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GLOBAL IN TIME STRICHARTZ INEQUALITIES
ON ASYMPTOTICALLY FLAT MANIFOLDS

WITH TEMPERATE TRAPPING

Jean-Marc Bouclet, Haruya Mizutani

Abstract. – We prove global Strichartz inequalities for the Schrödinger equation on a
large class of asymptotically conical manifolds. Letting P be the nonnegative Laplace
operator and f0 ∈ C∞0 (R) be a smooth cutoff equal to 1 near zero, we show first
that the low frequency part of any solution e−itPu0, i.e., f0(P )e−itPu0, enjoys the
same global Strichartz estimates as on Rn in dimension n ≥ 3. We also show that the
high energy part (1− f0)(P )e−itPu0 also satisfies global Strichartz estimates without
loss of derivatives outside a compact set, even if the manifold has trapped geodesics
but in a temperate sense. We then show that the full solution e−itPu0 satisfies global
space-time Strichartz estimates if the trapped set is empty or sufficiently filamentary,
and we derive a scattering theory for the L2 critical nonlinear Schrödinger equation
in this geometric framework.

Résumé (Inégalités de Strichartz globales en temps sur des variétés asymptotiquement
plates à capture tempérée)

Nous démontrons des inégalités de Strichartz pour l’équation de Schrödinger sur
une grande famille de variétés asymptotiquement coniques. Si P est l’opérateur de La-
place et f0 ∈ C∞0 (R) une fonction de troncature égale à 1 près de zéro, nous montrons
d’abord que la partie basse fréquence de toute solution e−itPu0, i.e., f0(P )e−itPu0,
satisfait les mêmes inégalités de Strichartz que sur Rn, en dimension n ≥ 3. Nous mon-
trons également que la partie haute fréquence (1 − f0)(P )e−itPu0 vérifie également
des inégalités de Strichartz sans perte de dérivée à l’extérieur d’un compact, même si
la variété possède des géodésiques captées mais dans un sens tempéré. Nous montrons
ensuite que la solution complète e−itPu0 satisfait des inégalités de Strichartz globales
en espace-temps à condition que l’ensemble capté soit vide ou suffisamment fin, et
nous obtenons une théorie de la diffusion pour l’équation de Schrödinger non linéaire
L2 critique dans ce contexte géométrique.

© Mémoires de la Société Mathématique de France 182, SMF 2024
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CHAPTER 1

INTRODUCTION AND MAIN RESULTS

In the past ten or fifteen years, a lot of activity has been devoted to study Strichartz
inequalities on manifolds. We recall that these inequalities were stated first on Rn for
the wave equation [37] and then the Schrödinger one [21]; for the Schrödinger equation
and a pair (p, q) ∈ [2,∞]× [2,∞], they read

∥u∥Lp(R,Lq) ≲ ∥u0∥L2 , u(t) = eit∆u0, if
2

p
+
n

q
=
n

2
, (n, p, q) ̸= (2, 2,∞).

(A pair (p, q) satisfying the last two conditions is called Schrödinger admissible.) The
strong interest on Strichartz inequalities is mainly related to their key role in the
study of nonlinear dispersive equations (see, e.g., [12, 38]).

On compact manifolds these estimates may be different from those on Rn, either
due to the strong confinement leading to derivative losses for the Schödinger equation
[10] (the L2 norm of initial data is replaced by some Sobolev norm) or to the absence
of global in time estimates (if initial data are eigenfunctions the solutions are periodic
in time).

One may ask to which extent the estimates on Rn still hold on noncompact mani-
folds, at least in the class of asymptotically flat ones. For the Schrödinger equation,
the only one considered from now on, this problem was considered in several arti-
cles for local in time estimates [36, 35, 22, 7, 30]. From the geometrical point of view,
those papers consider stronger and stronger perturbations, namely from compactly
supported perturbations of the flat metric on Rn to long range perturbations of con-
ical metrics on manifolds. We refer to Definition 1.1 for a description of long range
asymptotically conical metrics but point out here that long range perturbations are
natural in that it is the only type of decay which is invariant under a change of radial
coordinates (see [5]).

Global in time estimates for long range perturbations are considerably more deli-
cate to obtain and have been considered in fewer papers [39, 28, 23] (see also [8] with
a low frequency cutoff).

To prove global Strichartz inequalities on curved backgrounds, one has to face two
difficulties. The first one, which does not happen on Rn, is the possible occurring of
trapped geodesics (geodesics not escaping to infinity, in the future or in the past).
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2 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

This trapping is only sensitive at high frequencies and may affect the estimates by a
loss of derivatives. However, if it is sufficiently weak, one can still expect Strichartz
estimates without loss as shown in [11] locally in time. Trapping is already a problem
for local in time estimates hence a fortiori for global in time ones.

The second difficulty stems in the analysis of low frequencies. Indeed, except in a
few model situations such as Rn or flat cones [20] where the fundamental solution of
the Schrödinger equation can be computed explicitly, the only robust strategy acces-
sible so far is to localize the solution in frequency, e.g., by mean of a Littlewood-Paley
decomposition, and then to prove Strichartz estimates for the spectrally localized com-
ponents by using microlocal techniques to derive appropriate dispersive estimates. Due
to the uncertainty principle, low frequency data cannot be studied purely by microlo-
cal techniques and thus require additional non trivial estimates. On Rn (or a pure
cone), one may use a global scaling argument to reduce the analysis of low frequency
blocks to the study at frequency one, but this is in general impossible on manifolds.

The first breakthrough on global in time Strichartz estimates was done by Tataru in
[39] where he considered long range and globally small perturbations of the Euclidean
metric, with C2 and time dependent coefficients. In this framework, no trapping could
occur. The results were then improved in [28] by allowing more general perturba-
tions in a compact set, including some weak trapping. Recently, Hassell-Zhang [23]
partially extended those results by considering the general geometric framework of
asymptotically conic manifolds and including very short range potentials, but using
a non-trapping condition.

In the present paper, we improve on those references in the following directions.
On one hand, we consider a class of asymptotically conic manifolds which is larger
than the one of Hassell-Zhang, and contains all usual smooth long range perturbations
of the Euclidean metric. More importantly, we allow the possibility to have trapped
trajectories and, assuming this trapping to be temperate (assumption (1.5)), show
that the solutions to the linear Schrödinger equation enjoy the same global in time
estimates without loss as on Rn outside a large enough compact set. This fact is a
priori not clear at all since, by the infinite speed of propagation of the Schrödinger
equation, one may fear that the geometry and the form of the initial datum inside
a compact set has an influence on the solution all the way to spatial infinity. This
question was considered first in [7] locally in time and then in [28] globally in time case
but our approach in this paper allows to deal with much stronger types of trapping
than in this last reference (see the discussion after Theorem 1.3).

As a byproduct of this analysis, we derive global space-time Strichartz estimates
without loss if there is no trapping (thus recovering the results of Hassell-Zhang for a
larger class of manifolds, when there is no potential) or if the trapping is filamentary
in the sense of [33, 11]. In particular, we extend to the global in time case one of the
results of [11].

Then, we apply these estimates to the scattering theory of the L2 critical nonlinear
Schrödinger equation with small data on a manifold with filamentary (or empty)
trapped set (Theorem 9.1).

MÉMOIRES DE LA SMF 182



CHAPTER 1. INTRODUCTION AND MAIN RESULTS 3

From the technical point of view, an important part of our paper is devoted to con-
struct tools adapted to the analysis of low frequencies. In particular, along the way,
we develop a new version of the Isozaki-Kitada parametrix for long range metrics. Re-
call that the Isozaki-Kitada parametrix was introduced on Rn to study the scattering
theory of Schrödinger operators with long range potentials [24]. One of the new fea-
tures of our parametrix is the treatment of low frequencies which, to our knowledge,
does not seem to have been much considered before, up to the reference [16] in the
context of scattering by potentials on Rn which is very different from ours (especially
at low energy). We derive related L2 propagation estimates which are needed in the
present paper but can be of interest for other questions of scattering theory, such
as the study of scattering matrices at low energy. In a more directly oriented PDE
perspective, the methods developed in this paper also allow to handle other dispersive
models like fractional equations [18].

Let us now state our results more precisely.
Let (M, G) be an asymptotically conic manifold, possibly with a boundary, i.e.,

a manifold diffeomorphic away from a compact set to a product (RM,+∞) × S, for
some closed Riemannian manifold (S, ḡ), such that G is a long range perturbation of
the exact conical metric dr2 + r2ḡ. To state a precise definition, we denote by Γ(T p

q S)

the space of (p, q) tensors on S, i.e., sections of (
⊗p

TS)⊗ (
⊗q

T ∗S), and for a given
smooth map e = e(r) defined on (RM,+∞) with values in Γ(T p

q S), we will note

e ∈ S−ν ⇐⇒ Npq

(
∂j

re(r)
)
≲ ⟨r⟩−ν−j

for each semi-norm Npq of Γ(T p
q S) and j ≥ 0. If (θ1, . . . , θn−1) are local coordi-

nates on S, this means equivalently that e is a linear combination of terms of the
form e

j1···jp

i1···iq
(r, θ)dθi1 ⊗ · · · ⊗ dθiq ⊗ ∂θj1

⊗ · · · ⊗ ∂θjp
such that, for each j and α, we

have an estimate |∂j
r∂

α
θ e

j1···jp

i1···iq
(r, θ)| ≲ ⟨r⟩−ν−j locally uniformly in θ (see also the

paragraph Standard symbol classes in Chapter 2). Here ⟨·⟩ is the standard Japanese
bracket.

Definition 1.1. – A Riemannian manifold (M, G) is asymptotically conic if it is
connected and if there exist a continuous and proper function r : M → [0,+∞),
a compact subset K ⋐ M and a closed Riemannian manifold (S, ḡ) such that for
some RM > 0 there is a diffeomorphism

Ω : M\K ∋ m 7→
(
r(m), ω(m)

)
∈ (RM,+∞)× S

through which
G = Ω∗

(
A(r)dr2 + 2rB(r)dr + r2g(r)

)
,

where A(r) ∈ Γ(T 0
0 S), B(r) ∈ Γ(T 0

1 S) and g(r) ∈ Γ(T 0
2 S) is a Riemannian metric

on S such that, for some ν > 0,

A− 1 ∈ S−ν , B ∈ S−ν , g(·)− ḡ ∈ S−ν .(1.1)

If A ≡ 1 and B ≡ 0, one says the metric G is in normal form.
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4 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

Without loss of generality, we will assume that G is in normal form (see Ap-
pendix A). This plays no role in the present introduction but will be useful in later
chapters.

Everywhere in the sequel, we denote by Lq(M) or just Lq the Lebesgue spaces
associated to the Riemannian measure on M. We let P be the Friedrichs extension
of −∆G on L2(M), namely the unique selfadjoint realization if M has no boundary
or the Dirichlet one if ∂M is not empty. One interest of our geometric framework is
that, if n ≥ 3, we have a Sobolev estimate

∥v∥L2∗ (M)≲∥P 1/2v∥L2(M), 2∗ =
2n

n− 2
,(1.2)

for all v in the domain of P 1/2 (see Appendix C for a proof).
For u0 ∈ L2(M), we let u(t) := e−itPu0 be the solution to the Schrödinger equation

i∂tu− Pu = 0, u|t=0
= u0.

Let f0 ∈ C∞0 (R) be such that f0 ≡ 1 on [−1, 1] and split u(t) = ulow(t) + uhigh(t)

according to low and high frequencies, i.e.,

ulow(t) := f0(P )e−itPu0, uhigh(t) = (1− f0)(P )e−itPu0.(1.3)

Theorem 1.2 (Global space-time low frequency estimates). – Assume that n ≥ 3

and let (p, q) be a Schrödinger admissible pair. Then there exists C > 0 such that, for
all u0 ∈ L2(M),

∥ulow∥Lp(R;Lq(M)) ≤ C∥u0∥L2(M).(1.4)

Notice that in this theorem ∂M may be empty or not.

Proof. – Section 8.2.

Theorem 1.3 (Global in time high frequency estimates at spatial infinity). – Assume
that n ≥ 2 and that for some M > 0 large enough, we have for all χ ∈ C∞c (M)

∥χ(P − λ± i0)−1χ∥L2(M)→L2(M) ≲χ λ
M , λ ≥ 1.(1.5)

Then there exists R ≫ 1 such that for any Schrödinger admissible pair (p, q) there
exists C > 0 such that

∥1{r>R}uhigh∥Lp(R;Lq(M)) ≤ C∥u0∥L2(M),(1.6)

for all u0 ∈ L2(M).

If we recast the global in time estimates at spatial infinity of [28, Theorem 1.5] in
our framework, these authors show that

∥1{r>R}uhigh∥Lp(R;Lq)≲∥u0∥L2 + ∥1{r<R}uhigh∥L2(R;L2),

where the last term can be controlled by ∥u0∥L2 thanks to (1.5) if M ≤ 0 (the usual
non-trapping case is M = −1/2) but not clearly otherwise. In our result, the right
hand side of (1.6) does not involve any corrective term depending on u and holds for
any M .
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CHAPTER 1. INTRODUCTION AND MAIN RESULTS 5

Note that examples of situations where bounds of the form (1.5) hold include
[33, 14] in some trapping geometries and, of course, the non-trapping case [42].

We also remark that, as in Theorem 1.2, the boundary of M does not need to be
empty but this observation is less relevant here for we consider estimates near infinity.

Theorems 1.2 and 1.3 reduce the proof of Strichartz estimates on u to estimates
on 1{r≤R}uhigh. The interest is that it is relatively easy to plug some results or tech-
niques proved locally in space to derive global estimates. Here we consider the classi-
cal example of a non trapping manifold, but also include the case of weakly trapping
geodesic flow.

Let T ⊂ T ∗M be the trapped set of the geodesic flow and π(T ) ⋐ M be its
projection onto the base space. We need the following condition on T .

Assumption 1.4 (Weak trapping condition). – We assume the following conditions
introduced in [11]:

— the manifold (M, G) is a scattering manifold [29, 15],

— there exists an open set M− ⊂ M containing π(T ) which can be extended
to a complete manifold with sectional curvatures bounded above by a negative
constant,

— M− is geodesically convex in the sense that any geodesic entering π−1(M\M−)

remains in this region thereafter,

— the topological pressure P (s) of the trapped set T satisfies P (1/2) < 0.

We refer to [33, Section 3.3] for details on the topological pressure P (s).

Theorem 1.5 (Global spacetime estimates without loss). – Assume that n ≥ 3 and
∂M is empty. If either

— the geodesic flow is non-trapping and (p, q) is any Schrödinger admissible pair,

— assumption 1.4 is satisfied and (p, q) is any non endpoint Schrödinger admissible
pair

then there exists C > 0 such that

∥u∥Lp(R;Lq(M)) ≤ C∥u0∥L2(M),(1.7)

for all u0 ∈ L2(M).

This theorem improves on the result of [23] in two directions: Hassell-Zhang only
consider the non-trapping case and, even in the non-trapping situation, we consider
more general types of ends. It also provides a global in time version of the estimates
of [11].

We state this result in the boundaryless case in order to give complete proofs or
references. We emphasize however that using the techniques of [25] it can certainly
be extended to the case when M has a strictly geodesically concave boundary and is
non-trapping for the associated billiard flow
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6 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

We recall finally the well known fact that inhomogeneous Strichartz estimates,
for non endpoint pairs, can be derived from the homogeneous ones (1.7) by using
the Christ-Kiselev Lemma [13]; this is sufficient for the applications to the nonlinear
equations studied in Section 9.

Here is the plan of our paper. In Chapter 2, we record notation about charts,
partitions of unity, scaling operators, etc. that will be used in further chapters. In
Chapter 3, we describe the pseudo-differential calculus adapted to our framework,
including a rescaled one for low frequency estimates which is not quite standard. In
Chapter 4, we prove Littlewood-Paley decompositions at low and high frequencies. In
Chapters 5 and 6, we construct an Isozaki-Kitada parametrix for the microlocalized
Schrödinger group, both at high and low frequencies. We use it in Chapter 7 to derive
some L2 propagation estimates to be used in Chapter 8 where the theorems stated in
this introduction are proved. Finally, in Chapter 9, we give nonlinear applications of
our Strichartz estimates.

Acknowledgments. – JMB is partially supported by ANR Grant GeRaSic, ANR-13-
BS01-0007-01. HM is partially supported by JSPS Wakate (B) 25800083. We thank
the referee for the careful reading of the first version of this paper and for very useful
suggestions.
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CHAPTER 2

NOTATION

In this part, we collect some notation or definitions that will be used throughout
this paper.

Coordinates. If κ : Uκ ⊂ S → Vκ ⊂ Rn−1 is a coordinate chart on S then, upon the
identification of (RM,+∞)× Uκ with a subset of M, the map

(r, ω) 7→ (r, κ(ω))(2.1)

defines a coordinate chart on M. We define Πκ and Π−1
κ respectively as the pullback

and pushforward operators associated to this chart on M, i.e.,(
Πκv

)
(r, ω) = v

(
r, κ(ω)

)
,

(
Π−1

κ u
)
(r, θ) = u

(
r, κ−1(θ)

)
.(2.2)

If τ : V1 → V2 is a diffeomorphism between open subsets of Rn−1 (typically a transition
map between charts of S), we also define Πτ and Π−1

τ as above for the diffeomorphism
(r, θ) 7→ (r, τ(θ)) between R × V1 → R × V2. With such a definition, if κj : Uj → Vj ,
j = 1, 2, are two coordinates charts on S, it follows that

Π−1
κ2

Πκ1
= Π−1

τ12
, τ12 := κ2 ◦ κ−1

1 : κ1(U1 ∩ U2) → κ2(U1 ∩ U2).(2.3)

We choose a finite atlas on S composed of charts with the property that
κ∗ḡ =: ḡlm(θ)dθldθm satisfies the following uniform estimates on each Vκ:

C−1
0 In−1 ≤

(
ḡlm(θ)

)
≤ C0In−1,(2.4) ∣∣∂αḡlm(θ)
∣∣ ≤ Cα.(2.5)

We will also use the matrices ḡ(θ) := (ḡlm(θ)), (ḡlm(θ)) := ḡ(θ)−1 as well as the
function |ḡ(θ)| := detḡ(θ)1/2.

Overall, throughout this text, when (r, θ) are referred to as local coordinates they
will correspond to (2.1). But (r, θ) will also denote the variable on R × Rn−1 (or
some subset of it) which will be used to define functions or standard objects like the
Lebesgue measure drdθ (see, e.g., Sections 3.1 or 6.1 and the introduction of Chap-
ter 6). The dual (or Fourier) variables associated to (r, θ) will be denoted by (ρ, η) and,
according consistently to the standard convention, when (r, θ) are local coordinates
on M we will also denote by (ρ, η) the associated coordinates on fibers of T ∗M; this
is useful to write principal symbols as for instance in (2.16) below. We shall also use
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8 CHAPTER 2. NOTATION

the variable r̆ on R; it will eventually correspond to r̆ = ϵr (ϵ being a small rescaling
parameter, see the next paragraph) but in practice it will just be a variable on R
which we denote differently from r to keep track of the geometric or physical intu-
ition. Its dual variable will be denoted by ρ̆, as will be used, e.g., in (2.17). At some
point in Chapter 5, we shall have to introduce extra variables ϑ and ϱ living basically
in the same sets as θ and ρ respectively. Typically, ϑ and ϱ will denote components of
Hamiltonian flows whose initial data will involve θ and ρ (see above (5.18) for more
comments).

Partitions of unity. – We pick a partition of unity 1 =
∑

κ φκ(ω) on S, with
φκ ∈ C∞0

(
Uκ

)
and where the sum over κ, as well as all similar sums below, is taken

over the finite atlas we chose above. For each κ, we also pick φ̃κ, ˜̃φκ ∈ C∞0
(
Uκ

)
such

that φ̃κ ≡ 1 near supp
(
φκ

)
and ˜̃φκ ≡ 1 near supp(φ̃κ). We then pick ζ, ζ̃, ˜̃ζ ∈ C∞(R)

supported in (RM,∞), equal to 1 near infinity and such that ζ̃ ≡ 1 near the support
of ζ, ˜̃

ζ ≡ 1 near the support of ζ̃ and define

ψκ(r, ω) := ζ(r)φκ(ω), ψ̃κ(r, ω) := ζ̃(r)φ̃κ(ω),
˜̃
ψκ(r, ω) :=

˜̃
ζ(r) ˜̃φκ(ω).(2.6)

Their interest is that they are supported on coordinate patches of M and that

∑
κ

ψκ = ζ(r) ≡ 1 near infinity, ψ̃κ ≡ 1 near supp(ψκ),
˜̃
ψκ ≡ 1 near supp(ψ̃κ).

(2.7)

They will be useful to globalize pseudo-differential operators on M.

Rescaling operators at infinity. – For ϵ ∈ (0, 1], we will use the operators Dϵ defined
by

Dϵv(r, ω) = ϵ
n
2 v(ϵr, ω), if supp(v) ⊂ {r > RM}.(2.8)

Here v is a function on M but we will also freely use Dϵ for functions on Rn supported
in (RM,∞) × V , for any V ⊂ Rn−1. Note that Dϵv is supported in {r > ϵ−1RM}.
The normalization factor ϵn/2 ensures that

∥Dϵv∥L2(M) ≈ ∥v∥L2(M)

(i.e., their quotient is bounded from above and below uniformly in ϵ); indeed, by using
that G is in normal form, the measure in {r > RM} reads

|det(g(r, θ))|1/2rn−1drdθ

and is comparable to the exact conic measure rn−1|ḡ(θ)|drdθ by (1.1) (see also after
(2.12)). We define similarly

D−1
ϵ w(r̆, ω) = ϵ−

n
2 w(ϵ−1r̆, ω), if supp(w) ⊂ {r̆ > ϵ−1RM}.(2.9)

Of course we have also the equivalence ∥D−1
ϵ w∥L2(M) ≈ ∥w∥L2(M).
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Modified Japanese bracket. – Everywhere in the text, we will replace the usual
Japanese bracket ⟨r⟩ = (1 + r2)1/2 by another positive function still denoted by ⟨r⟩
and such that

⟨r⟩ =

{
1 on a large enough compact set
r for r ≫ 1.

(2.10)

By large enough compact set, we mean that ⟨r⟩ = 1 in a neighborhood of the region
where ζ(r) ̸= 1 (see, e.g., (2.7) for ζ). The interest is that commutators of powers
of ⟨r⟩ with differential operators will be automatically supported in a region where
ζ(r) = 1, i.e., in a region where we can use polar coordinates (2.1). More generally,
commutators with powers of ⟨ϵr⟩ will be supported where ζ(ϵr) = 1.

Standard symbol classes Sm. – The notation Sm (with, e.g., m = −ν or −1−ν) used
in a few places in the text stands for the space of smooth functions a defined on I×V ,
with I unbounded interval and V ⊂ Rn−1 (possibly V = Rn−1) satisfying

|∂k
r ∂

α
θ a(r, θ)| ≤ Ckα⟨r⟩m−k.

If V = Rn−1, the constant is independent of (r, θ) ∈ I×Rn−1. But if V is a non trivial
open subset of Rn−1 or the image of a coordinate patch of the angular manifold, the
above estimate is meant to hold for every compact subset K ⋐ V , with a constant Ckα

depending on K but not on (r, θ) ∈ I ×K.

Laplacian. – With the metric in normal form, the operator −P = ∆G reads in local
coordinates near infinity

(2.11) ∆G = ∂2
r + r−2gjk(r, θ)∂2

θjθk
+ (n− 1)r−1∂r + w(r, θ)∂r + wk(r, θ)∂θk

,

where (gjk(r, θ)) = (gjk(r, θ))−1 if g(r) = gjk(r, θ)dθjdθk. The lower order coefficients
are

w(r, θ) =
∂r|g(r, θ)|
|g(r, θ)|

∈ S−1−ν ,(2.12)

since |g(r, θ)| = det(gjk(r, θ))1/2 = |ḡ(θ)|+ S−ν , and

wk(r, θ) =
1

r2
1

|g(r, θ)|
∂θj

(
gjk(r, θ)|g(r, θ)|

)
∈ S−2.(2.13)

See the previous paragraph for the symbol classes S−ν , S−1−ν and S−2. The descrip-
tion of the first order terms will be particularly useful to solve transport equations
(see Proposition 5.3). It is also useful to observe that, using the rescaled variable
r̆ = ϵr,

∆G

ϵ2
= Dϵ∆GϵD

−1
ϵ , Gϵ = dr̆2 + r̆2g(r̆/ϵ),(2.14)

that is

∆Gϵ = ∂2
r̆ + r̆−2gjk(r̆/ϵ, θ)∂2

θjθk
+ (n− 1)r̆−1∂r̆ + ϵ−1w(r̆/ϵ, θ)∂r̆ + ϵ−2wk(r̆/ϵ, θ)∂θk

.
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We will see in Lemma 3.3 that the negative powers of ϵ in front of w(r̆/ϵ, θ) and
wk(r̆/ϵ, θ) are harmless in {r̆ ≳ 1}, i.e., in the region {ϵr ≳ 1}.

To distinguish clearly between what is globally defined and what is defined in a
chart, we will use the notation

Pκ = Π−1
κ PΠκ,

for the expression of P in local coordinates (that is minus the right hand side of
(2.11)) and

Pϵ,κ = D−1
ϵ

Pκ

ϵ2
Dϵ.(2.15)

for its rescaled version (that is minus the above expression of ∆Gϵ
). We denote re-

spectively by

pκ = pκ(r, θ, ρ, η) = ρ2 + r−2gjk(r, θ)ηjηk(2.16)

and

pϵ,κ = pϵ,κ(r̆, θ, ρ̆, η) = ρ̆2 + r̆−2gjk(r̆/ϵ, θ)ηjηk(2.17)

the principal symbols of Pκ and Pϵ,κ in local coordinates near infinity.

The Helffer-Sjöstrand formula. – If H is a selfadjoint operator (in practice, H = h2P

or P/ϵ2 in this paper), f belongs to C∞0 (R) and f̃ ∈ C∞0 (C) is an almost analytic
extension of f , i.e., f̃ |R = f and ∂̄f̃ = O(|Im(z)|∞) (∂̄ = ∂x + i∂y if z = x + iy,
x, y ∈ R), we have the following representation formula

f(H) =
1

2π

∫
C
∂̄f̃(z)(H − z)−1L(dz)(2.18)

due to Helffer-Sjöstrand (see for instance [17] for a proof). Here L(dz) is just the
Lebesgue measure on C ≃ R2.

Notation for inequalities. – Through the paper, we shall use the classical notation
a ≲ b to mean that a ≤ Cb for some constant C independent of the parameters at
stake. We shall nevertheless use the notation a ≤ Cb either in the main theorems to
avoid any ambiguity, or occasionally when we need to refer to the constant C.
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CHAPTER 3

PSEUDODIFFERENTIAL CALCULUS

3.1. Operators on Rn

We shall use symbols in the classes S̃m,µ which are defined as follows. For m,µ ∈ R,
S̃m,µ is the set of symbols on R2n such that

∣∣∂j
r∂

α
θ ∂

k
ρ∂

β
η a(r, θ, ρ, η)

∣∣ ≤ C⟨r⟩µ−j−|β|
(
⟨ρ⟩+

⟨η⟩
⟨r⟩

)m−k−|β|

(3.1)

for all r, ρ ∈ R and θ, η ∈ Rn−1. As usual, the best constants C are semi-norms which
define the topology of S̃m,µ. We also set S̃−∞,µ :=

⋂
m S̃m,µ. One should have in

mind that the second index, µ, measures the spatial decay of symbols. We use the
semiclassical quantization

h(a) = a(r, θ, hDr, hDθ),

with h ∈ (0, 1]. This quantization is the standard one, namely if u belongs to the
Schwartz space

h(a)u(r, θ) = (2π)−n

∫
ei(rρ+η·η)a(r, θ, hρ, hη)û(ρ, η)dρdη.

Note that we put h in exponent in this notation to distinguish it with the one of
rescaled pseudo-differential operators introduced in Definition 3.2 below; high fre-
quencies are raised, while low frequencies will be lowered!

We need to consider admissible symbols, i.e., h dependent families of symbols with
an asymptotic expansion in h in the following usual sense

ah ∼
∑
j≥0

hjaj in S̃m,µ def⇐⇒ for all N,h−N

(
ah−

∑
k<N

hjaj

)
is bounded in S̃m−N,µ−N .

Note that this implies in particular that each aj belongs to S̃m−j,µ−j . We call the
symbol in the right hand side the remainder of order N . When m = −∞, the above
expansion means that it holds for every finite m.
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12 CHAPTER 3. PSEUDODIFFERENTIAL CALCULUS

The pseudo-differential calculus in the classes S̃m,µ enjoys the usual symbolic prop-
erties since the weight ⟨ρ⟩+ ⟨η⟩

⟨r⟩ is temperate, for it is easily seen that(
⟨ρ+ δρ⟩+

⟨η + δη⟩
⟨r + δr⟩

)
≲

(
⟨ρ⟩+

⟨η⟩
⟨r⟩

)
(1 + |δr|+ |δρ|+ |δη|)2,

for all r, δr, ρ, δρ ∈ R and η, δη ∈ Rn−1. In particular, we have the following rules
where for clarity, we will denote by † the adjoints w.r.t. to the Lebesgue measure and
keep the notation ∗ for adjoints w.r.t. the Riemannian measure.

Proposition 3.1 (Symbolic calculus in S̃m,µ). – Let m,m′, µ, µ′ ∈ R.

— Adjoint: for every a ∈ S̃m,µ, one has

Oph(a)† = Oph
(
a†h
)
, a†h ∼

∑
j≥0

hj

 ∑
k+|α|=j

Dk
rD

α
θ ∂

k
ρ∂

α
η ā

k!α!

 in S̃m,µ.

— Composition: for every a ∈ S̃m,µ and b ∈ S̃m′,µ′ , one has

Oph(a)Oph(b) = Oph
(
(a#b)h

)
,

(a#b)h ∼
∑
j≥0

hj

 ∑
k+|α|=j

∂k
ρ∂

α
η aD

k
rD

α
θ b

k!α!

 in S̃m+m′,µ+µ′ .

— Invariance by angular diffeomorphisms: let τ : V1 → V2 be a diffeomorphism
between two open subsets of Rn−1. For all a ∈ S̃m,µ such that

supp(a) ⊂ R×K × Rn for some K ⋐ V1,(3.2)

and for all φ ∈ C∞0 (V1), one has

Π−1
τ Oph(a)φ(θ)Πτ = Oph

(
aτ (h)

)
, aτ (h) ∼

∑
j≥0

hjaτ
j in S̃m,µ,

with symbols aτ
j such that

supp(aτ
j ) ⊂

{(
r, τ(θ), ρ, (dτ(θ)T )−1η

)
| (r, θ, ρ, η) ∈ supp(a)

}
⊂ R× V2 × Rn.(3.3)

— L2 boundedness: There exists a constant C(a) depending on a finite number of
semi-norms of a ∈ S̃0,0 such that, for all such a and all h ∈ (0, 1],

∥Oph(a)∥L2(⟨r⟩n−1drdθ)→L2(⟨r⟩n−1drdθ) ≤ C(a).(3.4)

Here and below, L2(⟨r⟩n−1drdθ) is a shorthand for L2(Rn, ⟨r⟩n−1drdθ).

We point out that all terms of the expansions as well as the remainders depend
equicontinuously on a (or (a, b) in the second item). In the fourth item, we con-
sider the measure ⟨r⟩n−1drdθ for this is of course the good model near infinity for
the Riemannian measure of G. The L2 boundedness is a consequence of the usual
Calderón-Vaillancourt Theorem since

∥Oph(a)∥L2(⟨r⟩n−1drdθ)→L2(⟨r⟩n−1drdθ) = ∥⟨r⟩
n−1

2 Oph(a)⟨r⟩
1−n

2 ∥L2(drdθ)→L2(drdθ),
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3.1. OPERATORS ON Rn 13

where, by the second item of Proposition 3.1, ⟨r⟩n−1
2 Oph(a)⟨r⟩ 1−n

2 = Oph(a(h)) for
some admissible family a(h) ∈ S̃0,0.

We next introduce the convenient definition of rescaled pseudo-differential opera-
tors.

Definition 3.2 (Rescaled pseudo-differential operators). – If

a ∈ S̃m,µ(Rr̆ × Rn−1
θ × Rρ̆ × Rn−1

η )

for some m,µ ∈ R, we set

Opϵ(a) := DϵOp1(a)D−1
ϵ .

Recall that Dϵ is defined in (2.8).

More explicitly,
Opϵ(a) = a

(
ϵr, θ, Dr

ϵ , Dθ

)
.

To clarify the presentation, we distinguish the variables (r, ρ) and (r̆, ρ̆) which have
to be thought as

ϵr = r̆,
ρ

ϵ
= ρ̆.

In the typical situation we shall encounter, we will consider a(r̆, θ, ρ̆, η) =

b
(
r̆, θ, ρ̆, r̆−1η

)
for which

Opϵ(a) = b
(
ϵr, θ, Dr

ϵ ,
1
r

Dθ

ϵ

)
.

If b is compactly supported in momentum, this corresponds to a low frequency local-
ization.

Let us comment a little bit more on Definition 3.2. Rescaled pseudo-differential
operators will be used to approximate low frequency localization of P , i.e., operators of
the form f(P/ϵ2) with f ∈ C∞0 (R+). By the uncertainty principle, one can only expect
to get such an approximation where r is large, typically r ≳ ϵ−1, which corresponds
to considering symbols a (or b as above) supported in r̆ ≳ 1. This is consistent with
the following simple and crucial lemma (see the paragraph Standard symbol classes
in Chapter 2 for the notation Sµ).

Lemma 3.3. – Let a ∈ Sµ(Rr × Rn−1
θ ) with µ ∈ R. Let

aϵ(r̆, θ) := ϵµa (r̆/ϵ, θ) .

Then (aϵ)ϵ∈(0,1] belongs to a bounded subset of Sµ
(
(1,∞)r̆ × Rn−1

θ

)
, i.e.,∣∣∂j

r̆∂
α
θ aϵ(r̆, θ)

∣∣ ≲jα r̆
µ−j , r̆ ≥ 1, θ ∈ Rn−1, ϵ ∈ (0, 1].

Proof. – It suffices to write

∂j
r̆∂

α
θ aϵ(r̆, θ) = ϵµ−j

(
∂j

r∂
α
θ a
)
(r̆/ϵ, θ) = O

(
ϵµ−j⟨r̆/ϵ⟩µ−j

)
and to observe that, for r̆ ≥ 1, ⟨r̆/ϵ⟩ ≈ r̆/ϵ.
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14 CHAPTER 3. PSEUDODIFFERENTIAL CALCULUS

The meaning of this lemma is that aϵ is only singular for r̆ close to 0 (the threshold
r̆ ≥ 1 could be replaced by r̆ ≥ c for any c > 0 positive). In other words, as long as
one works in the region ϵr ≳ 1, rescaling does not produce singular symbols.

We further illustrate the interest of rescaled pseudo-differential operators by keep-
ing in mind the example of (2.14). For k + |β| ≤ 2 and a ∈ Sk+|β|−2−ν (ν ≥ 0), we
will consider in pratice operators of the form

1

ϵ2
a(r, θ)(r−1Dθ)

βDk
r = Dϵ

(
1

ϵ2−k−|α| a (r̆/ϵ, θ) (r̆−1Dθ)
αDk

r̆

)
D−1

ϵ ,

= Dϵ

(
ϵνaϵ (r̆, θ) (r̆−1Dθ)

αDk
r̆

)
D−1

ϵ

with

aϵ(r̆, θ) = ϵk+|β|−2−νa(r̆/ϵ, θ).

Studying such operators in {ϵr ≳ 1} corresponds to study aϵ(r̆, θ)(r̆
−1Dθ)

αDk
r̆ in

{r̆ ≳ 1}; by Lemma 3.3, aϵ is bounded in Sk+|β|−2−ν((1,∞)r̆ × Rn−1
θ ), and allows to

use pseudo-differential calculus in the variables (r̆, θ, ρ̆, η). Typically, to construct a
parametrix for χ(ϵr)(P/ϵ2 + i)−1 in {ϵr ≥ R}, we will consider symbols of the form

χ(r̆) 1
ρ̆2+r̆−2gjk(r̆/ϵ,θ)ηjηk+i

with χ supported in (R,+∞). By Lemma 3.3, this ϵ-dependent symbol belongs to a
bounded subset of S̃−2,0, allowing to perform the usual iterative parametrix construc-
tion (see Section 3.3).

3.2. Operators on M

Let us define the space S (M) by

u ∈ S (M) ⇐⇒ u ∈
⋂

m>0

Dom(Pm) and rj∂k
r ∂

α
θ u ∈ L2 for all j, k, α,(3.5)

the second condition in the right hand side being a condition at infinity (it is invariant
by change of coordinates on S). It is the natural Schwartz space on M and will be
convenient for our purposes.

Using the charts introduced in Chapter 2, we will note everywhere in this paper

Oph
κ(a) := ΠκOph(a)Π−1

κ .(3.6)

If nothing is specified about a ∈ S̃m,µ(R2n), such operators are defined from
C∞0 ((RM,∞)× Uκ) to C∞((RM,∞)× Uκ).

If in addition supp(a) ⊂ (RM,∞)× Vκ ×Rn, which will always be the case in this
paper, they map C∞0 ((RM,∞) × Uκ) to C∞(M). In practice, we will only consider
globally defined operators of the form

Oph
κ(a)ψ̃κ = Oph

κ(a)ψ̃κ(r, ω),(3.7)

where the cutoff ψ̃κ localizes inside (RM,∞)× Uκ (see (2.6)) and where we will use
symbols spatially supported in (RM,∞)×Uκ (e.g., in the support of ψκ(r, κ−1(θ))—
see again (2.6)). We point out that such operators are localized near infinity, where we
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will focus essentially all our analysis. Note also that since pseudo-differential operators
on Rn with symbols in S̃m,µ map the Schwartz space (on Rn) into itself, we have

Oph
κ(a)ψ̃κ : S (M) → S (M).

