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GLOBAL IN TIME STRICHARTZ INEQUALITIES
ON ASYMPTOTICALLY FLAT MANIFOLDS
WITH TEMPERATE TRAPPING

Jean-Marc Bouclet, Haruya Mizutani

Abstract. — We prove global Strichartz inequalities for the Schrédinger equation on a
large class of asymptotically conical manifolds. Letting P be the nonnegative Laplace
operator and fy € C§°(R) be a smooth cutoff equal to 1 near zero, we show first
that the low frequency part of any solution e~*Fuyg, i.e., fo(P)e~ " ug, enjoys the
same global Strichartz estimates as on R™ in dimension n > 3. We also show that the
high energy part (1 — fo)(P)e~ " uq also satisfies global Strichartz estimates without
loss of derivatives outside a compact set, even if the manifold has trapped geodesics
but in a temperate sense. We then show that the full solution e~%Fu, satisfies global
space-time Strichartz estimates if the trapped set is empty or sufficiently filamentary,
and we derive a scattering theory for the L? critical nonlinear Schrédinger equation
in this geometric framework.

Résumé (Inégalités de Strichartz globales en temps sur des variétés asymptotiquement
plates a capture tempérée)

Nous démontrons des inégalités de Strichartz pour I’équation de Schrédinger sur
une grande famille de variétés asymptotiquement coniques. Si P est I’opérateur de La-
place et fy € C§°(R) une fonction de troncature égale a 1 prés de zéro, nous montrons
d’abord que la partie basse fréquence de toute solution e~#Fuyg, i.e., fo(P)e " uy,
satisfait les mémes inégalités de Strichartz que sur R™, en dimension n > 3. Nous mon-
trons également que la partie haute fréquence (1 — f)(P)e~ " uq vérifie également
des inégalités de Strichartz sans perte de dérivée a ’extérieur d’un compact, méme si
la variété posséde des géodésiques captées mais dans un sens tempéré. Nous montrons
ensuite que la solution compléte e~*Fuq satisfait des inégalités de Strichartz globales
en espace-temps & condition que I’ensemble capté soit vide ou suffisamment fin, et
nous obtenons une théorie de la diffusion pour I’équation de Schrédinger non linéaire
L? critique dans ce contexte géométrique.

(© Mémoires de la Société Mathématique de France 182, SMF 2024
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CHAPTER 1

INTRODUCTION AND MAIN RESULTS

In the past ten or fifteen years, a lot of activity has been devoted to study Strichartz
inequalities on manifolds. We recall that these inequalities were stated first on R™ for
the wave equation [37] and then the Schrodinger one [21]; for the Schrédinger equation
and a pair (p,q) € [2,00] X [2, 0], they read

2

; . n n
||u||Lp(R,Lq) 5 ||u0||L27 U(t) = eztAu(h if ];+ E = 57 (nypa Q) 7é (2,2,00)

(A pair (p, q) satisfying the last two conditions is called Schrodinger admissible.) The
strong interest on Strichartz inequalities is mainly related to their key role in the
study of nonlinear dispersive equations (see, e.g., [12, 38]).

On compact manifolds these estimates may be different from those on R"”, either
due to the strong confinement leading to derivative losses for the Schédinger equation
[10] (the L? norm of initial data is replaced by some Sobolev norm) or to the absence
of global in time estimates (if initial data are eigenfunctions the solutions are periodic
in time).

One may ask to which extent the estimates on R" still hold on noncompact mani-
folds, at least in the class of asymptotically flat ones. For the Schrédinger equation,
the only one considered from now on, this problem was considered in several arti-
cles for local in time estimates [36, 35, 22, 7, 30]. From the geometrical point of view,
those papers consider stronger and stronger perturbations, namely from compactly
supported perturbations of the flat metric on R™ to long range perturbations of con-
ical metrics on manifolds. We refer to Definition 1.1 for a description of long range
asymptotically conical metrics but point out here that long range perturbations are
natural in that it is the only type of decay which is invariant under a change of radial
coordinates (see [5]).

Global in time estimates for long range perturbations are considerably more deli-
cate to obtain and have been considered in fewer papers [39, 28, 23] (see also [8] with
a low frequency cutoff).

To prove global Strichartz inequalities on curved backgrounds, one has to face two
difficulties. The first one, which does not happen on R", is the possible occurring of
trapped geodesics (geodesics not escaping to infinity, in the future or in the past).
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2 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

This trapping is only sensitive at high frequencies and may affect the estimates by a
loss of derivatives. However, if it is sufficiently weak, one can still expect Strichartz
estimates without loss as shown in [11] locally in time. Trapping is already a problem
for local in time estimates hence a fortiori for global in time ones.

The second difficulty stems in the analysis of low frequencies. Indeed, except in a
few model situations such as R™ or flat cones [20] where the fundamental solution of
the Schrédinger equation can be computed explicitly, the only robust strategy acces-
sible so far is to localize the solution in frequency, e.g., by mean of a Littlewood-Paley
decomposition, and then to prove Strichartz estimates for the spectrally localized com-
ponents by using microlocal techniques to derive appropriate dispersive estimates. Due
to the uncertainty principle, low frequency data cannot be studied purely by microlo-
cal techniques and thus require additional non trivial estimates. On R™ (or a pure
cone), one may use a global scaling argument to reduce the analysis of low frequency
blocks to the study at frequency one, but this is in general impossible on manifolds.

The first breakthrough on global in time Strichartz estimates was done by Tataru in
[39] where he considered long range and globally small perturbations of the Euclidean
metric, with C? and time dependent coefficients. In this framework, no trapping could
occur. The results were then improved in [28] by allowing more general perturba-
tions in a compact set, including some weak trapping. Recently, Hassell-Zhang [23]
partially extended those results by considering the general geometric framework of
asymptotically conic manifolds and including very short range potentials, but using
a non-trapping condition.

In the present paper, we improve on those references in the following directions.
On one hand, we consider a class of asymptotically conic manifolds which is larger
than the one of Hassell-Zhang, and contains all usual smooth long range perturbations
of the Euclidean metric. More importantly, we allow the possibility to have trapped
trajectories and, assuming this trapping to be temperate (assumption (1.5)), show
that the solutions to the linear Schrédinger equation enjoy the same global in time
estimates without loss as on R™ outside a large enough compact set. This fact is a
priori not clear at all since, by the infinite speed of propagation of the Schrédinger
equation, one may fear that the geometry and the form of the initial datum inside
a compact set has an influence on the solution all the way to spatial infinity. This
question was considered first in [7] locally in time and then in [28] globally in time case
but our approach in this paper allows to deal with much stronger types of trapping
than in this last reference (see the discussion after Theorem 1.3).

As a byproduct of this analysis, we derive global space-time Strichartz estimates
without loss if there is no trapping (thus recovering the results of Hassell-Zhang for a
larger class of manifolds, when there is no potential) or if the trapping is filamentary
in the sense of [33, 11]. In particular, we extend to the global in time case one of the
results of [11].

Then, we apply these estimates to the scattering theory of the L? critical nonlinear
Schrodinger equation with small data on a manifold with filamentary (or empty)
trapped set (Theorem 9.1).
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CHAPTER 1. INTRODUCTION AND MAIN RESULTS 3

From the technical point of view, an important part of our paper is devoted to con-
struct tools adapted to the analysis of low frequencies. In particular, along the way,
we develop a new version of the Isozaki-Kitada parametrix for long range metrics. Re-
call that the Isozaki-Kitada parametrix was introduced on R™ to study the scattering
theory of Schrédinger operators with long range potentials [24]. One of the new fea-
tures of our parametrix is the treatment of low frequencies which, to our knowledge,
does not seem to have been much considered before, up to the reference [16] in the
context of scattering by potentials on R™ which is very different from ours (especially
at low energy). We derive related L? propagation estimates which are needed in the
present paper but can be of interest for other questions of scattering theory, such
as the study of scattering matrices at low energy. In a more directly oriented PDE
perspective, the methods developed in this paper also allow to handle other dispersive
models like fractional equations [18].

Let us now state our results more precisely.

Let (M, G) be an asymptotically conic manifold, possibly with a boundary, i.e.,
a manifold diffeomorphic away from a compact set to a product (R, +00) X S, for
some closed Riemannian manifold (S, g), such that G is a long range perturbation of
the exact conical metric dr? +r2g. To state a precise definition, we denote by I'(T?S)
the space of (p, q) tensors on S, i.e., sections of (Q” T'S) @ (RQ? T*S), and for a given
smooth map e = e(r) defined on (R4, +00) with values in T'(T7S), we will note

eec SV <— Npq (8£e(r)) < <r>_”_j

for each semi-norm N, of I'(TPS) and j > 0. If (0y,...,60,_1) are local coordi-
nates on S, this means equivalently that e is a linear combination of terms of the
form ezll:_'_'f: (r,0)db;, ® -+ ® db;, ® Dp;, ® -+ ® Op, such that, for each j and o, we
have an estimate |8ﬁ8§‘efif§’ (r,0)] < (r)="=7 locally uniformly in 6 (see also the
paragraph Standard symbol classes in Chapter 2). Here (-) is the standard Japanese
bracket.

DEFINITION 1.1. — A Riemannian manifold (M, G) is asymptotically conic if it is
connected and if there exist a continuous and proper function r : M — [0,400),
a compact subset K € M and a closed Riemannian manifold (S,g) such that for
some Rpq > 0 there is a diffeomorphism

Q: M\K23mw— (r(m),w(m)) € (Rap,+00) X S

through which
G = Q" (A(r)dr® + 2rB(r)dr + r?g(r)),

where A(r) € T(T9S), B(r) € T(TYS) and g(r) € T(T98S) is a Riemannian metric
on S such that, for some v > 0,

(1.1) A—1eS%,  BeS™ g()-gesS™

If A=1 and B =0, one says the metric G is in normal form.

SOCIETE MATHEMATIQUE DE FRANCE 2024



4 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

Without loss of generality, we will assume that G is in normal form (see Ap-
pendix A). This plays no role in the present introduction but will be useful in later
chapters.

Everywhere in the sequel, we denote by LI(M) or just L? the Lebesgue spaces
associated to the Riemannian measure on M. We let P be the Friedrichs extension
of —Ag on L?(M), namely the unique selfadjoint realization if M has no boundary
or the Dirichlet one if M is not empty. One interest of our geometric framework is
that, if n > 3, we have a Sobolev estimate

" 2n
(1.2) 0]l 2= oty SIP 20l 22 () 2" =

n—2’
for all v in the domain of P'/2 (see Appendix C for a proof).
For ug € L2(M), we let u(t) := e~ ®Fuq be the solution to the Schrédinger equation

10su — Pu = 0, uf,_, = Uo-

Let fo € C§°(R) be such that fo = 1 on [—1,1] and split u(t) = wiow(t) + Unign(t)
according to low and high frequencies, i.e.,

(1.3) Wow (t) = fo(P)e " ug, Unigh(t) = (1 — fo)(P)e™ " uy.

THEOREM 1.2 (Global space-time low frequency estimates). — Assume that n > 3
and let (p,q) be a Schrédinger admissible pair. Then there exists C > 0 such that, for
all ug € L3(M),

(1.4) l[w1ow | L2 ;L1 (M) < Clluoll L2 (-
Notice that in this theorem 0M may be empty or not.
Proof. — Section 8.2. O

THEOREM 1.3 (Global in time high frequency estimates at spatial infinity). — Assume
that n > 2 and that for some M > 0 large enough, we have for all x € C° (M)

(1.5) IX(P = X£i0)"'xllL2(my—r2my Sx AY, A= 1
Then there exists R > 1 such that for any Schrédinger admissible pair (p,q) there
exists C > 0 such that
(1‘6) ||1{r>R}Uhigh||Lp(1R;Lq(M)) < CHUO”LZ(M)a
for all ug € L*(M).

If we recast the global in time estimates at spatial infinity of [28, Theorem 1.5] in
our framework, these authors show that

11{r> Ry Unigh |l Lr (r;£o) Sllwol 22 + | 1{r< Ry Unighll L2 (R;£2)

where the last term can be controlled by |lug||z2 thanks to (1.5) if M < 0 (the usual
non-trapping case is M = —1/2) but not clearly otherwise. In our result, the right
hand side of (1.6) does not involve any corrective term depending on u and holds for
any M.
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CHAPTER 1. INTRODUCTION AND MAIN RESULTS 5

Note that examples of situations where bounds of the form (1.5) hold include
[33, 14] in some trapping geometries and, of course, the non-trapping case [42].

We also remark that, as in Theorem 1.2, the boundary of M does not need to be
empty but this observation is less relevant here for we consider estimates near infinity.

Theorems 1.2 and 1.3 reduce the proof of Strichartz estimates on u to estimates
on lg.<Rryunigh- The interest is that it is relatively easy to plug some results or tech-
niques proved locally in space to derive global estimates. Here we consider the classi-
cal example of a non trapping manifold, but also include the case of weakly trapping
geodesic flow.

Let T C T*M be the trapped set of the geodesic flow and n(7) € M be its
projection onto the base space. We need the following condition on 7.

AsSUMPTION 1.4 (Weak trapping condition). — We assume the following conditions
introduced in [11]:
— the manifold (M, G) is a scattering manifold (29, 15],

— there exists an open set M_ C M containing w(T) which can be extended
to a complete manifold with sectional curvatures bounded above by a negative
constant,

— M_ is geodesically convez in the sense that any geodesic entering 7~ (M\ M_)
remains in this region thereafter,

— the topological pressure P(s) of the trapped set T satisfies P(1/2) < 0.
We refer to [33, Section 3.3| for details on the topological pressure P(s).

THEOREM 1.5 (Global spacetime estimates without loss). — Assume that n > 3 and
OM is empty. If either

— the geodesic flow is non-trapping and (p,q) is any Schrodinger admissible pair,
— assumption 1.4 is satisfied and (p, q) is any non endpoint Schridinger admissible
pair
then there exists C' > 0 such that

(1.7) lull r &;La )y < Clluoll 2 (),
for all ug € L*(M).

This theorem improves on the result of [23] in two directions: Hassell-Zhang only
consider the non-trapping case and, even in the non-trapping situation, we consider
more general types of ends. It also provides a global in time version of the estimates
of [11].

We state this result in the boundaryless case in order to give complete proofs or
references. We emphasize however that using the techniques of [25] it can certainly
be extended to the case when M has a strictly geodesically concave boundary and is
non-trapping for the associated billiard flow
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6 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

We recall finally the well known fact that inhomogeneous Strichartz estimates,
for non endpoint pairs, can be derived from the homogeneous ones (1.7) by using
the Christ-Kiselev Lemma [13]; this is sufficient for the applications to the nonlinear
equations studied in Section 9.

Here is the plan of our paper. In Chapter 2, we record notation about charts,
partitions of unity, scaling operators, etc. that will be used in further chapters. In
Chapter 3, we describe the pseudo-differential calculus adapted to our framework,
including a rescaled one for low frequency estimates which is not quite standard. In
Chapter 4, we prove Littlewood-Paley decompositions at low and high frequencies. In
Chapters 5 and 6, we construct an Isozaki-Kitada parametrix for the microlocalized
Schrédinger group, both at high and low frequencies. We use it in Chapter 7 to derive
some L? propagation estimates to be used in Chapter 8 where the theorems stated in
this introduction are proved. Finally, in Chapter 9, we give nonlinear applications of
our Strichartz estimates.

Acknowledgments. — JMB is partially supported by ANR Grant GeRaSic, ANR-13-
BS01-0007-01. HM is partially supported by JSPS Wakate (B) 25800083. We thank
the referee for the careful reading of the first version of this paper and for very useful
suggestions.
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CHAPTER 2

NOTATION

In this part, we collect some notation or definitions that will be used throughout
this paper.

Coordinates. If k : U, C S — V,, C R*! is a coordinate chart on S then, upon the
identification of (Raq,+00) X U, with a subset of M, the map

(2.1) (r,w) — (r,k(w))

defines a coordinate chart on M. We define II,, and II! respectively as the pullback
and pushforward operators associated to this chart on M, i.e.,

(2.2) (ILov) (r,w) = v(r, K(w)), (IT ) (r, 0) = u(r, 6= 1(0)).

If 7 : V3 — V4 is a diffeomorphism between open subsets of R~ (typically a transition
map between charts of S), we also define I, and II;! as above for the diffeomorphism
(r,6) — (r,7(0)) between R x Vi — R x V5. With such a definition, if x; : U; — Vj,
j =1,2, are two coordinates charts on S, it follows that

(2.3) H;;Hm S Tig i= Kg O /41_1 : k1 (U1 NU3) — ko (U NU).

T127

We choose a finite atlas on S composed of charts with the property that
K*G =: Gim (0)d0,d0,, satisfies the following uniform estimates on each V:

(2.4) Co M -1 < (Gim(0)) < Coln_1,
(25) |6aglm(9)| < Ca-

We will also use the matrices g(8) = (Gim(0)), (3™ (0)) := g()~! as well as the
function |g(6)| := detg(6)*/2.

Overall, throughout this text, when (r, ) are referred to as local coordinates they
will correspond to (2.1). But (r,0) will also denote the variable on R x R™~! (or
some subset of it) which will be used to define functions or standard objects like the
Lebesgue measure drdf (see, e.g., Sections 3.1 or 6.1 and the introduction of Chap-
ter 6). The dual (or Fourier) variables associated to (r, 8) will be denoted by (p,n) and,
according consistently to the standard convention, when (r,6) are local coordinates
on M we will also denote by (p,n) the associated coordinates on fibers of T* M; this
is useful to write principal symbols as for instance in (2.16) below. We shall also use
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8 CHAPTER 2. NOTATION

the variable 7 on R; it will eventually correspond to # = er (e being a small rescaling
parameter, see the next paragraph) but in practice it will just be a variable on R
which we denote differently from r to keep track of the geometric or physical intu-
ition. Its dual variable will be denoted by g, as will be used, e.g., in (2.17). At some
point in Chapter 5, we shall have to introduce extra variables ¥ and g living basically
in the same sets as 6 and p respectively. Typically, ¢ and p will denote components of
Hamiltonian flows whose initial data will involve 6 and p (see above (5.18) for more
comments).

Partitions of unity. — We pick a partition of unity 1 = > _¢x(w) on S, with
pr € C§° (UN) and where the sum over k, as well as all similar sums below, is taken
over the finite atlas we chose above. For each x, we also pick @, gZK e Cy° (U,i) such
that ¢, = 1 near supp(gan) and @, = 1 near supp(@,). We then pick ¢, (,Ce C*(R)
supp0~rted in (Raq,00), equal to 1 near infinity and such that C~ = 1 near the support
of ¢, { =1 near the support of ¢ and define

(26)  n(r,w) == C(Nee(w),  Dul(rw) = {NB@),  ulrw) == (r)Ea(w).
Their interest is that they are supported on coordinate patches of M and that

(2.7)

Zz/z,i =((r) =1 near infinity, ¥ =1 near supp(¥y), QZ,Q =1 near Supp(zﬁn).

They will be useful to globalize pseudo-differential operators on M.

Rescaling operators at infinity. — For e € (0, 1], we will use the operators 2. defined
by

(2.8) Dev(r,w) = ez v(er,w), if supp(v) C {r > Rm}.

Here v is a function on M but we will also freely use Z, for functions on R™ supported
in (Rap,00) x V, for any V. C R"!. Note that Z.v is supported in {r > e 'R}
The normalization factor €”/2 ensures that

| ZevllLz ) = [lv]lL2(am)

(i.e., their quotient is bounded from above and below uniformly in €); indeed, by using
that G is in normal form, the measure in {r > R} reads

|det(g(r,8))|*/2r"Ldrdo

and is comparable to the exact conic measure r"~1|g(0)|drdf by (1.1) (see also after
(2.12)). We define similarly

(2.9) P w(F w) = e Tw(e 1, w), if supp(w) C {¥ > ¢ 'R}

Of course we have also the equivalence |2 w||r2(a0) = [|w]| L2 (a4)-
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CHAPTER 2. NOTATION 9

Modified Japanese bracket. — Everywhere in the text, we will replace the usual
Japanese bracket (r) = (1 4+ 72)!/2 by another positive function still denoted by (r)
and such that

(2.10) (ry = {

1 on alarge enough compact set
r forr> 1.

By large enough compact set, we mean that (r) = 1 in a neighborhood of the region
where ((r) # 1 (see, e.g., (2.7) for {). The interest is that commutators of powers
of (r) with differential operators will be automatically supported in a region where
¢(r) =1, i.e., in a region where we can use polar coordinates (2.1). More generally,
commutators with powers of (er) will be supported where ((er) = 1.

Standard symbol classes S™. — The notation S™ (with, e.g., m = —v or —1 —v) used
in a few places in the text stands for the space of smooth functions a defined on I XV,
with I unbounded interval and V' C R"~! (possibly V' = R"1) satisfying

10705 a(r, )| < Cra(r)™".

If V = R""!, the constant is independent of (r,6) € I x R"~L. But if V is a non trivial
open subset of R”~! or the image of a coordinate patch of the angular manifold, the
above estimate is meant to hold for every compact subset K € V, with a constant Cy,
depending on K but not on (r,6) € I x K.

Laplacian. — With the metric in normal form, the operator —P = Ag reads in local
coordinates near infinity

(2.11) Ag = 02 +r 27k (r, Q)nggk + (n — )71, + w(r,0)0, + wy(r,0)0s,

where (g7%(r,0)) = (gjx(r,0)) 71 if g(r) = g;x(r, 0)d0;d0y. The lower order coefficients
are

arlg('r, 0)| —1—
2.12 w(r,f) = ——>= €8 7",
(2.12) "0 =g, 0)
since |g(r,0)| = det(g;x(r,0))*/? = |g(0)| + S~, and
1 1 .
_ = Jk -2
(213) U)k(’r, 9) - 7'2 |g(717 9)| 89;‘ (g (T7 9)|g(r?0)|) € S .

See the previous paragraph for the symbol classes S~%, S~!~% and S~2. The descrip-
tion of the first order terms will be particularly useful to solve transport equations
(see Proposition 5.3). It is also useful to observe that, using the rescaled variable
7 = er,

Ag —1 2 | N2 oy
(2.14) = = DNANG. D77, Ge = di* + #g(¥/e),
that is

Ag, = 02 + 7 2g7%(#/e, 9)33,-ek + (n = 1)7F0x 4+ e rw(7/e,0)0x + € 2wy (7 /€, 0) Dy, -
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10 CHAPTER 2. NOTATION

We will see in Lemma 3.3 that the negative powers of € in front of w(¥/e,0) and
wi(7/€,0) are harmless in {# 2 1}, i.e., in the region {er = 1}.

To distinguish clearly between what is globally defined and what is defined in a
chart, we will use the notation

P, =T1I_'PII,,

for the expression of P in local coordinates (that is minus the right hand side of
(2.11)) and

€

1P
(2.15) P..=9 16—2@6.

for its rescaled version (that is minus the above expression of Ag, ). We denote re-
spectively by

(216) Pk = Pk (T7 0; 12 77) = p2 + T_Qij(,ra 0)77]77]6
and
(2.17) Pes = Pew (.0, 5,m) = 5> + ¥ 27 (¥ /€, O)myms

the principal symbols of P,, and P , in local coordinates near infinity.

The Helffer-Sjéstrand formula. — If H is a selfadjoint operator (in practice, H = h?P
or P/e? in this paper), f belongs to C§°(R) and f € C$°(C) is an almost analytic
extension of f, ie., f|, = f and of = O([Im(2)|*®) (0 = 0, + 19, if z = z + iy,
z,y € R), we have the following representation formula

(2.18) FUH) = o [C 5F(=)(H — )" L(d2)

due to Helffer-Sjostrand (see for instance [17] for a proof). Here L(dz) is just the
Lebesgue measure on C ~ R2.

Notation for inequalities. — Through the paper, we shall use the classical notation
a < b to mean that a < Cb for some constant C' independent of the parameters at
stake. We shall nevertheless use the notation a < Cb either in the main theorems to
avoid any ambiguity, or occasionally when we need to refer to the constant C.
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CHAPTER 3

PSEUDODIFFERENTIAL CALCULUS

3.1. Operators on R™

__ We shall use symbols in the classes S™:# which are defined as follows. For m, u € R,
S™# is the set of symbols on R?" such that

m—k—|B]|
(3.1) 0705 9505 a(r,0,p,n)| < C(r)r=I= 1A (<p> + EZi)

forall7,p € Rand 6,n € R”~!. As usual, the best constants C' are semi-norms which
define the topology of S™#. We also set S™°# := (1 S™*#. One should have in

mind that the second index, p, measures the spatial decay of symbols. We use the
semiclassical quantization

"(a) = a(r,0,hD,, hDy),

with h € (0,1]. This quantization is the standard one, namely if u belongs to the
Schwartz space

"(a)u(r,0) = (2m)™" / e P g (1,0, hp, k)i p, n)dpdn.

Note that we put h in exponent in this notation to distinguish it with the one of
rescaled pseudo-differential operators introduced in Definition 3.2 below; high fre-
quencies are raised, while low frequencies will be lowered!

We need to consider admissible symbols, i.e., h dependent families of symbols with
an asymptotic expansion in A in the following usual sense

ap ~ Z hia; in §™* &% for all N,h N <ah— Z hjaj> is bounded in SNk N,
j>0 k<N

Note that this implies in particular that each a; belongs to Sm—in=3_ We call the
symbol in the right hand side the remainder of order N. When m = —oo, the above
expansion means that it holds for every finite m.
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12 CHAPTER 3. PSEUDODIFFERENTIAL CALCULUS

The pseudo-differential calculus in the classes Smon enjoys the usual symbolic prop-
erties since the weight (p) + % is temperate, for it is easily seen that

(n + ) Q
(o 8+ E20) < (104 2) (1600 + bl + 18,07,

for all r,0,,p,0, € R and 7,0, € R™~1. In particular, we have the following rules
where for clarity, we will denote by t the adjoints w.r.t. to the Lebesgue measure and
keep the notation * for adjoints w.r.t. the Riemannian measure.

PROPOSITION 3.1 (Symbolic calculus in Smi). — Let m,m’, p, i’ € R.
— Adjoint: for every a € gm’“, one has

DEDgokoca -
Op”(a)t = Op"( af~ Y WD T | i S

3>0 k+|al=37

— Composition: for every a € S™t gnd b € gm/’”/, one has
Op”(a)Op"(b) = Op" ((a#b)s),

. akaaaDkDab ~ ’ ’
(atb), ~ D> i | Y Lt ”ldaj o in SR

720 k+|o|=j
— Invariance by angular diffeomorphisms: let 7 : Vi — V4 be a diffeomorphism
between two open subsets of R"~1. For all a € S™" such that

(3.2) supp(a) C R x K x R" for some K € V1,
and for all ¢ € C3°(V1), one has
M10p" (@)g (@)L, = Op (a7 (), o (h) ~ S hia] in §m,
j=0
with symbols a} such that
(3.3) supp(al) C {(r 7(6), p, (dT(G)T)fln) | (r,0,p,m) € supp(a } CRxVy xR™

— L? boundedness: There erists a constant C(a) depending on a finite number of
semi-norms of a € S%° such that, for all such a and all h € (0,1],

(3.4) ”Oph(a’)”L2((r)"*ldrdG)HLQ(ﬁ)"*ldrde) < C(a).
Here and below, L%((r)"~1drd®) is a shorthand for L*(R", (r)"~'drd®).

We point out that all terms of the expansions as well as the remainders depend
equicontinuously on a (or (a,b) in the second item). In the fourth item, we con-
sider the measure (r)"~1drdf for this is of course the good model near infinity for
the Riemannian measure of G. The L? boundedness is a consequence of the usual

Calderén-Vaillancourt Theorem since
n—1

1—n
2 0p™(a)(r) 7 |lL2(ard0)—L2(ardo)»

10P™ (@)| L2 ((ryn—1 drde)— L2 ((ryn—1drde) = [|{T)
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3.1. OPERATORS ON R" 13

1—n

where, by the second item of Proposition 3.1, <r>nT_lOph(a)<r>T = Op"(a(h)) for
some admissible family a(h) € S°°.

We next introduce the convenient definition of rescaled pseudo-differential opera-
tors.

DEFINITION 3.2 (Rescaled pseudo-differential operators). — If
a € §™H(Ry x Ry~ x Ry x RIY)
for some m,p € R, we set
Op.(a) := 2.0p'(a)27".
Recall that D, is defined in (2.8).

More explicitly,
Op.(a) = a (er,0, 2=, Dy) .

) e
To clarify the presentation, we distinguish the variables (7, p) and (7, §) which have
to be thought as

oy P o
er=r, - =p.
€
In the typical situation we shall encounter, we will consider a(7,60,p,n7) =

b (7“', 0, p, 7*_17]) for which
Op(a) = b (er, 0, 2=, 15

€

If b is compactly supported in momentum, this corresponds to a low frequency local-
ization.

Let us comment a little bit more on Definition 3.2. Rescaled pseudo-differential
operators will be used to approximate low frequency localization of P, i.e., operators of
the form f(P/e?) with f € C5°(R,.). By the uncertainty principle, one can only expect
to get such an approximation where r is large, typically » > e~!, which corresponds
to considering symbols a (or b as above) supported in # 2 1. This is consistent with
the following simple and crucial lemma (see the paragraph Standard symbol classes
in Chapter 2 for the notation S*).

LEMMA 3.3. — Leta € SH(R, x R} ™) with yu € R. Let
ac(7,0) := e'a (¥/¢,0) .
Then (ac)ee(o,1] belongs to a bounded subset of S“((l,oo);‘ X Rg_l), i.e.,

3205 ac(7,0)| Sja 7, ¥>1, 6 R, €€ (0,1].

