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ON THE p-ADIC UNIFORMIZATION
OF UNITARY SHIMURA CURVES

Stephen Kudla, Michael Rapoport, Thomas Zink

Abstract. — We prove p-adic uniformization for Shimura curves attached to the group
of unitary similitudes of certain binary skew Hermitian spaces V with respect to an
arbitrary CM field K with maximal totally real subfield F. For a place v|p of F
that is not split in K and for which V,, is anisotropic, let v be an extension of v to
the reflex field E. We define an integral model of the corresponding Shimura curve
over SpecOg, (,) by means of a moduli problem for abelian schemes with suitable
polarization and level structure prime to p. The formulation of the moduli problem
involves a Kottwitz condition, an Fisenstein condition, and an adjusted invariant. The
uniformization of the formal completion of this model along its special fiber is given
in terms of the formal Drinfeld upper half plane (AZFW for F,. The proof relies on
the construction of the contracting functor which relates a relative Rapoport-Zink
space for strict formal Op, -modules with a Rapoport-Zink space of p-divisible groups
which arise from the moduli problem, where the Op, -action is usually not strict when
F, # Qp. Our main tool is the theory of displays, in particular the Ahsendorf functor.

Résumé. — On démontre 'uniformisation p-adique pour les courbes de Shimura at-
taché & un groupe de similitudes unitaires pour certains espaces anti-hermitiens V'
relatifs & un corps CM K, avec sous-corps totalement réel maximal F'. Pour une
place v|p de F qui n’est pas déploye dans K et pour laquelle la localisation V,, est
anisotrope, soit v une extension de v au corps reflex E. On définit un modéle sur
Spec Og,(,) de la courbe de Shimura correspondante en posant un probléme de mo-
dules de variétés abéliennes avec polarisation et structure de niveau premier & p. La
formulation du probléme de modules fait intervenir une condition de Kottwitz, une
condition d’Fisenstein, et la notion d’un invariant rectifié. L’uniformisation du com-
plété formel de ce modéle le long sa fibre spéciale est donné en termes du démi-plan
de Drinfeld formel ) F, pour F,. La démonstration est basée sur la construction d’un
foncteur contractant qui rélie un espace de Rapoport-Zink relatif de O, -modules
formels stricts avec un espace de Rapoport-Zink de groupes p-divisibles des variétés
abéliennes qui apparaissent dans le probléme de modules, pour lesquelles ’action de
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Op, n’est pas stricte en géneral si F,, # Q,. Notre outil principal est la théorie des
displays, en particulier le foncteur de Ahsendorf.
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CHAPTER 1

INTRODUCTION

1.1. History of uniformization

One of the major results of the Mathematics of the 19th century is the wumni-
formization theorem. It states that any non-singular projective algebraic curve X
of genus g(X) > 2 can be uniformized, i.e., can be written as

(1.1.1) X ~ T\Qp,

where Qg = P!(C) \ P}(R) is the union of the upper and the lower half plane and
I’ denotes a discrete cocompact subgroup of PGLy(R). This notation reinforces the
analogy with the p-adic uniformization discussed below. The history of this theorem
is very complicated, and involves the names of many mathematicians, among them
Poincaré, Hilbert and Koebe, comp. [13]. Inspired by the uniformization theorem,
Poincaré gave a systematic construction of cocompact discrete subgroups of PGL2(R).
For this he used the exceptional isomorphism between inner forms of PGLy and spe-
cial orthogonal groups of ternary quadratic forms. In fact, for his construction, he
used arithmetic subgroups of the special orthogonal group of an indefinite anisotropic
ternary quadratic form over Q, cf. [13].

Now let p be a prime number. The history of the p-adic uniformization of algebraic
curves starts with Tate’s uniformization theory of elliptic curves. It turns out that
not all elliptic curves over p-adic fields admit a p-adic uniformization, but only those
with (split) multiplicative reduction [30, §6].

The next step was Mumford’s p-adic uniformization theory of algebraic curves of
higher genus, [24]. Again, it turns out that not all such algebraic curves over p-adic
fields admit a p-adic uniformization, but only those with totally degenerate reduc-
tion [24]. In view of Mumford’s results, it becomes interesting to single out classes
of algebraic curves with totally degenerate reduction. Such classes are exhibited by
Cherednik [7].

Cherednik’s discovery is that certain quaternionic Shimura curves, i.e., Shimura
curves associated to quaternion algebras over a totally real field F', admit p-adic
uniformization. The quaternion algebra has to satisfy the following conditions. It is
required to be split at precisely one archimedean place w of F (and ramified at all
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viii CHAPTER 1. INTRODUCTION

other archimedean places), and to be ramified at a non-archimedean place v of residue
characteristic p. In this case, the reflex field can be identified with F'. Then one obtains
p-adic uniformization by the Drinfeld halfplane associated to F,, provided that the
level structure is prime to v. It follows that if X is a connected component of the
Shimura tower for such a level, considered as an algebraic curve over F, then there is
an isomorphism of algebraic curves over F},,

(1.1.2) X ®@p F, ~ (T\Qf,) ®F, F,.

Here Qp, = Pp, \ P!(F,) denotes the Drinfeld halfplane for the local field F,, and
[ denotes a discrete cocompact subgroup of PGLy(F,). Recall that Qf, is a rigid-
analytic space over F),. The isomorphism (1.1.2) is to be interpreted as follows: the
rigid-analytic space I'\QF, is (uniquely) algebraizable by a projective algebraic curve
over F,. After extension of scalars F,, — F,,, there exists an isomorphism as in (1.1.2).
We thus see that (1.1.2) allows us to pass from the original complex uniformization
X ®p C ~ I'\Qg, where I' is a congruence subgroup maximal at v, to p-adic uni-
formization.

Let us comment on the proof of Cherednik’s theorem. When F' = Q, these quater-
nionic Shimura curves are moduli spaces of abelian varieties with additional structure,
and Drinfeld [10] gives a moduli-theoretic proof of Cherednik’s theorem in this special
case. Furthermore, he proves an ‘integral version’ of this theorem (which has the orig-
inal version as a corollary). For this, Drinfeld extends the moduli problem integrally
and then relates the integral version to a theorem on formal moduli spaces of p-di-
visible groups, which is in fact the deepest part of Drinfeld’s paper. When F' # Q,
Cherednik’s quaternionic Shimura curves do not represent a moduli problem of abelian
varieties, and Drinfeld’s approach runs into problems. Cherednik’s approach [7] seems
to only use arguments involving the generic fiber.

There are also higher-dimensional versions of p-adic uniformization. Drinfeld’s
method has been generalized by Rapoport and Zink [27] to Shimura varieties associ-
ated to certain fake unitary groups. These are associated to central division algebras
over a CM-field equipped with an involution of the second kind; for Rapoport-Zink
uniformization, one has to assume that the p-adic place of the totally real subfield
splits in the CM-field. This higher-dimensional generalization also includes integral
uniformization theorems. In [27], these integral uniformization theorems appear as a
special instance of a general non-archimedean uniformization theorem, which describes
the formal completion of PEL-type Shimura varieties along a fixed isogeny class. In
the case of p-adic uniformization, the whole special fiber forms a single isogeny class.

The method of [27] has been applied by Boutot and Zink [5] to prove Cherednik’s
original theorem and an integral variant of it by embedding Cherednik’s quaternionic
Shimura curves into Shimura curves obtained by the Rapoport-Zink method; in an
update [6], some gaps in [5] are filled. The integral uniformization theorems in [6]
have the draw-back that they only show that there exists some integral model of the
Shimura curve for which one has integral uniformization. There is a characterization of
this integral model as the unique stable model in the sense of Deligne-Mumford [9] but

MEMOIRES DE LA SMF 183



1.1. HISTORY OF UNIFORMIZATION ix

this characterization is of a rather abstract nature since there is no moduli-theoretic
description of it.

A variant of Cherednik’s method has been developed by Varshavsky [31, 32] to ob-
tain p-adic uniformization of certain higher-dimensional Shimura varieties associated
to fake unitary groups, again at a split place. We refer to Boutot’s Bourbaki talk [3]
for an account of all these developments.

In the present paper, we deal with Shimura curves attached to unitary simili-
tude groups associated to anti-Hermitian () vector spaces V of dimension 2 over a
CM-field K with totally real subfield F' of arbitrary degree. Our results general-
ize those in [19], where the case F' = Q is considered. Like Cherednik, we assume
that V is split at precisely one archimedean place w of F' (and ramified at all other
archimedean places). We also assume that V is ramified at a non-archimedean place
v of residue characteristic p of F. However, in contrast to the cases of p-adic uni-
formization mentioned above, we assume that v does not split in K. Of course, these
Shimura curves are closely related to the Shimura curves considered by Cherednik
(we refer to [19] for a general discussion of the relation between quaternion algebras
and two-dimensional Hermitian vector spaces). However, they are different. In partic-
ular, they have the enormous advantage that they always represent a moduli problem
of abelian varieties. Our uniformization theorem is optimal when the level structure
imposed is prime to p, in the sense that it extends to an integral uniformization that
allows an explicit moduli interpretation of the points in the reduction modulo p.

Asin Drinfeld’s approach, our uniformization theorem relies on a theorem on formal
moduli spaces of p-divisible groups. In fact, the main work in proving our theorems
is to establish an isomorphism of our formal moduli spaces with the moduli space
of Drinfeld. Such an isomorphism is also constructed by Scholze and Weinstein [29].
Their construction relies on Scholze’s theory of local Shimura varieties and his integral
p-adic Hodge theory, as well as on results in a preliminary (unpublished) version of
the present paper on local models. Our construction here is more direct and more
elementary; it relies on the theory of displays, cf. [34]. We do not see any direct
connection between the isomorphism in [29] and the one constructed here.

Drinfeld’s version of Cherednik’s theorem for F' = (Q has found numerous arithmetic
applications, to level raising, level lowering and bounding Selmer groups, at the hands
of Ribet, Bertolini, Darmon, Nekovar and many others, comp. also the references in
the introduction of [19]. It is to be hoped that our direct construction can be the basis
of similar such applications for general totally real fields F.

Our results are an expression of the exceptional isomorphism between an inner
twist of the adjoint group of GL; and an inner twist of the adjoint group of Us.
Just as for Poincaré’s exceptional isomorphism of inner forms of PGLs and special
orthogonal groups of ternary quadratic forms, there is no higher rank analogue.

1. It turns out to be more natural to consider anti-Hermitian forms, rather than Hermitian forms,
cf. below.
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X CHAPTER 1. INTRODUCTION

1.2. Global results

Now let us state our global results. Let K be a CM-field, with totally real sub-
field F. We denote the non-trivial F-automorphism of K by a — a. Let V be

a two-dimensional K-vector space, equipped with an alternating Q-bilinear form
¥: V xV — Q such that

(1.2.1) Y(az,y) =P(z,ay), z,y€V,a€K.
There is a unique anti-Hermitian form 3¢ on V' such that
(122) ’I‘I'K/Qp a%(x>y) = w(am7y)a T,y € Vva a€ K.

Conversely, the anti-Hermitian form ¢ determines the alternating bilinear form
with (1.2.1). We say that sr arises from ¢ by contraction. Recall that anti-Hermitian
spaces V are determined up to isomorphism by their signature at the archimedean
places of F' and their local invariants inv, (V) at the non-archimedean places v of F'
(see §8.1 for the definition of inv, (V). Let w be an archimedean place such that V, has
signature (1,1) and such that V,, is definite for all archimedean places w’ # w. Let
us be more precise. Let & = Homg a1 (K, C). Let r be a generalized special CM-type
of rank 2, special w.r.t. w, i.e., a function

(1.2.3) r:® — Z, P Ty,

such that r, + r; = 2 for all ¢ € ®, and such that for the extensions {¢g, o} of w
we have r,, = 75, = 1 and with r, € {0,2} for ¢ ¢ {@o, @0}, comp. [19]. Then we
demand that the signature of V,, = V ®x,, C be equal to (ry,,2 —ry).

We denote the reflex field of r by E = E,. It is a subfield of Q, the algebraic closure
of Q in C. Note that F' embeds via ¢q into F, and that the archimedean place of F'
induced by

(1.2.4) FXE—C

is equal to w. If FF = Q, then £ = F.

Associated to these data, there is a Shimura pair (G,{h}).Here G denotes the
group of unitary similitudes of V', with similitude factor in G,,, an algebraic subgroup
of GSp(V, ) over Q. For an open compact subgroup K C G(Ay), there is a Shimura
variety Shk, with canonical model over the reflex field E, whose complex points are
given by

Shk (C) ~ G(Q\[Q x G(Ay)/K].
Here Qg is acted on by G(R) via the projection to GU(V,,).q and a fixed isomorphism
GU(Vy)aq =~ PGLy(R).

Consider the following moduli problem on (Sch/E). It associates to an E-scheme S

the set of isomorphism classes of tuples (A4, ¢, X, 7). Here

— A is an abelian scheme up to isogeny of dimension 2[F : Q] over S,

— 1: Og — End(A) is an action of Ox on A such that
Tr(c(a)| Lie A) = Zgoe@ rop(a), forall a € Ok,
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1.2. GLOBAL RESULTS xi

— X is a Q-homogeneous polarization of A such that its Rosati involution induces
the conjugation on K/F,

— we have a K-orbit of K-linear similitudes 7: V ® Ay — V(A).
Here the rational Tate module is equipped with its natural anti-Hermitian form arising
by contraction from its polarization form.

This moduli problem is represented by a quasi-projective scheme Ak g which is
the canonical model of Shk over E. It is a projective scheme when the existence of v
as below is imposed.

Let p be a prime number and let v be a p-adic place of F' which is non-split in K
and such that V,, is a non-split K, /F,-anti-Hermitian space, i.e., inv, (V) = —1. We
take the open compact subgroup of the form K* = K7 - K?, where KP? is an arbitrary
open compact subgroup of G(AI;), and where K7 has the following shape. Let

V®QPZ@VP

plp

be the orthogonal decomposition according to the prime ideals of F' over p. Note that
the prime ideal p, corresponding to v occurs as an index here. Then

G(@) <[], Gro(@),

where Gy denotes the group of unitary similitudes of V}, with similitude factor in G,.
We take K7 of the form

(1.2.5) K3 = G(Q,) NK, K3,
where K, is the unique maximal compact subgroup of G, (Qp), and where
K" C Il,4p, Go(Qp) is an arbitrary open compact subgroup.

Let J be the inner form of G which is anisotropic at w and quasi-split at v,
and which locally coincides with G at all places # v, w of F. Then there exists an
identification of the adjoint group J, »qa(Qp) with PGLy(F),) and an action of J(Q)
on G(Ay)/K* (which is, however, not induced by an action of J(Q) on G(Ay)).

We now formulate our main theorem in the version over a p-adic field, cf. Corol-
lary 7.5.2. Recall the embedding (1.2.4) of F into E. We choose a place v of E over v.
Throughout the paper, we always assume ) p # 2 if v is ramified in K.

THEOREM 1.2.1. — Let K* = K;KP, where K is of the form (1.2.5). Let E, be the
completion of the maximal unramified extension of E,, in @p. There is a finite abelian
extension E; of E, and an isomorphism of algebraic curves over E’,f,

A+ B Xspec 5 Spec Ef =~ (J(Q\[Qr, x G(Af)/K*]) Xspec F, Spec E

2. In the light of the results of Kirch [15], it should be possible to remove this blanket assumption.
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xii CHAPTER 1. INTRODUCTION

Here, as before, 2, denotes the Drinfeld halfplane relative to the local field F,
and the interpretation is as before that the scheme on the LHS is the algebraization
of the rigid-analytic variety on the RHS. If K,, is of the form (1.2.7) below, then we
may take E; = El,, cf. Theorem 1.2.3 below; but in general, one needs a non-trivial
extension, comp. Theorem 1.2.4.

From this theorem we deduce an analogue of Cherednik’s isomorphism (1.1.2), not-
ing that any geometric connected component X of Shk- is defined over the maximal
abelian extension E?P of E,

(1.2.6) X ®pa B2 ~ (D\Qp,) @p, E2°.

Here Eﬁb denotes the completion of the maximal abelian extension of E,, and T is
a cocompact discrete subgroup of PGLo(F),). Since the Cherednik Shimura datum
is a central twist of (G, {h}), the geometric connected components of Shx can be
identified with those appearing in Cherednik’s theorem, so that in fact (1.1.2) follows
from Theorem 1.2.1.

By extending the moduli problem for Shk integrally over Spec O (p, ), We obtain
semi-global integral models of these Shimura varieties. This gives us the possibility of
formulating an ‘integral’ version of this theorem. Let us explain the moduli problem
in question.

We first explain the level structure. For every p|p, we fix a lattice A, in V. We
assume that A, is a self-dual lattice (for the alternating form 1) when p is either split
in K or ramified. When p is unramified in K, we assume that A, is selfdual when
inv,(V) =1, and almost selfdual when inv, (V) = —1. Let

(1.2.7) K, ={9€ G(Q) | gAp, = Ay, for all p|p}.
We also fix an open compact subgroup K? C G (A’}) and set K = K,KP. We continue
to assume that for the distinguished p-adic place v we have inv, (V) = —1.

We define a functor Ak on the category of Op, (,,)-schemes. Let S € (Sch/Og (,,))-
Then a point of Ak (S) consists of an equivalence class of quadruples (A, ¢, A, 77). Here

— A is an abelian scheme over S and ¢: Ox — End(A) ® Z, is an action of Ok
on A,

— X is a Q-homogeneous polarization of A such that its Rosati involution induces
the conjugation on K/F,

— P VoA 5 VP(A) is KP-class of K-linear similitudes.

Here the prime-to-p-rational Tate module Ve (A) of A is equipped with its natural
anti-Hermitian form arising by contraction from its polarization form. Two quadruples
(A, 1, \,7P) and (A’,/, N, 7P") are equivalent, if there exists an isogeny A — A’ of
degree prime to p compatible with the remaining data.

We impose the following conditions on the quadruples (A, , \,7P). First, for the
action of Ok on Lie A induced by ¢, we impose the Kottwitz condition (KC,) relative
to r, see (2.2.1), comp. [19]. In addition, we demand that this action also satisfies the
Eisenstein condition (EC,.) relative to r. This condition is defined in Section 2, and is
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1.2. GLOBAL RESULTS xiii

a key novelty of this paper. The condition (EC,.) follows from the Kottwitz condition
(KC,) when S is an E-scheme but is quite subtle when p is nilpotent in Og. Imposing
this condition ensures the flatness of the moduli scheme.

Secondly, we demand that there exists a polarization A\ € X such that, for every p|p,
the localization of the kernel of the polarization A\ at the place p satisfies

(1.2.8) |(Ker A)p| = [AY : Ay].

Thirdly, we impose that for each p|p, the r-adjusted invariant invy, (4, ¢, A) coincides
with the invariant inv, (V') of the anti-Hermitian space V. Here the r-adjusted invari-
ant of the triple (A,¢, A), defined in §8.2, is another key novelty of this paper. This
condition is automatically satisfied when p, is the only prime ideal of F' over p. In
general, this condition cuts out the open and closed part of the moduli scheme defined
by the Shimura variety. The reason for the name r-adjusted is that this adjusts the
definition of the invariant in [19], where it was erroneously asserted that the invariant
is locally constant in families. We prove here that this local constancy indeed holds
for the r-adjusted invariant, cf. Proposition 8.2.1.

PROPOSITION 1.2.2. — Let r be a generalized CM-type of even rank n, with associated
reflex field E, cf. [19, §2]. Let S be an Og-scheme. Let (A, i, \) be a CM-triple over S
which satisfies the Kottwitz condition (KC,.), cf. §8.2. Let ¢ € {£1}. Then for every
non-archimedean place v of F, the set of points s € S such that

inv, (As,ts,As) = ¢
is open and closed in S.

Here, now, is our main theorem in the context of schemes over p-adic integer rings,
cf. Theorem 7.3.3 and Corollary 7.3.4.

THEOREM 1.2.3. — Let K = K, KP, where K,, is of the form (1.2.7), and where KP? is
sufficiently small.

(i) The functor Ak is representable by a projective flat Og (p,)-scheme of relative
dimension one, which is the unique stable model in the sense of Deligne-Mumford [9]
of its generic fiber. Its generic fiber Ak ®0g. (v, B 1s tdentified with Ak g and its
complez fiber Ax ®o,, (, , C with Shk.

(ii) Let Ak be the formal completion of Ak along its special fiber, which is a
formal scheme over Spf Og,. Then there exists an isomorphism of formal schemes
over Spf O, ,

Axc Xspt 05, SPf O, = J(QN[(Qr, Xsprog, SPEOy, ) x G(As)/K].

For varying KP, this isomorphism is compatible with the action of G(A’;) through
Hecke correspondences on both sides. The natural Weil descent datum on the LHS is
given on the RHS by (§,9) — (7g,(€),w.(g9)), where Tg, is the natural Weil descent
datum down to Og, on ﬁpﬂ Xspt O, SPE OE,, , and where w!. is a certain automorphism
of G(Qp)/K, commuting with the action of G(Q,) by left translations. If the inertia
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index fg, is even and if furthermore there are no prime ideals p|p which split in K,
then w!. is given by multiplication by p.

Here O r, denotes the formal scheme version of Qg over Spf Op, due to Deligne,
Drinfeld and Mumford, cf. [10]. In Section 7 we give a variant of the RHS, which allows
us to express the automorphism w!. explicitly. Theorem 1.2.3 is optimal in the sense
that it describes explicitly the scheme Ak over Og, and its p-adic uniformization.

If we assume that there are prime ideals p|p different from p,, we may pass to
deeper level structures and still prove an integral version of p-adic uniformization.
Let K} C G(Qp) be of the form

(1.2.9) K = G(Q,) NK,K}",

where K, is the stabilizer of Ay, , and where K7:* is an arbitrary open compact
subgroup of G¥(Qp) = [],,, G»(Qp). The system of such subgroups is stable under
conjugation with elements of G(Q)). For such subgroups, we have the following version
of our main theorem, cf. Corollary 7.4.15.

THEOREM 1.2.4. — Let K* = K;KP, for a choice of sufficiently small KP C G(A‘f’),
where K3 is of the form (1.2.9). There ezists a mormal scheme Aj. over SpecOp
such that for the p-adic completion of this scheme there is an isomorphism

i = J(Q\[(Qr, Xsptor, SPEO,) x G¥(Qy)/K}Y x G(A})/KP).

For varying K*, these schemes form a tower with an action of the group G(Qp) x G(A’}),
where the action of G(Q,) factors through G(Qp,) — GY(Qp). The isomorphism of
formal schemes is compatible with these actions.

The general fiber of Ak. is a Galois twist of Ak« g Xspec E SPEC E, by an abelian
character xl(}. The Galois twist respects the Hecke operators.

The scheme Aj;. represents a moduli problem of abelian varieties with additional
structure over Oy , cf. Section 7.4. We refer to Section 7.6 for the explicit determi-
nation of x§.

It should be pointed out that Theorem 1.2.4 is not optimal since we cannot de-
scribe the descent to F,. Also, when v is ramified in K, we can only give the character
X3 explicitly after restricting to a subgroup of index 2. This is in contrast to Theo-
rem 1.2.3. The deeper reason for this deficiency lies in the fact that the natural context
for Theorem 1.2.4 is the class of Shimura varieties appearing in [25]. Let ¥ C ® be a
CM-type for K/F such that

(1.2.10) U@\ {0, #o}) = {¢ € 8\ {90, %0} | 7 = 2}.

There are two possibilities for ¥. Let Ey be the reflex field of ¥ and let E be the
composite of By and E = E,. Then E is an extension of degree one or two of F,.
Associated to (V,,¥), there is a finite number of Shimura varieties Shg (G, {h})
with reflex field E, cf. [25, §3]. Here G maps surjectively to G with kernel a central
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torus, hence the Shimura varieties Shg (G, {h}) are central twists of the Shimura va-
riety Shi (G, {h}). Each one represents a moduli problem on (Sch/E). In a sequel
to this paper, we will construct semi-global integral models of these Shimura vari-
eties over Spec O B.(5)" These are described by moduli problems of abelian varieties
on (Sch/Og (;)) and admit p-adic uniformization in the strong sense of Theorem 1.2.3,

when the congruence condition on the open compact subgroup K is prime to the
chosen place v. The trade-off in comparison with our Shimura variety is that the
corresponding reflex field F is larger than the reflex field E of our Shimura variety
(which, in turn, is larger than the reflex field F' of Cherednik’s Shimura variety).

Both Theorems 1.2.1 and 1.2.3 are proved in [19] when F,, = Q,. Most of the work
in [19] was local, and an essential ingredient was the alternative moduli interpretation
of the Drinfeld halfplane in [18]. Once this is accomplished, the proof of the global
theorems follows in a relatively straightforward way from the general non-archimedean
uniformization theory of [27, Chap. 6]. The same is true here. In [19], we expressed
the hope that it might be possible to eliminate the strong limitation F;, = Q, made
there, and this hope is achieved in the present paper. As explained in [19], the main
issue is the contrast between the condition on the action of Of, on the Lie algebras of
the p-divisible groups in the local moduli problems. On the one hand, for the moduli
problem represented by the Drinfeld half-plane Q F,, the action of O, on the Lie
algebra is required to be strict, i.e., to factor through the structure morphism of the
base scheme S. On the other hand, in the global moduli problem, the Lie algebras
of the relevant abelian schemes are often free O ®7 Og-modules. The main results
of the present paper, and in particular the contracting functor defined in Section 4,
provide the bridge between the two types of moduli problems.

1.3. Local results

Let us now formulate our local results, referring to Section 2 for more details and
more explanations of some terms used here. Let p be a prime number, and let F' be a
finite extension of degree d = [F' : Q] of Q, and let K/F be a quadratic extension.
Let ® = Homg,.A15(K, Qp), and fix a pair {¢o, o} of conjugate elements in ®. Here
@o(a) = po(a). Let r be a local CM-type of rank 2 which is special w.r.t {po, g0}, i.e.,
a function

(1.3.1) r:® — Zyy, Q> Ty,

such that r,+75; = 2forallp € ®,and r,, =1z, = L and r, € {0,2} for ¢ ¢ {¢o, Po},
comp. [19]. We denote the reflex field of r by E. It is a subfield of Q,.

For an Og-scheme S, we consider triples (X, ¢, \), where X is a p-divisible group of
height 4d and dimension 2d over S, where ¢:: O — End(X) is an action of Og on X,
and where A\: X — XV is a polarization of X such that its Rosati involution induces
on Ok the conjugation involution over Or. We impose the Kottwitz condition (KC,.)
and the Eisenstein conditions (EC,.) on the action of Ok on Lie X. Furthermore, we
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assume that A is a principal polarization if K/F is ramified, and that A is an almost
principal polarization if K/F is unramified.

We fix such a triple (X, tx, Ax) over the algebraic closure k of the residue field kg
of E, and refer to it as a framing object. When K/F is unramified, then any two such
triples are isogenous by an Ok-isogeny of height zero which preserves the polariza-
tions. The same is true when K/F is ramified, provided we impose that the r-adjusted
invariant inv" (X, tx, Ax) is —1 (this last condition is automatic when K/F' is unram-
ified). In either case, the group J(Q,) of Ok-self-quasi-isogenies of (X, tx) preserving
the polarization Ax up to a factor in Q can be identified with the group of uni-
tary similitudes, with similitude factor in Q., of a split K / F-anti-Hermitian space of
dimension 2. Let J'(Q,) denote the special unitary group.

