)

such that

— G(X1,2) = X1,2,

— G(H1,2) = λH1,2,

— G(a1,2,3) = g(t12, t23)a
1,2,3,

— U(X1,2
eℓℓ) = u+(x, y) Id12,

— U(Y 1,2
eℓℓ ) = u−(x, y) Id12.
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In light of relations of Remark 3.7, we obtain that (λ, g, u±) satisfies relations
(3.6), (3.7) and (3.8). The assignment (G, U) 7→ (λ, g, u±) defines an injective
map GRTeℓℓ(k)→ GRTeℓℓ(k).

We now show that this map is a group morphism. The proof is the same as one
of the analogous statement in Proposition 3.12: for two automorphisms (G1, U) and
(G2, V ), we already know that the composition G2 ◦ G1 corresponds to the product
in GRT(k), and we compute:

(V ◦ U)(X1,2
eℓℓ) = V (u+(x1, y1) Id12) = u+

(
v+(x1, y1), v−(x1, y1)

)
Id12,

and, likewise, (V ◦ U)(X1,2
eℓℓ) = u−

(
v+(x1, y1), v−(x1, y1)

)
Id12.

Finally, the equivariance of the bijection is proven in a similar way.

3.9. Bitorsors

Summarizing the results we have proven so far, we get that the bijection
Ell(k) −→ Ell(k) from Theorem 3.9 has been promoted to a bitorsor isomorphism.
Indeed, we know (by definition) that(

ĜTeℓℓ(k),Ell(k),GRTeℓℓ(k)
)

is a bitorsor, and (from [19]) that(
ĜTeℓℓ(k), Ell(k), GRTeℓℓ(k)

)
is a bitorsor as well.

Theorem 3.15. – There is a bitorsor isomorphism

(3.9)
(
ĜTeℓℓ(k),Ell(k),GRTeℓℓ(k)

)
−̃→

(
ĜTeℓℓ(k), Ell(k), GRTeℓℓ(k)

)
.

Proof. – This is a summary of most of the above results:

— There is a group isomorphism between ĜTeℓℓ(k) and ĜTeℓℓ(k) that is such that
the bijection from Theorem 3.9 is a torsor isomorphism (Proposition 3.12).

— There is an injective group morphism GRTeℓℓ(k) → GRTeℓℓ(k) such that the
bijection from Theorem 3.9 is equivariant (Proposition 3.14).

Knowing from Example 3.10 that Ell(k) is non-empty, we obtain that
GRTeℓℓ(k)→ GRTeℓℓ(k) is an isomorphism.
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CHAPTER 4

THE MODULE OF PARENTHESIZED ELLIPSITOMIC BRAIDS

In this chapter, Γ denotes the abelian group Γ = Z/MZ× Z/NZ where M, N ≥ 1

are two integers. We also write 0 := (0̄, 0̄).

4.1. Compactified twisted configuration space of the torus

Let T be the topological torus, and consider the connected Γ-covering p : T̃ → T
corresponding to the canonical surjective group morphism ρ : π1(T) = Z2 → Γ sending
the generators of Z2 to their corresponding reduction in Γ. To any finite set I with
cardinality n we associate the Γ-twisted configuration space

Conf(T, I, Γ) :=
{
z = (z1, . . . , zn) ∈ T̃I

∣∣ p(zi) ̸= p(zj) if i ̸= j
}

,

and let C(T, I, Γ) := Conf(T, I, Γ)/T̃ be its reduced version.

The inclusion

(4.1) Conf(T, I, Γ) ↪→ Conf(T̃, I × Γ)

sending (zi)i∈I to (γ · zi)(i,γ)∈I×Γ induces an inclusion

C(T, I, Γ) ↪→ C(T̃, I × Γ) ↪→ C(T̃, I × Γ),

which allows us to define C(T, I, Γ) as the closure of C(T, I, Γ) inside C(T̃, I×Γ). The
boundary ∂C(T, I, Γ) = C(T, I, Γ)−C(T, I, Γ) is made up of the following irreducible
components: for any partition J1

∐
· · ·
∐

Jk of I there is a component

∂J1,...,Jk
C(T, I, Γ) ∼=

k∏
i=1

(C(C, Ji))× C(T, k, Γ).

The inclusion of boundary components provides C(T,−, Γ) with the structure of a
module over the operad C(C,−) in topological spaces.
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On the one hand, the left action of Γ on T̃ gives us an action of ΓI , resp. ΓI/Γ,
on Conf(T̃, I×Γ), resp. C(T̃, I×Γ). On the other hand, ΓI also acts on Conf(T̃, I×Γ)

and C(T̃, I × Γ) in the following way:

(α · z)(i,γ) := zi,γ+α.

The inclusion (4.1) is ΓI -equivariant, so that one gets a diagonally trivial Γ-action
on C(C,−), in the sense of §1.6.

4.2. The Pa-module of labeled parenthesized permutation

For every finite set I, there is a ΓI/Γ-covering map

ϕI : C(T, n,Γ) −→ C(T, n),

which extends to a continuous map

ϕ̄I : C(T, I, Γ) −→ C(T, I),

everything being natural (with respective to bijections) in I. This defines a mor-
phism ϕ̄ of C(C,−)-modules from C(T,−, Γ) to C(T,−).

Recall from §3.3 that there are inclusions of topological operadic modules
Pa ⊂ C(S1,−) ⊂ C(T,−) over Pa ⊂ C(R,−) ⊂ C(C,−). We define the S-module
PaΓ := ϕ̄−1Pa, which carries a Pa-module structure. Indeed, it is a fiber product

PaΓ := Pa ×
C(T,−)

C(T,−, Γ)

in the category of Pa-modules in topological space.

The Pa-module PaΓ admits the following algebraic description. First of all, it is
discrete, in the sense that spaces of operations are discrete (i.e., they are just sets).
Then, an element of PaΓ(n) is a parenthesized permutation of 1, . . . , n together with
a label function {1, . . . , n} → Γ that is defined up to a global relabeling (i.e., the
labeling is an element of Γn/Γ). For instance, 2γ10 = 201−γ belongs to PaΓ(2) for
every γ ∈ Γ. In geometric terms, having the label [γ1, . . . , γn] means that, in our
configuration of points, the (−γi) · zi’s are on the same parallel of the torus. Here is
a self-explanatory example of partial composition:

(302γ)1δ ◦2 (12)3 = (30((2γ3γ)4γ))1δ.

Finally, PaΓ is acted on by Γ in the following way: for n ≥ 0, Γn only acts on the
labellings, via the group law of Γ. For instance, if [α] ∈ Γn/Γ and γ ∈ Γn, then
γ · [α] := [γ + α].

In other words, according to the terminology of §1.6 and §1.7, PaΓ is identified
with G(Pa→ Γ).
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4.3. The PaB-module of parenthesized ellipsitomic braids

We define
PaBΓ

eℓℓ := π1

(
C(T,−, Γ),PaΓ

)
,

which is a PaB-module (in groupoids), that also carries a diagonally trivial action
of Γ. The morphism ϕ̄ induces a PaB-module morphism PaBΓ

eℓℓ → PaBeℓℓ.

Example 4.1 (Notable arrows in PaBΓ
eℓℓ). – Recall the following notable arrows

in PaBeℓℓ:
— A1,2 and B1,2 are automorphisms of 12 in PaBeℓℓ(2).
— R1,2 goes from 12 to 21 in PaBeℓℓ(2).
— Φ1,2,3 goes from (12)3 to 1(23) in PaBeℓℓ(2).

All are represented by paths which, apart from the endpoints that are in Pa, remain
in the open part C(T, n) of the configuration spaces (n = 2, 3). Let us set α := (1̄, 0̄)

and β := (0̄, 1̄). Since there are covering maps

C(T, n,Γ) −→ C(T, n),

then these paths admits unique lifts, with starting point being the same parenthesized
permutation with the trivial labeling (the one being constantly equal to 0). These lifts
are denoted the same way:

— The lift A1,2 goes from 1020 to 1α20 = 102−α in PaBΓ
eℓℓ(2).

— The lift B1,2 goes from 1020 to 1β20 = 102−β in PaBΓ
eℓℓ(2).

— etc.
Here is a drawing of paths representing A1,2 and B1,2:

z3
(1;1)

z3
0

z2
0

z1
0

z3
(0�;1�)

z2
(1�;0�)

We may chose to alternatively depict them as diagrams representing elliptic pure
braids (i.e., loops in the base configuration space) together with appropriate base
points (which uniquely determines the lift in the covering twisted configuration space):
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A1,2 =

10

1α

20

20

+ and B1,2 =

10

1β

20

20

−

Remark 4.2. – It is important to observe that, the action of Γ being diagonally
trivial, one can shift the global labeling of the indexed points, and thus A1,2 and B1,2

can also be represented as follows:

A1,2 =

10

10

20

2−α

+ and B1,2 =

10

10

20

2−β

−

As for R1,2 and Φ1,2,3, they are depicted in the usual way:

R1,2=

10

20

20

10

and Φ1,2,3=

(10

10

20)

(20

30

30)

Actually, every morphism in PaBeℓℓ can be uniquely lifted to PaBΓ
eℓℓ, once the

lift of the source object has been fixed; all other lifts are obtained by the Γ-action.
Moreover, all morphisms can be obtained like this. This shows that the PaB-module
PaBΓ

eℓℓ has an alternative simple algebraic descrition that we explain now. First ob-
serve that the PaB-module PaBeℓℓ comes with a morphism π to the ∗-module Γ,
which is the composition of the abelianization morphism to Z2 with the projec-
tion Z2 → Γ.

In terms of the presentation from Theorem 3.3,

π(A) = α1 = [(1̄, 0),0] and π(B) = β1 = [(0, 1̄),0],

where we adopt the following notation:

Notation 4.3. – For γ ∈ Γ and 1 ≤ i ≤ n, then we write

γi := [0, . . . ,0, γ
i
,0, . . . ,0] ∈ Γn/Γ.

Proposition 4.4. – There is an isomorphism

G
(
PaBeℓℓ → Γ

)
−̃→PaBΓ

eℓℓ

of PaB-modules with a Γ-action, which is is the identity on objects.

Proof. – We first describe the morphism:
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— It is the identity on objects;

— Given two labeled parenthesized permutations (p, γ) and (q, δ), it sends a the
class in PaBeℓℓ of a path f : p → q such that γ + π(f) = δ to the class of the
unique lift of f that starts at the base point determined by (p, γ).

As we have already seen, to show that this morphism is in fact an isomorphism, it suf-
fices to show that it is an isomorphism at the level of automorphism groups of objects
arity-wise. This is indeed the case, as on both sides, in arity n, the automorphism
group of an object is the kernel of the morphism PB1,n → Γn/Γ sending Xi to (1̄, 0̄)i

and Yj to (0̄, 1̄)j .

4.4. The universal property of PaBΓ
eℓℓ

We are now ready to provide an explicit presentation for the PaB-module PaBΓ
eℓℓ.

As before, we keep the convention that α = (1̄, 0̄) and β = (0̄, 1̄).

Theorem 4.5. – As a PaB-module in groupoids with a diagonally trivial Γ-ac-
tion and having PaΓ as Pa-module of objects, PaBΓ

eℓℓ is freely generated by A :

1020 → 1α20 and B : 1020 → 1β20, together with the following relations, satisfied
in AutPaBΓ

eℓℓ(3)⋊(Γ3/Γ)

(
(1020)30

)
:

Φ1,2,3A1,23R̃1,23Φ2,3,1A2,31R̃2,31Φ3,1,2A3,12R̃3,12 = Id(1020)30
(tN1)

Φ1,2,3B1,23R̃1,23Φ2,3,1B2,31R̃2,31Φ3,1,2B3,12R̃3,12 = Id(1020)30
(tN2)

R1,2R2,1 =
(
Φ1,2,3A1,23(Φ1,2,3)−1, R̃1,2Φ2,1,3B2,13(Φ2,1,3)−1R̃2,1

)
,(tE)

where A := Aα1 and B := Bβ1.