Proof. — It suffices to write
D05 ac(7,0) = e9(8195a) (7/e,0) = O(e" (7 /e)P~7)

and to observe that, for ¥ > 1, (¥/e) = 7/e. O
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14 CHAPTER 3. PSEUDODIFFERENTIAL CALCULUS

The meaning of this lemma is that a. is only singular for # close to 0 (the threshold
7 > 1 could be replaced by 7 > ¢ for any ¢ > 0 positive). In other words, as long as
one works in the region er 2 1, rescaling does not produce singular symbols.

We further illustrate the interest of rescaled pseudo-differential operators by keep-
ing in mind the example of (2.14). For k + || < 2 and a € S*H181=2=¥ (1 > 0), we
will consider in pratice operators of the form

1 _ . o o _
e—za(r, 0)(r :LD‘g)ﬁDfac = 9, (627,}74&‘@ (¥/e,0) (F~1Dy) Dif) 971,
= . (¢“a. (¥,0) (F ' Dy)*DE) 271
with
ac(7,0) = 18172774 (7 /¢, 0).

Studying such operators in {er > 1} corresponds to study a(¥ 60)(#~1Dp)*DE in
{# > 1}; by Lemma 3.3, a, is bounded in S*+181=2=7((1, 00); x R} ™!), and allows to
use pseudo-differential calculus in the variables (¥, 6, 3,7). Typically, to construct a
parametrix for y(er)(P/e? +1i)~! in {er > R}, we will consider symbols of the form

9

1
X(F) grr=agim v edymmn ¥

with x supported in (R, +00). By Lemma 3.3, this e-dependent symbol belongs to a
bounded subset of S~2:0, allowing to perform the usual iterative parametrix construc-
tion (see Section 3.3).

3.2. Operators on M
Let us define the space .¥(M) by
(3.5) ue S M)<=uec ﬂ Dom(P™) and r79%dgu € L? for all j,k, a,
m>0

the second condition in the right hand side being a condition at infinity (it is invariant
by change of coordinates on §). It is the natural Schwartz space on M and will be
convenient for our purposes.

Using the charts introduced in Chapter 2, we will note everywhere in this paper

(3.6) Op(a) := I1,0p"(a)II; .
If nothing is specified about a € S™# (R?"), such operators are defined from
C((Rpm,00) x Ug) to C®((Rpq,00) x Uy).

If in addition supp(a) C (Raq,00) X Vi, x R™, which will always be the case in this
paper, they map C§°((Ram,00) X Uy) to C®°(M). In practice, we will only consider
globally defined operators of the form

(37) OPZ (a)'(/;n = OPZ (a)'(/;n(n w)a

where the cutoff ,, localizes inside (Raq,00) x Uy (see (2.6)) and where we will use
symbols spatially supported in (R4, 00) X U, (e.g., in the support of ¥, (r, s~ 1(6))—
see again (2.6)). We point out that such operators are localized near infinity, where we
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3.2. OPERATORS ON M 15

will focus essentially all our analysis. Note also that since pseudo-differential operators
on R™ with symbols in S™* map the Schwartz space (on R™) into itself, we have

Opi(a)t : /(M) = ' (M).
We define analogously rescaled pseudo-differential operators on M by
Op, x(a) = IL.Op,(a)IL;"
and will consider, for symbols supported in (Raq, 00) x Vo x R™,
(3.8) Op. . (a)n(er) = Op, (a)dr(er,w)

(we will often drop the dependence on w from the notation, though 1, (er) really
depends also on w € S). It is important to note that if a is spatially localized
in (Raq,00)i X Vi, then the range of Opeﬁ(a)@[}K (er) contains only functions supported
in (e7!Rpq,00), X Uy; in other words, such operators are localized in {er > R} and
will be used as microlocalization in this region only. We finally note that we will often
use € dependent symbols, similar to those considered in Lemma 3.3.

For further use and to illustrate that such definitions fit the usual expected prop-
erties of a pseudo-differential calculus, we compute adjoints with respect to the Rie-
mannian measure "~ *|g(r, 8)|drdf (see Chapter 2 for |g(r,6)|). Let a = a(r,0, p,n) be
a symbol spatially supported inside (R, +00) X Vi, i.e., with support in (r,6) con-
tained in (R, 00) x K for some R > Raq and K € V,,. Then, using Proposition 3.1
and elementary computations, we find

(Opl(@)dx) " = BTl (s=ribgy OP" (@)t~ g(r, 6)]) 1
(3.9) = $s0pyt (b(h)) 1,
for some admissible symbol b(h) in the same class as a and %, supported
in (Rap,+00) X Uy. Similarly
(0P (@uer))” = Puler)Tu 7 (rrrpsberey OP (@)1 g /e, 0)]) 7T,
(3.10) = P(er)Op, o (be) 1, (er)

with (be)ee(o,1) bounded in the same class as a, also using here Lemma 3.3 to handle
lg(7/e, O)[*".
To get L? or L9 estimates, we will use the following proposition.

PROPOSITION 3.4. — Let ¢ be bounded and supported in (Rpq,+00) X U, and
q € [1,00]. Then

()

(3.11) ||1/J(67‘, w)HH‘@e||Lq((r)n71drd9)_>Lq(M) < €279
(3.12) 120 o (er, )| Lamy—La((ry—rdrae) S €7 2
for e € (0,1].
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16 CHAPTER 3. PSEUDODIFFERENTIAL CALCULUS

Proof. — It follows from an elementary change of variable together with the observa-
tion that, on the support of z/;(er, n_l(H))7

r"Hg(r,0)|/C < (r)" < Cr" 7l g(r, 0)]
for some C > 1. O

We note in particular that, when ¢ = 2, Proposition 3.4 together with (3.4) imply
that

(3.13) 10D, () Pw(er)llz2re < Cla), €€ (0,1],

with C(a) bounded as long as a belongs to a bounded subset of 50,0 (and a is spatially
supported in (Raq, 00) X V). For completeness, we also recall that at high frequency,
under the same assumptions on a,

(3.14) |0pL(@)allzs—zz < Cla), e (0,1],

which is more standard (and does not use Proposition 3.4).
We will also need L? estimates on pseudo-differential operators.

PROPOSITION 3.5. — Let a € S=0 be spatially supported in (Rpq,+00) X V. Let
1<q1 < g2 <o0. Then

(3.15) |0p” (@)l o — oo < Chaz " ar,

n

(3.16) |Op.. . (a)9r(€r)|| ar —pa < Cenr 2,
The constant is bounded as long as a belongs to a bounded subset of G000,

Proof. — Write a(r, 0, p,n) = b(r,0, p,n/r) so that b is a Schwartz function in the mo-
mentum variables, uniformly in (r, ). The estimate in the semiclassical case follows
from the similar estimate for Op”(a) from L9 ((r)»~'drdf) to L% (({r)" 'drdf) ob-
tained from the usual Schur test and interpolation argument, by exploiting that its
kernel with respect to (r)"~1drdf reads

. ' 68
(2wh) """ 1D <r,0, r-r r,r ) (r'yt=m

h h
where ~ is the Fourier transform in the momentum variables. The low frequency case
follows from the above one with A = 1 together with Proposition 3.4. O

3.3. Functional calculus

We will use operators of the form (3.7) or (3.8) to describe functions of P. In
the semiclassical or high frequency regime, this is mostly standard, see, e.g., 3, 30],
though we will need a sharper description of the remainders than in those references,
i.e., an additional spatial decay of the symbols in the expansion and the remainder
which come from the composition rules of Proposition 3.1. To give an idea of this
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3.3. FUNCTIONAL CALCULUS 17

classical procedure to the unfamiliar reader we consider a two term expansion. We
look first for go(2), ¢1(2) such that, in a sense specified below,

(3.17) Y0Py (g0(2) + h1(2))Y(h*P — 2) = ¢ + O:(h?).
The right hand side reads
(3.18)  $Op(g0(2) +har(2)) (h*P = 2)9 +9Opj (0(2) + hai (2)) [, h* P,

where, setting p,1 = —i(n — 1)r~p — iw(r,0)p — iwg(r,0)ni, (see (2.11)), the first
term expands as

YODP! (q0(2) (P — 2) + ha1 (2)(pr — 2) + hao(2)Pr, — ihV p.000(2) - Viopi) ¥
+h2Y0py (ra(h, 2))9,
for some ra(h, z) to be described below. We wish to make the first symbol of this
expansion equal to 1 which leads to choose
1

P — 2

qo(z) =

and then
01(2)(Pr — 2) + ¢0(2)Pr,1 — 1V ,0q0(2) - Viope = 0,
i.e., taking into account our choice of go(2),

\Y% -V
QI(Z) — _ Pk, s - . Vr oDk pénpn7
(pfi - Z) (pﬁ - Z)
where, on the support of the cutoff ¢ (or more precisely after multiplication by IT_ 1),
qo(z) € 5727, q(z) e S0

since p,1 € SH7! and V, gp, - VonPr € S%~1 the index —1 coming from the decay
in r of the numerators (see (1.1), (2.12) and (2.13)). With those formulas at hand,
the remainder r5(h, z) in the formula after (3.18) now belongs to S~*~2 according
to Proposition 3.1, with semi-norms growing polynomially in (z)/dist(z, R, ) as those
of go(z) and ¢;(z). We still have to consider the second term of (3.18). Using that ) is
equal to one near the support of (the coefficients of) [h2P,t] and that the later
vanishes identically near the support of 9, Proposition 3.1 shows that for any N (here
N = 2 will be sufficient),

YOP! (go(2) + ha1 (2)) [, B2 P] = kN Op! (7 (h, 2))

with 7y (h, z) in S~V with semi-norms growing like powers of (z)/dist(z, R ). We
conclude by composing (3.17) to the right with (h?P — z)~! which leads to

$Opy: (90(2) + hay
with r(z,h) = —Fn (2, h

(2))9 = $(h*P = 2)71 = W*pOpI(r(2, )PP — 2) !
) — #a(h, z) where 75(h, z) € §~>72 is defined by

GOP(ra(h, )5 = ¥ (Oplh(ra(h, 2) ) § = YO (Fa(z h)Y.
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18 CHAPTER 3. PSEUDODIFFERENTIAL CALCULUS

We have thus obtained a special case of the high frequency parametrix of Proposi-
tion 3.6 with N = 2 and 5 = 1. Higher order expansions are obtained by iteration of
this process.

We will also consider the low frequency regime, which is less standard but can be
easily handled by considering appropriate spatial localizations and rescaled operators
as follows. The first and main step is to construct a parametrix for (P/e?> — z)~! in
the region {er > Ra¢}. To do so, we need basically to use that
(3.19) (:; — z) =1, 2. (Pe,,,i — z)@;lﬂgl
(see (2.15)) namely that P/e? is a rescaled (pseudo-)differential operator whose symbol
is not singular w.r.t. € in the region {# > Raq} thanks to Lemma 3.3. One can
then apply the same elliptic parametrix scheme as above to P, — z to construct
an approximate inverse. More precisely, in the above procedure for h2P — z, if we
come back to the definition (3.7) of Op” (see also (2.2)), we have constructed the
symbols qo(2), q1(2) locally, in a way that

I, (1,1 4)0p" (a0(2) + ha1 (2)) (I, B) (b2 P — 2)] T, = T, [(I1 ) + O(h)] T

In the low frequency case, we repeat this procedure verbatim with h = 1 and Pj
replaced by P. .. On the support of the cutoff (II;'+) = ¢(# £71(0)) (and likewise
for 1&, 1Z), Lemma 3.3 ensures that the symbol of P, ,; belongs to the same class as the
one of P, with bounds uniform in e. We can then construct g o(2), ¢e,1(2) exactly as
above, with seminorms uniformly bounded in €, so that

(I ') OP (ge,0(2)+0e,1 (2)) (L ) (P —2) = (IL19)+(I1 ') Op' (re (=, 1)) (I ')
for some 7.(z,1) € =272 with seminorms growing polynomially in {z)/|Im(z)|, uni-
formly in e. Conjugating back by II,D., the pseudodifferential operators become
rescaled ones and the cutoff (¥, w) becomes ¥ (er,w). Summing up, we obtain the
following technical result.

PROPOSITION 3.6. — Let 1, 1;,12 be smooth functions supported in a patch (R, 00)x U,
with R > R, all belonging to S° and such that

Y =1 near supp(v), =1 near supp(®).
Then for j,N € N and z € C\ [0,+0c0), one has
— High frequency parametrix: for h € (0,1],

N-1
D(r,w) (WP = 2)77 = Y h'4(r,w)Opj(a(2))d(r,w) + W Ruign(2, h),
1=0
where each qi(z) € %1 is a linear combination of ay(p.—2z) =% for some
symbol ay, € S2*~b=1 independent of z, and with

Rhigh (2, h) = ¥ (7, w)Opl(r(z, h))P(r,w)(h2P — 2) 7,
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3.3. FUNCTIONAL CALCULUS 19

where 7(z,h) € S™NN with seminorms growing polynomially in 1/dist(z, R.)
uniformly in h as long as z belongs to a bounded set of C\ [0, +00).
— Low frequency parametrix: for e € (0,1],
Y(er,w)(P/e® —2)77 = )  (er,w)Op. (41 (2))9(er,w) + Riow (2, €),
1=0
where each g.;(z) € S§—2=L=1 s q linear combination of e (pe,s — 2) I with
symbols ac i, € S2k=b=t pounded w.r.t. €, and
Riow (2, €) = t(er,w)Op, . (re(2))P(er, w) (P/e® = 2) 77,

where r.(z) € S™NN with seminorms growing polynomially in 1/dist(z, R.)
uniformly in € as long as z belongs to a bounded set of C\ [0, 4+00).

We refer to (2.16) for the definitions of p,, and p .

Note that the spatial localizations are different at high and low frequency. We also
point out that the low frequency parametrix is not an asymptotic expansion in e,
but it only says that (P/e? — 2)771(er,w) is a sum of rescaled pseudo-differential
operators and of a remainder which is smoothing and spatially decaying like (er) ™.
We finally remark that a similar proposition holds for (h2P — 2z)7/¢(r,w) and
(P/€% — z)~I3(er,w) (this follows by taking the adjoints and using (3.9)-(3.10)). We
will use this occasionally.

As a first application, we record the following result where we use the function ¢
introduced in (2.6)-(2.7).

PROPOSITION 3.7. — If j > n/4, then
(3.20) I¢r)(R*P + 1) ||pampe SK™E, R e (0,1],
and
[¢(er)(P/€® +1) || ore S €2, €€ (0,1].
Recall that for simplicity we have set L¢ = LI(M) (see after Definition 1.1).

Proof. — We prove only the second estimate; the first one is proved similarly but is
more standard (see, e.g., [3, Prop. 2.11] which actually works with z = —1) since
there is no scaling operator (note also here that the localization ¢ is not necessary,
but nevertheless useful if M has a boundary so that we can work purely with pseudo-
differential operators away from it). We use Proposition 3.6 with v replaced by v,
¥ by 9, etc. (see (2.6)), and with N > n/2. Then ((er)(P/e? +1)~7 is a sum over &
of parametrices as in Proposition 3.6. For each k, consider the first term

"/}n(ET)Ope,x(qe,O(_l))";K(e"") = (’(/JK(ET,(.U)HR@E) (Opl (Qs,O(_l))) (-@;111;11/;&(57'3 W)) )

where ¢. o(—1) belongs to (a bounded set of) S~2/:0. The result is a consequence of the
fact that Op'(geo(—1)) maps L2({r)"~'drdf) into L>®({(r)"~'drdf) since 2j > n/2
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20 CHAPTER 3. PSEUDODIFFERENTIAL CALCULUS

(see [3, Lemma 2.4])), together with the estimates (3.11) (with ¢’ = o0) and (3.12)
(with ¢ = 2). The other terms are treated analogously, as well as the remainder
Riow(—1, €) by using additionally that ||(P/€>+1) 77|22 < 1 for the remainder. [

To describe the remainders that will be involved in the different parametrices we
are going to construct, it is useful introduce the following norms

(321)  lul| 25 = ) (WP + 1) ullzz,  full gz = [[(er)(P/e* +1)7ul|

for p € R, j € Z and u € .¥(M). The first one is a standard weighted semiclassical
Sobolev norm, which will be used at high frequency, and the second one will be used
at low frequency. We will only consider these norms on .(M) for this space is stable
by the resolvent of P (this is fairly standard or can be checked by using the parametrix
of Proposition 3.6 for ¢ = h = 1) so that the norms (3.21) make clearly sense. We also
point out that we do not define the spaces .7,/ nor .Z2/ (which should be the closures
of (M) for the corresponding norms) and will only use their norms on .(M). The
interest of using such norms is to state estimates which are uniform in € or h. It is also
worth recalling that the Japanese bracket used in (3.21) is the modified one chosen

in (2.10).
Given a family of operators A, preserving . (M), we will write
A = Oglffl‘)gigg (1) <= ||A€u||$3;-2 < ||u||$ji1 for all € € (0,1], u € S (M),

the point being that the constant is independent of e.
The notation A = Ojfiiil_h%ﬁfgé (1) is defined similarly.
PROPOSITION 3.8. — For all j,j' € Z and p, i’ € R, we have

— Global estimates:
(3:22) (P/€2 + 1)j, = Og}fj_,gi(j—j’)(l)a (th + 1)j/ = Oﬂfj_,%fu—j’)(l)

and, as multiplication operators,

’

(3.23) (er)* = Ogzigri (1), (1) =0ppi_ s (D).

— Embeddings estimates: the identity operator I satisfies

(324) W' <p and 7<j = I=0 I=0 1).

331_)5%3;/(1)7 ff;_n%ojjl(

— Action of pseudo-differential operators: Let 1) € SO be a smooth function
supported in the patch (Rpaq,00) X Uy and a € S23"1" pe spatially supported
in (Rap,00) X Vi. Then

(3:25)  Op, . (@)d(er) = O o 26-in(1), OPEH@)P =005 a6 (1)
“ n—p’ o n—n'
These uniform bounds remain valid as long as a belongs to a bounded subset
of R
We recall that in (3.25) ¢(er) and @ are respectively shorthands for (er,w) and

Y(r,w).
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Proof. — In all cases, we consider only the low frequency estimates, the semiclassical
ones being similar and more standard. (3.22) is an immediate consequence of the
definitions of the norms (3.21). We next prove the first estimate of (3.23). We observe
first that for any j € Z and p € R, there exists C' > 0 such that

(3.26) C7HJul) oy < P/ + 1) er) ullzz < Cllul| o,
for all u € .(M) and € € (0, 1]. Indeed, let us write
(er)(P/e® +1)7 = ({er)"(P/e® + 1) (er) 7" (P/e* +1)77) (P/e® + 1) (er)".

The lower bound in (3.26) would then follow from the uniform L? — L2 of the
parenthesis. Assume for instance that 7 > 0. Then the parenthesis in the right hand
side is the sum of the identity and

(3.27) (er)# [(P/e2 +1)7, (er)_“] C(er)(P/e* + 1),

where one can insert the cutoff {(er) of the partition of unity (2.7) since the com-
mutator is supported in the region where {(er) = 1 by (2.10). The operator (3.27) is
uniformly bounded on L? since the composition of

(er)* [(P/e + 1) (er)™] = T De(r)* [(Pae + 1), (r) "] 27 TI; "ope (er)

(see (3.19)) with the low energy parametrix for ((er)(P/e?+1)~7 (derived from Propo-
sition 3.6 and the partition of unity (2.7)) is uniformly bounded on L2. This follows
by using the composition rules of Proposition 3.1 together with (3.13) and the bound
|(P/€* +1)77|| 22 < 1. The case j < 0 and the upper bound are proved similarly
(using possibly the parametrix of (P/e? 4+ 1)77¢(er)). Now, with (3.26) at hand, the
first estimate of (3.23) follows from

er)ullgss | S I(PE + 1Y Ger =40l o S ull g
Similarly the first estimate of (3.24) follows from (3.26) since
[(ery* (P/€® + 1) ul| 2 < [[(er)* (P/€* + 1)7 ]2
S (P + 1) (er)ullpe S [I(P/€* + 1) (er) ul| .

We finally consider (3.25). By using the equivalence of norms (3.26), the result follows
from the uniform L? boundedness of

(/€ + 1)~ (er)* " Op, . (a)ib(er)(er) H(P/e® +1) 7.

By the composition rule of Proposition 3.1, we may assume that . = p’ = 0 up to the
replacement of a by @ such that Op, (@) = (r)*~# Op, (a)(r)~*. Then if both j — 5’
and —j are non negative, the result follows by using (3.19), the composition rule and
the L2 bound (3.13). Otherwise we expand the negative powers of P/e? + 1 by mean
of Proposition 3.6 so that we can compose rescaled operators supported in the same
patch and conclude again with (3.13). O
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THEOREM 3.9. — For all f € C§°(R) and all given N,

N-1

CMFRPP) = D> 4 Op" (a1) b + hY Rign (£, h),

=0 &~
where a,; € S=oo=L with supp(a,;) C supp(f o px) and, for any M >0 and p € R,
r%hlgh(fa ) 3{? 2M ﬂﬂ/f (1)

Also
N-1

(3.28) C(er) f(P/) = D > tuler)Op, 1 (ac w)Pr(€r) + Fiow(f, ),
=0 &k

where (e x,1)ee(0,1] belongs to a bounded subset of S—oo=l with

Supp(ae,n,l) C Supp(f ope,ﬁ)
and, for any M >0 and p € R

(3.29) Pow(f,€) = O g2, yau (1).

Proof. — We cousider only the proof of the low frequency parametrix (3.28), the

high frequency one being similar and more standard (see, e.g., [8] in the asymptoti-

cally Euclidean case). Note first that the I-th term in the sum (3.28) is, for any M,

0] M g2u (1) by (3.25). Therefore, up to putting additional terms of the expansion
ptl

in the remainder, it suffices to prove (3.28) with a remainder satisfying, instead of

(3.29),

(330) ﬁlow(f, 6) = O$—2MN_)$2MN (1), with My, uny — co as N — oo.
W uN
Using the Helffer-Sjéstrand formula (2.18) with H = P/e? together with Proposi-

tion 3.6, we get (3.28) with a remainder which is a sum over k of integrals of the
form

Riown(f+€) / B (2)thu () O (e (2))u(er) (P/* — ) L(dz),

where 7 .(2) € S S—N.=N has semi-norms growing polynomially in [Im(z)|~! (which is
harmless since 9f(z) = O(|Im(2)|>)). In the above integral, we write
(P/e® —2)~" = (P/e® = 2)7 (1 = ((er)) + (P/€* — 2) ' ((er).
Using Proposition 3.8, we observe that, for any M, 1—((er) = OX‘L—QM_G?O—ZM (1), for it
is compactly supported in er. We also have (P/e? — 2)~! = O y—2m_ 201 (|Im(2)|~Y)
0 0

thanks to the spectral theorem. By Proposition 3.8, we also get that, for some
oc=0(M,N),

(331) wn(ET)Ope’K(7"57,{(2))@2,{(67”) = Ogo_z(M_U_)gZi,v_Q(M_m (|II’I1(Z)|7U)
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All this implies that, for any given g and N,
(3.32) Rlow,n(f, 6)(1 - C(e’l‘)) = O$;2M_>$IJ\7VfZ(M—1) (1)

To analyze Riow.«(f,€)((er), we use a parametrix for (P/e? — z)~!((er) obtained
analogously to the one of Proposition 3.6: for any N’ € N, (P/e? — 2z)~!((er) is a sum
of rescaled pseudo-differential operators with symbols in S~29 and a remainder which
is (P/e? — 2)~! composed (to the right) with a sum of rescaled pseudo-differential
operators with symbols in S—N'.=N"_ This implies that, for any u and M, and by
choosing N’ > |u|, (P/€®> — 2)71((er) is of the form

O yoni_, 2o (IIm(2)] =) + (P/€* — Z)flazﬁ/ﬂ;wﬂzf’—w(|Im(2)|7°/)

for some ¢’ = o/(M,N') > 0. Using an estimate similar to (3.31) together with the
fact that (P/e? —z)~! = 0301\7/—2M_)$01\I/—2(M—1)(|Im(z)|71), we get

Rlow,n(fy E)C(e’r‘) = Ofu—zM_)fllv\ffﬂM—l) (l)

Together with (3.32), this yields (3.30) by choosing M = My = N/4 for instance. [
As a first consequence of Theorem 3.9, we have the following estimates.

PROPOSITION 3.10 (L — L* boundedness at spatial infinity). — For all f € C§°(R),
IS(r) £ (h*P)llz—z~ $1, h€(0,1]
and

I(er) f(P/€)|Lwmr~ $1, €€ (0,1].

Proof. — We consider only the low frequency case. The high frequency one is essen-
tially standard, and can be proved e.g., as in [3]. We thus consider ((er)f(P/e?)
which we expand using (3.28). The (rescaled) pseudo-differential terms are bounded
uniformly on L* by Proposition 3.5. Choosing M = N and p = —N in (3.29), the
remainder can be written

Riow (fr€) = Cler)(P)e® +1) VB (er)™N

with || Be||z2—r> < 1. This follows from Proposition 3.8 and that (er)¢(er) = ¢(er).
If N > n/2, we have I (er) N |lpe—r2 < € ™2 so, using the second estimate of
Proposition 3.7 with ¢ instead of ¢, we get

I¢(er)(P/€® + 1) ™V Be(er) N[ S €22 51,
which yields the result. O
To illustrate another application of Proposition 3.8, we record some rough a priori

estimates on the propagator e " which will be useful in Chapter 7. For k > 0 integer,
we define (k) by 7(0) = 0 and y(k + 1) = 2y(k) + 1 (i.e., y(k) = 2F — 1).
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ProposITION 3.11 (Rough propagation estimates). — For u € R denote by [u] the
smallest integer > |u|. Then for all j € Z,

(3.33) e = Oy -ty ({t/B)7 D),
meaning that (t/h)~7([HDe=itP — O, 21 _ 42i-2vru) (1) uniformly in t € R. Similarly

(3.34) e P = Oﬁijéﬁij—zwm) (<e2t>7(W)) .

This proposition will be very useful to handle the remainders of some microlocal
propagation estimates. The knowledge of the power v([x]) is not very important, the
main interest being only the polynomial growth w.r.t to (t/h) and (*t). We rather
comment on the different scalings in h and e. The estimate (3.33) reflects roughly
that waves localized at frequency 1/h move at speed 1/h. Based on this intuition,
one could expect to get a bound in term of (et) in (3.34) for waves localized at
frequency e. The reason why we have bounds in term of (e2t) is that we use the
rescaled spatial weights (er)#. Another way to see that the scalings are natural is to
consider the flat Laplacian on R™ and to observe that for every symbol a one has
e*®a(z, D) = a(x — 2tD, D)e™*® we see easily that

) t )
e a(z,hD) = a <x — 2EhD, hD> ettA

and that

. D D D\ .
eAa (ex, > =a (eaz — 2t =, ) et
€ € €

where the power €2 on t follows both from writing D = ¢(D/¢) and from the scaling
in z.

We finally note that Proposition 3.11 uses implicitly that .”(M) is preserved
by e~ (recall our convention to consider the #,% and £/ norms only on .%(M)).
This fact can be checked by routine arguments using exactly the commutator tech-
niques involved in the proof below, but we omit this aspect and focus only on the
estimates in time.

Proof of Proposition 8.11. — Let us show (3.33). By (3.23), it suffices to show
that (r)#e P (r)=# satisfies the expected bound between M5’ and HS(FV(M)). If
p = 0, this is a straightforward consequence of

|(R2P + 17 *P(W2P +1) | 2 ps = L.

Assume next that [p] = 1 and compute first the commutator

t
[(r)‘“‘,efﬁp] = z/ eii(tfs)P[P, <r>|“|]efispds.
0

MEMOIRES DE LA SMF 182



3.3. FUNCTIONAL CALCULUS 25

Using that [P, (r)/#l] is h~! times a sum of semiclassical differential operators with
symbols in S™I#I=1 © §20 as in (3.25) (they are supported in r > 1 by (2.10)), we

can write the commutator [(r)/#l e=F] = OH?—»HE“’” ([t|/h). Thus, using that

(ry~Iel[e=itF (r)IKl] i p <0
[<7«>\M7e—itP] <r>—\u\ if >0

<r>pe—itP<T>—,u _ e—itP _|_{

we get the result since (r)~*! is bounded on each J#2* by Proposition 3.8. If [u] > 1
we proceed by induction by writing, e.g., if u > 0,

el = (et (e i [ e e st ) ()1

0
The induction assumption and Proposition 3.8 then show that the right hand side is
of order

10 ((t/h>v(rm—1>> N /t o (((t ~ 8)/h>w(m—1>) o(h1)0 ((s/h)”*(“‘]‘l)) ds
0

as an operator from H>/ to Hij—%(FM). Using the definition of «(.), we get (3.33).
The proof of (3.34) is similar, the gain in €2 following from the fact that

[P, <67‘>] = 62 [P/ez, <€T>] = Oﬁij_%ij—z (62)

for all i and j since the commutator in the middle is a linear combination of rescaled
pseudo-differential operators as in (3.25). O
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CHAPTER 4

SPECTRAL LOCALIZATIONS

The purpose of this chapter is to prove Theorems 4.1 and 4.6 which provide
Littlewood-Paley type estimates, at low and high frequencies respectively. Specific
comments are given after each theorem. We only point out here that we adopt a prag-
matic point of view, in the sense that we do not try to mimic exactly the usual form of
Littlewood-Paley estimates on R™ (e.g., by using non trivial heat kernel bounds) but
rather provide robust and spatially localized versions of such estimates which seem
naturally adapted to the proof of Strichartz estimates. In particular, the form of the
decompositions are not the same at high and low frequencies; this is related to the
fact that we use different types of estimates to treat the remainder terms.