We consider the Rapoport-Zink space M, over Spf O representing the functor
on (Sch/ Spf O ) which associates to S € (Sch/ Spf O,) the set of isomorphism classes
of 4-tuples (X, t, A, p), where (X, A) is as above, and where p is a framing of height
zero, with framing object (X tx, Ax). Our main local result may now be formulated
as follows. We fix an isomorphism J!(Q,) ~ SLy(F).

THEOREM 1.3.1. — The RZ-space M, is isomorphic to ﬁp@oF,%OE. More precisely,
there exists a unique isomorphism of formal schemes

MT ~ QFXSpfOF SpfOE,

which is equivariant with respect to the fized identification J'(Q,) ~ SLo(F). In
particular, M, is flat over Spf Oy, with semi-stable reduction.

It is more honest to formulate this theorem as follows. Let M be the relative RZ-
space over Spf O from [18]. It parametrizes tuples (X', ', X, p'), where X' is a strict
formal Op-module of relative height 4 and dimension 2, and where + is an Og-action
on X which is of signature (1,1), and where )\ is a relative polarization compatible
with ¢/, which is principal if K/ F is ramified and almost principal if K/ F is unramified.
Also, p' is a framing of height zero with a suitable framing object (X', %/, Xk,). We
fix an extension @gg: Oy — Op of pg: O — Og. Then our main local result is the
construction of a contracting functor

(1.3.2) Mr — M Xspfoﬁ Spf OE

and the proof that it induces an isomorphism of formal schemes over Spf Oj. The
construction of the contracting functor is another key novelty of this paper. Theo-
rem 1.3.1 then follows by combining (1.3.2) with the alternative interpretation of the
Drinfeld halfplane of [18], which yields an isomorphism M ~ 0 F®0,0p.

Our construction of the contracting functor is based on the theory of displays. Let
R be a p-adic ring, and let W(R) be its ring of Witt vectors. Displays over R are
certain modules over W(R) with additional structures. Under suitable hypotheses,
the category of p-divisible groups over R is equivalent to the category of displays
over R. The contracting functor is the composition of two functors. The first functor
associates to a tuple (X,:,\) as above a new tuple (X7, \), where X is a p-divisible
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group of height 4d and dimension 2, where 7 is an Og-action such that its restriction
to Op is strict and which is of signature (1,1), and where \is a polarization with
values in the Lubin-Tate group compatible with 7. We call this a polarization in the
sense of Faltings. Note that because of the values for the height and the dimension
of X, there cannot exist a polarization in the usual sense on X. The second functor
is the Ahsendorf functor from [1]. It associates to (X, 7, \) a relative tuple (X', ./, \)
as above. The Ahsendorf functor is the analogue for displays of the Drinfeld functor
which associates to a Cartier module of a p-divisible group with strict Op-action
its relative Cartier module, cf. [10, §2]. We also use the theory of displays to give
a new proof of (a slight refinement of) the alternative interpretation of the Drinfeld
halfplane, which is the third proof after the original proof in [18] and the proof of
Kirch [15].

Let us formulate the main contribution of this paper to the theory of displays, cf.
Theorem 3.3.2 and Theorem 3.4.11. It compares displays for the Witt frame W(R)
with displays for the relative Witt frame Wo, (R), comp. Definition 3.1.4. We give
a simpler construction of the Ahsendorf functor and use this to prove the following
theorem.

THEOREM 1.3.2. — Let R be an Op-algebra such that p is nilpotent in R. The Ah-
sendorf functor is a functor

W(R)-displays
A0p/2,,R

with strict Op-action
It induces an equivalence of categories
nilpotent W(R)-displays
A0r/z,.R , , ‘
with strict Op-action
Let Py and P2 be W(R)-displays over R with a strict Op-action. We denote by P14

and Pa,, their images by the Ahsendorf functor Ao, z, r- Then there is a natural
homomorphism between groups of bilinear forms of displays,

> — <W0F(R)—displays>.

— <nilpotent Wo (R)-displays) .

Bilo.-displays(P1 X P2, Lr) — Bilyw, _(R)-displays(P1,a X Pz,a,Pm,woF(R)(Wef/Pf))-
If the dual (P1,)" of P1,a and P2, are nilpotent Wo,. (R)-displays, then this homo-
morphism is an isomorphism.

Here Ly denotes the Lubin-Tate W(R)-display, and Pin,Wo . (R) (el /pf) the twist
of the multiplicative Wo . (R)-display by the unit £ = W;f/pf.

Let us now put the local results of this paper in perspective. We address in our
special case the general problem of identifying a basic Rapoport-Zink space associated
to the pair (G, {p}) with a twist of the basic Rapoport-Zink space associated to the
pair (G, {¢'}), where p’ differs from p by a central character, cf. the Introduction of
[28]. This problem is also addressed by Scholze in [29, Chap. 23], in both the case
considered here and in the fake Drinfeld case of [28]. As mentioned above, Scholze’s
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proof uses in an essential way our formulation of the local moduli problem, via the
theory of local models (and hence implicitly the linear algebra lemma [28, Lem. 4.9]).
One of the main reasons that we are successful in constructing the contracting functor
in the case treated here is that here we are able to develop a good understanding of
the Kottwitz condition (KC, ), even in unequal characteristic. Our failure to do the
same in the fake Drinfeld case is the essential reason that in [28] we only succeeded
in defining the contracting functor in the special fiber. The contracting functor is
an expression of the exceptional isomorphism between the quasi-split special unitary
group in two variables and the special linear group in two variables. We restricted
ourselves here to the case of curves; it would have been possible to prove a higher-
dimensional version where the uniformizing space p, is replaced by a product of
such spaces, comp. [19] and [27, §6].

1.4. Layout of the paper

We now explain the layout of the paper. The whole paper, with the exception of
Section 7, is devoted to the local theory. In Section 2 we explain in detail the defini-
tion of the formal moduli spaces of (polarized) p-divisible formal groups, including the
Kottwitz conditions relevant here and the Eisenstein conditions; in particular, Subsec-
tion 2.6 contains the detailed statements of our main local results. Section 3 summa-
rizes the relevant facts on relative Dieudonné theory and relative display theory. The
most important fact proved in this section is the relation established by the Ahsendorf
functor between the Lubin-Tate display and the relative multiplicative display. In Sec-
tion 4 we first consider the relation between the Kottwitz condition and the Eisenstein
condition; this is used in the rest of the section to construct the contracting functor.
More precisely, we first consider the first step in its construction which we call the
pre-contracting functor, cf. above. After this, we complete the second step in the case
of a special generalized CM-type. In the final subsection of Section 4, we consider
the second step in the case of a banal generalized CM-type. Section 5 is devoted to
an alternative proof of the main result of [18], based on the theory of displays. In
Section 6 we prove the main local results, namely Theorem 1.3.1 and its banal coun-
terpart. In the appendix, Section 8, we give the correct version of the sign factor of
[19] by defining the adjusted invariant of a CM-triple of generalized CM-type r of even
rank n, and investigate its behavior under the contracting functor. Section 7 deduces
the global results from the local theory.
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1.6. Notation

If R and R’ are Z,-algebras, we often write R ® R’ for R ®z, R'. Also, we often
write X ®4 B for X Xgpec 4 Spec B.

If F is a finite extension of Q,, we write F for the completion of a maximal
unramified extension, and F*! for the maximal subfield unramified over Q,. We
write d = ef, where d = [F' : Q] and f = [F': Q,] and e = [F : F*']. We denote
by OF, resp. OF¢, resp. Oy the rings of integers.

Let V be an C/R-anti-Hermitian vector space. The signature of V' is (a,b) if the
anti-Hermitian form is equivalent to diag(i(®),i(*)), where i is the imaginary unit.

Let F' be a finite extension of Q, and let K/F be a quadratic extension. Let V be a
K-vector space, equipped with an alternating Q,-bilinear form ¢: V xV — Q,
satisfying (1.2.1). Let A be a Og-lattice in V. Then the dual Og-lattice is
N ={z eV |yY(z,y) € Z, for all y € A}. The lattice A is called self-dual if
A = AV, it is called almost self-dual if A is contained in AV with colength one.

If O is a discrete valuation ring with uniformizer =, we write Nilp, for the category
of O-algebras R such that 7 is locally on Spec R nilpotent. Similarly, we denote
by (Sch/Spf O) the category of O-schemes such that 7Og is a locally nilpotent
ideal sheaf.

Given modules M and N over a ring R, we write M C" N to indicate that M is
an R-submodule of N of finite colength 7.

Warning. — It is customary to denote a finite extension of Q, and the Frobenius by
the same symbol F'. This should not lead to confusions.
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CHAPTER 2

MAIN LOCAL STATEMENTS

In this section we formulate our main results in the local theory. We fix a prime
number p and an algebraic closure @p of Qp. Here, as in the rest of the paper, we
assume that p # 2. Let F' be a finite field extension of Q,, with residue class field K.
We set d = [F : Qp], f = [kF : Fp] and define e through d = ef. We let K/F be
an étale algebra of degree 2. We denote the non-trivial automorphism of Gal(K/F')
by a +— a.

In the case where K/F is a ramified extension of local fields (ramified case) we
choose a prime element IT € O such that IT = —II. Then 7 = —II? is a prime element
of F. In the case where K/F is unramified extension of local fields (unramified case)
or K = F x F (split case) we choose a prime element 7 € F' and we set I = .

Let ® = ®x = Homg,.A15(K, @p) be the set of algebra homomorphisms.

2.1. Special and banal local CM-types

Let r be a generalized local CM-type of rank 2 (relative to K/F) in the sense of
[19, Section 5], i.e., a function

(2.1.1) r:® — Z>oq, P Ty,

such that r, 4+ 75 = 2 for all ¢ € ®. Here p(a) = ¢(a), where a — @ is the non-trivial
automorphism of K over F. The corresponding reflex field £ = E(r) is the subfield
of Q, fixed by

Gal(@p/E) = {T € Gal(@p/@ﬁ) | Tro = T, VCP}
Let Og be the ring of integers of E.

When we fix an embedding g : FF — @p, we denote by ¢g, P, the two extensions
of pg to K (by abuse of notation).

DEFINITION 2.1.1. — A local CM-type r of rank 2 is called special relative to the choice
of embedding pg : FF —> @p if K/F is a field extension and

Too =Tp, = 1, and r, € {0,2},  for all o € ®\ {p0, P}
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It is called banal non-split if K/F is a field extension and r, € {0,2}, for all p € ®.
It is called banal split if K ~ F & F and r, € {0,2}, for all ¢ € ®.

From now on, we will assume 7 to be either special (relative to a fixed choice of ¢g)
or banal (non-split or split). We will consider p-divisible groups X with an action
of Ok over Og-schemes S. We will want to impose certain conditions on the induced
action of Ok on Lie X.

2.2. The Kottwitz and the Eisenstein conditions

Let S be an Og-scheme, and let £ be a locally free Og-module, equipped with an

action
[ OK — Endos L
Of()K.

We say that (£, ¢) satisfies the Kottwitz condition (KC,.) relative to r if the identity
of polynomials with coefficients in Og holds
(2.2.1) char(T, u(a)|£) = i( H (T — ¢(a))™®), forallac€ Ok,

ped
where i : O — Og is the structure homomorphism (compare [28]).

We denote by F* C F the maximal subextension which is unramified over Q,.
We similarly define K ¢ K when K is a field; in the split case K = F x F we
set K' = F* x F'. We set ¥ = ¥x = Homg,-a1g(K*,Q,). We call ¥ € ¥ banal if
r, € {0,2} for each ¢ € ® such that ¢ | . If this is not the case we call 9 special.
We use the notation

(2:2.2) Oy ={pe®|yp,, =v} vel

The subfield ¢ (K*) of Qp is unramified over Q,,, and hence is normal and independent
of 1 € U. We denote by E’ the compositum of E with ¢ (K?). Note that E’/E is an
unramified extension of local fields.

Let S be an Og-scheme. Let o : S — Spec Og/ be a morphism of Og-schemes.
Then « gives rise to an isomorphism of O+ ®z, Og algebras

(2.2.3) Ok ®z, Os = P Os,
Yew

where the action of O+ on the ¥-th factor is via 1. Hence for a locally free Og-module
L with action by Og, we obtain a decomposition into locally free Og-modules,

(2.2.4) =@,
Yevw

If (£,¢) satisfies the Kottwitz condition we obtain from (2.2.1) applied to a € O
that

(2.2.5) rank Ly = Z Te

PpEDy
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We say that (L,:) satisfies the rank condition (RC,), if (2.2.5) is satisfied for all ¢.
The rank condition does not depend on the o chosen above because a second o’ differs
from « by an automorphism of E’ over F if S is connected. If there is no a we use
base change Spec Op' Xgpeco, S — S to define the condition (RC,). This agrees
with the old definition if «a exists.

We consider a pair (£,¢) that satisfies (RC,). Then we will define the Eisenstein
condition (EC,) (this definition is analogous to [28, Section 2|, but different). We
introduce the notation
A¢:{¢:K—>@p|cp|Kt =1, and r, = 2}
B¢:{<p:K—>@p|<p|Kt =1, and r, = 0}.
We note that under the action of the non-trivial automorphism of K/F,
(2.2.7) Ay = B,
Also, let Ay = |A,¢,| and by, = |B¢,|

With this notation we may rewrite the rank condition (RC,)

(2.2.8) rank Ly = 2ay + €y,

where

(2.2.6)

0, if ¢ is banal
€y = § 1, if 1 is special and K/F is unramified
2, if ¢ is special and K/F is ramified.
In the case where K /F is ramified we have K* = F', [K : K'] = 2¢, and for each 9 € ¥

ely =09
Therefore a, = by, and the rank condition reads, in the ramified case,
rank Ly = 2e,

regardless of whether r is banal or not.

Consider the Eisenstein polynomial E(T) of II in Og:[T]. We consider the image
Ey(T) of E(T) in Q,[T] under 1, for ¢ € ¥. In Q,[T] this has a decomposition into
linear factors,

(2.2.9) Ey(T) = [[ (T - o).
pEDy
We define

(2.2.10) Es, (T)= [ @-¢), Ep,(T)= [] (T - ).
PEAy pEBy

The action of Gal(Q,/E’) stabilizes the corresponding subsets in the index set on the
right hand sides of (2.2.9) and (2.2.10). Therefore all three polynomials lie in Og/[T]].

If r is special we fix an embedding ¢ : K — @Q, such that Ty, = 1. We denote
by 1o the restriction of ¢y to K?. In the ramified case we have vy = 1)y and in the
unramified case 1y # 1.
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We define S, by the following factorization in Og/ [T,

(2.2.11) Ey(T) = Sy(T) - Ea,(T) - Eg, (T).
Hence
1, if ¢ is banal
Sy(T) = (T — o(IN)(T — @y (IT)), if ¢ = o and K/F is ramified
v ] - @o(IT), if 9p = ¢g and K/F is unramified
T — 9, (II), if ) = ¢, and K/F is unramified.

Now using the structure morphism O — g, each of the three factors in
(2.2.11), when evaluated on II, defines an endomorphism of the Og-module L.
These endomorphisms are denoted by Ea,(c(II)|Ly), resp. Ep, ((I)|Ly), resp.

Sy (L(ID)[Ly)-
We say that (£, ) satisfies the Eisenstein conditions (EC,) if (RC,) is fulfilled and
if for each ¢
(Sy - Ea,) () | Ly) =0,
(2.2.12) 4—[K':FY)
A (Ba, (D) | £y)) = 0.

In the case where v is banal the first condition says
(2.2.13) E4, (((IT)[£y) =0, for all ¢ € V.

and the second condition follows from the first.

The Eisenstein conditions do not depend on the O g-morphism « : S — Spec Op:.
Indeed, if S is connected, any other choice of a differs by an automorphism
p € Gal(E'/E). In the decomposition (2.2.4) L, is then replaced by L, and Ey is
replaced by p(E,) = E,y. Here the last identity holds by the definition of the reflex
field E. Therefore changing a does not change the Eisenstein conditions (EC,.).
If there exists no a, we use base change Spec Op/ Xgpeco, S — S to define the
condition (EC,.). The same arguments apply to the condition (KC,.).

We first note the following statement.

PROPOSITION 2.2.1. — Let S be an Og-scheme and L a locally free Og-module with
an Og-action ¢: Ox — Endpg (L).

(i) The Eisenstein conditions (EC,) are independent of the uniformizer IL.

(if) When K/Q, is unramified, the Eisenstein conditions (EC,) are implied by the
Kottwitz condition (KC,). The same conclusion holds if F = Q, and K/F is
ramified.

(iii) When S is an E-scheme, the Eisenstein conditions (EC,.) hold automatically.
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Proof. — Let us prove (i). Let II' be another uniformizer. It is enough to show that
the elements of Ok ®o, .,y Or,

EAw(H(X)]-), EAw(HI(X)l), resp.
Sy(I®1)Ea, (T®1), Su(II'®1)E4,(II'® 1),

differ by a unit in Og ®o, .,y Op'. Indeed, let E’ be the normalization of E’ in Qp-
Since O ®o0,., v O — Ok ®o0,., .y O is a flat extension of local rings, we can
replace E’ by E’. By the definitions (2.2.10) and (2.2.11), it suffices to show that the
elements II® 1 —1® o(IT) and II' ® 1 — 1 ® p(II') differ by a unit in Ox ®o, .,y Op'-
But by [26, Lem. 6.11] the elements T®1 -1 and II'® 1 —1QII' of Ok ®0,. Ok
differ by a unit, whence the assertion.

Now we prove (ii). Let us only treat the case where r is special; the banal case
is similar. When K = K' is unramified over Q,, then E(T) = T — 7 is a linear
polynomial. Furthermore, A, has at most one element for ¢ ¢ {t0,%,}, and Ay, =
Ay = 0. Let ¥ ¢ {to,¢o}. If Ay = 0, then £, = (0) and the Eisenstein condition
relative to the index 1 is empty; if A, has one element, the Eisenstein condition
relative to the index 1 is just equivalent to the definition of the -th eigenspace in
the decomposition (2.2.4). Something analogous applies to the indices v, %,. The
case when F' = Q, is handled in the same way.

Finally we prove (iii). Let K be the normal closure of K in @p. It suffices to prove
the assertion after replacing S by its base change S Xgpec £ Spec K. Then we have a
decomposition

Ok ®z, Os = @ Os.
ped
Correspondingly, we have £L = &L, and the endomorphism ¢(II) is diagonal with
respect to this decomposition, with entries ¢(II)id.,. It is easy to see that (KC,) is
equivalent to the condition

(2.2.14) rank L, =71,, Vo€ ®.

The Eisenstein conditions (EC,) involve endomorphisms of £ which are products of

endomorphisms of the form (L(H)|£w —¢(D)ide,) D4, idz - From this, the condi-

tions follow trivially. O
Let us make the Eisenstein conditions more explicit in the case where r is special.

For this, we distinguish between the case when K/F is ramified and the case when

K/F is unramified. Let S be an Op/-scheme and £ be a locally free Og-module
satisfying (RC,).

— K/F ramified. In this case, we have K* = F* and ¢ = 1 for all ¢ € V. Hence,
(2.2.7) implies in this case

) 'f
(2.2.15) oy =by = { :_ 1 ifz i ZZ
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We have
Syo(T) = (T — @o(IN)(T = @y (II)).
The Eisenstein conditions become in this case
(Syo - Ea,, ) (D] Ly,) =0,
3
2.2.1
(2.2.16) A (Ea,, (D)[£y,)) =0,
E4, (((I1)[£y) =0, for all 3 # 4.

— K/F unramified. In this case, [K? : F*] = 2, and v # 1 for all¢) € ¥. Furthermore,

ay = by and
(2.2.17) Z ay =e(f—1), ay, + ay, =e—1L

we\l’\{woﬂo}

In this case, the Eisenstein conditions become

(Swo ' EAwo)(L(ﬂ—)lEl/)o) = Oa

/\ (EA¢O ([’(ﬂ-)|£'¢)o)) =0,
(2.2.18) (S3, - EA%)(L(w)w%) =0,
/\ (EAgo ([’(ﬂ-)l‘cEO)) =0,

EAw (L(ﬂ-)|£¢) =0, forall y # dfo,ao-

2.3. Local CM-pairs and CM-triples

Let S be an Og-scheme such that p is locally nilpotent i.e., a scheme over Spf Og.
A local CM-pair of type r is a pair (X, ¢) such that X is a p-divisible group of height 4d
and dimension 2d and ¢ is an Zp-algebra homomorphism

t:0g — End X

such that the rank condition (RC,) is satisfied for the induced action of Ok on Lie X.
In the split case O = O x O we require moreover that in the induced decompo-
sition X = X; x X, each factor is a p-divisible group of height 2d.

Later we will introduce displays P, and these have a Lie algebra Lie P, cf. Defini-
tion 3.1.4. Therefore, we can also speak of local CM-pairs (P, ¢) of type r, where P is
a display over S, cf. Section 3.

Let S = Speck be a perfect field of characteristic p which is endowed with an
Og-algebra structure. In this case, a display in the same thing as a Dieudonné module
P = (P,F,V), where P is a finitely generated free module over the ring of Witt
vectors W (k). If P is the Dieudonné module of X, there is a canonical isomorphism
of k-vector spaces Lie X = P/V P.
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Via + we regard P as a Ox ®z, W (k)-module. The homomorphisms
(2.3.1) Y : 0kt — O — k,
1 € U lift uniquely to homomorphisms
(2.3.2) Y : Oge — W(k).
We obtain a ring isomorphism

Ok ®z, W(k) = [] Ok D05 W(k).
PeY

This induces a decomposition
(2.3.3) P=@ P,
Pew

More explicitly

Py ={z € P|ia)r =1(a)z, fora € Ok+}.

Let us denote by o the Frobenius automorphism of W (k). The operators F' and V
on P induce o-linear maps

(234) F: Pw i Pmp, V. Pmp i P,/,.
Here o1 denotes the composite of (2.3.1) with the absolute Frobenius of k.

LEMMA 2.3.1. — Let (P,¢) be local CM-pair of type v over a perfect field k. Then P is
a free O ®z, W (k)-module of rank 2.

Proof. — Since FV = p it follows that
(235) rankOK@OKt,v,ZW(k) P'P = rankOK@oKt,auZW(k) Pm/,.

Since rankyy )y P = 4d, and by the extra condition in the split case, this implies that
the common rank of (2.3.5) is 2. This proves the lemma. O

To each local CM-pair (X, ) we define the conjugate dual (XV,:").Here XV is the
dual p-divisible group of X but we change the action dual to ¢ by the conjugation
of K/F, ie., "*(a) = 1Y(a). We will denote the conjugate dual simply by X".

LEMMA 2.3.2. — The conjugate dual of a CM-pair (X,.) of type r is again a local
CM-pair of type r. If (X, 1) satisfies the Kottwitz condition (KC,.), resp., the Fisenstein
conditions (EC,.), then so does its conjugate dual.

Proof. — For the first assertion, we may assume that we are over an algebraically
closed field. We use the Dieudonné module P. We set

Pv = HomW(k) (P, W(k))
We use the canonical pairing

(2.3.6) (,):Px P — W(k).
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The operators F' and V on the dual Dieudonné module PV are defined by the equations
(Va,VaV)y =po ((z,2V)), reP z¥ePY
o((Va,z")) = (=, Fa’).

One of these equations implies the other. It follows that VP/pP C P/pP and
VPY/pPY C PV/pPVY are orthogonal complements with respect to the non-
degenerate pairing of k-vector spaces,

P/pP x PY/pPY — k.

If we use the action ., we write for the decomposition (2.3.3)

PY = P)=rP"

Pevw
Then Py, and P$2 are for 1 # 1y orthogonal with respect to (2.3.6) and
(2.3.7) (,):Pyx P£ — W (k).

is a perfect pairing. The k-vector spaces V P, /pP, and VP;\J) /pP£ are orthogonal
complements with respect to the induced non-degenerate k-bilinear form

Py /pPy x qu—)\/qu/Z\ — k.

Let us assume that K/F is unramified or split. In this case Lemma 2.3.1 implies
rankyy () Py = 2e and by (2.3.7) ranky ) Pj} = 2e. Since P satisfies (RC,.) we find
by the orthogonality above

rankg P /V PN = 2e —ranky Py/VPry =26 — » 1o =» (2—1,) =Y 15
ely el el

This shows that the conjugate dual satisfies (RC,). The case K/F ramified is similiar.

For the proof of the assertion concerning (KC,), we refer to Proposition 4.2.13. For
the proof of the assertion concerning (EC,.), we refer to Corollary 4.2.8 in the case
when K/F is unramified or split, resp., Corollary 4.2.12 when K/F is ramified. O

The notion of a local CM-triple of type r over S was introduced in [19]. This is
a triple (X, ¢, A), where (X,:) is a local CM-pair of type r and A : X — XV is an
anti-symmetric isogeny (also called a polarization) such that the corresponding Rosati
involution induces the non-trivial automorphism on K/F. In particular A induces a
morphism of local CM-pairs

A (X)) — (X0,

In the present paper, we will also say that (X, ¢, ) is a polarized local CM-pair (of
type r). We call the polarized local CM-pair (X, ¢, A) principal if Ker A = 0; we call
it almost principalwhen Ker A C X[i(7)] and Ker A has order p*/. We will distin-
guish principal polarized local CM-pairs from almost principal ones by attaching the
integer h = 0 to the principal case, and h = 1 to the almost principal case, i.e.,
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height A = 2fh. We will see in §2.5 below that, when K/F is a ramified field exten-
sion, then the almost principal case does not occur. Compare Lemmas 8.1.2 and 8.1.3
for the analogue in linear algebra.

2.4. The invariant of a local CM-triple

Let K/F be a field extension. We recall from [19] the definition of the invariant of
a CM-triple, in a slightly more general context.

Let k be an algebraically closed field of characteristic p and let W (k) be the ring
of Witt vectors. We set W (k)g = W (k) ® Q. Let (M, F,V) be a Dieudonné module
of height 4d and dimension 2d which is endowed with a Z,-algebra homomorphism

t: K — End®(M, F,V).

We set Mg = M ®Q. We assume that M is endowed with a non degenerate alternating
bilinear form
ﬂ : M@ X M@ — W(]{?)Q

Let us denote by o the Frobenius automorphism of W (k). We require the following
properties:

B(Vz,Vy) = po~(B(z,y)), @,y€ My

B(ua)z,y) = B(z,(a)y), ac K.
We will associate to such a set of data (M, ¢, 8) an invariant inv(M, ¢, 3) € {£1}. We
set U = HOme_Alg(Kt, W(k)g).

