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CONFORMALLY INVARIANT DIFFERENTIAL OPERATORS
ON HEISENBERG GROUPS

AND MINIMAL REPRESENTATIONS

Jan Frahm

Abstract. – For a simple real Lie group G with Heisenberg parabolic subgroup P ,
we study the corresponding degenerate principal series representations. For a certain
induction parameter the kernel of the conformally invariant system of second order
differential operators constructed by Barchini, Kable and Zierau is a subrepresentation
which turns out to be the minimal representation. To study this subrepresentation,
we take the Heisenberg group Fourier transform in the non-compact picture and show
that it yields a new realization of the minimal representation on a space of L2-func-
tions. The Lie algebra action is given by differential operators of order ≤ 3 and we
find explicit formulas for the functions constituting the lowest K-type.

These L2-models were previously known for the groups SO(n, n), E6(6), E7(7) and
E8(8) by Kazhdan and Savin, for the group G2(2) by Gelfand, and for the group
S̃L(3,R) by Torasso, using different methods. Our new approach provides a uniform
and systematic treatment of these cases and also constructs new L2-models for E6(2),
E7(−5) and E8(−24) for which the minimal representation is a continuation of the
quaternionic discrete series, and for the groups S̃O(p, q) with either p ≥ q = 3 or
p, q ≥ 4 and p+ q even.

As a byproduct of our construction, we find an explicit formula for the group
action of a non-trivial Weyl group element that, together with the simple action of a
parabolic subgroup, generates G.

Résumé (Opérateurs différentiels conformément invariants pour des groupes d’Heisen-
berg et représentations minimales)

Pour un groupe de Lie réel simple G, ayant pour sous-groupe parabolique de Hei-
senberg P , nous étudions les représentations de la série principale dégénérée associées
à ces données. La représentation minimale peut être identifiée au noyau du système
d’opérateurs différentiels conformément invariants construit par Barchini, Kable et
Zierau, pour un paramètre d’induction convenable. Pour étudier cette représentation,
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nous utilisons la transformation de Fourier pour le groupe d’Heisenberg dans la réali-
sation non-compacte et nous prouvons que cela conduit à une nouvelle réalisation de
la représentation minimale sur un espace de fonctions L2. L’action de l’algèbre de Lie
est donnée par des opérateurs différentiels d’ordre ≤ 3 et nous trouvons des formules
explicites pour les fonctions réalisant les K-types minimaux.

Ces modèles L2 étaient construits pour les groupes SO(n, n), E6(6), E7(7) et E8(8)

par Kazhdan et Savin, pour le groupe G2(2) par Gelfand, et pour le groupe S̃L(3,R)

par Torasso, en utilisant différentes méthodes. Notre nouvelle approche fournit un
traitement uniforme et systèmatique de ces exemples et construit également des nou-
veaux modèles L2 pour E6(2), E7(−5) et E8(−24), pour lesquels la représentation mi-
nimale est un prolongement de la série discrète quaternionique, ainsi que pour les
groupes S̃O(p, q) pour p ≥ q = 3 ou pour p, q ≥ 4 et p+ q pair.

Comme conséquence de notre construction, nous trouvons une formule explicite
pour l’action d’un élément non trivial du groupe de Weyl qui, en addition à l’action
simple d’un sous-groupe parabolique, génère le groupe G.
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INTRODUCTION

The classification of all irreducible unitary representations of a semisimple Lie
group is one of the key problems in representation theory, and it is still unsolved
for most groups. A guiding principle for the classification is the orbit philosophy
which proposes a tight relation between the unitary dual of a semisimple group G

and the set of coadjoint orbits in the dual space g∗ of the Lie algebra g of G. For
elliptic and hyperbolic coadjoint orbits, cohomological and parabolic induction provide
explicit constructions of the corresponding unitary representations, and the resulting
representations make up a large part of the unitary dual. For nilpotent orbits, however,
it is not clear in general how to apply the orbit philosophy to construct unitary
representations. Among the finitely many nilpotent coadjoint orbits of a simple Lie
group, there are one or two of minimal dimension, depending on whether the group
is of Hermitian type or not. Irreducible unitary representations corresponding to a
minimal nilpotent coadjoint orbit are called minimal representations. They are often
unique and in general a group can only have finitely many equivalence classes of
minimal representations.

The most prominent example of a minimal representation is the metaplectic rep-
resentation (also referred to as oscillator or Segal-Shale-Weil representation) of the
metaplectic group Mp(n,R), a double cover of the symplectic group Sp(n,R) (see
[84] for Weil’s original work). We refer the reader to Folland’s book [13] for a de-
tailed account on the construction of this representation and some of its properties.
Although the metaplectic representation plays an important role within the repre-
sentation theory of the metaplectic group, it is mostly its relevance in other areas
of mathematics and physics that have made this particular representation a truly
fascinating object within the last few decades.

The key role of the metaplectic representation in the representation theory of real
reductive groups is in the context of the theta correspondence, also referred to as
Howe’s dual pair correspondence. This correspondence was defined by Howe [39] and
relates irreducible representations of two different groups G1 and G2 that occur inside
the metaplectic group Mp(n,R) as a so-called dual pair, i.e., G1 and G2 are mutual
centralizers of each other. The theta correspondence is a map that associates to a
representation π ofG1 occurring inside the metaplectic representation a representation
θ(π) of G2 such that π ⊗ θ(π) occurs as a quotient of the metaplectic representation
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2 INTRODUCTION

restricted to G1 × G2. It was shown by Howe [40] that this establishes a bijection
between certain irreducible representations of G1 and G2.

The metaplectic representation also has a version over non-Archimedean local
fields, over global fields and even over finite fields. Corresponding theta correspon-
dences were established by Waldspurger [83], Mínguez [66], Gan-Takeda [20] and
Gan-Sun [19] for the case of local non-Archimedean fields, and by Rallis [70] for global
fields, and this is still a very active line of research. For instance, the theta correspon-
dence has been applied to the construction of new representations, to classification
problems, and to branching problems.

Apart from the theta correspondence, the metaplectic representation has also been
used in various other contexts such as classical invariant theory [40, 41], theta series
and the Maslov index [63], the Siegel-Weil formula in automorphic forms [16, 60, 85],
harmonic analysis [13, 30] and quantum mechanics [88], just to mention a few.

It seems natural to try to extend the extremely rich theory of the metaplectic rep-
resentation as a minimal representation of the metaplectic group Mp(n,R) to mini-
mal representations of more general reductive groups. The first step in this program
is the construction and classification of all minimal representations. For reductive
groups over Archimedean local fields, many different constructions can be found in
the literature. Let us list a few of them without claiming to be complete: Brylinski-
Kostant [5], Binegar-Zierau [4], Dvorsky-Sahi [9], Gelfand [21], Gross-Wallach [29],
Hilgert-Kobayashi-Möllers [38], Kazhdan-Savin [49], Kobayashi–Ørsted [55], Li [62],
Möllers-Schwarz [68], Sabourin [72], Savin [73], Torasso [78, 79], Vogan [81, 82]. It was
believed that the thus obtained list of minimal representations is in fact exhaustive,
and this was recently shown by Tamori [77], building on ideas of Gan-Savin [18].
For p-adic groups, minimal representations were constructed by Kazhdan-Savin [49],
Rumelhart [71], Savin [73], Torasso [79] and Weissman [86]. An overview together
with a global picture can be found in the paper by Gan and Savin [18].

Subsequently, minimal representations of general reductive groups over local fields
have turned out to be useful from various different points of view. For instance, their
geometric realizations are a particularly rich source to do classical harmonic analysis,
a viewpoint that has been particularly advocated by Kobayashi [52]. Special func-
tions such as orthogonal polynomials or Bessel functions are often used to express
explicit K-finite vectors in the representation spaces, see e.g., [37]. Moreover, explicit
geometric realizations are often connected to interesting analytic and geometric prob-
lems such as partial differential equations on manifolds, see [54, 55, 56]. Many of these
features also become apparent in this work.

Minimal representations can further be used to study certain Fourier coefficients of
automorphic forms [3, 26, 25, 48] and to construct more general theta series, see [48].
Finally, versions of the theta correspondence have been established in some cases in-
volving exceptional groups, see e.g., the work of Ginzburg-Jiang [22], Ginzburg-Rallis-
Soudry [23], Gross-Savin [27], Huang-Pandzic-Savin [42], Li [61, 62], Loke-Savin [64],
Magaard-Savin [65] and Weissman [87], just to name a few.

MÉMOIRES DE LA SMF 180



INTRODUCTION 3

What many of these applications have in common is that they rely on a rather
explicit realization of the minimal representation. In particular in the Archimedean
setting, where delicate analytic problems arise, it is often vital to be able to construct
explicit vectors in the representation spaces and compute group actions on them.
There is one particular type of realization that has turned out to be extremely useful
for such purposes, a realization referred to as L2-model or Schrödinger model. In
the Archimedean context, one could define an L2-model of a unitary representation
as a realization on a Hilbert space of L2-functions such that the Lie algebra acts
by differential operators. L2-models of minimal representations have essentially been
constructed in two different settings which we now briefly describe.

The first class of groups for which L2-models of minimal representations have
been constructed in a uniform way are simple Lie groups G possessing a parabolic
subgroup P = MAN with abelian nilradical N , also referred to as Siegel parabolic
subgroups. For such groups G, minimal representations can often be found as proper
subrepresentations of the corresponding degenerate principal series IndG

P (χ) for a cer-
tain real-valued character χ of P . The subrepresentations arise as the kernel of a
system of second order differential operators. These differential operators can most
easily be described in the so-called non-compact picture of the degenerate principal
series. The non-compact picture is a realization on a space of functions on the op-
posite nilradical N . Identifying N with its Lie algebra n, the differential operators
become second order constant coefficient differential operators on n. For instance,
for G = O(p, q) we have n ≃ Rp+q−2 and the system consists of a single differential
operator whose symbol is a quadratic form of signature (p − 1, q − 1) (see [54]), and
for G = Mp(n,R) the system of differential operators on n ≃ Sym(n,R), the real
symmetric n× n matrices, has as symbols the 2× 2 minors.

In order to obtain an L2-model of this subrepresentation, the Euclidean Fourier
transform S ′(n) → S ′(n), u 7→ û, is employed. It turns the system of constant co-
efficient differential operators P (∂) into a system of multiplication operators P (x)

and hence the differential equations P (∂)u = 0 turn into P (x)û = 0 which implies
a support condition supp û ⊆ {P (x) = 0} on n. For instance, for G = O(p, q) the
Fourier transform of a function in the subrepresentation is a distribution supported
on the isotropic cone in n ≃ Rp+q−2 associated with a quadratic form of signature
(p − 1, q − 1), and for G = Mp(n,R) they are supported on the zero set of all 2 × 2

minors in n ≃ Sym(n,R) which is the subvariety of rank one symmetric n × n ma-
trices. In general, the submanifold on which these Fourier transforms are supported
is an orbit O ⊆ n of Ad(MA) of minimal possible dimension, and one can show that
in many cases this yields a realization of the minimal representation on L2(O, dµ)

with respect to a certain Ad(MA)-equivariant measure dµ on O. This was first ob-
served by Vergne-Rossi [80] in the case of Hermitian groups and later generalized by
Dvorsky-Sahi [9], Kobayashi–Ørsted [55] and Möllers-Schwarz [68] to cover all cases
(see also Goncharov [24] for the underlying Lie algebra representation and Hilgert-
Kobayashi-Möllers [38] for a uniform construction including the full action of the Lie
algebra).
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The second class of groups where L2-models of minimal representations are known
are simple real Lie groups G having a Heisenberg parabolic subgroup P = MAN ,
i.e., the nilradical N is a Heisenberg group. For some of these groups G, L2-models
of minimal representation can be found in the literature, but the constructions differ
from case to case, and some groups are not treated at all although they do possess
a minimal representation. The probably most famous representation among them
is Torasso’s representation of G = S̃L(3,R), the double cover of SL(3,R), see [78].
Strictly speaking, this representation is not minimal, because there is no notion of
minimality for type A groups, but it is thought to correspond to the minimal nilpotent
coadjoint orbit in a certain sense. Torasso’s representation is realized on L2(R× ×R)

and he provides explicit formulas for the action of both the group G and its Lie algebra
as well as for the lowest K-type. Similar formulas for the group and Lie algebra action
can be found in the construction of Kazhdan and Savin [49] for the split simply-
laced groups SO(n, n), E6(6), E7(7) and E8(8), although the method seems to be quite
different. They construct in a natural way a representation of P on L2(R× × Λ) for
some Lagrangian subspace Λ ⊆ V of the symplectic vector space V defining the
Heisenberg group N , and prove that this representation extends in a unique way to a
minimal representation of G. What remains mysterious in their construction is why
the extension from P to G exists. Later, Savin [73] applied the same construction to
the group G = G2(C). We remark that in the case of G = G2(2), formulas for the Lie
algebra action already appear in the work of Gelfand [21], but without reference to
the unitary structure of this representation. Later, Sabourin [72] obtained a similar
model for the minimal representation of S̃O(4, 3) using a variant of the orbit method.
Note that some of these constructions also work over non-Archimedean local fields.

While the above constructions for groups with Heisenberg parabolic subgroup are
different in nature, the obtained realizations seem to be closely related. The main
motivation for this work was to find a uniform construction of all these minimal rep-
resentations in the spirit of the construction in the case of Siegel parabolic subgroups.
The key ideas here were to exhibit the minimal representation inside a degenerate
principal series IndG

P (χ) as the kernel of a system of differential operators, and then
take an appropriate Fourier transform. Roughly speaking, these ideas can indeed be
applied in the Heisenberg parabolic case. In fact, several authors already noted that
the minimal representation is a subrepresentation of a degenerate principal series of
the form IndG

P (χ), see [29, Corollary 13.7 and Proposition 14.11] for SO(4, 4), E6(2),
E7(−5), E8(−24) and G2(2) and [72, Theorem 4.2.2] for S̃O(4, 3) (see also [49, Theo-
rem 4] for the p-adic groups D4, E6, E7 and E8). In some of these works, it is even
indicated that the minimal representation is the kernel of a system of second order
differential operators, but this is not pursued further.

More recently, Barchini, Kable and Zierau [2] constructed in a systematic way
conformally invariant systems of differential operators on the opposite nilradical N
of a Heisenberg parabolic subgroup P . As we explain in detail below, these systems
are related to certain polynomial maps on the symplectic vector space defining the
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Heisenberg groupN that we call symplectic invariants. There are symplectic invariants
of order one (the symplectic form), two (a moment map), three and four, and each
of them gives rise to a system of differential operators of the same order whose joint
kernel is a subrepresentation of a certain degenerate principal series IndG

P (χ). In this
work we focus on the system of order two and show that its joint kernel is in many
cases a minimal representation. For this, we make extensive use of the structure theory
for Heisenberg parabolic subalgebras developed by Slupinski-Stanton [76, 74, 75].

Let us remark that the joint kernel of the second order conformally invariant oper-
ators has been studied in a few examples, mostly algebraically (see e.g., the work of
Kable [44, 47, 46] and Kubo–Ørsted [59]). In particular, an analysis of the correspond-
ing representations was missing so far, probably due to the fact that the differential
operators do no longer have constant coefficients but are left-invariant operators on
the Heisenberg group. This suggests to consider the Heisenberg group Fourier trans-
form in order to understand the joint kernel of these differential operators, and in this
work we attempt to carry out this analysis in a uniform way in the case where the
group G is non-Hermitian. For the Hermitian case we refer to a subsequent paper [14].

The Heisenberg group Fourier transform is more difficult to deal with since the
Fourier transform of a function is operator-valued, thus adding a non-commutative
flavor to the theory. Moreover, it is not clear how to define the Fourier transform of
a general tempered distribution on the Heisenberg group. It turns out that for the
non-compact picture of the degenerate principal series IndG

P (χ) one can make sense
of the Heisenberg group Fourier transform in the distribution sense if the character
is sufficiently positive. The first key observation is that the second order conformally
invariant system of Barchini-Kable-Zierau can be expressed in terms of the metaplectic
representation on the Fourier transformed side (see Theorem A). This allows us to
solve the corresponding system of equations on the Fourier transformed side in the
distribution sense (see Theorem B) and obtain a new realization of their joint kernel
(see Theorem C). Already at this point, we recognize the same formulas for the Lie
algebra representation as in the work of Gelfand [21], Torasso [78] and Kazhdan-
Savin [49], thus obtaining both a new conceptual explanation for their constructions
as well as a uniform treatment. However, it is not immediate at this point whether
there are K-finite vectors among the solutions, so we find explicit formulas for the
functions constituting the lowest K-type in this new realization (see Theorem D).
The lowest K-type generates an irreducible (g,K)-module which we can integrate
to a minimal representation of (a finite cover of) G, realized on an L2-space (see
Theorem E). Finally, in the spirit of the work of Kazhdan-Savin [49] and Kobayashi-
Mano [53], we obtain the group action of a Weyl-group element in the L2-model
which, together with a parabolic subgroup whose action is also explicit, generates G
(see Theorem F).

The groups for which our construction provides L2-models, can be divided into
several classes. For the split groups E6(6), E7(7) and E8(8) and SO(n, n), our construc-
tion yields the same model as obtained by Kazhdan-Savin [49] by different methods.
In these cases, the minimal representation is spherical, and the expression we find for

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



6 INTRODUCTION

the spherical vector matches the one in [48] found using case-by-case computations.
For G2(2), the model can be found in the work of Gelfand [21] and Savin [73]. Here
the lowest K-type is three-dimensional. For SL(n,R) our construction actually yields
two one-parameter families of representations which turn out to be unitary principal
series representations induced from a different maximal parabolic subgroup. Addition-
ally, for n = 3 we also construct Torasso’s representation which lives on the double
cover S̃L(3,R). The groups for which the obtained L2-models seem to be new, are the
quaternionic groups E6(2), E7(−5) and E8(−24), for which the minimal representation
is an analytic continuation of the quaternionic discrete series, and the indefinite or-
thogonal groups SO(p, q) with p ̸= q. For the latter groups, one has to assume either
that p+q is even or that min(p, q) = 3, in which case the representation actually lives
on a double cover S̃O(p, q). For the case S̃O(4, 3) our formulas do not quite match the
ones by Sabourin [72], but seem to be closely related (see Section 5.8.4).
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CHAPTER 1

STATEMENT OF THE RESULTS

In this first chapter, we give a more precise statement of the results mentioned in
the introduction.

1.1. Conformally invariant systems

Let G be a connected non-compact simple real Lie group with finite center and
denote by g its Lie algebra. We assume that G has a parabolic subgroup P = MAN

whose nilradical N is a Heisenberg group and write m, a and n for the Lie algebras
of M , A and N . There exists a unique element H ∈ a such that ad(H) has eigenvalues
+1 and +2 on n and −1 and −2 on the opposite nilradical n. We decompose

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2

into eigenspaces for ad(H) where g0 = m⊕a. In all cases but g ≃ sl(n,R) the parabolic
subgroup P is maximal and hence a = RH. To simplify notation we therefore put

a = RH and m = {T ∈ g0 : ad(T )|g2 = 0}

also in the case g ≃ sl(n,R). Further, we write ρ = 1
2 ad |n ∈ a∗ as usual.

For an irreducible smooth admissible representation (ζ, Vζ) of M and ν ∈ a∗C we
form the degenerate principal series (smooth normalized parabolic induction)

πζ,ν = IndG
P (ζ ⊗ eν ⊗ 1)

and realize it on a subspace I(ζ, ν) ⊆ C∞(n) ⊗̂Vζ of Vζ-valued functions on the
opposite nilradical n ≃ N which is a Heisenberg Lie algebra (the non-compact picture).
The representation πζ,ν is irreducible for generic ν, but may contain proper irreducible
subrepresentations for singular parameters.

Extending H to an sl2-triple by E ∈ g2 and F ∈ g−2, we can endow V = g−1 with
a symplectic form ω characterized by

[x, y] = ω(x, y)F for x, y ∈ V.
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The identity component M0 of M acts symplectically on (V, ω) and the 5-grading of g
gives rise to three additional symplectic invariants:

µ : V → m, µ(x) =
1

2!
ad(x)2E (the moment map)

Ψ : V → V, Ψ(x) =
1

3!
ad(x)3E (the cubic map)

Q : V → R, Q(x) =
1

4!
ad(x)4E (the quartic),

which are all M -equivariant polynomials. In [2] Barchini, Kable and Zierau con-
structed for each of the invariants ω, µ, Ψ and Q a system of differential operators
on n which is conformally invariant. These systems can be seen as quantizations of the
symplectic invariants. The joint kernel of each system gives rise to a subrepresenta-
tion of a degenerate principal series representation. For instance, for the conformally
invariant system Ωµ(T ) (T ∈ m) corresponding to the moment map, the conformal
invariance implies that for every simple or one-dimensional abelian ideal m′ ⊆ m there
exists a parameter ν = ν(m′) ∈ a∗ such that the joint kernel

I(ζ, ν)Ωµ(m′) = {u ∈ I(ζ, ν) : Ωµ(T )u = 0 for all T ∈ m′}

is a subrepresentation of I(ζ, ν) whenever ζ is trivial on the connected component M0

of M . Note that I(ζ, ν)Ωµ(m′) could be trivial.

1.2. The Heisenberg group Fourier transform

The infinite-dimensional irreducible unitary representations (σλ,Hλ) of N are pa-
rameterized by their central character λ ∈ R× in the sense that σλ(etF ) = eiλt id.
They give rise to operator-valued maps

σλ : L1(N) → End(Hλ), σλ(u) =

∫
N

u(n)σλ(n) dn.

The Heisenberg group Fourier transform is the collection of all σλ and it extends to
a unitary isomorphism

F : L2(N) → L2(R×,HS(H); |λ| dim V
2 dλ) ≃ L2(R×; |λ| dim V

2 dλ) ⊗̂HS(H),

Fu(λ) = σλ(u),

where H = Hλ is a Hilbert space which realizes all representations σλ and HS(H)

denotes the Hilbert space of all Hilbert-Schmidt operators on H. It is a non-trivial
problem to extend F to tempered distributions (see e.g., [7, 11] on this issue). For our
purpose it is enough to show that F extends for Re ν > −ρ to an injective linear map
(see Corollary 3.5.3)

F : I(ζ, ν) → D′(R×) ⊗̂Hom(H∞,H−∞) ⊗̂Vζ ,

where H∞ denotes the space of smooth vectors in H = Hλ and H−∞ = (H∞)′ its
dual space, the space of distribution vectors (both spaces are independent of λ).
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For Re ν > −ρ we call the realization

π̂ζ,ν(g) = F ◦ πζ,ν(g) ◦ F−1 (g ∈ G)

on the subspace

Î(ζ, ν) := F(I(ζ, ν)) ⊆ D′(R×) ⊗̂Hom(H∞,H−∞) ⊗̂Vζ ,

the Fourier transformed picture. In order to understand the Fourier transformed pic-
ture of the subrepresentations I(ζ, ν)Ωµ(m′), we study the Fourier transform of the
conformally invariant system Ωµ. For this denote by dωmet,λ the metaplectic repre-
sentation of sp(V, ω) which is uniquely defined by (see e.g., [13, Chapter 4])

dσλ([T,X]) = [dωmet,λ(T ), dσλ(X)] (T ∈ sp(V, ω), X ∈ n).
Note that the adjoint representation ad : m→ gl(V ), T 7→ ad(T )|V identifies m with
a subalgebra of sp(V, ω) so that we can restrict dωmet,λ to m.

Theorem A (see Theorem 4.4.1). – For λ ∈ R×, T ∈ m and u ∈ I(ζ, ν) we have, in
the distribution sense,

σλ(Ωµ(T )u) = 2iλ σλ(u) ◦ dωmet,λ(T ).

This implies that the Fourier transform of u ∈ I(ζ, ν)Ωµ(m′) satisfies, again in the
distribution sense,

Fu(λ) ◦ dωmet,λ(T ) = 0 for all T ∈ m′.

We also obtain formulas for the Fourier transform of the conformally invariant
systems Ωω, ΩΨ and ΩQ associated to ω, Ψ and Q in Sections 4.3 and 4.5, but do not
study the corresponding subrepresentations any further.

1.3. The Fourier transformed picture of the minimal representation

In this work we restrict our attention to the case of non-Hermitian G. More de-
tails about the differences between Hermitian and non-Hermitian G can be found in
Section 2.9. We refer to [14] for the Hermitian case.

Since G is non-Hermitian, one can use the structure theory developed in [76, 75] to
obtain a bigrading on g (see Section 5.2 for details). This results in a particular choice
of a Lagrangian subspace Λ ⊆ V with decomposition Λ = RA ⊕ J , where in most
cases J is a semisimple Jordan algebra of degree 3 with norm function n(z) defined
by Ψ(z) = n(z)A. (In fact, all semisimple Jordan algebras of rank three arise in this
way, cf. Table 1). The two exceptions are g ≃ g2(2) where J ≃ R and n(z) = z3 and
g ≃ sl(n,R) where n(z) = 0 for all z ∈ J . We write (a, z) for aA+ z ∈ RA⊕ J = Λ.

We realize the representations σλ on the common Hilbert space H = L2(Λ), the
Schrödinger model of σλ. In this realization we have H∞ = S(Λ), the space of
Schwartz functions on Λ, and H−∞ = S ′(Λ), the space of tempered distributions,
so that the Schwartz Kernel Theorem implies

Hom(H∞,H−∞) ≃ S ′(Λ× Λ) ≃ S ′(Λ) ⊗̂ S ′(Λ).
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From here on we assume that the parameter ν = ν(m′) ∈ a∗, for which the joint
kernel of Ωµ(m′) is a subrepresentation of I(ζ, ν), is the same for all factors of m. This
is in particular the case when m is simple, but also for g ≃ sl(3,R) where m ≃ gl(1,R)

and for g ≃ so(4, 4) where m ≃ sl(2,R) ⊕ sl(2,R) ⊕ sl(2,R). The reason for this
assumption is that we need invariance under the full Lie algebra m in the following
result:

Theorem B (see Theorem 5.4.2). – For every λ ∈ R× the space L2(Λ)−∞,m

of m-invariant distribution vectors in dωmet,λ is two-dimensional and spanned by ξλ,ε

(ε ∈ Z/2Z), where

ξλ,ε(a, z) = sgn(a)ε|a|smine−iλ
n(z)

a , (a, z) ∈ R× J ,

with smin = − 1
6 (dim Λ + 2).

We remark that these distributions also occur in the classification [10] of certain
generalized functions whose Euclidean Fourier transform is of the same type.

Let us for simplicity also assume that the representation ζ is a character of
the component group of M . Then, Theorem B implies that the Fourier transform
Fu ∈ D′(R×) ⊗̂ S ′(Λ) ⊗̂ S ′(Λ) of a function u ∈ I(ζ, ν)Ωµ(m) in the kernel of Ωµ(m)

can be written as

Fu(λ, x, y) = ξ−λ,ε(x)ũ(λ, y)

for some ũ(λ, ·) ∈ S ′(Λ), where ε ∈ Z/2Z is determined in Corollary 7.2.8. The map

I(ζ, ν)Ωµ(m) → D′(R×) ⊗̂ S ′(Λ), u 7→ ũ

is injective and provides a new realization ρmin of the subrepresentation I(ζ, ν)Ωµ(m)

on

Jmin ⊆ D′(R×) ⊗̂ S ′(Λ).

Note that still Jmin could be trivial. To show that there exists a representation ζ of M
such that Jmin ̸= {0}, we compute the Lie algebra action in the new realization and
find explicit K-finite vectors.

We remark that this construction only excludes the non-Hermitian Lie algebras
g = sl(n,R) (n > 3) and g = so(p, q) (p, q ≥ 3, (p, q) ̸= (4, 4)). In Section 5.6 we
explain how for g = sl(n,R) a generalization of the first order system Ωω (a quanti-
zation of the symplectic form ω) to the case of vector-valued principal series induced
from characters ζ = ζr of M (r ∈ C) yields a one-parameter family dρmin,r of sub-
representations of I(ζr, ν) on D′(R×) ⊗̂ S ′(Λ). And for g = so(p, q) we combine in
Section 5.7 generalizations of both Ωω and Ωµ to the vector-valued degenerate princi-
pal series induced from representations of the SL(2)-factor of M to find the analogous
representation dρmin of g on D′(R×) ⊗̂ S ′(Λ).
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1.4. The Lie algebra action and lowest K-types

Heuristic arguments involving the standard Knapp-Stein intertwining operators
(see Remark 5.5.4) show that π̃min should be unitary on L2(R× × Λ, |λ|dim Λ−2smindλ dy).
To obtain a unitary representation on L2(R× × Λ), we twist the representation with
the isomorphism

Φδ : D′(R×) ⊗̂ S ′(Λ) → D′(R×) ⊗̂ S ′(Λ), Φδu(λ, x) = sgn(λ)δ|λ|−sminu(λ, x
λ )

which restricts to an isometry L2(R× × Λ, |λ|dim Λ−2smindλ dy) → L2(R× × Λ) (see
Corollary 7.2.8 for the choice of δ ∈ Z/2Z). Let

Imin := Φδ(Jmin), πmin(g) := Φδ ◦ ρmin(g) ◦ Φ−1
δ .

Theorem C. – The Lie algebra action dπmin is by algebraic differential operators
of degree ≤ 3 on R× × Λ and is explicitly computed in Proposition 5.5.5. It extends
naturally to D′(R×) ⊗̂ S ′(Λ) and is infinitesimally unitary on L2(R× × Λ).

Comparing this action with formulas in the literature shows that our representation
agrees with the one for g = so(n, n), e6(6), e7(7), e8(8) in [48, 49], for g = g2(2) in [21, 73],
and for g = sl(3,R) in [78] (see Section 5.8 for details). There also seems to be a
relation to the formulas for g = so(4, 3) in Sabourin [72]. Similar formulas also appear
in [31, 32, 33] but without addressing the question of unitarizability. In this sense, our
computations give a new explanation of the formulas in the literature and provide
an explicit (degenerate) principal series embedding of the representations as well as
generalize them to a larger class of groups.

In order to show that the Lie algebra representation dπmin on Imin ⊆ D′(R×) ⊗̂ S ′(Λ)

integrates to an irreducible unitary representation on L2(R× ×Λ) for some represen-
tation ζ, we find the lowest K-type in the representation. Here, K denotes a maximal
compact subgroup of G and k its Lie algebra.

Theorem D. – (1) For g = e6(2), e7(−5), e8(−24) there exists a k-subrepresentation
W ⊆ D′(R×) ⊗̂ S ′(Λ), explicitly given in Theorem 6.2.1, which is isomorphic to
the representation S2,4,8(C2) ⊠ C of k ≃ su(2)⊕ k′′.

(2) For g = e6(6), e7(7), e8(8) there exists a k-subrepresentation W ⊆ D′(R×) ⊗̂ S ′(Λ),
explicitly given in Theorem 6.3.1, which is isomorphic to the trivial representa-
tion.

(3) For g = g2(2) there exists a k-subrepresentation W ⊆ D′(R×) ⊗̂ S ′(Λ), explicitly
given in Theorem 6.4.1, which is isomorphic to the representation C ⊠ S2(C2)

of k ≃ su(2)⊕ su(2).

(4) For g = sl(n,R) there exist for every r ∈ C two k-subrepresentations
Wε,r ⊆ D′(R×) ⊗̂ S ′(Λ) (ε ∈ Z/2Z) of the representation dπmin,r of g, explicitly
given in Theorem 6.5.1. The representation W0,r is isomorphic to the trivial
representation of k and W1,r is isomorphic to the standard representation Cn

of k ≃ so(n).
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(5) For g = sl(3,R) and r = 0 there exists a third k-subrepresentation
W 1

2
⊆ D′(R×) ⊗̂ S ′(Λ) of dπmin,r, explicitly given in Theorem 6.6.1, which

is isomorphic to the representation C2 of k ≃ su(2).

(6) For g = so(p, q), p ≥ q ≥ 4 with p + q even, there exists a k-subrepresentation
W ⊆ D′(R×) ⊗̂ S ′(Λ), explicitly given in Theorem 6.7.6, which is isomorphic to
the representation C⊠H

p−q
2 (Rq) of k ≃ so(p)⊕ so(q).

(7) For g = so(p, 3), p ≥ 3, there exists a k-subrepresentation W ⊆ D′(R×) ⊗̂ S ′(Λ),
explicitly given in Theorem 6.8.3, which is isomorphic to the representation
C⊠ Sp−3(C2) of k ≃ so(p)⊕ su(2).

The explicit form for the spherical vector for g = so(n, n), e6(6), e7(7), e8(8) has
previously been found by Kazhdan, Pioline and Waldron [48] and a similar formula
for a K-finite vector in the case g = g2(2) can be found in [31]. Further, for sl(3,R)

the lowest K-types W0,r, W1,r and W 1
2

were obtained by Torasso [78]. We believe
that the other formulas are new.

1.5. The minimal representation

A careful study of the action of g on the lowest K-type W shows:

Theorem E. – The K-type W generates an irreducible (g,K)-module
W = dπmin(U(g))W with lowest K-type W . This (g,K)-module integrates to an
irreducible unitary representation of the universal cover G̃ of G on L2(R× × Λ)

which is minimal in the sense that its annihilator is a completely prime ideal with
associated variety equal to the minimal nilpotent coadjoint orbit. For g not of type A,
the annihilator is the Joseph ideal.

For the split groups G = SO(n, n), E6(6), E7(7), E8(8) the same realization has been
constructed by Kazhdan and Savin [49] and for G = G2(2) by Gelfand [21] (see
also Savin [73]). For G = S̃L(3,R) the representations were studied in detail by
Torasso [78], and for G = S̃O(4, 3) the realization is similar to the one constructed
by Sabourin [72]. We believe that the realization is new for the quaternionic groups
G = E6(2), E7(−5), E8(−24) in which case the representations can also be obtained as
continuation of the quaternionic discrete series by algebraic methods (see Gross and
Wallach [28, 29]) and also for the groups G = S̃O(p, q).

In view of the classification of minimal representations in [77], the construction in
Theorem E together with the constructions in [38], [68], [73], and [80] yield L2-models
for all minimal representations except for the ones of F4(4) and the complex groups
E8(C) and F4(C). We believe that the case of F4(4) can be treated with a slight
generalization of our methods to the vector-valued case (see Remark 6.2.2). It is
further feasible that a construction similar to the one in [73, Section 7] may construct
an L2-model for the complex groups E8(C) and F4(C) from the one for E8(8) and
F4(4). This would give L2-models for all minimal representations of simple Lie groups.

MÉMOIRES DE LA SMF 180



1.7. OUTLOOK 13

1.6. The action of a non-trivial Weyl group element

The group G is generated by its maximal parabolic subgroup P and a non-trivial
Weyl group element w1 ∈ K. While the action of P in πmin is relatively simple (see
Lemma 7.1.3), it is non-trivial to find explicit formulas for other group elements. In
[49, 73] the authors were able to construct the above L2-models for split groups by
extending the action of P to G in terms of πmin(w1) (see also [71] for the case of p-adic
groups). Here, one has to verify that the definition for the operator πmin(w1) satisfies
several relations, and the methods does not seem to generalize in a straightforward
way.

Having constructed the representations πmin by different methods, we are able to
find the action πmin(w1) of the Weyl group element w1 in all cases explicitly. The
action depends on the eigenvalues of a certain Lie algebra element on the lowest
K-type. Those can be integers or half-integers, and we refer to these two cases as the
integer case and the half-integer case (see Section 7.2 for details).

Theorem F (see Theorem 7.2.1). – The element w1 acts in the L2-model of the
minimal representation by

πmin(w1)f(λ, a, x) = e−i
n(x)
λa f(

√
2a,− λ√

2
, x)×

{
1 in the integer case,
ε(aλ) in the half-integer case,

where

ε(x) =

{
1 for x > 0,
i for x < 0.

This gives a complete description of πmin on the generators P and w1 and gener-
alizes the formulas for πmin(w1) in [49, 73] . We remark that this viewpoint was also
advocated in [53] where the action of a non-trivial Weyl group element was obtained
in a different L2-model for the minimal representation of O(p, q).

1.7. Outlook

Minimal representations have shown to be of importance in the theory of automor-
phic representations, for instance in the construction of exceptional theta series (see
e.g., [48]), the study of Fourier coefficients of automorphic forms (see e.g., [26, 25]) or
the study of local components of global automorphic representations (see e.g., [3, 57]).
Some of these works use L2-realizations of minimal representations. We hope that our
new L2-models might help to generalize some of these results.

Another possible application concerns branching laws for unitary representations,
i.e., the restriction of representations to subgroups. L2-models have proven to be
useful in the decomposition of restricted representations since here classical spectral
theory of differential operators can be applied (see e.g., [8, 55, 67]). We expect our
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14 CHAPTER 1. STATEMENT OF THE RESULTS

new L2-models to be useful for the decomposition of restrictions of minimal represen-
tations. In particular, we hope that these models allow for a more far-reaching and
more explicit version of the theta correspondence.

It has further been observed that explicit realizations of small representations have
fruitful connections to geometry, analysis and special functions (see, e.g., [15, 37, 43, 52,
53, 54, 56, 58]). In our L2-models the explicit K-finite vectors exhibited in Chapter 6
are for instance expressed in terms of K-Bessel functions. We believe that there are
many additional connections between our new realizations and other branches of
mathematics. For instance, it would be interesting to relate the L2-model for the
minimal representation of G = SO(p, q) constructed in this paper to the one obtained
in [53, 56] by an explicit integral transformation. Similarly, one could try to find an
explicit intertwining operator between our L2-model and the realization constructed
in [1, 5] on sections of the half-form bundle over the minimal nilpotent KC-orbit.

A more direct further line of research is the investigation of the missing case
G = F4(4) for which we expect a similar, possibly vector-valued, L2-model. Also the
case of Hermitian groups, which is missing in this work, is a possible further research
question (see Section 2.9 for some structural results in this situation and the recent
preprint [89] for structural results about the corresponding spherical degenerate prin-
cipal series).
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CHAPTER 2

STRUCTURE THEORY
FOR

HEISENBERG PARABOLIC SUBGROUPS

In this preliminary section we study the structure of Heisenberg graded real Lie
algebras. This includes the Langlands decomposition (see Section 2.1), a canonical
sl(2)-triple (see Section 2.2), the minimal adjoint orbits (see Section 2.3), the associ-
ated symplectic vector space together with its invariants, including the moment map
(see Section 2.4), explicit formulas for the Killing form (see Section 2.5) as well as the
structure of the Heisenberg nilradical (see Section 2.6). For much of this we follow
[76, 75], the statements in Sections 2.7 about the Bruhat decomposition, in Section 2.8
about Cartan involutions and maximal compact subgroups, and in Section 2.9 about
the difference between Hermitian and non-Hermitian Lie algebras are new.

2.1. Heisenberg parabolic subgroups

Let G be a connected non-compact simple real Lie group with finite center. We
assume that G has a parabolic subgroup P whose nilradical is a Heisenberg group,
i.e., two-step nilpotent with one-dimensional center. Then P is maximal parabolic
except in the case where G is locally isomorphic to SL(n,R). Let P = MAN be a
Langlands decomposition of P and denote by g, p, m, a and n the corresponding Lie
algebras of G, P , M , A and N . See Table 1 for a classification due to Cheng [6].

There is a unique grading element H ∈ a such that ad(H) has eigenvalues 1 and 2

on n. Write
g = g−2 + g−1 + g0 + g1 + g2

for the decomposition of g into eigenspaces of ad(H), so that m ⊕ a = g0 and
n = g1 + g2. Denote by p = g−2 + g−1 + g0 the opposite parabolic subalgebra with
nilradical n = g−2 + g−1 and let P and N be the corresponding groups. In all cases
but g ≃ sl(n,R) we then have

a = RH, m = {T ∈ g0 : ad(T )|g2 = 0}.
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16 CHAPTER 2. STRUCTURE THEORY

To simplify notation, we use this as a definition for a and m in the case g = sl(n,R),
although this does not yield a Langlands decomposition of P .

Since M commutes with A = exp(RH), M preserves the 5-grading of g. In par-
ticular, M acts on the subspaces g±2 by the adjoint representation. These subspaces
are one-dimensional since they are the center of the Heisenberg algebra n resp. n, so
there exists a character χ : M → {±1} such that

Ad(m)|g±2
= χ(m) · idg±2

.