Remark 4.6. – The above relations are clearer when stated within the semidirect
product, even though they can be written within PaBΓ

eℓℓ itself. For instance, (tN1)
can be written as

Φ1,2,3A1,23α1 ·
(
R̃1,23Φ2,3,1A2,31α2 ·

(
R̃2,31Φ3,1,2A3,12

))
R̃3,12 = Id(1020)30

.

The expression for (tE) becomes unpleasant to write.

Proof of the Theorem. – Let QΓ
eℓℓ be the PaB-module with the above presentation,

and let Qeℓℓ be the PaB-module with the presentation in Theorem 3.3. Our goal is
to prove that there is an isomorphism

G(Qeℓℓ → Γ)−̃→QΓ
eℓℓ

of PaB-modules with a Γ-action, which is is the identity on objects. The result will
then follow from Proposition 4.4.

By definition there is a morphism Qeℓℓ −→ QΓ
eℓℓ ⋊ Γ, which sends A to A, and B

to B. Moreover, when we compose this morphism with the projection QΓ
eℓℓ ⋊ Γ→ Γ,

we get back the morphism π : Qeℓℓ → Γ from the previous chapter, that sends A

to α1 and B to β1.
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By the adjunction from §1.7, we therefore get a morphism

G(Qeℓℓ → Γ) −→ QΓ
eℓℓ.

of PaB-modules with a Γ-action. It is surjective on morphisms, because both gener-
ators of QΓ

eℓℓ have preimages. Finally, as we have already seen, to show that this is
in fact an isomorphism, it suffices to show that it is an isomorphism at the level of
automorphism groups of objects arity-wise, and it is sufficient to do it for a single
object in every arity.

Let n ≥ 1 and let p̃ be the object (· · · ((1020)30) · · · )n0 of QΓ
eℓℓ(n) and

G
(
Qeℓℓ(n) → Γn/Γ

)
, which lifts p = (· · · ((12)3) · · · )n in Qeℓℓ(n). There is a

commuting diagram

1 // Aut
G
(
Qeℓℓ(n)→Γn/Γ

)(p̃) ////

��

AutQeℓℓ(n)(p) // Γn/Γ // 1

AutQΓ
eℓℓ(n)(p̃),

66

where the horizontal sequence is exact. Therefore the vertical morphism is injective,
and we are done.

4.5. Ellipsitomic Grothendieck-Teichmüller groups

Definition 4.7. – The (k-pro-unipotent version of the) ellipsitomic Grothendieck-
Teichmüller group is defined as

ĜT
Γ

eℓℓ(k) := Aut+OpRGrpdk

(
P̂aB(k), P̂aB

Γ

eℓℓ(k)
)Γ

,

where, as usual, the superscript Γ means that we are considering the subgroup
of Γ-equivariant automorphisms.

Let M ′, N ′ ≥ 1, and assume we are given a surjective group morphism

ρ : Γ ↠ Γ′ := Z/M ′Z× Z/N ′Z.

This gives a (surjective) map between the corresponding covering spaces of the torus,
which can be used to construct a morphism of C(C,−)-modules

C(T,−, Γ) −→ C(T,−, Γ′).

Following the construction of Sections 4.2 and 4.3, we get a morphism of PaB-modules

PaBρ
eℓℓ : PaBΓ

eℓℓ −→ PaBΓ′

eℓℓ.

The morphism PaBρ
eℓℓ is Γ-equivariant, and has a straightforward algebraic descrip-

tion:

— On objects, it consists in applying ρ to the labeling, keeping the underlying
parentheiszed permutation unchanged.
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— It sends the generating morphisms A1020 and B1020 in PaBΓ
eℓℓ to their counter-

parts (which are denoted the same way) in PaBΓ′

eℓℓ.

As a consequence, the PaB-module PaBΓ′

eℓℓ can be obtained as the quotient of PaBΓ
eℓℓ

by ker ρ. We therefore obtain a group morphism ĜT
Γ

eℓℓ(k) −→ ĜT
Γ′

eℓℓ(k).
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CHAPTER 5

ELLIPSITOMIC CHORD DIAGRAMS
AND ELLIPSITOMIC ASSOCIATORS

5.1. Infinitesimal ellipsitomic braids

In this paragraph and the next one, (Γ,0, +) can be any finite abelian group.

For any n ≥ 0 we define tΓ1,n(k) to be the bigraded k-Lie algebra with generators
xi (1 ≤ i ≤ n) in degree (1, 0), yi (1 ≤ i ≤ n) in degree (0, 1), and tγij (γ ∈ Γ, i ̸= j)
in degree (1, 1), and relations

tγij = t−γ
ji ,(tSeℓℓ1)

[xi, yj ] = [xj , yi] =
∑
γ∈Γ

tγij ,(tSeℓℓ2)

[xi, xj ] = [yi, yj ] = 0,(tNeℓℓ)

[xi, yi] = −
∑
j:j ̸=i

∑
γ∈Γ

tγij ,(tTeℓℓ)

[tγij , t
δ
kl] = 0,(tLeℓℓ1)

[xi, t
γ
jk] = [yi, t

γ
jk] = 0,(tLeℓℓ2)

[tγij , t
γ+δ
ik + tδjk] = 0,(t4Teℓℓ1)

[xi + xj , t
γ
ij ] = [yi + yj , t

γ
ij ] = 0,(t4Teℓℓ2)

where 1 ≤ i, j, k, l ≤ n are pairwise distinct and γ, δ ∈ Γ. We will call tΓ1,n(k) the
k-Lie algebra of infinitesimal ellipsitomic braids. Observe that

∑
i xi and

∑
i yi are

central in tΓ1,n. Then we denote by t̄Γ1,n(k) the quotient of tΓ1,n(k) by
∑

i xi and
∑

i yi,
and the natural morphism tΓ1,n(k)→ t̄Γ1,n(k) ; u 7→ ū.

There is an alternative presentation of tΓ1,n(k) and t̄Γ1,n(k):

Lemma 5.1. – The Lie k-algebra tΓ1,n(k) (resp. t̄Γ1,n(k)) can equivalently be presented
with the same generators, and the following relations: (tSeℓℓ1), (tSeℓℓ2), (tNeℓℓ),
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(tLeℓℓ1), (tLeℓℓ2), (t4Teℓℓ1), and, for every i ∈ I,

(tCeℓℓ)
[∑

j

xj , yi

]
=

[∑
j

yj , xi

]
= 0

(resp.
∑

j xj =
∑

j yj = 0).

Proof. – If xi, yi and tαij satisfy the initial relations, then[∑
j

xj , yi

]
= [xi, yi] +

[∑
j ̸=i

xj , yi

]
= −

∑
j:j ̸=i

∑
γ∈Γ

tγij +
∑
j:j ̸=i

∑
γ∈Γ

tγij = 0.

Now, if xi, yi and tαij satisfy the above relations, then relations [
∑
j

xj , yi] = 0 and

[xj , yi] =
∑

γ∈Γ tγij , for i ̸= j, imply that [xi, yi] = −
∑

j:j ̸=i

∑
γ∈Γ tγij . Now, re-

lations [
∑
k

xk, yj ] = 0 and [
∑
k

xk, xi] = 0 imply that [
∑
k

xk,
∑

γ∈Γ tγij ] = 0. Thus,

as [xi, t
γ
jk] = 0 if card{i, j, k} = 3, we obtain relation [xi + xj , t

γ
ij ] = 0, for i ̸= j. In

the same way we obtain [yi + yj , t
γ
ij ] = 0, for i ̸= j.

Both tΓ1,n(k) and t̄Γ1,n(k) are acted on by the symmetric group Sn, we get that

tΓeℓℓ(k) := {tΓ1,n(k)}n≥0 and t̄Γeℓℓ(k) := {̄tΓ1,n(k)}n≥0

define S-modules in grLiek. They are actually t(k)-module in grLiek, where partial
compositions are defined as follows (1): for I a finite set and k ∈ I,

◦k : tΓ1,I(k)⊕ tJ(k) −→ tΓ1,J⊔I−{k}(k)

(0, tuv) 7−→ t0uv

(tγij , 0) 7−→


tγij if k /∈ {i, j}∑

p∈J tγpj if k = i∑
p∈J tγip if j = k

(xi, 0) 7−→

{
xi if k ̸= i∑

p∈J xp if k = i

(yi, 0) 7−→

{
yi if k ̸= i∑

p∈J yp if k = i.

We call tΓeℓℓ(k), resp. t̄Γeℓℓ(k), the module of infinitesimal ellipsitomic braids, resp. of
infinitesimal reduced ellipsitomic braids. When k = C we write tΓ1,n := tΓ1,n(C) and
t̄Γ1,n := t̄Γ1,n(C).

1. We give the formulæ for tΓeℓℓ(k). Formulæ for t̄Γeℓℓ(k) are the exact same.
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Both t(k)-modules are acted on by Γ: any element γ = (γi)i∈I ∈ ΓI acts as

γ · xi = xi (i ∈ I),

γ · yi = yi (i ∈ I),

γ · tδij = t
δ+γi−γj

ij (δ ∈ Γ and i ̸= i).

We also have the following functoriality in Γ, with respect to surjections:

Proposition 5.2. – Let ρ : Γ1 ↠ Γ2 be a surjective group morphism, and
let a, b, c, d ∈ k such that ad − bc = | ker ρ|. There are ΓI

1-equivariant surjective
comparison morphisms tΓ1

1,I(k)→ tΓ2

1,I(k) and t̄Γ1

1,I(k)→ t̄Γ2

1,I(k), defined by

xi 7→ axi + byi, yi 7→ cxi + dyi, tγij 7→ t
ρ(γ)
ij .

These are morphisms of t(k)-modules in grLiek.

Proof. – This follows from direct computations.

Actually, these morphisms exhibit tΓ2

1,I(k), resp. t̄Γ2

1,I(k), as the quotient of tΓ1

1,I(k),
resp. t̄Γ1

1,I(k), by (ker ρ)I .

Remark 5.3. – Whenever Γi = Z/MiZ × Z/NiZ, there is a natural choice for the
scalars a, b, c, d. Indeed, if ρ : Γ1 → Γ2 is surjective, then there exists elements (a, b)

and (c, d) in the lattice M2Z×N2Z that generate the sublattice M1Z×N1Z. Hence,
in particular, the determinant ad− bc equals M1N1

M2N2
= | ker ρ|.