We define analogously rescaled pseudo-differential operators on M by

Opϵ,κ(a) := ΠκOpϵ(a)Π
−1
κ

and will consider, for symbols supported in (RM,∞)× Vκ × Rn,

Opϵ,κ(a)ψ̃κ(ϵr) = Opϵ,κ(a)ψ̃κ(ϵr, ω)(3.8)

(we will often drop the dependence on ω from the notation, though ψ̃κ(ϵr) really
depends also on ω ∈ S). It is important to note that if a is spatially localized
in (RM,∞)r̆×Vκ then the range of Opϵ,κ(a)ψ̃κ(ϵr) contains only functions supported
in (ϵ−1RM,∞)r×Uκ; in other words, such operators are localized in {ϵr > RM} and
will be used as microlocalization in this region only. We finally note that we will often
use ϵ dependent symbols, similar to those considered in Lemma 3.3.

For further use and to illustrate that such definitions fit the usual expected prop-
erties of a pseudo-differential calculus, we compute adjoints with respect to the Rie-
mannian measure rn−1|g(r, θ)|drdθ (see Chapter 2 for |g(r, θ)|). Let a = a(r, θ, ρ, η) be
a symbol spatially supported inside (RM,+∞)× Vκ, i.e., with support in (r, θ) con-
tained in (R,∞) × K for some R > RM and K ⋐ Vκ. Then, using Proposition 3.1
and elementary computations, we find(

Oph
κ(a)ψ̃κ

)∗
= ψ̃κΠκ

(
1

rn−1|g(r,θ)|Oph(a)†rn−1|g(r, θ)|
)

Π−1
κ

= ψ̃κOph
κ(b(h))ψ1,κ(3.9)

for some admissible symbol b(h) in the same class as a and ψ1,κ supported
in (RM,+∞)× Uκ. Similarly(

Opϵ,κ(a)ψ̃κ(ϵr)
)∗

= ψ̃κ(ϵr)ΠκDϵ

(
1

r̆n−1|g(r̆/ϵ,θ)|Op1(a)†r̆n−1|g(r̆/ϵ, θ)|
)

D−1
ϵ Π−1

κ

= ψ̃κ(ϵr)Opϵ,κ(bϵ)ψ1,κ(ϵr)(3.10)

with (bϵ)ϵ∈(0,1] bounded in the same class as a, also using here Lemma 3.3 to handle
|g(r̆/ϵ, θ)|±1.

To get L2 or Lq estimates, we will use the following proposition.

Proposition 3.4. – Let ψ be bounded and supported in (RM,+∞) × Uκ and
q ∈ [1,∞]. Then

∥ψ(ϵr, ω)ΠκDϵ∥Lq(⟨r⟩n−1drdθ)→Lq(M) ≲ ϵ
n
2−

n
q(3.11)

∥D−1
ϵ Π−1

κ ψ(ϵr, ω)∥Lq(M)→Lq(⟨r⟩n−1drdθ) ≲ ϵ
n
q −

n
2(3.12)

for ϵ ∈ (0, 1].
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Proof. – It follows from an elementary change of variable together with the observa-
tion that, on the support of ψ

(
ϵr, κ−1(θ)

)
,

rn−1|g(r, θ)|/C ≤ ⟨r⟩n−1 ≤ Crn−1|g(r, θ)|

for some C > 1.

We note in particular that, when q = 2, Proposition 3.4 together with (3.4) imply
that

∥Opϵ,κ(a)ψ̃κ(ϵr)∥L2→L2 ≤ C(a), ϵ ∈ (0, 1],(3.13)

with C(a) bounded as long as a belongs to a bounded subset of S̃0,0 (and a is spatially
supported in (RM,∞)×Vκ). For completeness, we also recall that at high frequency,
under the same assumptions on a,

∥Oph
κ(a)ψ̃κ∥L2→L2 ≤ C(a), h ∈ (0, 1],(3.14)

which is more standard (and does not use Proposition 3.4).
We will also need Lq estimates on pseudo-differential operators.

Proposition 3.5. – Let a ∈ S̃−∞,0 be spatially supported in (RM,+∞) × Vκ. Let
1 ≤ q1 ≤ q2 ≤ ∞. Then

∥Oph
κ(a)ψ̃κ∥Lq1→Lq2 ≤ Ch

n
q2
− n

q1 ,(3.15)

∥Opϵ,κ(a)ψ̃κ(ϵr)∥Lq1→Lq2 ≤ Cϵ
n
q1
− n

q2 ,(3.16)

The constant is bounded as long as a belongs to a bounded subset of S̃−∞,0.

Proof. – Write a(r, θ, ρ, η) = b(r, θ, ρ, η/r) so that b is a Schwartz function in the mo-
mentum variables, uniformly in (r, θ). The estimate in the semiclassical case follows
from the similar estimate for Oph(a) from Lq1(⟨r⟩n−1drdθ) to Lq2(⟨r⟩n−1drdθ) ob-
tained from the usual Schur test and interpolation argument, by exploiting that its
kernel with respect to ⟨r⟩n−1drdθ reads

(2πh)−nrn−1b̂

(
r, θ,

r′ − r

h
, r
θ′ − θ

h

)
⟨r′⟩1−n,

where ˆ is the Fourier transform in the momentum variables. The low frequency case
follows from the above one with h = 1 together with Proposition 3.4.

3.3. Functional calculus

We will use operators of the form (3.7) or (3.8) to describe functions of P . In
the semiclassical or high frequency regime, this is mostly standard, see, e.g., [3, 30],
though we will need a sharper description of the remainders than in those references,
i.e., an additional spatial decay of the symbols in the expansion and the remainder
which come from the composition rules of Proposition 3.1. To give an idea of this
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classical procedure to the unfamiliar reader we consider a two term expansion. We
look first for q0(z), q1(z) such that, in a sense specified below,

ψOph
κ

(
q0(z) + hq1(z)

)
ψ̃(h2P − z) = ψ +Oz(h

2).(3.17)

The right hand side reads

ψOph
κ

(
q0(z) + hq1(z)

)
(h2P − z)ψ̃ + ψOpk

κ

(
q0(z) + hq1(z)

)
[ψ̃, h2P ],(3.18)

where, setting pκ,1 = −i(n − 1)r−1ρ − iw(r, θ)ρ − iwk(r, θ)ηk (see (2.11)), the first
term expands as

ψOph
κ

(
q0(z)(pκ − z) + hq1(z)(pκ − z) + hq0(z)pκ1

− ih∇ρ,ηq0(z) · ∇r,θpκ

)
ψ̃

+ h2ψOph
κ(r2(h, z))ψ̃,

for some r2(h, z) to be described below. We wish to make the first symbol of this
expansion equal to 1 which leads to choose

q0(z) =
1

pκ − z

and then
q1(z)(pκ − z) + q0(z)pκ,1 − i∇ρ,ηq0(z) · ∇r,θpκ = 0,

i.e., taking into account our choice of q0(z),

q1(z) = − pκ,1

(pκ − z)2
− i

∇r,θpκ · ∇ρ,ηpκ

(pκ − z)3
,

where, on the support of the cutoff ψ (or more precisely after multiplication by Π−1
κ ψ),

q0(z) ∈ S̃−2,0, q1(z) ∈ S−3,−1

since pκ,1 ∈ S1,−1 and ∇r,θpκ · ∇ρ,ηpκ ∈ S3,−1, the index −1 coming from the decay
in r of the numerators (see (1.1), (2.12) and (2.13)). With those formulas at hand,
the remainder r2(h, z) in the formula after (3.18) now belongs to S̃−4,−2 according
to Proposition 3.1, with semi-norms growing polynomially in ⟨z⟩/dist(z,R+) as those
of q0(z) and q1(z). We still have to consider the second term of (3.18). Using that ˜̃

ψ is
equal to one near the support of (the coefficients of) [h2P, ψ̃] and that the later
vanishes identically near the support of ψ, Proposition 3.1 shows that for any N (here
N = 2 will be sufficient),

ψOph
κ

(
q0(z) + hq1(z)

)
[ψ̃, h2P ] = hNψOph

κ

(
r̃N (h, z)

) ˜̃
ψ

with r̃N (h, z) in S̃−N,−N with semi-norms growing like powers of ⟨z⟩/dist(z,R+). We
conclude by composing (3.17) to the right with (h2P − z)−1 which leads to

ψOph
κ

(
q0(z) + hq1(z)

)
ψ̃ = ψ(h2P − z)−1 − h2ψOph

κ(r(z, h))
˜̃
ψ(h2P − z)−1

with r(z, h) = −r̃N (z, h)− r̂2(h, z) where r̂2(h, z) ∈ S̃−2,−2 is defined by

ψOph
κ(r2(h, z))ψ̃ = ψ

(
Oph

κ(r2(h, z))ψ̃
)

˜̃
ψ = ψOph

κ(r̂2(z, h))
˜̃
ψ.
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18 CHAPTER 3. PSEUDODIFFERENTIAL CALCULUS

We have thus obtained a special case of the high frequency parametrix of Proposi-
tion 3.6 with N = 2 and j = 1. Higher order expansions are obtained by iteration of
this process.

We will also consider the low frequency regime, which is less standard but can be
easily handled by considering appropriate spatial localizations and rescaled operators
as follows. The first and main step is to construct a parametrix for (P/ϵ2 − z)−1 in
the region {ϵr > RM}. To do so, we need basically to use that(

P

ϵ2
− z

)
= ΠκDϵ

(
Pϵ,κ − z

)
D−1

ϵ Π−1
κ(3.19)

(see (2.15)) namely that P/ϵ2 is a rescaled (pseudo-)differential operator whose symbol
is not singular w.r.t. ϵ in the region {r̆ > RM} thanks to Lemma 3.3. One can
then apply the same elliptic parametrix scheme as above to Pϵ,κ − z to construct
an approximate inverse. More precisely, in the above procedure for h2P − z, if we
come back to the definition (3.7) of Oph

κ (see also (2.2)), we have constructed the
symbols q0(z), q1(z) locally, in a way that

Πκ

[
(Π−1

κ ψ)Oph(q0(z) + hq1(z))(Π
−1
κ ψ̃)(h2Pκ − z)

]
Πκ = Πκ

[
(Π−1

κ ψ) +O(h2)
]
Πκ.

In the low frequency case, we repeat this procedure verbatim with h = 1 and Pκ

replaced by Pϵ,κ. On the support of the cutoff (Π−1
κ ψ) = ψ(r̆, κ−1(θ)) (and likewise

for ψ̃, ˜̃
ψ), Lemma 3.3 ensures that the symbol of Pϵ,κ belongs to the same class as the

one of Pκ with bounds uniform in ϵ. We can then construct qϵ,0(z), qϵ,1(z) exactly as
above, with seminorms uniformly bounded in ϵ, so that

(Π−1
κ ψ)Op1(qϵ,0(z)+qϵ,1(z))(Π

−1
κ ψ̃)(Pϵ,κ−z) = (Π−1

κ ψ)+(Π−1
κ ψ)Op1(rϵ(z, 1))(Π−1

κ
˜̃
ψ)

for some rϵ(z, 1) ∈ S−2,−2 with seminorms growing polynomially in ⟨z⟩/|Im(z)|, uni-
formly in ϵ. Conjugating back by ΠκDϵ, the pseudodifferential operators become
rescaled ones and the cutoff ψ(r̆, ω) becomes ψ(ϵr, ω). Summing up, we obtain the
following technical result.

Proposition 3.6. – Let ψ, ψ̃, ˜̃
ψ be smooth functions supported in a patch (R,∞)×Uκ

with R > RM, all belonging to S0 and such that

ψ̃ ≡ 1 near supp(ψ),
˜̃
ψ ≡ 1 near supp(ψ̃).

Then for j,N ∈ N and z ∈ C \ [0,+∞), one has

— High frequency parametrix: for h ∈ (0, 1],

ψ(r, ω)(h2P − z)−j =

N−1∑
l=0

hlψ(r, ω)Oph
κ(ql(z))ψ̃(r, ω) + hNRhigh(z, h),

where each ql(z) ∈ S̃−2j−l,−l is a linear combination of ak(pκ−z)−j−k for some
symbol ak ∈ S̃2k−l,−l independent of z, and with

Rhigh(z, h) = ψ(r, ω)Oph
κ(r(z, h))

˜̃
ψ(r, ω)(h2P − z)−j ,
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where r(z, h) ∈ S̃−N,−N with seminorms growing polynomially in 1/dist(z,R+)

uniformly in h as long as z belongs to a bounded set of C \ [0,+∞).

— Low frequency parametrix: for ϵ ∈ (0, 1],

ψ(ϵr, ω)(P/ϵ2 − z)−j =

N−1∑
l=0

ψ(ϵr, ω)Opϵ,κ(qϵ,l(z))ψ̃(ϵr, ω) +Rlow(z, ϵ),

where each qϵ,l(z) ∈ S̃−2j−l,−l is a linear combination of aϵ,k(pϵ,κ− z)−j−k with
symbols aϵ,k ∈ S̃2k−l,−l bounded w.r.t. ϵ, and

Rlow(z, ϵ) = ψ(ϵr, ω)Opϵ,κ(rϵ(z))
˜̃
ψ(ϵr, ω)(P/ϵ2 − z)−j ,

where rϵ(z) ∈ S̃−N,−N with seminorms growing polynomially in 1/dist(z,R+)

uniformly in ϵ as long as z belongs to a bounded set of C \ [0,+∞).

We refer to (2.16) for the definitions of pκ and pϵ,κ.
Note that the spatial localizations are different at high and low frequency. We also

point out that the low frequency parametrix is not an asymptotic expansion in ϵ,
but it only says that (P/ϵ2 − z)−jψ(ϵr, ω) is a sum of rescaled pseudo-differential
operators and of a remainder which is smoothing and spatially decaying like ⟨ϵr⟩−N .
We finally remark that a similar proposition holds for (h2P − z)−jψ(r, ω) and
(P/ϵ2 − z)−jψ(ϵr, ω) (this follows by taking the adjoints and using (3.9)-(3.10)). We
will use this occasionally.

As a first application, we record the following result where we use the function ζ

introduced in (2.6)-(2.7).

Proposition 3.7. – If j > n/4, then

∥ζ(r)(h2P + 1)−j∥L2→L∞ ≲ h−
n
2 , h ∈ (0, 1],(3.20)

and

∥ζ(ϵr)(P/ϵ2 + 1)−j∥L2→L∞ ≲ ϵ
n
2 , ϵ ∈ (0, 1].

Recall that for simplicity we have set Lq = Lq(M) (see after Definition 1.1).

Proof. – We prove only the second estimate; the first one is proved similarly but is
more standard (see, e.g., [3, Prop. 2.11] which actually works with z = −1) since
there is no scaling operator (note also here that the localization ζ is not necessary,
but nevertheless useful if M has a boundary so that we can work purely with pseudo-
differential operators away from it). We use Proposition 3.6 with ψ replaced by ψκ,
ψ̃ by ψ̃κ etc. (see (2.6)), and with N > n/2. Then ζ(ϵr)(P/ϵ2 + 1)−j is a sum over κ
of parametrices as in Proposition 3.6. For each κ, consider the first term

ψκ(ϵr)Opϵ,κ(qϵ,0(−1))ψ̃κ(ϵr) = (ψκ(ϵr, ω)ΠκDϵ)
(
Op1

(
qϵ,0(−1)

)) (
D−1

ϵ Π−1
κ ψ̃κ(ϵr, ω)

)
,

where qϵ,0(−1) belongs to (a bounded set of) S̃−2j,0. The result is a consequence of the
fact that Op1(qϵ,0(−1)) maps L2(⟨r⟩n−1drdθ) into L∞(⟨r⟩n−1drdθ) since 2j > n/2
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20 CHAPTER 3. PSEUDODIFFERENTIAL CALCULUS

(see [3, Lemma 2.4])), together with the estimates (3.11) (with q′ = ∞) and (3.12)
(with q = 2). The other terms are treated analogously, as well as the remainder
Rlow(−1, ϵ) by using additionally that ∥(P/ϵ2+1)−j∥L2→L2 ≤ 1 for the remainder.

To describe the remainders that will be involved in the different parametrices we
are going to construct, it is useful introduce the following norms

||u||H 2j
µ

= ∥⟨r⟩µ(h2P + 1)ju∥L2 , ∥u∥L 2j
µ

=
∥∥⟨ϵr⟩µ(P/ϵ2 + 1)ju

∥∥
L2 ,(3.21)

for µ ∈ R, j ∈ Z and u ∈ S (M). The first one is a standard weighted semiclassical
Sobolev norm, which will be used at high frequency, and the second one will be used
at low frequency. We will only consider these norms on S (M) for this space is stable
by the resolvent of P (this is fairly standard or can be checked by using the parametrix
of Proposition 3.6 for ϵ = h = 1) so that the norms (3.21) make clearly sense. We also
point out that we do not define the spaces H 2j

µ nor L 2j
µ (which should be the closures

of S (M) for the corresponding norms) and will only use their norms on S (M). The
interest of using such norms is to state estimates which are uniform in ϵ or h. It is also
worth recalling that the Japanese bracket used in (3.21) is the modified one chosen
in (2.10).

Given a family of operators Aϵ preserving S (M), we will write

Aϵ = O
L

2j1
µ1

→L
2j2
µ2

(1) ⇐⇒ ∥Aϵu∥L
2j2
µ2

≲ ∥u∥
L

2j1
µ1

for all ϵ ∈ (0, 1], u ∈ S (M),

the point being that the constant is independent of ϵ.
The notation Ah = O

H
2j1

µ1
→H

2j2
µ2

(1) is defined similarly.

Proposition 3.8. – For all j, j′ ∈ Z and µ, µ′ ∈ R, we have

— Global estimates:

(P/ϵ2 + 1)j′ = O
L 2j

µ →L
2(j−j′)
µ

(1), (h2P + 1)j′ = O
H 2j

µ →H
2(j−j′)

µ
(1)(3.22)

and, as multiplication operators,

⟨ϵr⟩µ
′
= OL 2j

µ →L 2j

µ−µ′
(1), ⟨r⟩µ

′
= OH 2j

µ →H 2j

µ−µ′
(1).(3.23)

— Embeddings estimates: the identity operator I satisfies

µ′ ≤ µ and j′ ≤ j =⇒ I = O
L 2j

µ →L 2j′
µ′

(1), I = O
H 2j

µ →H 2j′
µ′

(1).(3.24)

— Action of pseudo-differential operators: Let ψ̃ ∈ S0 be a smooth function
supported in the patch (RM,∞) × Uκ and a ∈ S̃2j′,µ′ be spatially supported
in (RM,∞)× Vκ. Then

Opϵ,κ(a)ψ̃(ϵr) = O
L 2j

µ →L
2(j−j′)
µ−µ′

(1), Oph
κ(a)ψ̃ = O

H 2j
µ →H

2(j−j′)
µ−µ′

(1).(3.25)

These uniform bounds remain valid as long as a belongs to a bounded subset
of S̃2j′,µ′ .

We recall that in (3.25) ψ̃(ϵr) and ψ̃ are respectively shorthands for ψ̃(ϵr, ω) and
ψ̃(r, ω).

MÉMOIRES DE LA SMF 182



3.3. FUNCTIONAL CALCULUS 21

Proof. – In all cases, we consider only the low frequency estimates, the semiclassical
ones being similar and more standard. (3.22) is an immediate consequence of the
definitions of the norms (3.21). We next prove the first estimate of (3.23). We observe
first that for any j ∈ Z and µ ∈ R, there exists C > 0 such that

C−1||u||L 2j
µ

≤ ∥(P/ϵ2 + 1)j⟨ϵr⟩µu∥L2 ≤ C||u||L 2j
µ

,(3.26)

for all u ∈ S (M) and ϵ ∈ (0, 1]. Indeed, let us write

⟨ϵr⟩µ(P/ϵ2 + 1)j =
(
⟨ϵr⟩µ(P/ϵ2 + 1)j⟨ϵr⟩−µ(P/ϵ2 + 1)−j

)
(P/ϵ2 + 1)j⟨ϵr⟩µ.

The lower bound in (3.26) would then follow from the uniform L2 → L2 of the
parenthesis. Assume for instance that j ≥ 0. Then the parenthesis in the right hand
side is the sum of the identity and

⟨ϵr⟩µ
[
(P/ϵ2 + 1)j , ⟨ϵr⟩−µ

]
ζ(ϵr)(P/ϵ2 + 1)−j ,(3.27)

where one can insert the cutoff ζ(ϵr) of the partition of unity (2.7) since the com-
mutator is supported in the region where ζ(ϵr) = 1 by (2.10). The operator (3.27) is
uniformly bounded on L2 since the composition of

⟨ϵr⟩µ
[
(P/ϵ2 + 1)j , ⟨ϵr⟩−µ

]
=
∑

κ

ΠκDϵ⟨r⟩µ
[
(Pκ,ϵ + 1)j , ⟨r⟩−µ

]
D−1

ϵ Π−1
κ ψκ(ϵr)

(see (3.19)) with the low energy parametrix for ζ(ϵr)(P/ϵ2+1)−j (derived from Propo-
sition 3.6 and the partition of unity (2.7)) is uniformly bounded on L2. This follows
by using the composition rules of Proposition 3.1 together with (3.13) and the bound
∥(P/ϵ2 + 1)−j∥L2→L2 ≤ 1. The case j < 0 and the upper bound are proved similarly
(using possibly the parametrix of (P/ϵ2 + 1)−jζ(ϵr)). Now, with (3.26) at hand, the
first estimate of (3.23) follows from

∥⟨ϵr⟩µ
′
u∥L2j

µ−µ′
≲ ∥(P/ϵ2 + 1)j⟨ϵr⟩µ−µ′+µ′u∥L2 ≲ ∥u∥L2j

µ
.

Similarly the first estimate of (3.24) follows from (3.26) since

∥⟨ϵr⟩µ
′
(P/ϵ2 + 1)j′u∥L2 ≤ ∥⟨ϵr⟩µ(P/ϵ2 + 1)j′u∥L2

≲ ∥(P/ϵ2 + 1)j′⟨ϵr⟩µu∥L2 ≲ ∥(P/ϵ2 + 1)j⟨ϵr⟩µu∥L2 .

We finally consider (3.25). By using the equivalence of norms (3.26), the result follows
from the uniform L2 boundedness of

(P/ϵ2 + 1)j−j′⟨ϵr⟩µ−µ′Opϵ,κ(a)ψ̃(ϵr)⟨ϵr⟩−µ(P/ϵ2 + 1)−j .

By the composition rule of Proposition 3.1, we may assume that µ = µ′ = 0 up to the
replacement of a by ã such that Op1(ã) = ⟨r⟩µ−µ′Op1(a)⟨r⟩−µ. Then if both j − j′

and −j are non negative, the result follows by using (3.19), the composition rule and
the L2 bound (3.13). Otherwise we expand the negative powers of P/ϵ2 + 1 by mean
of Proposition 3.6 so that we can compose rescaled operators supported in the same
patch and conclude again with (3.13).
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Theorem 3.9. – For all f ∈ C∞0 (R) and all given N ,

ζ(r)f(h2P ) =

N−1∑
l=0

∑
κ

hlψκOph
κ(aκ,l)ψ̃κ + hNRhigh(f, h),

where aκ,l ∈ S̃−∞,−l with supp(aκ,l) ⊂ supp(f ◦ pκ) and, for any M > 0 and µ ∈ R,

Rhigh(f, h) = OH −2M
µ →H 2M

µ+N
(1).

Also

ζ(ϵr)f(P/ϵ2) =

N−1∑
l=0

∑
κ

ψκ(ϵr)Opϵ,κ(aϵ,κ,l)ψ̃κ(ϵr) + Rlow(f, ϵ),(3.28)

where (aϵ,κ,l)ϵ∈(0,1] belongs to a bounded subset of S̃−∞,−l with

supp(aϵ,κ,l) ⊂ supp(f ◦ pϵ,κ)

and, for any M > 0 and µ ∈ R

Rlow(f, ϵ) = OL−2M
µ →L 2M

µ+N
(1).(3.29)

Proof. – We consider only the proof of the low frequency parametrix (3.28), the
high frequency one being similar and more standard (see, e.g., [8] in the asymptoti-
cally Euclidean case). Note first that the l-th term in the sum (3.28) is, for any M ,
OL−2M

µ →L 2M
µ+l

(1) by (3.25). Therefore, up to putting additional terms of the expansion
in the remainder, it suffices to prove (3.28) with a remainder satisfying, instead of
(3.29),

Rlow(f, ϵ) = O
L
−2MN
µ →L

2MN
µN

(1), with MN , µN →∞ as N →∞.(3.30)

Using the Helffer-Sjöstrand formula (2.18) with H = P/ϵ2 together with Proposi-
tion 3.6, we get (3.28) with a remainder which is a sum over κ of integrals of the
form

Rlow,κ(f, ϵ) =

∫
C
∂̄f̃(z)ψκ(ϵr)Opϵ,κ(rϵ,κ(z))

˜̃
ψκ(ϵr)(P/ϵ2 − z)−1L(dz),

where rϵ,κ(z) ∈ S̃−N,−N has semi-norms growing polynomially in |Im(z)|−1 (which is
harmless since ∂̄f̃(z) = O(|Im(z)|∞)). In the above integral, we write

(P/ϵ2 − z)−1 = (P/ϵ2 − z)−1
(
1− ζ(ϵr)

)
+ (P/ϵ2 − z)−1ζ(ϵr).

Using Proposition 3.8, we observe that, for anyM , 1−ζ(ϵr) = OL−2M
µ →L−2M

0
(1), for it

is compactly supported in ϵr. We also have (P/ϵ2 − z)−1 = O
L−2M

0 →L
−2(M−1)
0

(|Im(z)|−1)

thanks to the spectral theorem. By Proposition 3.8, we also get that, for some
σ = σ(M,N),

ψκ(ϵr)Opϵ,κ(rϵ,κ(z))
˜̃
ψκ(ϵr) = O

L
−2(M−1)
0 →L

N−2(M−1)
N

(|Im(z)|−σ).(3.31)
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All this implies that, for any given µ and N ,

Rlow,κ(f, ϵ)(1− ζ(ϵr)) = O
L−2M

µ →L
N−2(M−1)
N

(1).(3.32)

To analyze Rlow,κ(f, ϵ)ζ(ϵr), we use a parametrix for (P/ϵ2 − z)−1ζ(ϵr) obtained
analogously to the one of Proposition 3.6: for any N ′ ∈ N, (P/ϵ2− z)−1ζ(ϵr) is a sum
of rescaled pseudo-differential operators with symbols in S̃−2,0 and a remainder which
is (P/ϵ2 − z)−1 composed (to the right) with a sum of rescaled pseudo-differential
operators with symbols in S̃−N ′,−N ′

. This implies that, for any µ and M , and by
choosing N ′ > |µ|, (P/ϵ2 − z)−1ζ(ϵr) is of the form

O
L−2M

µ →L
−2(M−1)
µ

(|Im(z)|−σ′) + (P/ϵ2 − z)−1O
L−2M

µ →L N′−2M
0

(|Im(z)|−σ′)

for some σ′ = σ′(M,N ′) > 0. Using an estimate similar to (3.31) together with the
fact that (P/ϵ2 − z)−1 = O

L N′−2M
0 →L

N′−2(M−1)
0

(|Im(z)|−1), we get

Rlow,κ(f, ϵ)ζ(ϵr) = O
L−2M

µ →L
N−2(M−1)
N

(1).

Together with (3.32), this yields (3.30) by choosing M = MN = N/4 for instance.

As a first consequence of Theorem 3.9, we have the following estimates.

Proposition 3.10 (L∞ → L∞ boundedness at spatial infinity). – For all f ∈ C∞0 (R),

∥ζ(r)f(h2P )∥L∞→L∞ ≲ 1, h ∈ (0, 1]

and

∥ζ(ϵr)f(P/ϵ2)∥L∞→L∞ ≲ 1, ϵ ∈ (0, 1].

Proof. – We consider only the low frequency case. The high frequency one is essen-
tially standard, and can be proved e.g., as in [3]. We thus consider ζ(ϵr)f(P/ϵ2)

which we expand using (3.28). The (rescaled) pseudo-differential terms are bounded
uniformly on L∞ by Proposition 3.5. Choosing M = N and µ = −N in (3.29), the
remainder can be written

Rlow(f, ϵ) = ζ̃(ϵr)(P/ϵ2 + 1)−NBϵ⟨ϵr⟩−N

with ∥Bϵ∥L2→L2 ≲ 1. This follows from Proposition 3.8 and that ζ̃(ϵr)ζ(ϵr) = ζ(ϵr).
If N > n/2, we have ∥⟨ϵr⟩−N∥L∞→L2 ≲ ϵ−n/2 so, using the second estimate of
Proposition 3.7 with ζ̃ instead of ζ, we get

∥ζ̃(ϵr)(P/ϵ2 + 1)−NBϵ⟨ϵr⟩−N∥L∞→L∞ ≲ ϵn/2ϵ−n/2 ≲ 1,

which yields the result.

To illustrate another application of Proposition 3.8, we record some rough a priori
estimates on the propagator e−itP which will be useful in Chapter 7. For k ≥ 0 integer,
we define γ(k) by γ(0) = 0 and γ(k + 1) = 2γ(k) + 1 (i.e., γ(k) = 2k − 1).
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Proposition 3.11 (Rough propagation estimates). – For µ ∈ R denote by ⌈µ⌉ the
smallest integer ≥ |µ|. Then for all j ∈ Z,

e−itP = OH2j
µ →H2j−2γ(⌈µ⌉)

µ

(
⟨t/h⟩γ(⌈µ⌉)

)
,(3.33)

meaning that ⟨t/h⟩−γ(⌈µ⌉)e−itP = OH2j
µ →H2j−2γ(⌈µ⌉)

µ
(1) uniformly in t ∈ R. Similarly

e−itP = OL2j
µ →L2j−2γ(⌈µ⌉)

µ

(
⟨ϵ2t⟩γ(⌈µ⌉)

)
.(3.34)

This proposition will be very useful to handle the remainders of some microlocal
propagation estimates. The knowledge of the power γ(⌈µ⌉) is not very important, the
main interest being only the polynomial growth w.r.t to ⟨t/h⟩ and ⟨ϵ2t⟩. We rather
comment on the different scalings in h and ϵ. The estimate (3.33) reflects roughly
that waves localized at frequency 1/h move at speed 1/h. Based on this intuition,
one could expect to get a bound in term of ⟨ϵt⟩ in (3.34) for waves localized at
frequency ϵ. The reason why we have bounds in term of ⟨ϵ2t⟩ is that we use the
rescaled spatial weights ⟨ϵr⟩µ. Another way to see that the scalings are natural is to
consider the flat Laplacian on Rn and to observe that for every symbol a one has
eit∆a(x,D) = a(x− 2tD,D)eit∆ we see easily that

eit∆a(x, hD) = a

(
x− 2

t

h
hD, hD

)
eit∆

and that

eit∆a

(
ϵx,

D

ϵ

)
= a

(
ϵx− 2tϵ2

D

ϵ
,
D

ϵ

)
eit∆,

where the power ϵ2 on t follows both from writing D = ϵ(D/ϵ) and from the scaling
in x.

We finally note that Proposition 3.11 uses implicitly that S (M) is preserved
by e−itP (recall our convention to consider the H 2j

µ and L 2j
µ norms only on S (M)).

This fact can be checked by routine arguments using exactly the commutator tech-
niques involved in the proof below, but we omit this aspect and focus only on the
estimates in time.

Proof of Proposition 3.11. – Let us show (3.33). By (3.23), it suffices to show
that ⟨r⟩µe−itP ⟨r⟩−µ satisfies the expected bound between H2j

0 and H2(j−γ(⌈µ⌉))
0 . If

µ = 0, this is a straightforward consequence of

∥(h2P + 1)je−itP (h2P + 1)−j∥L2→L2 = 1.

Assume next that ⌈µ⌉ = 1 and compute first the commutator[
⟨r⟩|µ|, e−itP

]
= i

∫ t

0

e−i(t−s)P [P, ⟨r⟩|µ|]e−isP ds.
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Using that [P, ⟨r⟩|µ|] is h−1 times a sum of semiclassical differential operators with
symbols in S̃1,|µ|−1 ⊂ S̃2,0 as in (3.25) (they are supported in r ≫ 1 by (2.10)), we
can write the commutator

[
⟨r⟩|µ|, e−itP

]
= OH2j

0 →H
2(j−1)
0

(|t|/h). Thus, using that

⟨r⟩µe−itP ⟨r⟩−µ = e−itP +

{
⟨r⟩−|µ|

[
e−itP , ⟨r⟩|µ|

]
if µ < 0[

⟨r⟩|µ|, e−itP
]
⟨r⟩−|µ| if µ ≥ 0

we get the result since ⟨r⟩−|µ| is bounded on each H 2k
0 by Proposition 3.8. If ⌈µ⌉ > 1

we proceed by induction by writing, e.g., if µ > 0,

⟨r⟩µe−itP ⟨r⟩−µ = ⟨r⟩µ−1

(
e−itP + i

∫ t

0

e−i(t−s)P [P, ⟨r⟩]e−isP ds⟨r⟩−1

)
⟨r⟩1−µ.

The induction assumption and Proposition 3.8 then show that the right hand side is
of order

O
(
⟨t/h⟩γ(⌈µ⌉−1)

)
+

∫ t

0

O
(
⟨(t− s)/h⟩γ(⌈µ⌉−1)

)
O(h−1)O

(
⟨s/h⟩γ(⌈µ⌉−1)

)
ds

as an operator from H2j
µ to H2j−2γ(⌈µ⌉)

µ . Using the definition of γ(.), we get (3.33).
The proof of (3.34) is similar, the gain in ϵ2 following from the fact that

[P, ⟨ϵr⟩] = ϵ2[P/ϵ2, ⟨ϵr⟩] = OL2j
µ →L2j−2

µ
(ϵ2)

for all µ and j since the commutator in the middle is a linear combination of rescaled
pseudo-differential operators as in (3.25).
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CHAPTER 4

SPECTRAL LOCALIZATIONS

The purpose of this chapter is to prove Theorems 4.1 and 4.6 which provide
Littlewood-Paley type estimates, at low and high frequencies respectively. Specific
comments are given after each theorem. We only point out here that we adopt a prag-
matic point of view, in the sense that we do not try to mimic exactly the usual form of
Littlewood-Paley estimates on Rn (e.g., by using non trivial heat kernel bounds) but
rather provide robust and spatially localized versions of such estimates which seem
naturally adapted to the proof of Strichartz estimates. In particular, the form of the
decompositions are not the same at high and low frequencies; this is related to the
fact that we use different types of estimates to treat the remainder terms.

We use the function f0 introduced in (1.3) and consider f(λ) = f0(λ)− f0(2λ) so
that f ∈ C∞0 (R \ 0) and, for all λ ∈ R,

∞∑
ℓ=0

f(2ℓλ) = 1R\0(λ)f0(λ),

∞∑
ℓ=1

f(2−ℓλ) = 1− f0(λ).

The spectral theorem then implies that, in the strong sense on L2(M),

f0(P ) =
∑
ℓ≥0

f(2ℓP ), (1− f0)(P ) =
∑
ℓ≥1

f(2−ℓP ),(4.1)

using in the first sum that 0 is not an eigenvalue of P . The latter comes from the
connectedness of M (see Definition 1.1) and the fact that if some u in the domain
of P satisfies Pu = 0 then

0 = (Pu, u) = ∥∇Gu∥2L2

so u is constant by connectedness of M hence vanishes since it is L2.

4.1. Low frequencies

In this section we prove the following result.
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Theorem 4.1. – Assume that n ≥ 3. Let χ ∈ C∞0 (R) be equal to 1 on a large enough
interval so that (1− χ) = (1− χ)ζ (see (2.7)). Then

∥f0(P )v∥L2∗ ≲

(
+∞∑
ℓ=0

∥(1− χ)(ϵr)f(P/ϵ2)v∥2L2∗ + ∥⟨r⟩−1f(P/ϵ2)v∥2L2

)1/2

,

for all v ∈ L2, where ϵ = 2−ℓ/2.

Let us comment that this Littlewood-Paley estimate holds for the exponent 2∗

(and presumably for exponents between 2 and 2∗) which is sufficient and somewhat
natural for applications to Strichartz estimates. Indeed, the first half of the sum
is appropriately localized to use microlocal techniques while the second one can be
treated in a straightforward fashion by using the L2 estimates (7.16)-(7.17).

Theorem 4.1 is a consequence of the next two propositions in which we pick
f̃ ∈ C∞0 (R \ 0;R) such that f̃ = 1 on supp(f) and let

Q̃(ϵ) = (1− χ)(ϵr)
∑

κ

ψκ(ϵr)Opϵ,κ

(
f̃ ◦ pϵ,κ

)
ψ̃κ(ϵr),(4.2)

that is the first term of the parametrix of (1−χ)(ϵr)f̃(P/ϵ2) according to Theorem 3.9.
Here and everywhere in this section, we set

ϵ2 = 2−ℓ.

Proposition 4.2. – If n ≥ 3, then

∥f0(P )v∥L2∗ ≲ sup
M

∥∥∥∥∥
M∑

ℓ=0

Q̃(ϵ)(1− χ)(ϵr)f(P/ϵ2)v

∥∥∥∥∥
L2∗

+

∑
ℓ≥0

∥⟨r⟩−1f(P/ϵ2)v∥2L2

1/2

for all v ∈ L2.

Up to the homogeneous Sobolev inequality (1.2) this proposition rests on purely
L2 → L2 estimates. In particular, we feel it is quite robust and could be used gener-
alized to other contexts.

To state the second proposition, we need to define the family of square functions

S̃Mw :=

(
M∑

ℓ=0

∣∣Q̃(ϵ)∗w
∣∣2)1/2

, M ≥ 0,

where the adjoint is taken with respect to the Riemannian measure.

Proposition 4.3. – For all q1 ∈ (1, 2] one has

∥S̃Mw∥Lq1 ≲q1 ∥w∥Lq1 ,

for all M ≥ 0 and all w ∈ C∞0 (M).
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This proposition is a consequence of fairly standard singular integral estimates, by
exploiting the explicit form of the Schwartz kernel of Q̃(ϵ). Note that we do not need
to assume n ≥ 3 here.

Before proving these two technical results, we prove Theorem 4.1.