The ring O ®z, W (k) decomposes

(2.4.1) Ko, Wk)=][K ey, s Wk.
P

If £ = (&) is an element of (2.4.1). Then we set

(2.4.2) ordgew (k) € = ord, Nmg /g, £ = Y ordn &y € Z.
P

The Frobenius homomorphism o acts via the second factor on K ®z, W (k). The o-con-
jugacy class of an element £ € (K ® W (k))* is uniquely determined by ordggw (x) §-

We view Mq as a K ®z, W(k)-module and suppress the notation ¢. This is a free
module of rank 2. We define an anti-Hermitian form s = s,

»%: Mg X Mg — K ®z, W(k),
on the K ®z, W(k)-module Mg by the formula
(2.4.3) Trg /g, (ax(z,y)) = Blax,y), =,y € Mg, a € K@ W(k).
Then s satisfies

(2.4.4) #(V,Vy) = po~ ' (s(z,y)).
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We write A2 Mg := /\i(@)w(k) My for the exterior product as a K ®z, W (k)-module.
This is a free K ®z, W (k)-module of rank 1. According to (2.4.1) we have decompo-
sitions

Mg =P Mas
¥
2

N Mgy =P ( A Mg,yp).

P K®Kt,¢W@(k)

We choose an isomorphism A*Mg = K ®z, W (k). Then we can write

AV (2) = yo 71 (2).

We have
ordggw (k) A’V = ord, Nmg g, det ke, w ) (VIMg)
= ord, detyy 1) (V[ Mq) = dim M = 2d.
Therefore we find ordxgw )y = 2d. Since ordgxgw k)P = 2d, the elements

P,y € K ®z, W (k) are in the same o-conjugacy class by the remark after (2.4.2). We
conclude that there is a generator x € A? Mg such that

(2.4.5) A%V (z) = p.
Note that the last equation is equivalent to A2F(x) = px. Any other generator with
this property has the form uz, where u € K*. We consider the Hermitian form

h = A%x: A2Mg x N*Mg — K @ W (k).
One deduces that h(z, ) is an element of F' C K ® W (k) which is # 0 because 3 is
non-degenerate by assumption. We denote by
(246) DK/F(M,L,,B)GFX/NHIK/FKX
the class of h(x, z). This class is called the discriminant of (M, ¢, 3) and is independent
of the choice of z.

Let a € F. Then as is again an anti-Hermitian form which satisfies (2.4.4). We
can replace 3 by asr in the definition of (2.4.6) without changing the discriminant.
We denote by

(2.4.7) inv(M, ¢, ) € {£1}

the image of 9, p(M, ¢, 3) by the canonical isomorphism F*/Nmg,p K* ~ {£1}.

Let r be a local CM-type of rank 2. Let E be the reflex field. Let O — k an
algebra structure of the algebraically closed field k. Let (X, ¢, A) be a local triple
of CM-type 7 over k. Let (M,:,3) be the associated Dieudonné module with its
polarization 5. Then we set

inv(X, ¢, A) :=inv(M, ¢, B).
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For CM-triples of CM-type r, we use also the adjusted invariant inv"(X,:,\) =
inv" (M, ¢, 8), cf. Section 8.2. In the case at hand we have

(—=1)4tinv(M, 1, 3), for r special,

(2.4.8) inv" (M, ¢, 8) = {(—1)dinV(M,Lyﬁ)7 for r banal.

2.5. Uniqueness of framing objects

In this subsection, we discuss the existence and uniqueness of framing objects that
are used in the formulation of the formal moduli problems. The proofs of these state-
ments are given later in the paper.

Let r be a generalized local CM-type of rank 2 for K/F. Let k be an algebraic

closure of the residue field kg of Og. Consider CM-triples (X,¢, A) over k which
satisfy (KC,) and (EC,).

(i) Assume that r is special. If K/F is ramified, then a local CM-triple of type r
over k as above such that the polarization is principal and with r-adjusted invariant —1
is isoclinic. When K/ F is unramified, then a local CM-triple of type r over k as above
such that the polarization is almost principal has r-adjusted invariant —1 and is
isoclinic. In either case, any two such CM-triples are isogenous by a O g-linear quasi-
isogeny of height zero that preserves the polarizations.

Furthermore, the group of Og-linear self-isogenies of such a local CM-triple,
preserving the polarization, can be identified with the unitary group of the split
K/ F-anti-Hermitian space C of dimension 2.

The assertions concerning slopes follow from Corollary 4.3.3. The uniqueness as-
sertion is in the ramified case the content of Proposition 5.2.12, and in the unramified
case of Proposition 5.3.6. The last part of the assertion follows from the fact that the
contraction functor is an equivalence of categories.

(ii), a) Let r be banal non-split. Any local CM-triple of type r over k as above is
isoclinic. The group of Ok-linear self-isogenies of such a local CM-triple, preserving
the polarization, can be identified with the unitary group of a K/F-anti-Hermitian
space C of dimension 2. When K/F is unramified and the polarization is principal,
then the anti-Hermitian space C' is split and the r-adjusted invariant is 1; when K/ F' is
ramified and the polarization is principal, then the anti-Hermitian space C' is non-
split and the r-adjusted invariant is —1; when K/F' is unramified and the polarization
is almost principal, then the anti-Hermitian space C' is non-split and the r-adjusted
invariant is —1. The case K/F ramified and almost principal polarization does not
occur. Any two CM-triples with the same r-adjusted invariant are isogenous by a
Og-linear quasi-isogeny of height zero that preserves the polarizations.

The assertions concerning slopes follow from Corollary 4.3.3. The uniqueness asser-
tion is the content of Proposition 4.5.14. Similar arguments apply to the banal split
case.
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(ii), b) Let r be banal split. Then the p-divisible group underlying a local CM-triple
of type r is the direct product of two isoclinic p-divisible groups of slope A, resp. 1 — A,
where A depends only on 7. Any two local CM-triples of type r over k are isogenous by
a Og-linear quasi-isogeny of height zero that preserves the polarizations. The group
of Ok-linear self-isogenies of such a local CM-triple, preserving the polarization, can
be identified with Resr/q, (GL2).

The chart below summarizes the discussion above. The last column lists the group
of Og-linear self-isogenies preserving the polarization. In all cases listed below, the
framing object is unique up to quasi-isogeny of height zero.

TABLE 1. Framing objects

type r K/F inv"  polarization group of self-isogenies
special ramified —1  principal quasi-split unitary group
special unramified —1 almost principal quasi-split unitary group
banal  ramified —1  principal non-quasi-split unitary group
banal  unramified 1 principal quasi-split unitary group
banal  unramified —1 almost principal non-quasi-split unitary group
banal  split 1 principal GL,/F

REMARK 2.5.1. — The statement (i) above generalizes [19, Prop. 5.4]. However, the
proof of the uniqueness assertion given there is incomplete. Note that for a local
CM-type of the first kind in the sense of loc. cit. we have imposed F' = Qy; therefore
the condition in loc. cit. that € = inv(X, ¢, \) = —1 implies that the associated anti-
Hermitian space (C,h) is split (in this case the r-adjusted invariant coincides with
the invariant).

REMARK 2.5.2. — The statement (i) is closely related to the fact that B(G, {u}) has
only one element, cf. [17], §6. Here G = Resp/qg,(GU) is the linear algebraic group
over QQ, associated to the group of unitary similitudes of the non-split anti-Hermitian
space of dimension 2 over K, and {u} is the conjugacy class of cocharacters with
component (1,0) for ¢y and central component for ¢ # ¢o. In fact, it seems that
the essential contents of the calculations in Section 8.3 is to show that the Frobenius
element of a local CM-triple of type r with r-adjusted invariant —1 over k defines an
element in B(G, p). Recall from the introduction of [17] that p-adic uniformization
can only be expected when the pair (G, u) is uniform, i.e., B(G, ) consists of a single
element.
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2.6. Formal moduli spaces

In this subsection we are going to define RZ-spaces of formal local CM-triples, and
formulate our main results about them. We fix K/F as before.

First let r be special, so that K/F is a field extension. We fix a local CM-triple
(X, tx, Ax) of type r over K as in (i) of Subsection 2.5 (a framing object). We assume
that if K/F is ramified, then Ax is principal and that, if K/F is unramified, then Ay is
almost principal. Then, in either case, the r-adjusted invariant equals —1. We identify
Eg with the residue class field of Oy, the ring of integers in the completion of the
maximal unramified extension of E. Let (Sch/O}) be the category of Op-schemes S
such that the ideal sheaf 7Og is locally nilpotent.

DEFINITION 2.6.1. — We set h =0 if K/F is ramified, and h = 1 if K/F is unrami-
fied.

We define a functor Mg p,, on (Sch/Op). A point of Mg r(S) consists of an
isomorphism class of the following data:

(1)  Two local CM-pairs (Xo,to), (X1,t1) of CM-type r over S which satisfy the Eisen-
stein conditions (EC,) relative to a fized uniformizer m of F and the Kottwitz
condition (KC,.).

(2) Two isogenies of p-divisible Ok -modules
Xo — X1 — Xo,
which have both height 2fh and such that the composite is to(m)* idx, .
(3) An isomorphism of p-divisible Ok -modules
i X — Xé\.

We require that the composite \: Xo — X1 — X{ is a polarization of Xy, i.e.,
this map is anti-symmetric, and that this polarization is principal when K/F is
ramified, and almost principal when K/F is unramified. ¥

(4) A quasi-isogeny of height zero of p-divisible Ok -modules
PX - XO Xs 5 — X XSpeckp S’,

such that the pullback quasi-isogeny p*(Xx) differs from )\|X T by a scalar in F*,
_ _ 0XSs
locally on S. Here S = S ®o, kr. We call px a framing.

1. It can be proved that, when K/F is unramified, the fact that Ker A\ C Xg[n] follows auto-
matically from the assumption that deg\ = p2f, cf. Proposition 5.3.7. We impose the condition
Ker A C Xo[n] in order to make transparent that the moduli problem Mg, F,r is of the kind consid-
ered in [27].
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We denote the data above simply by (X, ¢, A, p). Another datum (X', X', p’) defines
the same point of M, (S) iff there are O -isomorphisms X = X} and X; = X]
which commute with the data (2) and (4) above. This implies that the isomorphism
Xo — X, respects the polarizations up to a factor in Op.

To ease the notation we write M, = Mg/ p,. If R is a p-adic O -algebra we
set M,(R) =lim M, (Spec R/p"R).

It follows by the methods of [27] that M. is representable by a formal scheme which
is locally formally of finite type over Spf O. Let J be the algebraic group over Q,, of
unitary K-linear quasi-automorphisms of (X tx, Ax) which preserve the polarization
up to a scalar in Q). Let J' denote the derived group of J. Then J'(Q,) acts on the
functor M, by changing the framing. It follows from (i) in Subsection 2.5 that J!
can be identified with Resy/q, (SU), where SU denotes the quasi-split special unitary
group in two variables over F'. Note that SU is isomorphic to SLy/F'.

The first main result in the local case can now be stated as follows.

THEOREM 2.6.2. — Let r be special. Then the functor Mg g, is represented
by QF®0F7¥,O Op. More precisely, there erists a unique isomorphism of formal
schemes R

MK/F,r =~ QF@OF,LPooév
which is equivariant with respect to a fized identification J'(Qp) ~ SLa(F). In partic-
ular, Mg p, is flat over Spf Oy with semi-stable reduction.

Now let r be banal. Fix a local CM-triple (X, ux, Ax) over k as in (ii) a) or (ii) b)
in Subsection 2.5. We write the height of A\x as 2fh, where h € {0,1}. We assume
that h = 0 when r is banal split, or when r is banal and K/F is a ramified field
extension. Recall from from (ii) a) in Subsection 2.5 that, when r is non-split, there is a
anti-Hermitian space C = C(X, tx, Ax) attached to (X, tx, Ax). By Proposition 4.5.14,
the framing object (X, tx,Ax) is uniquely defined up to isogeny by the r-adjusted
invariant inv" (X, ux, Ax) = inv(C) € {1} (see Proposition 8.3.6 for this last identity).
To make our statements uniform, we set inv" (X, tx, Ax) = 1 in the banal split case.

We may now define a variant for banal 7 of the functor Mg/, of Definition 2.6.1.
Since the functor depends not only on K/F but also on inv’ (X, tx, Ax), we denote
this functor by Mg/, where inv" (X, 1x, Ax) = €. When r is banal split, we have
¢ = 1; when 7 is banal non-split and K/F is unramified, then e = (—1)®, cf. Proposi-
tion 4.5.14.

Let S € (Sch/Og). A point of Mg/, .(S) consists of an isomorphism class of
exactly the same data as in Definition 2.6.1.

THEOREM 2.6.3. — Let r be banal, and let € € {£1}. The formal scheme Mg /g, . is
isomorphic to (Spf Op) x (J(Qp)°/Cy1), where J(Qp)° denotes the subgroup of ele-
ments of J(Qp) which preserve the polarization up to a scalar in Z;f. More precisely,
there exists a unique isomorphism of formal schemes

MK/F,T,E = (Spf OE‘) X (J(Qp)o/cﬁ)a
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which is equivariant for the action of J(Q,)°. In particular, Mg p . is formally étale
over Spf Op.

Here, when 1 is non-split, J(Qp,)° can be identified with the group of K-linear
automorphisms of C = C(X, tx, Ax) preserving the anti-Hermitian form up to a factor
in Z,, and Cy; is the stabilizer in J(Qy)° of a lattice M in C which is self-dual when
h = 0 and almost self-dual when h = 1. When r is split, then J(Q,)°/Cyp can be
identified with the set of lattices in the two-dimensional standard F-vector space of
dimension 2.

In the later part of the paper, we write simply J(Q,)°/Cy; for the formal
scheme (Spf Op) x (J(Qp)°/Cy7) over Spf Op.
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CHAPTER 3

BACKGROUND ON DISPLAY THEORY

In this section, K/Q, is an arbitrary finite field extension with ring of integers
O = Ok, and Nilp, will denote the category of O-algebras R such that p is nilpotent
in R. We recall the classification of strict formal p-divisible O-modules over R € Nilp,
proved in [1]. A main ingredient is the Ahsendorf functor, which we present in a new
form which is better suited for our applications.

3.1. Displays

We fix a prime element 7 € O. We denote by ¢ the number of elements in the
residue class field k of O.

DEFINITION 3.1.1 ([1, Def. 3.1, [21], [33]). — Let R be an O-algebra. A frame F for R
consists of the following data:

(1) An O-algebra S and a surjective O-algebra homomorphism S — R. We denote
the kernel by I.

(2) An O-algebra endomorphism o : S — S.

(3) A o-linear map of S-modules 6 : I — S.
The following conditions are required.

(i) I+ pS is contained in the radical of S.

(ii) o(s) =s? mod w85 for all s € S.

(iii) &(I) generates S as an S-module.

We will denote a frame by F = (S,I,R,0,6) and we will sometimes make the
identification S/I = R.

A morphism of O-frames a: F = (S,I,R,0,6) — F' = (S',I',R',0',5') is an
O-algebra homomorphism «: S — S’ such that a(I) C I’ and such that

7' (a(a)) = a(é(a)), a€l.
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The last equation implies that
d'(a(s)) = a(o(s)), seS.

Let F = (S,I,R,0,6) be an O-frame. Then there exists a unique element 6 € S in
the radical of S such that

(3.1.1) o(a) =605(a), forallael,

cf. [1, Lem. 3.2]. In the frames below we have 6 = 7.

EXAMPLE 3.1.2. — Let R be a p-adic O-algebra. Then the Witt ring Wo(R) relative
to O with respect to the chosen uniformizer 7 € O is a p-adic O-algebra. The Witt
polynomials relative to O

WO = Xgn + ﬂ-XiIn_l + 7['2X§n_2 R ﬂ.nle;Jl_l +71"X,

define O-algebra homomorphisms wo , : Wo(R) — R. We denote by F and V the
Frobenius and the Verschiebung acting on Wo(R), cf. [10]. In the case where k = R is
a perfect field, the ring Wp (k) is the complete discrete valuation with residue class
field k£ which is unramified over O.

The Witt frame relative to O for R is the O-frame defined as
(3.1.2) Wo(R) = (Wo(R),VWo(R),R,0,0).

Here 0 = F : Wo(R) — Wo(R) is the Frobenius endomorphism written as o(§) =
Fe, and 6(V€) = €, for € € Wo(R). We use also the notation F' := ¢ and Io(R) =
VWo(R). If K = Q, and m = p, we obtain the classical ring of Witt vectors W(R) =
Wz, (R). We write W(R) for the Z,-frame Wz (R).

ExaMmpPLE 3.1.3. — Let S — R be a surjective homomorphism of p-adic O-alge-
bras. We assume that the kernel a is endowed with divided powers relative to O
([1], 1.2.2). They make sense out of the expression "a?/7”. We also call this an
O-pd-thickening. We denote by ajp»| the ideal a considered as an Wo(S)-module
via restriction of scalars relative to wo, : Wo(S) — S. The divided powers give
rise to divided Witt polynomials Wo ,,. They are homomorphisms of W (S)-modules
Wo,n : Wo(a) — ajpny such that 7"Wo,, = Wo . They give rise to an isomorphism
of Wo(S)-modules

H V'Vom : Wo(a) = H a[Fn],

n>0 n>0
cf. [1], 1.2.2. The inverse image in Wy (a) of an element [a, 0,0, .. .] from the right hand
side is called the logarithmic Teichmiiller representative of a € a. The logarithmic
Teichmiiller representatives of elements of a form an ideal a C Wy(S). The ideal
J =a® Ip(S) is the kernel of the composition

Wo,0

Wo(S) — S — R.
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Then F : Io(S) — Wo(S) extends uniquely to a F-linear homomorphism
F:J — Wo(S) such that F'(a) = 0. We define the relative Witt frame for S — R
as

(3.1.3) Wo(S/R) = (Wo(S),J, R, F, F).
This is an O-frame. Later we use the more precise notation

Io(S/R) = J = Wo(a) + Io(S).

DEFINITION 3.1.4 ([1], Def. 3.3). — Let F = (S,I,R,0,5) be an O-frame. An F-dis-
play P = (P,Q, F, F) consists of the following data: a finitely generated projective
S-module P, a submodule Q C P, and two o-linear maps

F:P—P F:Q— P
The following conditions are required.

(i) IP C Q.
(ii) The factor module P/Q is a finitely generated projective R-module.
(iii) The following relation holds for a € I and x € P,

F(azx) =6(a)F(z).
(iv) F(Q) generates P as an S-module.
(v) The projective R-module LieP = P/Q lifts to a finitely generated projective
S-module. It is called the Lie algebraof P.

If the rank of Lie P is constant, we call it the dimension of P. If the S-module P is
of constant rank, we call it the height of P. If we want to be precise, we say F-height.

F-displays form a category in the obvious way. In the case O = Z, and F = W(R)
for a p-adic ring R, we speak simply of a display over R. Displays for general frames
F were originally called F-windows, cf. [1, Def. 3.3]. We note that for the O-frames
Wo (R), the condition (v) of Definition 3.1.4 is automatically satisfied, cf. [34, Lem. 2].

ExXAMPLE 3.1.5. — For each O-frame F = (5,1, R,0,5) we have the multiplicative
F-display

Pm: m,f:(S,I,U,é').

ExAMPLE 3.1.6. — Let P be an F-display. Let € € S be a unit. The display
Pe) = (P,Q,eF, eF).
is called the twist of P by e.
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Recall the element 6 from (3.1.1). The conditions in Definition 3.1.4 imply that
(3.1.4) F(y)=0F(y), yeQ.

We can always find a direct sum decomposition P =T & L such that Q = IT & L.
Such a decomposition is called a normal decomposition of P. The o-linear homomor-
phism

(3.1.5) ®=F ®F  :TOL—P
is a o-linear isomorphism, i.e., (3.1.5) corresponds to the linearization isomorphism,
(3.1.6) FPoF: (S®esT)®(S®,5L) > P.

Conversely, an arbitrary o-linear isomorphism (3.1.5) defines an F-display in the
obvious way.

For each display P there is a homomorphism of S-modules ([1, Def. 3.3])
(3.1.7) Vi.P— S®,5 P,
which is uniquely determined by
Vi(sFy)=sy, VFz)=0Qz, ze€P, yecQ, scS.
We have
Vio F! = @idsg, ;p, F'oV'=0idp.

Any morphism of O-frames «: F — F’ defines a base change functor «, from the
category of F-displays to the category of F’-displays as follows, cf. [1, Def. 3.8]. Let
P be an F-display. Then we define a.(P) =P’ = (P',Q’, F', F’) as follows:

(3.1.8)
PP=S®sP Q :Ker(SI®SP — R' ®g (P/Q)), F =¢d®F: P — P.

Here Q' is the image of I' s P ® S’ ®s Q — S’ @ P. The map F' : Q' — P’ is
uniquely determined by

Fle@z)=¢(¢)@F(z), FFn®y)=0'(n) @ F(y), foréel',nes zePyeqQ.

If P is given in terms of a normal decomposition (3.1.5), we obtain P’ from the
o’-linear extension of @,

o (®sT)® (S ®s L) — P'.

ExaMPLE 3.1.7. — The base change of the multiplicative display for the frame F
under a: F — F’ is the multiplicative display for F’.

If R is a perfect ring of characteristic p with an O-algebra structure, the category

of Wo (R)-displays is equivalent to the more classical category of Dieudonné modules.
We describe this equivalence in its natural generality.
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DEFINITION 3.1.8. — (a) A perfect O-frame is an O-frame F = (S,I,R,0,6) such
that o : S — S is bijective.

Let F = (S,I,R,0,5) be a perfect O-frame. It follows from (8.1.1) and Defini-
tion 8.1.1 that & : I — S is bijective. Let u € I such that 6(u) = 1. Again by (3.1.1)
we obtain o(u) = 6. One can see that the elements u and 0 are non zero divisors in S.

(b) A Dieudonné module (M, F, V) for the perfect O-frame F consists of a finitely
generated projective S-module M and two additive maps F: M — M,V : M — M
such that the following conditions are satisfied.

(i) F(sz) =o(s)F(z), V(sz)=0"1(s)V(xz), z€ P s€S.

(if) FoV =0idpy, VoF =uwuidpy.

(iii) The R-module M/V M is projective and lifts to a finitely generated projective
S-module.

If R is a perfect O-algebra, then F = Wo(R) is a perfect O-frame and we have
u="1=7n1=04.

PROPOSITION 3.1.9. — Let F = (S,I,R,0,6) be a perfect O-frame. Let u,0 € S as
defined above. Then the category of Dieudonné modules for F is equivalent to the
category of F-displays.

Proof. — Let (M, F,V) be a Dieudonné module. Since u and 6 are not zero divisors,
the maps F': M — M and V : M — M are injective. Therefore we can define a
display (P, Q, F, F') by setting
P=M,Q=VM,F=F, F=V"!
Conversely, let (P, Q, F, F") be a display. We set (M, F) := (P, F). We have the bijec-
tive map
v:S®y,sP— P, v(s®z):=0 '(s)z.
Then we define V = v o V. More explicitly, we have
V(sF(y)) =o' (s)y, y€Q, s€S.
This implies that V(P) = Q. Moreover, we obtain
FV(sFy) = F(o~'(s)y) = sF(y) = 0sFy
VF(z) = V(F(uz)) = uz.
Therefore (M, F,V) is a Dieudonné module. O

In our basic example F = Wy (R) for a perfect O-algebra R, we can replace the
condition (iii) above by the weaker condition that M/V M is a projective R-module.
We note that for this frame F oV =midy;, V o F = midy,.

We refer to [1, Def. 3.3] or [35] for the definition of a nilpotent F-display. If R is a
perfect O-algebra, a Wo(R)-display is nilpotent iff for the corresponding Dieudonné
module (M, F, V) the endomorphism V of M /7 M is nilpotent. For an arbitrary O-al-
gebra R such that 7 is nilpotent in R, a Wo(R)-display P is nilpotent iff for any
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homomorphism of O-algebras to a perfect field R — k, the base change of P by the
morphism of frames Wo(R) — Wo (k) is nilpotent.

DEFINITION 3.1.10. — Let R be an O-algebra. Let X be a p-divisible group over R
endowed with a Z,-algebra homomorphism v : O — End X. We call the action ¢ strict
if the induced action on Lie X coincides with the O-action on this R-module given by
restriction of scalars O — R. We say that (X, 1) is a strict p-divisible O-module.

The following main result of [1] was known before for O = Z, [34], [20].

THEOREM 3.1.11 ([1], Thm. 1.1). — Let R € Nilp,. There is an equivalence of cate-
gories

(m’lpotent WO(R)—displays) — (stm’ct formal p-divisible O-modules over R)

which is functorial in R.

The theorem extends to p-adic R if we require the properties "nilpotent” and ”for-
mal” only after base change to R/pR.

A nilpotent Wo(R)-display gives rise to a crystal, as follows. Let S — R be a
O-pd-thickening, cf. Example 3.1.3. We assume that p is nilpotent in S. The ring
homomorphism Wy (S) — Wo(R) defines morphisms of O-frames,

Wo(S) — Wo(S/R) — Wo(R).

The base change of displays with respect to the first arrow goes as follows.
Let P = (P,Q,F,F) be a Wo(S)-display and let P’ = (P',Q,F’,F’) be the
Wo (S/R)-display obtained by the base change functor defined before Example 3.1.7.
Explicitly, it is given as follows: P’ = P,and Q' = Q+ JP =Q ® d, and F' = F,
and FIIQ = F, and F'(az) = 0 for a € a. Note that the last equation is necessary
because F'(az) = F(a)F'(z) = 0, since F'(a) = 0 by the definition of (3.1.3).

THEOREM 3.1.12 ([21], [34]). — Let S — R be an O-pd-thickening such that p is
nilpotent in S. The base change functor

(m’lpotent WO(S/R)—displays) — (nilpotent Wo (R)—displays)
is an equivalence of categories. O
REMARK 3.1.13. — In the case O = Z,,, Lau [22] has defined a functor
(3.1.9) (p-divisible groups over R) — (W(S/R)-displays),

which gives a quasi-inverse of the functor in Theorem 3.1.12, when restricted to formal
p-divisible groups. In particular this functor associates to an arbitrary p-divisible
group over R a display.
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Let P be a nilpotent Wo (R)-display. Let P be the unique Wo (S/R)-display asso-
ciated to P by Theorem 3.1.12. Then we set

(3.1.10) Dp(S) = P/Io(S)P.

This is a finitely generated projective S-module. It is a crystal in the following sense.
If S’ — R is a another O-pd-thickening such that p in nilpotent in S” and S’ — S is
a morphism of O-pd-thickenings, then there is a canonical isomorphism

S ®S/ DP(SI) = DP(S)

This crystal corresponds to the Grothendieck-Messing crystal of a p-divisible group via
Theorem 3.1.11. From Theorem 3.1.12 one obtains the Grothendieck-Messing criterion
for displays in the following formulation.

COROLLARY 3.1.14. — Let P be a nilpotent Wo(R)-display. Let S — R be an
O-pd-thickening. FEach Wo(S)-display P which lifts P defines a lifting
Fil := Q/Io(S)P C Dp(S) of the Hodge filtration Fil := Q/Io(R)P C Dp(R).