5.2. Horizontal ellipsitomic chord diagrams

In this paragraph we define the CD(k)-module CDΓ
eℓℓ(k) of ellipsitomic chord

diagrams.
We first consider the CD(k)-module Û (̄tΓeℓℓ(k)). Morphisms in Û (̄tΓeℓℓ(k)) can be

given a pictorial description, which mixes the features of the horizontal N -chord
diagrams from [9] (see also [14]) together with the elliptic chord diagrams from §3.4.
Diagrams corresponding to xi and yj are, respectively,

+

i

i

= +

i

i

γ
−γ

and −
j

j

= −
j

j

γ
−γ

and the one corresponding to tγij = t−γ
ji is

i j

i j

γ
−γ

=

i j

i j

γ
−γ
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Relations can be depicted as follows:

∓

±

i

i

j

j

−

±

∓

i

i

j

j

=
∑
γ∈Γ

i

i

j

j

γ
−γ

(tSeℓℓ2)

±

±

i

i

j

j

=

±

±

i

i

j

j

(tNeℓℓ)

+

−

i

i

−

−

+

ii

i

= −
∑
j;j ̸=i

∑
γ∈Γ

i

i

j

j

γ
−γ

(tTeℓℓ)

j ki l

i lj k

γ
−γ

δ
−δ

=

j ki l

i lj k

γ
−γ

δ
−δ

(tLeℓℓ1)

±
i

i

j

j

k

k

γ
−γ

=
±

i

i

j

j

γ
−γ

k

k

(tLeℓℓ2)
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i j k

i j k

γ

δ

−γ − δ

+

i j k

i j k

γ

−γ δ

−δ

=

i j k

i j k

γ + δ

−δ

−γ

+

i j k

i j k

δ

−δγ

−γ

(t4Teℓℓ1)

±
i

i

j

j

γ
−γ

+

±
i

i

j

j

γ
−γ

=
±

i

i

j

j

γ
−γ

+
±

i

i

j

j

γ
−γ

(t4Teℓℓ2)

∑
i

±
i

i

= 0.(tCeℓℓ)

One can notice that labels sum to 0 on each strand of all the above diagrams.

We are now ready to define the CD(k)-module CDΓ
eℓℓ(k).

— In arity n, objects of CDΓ
eℓℓ(k) are just labellings {1, . . . , n} → Γ up to a global

shift: Ob(CDΓ
eℓℓ(k))(n) = Γn/Γ.

— The ∗-module structure is given as follows on objects:
for every i, ◦i : Γn → Γn+m−1 is the partial diagonal

(α1, . . . , αn) 7−→ (α1, . . . , αi−1, αi, . . . , αi︸ ︷︷ ︸
m times

, αi+1, . . . , αn).

— Given two objects [α] = [α1, . . . , αn] and [β] = [β1, . . . , βn] in arity n, the
k-vector space of morphisms from [α] to [β] in CDΓ

eℓℓ(k) is the vector space of
horizontal Γ-chord diagrams such that, for every i, the sum of labels on the i-th
strand is βi − αi.

— The CD(k)-module structure on morphisms is the exact same as the one
for Û (̄tΓeℓℓ(k)).

Moreover, CDΓ
eℓℓ(k) carries an action of Γ, by translation on the labeling of objects.
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For every surjective group morphism ρ : Γ ↠ Γ′, the morphism of Proposition 5.2
gives rise to a Γ-equivariant surjective morphism

CDΓ
eℓℓ(k)→ CDΓ′

eℓℓ(k),

which exhibits CDΓ′

eℓℓ(k) as the quotient ker(ρ)\CDΓ
eℓℓ(k).

Example 5.4 (Notable arrows in CDΓ
eℓℓ(k)(2)). – Assume that Γ = Z/MZ×Z/NZ.

In addition to the arrows of Û (̄tΓ1,2(k)), we also have, in CDΓ
eℓℓ(k)(2),

I1,2
eℓℓ =

10

1α

20

20

α and J1,2
eℓℓ =

10

1β

20

20

β

recalling that α = (1̄, 0̄) and β = (0̄, 1̄).

Let us introduce I1,2
eℓℓ := I1,2

eℓℓα1 and J1,2
eℓℓ := J1,2

eℓℓβ1, that are automorphisms of 1020

in the semi-direct product groupoid CDΓ
eℓℓ(k)(2) ⋊ (Γ2/Γ). Then, by definition, for

every γ = (p̄, q̄) ∈ Γ,
Ad
(
(I1,2

eℓℓ)
p(J1,2

eℓℓ)
q
)
(t012) = tγ12.

Notation 5.5. – For later purposes, we also introduce the notation

X1,2
eℓℓ = x1 · Id1020 =

10

10

20

20

+
and Y 1,2

eℓℓ = y1 · Id1020 =

10

10

20

20

−

5.3. Parenthesized ellipsitomic chord diagrams

There is a Γ-equivariant morphism of modules ω3 : PaΓ → Ob(CDΓ
eℓℓ(k)), which

forgets the parenthesized permutation (and only remembers the labeling), over the
terminal operad morphism ω1 : Pa → ∗ = Ob(CD(k)) from §2.5. Hence we can
consider the fake pull-back PaCD(k)-module

PaCDΓ
eℓℓ(k) := ω⋆

3CDΓ
eℓℓ(k)

of parenthesized ellipsitomic chord diagrams, which is still acted on by Γ.

Remark 5.6. – As explained in Section 1.5, there is a map of S-modules
PaCD(k) −→ PaCDΓ

eℓℓ(k) and we keep the same symbol for the image in PaCDΓ
eℓℓ(k)

of an arrow in PaCD(k).
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X1,2 = 1·

10

20

20

10

H1,2 = t012·

10

10

20

20

a1,2,3 = 1·

(10

10

20)

(20

30

30)

Assuming again that Γ = Z/MZ × Z/NZ, the following relations hold in
EndPaCDΓ

eℓℓ(k)(2)⋊(Γ2/Γ)(1020):

• (I1,2
eℓℓ)

M = Id1020 ,

• (J1,2
eℓℓ)

N = Id1020 ,

•
(
I1,2

eℓℓ, J1,2
eℓℓ

)
= Id1020 .

These relations allow to unambiguously define, for every γ = (p̄, q̄) ∈ Γ, a mor-
phism K1,2

γ : 1020 → 1γ20 by

K1,2
γ := Kγγ1 = (I1,2

eℓℓ)
p(J1,2

eℓℓ)
q,

so that the assignment γ 7→ Kγ is multiplicative.

We also have the following relations in EndPaCDΓ
eℓℓ(k)(3)⋊(Γ3/Γ)

(
(1020)30

)
:

0 = X12,3
eℓℓ + Ad

(
a1,2,3X1,23

)
(X23,1

eℓℓ ) + Ad
(
X12,3(a3,1,2)−1

)
(X31,2

eℓℓ ),

0 = Y 12,3
eℓℓ + Ad

(
a1,2,3X1,23

)
(Y 23,1

eℓℓ ) + Ad
(
X12,3(a3,1,2)−1

)
(Y 31,2

eℓℓ ),

0 = I12,3
eℓℓ + Ad

(
a1,2,3X1,23

)
(I23,1

eℓℓ ) + Ad
(
X12,3(a3,1,2)−1

)
(I31,2

eℓℓ ),

0 = J12,3
eℓℓ + Ad

(
a1,2,3X1,23

)
(J23,1

eℓℓ ) + Ad
(
X12,3(a3,1,2)−1

)
(J31,2

eℓℓ ),∑
γ∈Γ

Ad(K1,2
γ )(H1,2) =

[
Ad
(
a1,2,3

)
(X1,23

eℓℓ ), Ad
(
X1,2a2,1,3

)
(Y 2,13

eℓℓ )
]
.

Definition 5.7. – The graded ellipsitomic Grothendieck-Teichmüller group is defined
as

GRTΓ
eℓℓ(k) := Aut+OpRCat(CoAlgk)

(
PaCD(k),PaCDΓ

eℓℓ(k))
)Γ

.

Recall that there is an isomorphism

Aut+OpRCat(CoAlgk)

(
PaCD(k),PaCDΓ

eℓℓ(k))
)Γ

≃ Aut+OpRGrpdk

(
GPaCD(k), GPaCDΓ

eℓℓ(k))
)Γ

.

For every group surjective morphism ρ : Γ → Γ′, and every a, b, c, d ∈ k such that
ad− bc = | ker(ρ)|, using the fact that ker(ρ)\PaCDΓ

eℓℓ(k) ≃ PaCDΓ′

eℓℓ(k), we obtain
a group morphism

GRTΓ
eℓℓ(k) −→ GRTΓ′

eℓℓ(k).
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5.4. Ellipsitomic associators

We now fix Γ := Z/MZ× Z/NZ.

Definition 5.8. – The set of ellipsitomic k-associators is

EllΓ(k) := Iso+
OpRGrpdk

((
P̂aB(k), P̂aB

Γ

eℓℓ(k)
)
,
(
GPaCD(k), GPaCDΓ

eℓℓ(k)
))Γ

.

Theorem 5.9. – There is a one-to-one correspondence between the set EllΓ(k) and
the set EllΓ(k) consisting of quadruples (µ, φ,A, B) ∈ Ass(k)×exp

(
ˆ̄tΓ1,2(k)

)
such that,

for A := Aα1 and B := Bβ1, the following relations hold in exp(̂̄tΓ1,3(k)) ⋊ (Γ3/Γ):

1 = φ1,2,3A1,23e−µ(t̄012+t̄013)/2φ2,3,1A2,31e−µ(t̄023+t̄012)/2φ3,1,2A3,12e−µ(t̄031+t̄032)/2,(5.1)

1 = φ1,2,3B1,23e−µ(t̄012+t̄013)/2φ2,3,1B2,31e−µ(t̄023+t̄012)/2φ3,1,2B3,12e−µ(t̄031+t̄032)/2,(5.2)

eµt̄012 =
(
φ1,2,3A1,23φ3,2,1, e−µt̄012/2φ2,1,3B2,13φ3,2,1e−µt̄012/2

)
.

(5.3)

Proof. – Let (F,G) be an ellipsitomic associator. We have already seen that the
choice of the operad isomorphism F corresponds bijectively to the choice of an
element (µ, φ) ∈ Ass(k). From the presentation of PaBΓ

eℓℓ, we know that G is
uniquely determined by the images of A1,2 ∈ HomPaBΓ

eℓℓ(k)(2)(1020, 1α20) and

B1,2 ∈ HomPaBΓ
eℓℓ(k)(2)(1020, 1β20). There are elements A, B ∈ exp(̂̄tΓ1,2(k)) such that

• G(A1,2) = A · I1,2
eℓℓ ;

• G(B11,2) = B · J1,2
eℓℓ .

These elements must satisfy relations (5.1), (5.2) and (5.3), that are images of (tN1),
(tN2) and (tE). Conversely, if (5.1), (5.2) and (5.3) are satisfied, then G is well-
defined.

Remark 5.10. – It follows from the alternative presentation of PaBΓ
eℓℓ (see Theo-

rem A.3) that EllΓ(k) is also in bijection with the set of

(µ, φ,A, B) ∈ Ass(k)×
(

exp
(̂̄
tΓ1,2(k)

))×2

satisfying

A12,3 = φ1,2,3A1,23φ3,2,1e−µt̄012/2φ2,1,3A2,13φ3,1,2e−µt̄012/2(5.4)

B12,3 = φ1,2,3B1,23φ3,2,1e−µt̄012/2φ2,1,3B2,13φ3,1,2e−µt̄012/2(5.5)

φ1,2,3eµt̄023φ3,2,1 =
(
A12,3φ1,2,3(A1,23)−1φ3,2,1, (B12,3)−1

)
.(5.6)
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As before, if we are given a surjective group morphism

ρ : Γ ↠ Γ′ := Z/M ′Z× Z/N ′Z,

then, given a, b, c, d ∈ k as in Remark 5.3, there is a bitorsor morphism(
ĜT

Γ
(k),EllΓ(k),GRTΓ(k)

)
−→

(
ĜT

Γ′

(k),EllΓ
′
(k),GRTΓ′(k)

)
.

In Chapter 6 we prove that ellipsitomic associators (with complex coefficients) do
exist.

Remark 5.11. – Drinfeld’s argument in [17] (see also [4]) that shows how to deduce
the existence of an associator over Q from the existence of an associator over C can
be repeated verbatim for ellipsitomic associators. We leave the details for future work.
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CHAPTER 6

THE KZB ELLIPSITOMIC ASSOCIATOR

In this chapter, Γ still denotes the abelian group Γ = Z/MZ × Z/NZ where
M, N ≥ 1 are two integers.