Proof of Theorem 4.1. – Let us set SMv :=
(∑M

ℓ=0

∣∣(1− χ)(ϵr)f(P/ϵ2)v
∣∣2)1/2

. Then,
by the usual trick i.e., the Cauchy-Schwarz inequality in ℓ and the Hölder inequality
in space, we have∣∣∣∣∣

(
w,

M∑
ℓ=0

Q̃(ϵ)(1− χ)(ϵr)f(P/ϵ2)v

)∣∣∣∣∣ ≤ ∥S̃Mw∥L2∗∥SMv∥L2∗

so using Proposition 4.3 for q1 = 2∗, we obtain∥∥∥∥∥
M∑

ℓ=0

Q̃(ϵ)(1− χ)(ϵr)f(P/ϵ2)v

∥∥∥∥∥
L2∗

≲ ∥SMv∥L2∗ .

We conclude by using ∥SMv∥L2∗ ≤
(∑

ℓ≥0 ∥(1− χ)(ϵr)f(P/ϵ2)ψ∥2
L2∗

)1/2

, which fol-
lows from the Minkowski inequality since 2∗ ≥ 2, together with Proposition 4.2.

To prove Proposition 4.2, we recall first for clarity the following well known results.

Proposition 4.4. – Let (Tℓ)ℓ be a sequence of linear operators on a Hilbert space H.

1. (Discrete Schur estimate) If ∥T ∗j Tℓ∥H→H ≲ 2−|ℓ−j|/2, then there is C such that

∥
∑

Tℓvℓ∥H ≤ C
(∑

∥vℓ∥2H
)1/2

,

for all sequence (vℓ) of H.

2. (Cotlar-Stein estimate) If ∥T ∗j Tℓ∥H→H+ ∥TjT
∗
ℓ ∥H→H ≲ 2−|ℓ−j|/2, then there is

C such that
∥
∑

Tℓv∥H ≤ C∥v∥H,

for all v ∈ H.

We will apply the Schur estimate to two types of operators. The first one is very
elementary: if we let

Tℓ = 2ℓ/2P 1/2(2ℓP + 1)−1

then, assuming for instance ℓ ≥ j so that j+ℓ
2 = − |j−ℓ|

2 + ℓ, we have

∥T ∗j Tℓ∥L2→L2 = 2−
|j−ℓ|

2 ∥(2jP + 1)−12ℓP (2ℓP + 1)−1∥L2→L2 ≤ 2−
|j−ℓ|

2(4.3)

by using the spectral theorem. The second type of operators requires a lemma.
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Lemma 4.5. – Let κ : Uκ → Vκ be a chart on S. Let ψ be smooth on M, supported
in (RM,∞)× Uκ and belonging to S0. For s = 0 or 1, denote

Tℓ =
(
P 1/2/ϵ

)s
Opϵ,κ(aϵ + bϵ)ψ(ϵr, ω),

where, for some given J ⋐ (0,+∞) (independent of ϵ),

(aϵ)ϵ is bounded in S̃−∞,0, supp(aϵ) ⊂ p−1
ϵ,κ(J), (bϵ)ϵ is bounded in S̃−∞,−1,

are all spatially supported in (RM,∞)× Vκ. Then, if s = 0, 1,

∥T ∗j Tℓ∥L2→L2 ≲ 2−
|j−ℓ|

2(4.4)

and, if s = 0,

∥TjT
∗
ℓ ∥L2→L2 ≲ 2−

|j−ℓ|
2 .(4.5)

Proof. – We start with two preliminary remarks. First, it suffices to prove both es-
timates when ℓ ≥ j (otherwise take the adjoint). The second one is that, if s = 0,
T ∗ℓ is of the same form as Tℓ (see (3.10)) up to perhaps changing the function ψ. In
particular, proving (4.4) is sufficient. Let us prove (4.4) when s = 1. For simplicity,
we set ψ(r̆) = ψ(r̆, κ−1(θ)). Using Proposition 3.4 with q = 2, it suffices to show that∥∥∥∥Op1(cϵj )ψ(r̆)D−1

ϵj

Pκ

ϵjϵℓ
Dϵℓ

Op1(dϵℓ
)

∥∥∥∥
L2(⟨r̆⟩n−1dr̆dθ)→L2(⟨r̆⟩n−1dr̆dθ)

≲ 2−
|j−ℓ|

2(4.6)

with ϵℓ = 2−ℓ/2, and (cϵ)ϵ, (dϵ)ϵ bounded families of S̃−∞,0 supported in (RM,∞)×Vκ

with respect to (r̆, θ). Using that ℓ ≥ j and (2.15), we write
Pκ

ϵjϵℓ
Dϵℓ

= 2
j−ℓ
2
Pκ

ϵ2ℓ
Dϵℓ

= 2−
|j−ℓ|

2 Dϵℓ
Pϵℓ,κ.

Then Pϵℓ,κOp1(dϵℓ
) = ψ̃(r̆)Op1(eϵℓ

) for some bounded family (eϵ)ϵ of S̃−∞,0, with
support contained in the one of dϵ which allows to introduce for free a cutoff ψ̃(r̆)

supported in (RM,∞) and equal to 1 near the support of the symbols. Now (4.6)
follows from the Calderón-Vaillancourt Theorem (in the form (3.4)) together with∥∥∥ψ(r̆)D−1

ϵj
Dϵℓ

ψ̃(r̆)
∥∥∥

L2((RM,∞)×Rn−1,⟨r̆⟩n−1dr̆dθ)→L2(Rn,⟨r̆⟩n−1dr̆dθ)
≲ 1,(4.7)

which follows from the unitarity of D−1
ϵj

Dϵℓ
= Dϵℓ−j

on L2((0,∞)×Rn−1, r̆n−1dr̆dθ).
We next prove (4.4) when s = 0. It suffices to show that∥∥∥Op1(b̃ϵj

)ψ(r̆)D−1
ϵj

Dϵℓ
Op1(dϵℓ

)ψ
∥∥∥

L2(⟨r̆⟩n−1dr̆dθ)→L2(⟨r̆⟩n−1dr̆dθ)
≲ 2−

|j−ℓ|
2(4.8)

and ∥∥∥Op1(āϵj
)ψ(r̆)D−1

ϵj
Dϵℓ

Op1(dϵℓ
)
∥∥∥

L2(⟨r̆⟩n−1dr̆dθ)→L2(⟨r̆⟩n−1dr̆dθ)
≲ 2−

|j−ℓ|
2(4.9)

whenever (b̃ϵ)ϵ ∈ S̃−∞,−1 and (dϵ)ϵ ∈ S̃−∞,0 are spatially supported in (RM,∞)×Vκ.
To prove (4.8), we use

r̆−1D−1
ϵj

Dϵℓ
= ϵℓϵ

−1
j D−1

ϵj
Dϵℓ

r̆−1
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to write

Op1(b̃ϵj )ψ(r̆)D−1
ϵj

Dϵℓ
= Op1(b̃ϵj )ψ(r̆)r̆r̆−1D−1

ϵj
Dϵℓ

= 2−
|j−ℓ|

2 Op1(b̃ϵj )r̆ψD−1
ϵj

Dϵℓ
r̆−1

and conclude again from the L2(⟨r̆⟩n−1drdθ) boundedness of Op1(b̃ϵ)r̆ and r̆−1Op1(dϵ)

(there is no singularity at r̆ = 0 since dϵ is supported in {r ≥ RM}) together with
(4.7). We finally prove (4.9). The support assumption on aϵ implies that aϵ/pϵ,κ is a
smooth symbol in S̃−∞,0 so, using in addition that ψ ∈ S0, we can write by symbolic
calculus

Op1(āϵ)ψ(r̆) = Op1(āϵ/pϵ,κ)ψPϵ,κ + Op1
(˜̃
bϵ
)
ψ̃(r̆)

with (
˜̃
bϵ)ϵ bounded in S̃−∞,−1 and some cutoff ψ̃(r̆, θ) ∈ S0, both supported

in (RM,∞) × V with respect to (r̆, θ). The contribution of the second term in the
right hand side follows from (4.8). For the first term, one can use (4.6) once observed
that

Op1(āϵj/pϵj ,κ)ψ(r̆)Pϵj ,κD−1
ϵj

Dϵℓ
= Op1(āϵj/pϵj ,κ)ψ(r̆)D−1

ϵj

Pκ

ϵ2j
Dϵℓ

and that ϵ−2
j = 2

j−ℓ
2 (ϵjϵℓ)

−1 (so that we actually get an estimate of order 2−|j−ℓ| for
this term). This completes the proof.

Proof of Proposition 4.2. – Let us write (1−χ)(ϵr)f̃(P/ϵ2) = Q̃(ϵ)+ R̃(ϵ) according
to (4.2) and Theorem 3.9. Using that ff̃ = f and that 1 = χ(ϵr) + (1 − χ)(ϵr), we
have

f(P/ϵ2) = Q̃(ϵ)(1− χ)(ϵr)f(P/ϵ2) + ϵT (ϵ)⟨ϵr⟩−1f(P/ϵ2)

with

T (ϵ) = ϵ−1
(
χ(ϵr)f̃(P/ϵ2) + (1− χ)(ϵr)f̃(P/ϵ2)χ(ϵr) + R̃(ϵ)

)
⟨ϵr⟩.(4.10)

Using the first sum in (4.1) (which converges strongly in L2 but also in L2∗ by Sobolev
embedding) and the homogeneous Sobolev estimate (1.2), we have

∥f0(P )v∥L2∗ ≲ sup
M

(∥∥∥∥ M∑
ℓ=0

Q̃(ϵ)(1− χ)(ϵr)f(P/ϵ2)v

∥∥∥∥
L2∗

+

∥∥∥∥ M∑
ℓ=0

P 1/2T (ϵ)ϵ⟨ϵr⟩−1f(P/ϵ2)v

∥∥∥∥
L2

)
,

where it suffices to estimate the second norm. Using Theorem 3.9, one can write

P 1/2T (ϵ) = ϵ−1P 1/2(P/ϵ2 + 1)−1B(ϵ),(4.11)

with B(ϵ) bounded on L2 uniformly in ϵ. The least obvious contribution of terms of
(4.10) is the uniform L2 boundedness of (P/ϵ2 +1)χ(ϵr)f̃(P/ϵ2)⟨ϵr⟩. One can analyze
it as follows. On one hand, the commutator [(P/ϵ2 +1), χ(ϵr)] being a sum of rescaled
(pseudo-)differential operators vanishing outside the support of ζ(ϵr), one can use
Theorem 3.9 to get a parametrix for [(P/ϵ2 + 1), χ(ϵr)]f̃(P/ϵ2)⟨ϵr⟩ from which the
uniform L2 boundedness follows.
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On the other hand, χ(ϵr)(P/ϵ2 + 1)f̃(P/ϵ2)⟨ϵr⟩ = χ(ϵr)f̃1(P/ϵ
2)⟨ϵr⟩ with f̃1 ∈ C∞0 .

We then write ⟨ϵr⟩ = χ(ϵr)⟨ϵr⟩ + (1 − χ)(ϵr)⟨ϵr⟩ whose first term is obviously uni-
formly bounded on L2 while one can use the parametrix for f̃1(P/ϵ2)(1 − χ)(ϵr) to
see that χ(ϵr)f̃1(P/ϵ

2)(1 − χ)(ϵr)⟨ϵr⟩ is uniformly bounded on L2. Now with (4.11)
at hand, by using (4.3) and Lemma 4.5 with s = 1 together with the Schur estimate
of Proposition 4.4, we have

sup
M

∥∥∥∥∥
M∑

ℓ=0

P 1/2T (ϵ)ϵ⟨ϵr⟩−1f(P/ϵ2)v

∥∥∥∥∥
L2

≲

∑
k≥0

∥ϵ⟨ϵr⟩−1f(P/ϵ2)v∥2L2

1/2

.

In the right hand side of this inequality, we finally use that

ϵ⟨ϵr⟩−1 ≲ ⟨r⟩−1

and we get the result.

We now consider the proof of Proposition 4.3.

Proof of Proposition 4.3. – It follows the same line as the one for the standard
Littlewood-Paley decomposition (see, e.g., [32]). Let (ϱℓ)ℓ≥0 be the usual Rademacher
sequence (realized as functions of t ∈ [0, 1]). By the Khintchine inequality, it suffices
to show that ∥∥∥∥∥

M∑
ℓ=0

ϱℓ(t)Q̃(ϵ)∗

∥∥∥∥∥
Lq1 (M)→Lq1 (M)

≲ 1, t ∈ [0, 1], M ≥ 0.

This in turn follows from the Marcinkiewicz interpolation theorem provided
we prove the above estimate for q1 = 2 as well as weak type (1, 1) estimates
for
∑

ℓ≤M ϱℓ(t)Q̃(ϵ)∗ uniformly in t and M . Using the form of Q̃(ϵ) given by (4.2),
the uniform L2 → L2 bound follows from the Cotlar-Stein estimate of Proposition 4.4
together with the estimates (4.4) and (4.5) (with s = 0) of Lemma 4.5. The weak
type (1, 1) estimate follows from essentially standard estimates on Calderón-Zygmund
operators; we postpone to Appendix B the technical details.

4.2. High frequencies

The purpose of this section is to prove the following result.

Theorem 4.6. – Let N ≥ 0 and χ ∈ C∞0 (R) be equal to 1 on a large enough set so
that ζ ≡ 1 (see (2.7)) near the support of 1− χ. Let q ∈ [2,∞). Then

∥(1− χ)(r)(1− f0)(P )v∥Lq ≲

(
+∞∑
ℓ=1

∥(1− χ)(r)f(h2P )v∥2Lq + hN∥⟨r⟩−Nf(h2P )v∥2L2

)1/2

,

for all v ∈ S (M), where h = 2−ℓ/2.
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This is a spatially localized Littlewood-Paley decomposition similar to the one of
[2]. The improvement here is that the nonlocal L2 correction involves the weight ⟨r⟩−N

which will allow us to use the resolvent estimates (1.5) and their time dependent
counterparts (see Section 7.2 and Section 8).

To prove this theorem, we pick again f̃ ∈ C∞0 (R\0;R) such that f̃ = 1 on supp(f).
We define the square functions

ΣMv =

(
M∑

ℓ=1

|(1− χ)(r)f(h2P )v|2
)1/2

and

Σ̃Mw =

(
M∑

ℓ=1

|ζ(r)f̃(h2P )w|2
)1/2

.

Here and throughout this section, we set h2 = 2−ℓ.

Proof of Theorem 4.6. – It is very close to that of Theorem 4.1. We only explain
what changes. Using the second sum in (4.1), we write

(
w, (1 − χ)(r)(1 − f0)(P )v

)
as the limit as M →∞ of

∑M
ℓ=1(w, (1−χ)(r)f(h2P )v). Using standard semiclassical

estimates based on Theorem 3.9 and Proposition 3.7, and using that (1− f̃) vanishes
near the support of f , we see that, for any N ,

(1− f̃)(h2P )(1− χ)(r)f(h2P ) = hNBN (h)⟨r⟩−Nf(h2P ),

with

∥BN (h)∥L2→Lq ≲ 1, h ∈ (0, 1].

Therefore, using additionally that ζ(r)(1− χ)(r) = (1− χ)(r), we have

∣∣(w, (1− χ)(r)(1− f0)(P )v
)∣∣ ≲ sup

M

∣∣∣∣∣
M∑

ℓ=1

(
ζ(r)f̃(h2P )w, (1− χ)(r)f(h2P )v

)∣∣∣∣∣
+ ∥w∥Lq′

∑
ℓ≥1

hN∥⟨r⟩−Nf(h2P )v∥L2 .

By proceeding as in the proof of Theorem 4.1, in particular by using that the
supremum above is bounded by supM ∥Σ̃Mw∥Lq′∥ΣMv∥Lq , Theorem 4.6 follows from
Proposition 4.7 below.

Proposition 4.7. – For all q1 ∈ (1, 2], one has

∥Σ̃Mw∥Lq1 ≲q1 ∥w∥Lq1

for all M ≥ 1 and all w ∈ S (M).
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Proof. – As in the proof of Prop. 4.3, it suffices to show that
∑M

ℓ=1 ϱℓ(t)ζ(r)f̃(h2P ) is
bounded on L2 and satisfies weak type (1, 1) estimates, uniformly in t and M . The
uniform boundedness on L2 follows from the spectral theorem and the fact that the
functions

λ 7→
M∑

ℓ=1

ϱℓ(t)f̃(2−ℓλ)

belong to L∞(R) uniformly in t,M since at most a finite number (λ,M, t independent)
of terms of the sum do not vanish. To prove the weak type (1, 1) estimate, we use
Theorem 3.9 to decompose

ζ(r)f̃(h2P ) = Qhigh(h) + hRhigh(h)

with Rhigh(h) uniformly (in h) bounded on L1 and L2. The uniform boundedness
on L2 is obvious. To see the uniform boundedness on L1, one uses an expansion
of ζ(r)f̃(h2P ) to a sufficiently high order N0 + 1 so that one can write hRhigh(h) =

h1+N0⟨r⟩−N0B(h)(h2P + 1)−N0 with B(h) uniformly bounded on L2. Then using on
one hand that (h2P+1)−N0 : OL1→L2(h−n/2) (by taking the adjoint estimate of (3.20)
near infinity and using a standard elliptic regularity estimate on any compact set—
including near the boundary if any) and on the other hand that ⟨r⟩−N0 : L2 → L1,
one gets the desired L1 → L1 estimate. In particular, we have∑

ℓ≥1

h∥Rhigh(h)∥L1→L1 <∞.(4.12)

Then, it suffices to prove the uniform weak type (1, 1) estimates for
∑M

ℓ=1 ϱℓ(t)Qhigh(h)

and this follows again from standard arguments on Calderón-Zygmund operators (see
Appendix B).

Remark. – In more general situations, e.g., with non smooth coefficients in a com-
pact set, it may be not easy to prove (4.12). Actually, it would suffice to have∑

ℓ≥1 h∥Rhigh(h)∥L2∗→L2∗ <∞ for our purpose. It would restrict the range of expo-
nents in Proposition 4.7 to [2∗, 2], and thus those of Theorem 4.6 to [2, 2∗], but this
would be sufficient for Strichartz estimates.
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CHAPTER 5

CLASSICAL SCATTERING

In this chapter, we construct real phase functions solutions to Hamilton-Jacobi
equations that will be used to construct Isozaki-Kitada type parametrices. The trans-
port equations associated to such parametrices are also studied.

Everywhere in this chapter, we work in a single chart at infinity (RM,∞) × Vκ.
Since we want to consider both high and low frequencies parametrices, we have to
analyze the Hamiltonian flow of pκ and pϵ,κ (see (2.16)). Observing that pκ = p1,κ,
we will state the main results only for pϵ,κ for 0 < ϵ ≤ 1.

We let ϕs
ϵ,κ be the Hamiltonian flow of pϵ,κ and define ϕs

0 by

ϕs
0(r, ϑ, ϱ, η) :=

(
r + 2sϱ, ϑ, ϱ, η

)
that is the Hamiltonian flow of ϱ2. We denote the time by s here since it will be
interpreted as a rescaled version of t in the applications (either s = t/h or s = tϵ2).

For R≫ 1, V ⊂ Vκ, and ε > 0, we define the subset of R× (Rn−1)2

Θ(R, V, ε) = {(r, θ, ϑ) | r > R, θ ∈ V, |θ − ϑ| < ε} .(5.1)

To describe the asymptotic behavior of our phases, and to take into account the
dependence on ϵ of the functions we are going to consider (e.g., the components of
the flow ϕs

ϵ,κ), the following definition will be useful.

Definition 5.1. – Let R > 0, V ⊂ Vκ and ε > 0. For µ ∈ R,

1. Sµ is the set of (ϵ dependent families of) functions on Θ(R, V, ε) such that∣∣∂j
r∂

α
θ ∂

β
ϑaϵ(r, θ, ϑ)

∣∣ ≲ rµ−j ,

for all (r, θ, ϑ) ∈ Θ(R, V, ε) and all ϵ ∈ (0, 1] (the constant is independent of ϵ).

2. For any integer m ≥ 0, we denote by Sµ(θ − ϑ)m the set of all functions of the
form ∑

|γ|=m
aϵ,γ(r, θ, ϑ)(θ − ϑ)γ ,

with aϵ,γ ∈ Sµ.
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3. Given real numbers µ1, µ2 and integers m1,m2, the equality

aϵ = bϵ + Sµ1
(ϑ− θ)m1 + Sµ2

(ϑ− θ)m2

means that aϵ − bϵ is the sum of an element of Sµ1
(ϑ − θ)m1 and one of

Sµ2(ϑ− θ)m2 .

The main result of this chapter is the following theorem.

Theorem 5.2 (Eikonal equation). – Fix an open subset V ⋐ Vκ. Assume that V is
convex. Then we can find R ≫ 1 and 0 < ε ≪ 1 such that for all ϵ ∈ (0, 1], there
exists a smooth function

ψϵ : Θ(R, V, ε) → R

such that the function φϵ(r, θ, ϱ, ϑ) := ϱψϵ(r, θ, ϑ) satisfies the following properties:

1. It solves the Hamilton-Jacobi equation

pϵ,κ

(
r, θ, ∂rφϵ, ∂θφϵ

)
= ϱ2.(5.2)

2. For V ′ ⋐ Vκ, R′ ≫ 1 and 0 < ε′ ≪ 1, define the strongly outgoing (+)/
incoming (-) areas by

Γ̃±st(R
′, V ′, ε′) =

{
(r, θ, ρ, η) | r > R′, θ ∈ V ′, ±ρ > (1− ε′2)p1/2

}
(5.3)

where p = p(r, θ, ρ, η). Then the range of

(r, θ, ϱ, ϑ) 7→ (r, θ, ∂rφϵ, ∂θφϵ), (r, θ, ϑ) ∈ Θ(R, V, ε), ±ϱ > 0,

is contained in a set Γ̃±st (we do not specify its parameters here) where (ϕs
ϵ,κ)±s≥0

and the limit lims→±∞ ϕ−s
0 ◦ ϕs

ϵ,κ =: F±ϵ,κ are defined. Furthermore, one has

F±ϵ,κ
(
r, θ, ∂rφϵ, ∂θφϵ

)
=
(
∂ϱφϵ, ϑ, ϱ,−∂ϑφϵ

)
.(5.4)

3. One has the expansions

ψϵ = r + S1−ν(ϑ− θ) + S1(ϑ− θ)2(5.5)

∂rψϵ = 1 + S−ν(ϑ− θ) + S0(ϑ− θ)2(5.6)

∂θψϵ = rḡ(θ)(ϑ− θ) + S1−ν(ϑ− θ) + S1(ϑ− θ)2(5.7)

∂ϑψϵ = −rḡ(θ)(ϑ− θ) + S1−ν(ϑ− θ) + S1(ϑ− θ)2.(5.8)

Remarks

1. Be careful not to mistake ϵ (the low frequency parameter) for ε which is a small
enough but fixed number defining Θ(R, V, ε).

2. Note that the square on ε′ in (5.3) ensures that the condition±ρ > (1−ε′2)p1/2 is
equivalent to |η|/r ≲ ε′ and ±ρ > 0.
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The purpose of the next proposition is to solve transport equations associated to φϵ

and which will be used in Chapter 6. We consider equations of the form

(∂ρ,ηpϵ,κ)
(
r, θ, ∂rφϵ, ∂θφϵ

)
· ∂r,θu+ bϵ(r, θ, ϑ, ϱ)u = fϵ(r, θ, ϱ, ϑ),(5.9)

where fϵ is a given short range symbol (see condition (5.14)) and

bϵ := −Pϵ,κφϵ.(5.10)

In practice, we will study these equations only locally in ϱ, namely on sets of the form

Θ±(R, V, I, ε) := {(r, θ, ϱ, ϑ) | (r, θ, ϑ) ∈ Θ(R, V, ε), ϱ2 ∈ I, ±ϱ > 0},(5.11)

where I ⋐ (0,+∞) is a given relatively compact interval. The natural domains to
work on are actually the larger sets (of trajectories starting in Θ±(R, V, I, ε))

T ±ϵ (R, V, I, ε)

:=
{((

r̄s
ϵ , ϑ̄

s
ϵ

)
(r, θ, ∂r,θφϵ(r, θ, ϱ, ϑ)), ϱ, ϑ

)
| (r, θ, ϱ, ϑ) ∈ Θ±(R, V, I, ε), ±s ≥ 0

}
,

where (
r̄s
ϵ , ϑ̄

s
ϵ , ϱ̄

s
ϵ , η̄

s
ϵ

)
= components of ϕs

ϵ,κ.(5.12)

It will follow from the proof below that
(
r, θ, ∂r,θφϵ(r, θ, ϱ, ϑ)

)
belongs to a set where

the flow ϕs
ϵ,κ is well defined for all ±s ≥ 0 (if ±ϱ > 0) so that the sets T ±ϵ (R, V, I, ε)

are well defined.

Proposition 5.3 (Transport equations). – Let Θ(R, V, ε) be as in Theorem 5.2 and
I ⋐ (0,+∞).

1. Form of characteristics: For all (r, θ, ϱ, ϑ) ∈ Θ±(R, V, I, ε), ±s ≥ 0 and ϵ ∈ (0, 1]

define (
řs
ϵ , θ̌

s
ϵ , ρ̌

s
ϵ , η̌

s
ϵ

)
:= ϕs

ϵ,κ

(
r, θ, (∂r, ∂θφϵ)(r, θ, ϱ, ϑ)

)
.

Then (
ρ̌s

ϵ , η̌
s
ϵ

)
=
(
∂rφϵ, ∂θφϵ

)(
řs
ϵ , θ̌

s
ϵ , ϱ, ϑ

)
.

In particular,

(∂ρpϵ,κ∂ηpϵ,κ)
(
řs
ϵ , θ̌

s
ϵ , (∂r,θφϵ)(ř

s
ϵ , θ̌

s
ϵ , ϱ, ϑ)

)
=
(
˙̌rs
ϵ ,

˙̌θs
ϵ

)
.

2. Time integrability of bϵ along characteristics: For all j, α, k, β, there exists C
independent of ϵ ∈ (0, 1] such that∣∣∣∂j

r∂
α
θ ∂

k
ϱ∂

β
ϑ

(
bϵ(ř

s
ϵ , θ̌

s
ϵ , ϱ, ϑ)

)∣∣∣ ≤ C⟨s/r⟩−1−νr−1−ν−j + C⟨s/r⟩−2r−1−j(5.13)

for ±s ≥ 0 and (r, θ, ϱ, ϑ) ∈ Θ±(R, V, I, ε).

3. Form of solutions: Assume that fϵ belongs to S−1−µ := S−1−µ

(
T ±ϵ (R, V, I, ε)

)
for some µ > 0, i.e., on T ±ϵ (R, V, I, ε)

|∂j
r∂

α
θ ∂

k
ϱ∂

β
ϑfϵ(r, θ, ϑ, ϱ)| ≲ ⟨r⟩−1−µ−j ,(5.14)
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uniformly in ϵ. Then, given a constant C, the solution to (5.9) going to C

as r →∞ is given by

C exp

(∫ ±∞

0

bϵ(ř
s
ϵ , θ̌

s
ϵ , ϱ, ϑ)ds

)
−
∫ ±∞

0

fϵ(ř
s
ϵ , θ̌

s
ϵ , ϱ, ϑ) exp

(∫ s

0

b(řs1
ϵ , θ̌

s1
ϵ , ϱ, ϑ)ds1

)
ds.

This solution is still defined on T ±ϵ (R, V, I, ε) and, if C = 0, it belongs to S−µ.

Remark. – In the asymptotically Euclidean case with global coordinates, the usual
construction of the Isozaki-Kitada phase shows that bϵ is a short range symbol, which
implies easily its integrability in time when evaluated along a trajectory. Here, it only
follows from the asymptotics of Theorem 5.2 that

bϵ = S−1−ν + S−1(θ − ϑ)

which in general fails to be short range because of the second term. However, when
evaluated along a trajectory, we will recover the integrability in time (5.13) by ex-
ploiting the decay in time of θ̌s

ϵ − ϑ (see (5.41)).
We will prove Theorem 5.2, and Proposition 5.3 likewise, only in the case ϵ = 1.

Indeed, by Lemma 3.3, if we define v(r, θ) := (vjk(r, θ)) by

gjk(r, θ) = ḡjk(θ) + vjk(r, θ),(5.15)

we have pϵ,κ = ρ2 + r−2ḡjk(θ)ηjηk + r−2vjk(r/ϵ, θ)ηjηk where v(r/ϵ, θ) is bounded
in S−ν as ϵ ∈ (0, 1] (it is actually O(ϵν)). The analysis below for ϵ = 1 still applies
uniformly for ϵ ∈ (0, 1], but only at the expense of heavier statements and notation (1).
Thus, for simplicity, we will drop ϵ and κ from the notation (except on Vκ) everywhere
below.

We let p = p1,κ(r, θ, ρ, η) and (r̄s, ϑ̄s, ϱ̄s, η̄s) := ϕs be the components of ϕs(= ϕs
1,κ),

namely the solution to

˙̄rs = (∂ρp)(ϕ
s), ˙̄ϑs = (∂ηp)(ϕ

s), ˙̄ϱs = −(∂rp)(ϕ
s) ˙̄ηs = −(∂θp)(ϕ

s),(5.16)

with initial condition
(r̄s, ϑ̄s, ϱ̄s, η̄s)|s=0

= (r, θ, ρ, η).

We will see it exists for ±s ≥ 0 on strongly outgoing (+)/ incoming (-) areas (5.3).
These sets are conical (i.e., invariant under (ρ, η) 7→ (λρ, λη) for any λ > 0) and
symmetric w.r.t. eachother, i.e.,

(r, θ, ρ, η) ∈ Γ̃+
st(R, V, ε) ⇐⇒ (r, θ,−ρ,−η) ∈ Γ̃−st(R, V, ε).

This symmetry together with the property that, for any λ ∈ R and as long as the flow
exists, (

r̄s, ϑ̄s
)
(r, θ, λρ, λη) =

(
r̄λs, ϑ̄λs

)
(r, θ, ρ, η),(

ϱ̄s, η̄s
)
(r, θ, λρ, λη) = λ

(
ϱ̄λs, η̄λs

)
(r, θ, ρ, η),

(5.17)

1. In the same spirit, since we don’t need to use the distinction between r̆ and r in this part; we
use the simpler notation r though pϵ,κ must be though as a function of r̆.
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will allow us to restrict the analysis to strongly outgoing regions and times s ≥ 0.
The same homogeneity properties hold for ϕs

0 which in turns implies they also hold
for F±.

The reason for denoting the angular position by ϑ̄s rather than θ̄s and the radial
momentum by ϱ̄s rather than ρ̄s is the following one. Let us introduce(

r̄, ϑ̄, ϱ̄, η̄
)

:= lim
s→+∞

(
r̄s − 2sϱ̄s, ϑ̄s, ϱ̄s, η̄s

)
= lim

s→+∞
ϕ−s

0 ◦ ϕs(r, θ, ρ, η),(5.18)

which will be shown to exist for (r, θ, ρ, η) in a strongly outgoing area Γ̃+
st as defined

in (5.3) (the parameters of which we omit here). The item 2 of Theorem 5.2 means
that φ is a generating function of the Lagrangian submanifold

Λ+ =
{(

(r, θ, ρ, η), (r̄, ϑ̄, ϱ̄, η̄
))
| (r, θ, ρ, η) ∈ Γ̃+

st

}
,(5.19)

i.e., the graph of the symplectic map F+. The existence of φ rests on the fact that Λ+

can be parametrized by (r, θ), the initial positions, and by (ϱ, ϑ), the final radial
momentum and angular position. In particular, it is crucial to distinguish between
the variables θ and ϑ which motivates our choice of notation.

Before starting the proof of Theorem 5.2 which will come after several preparatory
results, we introduce one more notation, for I ⋐ (0,∞),

Γ̃±st(R, V, I, ε) =
{
(r, θ, ρ, η) ∈ Γ̃±st(R, V, ε) | p(r, θ, ρ, η) ∈ I

}
.(5.20)

It allows to localize flow estimates in the energy shell p−1(I), without loss of generality
by the above homogeneity properties. Occasionally, we will also use Γ+

st(R, V, I, ε)

defined by

(r, θ, ρ, ξ) ∈ Γ+
st(R, V, I, ε) ⇐⇒ (r, θ, ρ, rξ) ∈ Γ̃+

st(R, V, I, ε).(5.21)

Note that ρ2 +gjk(r, θ)ξjξk ∈ I on Γ+
st(R, V, I, ε) so ρ, ξ (and θ) are bounded there. In

particular, all symbolic estimates on functions defined on Γ+
st(R, V, I, ε) will be only

with respect to r.

To start the proof we recall a result from [30, Section 4].

Proposition 5.4 (Long time geodesic flow estimates). – Let V0 ⋐ Vκ and
I0 ⊂ (0,∞). One can choose R0 ≫ 1 large enough and 0 < ε0 ≪ 1 such that

1. for all (r, θ, ρ, η) ∈ Γ̃+
st(R0, V0, I0, ε0), ϕs(r, θ, ρ, η) is defined for all s ≥ 0 and

(r̄s, ϑ̄s) ∈ (R0,∞)× Vκ, s ≥ 0,

2. for all (j, α, k, β) ∈ Z2n
+ , there exists C > 0 such that for all (r, θ, ρ, η) in

Γ̃+
st(R0, V0, I0, ε0) and all s > 0,∣∣∣∣∂j

r∂
α
θ ∂

k
ρ∂

β
η

(
r̄s − r − 2sρ

s
, ϑ̄s, ϱ̄s,

η̄s

r

)∣∣∣∣ ≤ Cr−j−|β|.

Moreover, there exists C > 0 such that

(r + s)/C ≤ r̄s ≤ C(r + s),(5.22)
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for s ≥ 0 and (r, θ, ρ, η) ∈ Γ̃+
st(R0, V0, I0, ε0).

In the rest of the chapter, we choose R0, V0, I0 and ε0 as in Proposition 5.4.
To study (5.18) it will be convenient to use asymptotics in suitable symbol classes,

in the spirit of those of Definition 5.1. Given functions a and b on Γ̃+
st(R0, V0, I0, ε0),

a real number µ and an integer m, we define

a = b+ S̃µ(η/r)m def⇐⇒ a− b =
∑
|γ|=m

cγ

(
r, θ, ρ,

η

r

) ηγ

r|γ|
with cγ ∈ Sµ,

where Sµ = Sµ(Γ+
st(R0, V0, I0, ε0)). The relation a = b + S̃µ1

(η/r)m1 + S̃µ2
(η/r)m2 ,

with m1,m2 integers and µ1, µ2 ∈ R, is defined analogously.
It is useful to record the following characterization of symbols of the form c(r, θ, ρ, η/r).

Lemma 5.5. – A function a : Γ̃+
st(R0, V0, I0, ε0) → C is of the form

a(r, θ, ρ, η) = c
(
r, θ, ρ,

η

r

)
for some c in Sµ

(
Γ+

st(R0, V0, I0, ε0)
)

if and only if, for all (j, α, k, β),∣∣∂j
r∂

α
θ ∂

k
ρ∂

β
η a(r, θ, ρ, η)

∣∣ ≲jαkβ r
µ−j−|β|,(5.23)

for all (r, θ, ρ, η) ∈ Γ̃+
st(R0, V0, I0, ε0). In particular, if a satisfies (5.23), then

a(r, θ, ρ, η) = a(r, θ, ρ, 0) + (r∇ηa)(r, θ, ρ, 0) · η
r

+ S̃µ(η/r)2.(5.24)

Proof. – Follows from routine computations by considering c(r, θ, ρ, ξ) := a(r, θ, ρ, rξ).

Proposition 5.6 (Asymptotics for F+). – For all (r, θ, ρ, η) ∈ Γ̃+
st(R0, V0, I0, ε0), the

limit (5.18) exists. Furthermore, we have the expansions

r̄ = r + S̃1(η/r)
2(5.25)

ϱ̄ = ρ+ S̃0(η/r)
2(5.26)

η̄ = η + S̃1(η/r)
2(5.27)

and

ϑ̄ = θ + ḡ(θ)−1 η

rρ
+ S̃−ν(η/r) + S̃0(η/r)

2.(5.28)

Notice that ρ is positive on Γ̃+
st(R0, V0, I0, ε0) so the second term is the right hand

side of (5.28) is well defined. To prove this proposition, we will use the easily verified
fact that for s ≥ 0 and (r, θ, ρ, 0) ∈ Γ̃+

st(R0, V0, I0, ε0), we have

(r̄s, ϑ̄s, ϱ̄s, η̄s)|η=0
= (r + 2sρ, θ, ρ, 0),(5.29) (

∂η r̄
s, ∂ηϑ̄

s, ∂ηϱ̄
s, ∂η η̄

s
)
|η=0

=

(
0,

2ḡ(θ)−1 + 2v(r + 2sρ, θ)

(r + 2sρ)2
, 0, In−1

)
,(5.30)

where we recall that v is defined in (5.15). We will also need the following lemma.
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Lemma 5.7. – For all (j, α, k, β) ∈ Z2n
+ , setting ∂γ = ∂j

r∂
α
θ ∂

k
ρ∂

β
η , there is C > 0 such

that, ∣∣∣∣∂γ r̄s

r̄s

∣∣∣∣ ≤ Cr−j−|β|,(5.31)

|∂γ(r/r̄s)| ≤ C(1 + |s/r|)−1r−j−|β|,(5.32)

for all (r, θ, ρ, η) ∈ Γ̃+
st(R0, V0, I0, ε0) and s ≥ 0. If furthermore b ∈ Sµ

(
(R0,∞)×Vκ

)
,

then ∣∣∂γ
(
b(r̄s, ϑ̄s)

)∣∣ ≤ C(r̄s/r)µrµ−j−β ,(5.33)

with a constant bounded as long as b varies in a bounded set.