We use the function fy introduced in (1.3) and consider f(A) = fo(A) — fo(2X) so
that f € C§°(R\ 0) and, for all A € R,

Zfzf ) = Imo(A C Y FETIN =1 fo(N).
=1
The spectral theorem then implies that, in the strong sense on LQ(M),

(4.1) fo(P)=_f2'P), (1—fo)(P)=)_ f(2

>0 0>1

using in the first sum that 0 is not an eigenvalue of P. The latter comes from the
connectedness of M (see Definition 1.1) and the fact that if some w in the domain
of P satisfies Pu = 0 then

0 = (Pu,u) = |Vaul|2

so u is constant by connectedness of M hence vanishes since it is L2.

4.1. Low frequencies

In this section we prove the following result.
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28 CHAPTER 4. SPECTRAL LOCALIZATIONS

THEOREM 4.1. — Assume that n > 3. Let x € C§°(R) be equal to 1 on a large enough
interval so that (1 —x) = (1 — x)C (see (2.7)). Then

1/2
[fo(P)vllpz- < (Z 11— )f(P/e¥)v7 + II(T>_1f(P/€2)'vII%2) ;
for all v € L?, where e = 27¢/2,

Let us comment that this Littlewood-Paley estimate holds for the exponent 2*
(and presumably for exponents between 2 and 2*) which is sufficient and somewhat
natural for applications to Strichartz estimates. Indeed, the first half of the sum
is appropriately localized to use microlocal techniques while the second one can be
treated in a straightforward fashion by using the L? estimates (7.16)-(7.17).

3 Theorem 4.1 is a consequence of the next two propositions in which we pick
f € C§°(R\ 0;R) such that f =1 on supp(f) and let

(4.2) 2(e) = (1= x)(er) Y ¥u(er)Op,  (f © pess) bu(er),

that is the first term of the parametrix of (1—x)(er) f(P/€?) according to Theorem 3.9.
Here and everywhere in this section, we set

2 =27t
PRrROPOSITION 4.2. — Ifn > 3, then
o 1/2
[ fo(P)vl| 2+ ss;p 2 QA=) (e f(P/Ew| + | DI F(P/E] 7
£=0 L2* £>0

for allv € L2.

Up to the homogeneous Sobolev inequality (1.2) this proposition rests on purely
L? — L? estimates. In particular, we feel it is quite robust and could be used gener-
alized to other contexts.

To state the second proposition, we need to define the family of square functions

" 1/2
Syw = (Z |Q~(e)*w|2> , M>0,
£=0

where the adjoint is taken with respect to the Riemannian measure.

PROPOSITION 4.3. — For all g1 € (1,2] one has

||§Mw||L<n Sa |w| a5

for all M > 0 and all w € CF(M).
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This proposition is a consequence of fairly standard singular integral estimates, by
exploiting the explicit form of the Schwartz kernel of 2(¢). Note that we do not need
to assume n > 3 here.

Before proving these two technical results, we prove Theorem 4.1.

1/2
Proof of Theorem 4.1. — Let us set Sprv := (Zé‘io |(1 - X)(GT)f(P/GQ)’U|2> . Then,
by the usual trick i.e., the Cauchy-Schwarz inequality in ¢ and the Holder inequality
in space, we have

< | Syw]| =

Suvl|per

M
‘ (w > 2 - X)(er)f(P/62)v>
£=0

so using Proposition 4.3 for ¢; = 2,, we obtain

S [1Sarv] e
L2

M
S F()(1 = x)(er) F(P/)
£=0

L2*
lows from the Minkowski inequality since 2* > 2, together with Proposition 4.2. [

1/2
We conclude by using [|Sav]| 2+ < (ZQO (1 = x)(er) f(Pe2))|? ) , which fol-

To prove Proposition 4.2, we recall first for clarity the following well known results.

PROPOSITION 4.4. — Let (T;)¢ be a sequence of linear operators on a Hilbert space H.

1. (Discrete Schur estimate) If | T Te|ln—n S 2716=31/2 then there is C such that

/
13 Tl < € (3 lel) ™

for all sequence (vy) of H.

2. (Cotlar-Stein estimate) If | T Tolln—m + | T T 1 n—n S 2-1=31/2 then there is
C such that

1D Tevllz < Clolla,
for allv e H.

We will apply the Schur estimate to two types of operators. The first one is very
elementary: if we let

TZ — 2Z/2P1/2(2ZP + 1)—1
then, assuming for instance ¢ > j so that % = —Ij—gel + ¢, we have

i li—2|

23\ ||(2jP+1)—12KP(2€P+1)—1||L2_>L2 <923

43) T Tolpenre =27

by using the spectral theorem. The second type of operators requires a lemma.
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LEMMA 4.5. — Let k : U, — V,; be a chart on S. Let 1 be smooth on M, supported
in (Rp,00) x U, and belonging to S°. For s =0 or 1, denote

Ty = (PY%/€)°Ope s (ac + be)p(er,w),
where, for some given J € (0,+00) (independent of €),
(ac)c is bounded in S~°°, supp(a.) C per(J),  (be)e is bounded in Goo—1,
are all spatially supported in (Rpaq,00) X Vi;. Then, if s =0,1,

(4.4) T Tell 2
and, if s =0,
(4.5) TSI lpomre S 275

Proof. — We start with two preliminary remarks. First, it suffices to prove both es-
timates when ¢ > j (otherwise take the adjoint). The second one is that, if s = 0,
T; is of the same form as Ty (see (3.10)) up to perhaps changing the function 9. In
particular, proving (4.4) is sufficient. Let us prove (4.4) when s = 1. For simplicity,
we set (¥) = (¥, k71(0)). Using Proposition 3.4 with g = 2, it suffices to show that

S 2_ |j;l|

(4.6) HOp%cq)@b( )7 2 7,0p' ()
L2((¥)n—1d7d8)— L2 ((F)n—1d¥d6)

with ¢, = 2742, and (c.)., (d¢) bounded families of §~°°-° supported in (R, 00) X V.
with respect to (¥,6). Using that £ > j and (2.15), we write
P. P.
9, =27 %9, =
€j€ €2
Then P, .Op,(d.,) = 9(#)Op, (e.,) for some bounded family (e.). of 500 with
support contained in the one of d. which allows to introduce for free a cutoff 1 (¥)
supported in (Raq,00) and equal to 1 near the support of the symbols. Now (4.6)
follows from the Calder6n-Vaillancourt Theorem (in the form (3.4)) together with

@n e 25 250

L2((Ra,00) xRP=1,(#) = 1di#d) — L2 (R™ (7)1 didd) ™
which follows from the unitarity of 7.'%., = Z,_; on L*((0,00) x R*~*,#"~1didp).

We next prove (4.4) when s = 0. It suffices to show that

" €K

K

. li—el
19 [|OpsGu )71 7, O <>
(4.8) Op1 (b, )Y (1) Zc;” 7 OP1 (de )Y L2((F)n—1dFd0)— L2((F)n—1d7d0) ~ ’
and

li—el
4.9 |ov* @, )1 2., 7,00 (d. <o
(4.9) P (8, )V () 7" P Op (de,) L2((¥)n—1d#de)— L2 ((#F)n—1drde) ’

whenever (b.). € S7°! and (d.). € S~°° are spatially supported in (R, 00) x V..
To prove (4.8), we use

Y1 -1 —1g-1g x—1
P D, Dey = €165 D, De,T
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to write
-2l

Op' (be, )Y() 22, De, = OP' (be, )Y (F)7# D Dey =277 O (be, ) D Doy
and conclude again from the L?((#)"~'drd#) boundedness of Op" (b, )7 and #~*Op* (d.)
(there is no singularity at # = 0 since d. is supported in {r > Ra}) together with
(4.7). We finally prove (4.9). The support assumption on a. implies that ac/p. , is a

smooth symbol in S~°0 so, using in addition that 1 € S°, we can write by symbolic
calculus

Opl(ae)'@b(f) = Opl(ae/pe,n)'()bpe,fc + Opl (be)'(/’;(;)

with (gs)E bounded in S~°~! and some cutoff J(f, 9) € S° both supported
in (Rm,o0) x V with respect to (,60). The contribution of the second term in the
right hand side follows from (4.8). For the first term, one can use (4.6) once observed
that

_ . _ i 1P
Opl(aej/pej,n)w(T)st,Kgsjl-@eg = Opl(ae]- /pej,ﬁ)w(r)-@ql?;-@e@
J
and that ej_2 = 2%(61‘65)_1 (so that we actually get an estimate of order 2= for
this term). This completes the proof. O

Proof of Proposition 4.2. — Let us write (1—X) (er) f(P/€?) = 2(e) + %(e) according
to (4.2) and Theorem 3.9. Using that ff = f and that 1 = x(er) + (1 — x)(er), we
have

F(P/e?) = 2(e)(1 — x)(er) f(P/€) + €T () {er) ' f(P/€?)
with
(410) 70 = e (x(en)F(P/) + (1~ )(er) [(PI)x(er) + F(e)) (er)

Using the first sum in (4.1) (which converges strongly in L? but also in L?* by Sobolev
embedding) and the homogeneous Sobolev estimate (1.2), we have

1 fo(P)oll o < sup(
M

M
Y 21— x)(er) f(P/e)
£=0

L2”
M

Z PY2T(e)e(er) L f(P/®)v

£=0

+

).
L2

where it suffices to estimate the second norm. Using Theorem 3.9, one can write
(4.11) PY2T(e) = e *PY2(P/e* + 1)1 B(e),

with B(e) bounded on L? uniformly in e. The least obvious contribution of terms of
(4.10) is the uniform L? boundedness of (P/e2+1)x(er)f(P/€e?){er). One can analyze
it as follows. On one hand, the commutator [(P/e?+1), x(er)] being a sum of rescaled
(pseudo-)differential operators vanishing outside the support of ((er), one can use
Theorem 3.9 to get a parametrix for [(P/e2 4 1), x(er)]f(P/€?)(er) from which the
uniform L? boundedness follows.
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On the other hand, x(er)(P/e? + 1) f(P/e®)(er) = x(er) f1(P/€®)(er) with f; € Cg°.
We then write (er) = x(er){er) + (1 — x)(er){er) whose first term is obviously uni-
formly bounded on L? while one can use the parametrix for fi(P/e?)(1 — x)(er) to
see that x(er)f1(P/€?)(1 — x)(er){er) is uniformly bounded on L2?. Now with (4.11)
at hand, by using (4.3) and Lemma 4.5 with s = 1 together with the Schur estimate
of Proposition 4.4, we have

1/2
o /

Z PY2T(e)eler) L f(P/e*)v

£=0

S| D lleer) T f (P2

L2 k>0

sup

In the right hand side of this inequality, we finally use that
eler)™t S ()7

and we get the result. O

We now consider the proof of Proposition 4.3.

Proof of Proposition 4.3. — It follows the same line as the one for the standard
Littlewood-Paley decomposition (see, e.g., [32]). Let (g¢)¢>0 be the usual Rademacher
sequence (realized as functions of ¢ € [0,1]). By the Khintchine inequality, it suffices
to show that

M ~
> o) 2(e)

£=0

<1, tel0,1], M >0.
L1 (M)— L% (M)

This in turn follows from the Marcinkiewicz interpolation theorem provided
we prove the above estimate for ¢y = 2 as well as weak type (1,1) estimates
for >, 0¢(t)2(€)* uniformly in ¢ and M. Using the form of Q(¢) given by (4.2),
the uniform L? — L2 bound follows from the Cotlar-Stein estimate of Proposition 4.4
together with the estimates (4.4) and (4.5) (with s = 0) of Lemma 4.5. The weak
type (1,1) estimate follows from essentially standard estimates on Calder6n-Zygmund
operators; we postpone to Appendix B the technical details. O

4.2. High frequencies

The purpose of this section is to prove the following result.

THEOREM 4.6. — Let N > 0 and x € C§°(R) be equal to 1 on a large enough set so
that ¢ =1 (see (2.7)) near the support of 1 — x. Let g € [2,00). Then

+00 1/2
(1 =2)(r)(1 = fo)(P)vlLa S (Z 11 =) () f(h*P)vl| e + hN||<T>_Nf(h2P)U||2Lz> ,
=1

for all v € (M), where h = 274/2,
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This is a spatially localized Littlewood-Paley decomposition similar to the one of
[2]. The improvement here is that the nonlocal L? correction involves the weight (r) =~
which will allow us to use the resolvent estimates (1.5) and their time dependent
counterparts (see Section 7.2 and Section 8).

To prove this theorem, we pick again f € C§°(R\ 0; R) such that f =1 on supp(f).
We define the square functions

iy 1/2
Ypo = (Z (1 - x)(r)f(th)vl2>
=1

and
N M 1/2
Sarw = (Z |<<r>f<h2P>w|2> .
=1

Here and throughout this section, we set h? = 27¢.

Proof of Theorem 4.6. — It is very close to that of Theorem 4.1. We only explain
what changes. Using the second sum in (4.1), we write (w, (1 — x)(r)(1 — fo)(P)v)
as the limit as M — oo of Zé\il(m (1 —x)(r)f(h*>P)v). Using standard semiclassical

estimates based on Theorem 3.9 and Proposition 3.7, and using that (1 — f) vanishes
near the support of f, we see that, for any NV,

(1= H)(R*P)(1 = x)(r)f(h*P) = AN By (h)(r) N f(h*P),
with
IBN(A)llz2—ra S 1, h e (0,1].
Therefore, using additionally that ¢(r)(1 — x)(r) = (1 — x)(r), we have

M
[ (w, (1 =x)(r)(1 = fo)(P)v)| S sup > () F(R2PYw, (1 — x)(r) f (K2 P)v)
=1
+lwll e S RN ()N F(R2P)o]| 2.

>1

By proceeding as in the proof of Theorem 4.1, in particular by using that the
supremum above is bounded by sup,, | Zpw|| o |2 a0 La, Theorem 4.6 follows from
Proposition 4.7 below. O

PROPOSITION 4.7. — For all ¢; € (1,2], one has

IEpwlin o llw]za

for all M > 1 and all w € S (M).
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Proof. — As in the proof of Prop. 4.3, it suffices to show that Zé\il 0e(t)C(r) f(R2P) is
bounded on L? and satisfies weak type (1,1) estimates, uniformly in ¢+ and M. The
uniform boundedness on L? follows from the spectral theorem and the fact that the
functions

M ~
A Y o) f(27N)
=1

belong to L*°(R) uniformly in ¢, M since at most a finite number (A, M, ¢t independent)
of terms of the sum do not vanish. To prove the weak type (1,1) estimate, we use
Theorem 3.9 to decompose
¢(r)f(h*P) = Zuign(h) + hRign (k)

with Rhpign(h) uniformly (in k) bounded on L' and L% The uniform boundedness
on L? is obvious. To see the uniform boundedness on L', one uses an expansion
of ¢(r)f(h*P) to a sufficiently high order Ny + 1 so that one can write hRpyign(h) =
h1+No(ry=No B(R)(h2P + 1)~No with B(h) uniformly bounded on L?. Then using on
one hand that (h2P+1)"No : Op1_,12(h~"/?) (by taking the adjoint estimate of (3.20)
near infinity and using a standard elliptic regularity estimate on any compact set—
including near the boundary if any) and on the other hand that (r)=™o : L2 — L'
one gets the desired L' — L' estimate. In particular, we have

(4.12) > bl Ruign (h) |11 < 0.
>1

Then, it suffices to prove the uniform weak type (1, 1) estimates for Zé\il 00(t) Phign (k)
and this follows again from standard arguments on Calderén-Zygmund operators (see
Appendix B). O

Remark. — In more general situations, e.g., with non smooth coefficients in a com-
pact set, it may be not easy to prove (4.12). Actually, it would suffice to have
> o>1 Pl Ruigh (h)|| 2+« 12« < o0 for our purpose. It would restrict the range of expo-
nents in Proposition 4.7 to [2,,2], and thus those of Theorem 4.6 to [2,2*], but this
would be sufficient for Strichartz estimates.
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CHAPTER 5

CLASSICAL SCATTERING

In this chapter, we construct real phase functions solutions to Hamilton-Jacobi
equations that will be used to construct Isozaki-Kitada type parametrices. The trans-
port equations associated to such parametrices are also studied.

Everywhere in this chapter, we work in a single chart at infinity (Raq,00) X V.
Since we want to consider both high and low frequencies parametrices, we have to
analyze the Hamiltonian flow of p, and pc, (see (2.16)). Observing that p, = p1 x,
we will state the main results only for pe , for 0 < e < 1.

We let ¢ . be the Hamiltonian flow of pc . and define ¢§ by

o5 (r, 9, 0,m) == (r + 250,79, 0,7)

that is the Hamiltonian flow of o?. We denote the time by s here since it will be
interpreted as a rescaled version of ¢ in the applications (either s = t/h or s = te?).

For R>> 1,V C V,, and € > 0, we define the subset of R x (R"~1)2
(5.1) O(R,V,e) ={(r,0,9) |r >R, €V, |0 -9 <e}.
To describe the asymptotic behavior of our phases, and to take into account the
dependence on € of the functions we are going to counsider (e.g., the components of
the flow ¢¢ ), the following definition will be useful.
DEFINITION 5.1. — Let R> 0,V C V,, and € > 0. For u € R,

1. S, is the set of (¢ dependent families of) functions on ©(R,V,¢e) such that

030505 ac(r,0,9)| S,
for all (r,0,9) € ©(R,V,¢) and all € € (0,1] (the constant is independent of €).

2. For any integer m > 0, we denote by S, (0 — )™ the set of all functions of the
form

Z |,y|:ma’€,7(lr7 07 79)(0 - 7'9)77

with ac, € S,,.
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3. Given real numbers py, po and integers my, mq, the equality
e =be + 5, (9 —0)" + 5,0 —6)™?
means that a. — b is the sum of an element of S,, (9 — 6)™ and one of
Syua (8 — O)™.

The main result of this chapter is the following theorem.

THEOREM 5.2 (Eikonal equation). — Fiz an open subset V. € V.. Assume that V is
convex. Then we can find R > 1 and 0 < ¢ < 1 such that for all € € (0,1], there
erists a smooth function

Ye: O(R,V,e) > R
such that the function @.(r,0,0,9) := ov(r,0,9) satisfies the following properties:
1. It solves the Hamilton-Jacobi equation

(52) De,x (T,9a5r¢ea5090e) = 92'

2. For V. e Vi, RR > 1 and 0 < ¢’ < 1, define the strongly outgoing (+)/
incoming (-) areas by

(5.3)  TR@®,\V.e)={(nb.pn) | r>R, 0V, £p>(1-)p'/?}
where p = p(r, 0, p,n). Then the range of
(7‘,0, 0, 19) — (T7978T¢6769¢6)7 (T79719) € @(R,‘/,E), :l:,Q > Oa

is contained in a set I's (we do not specify its parameters here) where (@2 1) +s>0
and the limit im,_, 1 ¢y ° 0 @7 . =: ijn are defined. Furthermore, one has

(5.4) FE (r,0,0,¢c,000) = (00,9, 0, —0p¢pe).

3. One has the expansions

(5.5) e =1+ 51, (9 —0) + 51 (9 — 0)*

(5.6) Orthe =14+ S_, (0 — 0) + So (0 — 0)2

(5.7) Bptpe = rg(0)(¥ — 0) + S1_,, (9 — 0) + S1(9 — 0)*
(5.8) Bytpe = —rg(0)(9 — 0) + S1_, (I — 0) + Sy (I — 0)°.

Remarks

1. Be careful not to mistake € (the low frequency parameter) for € which is a small
enough but fixed number defining O(R,V,¢).

2. Note that the square on &’ in (5.3) ensures that the condition £p > (1—¢"2)p!/? is
equivalent to |n|/r <€’ and +p > 0.
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The purpose of the next proposition is to solve transport equations associated to ¢,
and which will be used in Chapter 6. We consider equations of the form

(5.9) (OpnPe) (1,0, 07 0e, Bgpe) - Orgu + be(r, 0,9, 0)u = fe(r,0,0,9),

where f, is a given short range symbol (see condition (5.14)) and

(5.10) be := — P 1o pe.

In practice, we will study these equations only locally in g, namely on sets of the form
(5.11) OF(R,V,I,¢) :={(r,0,0,9) | (r,0,9) € O(R,V,e), o> € I, £0 > 0},

where I € (0,+00) is a given relatively compact interval. The natural domains to
work on are actually the larger sets (of trajectories starting in ©%(R,V, I,¢))

Ti(R V,1,¢)
= {((7%,92)(r,0,0,00c(r,0,0,9)),0,9) | (r,0,0,9) € OF(R,V,I,¢), £s > 0},
where
(5.12) (72,92,08,77) = components of ¢7

It will follow from the proof below that (r, 8, 8,,9¢c(r, 0, 0,9)) belongs to a set where
the flow ¢¢ . is well defined for all £s > 0 (if ¢ > 0) so that the sets TE(R,V,1,¢)
are well defined.

PROPOSITION 5.3 (Transport equations). — Let O(R,V,€) be as in Theorem 5.2 and
I € (0,400).

1. Form of characteristics: For all (r,0, 0,9) € ©F(R,V,I,¢), +s > 0 and € € (0, 1]
define
(72,02, 5812) := @2 (1,0, (Br, Do) (1,6, 0,9)).
Then
(ﬁ:aﬁes) = (8r<p6,89505) (7‘3,9? 9, 19)'

In particular,

(8ppe,nanpe,n) (Te y 05» (87’,9@6)(7:§? éia 0, 19)) = ( Tes 9?)

2. Time integrability of b, along characteristics: For all j, o, k, 3, there exists C
independent of € € (0,1] such that

(5.13)

8ﬁ(b (,re’ eagaﬂ) ‘<CS/’I‘ —1- V —1-v— ]+C<8/’F 2 —1—3

for +£5 >0 and (1,0, 0,9) € ©F(R,V, I,¢).

3. Form of solutions: Assume that f. belongs to S_1_, == S_1_, (’Tf(R,V,I, 5))
for some p >0, i.e., on TX(R,V,1,¢)

(5.14) 102958505 fe(r, 0,9, 0)] < (r) 171,
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uniformly in €. Then, given a constant C, the solution to (5.9) going to C
as r — o0 s given by

+o00 +o0 s
Cexp ( / bews,é:,g,mds)— | s 00 e ( / b(fﬁl,é:ag,wsl)ds.
0 0 0

This solution is still defined on T*(R,V,1,¢) and, if C =0, it belongs to S_,,.

Remark. — In the asymptotically Euclidean case with global coordinates, the usual
construction of the Isozaki-Kitada phase shows that b, is a short range symbol, which
implies easily its integrability in time when evaluated along a trajectory. Here, it only
follows from the asymptotics of Theorem 5.2 that

be=S_1_,+S_1(6 — V)

which in general fails to be short range because of the second term. However, when
evaluated along a trajectory, we will recover the integrability in time (5.13) by ex-
ploiting the decay in time of 2 — 9 (see (5.41)).

We will prove Theorem 5.2, and Proposition 5.3 likewise, only in the case € = 1.
Indeed, by Lemma 3.3, if we define v(r, 8) := (v7*(r,8)) by

(5.15) @’k (r,0) = g7%(0) + v7*(r,0),

we have pe . = p? + r=2g7%(0)n;mi + r=2v7%(r /e,0)n;ni where v(r/e,0) is bounded
in 7% as € € (0,1] (it is actually O(e”)). The analysis below for € = 1 still applies
uniformly for € € (0, 1], but only at the expense of heavier statements and notation ).
Thus, for simplicity, we will drop € and & from the notation (except on V,;) everywhere
below.

We let p = p1 (7,0, p,n) and (7°,9°%, °,7°) := ¢° be the components of ¢*(= 1x)s
namely the solution to
(5.16)  7° = (9,p)(¢"), 9" = (Onp)(¢"), 0" =—(0rp)(¢") 1" =—(Bpp)(¢"),
with initial condition

(Fsv 1957 ésa 77]5)|S:0 = (,ra 9, P ,'7)

We will see it exists for +s > 0 on strongly outgoing (+)/ incoming (-) areas (5.3).
These sets are conical (i.e., invariant under (p,n) — (Ap,An) for any A > 0) and
symmetric w.r.t. eachother, i.e.,

(r,0,p,m) €TH(R,V,e) <= (r,0,—p,—n) € T5(R,V,e).

This symmetry together with the property that, for any A € R and as long as the flow
exists,

(Fsa ,&s) (r» 0’ )\P, >\77) = (f)\sa 1§AS) (r» 0’ P 77)3

(5.17) o NN
(2°,7°) (1,0, Ap, An) = X(2*°,7*%) (0, p,m),

1. In the same spirit, since we don’t need to use the distinction between 7 and r in this part; we
use the simpler notation r though pe , must be though as a function of 7.
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will allow us to restrict the analysis to strongly outgoing regions and times s > 0.
The same homogeneity properties hold for ¢§ which in turns implies they also hold
for F*+.

The reason for denoting the angular position by ¥° rather than 6° and the radial
momentum by g° rather than p° is the following one. Let us introduce

(518) (Faﬁa 0, 7_]) = hgl (Fs - 2‘9@57’587557"78) = hgl ¢as o ¢S(T797pa 77),

which will be shown to exist for (r,0, p,n) in a strongly outgoing area f:t as defined
in (5.3) (the parameters of which we omit here). The item 2 of Theorem 5.2 means
that ¢ is a generating function of the Lagrangian submanifold

(5.19) A ={((r,0,p,7), (7,0, 8,7)) | (r,0,p,m) €TE},

i.e., the graph of the symplectic map F'*. The existence of ¢ rests on the fact that A™
can be parametrized by (r,6), the initial positions, and by (g,?), the final radial
momentum and angular position. In particular, it is crucial to distinguish between
the variables 6 and ¥ which motivates our choice of notation.

Before starting the proof of Theorem 5.2 which will come after several preparatory
results, we introduce one more notation, for I € (0, c0),

(5.20) TE(R,V,I,e) = {(r,0,p,n) € TE(R,V,e) | p(r,0,p,n) € I}.

It allows to localize flow estimates in the energy shell p~(I), without loss of generality
by the above homogeneity properties. Occasionally, we will also use T'}(R,V,I,¢)
defined by

(5.21) (r,0,p,6) ETL(R,V,I,e) <= (r,0,p,7€) €TL(RV,I,e).

Note that p? + g7*(r,0)¢;&, € I on T (R, V, 1,¢) so p, & (and ) are bounded there. In
particular, all symbolic estimates on functions defined on F;’iﬁ (R, V,I,¢) will be only
with respect to r.

To start the proof we recall a result from [30, Section 4].
PROPOSITION 5.4 (Long time geodesic flow estimates). — Let Vo € V, and
Iy C (0,00). One can choose Ry > 1 large enough and 0 < g9 < 1 such that

1. for all (r,0,p,n) € f;@(Ro, Vo, Io,€0), ¢°(r, 6, p,m) is defined for all s > 0 and

(7°,9°) € (Rg,00) x Vi, 820,

2. for all (j,o,k,B) € Zi", there exists C > 0 such that for all (r,0,p,n) in
T (Ro, Vo, Io, €0) and all s > 0,

=S ~”S
g0gkgB (T =T =259 5o s 1 —i-18|
aiagapan <87198798ar <Cr™ .

Moreover, there exists C > 0 such that
(5.22) (r+s)/C <7 <C(r+s),
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for s >0 and (r,0,p,1) € T&(Ro, Vo, Io, €0)-

In the rest of the chapter, we choose Ry, Vj, Iy and €g as in Proposition 5.4.

To study (5.18) it will be convenient to use asymptotics in suitable symbol classes,
in the spirit of those of Definition 5.1. Given functions a and b on f:t (Ro, Vo, Lo, €0),
a real number p and an integer m, we define

b+ 3 mo el moa ”
a=b+S.(n/r) <~ a b—llz Cy (T,Q,p,r) e with ¢, € S¥,
yl=m

where S# = SH(T'L(Ro, Vo, Io,€0)). The relation a = b + §M(n/r)m1 + guz(n/r)"”,
with mq, mo integers and pi, us € R, is defined analogously.
It is useful to record the following characterization of symbols of the form c(r, 8, p,n/r).

LEMMA 5.5. — A function a : T} (Ro, Vo, In,e0) — C is of the form
a(r,8,p,m) =c (7‘, 0, p, g)

for some ¢ in S“(F;(RO, Vo, IQ,E())) if and only if, for all (§,a,k, ),

(5.23) 0705 050f a

for all (r,0, p,n) € T3 (Ro, Vo, In, €0

(5.24) a(r,0,p,n) =a(r,0,p,0) + (rVya)(r,0,p,0) - g + gu(n/r)2.

(Ta 97 12 77) | Sjakﬂ ,’,,M*j*m\ 5
)

. In particular, if a satisfies (5.23), then

Proof. — Follows from routine computations by considering ¢(r, 0, p, £) := a(r, 0, p, r€).
O

PROPOSITION 5.6 (Asymptotics for F+). — For all (r,0,p,n) € f;@(Ro, Vo, Io, €0), the
limit (5.18) exists. Furthermore, we have the expansions

(5.25) F=r+8(n/r)?

(5.26) g=p+ So(n/r)?