Recall from Theorem 5.9 that the set of ellipsitomic associators can be regarded,
either as the set of Γ-equivariant P̂aB(k)-module isomorphisms

P̂aB
Γ

eℓℓ(k) −→ GPaCDΓ
eℓℓ(k)

that are the identity on objects, or as quadruples (λ, Φ, A+, A−), where (λ, Φ) ∈ Ass(k)

and A± ∈ exp(̂̄tΓ1,2(k)), satisfying relations (5.1), (5.2), (5.3). The following result tells
us that the set EllΓ(C) is not empty. We write EllΓKZB := EllΓ(C)×Ass(C) {2π i, ΦKZ}.

Theorem 6.1. – There is an analytic map

H −→ EllΓKZB

τ 7−→ eΓ(τ) = (AΓ(τ), BΓ(τ)).

In particular, for each τ ∈ H, where H is the upper half-plane, the element
(2π i, ΦKZ, AΓ(τ), BΓ(τ)) is an ellipsitomic C-associator (i.e., it belongs to EllΓ(C)).

The rest of this chapter is devoted to the proof of the above theorem.

6.1. The pair eΓ(τ)

We adopt the convention for monodromy actions of [13, Appendix A]. First of all,
recall that t̄Γ1,2 is the Lie C-algebra generated by x := x̄1, y := ȳ2 and tα := t̄α12,
for α ∈ Γ, such that [x, y] =

∑
α∈Γ tα. We define the KZB ellipsitomic associator as

the couple

eΓ(τ) :=
(
AΓ(τ), BΓ(τ)

)
∈ exp(̂̄tΓ1,2)× exp(̂̄tΓ1,2)
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consisting in the renormalized holonomies along the straight paths from 0 to 1/M

and from 0 to τ/N , respectively, of the differential equation

(6.1) J ′(z) =

(
y +

∑
α∈Γ

(
e−

2π i vα
N ad(x) θ(z − α̃ + ad(x)|τ)

θ(z − α̃|τ)θ(ad(x)|τ)
− 1

ad(x)

)
(tα)

)
· J(z),

with values in the group exp(̂̄tΓ1,2) ⋊ Γ (here, vα is any integer such that α = (ūα, v̄α) ∈ Γ).
More precisely, Equation (6.1) has a unique solution J(z) defined over

{ s1

M + s2

N τ | s1, s2 ∈ R, s1 or s2 ∈ (0, 1)} and such that

J(z) ≃ (−z)t0

at z → 0.

Remark 6.2. – We always consider a branch of log that is defined outside the half
line R+τ , and we always make sure that the domains of definition never contain this
half-line. Above, we indeed have that every z in the domain of definition satisfies
−z /∈ R+τ .

We define

AΓ(τ) := J(z +
1

M
)−1(1̄, 0̄)J(z) ∈ exp(̂̄tΓ1,2) ⋊ Γ.

Then the A-ellipsitomic KZB associator AΓ(τ) is the exp(̂̄tΓ1,2)-component of AΓ(τ):

AΓ(τ) := AΓ(τ)(−1̄, 0̄) = J(z +
1

M
)−1(1̄, 0̄) · J(z) ∈ exp(̂̄tΓ1,2).

In the same way, we define

BΓ(τ) := J(z +
τ

N
)−1e−

2π i x
N (0̄, 1̄)J(z)

and the B-ellipsitomic KZB associator BΓ(τ) is then its exp(̂̄tΓ1,2)-component:

BΓ(τ) := BΓ(τ)(0̄,−1̄) = J(z +
τ

N
)−1e−

2π i x
N (0̄, 1̄) · J(z) ∈ exp(̂̄tΓ1,2).

6.2. The ellipsitomic KZB system

Recall from [13] the ellipsitomic KZB system, that is a several variables version of
the differential equation from the previous subsection:

(6.2)

{
∂ziF (z|τ)= Ki(z|τ)F (z|τ) (i = 1, . . . , n)

∂τF (z|τ) = ∆(z|τ)F (z|τ).

Here F (z|τ) is a holomorphic function (Cn × H)−Diagn,Γ ⊃ U −→ GΓ
n,

Diagn,Γ =

{
(z|τ) ∈ Cn × H | zi − zj ∈

1

M
Z +

τ

N
Z for i ̸= j

}
,

and the C-group GΓ
n, Ki(z|τ) ∈ exp(̂tΓ1,n) ⊂ GΓ

n, and ∆(z|τ) ∈ GΓ
n, are defined in [13].
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If one denotes zij = zi − zj , then

Ki(z|τ) = −yi +
∑
j;j ̸=i

∑
α∈Γ

(
e−2π i a ad(xi)

θ(zij − α̃ + ad(xi)|τ)

θ(zij − α̃|τ)θ(ad(xi)|τ)
− 1

ad(xi)

)
(tαij)

=
∑
j;j ̸=i

∑
α∈Γ

(
1

ad(xi)
+

tαij
zij − α̃

− 1

ad(xi)

)
(tαij) + O(1)

=
∑
j;j ̸=i

∑
α∈Γ

tαij
zij − α̃

+ O(1) =
∑
j;j ̸=i

∑
α∈Γ

tαij
zij − a0

M

+ O(1),

where O(1) stands for a holomorphic function on Cn × H. Then it follows directly
from the definition of ∆(z|τ) in [13, §3.3] that, for |zij | ≪ 1,

∆(z|τ) = − 1

2π i

∆0 +
1

2

∑
s⩾0

∑
γ∈Γ

As,γ(τ)

δs,γ − 2
∑
i<j

ad(xi)
s(t−γ

ij )

+ o(1),

where o(1) denotes a function of the form
∑

ij zijfij(z|τ), with fij ’s being holomorphic
on Cn × H.

Remark 6.3. – In Chapter 7 we study the modularity properties of the coeffi-
cients As,γ(τ).

We now determine a particular solution Fτ0,n,Γ of the ellipsitomic KZB system
(6.2), associated with every τ0 ∈ H.

Let Dn,Γ ⊂ (Cn × H)−Diagn,Γ be defined as{
(z, τ) ∈ Cn × H | zi = ai + biτ, ai, bi ∈ R, a1 < a2 < · · · < an < a1 +

1

M
,

bn < · · · < b1 < bn +
1

N

}
,

which is simply connected. A solution of the ellipsitomic KZB system on this domain
is then unique, up to right multiplication by a constant element in GΓ

n. Then, by
applying [12, Appendix A, Proposition 85] with un−1 = zn1, un−2 = z(n−1)1/zn1, . . . ,

u1 = z21/z31, we obtain a unique solution Fτ0,n,Γ with the expansion

Fτ0,n,Γ(z|τ0) ≃ z
t012
21 z

t013+t023
31 · · · zt01n+···+t0n−1,n

n1

in the region |z21| ≪ |z31| ≪ · · · ≪ |zn1| ≪ 1, (z, τ0) ∈ Dn,Γ. The sign ≃ means here
that any of the ratios of both sides is of the form

1 +
∑
k>0

∑
i,a1,...,an−1

r
i,a1,...,an−1

k (u1, . . . , un−1 | τ0),

where the second sum is finite with ai ≥ 0, i ∈ {1, . . . , n− 1}, r
i,a1,...,an−1

k (u1, . . . , un−1 | τ0)
has degree k, and is O(ui(log u1)

a1 · · · (log un−1)
an−1).
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In the remainder of this chapter, we keep τ fixed and consider
Fτ,n(z) := Fτ,n,Γ(z|τ), which is a solution of the first line of the ellipsitomic
KZB system (6.2), defined on

Dτ,n,Γ := {z ∈ Cn|(z, τ) ∈ Dn,Γ}

and taking its values in exp(̂tΓ1,n) ⊂ GΓ
n.

6.3. Generators for the group BΓ
1,n

Let us define, for (z0, τ) ∈ Dn,Γ, the group BΓ
1,n:= π1 (Conf(Eτ,Γ, n,Γ)/Sn, [z0]),

and recall that B1,n = π1 (Conf(Eτ,Γ, n)/Sn, [z0]). Now, since the canonical surjective
map

Conf(Eτ,Γ, n,Γ)/Sn ↠ Conf(Eτ,Γ, n)/Sn

defines a Γ-covering, then BΓ
1,n = ker(ρ), where ρ : B1,n → Γ sends σi to 0 = (0̄, 0̄),

Xi to (1̄, 0̄) and Yi to (0̄, 1̄). We let Ai (resp. Bi) be the class of the path given
by [0, 1] ∋ t 7→ z0 − t

M

∑n
j=i δj (resp. [0, 1] ∋ t 7→ z0 − t

N τ
∑n

j=i δj), so that
Xi = A−1

i Ai+1 (resp. Yi = B−1
i Bi+1). It then follows from the geometric description

of BΓ
1,n that AM

i , BN
i (i = 1, . . . , n) and

σ
(p̄,q̄)
i := Xp

i Y q
i σiY

−q
i+1X

−p
i+1

(
1 ≤ p ≤M, 1 ≤ q ≤ N

)
are generators of BΓ

1,n. Similarly, AM
i , BN

i (i = 1, . . . , n) and

P
(p̄,q̄)
ij := Xp

i Y q
i PijY

−q
i X−p

i

(
i < j, 1 ≤ p ≤M, 1 ≤ q ≤ N

)
generate PBΓ

1,n.
We denote with the same symbols AM

i , BN
i , σα

i and Pα
ij (α ∈ Γ, i = 1, ..., n) for the

projections of these elements to B
Γ

1,n := π1 (C(Eτ,Γ, n,Γ)/Sn, [z0]).

6.4. The monodromy morphism µn : B1,n → exp(̂tΓ1,n) ⋊ (Γn ⋊Sn)

Recall from [13, §3.1] the moduli space

MΓ
1,n := (Zn)2 ⋊ SLΓ

2 \
(
(Cn × H)−Diagn,Γ

)
of Γ-structured elliptic curves with n ordered marked points, where

SLΓ
2 :=

{(
a b
c d

)
∈ SL2(Z)

∣∣ a ≡ 1 mod M,d ≡ 1 mod N, b ≡ 0 mod N and c ≡ 0 mod M
}

.

The ellipsitomic KZB system (6.2) can be used to define a flat GΓ
n-bundle

(Pn,Γ,∇n,Γ) on MΓ
1,n (see [13, Theorem 3.9 & Theorem 3.12]), that descends

to a flat GΓ
n ⋊ (Γn ⋊ Sn)-bundle (P(Γ),[n],∇(Γ),[n]) on (Γn ⋊ Sn)\MΓ

1,n (see
[13, §3.5]). For every τ ∈ H, (Pn,Γ,∇n,Γ) restricts to a flat exp(̂tΓ1,n)-bundle
(Pτ,n,Γ,∇τ,n,Γ) on Conf(Eτ,Γ, n,Γ) (see [13, Theorem 1.11]), that descends to a flat
exp(̂tΓ1,n) ⋊ (Γn ⋊ Sn)-bundle (P(τ,Γ),[n],∇(τ,Γ),[n]) on Γn ⋊ Sn\Conf(Eτ,Γ, n,Γ) =

Sn\Conf(Eτ,Γ, n).
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This flat bundle determines a monodromy morphism

µz0
n = µz0

(τ,Γ),[n] : B1,n −→ exp(̂tΓ1,n) ⋊ (Γn ⋊Sn),

whose restriction to PBΓ
1,n takes values in exp(̂tΓ1,n). In other words, there is a mor-

phism of short exact sequences

1 // PBΓ
1,n

//

��

B1,n
//

µz0
n

��

Γn ⋊Sn
// 1

1 // exp(̂tΓ1,n) // exp(̂tΓ1,n) ⋊ (Γn ⋊Sn) // Γn ⋊Sn
// 1,

where the first vertical morphism is the monodromy morphism of ∇τ,n,Γ. It is impor-
tant to keep in mind that the monodromy morphism depends on the base point [z0],
e.g., for z0 ∈ Dτ,n,Γ.