For a fized O-pd-thickening S — R, consider the category of pairs (P, ﬁ), where
P is a nilpotent display and Fil c Dp(S) is a lifting of the Hodge filtration associated
to P. The functor which maps a pair (P,P) to the pair (’P,ﬁﬁ) is an equivalence of
categories. O

Proof. — Let P’ the unique Wy (S/R)-display which corresponds to P by Theo-
rem 3.1.12. We note that P = Wo(R) ®w,(s) P’ by definition of the base change. A
lifting of the Hodge-filtration P — P/Q = P’/Q’ corresponds to a Wo(S)-module Q
such that P’ > Q D Io(S)P’. Since Q C @', we obtain a Wy(S)-display P by
restricting F” to Q, ie., P = (P, Q, F’,F’). From this the equivalence of categories
follows. O

The following fact is well-known, but we give a proof.

LEMMA 3.1.15. — Let R be a p-adic O-algebra. Let P be a Wo(R)-display. Let O be
a discrete valuation ring which is a finite extension of O. Let

O — End P,

be an O-algebra homomorphism. Then P is a locally on Spec R free O @0 Wo (R)-mod-
ule.

Let S — R be an O-pd-thickening such that p is nilpotent in S. We assume
that P is nilpotent. Then Dp(S) is locally on Spec S a free O ®z, S-module.

Proof. — We start with the case where S = R = k is a perfect field which contains the
residue class field of O. Let O be the maximal unramified extension of O contained
in O. Let ¢ be the Frobenius automorphism of O relative to O. To each O-alge-
bra homomorphism 1 : O' — k there is a unique Frobenius equivariant O-algebra
homomorphism

1[) : Ot — Wo(k),
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which induces ¢ when composed with wo o : Wo(k) — k. This follows from the
remark after the definition of Wo(R), cf. Example 3.1.2. The decomposition

O @0 Wo(k) =[]0 ®s: 5 Wolk)
¥

induces a decomposition

p=r,.
P

Each Py, is a free module over the discrete valuation ring O ®gt 5 Wo(k). The Frobe-
nius F': P — P induces maps P, — Py,. This shows that all P, have the same
rank as Wy (k)-modules. This proves the case where R = k is a perfect field containing
the residue class field of O.

Now let k£ be an arbitrary field of characteristic p. It suffices to show that
P Qw, k) k is a free O ®0 k-module. By base change a: k — k this follows from
the previous case because P Qw,, (&) k= a.(P)®k is a free O ®o k-module.

If R is a local ring with residue class field of characteristic p we conclude by
Nakayama’s lemma that P @y, (r) R is a free O ®o R-module. The generalization to
arbitrary R is immediate. This proves the first assertion of the lemma.

If P is nilpotent, the crystal Dp is defined. The case Dp(R) = P/Io(R)P was
proved above. For arbitrary S — R we can apply again Nakayama’s lemma. O

REMARK 3.1.16. — Let R be a ring such that p is nilpotent in R. Let X be a p-divisible
group over R with a ring homomorphism

O — End X.

Let S — R be a nilpotent pd-thickening. Then the value of the Grothendieck-Messing
crystal Dx (S) is locally on Spec S a free O ®z, S-module. This can be shown by the
same arguments as above.

Finally we discuss isogenies of Wo(R)-displays, where R is an O-algebra such
that p is nilpotent in R. We assume moreover that Spec R is connected. Let
a : P — Ps be a morphism of displays of the same height and dimension, cf. the
remark after Definition 3.1.4. Locally on Spec R the Wy (R)-modules P; and P, are
free of the same rank. We may choose a basis in each of these modules and write
det @ € Wo(R). This is locally defined up to a unit in W (R). More invariantly one
can write exterior powers.

DEFINITION 3.1.17. — A morphism of Wo(R)-displays of the same height and di-
mension « : P; — Py is called an isogeny if det a # 0.

PrOPOSITION 3.1.18 ([35], Prop. 17.6.2.)— Let R be an O-algebra such that p is
nilpotent in R and such that Spec R is connected. Let o : Py — P be an isogeny
of Wo(R)-displays. Then there exists a natural number h € Zso such that locally
on Spec R

deta =7, €€ Wo(R)*.
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We call h the O-height of «, and write h = height, a. If O = Z,, we write simply
height @. An abbreviation for the proposition is:

height, oo = ord, det a.

PROPOSITION 3.1.19 ([35], Prop. 17.6.4.)— Assume that the ideal of nilpotent elements
in R is nilpotent and that Spec R is connected. Let o : Py — Py be an isogeny
of O-height h. Then there exists locally on Spec R a morphism of Wo(R)-displays
B : Py — P1 such that

Boa=r"idp,, aofB=mx"idp,.
ProposITION 3.1.20. — With the assumptions of Proposition 3.1.18, leta : X1 — X3
be a morphism of strict formal p-divisible O-modules over R. Let a : Py — Py be

the induced morphism of the associated Wo(R)-displays, cf. Theorem 3.1.11. The
morphism a is an isogeny of height h if and only if a is an isogeny of height h.

Proof. — This can be reduced to the case of a perfect field R = k where it is well-known
by Dieudonné theory. O

Let R be an O-algebra and let a: X; — X3 be a morphism of strict formal p-di-
visible O-modules. By Theorem 3.1.11, there is an associated morphism « : P; — Ps
of Wo (R)-displays. We set

(3.1.11) height, a = heighty ,  heighty X1 = heightyy, (z) P1-

The last height was defined after Definition 3.1.4. It is equal to the O-height of the
endomorphism of P; given by multiplication by m. We also write

height, Py = height (7|P1) = heightyy,, ) P1-

3.2. Bilinear forms of displays
Let F = (S,I,R,0,6) be an O-frame and let § € S be the element from (3.1.1).
DEFINITION 3.2.1. — Let Py, P2, P be F-displays. A bilinear form of F-displays
B:PLxPy— P
is a bilinear form of S-modules
(3.2.1) B:PxP,— P
with the following properties:
(i) The restriction of B to Q1 X Q2 takes values in Q.
(ii) For y; € Q1 and y2 € Qa,
FB(y1,92) = B(Fry1, Fays).
We will denote the O-module of all bilinear forms by
Bil(P; x P2, P).
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LEMMA 3.2.2. — The following equations hold

FB(z1,y2) = B(Fiz1, Foyo), z1 € P, y2 € Q2,
FB(y1, x2) = B(Fry1, Faza), Y1 € Q1, T2 € Po,
HFﬂ(xl,:vg) = ,B(Fll‘l,FgfL‘Q), xr1 € Pl, T € P2.

Proof. — We omit the verification which is, for classical displays, contained in [34]. O

Let R be a perfect O-algebra and let F = Wy (R). Then we may equivalently
consider Dieudonné modules (P, F, V') and (P;, F;, V;) for i = 1,2, cf. Proposition 3.1.9.
We can reformulate the Definition 3.2.1 as follows: A bilinear form of Dieudonné
modules is a bilinear form of Wy (R)-modules 5 : P, x P, — P such that

(3.2.2) B(Vizy, Vazz) = VB(21, x2).

PROPOSITION 3.2.3. — Let B : P; X Po — P be a bilinear form of F-displays. Let
a: F — F' be a morphism of frames. Denote by Py, P5, and P’ the displays obtained
by base change with respect to a. Because P/ = S' ®g P;, and P’ = S’ ®g P, there is
an induced S’-bilinear form ' : P{ x Py — P’. This is a bilinear form of F'-displays

Pi x Py — P
Proof. — We omit the straightforward verification. O
Let P = (P,Q, F, F) be an F-display. We are going to define the dual F-display

PY = (PY,QV,FY,FV). For an S-module M, we define M* = Homg(M,S). We
set PV := P*, and

Q" ={yeP’|p(@Q) CI}

We note that we have a natural perfect pairing
P/IP x PV/IPY — R.

We deduce that QV/IPV is the orthogonal complement of Q/IP and is therefore a
direct summand of P/IP. We claim that there are o-linear maps

FV:pY — PV, FV:QV— PV
which are uniquely determined by the following conditions.

We denote by <, >: P x PV — S the natural perfect pairing. Then we require

forreP,yecQ,pc PV, vpecQV:
(323) <F(y),FY(¢)> = o(<y,¢>), <F(z),FY(¢)> = 0o(<z,p>),
- <F(y),FY()> = 6(<y,¢>), <F(z),FV(W)> = a(<z,>).

Since F'is a o-linear surjection, the maps F¥ and F"V are uniquely determined by these
identities. To verify the existence of these maps, we consider a normal decomposition,

P=ToL.
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Let LV C PV be the orthogonal complement of L and TV C PV the orthogonal
complement of T'. Hence there are canonical isomorphisms

LY=T* TV=L"
We obtain the normal decomposition
PV=TVgoLY, QV=ITVolL".
For ¢ € LY = T*, we set
FY@)(F(0) =0, FY({)(F@®)=0o(p(t), €L, teT

This definition makes sense because of the linearization isomorphism (3.1.6). Finally,
we define FV(¢) for ¢ € TV = L* by the equations

FY(9)(F(€) = 0(4(£), FY($)(F(t) =0.

One verifies that, with these definitions, the identities (3.2.3) are satisfied. It follows
from the symmetry of the equations (3.2.3) that we have a natural isomorphism

P (PY)V.
By the equations (3.2.3) we have a natural bilinear form of displays
(3.2.4) PxPY — P,

with values in the multiplicative display P, = Py, 7. If P’ is another F-display, the
bilinear form (3.2.4) induces an isomorphism

(3.2.5) Homr_gisplays(P’s PY) — Bil(P' x P, Py,).

We deduce a variant of the Grothendieck-Messing criterion. Let P and P’ be
Wo (R)-displays such that PV and P’ are nilpotent. Let S — R be a O-pd-thickening
in Nilp, cf. Example 3.1.3. We denote by P, and P/, the associated Wo (S/R)-dis-
plays, which exist by Theorem 3.1.12. We define Pyei = (P,%))", where the last ¥ de-
notes the dual in the category of Wo(S/R)-displays. We set Dp(S) = Pre1/I(S)Prel.-
Then we obtain a crystal which is dual to the crystal Dpv (S), cf. (3.1.10). This crystal
agrees with Dp(S) defined earlier, if P is nilpotent. It follows form (3.2.5) that each

bilinear from
(3.2.6) B:P' X P — Powo(r)
induces a bilinear form

Brel : Prel X Prel — Prwo (S/R)
and, in particular, a S-bilinear form

(327) ﬂcrys : DPI(S) X D’P(S) — S.
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PrOPOSITION 3.2.4. — Let R € Nilpy and let S — R be an O-pd-thickening
in Nilpy. Let P and P’ be Wo(R)-displays and assume that PV and P’ are nilpo-
tent. Let P and P’ be liftings which correspond to liftings of the Hodge filtrations
Fil ¢ Dp(S) and ]?ﬂl C Dp/(S), cf. Corollary 3.1.14. Then a bilinear form [ :
P' X P — Pmwo(r) lifts to a bilinear form B:P xP— Prwos) iff

ﬂcrys(ﬁla P/:l/l) = 0.
Proof. — This is a consequence of Corollary 3.1.14 and (3.2.5). O

We go back to an arbitrary O-frame F and add a remark on the map V¥, cf. (3.1.7).
If P is an S-module we set P(?) = S ®q,s P. If P is projective and finitely generated,
the perfect pairing < , > induces a perfect pairing
<, > PO x (P —g
(51® 2,5 ®¢) +——s1520(d(z)).

Let P be an F-display and let PV be the dual display. The maps (FY)# and V* are
dual in the following sense

Vi, s ® 6> (o) = <z, (FV)H(s ® )>.

DEFINITION 3.2.5. — A polarization of an F-display P is a bilinear form
,3 PXxP— Pm’ F

such that the underlying bilinear form P x P — S is alternating and its determinant
18 NOM-2€T0.

If F = Wo(R), the height of 3 is the height of the associated isogeny P — PV
(cf. Proposition 3.1.18). We write height B for the height of (.

Then we have height, 8 = ord, det 8 in the notation of Proposition 3.1.18. The
polarization is called principal if height,(8) = 0.

REMARK 3.2.6. — Let X be a strict formal p-divisible O-module over R € Nilp,.
Let P be the Wo(R)-display of X in the sense of Theorem 3.1.11. If the dual display
PV is nilpotent, it corresponds to a strict formal p-divisible O-module XV, called the
O-dual of X. In this case, a polarization is given by an anti-symmetric O-module
homomorphism X — XV.
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3.3. The Ahsendorf functor

We will give here an alternative definition of the Ahsendorf functor of [1] which is
better suited to our purposes. One step of this definition is contained in the appendix
of [23]. We use a Lubin-Tate frame introduced by Mihatsch in loc. cit., but for us it
will be important to make a specific choice, cf. Definition 3.3.8.

Let Q, C &€ C K be a subfield. We denote by o the ring of integers in £. We fix
a prime element w € o. If R is an o-algebra we denote by W,(R) the Witt vectors
relative to 0 and w. The Frobenius and the Verschiebung will be denoted by f and
v. We set [K : €] = ef where e is the ramification index and f is the inertia index.
Beginning with Section 4 we will only consider the case where £t = Q,.

For an O-algebra R we have the Drinfeld homomorphism

(3.3.1) p: Wo(R) — Wo(R),

cf. [10, Prop. 1.2]. It is functorial in R and satisfies wo »(1(§)) = Wo,pn(§), for
& € W,(R). This implies the following properties:

f wV f-1
(3.3.2) p("e) =", wC=— @ 9) nlu)=u,

for £ € W,(R), u € R. The last equation says that the Teichmiiller representative
[u] € W,(R), is mapped by u to the Teichmiiller representative [u] € Wo(R).

We have u(I,(R)) C Io(R). Therefore we may rewrite the second equation of
(3.3.2) as

. O i
(33:3) Flu(n)) = ;u(f ), n€L(R).
The following definition extends Definition 3.1.10 to the relative case.

DEFINITION 3.3.1. — Let F = (S, I, R,0,5) be an o-frame, where R is a p-adic O-al-
gebra. Let P = (P,Q,F,F) be an F-display. A strict O-action on P is a homo-
morphism of 0-algebras O — End P such that the induced action on the R-module
P/Q coincides with the O-module structure on P/Q obtained by restriction of scalars
O — R.

For a p-adic O-algebra R we will define a functor

R)-displ
(3.3.4) Ao /on : ( We (R)-displays

— (Wo(R)-displays ).
with strict O-action > < o(R)-display )

We call this functor the Ahsendorf functor. The image of a W, (R)-display P as in Def-
inition 3.3.1 will be denoted by P, = A5 /o, zr(P). The main theorem on the Ahsendorf
functor is:

THEOREM 3.3.2. — Let R be an O-algebra such that p is nilpotent in R. The Ahsendorf
functor induces an equivalence of categories

nilpotent W, (R)-displays
A0/0,R :

with strict O-action

) — (nilpotent Wo (R)—dz’splays).
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Furthermore, the Ahsendorf functor canonically associates to a bilinear form
(3.3.5) B:P' xP'—P
of W, (R)-displays with a strict O-actions such that B8 is also O-bilinear, a bilinear

form of Wo(R)-displays
P, x P) — P,.

Proof. — The first statement is the main result of [1]. The second statement is shown
in Proposition 3.3.15. U

REMARK 3.3.3. — By Theorem 3.3.2 we obtain a functor
(3.3.6) (strict formal p-divisible O-modules over R) — (WO(R)—displays) ,

which is defined as follows. By [22], [35] there is a functor from the first category to
the category of W(R)-displays with a strict O-action. Composing this with 2lo,z, r
we obtain (3.3.6). In particular this gives a quasi-inverse functor to the functor of
Theorem 3.1.11.

We will now define the Ahsendorf functor. We denote by K* C K the maximal
subextension which is unramified over £. Let O! be the ring of integers of K*. We
consider the Witt vectors Wo:(R) with respect to the prime element w € OF. The
Frobenius resp. the Verschiebung acting on Wy:(R) will be denoted by F’ and V'.
We will define 25/, r as the composite of two functors

W, (R) — displays Wor (R) — displays
Q‘Ot/o,R : - )

with strict O-action with strict O-action
(3.3.7)
Wor (R) — displays

with strict O-action

o/0t,R : < ) — (WO(R) - displays).

We begin with the definition of 2ot /4 -
LEMMA 3.3.4. — Let S be an O-algebra which has no w-torsion. Let 7 : S — S be a
O-algebra homomorphism such that
7(s) = s? (mod 7).

Let ug, u1,...,Un,... € S. Then there exists £ € Wo(S) such that wo ,(§) = u, for
all n iff

T(Up-1) =u, modn"S, for n>1

The element £ is uniquely determined.

Proof. — The proof is up to obvious changes identical with the proof for the classical
case O = Zy, cf. [2, IX, §1, 2, Lemme 2|. O
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We denote by o € Gal(K?/¥€) the Frobenius automorphism. By Lemma 3.3.4, there
is a homomorphism X : O — W, (0"), defined by w, ,(A(a)) = 0" (a) for a € O*
and all n. We obtain a ring homomorphism
(3.3.8) 2 OF 25 Wo (0! — Wo(R).
We introduce the Ahsendorf frame with respect to the unramified extension O*/o for
a p-adic O'-algebra R,
(3.3.9) Ao(R) = (Wo(R), Io(R), R, §7 ).
This is an O*-frame via .

Let P = (P,Q, F, F) be a W,(R)-display with a strict O-action. We set

P, ={z € P|ia)r = x(c™(a))x, fora € O'}, m € Z/fZ.

The W, (R)-module P decomposes as
(3.3.10) P= P P

meZ/fz
There is a similiar decomposition for Q. The maps F and F of P are graded of degree
one,
F:P, — Py, F. Qm — Prt1-
If the action ¢ is strict, we have @, = P,, for m # 0. Then we define the A,(R)-dis-
play Pua:
(3311) Pua:P07 Qua:Q07 Fua:Ff_lFa Fua:Ff'

It is clear that O acts strictly on Pya,.
It follows from (3.3.2) that pu : W,(R) — Wp:(R) induces a morphism
of O'-frames

(3.3.12) 1 Ay (R) — Wor(R).

By base change we obtain from Py, a Wt (R)-display Py = p«(Pua). The strict action
of O on Py, induces a strict action of O on Py because the tangent space remains
unchanged by this base change.

DEFINITION 3.3.5. — The Ahsendorf functor Aope /o g is the functor which associates
to a W,(R)-display P with a strict O-action the Wo(R)-display Py defined above.

The Ahsendorf functor is compatible with bilinear forms as follows. Let
B:P' x P" — Pasin (3.3.5). Because (3 is O¢-bilinear, 8 induces for each m € Z/ fZ
a pairing

B:P. x P! —s P,
and P; and P;’ are orthogonal for i # j. For y' € Qj and y” € Qg we find

BUEN Y, (F"y") = FIB(y,y").
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Therefore the restriction of (3,
Bua : Py x Py — Py
induces a bilinear form of A, (R)-displays
Pra X Pity — Pua-
Applying Proposition 3.2.3, we obtain a bilinear form in the category of Wo:(R)-dis-
plays,
(3313) ,Bt : Pt, X Pé/ — Ps.

Now we define 2lp/0¢ g- First we introduce the Lubin-Tate frame. We choose a
finite normal extension L of K* which contains K. We set ® = Hom_»1, (K, L). Let
o : K — L be the identity embedding.

Let Ex € O![T] be the Eisenstein polynomial of # € O over O. In OL[T] it
decomposes as

Ex(T) = [[(T - ¢(n)).
ped
We set
ExoT)= [] (T-¢()e€OLlT]
PED,pFpo
One sees easily that Ex o € O[T]. We lift these polynomials via wo: ¢ to the ring of
Witt vectors,

Ex(T) = [[ (T ~[p(n)]) € Wou (0T,

ped
ExoT)= [I (T—Ilp()) € Wor(O)T).
PED,pFpo

The Frobenius F’ and the Verschiebung V' act via the second factor on O®p: Wot (R).
We set

(3.3.14)

F' = (V’)_l : 0 ®ot Ipt(R) — O ®ot Wot(R).
PROPOSITION 3.3.6. — The element
F(Ex(r®1)) € 0®0 Wor (0

is a unit of the form
(3.3.15) (7; ® 1) 5, 6€0®0 Wori(OY)
such that § — (1 ® 1) lies in the kernel of

O ®ot Wot (Ot) — 0 ®ot Wor(k),
and hence in the Jacobson radical of O ®ot Wo:(O?).
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Proof. — The element is defined because id ® wotg : O ®ot Wot(0OY) — O
maps Ex (7 ® 1) to 0. In the following computation we pass to O ®: Wo:(0r). We
find from the definitions:

FExro1) =" ([[re1 -1 )

ped
(3.3.16) ) L&
_ _ ) — — e—i F' .
=~ [l@ei-18kmn=_3 = o"s.
ped =0

Here we denote by s; the elementary symmetric polynomial of degree i evaluated
at the e arguments [¢(7)]. By definition sg = 1. We claim that for ¢ > 0 the elements
Fs; € Woe(0?) are divisible by w. Clearly wor o(s;) is divisible by 7. On the other
hand, wor o(s;) € O' and therefore is divisible by w. We find expressions in Wo: (0?),

S; = [wci] +Vl &, ¢ € Ot, & e Wor (Ot)
Therefore Fs; = [w9][¢!] + wé is divisible by w. Indeed, using Lemma 3.3.4, one
shows as in the proof of [34, Lem. 28] that w divides [w1].
Now we may write the last term of (3.3.16) as

’
FSi

e ° B

— @1+ 7l —

D DL =
Finally, El lies for 4 > 0 in the kernel of Wp:(O') — W (k). Indeed, the ele-
ments [p(7)] € Wot(Opr) are mapped to zero in Wot (k1) and therefore a fortiori the
symmetric functions s;. We conclude that s; and then ¥ s; become zero in Wot (k)

Si

for ¢ > 0. Because w is not a zero divisor in Wyt (k) the elements Fw are then also
in the kernel. O

We write in the ring W (0),
(3.3.17) 7 —[r] =" e.
One checks that € € Wp(O) is a unit. If we apply F' to the last equation, we obtain
(3.3.18) 7w — [79] = 7e.
In particular [7?] is divisible by 7.

LEMMA 3.3.7. — The image of the element (F Ex(r® 1))_1 FEgo(r®1) under the
Drinfeld homomorphism

J7 O ®Ot WOt (O) I WO(O)

equals e~ (w /7).

SOCIETE MATHEMATIQUE DE FRANCE 2024



34 CHAPTER 3. BACKGROUND ON DISPLAY THEORY

Proof. — Tt is enough to show the same assertion for O ®or Wp:(0Or) — Wo(Op).
The image of ¥ Ex (7 ® 1) by the last map is w ™! 1, (m — [o(m)?]). Here we used
that o is not a zero divisor in the participating rings. Our assertion is equivalent to

the equation
- W
@ [~ le@Me = = [T (v = lem)D).
® PFPo
But this is a consequence of (3.3.18). O

The free Wo:(R)-module O ®o+ Wot(R) has the basis
(33.19) 11, 7@1-1®[x],..., 7" ®1 -1 [x]™,..., 7 '®1 -1 [x]*"L.

To ease the notation, here [r] denotes the Teichmiiller representative of the image
of m by the morphism O — R. Let

J = Ker (O ®or Wot(R) — R),

where the map is induced by wg : Wpt(R) — R. The ideal J is contained in the
radical of O @t Wot(R). As a Wo:(R)-module, J is the direct sum of O ®¢o Io(R)
and the direct summand generated by the last e — 1 elements of (3.3.19). In particular
we obtain

(3320) J =0 ®ot 1ot (R) + (7'{' ®R1-1® [71'])(0 ®ot Wor (R))

We define maps o1 : O ®ot Wot(R) — O Qot Woe(R), 61t : T — O Q0 Woe(R)
by

ang =Fe oy = (FE) T (Bron), £€0®@0 Wor(R), n€J.
The map 61, : J — O ®ot Wor(R) is oji-linear. Then we obtain
(3.3.21) nrel-10 ) = Ex) ¥ (Bk) = 1.

DEFINITION 3.3.8 (comp. [23, Def. 2.7]). — The Lubin-Tate frame for O is the
O-frame
.ﬁt(R) = (O ®ot Wor (R), J, R, oy, d’]t).
This is indeed an O-frame: the only thing we need to check is
g =¢? (mod (r®1)0 ®@or Wor(R)),

and this follows because a = a? mod = for @ € O and F/n =n? mod w forn € Wpo:(R).
We remark that by (3.3.21)

(T®l1-1® [wq])‘i“n =%pn neJ.

Now we start with a Wo:(R)-display P with a strict O-action. The last condition
can be reformulated as

(3.3.22) JP CQ.
We refer to [1, Prop. 2.26] for the proof of the following lemma.
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LEMMA 3.3.9. — Let P be a Wot(R)-module with an action of O, i.e., a homomor-
phism of O-algebras

O — Endw,_, (r) P.
Assume that locally on Spec R the Wot(R)-module P is free. Then P is locally
on Spec R a finitely generated free O ® ot Wot (R)-module. O

LEMMA 3.3.10. — Let P be a Wot(R)-display with a strict O-action. Let ©z € P. By
(8.3.22) (r®1—1® [r])x € Q. The following equation holds,

Fz= (F‘IEK(TF ® 1))—1 ~F,EK,O(7F ®1)-F(r®1-1 [))z).

Proof. — From the definition of the polynomials Ex and E K,0, we find since
%o (ﬂ-) =, 5 5
Ex(n®1)=Ego(r®1)- (mn®1—-1& [n]).

Therefore o o
FEg(r®1l)r)=F(Ego(r®1)) - (r®1-1® [7])z)

=" (EBro(r®@ 1)) F((r®1 -1 [1])).
Because Ex (1 ® 1) € O ®0o¢ Io¢(R), we obtain
F(Ex(r ® 1)z) = (Ex(r ® 1)) Fz.
We conclude by Lemma 3.3.6. O

We now associate to the W« (R)-display P = (P, Q, F, F') with a strict O-action a
Fie-display Py = (P, Qs, Fit, Fit). We set Py = P, Qi = Q, Fiy = F, and

(3.3.23) Fi(z)=F(n®1-1® [r])x), z€P.
PROPOSITION 3.3.11. — Py is an Fi;(R)-display.

Proof. — The only thing we have not checked is the equation
(3.3.24) Ey(nz) =% nFyz, neJ.
We begin with the case n =V &. We apply Lemma 3.3.10
(33.25) Fu(ne) = F("'éx) = €F (@) = §("Bx) ™" "Bro - F((r © 1~ 18 [])a).
By definition
7oy = (TBR) T (B 06) = (TBr) T (B
Using the definition (3.3.23), we can write the right hand side of (3.3.25) as “tnFj;(z),

hence we are done in this case.
Next we consider the case where n = (1 ® 1 — 1 ® [«])€. Then we find

Fi(ne) = F((r © 1 - 1@ [])¢z) = "¢Fu(2).

But by (3.3.21) we have ' ((7 ® 1 — 1 ® [r])€) =F ¢. Therefore in this case (3.3.24) is
true as well. O
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We use the same symbol € € Wp(R)* for the image of the element ¢ € Wp(0)*
defined by (3.3.17). We define the frame

(3.3.26) W5(R) = (Wo(R), Io(R), F,e 1 F).

We note that the categories of displays over Wo(R) and W§ (R) are canonically
isomorphic. Indeed, if P = (P, Q, F, F) is a Wo (R)-display, then P = (P, Q, eF, F) is
a W§ (R)-display.