(5.27) 7=mn+Si(n/r)?

and

(5.28) G=0+30)"1-L +5_,(n/r) + So(n/r)2.

o

Notice that p is positive on f;‘; (Ro, Vo, o, £0) so the second term is the right hand
side of (5.28) is well defined. To prove this proposition, we will use the easily verified
fact that for s > 0 and (r,0, p,0) € I'% (Ro, Vo, Iy, €0), we have

(5.29) (7,9%,0%,7°)|,_, = (r+2sp,0,p,0),
=5 qs ~5 =5 _ 2g(9)_1 + 2’[)(7’ + 2Sp, 0)
(5.30) (0n7°, 8,9°,0,0°, Oy )|n:0 = (0, (r + 25p)° 10, Lh—1 |,

where we recall that v is defined in (5.15). We will also need the following lemma.
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LEMMA 5.7. — For all (j,a, k, B) € Z2", setting 87 = 91959%05, there is C > 0 such

pYn s
that,
Y
(5.31) A e
(5.32) |87 (r/7)| < C(A + |s/r|)~1r—I 18],

for all (r,0,p,m) € f;‘;(Rg, Vo, lo,€0) and s > 0. If furthermore b € S“((RO7 00) X V,.;),
then

(5.33) |87 (b(7*,3°))| < C(F* [r)Pri=i=P,

with a constant bounded as long as b varies in a bounded set.

Proof. — The estimate (5.31) is a simple consequence of the item 2 of Proposition 5.4
and the fact that 97 (r + 2sp) = O(r + s)r~9~1#l. Next, by observing that

o' ro’tr o
97 (r/7®) = linear comb. of TST Fra Fsr with 7'+ =, N <|y]+1,

we see that (5.32) follows from (5.22) and (5.31). Finally, the estimate (5.33) follows
from the item 2 of Proposition 5.4 for ¥°, (5.32) and the fact that 97 (b(7*,9%)) is a
linear combination of

(BIOF) (7, 9%)0 7" - Vi7" S| @V 5

with7i+-~+7§+-~-+7{L+~-~+72n_1=7- O

Proof of Proposition 5.6. — We give the proofs of (5.25) and (5.28), the ones of
(5.26) and (5 27) being similar (and slightly simpler). We start with (5.28). Writing

9T =0+ fo 9°ds and letting T — +o0, we obtain

9=0+ 2/0+oo (g(@S)*l +’U(775,1§S)) (:8) ds,

where the integral is convergent since, for fixed (r,8,p,n), 7° is bounded while

7® 2 r+ s by (5.22). Then, by using (5.32), (5.33) and the item 2 of Proposition 5.4
for 77°/r, we see that

(5.34)  0i050500 ((g(1§s)_1 + v(fs,ﬁs)) (::)2> = O((1+ |s/r])"2p1—I-18)

Integrating this estimate in s and using the characterization of Lemma 5.5, we find
9 = 0+ Sy (see after Proposition 5.4 for this notation). Using (5.24) together with
(5.29) and (5.30) we get the improved expansion (5.28) since

+oo I =(p)—1 +oo
o n— g(8) I,
2r/ g0t L _ds= , 7"/ vr+23p,97d5—5'_
R S "o+ 277
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We next prove (5.25). We start by writing 77 = r + fOT 20°ds and

Py =T T 2 —lm (qu Im/zu qu Im\/=u qu ﬁzuﬁ#m
(5.35) o°=p — F—u(g (") + '™ (7, 0 )) — (Opv"™) (7, 9") (Fu)Qdu.
Similarly to (5.34), the Bﬂ'@g‘@faff derivative of the integrand in (5.35) is
O((1 + |u/r|)=3r=1=3=181). This implies on one hand that the limit of 77 — 2757
exists as T' — +oo and equals

+oo +oo 2 _ _ _ ,ﬁuﬁu
F=r— 2/ (/ (_u(glm(ﬂu) + vlm(F",ﬂ“)) — (8Tvlm)(77“, 19“)) l_u”;du> ds
0 s r ('r )
and on the other hand that, for any (4, @, k, 8), the 8{83‘8585 derivative of the above
double integral is O(r'=7~#). This gives the rough bound 7 = r + §1 which then
improves to (5.25) by using the above expression together with (5.24), (5.29) and

(5.30). O
The last intermediate result needed to prove Theorem 5.2 is the following one.

PROPOSITION 5.8 (Projecting the Lagrangian). — Let Iy € Iy and Vi € Vy with V
convex. Then one can find Ry > 1 and C > 1 such that for all e < 1, the map

(5.36) (r,0,p,m) — (r,0,2,7)

is a diffeomorphism from f‘j(Rl,Vl,IO,CE) onto an open subset containing
O1(Ry, V1, 11,€). On ©T (R, Vi, 14,¢), the inverse of (5.36) is of the form

(r,0,0,9) — (r,0,p,n)

with
(537) B(Taea Qaﬁ) = Q+S—u(ﬂ_9)+50(19_9)2)
(5.38) (7,6, 0,9) = 70g(0)(9 — ) + S1-, (9 — 0) + S1(9 — 6)*.

Recall that the notation ©T(R,V,I,¢) is defined in (5.11). To understand infor-
mally why we can take proportional parameters C'e and ¢, we recall that the condition
p > (1 — Ce?)p'/? means that ||/r < e (and p > 0) which, by (5.38), is comparable
to the condition |6 — | S e.

Proof of Proposition 5.8. — Denote by H the map (5.36). Consider the maps H and
K defined by

H(r,0,p,8) = (r,0,p,0 + p~'g(0)"'¢), K(r,0,0,9) = (r,0,0,09(8)( —0)),

which are inverse to eachother (on appropriate domains given below). We also set

E(r,0,p,8) = (r,0,p,7).
It follows from (5.26) and (5.28) that

ﬁ(r707p777) = H(Taaapa 77/7') + g—u(’?/T) + 50(77/7")2-
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thus, after composition with ¥ o K and using Lemma 5.5, we see that
(5.39) HoEoK=1I+S5_,(9—0)+Sy(9—6)>

These computations make sense on the following sets. Since H is defined on
f; (Ro, Vo, Lo, €0), it follows from (5.21) that (5.39) holds on any set which is mapped
into ' (R, Vo, Ip,£0) by K. Using (2.4) and the fact that I is relatively compact,
one can find C' > 1 such that

K (6+(R0a V07107€)) - F:t (R07 VOaIOa sz) )

and thus (5.39) holds on ©%(Ry, Vj, Iy, €) if Ce < eg. Since the right hand side of
(5.39) is a small perturbation of identity where r is large and 6 — ¢ is small, it follows
from a routine argument that if R is large enough and ¢ is small enough, it is a
diffeomorphism on ©*(R, Vi, Iy, ) onto an open set containing ©*(R, Vi, I1,¢/8).
Note that ©F (R, Vy, Iy, ¢) is convex which is useful to justify this fact, for instance
to prove the injectivity of (5.39) by using the mean value theorem. Note also
that (r,0) is unchanged by the left hand side of (5.39) and that, when ¢ = 6,
we have (H o E o K)(r,0,0,0) = (r,0,0,6). This allows to check that the inverse
mapping to (5.39) is still of the form I + S_, (9 — ) + So(9 — 0)2. Composing E o K
with this inverse diffeomorphism, we get the existence of (p, 17) and the expansions
(5.37)-(5.38). S O

Proof of Theorem 5.2. — We choose I; = I and V4 = V in Proposition 5.8 (recall
that Iy and Vp were chosen arbitrarily). We prove the items 1 and 2 at the same time.
By Proposition 5.6, FT is well defined on f;@(RO,VU,IO,so). Since ¢° and ¢y ° are
symplectic maps so is F'* and its graph is Lagrangian. Together with Proposition 5.8,
this implies that the differential form

p(r,0,0,9)dr +n(r,0, 0,9)d0 + 7(r,0, p,n)do — 7(r, 0, p,n)dd

is closed on O(R,V,I,¢) for € small enough. Since this set is convex, we get the
existence of a function ¢, unique up to an additive constant, such that

(5.40) Orp=p Ogp=1n Opp=r7(r0,p,m) dsp=—0(r,0,p,n).

To fix the constant and to define ¢ globally in g, we observe that (5.17) (for A > 0)
implies that p,n are homogeneous of degree 1 in ¢ and #(r, 8, p,n),7(r, 0, p,n) of de-
gree 0. We can thus find a unique solution ¢ defined for (r,6,9) € O(R,V,e) and
0 > 0, which is homogeneous of degree 1 in p. Then (5.40) and Proposition 5.8 yield
the item 2. It turns out that if one considers pp(r,0,1,9) with ¢ € R, we get the
expected solution for it is also a generating function of F'~ for ¢ < 0 by the symmetry
(5.17) for A = —1. To prove that ¢ satisfies the eikonal equation it suffices to observe
that

p(r,0,p,m) = o(r, 0, p,n)?,

which is well known (see, e.g., [30]) and easy to get from Proposition 5.4 and the
conservation of energy. By evaluating this equality on (r,0,p,7n), we get (5.2). For
the item 3, (5.6) and (5.7) are direct consequences of Proposition 5.8 by (5.40). The
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expansions (5.8) and (5.5) follow from (5.40) combined with (5.37)-(5.38) and Propo-
sition 5.6. O

We end up this chapter with the proof of Proposition 5.3 on transport equations
(recall that €,k have been dropped from the notation). As before, we only consider
the case when s > 0 (and ¢ > 0).

Proof of Proposition 5.3. — The item 1 follows from the well known method of char-
acteristics (see, e.g., [19]) and has nothing to do with our specific geometric context
so we only give the main lines. We let (7°,6%) be the maximal solution to the ODE

(TLS, LS) = (appa anp) (fsa és? (87"()0’ 89()0)(7’:57 és) o, 19))7 (foa 90) = (Tv 9)
We also let (3%, 7°) = (8,0, 8p0) (7%, 6%, 0,9). By differentiating (5.2) in (r, #), one has
(8rp, Bop) (7,0, -0, 090) + (D2 40) (8,0, 0yp) (7, 0, Brip, Bpp) = 0,
where D? ;¢ is the Hessian matrix of ¢ (seen as a function of (r,6)). By evaluating
this identity at (7, 0%, 0,79), we obtain
(5°,11°) = (9pp, Op) (7, 6%, ", i),
which, together with the first equation, shows that (7,6, 5°,7°) solves the equation
(5.16) with initial condition (r, 8, d,¢, 9gp). Thus (7‘5, és,i)s,i]s) = (Fs, és,ﬁs,ﬁs) sat-
isfies the expected properties of the first item. To prove the second item, the main
observation is that
P(p = S_l—l/ + S_1(19 - 0),
which follows from (2.11), (5.6) and (5.7). Using (5.4) (see also (5.18)), we have
6° — 9(r,0,0,0,05p) =V, s— 400.

Thus, by integrating #° from s to +oco and using the flow estimates of Proposition 5.4
and Lemma 5.7 together with the estimates on ¢ given in the item 3 of Theorem 5.2,
we get

(5.41) 02959805 (6° — )| < (s/r)~1r 7.

By the same techniques we can estimate the derivatives of 7#* and we get the result by
routine calculations. The third item follows from the usual method of characteristics
for linear transport equations. We only record that to prove that the solution isin S_,,
(if C=0and f € S_1_,), it suffices to observe that

DLOG 0505 (£(7*,6°,0,9))| S (s/r) 1 r 10,

on TH(R,V,1,¢). O
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CHAPTER 6

THE ISOZAKI-KITADA PARAMETRIX

In this chapter, we construct a new version of the Isozaki-Kitada parametrix
compared to the ones introduced in [4, 30]. The novelty stems basically from the
parametrization of the Lagrangian (5.19) in term of the final angular position 9 rather
than the final angular momentum 7; it turns out that it is more accurate to deal with
global in time estimates.

Before displaying the parametrix, we need some notation and preliminary results
for operators on R™. For u € R, S, (R?") denotes the space of symbols defined on R?"
such that

(6.1) 00050500 a(r,0,0,9)| < (r)*™7, on R*™.
We equip it with the standard topology. We will also need the space S/rfin(R3") of
functions satisfying

1030589, 05 8808 A(r,0,7",6', 0,9)| < (min(r,r"))* =3, on R¥".

Let us consider first the semiclassical version of the operators. For a € S,(R?*")
supported in ©F (R, V, ,¢) (see (5.11)), we define

n+1

J"(a)v(r,0) = (27h _7/// i ‘Pl(r’e’g’ﬂ)_“)a(r,&g, ?)v(z,9)dzdoedd,

where ¢; is the phase constructed in Theorem 5.2 with € = 1. The operator J"(a) is
well defined on .’(R™) and it is not hard to check that it maps .(R™) into itself. Its
formal adjoint (with respect to the Lebesgue measure) is given by

J"(a)Tu(z,9) = (2rh)~ ///eh zo—g1(r0’ ’9’19))a(7‘ o', 0,9)u(r’,0")dodr'do’

and J"(a)' also maps the Schwartz space into itself. The prototype of our parametrix
at high frequency will be of the form

(6.2) J"(a)e~ Pz M (b)T.
For the parametrix at low frequency, we will rather consider operators of the form
(6.3) DeJo(a)e 0L I (b) 2,
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where J¢(a¢) is defined by

Je(ae)v(r, 0) /// ilee(rf,0.9)— W)ae(r 0, 0,%)v(zx,¥)dzdedd,

i.e., is defined as J" with A = 1 and ¢; replaced by ¢.. In this case, we need to consider
€ dependent amplitudes a., b which will be bounded in their classes with respect to €
and supported in € independent areas of the form ©* (R, V, I, ). Omitting the scaling
operators 7, and ;! in (6.3), we can write the Schwartz kernels (with respect to
the Lebesgue measure) of both (6.2) and (6.3) under the following single form

i 2t 2 Y _
(6.4) (2mh)"" / / e (P00 =5 =o' 000) o (19 o 9YE.(r', 0, 0, 0)dodd.

Indeed, (6.2) corresponds to € = 1 and h € (0, 1], while (6.3) corresponds to h = 1 and
€ (0,1]. The form of this kernel motivates the introduction of oscillatory integrals
of the form

(6.5) IMAcs) = (2mh) ™" / / e ®e(om0r'0000) A (16 1! 0, 0, 0)dod?,

where &, = ®.(s,7,0,r",6, 0,9) is defined as

(be = QDe('f‘, 67 0, 19) - 802 - ()06(7‘/7 01’ 9, 19)

In the applications we will take either s = t/h or s = €%t (and h = 1) to fit (6.4).
We will consider amplitudes A s bounded in S"(R3") with respect to (e, s) and
satisfying the support condition

(6.6) supp(4.,s) C OF(R,V, R, V', I,¢,¢),
where (:)i(R, V,R',V' I e €') is the set
{(r,0,7,6",0,9) | (r,0,9) € O(R,V,¢), (+',0',9) € O(R', V'), 0> € I, +0 > 0}.

We refer to (5.1) for O(R,V,€) and, as in Theorem 5.2, we will assume that V' is con-
vex. Note that the above amplitudes are compactly supported with respect to (g, 9).
In the same spirit, to cover both definitions of J"* and J, in the next chapter, we will
use

T (a)o(r, 0) = (2xh)" / / / et (0cr0.00-50) 4 (1 0. 0. 9)o(z, 9)ddodd,

where a. is allowed to depend on € in a bounded fashion.

6.1. FIO estimates

In this section, we record properties on operators Jeh(ae) and oscillatory inte-
grals I"(A.;). All propositions and lemmas are stated in full generality; however,
for notational simplicity only, we will prove them in the outgoing case (+ case) and
will omit the dependence on € in the notation of proofs, similarly to what we did in
Chapter 5.
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PROPOSITION 6.1 (Non stationary phase estimates). — Let I = (ol 0%,,) with
Osup > Qinf > 0.
1. Let 6 € (0,1). If € and €' are small enough, then

(1=20)r > (v £ 2s0sup)
or = I'(A.s) = O0(h™®(s,r,r")™>),
r < (1—20)(r" £ 2sgint)
uniformly in €, provided that £s > 0 and (A.s) belongs to a bounded set
of S (R3™) such that (6.6) holds.
2. Let c€ (0,1). If R is large enough and € is small enough, then
'<e? and |0—9|>ce on supp(Acs) = I'(Acs)=O(h™®(s,r,r")">)

e <e
uniformly in €, provided that £s > 0 and (Acs) belongs to a bounded set
of S™(R3™) such that (6.6) holds.

Proof. — For both items, we consider only the outgoing case. For the first one, using
the expansion (5.5) we find that, on the support of the amplitude,

9,® = —2s0+7(1+0()) —r'(1+ O(&)).
Therefore, if (1 — §)r > ' + 2s0syp We see that
9,®
L >6-Ce-C¢,
r
where the right hand side is larger than 6/2 if €, are small enough. Then, repeated
integrations by part in ¢ show that I"(A4,) = O(h>°r~°°) which yields the result since
r’ +|s| < r in this regime. On the other hand, if » < (1 — §)(r’ 4 2sgint) then
0,®

"+ 280int
Then, as above, integrations by part in ¢ show that I"(4,) = O(h°°(r’ + |s|)_°°)
which yields the result since r < 7' 4 |s|. For the second item we observe first that by
the item 1, we can assume that C~!'r < r’ 4+ s < Cr. Then using the expansion (5.8),
we have

< -6+ Ce+ C€.

99® = —10(g(0)(¥ — 0) + O(R™7e) + O(e?)) + ' 00(?)
on the support of the amplitude. Thus, if | — 8| > ce, we see that for R large enough

and ¢ small enough,
09®|
— 2

~

r
since 7’ /r is bounded thanks to the assumption ' + s < r. Then, integrating by part

in 1, we obtain I"(A) = O(h°°r_°°) which yields the full decay since we also assume
that r 2 1’ + s. O

We next state an Egorov type theorem. It is a classical result but we quote it explic-
itly for we are not in a completely standard situation and also consider ¢ dependent
phases and symbols.

SOCIETE MATHEMATIQUE DE FRANCE 2024



48 CHAPTER 6. THE ISOZAKI-KITADA PARAMETRIX

PROPOSITION 6.2 (Egorov theorem). — We can choose R’ > 1 and 0 < ¢’ < 1 such
that for all bounded families (a.) € S, (R?"), (be) € S,/ (R*™) such that

supp(ac) C ©F(R,V,1,¢), supp(b.) C ©F(R,V,1,¢')

one has

Jeh(aE)Jeh(be)T = Oph(ce(h)),
for some admissible c.(h) € S—oH+1 +1=n(R21) depending in a bounded fashion on €
and such that

Ce(h) ~ Z hjce,j’ Ce,0 = (15(7', 0, De, ’ge)l_)e(raev @evﬁe)‘det dp,n (ée, 1§e)

320

)

where we recall that (g.,9.) are components of an (see the item 2 of Theorem 5.2),
namely

(0c,Ve) = lim (25,9%), where (72,0%,05,77) = @2 ,.(r,0,p,m).

s—too

For j > 1, c.; has its support contained in the support of ccp.

In several proofs below, the following definition will be useful
min k- def o o min
A=Smn(@-0)+(W-0))" E A=) laps o Ao (0 = )20 = 0)%, Aaer € S

Such expansions are of course similar to those in Definition 5.1.

Proof. — We study the kernel (6.4) with ¢ = 0 (and the dependence on € omitted).
Consider the function (p,7) of (r,6,7',0’, 0,9) defined by

1
(b ) = / (9,0, 060) (2, O, 0, D),
0

where 7y = 7' + A(r —7’) and 6y = 6’ + \(6 — 0’). Note that by convexity of V (see
after (6.6)), (7, 0x, 0,9) belongs to OT(R,V,I,¢) if both (r,0, 0,9) and (r',0’, 0,9)
do. Introduce next

2 g

£=r+r’ 0

7
so that the phase becomes

!
6.7)  o(r8,0,9) —o(r', 8, 0,9) = plr — ')+ £ T

By using (5.6) and (5.7), we obtain

p=o (14 5™ ((0-0)+ (@ —0)) + S5 (W -0+ -0))°),

and
(6.8)
=90 — %(9 —0')+ 8™ (0 — 0) + (9 — 0)) + SF (0 — 0) + (9 — ).
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Both expansions follow from routine computations, using the fact that we have
F—0A=(1-XN)—0)+ AV —0) and

2
r+r

2t

3(r+1r")

All this shows that p and (the components of) é belong to Sf", and also that
|dg,0(p,€) = I,| < min(r, 7)™ + |9 — 0] + |9 — 0]’

1
/ ra(® —0y)d\ =19 — 0 — ()
0

Thus, if we assume that 7,7’ > R’ > land &’ < 1, (g,9) — (p,&) is a diffeomorphism
from {|9 — 0] < €}nN{|Y—0| < &}n{e* € I, o > 0} onto its range. If we
denote by (p,£) — (0,7) the inverse map (which depends also on r,6,r',8’), the fact
that p,& € S implies that,

(6.9) |0705:07,85 80 (3,9)| < min(r,r") I~

’

on its domain of definition, hence on the support of a(r, 8, 3, 9)b(r’, ¢’, 9,3). Also, since
p — o is small, p must belong to a compact subset of (0,4+00) (remember we prove the

outgoing case). Then, by using successively the changes of variables (o,d) — (p,&)
and £ — 7= %T/pg(ﬁ)f (recall (6.7)), the kernel of J"(a)J"(b)" becomes

(2wh) ™" / / et (= 6=00m) 40 g 5 VB 0, 5, 9)8,.4(3,9)|dpde

where

&9) = (5,9) <r,e,r’,e',p,

2 g0 !
r4+r" p "

and where |0, ,(8,9)| is the corresponding Jacobian, which satisfies in particular
(6.10) 10p.m(8,9)] = O((r + 1) ™).

Note in addition that, restricted to r = v’ and 6 = ¢’, (g, 15) = (g,9) since it is
the inverse of (o0,9) — O, 9p(r,0,0,9). One can then rewrite the kernel with an
amplitude c¢(h) independent of (v, 6’) according to the usual procedure (see, e.g., [43,
Theorem 4.20]). That c(h) belongs to S~°°##+1=n follows from (6.9), (6.10) and
the fact that a € S, b € S,». This concludes the proof. O

We next consider two applications of Proposition 6.2.

PROPOSITION 6.3. — If (a.). is a bounded family in So(R*"), supported in
OF(R',V,1,¢') (with &' as in Proposition 6.2), then

T2 (ae) | L2 (dwdo)— 12 ((ryn-1arde) < C,

with a constant C' independent of h,e € (0,1]. Similarly, if (be)e is a bounded family
of Sn_1 supported in ©F(R',V,1,¢'),

”Jeh(bE)T”L2((r>”*1drd0)HL2(dmd19) <C,
with a constant C independent of h, e € (0,1].
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n—

Proof. — The first estimate is equivalent to the fact that (r)"T_th (a)Jh(a)T(r)T1 is
bounded on L2?(R") equipped with the Lebesgue measure. By Proposition 6.2,
J"(a)J"(a)! is of the form Op"(c(h)) for some admissible symbol c(h) € §—°1=",
Thus, when composed on both sides with <r>nT_1, Proposition 3.1 shows we get a
pseudo-differential operator with admissible symbol in S§—>:0_ Since such pseudo-
differential operators are bounded on L2?(R"), according to the usual Calderén-
Vaillancourt Theorem, thle result follows. The second estimate is equivalent to the

boundedness of J"(b)T(r)"=" on L2 (R™) and thus follows from the first case by taking
the adjoint since b(r) =" = (r)"= a for some a € So. O

In the next proposition, to take into account the dependence on e, we introduce
the sets

(6.11) T (R,V,1,e)={(r,0,p,n) |7 >R, 0€V, pep €1, £p> (1-e>)pl2},

(see (2.16) for pc ). This is the convenient replacement of (5.20) at low frequency. It
allows to cover the case e = 1 used for high frequency parametrices (in which case we
drop the dependence on €), while the regime e € (0,1) will be for low frequency para-
metrices. In this last case, Fe (R, V,I,¢) has to be understood as a set of (¥,6, 5,7n).
We use only (6.11) in the intermediate technical statements but, for clarity, we will
use both (5.20) and (6.11) to state the main result of this chapter (Theorem 6.10).

PROPOSITION 6.4 (Factorizing ¥YDO). — Assume we are given N bounded families
(ac0)s---s(acn) of symbols supported in ©F (R',V,1,¢") such that, for some ¢ > 0
independent of €,

e j € S_j(Rzn), aco>c>0 on some o* (R",V”,I’,s”).

Let I" € I'. Then there exists C > 0 such that, for all 0 < e < 1, p € R and all
bounded family (f.) of S™°°H(R?*™) such that

supp(fe) C TE (R", V", 1", ¢),
one can write

Op"(fo) = > W T*JMac;) Il (ber)T + RN OP" (fen(h)),

J+ESN
with (fe,n(h))ene(o,1) bounded in §—oou=N(R21) and some beo,...,be,ny such that
(6.12) (be,e)ee(o,1) bounded in Syin—1-k(R*™),
and
(6.13) supp(be,r) C supp(fe(., -, Orpe, ppe)) C O (R", V" I' Ce).
For k =0, we have explicitly
(6.14) beo(r,0,0,) = fe(r,0,0r¢c, Do) |d§§i?fffz§; )
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Notice that when g = 0, this proposition shows in particular that a bounded
pseudo-differential operator can be factorized (up to a nice error) as a product
J!(a)J"(b)T where, according to Proposition 6.3, J"(a) and J(b)! are bounded re-
spectively from L2(dxd?) to L?({r)"~'drdf) and from L?({r)"~'drdf) to L?(dzdd).

Proof of Proposition 6.4. — The principle is well known. We recall it briefly to em-
phasize where the support estimate in (6.13) comes from. To seek which conditions
must be fulfilled by the bx’s we compute first

N-1N-1 N-1
Z Z it g (a,) T (by,) T = Z KT OP" (¢ 1.1) + AV OP™ (riv ().
§=0 k=0 3:k,1=0

By Proposition 6.2, the first symbol reads cg 0,0 = ao(r, 8, 8,9)bo(r, 6, 0, 1§)|det(8p’n(§, 9))]
so the requirement that ¢ 0,0 = f together with Proposition 5.8 (in particular (5.40))
show that by must equal (6.14). This function is well defined since f (r, 0,00, 8@90) is
supported in the image of supp(f) by the map (5.36) hence, using (5.26) and (5.28),
in ©F(R", V", I',C¢) if ¢ is small enough; in particular, ag is bounded below on
such a domain. Using then that det (89,198“950) € S,_1, we see that by € G—oosmtn—1,
Then, the next symbol in the expansion is Zj+k+l:1 ¢k, and we require it to be 0,
which yields the equation

ao(r, 0, 0, @)El(r, 8,0, §)|det(apﬂl(§v 5))| = Z Cik,ls

jt+k+i=1,
k=0

where, by Proposition 6.2 and the form of by, the right hand side vanishes outside the

support of by(r, 6, g,9). One can thus divide by ap and find b;. Higher order terms
are obtained by iterating this process. O

In the sequel, we let Uy(s) = e *"P * be the semiclassical Schrédinger group on
the line R.

PROPOSITION 6.5 (Propagation estimates for the parametrix). — Let I € (0, +00).
If €' is small enough and R' large enough then for all integer N > 0, all bounded
families (ac)e of So(R?*™) and (b)e of Sn_1(R?™), both supported in OF(R',V,1,¢"),
then

(6.15) [[(r)~ T (@) Uo(s) T (b (r £ )V | o oy <1,

n=1drdf)— L2 ({(r)n—1drde)
for all £s > 0 and all h,e € (0,1]. In particular, we have
[[(r) =21 =N2 g (a ) U (5) T2 (be) T

if N1, No > 0 are integers.

s>_N2

)

N
> 1||L2(<r)"*1drd9)—>L2((r)"*ldrdé') ’S <

Proof. — The main observation is that 2sp+ d,¢(r',0’, 0,9) 2 r' + s by (5.5). We can
then write

=— " (9,0 +2
T+S SQ( QSO—’— 89)7
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where the prime on ¢ is a shorthand for the evaluation at (v/,6’,9,0). Here the
fraction belongs to Sy uniformly with respect to s > 0. Writing next 8,¢" 4+ 259 =
Opp(r,0,0,9) — 0,P and setting b = b(r + s)/(0,¢ + 2sp), integrating by part in o
shows that (r)~1J"(a)Uy(s)J"(b)T(r + 5) reads
" ({r) ™ Oppa)Us ()" (b)" — ih(r) ™' (J*(9o0)Us ()" (B)" + J" () Un(5)J" (9cb)"),

which is bounded on L?((r)"~'drdf) uniformly in s > 0 by Proposition 6.3 since
(r)~18,¢pa and b belong respectively to So(R?") and S,,_1(R?*") (uniformly in s > 0
for b). This proves the estimate (6.15) with V = 1. For N > 2, the result is obtained
by iteration of this process. O

We next turn to the proof of dispersive estimates for the oscillatory integrals of the
form (6.5).

PROPOSITION 6.6 (Stationary phase estimates). — Let I € (0,+00). If e, € are small
enough and R, R’ large enough, then for all bounded family (Ac). of SF™(R3™) satis-
fying (6.6), one has

|I7(A,)] < min (h‘”, |hs|_"/2) , seR, ¢he(01].