Note that every local solution F of (the first line of) the ellipsitomic KZB system
(6.2) around z0 ∈ Dτ,n,Γ determines a local ∇(τ,Γ),[n]-flat section of P(τ,Γ),[n], and
thus can be used to compute the monodromy in a way that we explain now (we refer
to [13, Appendix A] for more details on our conventions).

For every loop γ based at [z0] in Conf(Eτ,Γ, n)/Sn, we consider its unique lift γ̃

starting at z0 ∈ Dτ,n,Γ, and choose a simply connected open neighborhood U of γ̃

that contains Dτ,n,Γ. Then the solution F extends uniquely to U , and we define

µz0
n ([γ]) := F

(
z0

)
F
(
hγ · z0

)−1
chγ ,

where hγ ∈ Γn ⋊Sn is such that γ̃(1) = hγ γ̃(0), and c is the non-abelian 1-cocycle
from [13] defining the underlying principal bundle of the flat connection.

Recall that for any other solution G defined on U , there exists g ∈ exp(̂tΓ1,n) ⋊ (Γn ⋊Sn)

such that G(z) = F (z)g for every z ∈ U . Hence µz0
n ([γ]) := G

(
z0

)
G
(
hγ · z0

)−1
chγ ,

and the monodromy does not depend on the choice of local solution.

Example 6.4. – Let us consider the domains

Hτ,n,Γ :=

{
z ∈ Cn | zi = ai + biτ, ai, bi ∈ R, bn < · · · < b1 < bn +

1

N

}
andVτ,n,Γ :=

{
z ∈ Cn | zi = ai + biτ, ai, bi ∈ R, a1 < a2 < · · · < an < a1 +

1

M

}
.

Both of these domains are simply connected, and contain Dτ,n,Γ. We denote FH(z),
resp. FV (z), the prolongation to Hτ,n,Γ, resp. to Vτ,n,Γ, of a given local solution F (z)

defined on Dτ,n,Γ. We then consider

Az0
i := µz0

n (Ai) = FH(z0)FH

z0 −
n∑

j=i

δj

M

−1

(−1̄, 0̄)i,...,n ∈ exp(̂tΓ1,n) ⋊ Γn
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and

Bz0
i := µz0

n (Bi)

= FV (z0)FV

z0 − τ

n∑
j=i

δj

N

−1

e
2π i
N (xi+···+xn)(0̄,−1̄)i,...,n ∈ exp(̂tΓ1,n) ⋊ Γn.

We also consider the projections of these elements on the first factor exp(̂tΓ1,n):

Az0
i := Az0

i (1̄, 0̄)i,...,n = FH(z0)FH

z0 −
n∑

j=i

δj

M

−1

∈ exp(̂tΓ1,n)

and

Bz0
i := Bz0

i (0̄, 1̄)i,...,n = FV (z0)FV

z0 − τ

n∑
j=i

δj

N

−1

e
2π i
N (xi+···+xn) ∈ exp(̂tΓ1,n).

We finally introduce the simply connected domain Sτ,n,Γ consisting of z ∈ Cn, with
zi = ai + biτ (ai, bi ∈ R) satisfying the following conditions:

— for every i < j, |ai − aj | < 1
M and |bi − bj | < 1

N ;

— for every i < j, zji /∈ R+τ .

Note that Sn(Dτ,n,Γ) ⊂ Sτ,n,Γ. We denote FS(z) the prolongation to Sτ,n,Γ of a given
local solution F (z) defined on Dτ,n,Γ, and then consider for every σ ∈ Sn,

σz0 := FS(z0)FS(σ · z0)
−1σ ∈ exp(̂tΓ1,n) ⋊Sn.

Observe that the (unique) homotopy class of a path going from z0 to σ ·z0 represents
the unique braid with underlying permutation σ such that for every i < j, the i-th
strand passes under the j-th strand whenever they cross (this is just a translation, in
terms of braids, of the condition that zji /∈ R+τ). In other words, denoting this braid
σ̃, σF = µF

n (σ̃). As before, we also consider the projection of σz0 ∈ exp(̂tΓ1,n)⋊Sn on
the first factor:

σz0 := σz0σ ∈ exp(̂tΓ1,n).

Even though µz0
n does not depend on the choice of local solution F , it is conjugated

to a morphism that does depend on F . Indeed, one can define

µF
n ([γ]) := F (z0)

−1µz0
n ([γ])F (z0) = F (hγ · z0)

−1chγ F (z0).

The resulting monodromy morphism µF
n does not depend on z0 (because it is a ratio

of two solutions of the ellipsitomic KZB system), but does depend on F . Whenever
F (z0) = 1, we obvisouly have µF

n = µz0
n .

In what follows, we considering the monodromy morphism µn := µF
n associated

with the particular solution F = Fτ,n from Section 6.2.
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6.5. Formulæ for µn : B1,n → exp(̂tΓ1,n) ⋊ (Γn ⋊Sn)

Lemma 6.5. – If σ = (12) ∈ Sn then σ̃ = σ1, and µn(σ̃) = eπ i t012σ.

Proof. – Only the last claim requires a proof. Let us consider z such that a1 < a2

(e.g., z ∈ Dτ,n,Γ), guaranteeing that σz = (z2, z1, z3, . . . , zn) ∈ Sτ,n,Γ. Recall the
expansion

F (z) ≃ z
t012
21 z

t013+t023
31 · · · zt01n+···+t0n−1,n

n1

in the region |z21| ≪ |z31| ≪ · · · ≪ |zn1| ≪ 1. Hence σ ·F (z) has a similar expansion,
and

F (σz) ≃ z
t012
12 z

t013+t023
32 · · · zt01n+···+t0n−1,n

n2

in the same region. With our choice of branch of log (see Remark 6.2, and the definition
of the domain Sτ,n,Γ), one gets that log(z12) = log(z21)− π i. Therefore

µn(σ̃) = F (σz)−1σ · F (z)σ ≃ eπ i t012σ.

The last equivalence is an equality, as µn(σ̃) is constant.

Let Φ = Φ1,2,3
0 be the image in exp(̂tΓ1,3) of the KZ associator Φ1,2,3

KZ from Exam-
ple 2.10 along the map exp(̂t3)→ exp(̂tΓ1,3) given by tij 7→ t0ij . Define

Φi := Φ1...i−1,i,i+1...n
0 · · ·Φ1...n−2,n−1,n

0 ∈ exp(̂tΓ1,n).

Proposition 6.6. – For every n ≥ 3, and every i = 2, . . . , n,

µn(Ai) = Φiµ2(A2)
1...i−1,i...nΦ−1

i and µn(Bi) = Φiµ2(B2)
1...i−1,i...nΦ−1

i .

Proof. – We first compute the monodromy µi,n := µG
n associated with another solu-

tion G of the (first line of the) ellipsitomic KZB system: the one (for a fixed τ) having
the expansion

G(z) ≃ z
t012
21 · · · z

t012+···+t01,i−1

i−1,1 z
t0i,n+···+t0n−1,n

n,i · · · zt0n−1,n

n,n−1

in the region where |z21| ≪ · · · ≪ |zi−1,1| ≪ 1 and |zn,n−1| ≪ · · · ≪ |zn,i| ≪ 1.
We claim that

µi,n(Ai) = µ2(A2)
1...i−1,i...n and µi,n(Bi) = µ2(B2)

1...i−1,i...n,

and only give the proof for Ai, as the proof for Bi is the exact same. The element Ai

can be represented by a path inside the region |z21| ≪ · · · ≪ |zi−1,1| ≪ 1 and
|zn,n−1| ≪ · · · ≪ |zn,i| ≪ 1, that keeps the coordinates z1, . . . , zi−1, as well as the dif-
ferences between the remaining coordinates, fixed. Hence, computing µG

n (Ai) amounts
to compute the monodromy along the same path for the differential equation

∂zn
G(z) =

n∑
j=i

Kj(z|τ)G(z),

where z = (z1, . . . , zi−1, zn + si, zn + si+1, . . . , zn + sn−1, zn). Now observe that the
difference

∑n
j=i Ki(z|τ) −K2(z1, zn|τ)1...i−1,i...n (where K2 is from the n = 2 points
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system) tends to 0 whenever zj → zn for j ≥ i and zℓ → z1 for ℓ < i. (1) Hence
µi,n(Ai) = µ2(A2)

1...i−1,i...n.
Finally, the two monodromy representations µn = µF

n and µi,n = µG
n are conju-

gated. Indeed,
µF

n ([γ]) = ΦF,G(hγ · z)µG
n ([γ])ΦF,G(z)−1,

with ΦF,G(z) := F (z)−1G(z) being constant as it is a ratio of two solutions of the
ellipsitomic KZB system. To conclude, we prove that ΦF,G = Φi. For this we consider
the rational universal KZ system from [17, (2.2)] (with ℏ = 1, and tij = t0ij), and
denote by F̃ (resp. G̃) the solution of this KZ system that have the same expansion
as F (resp. G). In the whole region where |zij | ≪ 1 for every i ̸= j, the ellipsitomic
KZB system and the rational KZ system only differ by a holomorphic part, therefore
F ≃ F̃ and G ≃ G̃ in this region. Therefore, as they are constant, ΦF,G = ΦF̃ ,G̃.
Finally, it is a standard fact that ΦF̃ ,G̃ = Φi (see again [17]).

Using similar techniques, one can actually prove that the restriction of µn on
Bn ⊂ B1,n coincides with the monodromy morphism for the rational KZ system from
[17, (2.2)] associated with the solution F̃ having the same expansion as F . In partic-
ular, µ3(σ2) = Φeπ i t̄023(23)Φ−1.

6.6. Algebraic relations for the ellipsitomic KZB associator

We now finish the proof of Theorem 6.1.

Remark 6.7. – The results of Sections 6.2, 6.4 and 6.5 remain true in the reduced
case, and we will make use of the same notation as in the previous sections.

1. More precisely,

Kj(z|τ) = −yj +
∑

ℓ:ℓ ̸=j

∑
α∈Γ

kα

(
ad(xj), zjℓ|τ

)
(tαjℓ),

where kα(u, v|τ) are formal power series in u with coefficient being meromorphic functions in v, and
satisfying the identity

kα(−u,−v|τ) + k−α(u, v|τ) = 0.

We refer to [13] for more details (see also the next chapter). In particular

kα

(
ad(xℓ), zℓj |τ

)
(tαℓj) + k−α

(
ad(xj), zjℓ|τ

)
(tαjℓ) = 0,

and thus
n∑

j=i

Kj(z|τ) = −
n∑

j=i

yj +

n∑
j=i

i−1∑
ℓ=1

∑
α∈Γ

kα

(
ad(xj), zjℓ|τ

)
(tαjℓ).

On the other hand,

K2(z1, zn|τ) = −
n∑

j=i

yj +

i−1∑
ℓ=1

n∑
j=i

∑
α∈Γ

kα

(
ad(xj), zn1|τ

)
(tαjℓ).