2.2. The sl2-triple and the Weyl group element w0

We choose E ∈ g2 and F ∈ g−2 such that [E,F ] = H. Then {E,H,F} forms an
sl2-triple. Put

(2.2.1) w0 := exp
(π

2
(E − F )

)
,

then Ad(w0) : g→ g is of order four. On the sl2-triple it is given by

Ad(w0)E = −F, Ad(w0)H = −H, Ad(w0)F = −E,

and it acts trivially on m. Further, Ad(w0) restricts to isomorphisms g1 → g−1 and
g−1 → g1 which compose to −1 times the identity. We put

x := ad(x)F = Ad(w0)x = −Ad(w−1
0 )x, x ∈ g1,(2.2.2)

y := ad(y)E = −Ad(w0)y = Ad(w−1
0 )y, y ∈ g−1.(2.2.3)

Note that these maps are mutually inverse and

Ad(m)x = χ(m) Ad(m)x for all m ∈M,x ∈ g±1.

This implies in particular that

(2.2.4) [T, x] = [T, x] for all T ∈ m, x ∈ g±1.

We further remark that P and P are conjugate via w0:

P = w0Pw
−1
0 = w−1

0 Pw0.

The element w0 defines a non-trivial coset in the Weyl group of G with respect to a
Cartan subalgebra of m⊕ a, and we therefore also refer to it as Weyl group element.

2.3. Minimal (co)adjoint orbits

The adjoint orbit
Omin = Ad(G)E ⊆ g

is a minimal nilpotent orbit. If G is non-Hermitian then Omin = −Omin is the unique
minimal nilpotent adjoint orbit. If G is Hermitian then Omin and −Omin are the two
distinct minimal nilpotent adjoint orbits.
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Lemma 2.3.1. – The stabilizer of E in G is given by M1N where

M1 = {m ∈M : Ad(m)E = E} = {m ∈M : χ(m) = 1} ⊆M

is a subgroup of index at most 2. In particular, dimROmin = dim n+ 1.

Proof. – Let g ∈ G such that Ad(g)E = E. We claim that g ∈ NG(p) = P . In fact,
for x ∈ g1 and T ∈ m we have

[Ad(g)x,E] = Ad(g)[x,E] = 0 and [Ad(g)T,E] = Ad(g)[T,E] = 0

and hence Ad(g)x,Ad(g)T ∈ Zg(E) = m+ g1 + g2. Further,

[Ad(g)H,E] = Ad(g)[H,E] = 2 Ad(g)E = 2E

and hence Ad(g)H ∈ H + m + g1 + g2. This shows that Ad(g)p ⊆ p and therefore
g ∈ NG(p) = P = MAN . Write g = man with m ∈M , a = exp(rH) ∈ A and n ∈ N ,
then Ad(g)E = χ(m)e2rE. This shows that Ad(man)E = E if and only if a = e, the
identity, and m ∈M1.

Important for the definition of minimal representations is the minimal nilpotent
coadjoint orbit O∗min,C in g∗C. This is the unique non-trivial nilpotent coadjoint orbit
in g∗ of minimal dimension. Identifying g∗C ≃ gC using the Killing form, the or-
bit O∗min,C is identified with the minimal nilpotent adjoint orbit Omin,C ⊆ gC. Since
E is a highest root vector, it follows that Omin,C is the orbit through E and therefore
a complexification of Omin ⊆ g. This implies:

Corollary 2.3.2. – dimCO∗min,C = dimR n+ 1.

2.4. The symplectic invariants

Following [75, Section 2], we now discuss the symplectic structure of V := g−1.
The bilinear form ω : V × V → R given by

[x, y] = ω(x, y)F, x, y ∈ V

turns V into a symplectic vector space. The group M preserves the symplectic form
up to a sign:

ω(mx,my) = χ(m)ω(x, y) (m ∈M,x, y ∈ V ),

where we abbreviate mx = Ad(m)x. In particular, the Lie algebra m of M can be
viewed as a subalgebra of sp(V, ω). We note that for x, y ∈ g1:

(2.4.1) [x, y] = −ω(x, y)E.

We now define three maps on V related to the symplectic structure.
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2.4.1. The moment map. – Put

µ : V → g0, x 7→ 1

2!
ad(x)2E.

Then µ actually maps into m and is Ad(M)-equivariant, i.e.,

µ(Ad(m)x) = χ(m) Ad(m)µ(x), m ∈M.

2.4.2. The cubic map. – Let

Ψ : V → V, x 7→ 1

3!
ad(x)3E.

Then Ψ is Ad(M)-equivariant, i.e.,

Ψ(Ad(m)x) = χ(m) Ad(m)Ψ(x), m ∈M.

2.4.3. The quartic. – Define Q : V → R by

Q(x)F =
1

4!
ad(x)4E.

Then Q transforms under the action Ad(M) by the character χ, i.e.,

Q(Ad(m)x) = χ(m)Q(x), m ∈M.

2.4.4. Symplectic formulas. – We state some formulas for the symplectic invariants
µ, Ψ and Q proved in [76, 75]. (Note that µ, Ψ and Qn in their notation are −2µ, 6Ψ

and 36Q in our notation.)

Lemma 2.4.1 ([75, Corollary 4.2]). – For x ∈ V the following identities hold:

(1) µ(ax+ bΨ(x)) = (a2 − b2Q(x))µ(x),

(2) Ψ(ax+ bΨ(x)) = (a2 − b2Q(x))(bQ(x)x+ aΨ(x)),

(3) Q(ax+ bΨ(x)) = (a2 − b2Q(x))2Q(x),

(4) µ(x)Ψ(x) = −3Q(x)x.

Let Bµ : V × V → m, BΨ : V × V × V → V and BQ : V × V × V × V → R
denote the symmetrizations of µ, Ψ and Q. Further, define τ : V → sp(V,Ω) and its
symmetrization Bτ : V × V → sp(V, ω) by

τ(x)y = ω(x, y)x and Bτ (x, y)z = 1
2 (ω(x, z)y + ω(y, z)x).

Lemma 2.4.2 ([75, Proposition 2.2]). – For x, y, z, w ∈ V the following identities
hold:

(1) Bµ(x, y) = 1
4 ([x, [y,E]] + [y, [x,E]]),

(2) BΨ(x, y, z) = − 1
3Bµ(x, y)z − 1

6Bτ (x, y)z,

(3) BQ(x, y, z, w) = 1
4ω(x,BΨ(y, z, w)).

Note that this implies in particular that

ω(Bµ(x, y)z, w) = ω(Bµ(z, w)x, y) for all x, y, z, w ∈ V.
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Lemma 2.4.3 ([75, Definition 2.1 (2) and Theorem 2.16]). – For x, y, z ∈ V :

4Bµ(x, y)z − 4Bµ(x, z)y = ω(x, y)z − ω(x, z)y − 2ω(y, z)x.

Using Lemma 2.4.3, it is possible to reconstruct the Heisenberg graded Lie algebra
g from the symplectic vector space (V, ω) the subalgebra m ⊆ sp(V,Ω) and the map
Bµ : V × V → m (see [75, Theorem 2.16] where the tuple (m, V, ω,Bµ) is called a
special symplectic representation).

2.4.5. The Lie bracket. – We express the Lie bracket [g1, g−1] in terms of the moment
map and the symplectic form.

Lemma 2.4.4. – For x ∈ g1 and y ∈ g−1 the decomposition of [x, y] ∈ g0 in terms of
the decomposition g0 = m+ a is given by

[x, y] = −2Bµ(x, y)− 1
2ω(x, y)H.

Proof. – We have

[x, y] = [x, y] = [[x,E], y] = −[y, [x,E]]

= − 1
2 ([x, [y,E]] + [y, [x,E]]) + 1

2 [ad(x), ad(y)]E

= −2Bµ(x, y) + 1
2 ad([x, y])E = −2Bµ(x, y) + 1

2ω(x, y) ad(F )E

= −2Bµ(x, y)− 1
2ω(x, y)H.

2.4.6. Simple factors ofm. – We note that m is reductive with at most one-dimensional
center. The proof of the following result was communicated to us by R. Stanton:

Lemma 2.4.5. – Let (eα) be a basis of V and (êα) its dual basis with respect to the
symplectic form ω, i.e., ω(eα, êβ) = δαβ. Then the map

(2.4.2) m→ m, T 7→
∑
α

Bµ(Teα, êα)

is a scalar multiple C(m′) · idm′ of the identity on the center and on each simple factor
m′ of m. In particular, if m is simple the map is a scalar multiple of the identity.

Proof. – The expression is obviously independent of the chosen basis, so that we may
assume {eα} to be a symplectic basis of the form {ei, fj} with ω(ei, fj) = δij and
ω(ei, ej) = ω(fi, fj) = 0. Then {êα} = {fi,−ej} and the sum becomes∑

i

(
Bµ(Tei, fi) +Bµ(Tfi,−ei)

)
=
∑

i

(
Bµ(Tei, fi)−Bµ(ei, T fi)

)
.

For x, y ∈ V we define

Bz(x, y) : m→ m, Bz(x, y)T = Bµ(Tx, y)−Bµ(x, Ty).

Bz is called the Bezoutian and the m-equivariance of Bµ implies that Bz : Λ2V → End(m)
is m-equivariant. In this notation, the map (2.4.2) can be viewed as the image
of
∑

i ei∧fi ∈ Λ2V under the Bezoutian Bz : Λ2V → End(m). The element
∑

i ei∧fi

corresponds to the symplectic form ω on V which is m-invariant, so
∑

i ei ∧ fi is
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m-invariant. It follows that its image under the Bezoutian is m-invariant, hence the
map (2.4.2) is m-intertwining. If gC is not of type A, then m is semisimple and hence
the m-intertwining map (2.4.2) is a scalar multiple of the identity on every simple
factor of m. The case gC = sl(n,C) can finally be treated by an explicit computation
using Appendix B.1. (Note that the statement of the lemma only depends on the
complexification of g.)

In [2, §8.10], the numbers C(m′) are computed for all simple factors m′ of m and
we have included them in Table 1 (see also Lemma 5.3.3 for the computation of C(m)

in the case where G is non-Hermitian and m is simple).

Corollary 2.4.6. – For every factor m′ of m we have

tr(Tµ(x)) = C(m′)ω(Tx, x) for all x ∈ V, T ∈ m′.

Proof. – Let (eα) be a basis of V and (êα) the dual basis with respect to the symplectic
form, i.e., ω(eα, êβ) = δαβ . Then

tr(Tµ(x)) =
∑
α

ω(Tµ(x)eα, êα) =
∑
α

ω(T êα, µ(x)eα)

=
∑
α

ω(T êα,−3BΨ(x, x, eα)− 1

2
τ(x)eα)

= −12
∑
α

BQ(x, x, eα, T êα) +
1

2
ω(Tx, x)

= −3
∑
α

ω(x,BΨ(eα, T êα, x)) +
1

2
ω(Tx, x)

=
∑
α

ω(x,Bµ(eα, T êα)x) +
1

2
ω(x,Bτ (eα, T êα)x) +

1

2
ω(Tx, x)

= C(m′)ω(Tx, x).

Here we have used the m-invariance of ω in the first line, Lemma 2.4.2 (2) together
with the symmetry of BΨ in the second and fifth line, Lemma 2.4.2 (3) together with
the symmetry of BQ in the third and fourth line, and Lemma 2.4.5 as well as the
definition of Bτ in the last line.

2.5. The Killing form

We compute the Killing form κ(X,Y ) = tr(ad(X) ◦ ad(Y )) on g. For this let

(2.5.1) κ0 := dim g1 + 4.

Lemma 2.5.1. – Let X ∈ gi and Y ∈ gj, then κ(X,Y ) = 0 unless i+ j = 0. Further,

κ(E,F ) = κ0,

κ(x, y) = −κ0ω(x, y), x ∈ g1, y ∈ g−1,

κ(S + aH, T + bH) = κm(S, T ) + 2 tr(ad(S) ◦ ad(T ))|g1 + 2κ0ab, S, T ∈ m, a, b ∈ R,
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where κm denotes the Killing form on m.

Proof. – It is clear that κ(gi, gj) = {0} unless i + j = 0. The formulas for κ(E,F )

and κ(H,H) are proven in [76, Proposition 2.3] and the formula for κ(S, T ) is clear
since m acts trivially on E and F . It therefore remains to show the formula for κ(x, y),
x ∈ g1 and y ∈ g−1. Using ad-invariance of the Killing form we have

κ(x, y) = κ([x,E], y) = −κ(E, [x, y]) = −κ(E,ω(x, y)F ) = −κ0ω(x, y).

2.6. The Heisenberg nilradical

The unipotent subgroup N is a Heisenberg group and hence diffeomorphic to its
Lie algebra n. We identify N ≃ g−1 ⊕ g−2 ≃ V × R via

V × R ∼→ N, (x, s) 7→ n(x,s) := exp(x+ sF ).

The group multiplication in N is given by

(2.6.1) n(x,s) · n(y,t) = n(x+y,s+t+ 1
2 ω(x,y)), x, y ∈ V, s, t ∈ R.

Hence, the map V × R → N, (x, s) 7→ n(x,s) turns into a group isomorphism if we
equip V × R with the product

(x, s) · (y, t) := (x+ y, s+ t+ 1
2ω(x, y)).

2.7. Bruhat decomposition

The natural multiplication map

N ×M ×A×N → G

is a diffeomorphism onto an open dense subset of G, the open dense Bruhat cell.
Hence, every g ∈ NMAN ⊆ G decomposes uniquely into

(2.7.1) g = n(g)m(g)a(g)n.

We identify a∗C ≃ C by ν 7→ ν(H). For λ ∈ a∗C we write aλ = eλt where a = etH ∈ A
with t ∈ R.

Lemma 2.7.1. – For (x, s) ∈ V × R we have w−1
0 n(x,s) ∈ NMAN if and only if

s2 −Q(x) ̸= 0. In this case

χ(m(w−1
0 (x, s))) = sgn(s2 −Q(x)), a(w−1

0 n(x,s))
λ = |s2 −Q(x)|λ/2

and
log n(w−1

0 n(x,s)) =
1

s2 −Q(x)
(Ψ(x)− sx,−s).

Moreover, the quartic Q is non-positive if and only if the character χ : M → {±1} is
trivial.
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Proof. – Assume w−1
0 n(x,s) = n(y,t)m exp(rH)n ∈ NMAN . We let both sides act

on E by the adjoint representation and then compare the results. Let us first compute
Ad(w−1

0 n(x,s))E. We have

ad(x+ sF )E = x− sH,

ad(x+ sF )2E = 2(µ(x)− sx− s2F ),

ad(x+ sF )3E = 6Ψ(x),

ad(x+ sF )4E = 24Q(x)F,

ad(x+ sF )5E = 0,

and hence

(2.7.2) Ad(n(x,s))E = ead(x+sF )E = E+x+µ(x)−sH+
(
Ψ(x)−sx

)
+(Q(x)−s2)F.

Applying Ad(w−1
0 ) = Ad(w0)

−1 yields

(2.7.3) Ad(w−1
0 n(x,s))E = (s2 −Q(x))E + Ψ(x)− sx+ µ(x) + sH − x− F.

Now let us compute Ad(n(y,t)m exp(rH)n)E. Note that N acts trivially on E and M
acts on E by the character χ : M → {±1}. Therefore, using (2.7.2):

Ad(n(y,t)m exp(rH)n)E = χ(m)e2r Ad(n(y,t))E

(2.7.4)

= χ(m)e2r
(
E + y + µ(y)− tH + Ψ(y)− ty + (Q(y)− t2)F

)
.

Comparing with (2.7.3) shows that

s2 −Q(x) = χ(m)e2r, Ψ(x)− sx = χ(m)e2ry, µ(x) = χ(m)e2rµ(y)

s = −χ(m)e2rt, x = −χ(m)e2r(Ψ(y)− ty), 1 = χ(m)e2r(t2 −Q(y)).

The first identity shows that if {x ∈ V : Q(x) > 0} ≠ ∅ then there exists m ∈M such
that χ(m) = −1, because otherwise the non-empty open set of all w−1

0 n(x,t)man with
t2 − Q(x) < 0 and m ∈ M , a ∈ A, n ∈ N , would have trivial intersection with the
open dense Bruhat cell NMAN . Further, the first, second and fourth identities show
that

s2 −Q(x) = χ(m)e2r ̸= 0 and (y, t) =
1

s2 −Q(x)
(Ψ(x)− sx,−s).

Conversely, if s2 −Q(x) ̸= 0 then let

r :=
1

2
log |s2 −Q(x)| and (y, t) =

1

s2 −Q(x)
(Ψ(x)− sx,−s),

and choose m ∈ M such that χ(m) = sgn(s2 −Q(x)). Using the above computation
as well as Lemma 2.4.1 one can show that

Ad(w−1
0 n(x,s))E = Ad(n(y,t)me

rH)E.

Since the stabilizer of E in G is equal to M1N there exist m′ ∈ M1 and n ∈ N such
that w−1

0 n(x,s) = n(y,t)mm
′erHn ∈ NMAN . This shows the claim.
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Lemma 2.7.2. – For (x, t) ∈ V × R and s ∈ R sufficiently close to 0 we have

log n(e−sEn(x,t)) =

(
x+ s(Ψ(x)− tx)

1− 2st− s2(Q(x)− t2)
,

t+ s(Q(x)− t2)

1− 2st− s2(Q(x)− t2)

)
,

d

ds

∣∣∣∣
s=0

m(e−sEn(x,t)) = −µ(x),

a(e−sEn(x,t))
λ = (1− 2st− s2(Q(x)− t2))

λ
2 .

Proof. – For s sufficiently close to 0 we have e−sEn(x,t) ∈ NMAN and write

(2.7.5) e−sEn(x,t) = exp(y + uF )mse
rH exp(z + vE)

for y, z ∈ V , r, u, v ∈ R and ms ∈M . We first act with both sides of (2.7.5) on E by
the adjoint action. By (2.7.2) we have

Ad(n(x,t))E = E + x+ µ(x)− tH + (Ψ(x)− tx) + (Q(x)− t2)F.

Now, Ad(e−sE) = e−s ad(E) and

ad(E) Ad(n(x,t))E = 2tE + tx−Ψ(x) + (Q(x)− t2)H,

ad(E)2 Ad(n(x,t))E = −2(Q(x)− t2)E,

ad(E)3 Ad(n(x,t))E = 0,

hence

Ad(e−sEn(x,t))E = (1− 2st− s2(Q(x)− t2))E + x+ s(Ψ(x)− tx) + µ(x)

− (t+ s(Q(x)− t2))H + (Ψ(x)− tx) + (Q(x)− t2)F.

On the other hand, by (2.7.4):

Ad
(
exp(y + uF )mse

rH exp(z + vE)
)
E

= χ(ms)e
2r
(
E + y + µ(y)− uH + Ψ(y)− uy + (Q(y)− u2)F

)
.

Comparing the two expressions shows the formulas for n(e−sEn(x,t)) and a(e−sEn(x,t)).
To find d

ds

∣∣
s=0

ms, we let both sides of (2.7.5) act on an element a ∈ g1. By similar
computations we arrive at

Ad
(
e−sEn(x,t)

)
a =

(
− sω(x, a) + s2ω(tx+ Ψ(x), a)

)
E + (a− s(ta+ µ(x)a+ ω(x, a)x))

+ 2Bµ(x, a) +
(
− 1

2ω(x, a) + sω(tx+ Ψ(x), a)
)
H

−
(
ta+ µ(x)a+ ω(x, a)x

)
− ω(tx+ Ψ(x), a)F

and

Ad
(
exp(y + uF )mse

rH exp(z + vE)
)
a

= er
(
msa+ 2Bµ(y,ms)− 1

2ω(y,msa)H −
(
umsa+ µ(y)msa+ ω(y,msa)y

)
− ω(uy + Ψ(y),msa)F

)
+ ω(a, z)e2r

(
E + y + µ(y)− uH +

(
Ψ(y)− uy

)
+ (Q(y)− u2)F

)
.
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Comparing the coefficients of E shows

z =
sx− s2(tx+ Ψ(x))

1− 2st− s2(Q(x)− t2)
.

Next, comparing the terms in g1 and using the previously obtained formula for y
yields

ermsa = a− s(ta+ µ(x)a+ ω(x, a)x) + ω(z, a)(x− s(tx−Ψ(x))).

Note that d
ds

∣∣
s=0

er = −t and d
ds

∣∣
s=0

z = x, hence differentiating the above identity
gives

−ta+
d

ds

∣∣∣∣
s=0

msa = −(ta+ µ(x)a+ ω(x, a)x) + ω(x, a)x = −ta− µ(x)a

and the claim follows.

2.8. Maximal compact subgroups

Let θ be a Cartan involution of G and denote by θ also the corresponding involution
on g. We may conjugate θ (or alternatively the parabolic subgroup P ) such that
θH = −H, then it follows that θgi = g−i, i ∈ {−2,−1, 0, 1, 2} and θm = m. After
possibly rescaling E and F , we may further assume that θE = −F and θF = −E.
Define J ∈ End(V ) by

Jv := θx = −θx, x ∈ V,
with θx = [θx, F ] and x = [x,E] as in (2.2.2) and (2.2.3). Then J2 = − idV and the
bilinear form on V given by

(x|y) = 1
4ω(Jx, y), x, y ∈ V,

is positive definite. Write |x|2 = (x|x) = 1
4ω(Jx, x) for the corresponding norm on V .

Further note that

Ad(θ(T ))|V = J ◦Ad(T )|V ◦ J
−1 for all T ∈ m.

Since θ is an automorphism, it follows that

ω(Jx, Jy) = ω(x, y) for all x, y ∈ V,
so that J ∈ Sp(V, ω). For the symplectic invariants we further have for x ∈ V :

(2.8.1) µ(Jx) = J ◦ µ(x) ◦ J−1, Ψ(Jx) = JΨ(x), Q(Jx) = Q(x).

The following result is a converse to the construction of J from θ:

Lemma 2.8.1. – Let J ∈ End(V ) and define θ : g→ g by

θE = −F, θH = −H, θF = −E,

and for x ∈ g1, y ∈ g−1 and T ∈ m by

θx = −Jx, θT = JTJ−1, θy = Jy.

Then θ is a Cartan involution of g if and only if the following conditions are satisfied:
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(1) J2 = − idV ,

(2) ω(Jx, x) ≥ 0 for all x ∈ V ,

(3) ω(Jx, Jy) = ω(x, y) for all x, y ∈ V ,

(4) µ(Jx) = Jµ(x)J−1 for all x ∈ V .

Proof. – Using (2.2.2), (2.2.3) and Lemma 2.4.4, one can show that conditions (3)
and (4) imply that θ is indeed a Lie algebra automorphism. That κ(θX,X) ≥ 0 for
all X ∈ g now follows from (2) and Lemma 2.5.1, and that θ2 = idg is a consequence
of (1).

Let K = Gθ be the subgroup of θ-fixed points in G. Then K is maximal compact
in G and its Lie algebra k has the form

k = R(E − F )⊕ {x+ θ(x) : x ∈ g1} ⊕ km,

where km = k ∩ m ⊆ m is maximal compact in m. Write KM = K ∩ M ⊆ M

for the corresponding group. Using the decomposition G = KMAN we define a
map H : G→ a by

g ∈ KMeH(g)N.

We now compute H on N .

Lemma 2.8.2. – For (x, t) ∈ V × R we have

eλ(H(n(x,t))) =
(
1 + 4|x|2 − 1

2
ω(µ(Jx)x, x) + 2t2 + 4|tx−Ψ(x)|2 + (t2 −Q(x))2

)λ/4

.

We remark that for some special cases a similar formula was obtained in [34,
equation (5.5)] and [35, equation (5.4)].

Remark 2.8.3. – Since, by Lemma 2.5.1,

κ(µ(x), T ) =
1

2
κ(ad(x)2E, T ) =

1

2
κ(E, ad(x)2T )

=
1

2
κ(E, [[T, x], x]) =

1

2
ω(Tx, x)κ(E,F ) =

κ0

2
ω(Tx, x),

we have
ω(µ(Jx)x, x) =

2

κ0
κ(µ(x), µ(Jx)) =

2

κ0
κ(µ(x), θµ(x)) ≤ 0.

Proof. – Let (x, t) ∈ V × R and write n(x,t) = kman, so that a = eH(n(x,t)). Then

θ(n(x,t))
−1n(x,t) = θ(n)−1(θ(m)−1m)a2n ∈ NMAN.

Hence a = a(θ(n(x,t))
−1n(x,t))

1/2 which we compute by letting θ(n(x,t))
−1n(x,t) act

on E via the adjoint action. First, by (2.7.2) we have

(2.8.2) Ad(n(x,t))E = E + x+ µ(x)− tH + Ψ(x)− tx+ (Q(x)− t2)F.
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Next, θ(n(x,t))
−1 = exp(−Jx + tE). We let this act on each of the summands of

(2.8.2). First, it acts trivially on E:

Ad(exp(−Jx+ tE))E = E.

The action on the g1-part x is computed using (2.4.1):

Ad(exp(−Jx+ tE))x = x+ ad(−Jx+ tE)x = x+ ω(Jx, x)E = x+ 4|x|2E.

Next, on the m-part µ(x) we have, using Lemma 2.4.2 and Lemma 2.4.4:

Ad(exp(−Jx+ tE))µ(x)

= µ(x) + ad(−Jx+ tE)µ(x) + 1
2 ad(−Jx+ tE)2µ(x)

= µ(x) + [µ(x), Jx] + 1
2ω(Jx, [µ(x), Jx])E

= µ(x) + [µ(x), Jx]−
(

3
2ω(Jx,BΨ(x, x, Jx)) + 1

4ω(Jx, ω(x, Jx)x
)
E

= µ(x) + [µ(x), Jx]− (6BQ(x, x, Jx, Jx)− 4|x|4)E.

For the action on H we find

Ad(exp(−Jx+ tE))H = H + ad(−Jx+ tE)H = H + Jx− 2tE.

Next, the action on the g−1-part Ψ(x)− tx is computed using Lemma 2.4.4:

Ad(exp(−Jx+ tE))(Ψ(x)− tx)

= (Ψ(x)− tx) + ad(−Jx+ tE)(Ψ(x)− tx) + 1
2 ad(−Jx+ tE)2(Ψ(x)− tx)

+ 1
6 ad(−Jx+ tE)3(Ψ(x)− tx)

= (Ψ(x)− tx) +
(
2Bµ(Jx,Ψ(x)− tx) + 1

2ω(Jx,Ψ(x)− tx)H − t(Ψ(x)− tx)
)

+ 1
2

(
2[Bµ(Jx,Ψ(x)− tx), Jx] + 1

2ω(Jx,Ψ(x)− tx)Jx− 2tω(Jx,Ψ(x)− tx)E
)

+ 1
6

(
2ω(Jx, [Bµ(Jx,Ψ(x)− tx), Jx])E

)
=
(
− tω(Jx,Ψ(x)− tx) + 1

3ω(Jx, [Bµ(Jx,Ψ(x)− tx), Jx])
)
E + · · · .

And finally, for the action on F we have, once again using Lemma 2.4.4 as well as
Lemma 2.4.2:

Ad(exp(−Jx+ tE))F = F + ad(−Jx+ tE)F + 1
2 ad(−Jx+ tE)2F + 1

6 ad(−Jx+ tE)3F

+ 1
24 ad(−Jx+ tE)4F

= F +
(
− Jx+ tH

)
+ 1

2

(
− 2µ(Jx) + 2tJx− 2t2E

)
+ 1

6

(
6Ψ(Jx)

)
+ 1

24

(
24Q(Jx)E

)
.
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Altogether we obtain

(2.8.3)

Ad(θ(n(x,t))
−1n(x,t))E =

(
1 + 4|x|2 − 6BQ(x, x, Jx, Jx) + 4|x|4 + 2t2 − tω(Jx,Ψ(x)− tx)

+ 1
3ω(Jx, [Bµ(Jx,Ψ(x)− tx), Jx]) + (Q(Jx)− t2)(Q(x)− t2)

)
E + · · ·

This expression can be simplified. In fact, by Lemma 2.4.2:

ω(Jx,Ψ(x)) = 4BQ(Jx, x, x, x),

ω(Jx, [Bµ(Jx, x), Jx]) = −12BQ(Jx, Jx, Jx, x),

ω(Jx, [Bµ(Jx,Ψ(x)), Jx]) = −12BQ(Jx, Jx, Jx,Ψ(x)).

Hence, the coefficient of E in (2.8.3) simplifies to

1 + 4|x|2 − 6BQ(Jx, Jx, x, x) + 4|x|4 + 2t2 − 4tBQ(Jx, x, x, x) + 4t2|x|2

− 4BQ(Jx, Jx, Jx,Ψ(x)) + 4tBQ(Jx, Jx, Jx, x) + (Q(Jx)− t2)(Q(x)− t2).

Finally, using (2.8.1) we find that

BQ(Jx, x, x, x) = (x|Ψ(x)), BQ(Jx, Jx, Jx,Ψ(x)) = −|Ψ(x)|2,

BQ(Jx, Jx, Jx, x) = −(x|Ψ(x)), BQ(Jx, Jx, x, x) =
1

12
ω(µ(Jx)x, x) +

2

3
|x|4

and Q(Jx) = Q(x) and the claimed formula follows.

2.9. Hermitian vs. non-Hermitian

We derive several equivalent properties characterizing the Hermitian Lie algebras
among all Heisenberg graded Lie algebras.

Theorem 2.9.1. – The following are equivalent:

(1) The group G is of Hermitian type.

(2) There exists J ∈ m such that ad(J)2|g±1 = −1 and (x, y) 7→ ω(ad(J)x, y) is
positive definite on V .

(3) The minimal adjoint orbits Omin and −Omin are distinct.

(4) The quartic Q is non-positive.

(5) The character χ of M is trivial.

Proof. – We first show (1)⇔(2). If G is of Hermitian type then the center of k is
non-trivial, i.e., there exists 0 ̸= X ∈ k such that [X,Y ] = 0 for any Y ∈ k. Write
X = s(E − F ) + (x+ θ(x)) + T with s ∈ R, x ∈ g1 and T ∈ km. Then, by (2.2.2) and
(2.2.3):

0 = [X,E − F ] = −x+ θ(x),

where x ∈ g−1 and θ(x) ∈ g1. Hence x = 0. Further, for every v ∈ g1 we have

0 = [X, v + θ(v)] = s(θ(v)− v) + [T, v] + [T, θ(v)],
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and therefore [T, v] + sθ(v) = 0 and [T, θ(v)]− sv = 0. This implies

ad(T )v = −sθ(v) and ad(T )w = sθ(w)

for v ∈ g1 and w ∈ g−1. Now, if s = 0 then ad(T ) = 0 on g±1, and trivially also
on g±2, hence on g which is only possible if T = 0, because g is assumed to be
simple. So s ̸= 0 and therefore ad(T )2|g±1

= −s2. Then J := s−1T ∈ m satisfies
ad(J)2|g±1

= −1. Further, for X,Y ∈ V = g−1 we have, by Lemma 2.5.1

0 ≤ −κ(X, θY ) = −κ(θX, Y ) = κ0 · ω(ad(J)X,Y )

and hence ω(ad(J)X,Y ) is positive definite.
Conversely, let J ∈ m with ad(J)2|g±1

= −1 and ω(ad(J)X,Y ) positive definite on V .
Note that J̃ := exp(π

2 J) ∈ M satisfies Ad(J̃2) = −1 and Ad(J̃)|g±1
= ad(J)|g±1

.
Then one can define an involution θ on g by

θ(E) := −F, θ(F ) := −E, θ(H) := −H,

and for v ∈ g1, w ∈ g−1 and T ∈ m by

θ(v) := −ad(J)v, θ(w) := ad(J)w, θ(T ) = Ad(J̃)T.

It is immediate that θ2 = 1 and hence θ is in fact an involution. We now show
that θ is a Cartan involution. Then, by the same computations as above, the center of
the corresponding maximal compact subalgebra k = gθ is spanned by X = E−F + J

and hence G is of Hermitian type. To show that θ is a Cartan involution we compute
κ(X, θ(X)) for X ∈ gi, i = −2,−1, 0, 1, 2.

(1) For X = E ∈ g2 we have κ(X, θ(X)) = −κ0 < 0.

(2) For X ∈ g1 we have κ(X, θ(X)) = κ0 · ω(X, ad(J)X) = −κ0 · ω(ad(J)X,X),
which is strictly negative for X ̸= 0.

(3) For X ∈ m we have θ(X) = J̃XJ̃−1. Since m ⊆ sp(V, ω) via X 7→ ad(X)|g−1

the Killing form κm has to be a scalar multiple of the Killing form of sp(V, ω)

on each simple factor of m. It is well-known that the involution θ(X) = J̃XJ̃−1

extends to a Cartan involution of sp(V, ω) and hence κ(X, θ(X)) < 0 for all
X ̸= 0.

(4) For X = H ∈ a we have κ(X, θ(X)) = −2κ0 < 0.

(5) For X ∈ g−1 we have κ(X, θ(X)) = −κ0 · ω(ad(J)X,X) and hence strictly
negative for X ̸= 0.

(6) For X = F ∈ g−2 we have κ(X, θ(X)) = −κ0 < 0.

Next, the equivalence (1)⇔(3) follows from [69, Theorem 1.4]. (Note that g cannot
have a complex structure, because in this case g2 as the highest root space would have
a complex structure and have real dimension ≥ 2.)

Let us show (3)⇔(4). If the orbits Omin and −Omin are distinct then Ad(M) · E = {E}.
Hence, by Lemma 2.7.1 the quartic Q is non-positive. If conversely Q ≤ 0,
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then by Lemma 2.7.1 we have Ad(m)E = E for all m ∈ M . We obtain
Ad(MAN)E = {e2rE : r ∈ R} and further

Ad(NMAN)E

= {e2r
(
E + x+ µ(x)− sH + (Ψ(x)− sx) + (Q(x)− s2)F

)
: r ∈ R, (x, s) ∈ V × R}.

In particular, the coefficient of E of every element in Ad(NMAN)E is positive. Since
the set Ad(NMAN)E is dense in Omin, the element −E cannot be in Omin and
therefore, Omin and −Omin are distinct.

Finally, (4)⇔(5) follows from Lemma 2.7.1.

Corollary 2.9.2. – If G is Hermitian, then the formula in Lemma 2.8.2 simplifies
to

eλ(H(n(x,t))) = (1 + 2|x|2 −Q(x) + t2)λ/2.

Proof. – If G is Hermitian, J ∈ m and hence, by the m-equivariance of BΨ and BQ:

JΨ(x) = 3BΨ(Jx, x, x) and BQ(Jx, x, x, x) = 0,

so that by Lemma 2.4.2:

ω(µ(Jx)x, x) = 12BQ(Jx, Jx, x, x)− 8|x|4 = 3ω(Jx,BΨ(Jx, x, x))− 8|x|4

= ω(Jx, JΨ(x))− 8|x|4 = 4Q(x)− 8|x|4,

(x|Ψ(x)) =
1

4
ω(Jx,Ψ(x)) = BQ(Jx, x, x, x) = 0.

Further, polarizing Lemma 2.4.1 (2) gives BΨ(Ψ(x), x, x) = 1
3Q(x)x and hence

|Ψ(x)|2 =
1

4
ω(JΨ(x),Ψ(x)) = BQ(JΨ(x), x, x, x) = −3BQ(Ψ(x), x, x, Jx)

= −3

4
ω(Jx,BΨ(Ψ(x), x, x)) = −Q(x)|x|2.

Inserting this into the formula in Lemma 2.8.2 and rearranging shows the claim.

Remark 2.9.3. – Note that if g = su(n + 1, 1) then V = Cn with Q(x) = −|x|4, so
that the above expression becomes

eλ(H(n(x,t))) = ((1 + |x|2)2 + t2).

This formula is well-known (see e.g., [36, Theorem IX.3.8]).

In the case where G is Hermitian we further show that the pair (sp(V, ω),m) is
of holomorphic type in the sense of Kobayashi [51, Definition 1.4]. Recall that for
reductive Hermitian Lie algebras h ⊆ g, the pair (g, h) is said to be of holomorphic
type if there exists a Cartan involution θ of g which leaves h invariant and an element
z ∈ kh = hθ such that ad(z) = 0 on k = gθ and ad(z)2 = −1 on p = g−θ. In this
case the natural embedding H/(K ∩ H) ⊆ G/K of Hermitian symmetric spaces is
holomorphic.
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Corollary 2.9.4. – If G is Hermitian then m is also Hermitian and the
pair (sp(V, ω),m) is of holomorphic type.

Proof. – We can choose the element z to be z = 1
2J ∈ m. A Cartan involution

of sp(V, ω) is given by θ(T ) = JTJ−1, hence z ∈ sp(V, ω)θ. Further ad(z) = 0

on sp(V, ω)θ = {T ∈ sp(V, ω) : TJ = JT}, and for

T ∈ sp(V, ω)−θ = {T ∈ sp(V, ω) : TJ = −JT}
we have ad(z)T = JT and ad(z)2T = 1

2 [J, JT ] = J2T = −T .
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CHAPTER 3

PRINCIPAL SERIES REPRESENTATIONS
AND

INTERTWINING OPERATORS

In this chapter we define degenerate principal series representations induced from
the parabolic subgroup P (see Section 3.1), describe their realization in the non-
compact picture on functions on the Heisenberg group (see Section 3.2) and briefly
discuss standard intertwining operators between them (see Section 3.3). We believe
that the formula in Proposition 3.3.1 for the integral kernel of the intertwining op-
erators is new. Moreover, in order to take the Fourier transform of the non-compact
picture, we recall the Heisenberg group Fourier transform in Section 3.4. Finally, in
Section 3.5 we use the Schrödinger model of the irreducible unitary representations
of the Heisenberg group to extend the Fourier transform to distributions and apply it
to the non-compact model of the degenerate principal series to obtain a new model,
the Fourier transformed picture.

3.1. Degenerate principal series representations

For a smooth admissible representation (ζ, Vζ) of M and ν ∈ a∗C we let
(π̃ζ,ν , Ĩ(ζ, ν)) be the induced representation IndG

P (ζ⊗eν⊗1), acting by left-translation
on

Ĩ(ζ, ν) = {f ∈ C∞(G,Vζ) : f(gman) = a−ν−ρζ(m)−1f(g) for all man ∈MAN}.

Here ρ ∈ a∗ denotes as usual the half sum of all positive roots.

3.2. The non-compact picture

Since NMAN ⊆ G is open dense, functions in Ĩ(ζ, ν) are uniquely determined by
their restriction to N . Therefore, we define for any f ∈ Ĩ(ζ, ν) a Vζ-valued function fn
on V × R by

fn(x, s) := f(n(x,s)), (x, s) ∈ V × R
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and let
I(ζ, ν) := {fn : f ∈ Ĩ(ζ, ν)}.

The representation π̃ζ,ν on Ĩ(ζ, ν) defines an equivalent representation πζ,ν on I(ζ, ν)
by

πζ,ν(g)fn = (π̃ζ,ν(g)f)n, g ∈ G, f ∈ Ĩ(ζ, ν).
The realization (I(ζ, ν), πζ,ν) is called the non-compact picture of the degenerate
principal series. Note that

S(V × R) ⊗̂Vζ ⊆ I(ζ, ν) ⊆ C∞temp(V × R) ⊗̂Vζ ,

where S(V × R) denotes the space of Schwartz functions, i.e., smooth functions de-
creasing rapidly at infinity together with all their derivatives, and C∞temp(V × R)

denotes the space of smooth functions which grow at most polynomially at infinity.
We compute the action of MAN and w0 in this realization:

Proposition 3.2.1. – For f ∈ I(ζ, ν) and (x, s) ∈ V × R we have

πζ,ν(n(y,t))f(x, s) = f(x− y, s− t+ 1
2ω(x, y)), n(y,t) ∈ N,

πζ,ν(m)f(x, s) = ζ(m)f(m−1x, χ(m)−1s), m ∈M,

πζ,ν(erH)f(x, s) = e(ν+ρ)rf(erx, e2rs), erH ∈ A.

Moreover, for ζ = 1 the trivial representation of M we have

π1,ν(w±1
0 )f(x, s) = |s2 −Q(x)|−

ν+ρ
2 f

(
±Ψ(x)− sx

s2 −Q(x)
,− s

s2 −Q(x)

)
.

Proof. – The formulas for M , A and N are obvious. For π1,ν(w0) we use Lemma 2.7.1.

We can use these formulas to find the differentiated action dπζ,ν(X) =
d
dt

∣∣
t=0

πζ,ν(exp(tX)) of the Lie algebra g on I(ζ, ν). To simplify the formulas,
we let E denote the weighted Euler operator on V × R, i.e.,

E =
∑
α

xα
∂

∂xα
+ 2s

∂

∂s
,

where x =
∑

α xαeα for any basis (eα) of V .