Proof. – The estimate (5.31) is a simple consequence of the item 2 of Proposition 5.4
and the fact that ∂γ(r + 2sρ) = O(r + s)r−j−|β|. Next, by observing that

∂γ(r/r̄s) = linear comb. of
∂γ1

r

r̄s

∂γ2

r̄s

r̄s
· · · ∂

γN

r̄s

r̄s
with γ1+· · ·+γN = γ, N ≤ |γ|+1,

we see that (5.32) follows from (5.22) and (5.31). Finally, the estimate (5.33) follows
from the item 2 of Proposition 5.4 for ϑ̄s, (5.32) and the fact that ∂γ

(
b(r̄s, ϑ̄s)

)
is a

linear combination of

(∂ j̃
r∂

α̃
ϑ b
)
(r̄s, ϑ̄s)∂γ1

1 r̄s · · · ∂γ1
j̃ r̄s · · · ∂γn

1 ϑ̄s
n−1 · · · ∂

γn
α̃n−1 ϑ̄s

n−1

with γ1
1 + · · ·+ γ1

j̃
+ · · ·+ γn

1 + · · ·+ γn
α̃n−1

= γ.

Proof of Proposition 5.6. – We give the proofs of (5.25) and (5.28), the ones of
(5.26) and (5.27) being similar (and slightly simpler). We start with (5.28). Writing
ϑ̄T = θ +

∫ T

0
˙̄ϑsds and letting T → +∞, we obtain

ϑ̄ = θ + 2

∫ +∞

0

(
ḡ
(
ϑ̄s
)−1

+ v
(
r̄s, ϑ̄s

)) η̄s

(r̄s)2
ds,

where the integral is convergent since, for fixed (r, θ, ρ, η), η̄s is bounded while
r̄s ≳ r + s by (5.22). Then, by using (5.32), (5.33) and the item 2 of Proposition 5.4
for η̄s/r, we see that

∂j
r∂

α
θ ∂

k
ρ∂

β
η

((
ḡ
(
ϑ̄s
)−1

+ v
(
r̄s, ϑ̄s

)) η̄s

(r̄s)2

)
= O

(
(1 + |s/r|)−2r−1−j−|β|).(5.34)

Integrating this estimate in s and using the characterization of Lemma 5.5, we find
ϑ̄ = θ + S̃0 (see after Proposition 5.4 for this notation). Using (5.24) together with
(5.29) and (5.30) we get the improved expansion (5.28) since

2r

∫ +∞

0

ḡ(θ)−1 In−1

(r + 2sρ)2
ds =

ḡ(θ)−1

ρ
, r

∫ +∞

0

v(r + 2sρ, θ)
In−1

(r + 2sρ)2
ds = S̃−ν .
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We next prove (5.25). We start by writing r̄T = r +
∫ T

0
2ϱ̄sds and

ϱ̄s = ϱ̄T −
∫ T

s

(
2

r̄u

(
ḡlm(ϑ̄u) + vlm(r̄u, ϑ̄u)

)
− (∂rv

lm)(r̄u, ϑ̄u)

)
η̄u

l η̄
u
m

(r̄u)2
du.(5.35)

Similarly to (5.34), the ∂j
r∂

α
θ ∂

k
ρ∂

β
η derivative of the integrand in (5.35) is

O
(
(1 + |u/r|)−3r−1−j−|β|). This implies on one hand that the limit of r̄T − 2T ϱ̄T

exists as T → +∞ and equals

r̄ = r − 2

∫ +∞

0

(∫ +∞

s

(
2

r̄u

(
ḡlm(ϑ̄u) + vlm(r̄u, ϑ̄u)

)
− (∂rv

lm)(r̄u, ϑ̄u)

)
η̄u

l η̄
u
m

(r̄u)2
du

)
ds

and on the other hand that, for any (j, α, k, β), the ∂j
r∂

α
θ ∂

k
ρ∂

β
η derivative of the above

double integral is O(r1−j−β). This gives the rough bound r̄ = r + S̃1 which then
improves to (5.25) by using the above expression together with (5.24), (5.29) and
(5.30).

The last intermediate result needed to prove Theorem 5.2 is the following one.

Proposition 5.8 (Projecting the Lagrangian). – Let I1 ⋐ I0 and V1 ⋐ V0 with V1

convex. Then one can find R1 ≫ 1 and C > 1 such that for all ε≪ 1, the map

(r, θ, ρ, η) 7→ (r, θ, ϱ̄, ϑ̄)(5.36)

is a diffeomorphism from Γ̃+
s (R1, V1, I0, Cε) onto an open subset containing

Θ+(R1, V1, I1, ε). On Θ+(R1, V1, I1, ε), the inverse of (5.36) is of the form

(r, θ, ϱ, ϑ) 7→
(
r, θ, ρ, η

)
with

ρ(r, θ, ϱ, ϑ) = ϱ+ S−ν(ϑ− θ) + S0(ϑ− θ)2,(5.37)

η(r, θ, ϱ, ϑ) = rϱḡ(θ)(ϑ− θ) + S1−ν(ϑ− θ) + S1(ϑ− θ)2.(5.38)

Recall that the notation Θ+(R, V, I, ε) is defined in (5.11). To understand infor-
mally why we can take proportional parameters Cε and ε, we recall that the condition
ρ > (1− Cε2)p1/2 means that |η|/r ≲ ε (and ρ > 0) which, by (5.38), is comparable
to the condition |θ − ϑ| ≲ ε.

Proof of Proposition 5.8. – Denote by H̃ the map (5.36). Consider the maps H and
K defined by

H(r, θ, ρ, ξ) =
(
r, θ, ρ, θ + ρ−1ḡ(θ)−1ξ

)
, K(r, θ, ϱ, ϑ) =

(
r, θ, ϱ, ϱḡ(θ)(ϑ− θ)

)
,

which are inverse to eachother (on appropriate domains given below). We also set

E(r, θ, ρ, ξ) = (r, θ, ρ, rξ).

It follows from (5.26) and (5.28) that

H̃(r, θ, ρ, η) = H(r, θ, ρ, η/r) + S̃−ν(η/r) + S̃0(η/r)
2.
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thus, after composition with E ◦K and using Lemma 5.5, we see that

H̃ ◦ E ◦K = I + S−ν(ϑ− θ) + S0(ϑ− θ)2.(5.39)

These computations make sense on the following sets. Since H̃ is defined on
Γ̃+

st(R0, V0, I0, ε0), it follows from (5.21) that (5.39) holds on any set which is mapped
into Γ+

s (R0, V0, I0, ε0) by K. Using (2.4) and the fact that I0 is relatively compact,
one can find C > 1 such that

K
(
Θ+(R0, V0, I0, ε)

)
⊂ Γ+

st (R0, V0, I0, Cε) ,

and thus (5.39) holds on Θ+(R0, V0, I0, ε) if Cε < ε0. Since the right hand side of
(5.39) is a small perturbation of identity where r is large and θ−ϑ is small, it follows
from a routine argument that if R is large enough and ε is small enough, it is a
diffeomorphism on Θ±(R, V1, I0, ε) onto an open set containing Θ±(R, V1, I1, ε/8).
Note that Θ+(R, V1, I0, ε) is convex which is useful to justify this fact, for instance
to prove the injectivity of (5.39) by using the mean value theorem. Note also
that (r, θ) is unchanged by the left hand side of (5.39) and that, when ϑ = θ,
we have (H̃ ◦ E ◦K)(r, θ, ϱ, θ) = (r, θ, ϱ, θ). This allows to check that the inverse
mapping to (5.39) is still of the form I + S−ν(ϑ− θ) + S0(ϑ− θ)2. Composing E ◦K
with this inverse diffeomorphism, we get the existence of

(
ρ, η
)

and the expansions
(5.37)-(5.38).

Proof of Theorem 5.2. – We choose I1 = I and V1 = V in Proposition 5.8 (recall
that I0 and V0 were chosen arbitrarily). We prove the items 1 and 2 at the same time.
By Proposition 5.6, F+ is well defined on Γ̃+

st(R0, V0, I0, ε0). Since ϕs and ϕ−s
0 are

symplectic maps so is F+ and its graph is Lagrangian. Together with Proposition 5.8,
this implies that the differential form

ρ(r, θ, ϱ, ϑ)dr + η(r, θ, ϱ, ϑ)dθ + r̄(r, θ, ρ, η)dϱ− η̄(r, θ, ρ, η)dϑ

is closed on Θ(R, V, I, ε) for ε small enough. Since this set is convex, we get the
existence of a function φ, unique up to an additive constant, such that

∂rφ = ρ ∂θφ = η ∂ϱφ = r̄(r, θ, ρ, η) ∂ϑφ = −η̄(r, θ, ρ, η).(5.40)

To fix the constant and to define φ globally in ϱ, we observe that (5.17) (for λ > 0)
implies that ρ, η are homogeneous of degree 1 in ϱ and r̄(r, θ, ρ, η), η̄(r, θ, ρ, η) of de-
gree 0. We can thus find a unique solution φ defined for (r, θ, ϑ) ∈ Θ(R, V, ε) and
ϱ > 0, which is homogeneous of degree 1 in ϱ. Then (5.40) and Proposition 5.8 yield
the item 2. It turns out that if one considers ϱφ(r, θ, 1, ϑ) with ϱ ∈ R, we get the
expected solution for it is also a generating function of F− for ϱ < 0 by the symmetry
(5.17) for λ = −1. To prove that φ satisfies the eikonal equation it suffices to observe
that

p(r, θ, ρ, η) = ϱ̄(r, θ, ρ, η)2,

which is well known (see, e.g., [30]) and easy to get from Proposition 5.4 and the
conservation of energy. By evaluating this equality on (r, θ, ρ, η), we get (5.2). For
the item 3, (5.6) and (5.7) are direct consequences of Proposition 5.8 by (5.40). The
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expansions (5.8) and (5.5) follow from (5.40) combined with (5.37)-(5.38) and Propo-
sition 5.6.

We end up this chapter with the proof of Proposition 5.3 on transport equations
(recall that ϵ, κ have been dropped from the notation). As before, we only consider
the case when s ≥ 0 (and ϱ > 0).

Proof of Proposition 5.3. – The item 1 follows from the well known method of char-
acteristics (see, e.g., [19]) and has nothing to do with our specific geometric context
so we only give the main lines. We let (r̃s, θ̃s) be the maximal solution to the ODE(

˙̃rs,
˙̃
θs
)

= (∂ρp, ∂ηp)
(
r̃s, θ̃s, (∂rφ, ∂θφ)(r̃s, θ̃s, ϱ, ϑ)

)
,
(
r̃0, θ̃0

)
= (r, θ).

We also let (ρ̃s, η̃s) = (∂rφ, ∂θφ)(r̃s, θ̃s, ϱ, ϑ). By differentiating (5.2) in (r, θ), one has

(∂rp, ∂θp)(r, θ, ∂rφ, ∂θφ) +
(
D2

r,θφ
)
(∂ρp, ∂ηp)(r, θ, ∂rφ, ∂θφ) = 0,

where D2
r,θφ is the Hessian matrix of φ (seen as a function of (r, θ)). By evaluating

this identity at (r̃s, θ̃s, ϱ, ϑ), we obtain(
˙̃ρs, ˙̃ηs

)
= (∂ρp, ∂ηp)

(
r̃t, θ̃t, ρ̃t, η̃t

)
,

which, together with the first equation, shows that
(
r̃s, θ̃s, ρ̃s, η̃s

)
solves the equation

(5.16) with initial condition (r, θ, ∂rφ, ∂θφ). Thus
(
řs, θ̌s, ρ̌s, η̌s

)
=
(
r̃s, θ̃s, ρ̃s, η̃s

)
sat-

isfies the expected properties of the first item. To prove the second item, the main
observation is that

Pφ = S−1−ν + S−1(ϑ− θ),

which follows from (2.11), (5.6) and (5.7). Using (5.4) (see also (5.18)), we have

θ̌s → ϑ̄(r, θ, ∂rφ, ∂θφ) = ϑ, s→ +∞.

Thus, by integrating ˙̌θs from s to +∞ and using the flow estimates of Proposition 5.4
and Lemma 5.7 together with the estimates on φ given in the item 3 of Theorem 5.2,
we get

|∂j
r∂

α
θ ∂

k
ϱ∂

β
ϑ(θ̌s − ϑ)| ≲ ⟨s/r⟩−1r−j .(5.41)

By the same techniques we can estimate the derivatives of řs and we get the result by
routine calculations. The third item follows from the usual method of characteristics
for linear transport equations. We only record that to prove that the solution is in S−µ

(if C = 0 and f ∈ S−1−µ), it suffices to observe that∣∣∣∂j
r∂

α
θ ∂

k
ϱ∂

β
ϑ

(
f(řs, θ̌s, ϱ, ϑ)

)∣∣∣ ≲ ⟨s/r⟩−1−µr−1−µ−j ,

on T +(R, V, I, ε).
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CHAPTER 6

THE ISOZAKI-KITADA PARAMETRIX

In this chapter, we construct a new version of the Isozaki-Kitada parametrix
compared to the ones introduced in [4, 30]. The novelty stems basically from the
parametrization of the Lagrangian (5.19) in term of the final angular position ϑ̄ rather
than the final angular momentum η̄; it turns out that it is more accurate to deal with
global in time estimates.

Before displaying the parametrix, we need some notation and preliminary results
for operators on Rn. For µ ∈ R, Sµ(R2n) denotes the space of symbols defined on R2n

such that

|∂j
r∂

α
θ ∂

k
ϱ∂

β
η a(r, θ, ϱ, ϑ)| ≲ ⟨r⟩µ−j , on R2n.(6.1)

We equip it with the standard topology. We will also need the space Smin
µ (R3n) of

functions satisfying

|∂j
r∂

α
θ ∂

j′

r′∂
α′

θ′ ∂
k
ϱ∂

β
ηA(r, θ, r′, θ′, ϱ, ϑ)| ≲ ⟨min(r, r′)⟩µ−j−j′ , on R3n.

Let us consider first the semiclassical version of the operators. For a ∈ Sµ(R2n)

supported in Θ±(R, V, I, ε) (see (5.11)), we define

Jh(a)v(r, θ) = (2πh)−
n+1

2

∫∫∫
e

i
h

(
φ1(r,θ,ϱ,ϑ)−xϱ

)
a(r, θ, ϱ, ϑ)v(x, ϑ)dxdϱdϑ,

where φ1 is the phase constructed in Theorem 5.2 with ϵ = 1. The operator Jh(a) is
well defined on S (Rn) and it is not hard to check that it maps S (Rn) into itself. Its
formal adjoint (with respect to the Lebesgue measure) is given by

Jh(a)†u(x, ϑ) = (2πh)−
n+1

2

∫∫∫
e

i
h

(
xϱ−φ1(r

′,θ′,ϱ,ϑ)
)
a(r′, θ′, ϱ, ϑ)u(r′, θ′)dϱdr′dθ′

and Jh(a)† also maps the Schwartz space into itself. The prototype of our parametrix
at high frequency will be of the form

Jh(a)e−itD2
xJh(b)†.(6.2)

For the parametrix at low frequency, we will rather consider operators of the form

DϵJϵ(aϵ)e
−iϵ2tD2

xJϵ(bϵ)
†D−1

ϵ ,(6.3)
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where Jϵ(aϵ) is defined by

Jϵ(aϵ)v(r, θ) = (2π)−
n+1

2

∫∫∫
ei
(
φϵ(r,θ,ϱ,ϑ)−xϱ

)
aϵ(r, θ, ϱ, ϑ)v(x, ϑ)dxdϱdϑ,

i.e., is defined as Jh with h = 1 and φ1 replaced by φϵ. In this case, we need to consider
ϵ dependent amplitudes aϵ, bϵ which will be bounded in their classes with respect to ϵ
and supported in ϵ independent areas of the form Θ±(R, V, I, ε). Omitting the scaling
operators Dϵ and D−1

ϵ in (6.3), we can write the Schwartz kernels (with respect to
the Lebesgue measure) of both (6.2) and (6.3) under the following single form

(2πh)−n

∫∫
e

i
h

(
φϵ(r,θ,ϱ,ϑ)− ϵ2t

h ϱ2−φϵ(r
′,θ′,ϱ,ϑ)

)
aϵ(r, θ, ϱ, ϑ)b̄ϵ(r

′, θ′, ϱ, ϑ)dϱdϑ.(6.4)

Indeed, (6.2) corresponds to ϵ = 1 and h ∈ (0, 1], while (6.3) corresponds to h = 1 and
ϵ ∈ (0, 1]. The form of this kernel motivates the introduction of oscillatory integrals
of the form

Ih
ϵ (Aϵ,s) = (2πh)−n

∫∫
e

i
h Φϵ(s,r,θ,r′,θ′,ϱ,ϑ)Aϵ,s(r, θ, r

′, θ′, ϱ, ϑ)dϱdϑ,(6.5)

where Φϵ = Φϵ(s, r, θ, r
′, θ′, ϱ, ϑ) is defined as

Φϵ := φϵ(r, θ, ϱ, ϑ)− sϱ2 − φϵ(r
′, θ′, ϱ, ϑ).

In the applications we will take either s = t/h or s = ϵ2t (and h = 1) to fit (6.4).
We will consider amplitudes Aϵ,s bounded in Smin

0 (R3n) with respect to (ϵ, s) and
satisfying the support condition

supp(Aϵ,s) ⊂ Θ̂±(R, V,R′, V ′, I, ε, ε′),(6.6)

where Θ̂±(R, V,R′, V ′, I, ε, ε′) is the set

{(r, θ, r′, θ′, ϱ, ϑ) | (r, θ, ϑ) ∈ Θ(R, V, ε), (r′, θ′, ϑ) ∈ Θ(R′, V ′, ε′), ϱ2 ∈ I, ±ϱ > 0}.

We refer to (5.1) for Θ(R, V, ε) and, as in Theorem 5.2, we will assume that V is con-
vex. Note that the above amplitudes are compactly supported with respect to (ϱ, ϑ).
In the same spirit, to cover both definitions of Jh and Jϵ in the next chapter, we will
use

Jh
ϵ (aϵ)v(r, θ) = (2πh)−

n+1
2

∫∫∫
e

i
h

(
φϵ(r,θ,ϱ,ϑ)−xϱ

)
aϵ(r, θ, ϱ, ϑ)v(x, ϑ)dxdϱdϑ,

where aϵ is allowed to depend on ϵ in a bounded fashion.

6.1. FIO estimates

In this section, we record properties on operators Jh
ϵ (aϵ) and oscillatory inte-

grals Ih
ϵ (Aϵ,s). All propositions and lemmas are stated in full generality; however,

for notational simplicity only, we will prove them in the outgoing case (+ case) and
will omit the dependence on ϵ in the notation of proofs, similarly to what we did in
Chapter 5.
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Proposition 6.1 (Non stationary phase estimates). – Let I = (ϱ2
inf , ϱ

2
sup) with

ϱsup > ϱinf > 0.

1. Let δ ∈ (0, 1). If ε and ε′ are small enough, then

(1− δ)r ≥ (r′ ± 2sϱsup)

or
r ≤ (1− δ)(r′ ± 2sϱinf)

 =⇒ Ih
ϵ (Aϵ,s) = O

(
h∞⟨s, r, r′⟩−∞

)
,

uniformly in ϵ, provided that ±s ≥ 0 and (Aϵ,s) belongs to a bounded set
of Smin

0 (R3n) such that (6.6) holds.

2. Let c ∈ (0, 1). If R is large enough and ε is small enough, then

ε′ ≤ ε2 and |θ − ϑ| ≥ cε on supp(Aϵ,s) =⇒ Ih
ϵ (Aϵ,s) = O

(
h∞⟨s, r, r′⟩−∞

)
uniformly in ϵ, provided that ±s ≥ 0 and (Aϵ,s) belongs to a bounded set
of Smin

0 (R3n) such that (6.6) holds.

Proof. – For both items, we consider only the outgoing case. For the first one, using
the expansion (5.5) we find that, on the support of the amplitude,

∂ϱΦ = −2sϱ+ r
(
1 +O(ε)

)
− r′(1 +O(ε′)).

Therefore, if (1− δ)r ≥ r′ + 2sϱsup we see that
∂ϱΦ

r
≥ δ − Cε− Cε′,

where the right hand side is larger than δ/2 if ε, ε′ are small enough. Then, repeated
integrations by part in ϱ show that Ih(As) = O(h∞r−∞) which yields the result since
r′ + |s| ≲ r in this regime. On the other hand, if r ≤ (1− δ)(r′ + 2sϱinf) then

∂ϱΦ

r′ + 2sϱinf
≤ −δ + Cε+ Cε′.

Then, as above, integrations by part in ϱ show that Ih(As) = O
(
h∞(r′ + |s|)−∞

)
which yields the result since r ≲ r′ + |s|. For the second item we observe first that by
the item 1, we can assume that C−1r ≤ r′ + s ≤ Cr. Then using the expansion (5.8),
we have

∂ϑΦ = −rϱ
(
ḡ(θ)(ϑ− θ) +O(R−νε) +O(ε2)

)
+ r′ϱO(ε2)

on the support of the amplitude. Thus, if |ϑ− θ| ≥ cε, we see that for R large enough
and ε small enough,

|∂ϑΦ|
r

≳ ε

since r′/r is bounded thanks to the assumption r′ + s ≲ r. Then, integrating by part
in ϑ, we obtain Ih(As) = O

(
h∞r−∞

)
which yields the full decay since we also assume

that r ≳ r′ + s.

We next state an Egorov type theorem. It is a classical result but we quote it explic-
itly for we are not in a completely standard situation and also consider ϵ dependent
phases and symbols.
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Proposition 6.2 (Egorov theorem). – We can choose R′ ≫ 1 and 0 < ε′ ≪ 1 such
that for all bounded families (aϵ) ∈ Sµ(R2n), (bϵ) ∈ Sµ′(R2n) such that

supp(aϵ) ⊂ Θ±(R′, V, I, ε′), supp(bϵ) ⊂ Θ±(R′, V, I, ε′)

one has
Jh

ϵ (aϵ)J
h
ϵ (bϵ)

† = Oph(cϵ(h)),

for some admissible cϵ(h) ∈ S̃−∞,µ+µ′+1−n(R2n) depending in a bounded fashion on ϵ
and such that

cϵ(h) ∼
∑
j≥0

hjcϵ,j , cϵ,0 = aϵ(r, θ, ϱ̄ϵ, ϑ̄ϵ)b̄ϵ(r, θ, ϱ̄ϵ, ϑ̄ϵ)
∣∣det dρ,η

(
ϱ̄ϵ, ϑ̄ϵ

)∣∣,
where we recall that (ϱ̄ϵ, ϑ̄ϵ) are components of F±ϵ,κ (see the item 2 of Theorem 5.2),
namely

(ϱ̄ϵ, ϑ̄ϵ) := lim
s→±∞

(
ϱ̄s

ϵ , ϑ̄
s
ϵ

)
, where

(
r̄s
ϵ , ϑ̄

s
ϵ , ϱ̄

s
ϵ , η̄

s
ϵ

)
= ϕs

ϵ,κ(r, θ, ρ, η).

For j ≥ 1, cϵ,j has its support contained in the support of cϵ,0.

In several proofs below, the following definition will be useful

A = Smin
µ

(
(ϑ− θ) + (ϑ− θ′)

)k def⇐⇒ A =
∑

|α|+|α′|=k
Aαα′(ϑ− θ)α(ϑ− θ′)α′ , Aαα′ ∈ Smin

µ .

Such expansions are of course similar to those in Definition 5.1.

Proof. – We study the kernel (6.4) with t = 0 (and the dependence on ϵ omitted).
Consider the function (ρ̂, η̂) of (r, θ, r′, θ′, ϱ, ϑ) defined by

(ρ̂, η̂) =

∫ 1

0

(
∂rφ, ∂θφ

)
(rλ, θλ, ϱ, ϑ)dλ,

where rλ = r′ + λ(r − r′) and θλ = θ′ + λ(θ − θ′). Note that by convexity of V (see
after (6.6)), (rλ, θλ, ϱ, ϑ) belongs to Θ+(R, V, I, ε) if both (r, θ, ϱ, ϑ) and (r′, θ′, ϱ, ϑ)

do. Introduce next

ξ̂ =
2

r + r′
ḡ(θ)−1

ρ̂
η̂

so that the phase becomes

φ(r, θ, ϱ, ϑ)− φ(r′, θ′, ϱ, ϑ) = ρ̂(r − r′) + ξ̂ · r + r′

2
ρ̂ḡ(θ)(θ − θ′).(6.7)

By using (5.6) and (5.7), we obtain

ρ̂ = ϱ
(
1 + Smin

−ν

(
(ϑ− θ) + (ϑ− θ′)

)
+ Smin

0

(
(ϑ− θ) + (ϑ− θ′)

)2)
,

and

ξ̂ = ϑ− θ′ − 2r + r′

3(r + r′)
(θ − θ′) + Smin

−ν

(
(ϑ− θ) + (ϑ− θ′)

)
+ Smin

0

(
(ϑ− θ) + (ϑ− θ′)

)2
.

(6.8)
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Both expansions follow from routine computations, using the fact that we have
ϑ− θλ = (1− λ)(ϑ− θ′) + λ(ϑ− θ) and

2

r + r′

∫ 1

0

rλ(ϑ− θλ)dλ = ϑ− θ′ − 2r + r′

3(r + r′)
(θ − θ′).

All this shows that ρ̂ and (the components of) ξ̂ belong to Smin
0 , and also that∣∣dϱ,ϑ(ρ̂, ξ̂)− In

∣∣ ≲ min(r, r′)−ν + |ϑ− θ|+ |ϑ− θ|′.

Thus, if we assume that r, r′ > R′ ≫ 1 and ε′ ≪ 1, (ϱ, ϑ) 7→ (ρ̂, ξ̂) is a diffeomorphism
from {|ϑ − θ| < ε′} ∩ {|ϑ − θ′| < ε′} ∩ {ϱ2 ∈ I, ϱ > 0} onto its range. If we
denote by (ρ, ξ) 7→ (ϱ̌, ϑ̌) the inverse map (which depends also on r, θ, r′, θ′), the fact
that ρ̂, ξ̂ ∈ Smin

0 implies that,∣∣∂j
r∂

α
θ ∂

j′

r′∂
α′

θ′ ∂
k
ρ∂

β
ξ (ϱ̌, ϑ̌)

∣∣ ≲ min(r, r′)−j−j′(6.9)

on its domain of definition, hence on the support of a(r, θ, ϱ̌, ϑ̌)b̄(r′, θ′, ϱ̌, ϑ̌). Also, since
ρ̂−ϱ is small, ρ must belong to a compact subset of (0,+∞) (remember we prove the
outgoing case). Then, by using successively the changes of variables (ϱ, ϑ) 7→ (ρ̂, ξ̂)

and ξ 7→ η := r+r′

2 ρḡ(θ)ξ (recall (6.7)), the kernel of Jh(a)Jh(b)† becomes

(2πh)−n

∫ ∫
e

i
h

(
(r−r′)ρ+(θ−θ′)·η

)
a(r, θ, ϱ̃, ϑ̃)b̄(r′, θ′, ϱ̃, ϑ̃)|∂ρ,η(ϱ̃, ϑ̃)|dρdθ

where

(ϱ̃, ϑ̃) = (ϱ̂, ϑ̂)

(
r, θ, r′, θ′, ρ,

2

r + r′
ḡ(θ)−1

ρ
η

)
and where |∂ρ,η(ϱ̃, ϑ̃)| is the corresponding Jacobian, which satisfies in particular

|∂ρ,η(ϱ̃, ϑ̃)| = O
(
(r + r′)1−n

)
.(6.10)

Note in addition that, restricted to r = r′ and θ = θ′, (ϱ̃, ϑ̃) = (ϱ̄, ϑ̄) since it is
the inverse of (ϱ, ϑ) 7→ ∂r,θφ(r, θ, ϱ, ϑ). One can then rewrite the kernel with an
amplitude c(h) independent of (r′, θ′) according to the usual procedure (see, e.g., [43,
Theorem 4.20]). That c(h) belongs to S̃−∞,µ+µ′+1−n follows from (6.9), (6.10) and
the fact that a ∈ Sµ, b ∈ Sµ′ . This concludes the proof.

We next consider two applications of Proposition 6.2.

Proposition 6.3. – If (aϵ)ϵ is a bounded family in S0(R2n), supported in
Θ±(R′, V, I, ε′) (with ε′ as in Proposition 6.2), then

∥Jh
ϵ (aϵ)∥L2(dxdϑ)→L2(⟨r⟩n−1drdθ) ≤ C,

with a constant C independent of h, ϵ ∈ (0, 1]. Similarly, if (bϵ)ϵ is a bounded family
of Sn−1 supported in Θ±(R′, V, I, ε′),

∥Jh
ϵ (bϵ)

†∥L2(⟨r⟩n−1drdθ)→L2(dxdϑ) ≤ C,

with a constant C independent of h, ϵ ∈ (0, 1].
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Proof. – The first estimate is equivalent to the fact that ⟨r⟩n−1
2 Jh(a)Jh(a)†⟨r⟩n−1

2 is
bounded on L2(Rn) equipped with the Lebesgue measure. By Proposition 6.2,
Jh(a)Jh(a)† is of the form Oph(c(h)) for some admissible symbol c(h) ∈ S̃−∞,1−n.
Thus, when composed on both sides with ⟨r⟩n−1

2 , Proposition 3.1 shows we get a
pseudo-differential operator with admissible symbol in S̃−∞,0. Since such pseudo-
differential operators are bounded on L2(Rn), according to the usual Calderón-
Vaillancourt Theorem, the result follows. The second estimate is equivalent to the
boundedness of Jh(b)†⟨r⟩ 1−n

2 on L2(Rn) and thus follows from the first case by taking
the adjoint since b⟨r⟩ 1−n

2 = ⟨r⟩n−1
2 a for some a ∈ S0.

In the next proposition, to take into account the dependence on ϵ, we introduce
the sets

Γ̃±ϵ,st(R, V, I, ε) = {(r, θ, ρ, η) | r > R, θ ∈ V, pϵ,κ ∈ I, ±ρ > (1− ε2)p1/2
ϵ,κ },(6.11)

(see (2.16) for pϵ,κ). This is the convenient replacement of (5.20) at low frequency. It
allows to cover the case ϵ = 1 used for high frequency parametrices (in which case we
drop the dependence on ϵ), while the regime ϵ ∈ (0, 1) will be for low frequency para-
metrices. In this last case, Γ̃±ϵ,st(R, V, I, ε) has to be understood as a set of (r̆, θ, ρ̆, η).
We use only (6.11) in the intermediate technical statements but, for clarity, we will
use both (5.20) and (6.11) to state the main result of this chapter (Theorem 6.10).

Proposition 6.4 (Factorizing ΨDO). – Assume we are given N bounded families
(aϵ,0), . . . , (aϵ,N ) of symbols supported in Θ±(R′, V, I, ε′) such that, for some c > 0

independent of ϵ,

aϵ,j ∈ S−j(R2n), aϵ,0 ≥ c > 0 on some Θ±
(
R′′, V ′′, I ′, ε′′

)
.

Let I ′′ ⋐ I ′. Then there exists C > 0 such that, for all 0 < ε ≪ 1, µ ∈ R and all
bounded family (fϵ) of S̃−∞,µ(R2n) such that

supp(fϵ) ⊂ Γ̃±ϵ,st(R
′′, V ′′, I ′′, ε),

one can write

Oph(fϵ) =
∑

j+k≤N

hj+kJh
ϵ (aϵ,j)J

h
ϵ (bϵ,k)† + hNOph(fϵ,N (h)),

with (fϵ,N (h))ϵ,h∈(0,1] bounded in S̃−∞,µ−N (R2n) and some bϵ,0, . . . , bϵ,N such that

(bϵ,k)ϵ∈(0,1] bounded in Sµ+n−1−k(R2n),(6.12)

and

supp(bϵ,k) ⊂ supp
(
fϵ(., ., ∂rφϵ, ∂θφϵ)

)
⊂ Θ±(R′′, V ′′, I ′, Cε).(6.13)

For k = 0, we have explicitly

bϵ,0(r, θ, ϱ, ϑ) = f̄ϵ

(
r, θ, ∂rφϵ, ∂θφϵ

) |det
(
∂ϱ,ϑ∂r,θφϵ

)
|

āϵ,0(r, θ, ϱ, ϑ)
.(6.14)
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Notice that when µ = 0, this proposition shows in particular that a bounded
pseudo-differential operator can be factorized (up to a nice error) as a product
Jh

ϵ (a)Jh
ϵ (b)† where, according to Proposition 6.3, Jh

ϵ (a) and Jh
ϵ (b)† are bounded re-

spectively from L2(dxdϑ) to L2(⟨r⟩n−1drdθ) and from L2(⟨r⟩n−1drdθ) to L2(dxdϑ).

Proof of Proposition 6.4. – The principle is well known. We recall it briefly to em-
phasize where the support estimate in (6.13) comes from. To seek which conditions
must be fulfilled by the bk’s we compute first

N−1∑
j=0

N−1∑
k=0

hj+kJh(aj)J
h(bk)† =

N−1∑
j,k,l=0

hj+k+lOph(cj,k,l) + hNOph(rN (h)).

By Proposition 6.2, the first symbol reads c0,0,0 = a0(r, θ, ϱ̄, ϑ̄)b̄0(r, θ, ϱ̄, ϑ̄)|det(∂ρ,η(ϱ̄, ϑ̄))|
so the requirement that c0,0,0 = f together with Proposition 5.8 (in particular (5.40))
show that b0 must equal (6.14). This function is well defined since f̄

(
r, θ, ∂rφ, ∂θφ

)
is

supported in the image of supp(f) by the map (5.36) hence, using (5.26) and (5.28),
in Θ+(R′′, V ′′, I ′, Cε) if ε is small enough; in particular, a0 is bounded below on
such a domain. Using then that det

(
∂ϱ,ϑ∂r,θφ

)
∈ Sn−1, we see that b0 ∈ S̃−∞,µ+n−1.

Then, the next symbol in the expansion is
∑

j+k+l=1 cj,k,l and we require it to be 0,
which yields the equation

a0(r, θ, ϱ̄, ϑ̄)b̄1(r, θ, ϱ̄, ϑ̄)|det(∂ρ,η(ϱ̄, ϑ̄))| = −
∑

j+k+l=1,
k=0

cj,k,l,

where, by Proposition 6.2 and the form of b0, the right hand side vanishes outside the
support of b0(r, θ, ϱ̄, ϑ̄). One can thus divide by a0 and find b1. Higher order terms
are obtained by iterating this process.

In the sequel, we let U0(s) = e−ishD2
x be the semiclassical Schrödinger group on

the line Rx.

Proposition 6.5 (Propagation estimates for the parametrix). – Let I ⋐ (0,+∞).
If ε′ is small enough and R′ large enough then for all integer N ≥ 0, all bounded
families (aϵ)ϵ of S0(R2n) and (bϵ)ϵ of Sn−1(R2n), both supported in Θ±(R′, V, I, ε′),
then ∥∥⟨r⟩−NJh

ϵ (aϵ)U0(s)J
h
ϵ (bϵ)

†(r ± s)N
∥∥

L2(⟨r⟩n−1drdθ)→L2(⟨r⟩n−1drdθ)
≲ 1,(6.15)

for all ±s ≥ 0 and all h, ϵ ∈ (0, 1]. In particular, we have∥∥⟨r⟩−N1−N2Jh
ϵ (aϵ)U0(s)J

h
ϵ (bϵ)

†⟨r⟩N1
∥∥

L2(⟨r⟩n−1drdθ)→L2(⟨r⟩n−1drdθ)
≲ ⟨s⟩−N2 ,

if N1, N2 ≥ 0 are integers.

Proof. – The main observation is that 2sϱ+∂ϱφ(r′, θ′, ϱ, ϑ) ≳ r′+ s by (5.5). We can
then write

r′ + s =
r′ + s

∂ϱφ′ + 2sϱ
(∂ϱφ

′ + 2sϱ),
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where the prime on φ is a shorthand for the evaluation at (r′, θ′, ϑ, ϱ). Here the
fraction belongs to S0 uniformly with respect to s ≥ 0. Writing next ∂ϱφ

′ + 2sϱ =

∂ϱφ(r, θ, ϱ, ϑ) − ∂ϱΦ and setting b̃ = b(r + s)/(∂ϱφ + 2sϱ), integrating by part in ϱ

shows that ⟨r⟩−1Jh(a)U0(s)J
h(b)†(r + s) reads

Jh
(
⟨r⟩−1∂ϱφa

)
U0(s)J

h(b̃)† − ih⟨r⟩−1
(
Jh(∂ϱa)U0(s)J

h(b̃)∗ + Jh(a)U0(s)J
h(∂ϱb̃)

†),
which is bounded on L2(⟨r⟩n−1drdθ) uniformly in s ≥ 0 by Proposition 6.3 since
⟨r⟩−1∂ϱφa and b̃ belong respectively to S0(R2n) and Sn−1(R2n) (uniformly in s ≥ 0

for b̃). This proves the estimate (6.15) with N = 1. For N ≥ 2, the result is obtained
by iteration of this process.

We next turn to the proof of dispersive estimates for the oscillatory integrals of the
form (6.5).

Proposition 6.6 (Stationary phase estimates). – Let I ⋐ (0,+∞). If ε, ε′ are small
enough and R,R′ large enough, then for all bounded family (Aϵ)ϵ of Smin

0 (R3n) satis-
fying (6.6), one has∣∣Ih

ϵ (Aϵ)
∣∣ ≲ min

(
h−n, |hs|−n/2

)
, s ∈ R, ϵ, h ∈ (0, 1].

Notice that, unlike the non stationary phase estimates of Proposition 6.1 and the
propagation estimates of Proposition 6.5, we do not need any sign condition on s here.

To prove Proposition 6.6 (omitting ϵ as before), we will rewrite

φ(r, θ, ϱ, ϑ)− φ(r′, θ′, ϱ, ϑ) = (r − r′)∂̃rφ+ (θ − θ′) · ∂̃θφ,

where, setting rλ = r′ + λ(r − r′) and θλ = θ′ + λ(θ − θ′),

∂̃rφ :=

∫ 1

0

∂rφ(rλ, θ
′, ϱ, ϑ)dλ, ∂̃θφ :=

∫ 1

0

∂θφ(r, θλ, ϱ, ϑ)dλ.

Lemma 6.7 (Improved asymptotic expansion). – We have

∂̃rφ = ϱ

(
1− 1

2
(ϑ− θ′) · ḡ(θ′)(ϑ− θ′) + Smin

−ν (ϑ− θ′)2 + Smin
0 (ϑ− θ′)3

)
.