Notice that, unlike the non stationary phase estimates of Proposition 6.1 and the
propagation estimates of Proposition 6.5, we do not need any sign condition on s here.
To prove Proposition 6.6 (omitting € as before), we will rewrite

80(7“’ 0, o, ,0) - SD(/’J7 917 o, 19) = (’I" - 7‘/)57‘()0 + (0 - 01) ' 5&9¢7
where, setting 7y = + A(r —7’) and 6, = 0" + X(6 — ¢'),

1 1
O, ::/ Orp(ra, 0, 0,9)d\, Ogip ::/ Bgip(r, Oy, 0,9)dN.
0 0

LEMMA 6.7 (Improved asymptotic expansion). — We have

1 . .
Orp=0p (1 - 5(19 —0)-g(0') (9 — 0') + S™(9 — 0')% + SF (9 — 9')3) .

Proof. — Using the notation and estimates of the proof of Proposition 5.6, we have
7° =n+ S1(n/r) and g(9¥°) = g(0) + So(n/r) (where the remainders So(n/r), S1(n/T)
depend in a bounded fashion on s) so by using the motion equations and letting s go
to infinity, we get easily

_ Ln a5 (Mg (M)

2=p+ g5y 907145 () + 50 (7)
Evaluating this identity at (p,n) = (9,¢, dp) and using (5.6)-(5.7), we find
0=0rp+ (9 —0)-5(0)" (9 = 6) + S, (= 6)° + So (9 - 6)°.

This provides an expansion of 0,¢ which yields the result after evaluation
at (rx, 0, 0,79) and integration on [0, 1]. O
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LEMMA 6.8. — Let 6 € (0,1). Ife, &' are small enough and R, R’ large enough, then
7|0 — 0’| > 6|s| and |s|>h = I"(A)=O0(h""(s/h)">).

Proof of Lemma 6.8. — Let us observe first that
= _ 0+
Opp = or {g(@') <19 -

which follows from the expansion (5.7) and by writing 6 = 6’ + A(60 —9) + (9 — ¢’).
Then, in the integral (6.5), we use the one dimensional (linear) change of variable

) + 8 ((9—0) + (9 —0) + S (9 —0) + (9 — 9'))2] ,

o 5T<p. Its inverse is of the form
~ 1 / —rn! / min N2 min N3 ~
(6.16) 0 1+§(19—0)~g(0)(19—9)+5'_,,(19—6) + S5 (9 —0") ) o.

Letting ® be the expression of ® composed with this change of variable, we have
(6.17)

= (r—1)5—5 1+ —0)50) (0 —0)) +ar(0—0)3(0") (0 -5 91) +0

with a remainder of the form
Q=r(0-0)(S(0-0)+ (09— 0)) + S (9 - 0) + (2 - 0)°)
+ s (S™ (0 —0') + Sy (9 — 0)3).

The interest of this change of variable is that the only term involving r — 7', namely
(r — '), is independent of ¥. Therefore, using the above expansion, we have

99® = 65(0")r(0 — 0") + sO(¢') + r(0 — 6')(O(min(R, R')™") + O(e) + O(£")).

Hence, by using 7|6 — §'| > §|s| and by taking €, &’ small enough as well as R, R’ large
enough, we get a lower bound |0y ®| 2 |s| from which the result follows by integrations
by part. O

Proof of Proposition 6.6. — The estimate is trivial if |s|] < h. Thus we assume
that |s| > h and, according to Lemma 6.8, that |6 — 6’| < §|s| for some small enough
§ to be chosen below, otherwise we use that h~"|s/h|~N < h="|s/h|~™/2 = |hs|~™/?
for any integer N > n/2. Using the same change of variable as in Lemma 6.8, we find
that the Hessian matrix of & reads

d

S

2 =-2s (1 ~270 ) ) +5(0(€') + O(min(R, R') ™)) + O(r|6 — ¢').
0 &°g(¢)

We choose § small enough so that O(r|8 — €'|/s) = O(9) is sufficiently small with

respect to the first matrix on the right hand side (here we use (2.4)). This im-

poses to consider ¢ and ¢’ sufficiently small too and R, R’ sufficiently large to use

Lemma 6.8. Then, by possibly decreasing again €’ and increasing again R, R, we find

that s_ld;ﬂ&) is a negative definite matrix uniformly with respect to r,7’,6, 6’ on the
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support of the amplitude (and such that 7|0 — 6’| < §|s|). The result then follows from
the stationary phase theorem with s/h as a large parameter. O

6.2. Construction of the parametrix

In this section, we state the main result of the chapter which is Theorem 6.10 on
the construction of an Isozaki-Kitada type parametrix.

Given a chart Kk : U, C S — V., ¢ R* ! and V C V, as in Theorem 5.2, we
introduce the notation

JMa) :=11,J"(a), Jo)T = J (b))t
and
(6.18) Jen(a) =T, 2.J(a), Je () := J(b)T 9 I,

where, in (6.18), the symbols will depend on € in the applications. We refer to (2.2)
for II,..

As a starting point, we observe that the general formula
t
e "*PB(0) = B(t) —i / e =P (PB(7) —iB'(7)) dr,
0

leads respectively to the identities

(6.19) e P T (a)JM ()t = JM(a)e P2 T (b)) — Ry

with
. t

Ry = % e~i(t-T)P (Hﬁ [h2P,J"(a) — J"(a)h?D2] e~ 7Pz Jh(p)t ) dr,
0
and similarly,
'20 e_ Eh‘/a‘ﬁ €,K € = Eh‘/a’ﬁ e_ ’ i €K € - lo
6 P e (@) Je (b))t = Je, weDe g (b)) =R

with
t
Ry, — 2-62/ e—ilt=T)P <HH@€ [P. o J.(ac) — Je(a)D?] e—ifezpzjw(beﬁ) dr.
0

Recall from (2.15) that PII, 2. = eQHHQEPE,,i. Note also the scaling in time.
We seek a,b and a.,b. such that Ry; and Ry, are respectively small and such
that J!(a)J"(b)" and J. . (ac)Je x(be)" can be prescribed.
We consider in detail the high frequency case. The first step is to find
a =a(h) :=ao+ ha; + -+ hMayy,

such that h2P,J"(a(h)) — J"(a(h))h?D? is small, in an appropriate sense (here M is
an arbitrary integer order which is fixed). A simple calculation yields

(6.21) h2P.Jn(a(h)) — Ju(a(h))h®D2 = Jy (co + - + B 2eprin)
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where

(6.22) co = FEag

(6.23) ¢1 = FEay —iTag

(6.24) cj=FEa; —iTa;_1 + Peaj_o, 2<j<M
(6.25) cymy1 = —iTap + Peapr—1

(6.26) cpv2 = Peapg,

where E corresponds to the eikonal term and T to the transport operator, namely

E= pl'c(’ra 93 61",990) - 927 T= (ap,np) (Ta 9, a’r,@ﬁp) : 87",0 - Pfc@

By Theorem 5.2, we can solve the equation F = 0 on ©(R, V, ¢) for any given convex
subset V' € V,; and some R > 1, ¢ < 1. Therefore, solving the system of equations

(6.27) ¢;=0, 0<j<M+1,

on subsets of O(R, V, ) amounts to solve transport equations of the form (5.9), which
can thus be done by Proposition 5.3 (third item). More precisely, given Iy € (0, +00)
and Vy € V, we can find Ry > R, 0 < g9 < ¢ and solutions &Oi, e df/l to (6.27) such
that

a7 € S_; (6% (Ro, Vo, Io, €0))
(see (5.11) for the definition of ©*(R,V,I,¢)) with the additional condition that,
locally uniformly with respect to (0,9, o),

(6.28) d?f(r,&,z?, 0)—1, r—oo.

We use the notation &;t to make a clear difference between these symbols defined
on ©F(Ry, Vi, Iy, £0) and the final a;C defined globally on R?" in (6.30). We also point
out the technical fact that, to find solutions &jt defined on ©%(Ry, Vp, In, o), we
choose Ry and ¢( respectively large enough and small enough to ensure that

(6.29) 0% (Ry, Vo, In,€0) € T*(Ro, Vo, In,€0) € OF(R,V, I, €)

(see prior to Proposition 5.3 for T*(R,V, I,¢)).

The interest is to guarantee, if (7°,9°) are the spatial components of the Hamil-
tonian flow of p,, that (7°(r, 8, 0,.6¢),9°(r, 0,0, 6p), 0,9) belongs to the domain of
definition of ¢ for +s > 0 (see Proposition 5.3). The first inclusion in (6.29) is trivial
while the second one is a consequence of

F0.0000) 27, [0°(r0.0,0.000) — 0] 5 2P <0 )

which follow from the flow estimates of Proposition 5.4, (5.29) for 9° and the asymp-
totics of ¢ in Theorem 5.2.

We next globalize the symbols. Given R; > Ry, V1 € V, I1 € Iy and €1 < gy, it is
easy to construct

X+ € So(R?™), x+ =1 on ©F(Ry,Vi,I1,e1), supp(x+) C OF(Ry, Vo, I, c0),
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by choosing it of the form x1(r)x2 (0 — 9) x3(9)x4(Ee) with suitable x1, x2, x3 € C§°
and x; = 1 near +oco. We then define

(6.30) af = xxa7 € S_;(R™).

i
Notice that if we compute (6.21) with a(h) = a(h)* := ; af, we also have to take
into account the derivatives falling on the cutoff x4 ; we summarize the above results
in the following proposition, including the case of low frequencies which is completely

similar.

PROPOSITION 6.9 (Approximate intertwining). — Let V' be a convex relatively com-
pact subset of Vi;. Then for all Vi € Vo € V and I € Iy € (0,+00), we can find
Ri>Ry>1and0<e; <eg <1 such that:
1. At high frequency: one can find symbols a;t € S_j(R?™), j > 0, supported
in ©F(Ry, Vo, Iy, €0) such that
aff(r,&,q?,g) 21/27 on @i(RlaVvl»Ilasl)
and, if one sets a" = aF + .- + hMaf/I,
K P.J"(a") — J"(a")W* D2 = KMT2J" (r)) + J"(a") + T (al)
with T, € S_pr—o, @, al € S, all supported in ©F(Ry, Vy, In, o), bounded with
respect to h and, mainly, such that

(6.31) supp(a”") C {|6 — 9| > e1}, supp(al) C {r < Ri}.

2. At low frequency: one can find bounded families of symbols (a:j)ee(o,l]
in S_;(R?"™), j >0, supported in ©F(Ry, Vo, Io, o) such that

aei,O(rvevﬂv Q) Z 1/27 on @i(RlthIlvEl)
and, if one sets a. = a:o +---+ aiM,
Pe,nJe(ae) - Js(ae)Di = Je(re,M) + Je(éfe) + Js(ae,c)

with T pr € S—_pr—2, 8e,acc € So, all supported in ©F(Ry, Vo, Iy, €0), bounded
with respect to € and such that

(6.32) supp(ac) C {|0 — 9| > 1}, supp(acc) C {r < Ri}.

We point out that the terms d,a. are the contributions of derivatives falling on
the cutoff x+. The properties (6.31) and (6.32) will be useful to derive non stationary
phase estimates from Proposition 6.1. The ellipticity condition aoﬂE > 1/2 (and likewise
for af’o) is a consequence of (6.28).

The next step is a direct application of Proposition 6.4. Here again we only consider
the procedure in the high frequency case but summarize both high and low frequencies
parametrices in Theorem 6.10. Given a symbol X:ﬁ supported in strongly outgoing
or incoming area (see (5.20) in which we recall that p = p,), we can factorize the
corresponding pseudo-differential operator by mean of Proposition 6.4. More precisely,
if I, € I and Vo € V; are given, then for Ry large enough, €5 small enough and all
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X= e g’w’o(Rzn) supported in fgj(Rg, Vs, I5,€2), one can find symbols by, € Sy, _1_k
supported in ©%(Ry, Vo, I1, Cey), such that b := bgt + -+ hMbﬁ satisfies

TR (a") TR (") = Opyt (x5) ¥ + WM OpyL (7 )
with 7, € §—0:=M(R2n) houndedly in h. Recall that the cutoff ¢, is defined in
(2.7). Using Proposition 3.8, this can also be written

(6.33) Te(@") TR (") = 0P (X Pw + O p=2nt _ pane (™).

M/2
We synthetize the analysis of this chapter in the next theorem. Notice that, at low
frequency, we consider the ¢ dependent areas I' (R,V,I,¢) introduced in (6.11).

€,st

THEOREM 6.10 (Isozaki-Kitada parametrix). — Let k : U, — V,; be a chart of the
atlas of Chapter 2 and V' € V,; be a convezx open subset. For all given

VoeVypeV and 12@11@1'0@(0,—1—00)

one can choose C > 0, 0 < g1 < g9 and Ry > Ry such that for all N > 0 and all
0 < ey K1, Ry > Ry, the following approximations hold.

1. High frequency: there are a®,al,a" € So(R?™) supported in ©F(Ry, Vy, Iy, €0),
satisfying
supp(a) C {r < Ri}, supp(a") C {|0 — 9| > &1}
and % € S_N(R?*™) also supported in ©F(Ry, Vo, Io,c0), such that for all
xi € §-o00 satisfying
supp(xii) © L5 (R2, Va, I, £2)
one can find b" € So(R?™) such that
supp(b") C ©F(Ry, Vo, I1, Cey)
and
(6.34) e POPL (G = T2 (@")e PO + RR (1)
with
Ry (1) = €70 ypon_ ypan (W) — % /O t eI E=TP Jh(gh 4 gh 4 BN ) e 0L TR (60 dr.
2. Low frequency: there are a.,ac.,d. € So(R?") supported in ©F(Ry, Vy, Io, €o),
satisfying
supp(ace,c) C {r < R1}, supp(ae) C {|0 — 3| > e}
and ren € S_N(R?™) also supported in ©F(Ry, Vo, Iy, €0), such that for all
bounded family (ch,st)ee(o,l] of G000 satisfying
supp(ngSt) - fgfst(RQa Vo, o, €2)
one can find b, € So(R*™) such that

Supp(be) - ei(R27 Vv?a Ily 062)
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and
(6.35) e "POp, . (xE Jbn(er) = Jon(a)e P2 o (b) + Ren(t)
with

2t
Ren(t) = C_itPOf—I%]NH:fZ%N (1) - z/ e_l(EQt_s)e%Jm(ae,C + G + re,N)e_iSDi JE’N(be)Tds.
- 0

In both cases, the symbols are bounded uniformly in h and € respectively.

So far we have not justified to which extent the remainder terms in (6.34) and (6.35)
are small. We will use Theorem 6.10 in Section 7.3 to prove L? propagation estimates
for e=*F and will see there that the remainders decay as £t — oco. In Chapter 8,
we will use Theorem 6.10 in association with the (dual) propagation estimates of
Section 7.3 to control the remainders R% (t), R n(t) in L' — L norm.

Remark. — For future purposes, we record that, by using (5.6) and (5.7), €¢ and Ry
can be chosen respectively small and large enough in such a way (depending on V
and Ip) that we have

Orp
6.36
(6.36) .

€(1/2,2) and C7'rlol|f — 9| < |ep(r,0,0,9)| < Crlol|d — V],

on O©F (Ro, Vo, Lo, €0). In particular, 9,¢ and g have the same strict sign.
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CHAPTER 7

PROPAGATION ESTIMATES

7.1. Finite time estimates

In this section, we prove propagation estimates, that is an Egorov type theorem,
over finite times but which depend on the spatial and frequency localization. The
result is summarized in Theorem 7.4.

We introduce first some notation. We are going to work on T*((Ra,00) X S)
which is isomorphic to T*(Raq,00) X T*S, so we will write its elements as (r, p, @)
with (7, p) € (Rm,00) xR and w € T*S. We then let p. = p(r, p, w) be the principal
symbols of —Ag, (see (2.14)) which is intrinsically defined on T ((Raq, 00) x S). We
let ¢2 be the associated Hamiltonian flow. Notice that, for e = 1, p; is the principal
symbol of —Ag. Note also that the flow ¢¢ is not complete on T ((Ra4, 00) X S). We
then set

(F‘:, @ﬁ) := component of ¢?(r, p,w) on T* (R, 00).
For R > Ry and —1 < 0 < 1, we finally consider
(1) TER,0) ={(r,p,@) € T*((Ram, ) x S) | > R, +p > opl/*}.

It is an open conical subset of T*((Raq,00) X S) \ 0 (the strict inequality in (7.1)
prevents (p,w) from being 0). We will sometimes need refinements of such areas,
namely similar sets localized both on charts of S and in energy; if K : U, — V, is a
chart of the atlas chosen in Chapter 2, V € V,, and I € (0,+00), we set

(72) TE(R,V,I,0)x:={(r,0,p,n) ER™ |r >R, 0 €V, pe €I, +p>opl/]

e,k I

where we recall that p., is defined in (2.16). We will call such regions outgoing
(4)/ incoming (—) regions according to a classical terminology. Note the difference
with the strongly outgoing/incoming regions defined in (5.20)-(6.11) in the case when
o =1-¢21is close to 1.

We record first non angularly localized estimates on the flow.

PROPOSITION 7.1. — For all o € (—1,1), there exists R > 1 such that
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1. there exists ¢ > 0 such that, for all € € (0,1],
7 >c(r+ |s|p1/2), forall £5s>0 and (r,p,w) € TF(R,0).
In particular, R can be chosen such that ¢¢ is defined on f;t (R,0) forall+s > 0.
2. For all 0 < e < 1, there exists T > 0 such that, for all € € (0,1],
+0° > (1 —e?)p!/?  provided that +s > Trp;/? and (r,p,w) € [T(R,0).

3. Let 0 <e <1 andtyg >0 (as small as we want). One can find § > 0 such that,
for all e > 0 and all (r,p,w) € TF(R, o), we have

1
1/2

<1-¢* and +£s>trp;Y? = i€;2>i<1/2+5>

Remark. — As in previous parts, we will give all proofs in the case ¢ = 1 (and then
drop the index € from the notation) and, when there is a sign condition, for s > 0.

This only simplifies the notation.

Proof. — Let ¢ € (—1,1). Consider then 0 < & < 1 small enough such that

§:= - ol < 1. Let also Ry > 1 such that —@ >2(1—¢e)r~Y(p— p?) for r > R;.
£ 2
This implies that, as long as 7° > R;
d2 _s\2 d p— —5\2 =52
—— (%) =4—(7°0°) > 8(2°)" +8(1 —¢)(p — (2°)°) = 8(1 —&)p,
ds ds
hence that

(7)2 > r? + 4rps + 4(1 — €)s%p
> r? — 4|so|rp/? + 4(1 — €)ps
= (1—8)(r? + 4(1 — £)ps®) + 6(2(1 — ) 2p?|s| — 1)?
> (1—0)(r* +4(1 — &)ps?).

By a simple bootstrap argument, using the above argument, one can see that 7° > R,
for all &5 > 0 provided that r > (1—4)~'/2R;. This completes the proof of the item 1.
For the item 2, we observe that 7° < r + 2sp'/2 hence, by integrating

we get

2° p 1 2sp1/2
artanh <pl/> > artanh ( 1/2> + W In (1 + "

and for sp'/2/r large enough the right hand side is greater than artanh(l — &2),
yielding the result. For the item 3, we observe that g° is non decreasing in s so if
the estimate holds at some time before tyrp~'/? then it holds for all larger times. By
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possibly increasing R;, we may assume that, for r > R;, we have |%| <4r=l(p—p?.
Therefore, using that 7° > R; by the item 1, we have
|2° — pl < 4ps/r,

so by assuming sp'/?/r small enough, we have |g°/p'/?| < 1 — % Thus, for such
times, the first inequality in the proof of the item 1 yields

F>-(1-2)2.
/rls
On the other hand, using once more that 7 < r + 2p'/?

p 2 P
- f > 22
r(142sp'/2/r) = 2r

s, the above inequality yields

g° 2 (e —<'/4)

provided sp'/?/r is small enough, say not greater than 46, where § > 0 can be chosen
smaller than £2ty/2. By integration over such times, we get 9° > p + 5522% which
yields g°/p'/? > p/p'/? 4 § if e2sp'/? /r > 26 hence in particular if sp'/2/r > to. O

In the next proposition, we record estimates on the geodesic flow in a coordinate
patch. We consider a chart k : U, — V,; on S from the atlas chosen in Chapter 2.
We recall that ¢7 (7,0, p,n) is the flow of p. . on (R, 00) X Vi, the components of
which we denote as in (5.12).

PROPOSITION 7.2. — Let V € V,;, and I € (0,+00). There exists t1 > 0 and Ry,; > 1
such that,

L. for all € € (0,1], ¢¢,.(r,0,p,m) is defined for |s| < tir and (72,9%) belongs
to (Raq,00) X Vi, provided that

(73) T > RV,I7 0c ‘/a pe,n(r767p7 7]) el.
2. For all (j,a, k, ) € Zin, there exists C > 0 such that, uniformly in € € (0,1],

] Qo qs —s i |S|

(7.4) 09959508 (95 — 0,55 — p)| < Cr |za|7
j =S —S — S
(7.5) 09050508 (7 — .2 — )| < ori— Al 3l

r

for all initial data satisfying (7.3) and all |s| < tyr.
Proof. — See [30]. O

In Theorem 7.4 below, we will propagate observables which do not remain localized
in a single chart. To handle this fact, the following coordinate invariance property will
be useful.

SOCIETE MATHEMATIQUE DE FRANCE 2024



62 CHAPTER 7. PROPAGATION ESTIMATES

PROPOSITION 7.3 (Normalizing the angular supports). — Let k1 : Uy — Vi be a chart
on S of the atlas chosen in Chapter 2 and v, as in (2.6). Let (ar)r>1 be a bounded
family in S—°°0 such that,

supp(ag) C (R,00) X K x R"™,  for some K €V,,.

Then, for all given N > 0, one can write

Op,{u1 aR)i/)m = (Z Op,€2 ARk, ( ))1[),.;2> +O%:J$N_>3Z;A2,N(hNR_N)
and

Op. ,, (aR)tn, (er) (Z Op ,, (ap,ms, e)wKZ (61")) + Oa(g:]%]N_)z]%]N (R™N),

K2

where (aR.., (h))R,n and (R ky.c)R,e Delong to bounded subsets of 570 and, using
the notation (2.3) and (2.6), are supported in

(7.6)
{(r, T12(8), p, (dn12(8)T) ") | (.6, p,) € Supp(aR)} N[R,o0) x supp(px,) x R™.

If ar depends in a bounded way on additional parameters, then so do the sym-
bols ar x,(h),aR ke and the remainder terms.

The meaning of this proposition is twofold: it says first the natural fact that a (pos-
sibly rescaled) pseudodifferential operator with symbol supported in (R, 00) x K x R"
with a compact set K contained in V,;, but possibly larger than the support of the
angular cutoff ¢,,, can be written as a sum of operators with symbols angularly lo-
calized in the support of ¢,,. The second point, which is technically important, is
the control of the remainder terms with respect to R. This will be useful to prove
Theorem 7.4 below.

Proof. — For definiteness, we consider rescaled operators, the other case is similar.
By introducing the partition of unity (2.7), which is equal to 1 near the range of the
operator since its symbol is supported in r > R > 1, we have

Ope N(G’R)wlﬁ 67" Z w:‘iz er Ope K1 (G’R)wﬁl (GT)

where we keep only those ko such that U,, N U, # 0 otherwise the corresponding
operator vanishes by the support properties of 1, and ar. In each term of the right
hand side we write ¥, = 1w, ¥, + ¥, (1 — ¥y, ). The terms involving 1 — t),, are of
the form

(7.7

e, Ze (s, 57 (6)) OB (@), (1 = )77 (0))) 7 T = Oy (RTY).
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Indeed, since 1 — 1;,@2 vanishes near the support of v,,, the composition rules of
Proposition 3.1 show that the parentheses is a pseudodifferential operator with sym-
bol O(R~°) in S~°°=°° which in turns show it is as in the right hand side (for any N)
by the third item of Proposition 3.8. Next, using the notation (2.3) for the transition
maps, the terms 1y, (er)Op, ., (aRr)(Yy, ¥, )(€r) can be written

M, 7 (11 0, (7 57 (6)) OB (ar) (Y, D) 7, 5 (O, ) 21T

by using that (IL., Zeu)(r) = I, Ze (I u(#)). We then use the third item of Propo-

T12
sition 3.1 to write, for any IV, the parentheses as the sum of an operator with symbol

supported in (7.6) and a remainder term with symbol O(RY) in §=°°~2N which
produces a remainder as in (7.7). This completes the proof. O

We are now ready to prove the main result of this section. We refer to (3.6) for the
notation which is used extensively below. We also refer to (7.2) for T¥(R,V,I,0),.

In the following theorem, given a chart « : U, — V,, on S of the atlas of Chapter 2,
as all charts below, we let

Cy : (Rpm,00) X Vi x R® = T*((Rpq,00) x Ug)

be the inverse of the chart on T*((Raq,00) x U,) associated to k, namely that is
defined by Cw(r,0,p,m) = pdr + 32;1;d0; € T, .1 gy, (R, 00) x Uy). Notice in
particular that

¢peoCu=Crod,

on all initial data and times such that ¢Z, (r,0,p,n7) remains localized inside
(Rpm,00) X Vo x R™,

THEOREM 7.4. — Let I € (0,00), 0 € (—1,1) and Vy € V, for some given chart xo.
There exists Ro > 1 such that for all given T > 0, all N > 0 and all bounded family
(be.r) of S™>C (indexed by R > Rqy and € € (0,1]) and satisfying

(78) supp(be,r) C TE(R, Vo, 1,0)x,
the following properties hold:
1. High frequency propagation (e =1 and h € (0,1]) : as long as
R>Ro, he(0,1], Ogi% < TR,
one can write

e (1ny OBl (b1, )y ) €7 = >~ s ODL (bt h)w) e+ O oz o (WWR™Y)

with (br(t, h)x) Rt bounded in S=°°0 and such that

Cy. (supp (br(t, h)x)) C G (Cry (supp(bi,r)))-

SOCIETE MATHEMATIQUE DE FRANCE 2024



64 CHAPTER 7. PROPAGATION ESTIMATES

2. Low frequency propagation (h =1 and € € (0,1]) : as long as
R>Ry, €€(0,1], 0<+te?® <TR,

one can write

e (% (er)Op x, (bE,R)'J}no(ET)> et = (Z wn(er)Ops,n(be,R(t)n)%(er)>
+ KOKJZVN_)%N (R7Y)
with (be g(t)x)e.r.e bounded in S=°°° and such that
C (supp (be,r (1)) C 6L (Cry (5upD(be,2))).

This is a quantitative version of the Egorov theorem. Its interests are to quantify
(in terms of R) the range of times on which it holds, to estimate the remainder terms
in suitable topologies and to include a rescaled/low frequency version which is not
completely standard.

Proof of Theorem 7.4. — For definiteness, we consider the high frequency outgoing
case (for which the notation is lighter since there is no ¢ parameter). We use the
general formula,

19) A = A = [ (W) [P A) P

Choose t; as in Proposition 7.2 and consider first 0 < s < t; R so that the flow remains
localized in a single chart. We seek B(s) = A(sh), or equivalently A(t) = B(t/h), of
the form
J(N)
B(O) = wﬁoopgo (bR)wﬁm B(S) = Z h]OpZO (bj (8))1/1140 = \IIN(S)wKoa
§=0

for some s dependent symbols b;(-) and some large enough order J(INV) to be chosen.
Here and below we set br = b g for e = 1. A simple calculation yields

(7.10) hB'(s) + h*[P,B(s)] = (h¥y(s) + i[A*P, U (5)]) Yo + iU N (8)[h2 P, s, -

According to the usual procedure, we try first to make the first parentheses in the
right hand side small. This is obtained by constructing iteratively the symbols b; as
solutions to

(7.11) bo(s) + {bo(s),Pro } = 0, bo(0) = Py, (7, 55 *(6)) br,
(7.12) bi(s) +{bj(s)spro } = fi(s), b;(0) =0,
with

Fi(9) == D (Pronbi () — (bjr ()#Pro )1,
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where p., 0 = Pk, is the principal symbol of P in the chart associated to k¢ and
Dro,0 + Pro,1 18 its full symbol, and where {a,b} = 0,a - O¢b — O¢a - 0;b is the Poisson
bracket. The solutions are given by

(7.13) bo(s) =bro ¢y, bj / fi(u, 07 )

with ¢7 . the Hamiltonian flow of p,,. According to the estimates (7.4) and (7.5),
the formulas in (7.13) define symbols

b r(s) :=bj(s) bounded in §=°~I(R?") for R> Ry, |s| <t R
Moreover, by choosing a relatively compact open subset Ky € V,,, and Ry > 1 so
that
(7.14) Vo € Ko, ey (r, kg (8)) =1 near (R;,00) x Ko,
we can ensure, by possibly taking a smaller ¢; > 0, that for R> 1 and 0 < s <t;R

supp(b; r(s)) C (Rq,00) X Ky x R™.

Hence, by the last condition in (7.14), ¥y (s) and [h2P,1,.,] in (7.10) have disjoint
supports. More precisely, the support of bj r(s) is contained in {r 2 R} so the symbol
of Wn(s)[h2P,1,] is O(h®R™) in S~°~° which implies, by the third item of
Proposition 3.8, that

UN(8)[W*P,hgy] = O -an—2y(81)__pantas(nn) (hNR_N_Q'MND> :
—-N N

Here v([N1]) is as in Proposition 3.11 (we will see the interest of this choice below). On
the other hand, the construction of the b;(s) ensures that, for some by r(s) bounded
in S—°~7(™) and supported in {r > R},

(R¥y(s) +i[R* PO n (5)]) Py = BTN 0D (b, R(5)) Do
=0, ~2N=29([N) _, 2N +27(TN) (hNR*N*M(rND)
by choosing J(N) large enough and by using again the third item of Proposition 3.8.