Corollary 3.2.2. – The Lie algebra representation dπζ,ν of g on a Vζ-valued func-
tion in (x, s) ∈ V × R is given by

dπζ,ν(F ) = −∂s,

dπζ,ν(v) = −∂v + 1
2ω(x, v)∂s, v ∈ g−1

dπζ,ν(T ) = −∂Tx + dζ(T ), T ∈ m,
dπζ,ν(H) = E + (ν + ρ),

dπζ,ν(w) = ∂µ(x)w+ω(x,w)x−sw + 1
2ω(sx+ Ψ(x), w)∂s

+ ν+ρ
2 ω(x,w)− 2dζ(Bµ(x,w)), w ∈ g1,
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dπζ,ν(E) = ∂sx+Ψ(x) + (s2 +Q(x))∂s + (ν + ρ)s+ dζ(µ(x)).

Proof. – The formulas for dπζ,ν(F ), dπζ,ν(v), dπζ,ν(T ) and dπζ,ν(H) follow by differ-
entiating the corresponding group actions in Proposition 3.2.1. For dπζ,ν(E) we use
Lemma 2.7.2 to find for f ∈ Ĩ(ζ, ν):

dπζ,ν(E)fn(x, s) =
d

dt

∣∣∣∣
t=0

f(exp(−tE)n(x,s))

=
d

dt

∣∣∣∣
t=0

[
(1− 2st− t2(Q(x)− s2))−

ν+ρ
2 ζ(m(e−tEn(x,s)))

−1

× fn

(
x+ t(Ψ(x)− sx)

1− 2st− t2(Q(x)− s2)
,

s+ t(Q(x)− s2)

1− 2st− t2(Q(x)− s2)

)]

=
d

dt

∣∣∣∣
t=0

[
(1− 2st− t2(Q(x)− s2))−

ν+ρ
2

]
fn(x, s)

+
d

dt

∣∣∣∣
t=0

[
ζ(m(e−tEn(x,s)))

−1
]
fn(x, s)

+
d

dt

∣∣∣∣
t=0

fn

(
x+ t(Ψ(x)− sx)

1− 2st− t2(Q(x)− s2)
,

s+ t(Q(x)− s2)

1− 2st− t2(Q(x)− s2)

)
.

The first of the three terms is seen to be (ν + ρ)sfn(x, s). For the second term we
use from Lemma 2.7.2 that d

dt |t=0m(e−tEn(x,s)) = −µ(x), so that the second term
becomes dζ(µ(x))fn(x, s). The third term equals s∂Ψ(x)fn(x, s)+(s2+Q(x))∂sfn(s, x)

by a careful application of the chain rule.

Finally, dπζ,ν(w) can be obtained from dπζ,ν(E) and dπζ,ν(w) by dπζ,ν(w) =

[dπζ,ν(w), dπζ,ν(E)].

3.3. Intertwining operators

For Re ν ≫ 0 the standard Knapp-Stein intertwining operator

Ã(ζ, ν) : Ĩ(ζ, ν) → Ĩ(w0ζ,−ν)

(with [w0ζ](m) = ζ(w−1
0 mw0)) is given by the convergent integral

Ã(ζ, ν)f(g) =

∫
N

f(gw0n) dn.

It is well-known that Ã(ζ, ν) extends meromorphically to all ν ∈ C. We consider the
Knapp-Stein operator A(ζ, ν) in the non-compact picture:

A(ζ, ν)fn := (Ã(ζ, ν)f)n (f ∈ Ĩ(ζ, ν)).
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Proposition 3.3.1. – Assume ζ = 1 is the trivial representation, then the opera-
tor A(ζ, ν) is the convolution operator

A(1, ν)f(x, s) =

∫
V×R

|t2 −Q(y)|
ν−ρ

2 f((x, s) · (y, t)) d(y, t).

Proof. – In [50, Chapter VII, §7] it is shown that

Ã(ζ, ν)f(g) =

∫
N

a(w−1
0 n)ν−ρζ(m(w−1

0 n))f(gn) dn

with m(w−1
0 n) and a(w−1

0 n) as in (2.7.1). Then, Lemma 2.7.1 immediately yields the
claim.

Remark 3.3.2. – Of course one can also write down a formula for A(ζ, ν) for general
ζ, but we will not need this in what follows.

3.4. The Fourier transform on the Heisenberg group

The infinite-dimensional irreducible unitary representations of the Heisenberg
group N are parameterized by their central character iλ ∈ iR×. More precisely, for
each λ ∈ R× there exists a unique (up to equivalence) infinite-dimensional unitary
representation (σλ,Hλ) of N such that dσλ(0, t) = iλt for (0, t) ∈ n ≃ V × R.
There are two standard realizations of σλ, the Schrödinger model and the Fock
model. The Schrödinger model is realized on the space Hλ = L2(Λ) for a Lagrangian
subspace Λ ⊆ V , whereas the Fock model is realized on the Fock space Hλ = F(V )

consisting of holomorphic functions on V (with respect to a certain complex structure)
which are square-integrable with respect to a Gaussian measure.

Since M acts on N by automorphisms, the map n 7→ σλ(Ad(m)n) defines an
irreducible unitary representation of N with central character iχ(m)λ, and hence
there exists a projective unitary representation ωmet,λ ofM on the same representation
space such that
(3.4.1)

σλ(Ad(m)n) = ωmet,λ(m) ◦ σχ(m)λ(n) ◦ ωmet,λ(m)−1 for all m ∈M,n ∈ N.

Since M1 = {m ∈ M : χ(m) = 1} acts symplectically on V , the representation
ωmet,λ|M1

is simply the restriction of the metaplectic representation of Sp(V, ω) to M1,
viewed as a projective representation.

For f ∈ L1(N) we form

(3.4.2) σλ(f) =

∫
N

f(n)σλ(n) dn,

where dn is a fixed Haar measure on N . If we identify X ∈ n with the corresponding
left-invariant vector field on N , then

(3.4.3) σλ(Xf) = −σλ(f) ◦ dσλ(X).

MÉMOIRES DE LA SMF 180



3.5. THE FOURIER TRANSFORM OF DISTRIBUTIONS 35

Further, if f ∗ g ∈ L1(N) denotes the convolution of f, g ∈ L1(N) given by

(f ∗ g)(x) =

∫
N

f(y)g(xy−1) dy,

then
σλ(f ∗ g) = σλ(g) ◦ σλ(f).

We have the following Plancherel Formula (after appropriate normalization of the
measures involved):

∥f∥2
L2(N)

=

∫
R×
∥σλ(f)∥2HS|λ|

dim V
2 dλ.

Here ∥T∥2HS = tr(TT ∗) denotes the Hilbert-Schmidt norm of a Hilbert-Schmidt op-
erator on a Hilbert space. Realizing all infinite-dimensional irreducible unitary repre-
sentations of N on the same Hilbert space Hλ = H and writing HS(H) for the Hilbert
space of Hilbert-Schmidt operators on H, the Fourier transform can be extended to
an isometric isomorphism

(3.4.4) F : L2(N) → L2(R×,HS(H); |λ| dim V
2 dλ), Ff(λ) = σλ(f).

3.5. The Schrödinger model and the Fourier transform of distributions

For the Schrödinger model of the infinite-dimensional irreducible unitary repre-
sentations of N ≃ V × R one has to choose a Lagrangian subspace Λ ⊆ V and a
Lagrangian complement Λ∗ ⊆ V . Then the Schrödinger model is a realization of σλ

on H = L2(Λ) given by

(3.5.1) σλ(z, t)φ(x) = eiλteiλ(ω(z′′,x)+ 1
2 ω(z′,z′′))φ(x− z′) (x ∈ Λ, φ ∈ L2(Λ))

for z = (z′, z′′) ∈ Λ ⊕ Λ∗ = V and t ∈ R. The corresponding differentiated represen-
tation of n ≃ V × R is given by

dσλ(z, t) = −∂z′ + iλω(z′′, x) + iλt, z = (z′, z′′) ∈ Λ⊕ Λ∗ = V, t ∈ R.

For u ∈ S(N) we have

[σλ(u)φ](y) =

∫
N

u(z, t)σλ(z, t)φ(y) dz dt

=

∫
Λ

∫
Λ∗

∫
R
u(z′, z′′, t)eiλteiλ(ω(z′′,y)+ 1

2 ω(z′,z′′))φ(y − z′) dt dz′′ dz′

=

∫
Λ

(∫
Λ∗

∫
R
u(y − x, z′′, t)eiλte−

iλ
2 (ω(x+y,z′′)) dt dz′′

)
φ(x) dx

=

∫
Λ

û(λ, x, y)φ(x) dx,

where

û(λ, x, y) =

∫
Λ∗

∫
R
u(y−x, z′′, t)eiλte−

iλ
2 ω(x+y,z′′) dt dz′′ = F2F3u(y−x, λ

2 (x+y),−λ).
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Here F2 denotes the symplectic Fourier transform with respect to ω in the second
variable, and F3 denotes the Euclidean Fourier transform with respect to the third
variable.

Proposition 3.5.1. – The linear map

S ′(N) → D′(R×) ⊗̂ S ′(Λ× Λ) ≃ D′(R×) ⊗̂Hom(S(Λ),S ′(Λ)), u 7→ û,

is defined and continuous. Its kernel is given by those distributions which are polyno-
mial in t.

Proof. – Clearly F2F3 is a topological isomorphism S ′(N) → S ′(Λ×Λ×R). Restrict-
ing the last coordinate to R× defines a continuous linear map

S ′(Λ× Λ× R) ≃ S ′(Λ× Λ) ⊗̂ S ′(R) → S ′(Λ× Λ) ⊗̂D′(R×).

Finally, the change of coordinates (x, y, λ) 7→ (y − x, λ
2 (x+ y),−λ) induces a contin-

uous linear isomorphism on S ′(Λ×Λ) ⊗̂D′(R×). Composing these three maps shows
continuity of the map u 7→ û. To determine its kernel we observe that the only non-
bijective map in this three-fold composition is the restriction to R×. Its kernel is given
by all distributions v ∈ S ′(Λ×Λ×R) with supp v ⊆ Λ×Λ× {0}. Such distributions
are necessarily of the form

v(x, y, λ) =

m∑
k=0

vk(x, y)δ(k)(λ)

for some distributions vk ∈ S ′(Λ×Λ). Taking the inverse Fourier transforms F−1
2 ◦F−1

3

shows the claim.

Remark 3.5.2. – The map u 7→ û is essentially the group Fourier transform of N ,
but only evaluated at the infinite-dimensional unitary representations σλ, λ ∈ R×.
Therefore, it has a kernel which can be treated using the finite-dimensional unitary
representations of N .

Corollary 3.5.3. – Assume that (ζ, Vζ) is a smooth admissible Fréchet representa-
tion of moderate growth. Then, for Re ν > −ρ the Fourier transform

F : I(ζ, ν) ⊆ S ′(V × R) ⊗̂Vζ → D′(R×) ⊗̂ S ′(Λ× Λ) ⊗̂Vζ

is injective.

Proof. – We embed ζ into a principal series representation IndM
M ′A′N ′(ζ

′ ⊗ eν′ ⊗ 1)

of M induced from a minimal parabolic subgroup M ′A′N ′ ⊆ M , where (ζ ′, V ′ζ ) is a
finite-dimensional representation of the compact group M ′ and ν′ ∈ (a′C)∗, with a′

denoting the Lie algebra of A′. Using induction in stages, we may embed

I(ζ, ν) = IndG
MAN (ζ ⊗ eν ⊗ 1) ⊆ IndM ′(AA′)(NN ′)(ζ

′ ⊗ eν+ν′ ⊗ 1).

By Proposition 3.5.1, the kernel of the Fourier transform consists of functions which,
restricted to N ≃ V × R, are polynomial in t ∈ R. It therefore suffices to show that
the restriction to N of a function f ∈ IndM ′(AA′)(NN ′)(ζ

′ ⊗ eν+ν′ ⊗ 1) cannot be a
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non-zero polynomial in t if Re ν > −ρ. After possibly translating f by an element
of N , it suffices to show that f(n(0,t)) cannot be a non-zero polynomial in t ∈ R.
Since M ′(AA′)(NN ′) is a minimal parabolic subgroup of G,we have an Iwasawa
decomposition G = KAA′NN ′. Write n(0,t) = kaa′nn′ with k ∈ K, a ∈ A, a′ ∈ A′,
n ∈ N and n′ ∈ N ′, then

f(n(0,t)) = a−ν−ρ(a′)−ν−ρ′f(k).

Since n(0,t) = exp(tF ) is contained in a subgroup locally isomorphic to SL(2,R)

(whose Lie algebra is spanned by H, E and F ) which contains A = exp(RH) but
not A′ ⊆ M , we can decompose n(0,t) with respect to the Iwasawa decomposition
of this subgroup and find that a′ = 1 and a = exp( 1

2 log(1 + t2)H) by a stan-
dard SL(2,R)-computation (or alternatively, using Lemma 2.8.2). Bounding |f(k)|
by C = supx∈K |f(x)| shows that

|f(n(0,t))| ≤ C(1 + t2)−
ν+ρ
2 → 0 as t→∞,

by our assumpion on Re ν. Hence, f cannot be a non-zero polynomial in t.

Remark 3.5.4. – We note that

S ′(Λ× Λ) ≃ Hom(S(Λ),S ′(Λ)) = Hom(H∞,H−∞)

since the space H∞ of smooth vectors in H = L2(Λ) is given by the space S(Λ) of
Schwarz functions.

The previous observation allows us to define a representation π̂ζ,ν of G on Î(ζ, ν) =

F(I(ζ, ν)) ⊆ D′(R×) ⊗̂ S ′(Λ× Λ) ⊗̂Vζ by

π̂ζ,ν(g) = F ◦ πζ,ν(g) ◦ F−1, g ∈ G.

We call this realization the Fourier transformed picture. In this picture, the action of
the opposite parabolic subgroup P is expressed in terms of the representation σλ and
the metaplectic representation ωmet,λ:

Proposition 3.5.5. – For f ∈ Î(ζ, ν) ⊆ D′(R×) ⊗̂Hom(H∞,H−∞) ⊗̂Vζ we have

π̂ζ,ν(n(z,t))f(λ) = σλ(z, t) ◦ f(λ), n(z,t) ∈ N,
π̂ζ,ν(m)f(λ) = ζ(m) · ωmet,λ(m) ◦ f(χ(m)λ) ◦ ωmet,λ(m)−1, m ∈M,

π̂ζ,ν(etH)f(λ) = e(ν−ρ)tδet ◦ f(e−2tλ) ◦ δe−t , etH ∈ A,

where δsφ(x) = φ(sx) (s > 0). Alternatively, viewing f as a Vζ-valued distribution
in (λ, x, y) ∈ R× × Λ× Λ, we have

π̂ζ,ν(n(z,t))f(λ, x, y) = eiλteiλ(ω(z′′,y)+ 1
2 ω(z′,z′′))f(λ, x, y − z′), n(z,t) ∈ N,

π̂ζ,ν(m)f(λ, x, y) = ζ(m)(id∗R× ⊗ωmet,−λ(m)⊗ ωmet,λ(m))f(χ(m)λ, x, y), m ∈M,

π̂ζ,ν(etH)f(λ, x, y) = e(ν−1)tf(e−2tλ, etx, ety), etH ∈ A.
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Proof. – The first three identities are derived from Proposition 3.2.1 by composing
with the Fourier transform given in (3.4.2) and (3.4.4). For instance, the first identity
follows from the definitions using left-invariance of the Haar measure dn on N :

π̂ζ,ν(n(z,t)) ◦ Fu(λ) = F ◦ πζ,ν(n(z,t))u(λ) =

∫
N

πζ,ν(n(z,t))u(n)σλ(n) dn

=

∫
N

u(n−1
(z,t)n)σλ(n) dn =

∫
N

u(n)σλ(n(z,t)n) dn

=

∫
N

u(n)
[
σλ(n(z,t)) ◦ σλ(n)

]
dn = σλ(n(z,t)) ◦

∫
N

u(n)σλ(n) dn

= σλ(z, t) ◦ Fu(λ),

where we use the identification V × R ≃ N, (z, t) 7→ n(z,t). The last three identities
follow from the first ones by identifying f(λ) ∈ Hom(S(Λ),S ′(Λ)) with its Schwartz
kernel f(λ, x, y) in the sense that

f(λ)φ(y) =

∫
Λ

f(λ, x, y)φ(x) dx,

and by making use of the fact that

σλ(n)⊤ = σ−λ(n−1) and ωmet,λ(m)⊤ = ωmet,−λ(m−1)

as operators S(Λ) → S(Λ), S(Λ) → S ′(Λ) or S ′(Λ) → S ′(Λ). For instance,
the previous computation shows that π̂ζ,ν(n(z,t)) acts on f(λ) by the compo-
sition σλ(z, t) ◦ f(λ), which in turn is given by (3.5.1). Hence, for every test
function φ ∈ S(Λ):[

σλ(z, t) ◦ f(λ)
]
φ(y) = eiλteiλ(ω(z′′,y)+ 1

2 ω(z′,z′′))f(λ)φ(y − z′)

= eiλteiλ(ω(z′′,y)+ 1
2 ω(z′,z′′))

∫
Λ

f(λ, x, y − z′)φ(x) dx

=

∫
Λ

[
eiλteiλ(ω(z′′,y)+ 1

2 ω(z′,z′′))f(λ, x, y − z′)
]
φ(x) dx,

so the Schwartz kernel of σλ(z, t) ◦ f(λ) is eiλteiλ(ω(z′′,y)+ 1
2 ω(z′,z′′))f(λ, x, y − z′).

It seems difficult to express the action of N or w0 in the Fourier transformed
picture. More accessible is the action of the Lie algebra g in the differentiated repre-
sentation dπ̂ζ,ν which can be obtained using Corollary 3.2.2 and the formulas in the
following lemma. We will not carry out the computation of the Lie algebra action on
the whole principal series representation, but rather restrict to a certain subrepresen-
tation in Section 5.5.

For the following statement, denote by ∂v,x resp. ∂v,y the directional derivative
in the variable x resp. y in the direction v. Moreover, we use the coordinates (z, t)

on V × R.

Lemma 3.5.6. – Let u ∈ S ′(V × R).
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(1) For v ∈ Λ we have

̂ω(v, z)u(λ, x, y) = − 1

iλ
(∂v,x + ∂v,y)û(λ, x, y),

∂̂vu(λ, x, y) = −1

2
(∂v,x − ∂v,y)û(λ, x, y).

(2) For w ∈ Λ∗ we have

̂ω(z, w)u(λ, x, y) = ω(y − x,w)û(λ, x, y),

∂̂wu(λ, x, y) =
iλ

2
ω(x+ y, w)û(λ, x, y).

(3) For differentiation and multiplication with respect to the central variable t we
have

∂̂tu(λ, x, y) = −iλû(λ, x, y),

t̂u(λ, x, y) = −i∂λû(λ, x, y)−
1

2iλ
(∂x+y,x + ∂x+y,y)û(λ, x, y).

Proof. – We only show the last formula, the rest is standard. For this let (eα) ⊆ Λ be
a basis of Λ with dual basis (êα) ⊆ Λ∗. Then, using (1) we find

t̂u(λ, x, y) = −i
∫

Λ∗

∫
R
u(y − x, z′′, t)∂λ

[
eiλt
]
e−

iλ
2 ω(x+y,z′′) dt dz′′

= −i∂λû(x, y, λ) +
1

2

∫
Λ∗

∫
R
ω(x+ y, z′′)u(y − x, z′′, t)eiλte−

iλ
2 ω(x+y,z′′) dt dz′′

= −i∂λû(λ, x, y) +
1

2

∑
α

ω(x+ y, êα) ̂ω(eα, z′′)u(λ, x, y)

= −i∂λû(λ, x, y)−
1

2iλ

∑
α

ω(x+ y, êα)(∂eα,x + ∂eα,y)û(λ, x, y)

and the claimed formula follows.
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CHAPTER 4

CONFORMALLY INVARIANT SYSTEMS
AND

THEIR FOURIER TRANSFORM

We recall the construction of conformally invariant systems on Heisenberg nilrad-
icals due to [2] in Section 4.1, discuss their conformal invariance in Section 4.2, and
compute their action in the Fourier transformed picture in Sections 4.3, 4.4 and 4.5.

4.1. Quantization of the symplectic invariants

In [2, Sections 5 and 6] four conformally invariant systems of differential operators
on N are constructed. We briefly recall their construction and properties. For this,
let (eα) ⊆ V be a basis and êα be the dual basis with respect to the symplectic form,
i.e., ω(eα, êβ) = δαβ . Denote by Xα the left-invariant vector field on N corresponding
to eα ∈ n, i.e.,

Xαf(n) =
d

dt

∣∣∣∣
t=0

f(neteα).

In the coordinates (x, t) ∈ V × R ≃ N this operator takes by (2.6.1) the form

(4.1.1) Xα = ∂α + 1
2ω(x, eα)∂t,

where ∂α = ∂eα
.

4.1.1. Quantization of ω. – For v ∈ V we let

Ωω(v) :=
∑
α

ω(v, êα)Xα = ∂v +
1

2
ω(x, v)∂t.
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4.1.2. Quantization of µ. – For T ∈ m we let

Ωµ(T ) =
∑
α,β

ω(T êα, êβ)XαXβ .

Note that, by Corollary 2.4.6, the linear form T 7→ ω(T êα, êβ) on m is proportional
to T 7→ tr(TBµ(êα, êβ)) on each simple or abelian factor of m, which, in turn, is
proportional to T 7→ κ(T,Bµ(êα, êβ)) by Lemma 2.5.1, κ being the Killing form
of g. In this sense, Ωµ can be understood as a quantization of µ. Using the explicit
expression (4.1.1) of Xα in the coordinates (x, t) ∈ V × R we find

Ωµ(T ) =
∑
α,β

ω(T êα, êβ)(∂α + 1
2ω(x, eα)∂t)(∂β + 1

2ω(x, eβ)∂t)

=
∑
α,β

ω(T êα, êβ)
[
∂α∂β + 1

2ω(x, eα)∂β∂t + 1
2ω(x, eβ)∂α∂t + 1

4ω(x, eα)ω(x, eβ)∂2
t

]

=
∑
α,β

ω(T êα, êβ)∂α∂β − ∂Tx∂t + 1
4ω(Tx, x)∂2

t .

(4.1.2)

4.1.3. Quantization of Ψ and Q. – For v ∈ V we let

ΩΨ(v) :=
∑

α,β,γ

ω(v,BΨ(êα, êβ , êγ))XαXβXγ ,

ΩQ :=
∑

α,β,γ,δ

BQ(êα, êβ , êγ , êδ)XαXβXγXδ.

4.2. Conformal invariance

In [2, Sections 5 and 6] it is shown that all four systems are conformally invariant
for certain special parameters ν in the case where the representation (ζ, Vζ) is trivial
on the identity component of M , i.e., the differentiated representation dζ is zero.
Since we also need to involve non-trivial representations dζ in Sections 5.6 and 5.7,
we give a self-contained proof of conformal invariance for the systems Ωω and Ωµ to
have all relevant formulas available. The following computations use the coordinates
(x, s) ∈ V × R.

Theorem 4.2.1 (see [2, Theorem 5.1]). – For every v ∈ V we have

[Ωω(v), dπζ,ν(X)] = 0 (X ∈ n),
[Ωω(v), dπζ,ν(H)] = Ωω(v),

[Ωω(v), dπζ,ν(S)] = −Ωω(Sv) (S ∈ m).

Moreover,

[Ωω(v), dπζ,ν(E)] = sΩω(v)− Ωω(µ(x)v) +
ν + ρ

2
ω(x, v) + 2dζ(Bµ(x, v)).
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In particular, for dζ = 0 and ν = −ρ the space

I(ζ, ν)Ωω(V ) = {f ∈ I(ζ, ν) : Ωω(v)f = 0 for all v ∈ V }

is a subrepresentation of (πζ,ν , I(ζ, ν)).

Proof. – This is a straightforward verification using the formulas in Corollary 3.2.2.

Remark 4.2.2. – Since the left-invariant vector fields generate the C∞(N)-module
of all vector fields, I(ζ, ν)Ωω(V ) only consists of constant functions and is therefore
the trivial representation. To obtain a non-trivial representation we try to reduce
the conformally invariant system Ωω(V ) to Ωω(W ) for a subspace W ⊆ V . How-
ever, in all cases except g ≃ sl(n,R) the Lie algebra m acts irreducibly on V so
that [Ωω(w), dπζ,ν(S)]f = 0 for some w ∈ V implies Ωω(v)f = 0 for all v ∈ V .
For g = sl(n,R), the adjoint representation of m on V splits into two irreducible sub-
spaces. In Section 5.6 we show that restricting Ωω to one of those subspaces yields a
conformally invariant subsystem for certain parameters (ζ, ν).

Theorem 4.2.3 ([2, Theorem 5.2]). – For every T ∈ m we have

[Ωµ(T ), dπζ,ν(X)] = 0 (X ∈ n),
[Ωµ(T ), dπζ,ν(H)] = 2Ωµ(T ),

[Ωµ(T ), dπζ,ν(S)] = Ωµ([T, S]) (S ∈ m).

Further, if T ∈ m′ where m′ is any simple or abelian factor of m, then

[Ωµ(T ), dπζ,ν(E)] = 2sΩµ(T ) + Ωµ([T, µ(x)]) + (2 C(m′)− 2− (ν + ρ))Ωω(Tx)

+ 4
∑
α

dζ(Bµ(x, eα))Ωω(T êα)− 2 C(m′)dζ(T ).

In particular, for any simple or abelian factor m′ of m, dζ = 0 and ν = 2 C(m′)−ρ−2

the space
I(ζ, ν)Ωµ(m′) = {f ∈ I(ζ, ν) : Ωµ(T )f = 0 for all T ∈ m′}

is a subrepresentation of (πζ,ν , I(ζ, ν)).

Proof. – The first three identities are easy to verify. To calculate [Ωµ(T ), dπζ,ν(E)]

we compute all commutators between the different summands of

Ωµ(T ) =
∑
α,β

ω(T êα, êβ)∂α∂β − ∂Tx∂s + 1
4ω(Tx, x)∂2

s

and
dπζ,ν(E) = ∂sx + ∂Ψ(x) + (s2 +Q(x))∂s + (ν + ρ)s+ dζ(µ(x))

separately. First,[∑
α,β

ω(T êα, êβ)∂α∂β , ∂sx

]
= 2s

∑
α,β

ω(T êα, êβ)∂α∂β .
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Next, using Lemma 2.4.2 (2) we have[∑
α,β

ω(T êα, êβ)∂α∂β , ∂Ψ(x)

]
= 6

∑
α,β

ω(T êα, êβ)∂BΨ(eα,x,x)∂β + 6
∑
α,β

ω(T êα, êβ)∂BΨ(eα,eβ ,x)

= −
∑
α,β

(
2ω(T êα, êβ)∂µ(x)eα

∂β + ω(T êα, êβ)ω(x, eα)∂x∂β

)
−
∑
α,β

(
2ω(T êα, êβ)∂Bµ(eα,eβ)x + ω(T êα, êβ)∂ω(eα,x)eβ

)
=
∑
α,β

ω([T, µ(x)]êα, êβ)∂α∂β +
∑
α,β

ω(x, êα)ω(Tx, êβ)∂α∂β

−
∑
α,β

2∂Bµ(eα,T êα)x − ∂Tx.

By Lemma 2.4.5, the sum in the third term evaluates to
∑

αBµ(eα, T êα) = −C(m′)T
and together we obtain

=
∑
α,β

ω([T, µ(x)]êα, êβ)∂α∂β +
∑
α,β

ω(x, êα)ω(Tx, êβ)∂α∂β

+ (2 C(m′)− 1)∂Tx.

Next, by Lemma 2.4.2 (2) and (3)[∑
α,β

ω(T êα, êβ)∂α∂β , (s
2 +Q(x))∂s

]
= 8

∑
α,β

ω(T êα, êβ)BQ(eα, x, x, x)∂β∂s + 12
∑
α,β

ω(T êα, êβ)BQ(eα, eβ , x, x)∂s

= 2∂TΨ(x)∂s −
∑
α,β

ω(T êα, êβ)
(
ω(x,Bµ(eα, eβ)x) +

1

2
ω(x, eβ)ω(eα, x)

)
∂s

= −2

3
∂Tµ(x)x∂s −

∑
α

ω(x,Bµ(eα, T êα)x)∂s +
1

2
ω(Tx, x)∂s,

which is, again by Lemma 2.4.5, equal to

= −2

3
∂Tµ(x)x∂s + (

1

2
− C(m′))ω(Tx, x)∂s.

Finally, the last commutator of this type is[∑
α,β

ω(T êα, êβ)∂α∂β , (ν + ρ)s
]

= 0.

Next, we have

[∂Tx∂s, ∂sx] = ∂Tx +
∑
α,β

ω(x, êα)ω(Tx, êβ)∂α∂β .
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Further, again by Lemma 2.4.2

[∂Tx∂s, ∂Ψ(x)] =
∑
α

(
3ω(BΨ(Tx, x, x), êα)− ω(TΨ(x), êα)

)
∂α∂s

= −∂µ(x)Tx∂s +
1

2
ω(Tx, x)∂x∂s +

1

3
∂Tµ(x)x∂s.

Next,

[∂Tx∂s, (s
2 +Q(x))∂s] = 2s∂Tx∂s + 4BQ(Tx, x, x, x)∂2

s

= 2s∂Tx∂s + ω(Tx,Ψ(x))∂2
s

= 2s∂Tx∂s −
1

6
ω([T, µ(x)]x, x)∂2

s .

And the last commutator of this type is

[∂Tx∂s, (ν + ρ)s] = (ν + ρ)∂Tx.

Next, we have

[ω(Tx, x)∂2
s , ∂sx] = 2ω(Tx, x)∂x∂s − 2sω(Tx, x)∂2

s .

Further,

[ω(Tx, x)∂2
s , ∂Ψ(x)] = −

(
ω(TΨ(x), x) + ω(Tx,Ψ(x))

)
∂2

s =
1

3
ω([T, µ(x)]x, x)∂2

s .

Next,

[ω(Tx, x)∂2
s , (s

2 +Q(x))∂s] = 2ω(Tx, x)∂s + 4sω(Tx, x)∂2
s

and

[ω(Tx, x)∂2
s , (ν + ρ)s] = 2(ν + ρ)ω(Tx, x)∂s.

Finally, by Lemma 2.4.5:

[Ωµ(T ), dζ(µ(x))] = 2
∑
α

dζ(Bµ(eα, T êα)) + 4
∑
α

dζ(Bµ(x, eα))∂T êα
− 2dζ(Bµ(Tx, x))∂t

= −2 C(m′)dζ(T ) + 4
∑
α

dζ(Bµ(x, eα))Ωω(T êα).

Collecting all terms shows the claimed formula.

4.3. The Fourier transform of Ωω

Since Ωω(v) is acting by the left-invariant vector field corresponding to v ∈ V , it
follows immediately from (3.4.3) that

(4.3.1) σλ(Ωω(v)u) = −σλ(u)dσλ(v).
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4.4. The Fourier transform of Ωµ

We show that in the Fourier transformed picture the conformally invariant sys-
tem Ωµ(T ), T ∈ m, is nothing else but the metaplectic representation of sp(V, ω)

restricted to m as defined in Section 3.4. For this, we use that dωmet,λ is the unique
representation of m on S(Λ) by differential operators such that (cf. (3.4.1))

dσλ([T,X]) = [dωmet,λ(T ), dσλ(X)] for all T ∈ m, X ∈ n.

Theorem 4.4.1. – For every λ ∈ R× and T ∈ m we have

dσλ(Ωµ(T )) = 2iλdωmet,λ(T ).

Proof. – It suffices to show that

[dσλ(Ωµ(T )), dσλ(X)] = 2iλdσλ([T,X]) for all X ∈ V.

We compute

[dσλ(Ωµ(T )), dσλ(X)] =
∑
α,β

ω([T, êα], êβ)[dσλ(Xα)σλ(Xβ), dσλ(X)]

=
∑
α,β

ω([T, êα], êβ)
(
dσλ(Xα)[dσλ(Xβ), dσλ(X)] + [dσλ(Xα), dσλ(X)]dσλ(Xβ)

)
=
∑
α,β

ω([T, êα], êβ)
(
dσλ(Xα)dσλ([Xβ , X]) + dσλ([Xα, X])dσλ(Xβ)

)
= iλ

∑
α,β

ω([T, êα], êβ) (ω(Xβ , X)dσλ(Xα) + ω(Xα, X)dσλ(Xβ))

= 2iλ
∑

β

ω([T,X], êβ)dσλ(Xβ) = 2iλdσλ([T,X]).

4.5. The Fourier transform of ΩΨ and ΩQ

Although we do not investigate the kernel of the conformally invariant systems ΩΨ

and ΩQ any further in this work, we provide the Fourier transform of these systems
for completeness.

Corollary 4.5.1. – For every λ ∈ R× and v ∈ V we have

dσλ(ΩΨ(v)) =
2iλ

3

∑
α

σλ(eα)dωmet,λ(Bµ(v, êα)) +
iλ

12
(dimV + 1)σλ(v)

=
iλκ0

3

∑
i

σλ(T ′iv)dωmet,λ(Ti) +
iλ

12
(dimV + 1)σλ(v),

where (eα) is a basis of V , (êα) the dual basis with respect the symplectic form ω,
(Ti) a basis of m and (T ′i ) the dual basis with respect to the Killing form κ of g.
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Proof. – By Lemma 2.4.2 and Theorem 4.4.1 we have

σλ(ΩΨ(v)) =
∑

α,β,γ

ω(êβ , BΨ(v, êα, êγ))σλ(eα)σλ(eβ)σλ(eγ)

= −1

3

∑
α,β,γ

ω(êβ , Bµ(v, êα)êγ)σλ(eα)σλ(eβ)σλ(eγ)

− 1

12

∑
α,β,γ

ω(êβ , ω(v, êγ)êα + ω(êα, êγ)X)σλ(eα)σλ(eβ)σλ(eγ)

=
1

3

∑
α

σλ(eα)σλ(Ωµ(Bµ(v, êα))

+
1

12

∑
α

(
σλ(eα)σλ(êα)σλ(v) + σλ(eα)σλ(v)σλ(êα)

)
=

2iλ

3

∑
α

σλ(eα)dωmet,λ(Bµ(v, êα))

+
1

6

∑
α

σλ(eα)σλ(êα)σλ(v) +
1

12

∑
α

σλ(eα)σλ([v, êα]).

Using the independence of the chosen basis we find
(4.5.1)∑
α

σλ(eα)σλ(êα) =
1

2

∑
α

(
σλ(eα)σλ(êα)− σλ(êα)σλ(eα)

)
=

1

2

∑
α

σλ([eα, êα]) =
iλ

2
dimV

and σλ([v, êα]) = iλω(v, êα). This shows

σλ(ΩΨ(v)) =
2iλ

3

∑
α

σλ(eα)dωmet,λ(Bµ(v, êα)) +
iλ

12
(dimV + 1)σλ(v).

The second identity follows by expanding Bµ(v, êα) =
∑

i κ(Bµ(v, êα), T ′i )Ti into the
basis (Ti) and using κ(Bµ(x, y), T ) = κ0

2 ω(Tx, y) (see Remark 2.8.3).

The Fourier transform of the conformally invariant differential operator ΩQ is
essentially the Casimir element in the restriction of the metaplectic representation
of sp(V, ω) to m.

Corollary 4.5.2. – For every λ ∈ R× we have

σλ(ΩQ) =
κ0

3
λ2dωmet,λ(Casm)− (dimV )2

96
λ2,

where Casm ∈ U(m) denotes the Casimir element of m with respect to the Killing
form κ.
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Proof. – Using Lemma 2.4.2, we find

σλ(ΩQ) = − 1

12

∑
α,β,γ,δ

ω(êγ , Bµ(êα, êβ)êδ)σλ(Xα)σλ(Xβ)σλ(Xγ)σλ(Xδ)

− 1

24

∑
α,β,γ,δ

ω(êγ , Bτ (êα, êβ)êδ)σλ(Xα)σλ(Xβ)σλ(Xγ)σλ(Xδ)

=
1

12

∑
α,β

σλ(Xα)σλ(Xβ)σλ(Ωµ(Bµ(êα, êβ)) +
1

24

∑
α,β

σλ(eα)σλ(eβ)σλ(êβ)σλ(êα).

Applying (4.5.1) to the latter sum, first for the summation over β and then for the
summation over α, we obtain 1

24 ( iλ
2 dimV )2 = − 1

96λ
2(dimV )2. For the first sum let

(Ti) be a basis of m and (T ′i ) its dual basis with respect to the Killing form κ of g.
Then∑
α,β

σλ(Xα)σλ(Xβ)σλ(Ωµ(Bµ(êα, êβ)) =
∑

i

∑
α,β

κ(Bµ(êα, êβ), T ′i )σλ(Xα)σλ(Xβ)σλ(Ωµ(Ti))

= −κ0

∑
i

σλ(Ωµ(T ′i ))σλ(Ωµ(Ti))

= 4κ0λ
2
∑

i

dωmet,λ(T ′i )dωmet,λ(Ti)

= 4κ0λ
2dωmet,λ(Casm),

where Casm =
∑

i T
′
iTi ∈ U(m) is the Casimir element of m.
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CHAPTER 5

ANALYSIS OF THE FOURIER TRANSFORM OF Ωµ

We study the subrepresentation I(ζ, ν)Ωµ(m) and its image in D′(R×) ⊗̂ S ′(Λ× Λ) ⊗̂Vζ

under the Fourier transform in the case where G is non-Hermitian. For this, we first
recall some more structure theory following [76, 75]. More precisely, the 5-grading
of g with respect to the grading element H ∈ g0 is refined to a bigrading with respect
to a two-dimensional abelian subalgebra of g0 containing H (see Section 5.1, 5.2 and
5.3). The bigrading gives rise to natural complementary Lagrangian subspaces Λ,
Λ∗ ⊆ V = g−1 which are used in the Heisenberg group Fourier transform. Using this
structure, we solve the differential equation Ωµ(T )u = 0 on the Fourier transformed
side (see Section 5.4) and in this way obtain a model of the representation I(ζ, ν)Ωµ(m)

on a subspace of D′(R×) ⊗̂ S ′(Λ), the Fourier transformed picture (see Section 5.5).
The cases g ≃ sl(n,R) and so(p, q) have to be treated separately in Sections 5.6 and
5.7. Finally, we compare the formulas for the Lie algebra action in this model with
the literature in Section 5.8.

5.1. The Lagrangian decomposition

By Theorem 2.9.1, the group G is non-Hermitian if and only if there exists O ∈ V
such that Q(O) > 0. We renormalize O such that Q(O) = 1. Any such O ∈ V has by
[75, Main Theorem] a Lagrangian decomposition

O = A+B,

where µ(A) = µ(B) = 0 and ω(A,B) = 2. This decomposition is unique and A and
B are given by

A = 1
2 (O −Ψ(O)) and B = 1

2 (O + Ψ(O)).

Further, the tangent spaces of Z = µ−1(0) at A and B,

Λ := TAZ and Λ∗ := TBZ,

are complementary Lagrangian subspaces. We use this particular Lagrangian decom-
position V = Λ⊕ Λ∗ for the Schrödinger model of the representation σλ of N .
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Note that we use the same letter A for the element A ∈ V and the one-dimensional
subgroup A = exp(RH) ⊆ G. It should be clear from the context which object is
meant.

5.2. The bigrading

Let

Hα = 1
2 (H+µ(O)) = 1

2 (H+2Bµ(A,B)), Hβ = 1
2 (H−µ(O)) = 1

2 (H−2Bµ(A,B)).

Then [Hα, Hβ ] = 0 and ad(Hα) and ad(Hβ) are simultaneously diagonalizable. Write

g(i,j) := {X ∈ g : ad(Hα)X = iX, ad(Hβ)X = jX},

then we have the bigrading
g =

⊕
i,j

g(i,j).

More precisely:

g2 = g(1,1),

g1 = g(2,−1) + g(1,0) + g(0,1) + g(−1,2),

g0 = g(1,−1) + g(0,0) + g(−1,1),

g−1 = g(1,−2) + g(0,−1) + g(−1,0) + g(−2,1),

g−2 = g(−1,−1).