Proof. – Using the notation and estimates of the proof of Proposition 5.6, we have
η̄s = η+ S̃1(η/r) and ḡ(ϑs) = ḡ(θ)+ S̃0(η/r) (where the remainders S̃0(η/r), S̃1(η/r)

depend in a bounded fashion on s) so by using the motion equations and letting s go
to infinity, we get easily

ϱ̄ = ρ+
1

2ρ

η

r
· ḡ(θ)−1 η

r
+ S̃−ν

(η
r

)2

+ S̃0

(η
r

)3

.

Evaluating this identity at (ρ, η) = (∂rφ, ∂θφ) and using (5.6)-(5.7), we find

ϱ = ∂rφ+
ϱ

2
(ϑ− θ) · ḡ(θ)−1(ϑ− θ) + S−ν (ϑ− θ)

2
+ S0 (ϑ− θ)

3
.

This provides an expansion of ∂rφ which yields the result after evaluation
at (rλ, θ

′, ϱ, ϑ) and integration on [0, 1]λ.
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Lemma 6.8. – Let δ ∈ (0, 1). If ε, ε′ are small enough and R,R′ large enough, then

r|θ − θ′| ≥ δ|s| and |s| ≥ h =⇒ Ih(A) = O
(
h−n(s/h)−∞

)
.

Proof of Lemma 6.8. – Let us observe first that

∂̃θφ = ϱr

[
ḡ(θ′)

(
ϑ− θ + θ′

2

)
+ Smin

−ν

(
(ϑ− θ) + (ϑ− θ′)

)
+ Smin

0

(
(ϑ− θ) + (ϑ− θ′)

)2]
,

which follows from the expansion (5.7) and by writing θλ = θ′ + λ(θ− ϑ) + λ(ϑ− θ′).
Then, in the integral (6.5), we use the one dimensional (linear) change of variable
ϱ 7→ ∂̃rφ. Its inverse is of the form

ϱ̃ 7→
(

1 +
1

2
(ϑ− θ′) · ḡ(θ′)(ϑ− θ′) + Smin

−ν (ϑ− θ′)2 + Smin
0 (ϑ− θ′)3

)
ϱ̃.(6.16)

Letting Φ̃ be the expression of Φ composed with this change of variable, we have

Φ̃ = (r − r′)ϱ̃− sϱ̃2 (1 + (ϑ− θ′) · ḡ(θ′)(ϑ− θ′)) + ϱ̃r(θ − θ′)ḡ(θ′)

(
ϑ− θ + θ′

2

)
+ Ω̃

(6.17)

with a remainder of the form

Ω̃ = r(θ − θ′)
(
Smin
−ν

(
(ϑ− θ) + (ϑ− θ′)

)
+ Smin

0

(
(ϑ− θ) + (ϑ− θ′)

)2)
+ s

(
Smin
−ν (ϑ− θ′)2 + Smin

0 (ϑ− θ′)3
)
.

The interest of this change of variable is that the only term involving r − r′, namely
(r − r′)ϱ̃, is independent of ϑ. Therefore, using the above expansion, we have

∂ϑΦ̃ = ϱ̃ḡ(θ′)r(θ − θ′) + sO(ε′) + r(θ − θ′)
(
O
(
min(R,R′)−ν

)
+O(ε) +O(ε′)

)
.

Hence, by using r|θ− θ′| ≥ δ|s| and by taking ε, ε′ small enough as well as R,R′ large
enough, we get a lower bound |∂ϑΦ̃| ≳ |s| from which the result follows by integrations
by part.

Proof of Proposition 6.6. – The estimate is trivial if |s| ≤ h. Thus we assume
that |s| ≥ h and, according to Lemma 6.8, that r|θ− θ′| ≤ δ|s| for some small enough
δ to be chosen below, otherwise we use that h−n|s/h|−N ≲ h−n|s/h|−n/2 = |hs|−n/2

for any integer N ≥ n/2. Using the same change of variable as in Lemma 6.8, we find
that the Hessian matrix of Φ̃ reads

d2
ϱ̃,ϑΦ̃ = −2s

(
1 0

0 ϱ̃2ḡ(θ′)

)
+ s
(
O(ε′) +O(min(R,R′)−ν)

)
+O(r|θ − θ′|).

We choose δ small enough so that O(r|θ − θ′|/s) = O(δ) is sufficiently small with
respect to the first matrix on the right hand side (here we use (2.4)). This im-
poses to consider ε and ε′ sufficiently small too and R,R′ sufficiently large to use
Lemma 6.8. Then, by possibly decreasing again ε′ and increasing again R,R′, we find
that s−1d2

ϱ̃,ϑΦ̃ is a negative definite matrix uniformly with respect to r, r′, θ, θ′ on the

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



54 CHAPTER 6. THE ISOZAKI-KITADA PARAMETRIX

support of the amplitude (and such that r|θ−θ′| ≤ δ|s|). The result then follows from
the stationary phase theorem with s/h as a large parameter.

6.2. Construction of the parametrix

In this section, we state the main result of the chapter which is Theorem 6.10 on
the construction of an Isozaki-Kitada type parametrix.

Given a chart κ : Uκ ⊂ S → Vκ ⊂ Rn−1 and V ⊂ Vκ as in Theorem 5.2, we
introduce the notation

Jh
κ (a) := ΠκJ

h(a), Jh
κ (b)† := Jh(b)†Π−1

κ

and

Jϵ,κ(a) := ΠκDϵJϵ(a), Jϵ,κ(b)† := Jϵ(b)
†D−1

ϵ Π−1
κ ,(6.18)

where, in (6.18), the symbols will depend on ϵ in the applications. We refer to (2.2)
for Πκ.

As a starting point, we observe that the general formula

e−itPB(0) = B(t)− i

∫ t

0

e−i(t−τ)P (PB(τ)− iB′(τ)) dτ,

leads respectively to the identities

e−itPJh
κ (a)Jh

κ (b)† = Jh
κ (a)e−itD2

xJh
κ (b)† − Rhi(6.19)

with

Rhi =
i

h2

∫ t

0

e−i(t−τ)P
(
Πκ

[
h2PκJ

h(a)− Jh(a)h2D2
x

]
e−iτD2

xJh(b)†
)
dτ,

and similarly,

e−itPJϵ,κ(aϵ)Jϵ,κ(bϵ)
† = Jϵ,κ(aϵ)e

−itϵ2D2
xJϵ,κ(bϵ)

† − Rlo(6.20)

with

Rlo = iϵ2
∫ t

0

e−i(t−τ)P
(
ΠκDϵ

[
Pϵ,κJϵ(aϵ)− Jϵ(aϵ)D

2
x

]
e−iτϵ2D2

xJϵ,κ(bϵ)
†
)
dτ.

Recall from (2.15) that PΠκDϵ = ϵ2ΠκDϵPϵ,κ. Note also the scaling in time.
We seek a, b and aϵ, bϵ such that Rhi and Rlo are respectively small and such

that Jh
κ (a)Jh

κ (b)† and Jϵ,κ(aϵ)Jϵ,κ(bϵ)
† can be prescribed.

We consider in detail the high frequency case. The first step is to find

a = a(h) := a0 + ha1 + · · ·+ hMaM ,

such that h2PκJ
h(a(h))− Jh(a(h))h2D2

x is small, in an appropriate sense (here M is
an arbitrary integer order which is fixed). A simple calculation yields

h2PκJh(a(h))− Jh(a(h))h2D2
x = Jh

(
c0 + · · ·+ hM+2cM+2

)
,(6.21)
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where

c0 = Ea0(6.22)

c1 = Ea1 − iTa0(6.23)

cj = Eaj − iTaj−1 + Pκaj−2, 2 ≤ j ≤M(6.24)

cM+1 = −iTaM + PκaM−1(6.25)

cM+2 = PκaM ,(6.26)

where E corresponds to the eikonal term and T to the transport operator, namely

E = pκ(r, θ, ∂r,θφ)− ϱ2, T = (∂ρ,ηp)
(
r, θ, ∂r,θφ

)
· ∂r,θ − Pκφ.

By Theorem 5.2, we can solve the equation E = 0 on Θ(R, V, ε) for any given convex
subset V ⋐ Vκ and some R≫ 1, ε≪ 1. Therefore, solving the system of equations

cj = 0, 0 ≤ j ≤M + 1,(6.27)

on subsets of Θ(R, V, ε) amounts to solve transport equations of the form (5.9), which
can thus be done by Proposition 5.3 (third item). More precisely, given I0 ⋐ (0,+∞)

and V0 ⋐ V , we can find R0 > R, 0 < ε0 < ε and solutions â±0 , . . . , â
±
M to (6.27) such

that
â±j ∈ S−j

(
Θ±(R0, V0, I0, ε0)

)
(see (5.11) for the definition of Θ±(R, V, I, ε)) with the additional condition that,
locally uniformly with respect to (θ, ϑ, ϱ),

â±0 (r, θ, ϑ, ϱ) → 1, r →∞.(6.28)

We use the notation â±j to make a clear difference between these symbols defined
on Θ±(R0, V0, I0, ε0) and the final a±j defined globally on R2n in (6.30). We also point
out the technical fact that, to find solutions â±j defined on Θ±(R0, V0, I0, ε0), we
choose R0 and ε0 respectively large enough and small enough to ensure that

Θ±(R0, V0, I0, ε0) ⊂ T ±(R0, V0, I0, ε0) ⊂ Θ±(R, V, I0, ε)(6.29)

(see prior to Proposition 5.3 for T ±(R, V, I, ε)).
The interest is to guarantee, if (r̄s, ϑ̄s) are the spatial components of the Hamil-

tonian flow of pκ, that (r̄s(r, θ, ∂r,θφ), ϑ̄s(r, θ, ∂r,θφ), ϱ, ϑ) belongs to the domain of
definition of φ for ±s ≥ 0 (see Proposition 5.3). The first inclusion in (6.29) is trivial
while the second one is a consequence of

r̄s(r, θ, ∂r,θφ) ≳ r,
∣∣ϑ̄s(r, θ, ∂rφ, ∂θφ)− θ

∣∣ ≲ |∂θφ|
r

≲ |ϑ− θ|,

which follow from the flow estimates of Proposition 5.4, (5.29) for ϑ̄s and the asymp-
totics of φ in Theorem 5.2.

We next globalize the symbols. Given R1 > R0, V1 ⋐ V0, I1 ⋐ I0 and ε1 < ε0, it is
easy to construct

χ± ∈ S0(R2n), χ± ≡ 1 on Θ±(R1, V1, I1, ε1), supp(χ±) ⊂ Θ±(R0, V0, I0, ε0),
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by choosing it of the form χ1(r)χ2 (θ − ϑ)χ3(ϑ)χ4(±ϱ) with suitable χ1, χ2, χ3 ∈ C∞0
and χ1 ≡ 1 near +∞. We then define

a±j := χ±â
±
j ∈ S−j(R2n).(6.30)

Notice that if we compute (6.21) with a(h) = a(h)± :=
∑

j a
±
j , we also have to take

into account the derivatives falling on the cutoff χ±; we summarize the above results
in the following proposition, including the case of low frequencies which is completely
similar.

Proposition 6.9 (Approximate intertwining). – Let V be a convex relatively com-
pact subset of Vκ. Then for all V1 ⋐ V0 ⋐ V and I1 ⋐ I0 ⋐ (0,+∞), we can find
R1 > R0 ≫ 1 and 0 < ε1 < ε0 ≪ 1 such that:

1. At high frequency: one can find symbols a±j ∈ S−j(R2n), j ≥ 0, supported
in Θ±(R0, V0, I0, ε0) such that

a±0 (r, θ, ϑ, ϱ) ≥ 1/2, on Θ±(R1, V1, I1, ε1)

and, if one sets ah = a±0 + · · ·+ hMa±M ,

h2PκJ
h
(
ah
)
− Jh

(
ah
)
h2D2

x = hM+2Jh
(
rh
M

)
+ Jh

(
ǎh
)

+ Jh
(
ah
c

)
with rh

M ∈ S−M−2, ǎh, ah
c ∈ S0, all supported in Θ±(R0, V0, I0, ε0), bounded with

respect to h and, mainly, such that

supp
(
ǎh
)
⊂ {|θ − ϑ| ≥ ε1}, supp

(
ah
c

)
⊂ {r ≤ R1}.(6.31)

2. At low frequency: one can find bounded families of symbols (a±ϵ,j)ϵ∈(0,1]

in S−j(R2n), j ≥ 0, supported in Θ±(R0, V0, I0, ε0) such that

a±ϵ,0(r, θ, ϑ, ϱ) ≥ 1/2, on Θ±(R1, V1, I1, ε1)

and, if one sets aϵ = a±ϵ,0 + · · ·+ a±ϵ,M ,

Pϵ,κJϵ

(
aϵ

)
− Jϵ

(
aϵ

)
D2

x = Jϵ

(
rϵ,M

)
+ Jϵ

(
ǎϵ

)
+ Jϵ

(
aϵ,c

)
with rϵ,M ∈ S−M−2, ǎϵ, aϵ,c ∈ S0, all supported in Θ±(R0, V0, I0, ε0), bounded
with respect to ϵ and such that

supp
(
ǎϵ

)
⊂ {|θ − ϑ| ≥ ε1}, supp

(
aϵ,c

)
⊂ {r ≤ R1}.(6.32)

We point out that the terms ǎ, ac are the contributions of derivatives falling on
the cutoff χ±. The properties (6.31) and (6.32) will be useful to derive non stationary
phase estimates from Proposition 6.1. The ellipticity condition a±0 ≥ 1/2 (and likewise
for a±ϵ,0) is a consequence of (6.28).

The next step is a direct application of Proposition 6.4. Here again we only consider
the procedure in the high frequency case but summarize both high and low frequencies
parametrices in Theorem 6.10. Given a symbol χ±st supported in strongly outgoing
or incoming area (see (5.20) in which we recall that p = pκ), we can factorize the
corresponding pseudo-differential operator by mean of Proposition 6.4. More precisely,
if I2 ⋐ I1 and V2 ⋐ V1 are given, then for R2 large enough, ε2 small enough and all
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χ±st ∈ S̃−∞,0(R2n) supported in Γ̃±st(R2, V2, I2, ε2), one can find symbols bk ∈ Sn−1−k

supported in Θ±(R2, V2, I1, Cε2), such that bh := b±0 + · · ·+ hMb±M satisfies

Jh
κ (ah)Jh

κ (bh)† = Oph
κ(χ±st)ψ̃κ + hMOph

κ(r̃h
M )ψ̃κ

with r̃h
M ∈ S̃−∞,−M (R2n), boundedly in h. Recall that the cutoff ψ̃κ is defined in

(2.7). Using Proposition 3.8, this can also be written

Jh
κ (ah)Jh

κ (bh)† = Oph
κ(χ±st)ψ̃κ +OH −2M

−M/2
→H 2M

M/2
(hM ).(6.33)

We synthetize the analysis of this chapter in the next theorem. Notice that, at low
frequency, we consider the ϵ dependent areas Γ̃±ϵ,st(R, V, I, ε) introduced in (6.11).

Theorem 6.10 (Isozaki-Kitada parametrix). – Let κ : Uκ → Vκ be a chart of the
atlas of Chapter 2 and V ⋐ Vκ be a convex open subset. For all given

V2 ⋐ V0 ⋐ V and I2 ⋐ I1 ⋐ I0 ⋐ (0,+∞)

one can choose C > 0, 0 < ε1 < ε0 and R1 > R0 such that for all N ≥ 0 and all
0 < ε2 ≪ 1, R2 ≫ R1, the following approximations hold.

1. High frequency: there are ah, ah
c , ǎ

h ∈ S0(R2n) supported in Θ±(R0, V0, I0, ε0),
satisfying

supp(ah
c ) ⊂ {r ≤ R1}, supp(ǎh) ⊂ {|θ − ϑ| ≥ ε1}

and rh
N ∈ S−N (R2n) also supported in Θ±(R0, V0, I0, ε0), such that for all

χ±st ∈ S̃−∞,0 satisfying

supp(χ±st) ⊂ Γ̃±st(R2, V2, I2, ε2)

one can find bh ∈ S0(R2n) such that

supp(bh) ⊂ Θ±(R2, V2, I1, Cε2)

and

e−itP Oph
κ(χ±st)ψ̃κ = Jh

κ (ah)e−itD2
xJh

κ (bh)† +Rh
N (t)(6.34)

with

Rh
N (t) = e−itPOH 2N

−N→H 2N
N

(
hN
)
− i

h2

∫ t

0

e−i(t−τ)PJh
κ

(
ah
c + ǎh + hNrh

N

)
e−iτD2

xJh
κ (bh)†dτ.

2. Low frequency: there are aϵ, aϵ,c, ǎϵ ∈ S0(R2n) supported in Θ±(R0, V0, I0, ε0),
satisfying

supp(aϵ,c) ⊂ {r ≤ R1}, supp(ǎϵ) ⊂ {|θ − ϑ| ≥ ε1}
and rϵ,N ∈ S−N (R2n) also supported in Θ±(R0, V0, I0, ε0), such that for all
bounded family (χ±ϵ,st)ϵ∈(0,1] of S̃−∞,0 satisfying

supp(χ±ϵ,st) ⊂ Γ̃±ϵ,st(R2, V2, I2, ε2)

one can find bϵ ∈ S0(R2n) such that

supp(bϵ) ⊂ Θ±(R2, V2, I1, Cε2)
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and

e−itP Opϵ,κ(χ±st,ϵ)ψ̃κ(ϵr) = Jϵ,κ(aϵ)e
−iϵ2tD2

xJϵ,κ(bϵ)
† +Rϵ,N (t)(6.35)

with

Rϵ,N (t) = e−itPOL−2N
−N →L 2N

N

(
1
)
− i

∫ ϵ2t

0

e−i(ϵ2t−s) P
ϵ2 Jϵ,κ

(
aϵ,c + ǎϵ + rϵ,N

)
e−isD2

xJϵ,κ(bϵ)
†ds.

In both cases, the symbols are bounded uniformly in h and ϵ respectively.

So far we have not justified to which extent the remainder terms in (6.34) and (6.35)
are small. We will use Theorem 6.10 in Section 7.3 to prove L2 propagation estimates
for e−itP and will see there that the remainders decay as ±t → ∞. In Chapter 8,
we will use Theorem 6.10 in association with the (dual) propagation estimates of
Section 7.3 to control the remainders Rh

N (t), Rϵ,N (t) in L1 → L∞ norm.

Remark. – For future purposes, we record that, by using (5.6) and (5.7), ε0 and R0

can be chosen respectively small and large enough in such a way (depending on V0

and I0) that we have
∂rφ

ϱ
∈ (1/2, 2) and C−1r|ϱ||θ − ϑ| ≤ |∂θφ(r, θ, ϱ, ϑ)| ≤ Cr|ϱ||θ − ϑ|,(6.36)

on Θ±(R0, V0, I0, ε0). In particular, ∂rφ and ϱ have the same strict sign.
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CHAPTER 7

PROPAGATION ESTIMATES

7.1. Finite time estimates

In this section, we prove propagation estimates, that is an Egorov type theorem,
over finite times but which depend on the spatial and frequency localization. The
result is summarized in Theorem 7.4.

We introduce first some notation. We are going to work on T ∗((RM,∞) × S)

which is isomorphic to T ∗(RM,∞) × T ∗S, so we will write its elements as (r, ρ,ϖ)

with (r, ρ) ∈ (RM,∞)×R and ϖ ∈ T ∗S. We then let pϵ = pϵ(r, ρ,ϖ) be the principal
symbols of −∆Gϵ

(see (2.14)) which is intrinsically defined on T ∗
(
(RM,∞)×S

)
. We

let ϕs
ϵ be the associated Hamiltonian flow. Notice that, for ϵ = 1, p1 is the principal

symbol of −∆G. Note also that the flow ϕs
ϵ is not complete on T ∗

(
(RM,∞)×S

)
. We

then set (
r̄s
ϵ , ϱ̄

s
ϵ

)
:= component of ϕs

ϵ(r, ρ,ϖ) on T ∗(RM,∞).

For R > RM and −1 < σ < 1, we finally consider

Γ̃±ϵ (R, σ) = {(r, ρ,ϖ) ∈ T ∗((RM,∞)× S) | r > R, ±ρ > σp1/2
ϵ }.(7.1)

It is an open conical subset of T ∗((RM,∞) × S) \ 0 (the strict inequality in (7.1)
prevents (ρ,ϖ) from being 0). We will sometimes need refinements of such areas,
namely similar sets localized both on charts of S and in energy; if κ : Uκ → Vκ is a
chart of the atlas chosen in Chapter 2, V ⋐ Vκ and I ⋐ (0,+∞), we set

Γ̃±ϵ (R, V, I, σ)κ := {(r, θ, ρ, η) ∈ R2n | r > R, θ ∈ V, pϵ,κ ∈ I, ±ρ > σp1/2
ϵ,κ },(7.2)

where we recall that pϵ,κ is defined in (2.16). We will call such regions outgoing
(+)/ incoming (−) regions according to a classical terminology. Note the difference
with the strongly outgoing/incoming regions defined in (5.20)-(6.11) in the case when
σ = 1− ε2 is close to 1.

We record first non angularly localized estimates on the flow.

Proposition 7.1. – For all σ ∈ (−1, 1), there exists R≫ 1 such that
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1. there exists c > 0 such that, for all ϵ ∈ (0, 1],

r̄s
ϵ ≥ c

(
r + |s|p1/2

ϵ

)
, for all ± s ≥ 0 and (r, ρ,ϖ) ∈ Γ̃±ϵ (R, σ).

In particular, R can be chosen such that ϕs
ϵ is defined on Γ̃±ϵ (R, σ) for all ±s ≥ 0.

2. For all 0 < ε < 1, there exists T > 0 such that, for all ϵ ∈ (0, 1],

±ϱ̄s
ϵ > (1− ε2)p1/2

ϵ provided that ± s ≥ Trp−1/2
ϵ and (r, ρ,ϖ) ∈ Γ̃±ϵ (R, σ).

3. Let 0 < ε < 1 and t0 > 0 (as small as we want). One can find δ > 0 such that,
for all ϵ > 0 and all (r, ρ,ϖ) ∈ Γ̃±ϵ (R, σ), we have

|ρ|
p
1/2
ϵ

< 1− ε2 and ± s ≥ t0rp
−1/2
ϵ =⇒ ± ϱ̄s

ϵ

p
1/2
ϵ

> ±

(
ρ

p
1/2
ϵ

+ δ

)
.

Remark. – As in previous parts, we will give all proofs in the case ϵ = 1 (and then
drop the index ϵ from the notation) and, when there is a sign condition, for s ≥ 0.
This only simplifies the notation.

Proof. – Let σ ∈ (−1, 1). Consider then 0 < ε < 1 small enough such that
δ := |σ|

(1−ε)
1
2
< 1. Let also R1 ≫ 1 such that −∂p

∂r ≥ 2(1 − ε)r−1(p − ρ2) for r > R1.

This implies that, as long as r̄s > R1

d2

ds2
(r̄s)2 = 4

d

ds
(r̄sϱ̄s) ≥ 8(ϱ̄s)2 + 8(1− ε)(p− (ϱ̄s)2) ≥ 8(1− ε)p,

hence that

(r̄s)2 ≥ r2 + 4rρs+ 4(1− ε)s2p

≥ r2 − 4|sσ|rp1/2 + 4(1− ε)ps2

= (1− δ)(r2 + 4(1− ε)ps2) + δ(2(1− ε)
1
2 p

1
2 |s| − r)2

≥ (1− δ)(r2 + 4(1− ε)ps2).

By a simple bootstrap argument, using the above argument, one can see that r̄s > R1

for all ±s ≥ 0 provided that r > (1−δ)−1/2R1. This completes the proof of the item 1.
For the item 2, we observe that r̄s ≤ r + 2sp1/2 hence, by integrating

˙̄ϱs

p− (ϱ̄s)2
≥ 1

r̄s
≥ 1

r + 2sp1/2
,

we get

artanh
(
ϱ̄s

p1/2

)
≥ artanh

(
ρ

p1/2

)
+

1

2p1/2
ln

(
1 +

2sp1/2

r

)
and for sp1/2/r large enough the right hand side is greater than artanh(1 − ε2),
yielding the result. For the item 3, we observe that ϱ̄s is non decreasing in s so if
the estimate holds at some time before t0rp−1/2 then it holds for all larger times. By
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possibly increasing R1, we may assume that, for r > R1, we have |∂p
∂r | ≤ 4r−1(p−ρ2).

Therefore, using that r̄s > R1 by the item 1, we have

|ϱ̄s − ρ| ≤ 4ps/r,

so by assuming sp1/2/r small enough, we have |ϱ̄s/p1/2| ≤ 1 − ε2

2 . Thus, for such
times, the first inequality in the proof of the item 1 yields

˙̄ϱs ≥ (1− (1− ε2/2)2)
p

r̄s
.

On the other hand, using once more that r̄s ≤ r+ 2p1/2s, the above inequality yields

˙̄ϱs ≥ (ε2 − ε4/4)
p

r
(
1 + 2sp1/2/r

) ≥ ε2
p

2r
,

provided sp1/2/r is small enough, say not greater than 4δ, where δ > 0 can be chosen
smaller than ε2t0/2. By integration over such times, we get ϱ̄s ≥ ρ + sε2 p

2r which
yields ϱ̄s/p1/2 > ρ/p1/2 + δ if ε2sp1/2/r > 2δ hence in particular if sp1/2/r > t0.

In the next proposition, we record estimates on the geodesic flow in a coordinate
patch. We consider a chart κ : Uκ → Vκ on S from the atlas chosen in Chapter 2.
We recall that ϕs

ϵ,κ(r, θ, ρ, η) is the flow of pϵ,κ on (RM,∞)× Vκ, the components of
which we denote as in (5.12).

Proposition 7.2. – Let V ⋐ Vκ and I ⋐ (0,+∞). There exists t1 > 0 and RV,I ≫ 1

such that,

1. for all ϵ ∈ (0, 1], ϕs
ϵ,κ(r, θ, ρ, η) is defined for |s| ≤ t1r and (r̄s

ϵ , ϑ̄
s
ϵ) belongs

to (RM,∞)× Vκ, provided that

r > RV,I , θ ∈ V, pϵ,κ(r, θ, ρ, η) ∈ I.(7.3)

2. For all (j, α, k, β) ∈ Z2n
+ , there exists C > 0 such that, uniformly in ϵ ∈ (0, 1],∣∣∂j

r∂
α
θ ∂

k
ρ∂

β
η

(
ϑ̄s

ϵ − θ, ϱ̄s
ϵ − ρ

)∣∣ ≤ Cr−j−|β| |s|
r

(7.4) ∣∣∂j
r∂

α
θ ∂

k
ρ∂

β
η

(
r̄s
ϵ − r, η̄s

ϵ − η
)∣∣ ≤ Cr1−j−|β| |s|

r
(7.5)

for all initial data satisfying (7.3) and all |s| ≤ t1r.

Proof. – See [30].

In Theorem 7.4 below, we will propagate observables which do not remain localized
in a single chart. To handle this fact, the following coordinate invariance property will
be useful.
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Proposition 7.3 (Normalizing the angular supports). – Let κ1 : U1 → V1 be a chart
on S of the atlas chosen in Chapter 2 and ψ̃κ1 as in (2.6). Let (aR)R≫1 be a bounded
family in S̃−∞,0 such that,

supp(aR) ⊂ (R,∞)×K × Rn, for some K ⋐ Vκ1
.

Then, for all given N ≥ 0, one can write

Oph
κ1

(aR)ψ̃κ1
=

(∑
κ2

Oph
κ2

(
aR,κ2

(h)
)
ψ̃κ2

)
+OH −2N

−N →H 2N
N

(hNR−N )

and

Opϵ,κ1
(aR)ψ̃κ1(ϵr) =

(∑
κ2

Opϵ,κ2

(
aR,κ2,ϵ

)
ψ̃κ2(ϵr)

)
+OL−2N

−N →L 2N
N

(R−N ),

where (aR,κ2
(h))R,h and (aR,κ2,ϵ)R,ϵ belong to bounded subsets of S̃−∞,0 and, using

the notation (2.3) and (2.6), are supported in

{(
r, τ12(θ), ρ,

(
dτ12(θ)

T
)−1

η
)
| (r, θ, ρ, η) ∈ supp(aR)

}
∩ [R,∞)× supp(φκ2

)× Rn.

(7.6)

If aR depends in a bounded way on additional parameters, then so do the sym-
bols aR,κ2(h), aR,κ2,ϵ and the remainder terms.

The meaning of this proposition is twofold: it says first the natural fact that a (pos-
sibly rescaled) pseudodifferential operator with symbol supported in (R,∞)×K × Rn

with a compact set K contained in Vκ1 but possibly larger than the support of the
angular cutoff φκ1

, can be written as a sum of operators with symbols angularly lo-
calized in the support of φκ2

. The second point, which is technically important, is
the control of the remainder terms with respect to R. This will be useful to prove
Theorem 7.4 below.

Proof. – For definiteness, we consider rescaled operators, the other case is similar.
By introducing the partition of unity (2.7), which is equal to 1 near the range of the
operator since its symbol is supported in r ≥ R≫ 1, we have

Opϵ,κ(aR)ψ̃κ1
(ϵr) =

∑
κ2

ψκ2
(ϵr)Opϵ,κ1

(aR)ψ̃κ1
(ϵr),

where we keep only those κ2 such that Uκ1 ∩ Uκ2 ̸= ∅ otherwise the corresponding
operator vanishes by the support properties of ψκ2

and aR. In each term of the right
hand side we write ψ̃κ1 = ψ̃κ1 ψ̃κ2 + ψ̃κ1(1− ψ̃κ2). The terms involving 1− ψ̃κ2 are of
the form
(7.7)
Πκ1Dϵ

(
ψκ2(r̆, κ

−1
1 (θ))Op1(aR)ψ̃κ1(1− ψ̃κ2)(r̆, κ

−1
1 (θ))

)
D−1

ϵ Π−1
κ1

= OL−N
−N →L N

N
(R−N ).
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Indeed, since 1 − ψ̃κ2 vanishes near the support of ψκ2 , the composition rules of
Proposition 3.1 show that the parentheses is a pseudodifferential operator with sym-
bol O(R−∞) in S̃−∞,−∞ which in turns show it is as in the right hand side (for any N)
by the third item of Proposition 3.8. Next, using the notation (2.3) for the transition
maps, the terms ψκ2

(ϵr)Opϵ,κ1
(aR)(ψ̃κ1

ψ̃κ2
)(ϵr) can be written

Πκ2Dϵ

(
Π−1

τ12
ψκ2(r̆, κ

−1
1 (θ))Op1(aR)(ψ̃κ1 ψ̃κ2)(r̆, κ

−1
1 (θ))Πτ12

)
D−1

ϵ Π−1
κ2

by using that (Πκ1
Dϵu)(r) = Πκ2

Dϵ

(
Π−1

τ12
u(r̆)

)
. We then use the third item of Propo-

sition 3.1 to write, for any N , the parentheses as the sum of an operator with symbol
supported in (7.6) and a remainder term with symbol O(R−N ) in S̃−∞,−2N which
produces a remainder as in (7.7). This completes the proof.

We are now ready to prove the main result of this section. We refer to (3.6) for the
notation which is used extensively below. We also refer to (7.2) for Γ̃±ϵ (R, V, I, σ)κ.

In the following theorem, given a chart κ : Uκ → Vκ on S of the atlas of Chapter 2,
as all charts below, we let

Cκ : (RM,∞)× Vκ × Rn → T ∗((RM,∞)× Uκ)

be the inverse of the chart on T ∗((RM,∞) × Uκ) associated to κ, namely that is
defined by Cκ(r, θ, ρ, η) = ρdr +

∑
j ηjdθj ∈ T ∗(r,κ−1(θ))((RM,∞) × Uκ). Notice in

particular that
ϕs

ϵ ◦ Cκ = Ck ◦ ϕs
ϵ,κ

on all initial data and times such that ϕs
ϵ,κ(r, θ, ρ, η) remains localized inside

(RM,∞)× Vκ × Rn.

Theorem 7.4. – Let I ⋐ (0,∞), σ ∈ (−1, 1) and V0 ⋐ Vκ0 for some given chart κ0.
There exists R0 ≫ 1 such that for all given T > 0, all N ≥ 0 and all bounded family
(bϵ,R) of S̃−∞,0 (indexed by R ≥ R0 and ϵ ∈ (0, 1]) and satisfying

supp(bϵ,R) ⊂ Γ̃±ϵ (R, V0, I, σ)κ0
(7.8)

the following properties hold:

1. High frequency propagation (ϵ = 1 and h ∈ (0, 1]) : as long as

R ≥ R0, h ∈ (0, 1], 0 ≤ ± t

h
≤ TR,

one can write

e−itP
(
ψκ0Oph

κ0
(b1,R)ψ̃κ0

)
eitP =

∑
κ

ψκOph
κ

(
bR(t, h)κ

)
ψ̃κ +OH −2N

−N →H 2N
N

(
hNR−N

)
with (bR(t, h)κ)R,t,h bounded in S̃−∞,0 and such that

Cκ

(
supp

(
bR(t, h)κ

))
⊂ ϕth−1

1

(
Cκ0(supp(b1,R))

)
.
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2. Low frequency propagation (h = 1 and ϵ ∈ (0, 1]) : as long as

R ≥ R0, ϵ ∈ (0, 1], 0 ≤ ±tϵ2 ≤ TR,

one can write

e−itP
(
ψκ0(ϵr)Opϵ,κ0

(bϵ,R)ψ̃κ0(ϵr)
)
eitP =

(∑
κ

ψκ(ϵr)Opϵ,κ

(
bϵ,R(t)κ

)
ψ̃κ(ϵr)

)
+ OL−2N

−N →L 2N
N

(
R−N

)
with (bϵ,R(t)κ)ϵ,R,t bounded in S̃−∞,0 and such that

Cκ

(
supp

(
bϵ,R(t)κ

))
⊂ ϕtϵ2

ϵ

(
Cκ0

(supp(bϵ,R))
)
.

This is a quantitative version of the Egorov theorem. Its interests are to quantify
(in terms of R) the range of times on which it holds, to estimate the remainder terms
in suitable topologies and to include a rescaled/low frequency version which is not
completely standard.

Proof of Theorem 7.4. – For definiteness, we consider the high frequency outgoing
case (for which the notation is lighter since there is no ϵ parameter). We use the
general formula,

e−itPA(0)eitP = A(t)−
∫ t

0

e−i(t−τ)P
(
A′(τ) + i

[
P,A(τ)

])
ei(t−τ)P dτ.(7.9)

Choose t1 as in Proposition 7.2 and consider first 0 ≤ s ≤ t1R so that the flow remains
localized in a single chart. We seek B(s) = A(sh), or equivalently A(t) = B(t/h), of
the form

B(0) = ψκ0
Oph

κ0
(bR)ψ̃κ0

, B(s) =

J(N)∑
j=0

hjOph
κ0

(bj(s))ψ̃κ0
=: ΨN (s)ψ̃κ0

,

for some s dependent symbols bj(·) and some large enough order J(N) to be chosen.
Here and below we set bR = bϵ,R for ϵ = 1. A simple calculation yields

hB′(s) + h2[P,B(s)] =
(
hΨ′N (s) + i

[
h2P,ΨN (s)

])
ψ̃κ0 + iΨN (s)[h2P, ψ̃κ0 ].(7.10)

According to the usual procedure, we try first to make the first parentheses in the
right hand side small. This is obtained by constructing iteratively the symbols bj as
solutions to

b′0(s) + {b0(s), pκ0
} = 0, b0(0) = ψκ0

(
r, κ−1

0 (θ)
)
bR,(7.11)

b′j(s) + {bj(s), pκ0} = fj(s), bj(0) = 0,(7.12)

with
fj(s) = −

∑
j′+k+l=j+1

j′<j

(pκ0,k#bj′(s))l − (bj′(s)#pκ0,k)l,
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where pκ0,0 = pκ0 is the principal symbol of P in the chart associated to κ0 and
pκ0,0 + pκ0,1 is its full symbol, and where {a, b} = ∂xa · ∂ξb− ∂ξa · ∂xb is the Poisson
bracket. The solutions are given by

b0(s) = bR ◦ ϕ−s
1,κ0

, bj(s) =

∫ s

0

fj(u, ϕ
u−s
1,κ0

)du,(7.13)

with ϕs
1,κ0

the Hamiltonian flow of pκ0
. According to the estimates (7.4) and (7.5),

the formulas in (7.13) define symbols

bj,R(s) := bj(s) bounded in S̃−∞,−j(R2n) for R ≥ R0, |s| ≤ t1R.

Moreover, by choosing a relatively compact open subset K0 ⋐ Vκ0 and R1 ≫ 1 so
that

V0 ⋐ K0, ψ̃κ0
(r, κ−1

0 (θ)) ≡ 1 near (R1,∞)×K0,(7.14)

we can ensure, by possibly taking a smaller t1 > 0, that for R≫ 1 and 0 ≤ s ≤ t1R

supp(bj,R(s)) ⊂ (R1,∞)×K0 × Rn.

Hence, by the last condition in (7.14), ΨN (s) and [h2P, ψ̃κ0
] in (7.10) have disjoint

supports. More precisely, the support of bj,R(s) is contained in {r ≳ R} so the symbol
of ΨN (s)[h2P, ψ̃κ0

] is O(h∞R−∞) in S̃−∞,−∞ which implies, by the third item of
Proposition 3.8, that

ΨN (s)[h2P, ψ̃κ0
] = O

H
−2N−2γ(⌈N⌉)
−N →H

2N+2γ(⌈N⌉)
N

(
hNR−N−2γ(⌈N⌉)

)
.

Here γ(⌈N⌉) is as in Proposition 3.11 (we will see the interest of this choice below). On
the other hand, the construction of the bj(s) ensures that, for some b̃N,R(s) bounded
in S̃−∞,−J(N) and supported in {r ≳ R},(

hΨ′N (s) + i
[
h2P,ΨN (s)

])
ψ̃κ0 = hJ(N)Oph

κ0
(b̃N,R(s))ψ̃κ0

= O
H
−2N−2γ(⌈N⌉)
−N →H

2N+2γ(⌈N⌉)
N

(
hNR−N−2γ(⌈N⌉)

)
by choosing J(N) large enough and by using again the third item of Proposition 3.8.
The interest of going to the order ±2(N +γ(⌈N⌉)) in the remainder terms is that, by
Proposition 3.11,

ei(t−τ)P = O
H −2N
−N →H

−2N−2γ(⌈N⌉)
−N

(Rγ(⌈N⌉)) for times |t− τ | ≤ t1hR,

and similarly from H
2N+2γ(⌈N⌉)

N to H 2N
N . This allows to take into account the conju-

gation by propagators in the integral of (7.9) and get, for our choice of A(t) = B(t/h),

e−itPA(0)eitP −A(t) = OH −N
−N →H N

N

(
hN−1R1−N

)
.