The interest of going to the order +2(N 4+ v([N])) in the remainder terms is that, by
Proposition 3.11,

ett=TP — Ojf:z\er_)Jf_—]\QrN—z—y([N]) (RV([N])) for times |t — 7| < t1AR,

and similarly from Jfl\z,NHv([N]) to s2N . This allows to take into account the conju-
gation by propagators in the integral of (7.9) and get, for our choice of A(t) = B(t/h),

efitPA(O)eitP _ A(t) — Oyf’l\f,vejf]{;’ (thlleN) .

Here N is arbitrary so getting A "R~ rather than A R~ is of course harmless.
Furthermore, one can rewrite A(t) as a sum of ¢,,Op” (b (t, k). ). by mean of Propo-
sition 7.3, which yields the result for |t| < t;hR. Then, by iterating this procedure
a finite number (=~ O(T/t1)) of times, we get the result (note that along such an
iteration, the symbols remain supported in r 2 R + |¢/h| by Proposition 7.1).
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The proof at low frequency is similar up to the replacement of pseudodifferential
operators by rescaled ones and to the different time scaling s = €2t. O

7.2. Resolvent estimates and their consequences

In this short section, we record some a priori decay estimates for e~** in weighted
spaces, obtained as direct consequences of resolvent estimates. We consider both high

and low frequency spectral localizations.
We recall first first well known consequences of the following Stone formula
1

o [P (U= A =i0)7 = (1T = A +i0) ™) ax
R

—itH _
f(H)e v= 25

valid for any arbitrary self-adjoint operator H and f € C§°(R). By integrations by
part in \ together with the fact that
ON(H —XFi0)" L = kl(H - XFi0)"17*

it allows to convert estimates on powers of the resolvent into time decay estimates
for f(H)e "H,

Everywhere below, we let I € (0,+00) and f € C§°(I). We consider first low
frequency estimates for P. Using the resolvent estimates of [6, (1.6)] namely

H (er) ™" (P -\ & 2'0)7]c <67‘>_k‘

L2 Lzskl’ )\EI,EG(O,l],

we obtain from the Stone formula, applied to H = P/¢? and t replaced by €%t, that
for any k € N

(7.15) H<er>’1’kf(P/62)e’“P(er)’l’kHL2 <)k, teR, e€(0,1].

—L2 ~

Another estimate from [6, Theorem 1.1] that will be particularly useful is

(7.16) H<r>—1 (P—X=i0)"" (r>—1) <1

~

A€ (0,1),
L?2—-L? ( )

for it implies (see e.g., [34, Theorems XIII.25 and XIII.30]) that

1/2
N 2
(7.17) (/RH(?") e tPf(P/e2)u0HL2dt> <wollzz, €€(0,1), ug € L%

Getting similar estimates at high frequency, with polynomial growth in 1/h, re-
quires an assumption, for instance a non-trapping condition. This is where the as-
sumption (1.5) is useful since it allows to prove the following proposition.

PROPOSITION 7.5 (Semiclassical power resolvent estimates). — Assume (1.5). Then
for all k > 0 there exists Ny such that

—1-k

~

(7.18) ||(r) =¥ (h2P — A £ 00) s

<r>_1_k‘ <h M xel, he(0,1].
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Proof. — 1t is based on an argument in [42, Prop. 1.3]. It consists in finding an opera-
tor Py defined on (0, +00) X S coinciding with P near infinity and satisfying nice resol-
vent estimates (as (7.20) below) and then to use iterations of the resolvent identity. We
explain schematically how to implement it in our context. We let | Ds| = (—A5)'/2 be
the square root of the asymptotic Laplacian on S and

R L;j,h™L., € {1,h0,,r 'h|Dsl|}
where j,m € {0,1} are the orders of the operators. Proceeding as in [6], one can find
a second order differential operator Py on (0,+00) x S which is close everywhere to

exact conical Laplacian —8% —r~2A; and equal to P near infinity in such a way that,
letting Py, be the rescaled version of F, namely

Pon=Zn(h*Po) 2, ",
we have, for any K € C\ 0 and k € N,
(7.19) [(r)™*L;j(Po — 2) FLL(r) || S 1, he(0,1], z€ K\R,
where for simplicity, || - || is the operator norm on L?((0,00) x &, r"~drdvol;). Such
resolvent estimates follow from the techniques of [6] (more precisely Proposition 3.13
and Lemma 4.2 there) which are based on a rescaling argument; they were used to
prove low frequency estimates but work equally well at high frequency (one only uses

that Py p, is close to —02 —r~2A; which satisfies a global positive commutator estimate
at energy 1). Then, by unitarity of @il and (7.19), we find

[(r) "B L;j(h* Py — 2) " * W L, (r)F|| = || 2}, (hr) " *L;j(Po.n — 2)"* L, (hr) " * 2|

= |[{hr)"*L;(Po,p, — 2) F L., (hr) ||
Sh |y L (Po — 2) 7L (r) 7|
(7.20) < h72,

To illustrate the starting point of the method of [42], we check rapidly (7.18) for k = 0,
more precisely that

(7.21) [(r) = (h2P — )7} Bo2M

-1
HL2(M)—>L2(M)
whose interest is to replace the compactly supported cutoffs x in (1.5) by the

weight (r)~!. By using the cutoffs ¢ ,5 introduced in Chapter 2 which are equal to 1
near infinity and using the following resolvent identity

(7.22)
C(r) (WP = 2)7" =C()(h*Po = 2)71C(r) = C(r) (h*Po — 2) T [(r), h*P](h*P — 2)7"
together with (1. 5) and (7.20), we find that for any x € C°(M)

[¢r) T (AP — =)~ X||L2(M)—>L2(M) R+ T

By using a second time the resolvent identity (7.22) and using the above estimate,
we obtain (7.21). This leads to (7.18) for kK = 0. We get the result for higher k by the
same induction as in [42]. O
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Using again the Stone formula with H = h?P and t replaced by t/h?, Proposi-
tion 7.5 yields automatically

[(r) TR F(RPPYe™ P (r) T R Lo s S BTVE(E/R) TR, teR, he (0,1]
which in turn provides the weaker estimate
(723) || —1-— kf h2 ) —th<r>—1—kHL2

which we record under this form to follow the natural semiclassical time scaling.
Similarly to the estimate (7.17), we also have the following consequence of (7.18)
for £ =0,

ShNet/R)TF, teR, he(0,1],

—L2 ~

1/2
1 —q 2 _No
(7.24) (/R [[(r)~"e™*F f(h* P)uol| dt) <AV |lugllz, b€ (0,1), uo € L.

We recall that when the manifold is non-trapping, one can take Ny = 1, and the
resulting h1/2 factor on the right hand side corresponds to the H'/2 smoothing effect
of the Schrédinger equation. In Section 8.4, we will also recall that, if the trapped
set is sufficiently filamentary, then (1.5) holds with e.g., M = 0 (actually AM can
be replaced by A™*/2log \) and that (7.24) does not hold with h'/? but rather with
B2 log ()] 2.

7.3. Long time estimates

In this section, we prove several L? propagation estimates on e . They will be
used in Chapter 8 to control the remainder terms of the parametrices. However, their
interest goes beyond the applications to Strichartz inequalities. They generalize well
known estimates (see e.g., [31, 24]) in two ways: on one hand we consider the general
geometric framework of asymptotically conical manifolds and on the other hand we
include a low frequency version of such inequalities which, to our knowledge, is an
original result.

Everywhere below, we consider a fixed chart x : U, — V; on S and the related
polar coordinates (2.1) on M.

We start with the following result on strongly outgoing/incoming microlocalizations
(see (5.20) and (6.11) for the related areas). This is a first application of Theorem 6.10.

PROPOSITION 7.6. — Let k € N, f € C§°(0,+00), I € (0,4+00) and Vo € V,;. Then,
if Ro > 1 and 0 < g3 K 1, we have the following estimates:

1. High frequency: Assume (1.5). If xX € S O(R2™) is supported in
L5 (R, Vo, I, €2),

1(r) =2 =P £ (B2 P)Opp (i) Puc(r) ¥ p2 e S (/M) 7F, £t >0, he(0,1].

2. Low frequency: if (stt)e is a bounded family of S—°° supported in
StE(R27‘/27I27€2)

[(er)=**e™ P f(P/€%)Op . (Xe s )P ler)(er) || Lampe S (28)7F, £t20, e€(0,1].
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We point out that, in the high frequency estimate, we don’t have any loss in h, as
the h=N* in (7.23).

Proof of Proposition 7.6. — We may assume k > 1. For definiteness, we consider the
outgoing high frequency case. We use the notation of Theorem 6.10, in particular
(6.34). Note that, up to possibly decomposing xd; as a sum of symbols supported in
balls with respect to 6, we assume that Vo € V for some convex open subset V € V.
The contribution of the main term of the Isozaki-Kitada parametrix is

((r) ™ F(W*P)()) (r)=F T2 (@")e P2 T (6 ().
Here the parentheses is a bounded operator on L? according to Theorem 3.9 while
the second factor provides the expected decay (t/h)~* by Proposition 6.5. We next
consider the contribution of the remainders of the parametrix. The first term of the
remainder R (¢) of (6.34) produces a term of the form

(r) (B2 P)e™ 0 ypman _ pan (W) (1),

which is O((¢/h)*=2*hR~N=N*) in L? operator norm if N > 2k by (7.23) since one can
write

(7.25) O pm2n_,ypo (W) = ()N Opa_ 2 (WY ) (r) V.

By possibly increasing N so that N > N, we get an estimate by (t/h)~F (since
2k —1>k). In the integral term of R%(t), we consider first the contribution
of J*(hNry). By choosing N large enough (N > 6k + 1 and N > Ny), Proposi-
tion 6.5 and (7.23) imply that

H 3kf h2 —z(t—‘r)PJ:(hN,,,N)e—iTDiJg(bh)T<,r,>2k‘ 5 <(t _ T)/h>1—3k<7_/h>—k—1

L2—L2

After integration in 7 between 0 and ¢, we get an estimate by (t/h)~*. It then remains
to study the contributions of a and @". They follow as the one of h'Vry once observed
that we have the following estimates. By assuming Rs large enough, the first item of
Proposition 6.1 allows to write, for all N,

(7.26) Th@l)e TP TN = 0 p-an  pan (BN (r/B)7N), £7 >0,

since one has r < r’ on the support of the kernel of J"(al)e —irD} Jh(®"). Us-
ing the second item of Proposition 6.1 and choosing &2 small enough (hence en-
suring that |§ —9¥| 2 1 and |6/ — 9] < 1 on the support of the Schwartz kernel
of Jh(ah)e=i"Pz Jh(b")T), we obtain similarly.

(7.27) Jh(@h)e= Pz g (ph)t = oﬁjﬁwﬂﬁﬁN(hN(T/hrN), +7 > 0.

Using (7.25) with A"V (7/h)~" instead of h"¥, we have the required spatial decay to
use (7.23) and to control the growing weight (r)2*. This completes the proof at high
frequency. The proof is completely similar at low frequency by using (7.15) instead of
(7.23). O
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In the next result, we partially relax the assumptions of Proposition 7.6 by replacing
strongly outgoing (or incoming) microlocalizations by general outgoing (or incoming)
ones, but at the expense of a stronger weight (which will eventually be harmless). In
the sequel, we denote

fi(R,V,I,U) ={(r,0,p,m) |T>R, 0€V, p, €I, £p> Up1/2}
(7.28) TR, V,I,0) = {(r,0,p,n) | >R, €V, per €1, £p > apl/?}.
These regions correspond to (7.2) but we now drop the index  (unless it is necessary,
i.e., in Proposition 7.9) and distinguish between the high and low frequency cases.
We recall that the difference with strongly outgoing/incoming regions considered in

Proposition 7.6 is that o can be any real number (—1,1), while 0 = 1 — &% was close
to 1 in the previous proposition.

ProposITION 7.7 (Half microlocalized propagation estimates). — Let k& € N,
I, € (0,400), Vo € V,, and o0 € (—1,1). Then, if Ry > 1, we have the following
estimates:

1. High frequency estimates: if yo € S=°C is supported in T'* (Ra, Va, Iz, 0),
(7.29)

)=k P f 2 P)OBL G e )| S /M k=0, he (01

L2—L

2. Low frequency estimates: if (X +)e 95 a bounded family of symbols in G000
which are supported in T (Ry, Vo, Iz, 0),

[(er) =456 £(P/€)0p, (e, )b (er) er)”| S(E)F, 420, ce (0,1,

L2—L2

‘We will use here the results of Section 7.1.

Proof of Proposition 7.7. — We consider in detail the high frequency outgoing case
for t > 0. We can replace Op” (x4 )(r)* by OpH(X+) for some x* € € §—°* supported
in the same set as x4; indeed, this is only at the expense of a remainder of the
form (r)=NOp2_12(hY) (for any fixed N) and whose contribution to the estimate is
a bound by (t/h)~* thanks to (7.23). We then use a spatial dyadic partition of unity
to split

(7.30) X =Y Xir Xir=x(/RXE,
R=2!
1>1q

with some x € C§°(0,+0o0) so that each X’i,R belongs to S§=0 with seminorms of
order RF. For some small enough & > 0 to be chosen below, we pick 7., > 0, large
enough such that for all [ > [,

(7.31) ¢* (Cu(supp(x§ r))) C {P > (1-e3)p'/? r> Rz} for s> RTY,,
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with ¢* = ¢% defined prior to Proposition 7.1 (in the low frequency case, we should
consider ¢?). This is possible by the item 2 of Proposition 7.1 since, using the notation
(7.1) with e = 1,

Cr(supp(xt r)) € IT (Re, 0).

For each R, we then proceed as follows:

If0<t<T,;hR. — We write (r)_4ke_itPf(h2P)OpZ(X’f{_’R)&n as

()% F(R2P) (1) ™) ()~ (7P Opl(x p)bee™” ) €77,

where, as in the proof of Proposition 7.6, the first parentheses in the right hand side
is bounded on L? thanks to Theorem 3.9. The second parentheses can be computed
by mean of Theorem 7.4. We get a sum of bounded pseudo-differential operators with
symbols supported where r ~ R (using the item 1 of Proposition 7.1 and that we
propagate the support of Xi, g over a time t/h < R) plus a remainder which is, for
any fixed N, of order A’V R~ say in L? operator norm (here the stronger %”__]\?N —
2N norm is not necessary). Since (r) ~** composed with pseudo-differential operator
localized in r ~ R has norm O(R™**) and since 0 < t/h < R, we find

)= tkem 2 PyORL Ok R,
(7.32) < (t/h) KR,

< R—4kRk

where the factor R takes into account that R_kxﬁﬁ is bounded in S0,
Ift > TLhR. — In this case, we write (r)_4ke_itpf(h2P)OpZ(Xﬁ,R)QZJﬁ as

<r>—4kf(h2p)e—i(t—T+hR)P (e—iT+hRPOpZ(Xﬁ_’R),L;KeiTJthP) o—iT+hRP

By (7.31), Theorem 7.4 and the seminorms estimates of X’i, R, the parentheses is a

sum of pseudo-differential operators with symbols of size R in S .0 supported in
strongly outgoing areas,

(7.33) > OpL(xE p(h)the,  supp(xE g(h)) C TH(R/C, Vi, Iz, €2)

with the additional property that r ~ R on their supports, and of a remainder

O -~ _ o~ (VRN for any fixed N. In particular, if we take N > max(k + 1, Ny)
—2N 2N

(see (7.23)), we get

H V=4 f(p2 p —i(t—TJth)PO%:;NH%I%N (W R™N) ||L2_>L2

hNiNk Rfk‘fl

<,r,>7k71f(h2P)efi(t7T+hR)P(,r>fkfl ‘

<

L2—L>2
< (t/h— T, R)"FR7F-!
<

(7.34) (t/hy~*R7L.
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To get the contribution of the pseudo-differential sum (7.33), we use Theorem 6.10,
which is why we need to choose €5 small enough. For any given N, we can write

Opy (xx, p (M) = T2 (") TEOR)T + O - on (W RTY),

where, by (6.13), b% is supported in r ~ R (this allows to get the additional factor R~
in the remainder term) and belongs to Sy with seminorms of order R* (uniformly h).
The contribution of the remainder is estimated as above by choosing N large enough,
while the contribution of the first term follows from Proposition 7.6 through

|| 4kf h2 ) —i(t— T+hR)PJh( )Jg(b};%)THLQ_)LZ

< R |(r) 18 f(h2P)e TR Th () I (b ()|

L2—L?
< R3*(t/h—T,R)"*R*

(7.35) < R7®(t/n)7F

where the factor R* on the third line is the size of seminorms of b}}% in Sy. Combining
(7.32), (7.34) and (7.35), we get

|~ pn2Pye P opl (k. e/

which, once summed over R = 2!, provides the estimate (7.29). The low frequency
case is obtained analogously by using the low frequency part of Theorem 7.4 together
with (7.15). O

Proposition 7.7 provides time decay estimates with rate proportional to the de-
cay rate of the weight. In the next two propositions, we get fast decay (and O(h*°)
estimates at high frequency) for suitable microlocalizations.

PROPOSITION 7.8 (Improved microlocal propagation estimates I). — Let Is € (0, +00),
Vo @V, 0 € (—1,1) and Ry > 1. If Ry > 1 then for each k € N and x4 € S—>0
supported in T (Ry, Vs, Io,0), one has

|t0.m () (B2 PYe OB () e | SR/ 20, ke (0,1,

L2—L>2

This proposition reflects the intuitive fact that the forward (resp. backward) prop-
agation of data localized in a far away outgoing (resp. incoming) area does not meet
the region {r < R;}. Note that we consider only the high frequency case, for which
the estimate is improved by a factor h¥ compared to the one of Proposition 7.7. At
low frequency, Proposition 7.7 will be sufficient for us.

Proof of Proposition 7.8. — Here again we consider the outgoing case. We use the
notation of the proof of Proposition 7.7, in particular Ty and the decomposition
(7.30). We distinguish two cases.
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If 0 <t <T,hR. — By Proposition 7.4, we can write

Lo, ) (r) f (B P)e™ P ODL (4 )P = D Ljo,my1 (1) (h*P)Opy, (i ()9, ™

K1

+ Opa2(WYR™Y)

with symbols a’}%(t) bounded in S~ as h,t, R vary and supported in r ~ R by
the first item of Proposition 7.1. In particular, they are supported in sets where
r 2 Ry > 1. Thus, using the pseudodifferential expansion of f(h?P) in Theo-
rem 3.9 (here the localization ((r) is implicit for we can write f(th)OpZ1 (ak(t)) =
f(th)C(r)OpZ1 (a’(t))), it follows from symbolic calculus and the form of the re-
mainder terms in this theorem that
Lio,r,) () f (h*P)Opy, (a (1)) = Opap2 (WY R™Y)

for any N. We thus conclude that, for any given k,
(7.36)

10,7, (r) f(R* P)e™ P Op! (x4 8) x| L2 12 = O(R*R™'F) = O(h*(t/h) " R™T).

Ift > Ty hR. — In comparison to the proof of Proposition 7.7, it suffices to consider
the terms

1 j0,r0) (r) f (W2 P)e™ =L T (ah) 2 () | o 12
S R |10,y (r) f (02 P)e™ TP T (ah) TR (b)) (1) | 2 2

since all the other ones are remainder terms carrying an additional A"V factor with N
arbitrarily large. To estimate the norm in the second line, we use the Isozaki-Kitada
parametrix as in the proof of Proposition 7.6. All remainders decay as (t/h — T, R)~*
times h* (or even h"V) by pushing the expansion to a sufficiently high order exactly
as in the proof of Proposition 7.6. Thus, it remains to consider the main term which
is
(7.37) Lo,y (r) £ (h*P) T} (a")e =D Tl (bl ) 2.
Using Theorem 3.9, one can write

1o,m0)(F) (2P = Lo ) (1) F(R2P) L (1) + Orapa (WY ) ) =N

with R; > R;. By choosing N > 3k, the contribution of the above remainder to
(7.37) is of the form O(h*{t/h — Ty R)~*) by Proposition 6.5. On the other hand, by
choosing Ry > Ry, the first item of Proposition 6.1 shows that (uniformly in R)

Lo, 71 (r) f (W2 P)J (™) e~ "= T+h DL Jh (R ) ()2 = O((t/h — T, R)™°h).
We thus get
R7%*|[110,5,)(r) f(h* P)e™ "= THBP 70 () R (0) T (r)** | 22 S BPR™*F(t/h — Ty R)™*
< hERF(t/h) k.
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Taking (7.36) into account, we conclude as in Proposition 7.7 by summing all estimates
over R. O

In the next proposition, we use the notation (7.2) (when e = 1 we do not indicate the
dependence on ¢€). We let ij; and X:st be supported in an angular patch associated to
a given chart  (the same as in all previous propositions) but we allow the symbols x+
and x.,+ to be angularly supported in a possibly different patch associated to another
chart «'.

PROPOSITION 7.9 (Improved microlocal propagation estimates II). — Let Vo € Vy € V,
I, € (0,+00). Let also Vi € V,.r, I}, € (0,+00) and o € (—1,1). If e2 > 0 is small
enough and Ry > 0 is large enough, the following estimates hold for all k € N:

1. High frequency case: if X4, Xst € S~ %0 satisfy
Supp(X:F) C f:F(R27 ‘/217 Iéa O—)N’v SUPP(X;E) - f:i (R2a ‘/2> -[27 82)
then, for £t > 0 and h € (0,1],

|14 0Dl ()" F (B2 P)e ™ Opl ()i )|

< hFE(t/n)k.
Loge S (t/h)

2. Low frequency case: if (Xe,+)e, (Xjfst)e are bounded families of S=°°° satisfying
supp(Xe.s) C TF (R, V3, 15,0)w,  supp(Xest) C Is (B2, Va, Iz, €2)
then, for £t > 0 and € € (0,1],
[(€r) b (er)Ope o (xe)” F(P/€2)e ™ O, (E ) i) er) |

We need the following lemma that provides a suitable version of the action of a
pseudo-differential operator on a Fourier integral operator. We recall that the symbol
class S is defined at (6.1) and the area ©F(R,V,I,¢) at (5.11).

< 2.\ —k
Lagae (e“t) ™.

LEMMA 7.10. — Let Iy € (0,+00). If g9 > 0 is small enough and Ry > 0 is large
enough, then for all a € Sy supported in ©F (R, Vo, In, o) and x € S™* supported
in (Rg,00) X Vo x R™ with Ry > Ry, one can write for any N
Opr(x)J!(a) = J2(an(h)) + finite sum of K™ (r)=N By (r) Nk (rn(h))
with || Bp|lz2—r2 S 1, (rn(h))n bounded in S0 gnd supported in ©F (Ry, Vo, Iy, 2€0),
and with (ay(h))n bounded in S~°°* satisfying
supp(an (h)) C supp(x(-, -, 9r¢, 0o) x a).
More precisely,
aN(h) = X(’ra 0, 87‘90; 8090)(1(7'» 0,0, 79) + O(h)a
where O(h) is a finite sum of products of derivatives of x (of order > 1) evaluated

at (r,0,0,0,00p), of derivatives of a and of rational fractions in derivatives of .

Proof. — It follows from the usual calculation of the action of a pseudo-differential
operator on an oscillatory integral, see e.g., [1, 40]. O
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Remark. — Of course, a completely parallel statement holds at low frequency but we
do not quote it for we give the proof of Proposition 7.9 only in the high frequency case.
Also, the parameter 2¢q in the support of the remainder terms (coming from technical
considerations due to the non locality of Opﬁ(x)) could be replaced by any £y > ¢g
but this is irrelevant for our purposes.

Proof of Proposition 7.9. — We consider again the high frequency case for t > 0. Also,
w.l.o.g. as in the proof of Proposition 7.6, we may assume that Vj is convex to be in
position to use the expression of e~ Opﬁ(xjt)z/;n given by Theorem 6.10. Proceeding
exactly as in the proof of Proposition 7.6, up to the replacement of (7.23) by the new
a priori estimate

1) ¥4 Opyes (x =) F (W2 P)e ™" =D {r) "N | o e S((E = 7)/B)*7Y, 0 <7 <4,

which follows from the adjoint estimate to (7.29) for N large enough, we see that the
contribution of the remainder R% (t) is O(h*¥(t/h)~*). Note that here, we do not have
to care about the fact that x and s’ may be different. It then remains to consider the
contribution of

(r)YEp, Op, (x_)* F(R2P)J] (aM)e™ P gl (bM) ().

We consider the case when x = £’ and explain at the end of the proof how to handle
the general case. Using the expansion of Theorem 3.9 and symbolic calculus, one can
write for any N,

()" s Opye (x-)" f(h*P) = Op (XL ()b + O(A) 22 (r) N
with x* (h) € S§—°%k with the same support as x— and bounded with respect to h.

Note that we J”(a") = 1.J"(a") by the localization of the support of a”. The con-
tribution of the remainder follows from Proposition 6.5, provided we take N > k. On
the other hand, using Lemma 7.10, we can compute

Op” (x* (h,)).],}j(ah)e_“Di JhMT = J,f(aN(h))e_”Di J'(®™MT + remainder terms.

The contribution of the remainder terms follows from Proposition 6.5, using their
fast decay in r and h. On the other hand, on the support of ay(h), one must have
(r,0,0,¢,000) € I~ (Ry, Va, Iz, 0) and (1,0, 0,9) € O (Ry, Vo, Iy, £0). This implies in
particular that

—0rp > apn(r,ﬁ,argo,égw)l/z =olo] and 0>0.

By (6.36), these conditions are incompatible if o > 0, so ay(h) = 0 in this case. On
the other hand, if o < 0, one has 0 < d,¢ < |o|p(r, 8, d,p, Dgp)*/?, hence

JQT_ngk(T7 0)89]- ‘Paek‘:o > (1 - 02)(8’!‘@)2’
which, together with (6.36), implies that for some ¢, > 0

|0 — 9] > co 0%
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Thus, on the support of the kernel of J"(ay (h))e’”Di J"(b")1, we have
10 — 9] > co0® > e 2|0 —

so we obtain the fast decay by mean of the item 2 of Proposition 6.1, provided €5 is
small enough and Ry is large enough. This completes the proof (when x = «’). When
k # k', we may split Op”, (x_)* as Op” (x_)*xx + Op" (x_)*(1 — x,) with x, =1
near the spatial projection of the support of a*. The operator Opz, (x=)*xx can then
be written in the chart x as in Proposition 7.3 (and then be treated as above), up to
terms which decay fast in h and r. The contribution of (1 — x,)f(h2P)J"(a") also
produces terms which are O(h*°) and decay fast in r. All these decaying remainders
can then be handled thanks to Proposition 6.5. O
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CHAPTER 8

STRICHARTZ ESTIMATES

In this chapter, we prove the results stated in Chapter 1. We focus on the low
frequency case (in dimension n > 3), i.e., on ey defined in (1.3). Indeed the proof
of Theorem 8.2 is slightly more technical than the one of Theorem 1.3, for instance
to handle the LY — L? estimates of f(P/e?). In Section 8.3, we explain the minor
modifications to handle high frequencies. In Section 8.4, we prove Theorem 1.5, by
showing that the global in time Staffilani-Tataru trick, used initially for non-trapping
geodesic flows, still applies to the case of a sufficiently filamentary trapped set.

8.1. Finite time estimates

In this section, we use the well known geometric optics technique to derive prop-
agator approximations for finite times, but depending both on the frequency and
spatial localizations. This follows previous similar arguments introduced in [30] for
high frequency localizations. Our main purpose is to give such an approximation at
low frequency, but we restate the high frequency case both for completeness and for
comparison with the low frequency regime.

For a given chart k : Uy — Vj on the angular manifold S, V C V,, I € (0, +00),
C>1,ec(0,1] and R > 1, we use the notation

Qr(V,1,C) ={(r,0,p,n) € p;,*(I) | r € (R/C,CR), 0 € V}
Qe r(V,1,0) = {(#,0,p,n) € p_(I) | ¥ € (R/C,CR), 6 € V}.
Note that Qg(V,I,C) = Q1 r(V,I,C)

PRrROPOSITION 8.1 (Existence of phase functions). — Let V' € V,; be a relatively com-
pact open convex subset of V;. Let Vo € V, Cy > 1 and Iy € (0,+00). There are
0 <ty <1 and Ry > 1 such that one can find a family of smooth functions

(¢e,R)ee(0,1),R>Ro
defined on (—toR,toR) x Q¢ r(Vo, Io, Co), solving the eikonal equation

ascpe,R + pe,fc(’rv 93 aTSDE,Ra 69906713) = 07 (pe,R(Ov Ty 0’ P, 77) =Tp +6- 1,
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and satisfying the estimates

s2

(8.1) 10105050, (9, r(5) = 9e,r(0) + spe)| S Z R,
for R> Ry, e € (0,1], |s| < toR and (1,0, p,n) € Qe r(Vo, Io, Co).