Recall that we denote the Frobenius and the Verschiebung acting on Wp:(R) by F’
and V’. We consider the Drinfeld homomorphism p : Wot(R) — Wo(R), cf. (3.3.1).
This is a functorial ring homomorphism such that w/,(1(§)) = w,(£) which has the
following properties

; / (o) \4
(3.3.27) w("8) = "u(©), (") =— p®, wla)=ld], foracR.
The Drinfeld homomorphism extends to a ring homomorphism
(3.3.28) w0 ®ot Wot(R) — Wo(R)

which we denote by the same letter.

ProposiTiION 3.3.12. — The Drinfeld homomorphism induces a morphism of
O-frames
o Fie(R) — Wo(R).

Proof. — We have to check that the image of J C O ®o+ Wt (R) by p is contained
in Io(R). This is immediate because pu(m ® 1 — 1® [r]) = 7 — [1] =" €. It remains to
prove the equations for £ € O ® ot Wt (R) and 5 € J,

(3.3.29) p(7€) =€),  u(mn) = ().

The first equation follows from (3.3.27). To prove the second equation, it is enough
to consider the following two cases separately: n =V Candn=(r®1-1®[x])¢ In
the first case we have

e = (MEx) T (B 08) = (TEx) T (TBro)é.
Applying Lemma 3.3.7, we obtain
p(*rn) = e~ Hw/m)u(f).
On the other hand, we have by (3.3.27)
e u("'e) = e F(w/m)V (€)= e (w/m)n(8),

as desired.
Now we consider the case n = (m ® 1 — 1 ® [7])€. We have

p((r @1 =18 7)) = (m — [x])u(§) =" en(€) =V (" u(€)).
We obtain
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On the other hand, we find by (3.3.21) and (3.3.27)

’

u(®n) = p("E) = Fu(©),
as desired. ]

Starting now with a Wo:(R)-display P = (P,Q, F, F') with a strict O-action, we
have the associated Fi;(R)-display Py, = (Ht,Qlt,ﬂt,Et), cf. Proposition 3.3.11.
After taking the base change by the morphism of frames of Proposition 3.3.12, we
obtain a W (R)-display P = (P, Q%, Fg, FS). Then P, = (P, Q%,e ' F2, FY) is an
Wo (R)-display.

DEFINITION 3.3.13. — The Ahsendorf functor %o /0t g is the functor which associates
to the Wor (R)-display P with a strict O-action the Wo(R)-display P, defined above.

From the construction we obtain that
(3330) P, = Wo(R) ®O®otwot(R) P,
and that @, is the kernel of the natural map

Wo(R) ®og W (r) P — P/Q.

We note that the canonical map P — P, induces a map QQ — Q.

PROPOSITION 3.3.14. — Let P be a Wor(R)-display with a strict action of O. Let
Pa = Ao,0t,r(P) be its image by the Ahsendorf functor. The following diagram is
commutative

F

Q——P
Qaﬁpa
Fa

Proof. — This follows from the definition of Py, before Proposition 3.3.11 and the
definition of base change (via the morphism of Proposition 3.3.12). O

We note that this diagram determines the map F, uniquely. Indeed, consider the
following equation in P, under the identification (3.3.30),
Ver=19 (r®1-1Q [x])z.
Applying F,, we obtain from the diagram that
eF,(1®z) =10 F(r®1 -1 [1])x).

This shows that Fj is uniquely determined. Because the image of @ and Ip(R)P,
generate @, as a Wpo(R)-module, the map F}, is then also uniquely determined.
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We return to the notation that P is an o-display with a strict O-action. Applying
the functors 2Ao: /o, r and Ap,0t g, we obtain first Py and then P,. We find by our
definitions that, with the notation of (3.3.10),

(3.3.31) P =Wo(R) & Py =Wo(R) & P.

080t Wa(R)) 08, W, (R))

We note that Py = (O ®0¢ .. W, (R)) ®0g,w, (r) P-

We already noted that the Ahsendorf functor 2o:/, r is compatible with bilin-
ear forms. Similar remarks are also valid for the Ahsendorf functor Ap,o¢ r: first
one checks that the functor P — Py is compatible with bilinear forms of displays,
and then applies Proposition 3.2.3 for the compatibility of base change with bilinear
forms. Taken together with (3.3.13), we obtain the following property of the Ahsendorf
functor Ao /o -

PROPOSITION 3.3.15. — Consider a bilinear form of W,(R)-displays,

B:P xP"— P,
which is also O-bilinear. Then the bilinear form B : P’ x P — P induces by (3.8.31)
a Wo(R)-bilinear form (B, : P, x P! — P,. The bilinear form (3, is a bilinear form
of Wo (R)-displays,

Ba : PL x P! — P,.

REMARK 3.3.16. — In the case where R = k is a perfect field, the description of the
Ahsendorf functor is very simple. We consider the functor 2oz, » which is relevant
for us. As a prime element of Z, we choose p. The element ¢ € W (k) is 1. As above,
we denote by f, resp. v, the Frobenius, resp. the Verschiebung, of the ring of Witt vec-
tors W (k). In this case the morphism (3.3.12) of frames u : 2oz, » — Wor(k), and
the morphism of frames p : Fit (k) — Wo (k) of Proposition 3.3.12 are isomorphisms.
Therefore we identify Wo (k) with the frame

(3.3.32) (0 @0 W(k), 70 @0t W (k),k,§,§ =~ 1).

This is a perfect frame with u = 6 = 7, cf. Definition 3.1.8.

Let (P, F,V) be a W(k)-Dieudonné module with a strict O-action. We have the
decomposition P = @, Py, cf. (3.3.10). The summand P is an O ® o+ W (k)-module.
Since the action of O is strict, we find

Py CQO :VfPO
Therefore we can define
(3.3.33) Vo=Vl F, =V~ /x:P,— P,.

Then (P, F,,V,) is a Dieudonné module for the frame (3.3.32). It is the image
of (P, F, V) by the Ahsendorf functor %o,z -
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PropPOSITION 3.3.17. — Let R € Nilp,. We assume that Spec R is connected. Let
P be a W(R)-display with a strict O-action, and let P, be the image by the Ahsendorf
functor Aoz, - Then

height P = [O : Zy) height, Pa.
The right hand side denotes the height of the Wo (R)-display P, in the sense of Defi-
nition 3.1.4.
Let o : Py — P2 be an isogeny of W(R)-displays with strict O-action, and let
0y P1,a — Pa,q be the image by the Ahsendorf functor. Then
height a = [O" : Z,] height, a,.

Let R =k be a perfect field. Let Ay < --- < Ay, be the slopes of P. Then the slopes
of Py are [O : Zp|Ai, ..., [0 : Zp|Am. The display P with its strict O-action is isoge-
nous to a direct sum of displays with a strict O-action @], P(X;) such that P(X;) is
isoclinic of slope ;.

Proof. — It suffices to consider the case where R = k is a perfect field. Then it is a
consequence of the description of the Ahsendorf functor given above, cf. (3.3.33). O

In the end of this subsection, we relate explicitly the deformation theory of a display
with a strict O-action and its image by the Ahsendorf functor. Let S — R be an
epimorphism of O-algebras which are p-adic. We assume that the kernel a of this
epimorphism is endowed with divided powers 7 relative to 0. Then ~ induces also
divided powers ; on a relative to Ot. Indeed, let g, be the number of elements in the
residue class field of 0. Then we set

(3.3.34) ve(a) = v(a)a? % ="a/w”, aca.
By setting va(a) = y(a)(w/7), we obtain divided powers 7, relative to O on a.
Let P = (P,Q, F, F') be a W,(S/R)-display with a strict action
t:0 — EndP.

The definition of strictness is literally the same as Definition 3.3.1. Since (S — R, 7,)
is an O-pd-thickening, the O-frame Wy (S/R) is defined, cf. Example 3.1.3. The Ah-
sendorf functor generalizes to a Ahsendorf functor for S/R

Wo(S/R) — displays ) . (Wo(S/R) —diSPIaYS)-

3.3.35 A :
( ) O/e,5/R < with strict O-action

The construction is the same but uses some additional arguments, which we will
indicate now.
We define the Ahsendorf frame for S — R relative to o,

(3.3.36) Ao (S/R) = (Wo(S), I,(S/R), R, ,§171),

where § : I,(S/R) — W,(S) is defined as in Example 3.1.3. This is an O'-frame by
the homomorphism » : O — W, (.9).
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From the Otf-action on the W,(S)-module P we obtain a decomposition, comp
(3.3.10),

(3.3.37) P= P P. Q= P Qm

meL/f7L meZ/fL

We obtain an A, (S/R)-display Pua = (Pua, Qua, Fuas F.,) by the formulas (3.3.11).

LEMMA 3.3.18. — The Drinfeld homomorphism p : W,(S) — Wpe(S) induces a
morphism of frames

(3.3.38) A, (S/R) — Wo+(S/R).
Proof. — We have to prove the formula

Fum) = p(" " Fn), ne L(S/R).

For n € I,(S), this is (3.3.3). Therefore the formula follows if we show that
w: Wo(S) — Wpe(S) maps logarithmic Teichmiiller representatives of elements in a
to logarithmic Teichmiiller representatives. Let W, , be the divided Witt polynomials
defined by v and let wo: ,, be the divided Witt polynomials defined by ~;. It follows
from the definition of the Drinfeld homomorphism (3.3.1) that

(3.3.39) Worn (1)) = @V 1 (), € € Wo(a).

This is verified by reducing to a universal case where a is without p-torsion. If now
& = a € Wy(a) is a logarithmic Teichmiiller representative, the right hand side of
(3.3.39) is 0 for n # 0, and is a for n = 0. This shows that u(a) is the logarithmic
Teichmiiller representative of a in Wo:(a). O

Applying now base change to Py, relative to (3.3.38), we obtain a Wo:(S/R)-dis-
play Py with a strict O-action. The assignment P — P, defines the functor

( W, (S/R) — displays > ( Wot(S/R) — displays )
Aot /0,5/R — )

with strict O-action with strict O-action

Next we define the functor

Wor(S/R) — displays ) — (Wol(S/R) ~ displays).

3.3.40 A t :
( ) Uo/ot.s/m < with strict O-action

We begin with the definition of the Lubin-Tate frame F;(S/R) for S — R rela-
tive to O. We start with the frame Woe(S/R) = (W (S), Io:(S/R), F', F"). Recall
that Ip:(S/R) = a® Ip:(S), where the ideal a consists of the logarithmic Teichmiiller
representatives @ of elements a € a, with respect to the divided powers ~;. We have
by definition F”(a) = 0. Tensoring with O®¢¢, we obtain

F': O®0o: Wot(S) — O @0t Woe(9),

F': 0 ®0pt Io:(S/R) — O ®o¢ Woe(S).
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We define an ideal in O ®o: Wo:(S),
(3.3.41) J(S/R) =0 ®0t Ip:(S/R) + (1 ®1—18& [7])(0 @0t Wo:(9)).
For an element n € J(S/R) we find
Exo(r®1)n € O ®0: Io:(S/R).

Indeed, the factor ring O ot Wt (S)/O ®ot Io:(S/R) = O ®c+ R is annihilated
by Ex(m ® 1). As before in the definition of the Lubin-Tate frame, we define maps
o1 : O Qo Wot(S) — O ot Wot(S) and &y : j(S/R) — 0 ®pt Wot(S) by

g =F’£’ ('m,r] _F EK(ﬂ' ® 1)71F’(EK70(7‘_ ® 1),,7)7
with £ € O ®ot Wor(S), n € J(S/R). The justification of the following definition is
analogous to the justification of Definition 3.3.8 of the Lubin-Tate frame.
DEFINITION 3.3.19. — The O-frame
.ﬁt(S/R) = (O Kot Wot (S),J(S/R), Ult,é'lt)

is called the Lubin-Tate frame for the epimorphism of O-algebras S — R and the
divided powers ; relative to O on the kernel a.

LEMMA 3.3.20. — The Drinfeld homomorphism

1O ®or Wor(S) — Wol(S)
defines a morphism of O-frames
(3.3.42) Fit(S/R) — W5 (S/R).
The last frame is defined by (3.3.26).

Proof. — One can argue exactly as in the proof of Proposition 3.3.12, but we need
that

p: Wor(a) — Wo(a)
maps logarithmic Teichmiiller representatives @ € Wo:(a) with respect to the O*-di-
vided powers v; to logarithmic Teichmiiller representatives @ € Wp(a) with respect

to the O-divided powers -y,. This is a consequence of the following relation of divided
Witt polynomials,

Wo.n((@) = (£) Woun(@), a€Wora).

Again we may restrict to the p-torsionfree case, where this formula follows immediately
from the definition of y, cf. (3.3.1). O
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Let P; be a Wo: (S/R)-display with a strict O-action. Then the R-module P;/Q is
annihilated by # ® 1 — 1 ® [r]. As in Proposition 3.3.11, we define Fj; : P — P by

Fi(z) = F((r®1—-1®[r))z), =ze€P.
We set Py = P, Qn = @i, Fiy = F,. Then we obtain a Fi:(S/R)-display
P = (Plt,Qlt,Flt,Flt). If we apply the base change by (3.3.42), we obtain a
Wo(S/R)-display P§ = (P5,Q5, Fi, FY).
The assignement Py — P, = (P, Q%,e ' F¢, F?) is the desired relative Ahsendorf
functor QLO/Ot,S/R'

PROPOSITION 3.3.21. — Let P be a W, (S/R)-display with a strict O-action. Let P, be
the Wo(S/R)-display associated to it by the relative Ahsendorf functor Ao /o s/R-
Then there is a canonical isomorphism

(3.3.43) Po/Io(S)Pa = S ®og,s (P/1(S)P).
Proof. — This is an immediate consequence of (3.3.31) O

With the notation P = P, of (3.3.37), we may write
(3.3.44) Po/Io(S)Py = Pua/Io(S)Paa + (1 ® 1 — 1 ® [1]) Paa.

To see this, one uses that m ® 1 — 1 ® m generates the kernel of the canonical
map O ®opt O — O as an ideal. We see that P,/Io(S)P, is the biggest quotient
of Py./I,(S)P,, such that the action via ¢ and via the structure homomorphism
O — S agree.

Let R be an O-algebra R such that 7 is nilpotent in R. Let P be a W, (R)-display
with strict O-action. We assume that P is nilpotent. Then P, is also nilpotent. Then
there is a crystal Dp on the category of o-pd-thickenings and a crystal Dp, on the
category of O-pd-thickenings associated to these displays.

COROLLARY 3.3.22. — Let P be a nilpotent W, (R)-display with a strict O-action.
Then the image P, by the Ahsendorf functor is a nilpotent Wo(R)-display. Let
S — R be a surjective map of O-algebras which are p-adic. Assume that the kernel a
of this epimorphism is endowed with divided powers vy relative to o. Let vy, be the
corresponding O-divided powers on a. There is a canonical isomorphism

Dp,(S,7) = S ®©0e,s) Dp(S,7).

Proof. — Indeed, Dp(S) is computed from a W, (S/R)-display P which lifts P and
whi~ch is unique up to isomorphi~sm. But then the relative Ahsendorf functor applied
to P gives a W (S/R)-display P, which lifts P,. We conclude by Proposition 3.3.21.

O

COROLLARY 3.3.23. — With the notation of Corollary 3.3.22, the Ahsendorf func-
tor Ao/o,s defines a bijection between the liftings of P to a W, (S)-display with a
strict O-action and the liftings of P, to a Wo(S)-display.
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Proof. — We show that each lifting of P, is in the essential image of Ay, 5. A lift-

ing P, of P, corresponds, by Grothendieck-Messing for nilpotent displays, to a direct
summand U, C Dp, (S). Let U C Dp be the preimage of U, by the natural epimor-
phism Dp — Dp,. Then U defines a lifting of P which is mapped by the Ahsendorf
functor to P,. O

It is straightforward to deduce from the last corollary, Ahsendorf’s Theorem 3.3.2
for an artinian local ring with perfect residue class field, i.e., we reproved a special
case of [1].

3.4. The Lubin-Tate display

Let K be a finite extension of Q,. Let K C K be the maximal subextension
which is unramified over Q,. We denote by O' C O the rings of integers and by
k the common residue class field. We fix a prime element 7 € O. Let L be a normal
extension of Q, which contains K. We set L' = K. Let ® = Homg,-a1¢(K, L) and
U = Hom@p_Alg(Kt,L). We denote by ¢g € ® and ¢y € ¥ the identity embeddings.
We denote by ®,, the preimage of ¢ by the restriction map ® — W. We define

Ey(T) = [] (T -¢(m)) € OL[T].

Clearly this polynomial has coefficients in Or: C Op. Let E € O![T] be the Eisenstein
polynomial of 7 in the extension K/K*. Then E, is the image of E by ¢ in Or:[T].
We consider the surjective Op-algebra homomorphismus

OL[T] — 0 R0ty Or,

which maps T to 7 ® 1. Then Ey (7 ® 1) = 0.
We lift the polynomials E, to the Witt ring

Ey(T) = [I (T-le(m)]) € W(OL)[T].
PEDy

We consider the decomposition

0] ®Zp O = H O R0t 4 Ops.

heEY

Let 0 € Gal(K'!/Q,) be the Frobenius automorphism. We have the morphism
A: Ot — W(O?) from (3.3.8). We define 9 as the composite

30t 2 woh T wor.
Then we obtain the decomposition

(3.4.1) 0@z, W(OL) = [[ O®0: 5 W(OL).
Yew
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Let fh/, (mr ® 1) be the image of Ew by the homomorphism
W(OL)[T] — O ®p: j W(OrLe),
which maps T to 7 ® 1. Since Ey (7 ® 1) = 0, we conclude that

(3.4.2) Ey(r®1) € 0®p ; 1(Op).
For an arbitrary Op:-algebra R, the decomposition (3.4.1) induces
(3.4.3) 0@z, W(R) = [[ 0®¢. ; W(R).

hew

The Frobenius and the Verschiebung act on the left hand side via the second factor,
and this induces on the right hand side the maps

F: 0@ 5 W(R) — O R0t 5o W(R)
a®Er—a® e

V:0®p 55 W(R) — O ®q: 5 W(R)
a®E—a®v £

(3.4.4)

We note that 1o = 9 oo. We will write F' = V1 : 0®p: jI(R) — O®y 5z W(R).

PROPOSITION 3.4.1. — The element "Ey(r®1) € O ®
form

Ot %o W (Or:) is a unit of the

(345) FEw(ﬂ' ® 1) = <7; X 1) 5, (S € O ®Ot,7$;' W(OLt),

where §—1®1 is in the kernel of O®,, %W(OU) — O®,, %W(HLt). In particular,
6 —1®1 lies in the Jacobson radical of O @, ;- W(Ort).

Proof. — The proof is the same as that of Proposition 3.3.6. O

The polynomial E,,, has the decomposition
Ey, (T) = (T — ) - Eo(T).
These polynomials have coefficients in K C L. Recall that ¢g(7) = 7. We set

E(T)= [ (@-I[em)) eW(©Or)T.
PED Y, pF 0
This polynomial lies in W (O)[T] € W (Op)[T]. We set
(3.4.6) Pz =0®z, W(0) =P 0y ; W(O).
pevw

We denote by Qu, C O ®p: 5, W (O) the kernel of the map

(3.4.7) 0 ®pe iz, W(0) 2% 0 001 4, 0 2 0.
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LEMMA 3.4.2. — We have
Quo = {2 € 0®4: i, W(O) | Eyyo(r @ 1)z € O @00 5, 1(0)}.
Proof. — Let Qy, be the kernel of the second map of (3.4.7). Then we can reformulate
our assertion as
Q¢O ={r € 0 ®0t,y, O | Eyo(m® 1)z =0}.
We write
0 @01,y O = (O'[T]/Eq, (T)O'[T]) ®01,, O = O[T]/Eyy, (T)OIT].
We see that Qy, is equal to (T — m)O[T]/Ey,(T)O[T], which coincides with
Eo(T)O[T]/Eqy, (T)O[T]. O

We let F' and V' act via the second factor on O ®z, W(O) and therefore on the
right hand side of (3.4.6) by the formulas (3.4.4).

DEFINITION 3.4.3. — The Lubin-Tate display is the W(O)-display

L= (PﬁvQﬁaF£7F£)7
defined as follows.
Let Py = O®ZPW(O). Then Py = @¢ Py ¢ with Py o = O®Ot,@5 W(O). Set Qy =
Py, for ¥ # 1o and Qu, C Py, o as above, and define

Q=P Qyc Pr.

PeV

The maps Fr and F are defined as the direct sum of the following maps for all 1.
For 1 # 4o we define

Fz:0®g 5 W(0) — 08, 7 W(0),
z — (Ey(r @ 1)),
Fr:0®p0 5 W(0) — 08, 52 W(0)
y— By (r @ 1)y).
For vy we define
Fz:0®g 5 W(0) — 0®p, 5= W(0),
z +— F(Eo(r ® 1)a),
Fr: Quy — 084, 5= W(0)
y— F(Eo(r @ 1)y).

The action of O by multiplication via the first factor on O ®z, W(O) defines a strict
O-action on L. If R is a p-adic O-algebra we denote by Li the base change of L via
the morphism of frames W(O) — W(R).
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The tuple (Pz,Qr, F¢, FL) is indeed a W(O)-display. The only non-trivial point is
that F, is surjective. But this follows from Proposition 3.4.1.

We will now apply the Ahsendorf functor (o /Z,,0 to the Lubin-Tate display £. We
use the previous section in the case 0 = Z, and w = p. We set ¢; = oot : O — O,
where 1) is the identity. We have the decomposition

f-1
Pe=@D Pruy, Pru=08q. 5 W(O)
i=0
We denote the Frobenius on W(O) by F. In the last section we have associated to £
an A(O)-display Py, for the O'-frame
Az,(0) = A(0) = (W(0),1(0), F!, FI~1F).
By definition Py = Ppr 40, Qua = Qr,4, and Fuo = Fg More explicitely, for y € Qya,

FEo(r ® 1)y).

Fua(y) =By, ,(r® )T By, ,(re1)-- " FEy (re 1)
We set
n="By, (e )Ey, ,(r@1)- " TRy (o) Ty, (r®1).

Then we may write

-1

(3.4.8) Fualy) =n(" By, (r 0 1) EEo(r @ 1)y).
To Py, we apply a base change with respect to the Drinfeld morphism
w: A(O) — Wpt(0), cf. (3.3.12). We obtain the Wp:(O)-display Py, where
P, = 0 ®pt Wot(0)
and where @y is the kernel of the homomorphism O ®ot Wp:(O) — O induced

by wor g, cf. (3.4.7). The polynomials ]:]wO and Eq are mapped by  to the polynomials
EK and EKO of (3.3.14). We denote by nj; the image of n by u. Therefore we obtain

Fi(y) =ny (FIEK(7T ® 1))_1F/ (Exo(r®1)y), yE Q.

By Proposition 3.3.11, we associate to P; a Fi(O)-display Py;. In terms of the Lubin-
Tate frame (comp. Definition 3.3.8), we may rewrite the last equation as

Fi(y) = noie(y), y€Qy=Qu=J.

PROPOSITION 3.4.4. — The Ahsendorf functor %o,z, 0 maps the Lubin-Tate dis-
play L to a Wo(O)-display which is canonically isomorphic to Py, w, (0) (nef /pf),
i.e., the twist of the multiplicative display by 7¢% /pf € O C W5 (0), cf. Example 3.1.6.

Proof. — Let Pp i« be the multiplicative Fy4(O)-display. The above identities
show that the display L is equal to the Fy;(O)-display Py, i (ni). Applying to
this display the base change by the Drinfeld morphism of frames, cf. Propo-
sition 3.3.12, we obtain essentially (i.e., neglecting ¢) the image of L by the
Ahsendorf functor. By Proposition 3.4.1 the image of the element n by the map
0 ®p: 5, W(O) — O @0y, W(k) =0 is n¢f /pf. This implies that the image
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of niy € O®p: Wo:(0) in O @0t Woi (k) is ¢/ /pf. By the following lemma there is a
uniquely determined unit £ € O ® gt Wo:(O) such that ¢ny, = (¢ /pf ® l)Fff. This
gives a canonical isomorphism P,, (ny;) — m’({(ﬂ'ef /pf ®1). The base change with
respect to a morphism of frames maps the multiplicative display to the multiplicative
display, cf. Example 3.1.7. Therefore the last display is mapped by the base change
of Proposition 3.3.12 to the W§ (O)-display

(Wo(0),16(0), F,e F) (7% /p! @ 1).

Here we denote by F' the Frobenius acting on Wp(O) and by F' the inverse of the
Verschiebung. The element ¢ is defined by (3.3.17).

Therefore the definition of the Ahsendorf functor gives P, w0y (e~ (7% /p/ ®1))

as the image of £. The image of € by the homomorphism W (0) — Wo(k) is 1. A

variant of the next lemma shows that there is a unique ¢ € Wo(O) such that F¢¢ = .

This shows that the last display is canonically isomorphic to Py, w0y (7% /p @ 1).

O

LEMMA 3.4.5. — Let a € O®pt Wt (O) be a unit whose image in O @t Wor (k) is 1.
Then there exists a unique unit £ € O ot Wot(0O) whose image in O Qpt Wor (k) is 1
and such that
Fooo_
Pe. el =a,

Proof. — One proves this by induction on n for O®ot Wp: (O /7™ 0). Alternatively one
can use Grothendieck-Messing for frames due to Lau and show that the multiplicative
display of Fi¢(x) has no nontrivial deformation with respect to F1;(0) — Fip(x). O

REMARK 3.4.6. — Let k a perfect field which is an extension of k. We regard it as an
O-algebra via the residue class map O — k. Then we can describe the Dieudonné
module (Pg,,Fr,,Vz,) of L as follows. Let ¢y : O = W(k) — W(k) be the
canonical map. The set ¥ consists of the maps tzooi where o is the Frobenius of the
extension O*/Z,. We have

P, =0®z, W(k)= [ 0®0. 5 W(k).

Ppew
The Frobenius and the Verschiebung
Ve,
are defined as follows:
Fr,(zy) = 77y, Ve (@yo) = (p/7) 7 Byo,  for g # g,

_ _ 1
Fe, (mlﬁo) =n° lwaov Vi ('Twod) = (p/ﬂ'e 1) F Lypgo-

The upper left index F' denotes the action of the Frobenius via the second factor
on O ®z, W(k). This description follows easily because E,(T) = T°, and therefore
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Eyj(r®1)=71®1€0 ®pr 5 W(k) and Eo(m ® 1) = 7! ® 1. Moreover, we have
Q"PO = 7T0 ®Ot,’(; W(k)
We have identified the frame Wo (k) with
(0 @pe g, W(k), 7O ®. 5, W(k), k, F/, FIx~1).

By Remark 3.3.16, the Ahsendorf functor associates to the Dieudonné module
(P, Fr,, Vi) of Ly, the Wo(k)-Dieudonné module
Ll F7).

(3410) (O ®Ot,’l/;0 W(k), pTF 5 W

This is equal to the Dieudonné module of the twisted multiplicative display
’Pmﬁwo(k)(ﬂef/pf), in agreement with Proposition 3.4.4.