Note that Ad(w0)g(i,j) = g(−j,−i), i.e., w0 flips the star diagram along the axis i+ j = 0.

g(1,1)

g(2,−1) g(1,0) g(0,1) g(−1,2)

g(1,−1) g(0,0) g(−1,1)

g(1,−2) g(0,−1) g(−1,0) g(−2,1)

g(−1,−1)
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Here m = g(1,−1) ⊕ (m ∩ g(0,0)) ⊕ g(−1,1) and g(0,0) = RH ⊕ (m ∩ g(0,0)). Further,
m ∩ g(0,0) = RBµ(A,B)⊕mO, where

mO = {T ∈ m : TO = 0} = {T ∈ m : TA = TB = 0}.

Moreover,
g(1,−2) = RA and g(−2,1) = RB,

and the Lagrangians Λ and Λ∗ are given by

Λ = RA+ g(0,−1) and Λ∗ = RB + g(−1,0).

Note that ω(A, g(−1,0)) = 0 and ω(B, g(0,−1)) = 0. Moreover, the maps

g(0,−1) → g(−1,1), v 7→ Bµ(v,B) and g(−1,0) → g(1,−1), w 7→ Bµ(A,w)

are g(0,0)-equivariant isomorphisms. Note that Bµ(A,B) acts on g−1 by

(5.2.1) Bµ(A,B) =


3
2 on g(1,−2),
1
2 on g(0,−1),
− 1

2 on g(−1,0),
− 3

2 on g(−2,1).

Further, note that
g(2,−1) = RA, g(−1,2) = RB,

and
[A,B] = −2Hα, [B,A] = 2Hβ .

For z ∈ g(0,−1) we have µ(z) ∈ g(1,−1) and hence Ψ(z) ∈ g(1,−2) = RA. We define
n : g(0,−1) → R by

Ψ(z) = n(z)A, z ∈ g(0,−1).

Then the function n(z) is a polynomial of degree 3 which vanishes identically if and
only if g ≃ sl(n,R) (see [76, Proposition 7.9]). In all other cases,

J = g(0,−1)

carries the structure of a rank 3 Jordan algebra with Jordan determinant n(z).
(Strictly speaking, one also has to exclude the case g ≃ g2(2) where g(0,−1) ≃ R
with n(z) = z3.) Note that Ψ−1(0)∩J resp. µ−1(0)∩J is the subvariety of elements
of rank ≤ 2 resp. ≤ 1. We write J ∗ = g(−1,0) which can be identified with the dual
of J using the symplectic form.

Remark 5.2.1. – A slightly different and more natural point of view is to endow
(V +, V −) = (J ,J ∗) with the structure of a Jordan pair. This structure consists of
trilinear maps

{·, ·, ·}± : V ± × V ∓ × V ± → V ±,

such that

(1) {u, v, w}± = {w, v, u}± for all u,w ∈ V ± and v ∈ V ∓,
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(2) {x, y, {u, v, w}±}± = {{x, y, u}±, v, w}± − {u, {v, x, y}∓, w}± + {u, v, {x, y, w}±}±
for all x, u, w ∈ V ± and y, v ∈ V ∓.

If we define
{u, v, w}± := ±(Bµ(u,w) +Bτ (u,w))v,

property (1) follows immediately from the symmetry of Bµ and Bτ , and property (2)
follows from Lemma 2.4.3 and the m-equivariance of Bµ.

In addition to w0 we define the group elements

(5.2.2) w1 = exp

(
π

2
√

2
(A−B)

)
, w2 = exp

(
π

2
√

2
(B +A)

)
.

Lemma 5.2.2. – (1) The elements w1 and w2 have the following mapping proper-
ties:

Ad(w1)g(i,j) = g(i+j,−j), Ad(w2)g(i,j) = g(−i,i+j).

(2) For v ∈ J , w ∈ J ∗ and T ∈ mO we have

Ad(w1)F = − 1√
2
B, Ad(w1)E =

1√
2
A,

Ad(w1)A = −B, Ad(w1)A = −
√

2E,

Ad(w1)v =
√

2Bµ(v,B), Ad(w1)v = v,

Ad(w1)w = w, Ad(w1)w =
√

2Bµ(A,w),

Ad(w1)B =
√

2F, Ad(w1)B = −A,

Ad(w1)Bµ(v,B) = − 1√
2
v, Ad(w1)Bµ(A,w) = − 1√

2
w,

Ad(w1)H = Bµ(A,B) +
1

2
H, Ad(w1)Bµ(A,B) = −1

2
Bµ(A,B) +

3

4
H,

Ad(w1)T = T,

and similar for w2 by substituting (A,B) 7→ (B,−A).

(3) We have w2
1, w

2
2 ∈M with χ(w2

1) = χ(w2
2) = −1 and

Ad(w2
1)(aA+ v + w + bB) = aA− v + w − bB

Ad(w2
2)(aA+ v + w + bB) = −aA+ v − w + bB

(a, b ∈ R, v ∈ J , w ∈ J ∗).

(4) The following relations hold:

w0w1w
−1
0 = w−1

2 , w1w0w
−1
1 = w2, w2w0w

−1
2 = w−1

1

w0w2w
−1
0 = w1, w1w2w

−1
1 = w−1

0 , w2w1w
−1
2 = w0.

Proof. – (2) is an easy though longish computation using the definitions in Section 2.2
as well as Lemma 2.4.4. The formulas for Ad(w1) and Ad(w2) then imply (1) and (3).
Finally, (4) follows with the identity

w exp(X)w−1 = exp(Ad(w)X)
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and the definitions in Section 2.2.

5.3. Identities for the moment map µ in the bigrading

We show several identities for the moment map µ and its symmetrization Bµ,
acting on different parts of the decomposition

V = RA⊕ J ⊕ J ∗ ⊕ RB.

Lemma 5.3.1. – Assume g ̸≃ sl(n,R), so(p, q). For z ∈ J and w ∈ J ∗ we have

tr(Bµ(A,w) ◦Bµ(z,B)|J ) =

(
1

2
+

1

6
dimJ

)
ω(z, w).

We remark that the formula also holds for g = sl(3,R) and so(4, 4), but we do not
need this.

Proof. – First note that, since Bµ is m-equivariant,

[Bµ(A,w), Bµ(z,B)] = Bµ(Bµ(A,w)z,B) +Bµ(z,Bµ(A,w)B).

By Lemma 2.4.3, we have Bµ(A,w)z = 1
2ω(z, w)A and Bµ(A,w)B = −w, and hence

[Bµ(A,w), Bµ(z,B)] =
1

2
ω(z, w)Bµ(A,B)−Bµ(z, w).

Choose a basis (eα) of g(0,−1) and let (êα) be the basis of g(−1,0) such that ω(eα, êβ) = δαβ .
Then

tr(Bµ(A,w) ◦Bµ(z,B)|g(0,−1)

) =
∑
α

ω(Bµ(A,w)Bµ(z,B)eα, êα)

=
∑
α

(
ω(Bµ(z,B)Bµ(A,w)eα, êα) +

1

2
ω(z, w)ω(Bµ(A,B)eα, êα)− ω(Bµ(z, w)eα, êα)

)
.

Again by Lemma 2.4.3, we find that Bµ(A,w)eα = 1
2ω(eα, w)A and Bµ(z,B)A = z,

and further Bµ(A,B)eα = 1
2eα so that

tr(Bµ(A,w) ◦Bµ(z,B)|g(0,−1)

) =

(
1

2
+

1

4
dim g(0,−1)

)
ω(z, w)− tr(Bµ(z, w)|g(0,−1)

).

We have Bµ(z, w) ∈ g(0,0) = RHα ⊕ RHβ ⊕ mO, where mO = {T ∈ m : [T,O] = 0}.
Write Bµ(z, w) = aHα + bHβ + T with T ∈ mO. Then tr(T |g(0,−1)

) = 0

(since g ̸≃ sl(n,R), so(p, q) and hence mO is semisimple) and tr(Hα|g(0,−1)

) = 0,

tr(Hβ |g(0,−1)

) = −dim g(0,−1). We determine a and b which will complete the proof.

Since [T,A] = [T,B] = 0 we have

Bµ(z, w)A = (a− 2b)A and Bµ(z, w)B = (b− 2a)B.
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On the other hand, by Lemma 2.4.3 we find

Bµ(z, w)A =
1

2
ω(Bµ(z, w)A,B)A =

1

2
ω(Bµ(A,B)z, w)A =

1

4
ω(z, w)A,

Bµ(z, w)B =
1

2
ω(A,Bµ(z, w)B)B =

1

2
ω(z,Bµ(A,B)w)B = −1

4
ω(z, w)B.

Thus, a = −b = 1
12ω(z, w) and the claimed formula follows.

Lemma 5.3.2. – For z ∈ J we have

µ(z)2B = −4n(z)z.

Proof. – Using Lemma 2.4.3 and µ(z)z = −3Ψ(z) = −3n(z)A we find

µ(z)2B = µ(z)Bµ(z, z)B = µ(z)Bµ(z,B)z = [µ(z), Bµ(z,B)]z +Bµ(z,B)µ(z)z

= [µ(z), Bµ(z,B)]z − 3n(z)Bµ(z,B)A = [µ(z), Bµ(z,B)]z − 3n(z)z.

Now, by the m-equivariance of Bµ:

[µ(z), Bµ(z,B)]z = Bµ(µ(z)z,B)z +Bµ(z, µ(z)B)z

= −3n(z)Bµ(A,B)z +Bµ(z,Bµ(z,B)z)z

= −3

2
n(z)z +

1

2
[Bµ(z,B), µ(z)]z,

and hence [µ(z), Bµ(z,B)]z = −n(z)z, and the claim follows.

Lemma 5.3.3. – If g is non-Hermitian and m is simple, the number C(m) in
Lemma 2.4.5 is given by

C(m) =
3

2
+

dimJ
6

.

Proof. – Let (eα) be a basis of g−1 and (êα) its dual basis with respect to ω, then by
Lemma 2.4.5

(5.3.1)
∑
α

Bµ(Teα, êα) = C(m) · T for all T ∈ m.

We may choose eα ∈ {A,B}∪g(0,−1)∪g(−1,0), then êα ∈ {− 1
2A,

1
2B}∪g(0,−1)∪g(−1,0).

Now put T = Bµ(A,B) ∈ m, then the left hand side of (5.3.1) becomes
1

2
Bµ(TA,B)− 1

2
Bµ(TB,A) +

∑
eα∈g(0,−1)

Bµ(Teα, êα) +
∑

eα∈g(−1,0)

Bµ(Teα, êα),

and by (5.2.1) this is
3

2
Bµ(A,B) +

∑
eα∈g(0,−1)

Bµ(eα, êα).

Hence ∑
eα∈g(0,−1)

Bµ(eα, êα) =

(
C(m)− 3

2

)
Bµ(A,B).
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We apply both sides to A and find∑
eα∈g(0,−1)

Bµ(eα, êα)A =

(
C(m)− 3

2

)
Bµ(A,B)A =

3

2

(
C(m)− 3

2

)
A.

As in the proof of Lemma 5.3.1, we have Bµ(eα, êα)A = 1
4ω(eα, êα)A = 1

4A and the
claim follows.

Lemma 5.3.4. – Let x = aA+ z+w+ bB with a, b ∈ R, z ∈ g(0,−1) and w ∈ g(−1,0).
Then

µ(x) = (µ(z) + 2aBµ(A,w))︸ ︷︷ ︸
∈g(1,−1)

+ (2abBµ(A,B) + 2Bµ(z, w))︸ ︷︷ ︸
∈g(0,0)

+ (µ(w) + 2bBµ(z,B))︸ ︷︷ ︸
∈g(−1,1)

,

Ψ(x) = (−a2b− 1
2aω(z, w) + n(z))A︸ ︷︷ ︸
∈g(1,−2)

+
[
(−ab− 1

2ω(z, w))z − aµ(w)A− µ(z)w
]

︸ ︷︷ ︸
∈g(0,−1)

+
[
(ab+ 1

2ω(z, w))w − bµ(z)B − µ(w)z
]

︸ ︷︷ ︸
∈g(−1,0)

+ (ab2 + 1
2bω(z, w) + n∗(w))B︸ ︷︷ ︸

∈g(−2,1)

,

Q(x) = a2b2 + abω(z, w)− 2bn(z) + 2an∗(w) +
1

4
ω(z, w)2 +

1

2
ω(µ(z)w,w),

where we write Ψ(z) = n(z)A and Ψ(w) = n∗(w)B. Moreover, we have µ(z) =

−Bµ(A,µ(z)B), µ(w) = Bµ(µ(w)A,B) and

Bµ(z, w) ∈ 1
6ω(z, w)Bµ(A,B) +mO.

Proof. – This is a direct computation.

5.4. m-invariant distribution vectors in the metaplectic representation

Using Theorem 4.4.1, we compute dωmet,λ(T ) explicitly for T ∈ m. In view of the
decomposition Λ = RA+ J , we write x ∈ Λ as x = aA+ z with a ∈ R and z ∈ J .

Proposition 5.4.1. – For every λ ∈ R× the representation dωmet,λ of m on S ′(Λ) is
given by

dωmet,λ(T ) =


1

2iλ

∑
eα,eβ∈g(0,−1)

ω(T êα, êβ)∂α∂β − 1
2ω(TB, z)∂A T ∈ g(1,−1),

− 1
2ω(TA,B)a∂A − ∂Tz − 1

2 tr(T |Λ) T ∈ g(0,0) ∩m,
−a∂TA + 1

2 iλω(Tz, z) T ∈ g(−1,1).

Proof. – By Theorem 4.4.1:

dωmet,λ(T ) =
1

2iλ

∑
α,β

ω(T êα, êβ)dσλ(Xα)dσλ(Xβ).
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Since this expression is independent of the choice of the basis (eα) we may choose
eα ∈ {A,B}∪ g(0,−1) ∪ g(−1,0). Then êα ∈ {− 1

2A,
1
2B}∪ g(0,−1) ∪ g(−1,0). Further, the

representation dσλ is in the coordinates (a, z) given by

dσλ(A) = −∂A, dσλ(v) = −∂v (v ∈ g(0,−1))

and

dσλ(B) = −2iλa, dσλ(w) = iλω(w, z) (w ∈ g(−1,0)).

First, let T ∈ g(1,−1), then

dωmet,λ(T ) =
1

2iλ

∑
α,β

ω(T êα, êβ)dσλ(Xα)dσλ(Xβ)

=
1

2iλ

(
− 1

2
iλ

∑
eβ∈g(−1,0)

ω(TB, êβ)ω(eβ , z)∂A

+
∑

eα,eβ∈g(0,−1)

ω(T êα, êβ)∂α∂β −
1

2
iλ

∑
eα∈g(−1,0)

ω(T êα, B)ω(eα, z)∂A

)

=
1

2iλ

∑
eα,eβ∈g(0,−1)

ω(T êα, êβ)∂α∂β −
1

2
ω(TB, z)∂A.

Next, let T ∈ g(0,0), then ad(T ) preserves each g(i,j) and we find

dωmet,λ(T ) =
1

2iλ

∑
α,β

ω(T êα, êβ)dσλ(Xα)dσλ(Xβ)

=
1

2iλ

(
− 1

2
iλω(TB,A)∂Aa− iλ

∑
eα∈g(0,−1)

eβ∈g(−1,0)

ω([T, êα], êβ)∂αω(eβ , z)

− iλ
∑

eα∈g(−1,0)

eβ∈g(0,−1)

ω([T, êα], êβ)ω(eα, z)∂β −
1

2
iλω(TA,B)a∂A

)

= −1

2

(
ω(TA,B)a∂A + 2∂Tz + tr(T |Λ)

)
.

Finally, let T ∈ g(−1,1), then

dωmet,λ(T ) =
1

2iλ

∑
α,β

ω(T êα, êβ)dσλ(Xα)dσλ(Xβ)

=
1

2iλ

(
−iλ

∑
eα∈g(0,−1)

ω(T êα, A)a∂α

− λ2
∑

eα,eβ∈g(−1,0)

ω(T êα, êβ)ω(eα, z)ω(eβ , z)− iλ
∑

eβ∈g(0,−1)

ω(TA, êβ)a∂β

)
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= −a∂TA +
1

2
iλω(Tz, z).

Recall that J = g(0,−1) is a rank 3 Jordan algebra with norm function n(z) =
1
2ω(Ψ(z), B), except in the case g ≃ sl(n,R) where n(z) = 0 and in the case g ≃ g2(2)
where J ≃ R is strictly speaking of rank one. We note that for any w ∈ J we have,
by Lemma 2.4.2,
(5.4.1)

∂wn(z) =
1

2
ω(3BΨ(z, z, w), B) = −1

2
ω(µ(z)w +

1

2
τ(z)w,B) = −1

2
ω(µ(z)w,B).

Theorem 5.4.2. – Assume g ̸≃ sl(n,R), so(p, q). For every λ ∈ R× the space
L2(Λ)−∞,m = S ′(Λ)m of m-invariant distribution vectors in ωmet,λ is two-dimensional.
More precisely, S ′(Λ)m = Cξλ,0 ⊕ Cξλ,1, where

ξλ,ε(a, z) = sgn(a)ε|a|smine−iλ
n(z)

a (a ∈ R, z ∈ J ),

where smin = − 1
6 (dim Λ + 2) and ε ∈ Z/2Z.

Remark 5.4.3. – For smin ≤ −1 the definition of ξλ,ε(a, z) does not define a locally
integrable function on Λ, but has to be interpreted as a distribution. In Appendix C
we show that ξλ,ε is indeed the special value of a meromorphic family of distributions
on Λ at a regular point.

Proof of Theorem 5.4.2. – Let ξ ∈ S ′(Λ) such that dωmet,λ(T )ξ = 0 for all T ∈ m.
By the assumptions on g, the subalgebra m is generated by g(1,−1) and g(−1,1), so
the above condition is equivalent to dωmet,λ(T )ξ = 0 for T ∈ g(1,−1) and T ∈ g(−1,1).
First, let T = Bµ(w,B) ∈ g(−1,1), w ∈ g(0,−1), then by Lemma 2.4.3:

TA = Bµ(B,w)A = Bµ(B,A)w +
1

4
ω(B,w)A− 1

4
ω(B,A)w − 1

2
ω(w,A)B = w,

and for z ∈ J :

ω(Tz, z) = ω(Bµ(w,B)z, z) = ω(Bµ(w, z)B, z) = ω(Bµ(z, w)z,B) = ω(µ(z)w,B).

Hence, dωmet,λ(T )ξ = 0 implies

a∂wξ =
1

2
iλω(µ(z)w,B)ξ = −iλ(∂wn(z))ξ,

which is equivalent to
a∂w(ξ · eiλ

n(z)
a ) = 0.

Since w ∈ g(0,−1) was arbitrary, we have

ξ(a, z) = ξ0(a)e
−iλ

n(z)
a + ξ1(a, z),

where ξ0(a) is independent of z and ξ1(a, z) has support on {a = 0}. Next, let
T = Bµ(A,w) ∈ g(1,−1), w ∈ g(−1,0), then again by Lemma 2.4.3:

TB = Bµ(A,w)B = Bµ(A,B)w +
1

4
ω(A,w)B − 1

4
ω(A,B)w − 1

2
ω(w,B)A = −w.
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Therefore, dωmet,λ(T )ξ = 0 implies∑
eα,eβ∈g(0,−1)

ω(T êα, êβ)∂α∂βξ = iλω(z, w)∂Aξ.

Let us first assume a ̸= 0, then ξ(a, z) = ξ0(a)e
−iλ

n(z)
a and hence

∂Aξ(a, z) = ξ′0(a)e
iλ

n(z)
a + iλa−2n(z)ξ(a, z),

∂αξ(a, z) =
1

2
iλa−1ω(µ(z)eα, B)ξ(a, z),

∂α∂βξ(a, z) = iλa−1ω(Bµ(z, eβ)eα, B)ξ(a, z)− 1

4
λ2a−2ω(µ(z)eα, B)ω(µ(z)eβ , B)ξ(a, z).

We sum the two terms for ∂α∂βξ over α and β separately. For the first term we obtain,
using Lemma 2.4.3 and 5.3.1:∑
eα,eβ∈g(0,−1)

ω(T êα, êβ)ω(Bµ(z, eβ)eα, B) =
∑

eα,eβ∈g(0,−1)

ω(T êβ , êα)ω(Bµ(z, eβ)B, eα)

=
∑

eβ∈g(0,−1)

ω(Bµ(z, eβ)B, T êβ)

= −
∑

eβ∈g(0,−1)

ω(TBµ(z,B)eβ , êβ)

= − tr(Bµ(A,w) ◦Bµ(z,B)|g(0,−1)

)

= −
(

1

2
+

1

6
dim g(0,−1)

)
ω(z, w).

For the second term we have∑
eα,eβ∈g(0,−1)

ω(T êα, êβ)ω(µ(z)eα, B)ω(µ(z)eβ , B) = −ω(µ(z)Tµ(z)B,B).

But [T, µ(z)] = 2Bµ(Tz, z) = 0 since T ∈ g(1,−1) implies Tz ∈ g(1,−2) and
Bµ(Tz, z) ∈ g(2,−2) = {0}. Therefore, by Lemma 5.3.2:

ω(µ(z)Tµ(z)B,B) = −ω(µ(z)2B, TB) = −4n(z)ω(z, w).

This implies∑
eα,eβ∈g(0,−1)

ω(T êα, êβ)∂α∂βξ

= −iλa−1

(
1

2
+

1

6
dim g(0,−1)

)
ω(z, w)ξ − λ2a−2n(z)ω(z, w)ξ,

and hence dωmet,λ(T )ξ = 0 becomes

aξ′0(a) = sminξ0(a).

It follows that ξ0(a) = c1|a|smin + c2 sgn(a)|a|smin . Now assume ξ1(a, z) has support
in {a = 0} and solves dωmet,λ(T )ξ1 = 0. Then there exists m ∈ N and ξ1,k ∈ S ′(J ),
k = 0, . . . ,m, such that ξ1(a, z) =

∑m
k=0 ξ1,k(z)δ(k)(a), where δ(k)(a) denotes the k-th
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derivative of the Dirac distribution δ(a). The differential equation dωmet,λ(T )ξ1 = 0

then reads
m∑

k=0

∑
eα,eβ∈g(0,−1)

ω(T êα, êβ)∂α∂βξ1,k(z)δ(k)(a) = −iλω(z, w)

m∑
k=0

ξ1,k(z)δ(k+1)(a).

Comparing coefficients of δ(k)(a) we find inductively that ξ1,k = 0, so that ξ1 = 0.
This finishes the proof.

5.5. The Fourier transformed picture

Assume g ̸≃ sl(n,R), so(p, q). Then m is simple and C := C(m) = 3
2 + dimJ

6 .
It follows from Theorem 4.2.3 that for a representation (ζ, Vζ) with dζ = 0 and
ν = 2 C − ρ− 2 = − 2

3 dimJ − 1, the space

I(ζ, ν)Ωµ(m) = {u ∈ I(ζ, ν) : Ωµ(T )u = 0 for all T ∈ m} ⊆ I(ζ, ν)

is a subrepresentation of (πζ,ν , I(ζ, ν)). We study this subrepresentation in the Fourier
transformed picture. Let u ∈ I(ζ, ν)Ωµ(m) and recall the representations σλ (λ ∈ R×)

of the Heisenberg group. By (3.4.3), for every λ ∈ R×:

0 = σλ(Ωµ(T )u) = σλ(u) ◦ dσλ(Ωµ(T )) for all T ∈ m.

Corollary 5.5.1. – Let A : S(Λ) → S ′(Λ) be a continuous linear operator such
that A ◦ dσλ(Ωµ(T )) = 0 for all T ∈ m. Then there exist u0, u1 ∈ S ′(Λ) such that

Aφ = ⟨φ, ξ−λ,0⟩u0 + ⟨φ, ξ−λ,1⟩u1 for all φ ∈ S(Λ).

Proof. – Since dσλ(Ωµ(T )) = 2iλdωmet,λ(T ) by Theorem 4.4.1, we have
A ◦ dωmet,λ(T ) = 0 for all T ∈ m. Let A⊤ : S(Λ) → S ′(Λ) denote the trans-
pose of A and note that dωmet,λ(T )⊤ = −dωmet,−λ(T ) for T ∈ m. Hence
dωmet,−λ(T ) ◦ A⊤ = 0 for all T ∈ m. Theorem 5.4.2 implies that the image
of A⊤ is contained in S ′(Λ)m = Cξ−λ,0⊕Cξ−λ,1, so there exist unique u0, u1 ∈ S ′(Λ)

such that A⊤φ = ⟨φ, u0⟩ξ−λ,0 + ⟨φ, u1⟩ξ−λ,1 for φ ∈ S(Λ). Passing to the transposed
operator once more shows the claimed formula for A.

By Corollary 5.5.1, we can write

(5.5.1) σλ(u)φ(y) = ⟨φ, ξ−λ,0⟩u0(λ, y) + ⟨φ, ξ−λ,1⟩u1(λ, y)

for unique u0, u1 ∈ D′(R×) ⊗̂ S ′(Λ) ⊗̂Vζ . In terms of the integral kernel û(λ, x, y)
of σλ(u) : S(Λ) → S ′(Λ) ⊗̂Vζ this can be written as

(5.5.2) û(x, y, λ) = ξ−λ,0(x)u0(λ, y) + ξ−λ,1(x)u1(λ, y).

The map

I(ζ, ν)Ωµ(m) → (D′(R×) ⊗̂ S ′(Λ) ⊗̂Vζ)⊕ (D′(R×) ⊗̂ S ′(Λ) ⊗̂Vζ), u 7→ (u0, u1)

is injective and we denote its image by Jmin. Let ρmin denote the representation of G
on Jmin which turns the map u 7→ (u0, u1) into an isomorphism of G-representations.
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We remark that Jmin could be trivial, which is equivalent to I(ζ, ν)Ωµ(m) = {0}.
In order to show that there exists some representation ζ of M such that Jmin ̸= {0}
and to extend ρmin to an irreducible unitary representation of G, we compute the Lie
algebra action dρmin(g). For this, we first state the action of the identity component P 0

of P which is derived from Proposition 3.5.5 as well as (5.5.1) and (5.5.2). Recall that
we assume dζ = 0, i.e., ζ is trivial on the identity component M0 of M .

Proposition 5.5.2. – The representation ρmin is for g ∈ P 0 given by

ρmin(g)(u0, u1) = (ρmin,0(g)u0, ρmin,1(g)u1),

where ρmin,ε is the representation of P 0 on D′(R×) ⊗̂ S ′(Λ) given by

ρmin,ε(n(z,t))f(λ, y) = eiλteiλ(ω(z′′,y)+ 1
2 ω(z′,z′′))f(λ, y − z′) n(z,t) ∈ N,

ρmin,ε(m)f(λ, y) = (id∗R× ⊗ωmet,λ(m))f(λ, y) m ∈M0,

ρmin,ε(e
tH)f(λ, y) = e(ν+smin−1)tf(e−2tλ, ety) etH ∈ A.

Since ρmin,ε is independent of ε ∈ Z/2Z, we abuse notation and write ρmin = ρmin,0 =

ρmin,1.

To state the Lie algebra action, we write y ∈ Λ as y = aA+ y′.

Proposition 5.5.3. – The Lie algebra representation dρmin of g is given by

dρmin(X)(u0, u1) = (dρmin,0(X)u0, dρmin,1(X)u1)),

where dρmin,ε is the representation of g on D′(R×) ⊗̂ S ′(Λ) ⊗̂Vζ given by

dρmin,ε(F ) = iλ

dρmin,ε(v) = −∂v (v ∈ Λ)

dρmin,ε(w) = −iλω(y, w) (w ∈ Λ∗)

dρmin,ε(T ) = dωmet,λ(T ) (T ∈ m)

dρmin,ε(H) = ∂y − 2λ∂λ + 2smin −
dim Λ

2
− 1

dρmin,ε(A) = i∂λ∂A +
smin − dim Λ

2

iλ
∂A −

2

λ2
n(∂′)

dρmin,ε(v) = i∂λ∂v +
3smin + 1

iλ
∂v +

1

2
ω(µ(y′)v,B)∂A

− 1

iλ

∑
α,β

ω(Bµ(y′, v)êα, êβ)∂eα∂eβ
(v ∈ g(0,−1))

dρmin,ε(w) = −ω(y, w)λ∂λ + ω(y, w)∂y + 2sminω(y, w)

+ ∂µ(y′)w −
1

2iλ
ω(y,B)

∑
α,β

ω(Bµ(A,w)êα, êβ)∂eα
∂eβ

(w ∈ g(−1,0))

dρmin,ε(B) = −ω(y,B)λ∂λ + ω(y,B)∂y + sminω(y,B) + 2iλn(y′)
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dρmin,ε(E) = iλ∂2
λ − ia∂λ∂A − i∂λ∂y′ − 5ismin∂λ −

4smin + 1

iλ
a∂A

+ n(y′)∂A +
2

λ2
an(∂′) +

smin

iλ
dim Λ− 3smin + 1

iλ
∂y′

+
1

2iλ

∑
α,β

ω(µ(y′)êα, êβ)∂eα∂eβ
,

where (eα) is a basis of J = g(0,−1), (êα) the corresponding dual basis of g(−1,0) with
respect to the symplectic form, and

n(∂′) =
1

2

∑
α,β,γ

ω(A,BΨ(êα, êβ , êγ))∂eα∂eβ
∂eγ .

Since dρmin,ε is independent of ε ∈ Z/2Z and of ζ, we abuse notation and
write dρmin = dρmin,0 = dρmin,1 for the obvious extension of both representations
to D′(R×) ⊗̂ S ′(Λ).

Proof. – The formulas for m, a and n follow by differentiating the formulas in Propo-
sition 5.5.2. We next compute dρmin(B). Writing z = aA+ v + w + bB with a, b ∈ R
and v ∈ J , w ∈ J ∗, we have, by Lemma 5.3.4:

dπζ,ν(B) = 2a2∂A + 2a∂v + ∂µ(v)B − (ab+ 1
2ω(v, w) + t)∂B

+ (at+ n(v)− 1
2aω(v, w)− a2b)∂t + (ν + ρ)a.

A careful application of Lemma 3.5.6 yields

dπ̂ζ,ν(B) = −ω(y,B)λ∂λ + (ω(y,B)− 1
2ω(x,B))ω(x,B)∂A,x + ω(y − x,B)∂x′,x

+ ω(x,B)∂y′,x + 1
2ω(y,B)2∂A,y + ω(y,B)∂y′,y

+ 4iλn(x′) + iλω(µ(x′)y′, B) + 2iλn(y′) + ν+ρ
2 ω(y − x,B),

(5.5.3)

where ∂v,x resp. ∂w,y means differentiation in the direction v resp. w with respect to
the variable x resp. y of û(λ, x, y), and x ∈ RA+ x′, y ∈ RA+ y′. In view of (5.5.2),
we compute with x = aA+ x′:

λ∂λξ−λ,ε(x) = iλn(x′)
a ξ−λ,ε(a, x

′),

ω(x,B)∂A,xξ−λ,ε(x) = 2a∂Aξ−λ,ε(a, x
′) = 2sminξ−λ,ε(a, x

′)− 2iλn(x′)
a ξ−λ,ε(a, x

′),

∂x′,xξ−λ,ε(x) = 3iλn(x′)
a ξ−λ,ε(a, x

′),

∂y′,xξ−λ,ε(x) = − iλ
2a
ω(µ(x′)y′, B)ξ−λ,ε(a, x

′).

A short computation using ν+ρ
2 = −smin then shows

̂(dπζ,ν(B)u)(λ, x, y) =
∑

ε∈Z/2Z

ξ−λ,ε(x)
[
− ω(y,B)λ∂λ + 1

2ω(y,B)2∂A + ω(y,B)∂y′

+ sminω(y,B) + 2iλn(y′)
]
uε(λ, y).
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This proves the claimed formula for dρmin,ε(B). Since g is generated by m, a, n
and B, the remaining formulas can be obtained as commutators. More precisely, by
(2.2.4), (2.4.1) and Lemma 2.4.3 the following identities hold for v ∈ J , w ∈ J ∗ and
T ∈ g(1,−1) (so that Tw ∈ J ∗):

[B,Bµ(A,w)] = w, [T,w] = Tw, [Bµ(A,w), v] = 1
2ω(v, w)A, [B,A] = 2E.

Remark 5.5.4. – We give a formal heuristic argument, why the representation ρmin
should extend to a unitary representation on L2(R××Λ, |λ|dim Λ−2smindλ). Note that
several steps of the argument need a certain regularization to make sense. However,
since we prove that ρmin extends to a unitary representation by different means, we
do not justify all steps. For simplicity we assume that ζ is the trivial representation.

By Proposition 3.3.1, the invariant Hermitian form on I(ζ, ν) is given by a regu-
larization of

⟨u,∆ ν−ρ
2 ∗ v⟩ =

∫
R×

tr
(
σλ(∆

ν−ρ
2 ∗ v)∗σλ(u)

)
|λ|dim Λ dλ

=

∫
R×

tr
(
σλ(∆

ν−ρ
2 )σλ(v)∗σλ(u)

)
|λ|dim Λ dλ,

where ∆(z, t) = t2 − Q(z). Assume that u, v ∈ I(ζ, ν)Ωµ(m) satisfy σλ(u)φ =

⟨ξ−λ,ε, φ⟩uε(λ) and σλ(v)∗ψ = ⟨vε(λ), ψ⟩ξ−λ,ε, and hence

σλ(v)∗σλ(u)φ = ⟨ξ−λ,ε, φ⟩⟨uε(λ), vε(λ)⟩ξ−λ,ε,

so that

tr
(
σλ(∆

ν−ρ
2 )σλ(v)∗σλ(u)

)
= ⟨uε(λ), vε(λ)⟩⟨σλ(∆

ν−ρ
2 )ξ−λ,ε, ξ−λ,ε⟩.

Now, ∆(−z,−t) = ∆(z, t) and σλ(z, t)⊤ = σ−λ(−z,−t), so that

⟨σλ(∆
ν−ρ

2 )ξ−λ,ε, ξ−λ,ε⟩ = ⟨σ−λ(∆
ν−ρ

2 )ξ−λ,ε, ξ−λ,ε⟩.

A short computation shows that

σλ(∆
ν−ρ

2 ) = |λ|−νδ
|λ|

1
2
◦σsgn λ(∆

ν−ρ
2 )◦δ

|λ|−
1
2

and ξλ,ε = |λ|−
smin

2 δ
|λ|

1
2
ξsgn λ,ε,

where δsφ(x) = φ(sx) (s > 0), and hence

⟨σ−λ(∆
ν−ρ

2 )ξ−λ,ε, ξ−λ,ε⟩ = |λ|−ν−smin⟨δ
|λ|

1
2
◦ σ− sgn λ(∆

ν−ρ
2 )ξ− sgn λ,ε, δ|λ|

1
2
ξ− sgn λ,ε⟩

= |λ|−ν−smin− 1
2 dim Λ⟨σ− sgn λ(∆

ν−ρ
2 )ξ− sgn λ,ε, ξ− sgn λ,ε⟩.

Since ∆(z, t) is M0-invariant, the operator σλ(∆
ν−ρ

2 ) is ωmet,λ(M0)-invariant. The
subspace of M0-invariant vectors in ωmet,λ is spanned ξλ,0 and ξλ,1, so σλ(∆

ν−ρ
2 )ξλ,ε is

a linear combination of ξλ,0 and ξλ,1. This shows that

⟨u,∆ ν−ρ
2 ∗ v⟩ = const ·

∫
R×
⟨uε(λ), vε(λ)⟩|λ| 12 dim Λ−ν−smin dλ

= const ·
∫
R×

∫
Λ

uε(λ, x)vε(λ, x)|λ|dim Λ−2smin dx dλ.
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This suggests that the representation ρmin should be unitary with respect to the inner
product on L2(R× × Λ, |λ|dim Λ−2smin dλ dx).

We renormalize ρmin to obtain a unitary representation on L2(R× × Λ). For
δ ∈ Z/2Z let

(5.5.4)
Φδ : D′(R×) ⊗̂ S ′(Λ) → D′(R×) ⊗̂ S ′(Λ), Φδu(λ, x) = sgn(λ)δ|λ|−sminu(λ, x

λ ),

then Φδ restricts to an isometric isomorphism

L2(R× × Λ, |λ|dim Λ−2smin dλ dy) → L2(R× × Λ).

With δ ∈ Z/2Z to determined later, we define

πmin(g) := Φδ ◦ ρmin(g) ◦ Φ−1
δ ,

then

Φδ ◦ ∂v ◦ Φ−1
δ = λ∂v, Φδ ◦ ∂λ ◦ Φ−1

δ = (∂λ + λ−1∂x + sλ−1),

Φδ ◦ ω(y, w) ◦ Φ−1
δ = λ−1ω(x,w), Φδ ◦ λ ◦ Φ−1

δ = λ.

Using the coordinates (λ, x) = (λ, aA+ x′) ∈ R× ×Λ with a ∈ R and x′ ∈ J we find:

Proposition 5.5.5. – The representation dπmin of g on D′(R×) ⊗̂ S ′(Λ) is given by

dπmin(F ) = iλ

dπmin(v) = −λ∂v (v ∈ Λ)

dπmin(w) = −iω(x,w) (w ∈ Λ∗)

dπmin(T ) = − iλ
2

∑
α,β

ω(T êα, êβ)∂α∂β −
1

2
ω(TB, x′)∂A (T ∈ g(1,−1))

dπmin(T ) = −∂Tx −
1

2
tr(T |Λ) (T ∈ g(0,0) ∩m)

dπmin(T ) = −a∂TA −
1

2iλ
ω(Tx′, x′) (T ∈ g(−1,1))

dπmin(H) = −∂x − 2λ∂λ −
dim Λ + 2

2

dπmin(A) = iλ∂λ∂A + i∂x∂A + i
dim Λ + 2

2
∂A − 2λn(∂′)

dπmin(v) = iλ∂λ∂v + i∂x∂v − 2ismin∂v +
1

2
λ−1ω(µ(x′)v,B)∂A

− 1

i

∑
α,β

ω(Bµ(x′, v)êα, êβ)∂eα
∂eβ

(v ∈ g(0,−1))

dπmin(w) = −ω(x,w)∂λ + sminλ
−1ω(x,w)

+ λ−1∂µ(x′)w −
1

2i
ω(x,B)

∑
α,β

ω(Bµ(A,w)êα, êβ)∂eα
∂eβ

(w ∈ g(−1,0))
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dπmin(B) = −ω(x,B)∂λ + 2iλ−2n(x′)

dπmin(E) = iλ∂2
λ + i∂λ∂x − 3ismin∂λ + λ−2n(x′)∂A + 2an(∂′)− ismin

3λ
(dim Λ− 1)

+
smin

iλ
∂x′ +

1

2iλ

∑
α,β

ω(µ(x′)êα, êβ)∂eα∂eβ
.

Proposition 5.5.6. – The annihilator of dπmin in U(gC) is a completely prime ideal
whose associated variety is equal to the closure of the minimal nilpotent coadjoint orbit
O∗min,C ⊆ g∗C. In particular, for gC not of type A, the annihilator is the Joseph ideal.

Proof. – For the first claim, the same argument as in [38, Proof of Theorem 2.18]
applies. The key point is that the (complex) dimension of the minimal nilpotent
coadjoint orbit in g∗C equals twice the (real) dimension of R× × Λ by Corollary 2.3.2.
The rest follows along the same lines as in [38]. For the second claim, we use the
uniqueness result for the Joseph ideal [17, Theorem 3.1].

5.6. The case g = sl(n,R)

For g = sl(n,R), the previous arguments cannot be applied in the same way since
here m is not simple and the value ν ∈ a∗C for which Ωµ(m′) is conformally invariant is
different for the two factors m′ of m. We discuss how to use the first order system Ωω

instead to obtain a small subrepresentation of I(ζ, ν) for some ν. It turns out that
this subrepresentation has a Fourier transformed picture similar to the other cases.

The subalgebra m decomposes into the direct sum of two ideals

m = m0 ⊕m1,

with m0 = RT0 and m1 ≃ sl(n− 2,R). We can normalize T0 such that it has eigenval-
ues ±1 on V . Then, the eigenspaces Λ = ker(T0 − idV ) and Λ∗ = ker(T0 + idV ) are
dual Lagrangian subspaces with V = Λ⊕ Λ∗. Note that both Λ and Λ∗ are invariant
under m1. The following lemma can be verified using the explicit realization of g given
in Appendix B.1:

Lemma 5.6.1. – (1) For v ∈ Λ and w ∈ Λ∗ we have µ(v) = µ(w) = 0.