Here N is arbitrary so getting hN−1R1−N rather than hNR−N is of course harmless.
Furthermore, one can rewrite A(t) as a sum of ψκOph

κ(bR(t, h)κ)ψ̃κ by mean of Propo-
sition 7.3, which yields the result for |t| ≤ t1hR. Then, by iterating this procedure
a finite number (≈ O(T/t1)) of times, we get the result (note that along such an
iteration, the symbols remain supported in r ≳ R+ |t/h| by Proposition 7.1).
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The proof at low frequency is similar up to the replacement of pseudodifferential
operators by rescaled ones and to the different time scaling s = ϵ2t.

7.2. Resolvent estimates and their consequences

In this short section, we record some a priori decay estimates for e−itP in weighted
spaces, obtained as direct consequences of resolvent estimates. We consider both high
and low frequency spectral localizations.

We recall first first well known consequences of the following Stone formula

f(H)e−itH =
1

2iπ

∫
R
e−itλf(λ)

(
(H − λ− i0)−1 − (H − λ+ i0)−1

)
dλ

valid for any arbitrary self-adjoint operator H and f ∈ C∞0 (R). By integrations by
part in λ together with the fact that

∂k
λ(H − λ∓ i0)−1 = k!(H − λ∓ i0)−1−k

it allows to convert estimates on powers of the resolvent into time decay estimates
for f(H)e−itH .

Everywhere below, we let I ⋐ (0,+∞) and f ∈ C∞0 (I). We consider first low
frequency estimates for P . Using the resolvent estimates of [6, (1.6)] namely∥∥∥⟨ϵr⟩−k

(
ϵ−2P − λ± i0

)−k ⟨ϵr⟩−k
∥∥∥

L2→L2
≲k 1, λ ∈ I, ϵ ∈ (0, 1],

we obtain from the Stone formula, applied to H = P/ϵ2 and t replaced by ϵ2t, that
for any k ∈ N∥∥⟨ϵr⟩−1−kf(P/ϵ2)e−itP ⟨ϵr⟩−1−k

∥∥
L2→L2 ≲ ⟨ϵ2t⟩−k, t ∈ R, ϵ ∈ (0, 1].(7.15)

Another estimate from [6, Theorem 1.1] that will be particularly useful is∥∥∥⟨r⟩−1 (P − λ± i0)
−1 ⟨r⟩−1

∥∥∥
L2→L2

≲ 1, λ ∈ (0, 1),(7.16)

for it implies (see e.g., [34, Theorems XIII.25 and XIII.30]) that(∫
R

∥∥⟨r⟩−1e−itP f(P/ϵ2)u0

∥∥2

L2 dt

)1/2

≲ ∥u0∥L2 , ϵ ∈ (0, 1), u0 ∈ L2.(7.17)

Getting similar estimates at high frequency, with polynomial growth in 1/h, re-
quires an assumption, for instance a non-trapping condition. This is where the as-
sumption (1.5) is useful since it allows to prove the following proposition.

Proposition 7.5 (Semiclassical power resolvent estimates). – Assume (1.5). Then
for all k ≥ 0 there exists Nk such that∥∥∥⟨r⟩−1−k

(
h2P − λ± i0

)−1−k ⟨r⟩−1−k
∥∥∥

L2→L2
≲ h−Nk , λ ∈ I, h ∈ (0, 1].(7.18)
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Proof. – It is based on an argument in [42, Prop. 1.3]. It consists in finding an opera-
tor P0 defined on (0,+∞)×S coinciding with P near infinity and satisfying nice resol-
vent estimates (as (7.20) below) and then to use iterations of the resolvent identity. We
explain schematically how to implement it in our context. We let |DS | = (−∆ḡ)

1/2 be
the square root of the asymptotic Laplacian on S and

hjLj , h
mL′m ∈ {1, h∂r, r

−1h|DS |}

where j,m ∈ {0, 1} are the orders of the operators. Proceeding as in [6], one can find
a second order differential operator P0 on (0,+∞) × S which is close everywhere to
exact conical Laplacian −∂2

r − r−2∆ḡ and equal to P near infinity in such a way that,
letting P0,h be the rescaled version of P0, namely

P0,h = Dh

(
h2P0

)
D−1

h ,

we have, for any K ⋐ C \ 0 and k ∈ N,∥∥⟨r⟩−kLj(P0,h − z)−kL′m⟨r⟩−k
∥∥ ≲ 1, h ∈ (0, 1], z ∈ K \ R,(7.19)

where for simplicity, ∥ · ∥ is the operator norm on L2
(
(0,∞)× S, rn−1drdvolḡ

)
. Such

resolvent estimates follow from the techniques of [6] (more precisely Proposition 3.13
and Lemma 4.2 there) which are based on a rescaling argument; they were used to
prove low frequency estimates but work equally well at high frequency (one only uses
that P0,h is close to −∂2

r−r−2∆ḡ which satisfies a global positive commutator estimate
at energy 1). Then, by unitarity of D±1

h and (7.19), we find∥∥⟨r⟩−khjLj(h
2P0 − z)−khjL′m⟨r⟩−k

∥∥ =
∥∥D−1

h ⟨hr⟩−kLj(P0,h − z)−kL′m⟨hr⟩−kDh

∥∥
=
∥∥⟨hr⟩−kLj(P0,h − z)−kL′m⟨hr⟩−k

∥∥
≲ h−2k

∥∥⟨r⟩−kLj(P0,h − z)−kL′m⟨r⟩−k
∥∥

≲ h−2k.(7.20)

To illustrate the starting point of the method of [42], we check rapidly (7.18) for k = 0,
more precisely that∥∥⟨r⟩−1(h2P − z)−1⟨r⟩−1

∥∥
L2(M)→L2(M)

≲ h−2−M ,(7.21)

whose interest is to replace the compactly supported cutoffs χ in (1.5) by the
weight ⟨r⟩−1. By using the cutoffs ζ, ζ̃ introduced in Chapter 2 which are equal to 1

near infinity and using the following resolvent identity

ζ(r)(h2P − z)−1 =ζ(r)(h2P0 − z)−1ζ̃(r)− ζ(r)(h2P0 − z)−1
[
ζ̃(r), h2P

]
(h2P − z)−1

(7.22)

together with (1.5) and (7.20), we find that for any χ ∈ C∞c (M)∥∥⟨r⟩−1(h2P − z)−1χ
∥∥

L2(M)→L2(M)
≲ h−2 + h−1−M .

By using a second time the resolvent identity (7.22) and using the above estimate,
we obtain (7.21). This leads to (7.18) for k = 0. We get the result for higher k by the
same induction as in [42].
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Using again the Stone formula with H = h2P and t replaced by t/h2, Proposi-
tion 7.5 yields automatically∥∥⟨r⟩−1−kf(h2P )e−itP ⟨r⟩−1−k

∥∥
L2→L2 ≲ h−Nk⟨t/h2⟩−k, t ∈ R, h ∈ (0, 1],

which in turn provides the weaker estimate∥∥⟨r⟩−1−kf(h2P )e−itP ⟨r⟩−1−k
∥∥

L2→L2 ≲ h−Nk⟨t/h⟩−k, t ∈ R, h ∈ (0, 1],(7.23)

which we record under this form to follow the natural semiclassical time scaling.
Similarly to the estimate (7.17), we also have the following consequence of (7.18)
for k = 0,(∫

R

∥∥⟨r⟩−1e−itP f(h2P )u0

∥∥2

L2 dt

)1/2

≲ h1−N0
2 ∥u0∥L2 , h ∈ (0, 1), u0 ∈ L2.(7.24)

We recall that when the manifold is non-trapping, one can take N0 = 1, and the
resulting h1/2 factor on the right hand side corresponds to the H1/2 smoothing effect
of the Schrödinger equation. In Section 8.4, we will also recall that, if the trapped
set is sufficiently filamentary, then (1.5) holds with e.g., M = 0 (actually λM can
be replaced by λ−1/2 log λ) and that (7.24) does not hold with h1/2 but rather with
h1/2| log(h)|1/2.

7.3. Long time estimates

In this section, we prove several L2 propagation estimates on e−itP . They will be
used in Chapter 8 to control the remainder terms of the parametrices. However, their
interest goes beyond the applications to Strichartz inequalities. They generalize well
known estimates (see e.g., [31, 24]) in two ways: on one hand we consider the general
geometric framework of asymptotically conical manifolds and on the other hand we
include a low frequency version of such inequalities which, to our knowledge, is an
original result.

Everywhere below, we consider a fixed chart κ : Uκ → Vκ on S and the related
polar coordinates (2.1) on M.

We start with the following result on strongly outgoing/incoming microlocalizations
(see (5.20) and (6.11) for the related areas). This is a first application of Theorem 6.10.

Proposition 7.6. – Let k ∈ N, f ∈ C∞0 (0,+∞), I2 ⋐ (0,+∞) and V2 ⋐ Vκ. Then,
if R2 ≫ 1 and 0 < ε2 ≪ 1, we have the following estimates:

1. High frequency: Assume (1.5). If χ±st ∈ S̃−∞,0(R2n) is supported in
Γ̃±st(R2, V2, I2, ε2),

∥⟨r⟩−3ke−itP f(h2P )Oph
κ(χ±st)ψ̃κ⟨r⟩2k∥L2→L2 ≲ ⟨t/h⟩−k, ±t ≥ 0, h ∈ (0, 1].

2. Low frequency: if (χ±ϵ,st)ϵ is a bounded family of S̃−∞,0 supported in
Γ̃±st,ϵ(R2, V2, I2, ε2),

∥⟨ϵr⟩−3ke−itP f(P/ϵ2)Opϵ,κ(χ±ϵ,st)ψ̃κ(ϵr)⟨ϵr⟩2k∥L2→L2 ≲ ⟨ϵ2t⟩−k, ±t ≥ 0, ϵ ∈ (0, 1].
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We point out that, in the high frequency estimate, we don’t have any loss in h, as
the h−Nk in (7.23).

Proof of Proposition 7.6. – We may assume k ≥ 1. For definiteness, we consider the
outgoing high frequency case. We use the notation of Theorem 6.10, in particular
(6.34). Note that, up to possibly decomposing χ+

st as a sum of symbols supported in
balls with respect to θ, we assume that V2 ⋐ V for some convex open subset V ⋐ Vκ.
The contribution of the main term of the Isozaki-Kitada parametrix is(

⟨r⟩−3kf(h2P )⟨r⟩3k
)
⟨r⟩−3kJh

κ (ah)e−iτD2
xJh

κ (bh)†⟨r⟩2k.

Here the parentheses is a bounded operator on L2 according to Theorem 3.9 while
the second factor provides the expected decay ⟨t/h⟩−k by Proposition 6.5. We next
consider the contribution of the remainders of the parametrix. The first term of the
remainder Rh

N (t) of (6.34) produces a term of the form

⟨r⟩−3kf(h2P )e−itPOH −2N
−N →H 2N

N
(hN )⟨r⟩2k,

which is O
(
⟨t/h⟩1−2khN−Nk

)
in L2 operator norm if N ≥ 2k by (7.23) since one can

write

OH −2N
−N →H 2N

N
(hN ) = ⟨r⟩−NOL2→L2(hN )⟨r⟩−N .(7.25)

By possibly increasing N so that N ≥ Nk, we get an estimate by ⟨t/h⟩−k (since
2k − 1 ≥ k). In the integral term of Rh

N (t), we consider first the contribution
of Jh

κ (hNrN ). By choosing N large enough (N ≥ 6k + 1 and N ≥ Nk), Proposi-
tion 6.5 and (7.23) imply that∥∥∥⟨r⟩−3kf(h2P )e−i(t−τ)PJh

κ (hNrN )e−iτD2
xJh

κ (bh)†⟨r⟩2k
∥∥∥

L2→L2
≲ ⟨(t− τ)/h⟩1−3k⟨τ/h⟩−k−1.

After integration in τ between 0 and t, we get an estimate by ⟨t/h⟩−k. It then remains
to study the contributions of ah

c and ǎh. They follow as the one of hNrN once observed
that we have the following estimates. By assuming R2 large enough, the first item of
Proposition 6.1 allows to write, for all N ,

Jh
κ (ah

c )e−iτD2
xJh

κ (bh)† = OH −2N
−N →H 2N

N
(hN ⟨τ/h⟩−N ), ±τ ≥ 0,(7.26)

since one has r ≪ r′ on the support of the kernel of Jh(ah
c )e−iτD2

xJh(bh). Us-
ing the second item of Proposition 6.1 and choosing ε2 small enough (hence en-
suring that |θ − ϑ| ≳ 1 and |θ′ − ϑ| ≪ 1 on the support of the Schwartz kernel
of Jh

κ (ǎh)e−iτD2
xJh

κ (bh)†), we obtain similarly.

Jh
κ (ǎh)e−iτD2

xJh
κ (bh)† = OH −2N

−N →H 2N
N

(hN ⟨τ/h⟩−N ), ±τ ≥ 0.(7.27)

Using (7.25) with hN ⟨τ/h⟩−N instead of hN , we have the required spatial decay to
use (7.23) and to control the growing weight ⟨r⟩2k. This completes the proof at high
frequency. The proof is completely similar at low frequency by using (7.15) instead of
(7.23).
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In the next result, we partially relax the assumptions of Proposition 7.6 by replacing
strongly outgoing (or incoming) microlocalizations by general outgoing (or incoming)
ones, but at the expense of a stronger weight (which will eventually be harmless). In
the sequel, we denote

Γ̃±(R, V, I, σ) = {(r, θ, ρ, η) | r > R, θ ∈ V, pκ ∈ I, ±ρ > σp1/2
κ }

Γ̃±ϵ (R, V, I, σ) = {(r, θ, ρ, η) | r > R, θ ∈ V, pϵ,κ ∈ I, ±ρ > σp1/2
ϵ,κ }.(7.28)

These regions correspond to (7.2) but we now drop the index κ (unless it is necessary,
i.e., in Proposition 7.9) and distinguish between the high and low frequency cases.
We recall that the difference with strongly outgoing/incoming regions considered in
Proposition 7.6 is that σ can be any real number (−1, 1), while σ = 1− ε2 was close
to 1 in the previous proposition.

Proposition 7.7 (Half microlocalized propagation estimates). – Let k ∈ N,
I2 ⋐ (0,+∞), V2 ⋐ Vκ and σ ∈ (−1, 1). Then, if R2 ≫ 1, we have the following
estimates:

1. High frequency estimates: if χ± ∈ S̃−∞,0 is supported in Γ̃±(R2, V2, I2, σ),

∥∥∥⟨r⟩−4ke−itP f(h2P )Oph
κ(χ±)ψ̃κ⟨r⟩k

∥∥∥
L2→L2

≲ ⟨t/h⟩−k, ±t ≥ 0, h ∈ (0, 1].

(7.29)

2. Low frequency estimates: if (χϵ,±)ϵ is a bounded family of symbols in S̃−∞,0

which are supported in Γ̃±ϵ (R2, V2, I2, σ),∥∥∥⟨ϵr⟩−4ke−itP f(P/ϵ2)Opϵ,κ(χϵ,±)ψ̃κ(ϵr)⟨ϵr⟩k
∥∥∥

L2→L2
≲ ⟨ϵ2t⟩−k, ±t ≥ 0, ϵ ∈ (0, 1].

We will use here the results of Section 7.1.

Proof of Proposition 7.7. – We consider in detail the high frequency outgoing case
for t ≥ 0. We can replace Oph

κ(χ+)⟨r⟩k by Oph
κ(χk

+) for some χk
+ ∈ S̃−∞,k supported

in the same set as χ+; indeed, this is only at the expense of a remainder of the
form ⟨r⟩−NOL2→L2(hN ) (for any fixed N) and whose contribution to the estimate is
a bound by ⟨t/h⟩−k thanks to (7.23). We then use a spatial dyadic partition of unity
to split

χk
+ =

∑
R=2l

l≥l0

χk
+,R, χk

+,R = χ(r/R)χk
+,(7.30)

with some χ ∈ C∞0 (0,+∞) so that each χk
+,R belongs to S̃−∞,0 with seminorms of

order Rk. For some small enough ε2 > 0 to be chosen below, we pick T+ > 0, large
enough such that for all l ≥ l0,

ϕs
(
Cκ(supp(χk

+,R))
)
⊂
{
ρ > (1− ε22)p

1/2, r > R2

}
for s ≥ RT+,(7.31)
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with ϕs = ϕs
1 defined prior to Proposition 7.1 (in the low frequency case, we should

consider ϕs
ϵ). This is possible by the item 2 of Proposition 7.1 since, using the notation

(7.1) with ϵ = 1,
Cκ(supp(χk

+,R)) ⊂ Γ̃±1 (R2, σ).

For each R, we then proceed as follows:

If 0 ≤ t ≤ T+hR. – We write ⟨r⟩−4ke−itP f(h2P )Oph
κ(χk

+,R)ψ̃κ as(
⟨r⟩−4kf(h2P )⟨r⟩4k

)
⟨r⟩−4k

(
e−itP Oph

κ(χk
+,R)ψ̃κe

itP
)
e−itP ,

where, as in the proof of Proposition 7.6, the first parentheses in the right hand side
is bounded on L2 thanks to Theorem 3.9. The second parentheses can be computed
by mean of Theorem 7.4. We get a sum of bounded pseudo-differential operators with
symbols supported where r ∼ R (using the item 1 of Proposition 7.1 and that we
propagate the support of χk

+,R over a time t/h ≲ R) plus a remainder which is, for
any fixed N , of order hNR−N , say in L2 operator norm (here the stronger H −2N

−N →
H 2N

N norm is not necessary). Since ⟨r⟩−4k composed with pseudo-differential operator
localized in r ∼ R has norm O(R−4k) and since 0 ≤ t/h ≲ R, we find∥∥∥⟨r⟩−4ke−itP f(h2P )Oph

κ(χk
+,R)ψ̃κ

∥∥∥
L2→L2

≲ R−4kRk

≲ ⟨t/h⟩−kR−2k,(7.32)

where the factor Rk takes into account that R−kχk
+,R is bounded in S̃−∞,0.

If t ≥ T+hR. – In this case, we write ⟨r⟩−4ke−itP f(h2P )Oph
κ(χk

+,R)ψ̃κ as

⟨r⟩−4kf(h2P )e−i(t−T+hR)P
(
e−iT+hRP Oph

κ(χk
+,R)ψ̃κe

iT+hRP
)
e−iT+hRP .

By (7.31), Theorem 7.4 and the seminorms estimates of χk
+,R, the parentheses is a

sum of pseudo-differential operators with symbols of size Rk in S̃−∞,0, supported in
strongly outgoing areas,∑

κ

Oph
κ(χk

κ,R(h))ψ̃κ, supp(χk
κ,R(h)) ⊂ Γ̃+

st(R/C, Vκ, I2, ε2)(7.33)

with the additional property that r ∼ R on their supports, and of a remainder
OH −N

−2N→H N
2N

(hNR−N ) for any fixed N . In particular, if we take N ≥ max(k+ 1, Nk)

(see (7.23)), we get∥∥⟨r⟩−4kf(h2P )e−i(t−T+hR)POH −2N
−N →H 2N

N
(hNR−N )

∥∥
L2→L2

≲ hN−NkR−k−1
∥∥∥⟨r⟩−k−1f(h2P )e−i(t−T+hR)P ⟨r⟩−k−1

∥∥∥
L2→L2

≲ ⟨t/h− T+R⟩−kR−k−1

≲ ⟨t/h⟩−kR−1.(7.34)
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To get the contribution of the pseudo-differential sum (7.33), we use Theorem 6.10,
which is why we need to choose ε2 small enough. For any given N , we can write

Oph
κ(χk

κ,R(h))ψ̃κ = Jh
κ (ah)Jh

κ (bhR)† +OH −N
−N →H N

N
(hNR−N ),

where, by (6.13), bhR is supported in r ∼ R (this allows to get the additional factorR−N

in the remainder term) and belongs to S0 with seminorms of order Rk (uniformly h).
The contribution of the remainder is estimated as above by choosing N large enough,
while the contribution of the first term follows from Proposition 7.6 through∥∥⟨r⟩−4kf(h2P )e−i(t−T+hR)PJh

κ (ah)Jh
κ (bhR)†

∥∥
L2→L2

≲ R−3k
∥∥∥⟨r⟩−4kf(h2P )e−i(t−T+hR)PJh

κ (ah)Jh
κ (bhR)†⟨r⟩3k

∥∥∥
L2→L2

≲ R−3k⟨t/h− T+R⟩−kRk

≲ R−k⟨t/h⟩−k,(7.35)

where the factor Rk on the third line is the size of seminorms of bhR in S0. Combining
(7.32), (7.34) and (7.35), we get∥∥∥⟨r⟩−4kf(h2P )e−itP Oph

κ(χk
+,R)ψ̃κ

∥∥∥
L2→L2

≲ R−1⟨t/h⟩−k,

which, once summed over R = 2l, provides the estimate (7.29). The low frequency
case is obtained analogously by using the low frequency part of Theorem 7.4 together
with (7.15).

Proposition 7.7 provides time decay estimates with rate proportional to the de-
cay rate of the weight. In the next two propositions, we get fast decay (and O(h∞)

estimates at high frequency) for suitable microlocalizations.

Proposition 7.8 (Improved microlocal propagation estimates I). – Let I2 ⋐ (0,+∞),
V2 ⋐ Vκ, σ ∈ (−1, 1) and R1 ≥ 1. If R2 ≫ 1 then for each k ∈ N and χ± ∈ S̃−∞,0

supported in Γ̃±(R2, V2, I2, σ), one has∥∥∥1[0,R1](r)f(h2P )e−itP Oph
κ(χ±)ψ̃κ(r)

∥∥∥
L2→L2

≲ hk⟨t/h⟩−k, ±t ≥ 0, h ∈ (0, 1].

This proposition reflects the intuitive fact that the forward (resp. backward) prop-
agation of data localized in a far away outgoing (resp. incoming) area does not meet
the region {r ≤ R1}. Note that we consider only the high frequency case, for which
the estimate is improved by a factor hk compared to the one of Proposition 7.7. At
low frequency, Proposition 7.7 will be sufficient for us.

Proof of Proposition 7.8. – Here again we consider the outgoing case. We use the
notation of the proof of Proposition 7.7, in particular T+ and the decomposition
(7.30). We distinguish two cases.
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If 0 ≤ t ≤ T+hR. – By Proposition 7.4, we can write

1[0,R1](r)f(h2P )e−itP Oph
κ(χ+,R)ψ̃κ =

∑
κ1

1[0,R1](r)f(h2P )Oph
κ1

(ah
R(t))ψ̃κ1

e−itP

+ OL2→L2(hNR−N )

with symbols ah
R(t) bounded in S̃−∞,0 as h, t, R vary and supported in r ∼ R by

the first item of Proposition 7.1. In particular, they are supported in sets where
r ≳ R2 ≫ 1. Thus, using the pseudodifferential expansion of f(h2P ) in Theo-
rem 3.9 (here the localization ζ(r) is implicit for we can write f(h2P )Oph

κ1
(ah

R(t)) =

f(h2P )ζ(r)Oph
κ1

(ah
R(t))), it follows from symbolic calculus and the form of the re-

mainder terms in this theorem that

1[0,R1](r)f(h2P )Oph
κ1

(ah
R(t)) = OL2→L2(hNR−N )

for any N . We thus conclude that, for any given k,

∥1[0,R1](r)f(h2P )e−itP Oph
κ(χ+,R)ψ̃κ∥L2→L2 = O(hkR−1−k) = O

(
hk⟨t/h⟩−kR−1

)
.

(7.36)

If t ≥ T+hR. – In comparison to the proof of Proposition 7.7, it suffices to consider
the terms

∥1[0,R1](r)f(h2P )e−i(t−T+hR)PJh
κ (ah)Jh

κ (bhR)†∥L2→L2

≲ R−2k∥1[0,R1](r)f(h2P )e−i(t−T+hR)PJh
κ (ah)Jh

κ (bhR)†⟨r⟩2k∥L2→L2

since all the other ones are remainder terms carrying an additional hN factor with N
arbitrarily large. To estimate the norm in the second line, we use the Isozaki-Kitada
parametrix as in the proof of Proposition 7.6. All remainders decay as ⟨t/h−T+R⟩−k

times hk (or even hN ) by pushing the expansion to a sufficiently high order exactly
as in the proof of Proposition 7.6. Thus, it remains to consider the main term which
is

1[0,R1](r)f(h2P )Jh
κ (ah)e−i(t−T+hR)D2

x)Jh
κ (bhR)†⟨r⟩2k.(7.37)

Using Theorem 3.9, one can write

1[0,R1](r)f(h2P ) = 1[0,R1](r)f(h2P )1[0,R̃1]
(r) +OL2→L2(hN )⟨r⟩−N

with R̃1 > R1. By choosing N ≥ 3k, the contribution of the above remainder to
(7.37) is of the form O(hk⟨t/h− T+R⟩−k) by Proposition 6.5. On the other hand, by
choosing R2 ≫ R̃1, the first item of Proposition 6.1 shows that (uniformly in R)

1[0,R1](r)f(h2P )Jh
κ (ah)e−i(t−T+hR)D2

xJh
κ (bhR)†⟨r⟩2k = O(⟨t/h− T+R⟩−∞h∞).

We thus get

R−2k∥1[0,R1](r)f(h2P )e−i(t−T+hR)PJh
κ (ah)Jh

κ (bhR)†⟨r⟩2k∥L2→L2 ≲ hkR−2k⟨t/h− T+R⟩−k

≲ hkR−k⟨t/h⟩−k.
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Taking (7.36) into account, we conclude as in Proposition 7.7 by summing all estimates
over R.

In the next proposition, we use the notation (7.2) (when ϵ = 1 we do not indicate the
dependence on ϵ). We let χ±st and χ±ϵ,st be supported in an angular patch associated to
a given chart κ (the same as in all previous propositions) but we allow the symbols χ∓
and χϵ,∓ to be angularly supported in a possibly different patch associated to another
chart κ′.

Proposition 7.9 (Improved microlocal propagation estimates II). – Let V2 ⋐ V0 ⋐ Vκ,
I2 ⋐ (0,+∞). Let also V ′2 ⋐ Vκ′ , I ′2 ⋐ (0,+∞) and σ ∈ (−1, 1). If ε2 > 0 is small
enough and R2 > 0 is large enough, the following estimates hold for all k ∈ N:

1. High frequency case: if χ±, χst ∈ S̃−∞,0 satisfy

supp(χ∓) ⊂ Γ̃∓(R2, V
′
2 , I

′
2, σ)κ′ , supp(χ±st) ⊂ Γ̃±st

(
R2, V2, I2, ε2

)
then, for ±t ≥ 0 and h ∈ (0, 1],∥∥∥⟨r⟩kψ̃κ′Oph

κ′(χ∓)∗f(h2P )e−itP Oph
κ(χ±st)ψ̃κ⟨r⟩k

∥∥∥
L2→L2

≲ hk⟨t/h⟩−k.

2. Low frequency case: if (χϵ,±)ϵ, (χ
±
ϵ,st)ϵ are bounded families of S̃−∞,0 satisfying

supp(χϵ,∓) ⊂ Γ̃∓ϵ (R2, V
′
2 , I

′
2, σ)κ′ , supp(χϵ,st) ⊂ Γ̃±st,ϵ

(
R2, V2, I2, ε2

)
then, for ±t ≥ 0 and ϵ ∈ (0, 1],∥∥∥⟨ϵr⟩kψ̃κ′(ϵr)Opϵ,κ′(χϵ,∓)∗f(P/ϵ2)e−itP Opϵ,κ(χ±ϵ,st)ψ̃κ(ϵr)⟨ϵr⟩k

∥∥∥
L2→L2

≲ ⟨ϵ2t⟩−k.

We need the following lemma that provides a suitable version of the action of a
pseudo-differential operator on a Fourier integral operator. We recall that the symbol
class S0 is defined at (6.1) and the area Θ±(R, V, I, ε) at (5.11).

Lemma 7.10. – Let I0 ⋐ (0,+∞). If ε0 > 0 is small enough and R0 > 0 is large
enough, then for all a ∈ S0 supported in Θ±(R0, V0, I0, ε0) and χ ∈ S−∞,k supported
in (R2,∞)× V2 × Rn with R2 ≥ R0, one can write for any N

Oph
κ(χ)Jh

κ (a) = Jh
κ (aN (h)) + finite sum of hN ⟨r⟩−NBh⟨r⟩−NJh

κ (rN (h))

with ∥Bh∥L2→L2 ≲ 1, (rN (h))h bounded in S̃−∞,0 and supported in Θ±(R0, V0, I0, 2ε0),
and with (aN (h))h bounded in S̃−∞,k satisfying

supp(aN (h)) ⊂ supp
(
χ(., ., ∂rφ, ∂θφ

)
× a
)
.

More precisely,
aN (h) = χ(r, θ, ∂rφ, ∂θφ)a(r, θ, ϱ, ϑ) +O(h),

where O(h) is a finite sum of products of derivatives of χ (of order ≥ 1) evaluated
at (r, θ, ∂rφ, ∂θφ), of derivatives of a and of rational fractions in derivatives of φ.

Proof. – It follows from the usual calculation of the action of a pseudo-differential
operator on an oscillatory integral, see e.g., [1, 40].
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Remark. – Of course, a completely parallel statement holds at low frequency but we
do not quote it for we give the proof of Proposition 7.9 only in the high frequency case.
Also, the parameter 2ε0 in the support of the remainder terms (coming from technical
considerations due to the non locality of Oph

κ(χ)) could be replaced by any ε̃0 > ε0
but this is irrelevant for our purposes.

Proof of Proposition 7.9. – We consider again the high frequency case for t ≥ 0. Also,
w.l.o.g. as in the proof of Proposition 7.6, we may assume that V0 is convex to be in
position to use the expression of e−itP Oph

κ(χ+
st)ψ̃κ given by Theorem 6.10. Proceeding

exactly as in the proof of Proposition 7.6, up to the replacement of (7.23) by the new
a priori estimate

∥⟨r⟩kψ̃κ′Oph
κ′(χ−)∗f(h2P )e−i(t−τ)P ⟨r⟩−N∥L2→L2 ≲ ⟨(t− τ)/h⟩−k−1, 0 ≤ τ ≤ t,

which follows from the adjoint estimate to (7.29) for N large enough, we see that the
contribution of the remainder Rh

N (t) is O(hk⟨t/h⟩−k). Note that here, we do not have
to care about the fact that κ and κ′ may be different. It then remains to consider the
contribution of

⟨r⟩kψ̃κ′Oph
κ′(χ−)∗f(h2P )Jh

κ (ah)e−itD2
xJh

κ (bh)†⟨r⟩k.

We consider the case when κ = κ′ and explain at the end of the proof how to handle
the general case. Using the expansion of Theorem 3.9 and symbolic calculus, one can
write for any N ,

⟨r⟩kψ̃κOph
κ(χ−)∗f(h2P ) = Oph

κ(χk
−(h))

˜̃
ψκ +O(hN )L2→L2⟨r⟩−N

with χk
−(h) ∈ S̃−∞,k with the same support as χ− and bounded with respect to h.

Note that we Jh
κ (ah) =

˜̃
ψκJ

h
κ (ah) by the localization of the support of ah. The con-

tribution of the remainder follows from Proposition 6.5, provided we take N ≥ k. On
the other hand, using Lemma 7.10, we can compute

Oph
κ(χk

−(h))Jh
κ (ah)e−itD2

xJh
κ (bh)† = Jh

κ (aN (h))e−itD2
xJh

κ (bh)† + remainder terms.

The contribution of the remainder terms follows from Proposition 6.5, using their
fast decay in r and h. On the other hand, on the support of aN (h), one must have
(r, θ, ∂rφ, ∂θφ) ∈ Γ̃−(R2, V2, I2, σ) and (r, θ, ϱ, ϑ) ∈ Θ+(R0, V0, I0, ε0). This implies in
particular that

−∂rφ > σpκ(r, θ, ∂rφ, ∂θφ)1/2 = σ|ϱ| and ϱ > 0.

By (6.36), these conditions are incompatible if σ ≥ 0, so aN (h) ≡ 0 in this case. On
the other hand, if σ < 0, one has 0 < ∂rφ < |σ|p(r, θ, ∂rφ, ∂θφ)1/2, hence

σ2r−2gjk(r, θ)∂θjφ∂θk
φ > (1− σ2)(∂rφ)2,

which, together with (6.36), implies that for some cσ > 0

|θ − ϑ| > cσϱ
2.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2024



76 CHAPTER 7. PROPAGATION ESTIMATES

Thus, on the support of the kernel of Jh(aN (h))e−itD2
xJh(bh)†, we have

|θ − ϑ| > cσϱ
2 ≫ ε2 ≳ |θ′ − ϑ|

so we obtain the fast decay by mean of the item 2 of Proposition 6.1, provided ε2 is
small enough and R2 is large enough. This completes the proof (when κ = κ′). When
κ ̸= κ′, we may split Oph

κ′(χ−)∗ as Oph
κ′(χ−)∗χκ + Oph

κ′(χ−)∗(1 − χκ) with χκ ≡ 1

near the spatial projection of the support of ah. The operator Oph
κ′(χ−)∗χκ can then

be written in the chart κ as in Proposition 7.3 (and then be treated as above), up to
terms which decay fast in h and r. The contribution of (1 − χκ)f(h2P )Jh

κ (ah) also
produces terms which are O(h∞) and decay fast in r. All these decaying remainders
can then be handled thanks to Proposition 6.5.
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CHAPTER 8

STRICHARTZ ESTIMATES

In this chapter, we prove the results stated in Chapter 1. We focus on the low
frequency case (in dimension n ≥ 3), i.e., on ulow defined in (1.3). Indeed the proof
of Theorem 8.2 is slightly more technical than the one of Theorem 1.3, for instance
to handle the Lq → Lq estimates of f(P/ϵ2). In Section 8.3, we explain the minor
modifications to handle high frequencies. In Section 8.4, we prove Theorem 1.5, by
showing that the global in time Staffilani-Tataru trick, used initially for non-trapping
geodesic flows, still applies to the case of a sufficiently filamentary trapped set.

8.1. Finite time estimates

In this section, we use the well known geometric optics technique to derive prop-
agator approximations for finite times, but depending both on the frequency and
spatial localizations. This follows previous similar arguments introduced in [30] for
high frequency localizations. Our main purpose is to give such an approximation at
low frequency, but we restate the high frequency case both for completeness and for
comparison with the low frequency regime.

For a given chart κ : Uκ → Vκ on the angular manifold S, V ⊂ Vκ, I ⋐ (0,+∞),
C ≥ 1, ϵ ∈ (0, 1] and R≫ 1, we use the notation

ΩR(V, I, C) = {(r, θ, ρ, η) ∈ p−1
κ (I) | r ∈ (R/C,CR), θ ∈ V }

Ωϵ,R(V, I, C) = {(r̆, θ, ρ̆, η) ∈ p−1
ϵ,κ(I) | r̆ ∈ (R/C,CR), θ ∈ V }.

Note that ΩR(V, I, C) = Ω1,R(V, I, C)

Proposition 8.1 (Existence of phase functions). – Let V ⋐ Vκ be a relatively com-
pact open convex subset of Vκ. Let V0 ⋐ V , C0 > 1 and I0 ⋐ (0,+∞). There are
0 < t0 ≪ 1 and R0 ≫ 1 such that one can find a family of smooth functions

(φϵ,R)ϵ∈(0,1],R≥R0

defined on (−t0R, t0R)× Ωϵ,R(V0, I0, C0), solving the eikonal equation

∂sφϵ,R + pϵ,κ(r, θ, ∂rφϵ,R, ∂θφϵ,R) = 0, φϵ,R(0, r, θ, ρ, η) = rρ+ θ · η,
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and satisfying the estimates∣∣∂j
r∂

α
θ ∂

k
ρ∂

β
η

(
φϵ,R(s)− φϵ,R(0) + spϵ,κ

)∣∣ ≲ s2

R
R−j−|β|,(8.1)

for R ≥ R0, ϵ ∈ (0, 1], |s| < t0R and (r, θ, ρ, η) ∈ Ωϵ,R(V0, I0, C0).

Proof. – It follows the usual local in time resolution of the Hamilton-Jacobi equa-
tion, by using the flow estimates given in Proposition 7.2 which allow to show that
the map (r, θ, ρ, η) 7→ (r̄s

ϵ , ϑ̄
s
ϵ , ρ, η) is a diffeomorphism if |s| ≤ t0R with t0 small

enough. More precisely, to prove that this is a diffeomorphism, one can check that
the map (x, θ) 7→ (R−1r̄s

ϵ , ϑ̄
s
ϵ)(Rx, θ, ρ, η) is close to the identity on (1/2C0, 2C0)× V

provided that s/R is close enough, uniformly in ϵ, ρ, η. The convexity of V allows to
check that this map is injective while standard arguments show that the range will
contain (1/C0, C0)× V0.

We can next consider the related Fourier integral operators

Wϵ,R(s,Aϵ)u(r̆, θ) = (2π)−n

∫∫
ei(φϵ,R(s,r̆,θ,ρ̆,η)−r̆′ρ̆−θ′·η)Aϵ(s, r̆, θ, ρ̆, η)u(r̆

′, θ′)dρ̆dηdr̆′dθ′

(8.2)

and, setting φR = φ1,R,

Wh
R(s,A)u(r, θ) = (2πh)−n

∫∫
e

i
h (φR(s,r,θ,ρ,η)−r′ρ−θ′·η)A(s, r, θ, ρ, η)u(r′, θ′)dρdηdr′dθ′,

which are globally well defined on Rn provided the amplitudes Aϵ and A are sup-
ported respectively in Ωϵ,R(V0, I0, C0) and Ω1,R(V0, I0, C0). Using the cutoffs ψ̃κ(ϵr)

and ψ̃κ(r) chosen in (2.6), we can pull these operators back on M, i.e., define the
operators

Wϵ,R,κ(s,Aϵ)ψ̃κ(ϵr) := Πκ

(
DϵWϵ,R(s,Aϵ)D

−1
ϵ

)
Π−1

κ ψ̃κ(ϵr)

and

Wh
R,κ(s,A)ψ̃κ(r) := ΠκW

h
R(s,A)Π−1

κ ψ̃κ(r).