Proof. — It follows the usual local in time resolution of the Hamilton-Jacobi equa-
tion, by using the flow estimates given in Proposition 7.2 which allow to show that

the map (r,6,p,m) — (7,9%,p,n) is a diffeomorphism if |s| < ¢R with ¢y small
enough. More precisely, to prove that this is a diffeomorphism, one can check that
the map (z,0) — (R™'7%,9%)(Rx,0, p,n) is close to the identity on (1/2Cy,2Cy) x V
provided that s/R is close enough, uniformly in ¢, p,7. The convexity of V allows to
check that this map is injective while standard arguments show that the range will
contain (1/Co, Co) x V. O
We can next consider the related Fourier integral operators
(8.2)

Wer(s, Acu(#,0) = (2m) ™" / / eileenon0pm =¥ 30" A (5 5.0 5, myu(¥,0')dpdnd o/
and, setting or = ¢1,rR,
Wh(s, A)u(r,0) = (2rh)™" / / et (orr 0o ='0=0" DA (s 1., o )u(r', 0 )dpdndr'dd/,

which are globally well defined on R™ provided the amplitudes A, and A are sup-
ported respectively in Q¢ r(Vo, I, Co) and Q4 r(Vo, Io, Co). Using the cutofls 1/3,9(61")
and &K(r) chosen in (2.6), we can pull these operators back on M, i.e., define the
operators

WS’R’K(S,Ae)l/;K(GT) =11, (9€W€7R(s, Ae)@gl) H;ld;n(er)
and
W (8, Ay (r) := T WE(s, AL e (r).
PROPOSITION 8.2. — Let V €@ V,, be convexr. Let Vi € Vo € V, Cy > C1 > 1 and

I € Iy € (0,400). There are 0 < tg < 1 and Ry > 1 such that for any N € N the
following approximations hold.

1. Low energy WKB approximation: Given a bounded family (ac r)e,r of G000
supported in Qe r(V1,11,C4), one can find a bounded family (Ac r(€*t))c r.
of S7°0 supported in Q¢ r(Vo, o, Co) and x € C§°(0,+00) such that

e_itPOp€’K((LE’R)’(ZJH(6T) = VVQR’,i (62t, Ae,R) X(GT/R)'JJH(ET) + OLlﬂL2 (G%R_N)
and

(8.3) [We . (€, Ac.r) X(er/R)dby(er) | prpoe S ()72

as long as
ec (0,1, R>Ry, |t|<toe%R.
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2. High energy WKB approximation: Given a bounded family (ar)r of G000 sup-
ported in Qr(V1,11,C1), one can find a bounded family (A’]?’(%))R,h,t of S0
supported in Qr(Vo, In, Co) and x € C3°(0,+00) such that

e~ Op(ar)Pn(r) = Wi (t/h, AR) x(r/R)$(r) + Opap2(WWR™Y)
and

(8.4) W . (/0 AR) X(r/R)db(r) | i —poe S It 2
as long as

h e (0, 1], R > Ry, |t| < tohR.

We will use the following lemma that clarifies the roles of the low frequency scaling
and of the Riemannian measure.

LEMMA 8.3. — Let K(#,0,#,0") be the kernel of an operator Won R™ with respect
to the Lebesgue measure didf. Assume that K is supported in ((Rg,oo) X V)2 for
some V € V. Then, the Schwartz kernel IC. of Tl (QGWQZI) It with respect to
the Riemannian measure satisfies

’Ke(r,w,r',w')| < Ce"}K(er,G,67“',0’)(61“’)1_"|, w=r"10), v =r"1(0),
for some constant C depending on V but not on K nor €.

Proof. — We omit the conjugation by II,, whose role is irrelevant here. Then

D Wu(r,0) = e* //K(GT,977“"79/)U(7*’,9')d7*’d9’

" //K(er,e,er’,&’)(er')l_”(geu)(r',9')(r’)”_1dr'd9'

so that the kernel of 2. W 2! with respect to (r')"~1dr'd¢’ is e" K (er, 0, er’, 0")(er’) ™.
Since (r')"~'dr'df’ is comparable to the Riemannian density (r')"det(g(r’,6))"/2dr'de’,
we get the result. O

Proof of Proposition 8.2. — We consider the low energy case. Dropping the spatial
cutoff for simplicity, one has the identity

2

e“t
(8.5) e "PW. gx(0,Acr) = We g n(€2t, Acr) — / e (= E)PW, g (5, be.p)ds,
0

where
We,R(Sa be,R) = 8SW€,R(S7 Ae) + iPe,nWE,R(sy Ae)

By the usual geometric optics construction, we can find, for any N, sym-
bols Ac r(s,7,0,p,m) in a bounded set of S (as e € (0,1], R > Ry and
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|s| < toR vary), supported in Q¢ r(Vo, Iy, Cp) and such that
AE’R|S:0 = QeR;
be,r(s) in a bounded subset of oo N
supp(bE,R(s)) C Q¢ r(Vo, 1o, Co).

This follows by solving iteratively transport equations in the usual manner and by
observing that, in the iterative construction of the amplitude A¢ g, the symbols decay
faster and faster in #; in other words, the scale of classes G003 replaces here the
scale of powers A7 in the usual semiclassical framework. The boundedness in s of the
solutions to the transport equations follows from the flow estimates of Proposition 7.2.
To get the remainder estimate and (8.3), we proceed as follows. Since a. g is supported
in a region where 7 ~ R, we can write

Op’ (ae,r) = Op' (ae,r)X(7/R) + Op' (o e, )

with @ e g = O(R™YN) in S=N.=N for any N. In particular, using Lemma 8.3, it is
not hard to check that

”Ope(aw,e,R)?;fi (er)llzr—z2 SN RN/,

This allows to replace e "**ZOp" (ar)v, (r) by e"*Op” (ag)x(er/R)t.(er) and we are
left with two types of terms: the main term of the expansion W, g (s, A r), which
will produce (8.3), and the remainder involving W g (s, be.r)x(er/R)t, (er) coming
from the integral in (8.5). We start with this remainder. Using (8.2), with b, , instead
of A., and using the decay in 7 together with the fact that we integrate over a fixed
bounded in region in n/7, the Schwartz kernel of W, r(s,be r)x(¥/R) with respect
to di'df is bounded by C7#~N*+(»—1) and is supported in a region where both # and #
are of size R. Note that the power ¥"~! comes from the fact that the kernel is given
by an integral where 1 belongs to a region of volume #"~!. Then, by Lemma 8.3, the
kernel of We g (s, be,g) with respect to the Riemannian measure is bounded by

e"<€r>7N/3(er'>7N/3R’N/3,

The corresponding operator has an L' — L2 norm of order €*/2R~N/3 (if N/3 > n/2).
Since N is arbitrary, |¢*t| < R and the propagator is unitary on L?, we get the control
on the remainder of (8.5) in L' — L? operator norm. Finally, the dispersion estimate
(8.3) follow from the fact that the L' — L norm of W, g . (s, Ac r) ¥ (er)x(er/R) is
controlled by

( [eileentrosm—rssa) g g n)dﬁdn) ()X ([ R)

€' sup

VIV
7,0,7 .0 €

5 6n<3>—n/27

where the estimate by <s)_"/ 2 follows from a standard non stationary phase argument
by exploiting that

306(87%797237 77) = (7% - f/)/j + (9 - 0/) N/ Sp,@,g(’;‘/,e,/;, 77) + 0(32/R)7
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(by (8.1)). Note that the weight (¥')! =™ is crucial to compensate that we integrate over
a region of volume O(¥*~1) in 7 (recall that both # and 7/ are of order R here). With
s = €%t we find that €"(e?t)™"/2 < (t)~"/2. We refer to [30, Theorem 7.6] for more
details on the stationary phase. The proof is similar at high energy. Up to the scaling
in time, the main differences are that we drop the scaling operators Z* and that in
the iterative construction of the amplitude we gain both decay in h and in r. O

8.2. Proof of Theorem 1.2

It suffices to prove the result for the endpoint pair (p,q) = (2,2*) = (2 2—"), the

' n—2
other ones following by interpolation with the trivial estimate for (p,q) = (o0, 2).

For ug € L?, we use the notation (1.3). The starting point is the estimate

(8.6)
+oo
||Ulow||2LZ(R;L2*) S Z (1 - X(er))f(P/g)UHiz(R;p*) + ||<7">_1f(P/52)“||22(R;L2)7
k=0

which follows from Theorem 4.1 and where we recall that e = 27%/2 (in this paragraph
the label £ will be used for something else). By the integrated L? decay estimate (7.17),
we have

[(r) =t F(P/e®)ull L2g;z2) S lluoll 22,
where, in the right hand side, we may replace ug by f(P/eZ)UU with f € C§°(0, +00)
equal to 1 near the support of f. We thus only have to prove
(8.7) 11 = x(er) f(P/€)ull 2 @2y S lluollzz, € € (0,1], uo € L

Indeed, with (8.7) (whose right hand side can be replaced by ||f(P/e?)uo]|12) at hand,
(8.6) yields
1/2

ol 2, z2y S | D IF(P/€*)uol|7
k>0

S llwollz2
by quasi-orthogonality in the second line, which completes the proof of Theorem 1.2 .
The rest of this section is thus devoted to the proof of (8.7).

We write (1 — x)(er) f(P/€%) = (1 — x)(er) f(P/€®) f(P/€®) with f € C§°(0,+00)
equal to 1 on the support of f. Then, using Theorem 3.9, we can decompose

(8.8) (1= x)(er) F(P/€*) =Y Pu(er)Op. 1 (Xe )™ + Zes

where, for some N as large as we wish and some bounded family (B.).¢(o,1) of bounded
operators on L2,
K. = C(er)(P/e® +1)"N B (er) ™.
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Each X = Xex(7, 0, p,n) belongs to §’°°*0, has uniform bounds in € and is supported
in a way that (7,0) € supp(l — x) x V,, and p. (¥, 60, p,1m) € supp(f). Furthermore,
1/7,.; = 1 near the support of x. .. Note that we use adjoint pseudo-differential opera-
tors Op, . (Xe,x)* (this is possible by (3.10)), which is not essential but will be more
convenient.

PROPOSITION 8.4. — If N > n/2 + 1, one has

1/2
(/ ||%€f(P/62)e”PUOHiZ*dt) < luollzz, €€ (0,1], up € L?.
R

Proof. — The result follows from the TT* criterion of [27, (1) and (2) p.955| applied
to Z.f(P/e*)e~"*F (which is bounded on L? uniformly in € and ¢). Indeed, to get the
L' — L™ estimate, we start by using Proposition 3.7 which shows that

||<%’e<€7">N||L2—>L°<> < fn/27 ||<6T>N<%:”L1—>L2 S /2.
This implies that
1% £ (P/e*)e™ =P F(P/) R |1 pe S €"[(er) N e =P £2(P/e) (er) ™| Lo 1,
whose right hand side is bounded, according to (7.15), by
et —t)) TN St -t
which completes the proof. O

We are left with the (rescaled) pseudodifferential terms in (8.8). For each x (which
we omit in the notation below), we split
(8.9) Xew = Xst + Xeint + Xesto
with X:St?Xe,int € S0 (with uniform bounds in €) supported in strongly outgo-
ing/incoming areas (see (6.11)), i.e.,
(8.10) supp (X&) € Lot (B, V. L e)
for some R > 1 and 0 < € < 1 to be chosen below independently of €, and V' € V,
I € (0, +00). Note that to be able to choose R large, we have to assume that (1 — x)(7)
is supported in ¥ > R which is not a restriction since, in (8.6) and Theorem 4.1, we
may choose x =1 on a set as large as we wish. The third symbol X, int satisfies
(8.11) supp (Xe,nt) C I (R, V,1,0) NT (R, V,1,0)
for some o independent of € (see (7.28) for the notation of the areas). The decompo-
sition (8.9) follows easily by applying a partition of unity to §/p. (¥, 6, p,n) adapted
to regions where this quotient is either lower than —1 + £2, greater than 1 — &2 or
between —1 + £2/2 and 1 — 2/2.

PROPOSITION 8.5. — If £ is small enough and R is large enough, one has

1/2
([ 1n(er)Op it HPIA Pualaet) S fuslin, €€ (0.1) uo € 22
R
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Proof. — We consider the + case. We use again the TT™ criterion and show that

(812)  [19u(er)Op, (X at)* F2(P/€2)e™ P Op, (Xt () L1 e S 61772,

for t # 0 and € € (0,1]. Upon taking the adjoint, it suffices to consider ¢ < 0 (following
the trick of [7, Lemma 4.3]). For simplicity, we let

K? = §(er)Op, . (x2)" (/).

We then use Theorem 6.10 to expand e~"*¥Op, ,(x{;)¥x(er). Consider first the main
term J, . (ac)e™" Pz J, . (b.x)! of this expansion. Using Proposition 6.6 (with h = 1
and s = €%t) together with Proposition 3.4 to handle the contribution of the scaling
operators, we find

2 o
”Jﬁﬂi(aé)e_ze tDq JE,N(bE)T||L1—>L°°

Note that no sign condition on t is required here. Observing that the support of Xj,st
allows to write Op, (X7 )" = Op, . (X{s)*C(er), we see that ||K}||Le_r~ < 1 by
Propositions 3.5 and 3.10, hence that

(8.13) 1K T (ac)e™ P T, o (be) I pee S (8) 2.

We next consider the first term of the remainder R, n(t) of (6.35), where N is as
large as we wish. It is of the form

e—itPog:;NﬁgﬁN (1) = e"(er) "N B (P/e* + 1)~ N¢(er),

with || Be||r2— 2 < 1. To get the time decay, we exploit that this operator is composed
to the left with K} which we can rewrite as

(814)  KI = ((e)(P/e + 1) (§u(er)Op, ()" + Biler)™ ) J2(P/e)

with )Zzst € S0 with the same support as X::st and B! bounded on LZ2. This
follows simply by expanding (P/e% + 1)N§Zn(€T)OP€,K(Xist)*- Then, as in the proof of
Proposition 8.4,

I¢(er)(P/e* + 1)~ Bi(er) ™™ f2(P/e?)e™"F (er) N B.(P/e* + 1) ((er)l| 1oz S (1) 7%,

~

On the other hand, the adjoint estimates of Proposition 7.6 together with Proposi-
tion 3.7 yield

I1¢(er)(P/€* + 1)~ N u(er)Ope o (XEat)" F2(P/€))e™ P {er) ™V B,(P/€* + 1)V ((er) |1 - v
(8.15) S € [[9n(er)Op, o (XEt) f2(P/€2)e (er) ™V [ 122
5 €n<€2t>7N/3
for t < 0. Therefore, if N is large enough,
(8.16) ||K:e—“Po_g:13NH%N (Dllziore SE7F, t<O.
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It remains to treat the integral terms of Ry (t), involving the operator
Jesi(Gec +Te N + ac). At low frequency, the contribution of ac. + 7 n follows
only from its spatial decay (see the slight difference with the high frequency case in
Section 8.3). We thus only exploit that

Ten(@ec) + Je(re,n) = (er) ™V T (@e,n),
for some bounded family of symbols (d. n)e in So, supported in ©F(Ry, Vo, Iy, €o)
with R, as large as we wish by taking R large enough. To estimate the contribution
of this term in Ry ((t), we use the estimate

||K:e_i(t_E%)P<€r>_NJ6,n(ae,N)e_iSDi Je,n(be)f||L1—>L°° N €n<€2t - 5>_%

()%
for t <t— % < 0 and which, after integration in s, provides an upper bound by {t)y~3
if IV is chosen large enough. To get the above estimate, we use on one hand that

Kz @ (er)y N2 o SeF (Pt —s)" 0
by using the decomposition (8.14) together with the propagation estimates given by
(7.15) and (the adjoint estimates of) Proposition 7.6. On the other hand, we use

_ ~ —isD? n _N
(er) ™2 Je o (@e,v)e ™ P Je e (be) T2 S € (s)7 2,

which comes from Proposition 6.5 for the time decay, up to the replacement of the
source space L? by L' which provides the additional ¢*/? factor. This replacement is
possible by writing J. .. (be)" = J. . (be)T(P/e? +1)"N(¢(er) for some b, with the same
properties as b, (it is obtained by computing J. . (be)f(P/e? + 1)V = J. (b)) and
by using Proposition 3.7.

The last term of R n(t) to consider is the one containing J. . (a.). Here the crucial
observation is that |6 — 9| is bounded below on the support of .. In particular,
using (6.36) we see that |9pp.|/7Orpe is bounded from below on the support of a,
which implies that (¥, 0, Oxp., Ogp.) must belong to an incoming area. More precisely,
according to (6.32) and (6.36), we must have drp. < 01 (7, 0, Fpc, Dgpc)/? on the
support of G, with o1 = 1—¢2/C independent o f ¢ (i.e., of 5 in Theorem 6.10). Thus,
using Lemma 7.10 we can replace Jc .(ac) by Op, (X )Jex(dc) with XZ supported
in an incoming region, up to decaying remainders that can be treated as before. We
can then proceed as above except that now we use the adjoint a priori estimate of
Proposition 7.9 (since one can choose € as small as we want, without affecting the
value of o1 above) which provides the estimate

|Kze PO, (%) e (@c)e ™ Pe T (b) i mpee S € (s) 78 (2 —5) 7N

~

and then the final estimate by (¢)~"/2 after integration in s. The result follows. [

To complete the proof of (8.7), it remains to study the contribution of X int in
(8.9). We follow the idea of [4, 30], by adapting it to the low frequency and global in
time case.

Everywhere below, we choose tg > 0 small enough as in Proposition 8.2. Also, the
parameter € used in (8.10) (and hence the parameter o in (8.11)) is chosen according
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to Proposition 8.5. We then choose § > 0 small enough, according to the third item
of Proposition 7.1, and we split X int as a sum

p .

Xeqnt = D Xegr  SUPP(Xe,7) C Supp(Xe,int) N {95 <<z <0+ 1)5} ;
jeJ De

where J is a finite subset of Z (depending on ¢) and (X ;)e is @ bounded family

of §7°°:0, It now suffices to prove global in time dispersion estimates, say for ¢t > 0,

for the operators

(8.17) Dr(€r)ODe  (Xe,3) F2(P/€2)e™ " O 1 (Xe,5) P (er),

uniformly in €. To do so, we introduce a spatial partition of unity on the support of
the symbols,

1=Y"¢(*/Ry), Re=2", ¢eC0,00)
£>4
and define
X)(F,0,5,m) = 67/ Re)Xe 3 (7,0, 5 ).-
Picking ¢ € C§°(0,00) equal (tz()) 1 near the support of ¢ and using that 1 — <;~5(7*/Rg)

vanishes near the support of Xej»

(8.18)
0P, .« (X)) Dc(er) = O, e (x\7) e (er)d(er/ Re) + (er) ™™ B(e, Re) (P/e* + 1) "N (er),

where, uniformly in e,

we obtain by symbolic calculus that, for any given N,

||B(€, Rg) ||L2—>L2 S RE_N
The contribution of the remainder term of (8.18) can be treated as the remainders in
the above proof of Proposition 8.5 by propagation estimates and we get

19 (er) O (xe.s)* 12 (P/€))e ™ (er) "N B(e, Re)(P/€ + 1)V ((er)l|pip= S (02BN

for all t > 0 (actually this holds for all ¢ € R since x. ; is both incoming and outgoing
by (8.11)). These estimates can be easily summed over k. On the other hand, using
the general fact that

< (supHqub(er/Re ILlﬁLoo) Z /

LOO
where the last sum is bounded above by C||v||: (with C independent of € and k), we
see that the dispersion estimate for (8.17) is a consequence of the following uniform
estimates.

Esupp¢

> Awdler/Re)v
¢

PROPOSITION 8.6. — There exists C' > 0 such that for all £ > £y, all € € (0,1] and all
t>0,

(8.19)
|9e(er)ODe o (xe)" F2(P/eR)e™ 4 Op, , (x\)) hcler) ler/ Re)|

N3

L'— Lo

< C{t)~
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Proof. — For 0 < €2t < toRy, the estimate follows from Proposition 8.2 together with
the fact that

[ (er)OPe o (Xes)* F2(P/€) Lo —roo S 1 19 (er)OPe o (Xerg) FP(P/E) | L2 poe S €/,
the second estimate being used to treat the remainder term of the parametrix of
Proposition 8.2, which provides an L' — L estimate by "R, " < (t)="/2. Then,

for t > e 2tyR, we use L? propagation estimates as follows. First, we write for an
arbitrary N > 0,

Op,... (X)) Brler)dler/Be) = (O, o(R)be(er) + (er) ¥ Ble, Be) ) (P/2 + 1)~ N¢(er)

with || B(e, Re)||z2—r2 S Ry and ()”(EZJ))M bounded in $~°° with the same support
as XEZJ) This is obtained by expanding Op, (Xie]))z/;K (er)¢(er/Ry)(P/e® +1)N. Then
the contribution of the term involving B(e, Ry) is similar to the one of the remainder
of (8.18) and provides a L' — L™ estimate by R, (t)="/2. We are thus left with

the contribution of )ZEEJ) For this term, we distinguish between two cases
toRe < €2t < TRy, €*t>TRy

with T > 0 large enough (independent of ¢ and ¢) chosen according to the item 2
O]
€,J
outgoing region by the classical flow at time TR,. Indeed, for €2t > TR,, we can write

of Proposition 7.1, namely such that the support of ¥, is mapped into a strongly

the contribution of )”(Eej) to the estimate (8.19), as the one of

TR

ﬁn(er)Ope,N(Xeﬁj)*fQ(P/ez)e_i(t_Te)P(efieTePOpe’n ()Zifj)-)ﬁn(er)ei e2eP)
x e3P (Pl 4 1)~ N¢(er).

Using Proposition 7.4, we can write for any given N the parentheses as a sum (over
angular charts k2) of operators of the form

RyNOp, o, R, o ns () (er)e + (er) "N Opa 12 (R Y)

with ()ng)t’m)s,g bounded in 5~°°° and supported in a an outgoing region with
parameter o’ as close to 1 as we wish, hence in particular disjoint from the sup-
port of x. ;. Using Propositions 7.7 and 7.9, we get a dispersion estimate of or-
der ¢"R; N (et — TR,)™"N < (t)~%. Finally, for tgR, < €2t < TRy, we write the

contribution of )23)- to the estimate (8.19), as the one of

»J
Dr(er)Op, . (xes)" 2(P/€%) (€777 Op, (W) hu(er)e™ ) e P (P/e? + 1) "N (er).

By Theorem 7.4 together with the third item Proposition 7.1 and our choice of §, the
parentheses is microlocalized in a set where 5/ pl/,f > (j + 1)d, hence disjoint from
the support of x. ;. Thus, only residual terms contribute and they produce a norm of
order €"R, > = O({t)~™/2) since €%t is of order R, in this case. This completes the
proof. U
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8.3. Proof of Theorem 1.3

Here the analysis is very similar to the one of [30], the main difference being that
we control the remainder terms globally in time. The techniques are the same as those
of Section 8.2, upon the replacement of the low frequency propagations estimates of
Section 7.3 by high frequency ones, and low frequency parametrices by high frequency
ones. Regarding the Littlewood-Paley decomposition, we now use Theorem 4.6 instead
of Theorem 4.1. We only record here that the estimates of Section 7.3 are not sensitive
to a possible trapping since the moderate growth in A ~ A=2 in (1.5) is controlled
by the large powers of h provided by the remainders in the expansions (the a priori
resolvent estimates are only used to control the remainders). We also mention the
following minor technical point in the transposition of the proof of Proposition 8.5
to high frequencies. In the remainder R% (t) of the high frequency Isozaki-Kitada
parametrix (see after (6.34)) neither a nor @”* decay in h, so it is not clear that
they will have a negligible contribution in the end. To make sure they are negligible
in the derivation of dispersion bounds, we need to observe that these terms have
a O(h™) contribution. For a’ this follows from Proposition 7.8. The contribution
of @" is handled by the propagation estimates of Proposition 7.9 which provide the
fast decay in h.

8.4. Proof of Theorem 1.5

Thanks to Theorem 1.3, it suffices to prove that for any given x € C§°(M), one
has the global Strichartz estimates

(8.20) I xunill e (&, Lo (M)) S llwoll L2

In the non-trapping case, this follows from the well known techniques of [9, 36]. For
hyperbolic trapping, the analysis is detailed in [11] for local in time estimates. For the
sake of completeness, we check below that this analysis holds also globally in time.
Before doing so, we point out that we are allowed to use Theorem 1.3 since, under the
assumptions of Theorem 1.5, the resolvent has high energy bounds growing at worst
like A=*/21og A (see [15]).

From now on, we work under Assumption 1.4. We shall check the following which
is the global in time analogue of an estimate of [11, p.654].

THEOREM 8.7. — There exists 6 > 0 such that, for any x € C§(M), any
peC§P((1—0,1496))) and any admissible pair (p,q) with p > 2, we have
lxe™ " o(h? P)uo || o r;Lay S lluollr2, 0 <h < 1.

Moreover, if M is non-trapping and n > 3 then the same estimate with (p,q) = (2,2*)
also holds.
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Passing from Theorem 8.7 to (8.20) uses a Littlewood-Paley decomposition. Since
we assume here that the manifold has no boundary, we have an analogue to The-
orem 4.6 where 1 — x can be replaced by x (the point here is that the absence of
boundary allows to use pseudo-differential calculus near the support of x and thus to
repeat the analysis used near infinity on the support of (1 — x)). We omit this part.

The proof of Theorem 8.7 is based on the method by [36] for the non-trapping
case and its modification of [11] under Assumption 1.4. We first record several known
results which play crucial roles. The following lemma concerns local smoothing effects
under Assumption 1.4.

LEMMA 8.8. — There exists hg > 0 such that
(8:21) Ixe (R P)e™ P ug|| 22y S (hllog A)/?[luollz2, b € (0, ho).

Proof. — By Kato’s smooth perturbation theory [26], (8.21) follows from

(8.22)
sup |Ix@(h*P)(h*P — X —ie) 'o(h*P)x| 1212 S h™|logh|, h € (0,hq).
AER,e>0

Let I € (0,00) be an interval with supp(p) € I. When X ¢ I, one has
(8.23) sup ||x@(h*P)(R*P — X —ie) to(h*P)x |22 < sup IrE!

AEI AgI,pEsupp(p)
uniformly in A and € by the spectral theorem. Next, we consider the case when A € 1.
Under Assumption 1.4, [15] gives the following semiclassical resolvent estimate with
a logarithmic loss

(8.24) sup [|[(r) " (AP = A Fie) " (r) Y22 < Crh7 M logh|, M€,
e>0
for all h € (0, hg] and A € I. Combining (8.23) and (8.24) with the bound
(8.25) sup |[x@?(h*P)(r)|lr2—r2 S 1,
he(0,1]

which is standard (it follows e.g., from Theorem 3.9),we have (8.22). This completes
the proof. O

It is well-known that (8.24) and, thus, (8.21) hold without the logarithmic loss
|log h| in the non-trapping case (see, e.g., [42, Theorem 1.1]). We need the following
microlocal improvement of this fact.

LEMMA 8.9. — Let a € CP(T*M) be identically 1 near T and Ay be a pseudo-
differential operator on M with principal symbol a. Then

(8.26) Ix(1 = An)p(h® P)e™ " Fug| p2g;r2) S h'/*|luollzz, b € (0, ho)-
If T =0 i.e., M is non-trapping, then (8.26) holds with 1 — Ay, replaced by 1.

Here the form of the pseudo-differential quantization does not need to be specified
for the difference between two of them will produce corrections of size h for which the
upper bound (8.26) holds thanks to (8.24).
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Proof. — We use again Kato’s smooth perturbation theory as in the previous lemma.
It suffices to prove that, for any semiclassical pseudo-differential operators ¥, with
principal symbol compactly supported away from the trapped set (and with compactly
supported Schwartz kernel), we have locally uniformly in A and uniformly in € > 0,

(8.27) Ui p(h?*P)(h*P — X\ —ie) 'y, = Opap2(h7Y),

with ¢ € C§°(R) such that supp(¢) € (0,00) and ¢ = 1 in a neighborhood of I.
Take Ry > 0 so large that the principal symbol of ¥}, is supported in T*{r < R;}.
Let ¢ € C§°(T*M) be the principal symbol of ¥y, ¢ the Hamilton flow generated
by G and (z,£) € supp(q). Since ¢ is supported away from the trapped set 7, for
every Ry >> 1, there exists T, ¢ > 0 such that ¢'(z,£) € T*{r > Ry} for t > T,¢.
By the compactness of supp(q) and the continuity of the flow ¢! in (x,€), there
thus exists 7' > 0 such that ¢‘(supp(q)) is a compact subset of T*{r > Ry} for all
t > T. Moreover, for some T7; > T, and all t > Ti, it follows from Proposition 7.1
that ¢(supp(q)) is outgoing, i.e., is contained in a finite union (over diffeomorphisms
# of an atlas of S) of outgoing areas I't (Ry, Vi, I2,0) (with o = 0). Note that T} is
independent of h. Now, with z = X + ie, we write

Fp(h*P)(h*P — X\ —ig) 1), = ih™? / VMWt p(h2P)e P W, dt
0

T1 o0 . .
=ih7! </0 +/T )e”t/h\Il;;<p(h2P)e_”hP\Ilhdt.
1

Since the integrand is Op2_r2(1) uniformly in ¢,h, the part of the integral
over [0,T1] is O(h™1!). For the part of the integral over [T7,00), we use the Egorov
theorem (see Theorem 7.4) to find that, for any N > 0,

e WPy, o ~iTihP | pN (=N

with R, = Or2_,12(1) and T}, with outgoing support as above. By (7.23), we have

|5 (R?P)e™ TP =N | o S Rt = Ty) 72
with My = max(Ng, N1, N3) so that

150 (W P)e™ RN (r) "N Ryl 22 S RN Mo (= T1) 72
On the other hand, using Proposition 7.8, we have
| W52 P)e CTOMFG, 0o Sy WY (= Ty) N

for t > Ty. Since N is arbitrary, the part of the integral over [T7, 00) is O2(h™) and

(8.27) follows. O

We also need the following dispersive estimates.
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LEMMA 8.10. — (1) For any x € C§°(M), there exists ¢ = ¢(x,d) > 0 such that, for
all |t| < ch and h € (0, hol, one has the following dispersive estimate

(8.28) Ixe(h?*P)e™* x|l 1 poe S [6]77/2.