(2) Bµ(x, y) ≡ n
4(n−2)ω(T0x, y)T0 mod m1 for all x, y ∈ V .

For r ∈ C let ζr denote a character of M for which dζr(m1) = 0 and dζr(T0) =
n−2

2 + n−2
n r. In particular, Vζ = C.

Theorem 5.6.2. – For any r ∈ C and ζ = ζr, the system of differential opera-
tors Ωω(v) (v ∈ Λ) is conformally invariant for πζ,ν with ν + ρ = n

2 + r.
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Proof. – Since [m,Λ] ⊆ Λ, Theorem 4.2.1 implies that Ωω(v) (v ∈ Λ) is conformally
invariant if and only if

ν + ρ

2
ω(x, v) + 2dζ(Bµ(x, v)) = 0

for all v ∈ Λ. This now follows from Lemma 5.6.1 (2).

Remark 5.6.3. – Ωω(v)u = 0 for all v ∈ Λ implies Ωµ(T )u = 0 for all T ∈ m1. In
fact, since TΛ ⊆ Λ and TΛ∗ ⊆ Λ∗ we have

Ωµ(T ) =
∑

eα∈Λ,eβ∈Λ∗

ω(T êα, êβ)(XαXβ +XβXα)

=
∑

eα∈Λ,eβ∈Λ∗

ω(T êα, êβ)([Xα, Xβ ] + 2XβXα)

for a basis (eα) of V with eα ∈ Λ ∪ Λ∗. If Ωω(v)u = 0 for all v ∈ Λ, then Xαu = 0

for eα ∈ Λ. Further, [Xα, Xβ ] = ω(eα, eβ)∂t, so that
∑
ω(T êα, êβ)[Xα, Xβ ] =

tr(T |Λ)∂t, which vanishes for T ∈ m1 ≃ sl(n− 2,R).

By (4.3.1), the Fourier transform of Ωω(v) is given by composition with σλ(v). In
terms of the distribution kernel û(λ, x, y) of σλ(u) this means

Ω̂ω(v)u(λ, x, y) = σ−λ(v)xû(λ, x, y).

This implies that, for every u ∈ I(ζr, ν)
Ωω(Λ), the distribution û(λ, x, y) is in the

x-variable a distribution vector in L2(Λ)−∞ = S ′(Λ) which is invariant under
σ−λ(v) = −∂v for all v ∈ Λ. These are obviously only the constant functions:

Proposition 5.6.4. – For every λ ∈ R× the space L2(Λ)−∞,Λ = S ′(Λ)Λ of Λ-in-
variant distribution vectors in σλ is one-dimensional and spanned by the constant
function ξλ given by

ξλ(x) = 1 (x ∈ Λ).

It follows that, for u ∈ I(ζr, ν)Ωω(Λ), we can write

û(λ, x, y) = ξ−λ(x)u0(λ, y) = u0(λ, y)

for some u0 ∈ D′(R×) ⊗̂ S ′(Λ). Let Jmin,r ⊆ D′(R×) ⊗̂ S ′(Λ) denote the image of the
map

I(ζr, ν)
Ωω(Λ) → D′(R×) ⊗̂ S ′(Λ), u 7→ u0,

and write ρmin,r for the representation of G on Jmin,r which makes this map G-equiv-
ariant.
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Proposition 5.6.5. – The representation dρmin,r of g on Jmin,r ⊆ D′(R×) ⊗̂ S ′(Λ) is
given in coordinates (λ, y) ∈ R× × Λ by

dρmin,r(F ) = iλ,

dρmin,r(v) = −∂v (v ∈ Λ),

dρmin,r(w) = −iλω(y, w) (w ∈ Λ∗),

dρmin,r(T ) = −∂Ty − n−2r
2n tr(T |Λ) (T ∈ m),

dρmin,r(H) = ∂y − 2λ∂λ − n−2r
2 ,

dρmin,r(v) = i(∂λ + n−2r−2
2λ )∂v (v ∈ Λ),

dρmin,r(w) = ω(y, w)(∂y − λ∂λ) (w ∈ Λ∗),

dρmin,r(E) = i(λ∂2
λ − ∂λ∂y − n−2r−2

2λ ∂y + n−2r
2 ∂λ).

Proof. – We proceed as in the proof of Proposition 5.5.3. The formulas for m, a and
n follow from Proposition 3.5.5, and for w ∈ Λ∗ we find, using Lemma 3.5.6 and
Lemma 5.6.1:

dπ̂ζ,ν(w) = ω(x,w)

[
∂y−x,x −

ν + ρ

2
+

n

2(n− 2)
dζ(T0)

]
+ ω(y, w)

[
∂x,x + ∂y,y − λ∂λ +

ν + ρ

2
− n

2(n− 2)
dζ(T0)

]
.

Since ν+ρ = n
n−2dζr(T0) and ∂v,xξλ(x) = 0 for all v ∈ Λ, it follows that for u(λ, x, y) =

ξ−λ(x)u0(λ, y):

dπ̂ζ,ν(w)u(λ, x, y) = ξ−λ(x) · ω(y, w)(∂y − λ∂λ)u0(λ, y).

This shows the formula for dρmin,r(w). The formula for dρmin,r(v) is obtained by a
similar computation, and for dρmin,r(E) we use that [v, w] = −ω(v, w)E.

The change of coordinates x = λy finally yields a representation dπmin,r of g
on D′(R×) ⊗̂ S ′(Λ) given by

dπmin,r(F ) = iλ,

dπmin,r(v) = −λ∂v (v ∈ Λ),

dπmin,r(w) = −iω(x,w) (w ∈ Λ∗),

dπmin,r(T ) = −∂Tx − n−2r
2n tr(T |Λ) (T ∈ m),

dπmin,r(H) = −∂x − 2λ∂λ − n−2r
2 ,

dπmin,r(v) = i(λ∂λ + ∂x + n−2r
2 )∂v (v ∈ Λ∗),

dπmin,r(w) = −ω(x,w)∂λ (w ∈ Λ∗),

dπmin,r(E) = i(λ∂λ + ∂x + n−2r
2 )∂λ.
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Remark 5.6.6. – It can be shown that for ζ = ζr, r ∈ C, and ν + ρ = n − 2, the
second order differential operator

Ωζ
µ(T0) = Ωµ(T0) +

n

n− 2
dζ(T0)∂t

is conformally invariant for πζ,ν . For n > 3, the single equation Ωζ
µ(T0)u = 0 is not

sufficient to give a small representation similar to the previous cases; only for n = 3

this is the case, since here m = m0 = RT0. In fact, for n = 3 the same arguments as
before identify I(ζ, ν)Ω

ζ
µ(T0) with a subspace of D′(R×) ⊗̂ S ′(Λ) and the corresponding

Lie algebra action agrees with the one obtained in Proposition 5.6.5. This is due to
the fact that for n = 3 the parameter families (ν, r) = (− 1

2 + r, r) and (ν, r) = (−1, r)

are related by the Weyl group element

w(diag(H1, H2, H3)) = diag(H1, H3, H2).

It is likely that the corresponding standard intertwining operator identifies the two
subrepresentations I(ζr,− 1

2 + r)Ωω(Λ) and I(ζr,−1)Ω
ζ
µ(T0).

5.7. The case g = so(p, q)

We also treat the case g = so(p, q) separately since here m is not simple either and
the values ν ∈ a∗C for which Ωµ(m′) is conformally invariant are different for the two
factors m′ of m. Instead, we combine variations of the first order system Ωω and the
second order system Ωµ to the case of vector-valued principal series in order to obtain
a subrepresentation of I(ζ, ν) which has a Fourier transformed picture similar to the
other cases.

For g = so(p, q) the lack of simplicity of m stems from the fact that J = g(0,−1) is
not a simple Jordan algebra but the sum of two simple Jordan algebras, the
one-dimensional Jordan algebra which is of rank one and a (p + q − 6)-dimen-
sional Jordan algebra of rank two. Write J = J0 ⊕ J with J0 = RP and
J ≃ Rp−3,q−3 ≃ Rp−3 × Rq−3 and similarly J ∗ = J ∗0 ⊕ J ∗ with J ∗0 = RQ such
that ω(P,Q) = 1 and ω(J0,J

∗
) = 0 = ω(J ,J ∗0 ). We decompose v ∈ J into

v = v0 + v with v0 ∈ J0 and v ∈ J and similar for w ∈ J ∗.
Note that we use the same letter P for the element P ∈ J and the parabolic

subgroup P = MAN ⊆ G. It should be clear from the context which object is meant.

The following statement is the analog of Lemma 5.3.1:

Lemma 5.7.1. – For v ∈ J and w ∈ J ∗ we have

tr(Bµ(A,w) ◦Bµ(v,B)|J ) =
p+ q − 6

2
ω(v0, w0) + ω(v, w).

Proof. – This is a straightforward computation using Appendix B.2.
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According to the decomposition J = J0 ⊕ J the Lie algebra m splits into

m = m0 ⊕m with m0 ≃ sl(2,R) and m ≃ so(p− 2, q − 2).

We collect a few more identities related to the bigrading, all of which can be verified
by direct computations using the explicit realization of g given in Appendix B.2.

Lemma 5.7.2. – (1) m0 ≃ sl(2,R) is spanned by the sl(2)-triple

(e, f, h) = (
√

2Bµ(A,Q),
√

2Bµ(P,B), Bµ(A,B)− 2Bµ(P,Q)).

(2) Bµ(A,Q) : J → J ∗ and Bµ(P,B) : J ∗ → J are isomorphisms satisfying

Bµ(A,Q) ◦Bµ(P,B)|J ∗ =
1

2
idJ ∗ and Bµ(P,B) ◦Bµ(A,Q)|J =

1

2
idJ .

(3) Bµ(v,B) ∈ m if and only if v ∈ J .

(4) µ(P ) = µ(Q) = 0 and µ(J ) ⊆ RBµ(P,B), µ(J ) ⊆ RBµ(A,Q).

(5) For v ∈ J :

µ(v)Q = −ω(v0, Q)v,

µ(v)w = −ω(v, w)ω(v,Q)P + ω(µ(v)P,B)Bµ(A,Q)w (w ∈ J ∗),
µ(v)B = −ω(µ(v)P,B)Q+ 2ω(v0, Q)Bµ(P,B)v.

(6) Bµ(P,Q) acts on V as follows:

Bµ(P,Q)A =
1

4
A, Bµ(P,Q)P =

3

4
P, Bµ(P,Q)v = −1

4
v (v ∈ J ),

Bµ(P,Q)B = −1

4
B, Bµ(P,Q)Q = −3

4
Q, Bµ(P,Q)w =

1

4
w (v ∈ J ∗).

Let ζ be a representation of M such that dζ is trivial on m.

Proposition 5.7.3. – The system of differential operators

Ωζ
ω(v) =

∑
α

(
(ν + ρ− 2)ω(v, êα) + 4dζ(Bµ(v, êα))

)
Ωω(eα)

is conformally invariant for πζ,ν if and only if dζ(Casm0
) = (ν + ρ)(ν + ρ− 2), where

Casm0
= h2 + 2ef + 2fe. In this case, the joint kernel

I(ζ, ν)Ω
ζ
ω(Λ) = {u ∈ I(ζ, ν) : Ωζ

ω(v)u = 0 for all v ∈ Λ}

is a subrepresentation of I(ζ, ν).

Proof. – Using Theorem 4.2.3, we find

[Ωζ
ω(v), dπζ,ν(X)] = 0 (X ∈ n),

[Ωζ
ω(v), dπζ,ν(H)] = Ωζ

ω(v),

[Ωζ
ω(v), dπζ,ν(S)] = −Ωζ

ω(Sv) (S ∈ m).
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Moreover, we have

[Ωζ
ω(v), dπζ,ν(E)] =

∑
α

(
(ν + ρ− 2)ω(v, êα) + 4dζ(Bµ(v, êα))

)
[Ωω(eα), dπζ,ν(E)]

+ 4
∑
α

dζ([Bµ(v, êα), µ(x)])Ωω(eα)

=
∑
α

(
(ν + ρ− 2)ω(v, êα) + 4dζ(Bµ(v, êα))

)
×
(
tΩω(eα)− Ωω(µ(x)eα) + ν+ρ

2 ω(x, eα) + 2dζ(Bµ(x, eα))
)

− 4
∑
α

(
dζ(Bµ(µ(x)v, êα) + dζ(Bµ(v, µ(x)êα)])

)
Ωω(eα)

= tΩζ
ω(v)− Ωζ

ω(µ(x)v) + (ν+ρ)(ν+ρ−2)
2 ω(x, v)− 4dζ(Bµ(x, v))

+ 8
∑
α

dζ(Bµ(v, êα))dζ(Bµ(x, eα)).

The last term is evaluated in the next lemma and the claim follows.

Lemma 5.7.4. – For v, w ∈ V we have∑
α

Bµ(v, êα)Bµ(eα, w) ≡ 1

16
ω(v, w)(h2 + 2ef + 2fe) +

1

2
Bµ(v, w) mod mU(m0).

Proof. – We first note that

Bµ(v, w) ≡ 1

4
ω(hv,w)h+

1

2
ω(fv, w)e+

1

2
ω(ev, w)f mod m.

This can be shown by applying both sides to A, B, P and Q and pairing with another
element in this list with respect to the symplectic form. Plugging this into the sum
and using the following identities on V (which is a direct sum of p + q − 4 copies of
the standard representation R2 of m0 ≃ sl(2,R))
(5.7.1)

ad(h)2 = 1, ad(e)2 = ad(f)2 = 0,

ad(e) ad(f) =
1

2
(1 + ad(h)), ad(f) ad(e) =

1

2
(1− ad(h)),

ad(h) ad(e) = − ad(e) ad(h) = ad(e), ad(h) ad(f) = − ad(f) ad(h) = − ad(f),

shows the desired formula.

Now let G be a connected Lie group with Lie algebra g = so(p, q) such that the
analytic subgroup ⟨expm0⟩ of M corresponding to m0 ≃ sl(2,R) is the non-trivial
double cover of SL(2,R). For k ∈ Z/4Z and s ∈ C there exists a principal series
representation (ζk,s, Vk,s) of ⟨expm0⟩ with K-types vn, n ∈ 2Z + k

2 , on which the
basis

κ = f − e, x± = h∓ i(e+ f)
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of m0 acts by

(5.7.2) dζk,s(κ)vn = invn, dζk,s(x±)vn = (s± n+ 1)vn±2.

Note that for k = 0, 2 these representations factor through SL(2,R) and become the
usual even and odd principal series for SL(2,R), while for k = 1, 3 the representations
are genuine. We also write (ζ, Vζ) = (ζk,s, Vk,s) for short and denote by ζ any extension
to M which is trivial on m. Note that for ζ = ζk,s, we have dζ(Casm0) = s2 − 1, so
that Ωζ

ω is conformally invariant for πζ,ν if and only if s = ±(ν+ ρ− 1). We therefore
let s = −(ν + ρ− 1).

The Fourier transform of the equation Ωζ
ω(v)u = 0 is by (4.3.1):

0 = Ω̂ζ
ω(v)u(λ, x, y) =

(
(ν+ ρ− 2)dσ−λ(v)+4

∑
α

dζ(Bµ(v, êα))dσ−λ(eα)
)

x
û(λ, x, y).

This motivates the following:

Proposition 5.7.5. – For every λ ∈ R×, the space of all ξ ∈ S ′(Λ)⊗ Vζ satisfying(
(ν + ρ− 2)dσλ(v) + 4

∑
α

dζ(Bµ(v, êα))dσλ(eα)
)
ξ = 0

consists of all distributions of the form ξ(a, z) = ξ0(a, p)e
−iλ

n(z)
a (a ∈ R, z ∈ J ,

p = ω(z,Q)) with
ξ0 =

∑
n≡ k

2 mod 2

ξ0,n ⊗ vn ∈ S ′(R2)⊗ Vζ

and each ξ0,n ∈ S ′(R2) homogeneous of degree −1 satisfying the recurrence relation

(s+ n+ 1)(p− i
√

2a)ξ0,n = (s− n− 1)(p+ i
√
a)ξ0,n+2.

Proof. – A short computation shows that the above equation is equivalent to

((s+ 1)− dζ(h))∂Aξ − 2
√

2dζ(e)∂P ξ = 0,(5.7.3)

((s+ 1) + dζ(h))aξ +
√

2dζ(f)pξ = 0,(5.7.4)

((s+ 1) + dζ(h))∂P ξ −
√

2dζ(f)∂Aξ = 0,(5.7.5)

((s+ 1)− dζ(h))pξ + 2
√

2dζ(e)aξ = 0,(5.7.6)

and for v ∈ J

((s+ 1)− dζ(h))∂vξ + 2
√

2iλdζ(e)ω(Bµ(x, v)P,B)ξ = 0,(5.7.7)

iλ((s+ 1) + dζ(h))ω(Bµ(x, v)P,B)ξ +
√

2dζ(f)∂vξ = 0.(5.7.8)

Combining (5.7.6) and (5.7.7) resp. (5.7.4) and (5.7.8) we find

dζ(e)
(
a∂v − iλpω(Bµ(x, v)P,B)

)
ξ = 0 = dζ(f)

(
a∂v − iλpω(Bµ(x, v)P,B)

)
ξ,

hence (a∂v − iλpω(Bµ(x, v)P,B))ξ = 0. Note that

∂vn(x) = −1

2
ω(µ(x)v,B) = −pω(Bµ(x, v)P,B),
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so that this equation is equivalent to ∂v(ξ · eiλ
n(x)

a ) = 0. It follows that ξ(a, x) =

ξ0(a, p)e
−iλ

n(x)
a . Combining (5.7.3) and (5.7.6) resp. (5.7.4) and (5.7.5) yields

dζ(e)
(
a∂A + p∂P + 1

)
ξ0 = 0 = dζ(f)

(
a∂A + p∂P + 1

)
ξ0,

hence (a∂A + p∂P + 1)ξ0 = 0 and ξ0 is homogeneous of degree −1. Write
ξ0 =

∑
n ξ0,n ⊗ vn, then using (5.7.2), we find that (5.7.3) and (5.7.5) are equiv-

alent to

(s+ n+ 1)(∂A + i
√

2∂P )ξ0,n = (s− n− 1)(∂A − i
√

2∂P )ξ0,n+2,

and that (5.7.4) and (5.7.6) are equivalent to

(s+ n+ 1)(p− i
√

2a)ξ0,n = (s− n− 1)(p+ i
√

2a)ξ0,n+2.

It is easy to see that the latter identity implies the first one whenever ξ0,n and ξ0,n+2

are homogeneous of degree −1.

In Proposition 5.7.5, the space of invariant distribution vectors ξ is still infinite-
dimensional. This indicates that the kernel of the system Ωζ

ω(v), v ∈ Λ, is not small
enough to yield a representation in the same way as in Section 5.5. We therefore also
construct a vector-valued version of the second order system Ωµ:

Proposition 5.7.6. – For ν = −p+q−2
2 the system of differential operators

Ωζ
µ(T ) = Ωµ(T ) + 2dζ(T )∂t (T ∈ m)

is conformally invariant on the kernel of the system Ωζ
ω, i.e., the joint kernel

I(ζ, ν)Ω
ζ
ω(Λ),Ωζ

µ(m) = {u ∈ I(ζ, ν)Ω
ζ
ω(Λ) : Ωζ

µ(T )u = 0 for all T ∈ m}

is a subrepresentation of I(ζ, ν).

Proof. – Using Theorem 4.2.3 we find that

[Ωζ
µ(T ), dπζ,ν(n)] = 0,

[Ωζ
µ(T ), dπζ,ν(H)] = 2Ωζ

µ(T ),

[Ωζ
µ(T ), dπζ,ν(S)] = Ωζ

µ([T, S]) (S ∈ m).

We further show that [Ωζ
µ(T ), dπζ,ν(E)] can be expressed as a C∞(n)-linear combina-

tion of operators in Ωζ
µ(m) and Ωζ

ω(Λ). First note that

[dζ(T )∂t, dπζ,ν(E)] = dζ(T )(∂x + 2t∂t) + (ν + ρ)dζ(T ) + dζ([T, µ(x)])∂t.

Together with the formula for [Ωµ(T ), dπζ,ν(E)] in Theorem 4.2.3, this yields

[Ωζ
µ(T ), dπζ,ν(E)] = 2tΩζ

µ(T ) + Ωζ
µ([T, µ(x)]) + (2 C(m′)− 2− (ν + ρ))Ωω(Tx)

(5.7.9)

+ 4
∑
α

dζ(Bµ(x, T êα))Ωω(eα) + 2dζ(T )∂x + 2(ν + ρ− C(m′))dζ(T ).
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By Table 2 in Appendix D, C(m0) = p+q−4
2 and C(m) = 2 and ν + ρ = p+q−4

2 . Let us
first assume that m′ = m, then dζ(T ) = 0. Further, since [T,Bµ(x, êα)] ∈ m, we have
dζ([T,Bµ(x, êα)]) = 0, and hence

(2 C(m′)− 2− (ν + ρ))Ωω(Tx) + 4
∑
α

dζ(Bµ(x, T êα))Ωω(eα)

= −(ν + ρ− 2)Ωω(Tx)− 4
∑
α

dζ(Bµ(Tx, êα))Ωω(eα) = −Ωζ
ω(Tx).

Now let m′ = m0, then ν + ρ− C(m′) = 0, so the last term in (5.7.9) vanishes. Using
Ωζ

ω(Tx) = 0, the first two terms combine to

4
∑
α

dζ
(
Bµ(x, T êα)−Bµ(Tx, êα)

)
Ωω(eα),

which, by the following lemma, equals

−2dζ(T )Ωω(x) = −2dζ(T )∂x.

Lemma 5.7.7. – For T ∈ m0 and x, y ∈ V we have

Bµ(Tx, y)−Bµ(x, Ty) ≡ 1

2
ω(x, y)T mod m.

Proof. – Modulo m we have

Bµ(Tx, y)−Bµ(x, Ty) ≡ 1

4

(
ω(hTx, y)− ω(hx, Ty)

)
h+

1

2

(
ω(fTx, y)− ω(fx, Ty)

)
e

+
1

2

(
ω(eTx, y)− ω(ex, Ty)

)
f

=
1

4
ω((hT + Th)x, y)h+

1

2
ω((fT + Tf)x, y)e

+
1

2
ω((eT + Te)x, y)f.

Using (5.7.1), one shows that for T = Thh+ Tee+ Tff we have

(hT + Th)x = 2Thx, (eT + Te)x = Tfx, (fT + Tf)x = Tex,

so the result follows.

We finally fix ν = −p+q−2
2 , k = p + q and s = −(ν + ρ − 1) = −p+q−6

2 . Note
that ζ = ζk,s is reducible and has a unique irreducible subrepresentation. This sub-
representation is finite-dimensional for p+ q even and spanned by

v p+q−8
2

, v p+q−8
2 −2, . . . , v− p+q−8

2
,

and it is infinite-dimensional for p+ q odd and spanned by

v p+q−8
2

, v p+q−8
2 −2, . . .

By Theorem 4.4.1 and Lemma 3.5.6, the Fourier transform of Ωζ
µ(T ) takes the form

Ω̂ζ
µ(T )u(λ, x, y) = −2iλ (dωmet,−λ(T )x + dζ(T )) û(λ, x, y).
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We therefore study m-invariant distribution vectors in L2(Λ)−∞ ⊗ Vζ = S ′(Λ)⊗ Vζ .

Proposition 5.7.8. – For every λ ∈ R×, the space (S ′(Λ) ⊗ Vζ)
m of m-invariant

distribution vectors in ωmet,−λ⊗ζ is two-dimensional and spanned by the distributions
(a ∈ R, z ∈ J , p = ω(z,Q))

ξλ,ε(a, z) = ξ0,ε(a, p)e
−iλ

n(z)
a with ξ0,ε =

∑
n≡ k

2 mod 2

ξ0,ε,n ⊗ vn

and

ξ0,ε,n(a, p) = cn sgn(a)ε|a|−
p+q−6

2 (
√

2|a|+ i sgn(a)p)n(2a2 + p2)
p+q−2n−8

4 ,

with (cn)n satisfying

(n+ 2 + p+q−8
2 )cn+2 = (n− p+q−8

2 )cn.

Proof. – We first study invariance under T ∈ m in the same way as in Theorem 5.4.2.
For v ∈ J we have

(5.7.10) dωmet,λ(Bµ(v,B))ξ = −a∂v(ξ · eiλ
n(z)

a ) · e−iλ
n(z)

a ,

so that invariance under Bµ(J , B) ⊆ m implies ξ(a, z) = ξ0(a, p)e
−iλ

n(z)
a with

ξ0 ∈ S ′(R2)⊗ Vζ and p = ω(z,Q). For w ∈ J ∗ we further have

dωmet,λ(Bµ(A,w))ξ =
1

2iλ

∑
α,β

ω(Bµ(A,w)êα, êβ)∂α∂βξ −
1

2
ω(z, w)∂Aξ.

For ξ as above we find

∂Aξ = ∂Aξ0 · e−iλ
n(z)

a +
iλn(z)

a2
ξ,

∂αξ = ω(eα, Q)∂P ξ0 · e−iλ
n(z)

a +
iλ

2a
ω(µ(z)eα, B)ξ,

∂α∂βξ = ω(eα, Q)ω(eβ , Q)∂2
P ξ0 · e−iλ

n(z)
a +

iλ

a
ω(eα, Q)ω(µ(z)eβ , B)∂P ξ0 · e−iλ

n(z)
a ,

− λ2

4a2
ω(µ(z)eα, B)ω(µ(z)eβ , B)ξ +

iλ

a
ω(Bµ(z, eα)eβ , B)ξ.

Combined with Lemma 5.7.1 and 5.7.2, this gives

dωmet,λ(Bµ(A,w))ξ = −ω(z0, w0)

2a

[
a∂Aξ0 +

p+ q − 6

2
ξ0

]
e−iλ

n(z)
a(5.7.11)

−ω(z1, w1)

2a

[
a∂Aξ0 + p∂P ξ0 + ξ0

]
e−iλ

n(z)
a ,

so that invariance under Bµ(A,J ∗) implies that ξ0 is homogeneous of degree −1.
Next, we consider the action of m0 on ξ of this form. By (5.7.10) and (5.7.11), a
distribution ξ(a, z) = ξ(a, p)e−iλ

n(z)
a is invariant under m0 if and only if

−p
a

(
a∂A +

p+ q − 6

2

)
ξ0 +

√
2dζ(e)ξ0 = 0 and − 2a∂P ξ0 +

√
2dζ(f)ξ0 = 0.
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Writing ξ0 =
∑

n ξ0,n ⊗ vn and using (5.7.2) shows that this is equivalent to(
2a∂P − p∂A −

p+ q − 6

2

p

a

)
ξ0,n = in

√
2ξ0,n,(

2a∂P + p∂A +
p+ q − 6

2

p

a

)
ξ0,n = i

√
2

2

(
(s+ n− 1)ξ0,n−2 − (s− n− 1)ξ0,n+2

)
.

The first equation has the solutions

ξ0,n(a, p) = cn sgn(a)ε|a|−
p+q−6

2 (
√

2|a|+i sgn(a)p)n(2a2+p2)
p+q−2n−8

4 (ε ∈ Z/2Z),

and for this choice of ξ0,n the second equation is equivalent to

(n− s+ 1)cn+2 = (n+ s+ 1)cn.

It follows that cn = 0 for n > −(s+1) = p+q−8
2 , and for n ≤ p+q−8

2 the sequence (cn) is
uniquely determined by c p+q−8

2
. The result follows.

Remark 5.7.9. – Comparing the invariant distribution vectors in Proposition 5.7.5
and Proposition 5.7.8 suggests that Ωζ

µ(m)u = 0 implies Ωζ
ω(V )u = 0. However, we

were not able to show this only using the differential operators Ωζ
µ(T ) and Ωζ

ω(v).

By the same arguments as in the other cases, u ∈ I(ζ, ν)Ω
ζ
ω(V ),Ωζ

µ(m) implies

û(λ, x, y) = ξ−λ,0(x)u0(λ, y) + ξ−λ,1(x)u1(λ, y)

and we obtain a representation ρmin = (ρmin,0, ρmin,1) of G on a subspace
Jmin ⊆ (D′(R×) ⊗̂ S ′(Λ))⊕ (D′(R×) ⊗̂ S ′(Λ)) which makes the map u 7→ (u0, u1)

equivariant. Also here, dρmin,ε is independent of ε and we simply write dρmin =

dρmin,0 = dρmin,1 and extend dρmin to D′(R×) ⊗̂ S ′(Λ).

Proposition 5.7.10. – The representation dρmin of g on D′(R×) ⊗̂ S ′(Λ) is given by
the same formulas as in Proposition 5.5.3 with smin = −1, except for the following:

dρmin(v) = i∂λ∂v +
1

2
ω(µ(y′)v,B)∂A −

1

iλ

∑
α,β

ω(Bµ(y′, v)êα, êβ)∂eα
∂eβ

+

{
(smin − 1) 1

iλ∂v (v ∈ J0),

(smin − dim Λ
2 + 1) 1

iλ∂v (v ∈ J ),

dρmin(w) = −ω(y, w)λ∂λ + ω(y, w)∂y + ∂µ(y′)w −
1

2iλ
ω(y,B)

∑
α,β

ω(Bµ(A,w)êα, êβ)∂eα∂eβ

+

{
(smin − dim Λ

2 + 1)ω(y, w) (w ∈ J ∗0 ),

(smin − 1)ω(y, w) (w ∈ J ∗),

dρmin(E) = iλ∂2
λ − ia∂λ∂A − i∂λ∂y′ − i(2s− dim Λ

2 − 1)∂λ −
s− dim Λ

2

iλ
a∂A + n(y′)∂A

+
2

λ2
an(∂′)−

(s− 1)(s− dim Λ
2 + 1)

iλ
− s− 1

iλ
∂y′0

−
s− dim Λ

2 + 1

iλ
∂y′1
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+
1

2iλ

∑
α,β

ω(µ(y′)êα, êβ)∂eα
∂eβ

.

Proof. – The proof is similar to the one of Proposition 5.5.3, the crucial computa-
tion being the one for dρmin(B) which is obtained by taking the Fourier transform
of dπζ,ν(B)u. Since

dπζ,ν(B) = dπ1,ν(B)− 2dζ(Bµ(x,B)),

we can consider the two terms dπ1,ν(B) and dζ(Bµ(x,B)) separately. For the first
term, the Fourier transform was computed in (5.5.3), and for the second term we use

Bµ(x,B) =
1

2
ω(x,B)Bµ(A,B) + ω(x,Q)Bµ(P,B),

so that

̂dζ(Bµ(x,B))u =
1

2
ω(y − x,B)dζ(Bµ(A,B))û+ ω(y − x,Q)dζ(Bµ(P,B)).

Applying the result to

û(λ, x, y) =
∑

ε

ξ−λ,ε(x)uε(λ, y),

using

λ∂λξ−λ,ε(x) = iλn(x′)
a ξ−λ,ε(a, x

′),

(a∂A + p∂P )ξ−λ,ε(x) = −ξ−λ,ε(x),

∂xξ−λ,ε(x) = 2iλn(x′)
a ξ−λ,ε(a, x

′),

∂yξ−λ,ε(x) = − iλ
2a
ω(µ(x′)y,B)ξ−λ,ε(a, x

′),

gives

dπ̂ζ,ν(B)û(λ, x, y)

=
∑

ε

ξ−λ,ε(x)

[
−ω(y,B)λ∂λ + ω(y,B)∂y − ω(y,B) + 2iλn(y′)

]
uε(λ, y)

+ ω(y − x,B)
∑

ε

uε(λ, y)

[
1

2
(a∂A − p∂P + ∂x) +

ν + ρ− 1

2
− dζ(Bµ(A,B))

]
ξ−λ,ε(x)

+ ω(y − x,Q)
∑

ε

uε(λ, y) [2a∂P + iλω(µ(z)P,B)− 2dζ(Bµ(P,B))] ξ−λ,ε(x).

The m-invariance of ξ−λ,ε further implies that

dζ(Bµ(P,B))ξ−λ,ε =

(
a∂P +

1

2
iλω(µ(z)P,B)

)
ξ−λ,ε

dζ(Bµ(A,B))ξ−λ,ε =
1

2

(
a∂A − p∂P + ∂x +

p+ q − 6

2

)
ξ−λ,ε,
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so that the claimed formula follows. The formulas for dρmin(v), dρmin(w) and dρmin(E)

are now obtained by taking commutators as in the proof of Proposition 5.5.3.

As before, we change coordinates using the map Φδ in (5.5.4) with smin = −1 and
obtain a representation dπmin of g on D′(R×) ⊗̂ S ′(Λ) which is given by the same
formulas as in Proposition 5.5.5, except for

dρmin(v) = iλ∂λ∂v + i∂x∂v +
1

2λ
ω(µ(x′)v,B)∂A + i

∑
α,β

ω(Bµ(x′, v)êα, êβ)∂eα
∂eβ

+

{
2i∂v (v ∈ J0),

ip+q−4
2 ∂v (v ∈ J ),

dρmin(w) = −ω(x,w)∂λ +
1

λ
∂µ(x′)w +

1

2
iω(x,B)

∑
α,β

ω(Bµ(A,w)êα, êβ)∂eα
∂eβ

−

{
p+q−6

2λ ω(x,w) (w ∈ J ∗0 ),
1
λω(x,w) (w ∈ J ∗),

dρmin(E) = iλ∂2
λ + i∂λ∂x + i

p+ q − 2

2
∂λ +

n(x′)

λ2
∂A + 2an(∂′)

− p+ q − 6

2iλ
− p+ q − 6

2iλ
∂x′0

− 1

iλ
∂x′1

+
1

2iλ

∑
α,β

ω(µ(x′)êα, êβ)∂eα∂eβ
.

5.8. Matching the Lie algebra action with the literature

For some cases, the Lie algebra representation dπmin can be found in the existing
literature.

5.8.1. The split cases g = so(n, n), e6(6), e7(7), e8(8). – For the split cases g = so(n, n),
e6(6), e7(7) and e8(8), our formulas for the representation dπmin agree with the formulas
in [48, Appendix].

5.8.2. The case g = g2(2). – Let g = g2(2), the split real form of g2(C). Then the
subspace h = RHα ⊕ RHβ is a Cartan subalgebra of g. The roots λ = α − 2β and
µ = −α + β form a system of simple roots with λ a long root and µ a short root. A
Chevalley basis of g is given by

Xµ = −2Bµ(B,C), X−µ = −2Bµ(A,D), X2λ+3µ = F, X−2λ−3µ = E,

Xλ = − 1√
2
A, Xλ+µ = −

√
2C, Xλ+2µ = −

√
2D, Xλ+3µ = − 1√

2
B,

X−λ = − 1√
2
B, X−λ−µ = −

√
2D, X−λ−2µ =

√
2C, X−λ−3µ =

1√
2
A.
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Using the the coordinates

(λ, x) =

(
z,

x√
2
A+

√
2yC

)
,

the Lie algebra action dπmin equals the one given in [73, pages 124–125], which is due
to Gelfand [21]. (In [73] the simple roots are denoted by α and β instead of λ and µ.
Further note that in [73] the term − iz

27D
3
y in the formula for T (X−α−3β) has to be

replaced by − z
27D

3
y, cf. [21].)

5.8.3. The case g = sl(n,R). – For g = sl(n,R), the Lie algebra action dπmin,r agrees
with the action of g on the Fourier transformed picture of a different degenerate
principal series, namely one corresponding to a maximal parabolic subgroup. Let
Q = LQNQ ⊆ G be a parabolic subgroup with LQ ≃ GL(n−1,R). The characters χr,ε

of LQ are parameterized by r ∈ C and ε ∈ Z/2Z, and we form the degenerate principal
series IndG

Q(χr,ε). In [68, Proposition 4.2], this representation is realized in the non-
compact picture on NQ ≃ Rn−1, and the Euclidean Fourier transform on Rn−1 is
applied. Surprisingly, this results in the same formulas as the ones obtained for dπmin,r

in Section 5.6, if we identify the tuple (λ, x) ∈ R× × Λ with a vector in Rn−1 ≃ NQ.
In Section 7.1 we integrate dπmin,r to irreducible unitary representations of SL(n,R)

which are equivalent to the unitary degenerate principal series IndG
Q(χr,ε) with r ∈ iR

and ε ∈ Z/2Z.

5.8.4. The case g = so(4, 3). – For g = so(4, 3), Sabourin [72] constructed an explicit
L2-realization of the minimal representation. His formulas in [72, Proposition 3.6.2
and 3.6.3] have a lot in common with our realization, but the major difference is
that in his model the Lie algebra acts by differential operators of order ≤ 2, while
we need order 3 in general. We believe that Sabourin’s realization can be obtained
with our methods by choosing a different Lagrangian subspace Λ ⊆ V . More precisely,
for g = so(p, q) the Lie algebra m ≃ sl(2,R)⊗so(p−2, q−2) acts on V ≃ R2⊗Rp+q−4

by the tensor product of the two standard representations. We believe that choosing
Λ and Λ∗ to be so(p− 2, q − 2)-invariant, one obtains Sabourin’s formulas.
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CHAPTER 6

LOWEST K-TYPES

To show that the subrepresentation I(ζ, ν)Ωµ(m) is non-trivial for some choice of
a representation ζ of M , we find in this section the lowest K-type in the Fourier
transformed picture explicitly. For this, we first construct in Section 6.1 a Cartan
involution on g with corresponding maximal compact subalgebra k ⊆ g which is
compatible with the bigrading on g constructed in Section 5.2. The rest of the chapter
is devoted to explicit case-by-case computations exhibiting the lowest K-type. The
nature of the lowest K-type is quite different in the various cases, so a classification-
free description seems out of reach.

6.1. Cartan involutions

We study Cartan involutions in the case where m is simple. This excludes the
cases g = sl(n,R) and g = so(p, q) for which we separately discuss Cartan involutions
in Sections 6.5 and 6.7.

To construct a Cartan involution on g, we make use of Lemma 2.8.1, i.e., we
construct a map J ∈ End(V ) which satisfies the conditions of Lemma 2.8.1. For this,
we first choose a unit in the Jordan algebra J . Let C ∈ J = g(0,−1) with Ψ(C) ̸= 0 and
put D := µ(C)B ∈ g(−1,0). Then, by Lemma 5.3.4 we have µ(C) = −Bµ(A,µ(C)B) =

−Bµ(A,D) and µ(D) = Bµ(µ(D)A,B). On the other hand, by the m-equivariance
of Bµ and Lemma 5.3.2:

µ(D) = Bµ(µ(C)B,µ(C)B) = [µ(C), Bµ(B,µ(C)B)︸ ︷︷ ︸
∈g(−2,2)={0}

]−Bµ(B,µ(C)2B) = 4n(C)Bµ(C,B).

It follows that µ(D)A = 4n(C)C and hence µ(D) = 4n(C)Bµ(C,B). We therefore
renormalize C such that n(C) = 1

4 , then

µ(C) = −Bµ(A,D) and µ(D) = Bµ(C,B),

as well as

µ(C)D = −C and µ(D)C = D.
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It further follows that Ψ(C) = 1
4A and

Ψ(D) =
1

2
ω(A,Ψ(D))B = −1

6
ω(A,µ(D)D)B =

1

6
ω(µ(D)A,D)B =

1

6
ω(C,D)B

=
1

6
ω(C, µ(C)B)B = −1

6
ω(µ(C)C,B)B =

1

2
ω(Ψ(C), B)B =

1

4
B.

Note that this computation also shows that ω(C,D) = 3
2 .

Lemma 6.1.1. – Bµ(C,D) = 1
4Bµ(A,B).

Proof. – We have

[µ(C), µ(D)] = 2Bµ(µ(C)D,D) = −2Bµ(C,D).

On the other hand, µ(D) = Bµ(C,B), so that

[µ(C), µ(D)] = Bµ(µ(C)C,B) +Bµ(C, µ(C)B) = −3

4
Bµ(A,B) +Bµ(C,D).

Lemma 6.1.2. – The elements {2µ(C), 2Bµ(A,B),−2µ(D)} form an sl(2)-triple.

Proof. – By the proof of Lemma 6.1.1, we have [µ(C), µ(D)] = − 1
2Bµ(A,B). Further,

[Bµ(A,B), µ(C)] = 2Bµ(Bµ(A,B)C,C) = µ(C),

[Bµ(A,B), µ(D)] = 2Bµ(Bµ(A,B)D,D) = −µ(D).