Therefore their difference indeed tends to 0 whenever zj → zn for j ≥ i and zℓ → z1 for ℓ < i.
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Let us set A := µ2(A2) and B := µ2(B2), both viewed in exp(̂̄tΓ1,2)⋊Γ2/Γ. In other
words,

A = Fτ,2(z,− 1

M
)−1(−1, 0)2Fτ,2(z, 0) = Fτ,2(z +

1

M
, 0)−1(1, 0)1Fτ,2(z, 0)

and

B = Fτ,2(z,− τ

N
)−1(0,−1)2Fτ,2(z, 0) = Fτ,2(z +

τ

N
, 0)−1(0, 1)1Fτ,2(z, 0).

One can easily check that the pair (A, B) coincides with the pair
(
AΓ(τ), BΓ(τ)

)
from Section 6.1. Indeed, if Fτ,2(z1, z2) is the solution of the ellipsitomic KZB sys-
tem defined on Dτ,2,Γ with expansion Fτ,2(z1, z2) ≃ z

t012
21 whenever |z21| ≪ 1, then

J(z) = Fτ,2(z, 0) is the solution of the differential Equation (6.1) with expanson
J(z) ≃ (−z)t0 whenever z → 0 from Section 6.1.

The identity A−1
3 A2 = σ1A

−1
2 σ1 obviously holding in B1,3, is equivalent to the

identity A3 = A2σ
−1
1 A2σ

−1
1 . Applying the monodromy morphism µ3 therefore yields

A12,3 = Φ1,2,3A1,23(Φ1,2,3)−1e−π i t̄012Φ2,1,3A2,13(Φ2,1,3)−1e−π i t̄012 ,(6.3)

that is (5.4). Similarly, the identity B3 = B2σ
−1
1 B2σ

−1
1 yields

B12,3 = Φ1,2,3B1,23(Φ1,2,3)−1e−π i t̄012Φ2,1,3B2,13(Φ2,1,3)−1e−π i t̄012 ,(6.4)

that is (5.5).
In B1,3, on also has (X2, Y3) = P23. Recalling that X2 = A3A

−1
2 and Y3 = B−1

3 ,
one gets P23 = (A3A

−1
2 , B−1

3 ) which, after applying the monodromy morphism µ3,
yields

Φe2π i t̄023Φ−1 = A12,3Φ(A1,23)−1Φ−1(B12,3)−1ΦA1,23Φ−1(A12,3)−1B12,3,(6.5)

which is (5.6)

This proves that the pair
(
AΓ(τ), BΓ(τ)

)
= (A, B) satisfies (5.4), (5.5) and

(5.6). Hence, according to Remark 5.10 it satisfies (5.1), (5.2) and (5.3), and thus
eΓ(τ) = (AΓ(τ), BΓ(τ)) defines an element in EllΓKZB.

This concludes the proof of Theorem 6.1. □

Remark 6.8. – If Γ is trivial, we retrieve relations (22), (23), (25) and (26) from
[12], up to some changes of convention (for the monodromy action, and for the open
subset of “base configurations” of marked points).
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CHAPTER 7

NUMBER THEORETIC ASPECTS:
EISENSTEIN SERIES

In the previous chapter we studied (the first line of) the ellipsitomic KZB system
(6.2) of differential equations and deduced from it an element in the set of ellipsitomic
associators over C. One of the main ingredients defining this differential system is given
by

(7.1) kγ(x, z|τ) := e−
2π i v

N x θ(z − γ̃ + x|τ)

θ(z − γ̃|τ)θ(x|τ)
− 1

x
,

where τ ∈ h, γ = (ū, v̄) ∈ Γ := Z/MZ×Z/NZ and γ̃ = u
M + v

N τ ∈ Λτ,Γ := 1
M Z+ τ

N Z is
any lift of γ. Here we implicitely used the canonical identification Γ ≃ Λτ,Γ/Λτ , where
Λτ := Z + τZ.

Denote by gγ(x, z|τ) := ∂xkγ(x, z|τ) its partial derivative with respect to x. In this
chapter we take a closer look at the functions As,γ(τ), defined in [13, Subsection 3.3]
as the Taylor coefficients of g−γ(x, 0|τ):

g−γ(x, 0|τ) =
∑
s≥0

As,γ(τ)xs.

After a brief account on Eisenstein series for congruence subgroups, we express As,γ(τ)

in terms of these Eisenstein series, giving evidence that they should be quasi-modular
forms for the group SLΓ

2 .

We end the chapter with some perspectives about ellipsitomic Grothendieck-
Teichmüller theory and twisted elliptic multiple zeta values.

7.1. Eisenstein series for SLΓ
2

We refer to [16, 41] for generalities about modular forms and Eisenstein series.
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Recall the Eisenstein series Gs, defined for all integers s ≥ 2 by

Gs(τ) :=

+∞∑
n=−∞

 +∞∑
m=−∞

m̸=0 if n=0

1

(m + nτ)s

 .

The Eisenstein series Gs are modular forms for SL2(Z) of weight s for s ≥ 3, and
G2 is quasimodular (in the sense of [31]). One easily sees that Gs(τ) = 0 when-
ever s is odd, and that the value of Gs at the cusp i∞ for an even s = 2n is
2ζ(s) = (−1)n+1 (2π)2nB2n

(2n)! , where Bs are Bernoulli numbers and ζ is the Riemann
zeta function. Hence, for every integer s ≥ 2, one defines the normalized Eisenstein
series Es(τ) := Gs(τ)

2ζ(s) .
Let us now introduce the functions Gs(z|τ) defined for (z|τ) ∈ C × h such that

z /∈ Λτ , and for every integer s ≥ 2 as

Gs(z|τ) :=

+∞∑
n=−∞

+∞∑
m=−∞

1

(m + nτ + z)s
.

For s ≥ 3, the series Gs(z|τ) is absolutely and locally uniformly convergent, and
defines a holomorphic function on h for every z ∈ C − Λτ . For s = 2, it is still
locally uniformly convergent, and thus still holomorphic, but is no longer absolutely
convergent (so that we are not allowed to re-order terms in the series).

For a fixed τ ∈ h, one can see that Gs(−|τ) is Λτ -periodic, so that Gs(z|τ) only
depends on the class [z] ∈ E×

τ = (C− Λτ )/Λτ .
Hence, for γ = (ū, v̄) ∈ Γ ≃ Λτ,Γ/Λτ ⊂ Eτ , we can define

Gs,γ(τ) :=

{
Gs(z|τ) with z = u

M + v
N τ if γ ̸= 0,

Gs(τ) otherwise.

Proposition 7.1. – Let s ≥ 3 and γ ∈ Γ. The function Gs,γ is a modular form of
weight s with respect to SLΓ

2 .

Proof. – This is a classical fact for γ = 0 (see [16, 41]). The proof is probably standard
and known to experts even in the case γ ̸= 0, but we provide it here as we could not
find a reference for it. We will first prove weak modularity, and then holomorphy at
the cusps.

Lemma 7.2 (Weak modularity). – For every s ≥ 3, τ ∈ h, z ∈ C − Λτ , and
α =

(
a b
c d

)
∈ SL2(Z),

Gs

(
α · (z|τ)

)
= (cτ + d)sGs(z|τ).

In particular, if s ≥ 3 and γ ∈ Γ−{0}, Gs,γ is weakly modular of weight s with respect
to SLΓ

2 .

Recall that α · (z|τ) :=
(

z
cτ+d |

aτ+b
cτ+d

)
.
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Proof. – For z /∈ Λτ , we compute:

Gs

(
α · (z|τ)

)
=

∑
(m,n)∈Z2

1(
m + n(aτ+b

cτ+d ) + z
cτ+d

)s
= (cτ + d)s

∑
(m,n)∈Z2

1(
m(cτ + d) + n(aτ + b) + z

)s
= (cτ + d)s

∑
(m,n)∈Z2

1

(m + nτ + z)s
= Gs(z|τ).

Observe that if (z′|τ ′) = α · (z|τ) with z′ = x + τ ′y, then z = (cτ + d)x + (aτ + b)y.
Hence the inverse of the action of α gives an isomorphism Eτ ′ → Eτ that is precisely
given by x + τ ′y 7→ (cτ + d)x + (aτ + b)y.

Now assume that α ∈ SLΓ
2 , which means that a ≡ 1 mod M , d ≡ 1 mod N , b ≡ 0

mod N and c ≡ 0 mod M . In particular, z′ ∈ Λτ ′,Γ if and only if z ∈ Λτ,Γ, and
moreover the induced composed isomorphism

Γ ≃ Λτ ′,Γ/Λτ ′ −̃→Λτ,Γ/Λτ ≃ Γ

is the identity.
Indeed, z′ = u

M + v
N τ ′ ∈ Λτ ′,Γ is sent to u

M d+ v
N b+

(
v
N a+ u

M c
)
τ ∈ u

M + v
N τ +Λτ .

Therefore, if γ ∈ Γ− {0},

Gs,γ(α · τ) = Gs

(
α ·
( u

M
+

v

N
τ |τ
))

= (cτ + d)sGs

( u

M
+

v

N
τ |τ
)

= Gs,γ(τ).

This ends the proof of the lemma.

Remark 7.3. – The proof does not work in the case s = 2 because we need to reorder
the terms of the series to prove the required identity. Nevertheless, for elements of the
form α = ( 1 H

0 1 ), we can keep n fixed and apply a shift by nH in the internal series
(the one running over m). Hence, for these α’s, the required identity is true even in
the case s = 2.

As the function Gs,γ is holomorphic on h, it remains to show that it is also holo-
morphic at all cusps for SLΓ

2 . Recall that these cusps are orbits of the action of SLΓ
2

on P1(Q) = Q ∪ {∞}.

Lemma 7.4. – For every s ≥ 3 and γ ∈ Γ−{0}, the function Gs,γ is holomorphic at
all cusps for SLΓ

2 .

Proof. – Recall that for every α =
(

a b
c d

)
∈ SL2(Z), the width of the cusp [α(∞)] is the

smallest positive integer H such that α ( 1 H
0 1 ) α−1 ∈ SLΓ

2 . This condition is equivalent
to the following requirements: M

∣∣acH, M
∣∣c2H, N

∣∣a2H, and N
∣∣acH. Since a and c

are relatively prime, this in turn boils down to the condition that M
∣∣cH and N

∣∣aH.
Now observe that, in order to prove that Gs,γ is holomorphic at this cusp, one is

reduced to prove that the function

Gs,γ,α : τ 7−→ (cτ + d)−sGs,γ(α · τ)
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is holomorphic at ∞. From the modularity property of Gs,γ , we know that Gs,γ,α is
H-periodic, and thus descends to a holomorphic function Ĝs,γ,α(q) = Gs,γ,α(τ)

defined on the punctured unit disk, with q = e
2π i τ

H . Hence it remains to show
that Gs,γ,α has a q-expansion with non-negative Fourier coefficients. Note further-
more that, according to Lemma 7.2, Gs,γ,α(τ) = G̃s(z|τ) with

z = (cτ + d)
u

M
+ (aτ + b)

v

N
=

u

M
d +

v

N
b + (

v

N
a +

u

M
c)τ = x +

K

H
τ,

K = uaH
N + v cH

M ∈ Z (and x = u
M d + v

N b ∈ Q). We let K = QH + R be the euclidean
division of K by H, define w := x + R

H τ , and compute:

Gs,γ,α(τ) =
∑

(m,n)∈Z2

1

(m + nτ + z)s
=

∑
(m,n)∈Z2

1

(m + nτ + w)s

=
∑
m∈Z

1

(m + w)s
+
∑
n≥1

∑
m∈Z

1

(m + nτ + w)s
+
∑
n≥1

∑
m∈Z

1

(m− nτ + w)s
.