Proposition 8.2. – Let V ⋐ Vκ be convex. Let V1 ⋐ V0 ⋐ V , C0 > C1 > 1 and
I1 ⋐ I0 ⋐ (0,+∞). There are 0 < t0 ≪ 1 and R0 ≫ 1 such that for any N ∈ N the
following approximations hold.

1. Low energy WKB approximation: Given a bounded family (aϵ,R)ϵ,R of S̃−∞,0

supported in Ωϵ,R(V1, I1, C1), one can find a bounded family (Aϵ,R(ϵ2t))ϵ,R,t

of S̃−∞,0 supported in Ωϵ,R(V0, I0, C0) and χ ∈ C∞0 (0,+∞) such that

e−itP Opϵ,κ(aϵ,R)ψ̃κ(ϵr) = Wϵ,R,κ

(
ϵ2t, Aϵ,R

)
χ(ϵr/R)ψ̃κ(ϵr) +OL1→L2(ϵ

n
2R−N )

and

∥Wϵ,R,κ

(
ϵ2t, Aϵ,R

)
χ(ϵr/R)ψ̃κ(ϵr)∥L1→L∞ ≲ ⟨t⟩−n

2(8.3)

as long as
ϵ ∈ (0, 1], R ≥ R0, |t| ≤ t0ϵ

−2R.
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2. High energy WKB approximation: Given a bounded family (aR)R of S̃−∞,0 sup-
ported in ΩR(V1, I1, C1), one can find a bounded family (Ah

R( t
h ))R,h,t of S̃−∞,0

supported in ΩR(V0, I0, C0) and χ ∈ C∞0 (0,+∞) such that

e−itP Oph
κ(aR)ψ̃κ(r) = Wh

R,κ

(
t/h,Ah

R

)
χ(r/R)ψ̃κ(r) +OL1→L2(hNR−N )

and

∥Wh
R,κ

(
t/h,Ah

R

)
χ(r/R)ψ̃κ(r)∥L1→L∞ ≲ |t|−n

2(8.4)

as long as
h ∈ (0, 1], R ≥ R0, |t| ≤ t0hR.

We will use the following lemma that clarifies the roles of the low frequency scaling
and of the Riemannian measure.

Lemma 8.3. – Let K(r̆, θ, r̆′, θ′) be the kernel of an operator Won Rn with respect
to the Lebesgue measure dr̆dθ. Assume that K is supported in

(
(R0,∞) × V

)2 for
some V ⋐ Vκ. Then, the Schwartz kernel Kϵ of Πκ

(
DϵWD−1

ϵ

)
Π−1

κ with respect to
the Riemannian measure satisfies∣∣Kϵ(r, ω, r

′, ω′)
∣∣ ≤ Cϵn

∣∣K(ϵr, θ, ϵr′, θ′)(ϵr′)1−n
∣∣, ω = κ−1(θ), ω′ = κ−1(θ′),

for some constant C depending on V but not on K nor ϵ.

Proof. – We omit the conjugation by Πκ whose role is irrelevant here. Then

DϵWu(r, θ) = ϵ
n
2

∫∫
K(ϵr, θ, r̆′, θ′)u(r̆′, θ′)dr̆′dθ′

= ϵn
∫∫

K(ϵr, θ, ϵr′, θ′)(ϵr′)1−n(Dϵu)(r
′, θ′)(r′)n−1dr′dθ′

so that the kernel of DϵWD−1
ϵ with respect to (r′)n−1dr′dθ′ is ϵnK(ϵr, θ, ϵr′, θ′)(ϵr′)1−n.

Since (r′)n−1dr′dθ′ is comparable to the Riemannian density (r′)n−1det(g(r′, θ))1/2dr′dθ′,
we get the result.

Proof of Proposition 8.2. – We consider the low energy case. Dropping the spatial
cutoff for simplicity, one has the identity

e−itPWϵ,R,κ(0, Aϵ,R) = Wϵ,R,κ(ϵ2t, Aϵ,R)−
∫ ϵ2t

0

e−i(t− s
ϵ2

)PWϵ,R,κ(s, bϵ,R)ds,(8.5)

where
Wϵ,R(s, bϵ,R) = ∂sWϵ,R(s,Aϵ) + iPϵ,κWϵ,R(s,Aϵ).

By the usual geometric optics construction, we can find, for any N , sym-
bols Aϵ,R(s, r, θ, ρ, η) in a bounded set of S̃−∞,0 (as ϵ ∈ (0, 1], R ≥ R0 and
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|s| ≤ t0R vary), supported in Ωϵ,R(V0, I0, C0) and such that

Aϵ,R|s=0
= aϵ,R,

bϵ,R(s) in a bounded subset of S̃−∞,−N

supp
(
bϵ,R(s)

)
⊂ Ωϵ,R(V0, I0, C0).

This follows by solving iteratively transport equations in the usual manner and by
observing that, in the iterative construction of the amplitude Aϵ,R, the symbols decay
faster and faster in r̆; in other words, the scale of classes S̃−∞,−j replaces here the
scale of powers hj in the usual semiclassical framework. The boundedness in s of the
solutions to the transport equations follows from the flow estimates of Proposition 7.2.
To get the remainder estimate and (8.3), we proceed as follows. Since aϵ,R is supported
in a region where r̆ ∼ R, we can write

Op1(aϵ,R) = Op1(aϵ,R)χ(r̆/R) +Op1(a∞,ϵ,R)

with a∞,ϵ,R = O(R−N ) in S̃−N,−N for any N . In particular, using Lemma 8.3, it is
not hard to check that

∥Opϵ(a∞,ϵ,R)ψ̃κ(ϵr)∥L1→L2 ≲N R−N ϵn/2.

This allows to replace e−itP Oph
κ(aR)ψ̃κ(r) by e−itP Oph

κ(aR)χ(ϵr/R)ψ̃κ(ϵr) and we are
left with two types of terms: the main term of the expansion Wϵ,R,κ(s,Aϵ,R), which
will produce (8.3), and the remainder involving Wϵ,R,κ(s, bϵ,R)χ(ϵr/R)ψ̃κ(ϵr) coming
from the integral in (8.5). We start with this remainder. Using (8.2), with bϵ,r instead
of Aϵ, and using the decay in r̆ together with the fact that we integrate over a fixed
bounded in region in η/r̆, the Schwartz kernel of Wϵ,R(s, bϵ,R)χ(r̆/R) with respect
to dr̆dθ is bounded by Cr̆−N+(n−1) and is supported in a region where both r̆ and r̆′

are of size R. Note that the power r̆n−1 comes from the fact that the kernel is given
by an integral where η belongs to a region of volume r̆n−1. Then, by Lemma 8.3, the
kernel of Wϵ,R,κ(s, bϵ,R) with respect to the Riemannian measure is bounded by

ϵn⟨ϵr⟩−N/3⟨ϵr′⟩−N/3R−N/3.

The corresponding operator has an L1 → L2 norm of order ϵn/2R−N/3 (if N/3 > n/2).
Since N is arbitrary, |ϵ2t| ≲ R and the propagator is unitary on L2, we get the control
on the remainder of (8.5) in L1 → L2 operator norm. Finally, the dispersion estimate
(8.3) follow from the fact that the L1 → L∞ norm of Wϵ,R,κ (s,Aϵ,R) ψ̃κ(ϵr)χ(ϵr/R) is
controlled by

ϵn sup
r̆,θ,r̆′,θ′,ϵ

∣∣∣∣(∫ ei
(
φϵ,R(s,r̆,θ,ρ̆,η)−r̆′ρ̆−θ′·η

)
Aϵ(s, r̆, θ, ρ̆, η)dρ̆dη

)
⟨r̆′⟩1−nχ(r̆′/R)

∣∣∣∣ ≲ ϵn⟨s⟩−n/2,

where the estimate by ⟨s⟩−n/2 follows from a standard non stationary phase argument
by exploiting that

φϵ(s, r̆, θ, ρ̆, η) = (r̆ − r̆′)ρ̆+ (θ − θ′) · η − spκ,ε(r̆, θ, ρ̆, η) +O(s2/R),
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(by (8.1)). Note that the weight ⟨r̆′⟩1−n is crucial to compensate that we integrate over
a region of volume O(r̆n−1) in η (recall that both r̆ and r̆′ are of order R here). With
s = ϵ2t we find that ϵn⟨ϵ2t⟩−n/2 ≲ ⟨t⟩−n/2. We refer to [30, Theorem 7.6] for more
details on the stationary phase. The proof is similar at high energy. Up to the scaling
in time, the main differences are that we drop the scaling operators D±

ϵ and that in
the iterative construction of the amplitude we gain both decay in h and in r.

8.2. Proof of Theorem 1.2

It suffices to prove the result for the endpoint pair (p, q) = (2, 2∗) =
(
2, 2n

n−2

)
, the

other ones following by interpolation with the trivial estimate for (p, q) = (∞, 2).
For u0 ∈ L2, we use the notation (1.3). The starting point is the estimate

∥ulow∥2L2(R;L2∗ ) ≲
+∞∑
k=0

∥(1− χ(ϵr))f(P/ϵ2)u∥2L2(R;L2∗ ) + ∥⟨r⟩−1f(P/ϵ2)u∥2L2(R;L2),

(8.6)

which follows from Theorem 4.1 and where we recall that ϵ = 2−k/2 (in this paragraph
the label ℓ will be used for something else). By the integrated L2 decay estimate (7.17),
we have

∥⟨r⟩−1f(P/ϵ2)u∥L2(R;L2) ≲ ∥u0∥L2 ,

where, in the right hand side, we may replace u0 by f̃(P/ϵ2)u0 with f̃ ∈ C∞0 (0,+∞)

equal to 1 near the support of f . We thus only have to prove

∥(1− χ(ϵr))f(P/ϵ2)u∥L2(R;L2∗ ) ≲ ∥u0∥L2 , ϵ ∈ (0, 1], u0 ∈ L2.(8.7)

Indeed, with (8.7) (whose right hand side can be replaced by ∥f̃(P/ϵ2)u0∥L2) at hand,
(8.6) yields

∥ulow∥L2(R,L2∗ ) ≲

∑
k≥0

∥f̃(P/ϵ2)u0∥2L2

1/2

≲ ∥u0∥L2

by quasi-orthogonality in the second line, which completes the proof of Theorem 1.2 .

The rest of this section is thus devoted to the proof of (8.7).

We write (1 − χ)(ϵr)f(P/ϵ2) = (1 − χ)(ϵr)f̃(P/ϵ2)f(P/ϵ2) with f̃ ∈ C∞0 (0,+∞)

equal to 1 on the support of f . Then, using Theorem 3.9, we can decompose

(1− χ)(ϵr)f̃(P/ϵ2) =
∑

κ

ψ̃κ(ϵr)Opϵ,κ(χϵ,κ)∗ + Rϵ,(8.8)

where, for some N as large as we wish and some bounded family (Bϵ)ϵ∈(0,1] of bounded
operators on L2,

Rϵ = ζ(ϵr)(P/ϵ2 + 1)−NBϵ⟨ϵr⟩−N .
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Each χϵ,κ = χϵ,κ(r̆, θ, ρ̆, η) belongs to S̃−∞,0, has uniform bounds in ϵ and is supported
in a way that (r̆, θ) ∈ supp(1 − χ) × Vκ and pϵ,κ(r̆, θ, ρ̆, η) ∈ supp(f). Furthermore,
ψ̃κ ≡ 1 near the support of χϵ,κ. Note that we use adjoint pseudo-differential opera-
tors Opϵ,κ(χϵ,κ)∗ (this is possible by (3.10)), which is not essential but will be more
convenient.

Proposition 8.4. – If N ≥ n/2 + 1, one has(∫
R
∥Rϵf(P/ϵ2)e−itPu0∥2L2∗dt

)1/2

≲ ∥u0∥L2 , ϵ ∈ (0, 1], u0 ∈ L2.

Proof. – The result follows from the TT ∗ criterion of [27, (1) and (2) p.955] applied
to Rϵf(P/ϵ2)e−itP (which is bounded on L2 uniformly in ϵ and t). Indeed, to get the
L1 → L∞ estimate, we start by using Proposition 3.7 which shows that

∥Rϵ⟨ϵr⟩N∥L2→L∞ ≲ ϵn/2, ∥⟨ϵr⟩NR∗
ϵ ∥L1→L2 ≲ ϵn/2.

This implies that

∥Rϵf(P/ϵ2)e−i(t−t′)P f(P/ϵ2)R∗
ϵ ∥L1→L∞ ≲ ϵn∥⟨ϵr⟩−Ne−i(t−t′)P f2(P/ϵ2)⟨ϵr⟩−N∥L2→L2 ,

whose right hand side is bounded, according to (7.15), by

ϵn⟨ϵ2(t− t′)⟩1−N ≲ ⟨t− t′⟩−n/2,

which completes the proof.

We are left with the (rescaled) pseudodifferential terms in (8.8). For each κ (which
we omit in the notation below), we split

χϵ,κ = χ+
ϵ,st + χϵ,int + χ−ϵ,st,(8.9)

with χ±ϵ,st, χϵ,int ∈ S̃−∞,0 (with uniform bounds in ϵ) supported in strongly outgo-
ing/incoming areas (see (6.11)), i.e.,

supp
(
χ±ϵ,st

)
⊂ Γ̃±ϵ,st(R, V, I, ε)(8.10)

for some R ≫ 1 and 0 < ε ≪ 1 to be chosen below independently of ϵ, and V ⋐ Vκ,
I ⋐ (0,+∞). Note that to be able to choose R large, we have to assume that (1− χ)(r̆)

is supported in r̆ ≥ R which is not a restriction since, in (8.6) and Theorem 4.1, we
may choose χ ≡ 1 on a set as large as we wish. The third symbol χϵ,int satisfies

supp
(
χϵ,int

)
⊂ Γ̃+

ϵ (R, V, I, σ) ∩ Γ̃−ϵ (R, V, I, σ)(8.11)

for some σ independent of ϵ (see (7.28) for the notation of the areas). The decompo-
sition (8.9) follows easily by applying a partition of unity to ρ̆/pϵ,κ(r̆, θ, ρ̆, η) adapted
to regions where this quotient is either lower than −1 + ε2, greater than 1 − ε2 or
between −1 + ε2/2 and 1− ε2/2.

Proposition 8.5. – If ε is small enough and R is large enough, one has(∫
R
∥ψ̃κ(ϵr)Opϵ,κ(χ±ϵ,st)

∗f(P/ϵ2)e−itPu0∥2L2∗dt

)1/2

≲ ∥u0∥L2 , ϵ ∈ (0, 1], u0 ∈ L2.
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Proof. – We consider the + case. We use again the TT ∗ criterion and show that

∥ψ̃κ(ϵr)Opϵ,κ(χ+
ϵ,st)

∗f2(P/ϵ2)e−itP Opϵ,κ(χ+
ϵ,st)ψ̃κ(ϵr)∥L1→L∞ ≲ |t|−n/2,(8.12)

for t ̸= 0 and ϵ ∈ (0, 1]. Upon taking the adjoint, it suffices to consider t ≤ 0 (following
the trick of [7, Lemma 4.3]). For simplicity, we let

K∗
ϵ = ψ̃κ(ϵr)Opϵ,κ(χ+

ϵ,st)
∗f2(P/ϵ2).

We then use Theorem 6.10 to expand e−itP Opϵ,κ(χ+
ϵ,st)ψ̃κ(ϵr). Consider first the main

term Jϵ,κ(aϵ)e
−itϵ2D2

xJϵ,κ(bϵ,κ)† of this expansion. Using Proposition 6.6 (with h = 1

and s = ϵ2t) together with Proposition 3.4 to handle the contribution of the scaling
operators, we find

∥Jϵ,κ(aϵ)e
−iϵ2tD2

xJϵ,κ(bϵ)
†∥L1→L∞ ≲ ϵ

n
2 ⟨ϵ2t⟩−n

2 ϵ
n
2

≲ ⟨t⟩−n
2 .

Note that no sign condition on t is required here. Observing that the support of χ+
ϵ,st

allows to write Opϵ,κ(χ+
ϵ,st)

∗ = Opϵ,κ(χ+
ϵ,st)

∗ζ(ϵr), we see that ∥K∗
ϵ ∥L∞→L∞ ≲ 1 by

Propositions 3.5 and 3.10, hence that

∥K∗
ϵ Jϵ,κ(aϵ)e

−iϵ2tD2
xJϵ,κ(bϵ)

†∥L1→L∞ ≲ ⟨t⟩−n
2 .(8.13)

We next consider the first term of the remainder Rϵ,N (t) of (6.35), where N is as
large as we wish. It is of the form

e−itPOL−2N
−N →L 2N

N

(
1
)

= e−itP ⟨ϵr⟩−NBϵ(P/ϵ
2 + 1)−Nζ(ϵr),

with ∥Bϵ∥L2→L2 ≲ 1. To get the time decay, we exploit that this operator is composed
to the left with K∗

ϵ which we can rewrite as

K∗
ϵ = ζ(ϵr)(P/ϵ2 + 1)−N

(
ψ̃κ(ϵr)Opϵ,κ(χ̃+

ϵ,st)
∗ +B′ϵ⟨ϵr⟩−N

)
f2(P/ϵ2)(8.14)

with χ̃+
ϵ,st ∈ S̃−∞,0 with the same support as χ+

ϵ,st and B′ϵ bounded on L2. This
follows simply by expanding (P/ϵ2 +1)N ψ̃κ(ϵr)Opϵ,κ(χ+

ϵ,st)
∗. Then, as in the proof of

Proposition 8.4,

∥ζ(ϵr)(P/ϵ2 + 1)−NB′ϵ⟨ϵr⟩−Nf2(P/ϵ2)e−itP ⟨ϵr⟩−NBϵ(P/ϵ
2 + 1)−Nζ(ϵr)∥L1→L∞ ≲ ⟨t⟩−n

2 .

On the other hand, the adjoint estimates of Proposition 7.6 together with Proposi-
tion 3.7 yield

∥ζ(ϵr)(P/ϵ2 + 1)−N ψ̃κ(ϵr)Opϵ,κ(χ̃+
ϵ,st)

∗f2(P/ϵ2)e−itP ⟨ϵr⟩−NBϵ(P/ϵ
2 + 1)−Nζ(ϵr)∥L1→L∞

≲ ϵn∥ψ̃κ(ϵr)Opϵ,κ(χ̃+
ϵ,st)

∗f2(P/ϵ2)e−itP ⟨ϵr⟩−N∥L2→L2(8.15)

≲ ϵn⟨ϵ2t⟩−N/3

for t ≤ 0. Therefore, if N is large enough,

∥K∗
ϵ e
−itPOL−2N

−N →L 2N
N

(
1
)
∥L1→L∞ ≲ ⟨t⟩−n

2 , t ≤ 0.(8.16)
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It remains to treat the integral terms of RN,ϵ(t), involving the operator
Jϵ,κ(aϵ,c + rϵ,N + ǎϵ). At low frequency, the contribution of aϵ,c + rϵ,N follows
only from its spatial decay (see the slight difference with the high frequency case in
Section 8.3). We thus only exploit that

Jϵ,κ(aϵ,c) + Jϵ,κ(rϵ,N ) := ⟨ϵr⟩−NJϵ,κ(ãϵ,N ),

for some bounded family of symbols (ãϵ,N )ϵ in S0, supported in Θ+(R0, V0, I0, ε0)

with R0 as large as we wish by taking R large enough. To estimate the contribution
of this term in RN,ϵ(t), we use the estimate

∥K∗
ϵ e
−i(t− s

ϵ2
)P ⟨ϵr⟩−NJϵ,κ(ãϵ,N )e−isD2

xJϵ,κ(bϵ)
†∥L1→L∞ ≲ ϵn⟨ϵ2t− s⟩−N

6 ⟨s⟩−N
2

for t ≤ t− s
ϵ2 ≤ 0 and which, after integration in s, provides an upper bound by ⟨t⟩−n

2

if N is chosen large enough. To get the above estimate, we use on one hand that

∥K∗
ϵ e
−i(t− s

ϵ2
)P ⟨ϵr⟩−N/2∥L2→L∞ ≲ ϵ

n
2 ⟨ϵ2t− s⟩−N

6

by using the decomposition (8.14) together with the propagation estimates given by
(7.15) and (the adjoint estimates of) Proposition 7.6. On the other hand, we use

∥⟨ϵr⟩−N/2Jϵ,κ(ãϵ,N )e−isD2
xJϵ,κ(bϵ)

†∥L1→L2 ≲ ϵ
n
2 ⟨s⟩−N

2 ,

which comes from Proposition 6.5 for the time decay, up to the replacement of the
source space L2 by L1 which provides the additional ϵn/2 factor. This replacement is
possible by writing Jϵ,κ(bϵ)

† = Jϵ,κ(b̃ϵ)
†(P/ϵ2 + 1)−Nζ(ϵr) for some b̃ϵ with the same

properties as bϵ (it is obtained by computing Jϵ,κ(bϵ)
†(P/ϵ2 + 1)N = Jϵ,κ(b̃ϵ)

†) and
by using Proposition 3.7.

The last term of Rϵ,N (t) to consider is the one containing Jϵ,κ(ǎϵ). Here the crucial
observation is that |θ − ϑ| is bounded below on the support of ǎϵ. In particular,
using (6.36) we see that |∂θφϵ|/r̆∂r̆φϵ is bounded from below on the support of ǎϵ,
which implies that (r̆, θ, ∂r̆φϵ, ∂θφϵ) must belong to an incoming area. More precisely,
according to (6.32) and (6.36), we must have ∂r̆φϵ < σ1pϵ,κ(r̆, θ, r̆φϵ, ∂θφϵ)

1/2 on the
support of ǎϵ with σ1 = 1−ε21/C independent o f ε (i.e., of ε2 in Theorem 6.10). Thus,
using Lemma 7.10 we can replace Jϵ,κ(ǎϵ) by Opϵ,κ(χ̃−ϵ )Jϵ,κ(ǎϵ) with χ̃−ϵ supported
in an incoming region, up to decaying remainders that can be treated as before. We
can then proceed as above except that now we use the adjoint a priori estimate of
Proposition 7.9 (since one can choose ε as small as we want, without affecting the
value of σ1 above) which provides the estimate

∥K∗
ϵ e
−i(t− s

ϵ2
)P Opϵ,κ(χ̃−ϵ )Jϵ,κ(ǎϵ)e

−isD2
xJϵ,κ(bϵ)

†∥L1→L∞ ≲ ϵn⟨s⟩−n
2 ⟨ϵ2t− s⟩−N

and then the final estimate by ⟨t⟩−n/2 after integration in s. The result follows.

To complete the proof of (8.7), it remains to study the contribution of χϵ,int in
(8.9). We follow the idea of [4, 30], by adapting it to the low frequency and global in
time case.

Everywhere below, we choose t0 > 0 small enough as in Proposition 8.2. Also, the
parameter ε used in (8.10) (and hence the parameter σ in (8.11)) is chosen according
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to Proposition 8.5. We then choose δ > 0 small enough, according to the third item
of Proposition 7.1, and we split χϵ,int as a sum

χϵ,int =
∑
j∈J

χϵ,j , supp(χϵ,j) ⊂ supp(χϵ,int) ∩

{
jδ <

ρ̆

p
1/2
ϵ

< (j + 1)δ

}
,

where J is a finite subset of Z (depending on δ) and (χϵ,j)ϵ is a bounded family
of S̃−∞,0. It now suffices to prove global in time dispersion estimates, say for t ≥ 0,
for the operators

ψ̃κ(ϵr)Opϵ,κ(χϵ,j)
∗f2(P/ϵ2)e−itP Opϵ,κ(χϵ,j)ψ̃κ(ϵr),(8.17)

uniformly in ϵ. To do so, we introduce a spatial partition of unity on the support of
the symbols,

1 =
∑
ℓ≥ℓ0

ϕ(r̆/Rℓ), Rℓ = 2ℓ, ϕ ∈ C∞0 (0,∞)

and define
χ

(ℓ)
ϵ,j(r̆, θ, ρ̆, η) = ϕ(r̆/Rℓ)χϵ,j(r̆, θ, ρ̆, η).

Picking ϕ̃ ∈ C∞0 (0,∞) equal to 1 near the support of ϕ and using that 1 − ϕ̃(r̆/Rℓ)

vanishes near the support of χ(ℓ)
ϵ,j , we obtain by symbolic calculus that, for any givenN ,

Opϵ,κ

(
χ

(ℓ)
ϵ,j

)
ψ̃κ(ϵr) = Opϵ,κ

(
χ

(ℓ)
ϵ,δ

)
ψ̃κ(ϵr)ϕ̃(ϵr/Rℓ) + ⟨ϵr⟩−NB(ϵ, Rℓ)(P/ϵ

2 + 1)−Nζ(ϵr),

(8.18)

where, uniformly in ϵ,
∥B(ϵ, Rℓ)∥L2→L2 ≲ R−N

ℓ .

The contribution of the remainder term of (8.18) can be treated as the remainders in
the above proof of Proposition 8.5 by propagation estimates and we get

∥ψ̃κ(ϵr)Opϵ,κ(χϵ,j)
∗f2(P/ϵ2)e−itP ⟨ϵr⟩−NB(ϵ, Rℓ)(P/ϵ

2 + 1)−Nζ(ϵr)∥L1→L∞ ≲ ⟨t⟩−n/2R−N
ℓ

for all t ≥ 0 (actually this holds for all t ∈ R since χϵ,j is both incoming and outgoing
by (8.11)). These estimates can be easily summed over k. On the other hand, using
the general fact that∥∥∥∥∥∑

ℓ

Aℓϕ̃(ϵr/Rℓ)v

∥∥∥∥∥
L∞

≤
(

sup
ℓ
∥Aℓϕ̃(ϵr/Rℓ)∥L1→L∞

)∑
ℓ

∫
ϵr
Rℓ
∈suppϕ̃

|v|,

where the last sum is bounded above by C∥v∥L1 (with C independent of ϵ and k), we
see that the dispersion estimate for (8.17) is a consequence of the following uniform
estimates.

Proposition 8.6. – There exists C > 0 such that for all ℓ ≥ ℓ0, all ϵ ∈ (0, 1] and all
t ≥ 0,

∥∥∥ψ̃κ(ϵr)Opϵ,κ(χϵ,j)
∗f2(P/ϵ2)e−itP Opϵ,κ

(
χ

(ℓ)
ϵ,j

)
ψ̃κ(ϵr)ϕ̃(ϵr/Rℓ)

∥∥∥
L1→L∞

≤ C⟨t⟩−n
2 .

(8.19)
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Proof. – For 0 ≤ ϵ2t ≤ t0Rℓ, the estimate follows from Proposition 8.2 together with
the fact that

∥ψ̃κ(ϵr)Opϵ,κ(χϵ,j)
∗f2(P/ϵ2)∥L∞→L∞ ≲ 1, ∥ψ̃κ(ϵr)Opϵ,κ(χϵ,j)

∗f2(P/ϵ2)∥L2→L∞ ≲ ϵn/2,

the second estimate being used to treat the remainder term of the parametrix of
Proposition 8.2, which provides an L1 → L∞ estimate by ϵnR−n

ℓ ≲ ⟨t⟩−n/2. Then,
for t ≥ ϵ−2t0R, we use L2 propagation estimates as follows. First, we write for an
arbitrary N > 0,

Opϵ,κ

(
χ

(ℓ)
ϵ,j

)
ψ̃κ(ϵr)ϕ̃(ϵr/Rℓ) =

(
Opϵ,κ(χ̃

(ℓ)
ϵ,j)ψ̃κ(ϵr) + ⟨ϵr⟩−N B̃(ϵ, Rℓ)

)
(P/ϵ2 + 1)−Nζ(ϵr)

with ∥B̃(ϵ, Rℓ)∥L2→L2 ≲ R−N
ℓ and (χ̃

(ℓ)
ϵ,j)ϵ,ℓ bounded in S̃−∞,0 with the same support

as χ(ℓ)
ϵ,j . This is obtained by expanding Opϵ,κ

(
χ

(ℓ)
ϵ,j

)
ψ̃κ(ϵr)ϕ̃(ϵr/Rℓ)(P/ϵ

2 + 1)N . Then
the contribution of the term involving B̃(ϵ, Rℓ) is similar to the one of the remainder
of (8.18) and provides a L1 → L∞ estimate by R−N

ℓ ⟨t⟩−n/2. We are thus left with
the contribution of χ̃(ℓ)

ϵ,j . For this term, we distinguish between two cases

t0Rℓ ≤ ϵ2t ≤ TRℓ, ϵ2t > TRℓ

with T > 0 large enough (independent of ϵ and ℓ) chosen according to the item 2
of Proposition 7.1, namely such that the support of χ̃(ℓ)

ϵ,j is mapped into a strongly
outgoing region by the classical flow at time TRℓ. Indeed, for ϵ2t > TRℓ, we can write
the contribution of χ̃(ℓ)

ϵ,j to the estimate (8.19), as the one of

ψ̃κ(ϵr)Opϵ,κ

(
χϵ,j

)∗
f2(P/ϵ2)e−i

(
t−T Rℓ

ϵ2

)
P
(
e−i

T Rℓ
ϵ2

P Opϵ,κ

(
χ̃

(ℓ)
ϵ,j

)
ψ̃κ(ϵr)ei

T Rℓ
ϵ2

P
)

× e−i
T Rℓ

ϵ2
P (P/ϵ2 + 1)−Nζ(ϵr).

Using Proposition 7.4, we can write for any given N the parentheses as a sum (over
angular charts κ2) of operators of the form

R−N
ℓ Opϵ,κ2

(χ̂
(ℓ)
ϵ,st,κ2

)ψ̃κ2
(ϵr)⟨ϵr⟩ℓ + ⟨ϵr⟩−NOL2→L2(R−N

ℓ )

with (χ̂
(ℓ)
ϵ,st,κ2

)ϵ,ℓ bounded in S̃−∞,0 and supported in a an outgoing region with
parameter σ′ as close to 1 as we wish, hence in particular disjoint from the sup-
port of χϵ,j . Using Propositions 7.7 and 7.9, we get a dispersion estimate of or-
der ϵnR−N

ℓ ⟨ϵ2t − TRℓ⟩−N ≲ ⟨t⟩−n
2 . Finally, for t0Rℓ ≤ ϵ2t ≤ TRℓ, we write the

contribution of χ̃(ℓ)
ϵ,j to the estimate (8.19), as the one of

ψ̃κ(ϵr)Opϵ,κ(χϵ,j)
∗f2(P/ϵ2)

(
e−itP Opϵ,κ(χ̃

(ℓ)
ϵ,j)ψ̃κ(ϵr)eitP

)
e−itP (P/ϵ2 + 1)−Nζ(ϵr).

By Theorem 7.4 together with the third item Proposition 7.1 and our choice of δ, the
parentheses is microlocalized in a set where ρ̆/p1/2

ϵ,κ > (j + 1)δ, hence disjoint from
the support of χϵ,j . Thus, only residual terms contribute and they produce a norm of
order ϵnR−∞ℓ = O(⟨t⟩−n/2) since ϵ2t is of order Rℓ in this case. This completes the
proof.
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8.3. Proof of Theorem 1.3

Here the analysis is very similar to the one of [30], the main difference being that
we control the remainder terms globally in time. The techniques are the same as those
of Section 8.2, upon the replacement of the low frequency propagations estimates of
Section 7.3 by high frequency ones, and low frequency parametrices by high frequency
ones. Regarding the Littlewood-Paley decomposition, we now use Theorem 4.6 instead
of Theorem 4.1. We only record here that the estimates of Section 7.3 are not sensitive
to a possible trapping since the moderate growth in λ ∼ h−2 in (1.5) is controlled
by the large powers of h provided by the remainders in the expansions (the a priori
resolvent estimates are only used to control the remainders). We also mention the
following minor technical point in the transposition of the proof of Proposition 8.5
to high frequencies. In the remainder Rh

N (t) of the high frequency Isozaki-Kitada
parametrix (see after (6.34)) neither ah

c nor ǎh decay in h, so it is not clear that
they will have a negligible contribution in the end. To make sure they are negligible
in the derivation of dispersion bounds, we need to observe that these terms have
a O(h∞) contribution. For ah

c this follows from Proposition 7.8. The contribution
of ǎh is handled by the propagation estimates of Proposition 7.9 which provide the
fast decay in h.

8.4. Proof of Theorem 1.5

Thanks to Theorem 1.3, it suffices to prove that for any given χ ∈ C∞0 (M), one
has the global Strichartz estimates

∥χuhi∥Lp(R,Lq(M)) ≲ ∥u0∥L2 .(8.20)

In the non-trapping case, this follows from the well known techniques of [9, 36]. For
hyperbolic trapping, the analysis is detailed in [11] for local in time estimates. For the
sake of completeness, we check below that this analysis holds also globally in time.
Before doing so, we point out that we are allowed to use Theorem 1.3 since, under the
assumptions of Theorem 1.5, the resolvent has high energy bounds growing at worst
like λ−1/2 log λ (see [15]).

From now on, we work under Assumption 1.4. We shall check the following which
is the global in time analogue of an estimate of [11, p.654].

Theorem 8.7. – There exists δ > 0 such that, for any χ ∈ C∞0 (M), any
φ ∈ C∞0 ((1− δ, 1 + δ))) and any admissible pair (p, q) with p > 2, we have

∥χe−itPφ(h2P )u0∥Lp(R;Lq) ≲ ∥u0∥L2 , 0 < h≪ 1.

Moreover, if M is non-trapping and n ≥ 3 then the same estimate with (p, q) = (2, 2∗)

also holds.
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Passing from Theorem 8.7 to (8.20) uses a Littlewood-Paley decomposition. Since
we assume here that the manifold has no boundary, we have an analogue to The-
orem 4.6 where 1 − χ can be replaced by χ (the point here is that the absence of
boundary allows to use pseudo-differential calculus near the support of χ and thus to
repeat the analysis used near infinity on the support of (1− χ)). We omit this part.

The proof of Theorem 8.7 is based on the method by [36] for the non-trapping
case and its modification of [11] under Assumption 1.4. We first record several known
results which play crucial roles. The following lemma concerns local smoothing effects
under Assumption 1.4.

Lemma 8.8. – There exists h0 > 0 such that

∥χφ(h2P )e−itPu0∥L2(R;L2) ≲ (h| log h|)1/2∥u0∥L2 , h ∈ (0, h0].(8.21)

Proof. – By Kato’s smooth perturbation theory [26], (8.21) follows from

sup
λ∈R,ε>0

∥χφ(h2P )(h2P − λ− iε)−1φ(h2P )χ∥L2→L2 ≲ h−1| log h|, h ∈ (0, h0].

(8.22)

Let I ⋐ (0,∞) be an interval with supp(φ) ⋐ I. When λ /∈ I, one has

sup
λ/∈I

∥χφ(h2P )(h2P − λ− iε)−1φ(h2P )χ∥L2→L2 ≲ sup
λ/∈I,ρ∈supp(φ)

|ρ− λ|−1 ≲ 1(8.23)

uniformly in h and ε by the spectral theorem. Next, we consider the case when λ ∈ I.
Under Assumption 1.4, [15] gives the following semiclassical resolvent estimate with
a logarithmic loss

sup
ε>0

∥⟨r⟩−1(h2P − λ∓ iε)−1⟨r⟩−1∥L2→L2 ≤ CIh
−1| log h|, λ ∈ I,(8.24)

for all h ∈ (0, h0] and λ ∈ I. Combining (8.23) and (8.24) with the bound

sup
h∈(0,1]

∥χφ2(h2P )⟨r⟩∥L2→L2 ≲ 1,(8.25)

which is standard (it follows e.g., from Theorem 3.9),we have (8.22). This completes
the proof.

It is well-known that (8.24) and, thus, (8.21) hold without the logarithmic loss
| log h| in the non-trapping case (see, e.g., [42, Theorem 1.1]). We need the following
microlocal improvement of this fact.

Lemma 8.9. – Let a ∈ C∞0 (T ∗M) be identically 1 near T and Ah be a pseudo-
differential operator on M with principal symbol a. Then

∥χ(1−Ah)φ(h2P )e−itPu0∥L2(R;L2) ≲ h1/2∥u0∥L2 , h ∈ (0, h0].(8.26)

If T = ∅ i.e., M is non-trapping, then (8.26) holds with 1−Ah replaced by 1.

Here the form of the pseudo-differential quantization does not need to be specified
for the difference between two of them will produce corrections of size h for which the
upper bound (8.26) holds thanks to (8.24).
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Proof. – We use again Kato’s smooth perturbation theory as in the previous lemma.
It suffices to prove that, for any semiclassical pseudo-differential operators Ψh with
principal symbol compactly supported away from the trapped set (and with compactly
supported Schwartz kernel), we have locally uniformly in λ and uniformly in ε > 0,

Ψ∗hφ(h2P )(h2P − λ− iε)−1Ψh = OL2→L2(h−1),(8.27)

with φ ∈ C∞0 (R) such that supp(φ) ⋐ (0,∞) and φ ≡ 1 in a neighborhood of I.
Take R1 > 0 so large that the principal symbol of Ψh is supported in T ∗{r ≤ R1}.
Let q ∈ C∞0 (T ∗M) be the principal symbol of Ψh, ϕt the Hamilton flow generated
by G and (x, ξ) ∈ supp(q). Since q is supported away from the trapped set T , for
every R2 ≫ 1, there exists Tx,ξ > 0 such that ϕt(x, ξ) ∈ T ∗{r > R2} for t > Tx,ξ.
By the compactness of supp(q) and the continuity of the flow ϕt in (x, ξ), there
thus exists T > 0 such that ϕt(supp(q)) is a compact subset of T ∗{r > R2} for all
t > T . Moreover, for some T1 ≥ T , and all t ≥ T1, it follows from Proposition 7.1
that ϕt(supp(q)) is outgoing, i.e., is contained in a finite union (over diffeomorphisms
κ of an atlas of S) of outgoing areas Γ̃+(R2, Vκ, I2, σ) (with σ = 0). Note that T1 is
independent of h. Now, with z = λ+ iε, we write

Ψ∗hφ(h2P )(h2P − λ− iε)−1Ψh = ih−1

∫ ∞

0

eizt/hΨ∗hφ(h2P )e−ithP Ψhdt

= ih−1

(∫ T1

0

+

∫ ∞

T1

)
eizt/hΨ∗hφ(h2P )e−ithP Ψhdt.