Let J0 = {v ∈ J : ω(v,D) = 0}, so that J = RC ⊕ J0.
Similarly, let J ∗0 = {w ∈ J ∗ : ω(C,w) = 0}, so that J ∗ = RD ⊕ J ∗0 .

Lemma 6.1.3. – µ(C)µ(D)|J0
= − 1

4 idJ0
and µ(D)µ(C)|J ∗0

= − 1
4 idJ ∗0 .

Proof. – It suffices to show the first statement, the second one is proven similarly.
Let v ∈ J0, then

µ(C)µ(D)v = [µ(C), µ(D)]v + µ(D)µ(C)v = −1

4
v + µ(D)µ(C)v.

Since
µ(C)v =

1

2
ω(µ(C)v,B) = −1

2
ω(v, µ(C)B) = −1

2
ω(v,D) = 0,

the claim follows.

In [76, Theorem 7.32] it is shown that J can be endowed with a natural Jor-
dan algebra structure with unit element C and norm function N(v) = 4n(v). The
corresponding trace form is given by

T (u, v) = ∂uN(C)∂vN(C)−∂u∂vN(C) = 4ω(u,D)ω(v,D)+4ω(µ(D)u, v), u, v ∈ J .
Note that, since T (C, v) = 2ω(v,D), the T -orthogonal complement of C in J equals
J0. Write u = u0C + u′ and v = v0C + v′ with u′, v′ ∈ J0, then

(6.1.1) T (u, v) = 3u0v0 + 4ω(µ(D)u′, v′).

Definition 6.1.4. – A Cartan involution of a Jordan algebra J with trace form T is
an involutive algebra automorphism ϑ of J such that T (ϑv, v) > 0 for all v ∈ J \{0}.
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Using a Cartan involution of the Jordan algebra J , we obtain a natural Cartan
involution compatible with the bigrading on g constructed in Section 5.2:

Proposition 6.1.5. – For every Cartan involution ϑ of the Jordan algebra J , the
map J ∈ End(V ) given by

JA = −B, JC = −D, Jv = 2µ(D)ϑv (v ∈ J0),

JB = A, JD = C, Jw = 2ϑµ(C)w (w ∈ J ∗0 ),

satisfies the conditions of Lemma 2.8.1.

In what follows we will fix such a Cartan involution ϑ of J and let J be the cor-
responding linear map on V and θ be the corresponding Cartan involution on g. Fur-
ther, let k = gθ denote the corresponding maximal compact subalgebra and p = g−θ

its Cartan complement.

Proof. – Condition (1) follows from ϑ2 = id and Lemma 6.1.3. Condition (2) follows
from (6.1.1) and Lemma 6.1.3. The only non-trivial computation for condition (3) is

ω(Jv, Jw) = 4ω(µ(D)ϑv, ϑµ(C)w) = T (ϑv, ϑµ(C)w) = T (v, µ(C)w)

= 4ω(µ(D)v, µ(C)w) = −4ω(µ(C)µ(D)v, w) = ω(v, w) (v, w ∈ V ),

by Lemma 6.1.3 and the fact that ϑ is a Jordan algebra automorphism and therefore
leaves the trace form invariant. Condition (4) is equivalent to

JBµ(x, y)J−1 = Bµ(Jx, Jy) for all x, y ∈ V ,

which is checked by a lengthy case-by-case computation.

The Jordan algebra J is called Euclidean if its trace form is positive definite. In
this case, we can and will choose ϑ = idJ as the Cartan involution. Let

T0 = Bµ(B,C)−Bµ(A,D) = µ(C) + µ(D) ∈ k ∩m,

noting that T0 ∈ k since θ(µ(C)) = µ(JC) = µ(D) by Lemma 2.8.1 and Proposi-
tion 6.1.5.

Proposition 6.1.6. – If J is a Euclidean Jordan algebra and ϑ = idJ , then the
elements

T1 = 2T0 − (E − F ), T2 = A− 2D + θ(A− 2D), T3 = B + 2C + θ(B + 2C)

span an ideal k1 ⊆ k which is isomorphic to su(2).

Proof. – We first note the following commutator formulas in k (see (2.2.2), (2.2.3),
(2.4.1) and Lemma 2.4.4):

[E − F, x+ θ(x)] = Jx+ θ(Jx) for all x ∈ V,
[S, x+ θ(x)] = Sx+ θ(Sx) for all S ∈ k ∩m, x ∈ V,

[E − F, S] = 0 for all S ∈ k ∩m,
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[x+ θ(x), y + θ(y)] = −ω(x, y)(E − F )− 2(Bµ(Jx, y)

−Bµ(x, Jy)) for all x, y ∈ V.

Further, we have

T0A = C, T0B = D, T0C = −3

4
A+D, T0D = −3

4
B − C.

We first show that k1 is a subalgebra. For this we compute

[T1, T2] = (2T0 − J)(A− 2D) + θ((2T0 − J)(A− 2D)) = 4T3,

[T1, T3] = (2T0 − J)(B + 2C) + θ((2T0 − J)(B + 2C)) = −4T2,

[T2, T3] = −ω(A− 2D,B + 2C)(E − F )

− 2(Bµ(J(A− 2D), B + 2C)−Bµ(A− 2D,J(B + 2C)))

= 8T1.

It remains to show that k1 is an ideal, i.e., [k, k1] ⊆ k1. First, by similar computations
as above, T1, T2 and T3 commute with

2T0 + 3(E − F ), 3A+ 2D + θ(3A+ 2D) and 3B − 2C + θ(3B − 2C).

Finally, similar computations show that T1, T2 and T3 commute with

— v + θv, v ∈ J0 or v ∈ J ∗0 ,

— Bµ(v,B) +Bµ(A, Jv), v ∈ J0,

— S ∈ g(0,0) ∩ k.

Remark 6.1.7. – The renormalized generators

T̃1 =
1

2
T1, T̃2 =

1

2
√

2
T2, T̃3 =

1

2
√

2
T3

satisfy the standard su(2)-relations

[T̃1, T̃2] = 2T̃3, [T̃2, T̃3] = 2T̃1, [T̃3, T̃1] = 2T̃2.

6.2. The quaternionic cases g = e6(2), e7(−5), e8(−24)

Assume that the Jordan algebra J is simple and Euclidean, i.e., the iden-
tity ϑ = idJ is a Cartan involution. Then J is isomorphic to Herm(3,F) with
F ∈ {R,C,H,O}, the Jordan algebra of 3 × 3 Hermitian matrices over the real
numbers R, the complex numbers C, the quaternions H or the octonions O. By
Proposition 6.1.6 the group G is of quaternionic type, and by the classification,
we have g ≃ f4(4), e6(2), e7(−5), e8(−24) with smin = − 3

2 ,−2,−3,−5, respectively. We
decompose k into simple ideals:

k = k1 ⊕ k2
with k1 = RT1⊕RT2⊕RT3 ≃ su(2). We further abbreviate n = −smin−1 ∈ { 1

2 , 1, 2, 4}.
For the following statement we use the coordinates (λ, aA+x) ∈ R××Λ, where a ∈ R
and x ∈ J .
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Theorem 6.2.1. – For g = e6(2), e7(−5), e8(−24) the space W =
⊕n

k=−n Cfk with

fk(λ, a, x) = (λ−i
√

2a)k(λ2 +2a2)
smin−k

2 exp

(
− 2ian(x)

λ(λ2 + 2a2)

) n∑
m=−n

hk,mKm(r)eimθ,

where Km(z) denotes the classical K-Bessel function (see Appendix A),

(r cos θ, r sin θ) =

(
2(λ2 + 2a2)I1 − I3√

2(λ2 + 2a2)
,
I2 + λ2 + 2a2

(λ2 + 2a2)
1
2

)
with

I1 = ω(x,D), I2 = ω(µ(x)C,B), I3 = ω(Ψ(x), B)

and (hk,m)m=−n,...,n is given by (6.2.7), is a k-subrepresentation of

(dπmin,D′(R×) ⊗̂ S ′(Λ))

isomorphic to the representation S2n(C2) ⊠ C of k ≃ su(2)⊕ k2.

Remark 6.2.2. – We exclude the case g = f4(4) in the theorem, because here n = 1
2

and therefore the summation would have to be over m = ± 1
2 . This is not immediately

possible since it would require the use of e±
iθ
2 = (cos θ + i sin θ)

1
2 which cannot be

defined as a smooth function on R+ × Λ or R− × Λ, because the image of both
2(λ2 + 2a2)I1 − I3 and I2 + λ2 + 2a2 is R. However, it might be possible to find the
lowest K-type S1(C2) ⊠ C of the minimal representation in a space of vector-valued
functions as a subrepresentation of a vector-valued degenerate principal series (cf. [29,
Section 12]).

We prove this result in several steps. For this we decompose k2 as follows:

k2 = R(2T0 + 3(E − F ))⊕ R(3A+ 2D + θ(3A+ 2D))⊕ R(3B − 2C + θ(3B − 2C))

⊕ {v + θv : v ∈ J0} ⊕ {v + θv : v ∈ J0}
⊕ {Bµ(v,B) +Bµ(A, Jv) : v ∈ J0} ⊕ (g(0,0) ∩ k).

Lemma 6.2.3. – The Lie algebra k2 is generated by

(g(0,0) ∩ k)⊕ {v + θv : v ∈ J0} ⊕ {Bµ(v,B) +Bµ(A, Jv) : v ∈ J0}.

Proof. – Let h ⊆ k denote the subalgebra generated by the above elements. For
v, w ∈ J0 we have

[Bµ(v,B) +Bµ(A, Jv), w + θw] = Bµ(v,B)w +Bµ(A, Jv)w + θ(Bµ(v,B)w +Bµ(A, Jv)w)

= −1

6
ω(Jv,w)(3A+ 2D + θ(3A+ 2D)) + u+ θ(u),

with u = Bµ(v, w)B + 1
3ω(Jv,w)D ∈ J ∗0 . Note that, since the Jordan algebra J is

simple, its trace form is non-degenerate, and hence we can always find v, w ∈ J0 such
that u ̸= 0. If we further act by S ∈ g(0,0) ∩ k, using SA = SD = 0, we obtain

[S, [Bµ(v,B) +Bµ(A, Jv), w + θw]] = Su+ θ(Su).
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Now, g(0,0) ∩ k is the Lie algebra of the automorphism group of the Jordan algebra J
which acts irreducibly on J0. It follows that {u + θu : u ∈ J ∗0 } ⊆ h. Further, by
choosing v, w ∈ J0 above such that ω(Jv,w) ̸= 0 we obtain 3A+2D+θ(3A+2D) ∈ h.
A similar argument with

[Bµ(v,B) +Bµ(A, Jv), w + θ(w)]

shows 3B − 2C + θ(3B − 2C) ∈ h. Finally,

[3A+ 2D + θ(3A+ 2D), 3B − 2C + θ(3B − 2C)] = −8(2T0 + 3(E − F )) ∈ h.

Lemma 6.2.4. – f ∈ D′(R×) ⊗̂ S ′(Λ) is (g(0,0)∩ k)-invariant if and only if it is of the
form

f(λ, a, x) = f1(λ, a, I1, I2, I3),

where
I1 = ω(x,D), I2 = ω(µ(x)C,B), I3 = ω(Ψ(x), B).

Proof. – The Lie algebra g(0,0) decomposes as RH ⊕ (m ∩ g(0,0)) and m ∩ g(0,0) is
the Lie algebra of the structure group of the Jordan algebra J (see [12] for de-
tails on Jordan algebras). Since J is Euclidean, the maximal compact subalgebra
k∩ g(0,0) is the Lie algebra of the automorphism group of J . Its invariants are the co-
efficients a1(x), a2(x), a3(x) of the minimal polynomial X3−a1(x)X

2+a2(x)X−a3(x)

of a generic element x ∈ J (see [12, Chapter II.2]). These are given by a1(x) = tr(x) =

T (x,C) = 2ω(x,D), a3(x) = det(x) = 4n(x) = 2ω(Ψ(x), B) and

a2(x) = ∂C det(x) = 6ω(BΨ(x, x, C), B) = −2ω(µ(x)B,C).

Lemma 6.2.5. – f ∈ D′(R×) ⊗̂ S ′(Λ) is additionally an eigenfunction of dπmin(A−B)

to the eigenvalue ik
√

2 if and only if it is, for λ > 0 resp. λ < 0, of the form

f(λ, a, x) = (λ− i
√

2a)k exp

(
− iaI3
λR

)
f2(R, I1, I2, I3),

where
R = λ2 + 2a2.

In Lemma 6.2.5, f2(R, I1, I2, I3) could be different for λ > 0 and λ < 0. However,
it later turns out that choosing the same f2(R, I1, I2, I3) for all λ ∈ R× yields the
K-finite vectors in a unitary representation πmin of G̃ on L2(R× × Λ). This is due to
the fact that the derived representation dπmin has to be infinitesimally unitary on the
(g,K)-module generated by f , and an integration by parts argument on R× shows
that this is only the case if f2(R, I1, I2, I3) is the same for λ→ 0+ and λ→ 0−.

Proof. – The method of characteristics applied to the first order equation

dπmin(A−B)f =

(
−λ∂A + 2a∂λ −

iI3
λ2

)
f = ik

√
2f

shows the claim.
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Lemma 6.2.6. – f ∈ D′(R×) ⊗̂ S ′(Λ) is additionally annihilated by the operators
{λ dπmin(v+ θv)+2a dπmin(Bµ(v,B)+Bµ(A, Jv)) : v ∈ J0} if and only if it is of the
form

f(λ, a, x) = (λ− i
√

2a)k(λ2 + 2a2)
smin−k

2 exp

(
− iaI3
λR

)
f3(S, T )

with
S =

2RI1 − I3√
2R

, T =
I2 +R

R
1
2

.

Proof. – Applying

λ dπmin(v + θv) + 2a dπmin(Bµ(v,B) +Bµ(A, Jv)) = −ω(x, Jv)(λ∂λ + a∂A − smin)

− (2a2 + λ2)∂v + ∂µ(x)Jv

+ i
a

λ
ω(µ(x)v,B)

to f(λ, a, x) = (λ− i
√

2a)k exp
(
− iaI3

λR

)
f2(R, I1, I2, I3) gives

(λ− i
√

2a)k exp

(
− iaI3
λR

)[
ω(x, Jv)

(
−2R∂R + (R− I2)∂2 − 2I3∂3 + smin − k

)
f2

+ ω(µ(x)v,B)
(
R∂3 +

1

2
∂1

)
f2

]
= 0.

Here we have used

ω(Bµ(x, v)C,B) = −1

2
ω(x, Jv), ω(Bµ(x, µ(x)Jv)C,B) = −1

2
I2ω(x, Jv),

ω(µ(x)Jv,D) =
1

2
ω(µ(x)v,B), ω(BΨ(x, x, µ(x)Jv), B) = −2

3
I3ω(x, Jv).

This yields two first order partial differential equations:

− 2R∂Rf2 + (R− I2)∂2f2 − 2I3∂3f2 = (k − smin)f2,(6.2.1)

R∂3f2 +
1

2
∂1f2 = 0.(6.2.2)

Solving (6.2.2) using the method of characteristics gives

f2(R, I1, I2, I3) = f̃2(R, I2, U) with U = 2RI1 − I3.

Applying (6.2.1) to this expression and using again the method of characteristics
yields

f̃2(λ, a, I2, U) = R
smin−k

2 f3(S, T ).

Lemma 6.2.7. – f ∈ D′(R×) ⊗̂ S ′(Λ) is additionally invariant under

{Bµ(v,B) +Bµ(A, Jv) : v ∈ J0}

if and only if it is of the form

f(λ, a, x) = (λ− i
√

2a)k(λ2 + 2a2)
smin−k

2 exp

(
− iaI3
λR

)∑
m∈Z

hk,mKm(r)eimθ,
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where (S, T ) = (r cos θ, r sin θ) and (hk,m)m∈Z is a sequence satisfying

(6.2.3)
m+ smin

2
hk,m−1 −

m− smin

2
hk,m+1 + khk,m = 0.

Proof. – Using the identities∑
α,β

ω(eα, D)ω(eβ , D)ω(Bµ(A, Jv)êα, êβ) = 0,

∑
α,β

ω(eα, D)ω(Bµ(x, eβ)C,B)ω(Bµ(A, Jv)êα, êβ) = −1

4
ω(x, Jv),

∑
α,β

ω(eα, D)ω(µ(x)eβ , B)ω(Bµ(A, Jv)êα, êβ) =
1

2
ω(µ(x)v,B),

∑
α,β

ω(Bµ(eα, eβ)x,B)ω(Bµ(A, Jv)êα, êβ) = sminω(x, Jv),

∑
α,β

ω(µ(x)eα, B)ω(µ(x)eβ , B)ω(Bµ(A, Jv)êα, êβ) = 2I3ω(x, Jv),

∑
α,β

ω(µ(x)eα, B)ω(Bµ(x, eβ)C,B)ω(Bµ(A, Jv)êα, êβ) = −1

2
I2ω(x, Jv),

∑
α,β

ω(Bµ(x, eα)C,B)ω(Bµ(x, eβ)C,B)ω(Bµ(A, Jv)êα, êβ) =
1

2
I1ω(x, Jv) +

1

4
ω(µ(x)v,B),

the equation dπmin(Bµ(v,B) +Bµ(A, Jv))f = 0 for f as in Lemma 6.2.6 becomes

ω(x, Jv)
(I3
R
∂2

S −
√

2T∂S∂T + 2I1∂
2
T +

√
2smin∂S −

I3
R
− k

√
2
)
f3

+ ω(µ(x)v,B)
(
∂2

S + ∂2
T − 1

)
f3 = 0.

Again, this gives rise to two partial differential equations, this time of second order:
I3
R
∂2

Sf3 −
√

2T∂S∂T f3 + 2I1∂
2
T f3 +

√
2smin∂Sf3 −

I3
R
f3 − k

√
2f3 = 0,(6.2.4)

∂2
Sf3 + ∂2

T f3 = f3.(6.2.5)

While (6.2.5) only contains the variables S and T , (6.2.4) also contains I1 and I3. We
therefore subtract 2I1 times (6.2.5) from (6.2.4) to obtain the equivalent equation

(6.2.6) (S∂S + T∂T − smin)∂Sf3 − Sf3 + kf3 = 0.

Using polar coordinates (S, T ) = (r cos θ, r sin θ), we expand f3 into a Fourier series

f3(S, T ) =
∑
m∈Z

gm(r)eimθ.

Then (6.2.5) becomes

∂2
rgm +

1

r
∂rgm −

(
1 +

m2

r2

)
gm = 0.
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The two solutions to this ordinary differential equation are the Bessel functions Im(r)

and Km(r). The I-Bessel function grows exponentially as r →∞, while the K-Bessel
function decays exponentially. Since we are only interested in tempered distributions
(in fact, only L2-functions) we write

gm(r) = hk,mKm(r)

for some scalars hk,m ∈ C. Applying (6.2.6) to the Fourier expansion finally yields
the relation (6.2.3).

Lemma 6.2.8. – For −n ≤ k ≤ n there is a unique (up to scalar multiples) se-
quence (hk,m)m∈Z satisfying (6.2.3). It satisfies hk,m = 0 for |m| > n and, normalizing
hk,m = 1 for m = −n, it is given by

(6.2.7) hk,m =

m+n∑
j=0

(−1)m+n−j

(
n+ k

j

)(
n− k

m+ n− j

)
for m = −n, . . . , n.

Proof. – Let (hk,m)m∈Z be a sequence satisfying (6.2.3) and form the generating func-
tion

h(t) =
∑
m∈Z

hk,mt
m.

Then (6.2.3) becomes the differential equation

h′(t) =
−nt2 + 2kt− n

t(1− t2)
h(t).

Writing
−nt2 + 2kt− n

t(1− t2)
= −n

t
+
k − n

1− t
+
k + n

1 + t

reveals the solution
h(t) = t−n(1− t)n−k(1 + t)n+k.

Expanding both (1− t)n−k and (1 + t)n+k into Taylor series around t = 0 shows the
claim.

Recall the elements T̃1, T̃2, T̃3 ∈ k from Proposition 6.1.6 and Remark 6.1.7 which
span the ideal k1 ≃ su(2). The element T̃2 spans a maximal torus in k1 and ad(T̃2) has
eigenvalues 0,±2i. By the representation theory of su(2), the action of T̃2 in ev-
ery finite-dimensional representation of k1 is diagonalizable with eigenvalues 2ik,
k ∈ Z ∪ (Z + 1

2 ), and the elements T̃3±iT̃1 step between the eigenspaces. Lemma 6.2.5
shows that fk is in fact an eigenfunction of dπmin(T̃2) to the eigenvalue 2ik. We there-
fore compute the action of dπmin(T̃3 ± iT̃1) on fk.

Lemma 6.2.9. – For −n ≤ k ≤ n we have

dπmin(2T0 ± i
√

2(C −D))fk = −3(k ∓ n)fk±1.
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Proof. – For f ∈ D′(R×) ⊗̂ S ′(Λ) of the form

f(λ, a, x) = (λ− i
√

2a)k(λ2 + 2a2)
smin−k

2 exp

(
− iaI3
λR

)
f3(S, T )

with f3 satisfying (6.2.5) and (6.2.6), a lengthy computation shows that

dπmin(2T0±i
√

2(C−D))f(λ, a, x) = (λ−i
√

2a)k±1(λ2+2a2)
smin−(k±1)

2 exp

(
− iaI3
λR

)
× 3i

[
T∂2

S − S∂S∂T ∓ T∂S ± S∂T + smin∂T

]
f3(S, T ).

If now f3(S, T ) =
∑

m hk,mKm(r)eimθ with (S, T ) = (r cos θ, r sin θ) it can further be
shown that[

T∂2
S − S∂S∂T ∓ T∂S ± S∂T + smin∂T

]
f3(S, T )

= i
∑
m

[
m+ smin

2
hk,m−1 +

m− smin

2
hk,m+1 ±mhk,m

]
Km(r)eimθ.

Finally, it can be shown using Lemma 6.2.8 that

m+ smin

2
hk,m−1 +

m− smin

2
hk,m+1 ±mhk,m = (k ± (smin + 1))hk+1,m.

Combining the various lemmas, we obtain Theorem 6.2.1.

Using the explicit formulas for the action of k on W , we can compute the action
of some group elements on W . Recall the elements w0, w1, w2 ∈ K from (2.2.1) and
(5.2.2).

Corollary 6.2.10. – The elements w2
0, w

2
1, w

2
2 ∈ K act on W in the following way:

πmin(w2
0)fk = (−1)n−kf−k, πmin(w2

1)fk = (−1)kfk, πmin(w2
2)fk = (−1)nf−k.

Proof. – From Lemma 6.2.5 and 6.2.9 it follows that the su(2)-triple T̃1, T̃2, T̃3 acts
on W by

(6.2.8) dπmin(T̃2)fk = 2ikfk, dπmin(T̃3 ± iT̃1)fk = 2i(smin + 1∓ k)fk∓1.

Since k2 acts trivially on W , we find

πmin(w2
0)fk = πmin(exp(−π

2 T̃1))fk,

πmin(w2
1)fk = πmin(exp(π

2 T̃2))fk,

πmin(w2
2)fk = πmin(exp(π

2 T̃3))fk.

The formulas now follow from the representation theory of SU(2).
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6.3. The split cases g = e6(6), e7(7), e8(8)

Assume that the Jordan algebra J is simple, non-Euclidean and split, i.e., J is
isomorphic to Herm(3,Fs) with F ∈ {C,H,O}, the Jordan algebra of 3× 3 Hermitian
matrices over the split complex numbers Cs, the split quaternions Hs or the split
octionions Os. In this case, the group G is split, and by the classification we have
g ≃ e6(6), e7(7) or e8(8).

The lowest K-type in this case turns out to be the trivial representation. It is
spanned by a vector which is most easily described using a renormalization Kα(x) =

x−
α
2 Kα(

√
x) of the K-Bessel function (see Appendix A for details).

Theorem 6.3.1. – The space W = Cf0 with

f0(λ, a, x) = (λ2 + 2a2)
smin

2 exp

(
− 2ian(x)

λ(λ2 + 2a2)

)
K− smin+1

2

(
2R2I2 + I2

3 −RI4 + 2R3

2R2

)
,

where

R = λ2 + 2a2, I2 = ω(Jx, x), I3 = ω(Ψ(x), B), I4 = ω(µ(x)Jx, Jx),

is a k-subrepresentation of (dπmin,D′(R×) ⊗̂ S ′(Λ)) isomorphic to the trivial represen-
tation.

Remark 6.3.2. – The spherical vector f0 has previously been found in [48, equa-
tion (4.72)] using case-by-case computations. Note that − smin+1

2 equals 1
2 , 1, 2 for

g = e6(6), e7(7), e8(8).

We prove this result in several steps. The following lemma is proven in a similar
way as Lemma 6.2.3:

Lemma 6.3.3. – The Lie algebra k is generated by g0 ∩ k and {v + θv : v ∈ Λ}.

Lemma 6.3.4. – f ∈ D′(R×) ⊗̂ S ′(Λ) is (g(0,0)∩ k)-invariant if and only if it is of the
form

f(λ, a, x) = f1(λ, a, I2, I3, I4),

where
I2 = ω(Jx, x), I3 = ω(Ψ(x), B), I4 = ω(µ(x)Jx, Jx).

Proof. – In a non-Euclidean split Jordan algebra J of degree 3, the invariants under
the maximal compact subgroup of the structure group corresponding to ϑ are gener-
ated by the polynomials tr(ϑ(x)x), det(x) and tr(ϑ(x)xϑ(x)x). These are essentially
I2, I3 and I4.
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Lemma 6.3.5. – f ∈ D′(R×) ⊗̂ S ′(Λ) is additionally invariant under A − B if and
only if it is, for λ > 0 resp. λ < 0, of the form

f(λ, a, x) = exp

(
− 2ian(x)

λ(λ2 + 2a2)

)
f2(R, I2, I3, I4),

with
R = λ2 + 2a2.

Proof. – We have

dπmin(A−B) = −λ∂A + 2a∂λ −
iI3
λ2
.

As in the quaternionic case, the method of characteristics shows the claim.

Lemma 6.3.6. – f ∈ D′(R×) ⊗̂ S ′(Λ) is additionally annihilated by the opera-
tors {λ dπmin(v + θv) + 2a dπmin(Bµ(v,B) + Bµ(A, Jv)) : v ∈ J } if and only if it is
of the form

f(λ, a, x) = (λ2 + 2a2)
smin

2 exp

(
− 2ian(x)

λ(λ2 + 2a2)

)
f3(Z),

with

Z =
2R2I2 + I2

3 −RI4 + 2R3

2R2
.

Proof. – We have

λ dπmin(v + θv) + 2a dπmin(Bµ(v,B) +Bµ(A, Jv))

= −ω(x, Jv)(λ∂λ + a∂A − smin)− (λ2 + 2a2)∂v + ∂µ(x)Jv +
ia

λ
ω(µ(x)v,B).

Using

ω(µ(x)Jx, Jµ(x)Jv) =
1

2
I3ω(µ(x)v,B)− 1

2
I4ω(x, Jv),

ω(µ(x)µ(x)Jv,B) = 2I3ω(x, Jv),

ω(x, Jµ(x)Jv) = ω(µ(x)Jx, Jv),

we find that this equals

exp

(
− 2ian(x)

λ(λ2 + 2a2)

)[
ω(x, Jv)

(
− 2R∂Rf2 + 2R∂2f2 − 2I3∂3f2 − 2I4∂4f2

)
+ ω(µ(x)v,B)

(
R∂3f2 + 2I3∂4f2

)
+ ω(µ(x)Jx, Jv)

(
− 4R∂4f2 − 2∂2f2

)]
,

resulting in three first order differential equations for f2. Solving all three using the
method of characteristics yields

f2(R, I2, I3, I4) = R
smin

2 f3(Z).
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Lemma 6.3.7. – f ∈ D′(R×) ⊗̂ S ′(Λ) is additionally invariant under {v+θv : v ∈ J }
if and only if the function f3(Z) solves the differential equation

Zf ′′3 (Z) +
1− smin

2
f ′3(Z)− 1

4
f3(Z) = 0.

Proof. – We have

λdπmin(v + θv) = −λ2∂v − ω(x, Jv)λ∂λ + sminω(x, Jv) + ∂µ(x)Jv

+ iaλ
∑
α,β

ω(Bµ(A, Jv)êα, êβ)∂α∂β .

Using ∑
α,β

ω(Bµ(A, Jv)êα, êβ)ω(Bµ(eα, eβ)x,B) = sminω(x, Jv),

∑
α,β

ω(Bµ(A, Jv)êα, êβ)ω(µ(x)eα, B)ω(µ(x)eβ , B) = 2I3ω(x, Jv),

∑
α,β

ω(Bµ(A, Jv)êα, êβ)ω(µ(x)eα, B)ω(x, Jeβ) = ω(µ(x)Jx, Jv),

∑
α,β

ω(Bµ(A, Jv)êα, êβ)ω(µ(x)eα, B)ω(µ(x)Jx, Jeβ) =
1

2
I3ω(µ(x)v,B)− 1

2
I4ω(x, Jv),

∑
α,β

ω(Bµ(A, Jv)êα, êβ)ω(eβ , Jeα) = 0,

∑
α,β

ω(Bµ(A, Jv)êα, êβ)ω(x, Jeα)ω(x, Jeβ) = ω(µ(x)v,B),

∑
α,β

ω(Bµ(A, Jv)êα, êβ)ω(x, Jeα)ω(µ(x)Jx, Jeβ) =
1

2
I2ω(µ(x)v,B) +

1

2
I3ω(x, Jv),

∑
α,β

ω(Bµ(A, Jv)êα, êβ)ω(µ(x)Jeα, Jeβ) = sminω(µ(x)v,B),

∑
α,β

ω(Bµ(A, Jv)êα, êβ)ω(Bµ(x, eβ)Jx, Jeα) = −1

2
ω(µ(x)v,B),

∑
α,β

ω(Bµ(A, Jv)êα, êβ)ω(µ(x)Jx, Jeα)ω(µ(x)Jx, Jeβ) = I2I3ω(x, Jv)− 1

2
I4ω(µ(x)v,B)

− I3ω(µ(x)Jx, Jv),

we find that

λdπmin(v+θv)f =
iaλ

R2

(
I3ω(x, Jv)+Rω(µ(x)v,B)

)(
4Z∂2

Zf3+2(1−smin)∂Zf3−f3
)
.
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By Appendix A, the unique tempered solution to this ordinary differential equa-
tion is the renormalized K-Bessel function Kα(Z) with α = − smin+1

2 . This shows
Theorem 6.3.1.

Corollary 6.3.8. – The elements w2
0, w

2
1, w

2
2 ∈ K act on W in the following way:

πmin(w2
0)f0 = πmin(w2

1)f0 = πmin(w2
2)f0 = f0.

6.4. The case g = g2(2)

Let g = g2(2), then J = RC is one-dimensional and therefore, strictly speaking,
not of rank three. We treat this case separately.

First note that the Lie algebra k splits into the direct sum of two ideals

k = k1 ⊕ k2,
with k1, k2 ≃ su(2) given by

k1 = RT1 ⊕ RT2 ⊕ RT3, k2 = RS1 ⊕ RS2 ⊕ RS3,

where T1, T2, T3 are as in Proposition 6.1.6 and

S1 = 2T0 + 3(E −F ), S2 = 3A+ 2D+ θ(3A+ 2D), S3 = 3B − 2C + θ(3B − 2C).

For simplicity, we write x ∈ J as x = cC and f(λ, a, x) = f(λ, a, c).

Theorem 6.4.1. – The space W = Rf−1 ⊕ Rf0 ⊕ Rf1 with

f0(λ, a, c) = (λ2 + 2a2)−
1
6 exp

(
− iac3

2λ(λ2 + 2a2)

)
K− 1

3
(S),

f±1(λ, a, c) = (λ∓ i
√

2a)(λ2 + 2a2)−
7
6 exp

(
− iac3

2λ(λ2 + 2a2)

)
×
[
cK− 1

3
(S)∓

√
2(2λ2 + 4a2 + c2)2

4(λ2 + 2a2)
K 2

3
(S)

]
,

where

S =
(2λ2 + 4a2 + c2)3

8(λ2 + 2a2)2

is a k-subrepresentation of (dπmin,D′(R×)⊗ S ′(Λ)) isomorphic to the representation
C⊠ S2(C2) of k ≃ su(2)⊕ su(2).

Remark 6.4.2. – In [31, equation (3.119)], one vector in the K-type W is obtained,
but the formula differs slightly from ours. Comparing to the other cases, our formula
looks more natural than the one in [31] which contains an additional transcendental
function.

To find the K-type C ⊠ S2(C2) on which k1 acts trivially and k2 ≃ su(2) acts by
the three-dimensional representation S2(C2), we write S2(C2) as the direct sum of
weight spaces relative to the maximal torus RS2 ⊆ k2. Since 0 is a weight for S2(C2),
we try to find a k1-invariant vector which is additionally S2-invariant.
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Lemma 6.4.3. – f ∈ D′(R×) ⊗̂ S ′(Λ) is invariant under S2 + T2 if and only if it is,
for λ > 0 resp. λ < 0, of the form

f(λ, a, c) = exp

(
− iac3

2λ(λ2 + 2a2)

)
f1(R, c),

where R = λ2 + 2a2.

Proof. – We have S2 + T2 = 4(A−B) and

dπmin(A−B) = −λ∂A + 2a∂λ −
iI3
λ2
,

where I3 = 2n(x) = 1
2c

3. Applying the method of characteristics shows the claim.

Lemma 6.4.4. – f ∈ D′(R×) ⊗̂ S ′(Λ) is additionally annihilated by dπmin(S2 − 3T2)

and λdπmin(T1)− a dπmin(T3) if and only if the function f1(R, c) satisfies[
2R∂R∂C +

1

3
c∂2

C +
4

3
∂C +

3c

8R2
(c2 + 2R)(c2 − 2R)

]
f1 = 0

and[
2R

3
∂2

C − 4R2∂2
R − 6R∂R +

2

3
c∂C −

2

9
+

8R3 − 24c2R2 − 6c4R+ 4c6

8R2

]
f1 = 0.

Proof. – This is an elementary computation.

Inspired by the previous cases we make the Ansatz f1(R, c) = R−
1
6 f2(S) with

S =
(2R+ c2)3

8R2
.

Lemma 6.4.5. – A function of the form f1(R, c) = R−
1
6 f2(S) satisfies the differential

equations in Lemma 6.4.4 if and only if f2 satisfies

Tf ′′2 (S) +
2

3
f ′2(S)− 1

4
f2(S) = 0.

Proof. – Another elementary computation.

From Appendix A we know that f2(S) = K− 1
3
(S) is the unique tempered solution

to the above differential equation. This leads to the function f0(λ, a, x). We now apply
S3 ± i

√
2S1 to f0.

Lemma 6.4.6. – Let

f(λ, a, c) = (λ2 + 2a2)−
1
6 exp

(
− iac3

2λ(λ2 + 2a2)

)
f2(S)

be invariant under T1, T2, T3 and S2. Then

dπmin(S3 ± i
√

2S1)f = −8(λ∓ i
√

2a)(λ2 + 2a2)−
7
6 exp

(
− iac3

2λ(λ2 + 2a2)

)
×
(
c

2
f2(S)±

√
2(2R+ c2)2

4R
f ′2(S)

)
.
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Proof. – Since f is invariant under T1 and T3, we find that

dπmin(S1)f = 8 dπmin(T )f and dπmin(S3)f = −8 dπmin(C −D).

The rest is a simple computation.

Since K
′
− 1

3
(x) = − 1

2K 2
3
(x) by (A.2.1), this leads to the functions f1 and f−1.

Proposition 6.4.7. – The functions f−1, f0 and f1 are k1-invariant and transform
in the following way under the action of k2:

dπmin(S2)fk = 4
√

2ikfk dπmin(S3 ± i
√

2S1)f0 = −4f±1,

dπmin(S3 ± i
√

2S1)f±1 = 0, dπmin(S3 ∓ i
√

2S1)f±1 = 16f0.

Proof. – The first formula follows as in the proof of Lemma 6.4.3. The second formula
is essentially Lemma 6.4.6. The third and the fourth formula are easily computed using

S3 ± i
√

2S1 ≡ 8(−C +D ± i
√

2T0) mod k1

and (A.2.1) and (A.2.2).

Proof of Theorem 6.4.1. – Note that the elements

S̃1 =
1

2
S1, S̃2 =

1

2
√

2
S2 and S̃3 = − 1

2
√

2
S3

form an su(2)-triple, then the statement follows from Proposition 6.4.7.

Corollary 6.4.8. – The elements w2
0, w

2
1, w

2
2 ∈ K act on W in the following way:

πmin(w2
0)fk = (−1)k−1f−k, πmin(w2

1)fk = (−1)kfk, πmin(w2
2)fk = −f−k.

Proof. – Since k1 acts trivially on W , we find

πmin(w2
0)fk = πmin(exp(π

2 S̃1))fk,

πmin(w2
1)fk = πmin(exp(π

2 S̃2))fk,

πmin(w2
2)fk = πmin(exp(−π

2 S̃3))fk.

The rest is an SU(2) computation.
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6.5. The case g = sl(n,R)

Let g = sl(n,R), then J ≃ Rn−3 does not carry a natural structure of
a Jordan algebra. In this case, it is not necessary to use the decomposition
g−1 = RA⊕ J ⊕ J ∗ ⊕ RB. We choose any Cartan involution θ on g associated
to a map J : V → V as in Lemma 2.8.1, and let k = gθ ≃ so(n) denote the maximal
compact subalgebra. We choose complementary Lagrangian subspaces Λ and Λ∗ of V
as in Section 5.6.

In contrast to the previous cases, we have a continuous family

(dπmin,r,D′(R×) ⊗̂ S ′(Λ))

(r ∈ C) of representations, and for each r ∈ C we find two non-equivalent (g,K)-sub-
modules of D′(R×) ⊗̂ S ′(Λ) which, for r ∈ iR, integrate to non-equivalent irreducible
unitary representations of L2(R× × Λ). In this section we determine their lowest
K-types.

Theorem 6.5.1. – Let r ∈ C.

(1) The space W0,r = Cf0,r with

f0,r(λ, x) = K n−2r−2
4

(λ2 + 4|x|2)

is a k-subrepresentation of (dπmin,r,D′(R×) ⊗̂ S ′(Λ)) isomorphic to the trivial
representation.

(2) The space W1,r = Cg0,r ⊕ Cg1,r ⊕ {gw,r : w ∈ Λ∗} with

g0,r(λ, x) = λK n−2r
4

(λ2 + 4|x|2)

g1,r(λ, x) = K n−2r−4
4

(λ2 + 4|x|2)

gw,r(λ, x) = ω(x,w)K n−2r
4

(λ2 + 4|x|2) (w ∈ Λ∗)

is a k-subrepresentation of (dπmin,D′(R×) ⊗̂ S ′(Λ)) isomorphic to the standard
representation of k ≃ so(n) on Cn.

Proof. – We first find the spherical vector f0,r. If f0,r is invariant under k ∩ g0 =

so(n− 2), it has to be of the form

f0,r(λ, x) = f1(λ, I2) with I2 = |x|2 =
1

4
ω(Jx, x).

For such f0,r the equation dπmin,r(v + θv)f0,r = 0 takes the form

ω(x, Jv)

(
1

2
λ∂2 − ∂λ

)
f1 = 0,

so that f1(λ, I2) = f2(λ
2 + 4I2). Finally, the equation dπmin,r(w+ θw) = 0 reduces to

4zf ′′2 + (n− 2r + 2)f ′2 − f2 = 0,

which has, by Appendix A, the unique tempered solution f2(z) = K n−2r−2
4

(z).
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Now, let us show that g0,r, g1,r and the gw,r’s span a finite-dimensional k-represen-
tation. Similar to (1), one verifies for T ∈ k ∩ g0 ≃ so(p− 2):

dπmin(T )gw,r = gTw,r, dπmin(T )g0,r = dπmin(T )g1,r = 0,

for v ∈ Λ:

dπmin(v + θv)g0,r = −gJv,r, dπmin(v + θv)g1,r = 0, dπmin(v + θv)gw,r = −ω(v, w)g0,r,

and for w ∈ Λ∗:

dπmin(w + θw)g0,r = 0, dπmin(w + θw)g1,r = −igw,r, dπmin(w + θw)gw′,r = iω(w′, Jw)g1,r,

where we have used (A.2.1) and (A.2.2).