Let us show that the three series in the last expression have a q-expansion with non-
negative coefficients, and start with

∑
m∈Z(m + w)−s. If w ∈ R then it is constant

in τ , and we are done. If w /∈ R, a standard calculation shows that∑
m∈Z

1

(m + w)s
=

(−2π i)s

(s− 1)!

+∞∑
r=1

rs−1e2π i rw =
(−2π i)s

(s− 1)!

+∞∑
r=1

rs−1e2πirxqRr.

The proofs for both double series are identical, hence we restrict ourselves to the first
one, and compute:∑

n≥1

∑
m∈Z

1

(m + nτ + w)s
=
∑
n≥1

(−2π i)s

(s− 1)!

+∞∑
r=1

rs−1e2πirxq(nH+R)r

=
∑
k≥1

 ∑
r|k

k
r
≡R mod H

rs−1e2πirx

 qk.

This ends the proof of the lemma.

The proof of Proposition 7.1 is now completed.

Remark 7.5. – It follows from the proof of Lemma 7.4 that in many cases (i.e., when-
ever w /∈ R), Gs,γ actually vanishes at the corresponding cusp. In the case of the
cusp [∞], Gs,γ does not vanish at the cusp only if γ = (ū, 0̄), u ∈ {1, . . . ,M − 1}. In
this case, the value at the cusp is ζ(s, u/M) + (−1)sζ(s,−u/M)−

(
M/u

)s, where

ζ(s, z) :=
∑
m≥0

1

(m + z)s

is the Hurwitz zeta function.
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Remark 7.6. – It is likely that, using a variation on Hecke’s trick (see e.g., [41,
Proposition 6]), one could prove that G2,γ is quasi-modular with respect to SLΓ

2 .

7.2. The coefficients As,γ(τ)

Let us recall some standard properties of the Weierstrass function ℘ : C× h −→ C
given by

℘(z|τ) =
1

z2
+

∑
(m,n)∈Z2−{(0,0)}

(
1

(z + m + nτ)2
− 1

(m + nτ)2

)
= G2(z|τ)−G2(τ).

In the variable z, it is even, periodic with respect to Λτ , and meromorphic with poles
of order two in Λτ . There exists a constant c ∈ C such that

℘(z|τ) = −∂2
z log

(
θ(z|τ)

)
+ c.

In a suitable punctured neighborhood of 0 (e.g., the maximal punctured open disk
centered at 0 which does not contain any lattice point), there is a Laurent expansion

℘(z|τ) =
1

z2
+

∞∑
k=0

f (2k)(0)

(2k)!
z2k =

1

z2
+

∞∑
k=1

(2k + 1)G2k+2(τ)z2k,

where f(z) = ℘(z|τ)− 1
z2 .

Proposition 7.7. – For every s ≥ 0, As,0(τ) = −(s + 1)Gs+2(τ).

Therefore As,0(τ) is a modular form of weight s + 2 for SLΓ
2 whenever s > 0, while

A0,0(τ) is only quasi-modular (of weight 2).

Proof. – This is proven in [12].
Roughly, one first sees that g0(x, 0|τ) = ∂2

x log
(
θ(x|τ)

)
+ 1/x2, which proves the

required equality for s ≥ 1. Then a specific analysis of the constant term (see e.g., [12,
§4.1]) tells us that g0(0, 0|τ) = 4π i ∂τ log η(τ) = −G2(τ), where η is the Dedekind eta
function.

Let now γ = (ū, v̄) ∈ Γ− {0}, and γ̃ = u
M + v

N τ ∈ Λτ,Γ − Λτ be a lift of γ. Recall
that we are interested in the Taylor coefficients As,γ(τ) of

g−γ(x, 0|τ) = ∂x

(
e

2π i v
N x θ(γ̃ + x|τ)

θ(γ̃|τ)θ(x|τ)
− 1

x

)
.

We define Fγ(x|τ) := e
2π i v

N x θ(γ̃+x|τ)
θ(γ̃|τ)θ(x|τ) , so that g−γ(x, 0|τ) = ∂xFγ(x|τ) + 1

x2 .

Lemma 7.8. – If we define

a1,γ(τ) :=
2π i v

N
+

∂xθ(γ̃|τ)

θ(γ̃|τ)
and as,γ(τ) := (−1)s Gs(τ)−Gs,γ(τ)

s
(s ≥ 2),

then Fγ(x|τ) = 1
x exp

(∑
s≥1

as,γ(τ)xs

)
.
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Proof. – We first compute:

∂2
x log

(
Fγ(x|τ)

)
= ∂2

x log
(
θ(γ̃ + x|τ)

)
− ∂2

x log
(
θ(x|τ)

)
= G2(x|τ)−G2(γ̃ + x|τ)

A simple calculation shows that

G2(x|τ) =
1

x2
+
∑
s≥0

(−1)s(s + 1)Gs+2(τ)xs

and that

G2(γ̃ + x|τ) =
∑
s≥0

(−1)s(s + 1)Gs+2,γ(τ)xs.

Hence

∂2
x log

(
Fγ(x|τ)

)
− 1

x2
=
∑
s≥0

(−1)s(s + 1)
(
Gs+2(τ)−Gs+2,γ(τ)

)
xs.

Knowing that
(

1
x −

∂xθ(x|τ)
θ(x|τ)

)
x=0

= 0, we obtain(
∂x log

(
Fγ(x|τ)

)
+

1

x

)
x=0

=
2π i v

N
+

∂xθ(γ̃|τ)

θ(γ̃|τ)
= a1,γ(τ),

and thus

∂x log
(
Fγ(x|τ)

)
+

1

x
= a1,γ(τ) +

∑
s≥0

(−1)s
(
Gs+2(τ)−Gs+2,γ(τ)

)
xs+1.

Finally, since
(

log(x)− log
(
θ(x|τ)

))
x=0

= 0, we get
(
log
(
Fγ(x|τ)

)
+ log(x)

)
x=0

= 0,
and thus

log
(
Fγ(x|τ)

)
+ log(x) = a1,γ(τ)x +

∑
s≥0

(−1)s Gs+2(τ)−Gs+2,γ(τ)

s + 2
xs+2 =

∑
s≥1

as,γ(τ)xs.

This shows that Fγ(x|τ) = 1
x exp

(∑
s≥1

as,γ(τ)xs

)
.

As a consequence, we get

Fγ(x|τ)− 1

x
=

exp

(∑
s≥1

as,γ(τ)xs

)
− 1

x
,

so that

∑
s≥0

As,γ(τ) := g−γ(x, 0|τ) = ∂x


exp

(∑
s≥1

as,γ(τ)xs

)
− 1

x

 .
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Hence As,γ can be expressed as an explicit linear combination of products of the
form as1,γ · · · ask,γ , with s1 + · · ·+sk = s+2, and we expect As,γ to be quasi-modular
of weight s+2 with respect to SLΓ

2 (as hinted from Remark 7.6 and Proposition 7.1).

7.3. Concluding remarks and outlook

Observe that t̄Γ1,2 is the free Lie algebra generated by x := x̄1, y := ȳ2 and tα := t̄α12,
for α ∈ Γ−{0}. Moreover, the element defining the differential Equation (6.1) lies in
the (degree completion of the) ideal generated by y and tα, α ∈ Γ−{0}. By Lazard’s
elimination theorem (see [30, Theorem 1]), as a Lie algebra this ideal is isomorphic to
the free Lie algebra generated by yn and tαn, n ≥ 0 and α ∈ Γ−{0}; the isomorphism
sends yn to ad(x)n(y) and tα to ad(x)n(tα).

As a consequence, AΓ(τ) and BΓ(τ) can be seen as elements of the formal power
series algebra C⟨⟨yn, tαn |n ≥ 0, α ∈ Γ−0⟩⟩. The coefficients of these series can be com-
puted as iterated integrals, and are Γ-twisted versions of Enriquez’s elliptic analogs
of multiple zeta values [21].

This approach to elliptic multiple zeta values at torsion points seems different to
that of the work of Broedel-Matthes-Richter-Schlotterer [10]. The relation between
the twisted elliptic multiple zeta values obtained in this paper and that in [10] deserves
further investigations. A comparison with the values at torsion points of Goncharov’s
multiple elliptic polylogarithms [25, Section 8] would also be interesting.

Finally, in addition to the agebraic properties of eΓ(τ), that are essentially given by
Theorem 6.1, it would be interesting to study its analytic and modularity properties.
In the elliptic case, when Γ is the trivial group, this was done in [19, §5.4 & §5.5], and
we expect something similar in the more general ellipsitomic case.

For the analytic properties of the ellipsitomic associator, it amounts to understand-
ing how eΓ(τ) depends on small variations of the modulus τ . For that, one can use
the second line of the ellipsitomic KZB system (6.2), and compute ∂τeΓ(τ). Indeed,
recall from [13, Subsection 2.3] that δs,γ acts as a derivation on t̄Γ1,2. We can modify
it in the following way, by introducing a new derivation

εs,γ := δs,γ − 2[(ad x)st−γ ,−].

Then the second line of the ellipsitomic KZB system (6.2) for n = 2 reads as

2π i ∂τF (z|τ) = −

∆0 +
1

2

∑
s≥0

∑
γ∈Γ

As,γ(τ)εs,γ + O(z)

 · F (z|τ),

where z = z12 and O(z) denotes a term of the form zf(z|τ), with f being holomorphic
on C× H. Hence, going along the lines of [19, §5.4] on can prove that

2π i ∂τAΓ(τ) = −

∆0 +
1

2

∑
γ∈Γ

∑
s⩾0

As,γ(τ)εs,γ

 ·AΓ(τ)
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and

2π i ∂τBΓ(τ) = −

∆0 +
1

2

∑
γ∈Γ

∑
s⩾0

As,γ(τ)εs,γ

 ·BΓ(τ).

The derivation εs,γ shall be relevant for the study of the ellipsitomic Grothendieck-
Teichmüller group, as well as of a yet to be defined analog of Tsunogai’s special
derivation algebra from [40] in the ellipsitomic case.
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APPENDIX

AN ALTERNATIVE PRESENTATION FOR PaBΓ
eℓℓ

In this appendix, we provide an alternative presentation for PaBΓ
eℓℓ, that we use

in Chapter 6 when proving that the monodromy of the ellipsitomic KZB connection
indeed gives rise to an ellipsitomic associator.

A.1. An alternative presentation for PaBeℓℓ

We first state and prove the result when the group Γ is trivial.

A.1.1. The relations (N1bis) and (N2bis). – We introduce three new relations, which
are satisfied in the automorphism group of the object (12)3 in PaBeℓℓ (this can be
seen topologically):

A12,3 = Φ1,2,3A1,23(Φ1,2,3)−1R̃1,2Φ2,1,3A2,13(Φ2,1,3)−1R̃2,1,(N1bis)

B12,3 = Φ1,2,3B1,23(Φ1,2,3)−1R̃1,2Φ2,1,3B2,13(Φ2,1,3)−1R̃2,1,(N2bis)

Φ1,2,3R2,3R3,2(Φ1,2,3)−1 =
(
A12,3Φ1,2,3(A1,23)−1(Φ1,2,3)−1, (B12,3)−1

)
.

(Ebis)

For instance, Equations (N1bis) and (N2bis) can be depicted as

(1

(1

2)

2)

3

3

± =

(1

(1

2)

2)

3

3

±

±

(N1bis, N2bis)
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eℓℓ

A.1.2. The statement

Theorem A.1. – As a PaB-module in groupoids having Pa as Pa-module of objects,
PaBeℓℓ is freely generated by A := A1,2 and B := B1,2, together with the relations
(N1bis), (N2bis), and (Ebis).