In the end of this subsection we discuss the Faltings dual of a display P = (P, @, F, F)
with a strict O-action over an O-algebra R. We begin with a recipe how to construct
such P. We consider the decomposition induced by (3.4.3),

P=@PPr, Q=Quo(P Py
P P#ho

Let
(3.4.11) Jy, = Ker (0 ®4. 5, W(R) — R),

where the map is induced by the structure homomorphism O — R and the homo-
morphism wg. Then

Jun =000, [(R) + (1@ 1— 18 [7])(0 ® g0 5, W(R)),
cf. (3.3.20). To find a normal decomposition P = T & L, we start with
Pyo = Tpo ® Lyo,  Quo = Jyo Ty ® Ly

We define ¢Tw0 : Tdi — PlPoU?

0
¢1,,(t) = F((r @1 -1® [n])t).

Then we set T' = Ty, C P and L = Ly, ® (D, Pu)- Let ¢ : L — P be the

restriction of F' to L and let ¢ = ¢r,, - The restriction to Ly, is denoted by ¢r,, .

LEMMA 3.4.7. — The map

¢pr® ¢ TO®L — P

is an F-linear O ®z, W(R)-module isomorphism, where the Frobenius F acts on
O ®z, W(R) via the second factor.
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Proof. — For ¢ # 1y the map Fw : Py — Py, is an F-linear isomorphism. Therefore
it suffices to show that the map

(3.4.12) or D ¢Lw0 : Ty @ Lyy — Pyyo
is an F-linear isomorphism or, equivalently, an F-linear epimorphism. Since Py, is
generated by F (Qq,) it suffices to show that the following elements are in the image
of the linearization of (3.4.12):

F), F(r®1-1@[x))t), F(Vnt), L€ Ly,,teT,ne€ 0z, W(R).
For the first two elements this is obvious. For the last element this follows from the
formula
(34.13) Fz= "By 1) - FBrel)-F((r®1-18[r])z), =€ Py,
which is proved in the same way as Lemma 3.3.10. O

We omit the proof of the following proposition.

ProposITION 3.4.8. — Let R be a p-adic O-algebra. Let Ty,, Ly, be
0 ®¢¢ 5, W(R)-modules and let Py for ¢ # 1o be O @ ; W (R)-modules which are
free locally on Spec R. Set Py, = Ty, ® Ly,. Assume given F-linear isomorphisms

O1yy S PLyy + Tyo ® Lyy — Pyooy ¢y 2 Py — Pyo, forh # to,
cf. (3.4.4) for the meaning of F-linear.

Then there exists a unique display P = (P,Q,F, F) with a strict action of O
over R such that P = @, Py and Q = Jy, Ty, ® (Dyry, Po) with T = Ty,
and L = Ly, ® (D, Py) and such that o7 = ¢1, : T — P and ¢ = ¢y, ®
(@w#ﬁo ¢y) : L — P are given by the display structure of P as in Lemma 3.4.7.

Let P be a display with a strict action by O over R, as above. Then we set
pY — Homog, w(r)(P,0 ®z, W(R)) = @ P¢v, where
P
Py = Homog,, w(r)(Py, O @0 5 W(R)).

We define
QZUZ{:%EP%|£(Q¢0)CJ¢0}CP¢VO7 Q¢0 @Pqp
Y#po
Let
(3.4.14) (), Joan : P x PV — O ®z, W(R)

be the canonical perfect O ®z, W (R)-bilinear form.
It induces pairings P, x dev — 0 Qo 4 W (R). Under the perfect R-bilinear form

P"Po/‘]’lﬂop'lﬁo X Pwvo/Jﬂ)onvo - (O ®Ot,qﬁ W(R))/‘]'l/lo ~ R,
the R-submodules Qy,/Jy, Py, and on /o PX) are orthogonal complements.
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PROPOSITION 3.4.9. — Let P be a display with a strict O-action over R. Let PV and
QV as above. Then there are unique F-linear homomorphisms of O®z, W(R)-modules

FV.pV —pY, FV.QYV— PV
such that PV = (PV,QV,FV, FV) becomes a display and such that the bilinear form
(8.4.14) defines a bilinear form of displays with a strict O-action,
(3.4.15) () Yean : P x PV — L.
We call PV the Faltings dual of P.

Proof. — It follows from the definition that
(Q,Q%)ean C Qz C O @z, W(R).
We will define a display PV = (PV,QV,FV,FV). Then we will show that
(3.4.16) (Fy, PV Plean = Fr(y, Dean ¥y €Q, QY.
This will show that (3.4.15) is a bilinear form of displays with an O-action. Since the

pairing (3.4.14) is perfect, the map F'V is uniquely determined by (3.4.16).
We begin by defining PV. We chose a normal decomposition

(3417) Pwo = Two @ Lll)o? Qd)o = onTﬂ)o ® Ld’o
Let vao be the orthogonal complement of T, and let LZO be the orthogonal comple-
ment of L, with respect to the perfect bilinear form
Py, X Py, — 0 @405, W(R).

We consider the maps ¢, and ¢, . We define maps

Y v v v

¢ry Tyo — Pioor 1y, # Ly — Pijoo
by the equations
(3.4.18) ‘
<¢T¢0 (t) + ¢Lw0 (0), d)vao (E)>Can = FEwo (m® 1)F<£7 £>Can7 t € Tyg, £ € Ly,

<¢Two )+ ¢Lw0 (0), ¢L§O (€))can = FEl/}o (m® 1)F<t7 £)can, te Tvo’ te Lzo'
This definition makes sense because ¢1,, @ ¢r,, : Ty, ® Ly, — Py, is an F-linear

isomorphism. For ¢ # 1y the map F . Py — Py, is an F-linear isomorphism.
Therefore we can define FV : P¢v — Pfo_ by the equation

(F2,FY 2)can = "By (1 ® 1)(2, 2)can, 2 € Py, 2€ Py
We now apply Proposition 3.4.8 to the modules Tfo , LXO, and Pf for ¥ # 19, and to
the maps d)va N LY and ¢y = va for v # 1g. This concludes the definition of the
0 0 A
display PV = (PV,QV,FV,FV).
Now we verify (3.4.16). Let ¢ # 1po. If y € Py and § € P/, the right hand side is
by definition

FEdJ (71— by 1) 'F<y, g)can-
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Therefore (3.4.16) holds in this case by the definition of FJ . For 1y we use the normal
decomposition (3.4.17) and the induced normal decomposition ng = onTzZ) @ LXO
Using the Definition (3.4.11) of Jy,, the identity (3.4.16) becomes for the 1)y-compo-
nents a series of equations:

(1) (F((r @1 —1® L), FVean = FL((r ® 1 = 1 ® [1])t, Dcans
2) (F(nt), Y B ean = E2(Vnt, O)can, 1 € O ®0 g, W(R),
3) (FLEY (1 ®1 -1 [1])f))ean = Fc{l, (1 ® 1 = 1@ [7])f)can,
(4) (FLEY(V0D)ean = E£ (LY ni)can,
(5) (E4, FV ) ean = 0,

(6) (F(JyoTpo), FV (T T ))can = 0.
We compute the right hand side of equation (1):

RHS(1) = Bo(r ® 1)(7 ® 1 = 1@ [7]) (¢, £)can = "By (7 ® 1)7 (£, £} can.

Therefore equation (1) is exactly the second equation of (3.4.18) for £ = 0. The
equation (3) follows in the same way.

We prove now the equation (2). For the right hand side we find:
RHS(2) = 0FL{t, )can = 1" Eo(m @ 1)(t, D)can.
We compute the left hand side of (2) by applymg (3.4.13) to F(Vnt) = nFt:
(B ), BV ) can = "By, (1 @ 1) FBo(m @ )(F((r @ 1= 18 [7))1), ¥ can
= 1 By, (1 © 1) Eo(r @ 1) By, (1 © 1)F(t, Dcan.

Here the last equation follows from (1). This proves (2). In the same way we obtain (4)
from equation (3). The equation (5) follows from the second equation of (3.4.18)
for t = 0.

Finally we prove equation (6). The special case
(3.4.19) (F(r@1-1@[m)t), FY(r®1— 18 [7]){))can = 0

is exactly the first equation of (3.4.18) for £ = 0. We have to show that the same
holds if we replace the first argument of the bilinear form in (3.4.19) by F(Vnt) or
the second argument by F'V(Vni). But this may be reduced to (3.4.19) in the same
way as in the proof of equation (2). This finishes the proof of (3.4.16). O

PROPOSITION 3.4.10. — Let Py and Po be displays over R with a strict O-action.
Then the natural map

HomO-displays(P2> P1v) — BilO-displays(Pl X P27 ﬁR)

is an isomorphism. Here we consider bilinear forms of displays with a strict O-action
which are also O-bilinear.
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Proof. — We define the inverse map. Let 5 be an element from the right hand side.
This is in particular a O ® W(R)-bilinear form
ﬂ:Pl XP2 —>O®W(R)

On the other hand, we have the canonical perfect O ® W (R)-bilinear form { , )can :
Py x PV — O ® W(R). Since this is perfect, we can define a O ® W (R)-module
homomorphism o : P, — PY by

ﬂ(xla -TQ) = <-T17 a(x2)>can~

We omit the straightforward verification that o defines a morphism of displays. [

THEOREM 3.4.11. — Let R be an O-algebra such that p is nilpotent in R. Let P, and
Py be displays over R with a strict O-action. We denote by P1,, and Pa , their images
by the Ahsendorf functor %oz, r- Proposition 3.3.15 and Proposition 3.4.4 define a
homomorphism

(3.4.20)
BﬂO—displays(Pl X PZa *CR) — BﬂWo (R)—displays(Pl,a X PQ,a7 Pm,Wo (R) (ﬂ.ef/pf)).

If the displays Py and Po are nilpotent, the homomorphism (3.4.20) is an iso-
morphism. Equivalently, (3.4.20) is an isomorphism if (P1,)Y and P2, are nilpotent
Wor (R)-displays.

Proof. — We apply (3.4.20) to P, = Py and the canonical bilinear form. We obtain
a bilinear form

Pl,a ® (Plv)a — Fm,Wo(0) (Wef/pf)ﬂ

which is perfect by Proposition 3.3.15. After twisting, we obtain also a perfect pair-
ing of Py, and (PY )a((7®/ /p/)~") with values in P, w, (0). Therefore we have an
identification with the dual display

(Pra)” 2 (PY)a((x /") 71).
By Theorem 3.3.2 we have an isomorphism
HomO—displays (PQa Plv) - HomWo(R)—displays(PQ,a7 (Plv)a)

Here the left hand side agrees with the left hand side of (3.4.20) by Proposition 3.4.10.
We have seen that the right hand side is the same as

HomWo(R)—displays (P2,aa P{\,a(ﬂ-ef/pf)) = BﬂWo(R)—displays (Pl,a X PQ,aa Pm,Wo(R) (ﬂ-ef/pf))'

The last isomorphism follows from (3.2.5). O

DEFINITION 3.4.12. — Let R € Nilp, and let P be a display with a strict O-action. A
relative polarization of P with respect to O is a polarization of the Wo (R)-display P
obtained from P by the Ahsendorf functor, cf. Definition 3.2.5.
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Let O be the completion of the maximal unramified extension of O. We con-
sider Theorem 3.4.11 in the case of an O-algebra R. We denote by 7 € Gal(O/0)
the Frobenius automorphism. Since n¢/p € O is a unit we find Ny € O* such
that 7(no)ny ' = m°/p. By Lemma 3.3.4 there is a 7 — F-equivariant homomorphism
O — Wo(0) such that the composite with wy is the identity.

Let R € Nilps. We denote by 7 r the image of 1y by the homomorphism

0 — Wo(0) — Wo(R).
Then multiplication by 77({ g defines an isomorphism of Wo (R)-displays,

(3-4.21) P wo ) (T /97) = Prwo ()
Therefore we may write Theorem 3.4.11 without the twist (7¢f /p7).

COROLLARY 3.4.13. — Let R € Nilpy. Fiz 1y € 0% with T(no)ng ' = 7¢/p, which
defines the isomorphism (3.4.21). Let P be a display with a strict O-action over R
such that P and PV are nilpotent. Then a relative polarization on P with respect
to O is the same thing as an isogeny of displays with an O-action P — PV such
that the induced bilinear form

PxP— ER

is alternating.

In the situation of the corollary, P is the display of a formal p-divisible group X
with a strict O-action and PV is the display of a formal p-divisible group with a
strict O-action which we denote by X V. We call XV the Faltings dual of X. However,
we do not relate our definition to that of Faltings in [12], which operates directly in
the realm of p-divisible groups. We can consider a relative polarization as an isogeny
of p-divisible groups with an O-action,

(3.4.22) X — XV,
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CHAPTER 4

THE CONTRACTING FUNCTOR

We return to the notation of Section 2. In particular, throughout this section,
K/F denotes an etale extension of degree two of a p-adic field F', and r denotes a
generalized CM-type of rank 2.

Let E be the reflex field of r, and let E C @p be its normal closure. As in Subsec-
tion 2.2, E’ C E is the composite of E and the normal closure of K* in Q,.

4.1. The aim of this section

DEFINITION 4.1.1. — Let S be a scheme over Spec O/ such that p is locally nilpotent
in Og. We denote® by P, s the category of local CM-pairs of type r over S which
satisfy the Eisenstein conditions (EC,). If S = Spec R, we will also write P, r or
simply Pr.

The category of local CM-pairs (P, i) of type v in the sense of displays which satisfy
the Eisenstein conditions will be denoted by 0B, g, resp., 0P, r.

We will define a functor € 5 that associates to a CM-pair (P,¢) € 9P, g a new
display (P’,.) over R with an action ¢/ : O — End P’. When r is special relative
to wo: F — Q,, cf. Definition 2.1.1, then the restriction of .’ to OF is strict with

respect to Op —% Op/ — R. If r is banal, then P’ is étale. We will call the func-
tor C’T’ g the pre-contracting functor. Under suitable hypotheses, the pre-contracting
functor will be an equivalence of categories.

We will also describe what €.  does with polarizations, and define a functor (’Z;’E;l

on the category mf‘g, defined as follows.

DEFINITION 4.1.2. — We denote by ‘}37130; the category of polarized local CM-triples
(X, 1, \) of type v over S such that (X,.) satisfies the Eisenstein conditions (EC,.). If

S = Spec R, we also write ‘Bff};, We denote by D‘Bfff)l the corresponding category of lo-
cal CM-triples in the sense of displays. Explicitly, D‘BE% denotes the category of triples

1. The symbol ‘B is to remind us that this is a category of local CM-pairs.
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(P, v, B) where (P, 1) € B, r and where 3: P x P — Py, w(r) is a polarization such
that

B(t(a)z1,x2) = B(z1,(a)x2), a€ Ok, 1,22 € P.
In the sequel, we will abbreviate the last condition into saying that (8 is anti-linear for
the Og-action.

In a second step, we will use the functors er, R» T€sp. @'T’fﬁl, to define contracting

functors. Here, we make a distinction between the case when r is special and the case
when r is banal. In the case when r is special, the image of the contracting functor
is a Wo . (R)-display P., endowed with an action ¢ of Ok such that P. is of height 4
and dimension 2 (and, in the polarized case, with a polarization). When r is banal,
the image is a p-adic étale sheaf G in Z,-flat modules of rank 4d, endowed with an
action of O (and with a polarization form in the polarized case).

REMARK 4.1.3. — The pre-contracting functor is analogous to the functor in [28,
Thm. 4.12], with two important differences. First, in loc. cit., there is no polarization
in play, which makes the definition simpler. Second, in loc. cit. the functor is only
considered for schemes S with pOg = 0. This is due to the fact that, in the context
of [28], we were not able to handle the Kottwitz condition in the general case when
p is only locally nilpotent in Og.

A very similar pre-contracting functor also appears in [23]. Mihatsch considers the
case where K/F is an unramified field extension, and assumes that the generalized
local CM-type r is unramified. Let us explain this in the case when r is of rank 2
special relative to ¢g. Let K* be the maximal unramified subextension of K. With the
notation of §2.2, we fix a disjoint decomposition ¥ = Wy IT ¥, where the summands
are exchanged by the generator ¢ € Gal(K*/Q,). Then r,, = ry, = 1 and for

© ¢ {0, Po}

0, ifg €U
(4.1.1) ry = Plice %0
2, if 90|Ki € Uy,

In this case, the Kottwitz condition (KC,) and the Eisenstein conditions (EC,) can
be replaced by the simpler conditions [23, Def. 2.8], which makes the definition of the
pre-contracting functor in [23] easier than in the case of a general r.

4.2. The Kottwitz and the Eisenstein condition for CM-pairs

The Kottwitz condition (KC,) can be formulated in terms of polynomial functions.
Let £ be a locally free R-module equipped with an action of Og. If S is an R-algebra,
we write Lgs = LRRr S.

Let us assume for a moment that R is endowed with an O j-algebra structure.
For ¢ € @ = Homg,-a1¢(K, E) we consider the induced map

wR:OKLOE—MR.
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DEFINITION 4.2.1. — We say that (L, 1) satisfies the Kottwitz condition relative to r
if for each O g-algebra S endowed with an Og-algebra homomorphism R — S

(4.2.1) dets(a | Lg) = H ws(a)™, foralla € Ok ®z, S.
pe®

Let A = V(Ok) be the affine space over SpecZ,. The right hand side of this
equation may be considered as a polynomial function on Ao, . By base change to E,
it is easily shown that this function is defined on Ap,. We note that each factor of the
right hand side of (4.2.1) is a linear polynomial function such that some coefficient is
a unit in Oz. Therefore these factors are non-zero divisors in I'(Ag, Oa,) for each S.
Here we remark that a polynomial in S[Uq,...,U,| is a non-zero divisor if one of its
coefficients is a non-zero divisor in S.

Because the right hand side of (4.2.1) is a polynomial function on A, the condi-
tion does not depend on the O ;z-algebra structure on S. By a theorem of Amitsur, con-
dition (4.2.1) is equivalent to the Kottwitz condition (KC,) of (2.2.1) (compare [28]).

For a Og-algebra S we have a decomposition

(4.2.2) Ok ®z, S = [] Ok ®0,0s S-
Yew

Here 1s denotes the composite O N O — S. Let Ey, be the image of the
Eisenstein polynomial E € Og:[T] by the last homomorphism. We have a natural
isomorphism

(4.2.3) S[T)/EysS[T) — Ok ®0,.. 45 S, Tr— @1
Therefore we may regard an Ok ®o,, 5 S-module M as an S[T]-module. If U € S[T]
and x € M, we write Uz = Ul ® 1)z. If Uy € Og/[T], with image U € S[T], then
we write simply Upx = Uzx.

Returning to the R-module £ with action by Ok, the decomposition (4.2.2) induces

a decomposition
Ls=ELsy.

By considering, for given ¢, an element a of (4.2.2) whose components are zero
for ' # 1), we obtain

(4.2.4) dets(a | Lgy) = H ws(a)™, foralla€ Ox ®o,, S
el
We call this condition (KCy ). The condition (KC,) holds iff the conditions (KC, )
hold for each .
We will call ¢ banal with respect to r if r, € {0,2} for each ¢|1). We call ¢ special
with respect to r if there exists ¢|t¢ such that 7, = 1 and if for any other ¢’|¢) with
ror = 1 we have ¢’ = @. We note that another ¢’ can only exist if 1) = 1.

We also use the conditions (ECy ). This means that we consider (2.2.12) for a
fixed .
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We consider CM-pairs (X, ¢) of type r over R € Nilp_, cf. Section 2.3. Thus X is a
p-divisible group of height 4d and dimension 2d and ¢ is a Z,-algebra homomorphism

t:0g — End X

such the rank condition (RC,) is satisfied. If we speak about the Kottwitz or Eisenstein
condition we refer to the induced action on Lie X. We use a similar terminology when
we consider CM-pairs (P, ¢) in the sense of displays. This means that P = (P, Q, F, F)
is a W(R)-display of height 4d and dimension 2d endowed with a ring homomorphism

t:0g — End7P,

such that the rank condition (RC,) is satisfied for the induced action on P/Q.

By Remark 3.1.13, display theory provides a functor from the category of
CM-pairs (X,t) of type r to the category of CM-pairs (P,t) of type r. We
set Dp = P/IgP and Lp = P/Q. If P is the display of X, we have the identi-
fications

Dpzmx(R), ﬁp:LieX.
Here Dx (R) is the Grothendieck-Messing crystal evaluated at R. For an R-algebra S,
we will write Dp g :=Dp ®r S and Lp g := Lp Qg S. If P is fixed, we write simply
Dg and Lg. If S is a Ogs-algebra, (4.2.2) gives a decomposition

Ds = @ Ds,p-

PeT

PROPOSITION 4.2.2. — Let ¢ be banal with respect to r. Let (P,t) be a CM-pair of
type r over an Og-algebra R.

Then the Eisenstein condition (ECy ) is satisfied iff Ea,Dy is the kernel of
the canonical map Dy — Lp . Moreover (ECy ) implies the Kottwitz condi-
tion (KCy ,).

Here E4,, denotes the operator E4,, (L(H)) on the module in question, for a fixed
choice of II, cf. (2.2.12).

Proof. — We reduce to the case where S is an R-algebra endowed with an O -algebra
structure. Then E4, o € S[T] is defined as the image of E4, by Oz[T] — S[T]. It
acts on any Ok ®o,,,y S-module by (4.2.3).

Via ¢, we view Dg and Lg as Ok ®z, S-modules. We consider the canonical sur-
jective map

Ds — Ls.

The decomposition (4.2.2) induces decompositions,
(4.2.5) Ds =Dy, Ls=EPLy.
P P

We allowed ourselves to omit the index S on the right hand side of these equations.
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The Eisenstein condition (ECy,,.) for banal 9 says that £, is annihilated by E 4,
cf. (2.2.13). Therefore it is clearly implied by the condition of the proposition. If
conversely (ECy ;) holds, we obtain a surjective map
(4.2.6) Dy/BEa,Dy — Ly.

By Lemma 3.1.15, Dy, is locally on Spec S a free Ox ®o,, 4 S-module. It has rank 2
because the height of P is 4d. We may assume that

Dy 2 (Ok ®0,.,.w 5)* = SIT1? /By S[T].

We see that both sides of (4.2.6) are locally free S-modules of the same rank
Ty = olw "o Therefore this map is an isomorphism.

The condition (KC, ) would follow from

(4.2.7) dets(a | S[T)/Ea,S[T]) = [] ¢s(a), ac€ ST
PEAyY
We have
Eq,(T)= [] @ -¢s@®1), ¢s(a)=alps®1).
pEAy
We obtain (4.2.7) from the following lemma. O

LEMMA 4.2.3. — Let R be a ring. Let

E(T) =[[(r-1L), meRr
i=1
be a polynomial. A polynomial f(T) € R[T] defines by multiplication an endomorphism
of the free R-module R[T|/ER[T]. Then

detr(f(T) | RIT]/ER[T Hf

Proof. — One can easily reduces the question to the case where R is a field of char-
acteristic 0 such that E(T) is a product of different linear factors. For the reduction
one starts with a ring homomorphism

Z[Ka X] — R?
where for the first set of variables X = (X;,..., X;), X; is mapped to II; and where
the second set of variables Y is mapped to the coefficients of f.
If now R is a field and E is separable, we have a canonical isomorphism of R-mod-
ules

R[T|/ER[T] = @ R.

i=1

T — (Hz)z
Multiplication by f(T") on the left hand side acts on the right hand side on the i-th
factor by multiplication by f(II;). This implies the assertion. O
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COROLLARY 4.2.4. — Let r be banal. Let (P, 1) be a CM-pair of type r over an Og-al-
gebra R. Then the FEisenstein condition (EC,) implies the Kottwitz condition (KC,).

We consider next the case where v is special. This means by definition that there
is exactly one pair {¢, ¢} such that ¢|¢ and r, = rs = 1. When K/F is ramified, we
have E' = E and when K/F is unramified, we have [E’ : E] < 2.

PROPOSITION 4.2.5. — Let v be special with respect to r. Let R be a Og-algebra such
that p is nilpotent in R. Let (P,t) be a CM-pair of type r over R which satifies the
FEisenstein condition (ECy ). Let S be a Opr-algebra which is endowed with an Og-al-
gebra homomorphism R — S. Then, with the notations of (4.2.5), the canonical map

Dy/Ea,Dy — Ly/Ea, Ly

is an isomorphism.

Proof. — Clearly we may assume that S is a local ring with residue class field k. We
postpone the verification that the assertion holds for S = k (compare (4.3.17) and
(4.3.20) below).

We begin with the case K/F unramified. Then rankg £y = ry = 2a, + 1. Let
(4.2.8) fiLy — Ly

be the S-module homomorphism given by multiplication with E4 . From the case of
a field, we deduce that dimy £/f (L) ®s k = 2a,. By (ECy ;) we have

N f =0,

cf. (2.2.18). Therefore we can apply Lemma 4.9 of [28] with s = 1. This says
that Ly/f(Ly) is a free S-module of rank 2a,. Therefore the canonical map of
the proposition is a surjection of free S-modules of the same rank, and hence an
isomorphism.

The argument in the case K/F ramified is similiar. In this case, we have
rankg Ly = ry = 2ay + 2 = 2e. The dimension dimy Ly/f(Ly) ®s k = 2ay, as
before. In this case the condition (ECy ) says

3
ANr=o

cf. (2.2.16). Therefore we may apply Lemma 4.9 loc.cit. with s = 2. We conclude as
before. =

PROPOSITION 4.2.6. — Let r be special and K/F unramified. Let R be a Og-algebra
such that p is nilpotent in R. Let (P,t) be a CM-pair of type r over R which satifies
the Eisenstein condition (EC,.). Then the condition (KC,) is also satisfied.
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Proof. — We consider an algebra S as in the last proposition. We keep the notation
of (4.2.5). We need only to verify (KCy, ) since the Kottwitz condition is satisfied
for v banal by Proposition 4.2.2. We have to verify that

(4.2.9) dets(a | Ly,) = po.s(a) - H ¢s(a)®, a €Ok ®o,, .y S-
PEAy,

Since Dy, is locally on S a free Ox ®o,, 4, S-module of rank 2, we obtain from the
isomorphism of Proposition 4.2.5

dets(a | ‘Clbo/Equo‘Cwo) = H <:05(0‘)2'
LPEA#’O

The proposition also shows that Eg4, Ly, is a locally free S-module of rank 1.
It follows from the Eisenstein condition (2.2.18) that this module is annihilated
by (T — ¢0,s(II®1)). Hence an element a € O ®o S = S[T)|/Ey,S[T] acts
on By, Ly, as ¢o,s(a). In particular

dets(a | EAwO‘Cwo) = @075((1,).

The formula (4.2.9) follows. O

Kt %o

We reformulate the Eisenstein condition in the case where K/F' is unramified.

PROPOSITION 4.2.7. — Let r be special and K/F unramified. Let @o, 59 € ® be the
two embeddings such that ro, = rg, = 1, and let g, resp. 1o, the embeddings induced
by o, resp. Po. Let R be a Ogr-algebra, and let (P,t) be a CM-pair of type r over R.
LetD = Dp(R). The CM-pair (P, 1) satisfies the Eisenstein conditions iff the following
conditions hold.

(1) If ¢ € VU is banal, then the canonical map
Dy /Ea,Dy — Liey X
is an isomorphism.
(2) If v € {30, %0}, then the canonical map
Dy/Ea,Dy — Liey X/E4, Liey X
is an isomorphism.