6.6. The case g = sl(3,R)

For g = sl(3,R) there is an additional (g,K)-module contained in

(dπmin,r,D′(R×) ⊗̂ S ′(Λ))

for r = 0, giving rise to a genuine irreducible unitary representation of the double
cover S̃L(3,R) of SL(3,R). For this we write Λ = RA and Λ∗ = RB such that
JA = −B and JB = A and use coordinates x = aA ∈ Λ.

Theorem 6.6.1. – The space W 1
2

= Ch− 1
2
⊕ Ch 1

2
with

h 1
2
(λ, a) = (|λ| − i

√
2 sgn(λ)a)

1
2K 1

2
(λ2 + 2a2),

h− 1
2
(λ, a) = sgn(λ)(|λ|+ i

√
2 sgn(λ)a)

1
2K 1

2
(λ2 + 2a2)

is a k-subrepresentation of (dπmin,0,D′(R×) ⊗̂ S ′(Λ)) isomorphic to the representa-
tion S1(C2) of k = so(3) ≃ su(2).

Proof. – The elements U1 =
√

2(A−B), U2 =
√

2(B+A) and U3 = −2(E−F ) form
an su(2)-triple, i.e., [U1, U2] = 2U3, [U2, U3] = 2U1 and [U3, U1] = 2U2. With respect
to the maximal torus RU1 in k, the vectors U2 ∓ iU3 are root vectors:

[U1, U2 ∓ iU3] = ±2i(U2 ∓ iU3).

The highest weight vector h of a k-type isomorphic to S1(C2) solves the weight equa-
tion

dπmin,0(U1)h =
√

2(2a∂λ − λ∂A)h = ih.

Using the method of characteristics, we find that

h(λ, a) = (|λ| − i
√

2 sgn(λ)a)
1
2 · u(λ2 + 2a2)

is a solution. The highest weight equation

dπmin,0(U2 − iU3)h = 0

then gives
4zu′′(z) + 6u′(z)− u(z) = 0.
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By Appendix A, the unique tempered solution is u(z) = K 1
2
(z), which leads

to the highest weight vector h 1
2
. A straightforward computation using K 1

2
(x) =√

π
2x
− 1

2 e−
√

x (see Appendix A) shows that

dπmin,0(U2 + iU3)h 1
2

= −2h− 1
2

and dπmin,0(U2 + iU3)h− 1
2

= 0.

Remark 6.6.2. – We observe that these functions together with the ones from The-
orem 6.5.1 in the case n = 3 agree (up to a change of coordinates) with the ones found
by Torasso [78, Proposition 14, 15 & 16].

6.7. The case g = so(p, q)

The construction of a Cartan involution in Section 6.1 does not apply in the
case g ≃ so(p, q), since here J is not simple but the direct sum of a rank one Jordan
algebra J0 ≃ R and a rank two Jordan algebra J ≃ Rp−3,q−3. We therefore give a
separate construction.

According to the decomposition J = J0 ⊕ J , the norm function decomposes into

n(x) = −1

2
ω(x0, Q)ω(µ(x)P,B),

where −ω(µ(x)P,B) is a quadratic form on J of signature (p − 3, q − 3), the norm
function of the quadratic Jordan algebra J ≃ Rp−3,q−3. The following result can be
proven using the explicit decompositions in Appendix B.2:

Proposition 6.7.1. – Let ϑ : J → J be a Jordan algebra automorphism such that
the symmetric bilinear form (v1, v2) 7→ −ω(Bµ(v1, ϑv2)P,B) is positive definite. Then
the map J : V → V given by

JA = −B, JP = −Q, Jv = −
√

2Bµ(P,B)ϑv (v ∈ J ),

JB = A, JQ = P, Jw =
√

2ϑBµ(A,Q)w (w ∈ J ∗),

satisfies the conditions of Lemma 2.8.1.

We fix ϑ as in the proposition and let J1 denote the +1 eigenspace and J2 the
−1 eigenspace of ϑ in J . Then J = J0 ⊕ J1 ⊕ J2, and using the symplectic form
we obtain a dual decomposition J ∗ = J ∗0 ⊕ J ∗1 ⊕ J ∗2 . Again, using the explicit
decompositions in Appendix B.2, one verifies:

Lemma 6.7.2. – (1) For each i = 1, 2, Bµ(P,B) resp. Bµ(A,Q) restricts to a linear
isomorphism Ji → J ∗i resp. J ∗i → Ji.

(2) Bµ(J1,J2) = 0 and µ(J1), µ(J2) ∈ RBµ(A,Q).

Denote by θ the corresponding Cartan involution of g and by k = gθ the corre-
sponding maximal compact subalgebra of g. Then

T0 = Bµ(A,Q)−Bµ(P,B) ∈ k.
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Proposition 6.7.3. – The Lie algebra k decomposes into the sum of two ideals
k = k1 ⊕ k2 with k1 ≃ so(p) and k2 ≃ so(q) given by

k1 = R(2T0 +
√

2(E − F ))⊕ R(A−
√

2Q+ θ(A−
√

2Q)) + R(B +
√

2P + θ(B +
√

2P ))

⊕ {Bµ(v,B) +Bµ(A, Jv) : v ∈ J1} ⊕ {x+ θx : x ∈ J1 ⊕ J ∗1 } ⊕ so(p− 3)

and

k2 = R(2T0 −
√

2(E − F ))⊕ R(A+
√

2Q+ θ(A+
√

2Q)) + R(B −
√

2P + θ(B −
√

2P ))

⊕ {Bµ(v,B) +Bµ(A, Jv) : v ∈ J2} ⊕ {x+ θx : x ∈ J2 ⊕ J ∗2 } ⊕ so(q − 3),

where so(p− 3) resp. so(q − 3) denotes the ideal of k ∩ g(0,0) ≃ so(p− 3)⊕ so(q − 3)

which acts trivially on J2 ≃ Rq−3 resp. J1 ≃ Rp−3.

Proof. – Note that

T0A = −P, T0P =
1

2
A, T0Q =

1

2
B, T0B = −Q.

The rest is along the same lines as the proof of Proposition 6.1.6.

To state explicit formulas for K-finite vectors we first need the following result:

Lemma 6.7.4. – For j ∈ N and k ∈ {−j,−j + 2, . . . , j − 2, j}, there exists a unique
family of polynomials (pj,k,m)m=0,...,j ⊆ C[S, T ] in two variables satisfying

(1) (2∂S∂T + k
√

2)pj,k,m − T∂Spj,k,m−1 − 2S∂T pj,k,m+1 = 0,

(2) ∂2
T pj,k,m+1 + (m− T∂T )pj,k,m = 0,

(3) pj,k,0(S, T ) = Sj.

For the family of polynomials (pj,k,m)j,k,m the following identities hold:

(a) ∂Spj,k,m ∓
√

2∂T pj,k,m+1 = (j ∓ k)pj−1,k±1,m,

(b) ±
√

2
2 Tpj,k,m−1 + Spj,k,m ∓

√
2∂T pj,k,m = pj+1,k±1,m,

(c) (S∂S − T∂T )pj,k,m = (j − 2m)pj,k,m,

(d) −T 2

2 pj,k,m−2 + (2m− 1)pj,k,m−1 + S2pj,k,m = pj+2,k,m,

(e) pj,k,m(−S, T ) = (−1)jpj,−k,m(S, T ).

Proof. – We first show uniqueness. For this we write pm = pj,k,m for short. Every
polynomial pm can be written as the sum of homogeneous polynomials

pm =
∑
α≥0

pα
m

with pα
m homogeneous of degree α. Let α be maximal with pα

m ̸= 0 for some m. We
claim that α = j. By (3) we have α ≥ j, so we assume α > j. Then (2) would imply
pα

m = cαmS
α−mTm, and (1) would imply

k
√

2cαm − (α−m+ 1)cαm−1 − 2(m+ 1)cαm+1 = 0.
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From (3) we know that cα0 = 0, and recursively we find cαm = 0 for all m, which is a
contradiction, so α = j is maximal with the property that pα

m ̸= 0 for some m. The
previous argument also shows that pj

m = cjmS
j−mTm with cjm uniquely determined

by cj0 = 1. For the lower order terms we observe that pα
0 = 0 for α < j. For fixed α < j,

Equation (1) determines ∂T p
α
m+1 from pα

m−1, pα
m and pα+2

m , so pα
m+1 is unique modulo

polynomials in S independent of T . This disambiguity is removed by (2) for m > 0.
Now, let us prove existence by induction on j. For j = 0 we also have k = m = 0

and p0,0,0 = 1 by (3), which also satisfies (1) and (2). Next, we note that the left
hand side of (b) satisfies (1), (2) and (3) for j replaced by j + 1 and k replaced
by k ± 1. Therefore, (b) can be used to recursively define the family (pj+1,k,m)k,m

using (pj,k,m)k,m, which establishes the existence part of the proof.
Finally, the identities (a), (b), (c), (d) and (e) are proven by showing that

the left hand side satisfies (1) and (2) for certain values of j and k (for (c) the
term 2mpj,k,m has to be moved to the left hand side first), and then using the
previously established uniqueness result.

Remark 6.7.5. – It is easy to see that

pj,k,m(S, T ) = const×Sj−mTm + const×Sj−m−1Tm−1 + · · · .

For k = ±j it is possible to find the coefficient of Sj−mTm:

pj,±j,m(S, T ) = (±1)m2−
m
2

(
j

m

)
Sj−mTm + lower order terms.

However, we were not able to find a closed formula in general.

We assume from now on that p ≥ q ≥ 3. The lowest K-type turns out to be
isomorphic to C⊠H

p−q
2 (Rq) as a representation of k ≃ so(p)⊕ so(q), where Hα(Rn)

denotes the space of homogeneous polynomials on Rn of degree α which are harmonic.
Since only the subalgebra k2∩g(0,0) ≃ so(q−3) acts geometrically in the representation
dπmin, it is helpful to use the following multiplicity-free branching rule:

H
p−q
2 (Rq)|so(2)⊕so(q−2)

≃

p−q
2⊕

j=0

j⊕
k=−j

k≡j mod 2

Ck ⊠H
p−q
2 −j(Rq−2),

where Ck denotes the obvious character of so(2), and further decompose

H
p−q
2 −j(Rq−2)|so(q−3)

≃

p−q
2 −j⊕
ℓ=0

Hℓ(Rq−3).

Together we find that

H
p−q
2 (Rq)|so(2)⊕so(q−3)

≃

p−q
2⊕

j=0

(
j⊕

k=−j
k≡j mod 2

Ck

)
⊠

( p−q
2 −j⊕
ℓ=0

Hℓ(Rq−3)

)
.
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For a distribution f ∈ D′(R×) ⊗̂ S ′(Λ) we write f ⊗Hℓ(Rq−3) for the space of distri-
butions f ⊗ φ, φ ∈ Hℓ(Rq−3), given by

(f ⊗ φ)(λ, a, x) = f(λ, a, x)φ(x2).

Here, we define spherical harmonics with respect to the positive definite quadratic
form x2 7→ ω(µ(x2)P,B) on J2 ≃ Rq−3.

We further recall the renormalized K-Bessel function Kα(z) from Appendix A.

Theorem 6.7.6. – Let g = so(p, q) with p ≥ q ≥ 3 and p+ q even. Then

W =

p−q
2⊕

j=0

j⊕
k=−j

k≡j mod 2

p−q
2 −j⊕
ℓ=0

fj,k,ℓ ⊗Hℓ(Rq−3)

with

fj,k,ℓ(λ, a, x) = (λ− i
√

2a)k(λ2 + 2a2)−
k+1
2 exp

(
− 2ian(x)

λ(λ2 + a2)

)
hj,k,ℓ(S, T, U)

and

hj,k,ℓ(S, T, U) =

j∑
m=0

pj,k,m(S, T )(1 + S2)
q+2ℓ+2m−4

2 K q+2ℓ+2m−4
2

(U)

with

S =
I1√

λ2 + 2a2
and T =

Ip
2 + Iq

2 −
√

2(λ2 + 2a2)√
λ2 + 2a2

and
I1 = ω(x0, Q), Ip

2 = −2
√

2|x1|2, Iq
2 = 2

√
2|x2|2

is a k-subrepresentation of (dπmin,D′(R×) ⊗̂ S ′(Λ)) isomorphic to the representation
C⊠H

p−q
2 (Rq) of k ≃ so(p)⊕ so(q).

We begin with the action of k ∩ g(0,0) ≃ so(p− 3)⊕ so(q − 3).

Lemma 6.7.7. – If f ∈ D′(R×) ⊗̂ S ′(Λ) generates under the action of

k ∩ g(0,0) ≃ so(p− 3)⊕ so(q − 3)

a subrepresentation isomorphic to C⊠Hℓ(Rq−3), it has to be a linear combination of
distributions of the form

f(λ, a, x) = f1(λ, a, I1, I
p
2 , I

q
2 )φ(x2),

where

I1 = ω(x,Q), Ip
2 = ω(µ(x1)P,B) = −2

√
2|x1|2, Iq

2 = ω(µ(x2)P,B) = 2
√

2|x2|2

and φ ∈ Hℓ(Rq−3).
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Proof. – The subalgebra k∩g(0,0) ≃ so(p−3)⊕so(q−3) acts on J1⊕J2 ≃ Rp−3⊕Rq−3

by the direct sum of the standard representations of so(p − 3) and so(q − 3). An
so(p−3)-invariant distribution on J1 ≃ Rp−3 only depends on Ip

2 = −2
√

2|x1|2, and a
distribution on J2 ≃ Rq−3 that belongs to the isotypic component of Hℓ(Rq−3) has to
be a linear combination of products of φ ∈ Hℓ(Rq−3) and distributions only depending
on Iq

2 = 2
√

2|x2|2.

We note the following identities for derivatives of the invariants I1, I
p
2 , Iq

2 in the
directions P , v ∈ J1 and w ∈ J2:

∂P I1 = 1, ∂P I
p
2 = 0, ∂P I

q
2 = 0,

∂vI1 = 0, ∂vI
p
2 =

√
2ω(x, Jv), ∂vI

q
2 = 0,

∂wI1 = 0, ∂wI
p
2 = 0, ∂wI

q
2 = −

√
2ω(x, Jv).

Further, we have
I3 = ω(Ψ(x), B) = 2n(x) = −I1(Ip

2 + Iq
2 ).

In what follows we write ∂1, ∂2p and ∂2q for the derivatives of f1(λ, a, I1, I
p
2 , I

q
2 ) with

respect to the variables I1, I
p
2 and Iq

2 .

Lemma 6.7.8. – The function f is additionally an eigenfunction of dπmin(A−B) to
the eigenvalue ik

√
2 if and only if it is, for λ > 0 resp. λ < 0, of the form

f(λ, a, x) = (λ− i
√

2a)k exp

(
− iaI3
λR

)
f2(R, I1, I

p
2 , I

q
2 )φ(x2),

where
R = λ2 + 2a2.

Proof. – The method of characteristics applied to the first order equation

dπmin(A−B)f =

(
−λ∂A + 2a∂λ −

2in(x)

λ2

)
f = ik

√
2f

shows the claim.

Lemma 6.7.9. – The function f is additionally annihilated by the operators

{λ dπmin(v + θv) + 2a(Bµ(v,B) +Bµ(A, Jv)) : v ∈ J1} ⊆ k1

if and only if it is of the form

f(λ, a, x) = (λ− i
√

2a)kR−
k+1
2 exp

(
− iaI3
λR

)
f3 (S, T, Iq

2 )φ(x2),

where

S =
I1

R
1
2

and T =
Ip
2 + Iq

2 −
√

2R

R
1
2

.
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Proof. – Applying λ dπmin(v + θv) + 2a(Bµ(v,B) + Bµ(A, Jv)) to f(λ, a, x) as in
Lemma 6.7.8 leads to the differential equation

2R∂R + I1∂1 + (Ip
2 + Iq

2 +
√

2R)∂2p)f2 = −(k + 1)f2,

which can be solved using the method of characteristics.

Lemma 6.7.10. – The function f is additionally invariant under {Jv−v : v ∈ J1} ⊆
k1 if and only if the function f3(S, T, I

q
2 ) solves the following two partial differential

equations: (
−2∂2

T −
√

2Iq
2∂

2
2q −

√
2

2 (2ℓ+ q − 3)∂2q + (1 + S2)
)
f3 = 0,(6.7.1) (

2∂S∂T − ST + k
√

2
)
f3 = 0.(6.7.2)

Proof. – A lengthy computation involving Lemma 5.7.1 and Lemma 5.7.2 shows that

idπmin(Jv − v)f = ω(x, Jv)(λ− i
√

2a)kR−
k+1
2 exp

(
− iaI3
λR

)
φ(x2)

×
[(
− 2∂2

T −
√

2Iq
2∂

2
2q −

√
2

2 (2ℓ+ q − 3)∂2q + (1 + S2)
)
f3

+R−
1
2

(
−
√

2S∂S∂T +
√

2
2 S

2T − kS
)
f3

]
.

Since R−
1
2 is independent of S, T and Iq

2 , this implies the two equations.

We remark at this point that
1

2
T 2 + 2

√
2Iq

2 =
1

2R
(Ip

2 + Iq
2 )2 −

√
2(Ip

2 − Iq
2 ) +R > 0.

Together with a deeper analysis of the equations in Lemma 6.7.10 this leads us to
introducing a new variable

U = (1 + S2)
(1

2
T 2 + 2

√
2Iq

2

)
and making the Ansatz

f3(S, T, I
q
2 ) = f4(U)g4(S).

Equation (6.7.1) applied to this gives

Uf ′′4 (U) + q+2ℓ−2
2 f ′4(U)− 1

4f4(U) = 0,

which has the solution f4(U) = K q+2ℓ−4
2

(U). Plugging this into (6.7.2) gives

2Tf ′4(U)
(
(1 + S2)g′4(S)− (q + 2ℓ− 4)Sg4(S)

)
+ k

√
2f4(U)g4(S) = 0.

Since by (A.2.1) the functions f4(U) and f ′4(U) are linearly independent, this equation
can only have a non-trivial solution for k = 0. In this case

g4(S) = (1 + S2)
q+2ℓ−4

2
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solves the equation and we obtain the functions f0,0,ℓ(λ, a, x), ℓ ≥ 0. To investigate
whether these functions are K-finite, we apply k2 ≃ so(q) to f0,0,ℓ. For this we de-
compose k2 according to Proposition 6.7.3 and compute the action of each part on a
distribution f(λ, a, x) of the form given in Lemma 6.7.9.

Lemma 6.7.11. – For a distribution f ∈ D′(R×) ⊗̂ S ′(Λ) of the form

f(λ, a, x) = (λ− i
√

2a)kR−
k+1
2 exp

(
− iaI3
λR

)
f3 (S, T, Iq

2 )φ(x2)

with f3(S, T, I
q
2 ) satisfying (6.7.1) and (6.7.2) we have for v ∈ J2:

idπmin(Jv − v)f = (λ− i
√

2a)kR−
k+1
2 exp

(
− iaI3
λR

)
×
[
ω(x, Jv)φ

(
4∂2

T +
√

2S∂S∂2q −
√

2T∂T∂2q +

√
2

2
(2ℓ+ q − p− 2)∂2q − 2S2

)
f3

+ ∂vφ
(
− S∂S + T∂T + 2Iq

2∂2q +
p+ q + 2ℓ− 8

2

)
f3

]
,

dπmin(2i(Bµ(A, Jv) +Bµ(v,B))∓
√

2(v + Jv))f = (λ− i
√

2a)k±1R−
(k±1)+1

2 exp

(
− iaI3
λR

)
×
[
ω(x, Jv)φ

(
− 2∂S∂2q ∓ 4∂T ±

√
2T∂2q + 2

√
2S
)
f3

+ ∂vφ
(√

2∂S ∓ T
)
f3

]
,

and

dπmin(−P +Q∓ i
√

2T0)f = (λ− i
√

2a)k±1R−
(k±1)+1

2 exp

(
− iaI3
λR

)
φ(x2)

×
(
±
√

2T∂2
T ± 2

√
2Iq

2∂T∂2q + (1 + S2)∂S + (−ST ±
√

2p+q+2ℓ−6
2 )∂T

− 2SIq
2∂2q ∓

√
2

2 (1 + S2)T − p+q+2ℓ∓2k−8
2 S

)
f3.

Applying these operators to f0,0,ℓ suggests that the k-representation generated
by f0,0,0 consists of functions f(λ, a, x) as in Lemma 6.7.9 with

(6.7.3) f3(S, T, I
q
2 ) =

∑
m

pm(S, T )(1 + S2)
q+2ℓ+2m−4

2 K q+2ℓ+2m−4
2

(U)

for some polynomials pm(S, T ).

Lemma 6.7.12. – A function f3(S, T, I
q
2 ) of the form (6.7.3) solves the Equa-

tions (6.7.1) and (6.7.2) in Lemma 6.7.10 if and only if the family of polynomials
pm(S, T ) satisfies (1) and (2) in Lemma 6.7.4.

Proof. – From (A.2.1) and (A.2.2) it follows that

∂S(1 + S2)αKα(U) = −S(1 + S2)α−1Kα−1(U),
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∂T (1 + S2)αKα(U) = −T
2

(1 + S2)α+1Kα+1(U).

Using these identities the proof is a direct computation.

This motivates the definition of the functions fj,k,ℓ in Theorem 6.7.6. We finally
calculate how the Lie algebra k2 ≃ so(q) acts on fj,k,ℓ. For this note that

ω(x, Jv)φ = φ+
v + Iq

2φ
−
v

with

φ+
v = ω(x, Jv)φ+

√
2Iq

2∂vφ

q + 2ℓ− 5
∈ Hℓ+1(Rq−3), φ−v = −

√
2∂vφ

q + 2ℓ− 5
∈ Hℓ−1(Rq−3).

Proposition 6.7.13. – For all j, ℓ ≥ 0, k ∈ {−j,−j + 2, . . . , j − 2, j} and
φ ∈ Hℓ(Rq−3), the function fj,k,ℓ ⊗ φ is k1-invariant and satisfies

dπmin(T )fj,k,ℓ ⊗ φ = fj,k,ℓ ⊗ (−∂Txφ) (T ∈ k2 ∩ g(0,0) ≃ so(q − 3)),

dπmin(A−B)fj,k,ℓ ⊗ φ = ik
√

2fj,k,ℓ ⊗ φ,

and

dπmin(2i(Bµ(A, Jv) +Bµ(v,B))∓
√

2(v + Jv))fj,k,ℓ ⊗ φ = 2
√

2(j ∓ k)fj−1,k±1,ℓ+1 ⊗ φ+
v

+
[
(q + j ∓ k + 2ℓ− 5)fj+1,k±1,ℓ−1 + (j ∓ k)fj−1,k±1,ℓ−1

]
⊗ φ−v ,

idπmin(Jv − v)fj,k,ℓ ⊗ φ = (p− q − 2j − 2ℓ)fj,k,ℓ+1 ⊗ φ+
v

+ 1
2
√

2

[
(p− q − 2ℓ− 2j)fj+2,k,ℓ−1 + (p+ q + 2ℓ− 2j − 10)fj,k,ℓ−1

]
⊗ φ−v ,

dπmin(−P +Q∓ i
√

2T0)fj,k,ℓ ⊗ φ =
[
(j ∓ k)fj−1,k±1,ℓ − p−q−2j−2ℓ

2 fj+1,k±1,ℓ

]
⊗ φ.

Proof. – With Lemma 6.7.4 and Lemma 6.7.11 this is now an easy, though longish,
computation using

∂2q(1 + S2)αKα(U) = −
√

2(1 + S2)α+1Kα+1(U).

This proves Theorem 6.7.6.

6.8. The case g = so(p, 3)

For q = 3, we note that Hℓ(Rq−3) = {0} for ℓ > 0, so that the lowest K-type is
spanned by fj,k,0 (0 ≤ j ≤ p−3

2 , −j ≤ k ≤ j, k ≡ j mod 2). However, these functions
cannot form a basis of W ≃ H

p−3
2 (R3) ≃ Sp−3(C2) since dimW = p − 2, so the

functions fj,k,0 for fixed k have to be linearly dependent.

Lemma 6.8.1. – For q = 3 and all 0 ≤ j ≤ p−3
2 , −j ≤ k ≤ j, k ≡ j mod 2, we have

hj,k,0(S, T ) = ij+k

√
π

2
(1 + S2)−

1
2 (
√

1 + S2 − S)k.
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Proof. – Since q = 3, we have Iq
2 = 0 and therefore Equation (6.7.1) becomes(
− 2∂2

T + (1 + S2)
)
f3 = 0,

which has the unique tempered solution f3(S, T ) = g4(S)e

√
1+S2

2 T . Plugging this into
(6.7.2) gives

g′4(S) +

(
S

1 + S2
+

k√
1 + S2

)
g4(S) = 0,

which has the solution

g4(S) = const×(1 + S2)−
1
2 (
√

1 + S2 − S)k.

To find the constant, we multiply both hj,k,0(S, T ) and f3(S, T ) by (1 + S2)
1
2 and

let S → ±i (for the unique analytic extensions of the functions). Using the explicit
formulas for the K-Bessel function at half-integer parameters, (A.3.1) and (A.3.2),
shows that for hj,k,0(S, T ) =

∑j
m=0 pj,k,m(S, T )(1 +S2)m− 1

2Km− 1
2
(U) only the sum-

mand for m = 0 survives. Comparing this with (
√

1 + S2−S)ke−
√

U at S = ±i shows
the claim.

Remark 6.8.2. – It should be possible to obtain this expression for hj,k,0(S, T ) from
the explicit formulas for the K-Bessel function of half-integer parameters (A.3.1) and
(A.3.2), once a closed formula for the polynomials pj,k,m(S, T ) in Lemma 6.7.4 is
known.

If we let

fk(λ, a, x) = (λ− i
√

2a)kR−
k+1
2 exp

(
− iaI3
λR

)
(6.8.1)

× (1 + S2)−
1
2 (
√

1 + S2 + S)−k exp

(√
1 + S2

2
T

)
,

then Proposition 6.7.13 can be reformulated as

dπmin(−P +Q∓ i
√

2T0)fk =

(
±p− 3

2
− k

)
fk±1.

We note that (λ − i
√

2a)k = sgn(λ)k(|λ| − i
√

2 sgn(λ)a)k and, in view of the case
g = sl(3,R), we put for even p ≥ 4, and k ∈ Z + 1

2 :

fk(λ, a, x) = sgn(λ)k− 1
2 (|λ| − i

√
2 sgn(λ)a)kR−

k+1
2 exp

(
− iaI3
λR

)
(6.8.2)

× (1 + S2)−
1
2 (
√

1 + S2 + S)−k exp

(√
1 + S2

2
T

)
.

Then it is easy to see that fk is still k1-invariant. The subalgebra k2 ≃ so(3) ≃ su(2) is
spanned by the su(2)-triple

T1 =
√

2
2 A+Q+θ(

√
2

2 A+Q), T2 =
√

2
2 B−P +θ(

√
2

2 B−P ), T3 =
√

2T0−(E−F ),
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and it follows from the computations in Section 6.7 that

dπmin(T1)fk = 2ikfk, dπmin(T2 ∓ iT3)fk = (±(p− 3)− 2k) fk±1.

This shows:

Theorem 6.8.3. – Let p ≥ 3 be arbitrary. Then the space

W = span

{
fk : k = −p− 3

2
,−p− 3

2
+ 1, . . . ,

p− 3

2

}
,

with fk as in (6.8.1) resp. (6.8.2) is a k-subrepresentation of (dπmin,D′(R×) ⊗̂ S ′(Λ))

isomorphic to the representation C⊠ Sp−3(C2) of k ≃ so(p)⊕ su(2).
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CHAPTER 7

L2-MODELS FOR MINIMAL REPRESENTATIONS

After having exhibited explicit K-finite vectors in the representation dπmin of g
on D′(R×) ⊗̂ S ′(Λ), we show in this section that these vectors generate an irreducible
(g,K)-module which integrates to an irreducible unitary representation πmin of the
universal covering group of G on L2(R× × Λ) (see Section 7.1). Moreover, we find
the action of certain Weyl group elements in the L2-model in Section 7.2. Together
with the Heisenberg parabolic subgroup these elements generate the whole group G,
so that we have a complete description of the representation πmin on the group level.

7.1. Integration of the (g,K)-module

Let W be one of the irreducible k-subrepresentations of (dπmin,D′(R×) ⊗̂ S ′(Λ))

constructed in Chapter 6. For g = sl(n,R),W may be one of theK-typesW0,r orW1,r,
where we now assume that r ∈ iR (in order for the Lie algebra representation dπmin,r

to be infinitesimally unitary on L2(R× × Λ)). For g = sl(3,R) we additionally allow
W 1

2
. Consider the g-subrepresentation generated by W :

W = dπmin(U(g))W ⊆ D′(R×) ⊗̂ S ′(Λ).

Then, by standard arguments, W is a (g,K)-module (see e.g., [38, Lemma 2.23]).

Proposition 7.1.1. – We have W ⊆ L2(R× × Λ).

Proof. – We first observe that W ⊆ L2(R××Λ). In fact, this follows from the asymp-
totic behavior of the K-Bessel function (see Section A.1). For the more general state-
ment W ⊆ L2(R××Λ) first note that, for the Lie algebra q of any standard parabolic
subgroup of G, we have g = k ⊕ q, which implies U(g) = U(q)U(k) by the Poincare-
Birkhoff-Witt Theorem. For q we may for instance choose

q = g−2 ⊕ g−1 ⊕ g(−1,1) ⊕ g(0,0).

Then W = dπmin(U(q))W can be computed using the identities (A.2.1) and (A.2.2),
the rest is technicality.
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Lemma 7.1.2. – The action of g on W is infinitesimally unitary with respect to the
inner product on L2(R× × Λ).

Proof. – A heuristic proof is given by the observations in Remark 5.5.4. A rigorous
proof can be obtained using the formulas for dπmin(X) (X ∈ g) and integrating by
parts, showing directly that dπmin(X) is symmetric on L2(R× × Λ).

To finally integrate W to a group representation, we make use of the following
statement about its restriction to P 0:

Lemma 7.1.3. – The representation ϖ of P 0 = M0AN on L2(R× × Λ) given by

ϖ(n(z,t))f(λ, x) = eiλtei(ω(z′′,x)+ 1
2 λω(z′,z′′))f(λ, x− λz′) (n(z,t) ∈ N),

ϖ(m)f(λ, x) = (id∗R× ⊗ωmet,λ−1(m))f(λ, x) (m ∈M0),

ϖ(exp(sH))f(λ, x) = e−
dim Λ+2

2 sf(e−2sλ, e−sx) (exp(sH) ∈ A),

is unitary and decomposes into the direct sum of irreducible subrepresentations
L2(R+ × Λ) ⊕ L2(R− × Λ). Moreover, if ϖ extends to a unitary representation
of P = MAN on L2(R× × Λ), then this extension is irreducible.

Proof. – Using the isomorphism

L2(R× × Λ) ≃ L2(R×, L2(Λ))

we observe that ϖ|N is given by

(ϖ(n)f)(λ) = σ̃λ(n)[f(λ)] (f ∈ L2(R×, L2(Λ))),

where σ̃λ is the representation of N on L2(Λ) given by σ̃λ(n(z,t)) = σλ−1(n(λz,λ2t)).
Since σλ and hence σ̃λ is irreducible for every λ ∈ R×, it follows from Schur’s
Lemma that any intertwining operator T : L2(R×, L2(Λ)) → L2(R×, L2(Λ)) is of
the form Tf(λ, x) = t(λ)f(λ, x) for some measurable function t on R×. Now, T also
commutes with A which implies t(e−2sλ) = t(λ) for all s ∈ R, whence t(λ) is constant
on R+ and R−, respectively. This shows that L2(R± × Λ) are invariant subspaces on
which P 0 acts irreducibly.
Now assume that ϖ extends to P and let m0 ∈M with χ(m0) = −1 (which exists by
Theorem 2.9.1 since G is non-Hermitian). The operator ϖ(m0) satisfies

ϖ(m0) ◦ϖ(n(0,t)) = ϖ(n(0,−t)) ◦ϖ(m0) for all t ∈ R,

where ϖ(n(0,t))f(λ, x) = eiλtf(λ, x). It follows that ϖ(m0)f(λ, x) = m(λ)Uxf(−λ, x)
for some function m(λ) and a unitary operator U on L2(Λ). If now T also commutes
with ϖ(m0), it follows that t(−λ) = t(λ) which implies that t is constant on R× and
hence T is a scalar multiple of the identity.
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Theorem 7.1.4. – The (g,K)-module W integrates to an irreducible unitary repre-
sentation πmin of the universal cover G̃ of G on L2(R× ×Λ) which is minimal in the
sense that its annihilator in U(gC) is a completely prime ideal with associated vari-
ety equal to the minimal nilpotent orbit. For gC not of type A, the annihilator is the
Joseph ideal.

Proof. – Using Proposition 7.1.1, Lemma 7.1.2 and Lemma 7.1.3, it follows along
the same lines as in [38, Proposition 2.27] that W is admissible. It therefore inte-
grates to a representation πmin of G. This representation is unitary on a Hilbert space
H ⊆ L2(R× × Λ) by Proposition 7.1.1 and Lemma 7.1.2. On the other hand, its restric-
tion to P is given by the action in Lemma 7.1.3 which is irreducible on L2(R× × Λ).
This implies H = L2(R× × Λ) and πmin is irreducible. That the representation is
minimal follows from Proposition 5.5.6.

For g = sl(n,R) we write πmin,ε,r for the representation with underlying
(g,K)-module Wε,r, r ∈ iR, and in the case n = 3 we write πmin, 1

2
for the

representation with underlying (g,K)-module W 1
2
.

7.2. Action of Weyl group elements

The results from the previous section can also be phrased in a different way. The
parabolic subgroup P acts unitarily and irreducibly on L2(R× × Λ) by the repre-
sentation ϖ (see Lemma 7.1.3). Theorem 7.1.4 shows that this representation ex-
tends to some covering group of G. This point of view was used in [49, Theorem 2]
and [73, Proposition 4.2] in order to construct the above L2-models for the split
groups SO(n, n), E6(6), E7(7), E8(8) and G2(2). There, it is shown that ϖ can be ex-
tended to an irreducible unitary representation πmin of G by defining πmin on the
representative of a certain Weyl group element w1 and checking the Chevalley rela-
tions (see Section 5.2 for the definition of w1). This technique does not easily generalize
to the case of non-split groups. However, after having constructed the L2-model in a
different way, we can obtain the action of w1 as a corollary.

The answer depends on the eigenvalues of dπmin(A−B) on the lowest K-type W .
Note that in all cases, W is spanned by functions of the form

f(λ, a, x) = (λ− i
√

2a)kg(λ2 + 2a2, x) (λ > 0),

with either k ∈ Z or k ∈ Z + 1
2 . On such functions, dπmin(A − B) acts by ik

√
2. We

refer to the integer case if k ∈ Z and to the half-integer case if k ∈ Z + 1
2 . From the

constructions in Chapter 6, it follows that:

— For g = e6(2), e6(6), e7(−5), e7(7), e8(−24), e8(8), g2(2) the representation πmin be-
longs to the integer case.

— For g = sl(n,R) the representations πmin,0,r and πmin,1,r (r ∈ iR) belong to
the integer case, and for g = sl(3,R) the representation πmin, 1

2
belongs to the

half-integer case.
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— For g = so(p, q) the representation πmin belongs to the integer case if p, q ≥ 3,
p+ q even, and it belongs to the half-integer case if p ≥ q = 3, p even.

Theorem 7.2.1. – The element w1 acts in the L2-model of the minimal representa-
tion by

πmin(w1)f(λ, a, x) = e−i
n(x)
λa f(

√
2a,− λ√

2
, x)×

{
1 in the integer case,
ε(aλ) in the half-integer case,

(7.2.1)

where

ε(x) =

{
1 for x > 0,
i for x < 0.

Proof. – Let A denote the unitary operator on L2(R××Λ) given by (7.2.1). A direct
computation shows that

A ◦ dπmin(X) ◦A−1 = dπmin(Ad(w1)X) for all X ∈ g.

It follows that A ◦ πmin(w1)
−1 is a g-intertwining unitary operator on L2(R× × Λ),

and therefore has to be a scalar multiple of the identity by Schur’s Lemma. To find
the scalar, we apply both A and πmin(w1) to a vector in the lowest K-type W . Both
can be computed using the explicit description of W in Chapter 6.

Remark 7.2.2. – As mentioned above, the formula for πmin(w1) can be found in [49,
Theorem 2] and [73, Proposition 4.2] for the cases G = SO(n, n), E6(6), E7(7), E8(8)

and G2(2). Note that these are all integer cases. In the half-integer case G = S̃L(3,R),
Torasso obtained the formula in [78, Lemme 16]. In fact, he even obtained the action
of the whole one-parameter subgroup exp(R(A − B)) which should also be possible
in general using the same methods as in Theorem 7.2.1.

Remark 7.2.3. – The restriction ϖ of πmin to P together with the action πmin(w1)

of w1 determines the representation πmin uniquely since P and w1 generate G. This
philosophy was advocated in [53] where a different L2-model for the minimal repre-
sentation of O(p, q) was explicitly determined on a maximal parabolic subgroup and
the representative of a non-trivial Weyl group element. Theorem 7.2.1 can be seen as
an analogue of their result for our L2-models.

Remark 7.2.4. – It would be interesting to also find explicit formulas for the action
of the Weyl group element w0. One possible way to achieve this is by the help of the
additional element

w2 = exp

(
π

2
√

2
(B +A)

)
.

We have the identity (see Lemma 5.2.2 (4))

w2 = w1w0w
−1
1 ,
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so that πmin(w0) and πmin(w2) can be computed from each other using the previously
obtained formula for πmin(w1). Moreover, in all cases except g ≃ sl(n,R), the elements
w1 and w2 are conjugate via M0 which acts in πmin via the metaplectic representation.
It should be possible to use this in order to obtain a formula for πmin(w2), and then
also for πmin(w0).

Using the same technique as in Theorem 7.2.1 we can obtain the action of w2
0, w2

1

and w2
2, which are all contained in M , but lie in different connected components of M .

Proposition 7.2.5. – The elements w2
0, w

2
1, w

2
2 ∈ M act in the L2-model of the

minimal representation in the following way:

(1) In the quaternionic cases g = e6(2), e7(−5), e8(−24) we have:

πmin(w2
0)f(λ, a, x) = (−1)nf(λ,−a,−x),

πmin(w2
1)f(λ, a, x) = f(−λ,−a, x),

πmin(w2
2)f(λ, a, x) = (−1)nf(−λ, a,−x),

where n = −smin − 1 = 1, 2, 4, i.e., the lowest K-type has dimension 2n+ 1.

(2) In the split cases g = e6(6), e7(7), e8(8) we have:

πmin(w2
0)f(λ, a, x) = f(λ,−a,−x),

πmin(w2
1)f(λ, a, x) = f(−λ,−a, x),

πmin(w2
2)f(λ, a, x) = f(−λ, a,−x).

(3) In the case g = g2(2) we have:

πmin(w2
0)f(λ, a, x) = −f(λ,−a,−x),

πmin(w2
1)f(λ, a, x) = f(−λ,−a, x),

πmin(w2
2)f(λ, a, x) = −f(−λ, a,−x).

(4) In the case g = sl(n,R) we have for ε = 0, 1, r ∈ iR:

πmin,ε,r(w
2
0)f(λ, a, x) = (−1)εf(λ,−a,−x),

πmin,ε,r(w
2
1)f(λ, a, x) = f(−λ,−a, x),

πmin,ε,r(w
2
2)f(λ, a, x) = (−1)εf(−λ, a,−x).

(5) In the case g = sl(3,R) we have:

πmin, 1
2
(w2

0)f(λ, a) = −i sgn(λ)f(λ,−a),

πmin, 1
2
(w2

1)f(λ, a) = if(−λ,−a),

πmin, 1
2
(w2

2)f(λ, a) = − sgn(λ)f(−λ, a).
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(6) In the case g = so(p, q) with either p ≥ q ≥ 4 and p + q even or p ≥ q = 3 we
have:

πmin(w2
0)f(λ, a, x) = (−i)p−q sgn(λ)p−qf(λ,−a,−x),

πmin(w2
1)f(λ, a, x) = f(−λ,−a, x)×

{
1 for p+ q even,
i for p+ q odd,

πmin(w2
2)f(λ, a, x) = (−i)p−q sgn(λ)p−qf(−λ, a,−x)×

{
1 for p+ q even,
i for p+ q odd.