(2) If x 1s supported in M_ (see the second condition of Assumption 1.4), then (8.28)
holds for all |t| < ch|logh| and h € (0, hy).

Proof. — The estimate (8.28) for [¢t| < ch can be proved by constructing the semiclas-
sical WKB parametrix up to |t| = O(h) and applying the stationary phase method
(see [10, Section 2]). The latter statement was proved by [11, Proposition 3.9]. O

We are now ready to prove Theorem 8.7.

Proof of Theorem 8.7. — Taking a neighborhood My of 7(T) satisfying Ms € M_
and x7 € C§°(M) supported in M_ and satisfying x7 = 1 on M, we decompose
X = X1+ Xz with x; = x7x and x2 = (1 - x7)x. Note that supp(x2) N7 (7) = 0 and
that one can take xy7 = 0, and thus, x2 = X, in the non-trapping case. To prove the
theorem, it then suffices to show that

(8.29) ||Xj<P(h2P)€_itPU0||Lp([o,oo);Lq) Slluollze, j=1,2, 0<h k1,

with the implicits constant being independent of h. Set ¢, = ¢(h2P) for simplicity.
Consider a decomposition [0,00) = |J;5, J;, where J; are mutually disjoint intervals
such that 0 ¢ J; unless j = 0 and |J;| < ch|logh|/2. Let §;(t) € C§°(R) be supported
in a small neighborhood of J; and satisfy

(8.30) 0(t) = O((h| log h|) ™).

Let J; be intervals such that J; € supp(6;) € J; and |J;| < ch|logh|. For j = 0, by
Lemma 8.10 (2) and the TT*-argument (and Keel-Tao’s theorem [27] in the endpoint
case for n > 3), we have

(8.31) 185x10ne ™" w0l Lo (f0,00);0) S 105X100e ™ 0l Lo,y S lluoll 2

For j > 1, since v; = 0;x1 wne " "*Puq solves the Cauchy problem

(z@t — P)’l}j = i&;)cl(phe_itpuo + [X], P]ngahe_itpuo; Uj't:O = 0,

it follows from Duhamel’s formula that

t
16 x10ne™ " P uoll Lo (s;00) S H/ xie PGl one” " Pugds
0 LP(J;;L9)

t
/ X1 DP9 (s)[x1, Plone *Puods
0

)

+|
Lr(J;;L9)

where X1 € C§°(M_) is chosen so that ¥1x1 = x1. We now take ¢ € C5° satisfying
@ = 1 on supp(y) and supported in a sufficiently small neighborhood of supp(y). Since
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x1pr and [x1, P]en have h-pseudo-differential expansions with symbols supported
in supp(x1¢(|¢|2)) modulo O(h>), one has

X1¢n = Gnx1en + Ri(r) N @, R, = 0%—2N_,%2N(hN),

[X1, Plen = @3 [x1, Plen + Ra(r) "N @, Ry = O%’r"”—&%?N(hN)a

for all N > 0. Here we use the notation introduced prior Proposition 3.8 for the
remainder terms R; and Ry. Moreover, using that [x1, P] has coefficients vanishing
on My since x1 =1 on Mz, @nlx1, P] can be written in the form

@h[leP] = h_IBZBh + R3<7‘>_N, Rs = O%—2N_>3%ZN (hN)

with some pseudo-differential operator Bj, B, with symbols vanishing identically
near 7 and supported in supp(x1) N supp(¢(|€]2)). Now we set

t
I =/ )Zlefl(tfs)PgZhH;(S)Xlgaheﬂspu(]ds,
0
t
I, = hil/ )Zle*l(tfs)Pgé,%Oj(S)B,";Bhgohe*”Puods.
0

We then apply Lemma 8.10 and Keel-Tao’s theorem [27] to get

110l 2o 7,0y S (Rl log R~ HIXaone™ P uoll 117,12
(8:32) < (Allog hl) ™2 (I Ruene™ P uoll 12,129
using also (8.30) in the second line. This holds for all admissible pair (p, q), including
the endpoint case if n > 3.

To deal with the second term Iy, we observe first that, by Lemma 8.10 and the
dual estimate of (8.26),

(8.33) Hh—1 / x1e P G20, (5) By f(s)ds
0

i S h_1/2||f||L2(jj;L2)
LP(J;;L9)

for all non-endpoint admissible pair (p,q) with p > 2. Since p > 2, Christ-Kiselev’s
lemma [13] shows that in the left hand side of (8.33) the integral over [0, 00) can be
replaced by an integral over [0,¢]. This implies that

(8.34) ||I2||Lp(Jj;Lq) S h_1/2||Bh<Ph6_iSPu0||L2(J,-;L2)‘

We also obtain the estimates for the error terms by Sobolev estimates

t
[ a6 Rata) Nepne P unds
0

Lp(Jj;L9)
n 1_1 — ~ —3
(8.35) S ANV E [hlog(h)| 7 72 (1) N G P uoll 1,2y
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and likewise for Ry and R3. By (8.31)—(8.35) and picking N large enough, we obtain
from Minkowski’s inequality

%

Ixaene™ ol o,00y00) S D IDagne™  uol, 51
j=0
< P —1)|= —itP, |12 »/2
< luollgs + (D (hl1og h) M Raone P uoll2a ;. 10)
Jj=21
_ . p/2
+ (Zh 1||Bh§0he 1tPu0||iZ(jj;Lz))
jz1
) /2
N/2 ~N ~ _—itP, |2 P
+(§h 1)~ Bre ™ PuollZa sy )
1=

S ||’“0||I£2 + (h| IOghl)_p/2||>zl<phe_itpu0||i2([0,oo);ll2)
+ h'_p/2”Bh(phe_itpuo||1£2([0’00);L2)~

Notice that we have used (7.24) to handle the contribution of the remainder terms.
We now apply Lemma 8.8 to the second term and Lemma 8.9 to the third term in
the last line, respectively, to obtain (8.29) for j = 1.

The proof of (8.29) for j = 2 is almost the same. The only difference is that we
decompose [0,00) = |J ;>0 J; with mutually disjoint intervals J; satisfying |J;] < ch.
Now, under the non-trapping condition, we can use Lemma 8.9 with a = 0 to obtain
(8.29) for j = 2. This completes the proof. O
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CHAPTER 9

NONLINEAR EQUATIONS

In this part, we use the global Strichartz inequalities of Theorem 1.5 to study the
L? critical nonlinear Schrédinger equation

(NLS) i0iu — Pu = U|u|%u,
where n > 3 is the space dimension and o is a sign; ¢ = 1 corresponds to the
defocusing case and 0 = —1 to the focusing case. Here the sign will not matter since

we are going to consider small data. We will solve (NLS) in
X = L** % (R x M) N Cuca (R, L2(M)),

where
Ciscat (R, L2(M)) = {u € C(R, L*(M)) | the limits Jim e u(t) exist in LQ(M)}

is a Banach space for the norm [|u| oo 2 := sup;cp ||u(t)|| 2 m) (it is a closed subspace
of the space of bounded uniformly continuous functions u : R — L?(M)). We then
equip X with the norm

lullx = | ) T llullperz,

|u”L2+%(RxM
which makes it a Banach space.
THEOREM 9.1. — Let 0 = 1 or —1. Under the assumptions of Theorem 1.5, there

exists € > 0 such that, for all ug € L*(M) satisfying ||uollzz < €, there ezists a
unique u € X such that

u(0) =up and wu solves (NLS) in the distributions sense.

In particular, since it belongs to Cscat (R, L2(M)), this solution scatters as t — oo,
i.e., there are uy € L?(M) such that

u(t) — e Fuy|2 =0, t— Foo.
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This theorem is of course similar to the well known result for (NLS) on R™. Its
novelty stems in the fact that we work on an asymptotically conical manifold and
that a possible hyperbolic trapping on M will not change the usual picture, namely
the global well posedness and the existence of scattering for small data.

The proof follows the usual scheme, the main tool being the global Strichartz
estimates. We record the main lines below to point out the where one has to be
careful in the transposition of the proof on R™.

Proof of Theorem 9.1. — The principle is to solve (NLS) in the Duhamel form

t
(Duh) u(t) = e "Pug + %/ e TPy (s)|
0

4
n

u(s)ds,

by a fixed point argument on a ball Bx (0,7) with  small enough. We note first that
the pair (p, q) defined by p = g = 2+ % is Schrodinger admissible, so the homogeneous
Strichartz inequalities of Theorem 1.5 show that the map

U:L*(M)3up— [t e Pugle X
is well defined and that one has
U (B:(0,¢)) € Bx(0,Ce¢).

Also, since (p, q) is not an endpoint pair (i.e., p # 2), the homogeneous inequalities
provide inhomogeneous Strichartz inequalities thanks to the Christ-Kiselev lemma
[13]. This means that, if we set

(9-1) (D)) = / i f(5)a
0
we have
(9.2) DA 2 ey S WA 2
where 27?:’44 is the conjugate exponent to 2 + E' More precisely, the integral defining

Df has a clear sense if f € C(R,L?(M)) so the precise meaning of (9.2) is that it
holds on the dense subset C(R,L%(M)) N L%(R x M) and that D can then be

extended by density to L sy (R x M). The adjoint estimates to the the homogeneous
Strichartz estimates also imply that

IDflleere S IFI 2

LogE (Rx M)’
and that

t
||eitP(Df)(t) . eit,P(Df)(t,)Hp(M) = H/t/ eist(s)dS SN 2

L2 (M) L (7, x M)

for all f € C(R, L2(M)) N L7+ (R x M).
This last inequality implies that e?** (D f)(t) has limits as ¢ — 400 hence that D f
belongs to Cycat (R, L2(M)). Thus is well defined and continuous, by taking the closure
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of D: C(R,LA(M)) N L%(R x M) — X. One has however to be careful that the
closure of D is no longer clearly given by the explicit integral form (9.1).

To handle the nonlinearity u — N(u) := |u|%u7 we use the estimate on complex
numbers
4 F 4 4
(9.3) 2172 = 1¢I7¢] Sn 12 = CI(I2™ + ¢I7),

to derive the estimate
4
_ < _ B
ING) =Nz o S =0l o g (Rl s

4
1ot e

),

which implies in particular that
N:X cL* (R x M) - L7 (R x M)
is well defined and Lipschitz on balls of X. The above estimate with v = 0 also implies

that

5] 1+2
N(Bx(0.7) C B mis (0,Cur ).

We can thus define the map F,, : X — X by
o
Fuo (U) = U(U’O) + ;D(N(u))v

which gives a precise sense to the right hand side of (Duh). Furthermore, for
u,v € Bx(0,7) and ug € Br2(0,¢), one has

| Fue (W)l x < |U(uo)||x + [|D(N(u))|lx e+ Pl
and
(9.4) | Fuo (u) — Fuy (W)l x = [|D(N(u) — N(v))||lx < 7‘%||u —ollx,

so, if r is small enough and ¢ < 7, the ball Bx(0,r) is stable by F,,, on which it is
a contraction. This provides a solution to the equation v = F,,(u). To complete the
proof, one has to observe that this solution is a solution in the distributions sense
and, conversely, that if we have a distributional solution which belongs to X then it
satisfies F,,(u) = u.

To prove these two facts, we will use that, if x € C§°(R) is equal to 1 near 0, then
for every given u € X

(9.5) x(277P)u —u in X as j — oo.

Here x(277P)u = [t — x(277 P)u(t)]. The convergence (9.5) follows from the strong
convergence of x(277P) to the identity on both L2(M) and L**# (M), which can be
proved as on R™ for Fourier multipliers by using the pseudo-differential description
of x(277 P). We omit the details of the proof but only record that to prove

sup [|u(t) - X@7Pyu®) 2y — 0, j — o0
€

we may replace the norm by [le®Pu(t) — x(277P)e"Pu(t)|12(m) and exploit that
t > e"*Py(t) is uniformly continuous with limits at 0o to get the uniform convergence
as j — oo. Thus, given a solution u to u = F,,(u) and letting u; = x(277P), one

SOCIETE MATHEMATIQUE DE FRANCE 2024



96 CHAPTER 9. NONLINEAR EQUATIONS

has Fy,, (u;) — Fyuy(u) = u by (9.4) and (9.5). Since |uj|%uj belongs to C(R, L?(M))
(this can be checked by using (9.3) and that x (277 P) maps L?(M) into L>°(M)), we

can write
Fuo(uj)(t) = e Pug + j/ot e_i(t_S)P|uj(s)|%uj(s)ds
(i.e., the integral has a clear sense) and, from this expression, we easily infer that
(0 — P)F(u5) = olus| " u;

in the distributions sense on R x M. Letting j — oo, we conclude that u solves (NLS)
in the distributions sense.

Conversely, if u € X solves (NLS) in the distributions sense, it remains to prove
that v = F,,(u). By definition, we have

(9.6) // (@0, — P)o(t, z)u(t, )dvol, dt—a// ot 2)|ult, )| % u(t, x)dvolydt

for all ¢ € C§°(R x M) and then for all ¢ € C°(R,.#(M)) by a simple limiting
argument (see (3.5) for .#(M)). The interest of allowing ¢(t) = ¢(¢,.) to belong
to S (M), is that we can write the left hand side of (9.6) as

/R (10" 6 (1)), " P ult)) o )

since P leaves .7 (M) stable but not C$°(M). On the other hand, by approximating
u by u; = x(279 P)u using (9.5), the right hand side of (9.6) reads

o /R /M &(t, @) |u; (t, )|~y (t, z)dvolydt + O (|Ju — ;]| x).
Using that ¢ — |u; (t)|%uj (t) is continuous with values in L?(M), one can write
ol @) = 7ia, (5 [Py us(s)ds)
Then, by integration by part, (9.6) yields
| (604 9(0). ) = G ) (1) gyt = Ol = ).
where

GNW =7 [ T ris)as

is well defined for f € C(R, L?(M)) with values on C(R, L?(M)) but can be extended

toall f e Lo (R x M) by the adjoint of homogeneous Strichartz estimates. Letting
j — oo and choosing ¢(t) = e~ (t) with ¢ € C°(R x M), we find that

/ / 0 (t, ) {"Fu(t,z) — G(N(u))(t,z)} dvolydt = 0
RJIM
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hence that e?"u(t, z) — G(N(u))(t, z) is independent of t. By evaluation at ¢t = 0, we
find

g
2

eitP (u(t) S D(N(u))(t)) =up, teR,
since e PG (N (u))(t) = 2D(N(u))(t). This proves that u = F,,(u) and completes

3

the proof. O
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APPENDIX A

PUTTING THE METRIC IN NORMAL FORM

PROPOSITION A.1. — If (M, G) is asymptotically conic, G can be put in normal form.

Proof. — The main steps are described in [22], but locally with respect to the angular
variable. We briefly describe here how to globalize the construction on S. It is sufficient
to prove the existence of sequences of compact subsets K € M, real numbers Ry > 0
and diffeomorphisms

Qi : M\ K 3 m — (re(m),wr(m)) € (Rg,0) X S,

with 7 /r bounded from above and below on M \ Kj (so that preimages of bounded
intervals by 7y are relatively compact in M), through which

G = Q (Ak(’l"k)d’ﬁ% + 2rp By (rg)dry + Tigk(rk))
with
(A1) Ap()—1€8™™ B()esS™ g()-ges™.

If we achieve this, then in a finite number of steps we have kv > 1 and can put the
metric in normal form by using [5]. We proceed by induction by setting first 2 = Q.
We seek Qf, = D,;l 0 _1, between suitable open subsets of R, x S, by constructing
a diffeomorphism of the form

Dy(z,w) = (x + zog(z,w), expw(Vk(x)))

for some symbol o, and some z dependent vector field Vi(z) on S. For Ry large
enough, we define o and then Vi on (Rj,00) X S as the unique solutions in S(=k)v
to

(A.2) 2(w8x0k + O'k) =1—Ap_1(z), z0,Vi(z)= —g_l(dwak(x) + Bk,l(x)),

where g~! stands for the isomorphism T*S — TS induced by g, and d,, is the differ-
ential on S. These objects are globally defined with respect to the angular variable
on S. Note in particular that, since V(z) — 0 as £ — o0, exp,,(V(z)) is close to the
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identity on S. It is then not hard to check that, for Ry large enough, Dy is a diffeo-
morphim between (Rj,00) X S and an open subset of (Ri_1,00) X S which contains
(Rg—1,00) x S for some Rj_1 large enough. We find that

D (Gr-1(rk—1)) = Ax(r)dry + 2rBi(ri)dry + ragr (i)
with
Ag(rr) =14 20%(ri) + iy o (ri) + (Ap—1 — 1)(re) + S7H
By(r) = §(ri0r, Vi (re)) + Be—1(rk) + duoy(re) + S
gr(re) =g+ 57"
By (A.2), we see that (A.1) is satisfied. Furthermore, the form of Dj implies

that 7,/rr—1 is bounded from above and below, so by the induction assumption
on r_1 the same holds for ri/r. The result follows. O
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APPENDIX B

WEAK TYPE (1,1) ESTIMATES

In this appendix, we explain how to reduce the proof of weak type (1,1) estimates
on L'(M) for the operators of Propositions 4.3 and 4.7 to the standard theory of
Calderén-Zygmund operators on R"™ (Theorem B.2 below).

We first recall some general and elementary facts. Assume that X is a manifold
equipped with a measure p which is a positive smooth density. We recall that a linear
map T on L'(X, u) (with values on measurable functions on X) is said to be of weak
type (1,1) with bound C if

C
pn({ITf]>A}) < X”f”Ll(X,u)
for all A > 0 and f € L1(X, u).

PROPOSITION B.1. — Let T be of weak type (1,1) on L'(X, u) with bound C.

1. Let b: X — [m, M|, with 0 < m < M, be measurable and let pp be the measure
defined by

up(B) == /Bbdu.
Then T is of weak type (1,1) on LY(X, up) with bound CM/m.
2. Let & : X — Y be a diffeomorphism between X and another manifold ).
(a) Then ®.T®* is of weak type (1,1) on LY(Y, ®.pu) with bound C.
(b) If T is bounded on L?(X,p) (but not necessarily of weak type (1,1)), then
®,T®* is bounded on L*(Y,®.u) with the same operator norm.

In this proposition, ®,u is the usual pushforward measure (i.e., ®.u(B) =
,u(<I>_1(B))) and ®,,®* are respectively the pushforward and pullback operators
(i.e., ®,v =vo® ! and ®*f = f o D).

We will apply Proposition B.1 to prove the weak type (1,1) bounds stated in the
proofs of Propositions 4.3 and 4.7, that is for operators of the form

M
TIOW(M7 t) = Z Qe(t)ganOPl (05)1/11_1;195_1, e = 2—4,
=0
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and
M

Thigh (M, 1) 1= _ 04(t)I1.Opy, (an)¢II; ",  h* =275
=1
We recall that I1, is associated to the angular chart k : U — V by (2.2), 9 is a smooth
cutoff supported in (Rp, 00) X V and that a., ap, are symbols of the form

b(r002).

with b(r,0,&) € S° (possibly depending on € or h in a bounded fashion) supported
in (Rp,00) x K x {c < |{| < C} for some K € V and C' > ¢ > 0 independent of ¢
or h.

We proceed as follows. When X = M and p is the Riemannian measure
lg(r,0)|r"~1drdf, the item 2 (a) with ® = II, allows to transfer the analysis from M
to a chart (R,00) x V equipped with the measure |g(r,8)|r"~'drddf. The item 1
allows to drop the factor |g(r,0)|. We next introduce the diffeomorphism

&(r,0) := (r,r0)
between R, X Rg_l and R, x R?~1 whose interest is that
@, (r""tdrdd) = drdz.
Then another application of the item 2 (a) shows that it suffices that
Alow (M, 1) == 10" (Tiow (M, 1)) L. @*,  Apign(M, 1) 1= @.II;" (Thign(M, t)) I, 0%,

satisfy weak type (1,1) estimates on L!(R™,drdz). To prove the latter, it suffices to
check they satisfy the assumptions of the following theorem.

THEOREM B.2 (Calder6n-Zygmund operators). — Let (Apr) be a sequence of operators
on R, x R?~! with Schwartz kernel Ky; such that, for some C > 0 and all M,

| Al 2 drdz)— L2 (&7 draz) < C, M >0,
and, for any j,a such that j + |a| <1,
87,08 Kar(r, 2,77, 2')| < C(Ir — /| 4 |z = 2/) 7712l (1, 2,07, 2') € R®, M > 0.
Then Ay is of weak type (1,1) on L*(R™,drdz) with bound uniform in M.

We refer for instance to [41] for a proof of this theorem.

The uniform L?(drdz) boundedness of Ajoy (M,t) follows from the item 2 (b) of
Proposition B.1 together with the Cotlar-Stein argument described in the proof of
Proposition 4.3. For Ayign(M,t), it suffices to observe that

M ~
> ou(t)a(h) € S°°,
{=1
uniformly in M and t. This follows from the form of a(h). Therefore Thigh(M,1t) is

uniformly bounded on L?(M) so Apigh(M,t) is uniformly bounded on L?(drdz) by
the item 2 (b) of Proposition B.1.
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We next consider the kernel estimates. To put both cases under a single form, we
compute the Schwartz kernel of

Al = Q*QEOph(a)1/J.@:1<I>*
with respect to drdz, with
_ n —o0
a(raeapan)_b(raeapar)a besS .

The Schwartz kernel of Op,,(a) with respect to drdf is of the form

I, r—r r(@—-109)
2 " _
ety (10,250, 1O

where b is the Fourier transform with respect to (p,7). After elementary calculations,
we find that the Schwartz kernel of A" reads (up to the irrelevant factor (27)~")

!

KMr, 2,0, 2') = (%)n (%)n_l b (er, ;, %(r -7, %(z - (r/r')z')) 0 <6’I‘,, :/> :

T

We want to show that > o¢(t)K} and Y 0,(t) K} satisfy the second assumption of
Theorem B.2. By exploiting that 2’/r’ belongs to a compact set, as well and the fact

that er’ is bounded below by some R > 1, these kernel estimates follow from the

following lemma which we use either with A = h or A = ¢ L.

LeEmMA B.3. - 1. For all N >0, one has

—3N
T kOS2 T A R O e B AT
A A i ~ A A

for all X >0, all r,7’ >0 and all z,2' € R*1.
2. Let ¢ > 0. There exists C > 0 such that, for all r,7' > 0 and A > 0, we have

T |r — /|
—<C|(1
T <+ A )

provided that

T,/
XZC.
3. Let s € 0,1 and N >n+ 1. Then

—-N
Z A~ns <1 + |(L‘ X y|) < |3j _y|—n—s

A=2¢
Lez

for all z,y € R™ such that x # y.
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Proof. — In the item 1, the left hand side is not greater than

—N
1—i_|,r__,,,l| —2N 1+|Z—%ZI| 1+M —N
A A r! '

Writing 2z — 52" =2 — 2"+ TIT7TZ/ and using the Peetre inequality for the term in the

middle, we obtain an upper bound of the form

—N
=\ 2N |2 = 7| Ir =/ |\ Edh
C<1+ A 1+ A L+ A r/ L+ r/ ’

which in turn is bounded by

o1 = (L = =y
A A A '

This yields the result once observed that

_N —N
r—r P\ |z — 2| lr—r']  |z—27|
(1+ \ > (1—|— i\ <1+ h + h .

’
r—r

The item 2 follows simply from the fact that > =1+ = % The item 3 is standard.
O
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APPENDIX C

SOBOLEV ESTIMATE

In this appendix we provide a short proof of the homogeneous Sobolev estimate
(1.2).
Using the same cutoff fy as in (1.3), we have

(X = o) (P)oll 2 (aay S 1P +1)V2(1 = fo)(PYollz(my S IPY20ll 2y

thanks to the following proposition.

PRrOPOSITION C.1 (Inhomogeneous Sobolev estimate). — We have
(C.1) Jull o= gy S NP+ 1) 20| L2

Proof. — From classical local estimates, we get that if x is compactly supported (pos-
sibly equal to 1 near M if non empty),

Ixullp2s vy S lwllzeomy + IV aullze vy
which, by using ||Veul z2(m) = [|PY/2ul|2(m) and the spectral theorem leads easily
to

Ixellzer () S 1P+ 1) 20 g2 pn)-

This first estimate allows to work only near infinity and in particular to use Proposi-
tion 3.7 with ( = 1 — x. From this proposition and the following Hdolder estimate,

2

1— 2
||v||L2*(M) < ||v||L2(7\4)||v||£oo(M)
we obtain that if N > n/4,
(C.2) IC(h*P + 1)_N||L2(M)—>L2*(M) ShL

Using the spectral theorem, we infer that if f, f € C§°(0,00) with f =1 on the
support of f, we can write

C(1+ P72 f(h2P) = ((h*P + 1) ((h2P + )Y f(h2P)(1 + P)~V/2) £(h*P)

=OL2 L2 (h)
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the bound on the operator in parentheses following from the fact that P is of size h™!
on the support of the (spectral) cutoff. This implies that

ICF(R2P)( + P) 20| pax gy S IIF(B2P)0 12000

for all h € (0,1] and v. Now we apply Theorem 4.6 (with the f and fj specified there)
which gives, using the above estimate,

1/2
€1 = fo)(PY(L + P) V20| pax (g S ( > ||f(h2P)v||%2(M>) + [[vll L2 (m)

h2=2—¢
S vllzeom

the second line following by quasi-orthogonality. Finally, using that ¢ fo(P) is bounded
from L? to L?" (e.g., by the spectral theorem and (C.2) with k = 1), we obtain that

¢+ P)720] pox gy S [0l 2,
which completes the proof. O

Thus it remains to show that

1 fo(P)oll Lo (ag) S 1P ?0l| 120y
To do so, we choose x € C°(M) which is equal to 1 on a large enough compact set
and observe that

I fo(P)vllzes (ay S 1) "M ollzeany S IPY20ll L2

using first that x fo(P)(r) is bounded from L? to L?>" which follows from (C.1) and
the commutator argument explained thereafter and then the Hardy inequality (see,
e.g., [6, Prop. 2.2]). Indeed,

xJo(P)(r) = x(r) fo(P) + x[fo(P), (r)],

where x(r) fo(P) is bounded from L? to L?" by (C.1) and the spectral theorem. The
commutator can be expanded using the Helffer-Sjostrand formula (2.18) as

P (7)) = 5= [ 0Fa&)(P =277 1tr). PI(P = 2) (=),

where [(r), P] is a first order differential operator which is P bounded (by (2.10) it
vanishes near the boundary of M, if any, and equal 20, plus a bounded function near
infinity by (2.11)). Thus, using the spectral theorem we get

[(r), PP = 2)" = [(r), PP +1)! (P+1)(P - 2)

L2—L2 bounded Oj2_, 2({z)/|Im(z)|)

and, in combination with (C.1),
(P—2) = (P+1)7 12 (P+1)/2(P—2)1.

L2512 0,2 ,2((2)/|Im(2)))

After integration against 8 fo(z), we obtain that [fo(P), (r)] is bounded from L? to L?".
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Using a partition of unity > ¢.(w) =1 on S with functions supported in coordi-
nates patches, we can see that

(1 = X) @ (@) fo(P)vll 2w (my S 1V (1= X) 0 (@) f (Po)v) [l L2 (an)

using the usual proof of the Sobolev inequality on R™ since the cutoff (1 — x)¢x(w)
localizes in the product of a half line and a patch. From this estimate, we then obtain

11 = X)fo(P)vll o () S IVGf (Po)vllL2my + I(r) =1 F (Po)vll Lz an
SIPY20) L2

using again the Hardy inequality.
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Nous démontrons des inégalités de Strichartz pour ’équation de Schrédinger sur une
grande famille de variétés asymptotiquement coniques. Si P est 'opérateur de Laplace
et fo € C§°(R) une fonction de troncature égale & 1 prés de zéro, nous montrons
d’abord que la partie basse fréquence de toute solution e~*Fuy, i.e., fO(P)e_”PuO,
satisfait les mémes inégalités de Strichartz que sur R", en dimension n > 3. Nous
montrons également que la partie haute fréquence (1— fo)(P)e~ " ug vérifie également
des inégalités de Strichartz sans perte de dérivée & ’extérieur d’un compact, méme si
la variété posséde des géodésiques captées mais dans un sens tempéré. Nous montrons
ensuite que la solution compléte e~*Fuq satisfait des inégalités de Strichartz globales
en espace-temps & condition que I’ensemble capté soit vide ou suffisamment fin, et
nous obtenons une théorie de la diffusion pour I’équation de Schrédinger non linéaire
L? critique dans ce contexte géométrique.

We prove global Strichartz inequalities for the Schrédinger equation on a large class
of asymptotically conical manifolds. Letting P be the nmonnegative Laplace operator
and fo € C§°(R) be a smooth cutoff equal to 1 near zero, we show first that the low
frequency part of any solution e~"Fuyg, i.e., fo(P)e~®Fug, enjoys the same global
Strichartz estimates as on R™ in dimension n > 3. We also show that the high
energy part (1 — fo)(P)e~"Fuq also satisfies global Strichartz estimates without loss
of derivatives outside a compact set, even if the manifold has trapped geodesics but
in a temperate sense. We then show that the full solution e~"*Fug satisfies global
space-time Strichartz estimates if the trapped set is empty or sufficiently filamentary,
and we derive a scattering theory for the L? critical nonlinear Schrédinger equation
in this geometric framework.
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