(3) The R-modules E4,, Liey,, resp. By, Lieg,, are locally free of rank 1 and Ok
acts on them via

vo.r:Ox — Opr — R, resp. @or:0x — O — R.

Proof. — This is a consequence of Proposition 4.2.5 and the proof of Proposition 4.2.6.
O
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We next consider what happens to the Eisenstein conditions when passing from a
display to its conjugate dual, cf. Lemma 2.3.2. We note that we already checked in
loc. cit. that the condition (RC,.) is preserved. Recall that, if (P,¢) is a CM-pair, the
conjugate dual (P", ) is defined by

(P =PV, /(a)=1(a)").
COROLLARY 4.2.8. — Let K/F be unramified and let v be arbitrary or let K/F be
split. Let (P,.) be a CM-pair over an Og-algebra R such that p is nilpotent in R. If

(P, 1) satisfies the Eisenstein condition (EC,.), then the conjugate dual (P",:") also
satisfies (EC,.).

Proof. — We have a canonical isomorphism D" = Hompg (D, R). The resulting perfect
pairing

(4.2.10) (,):DxD" —R
satisfies
(4.2.11) (ax,2) = (z,a2), a €Ok, z €D, & €D".

This implies that for ¢ # 1, the modules Dy, and ]D):Zz are orthogonal and that for
any ¥ the induced pairing

(4.2.12) Dy x ID);\—) — R
is perfect. Let ]D}/) C Dy be the kernel of the map Dy, — L, := Liey, P and
let D%’l C ]D)% be defined in the same way. By definition of the dual display, D%b

and ]D)g’l are orthogonal complements of each other with respect to (4.2.12). We con-

sider the case ¥ € {49, %0} Recall that this is possible only in the non-split case.
The Eisenstein condition for P says that we have a split filtration of direct summands
of ]D)w

(4.2.13) SyEa,Dy C Dy, C Ey, Dy,

such that the factor modules are locally free of rank 1. We claim that the orthogonal
complement of E 4, Dy is SJ)EAalD)zAL' Indeed, by (4.2.11), we have

(4.2.14) <EA¢5L'; .f,‘) = <.’L’, EB¢£>.

This implies that E4,Dy and S;E4 Dg are orthogonal. Because (4.2.10) is perfect
we obtain a surjection of R-modules

(4.2.15) Dy/Ea, Dy — HomR(SﬁEAﬁR]D)g,R).

Recall that Dy, is locally on Spec R a free Ox ®0,., ,» R-module of rank 2. It follows that
both sides of (4.2.15) are locally free R-modules of the same rank 2a,, = 2e —2a,; — 2.
Therefore this map is an isomorphism. This proves our claim about the orthogo-

nal complement. By the same argument, E 4 «LR]D)% is the orthogonal complement
of S¢EA1P Dw.
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We take the orthogonal complement of (4.2.13) and obtain the filtration

_ A A,1 A
S;Ea,;Dj C DI C By D,

and conclude that the factor modules are locally free of rank 1.
Now let 1 be banal. We have to prove that EAwD@ C ]D);\)’l. The right hand side is
the orthogonal complement of ]D)}/; = E 4 Dy. Therefore we have to prove that

<EA¢£U, Es,2) =0, forzeDy, &€ D@.
Using (4.2.14), we find for the right hand side
<:L‘, EBwEAwﬂAL'> = <IE, Ew.’i) = 0. O

Before proving the analogue of Corollary 4.2.8 in the case when K/F' is ramified,
we further analyze in this case the Eisenstein conditions.

PROPOSITION 4.2.9. — Let r be special and K/F ramified. Let R be a Og-algebra such
that p is nilpotent in R. Let (P,1) be a CM-pair of type r over R. Since E' = E, the
decomposition (4.2.2) is defined for S = R. Then the Eisenstein condition (ECy, )
holds iff the following conditions are satisfied.

(1) The R-module Ea,, Ly, C Ly, s a direct summand which is locally free of
rank 2.

(2) The action of u() on Ea, Ly, coincides with the action of ¢o(r) € R, i.e., the
action of the image of m by the homomorphism Op ~% Oy — R.
Furthermore, a CM-pair (P,.) which satisfies (EC,.) also satisfies the Kottwitz
condition (KC,.) if and only if
(4.2.16) Trr(¢(II) [ Eay, Lyy) = 0.
Proof. — For the proof we may pass from R to an R-algebra S which is endowed with
a Op-algebra stucture. We continue with the notations of (4.2.5). The first assertion
of the proposition is then an immediate consequence of Proposition 4.2.5.

To verify the last sentence on the proposition it suffices by Proposition 4.2.2 to
consider (KCy, ). This condition reads

detg(a | Ly,) = po,s(a) - @o,s(a) - H vs(a)?, a€Ok ®0 et 1po S-
‘PeAwo

In this case Ey,, Ly, is a locally free S-module of rank 2. By Proposition 4.2.5, it is
enough to show

(4.2.17) detgs(a | EA%LI%) = o,5(a) - @o,s(a).
In this case, the Eisenstein condition says that
(4.2.18) (T = 9o,s(M@ )T = Go,s(MM® 1)) = T? + 1ho(rr)

annihilates B4, Ly, cf (2.2.16). Note that the action of 7% on E4, Ly, is by def-
inition the action of +(IT*) = —i(m). Therefore the action of O on Ea, Ly, via
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v coincides with the action via Op <% O — S. The polynomial (4.2.18) is the
characteristic polynomial of ¢(II) acting on the S-module E 4 o Lo~ This follows from
the trace condition of the proposition. Therefore the desired equation (4.2.17) is a
consequence of Lemma, 4.2.10 below.

Conversely, assume that the Kottwitz condition holds. By Proposition 4.2.5, this
implies
dets(a | Ba, Ly,) [] ¢s(a)®=¢os(a) gos(a): [[ es(@)? acOkeSs.
QDGAu;O ‘PGAd’o

We already remarked right after Definition 4.2.1 that ¢g is a non-zero divisor in the
ring of polynomial functions. Therefore we conclude

dets(a | Ea,, Ly,) = ¢o,s(a) - po,s(a), foralla € Ok ®S.
This implies that the characteristic polynomial of ¢(II) acting on E4 o Ly, is the
polynomial (4.2.18). Therefore the trace is 0. O
We state the needed lemma without proof.

LEMMA 4.2.10. — Let S be a ring. Let L be a locally free S-module of rank 2. Let
a: L — L be an endomorphism with characteristic polynomial

dets(Tidy — o | L) = T? — 5;T + so.
Then for all \,p € S

detg(uidy, — Aa) = 2 — s1pd + soAZ
Assume that the characteristic polynomial splits

T? — 51T 4 sy = (T — p1)(T — p2).

Consider L as S[T]|-module, and let ¢; : S[T] — S be the S-algebra homomorphism
such that ¢;(T) = p;. Then for each polynomial a € S[T]

detg(a | L) = ¢1(a) - ¢2(a).

REMARK 4.2.11. — Let A C B be R-modules. Then we write A C B if the factor
module B/A is a finitely generated projective R-module of rank c.

Let (P,.) as in Proposition 4.2.9 such that (EC,,,) is satisfied. We write
D = P/IrP. Let Qy, the kernel of Dy, — Ly,. By Lemma 3.1.15, Dy, is a free
Ok ®0,, y, R-module of rank 2. We obtain that

2(e—1)
EAwo ]D)’ll)o C ]D)’ll)o'

On the other hand, the condition (1) of Proposition 4.2.9 says

_ 2 _ 2(e-1)
Q"/’O - EAwO Dwo + Qibo c Di/)o'
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This implies Qd,o C Ey, Dy,. Therefore we may reformulate the two conditions in
Proposition 4.2.9 in one line:

2 - 2
(4.2.19) Sd)oEAwo Dy, C Qwo - EAwo Dy -

COROLLARY 4.2.12. — Let K/F' be ramified. Let (P,.) be a CM-pair over an Og-alge-
bra R such that p is nilpotent in R. If (X, 1) satisfies the Eisenstein condition (EC,.),
then the conjugate dual (P",u") also satisfies (EC,.).

Proof. — We use the notation of the last remark. The banal ¢ are treated as in the
unramified case. We need only to check that the conjugate dual satisfies (ECy, ;).
The orthogonal complement of E4,, Dy, in Homg(Dy,, R) is Sy, E4,, Hompg(Dy,, R),
where in the last formula we use the action via Y. We obtain the result by taking the
orthogonal complement of (4.2.19). O

To end this subsection, we check that the Kottwitz condition (KC,) is preserved
under passage to the conjugate dual.

PROPOSITION 4.2.13. — Let K/F,r be arbitrary. Let (P,.) be a CM-pair which sat-
isfies (KC,.). Then the conjugate dual (P", ") satisfies (KC,.).

Proof. — We may assume that R is endowed with the structure of an Oj-algebra.
We use the notation of the proof of Corollary 4.2.8. In particular Dp rp = D and
Dpna g = D", and we write £ and L for the Lie algebras of P and P”". We have to
show that for each R-algebra S and for each ¢y € ¥

dets(a | L5 ,) = [[¢s(a), foralla€ Ok ®o,. pp S
ely
To show this, we may replace P by its base change Pg. Therefore it is enough to

consider the case S = R. Since Dy, is locally on Spec R a free O ®0 R-module
of rank 2, we find

det(a | Dy) = H ¢r(a)?, fora € Ok ®0, vr R-
PEDy

Kt YR

Since Ly = Dy /Dy, we find
det(a | D HgoR a)?re) = H vr(a)™.
ol PEDy
The perfect pairing (4.2.8) induces a perfect pairing
1 A
Therefore we obtain

det(a | £)) = det(a| D) = ] erla)™
pEDy

Therefore (KCy; ,.) for P implies (KCy ) for P". O

SOCIETE MATHEMATIQUE DE FRANCE 2024



66 CHAPTER 4. THE CONTRACTING FUNCTOR

4.3. The pre-contracting functor

Let (P,1) = (P,Q,F,F,L) be a CM-pair of type r over an Opgs-algebra R such
that p is nilpotent in R. We assume that (P,:) satisfies (EC,). In other words,
(P,i) € 0P, g, cf. Definition 4.1.1. We will define a functor that associates to (P, )
a new display P’ = (P',Q’, F', F’) with an action

V' : O — End P/,

such that (P,¢) = (P',//) and Q C Q' C P/ = P. In particular we obtain a natural
surjection Lie P — Lie P’ of O-modules. In the case where r is banal, we define Q' =
P. Therefore the display P’ will be étale in this case. In the case where r is special, the
restriction of the action ¢’ to O will be strict with respect to o g : Op — O — R.
We will call this functor the pre-contracting functor.

Let us first restrict our attention to the case where K/F is a field extension. The
case K = F x F will be treated separately because it needs different notations, see
p. 71, starting before eq. (4.3.22). Each ¢ : Kt — @p induces a homomorphism

(4.3.1) b Oxt — W(Ox) X w(0p).

For an Op-algebra R we deduce a homomorphism ¢p : Ogt — W(R) that is
equivariant with respect to the Frobenius homomorphisms on both sides. This induces
decompositions

Ot ®ZP W(R) =~ H
(4.3.2) vew
Ok ®z, W(R) = H c

which lift the decomposition (4.2.2). Let o € Gal(K*/Q,) be the Frobenius automor-
phism. The operators F and V act via W(R) on the left hand side of (4.3.2). On the
right hand side this induces maps
F
—
Ok ®0,,.5n WE) — Ok 8o, 5

W(R),

ROC
cf. (3.4.4). Recall that
Ea,(T) = [ (T - ¢() € Op[T].
PEAyY
We lift this to a polynomial with coefficients in W(Opg/) by taking the Teichmiiller
representatives of the roots,
(4.3.3) Ey, (D) = ] (T - [e(W)]) € W(Op)[T).
pEAy

The image of this polynomial by the homomorphism W (Og/) — W(R) is denoted
by Ea, r(T). If we reduce with respect to wo : W(Og/) — Opgs, we obtain the
polynomial E 4, (T'). We note that in the case where R is a kg/-algebra, we have

(4.3.4) Ea, r(T) =T"%.
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We consider the ring homomorphism
W(Op)[T] — W(R)[T] — Ok ®
T—II®1.

- W(R).
(4.3.5) KtYR
We denote by EAWR(H ® 1) the image of EAw (T") under (4.3.5).

Let now (P,:) € 9B, gr. We obtain decompositions of the Ox ®z, W(R)-modules P
and @,

(4.3.6) P=Pr, Q= Q..
PYew PeY

For x € Py, we write

(4.3.7) Ea,z=E4, (I®1)z.

On the left hand side we consider Py as a W (Og/)[T]-module via (4.3.5).

We give first the recipe for the construction of P’ for any R € Nilp,_,. Then we
will discuss the case of a perfect field. This special case is then used to prove that P’ is
indeed a display.

We begin with the case where r is banal (and K/F is a field extension). Let (P, )

as above. We define
P=@Fr. &¢=-D
P P

as follows: for all 1) we set
(4.3.8) P, =Q) = P,.
By the Eisenstein condition (2.2.13), we have E4 »Py C Qy. Then we may define
(43.9) F’:Q:}Z}—>P{[w, F’(x):F(EAwm), x € Py
o F': P, — Py,, F'(z)=F(Ea,z), z€P,.

We define F' : P/ — P’ and F' : Q' — P’ as the direct sum of the maps above. We
have to prove that P’ = (P’,Q’, F’, F") is a display. The only non-trivial property we
have to check is that F” : Py, — Py, is an F-linear isomorphism. We postpone the
verification, cf. p. 68, below (4.3.16).

We now define the pre-contracting functor in the case where r is special and
K/F unramified. In this case we have 1y # 1. If ¢ is banal, i.e., if ¥ & {tg, 0}, we
keep the definitions (4.3.8) and (4.3.9). We set P, = Py, and we define @, as the
kernel of the following map,

EAw R
(4'3'10) P&)O = Pll)o — P’l[lo/Qwo — EA%,H(P%/Q%) c Pl/lo/Qlﬁo'

It follows from Proposition 4.2.5 that E4, (Py,/Qy,) is locally free of rank 1 and
is a direct summand of Py, /Qy,. Therefore

(4.3.11) Pl /Qyy ZEay, n(Pyy/Quy,)
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is locally free of rank 1 and, as remarked at the end of the proof of Proposition 4.2.6,
an element a € Ox ®o,, 4, I acts on (4.3.11) by multiplication with g r(a). This
makes sense because ¢g : O — Oj factors through O/ C Op. We define

F':P, — P, F()= F(EA%,RJ;),
F':Qy, — Py F'(y) = F(Ba,, v).

The last equation makes sense because, by definition, E 4 Vo, RQZI)D C Qy,- The defini-

(4.3.12)

tions of the modules PI;;O, Qiﬂo and the restrictions of F’ and E’ to these modules are

defined by interchanging the roles of ¥y and 1. This completes the definition of
(4.3.13) F.-pr,—Hr, F:-PHe,—PPr,.
P % » P

Again we postpone the verification that P’ is a display, cf. below (4.3.17). The tangent
space L' = P’/Q’ is a locally free R-module of rank 2. It has a decomposition

L= Ly, ® Ly,
where an element a € Og ®op Kt %o R acts on the first summand by multiplication
with ¢o,r(a) and an element a € O ®0 ,.t,%0 R acts on the second summand by
multiplication with @g r(a).

Next we define the pre-contracting functor in the case where r is special and
K/F ramified. In this case we have vy = . For banal 9, we keep the definitions
(4.3.8) and (4.3.9). The R-module Eayp (Pyo/Quo) C Pypy/Quyy, is a direct summand
which is locally free of rank 2. We set P, = Py, and we define @, as the kernel
of (4.3.10). We define F’ and F’ by (4.3.12). Then Pl /Qy, = EA%YR(P%/Q%) is
locally free and we define as before P’ = (P’,Q’, F', F’), with its Og-action /. It fol-
lows from Proposition 4.2.9 that the action of Op on E4,, (Pyo/Quy,) via ¢ coincides
with the action of via (g, i.e., the action via ' on P’ is strict. That P’ is a display is
proved around (4.3.20).

Now we consider the case where R = k is a perfect field in more detail. We know
that P, is a free module of rank 2 over the discrete valuation ring Ok R0, 1, W (k).

Therefore P, /ILP,, is a k-vector space of dimension two. In the perfect field case, we
have now also the operator V,

(4314) F:P¢—>P¢U, VZPwU—>Pw, V(P,,’bg):Qw.
We will see that in all cases the Eisenstein condition implies that V(Py,) C I1* Py,.
Therefore we may define operators F’ and V':
(4315) F =TI"F: Pw — P,l/,g, V="V P¢U — Pw.
The Dieudonné module of the display P’ in the sense of Proposition 3.1.9 will then
be (P, F',V').

We begin with the case when r is banal. Now E4, x(T) = T% acts on Py as
multiplication by II*¢. By the Eisenstein condition (2.2.13), II**annihilates Py /Q..
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This implies II*¥ Py, C V(Pys). By the rank condition, the factor Py/V(Py.) has
length 2a, as Ok ®0 1,3 W (k)-module. Since the same is true for the factor mod-
ule Py /II* Py, we obtain

(4.3.16) I Py = V(Pyo).
Therefore F/ = FII% = V1% : Py — Py, is bijective. This shows that P’ is a

display. We set
F=@ru~, vV =Qu v
» ¥

Then (P, F',V’) is the Dieudonné module associated to P’.

We obtain from (4.3.16) in the ramified case that V2/ P, = 11?¢/ P, = p/ P, for
all ¢ and in the unramified case that V2/P, = 7/ P,. This implies that in both
cases P is isoclinic of slope 1/2.

Now we can verify that P’ is a display for r banal, for an arbitrary Og-algebra R.
Let (P, 1) € 9B, . We must show that ' : P — P is a Frobenius-linear isomorphism.
We may assume that P is a free W(R)-module. Let det F be the determinant of the
matrix of ' with respect to any given basis of the W (R)-module P. We must verify
that det £ is a unit in W (R). We have shown that, for each homomorphism R — k
to a perfect field k, the image of det F' by W(R) — W (k) is a unit in W (k). In
particular wo(det F') € R has a nonzero image under any homomorphism R — k.
But then wo(det F') is a unit in R, and this implies that det ¥ € W (R) is a unit. This
finishes in the banal case the proof that P’ is a display.

Next we consider the case when r is special and K/F unramified. By our con-
ventions, II = =7 is the prime element of F. Let R = k be a perfect field and
let P = (P, F,V), regarded as a Dieudonné module. If ¢y € ¥ is banal, we find as
above that V Py, = 7% Py,. Now let ¢ € {10, %o}. Since 72»*+1 annihilates Lie,, P by
the Eisenstein condition (2.2.18), we obtain 7% *1P;, C V P,,. We note that P, is a
Ok R0, 0 ,d W (k)-module of rank 2. Therefore the factor module of the last inclusion
is, by the rank condition, a Og 0, 1.d W (k)-module of length 1 and is therefore
annihilated by . This implies

Tt Py C VP, C 7 Py.
In particular
(4317) Pw/’ﬂ‘awpw = Liew 'P/’H‘aw Lie¢P

is an isomorphism, as claimed in the beginning of the proof of Proposition 4.2.5.
By definition (4.3.10) we have @, = 7%V Py,. The map F' =g E . sz — Pyo
is therefore surjective. Since we know this fact also for banal i we conclude
that (P,Q',F',F') is a display. The associated Dieudonné module is (P, F’, V'),
where

F{b 7 Fy ¢ Py — Py,

(4.3.18) . Y
Vwa =T wVwa : P¢g — Pﬂ,.
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Now we return to an arbitrary O-algebra R such that p is nilpotent in R. We
note that the definition of (P’,Q’) commutes with arbitrary base change because
Q:ﬁo /1 (R)Plij0 is defined as the kernel of an epimorphism of projective R-modules,

Pi/JO/I(R)Pwo - EAwO (P¢0/Q¢0)'
We choose a normal decomposition of (P’,Q’),
P=TolL,

together with the Frobenius-linear endomorphism &' : P’ — P’ of the W (R)-mod-
ule P’ such that the restriction of ® to T” is F’ and the restriction to L’ is F’. We
have to show that the determinant of ® in a locally chosen basis is a unit. Since we
know that this is true after any base change R — k with k a perfect field, this follows
as in the banal case.

We can determine the possible slopes of P when r is special and K/F unramified.
Let P = (P, F,V) over the perfect field k. By (4.3.15) we have (V') = = (ef-Dy 7,
Let

Po=EP N
A

be the decomposition into isoclinic components. Fix A\ = r/s. Then we find a W (k)-lat-
tice A C N()) such that VA = p"A. From V2f$A = p2/"A we obtain

(ﬂ,ef—l(V/)2f)sA _ p2rfA7 i.e., (Vl)QfsA _ 7T_efS7TSp2rfA.

We write the right hand side as p~*/p*/¢p?"f A. This shows that N(\) C Py is an
isoclinic rational Dieudonné submodule of slope
—sf+(s/e) +2fr 1 1
=——+ =+ A
2fs s taq ™
Let us apply the Ahsendorf functor to P’. We obtain a Wo,, (k)-Dieudonné module
(P, F.,V;) of height 4 and dimension 2. The slopes of P, are by Proposition 3.3.17

1,1

The action of O ®o, Wo, (k) =2 Wo, (k) X Wo, (k) on P, defines a decomposition
P, = P,y ® P, such that V.(P.o) C FPc1 and V.(P.p) C P 1. The Wo, (k)-module
P, with the semi-linear operator V2 is of height 2 and dimension 2. Therefore the
possible slopes of (P, V) are with multiplicities (1,1) or (0,2). We conclude that
the slopes of (P, V,) are with multiplicities (1/2,1/2,1/2,1/2) or (0,0,1,1). From
(4.3.19) we find that in the first case all slopes A of P are 1/2, while in the second
case we obtain the two slopes A =1/2 —1/2d and A =1/2+ 1/2d.

Now we consider the case where r is special and K/F' is ramified. As in the last
case, it is enough to verify that P’ is a display when R = k is a perfect field. Recall
that a,, = e for ¢ banal and that ay, = e — 1. As above we find V Py, = II°P,
for 1) banal. By the Eisenstein condition (2.2.16), Ly, is annihilated by II°"! and the
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k-vector space II°"! L, has dimension at most 2. We consider the following filtration
by subvector spaces,

Li/’o o H£¢0 ) Hz[’@bo ) Heﬁwo ) He+1£¢o =0.
We have dimy II™ Ly, /II™ T Ly, < 2 for all m > 0 since Ly, is a quotient of Py,
which is a free Ox ®¢ , 7. W (k)-module of rank 2. Therefore we find

dimy, Ly, = dimy Ly /T Loy, + dimy T Ly, < 2(e — 1) + 2 = 2e = dimy, Ly, -

We must have the equality

dimg Loy /T Ly = 2(e — 1), dim 7' Ly, = 2.
The first equation shows that the natural map
(4.3.20) Py, /IS Py, — Ly /1Ly,
is an isomorphism of vector spaces, as asserted in the beginning of the proof of Proposi-
tion 4.2.5. Finally we have by definition Q;}O =M°t1Qy, = I~ ¢*V Py, ,. Therefore

F =T Q) — Pyyo
is bijective. We conclude that (P’,Q’, F', F') is a display. The associated Dieudonné
module is (P, F’, V'), where
V=TV : Py — Py, 94y

(4.3.21) o v
Vi=1I V:P¢Oa—>P¢O.

As in the unramified case we conclude for an arbitrary R € Nilp,, , that our definitions
(4.3.8), (4.3.9), (4.3.12) give a display P’ = (P, Q', F', F").

In the case of a perfect field k, the slopes of P’ are computed in the same way as in
the unramified case. We have the equation (V')f = I=(¢/=DVf Let N(\) C Py be
an isoclinic component. We find a lattice A C N(A) such that VA = p”A. We obtain
that

(V/)sz — H_eszSprA.
Since I1*¢ and p differ by a unit, this implies that N(X) C P, is isoclinic of slope

—(fs/2) +S‘(f8/26)+7“f =—1/2+1/2d+X=(A—1/2) +1/2d.

If we apply the Ahsendorf functor, we obtain an Wp, (k)-Dieudonné module
(Pe, F;, V) with slopes d(A — 1/2) + 1/2. If we consider the O ®0, Wo, (k)-mod-
ule P. with the semi-linear operator V. the possible slopes with multiplicity are
(1,1) or (0,2) because (P, V;) is of height 2 and dimension 2. If we regard (P, V¢)
over Wo,(k), the heights are multiplied with 2 and then the possible heights are
(1/2,1/2,1/2,1/2) or (0,0,1,1). As in the unramified case we conclude that P is
either isoclinic of slope 1/2 or has exactly two slopes 1/2 — 1/2d and 1/2 + 1/2d.
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Finally we consider the case where r is banal and K = F x F. We set
© = Homg, a1g(F?,Q,). In this case ¢ will denote the Frobenius automor-
phism in Gal(F'/F). If we compose § € © with the first, resp. second, projec-
tion K* = Ft x Ft — F' we obtain 61,8, € V. Via the first, resp. the second,
projection, we obtain isomorphisms

(OF X OF) ®0,,x0,1),0: Or' £ OF ®0,,,0 Op, i=1,2.

Fts

This leads to the decomposition
(4.3.22)

Ok ® Op/ = H Ok ®0,.,,y Op' = ( H OF ®0,...0 OE') X ( H OF ®0,..6 OE’)-
Yev ) L)

Assume that ¢ € ¥ factors through 6 € ©. We define 1 as the composite

(4323) OKt = OFt X OFt EO—j'—> OFt — W(OFt) m W(OE/)

The first map is the projection to the first or second factor according to ¥. We denote
by € the composite of the last two arrows in (4.3.23). We obtain the decomposition

Or ®7 W(OE/) = H Ok ®Oxtﬂz’ W(OE/)

(4.3.24) vewy
:( H Or ®0,.,0 W(OE/)) X ( H Or ®0,.,8 W(OE/))_
€O (4G

On the right hand side, the first set of factors correspond to those ¥ which factor over
the first projection and the second set of factors correspond to those ¥ which factor
over the second projection.

We consider a CM-pair (P,t) over R € Nilpy,, which satisfies the Eisenstein
condition. By (4.3.22) we obtain a decomposition

(4.3.25) P=P xPy=(@ Piy) & (EP Pro)-
6cO 6cO

This decomposition corresponds to the decomposition into displays P = P; @ Ps
induced by the O x Op-action on P. By the definition of a CM-pair (at the beginning
of Subsection 2.3), the displays P; and P2 have both height 2d.

The maps F and F of the display P induce maps
(4.3.26) F:Pg— Pigs, F:Qig— Pigo.