Proof. – As in the proof of Theorem 7.2.1, we define a unitary operator A on
L2(R× × Λ) by the right hand side for one of the elements m = w2

0, w
2
1, w

2
2 and show

that it satisfies

A ◦ dπmin(X) ◦A−1 = dπmin(Ad(m)X) for all X ∈ g

using the adjoint action of m, which was computed in Section 2.2 and Lemma 5.2.2.
Then, thanks to Schur’s Lemma, πmin(m) = const×A. To show that πmin(m) = A,
we apply πmin(m) and A to a vector in the lowest K-type. Using the explicit formulas
for vectors in the lowest K-type W from Chapter 6, one can compute A on W , and
the identification of W with a finite-dimensional k-representation allows to compute
πmin(m) = exp(dπmin(X)) where X = π(E − F ) for m = w2

0, X = π√
2
(A − B) for

m = w2
1 and X = π√

2
(B+A) for m = w2

2. The latter only requires the representation
theory of su(2), more precisely, if U1, U2, U3 ∈ su(2) form an su(2)-triple and Vn is an
irreducible representation of su(2) of dimension n with basis v0, v1, . . . , vn such that

U1 ·vk = i(n−2k)vk, (U2+iU3)·vk = −2i(n−k)vk+1, (U2−iU3)·vk = −2ikvk−1,

then

exp(π
2U1) ·vk = in−2kvk, exp(π

2U2) ·vk = i−nvn−k, exp(π
2U3) ·vk = (−1)n−kvn−k.

In all cases except g ≃ sl(n,R) and g ≃ so(p, q), p ≥ q ≥ 4, p + q even, the lowest
K-type is an irreducible representation of su(2). The case g ≃ sl(n,R) can be dealt
with explicitly using the representation theory of so(n), and in the remaining case
g ≃ so(p, q), it is sufficient to consider the vectors f = f0,0, p−q

2
⊗ φ, φ ∈ H

p−q
2 (Rq−3)

which are invariant under so(p)⊕ so(3) ⊆ k with so(3) ⊆ so(q) spanned by

T1 =
√

2
2 A+Q+ θ(

√
2

2 A+Q) ≡
√

2(A−B) mod so(p),

T2 =
√

2
2 B − P + θ(

√
2

2 B − P ) ≡
√

2(B +A) mod so(p),

T3 =
√

2T0 − (E − F ) ≡ −2(E − F ) mod so(p).

The knowledge of πmin(m) for m = w2
0, w

2
1, w

2
2 ∈ M allows us to obtain infor-

mation about the induction parameter ζ for the corresponding degenerate principal
series representation I(ζ, ν) that contains πmin as a subrepresentation. We exclude
the case g = so(p, q) since here ζ is infinite-dimensional (see Section 5.7 for details).
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Corollary 7.2.6. – Assume that πmin is a subrepresentation of the degenerate prin-
cipal series I(ζ, ν).

(1) In the quaternionic cases g = e6(2), e7(−5), e8(−24), the character ζ of M/M0

satisfies

ζ(w2
0) = 1, ζ(w2

1) = ζ(w2
2) = (−1)n, where n = −smin − 1.

(2) In the split cases g = e6(6), e7(7), e8(8), the character ζ of M/M0 satisfies

ζ(w2
0) = ζ(w2

1) = ζ(w2
2) = 1.

(3) In the case g = g2(2), the character ζ of M/M0 satisfies

ζ(w2
0) = 1, ζ(w2

1) = ζ(w2
2) = −1.

(4) In the case g = sl(n,R) with πmin = πmin,0,r, r ∈ iR, the character ζ of M
satisfies

ζ(w2
0) = ζ(w2

1) = ζ(w2
2) = 1,

and for πmin = πmin,1,r, r ∈ iR, it satisfies

ζ(w2
0) = −1, and either

{
ζ(w2

1) = 1 and ζ(w2
2) = −1 or

ζ(w2
1) = −1 and ζ(w2

2) = 1.

(5) In the case g = sl(3,R) with πmin = πmin, 1
2

the representation ζ is the
unique irreducible two-dimensional representation of the quaternion group
M ≃ {±1,±i,±j,±k}.

Proof. – By Frobenius reciprocity, the lowest K-type W as determined in Chapter 6
is contained in the degenerate principal series πζ,ν if and only if

(7.2.2) HomM∩K(W |M∩K
, ζ|M∩K

) ̸= {0}.

(1) In the quaternionic cases g = e6(2), e7(−5), e8(−24), the lowest K-type has to
contain a non-zero vector f ∈W such that dπmin(m∩ k)f = 0 and πmin(w2

i )f =

ζ(w2
i )f , i = 0, 1, 2. The first condition implies that dπmin(T1)f = 0, and with

(6.2.8) it follows that

f = const×
n∑

k=−n
k≡n mod 2

(
n

k+n
2

)
fk.

Acting by πmin(w2
i ), using Corollary 6.2.10, and comparing with ζ(w2

i ) shows
the claim.

(2) In the split cases g = e6(6), e7(7), e8(8), the lowest K-type W is the trivial repre-
sentation of K, hence the character ζ has to be trivial on M ∩K by (7.2.2).
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(3) In the case g = g2(2), the lowest K-type has to contain a non-zero vector f ∈W
such that dπmin(m ∩ k)f = 0 and πmin(w2

i )f = ζ(w2
i )f , i = 0, 1, 2. The first

condition implies that dπmin(S1)f = 0, and with Proposition 6.4.7 it follows
that f = const×(f1 + f−1). Acting by πmin(w2

i ), using Corollary 6.4.8, and
comparing with ζ(w2

i ) shows the claim.

(4) In the case g = sl(n,R) with πmin = πmin,0,r resp. πmin,1,r, the lowest K-type
is the trivial representation C of K = SO(n) resp. the standard representation
Cn of K = SO(n). In the first case, it is clear that ζ|M∩K

must be the trivial
representation. In the second case, the lowest K-type must contain a non-zero
vector f such that dπmin(m ∩ k)f = 0 and πmin(w2

i )f = ζ(w2
i )f , i = 0, 1, 2. The

first condition implies that f = c0f0 + c1f1. By Proposition 7.2.5 we find

πmin,1(w
2
0)f0 = −f0, πmin,1(w

2
1)f0 = −f0, πmin,1(w

2
2)f0 = f0,

πmin,1(w
2
0)f1 = −f1, πmin,1(w

2
1)f1 = f1, πmin,1(w

2
2)f1 = −f1,

which implies ζ(w2
0) = −1 and either c0 = 0 or c1 = 0. The claim follows.

(5) In the case g = sl(3,R) the restriction of the lowestK-typeW ≃ C2 toM ⊆ K is
irreducible and two-dimensional.

Remark 7.2.7. – For the adjoint group G = G2(2), the subgroup M has two con-
nected components (see e.g., [45, Section 2]) and since χ(w2

1) = χ(w2
2) = −1, it

follows that w2
1, w

2
2 ∈ M are contained in the non-trivial component. Therefore,

Corollary 7.2.6 determines the character ζ completely in this case. We believe that a
similar statement is true for the other cases. Note that even for the non-linear group
G = S̃L(3,R) for which M has 8 connected components, the elements w2

0, w
2
1, w

2
2 gen-

erate the component group M/M0 and hence any representation ζ of M is uniquely
determined by ζ(w2

0), ζ(w
2
1), ζ(w

2
2).

Finally, we are able to describe the precise principal series embedding πmin ↪→ πζ,ν .
Recall that, for u ∈ I(ζ, ν)Ωµ(m) (or the corresponding subrepresentations in the
cases g ≃ sl(n,R) and so(p, q)) it was shown that

û(λ, x, y) = ξ−λ,0(x)u0(λ, y) + ξ−λ,1(x)u1(λ, y)

for some u0, u1 ∈ D′(R×) ⊗̂ S ′(Λ). Recall further the map

Φδ : D′(R×) ⊗̂ S ′(Λ) → D′(R×) ⊗̂ S ′(Λ), Φδu(λ, x) = sgn(λ)δ|λ|−sminu(λ, x
λ ),

then it was shown in Sections 5.5 that u 7→ Φδuε is g-intertwining from dπζ,ν to dπmin
for any δ, ε ∈ Z/2Z. Note that uε could be zero. We determine for which δ, ε ∈ Z/2Z
the map u 7→ Φδuε is a G-intertwining isomorphism from πζ,ν to πmin. Note that the
case g = sl(n,R) is excluded since here û(λ, x, y) = u0(λ, y), so there is no ε ∈ Z/2Z
to determine.

Corollary 7.2.8. – Let u ∈ I(ζ, ν)Ωµ(m), then

û(λ, x, y) = ξ−λ,ε(x)uε(λ, y)
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and the map u 7→ Φδuε is a G-intertwining isomorphism from πζ,ν to πmin, where

(1) In the quaternionic cases g = e6(2), e7(−5), e8(−24) we have

δ = ε = n = −smin − 1.

(2) In the split cases g = e6(6), e7(7), e8(8) we have

δ = ε = 0.

(3) In the case g = g2(2) we have

δ = ε = 1.

Proof. – Let u ∈ I(ζ, ν) such that

û(λ, x, y) = ξ−λ,0(x)u0(λ, y) + ξ−λ,1(x)u1(λ, y).

For m ∈M , we have by Proposition 3.5.5

(7.2.3) π̂ζ,ν(m)û(λ, x, y) = ζ(m)
(
ωmet,−λ(m)ξ−χ(m)λ,0(x) · ωmet,λ(m)u0(χ(m)λ, y)

+ ωmet,−λ(m)ξ−χ(m)λ,1(x) · ωmet,λ(m)u1(χ(m)λ, y)
)
.

On the other hand, if dρmin integrates to the group representation ρmin it follows that

(7.2.4) π̂ζ,ν(m)û(λ, x, y) = ξ−λ,0(x) · ρmin(m)u0(λ, y) + ξ−λ,1(x) · ρmin(m)u1(λ, y).

We compare (7.2.3) and (7.2.4) for m = w2
0, w

2
1, w

2
2. Note that for m = w2

0, w
2
1, w

2
2,

the action ωmet,λ(m) can be computed using (3.4.1) and (3.5.1) as well as the adjoint
action Ad(m) on V = g−1 which is known by Section 2.2 and Lemma 5.2.2:

ωmet,λ(w2
0)u(a, y) = ±u(−a,−y),

ωmet,λ(w2
1)u(a, y) = ±u(a,−y),

ωmet,λ(w2
2)u(a, y) = ±u(−a, y).

The sign disambiguity in the formulas is due to the fact that the metaplectic repre-
sentation ωmet,λ is a projective representation of Sp(V, ω) (or, alternatively, a repre-
sentation of the metaplectic group Mp(V, ω), a double cover of Sp(V, ω)). Moreover,
we have

χ(w2
0) = 1 and χ(w2

1) = χ(w2
2) = −1.

Finally, ρmin(m) = Φ−1
δ ◦ πmin(m) ◦ Φδ with πmin(m) given by Proposition 7.2.5.

(1) In the quaternionic cases g = e6(2), e7(−5), e8(−24), comparing (7.2.3) and (7.2.4)
shows that

ζ(w2
0) = (−1)ε+n, ζ(w2

1) = (−1)δ, ζ(w2
2) = (−1)δ+ε+n,

where n = −smin − 1 and

û(λ, x, y) = ξ−λ,ε(x)uε(y).

Comparing with Corollary 7.2.6 shows δ = ε = n.
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(2) In the split cases g = e6(6), e7(7), e8(8), comparing (7.2.3) and (7.2.4) shows that

ζ(w2
0) = (−1)ε, ζ(w2

1) = (−1)δ, ζ(w2
2) = (−1)δ+ε.

Comparing with Corollary 7.2.6 shows δ = ε = 0.

(3) In the case g = g2(2), comparing (7.2.3) and (7.2.4) shows that

ζ(w2
0) = (−1)ε+1, ζ(w2

1) = (−1)δ, ζ(w2
2) = (−1)δ+ε+1.

Comparing with Corollary 7.2.6 shows δ = ε = 1.
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APPENDIX A

THE K-BESSEL FUNCTION

We collect some basic information about the K-Bessel function Kα(z) and its
renormalization Kα(z).

A.1. The differential equation and asymptotics

The differential equation

x2u′′(x) + xu′(x)− (x2 + α2)u(x) = 0

has the two linearly independent solutions Iα(x) and Kα(x). While the I-Bessel func-
tion Iα(x) grows exponentially as x→∞, the K-Bessel functionKα(x) = K−α(x) has
the asymptotics

Kα(x) =

√
π

2x
e−x

(
1 +O

(
1

x

))
as x→∞.

Near x = 0 it behaves as follows:

Kα(x) =

{
Γ(|α|)

2 (x
2 )−|α| + o(x−|α|) for α ̸= 0,

− log(x
2 ) + o(log(x

2 )) for α = 0.

For our purposes it is more convenient to work with the renormalization

Kα(x) = x−
α
2 Kα(

√
x).

Then Kα(x) solves the differential equation

(A.1.1) zu′′ + (α+ 1)u′ − 1

4
u = 0.
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A.2. Identities

For the derivative of Kα(x), the following two identities hold:

K ′
α(x) =

α

x
Kα(x)−Kα+1(x) = −α

x
Kα(x)−Kα−1(x).

They imply in particular the three term recurrence relation

2αKα(x) = x(Kα+1(x)−Kα−1(x)).

These can be reformulated in terms of the renormalization Kα:

K
′
α(x) = −1

2
Kα+1(x),(A.2.1)

xK
′
α(x) = −1

2
Kα−1(x)− αKα(x),(A.2.2)

as well as

xKα+1(x) = 2αKα(x) +Kα−1(x).(A.2.3)

A.3. Half-integer parameters

For α ∈ N + 1
2 , the K-Bessel function degenerates to a product of a polynomial

and an exponential function times a power function:

Kα(x) =

√
π

2

e−x

√
x

|α|− 1
2∑

j=0

(j + |α| − 1
2 )!

j!(−j + |α| − 1
2 )!

(2x)−j .

For the renormalized function Kα(x) with α = − 1
2 this implies

(A.3.1) K− 1
2
(x) =

√
π

2
e−
√

x

and for α = 1
2 + n

(A.3.2) Kn+1/2(x) =

√
π

2
x−n− 1

2 2−ne−
√

x
n∑

j=0

(2n− j)!

j!(n− j)!
(2
√
x)j .
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APPENDIX B

EXAMPLES

For a few Heisenberg-graded Lie algebras g, we provide explicit information about
the structure of the grading, the symplectic vector space V and its invariants.

B.1. g = sl(n,R)

Let G = SL(n,R) and g = sl(n,R). Put

E =

0 0 1

0n−2 0

0

 , F =

0

0 0n−2

1 0 0

 , H =

1

0n−2

−1

 ,

then ad(H) has eigenvalues 0,±1,±2 on g and, in the above block notation:

g−2 = RF, g−1 =

0

⋆ 0

0 ⋆ 0

 , g0 =

⋆ ⋆

⋆

 , g1 =

0 ⋆ 0

0 ⋆

0

 , g2 = RE.

Further,

M =


a g

b

 : g ∈ GL(n− 2,R), |a| = |b|, abdet(g) = 1

 .

We parameterize Rn−2 × Rn−2 ≃ g−1 by

(x, y) 7→

0

x 0n

0 y⊤ 0

 ,
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then ω((x, y), (x′, y′)) = x′⊤y − x⊤y′ and

µ(x, y) =


x⊤y
2

−xy⊤
x⊤y
2

 , Ψ(x, y) =
x⊤y

2
(x,−y), Q(x, y) =

(x⊤y)2

4
.

The choice of Cartan involution θ(X) = −X⊤ gives

J(x, y) = (−y, x) and ((x, y)|(x′, y′)) =
1

4
(x⊤x′ + y⊤y′).

B.2. g = so(p, q)

Let G = SO0(p, q), where SO(p, q) = {g ∈ SL(p + q,R} : g⊤1p,qg = 1p,q} with
1p,q = diag(1p,−1q). Then K = SO(p)× SO(q). Put

H =

 12

0p+q−4

12

 ,

then ad(H) has eigenvalues 0,±1,±2 on g = so(p, q) and

g0 =




0 x a b

−x 0 b d

T

a b 0 x

b d −x 0

 : x, a, b, d ∈ R, T ∈ so(p− 2, q − 2)


,

g±1 =




V ∓W⊤

−V ⊤ ±V ⊤

∓W W

±V −W⊤

 :
V ∈M(2× (p− 2),R),

W ∈M((q − 2)× 2,R)

 ,

g±2 =




0 x 0 ∓x
−x 0 ±x 0

0p+q−4

0 ±x 0 −x
∓x 0 x 0

 : x ∈ R


.
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The map

sl(2,R) → m,

(
a b

c −a

)
7→


0 b−c

2 a b+c
2

− b−c
2

b+c
2 −a

0p+q−4

a b+c
2 0 b−c

2
b+c
2 −a − b−c

2 0

 ,

is an isomorphism onto an ideal m0 ≃ sl(2,R) of m. Further,

M =




g+g−⊤

2
g−g−⊤

2

h
g−g−⊤

2
g+g−⊤

2

 : g ∈ SL±(2,R), h ∈ SO(p− 2, q − 2),det(g) = χ(h)

 ,

where χ : SO(p− 2, q − 2) → {±1} is the non-trivial character of SO(p− 2, q − 2).

We identify V = g−1 ≃ R2×(p−2) × R(q−2)×2 by mapping a matrix of the above
form to (V,W ). We choose

E =
1

2

J −J
0p+q−4

J −J

 and F = −1

2

 J J

0p+q−4

−J −J

 ,

where

(B.2.1) J =

(
0 1

−1 0

)
,

then
ω((V,W ), (V ′,W ′)) = 2

(
v⊤1 v

′
2 − v′⊤1 v2 − w⊤1 w

′
2 + w′⊤1 w2

)
,

where V = (v1, v2)
⊤ and W = (w1, w2) with v1, v2 ∈ Rp−2, w1, w2 ∈ Rq−2. Further,

µ(V,W ) =



−a −b c

a c b

2V ⊤JV 2V ⊤JW⊤

−2WJV −2WJW⊤

−b c −a
c b a


,

with

a =
|v1|2 + |v2|2 − |w1|2 − |w2|2

2
, b = v⊤1 v2−w⊤1 w2, c =

|v1|2 − |v2|2 − |w1|2 + |w2|2

2
,

and

Ψ(V,W ) =
(
(V V ⊤ −W⊤W )JV,WJ(W⊤W − V V ⊤)

)
,
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=
(
(w⊤1 w2 − v⊤1 v2)v1 + (|v1|2 − |w1|2)v2, (|w2|2 − |v2|2)v1 + (v⊤1 v2 − w⊤1 w2)v2,

(w⊤1 w2 − v⊤1 v2)w1 + (|v1|2 − |w1|2)w2, (|w2|2 − |v2|2)w1 + (v⊤1 v2 − w⊤1 w2)w2

)
,

Q(V,W ) = −(|v1|2 − |w1|2)(|v2|2 − |w2|2) + (v⊤1 v2 − w⊤1 w2)
2.

For p, q > 2 the group G is non-Hermitian, and we choose

O = ((v0, 0), (0, w0))

for some fixed v0 ∈ Rp−2, w0 ∈ Rq−2 with |v0| = |w0| = 1. Then

A =
1

2
((v0,−v0), (−w0, w0)) and B =

1

2
((v0, v0), (w0, w0)),

and

J = {((λv0 + a, λv0 − a), (−λw0 − b,−λw0 + b)) : λ ∈ R, v⊤0 a = w⊤0 b = 0},

J ∗ = {((λv0 + a,−λv0 + a), (λw0 + b,−λw0 + b)) : λ ∈ R, v⊤0 a = w⊤0 b = 0}.

Identifying J with R× v⊥0 × w⊥0 ⊆ R× Rp−2 × Rq−2 by mapping

((λv0 + a, λv0 − a), (−λw0 − b,−λw0 + b))

to (λ, a, b), we find that
n(λ, a, b) = 4λ(|a|2 − |b|2).

We choose

P = 1
2
√

2
((v0, v0), (−w0,−w0)) and Q = 1

2
√

2
((−v0, v0), (−w0, w0)),

then ω(P,Q) = 1 and J = RP ⊕ J with

J = {((a,−a), (−b, b)) : v⊤0 a = w⊤0 b = 0} ≃ Rp−3 × Rq−3.

We further choose ϑ : J → J to be

ϑ((a,−a), (−b, b)) = ((a,−a), (b,−b)),

then the corresponding map J : V → V in Proposition 6.7.1 is given by

J(V,W ) = (JV,WJ)

with J on the right hand side as in (B.2.1).

B.3. g = g2(2)

The structure theory of g = g2(2) is treated in detail in [74]. In this case, V can be
identified with the space of binary cubics

V = S3(R2) = {p = aX3 + 3bX2Y + 3cXY 2 + dY 3 : a, b, c, d ∈ R}

with symplectic form
ω(p, p′) = ad′ − da′ − 3bc′ + 3cb′

and
Q(p) =

1

4
(a2d2 − 3b2c2 − 6abcd+ 4b3d+ 4ac3).
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The action of m ≃ sl(2,R) on V = S3(R2) is induced by the natural action of sl(2,R)

on R2. One possible choice of A, B, C and D is

A =
√

2X3, B =
√

2Y 3, C = − 3√
2
X2Y, D =

3√
2
XY 2.
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APPENDIX C

A MEROMORPHIC FAMILY OF DISTRIBUTIONS

Let g be non-Hermitian and g ̸≃ sl(n,R), so(p, q). In Theorem 5.4.2, it is shown
that the space of m-invariant distribution vectors in the metaplectic representation
(ωmet,λ, L

2(Λ)) is two-dimensional and spanned by the two distributions

ξλ,ε(a, x) = sgn(a)ε|a|smine−iλ
n(x)

a (ε ∈ Z/2Z).

It is a priori not clear that this formula defines a distribution on Λ, since both |a|smin

and e−iλ
n(x)

a have a singularity at a = 0 and |a|smin is only locally integrable for
smin > −1. In this section, we show that ξλ,ε is the special value of a meromorphic
family of distributions at a regular point.

Fix λ ∈ R× and ε ∈ Z/2Z. For s ∈ C put

ψs,ε(a, x) = sgn(a)ε|a|se−iλ
n(x)

a .

Then ψs,ε = ξλ,ε for s = smin = − 1
6 (dim Λ + 2). For Re(s) > −1 the function ψs,ε is

locally integrable and of polynomial growth, and hence defines a tempered distribution
ψs,ε ∈ S ′(Λ). We show that ψs,ε extends meromorphically to s ∈ C and that s = smin
is not a pole of this meromorphic extension.

C.1. Some preliminary formulas

Let (eα)α be a basis of J = g(0,−1) and denote by (êα)α the dual basis of g(−1,0)

with respect to the symplectic form ω, i.e., ω(eα, êβ) = δαβ .

Lemma C.1.1. – For all x ∈ J :

Ψ(µ(x)B) = 4n(x)2B.

Proof. – By the m-invariance of Ψ and Lemma 5.3.2, we have

Ψ(µ(x)B) = BΨ(µ(x)B,µ(x)B,µ(x)B)

= µ(x)BΨ(B,µ(x)B,µ(x)B)− 2BΨ(B,µ(x)2B,µ(x)B)

= µ(x)BΨ(B,µ(x)B,µ(x)B) + 8n(x)BΨ(B, x, µ(x)B)
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=
1

2
µ(x)

(
µ(x)BΨ(B,B, µ(x)B)−BΨ(B,B, µ(x)2B)

)
+ 4n(x)

(
µ(x)BΨ(B, x,B)−BΨ(B,µ(x)x,B)

)
.

From the bigrading, it follows that

BΨ(B,B, µ(x)B) = 0 and BΨ(B,B, µ(x)2B) = −4n(x)BΨ(B,B, x) = 0.

Further, µ(x)x = −3Ψ(x) = −3n(x)A and BΨ(A,B,B) = 1
3B and the claim follows.

Lemma C.1.2. – For all x ∈ J :∑
α

Bµ(A, êα)Bµ(eα, B)x =

(
1

2
+

dim g(0,−1)

6

)
x.

Proof. – Let y ∈ g(−1,0), then by Lemma 5.3.1:

ω

(∑
α

Bµ(A, êα)Bµ(eα, B)x, y

)
= −

∑
α

ω(Bµ(B, eα)x,Bµ(A, êα)y)

= −
∑
α

ω(Bµ(B, x)eα, Bµ(A, y)êα)

= tr(Bµ(A, y) ◦Bµ(x,B)|g(0,−1)

)

=

(
1

2
+

dim g(0,−1)

6

)
ω(x, y).

Since y was arbitrary and the symplectic form is non-degenerate on g(0,−1) × g(−1,0),
the desired identity follows.

Lemma C.1.3. – For all x ∈ J :∑
α

BΨ(µ(x)B,Bµ(x, eα)B, êα) =

(
1

2
+

dim g(0,−1)

6

)
n(x)B.

Proof. – It follows from the bigrading that the left hand side is contained in g(−2,1)

and hence a scalar multiple of B. Therefore, it suffices to compute the quantity

ω

(
A,
∑
α

BΨ(µ(x)B,Bµ(x, eα)B, êα)

)
=
∑
α

ω(µ(x)B,BΨ(A, êα, Bµ(x, eα)B))

= −1

3

∑
α

ω(µ(x)B,Bµ(A, êα)Bµ(x, eα)B)− 1

6

∑
α

ω(µ(x)B,Bτ (A, êα)Bµ(x, eα)B).

The second sum vanishes since

Bτ (A, êα)Bµ(x, eα)B =
1

2
ω(A,Bµ(x, eα)B)êα +

1

2
ω(êα, Bµ(x, eα)B)A

and ω(A, g(−1,0)) = ω(g(−1,0), g(−1,0)) = 0. For the first sum, we have by Lemma C.1.2:∑
α

ω(µ(x)B,Bµ(A, êα)Bµ(eα, x)B) =
∑
α

ω(µ(x)B,Bµ(A, êα)Bµ(eα, B)x)
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=

(
1

2
+

dim g(0,−1)

6

)
ω(µ(x)B, x)

= −
(
3 + dim g(0,−1)

)
n(x),

so the claim follows.

Lemma C.1.4. – For all x ∈ J :∑
α,β

BΨ(êα, êβ , Bµ(eα, eβ)B) =
dim g(0,−1)

6

(
1

2
+

dim g(0,−1)

6

)
B.

Proof. – From the bigrading it follows that the left hand side is contained in g(−2,1)

and hence has to be a scalar multiple of B. Therefore, it suffices to compute

ω

(
A,
∑
α,β

BΨ(êα, êβ , Bµ(eα, eβ)B)

)
=
∑
α,β

ω(êβ , BΨ(A, êα, Bµ(eα, B)eβ)

= −1

3

∑
α,β

ω(êβ , Bµ(A, êα)Bµ(eα, B)eβ)− 1

6

∑
α,β

ω(êβ , Bτ (A, êα)Bµ(eα, B)eβ).

The second sum vanishes as in the proof of Lemma C.1.3, and the first sum evaluates
by Lemma C.1.2 to

−1

3

∑
α,β

ω(êβ , Bµ(A, êα)Bµ(eα, B)eβ) = −1

3

(
1

2
+

dim g(0,−1)

6

)∑
β

ω(êβ , eβ)

=
dim g(0,−1)

3

(
1

2
+

dim g(0,−1)

6

)
.

C.2. A Bernstein-Sato identity

We now show a Bernstein-Sato identity which expresses ψs,ε in terms of ψt,δ for
t ∈ {s+ 1, s+ 2}, δ ∈ Z/2Z, and hence can be used to meromorphically extend ψs,ε

to s ∈ C.

Lemma C.2.1. – We have the following formulas for derivatives of ψs,ε:

∂Aψs,ε = sψs−1,ε+1 + iλn(x)ψs−2,ε,

∂2
Aψs,ε = s(s− 1)ψs−2,ε + 2i(s− 1)λn(x)ψs−3,ε+1 − λ2n(x)2ψs−4,ε,

ω(A,Ψ( ∂
∂x ))ψs,ε = iλ3n(x)2ψs−3,ε+1 − 3

(
1
2 +

dim g(0,−1)

6

)
λ2n(x)ψs−2,ε

− iλ
dim g(0,−1)

3

(
1
2 +

dim g(0,−1)

6

)
ψs−1,ε+1.

Proof. – The first two identities follow by direct computation. For the third identity,
note that

ω(A,Ψ( ∂
∂x ))ψs,ε =

∑
α,β,γ

ω(A,BΨ(êα, êβ , êγ))∂eα
∂eβ

∂eγ
ψs,ε.
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To compute the derivatives of ψs,ε, we use Formula (5.4.1) for the derivatives of n(x)

and find

∂eα
ψs,ε = iλ

2 ω(µ(x)eα, B)ψs−1,ε+1,

∂eα
∂eβ

ψs,ε = −λ2

4 ω(µ(x)eα, B)ω(µ(x)eβ , B)ψs−2,ε + iλω(Bµ(x, eβ)eα, B)ψs−1,ε+1,

∂eα
∂eβ

∂eγ
ψs,ε = − iλ3

8 ω(µ(x)eα, B)ω(µ(x)eβ , B)ω(µ(x)eγ , B)ψs−3,ε+1

− λ2

2 ω(Bµ(x, eα)eβ , B)ω(µ(x)eγ , B)ψs−2,ε

− λ2

2 ω(Bµ(x, eα)eγ , B)ω(µ(x)eβ , B)ψs−2,ε

− λ2

2 ω(Bµ(x, eβ)eγ , B)ω(µ(x)eα, B)ψs−2,ε

+ iλω(Bµ(eα, eβ)eγ , B)ψs−1,ε+1.

Then

ω(A,Ψ( ∂
∂x ))ψs,ε = iλ3

8 ω(A,Ψ(µ(x)B))ψs−3,ε+1

− 3λ2

2

∑
α

ω(A,BΨ(êα, Bµ(x, eα)B,µ(x)B))ψs−2,ε

− iλ
∑
α,β

ω(A,BΨ(êα, êβ , Bµ(eα, eβ)B))ψs−1,ε+1,

and evaluating the three terms with Lemma C.1.1, Lemma C.1.3 and Lemma C.1.4
proves the third identity.

Combining the derivatives in the previous lemma immediately shows:

Proposition C.2.2 (Bernstein-Sato identity). – The following Bernstein-Sato iden-
tity holds:

ω(A,Ψ( ∂
∂x ))ψs+1,ε+1 + iλ∂2

Aψs+2,ε −
(
3
(

1
2 +

dim g(0,−1)

6

)
+ 2(s+ 1)

)
iλ∂Aψs+1,ε+1

= −
(
s+

dim g(0,−1)

6 + 3
2

)(
s+

dim g(0,−1)

3 + 1
)
iλψs,ε.

As a consequence, ψs,ε extends to a meromorphic family of distributions which is
regular in the right half plane {s ∈ C : Re s > −min( 3

2 +
dim g(0,−1)

6 , 1 +
dim g(0,−1)

3 )}.
In particular, ψs,ε is regular at s = smin = −( 1

2 +
dim g(0,−1)

6 ).
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APPENDIX D

TABLES

The following classification of simple real Lie algebras with Heisenberg parabolic
subalgebras is due to Cheng [6]. We also include the maximal compact subalgebra k,
the Levi factor m of the maximal parabolic subgroup, half the dimension of the sym-
plectic vector space g1 and, whenever it exists, the isomorphism class of the Jordan
algebra J studied in Section 5.2.

Table 1. Simple real Lie algebras possessing a Heisenberg parabolic subalgebra

Type g k m 1
2

dim g1 J

AI sl(n,R) so(n) gl(n− 2,R) n− 2 −
AIII su(p, q) s(u(p)⊕ u(q)) u(p− 1, q − 1) p + q − 2 −

BDI so(p, q) so(p)⊕ so(q) so(p− 2, q − 2)⊕ sl(2,R) p + q − 4 R⊕ Rp−3,q−3

CI sp(n,R) u(n) sp(n− 1,R) n− 1 −

DIII so∗(2n) u(n) so∗(2n− 4)⊕ su(2) 2n− 4 −

EI e6(6) sp(4) sl(6,R) 10 Herm(3,Cs)

EII e6(2) su(6)⊕ su(2) su(3, 3) 10 Herm(3,C)

EIII e6(−14) so(10)⊕ u(1) su(1, 5) 10 −

EV e7(7) su(8) so(6, 6) 16 Herm(3,Hs)

EVI e7(−5) so(12)⊕ su(2) so∗(12) 16 Herm(3,H)

EVII e7(−25) e6 ⊕ u(1) so(2, 10) 16 −

EVIII e8(8) so(16) e7(7) 28 Herm(3,Os)

EIX e8(−24) e7 ⊕ su(2) e7(−25) 28 Herm(3,O)

FI f4(4) sp(3)⊕ su(2) sp(3,R) 7 Herm(3,R)

G g2(2) su(2)⊕ su(2) sl(2,R) 2 R
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We further list the constants C(m′) for each case (see [2, §8.10]). Note that C(m′)
only depends on the complexifications gC of g and m′C of m′.

Table 2. Special values C(m′)

gC mC C(m′C)

sl(n,C) sl(n− 2,C)⊕ gl(1,C) C(sl(n− 2,C)) = 1

C(gl(1,C)) = n
2

so(n,C) so(n− 4,C)⊕ sl(2,C) C(so(n− 4,C)) = 2

C(sl(2,C)) = n−4
2

sp(n,C) sp(n− 1,C) 1
2

e6(C) sl(6,C) 3

e7(C) so(12,C) 4

e8(C) e7(C) 6

f4(C) sp(3,C) 5/2

g2(C) sl(2,C) 5/3
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(·), 16
(·|·), 24
| · |, 24
∗, 35

∆(z, t), 62
Λ, 35, 49
Λ∗, 35, 49
Φδ, 63, 114
Ψ(x), 18
Ωω(v), 41
Ωζ

ω(v), 68
Ωµ(T ), 42
Ωζ

µ(T ), 71
ΩΨ(v), 42
ΩQ, 42
δs, 37, 62
ε(x), 110
ζ, 31
ζk,s, 69
ζr, 64
θ, 24
ϑ, 80, 97
κ, 69
κ0, 20
κ(X,Y ), 20
µ(x), 18
ξλ, 65
ξλ,ε, 57, 73
ϖ, 108
πζ,ν , 32
π̂ζ,ν , 37
πmin, 63
πmin, 1

2
, 109

πmin,ε,r, 109
ρ, 31
ρmin, 59, 74
ρmin,r, 65
σλ, 34
τ(x, y), 18
φ±v , 104

χ, 16
ψs,ε, 125
ωmet,λ, 34
ω(x, y), 17

A, 15, 49
A(ζ, ν), 33
a(g), 21
a, 15

B, 49
Bµ(x, y), 18
Bτ (x, y), 18
BΨ(x, y, z), 18
BQ(x, y, z, w), 18

C, 79
Casm, 47
Casm0 , 68
Ck, 99
C(m′), 19, 54, 130

D, 79
dπζ,ν , 32
dπmin, 63, 76
dπmin,r, 66
dρmin, 60, 74
dρmin,r, 66

E, 16
E, 32
e, 68

F , 16
F , 36
f , 68
f0,r, 95
fj,k,ℓ, 100
fk, 83, 89, 92, 105
fn, 31

G, 15
g0,r, 95
g1,r, 95
gw,r, 95

g, 15
gi, 15
g(i,j), 50

H, 15
Hα, 50
Hβ , 50
H(g), 25
HS(H), 35
Hα(Rn), 99
H∞, 37
Hλ, 34
h, 68
h± 1

2
, 96

hj,k,ℓ, 100
hk,m, 83

I1, 83, 100
I2, 83, 89
Ip
2 , 100
Iq
2 , 100
I3, 83, 89, 101
I4, 89
I(ζ, ν), 32
I(ζ, ν)Ωµ(m′), 43,

59
I(ζ, ν)Ωω(V ), 43
I(ζ, ν)Ω

ζ
ω(Λ), 68

I(ζ, ν)Ω
ζ
ω(Λ),Ωζ

µ(m),
71

J , 24, 81
Jmin, 59, 74
Jmin,r, 65
J , 51, 67
J ∗, 51, 67
J , 67
J ∗, 67
J0, 67, 80
J ∗0 , 67, 80
J1, 97
J ∗1 , 97

J2, 97
J ∗2 , 97

K, 25
Kα(x), 117
Kα(x), 117
k, 25
k1, 81, 82, 92
k1, 98
k2, 82, 92
k2, 98
km, 25

M , 15
M1, 17
m(g), 21
m, 15
m, 68
m0, 68
mO, 51

N , 15
N , 15
n, 82
n(g), 21
n(z), 51
n(∂′), 61, 64
n, 15
n, 15

O, 49
Omin, 16

P , 15, 67
P , 15
pj,k,m(S, T ), 98
p, 15
p, 15

Q, 67
Q(x), 18

R, 84, 89
Rp−3,q−3, 67

S, 85, 92, 100
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S1, 92
S2, 92
S3, 92
smin, 57

T , 85, 100
T0, 64, 81, 97
T1, 81, 105

T2, 81, 105
T3, 81, 105
T (u, v), 80

u0(λ, y), 59, 65,
74

u1(λ, y), 59, 74
û(λ, x, y), 35

V , 17
Vk,s, 69
Vζ , 31

W , 83, 89, 92,
100, 106

W , 107
W0,r, 95

W1,r, 95
W 1

2
, 96

w0, 16
w1, 52
w2, 52

x±, 69

Z, 49
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For a simple real Lie group G with Heisenberg parabolic subgroup P , we study the
corresponding degenerate principal series representations. For a certain induction parameter
the kernel of the conformally invariant system of second order differential operators
constructed by Barchini, Kable and Zierau is a subrepresentation which turns out to be
the minimal representation. To study this subrepresentation, we take the Heisenberg group
Fourier transform in the non-compact picture and show that it yields a new realization of
the minimal representation on a space of L2-functions. The Lie algebra action is given by
differential operators of order ≤ 3 and we find explicit formulas for the functions constituting
the lowest K-type.

These L2-models were previously known for the groups SO(n, n), E6(6), E7(7) and E8(8)

by Kazhdan and Savin, for the group G2(2) by Gelfand, and for the group S̃L(3,R) by Torasso,
using different methods. Our new approach provides a uniform and systematic treatment
of these cases and also constructs new L2-models for E6(2), E7(−5) and E8(−24) for which
the minimal representation is a continuation of the quaternionic discrete series, and for the
groups S̃O(p, q) with either p ≥ q = 3 or p, q ≥ 4 and p + q even.

As a byproduct of our construction, we find an explicit formula for the group action
of a non-trivial Weyl group element that, together with the simple action of a parabolic
subgroup, generates G.

Pour un groupe de Lie réel simple G, ayant pour sous-groupe parabolique de Heisenberg P ,
nous étudions les représentations de la série principale dégénérée associées à ces données. La
représentation minimale peut être identifiée au noyau du système d’opérateurs différentiels
conformément invariants construit par Barchini, Kable et Zierau, pour un paramètre
d’induction convenable. Pour étudier cette représentation, nous utilisons la transformation
de Fourier pour le groupe d’Heisenberg dans la réalisation non-compacte et nous prouvons
que cela conduit à une nouvelle réalisation de la représentation minimale sur un espace
de fonctions L2. L’action de l’algèbre de Lie est donnée par des opérateurs différentiels
d’ordre ≤ 3 et nous trouvons des formules explicites pour les fonctions réalisant les K-types
minimaux.

Ces modèles L2 étaient construits pour les groupes SO(n, n), E6(6), E7(7) et E8(8) par
Kazhdan et Savin, pour le groupe G2(2) par Gelfand, et pour le groupe S̃L(3,R) par Torasso,
en utilisant différentes méthodes. Notre nouvelle approche fournit un traitement uniforme et
systèmatique de ces exemples et construit également des nouveaux modèles L2 pour E6(2),
E7(−5) et E8(−24), pour lesquels la représentation minimale est un prolongement de la série
discrète quaternionique, ainsi que pour les groupes S̃O(p, q) pour p ≥ q = 3 ou pour p, q ≥ 4
et p + q pair.

Comme conséquence de notre construction, nous trouvons une formule explicite pour
l’action d’un élément non trivial du groupe de Weyl qui, en addition à l’action simple d’un
sous-groupe parabolique, génère le groupe G.
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