The above theorem is a direct consequence of Theorem 3.3 together with the fol-
lowing

Proposition A.2. – Let us consider a PaB-module in groupoids PaM, having Pa

as Pa-module of objects, and let A, B be a automorphisms of 12. Then

(i) Equations (N1) and (N1bis) are equivalent.

(ii) Equations (N2) and (N2bis) are equivalent.

(iii) If (N1) and (N2) are satisfied, then Equations (E) and (Ebis) are equivalent.

A.1.3. A useful observation. – Both (N1) and (N1bis) imply

A1,2R̃1,2A2,1R̃2,1 = Id12.

For both, this is obtained by applying (−)1,2,∅. Similarly, both (N1) and (N1bis) imply

B1,2R̃1,2B2,1R̃2,1 = Id12.

A.1.4. Proof of (i) and (ii) in Proposition A.2. – The following calculation takes place
in PaM(3). For ease of comprehension, we put a brace under a sequence of symbols
where we use a relation in order to pass to the next step.

Φ1,2,3A1,23 R̃1,23Φ2,3,1︸ ︷︷ ︸A2,31R̃2,31Φ3,1,2A3,12R̃3,12

= Φ1,2,3A1,23(Φ1,2,3)−1R̃1,2Φ2,1,3 R̃1,3A2,31︸ ︷︷ ︸ R̃2,31Φ3,1,2A3,12R̃3,12

= Φ1,2,3A1,23(Φ1,2,3)−1R̃1,2Φ2,1,3A2,13 R̃1,3R̃2,31Φ3,1,2︸ ︷︷ ︸A3,12R̃3,12

= Φ1,2,3A1,23(Φ1,2,3)−1R̃1,2Φ2,1,3A2,13(Φ2,1,3)−1R̃2,1 R̃12,3A3,12R̃3,12︸ ︷︷ ︸
= Φ1,2,3A1,23(Φ1,2,3)−1R̃1,2Φ2,1,3A2,13(Φ2,1,3)−1R̃2,1(A12,3)−1.

We repeatedly used (various forms of) the hexagon equation, and only at the last step
we used the useful observation from the previous paragraph. This gives that (N1) and
(N1bis) are both a consequence of each other. The proof that (N2) and (N2bis) are
equivalent is the same. □

A.1.5. Another useful fact. – One can also show that (N1) and (N1bis) are equivalent
to

(A.1) A12,3Φ1,2,3R̃1,23A23,1Φ2,3,1R̃2,31A31,2Φ3,1,2R̃3,12 = Id(12)3.
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A.1.6. Proof of (iii) in Proposition A.2. – Relation (N1bis) is equivalent to

Φ1,2,3(A1,23)−1(Φ1,2,3)−1A12,3 = R̃1,2Φ2,1,3A2,13(Φ2,1,3)−1R̃2,1.

Thus, (Ebis) is equivalent to

ΦR2,3R3,2Φ−1 =
(
R̃1,2Φ2,1,3A2,13(Φ2,1,3)−1R̃2,1, (B12,3)−1

)
.

Using R̃2,1B12,3 = B21,3R̃2,1, we deduce that (Ebis) is equivalent to

ΦR2,3R3,2Φ−1 = R̃1,2Φ2,1,3A2,13(Φ2,1,3)−1(B21,3)−1

× Φ2,1,3(A2,13)−1(Φ2,1,3)−1B21,3(R̃1,2)−1,

which is equivalent to

(Φ2,1,3)−1(R̃1,2)−1ΦR2,3R3,2Φ−1R̃1,2(B21,3)−1Φ2,1,3

= A2,13(Φ2,1,3)−1B21,3Φ2,1,3(A2,13)−1.

Now, by using

(Φ2,1,3)−1(R̃1,2)−1ΦR2,3R3,2Φ−1R̃1,2 = R̃1,3(Φ2,3,1)−1R2,3Φ3,2,1R3,21

(B21,3)−1 = (R3,21)−1B3,21(R21,3)−1

Φ2,1,3 = R21,3(Φ3,2,1)−1R̃3,2Φ2,3,1R̃1,3,

(Φ2,1,3)−1 = R̃1,3(Φ2,3,1)−1R̃2,3Φ3,2,1R3,21,

we obtain

R̃1,3(Φ2,3,1)−1R2,3Φ3,2,1B3,21(Φ3,2,1)−1R̃3,2Φ2,3,1R̃1,3

= A2,13R̃1,3(Φ2,3,1)−1R̃2,3Φ3,2,1B3,21(Φ3,2,1)−1R̃3,2Φ2,3,1R̃1,3(A2,13)−1.

After performing A2,13R̃1,3 = R̃1,3A2,31 in the r.h.s. of the above equation, one can
cancel out the R̃1,3 terms in both sides of the equation. We obtain, by performing the
permutation (123) 7→ (312) that

(Φ1,2,3)−1R1,2Φ2,1,3B2,13(Φ2,1,3)−1R̃2,1Φ1,2,3

= A1,23(Φ1,2,3)−1R̃1,2Φ2,1,3B2,13(Φ2,1,3)−1R̃2,1Φ1,2,3(A1,23)−1.

This is equivalent to

Φ1,2,3A1,23(Φ1,2,3)−1R̃1,2Φ2,1,3B2,13(Φ2,1,3)−1R̃2,1Φ1,2,3(A1,23)−1(Φ1,2,3)−1

= R1,2Φ2,1,3B2,13(Φ2,1,3)−1R̃2,1,

which is equivalent to

Φ1,2,3A1,23(Φ1,2,3)−1R̃1,2Φ2,1,3B2,13(Φ2,1,3)−1R̃2,1Φ1,2,3(A1,23)−1(Φ1,2,3)−1

(R̃2,1)−1Φ2,1,3(B2,13)−1(Φ2,1,3)−1(R1,2)−1 = Id(12)3 .

As (R1,2)−1R1,2R2,1 = R2,1 = (R̃1,2)−1, we obtain

R1,2R2,1 =
(
Φ1,2,3A1,23(Φ1,2,3)−1, R̃1,2Φ2,1,3B2,13(Φ2,1,3)−1R̃2,1

)
.
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eℓℓ

A.2. An alternative presentation for PaBΓ
eℓℓ

Below, we borrow the notation from Theorem 4.5.

Theorem A.3. – As a PaB-module in groupoids with a diagonally trivial Γ-action
and having PaΓ as Pa-module of objects, PaBΓ

eℓℓ is freely generated by A and B

together with the relations

A12,3 = Φ1,2,3A1,23(Φ1,2,3)−1R̃1,2Φ2,1,3A2,13(Φ2,1,3)−1R̃2,1,(tN1bis)

B12,3 = Φ1,2,3B1,23(Φ1,2,3)−1R̃1,2Φ2,1,3B2,13(Φ2,1,3)−1R̃2,1,(tN2bis)

Φ1,2,3R2,3R3,2(Φ1,2,3)−1 =
(
A12,3Φ1,2,3(A1,23)−1(Φ1,2,3)−1, (B12,3)−1

)
.

(tEbis)

In order to prove Theorem A.3, one can

(i) Either deduce it from Theorem 4.5 in a similar manner as we deduced Theo-
rem A.1 from Theorem 3.3.

(ii) Or deduce it from Theorem A.1 in a similar manner as we deduced Theorem 4.5
from Theorem 3.3.

Both strategies are straightforward to implement; this is left to the reader.
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Operads

PaB : Operad of parenthesized braids. 10

PaCD(k) : Operad of parenthesized chord diagrams. 14

PaBeℓℓ : PaB-module of elliptic parenthesized braids. 23

PaCDeℓℓ(k) : PaCD(k)-module of ellitpic parenthesized chord diagrams. 29

PaBΓ
eℓℓ : PaB-module of ellipsitomic parenthesized braids. 37

PaCDΓ
eℓℓ(k) : PaCD(k)-module of ellipsitomic parenthesized chord diagrams. 48

Groups

PBn : Pure braid group on the complex plane. 10

GT : Operadic Grothendieck-Teichmüller group. 17

ĜT(k) : k-pro-unipotent Grothendieck-Teichmüller group. 18

GRT(k) : Operadic graded Grothendieck-Teichmüller group. 19

GRT(k) : Graded Grothendieck-Teichmüler group. 20

PB1,n : Reduced pure braid group on the torus. 22

ĜTeℓℓ(k) : Operadic k-pro-unipotent elliptic Grothendieck-Teichmüller group. 31

ĜTeℓℓ(k) : k-pro-unipotent elliptic Grothendieck-Teichmüller group. 31

GRTeℓℓ(k) : Operadic graded elliptic Grothendieck-Teichmüller group. 32

GRTeℓℓ(k) : Graded elliptic Grothendieck-Teichmüller group. 33

ĜT
Γ

eℓℓ(k) : Operadic k-pro-unipotent ellipsitomic Grothendieck-Teichmüller group.
40

GRTΓ
eℓℓ(k) : Operadic graded ellipsitomic Grothendieck-Teichmüller group. 49

BΓ
1,n : Γ-decorated braid group on the torus. 56
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Spaces

C(C, I) : Reduced configuration space of I-indexed points in C. 9

C(C, I) : Fulton-MacPherson compactification of C(C, I). 9

Conf(C, n) : Configuration space of n points in C. 13

C(T, I) : Reduced configuration space of I-indexed points in T. 21

C(T, I) : Fulton-MacPherson compactification of C(T, I). 21

Conf(T, I, Γ) : Γ-decorated configuration space of I-indexed points in T. 35

C(T, I, Γ) : Reduced Γ-decorated configuration space of I-indexed points in T. 35

C(T, I, Γ) : Fulton-MacPherson compactification of C(T, I, Γ). 35

Lie and associative algebras

tn(k) : Rational Kohno-Drinfeld Lie k-algebra. 13

t1,n(k) : Elliptic Kohno-Drinfeld Lie k-algebra. 27

tΓ1,n(k) : Γ-ellipsitomic Kohno-Drinfeld Lie k-algebra. 43

Torsor sets

Assoc(k) : Operadic k-associators. 16

Ass(k) : k-associators. 16

Ell(k) : Operadic elliptic k-associators. 30

Ell(k) : Elliptic k-associators. 30

EllΓ(k) : Operadic ellipsitomic k-associators. 50

EllΓ(k) : Ellipsitomic k-associators. 50

Series

ΦKZ : KZ associator. 17

e(τ) : Elliptic KZB associator. 31

AΓ(τ) : A-ellipsitomic KZB associator. 54

BΓ(τ) : B-ellipsitomic KZB associator. 54

Gs,γ(τ) : Eisenstein-Hurwitz series. 64
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We develop a notion of ellipsitomic associators by means of operad theory.
We take this opportunity to review the operadic point-of-view on Drinfeld
associators and to provide such an operadic approach for elliptic associators
too. We then show that ellipsitomic associators do exist, using the monodromy
of the universal ellipsitomic KZB connection, that we introduced in a previous
work. We finally relate the KZB ellipsitomic associators to certain Eisenstein
series associated with congruence subgroups of SL2(Z), and to twisted elliptic
multiple zeta values.

Nous développons la notion d’associateur ellipsitomique au moyen de la théorie
des opérades. Nous saisissons cette opportunité pour revoir le point de vue
opéradique sur les associateurs de Drinfeld, et pour fournir également une telle
approche opéradique pour les associateurs elliptiques. Nous montrons ensuite
que les associateurs ellipsitomiques existent, en utilisant la monodromie de la
connexion KZB ellipsitomique universelle, que nous avions introduite dans un
travail précédent. Nous relions pour finir les associateurs ellipsitomiques KZB
à certaines séries d’Eisenstein associées aux sous-groupes de congruence de
SL2(Z), et aux valeurs zêta multiples elliptiques tordues.
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