Since the integrand is OL2→L2(1) uniformly in t, h, the part of the integral
over [0, T1] is O(h−1). For the part of the integral over [T1,∞), we use the Egorov
theorem (see Theorem 7.4) to find that, for any N > 0,

e−itT1hP Ψh = Ψ̃he
−iT1hP + hN ⟨r⟩−N R̃h

with R̃h = OL2→L2(1) and Ψ̃h with outgoing support as above. By (7.23), we have

∥Ψ∗hφ(h2P )e−i(t−T1)hP ⟨r⟩−N∥L2→L2 ≲ h−M0⟨t− T1⟩−2

with M0 = max(N0, N1, N2) so that

∥Ψ∗hφ(h2P )e−ithPhN ⟨r⟩−N R̃h∥L2→L2 ≲ hN−M0⟨t− T1⟩−2.

On the other hand, using Proposition 7.8, we have

∥Ψ∗hφ(h2P )e−i(t−T1)hP Ψ̃h∥L2→L2 ≲N hN ⟨t− T1⟩−N

for t ≥ T1. Since N is arbitrary, the part of the integral over [T1,∞) is OL2(h∞) and
(8.27) follows.

We also need the following dispersive estimates.
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Lemma 8.10. – (1) For any χ ∈ C∞0 (M), there exists c = c(χ, δ) > 0 such that, for
all |t| ≤ ch and h ∈ (0, h0], one has the following dispersive estimate

∥χφ(h2P )e−itPχ∥L1→L∞ ≲ |t|−n/2.(8.28)

(2) If χ is supported in M− (see the second condition of Assumption 1.4), then (8.28)
holds for all |t| ≤ ch| log h| and h ∈ (0, h0].

Proof. – The estimate (8.28) for |t| ≤ ch can be proved by constructing the semiclas-
sical WKB parametrix up to |t| = O(h) and applying the stationary phase method
(see [10, Section 2]). The latter statement was proved by [11, Proposition 3.9].

We are now ready to prove Theorem 8.7.

Proof of Theorem 8.7. – Taking a neighborhood M̃T of π(T ) satisfying M̃T ⋐M−
and χT ∈ C∞0 (M) supported in M− and satisfying χT ≡ 1 on M̃T , we decompose
χ = χ1 +χ2 with χ1 = χT χ and χ2 = (1−χT )χ. Note that supp(χ2)∩π(T ) = ∅ and
that one can take χT ≡ 0, and thus, χ2 ≡ χ, in the non-trapping case. To prove the
theorem, it then suffices to show that

∥χjφ(h2P )e−itPu0∥Lp([0,∞);Lq) ≲ ∥u0∥L2 , j = 1, 2, 0 < h≪ 1,(8.29)

with the implicits constant being independent of h. Set φh = φ(h2P ) for simplicity.
Consider a decomposition [0,∞) =

⋃
j≥0 Jj , where Jj are mutually disjoint intervals

such that 0 /∈ Jj unless j = 0 and |Jj | ≤ ch| log h|/2. Let θj(t) ∈ C∞0 (R) be supported
in a small neighborhood of Jj and satisfy

θ′j(t) = O((h| log h|)−1).(8.30)

Let J̃j be intervals such that Jj ⋐ supp(θj) ⋐ J̃j and |J̃j | ≤ ch| log h|. For j = 0, by
Lemma 8.10 (2) and the TT ∗-argument (and Keel-Tao’s theorem [27] in the endpoint
case for n ≥ 3), we have

∥θjχ1φhe
−itPu0∥Lp([0,∞);Lq) ≲ ∥θjχ1φhe

−itPu0∥Lp(J̃j ;Lq) ≲ ∥u0∥L2 .(8.31)

For j ≥ 1, since vj = θjχ1φhe
−itPu0 solves the Cauchy problem

(i∂t − P )vj = iθ′jχ1φhe
−itPu0 + [χ1, P ]θjφhe

−itPu0; vj |t=0
= 0,

it follows from Duhamel’s formula that

∥θjχ1φhe
−itPu0∥Lp(Jj ;Lq) ≲

∥∥∥∥∫ t

0

χ̃1e
−i(t−s)P θ′jχ1φhe

−isPu0ds

∥∥∥∥
Lp(J̃j ;Lq)

+

∥∥∥∥∫ t

0

χ̃1e
−i(t−s)P θj(s)[χ1, P ]φhe

−isPu0ds

∥∥∥∥
Lp(J̃j ;Lq)

,

where χ̃1 ∈ C∞0 (M−) is chosen so that χ̃1χ1 ≡ χ1. We now take φ̃ ∈ C∞0 satisfying
φ̃ ≡ 1 on supp(φ) and supported in a sufficiently small neighborhood of supp(φ). Since
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χ1φh and [χ1, P ]φh have h-pseudo-differential expansions with symbols supported
in supp(χ1φ(|ξ|2g)) modulo O(h∞), one has

χ1φh = φ̃hχ1φh +R1⟨r⟩−N φ̃h, R1 = OH −2N
0 →H 2N

0
(hN ),

[χ1, P ]φh = φ̃3
h[χ1, P ]φh +R2⟨r⟩−N φ̃h, R2 = OH −2N

0 →H 2N
0

(hN ),

for all N ≥ 0. Here we use the notation introduced prior Proposition 3.8 for the
remainder terms R1 and R2. Moreover, using that [χ1, P ] has coefficients vanishing
on M̃T since χ1 ≡ 1 on M̃T , φ̃h[χ1, P ] can be written in the form

φ̃h[χ1, P ] = h−1B̃∗hBh +R3⟨r⟩−N , R3 = OH −2N
0 →H 2N

0
(hN )

with some pseudo-differential operator Bh, B̃h with symbols vanishing identically
near T and supported in supp(χ1) ∩ supp(φ(|ξ|2g)). Now we set

I1 =

∫ t

0

χ̃1e
−i(t−s)P φ̃hθ

′
j(s)χ1φhe

−isPu0ds,

I2 = h−1

∫ t

0

χ̃1e
−i(t−s)P φ̃2

hθj(s)B̃
∗
hBhφhe

−isPu0ds.

We then apply Lemma 8.10 and Keel-Tao’s theorem [27] to get

∥I1∥Lp(J̃j ;Lq) ≲ (h| log h|)−1∥χ̃1φhe
−itPu0∥L1(J̃j ;L2)

≲ (h| log h|)−1/2∥χ̃1φhe
−itPu0∥L2(J̃j ;L2)(8.32)

using also (8.30) in the second line. This holds for all admissible pair (p, q), including
the endpoint case if n ≥ 3.

To deal with the second term I2, we observe first that, by Lemma 8.10 and the
dual estimate of (8.26),∥∥∥∥h−1

∫ ∞

0

χ̃1e
−i(t−s)P φ̃2

hθj(s)B̃
∗
hf(s)ds

∥∥∥∥
Lp(J̃j ;Lq)

≲ h−1/2∥f∥L2(J̃j ;L2)(8.33)

for all non-endpoint admissible pair (p, q) with p > 2. Since p > 2, Christ-Kiselev’s
lemma [13] shows that in the left hand side of (8.33) the integral over [0,∞) can be
replaced by an integral over [0, t]. This implies that

∥I2∥Lp(J̃j ;Lq) ≲ h−1/2∥Bhφhe
−isPu0∥L2(J̃j ;L2).(8.34)

We also obtain the estimates for the error terms by Sobolev estimates∥∥∥∥∫ t

0

χ̃1e
−i(t−s)P θ′j(s)R1⟨x⟩−Nφhe

−isPu0ds

∥∥∥∥
Lp(J̃j ;Lq)

≲ hN−n
2 |h log(h)|

1
p−

1
2 ∥⟨r⟩−N φ̃he

−itPu0∥L2(J̃j ;L2)(8.35)
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and likewise for R2 and R3. By (8.31)–(8.35) and picking N large enough, we obtain
from Minkowski’s inequality

∥χ1φhe
−itPu0∥p

Lp([0,∞);Lq) ≲
∑
j≥0

∥χ1φhe
−itPu0∥p

Lp(J̃j ;Lq)

≲ ∥u0∥p
L2 +

(∑
j≥1

(h| log h|)−1∥χ̃1φhe
−itPu0∥2L2(J̃j ;L2)

)p/2

+
(∑

j≥1

h−1∥Bhφhe
−itPu0∥2L2(J̃j ;L2)

)p/2

+
(∑

j≥1

hN/2∥⟨r⟩−N φ̃he
−itPu0∥2L2(J̃j ;L2)

)p/2

≲ ∥u0∥p
L2 + (h| log h|)−p/2∥χ̃1φhe

−itPu0∥p
L2([0,∞);L2)

+ h−p/2∥Bhφhe
−itPu0∥p

L2([0,∞);L2).

Notice that we have used (7.24) to handle the contribution of the remainder terms.
We now apply Lemma 8.8 to the second term and Lemma 8.9 to the third term in
the last line, respectively, to obtain (8.29) for j = 1.

The proof of (8.29) for j = 2 is almost the same. The only difference is that we
decompose [0,∞) =

⋃
j≥0 Jj with mutually disjoint intervals Jj satisfying |Jj | ≤ ch.

Now, under the non-trapping condition, we can use Lemma 8.9 with a ≡ 0 to obtain
(8.29) for j = 2. This completes the proof.
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CHAPTER 9

NONLINEAR EQUATIONS

In this part, we use the global Strichartz inequalities of Theorem 1.5 to study the
L2 critical nonlinear Schrödinger equation

(NLS) i∂tu− Pu = σ|u| 4nu,

where n ≥ 3 is the space dimension and σ is a sign; σ = 1 corresponds to the
defocusing case and σ = −1 to the focusing case. Here the sign will not matter since
we are going to consider small data. We will solve (NLS) in

X := L2+ 4
n (R×M) ∩ Cscat(R, L2(M)),

where

Cscat(R, L2(M)) =

{
u ∈ C(R, L2(M)) | the limits lim

t→±∞
eitPu(t) exist in L2(M)

}
is a Banach space for the norm ∥u∥L∞L2 := supt∈R ∥u(t)∥L2(M) (it is a closed subspace
of the space of bounded uniformly continuous functions u : R → L2(M)). We then
equip X with the norm

∥u∥X = ∥u∥
L2+ 4

n (R×M)
+ ∥u∥L∞L2 ,

which makes it a Banach space.

Theorem 9.1. – Let σ = 1 or −1. Under the assumptions of Theorem 1.5, there
exists ε > 0 such that, for all u0 ∈ L2(M) satisfying ∥u0∥L2 < ε, there exists a
unique u ∈ X such that

u(0) = u0 and u solves (NLS) in the distributions sense.

In particular, since it belongs to Cscat(R, L2(M)), this solution scatters as t → ±∞,
i.e., there are u± ∈ L2(M) such that

∥u(t)− e−itPu±∥L2 → 0, t→ ±∞.
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This theorem is of course similar to the well known result for (NLS) on Rn. Its
novelty stems in the fact that we work on an asymptotically conical manifold and
that a possible hyperbolic trapping on M will not change the usual picture, namely
the global well posedness and the existence of scattering for small data.

The proof follows the usual scheme, the main tool being the global Strichartz
estimates. We record the main lines below to point out the where one has to be
careful in the transposition of the proof on Rn.

Proof of Theorem 9.1. – The principle is to solve (NLS) in the Duhamel form

(Duh) u(t) = e−itPu0 +
σ

i

∫ t

0

e−i(t−s)P |u(s)| 4nu(s)ds,

by a fixed point argument on a ball BX(0, r) with r small enough. We note first that
the pair (p, q) defined by p = q = 2+ 4

n is Schrödinger admissible, so the homogeneous
Strichartz inequalities of Theorem 1.5 show that the map

U : L2(M) ∋ u0 7→ [t 7→ e−itPu0] ∈ X

is well defined and that one has

U (BL2(0, ε)) ⊂ BX(0, Cε).

Also, since (p, q) is not an endpoint pair (i.e., p ̸= 2), the homogeneous inequalities
provide inhomogeneous Strichartz inequalities thanks to the Christ-Kiselev lemma
[13]. This means that, if we set

(Df)(t) :=

∫ t

0

e−i(t−s)P f(s)ds,(9.1)

we have

(9.2) ∥Df∥
L2+ 4

n (R×M)
≲ ∥f∥

L
2n+4
n+4 (R×M)

,

where 2n+4
n+4 is the conjugate exponent to 2 + 4

n . More precisely, the integral defining
Df has a clear sense if f ∈ C(R, L2(M)) so the precise meaning of (9.2) is that it
holds on the dense subset C(R, L2(M)) ∩ L

2n+4
n+4 (R ×M) and that D can then be

extended by density to L
2n+4
n+4 (R×M). The adjoint estimates to the the homogeneous

Strichartz estimates also imply that

∥Df∥L∞L2 ≲ ∥f∥
L

2n+4
n+4 (R×M)

,

and that

∥eitP (Df)(t)− eit′P (Df)(t′)∥L2(M) =

∥∥∥∥∫ t

t′
eisP f(s)ds

∥∥∥∥
L2(M)

≲ ∥f∥
L

2n+4
n+4 ([t′,t]×M)

,

for all f ∈ C(R, L2(M)) ∩ L
2n+4
n+4 (R×M).

This last inequality implies that eitP (Df)(t) has limits as t→ ±∞ hence that Df
belongs to Cscat(R, L2(M)). Thus is well defined and continuous, by taking the closure
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of D : C(R, L2(M)) ∩ L
2n+4
n+4 (R ×M) → X. One has however to be careful that the

closure of D is no longer clearly given by the explicit integral form (9.1).
To handle the nonlinearity u 7→ N(u) := |u| 4nu, we use the estimate on complex

numbers ∥∥z| 4n z − |ζ| 4n ζ∣∣ ≲n |z − ζ|
(
|z| 4n + |ζ| 4n

)
,(9.3)

to derive the estimate

∥N(u)−N(v)∥
L

2n+4
n+4 (R×M)

≲n ∥u− v∥
L2+ 4

n (R×M)

(
∥u∥

4
n

L2+ 4
n (R×M)

+ ∥v∥
4
n

L2+ 4
n (R×M)

)
,

which implies in particular that

N : X ⊂ L2+ 4
n (R×M) → L

2n+4
n+4 (R×M)

is well defined and Lipschitz on balls of X. The above estimate with v = 0 also implies
that

N
(
BX(0, r)

)
⊂ B

L
2n+4
n+4 (R×M)

(
0, Cnr

1+ 4
n

)
.

We can thus define the map Fu0
: X → X by

Fu0
(u) = U(u0) +

σ

i
D(N(u)),

which gives a precise sense to the right hand side of (Duh). Furthermore, for
u, v ∈ BX(0, r) and u0 ∈ BL2(0, ε), one has

∥Fu0(u)∥X ≤ ∥U(u0)∥X + ∥D(N(u))∥X ≲ ε+ r1+
4
n

and

∥Fu0
(u)− Fu0

(v)∥X = ∥D(N(u)−N(v))∥X ≲ r
4
n ∥u− v∥X ,(9.4)

so, if r is small enough and ε ≪ r, the ball BX(0, r) is stable by Fu0 on which it is
a contraction. This provides a solution to the equation u = Fu0

(u). To complete the
proof, one has to observe that this solution is a solution in the distributions sense
and, conversely, that if we have a distributional solution which belongs to X then it
satisfies Fu0

(u) = u.
To prove these two facts, we will use that, if χ ∈ C∞0 (R) is equal to 1 near 0, then

for every given u ∈ X
χ(2−jP )u→ u in X as j →∞.(9.5)

Here χ(2−jP )u = [t 7→ χ(2−jP )u(t)]. The convergence (9.5) follows from the strong
convergence of χ(2−jP ) to the identity on both L2(M) and L2+ 4

n (M), which can be
proved as on Rn for Fourier multipliers by using the pseudo-differential description
of χ(2−jP ). We omit the details of the proof but only record that to prove

sup
t∈R

∥u(t)− χ(2−jP )u(t)∥L2(M) → 0, j →∞

we may replace the norm by ∥eitPu(t) − χ(2−jP )eitPu(t)∥L2(M) and exploit that
t 7→ eitPu(t) is uniformly continuous with limits at±∞ to get the uniform convergence
as j → ∞. Thus, given a solution u to u = Fu0

(u) and letting uj = χ(2−jP ), one
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has Fu0(uj) → Fu0(u) = u by (9.4) and (9.5). Since |uj |
4
nuj belongs to C(R, L2(M))

(this can be checked by using (9.3) and that χ(2−jP ) maps L2(M) into L∞(M)), we
can write

Fu0
(uj)(t) = e−itPu0 +

σ

i

∫ t

0

e−i(t−s)P |uj(s)|
4
nuj(s)ds

(i.e., the integral has a clear sense) and, from this expression, we easily infer that

(i∂t − P )F (uj) = σ|uj |
4
nuj

in the distributions sense on R×M. Letting j →∞, we conclude that u solves (NLS)
in the distributions sense.

Conversely, if u ∈ X solves (NLS) in the distributions sense, it remains to prove
that u = Fu0(u). By definition, we have∫

R

∫
M

(i∂t − P )ϕ(t, x)u(t, x)dvolgdt = σ

∫
R

∫
M
ϕ(t, x)|u(t, x)| 4nu(t, x)dvolgdt(9.6)

for all ϕ ∈ C∞0 (R ×M) and then for all ϕ ∈ C∞0 (R,S (M)) by a simple limiting
argument (see (3.5) for S (M)). The interest of allowing ϕ(t) = ϕ(t, .) to belong
to S (M), is that we can write the left hand side of (9.6) as∫

R

(
i∂t(e

itPϕ(t)), eitPu(t)
)
L2(M)

dt,

since eitP leaves S (M) stable but not C∞0 (M). On the other hand, by approximating
u by uj = χ(2−jP )u using (9.5), the right hand side of (9.6) reads

σ

∫
R

∫
M
ϕ(t, x)|uj(t, x)|

4
nuj(t, x)dvolgdt+O

(
∥u− uj∥X

)
.

Using that t 7→ |uj(t)|
4
nuj(t) is continuous with values in L2(M), one can write

σ|uj(t)|
4
nuj(t) = e−itP i∂t

(
σ

i

∫ t

0

eisP |uj(s)|
4
nuj(s)ds

)
.

Then, by integration by part, (9.6) yields∫
R

(
i∂t(e

itPϕ(t)), eitPu(t)−G(N(uj))(t)
)
L2(M)

dt = O
(
∥u− uj∥X

)
,

where

G(f)(t) :=
σ

i

∫ t

0

eisP f(s)ds

is well defined for f ∈ C(R, L2(M)) with values on C(R, L2(M)) but can be extended
to all f ∈ L

2n+4
n+4 (R×M) by the adjoint of homogeneous Strichartz estimates. Letting

j →∞ and choosing ϕ(t) = e−itPψ(t) with ψ ∈ C∞0 (R×M), we find that∫
R

∫
M
i∂tψ(t, x)

{
eitPu(t, x)−G(N(u))(t, x)

}
dvolgdt = 0
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hence that eitPu(t, x)−G(N(u))(t, x) is independent of t. By evaluation at t = 0, we
find

eitP
(
u(t)− σ

i
D(N(u))(t)

)
= u0, t ∈ R,

since e−itPG(N(u))(t) = σ
i D(N(u))(t). This proves that u = Fu0(u) and completes

the proof.
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APPENDIX A

PUTTING THE METRIC IN NORMAL FORM

Proposition A.1. – If (M, G) is asymptotically conic, G can be put in normal form.

Proof. – The main steps are described in [22], but locally with respect to the angular
variable. We briefly describe here how to globalize the construction on S. It is sufficient
to prove the existence of sequences of compact subsets Kk ⋐M, real numbers Rk > 0

and diffeomorphisms

Ωk : M\Kk ∋ m 7→
(
rk(m), ωk(m)

)
∈ (Rk,∞)× S,

with rk/r bounded from above and below on M\Kk (so that preimages of bounded
intervals by rk are relatively compact in M), through which

G = Ω∗k
(
Ak(rk)dr2k + 2rkBk(rk)drk + r2kgk(rk)

)
with

Ak(·)− 1 ∈ S−kν , Bk(·) ∈ S−kν gk(·)− ḡ ∈ S−ν .(A.1)

If we achieve this, then in a finite number of steps we have kν > 1 and can put the
metric in normal form by using [5]. We proceed by induction by setting first Ω1 = Ω.
We seek Ωk = D−1

k ◦Ωk−1, between suitable open subsets of Rx ×S, by constructing
a diffeomorphism of the form

Dk(x, ω) =
(
x+ xσk(x, ω), expω(Vk(x))

)
for some symbol σk and some x dependent vector field Vk(x) on S. For Rk large
enough, we define σk and then Vk on (Rk,∞)× S as the unique solutions in S(1−k)ν

to

2
(
x∂xσk + σk

)
= 1−Ak−1(x), x∂xVk(x) = −ḡ−1

(
dωσk(x) +Bk−1(x)

)
,(A.2)

where ḡ−1 stands for the isomorphism T ∗S → TS induced by ḡ, and dω is the differ-
ential on S. These objects are globally defined with respect to the angular variable
on S. Note in particular that, since V (x) → 0 as x → ∞, expω(V (x)) is close to the
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identity on S. It is then not hard to check that, for Rk large enough, Dk is a diffeo-
morphim between (Rk,∞)× S and an open subset of (Rk−1,∞)× S which contains
(R̃k−1,∞)× S for some R̃k−1 large enough. We find that

D∗k
(
Gk−1(rk−1)

)
= Ak(rk)dr2k + 2rkBk(rk)drk + r2kgk(rk)

with

Ak(rk) = 1 + 2σk(rk) + rk∂rk
σk(rk) + (Ak−1 − 1)(rk) + S−kν

Bk(rk) = ḡ
(
rk∂rk

Vk(rk)
)

+Bk−1(rk) + dωσk(rk) + S−kν

gk(rk) = ḡ + S−ν .

By (A.2), we see that (A.1) is satisfied. Furthermore, the form of Dk implies
that rk/rk−1 is bounded from above and below, so by the induction assumption
on rk−1 the same holds for rk/r. The result follows.
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WEAK TYPE (1, 1) ESTIMATES

In this appendix, we explain how to reduce the proof of weak type (1, 1) estimates
on L1(M) for the operators of Propositions 4.3 and 4.7 to the standard theory of
Calderón-Zygmund operators on Rn (Theorem B.2 below).

We first recall some general and elementary facts. Assume that X is a manifold
equipped with a measure µ which is a positive smooth density. We recall that a linear
map T on L1(X , µ) (with values on measurable functions on X ) is said to be of weak
type (1, 1) with bound C if

µ
(
{|Tf | > λ}

)
≤ C

λ
∥f∥L1(X ,µ)

for all λ > 0 and f ∈ L1(X , µ).

Proposition B.1. – Let T be of weak type (1, 1) on L1(X , µ) with bound C.

1. Let b : X → [m,M ], with 0 < m < M , be measurable and let µb be the measure
defined by

µb(B) :=

∫
B

bdµ.

Then T is of weak type (1, 1) on L1(X , µb) with bound CM/m.

2. Let Φ : X → Y be a diffeomorphism between X and another manifold Y.

(a) Then Φ∗TΦ∗ is of weak type (1, 1) on L1(Y,Φ∗µ) with bound C.
(b) If T is bounded on L2(X , µ) (but not necessarily of weak type (1, 1)), then

Φ∗TΦ∗ is bounded on L2(Y,Φ∗µ) with the same operator norm.

In this proposition, Φ∗µ is the usual pushforward measure (i.e., Φ∗µ(B) =

µ
(
Φ−1(B)

)
) and Φ∗,Φ

∗ are respectively the pushforward and pullback operators
(i.e., Φ∗v = v ◦ Φ−1 and Φ∗f = f ◦ Φ).

We will apply Proposition B.1 to prove the weak type (1, 1) bounds stated in the
proofs of Propositions 4.3 and 4.7, that is for operators of the form

Tlow(M, t) :=

M∑
ℓ=0

ϱℓ(t)DεΠκOp1

(
aϵ

)
ψΠ−1

κ D−1
ε , ϵ2 = 2−ℓ,
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and

Thigh(M, t) :=

M∑
ℓ=1

ϱℓ(t)ΠκOph

(
ah

)
ψΠ−1

κ , h2 = 2−ℓ.

We recall that Πκ is associated to the angular chart κ : U → V by (2.2), ψ is a smooth
cutoff supported in (R0,∞)× V and that aϵ, ah are symbols of the form

b
(
r, θ, ρ,

η

r

)
,

with b(r, θ, ξ) ∈ S0 (possibly depending on ϵ or h in a bounded fashion) supported
in (R0,∞) × K × {c ≤ |ξ| ≤ C} for some K ⋐ V and C > c > 0 independent of ϵ
or h.

We proceed as follows. When X = M and µ is the Riemannian measure
|g(r, θ)|rn−1drdθ, the item 2 (a) with Φ = Πγ allows to transfer the analysis from M
to a chart (R,∞) × V equipped with the measure |g(r, θ)|rn−1drddθ. The item 1
allows to drop the factor |g(r, θ)|. We next introduce the diffeomorphism

Φ(r, θ) := (r, rθ)

between R+ × Rn−1
θ and R+ × Rn−1

z , whose interest is that

Φ∗
(
rn−1drdθ

)
= drdz.

Then another application of the item 2 (a) shows that it suffices that

Alow(M, t) := Φ∗Π
−1
κ (Tlow(M, t)) ΠκΦ∗, Ahigh(M, t) := Φ∗Π

−1
κ (Thigh(M, t)) ΠκΦ∗,

satisfy weak type (1, 1) estimates on L1(Rn, drdz). To prove the latter, it suffices to
check they satisfy the assumptions of the following theorem.

Theorem B.2 (Calderón-Zygmund operators). – Let (AM ) be a sequence of operators
on Rr × Rn−1

z with Schwartz kernel KM such that, for some C > 0 and all M ,

∥AM∥L2(Rn,drdz)→L2(Rn,drdz) ≤ C, M ≥ 0,

and, for any j, α such that j + |α| ≤ 1,

|∂j
r′∂

α
z′KM (r, z, r′, z′)| ≤ C(|r − r′|+ |z − z′|)−n−j−|α|, (r, z, r′, z′) ∈ R2n, M ≥ 0.

Then AM is of weak type (1, 1) on L1(Rn, drdz) with bound uniform in M .

We refer for instance to [41] for a proof of this theorem.
The uniform L2(drdz) boundedness of Alow(M, t) follows from the item 2 (b) of

Proposition B.1 together with the Cotlar-Stein argument described in the proof of
Proposition 4.3. For Ahigh(M, t), it suffices to observe that

M∑
ℓ=1

ϱℓ(t)a(h) ∈ S̃0,0,

uniformly in M and t. This follows from the form of a(h). Therefore Thigh(M, t) is
uniformly bounded on L2(M) so Ahigh(M, t) is uniformly bounded on L2(drdz) by
the item 2 (b) of Proposition B.1.
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We next consider the kernel estimates. To put both cases under a single form, we
compute the Schwartz kernel of

Ah
ϵ := Φ∗DϵOph

(
a
)
ψD−1

ϵ Φ∗

with respect to drdz, with

a(r, θ, ρ, η) = b
(
r, θ, ρ,

η

r

)
, b ∈ S−∞.

The Schwartz kernel of Oph(a) with respect to drdθ is of the form

(2πh)−nb̂

(
r, θ,

r − r′

h
,
r(θ − θ′)

h

)
,

where b̂ is the Fourier transform with respect to (ρ, η). After elementary calculations,
we find that the Schwartz kernel of Ah

ϵ reads (up to the irrelevant factor (2π)−n)

Kh
ϵ (r, z, r′, z′) =

( ϵ
h

)n ( r
r′

)n−1

b̂
(
ϵr,

z

r
,
ϵ

h
(r − r′),

ϵ

h

(
z − (r/r′)z′

))
ψ

(
ϵr′,

z′

r′

)
.

We want to show that
∑
ϱℓ(t)K

h
1 and

∑
ϱℓ(t)K

1
ε satisfy the second assumption of

Theorem B.2. By exploiting that z′/r′ belongs to a compact set, as well and the fact
that ϵr′ is bounded below by some R ≫ 1, these kernel estimates follow from the
following lemma which we use either with λ = h or λ = ϵ−1.

Lemma B.3. – 1. For all N ≥ 0, one has(
1 +

|r − r′|
λ

+

∣∣z − r
r′ z

′
∣∣

λ

)−3N (
1 +

|z′|
r′

)−N

≲

(
1 +

|r − r′|
λ

+
|z − z′|
λ

)−N

for all λ > 0, all r, r′ > 0 and all z, z′ ∈ Rn−1.

2. Let c > 0. There exists C > 0 such that, for all r, r′ > 0 and λ > 0, we have

r

r′
≤ C

(
1 +

|r − r′|
λ

)
provided that

r′

λ
≥ c.

3. Let s ∈ [0, 1] and N > n+ 1. Then∑
λ=2ℓ

ℓ∈Z

λ−n−s

(
1 +

|x− y|
λ

)−N

≲ |x− y|−n−s

for all x, y ∈ Rn such that x ̸= y.
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Proof. – In the item 1, the left hand side is not greater than(
1 +

|r − r′|
λ

)−2N
(

1 +

∣∣z − r
r′ z

′
∣∣

λ

)−N (
1 +

|z′|
r′

)−N

.

Writing z− r
r′ z

′ = z− z′ + r′−r
r′ z

′ and using the Peetre inequality for the term in the
middle, we obtain an upper bound of the form

C

(
1 +

|r − r′|
λ

)−2N
(

1 +

∣∣z − z′
∣∣

λ

)−N (
1 +

|r − r′|
λ

|z′|
r′

)N (
1 +

|z′|
r′

)−N

,

which in turn is bounded by

C

(
1 +

|r − r′|
λ

)−2N
(

1 +

∣∣z − z′
∣∣

λ

)−N (
1 +

|r − r′|
λ

)N

.

This yields the result once observed that(
1 +

|r − r′|
λ

)−N
(

1 +

∣∣z − z′
∣∣

λ

)−N

≤

(
1 +

|r − r′|
λ

+

∣∣z − z′
∣∣

λ

)−N

.

The item 2 follows simply from the fact that r
r′ = 1+ r−r′

λ
λ
r′ . The item 3 is standard.
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SOBOLEV ESTIMATE

In this appendix we provide a short proof of the homogeneous Sobolev estimate
(1.2).

Using the same cutoff f0 as in (1.3), we have

∥(1− f0)(P )v∥L2∗ (M) ≲ ∥(P + 1)1/2(1− f0)(P )v∥L2(M) ≲ ∥P 1/2v∥L2(M)

thanks to the following proposition.

Proposition C.1 (Inhomogeneous Sobolev estimate). – We have

∥u∥L2∗ (M) ≲ ∥(P + 1)1/2u∥L2(M)(C.1)

Proof. – From classical local estimates, we get that if χ is compactly supported (pos-
sibly equal to 1 near ∂M if non empty),

∥χu∥L2∗ (M) ≲ ∥u∥L2(M) + ∥∇Gu∥L2(M),

which, by using ∥∇Gu∥L2(M) = ∥P 1/2u∥L2(M) and the spectral theorem leads easily
to

∥χu∥L2∗ (M) ≲ ∥(P + 1)1/2u∥L2(M).

This first estimate allows to work only near infinity and in particular to use Proposi-
tion 3.7 with ζ = 1− χ. From this proposition and the following Hölder estimate,

∥v∥L2∗ (M) ≤ ∥v∥1−
2
n

L2(M)∥v∥
2
n

L∞(M)

we obtain that if N > n/4,

∥ζ(h2P + 1)−N∥L2(M)→L2∗ (M) ≲ h−1.(C.2)

Using the spectral theorem, we infer that if f, f̃ ∈ C∞0 (0,∞) with f̃ = 1 on the
support of f , we can write

ζ(1 + P )−1/2f(h2P ) = ζ(h2P + 1)−N
(
(h2P + 1)N f̃(h2P )(1 + P )−1/2

)
︸ ︷︷ ︸

=OL2→L2 (h)

f(h2P )
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106 APPENDIX C. SOBOLEV ESTIMATE

the bound on the operator in parentheses following from the fact that P is of size h−1

on the support of the (spectral) cutoff. This implies that

∥ζf(h2P )(1 + P )−1/2v∥L2∗ (M) ≲ ∥f(h2P )v∥L2(M)

for all h ∈ (0, 1] and v. Now we apply Theorem 4.6 (with the f and f0 specified there)
which gives, using the above estimate,

∥ζ(1− f0)(P )(1 + P )−1/2v∥L2∗ (M) ≲

( ∑
h2=2−ℓ

∥f(h2P )v∥2L2(M)

)1/2

+ ∥v∥L2(M)

≲ ∥v∥L2(M)

the second line following by quasi-orthogonality. Finally, using that ζf0(P ) is bounded
from L2 to L2∗ (e.g., by the spectral theorem and (C.2) with h = 1), we obtain that

∥ζ(1 + P )−1/2v∥L2∗ (M) ≲ ∥v∥L2 ,

which completes the proof.

Thus it remains to show that

∥f0(P )v∥L2∗ (M) ≲ ∥P 1/2v∥L2(M).

To do so, we choose χ ∈ C∞c (M) which is equal to 1 on a large enough compact set
and observe that

∥χf0(P )v∥L2∗ (M) ≲ ∥⟨r⟩−1v∥L2(M) ≲ ∥P 1/2v∥L2(M)

using first that χf0(P )⟨r⟩ is bounded from L2 to L2∗ which follows from (C.1) and
the commutator argument explained thereafter and then the Hardy inequality (see,
e.g., [6, Prop. 2.2]). Indeed,

χf0(P )⟨r⟩ = χ⟨r⟩f0(P ) + χ[f0(P ), ⟨r⟩],

where χ⟨r⟩f0(P ) is bounded from L2 to L2∗ by (C.1) and the spectral theorem. The
commutator can be expanded using the Helffer-Sjöstrand formula (2.18) as

[f0(P ), ⟨r⟩] =
1

2π

∫
C
∂̄f̃0(z)(P − z)−1[⟨r⟩, P ](P − z)−1L(dz),

where [⟨r⟩, P ] is a first order differential operator which is P bounded (by (2.10) it
vanishes near the boundary of M, if any, and equal 2∂r plus a bounded function near
infinity by (2.11)). Thus, using the spectral theorem we get

[⟨r⟩, P ](P − z)−1 = [⟨r⟩, P ](P + 1)−1︸ ︷︷ ︸
L2→L2 bounded

(P + 1)(P − z)︸ ︷︷ ︸
OL2→L2 (⟨z⟩/|Im(z)|)

and, in combination with (C.1),

(P − z)−1 = (P + 1)−1/2︸ ︷︷ ︸
L2→L2∗

(P + 1)1/2(P − z)−1︸ ︷︷ ︸
OL2→L2 (⟨z⟩/|Im(z)|)

.

After integration against ∂̄f̃0(z), we obtain that [f0(P ), ⟨r⟩] is bounded from L2 to L2∗ .
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Using a partition of unity
∑

κ φκ(ω) = 1 on S with functions supported in coordi-
nates patches, we can see that

∥(1− χ)φκ(ω)f0(P )v∥L2∗ (M) ≲ ∥∇G

(
(1− χ)φκ(ω)f(P0)v

)
∥L2(M)

using the usual proof of the Sobolev inequality on Rn since the cutoff (1 − χ)φκ(ω)

localizes in the product of a half line and a patch. From this estimate, we then obtain

∥(1− χ)f0(P )v∥L2∗ (M) ≲ ∥∇Gf(P0)v∥L2(M) + ∥⟨r⟩−1f(P0)v∥L2(M)

≲ ∥P 1/2v∥L2(M)

using again the Hardy inequality.
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Nous démontrons des inégalités de Strichartz pour l’équation de Schrödinger sur une
grande famille de variétés asymptotiquement coniques. Si P est l’opérateur de Laplace
et f0 ∈ C∞0 (R) une fonction de troncature égale à 1 près de zéro, nous montrons
d’abord que la partie basse fréquence de toute solution e−itPu0, i.e., f0(P )e−itPu0,
satisfait les mêmes inégalités de Strichartz que sur Rn, en dimension n ≥ 3. Nous
montrons également que la partie haute fréquence (1−f0)(P )e−itPu0 vérifie également
des inégalités de Strichartz sans perte de dérivée à l’extérieur d’un compact, même si
la variété possède des géodésiques captées mais dans un sens tempéré. Nous montrons
ensuite que la solution complète e−itPu0 satisfait des inégalités de Strichartz globales
en espace-temps à condition que l’ensemble capté soit vide ou suffisamment fin, et
nous obtenons une théorie de la diffusion pour l’équation de Schrödinger non linéaire
L2 critique dans ce contexte géométrique.

We prove global Strichartz inequalities for the Schrödinger equation on a large class
of asymptotically conical manifolds. Letting P be the nonnegative Laplace operator
and f0 ∈ C∞0 (R) be a smooth cutoff equal to 1 near zero, we show first that the low
frequency part of any solution e−itPu0, i.e., f0(P )e−itPu0, enjoys the same global
Strichartz estimates as on Rn in dimension n ≥ 3. We also show that the high
energy part (1 − f0)(P )e−itPu0 also satisfies global Strichartz estimates without loss
of derivatives outside a compact set, even if the manifold has trapped geodesics but
in a temperate sense. We then show that the full solution e−itPu0 satisfies global
space-time Strichartz estimates if the trapped set is empty or sufficiently filamentary,
and we derive a scattering theory for the L2 critical nonlinear Schrödinger equation
in this geometric framework.
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