The polynomial EAw € W(Og/)[T] is defined as before, cf. (4.3.3). For ¢ = 1,2 we
define the displays P, = (P}, Q’, F!, F!) as follows
P =Q; =P, F/(x)=F(Ea,z), F/(z)=F(Es,z), z€ Py

3

Here, by the convention (4.3.7), E 4,, acts as the multiplication by

Ea, r(r®1) € Or &g, 4, W(R).
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We set P’ = P; & Pj. As in the unramified banal case, the verification that P’ is
a display reduces to the case of a perfect field. However, when R is a xp/-algebra,
then EAgi’R(ﬂ ®1)=7% ® 1. If R =k is a perfect field, we consider the Dieudonné
module (P;, F;, V;) of P;. We have

(4.3.27) Vi(Pip5) = m% P; 4.
We define

/ ag. . ! —ag. .
F; =n%iF;:Pig — P, oo, Vi =m"%V;:P g, — Py

Then (P;, F!,V/) is the Dieudonné module of P/. Finally we determine the slopes

K2

of P. If we iterate (4.3.27) we find
VIP, = o Py

We set a; = Ze ag,. Then a; + az = ef = d because ag, + ag, = e. We obtain easily
that

(4.3.28) 2a; = dim P;.

It follows that P; is isoclinic of slope A\; = a;/d and that A; + Ay = 1.

We summarize the properties of our constructions.

DEFINITION 4.3.1. — Let R € Nilpy, _,. We define categories 0, p and P, g as fol-
lows.

L. If r is banal, then ¥P, p is the category of pairs (P',1'), where P’ is an étale
display (i.e., P' = Q') of height 4d and where ' is an Ox-action. In the split
case O = O X Op, we require in addition that in the induced decomposition
P’ = P; & Py both factors have height 2d.

2. If r is special and K/F is unramified, then the category D&B;’R is the category
of pairs (P’',\"), where P’ is a display of height 4d and dimension 2 with an
action ' : O — End P’ such that the action of ' restricted to Of is strict
with respect to @o r : OF £% Op — R and such that Lie P’ = P'/Q’ is locally
on Spec R a free Ok ®0p 40 r R-module of rank 1.

3. If r is special and K/F is ramified, then the category P, p is the category of
pairs (P, ), where P’ is a display of height 4d and dimension 2 with an action
V' : Ox — EndP’ such that the action of J/ restricted to Op is strict with
respect to wo.r : OF #% O — R.

The category ‘B'T’R is the category of formal p-divisible groups X' with an O -action ¢/
such that the associated display (P',') is an object of ¥, .

Let r be special. We call (P, 1) supersingular if (P’,.’) satisfies the nilpotence con-
dition. We denote the full subcategory of supersingular objects of 3P, r by OP .

SOCIETE MATHEMATIQUE DE FRANCE 2024



74 CHAPTER 4. THE CONTRACTING FUNCTOR

THEOREM 4.3.2. — Let R € NilpoE, be such that the ideal of nilpotent elements
in R is nilpotent. The construction above defines the pre-contracting functor (2

Cor:WPrr — WP
which commutes with arbitrary base change with respect to R. Furthermore,
1. if r is banal, the functor Q:;,R is an equivalence of categories.
2. if r is special and the ring R is reduced, the functor Q:'T,R is an equivalence of
categories.
3. if r is special and R is arbitrary, Q:’,I‘,R induces an equivalence of categories
€ p 0Py — ?“B:’?Ji%lp,
where the right hand side is the full subcategory of nilpotent displays.
Let r be special and K/F be ramified. Let (P,1) € 9B, r and let (P, be its image
by €, r. Then (P,1) satisfies (KC,) if and only if
Trr(/(I) | P'/Q") =0.

Before proving this, we state a corollary which we already proved in the construc-
tion of €,  above.

COROLLARY 4.3.3. — Let k € Nilpy _, be a perfect field. Let P € 9B, and let P’ be
its image by the functor €, p.

(1) Let r be banal and K/F a field extension. Then the display P is isoclinic of
slope 1/2 and P’ is étale.

(2) Let K/F be split (and then r is banal). Then P decomposes into P = Py & Pa,
where Py is isoclinic of slope A and Ps is isoclinic of slope 1 — A. The number A
depends only on r. The display P’ is étale.

(3) Let r be special. Then P is either isoclinic of slope 1/2 (supersingular case) or
it has the two slopes 1/2 — 1/2d and 1/2 4+ 1/2d with the same multiplicity. In
the first case P’ is isoclinic of slope 1/2d. In the second case it has the two
slopes 0,1/d with the same multiplicity.

Proof. — We still have to prove the claimed equivalences of categories. We begin with
the case where R is reduced.

Let us consider first the case where r is special and K/F unramified. It is
enough to invert the construction of the functor € . For any ¢, Py/I(R)Py is
locally on SpecR a free (Ox/pOk) ®ky,y R-module of rank 2, cf. Lemma 3.1.15.
Let P' = (P,Q',F',F') be an object of P, g We define as follows an object
P = (P,Q,F,F) of 0P, r such that P’ is the image of P by the functor & . We
set Py = Py, for ¢ € U, and for ¢ ¢ {40, 40} we set

(4.3.29) Qy = 7 P, + I(R)Py.

2. Later we will also have a contracting functor €, r, which explains our notation.
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Since Py = Qy, we have F'(I(R)Py) € W(R)F'Py C pPy,. By (4.3.29) we find
F'(Qy) C m*¥ Py,. Since p is not a zero divisor in W(R), the element 7 € Ok acts
injectively on Py,. Therefore we may define

F=1"%F:Qy — Py,, F=71""F:Qy — Py,
If 1 € {1g, %0} we consider the split homomorphism of R-modules
(4.3.30) 7 : Py /I(R)Py — Py/I(R)Py
It is split because Py /I(R)Py is a free (O /pOk) ®x,,» R-module. We set
Qy =7 Q) + I(R)Py.

If we apply F’ to the last equation we obtain that F'(Q,) C 7% Py,. Indeed,
because the action of Op on P’ is strict = annihilates Py /Qib We conclude that
F'(nPy) C F'(Qy) = pF'(Qy) C pPy, and therefore F'(P;) C 7~ 'P, C n% P,
This justifies the following definition:

Fi=n""F:Qy— Py,, F:i=a""F :Py—> Py,

It is obvious that we obtain a display P = (P,Q, F, F'). We need to verify that the
condition (EC,.) is satisfied. We check the conditions (2) and (3) of Proposition 4.2.7.
By definition of 9%}, , the R-module P,,/Q; is annihilated by 7. The kernel of (4.3.30)
is m¢7%» Py, and therefore contained in Q;,/I(R)Py. The image of the last module by
(4.3.30) is therefore a direct summand of P,/I(R)Py. This image is Qy/I(R)Py
Therefore condition (2) holds. Moreover, we obtain an isomorphism

Py[Qy — 7 Py + I(R)Py/Qy.
In particular, the last module is locally free of rank 1 and the action of 7 on this
module coincides with multiplication by @o(7) if 1 = 1, resp., by @o(m) if ¥ = ).
Hence condition (3) holds.

In the split case the same arguments hold but we need only the easy part because
1o and 1)y don’t exist.

Next we consider the case where r is special and K/F ramified. Again we reverse
the construction of the functor €L7R. Let (P',Q',F', F') be an object of o g We
associate to it as follows an object (P,Q,F,F) € B, r. We set Py = P{p for all
¥ € U. Assume that ¢ # 1po. We have Q;, = P,, because the action of Op: is strict.
We set

Qy =1I°P), + I(R) P,
It follows from Lemma 3.1.15 that P,/I(R)Py is locally on SpecR a free
(Ok/pOk) ®xy,y R-module. Therefore Py/Qy is a locally free R-module. From
F'P, = pF'P,, we find that F'Q,, C II°P,,,. Since R is reduced, the ring W (R) has
no p-torsion. It follows that the map II°¢ : Py, — II°P,, is bijective. Therefore we
may define
F:=T°F" Qy — Pyo.
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It is clear that this map is a Frobenius-linear epimorphism. Next, we set
Py, =P, Qu,=1°"'Q, +I(R)P),.

Since the action of O on P’ is strict, we find

(4.3.31) et py, CII’P), C Q.

We consider the split homomorphism of R-modules,

(4.3.32) n“—': p), /I(R)P,, — Pj, /I(R)P), .

The kernel of this map is the image of II®T!. Therefore the kernel is contained
in @y, /I(R)P,, . This implies that the image of @, /I(R)P;, under (4.3.32) is a direct
summand of Pj /I(R)P,, . Hence the cokernel Py, /Qy, is a locally free R-module.
We apply F’ to (4.3.31) and obtain
II’F'P), C F'Qy =pF'Q,, CpP),.
Using this, we get
F'Qy, = F'(I°7'Q), + I(R)P),)) cTI*"'P) ,+ F'P, CI*'P) .
It follows that the following definitions of maps Q, — Py,, resp. Py, — Py,
make sense:
F=Q1/UYHYF, F=(1/IYF.

Therefore we have defined P = (P,Q, F, F ). It is clear that we obtain a display. We
have to verify the condition (EC,). Only (ECy, ) is not completely obvious. We
prove the conditions of Proposition 4.2.9. By the R-module homomorphism (4.3.32),
gém // II ((1;))1;2;0 i.s mappe((ii to the d%rect summand (He_lPQL0 —i—,I (R)Py,)/ I (R)P}QJO, and

Wo o 18 mapped to the direct summand @, /I(R)P,, . We obtain an isomor-
phism

PTQ’O/QZZJO — (He_lplﬁo + I(R)Pillo)/Qil)o'

Therefore by the strictness of the Op-action, the right hand side is a locally free
R-module of rank 2 and ¢(7) acts on the right hand side as @o(7). These are exactly
the conditions of Proposition 4.2.9. The rank condition is now obvious for (P, Q, F, F').

Finally, in the case where r is banal, including the split case (and R is reduced),
we can reverse the functor Q;ﬁ g using the arguments for banal v given above.

Now we consider assertion (iii) of Theorem 4.3.2 when R is not reduced. It follows
from Corollary 4.3.3 (3) that P is isoclinic of slope 1/2 because P’ is nilpotent. There-
fore we may apply Grothendieck-Messing for displays Corollary 3.1.14. We consider
a surjective homomorphism S — R of Og/-algebras and assume that the kernel a is
endowed with a divided power structure.

We define the category 0B, g/r as the full subcategory of the category of
pairs (P1,t1) where P is a W(S/R)-display, cf. Example 3.1.3, and where

Ly OK —_— End771

is an action such that the base change (P,¢) of such a pair by the morphism of
frames W(S/R) — W(R) lies in the category 3, r. We also say that (P1,¢1) is
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a lift of (P,t) to a relative display. By Theorem 3.1.12, the lift (Py,¢1) is uniquely
determined by (P,¢) if P satisfies the nilpotence condition.

In the same way we define the category o9/ S/R> cf. Definition 4.3.1. Then the
functor €. p of Theorem 4.3.2 extends to a functor

(4.3.33) ¢ s/r ¥Brs/r — OB 5/
Indeed, the definition of €/ /g is essentially the same as that of ¢, r- We indicate

it in the case where K/F' is unramified or split. By the Og-action, we have for the
relative display P; a decomposition,

P = EBPl,w, Q1= EBQLw-
¥ ¥

We are going to define a W(S/R)-display P} = (P/,Q,, F!, F]). We set P, =Py
for all ¥ € ¥. Since P; is a lifting of P, we have a natural isomorphism
(4.3.34) Pry/Quy = Py/Qy.

If ¢ ¢ {4o,%0}, we set @}, = P, By the condition (EC,) for P we conclude
that EAw Py C Q1,y. Therefore we can define
F{: P, — Py, Fi(z) =F(Easz)z €P,
F:Ql, — P, Fl(z) =Fi(Esz)z €Q,.
In the split case this decribes P; already completely. Now we consider the case ¢ €
{40, 0}. Then we define @1, as the kernel of the map

(4.3.35)

Ea,
Pry — Py/Qy —— Py/Qy.
This implies EAw Q1,4 C Q1,4 Therefore we can define
F{: P, — Pl ,,, F{(z)=F(Ba,z), z€P,,
F1/ Qi,w — P{,wom F{(y) = FI(EAwZ/)a Yy e Qi,w-
We then define P; = (P}, Q}, Fi, F}), where P| = @® P, and Q) =DQ], In the

ramified case the same definition holds with slight modifications.
The functor € /R defines a natural isomorphism

This relates deformations of P and deformations of its image P’ under €, g since P
and P’ are nilpotent.

Let (P,t) € aPB;°z. It has a unique lift P € 0%, s/g. The image P; by the
functor C’T’S/R is the unique lift of P’ to an object of D‘B’T’S/R, cf. Theorem 3.1.12.

(4.3.36)

Let us fix P. Let M be the set of all isomorphism classes of deformations of (P, )
to an object in B, s. Let M’ be the set of isomorphism classes of deformations
of (P’,1") to an object of dP/. s/r- We claim that the functor ¢, 5 defines a bijection,

(4.3.38) Lg i M — M.
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We indicate this when K/F is unramified. Let Q C Dp(R) = P/I(R)P be the image
of Q, i.e., the Hodge filtration. The set M is identified with the set of liftings of Q
to a direct summand Q; C Dp(S) = P, /I(S)P; which is a O ®z, S-submodule and
such that the factor module satisfies the Eisenstein condition. The Og-action gives a
decomposition Q1 = @Q1,¢~ For 1) banal, we must have by Proposition 4.2.7 that

(4.3.39) E4,Dp(S8)y = Qu1,y-

We note that the left hand side is a direct summand of Dp(S), as an S-module.
This follows from the fact that P /I(S)P1, is a free module over S[T]/E,S[T].
Therefore, there is exactly one possibility to lift the ¥-component of the Hodge filtra-
tion. We consider now liftings of Qw when 9 is not banal. In this case the Eisenstein
condition implies that

S@DEAw]D)P(S)dJ C Qlﬂl) C EAw]D)P(S)ﬂ)'

By the freeness of Dp(S5), just mentioned, the multiplication by E, , gives an iso-
morphism

E4, : Dp(9)y/SyDp(S)y = Ea,Dp(S)y/SyEa,Dp(S)y.

This shows that it is the same thing to lift Qy to a direct summand Q1,4 C Dp(S)y,
such that the Eisenstein condition is satisfied or to lift E;i Qy to a direct sum-
mand Q/h,z; such that Dp(S)y/ Qlup is annihilated by Sy. The last condition means
that the action of Op is strict with respect to g, resp., @g. In other words,

Q=01 ® Q15 ®( B Dp(S)y)
h#PorPo

is a lift of the Hodge filtration Q' C Dp/(R) = P/I(R)P to a Hodge filtration
Q' C P1/I(S)P; such that the action of Op is strict, i.e., the Hodge filtration Q) de-
fines a point of M. This shows that (4.3.38) is bijective because the functor €;7S maps
the Hodge filtration Q1 4 to EZin,w when 9 is special by the definition (4.3.10). We
leave the ramified case to the reader.

Finally we prove assertion (i) of Theorem 4.3.2, i.e., we assume that r is banal.
We begin with the case where K/F is a field extension. Then P is by Corollary 4.3.3
(1) of slope 1/2. By (4.3.39) there is a unique way to lift the Hodge filtration and
therefore the Grothendieck-Messing criterion implies that there is a unique way to
lift P to an object P; € P, g/g. On the other hand P’ is étale. Therefore it lifts
obviously uniquely, and (i) follows. In the case where K/F is split the same argument
applies if P is local. If not, we consider the decomposition P = P, & Ps induced
by Ox = Of x Op. By Corollary 4.3.3 (2), in each geometric point of Spec R one of
the factors of this decomposition is isoclinic of slope 0 and the other is isoclinic of
slope 1. That P, is étale means that the locally free module P, /Q, is zero. This is
true on an open and closed subset of Spec R. Therefore we may assume without loss
of generality that P, is étale. Then P, has a unique lift and Pg has a unique lift by
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Grothendieck-Messing. Since P’ is étale it has also a unique lift. This completes the
proof in the split case. O

COROLLARY 4.3.4. — Let R € Nilpy , be such that the ideal of nilpotent elements
in R is nilpotent. We denote by PB°r the full subcategory of objects of P r whose

displays lie in P°p. Let ‘,B;f"}%rm be the full subcategory of ‘B’T,R whose objects are
formal p-divisible groups. Then C;,, g tnduces an equivalence of categories

e e — B
4.4. The contracting functor in the case of a special CM-type

In this subsection, r will denote a special CM-type. In this case, we will compose
the functor & p with the Ahsendorf functor.

DEFINITION 4.4.1. — Let r be special. Let R € Nilpy,.. We denote by 9Rg ® the
category of Wo, (R)-displays P. endowed with a homomorphism of Op-algebras

te : O — End P,

such that P. is of height 4 and dimension 2. In the case where K/F is unramified, we
require moreover that Lie P, is locally on Spec R a free O @0, R-module of rank 1.

We note that in the ramified case, the Ox ®¢, R-module Lie P, is in general not
locally free on Spec R.

DEFINITION 4.4.2. — Let r be special. Let R be a Opgs-algebra. We regard R as a
Op-algebra via po r : OF RN Or — R. The contracting functor

¢ r:0Brr — MR

is the composition of Q’T’R with the Ahsendorf functor %o,./z, Rr-

THEOREM 4.4.3. — Let r be special. Let R € NilpoE, be such that the ideal of nilpotent
elements of R is nilpotent. Then the functor €, r induces an equivalence of categories

& r PP — Diﬁllglp.

Here DZR';;IP denotes the full subcategory of nilpotent displays in 0Rg.

Proof. — This follows from Proposition 4.3.2 and Theorem 3.3.2. O

3. The symbol R is to remind us that this is a category of relative displays.
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REMARK 4.4.4. — Let R = k be a perfect field with an Og/-algebra structure. Then
the construction of the functor €, ; simplifies.

We begin with the unramified case. Let P = (P,F,V) € B, viewed as a
Dieudonné module. The display P’ = (P, F’, V") is described after (4.3.17). Applying
the Ahsendorf functor to it, we obtain the image P. = (P., F, V) of P by the functor
€, . The Py of (3.3.33) is in our case P. = Py, ® Py, and V, = (V')f is the V, of
(3.3.33). We know that the restriction of V' to Py, is

VI =n V. ng — Pw.
We conclude that (V')/ : Py, — Py is equal to 7~ 9% V/ where

(4.4~1) 9po = Cyg + epyor +-t Afoof—1
T e e € N e N

In the same way (V')f : Pj — Py, is equal to 7~ 9% V/ where

(4.4.2) Gpo = Qupg + Qopgo +* =+ Qyor-1.

From (2.2.17) we obtain gy, + g5, = ef — 1. In summary, P. = Py, ® Py, as a
Wo, (k) = Op ®0 . b0 W (k)-module, and V; is given by the matrix

0 a= 9wV f
4.4.3 .
( ) ( 9% Vf 0 )
Finally F. is determined by the equation F.V. = w. For instance, F : le?o — Py, is

equal to (9% 1 /pf)Ff. We obtain a Dieudonné module (P, F., V) with respect to
the perfect frame

(4.4.4) Wor (k) = (OF &, 5, W(k),70r & _, 5. W (K), k,Ff Rt

In the ramified case we have P, = Py, as a module over Wy, (k) = Op ®0 4,50 W (k).
If we apply the Ahsendorf functor to P’, we obtain by (4.3.21)
(4.4.5) Vo=1"¢*v/.p,— P,
F, is determined by the equation F.V, = 7, i.e., F, = —(II*/*!/p/)Ff. We obtain a
Dieudonné module (P, F, V.) for the frame (4.4.4)

We next add polarizations to the picture. We set t(a) = Trp/q, 9~ 1a where ¥ is
the different of F/Q,.

PROPOSITION 4.4.5. — Let 7 be special. Let R € Nilpy_,. Let (P1,t1) and (P2, t2) be
objects of OB r. Let (P1,11) and (Py,15) be their images by the functor €, p. Assume
given a bilinear form of displays

B:P1x Py — Pm,R,

where P, is the multiplicative display of W(R). Assume that 8 is anti-linear for the
Ox -actions 11, resp. g, i.€,

(4.4.6) B(ti(a)xy, z2) = B(x1,12(@)x2), x1 € P1, 2 € Py, a € Ok.
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Define
B: Py x P, — Op ®z, W(R)
by the equation
t(£B(x1,72)) = B(€m1,22), 71 € Py, 23 € Py, £€ Op ®z, W(R).
Then B is a Op-bilinear form of displays,
B: Py x Py — Lg,
where Lg is the Lubin-Tate display associated to the local field F' and the algebra

structure g : Op — Ogr — R, cf. Definition 3.4.8. Furthermore, B is anti-linear
for the Ok -actions t1, resp. ts.

Proof. — To avoid a conflict with the present notations, we adapt some of the nota-
tion of Section 3.4 to our situation. What was K in Section 3.4 is now F. We set
Lt = 4po(F?) C E'. We write the polynomials of that section as follows:

Ery(2) = I1 (Z = x(m)]) € W(Or:)[Z].

x:F—E, X| =%

We stress that here 1) denotes an embedding of F* into E’, not as elsewhere in this
section an embedding of K into E’. For ¢ = 1y, we consider the decomposition
Ery.(Z2) = (Z = [po(r)]) - Ero(Z) in W(po(F))[Z]. In particular all of these poly-
nomials lie in W(Og/)[Z].
Let M be an Of ®0,,,4 W(R)-module. Then we write by our convention
Ep)wm = Ep)w(’ﬂ' ® 1)m,

where Ep, (7®1) € OFr®0,., W (R) is the evaluation at 7®1 in this W (Or:)-algebra.

We first consider the assertion of Proposition 4.4.5 in the ramified case. We have

the decomposition P; = €p,, Pi,y. By (4.4.6), we find B(P1,y, Poyr) = 0 for ¢ # 9.
We consider the restrictions of our bilinear forms
,81/, : 131’,¢Y X Pg’w — W(R)

By : Py x Pyy — Op ®0,., . W(R).
LEMMA 4.4.6. — Let K/F be ramified. Then:
By(Ea,z1,Ea,72) = EpyfBy(a1,22), @1 € Pry, 22 € Poy, ¥ # o
5%(]:314%55171:314%932) = EF,OBw(l'l,xQ), Z1 € Piy,, T2 € P yy,-

Proof. — We can restrict ourselves to the case where R is a Og-algebra. Then we
obtain

Byp(Te1—1® [p(ID)))z1,22) = By (z1, (I ®1 - 1® [p(II)])z2)
—By(z1, M@ 1 -1 [p(ID)])z2).
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In the case were ¥ # 1y we deduce

ﬁw(EA¢$17 z9) = (=1)¢By(z1, EB¢$2)~

We find
Ep,(I®1) By (o) = [[ Tel-1&@)IIe1-1e ()
pEAy
=[] @e1-19 )Mo 1+1e ()
pEAy
=[] (r@1+1@p@) = (-1)°Bpy(r @ 1).
pEAy

Therefore we obtain
By(Ea,z1,Ea,z5) = (=1)°By(21,Ep, Ea, 72) = By (21, Erpa2)
= EpyBy(z1,72),
which finishes the proof for ¥ # 1.

We turn now to the case 1)y. The polynomials EAwo’ EB%, and ]:]F,O are of de-
gree e — 1. The same computations yield for z; € Py 4, and z3 € P 4,

Bwo(EAwalax2) = (_1)6_1/5)1#0(9317E3w0$2),
Ep, (I®1)-Es, (I®1)=(-1)"Epo(r®1).
The assertion for 1 follows as before. O

We continue with the proof of Proposition 4.4.5 in the ramified case. We begin by
showing that

(4.4.7) B (@4 Q) C Qe
This is trivial for ¢ # 1. Let y1 € Q7 ,, and yo € @, . By Lemma 3.4.2, the
inclusion (4.4.7) is equivalent to
Er0By (Y1,92) € OF ®O0 i 0 L(R).

By Lemma 4.4.6 we find

EF,OBwo(yla Yo) = Bwo (EA% Y1, EA,,,O Y2)-
The elements u; = EAwoylv resp., ug = ]:JA%yz, lie, by the definition of Q’L%,
in Q1,4,, resp., by the definition of le,wo’ in Q2,4,- But for arbitrary elements

u1 € Q1,4, and ug € Q2,4,, we have B(u1,u2) € I(R). By the definition of ,é%, we
find
TIAF/Ft 19_1551/’0 (u17u2) = /g(gulqu) € I(R)a
for all £ € Or ®o,, 4, W(R). But this implies By, (u1,u2) € OF ®0 4,10 1(R), as
desired.
Finally we have to check for y1 € Q] ,, and y» € @5, that

Bw(F/yl, F’yz) = FLBw(yly yz)-
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If ¥ # g we find for the left hand side

Bw (F(EAw)yl,F(EAw)Z&) = F(EF,L/)Bw(yl,Z&)) = Fﬁ(3¢(y1,y2))~

For 1y we obtain

Bwo (F(EA% )yh F(EA%)ZIZ) = F(EF,OBwo (yl’ yz)) = FL (Bzz;o (yh yz))
This ends the proof of Proposition 4.4.5 in the ramified case.

Now we consider the unramified case. We consider the decomposition (4.3.2). Let us
denote by ey the idempotents corresponding to this decomposition. The conjugation
of K/F maps ey to e;- We consider the corresponding decompositions P; = D Py,
for i = 1,2. We obtain that B(Py y,, Ps,yg,) = 0 for 12 # 11, and

B(Pry, Pry) COF ®¢_, 5 W(R).
We note that there are natural isomorphisms

(4.4.8) Ok ®0Kt’1; W(R) £ Op ®OF17"; W(R) £ Ok ®Oxtﬂ~/—} W(R).

Therefore 3 induces an Op ®0 1,4 W (R)-bilinear form
IB¢ : PLw X P27¢ — OF ®0Ftﬂ[’ W(R)

With the identification (4.4.8), we have E,% (r®1) = EBw (r®1) € OF ®0,..d W(R).
The analogue of Lemma 4.4.6 is

(4.4.9) Bw(EAw$1aEA1;x2) = EpyBy(z1,22), o1 € Pry, 22 € Py 5y ¥ # o, %0,
h Bw(EwalaEA,,;xz) =EpoBy(z1,22), 1 € Py, 22 € Py g, ¥ = 1o, %o.

Here we recall again the notation introduced in the beginning of the proof: to be very
precise, the expression Er 4 should be written as E Fy| - These identities follow from
Ft

the identities
Ery, ¥ # vo,vo0,

Es Ep, = M
v {EF,Oa Y = o, Yo.
We need to check

(4.4.10) B (@4 Qy.5) C Qry-

It suffices to consider the case ) = 1. By Lemma 3.4.2, the inclusion (4.4.10) is
equivalent to

E 108y, (Y1,92) € OF ®0,,90 I(R), 41 € Q) 4> ¥2 € Q) -

But, as in the ramified case, this is an immediate consequence of (4.4.9). Finally we
have to check that for y; € @}, and y2 € @, 3

Bw(F/yl, F’Z/2) = FLBd)(yly Y2)-

For this we can repeat the last two formulas in the proof of the ramified case. O
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Let R € Nilpy,,. Let (P1,¢1) be an object of 29, p. We denote by (P, 1) the
conjugate Faltings dual. It is defined from the Faltings dual exactly as the conjugate
dual from the dual.

COROLLARY 4.4.7. — Let r be special. Let R € NilpOE, be such that the ideal of
nilpotent elements of R is nilpotent. We regard R as an Op-algebra via @o. Let (P, 1) be
an object of ¥, r and let (P',i') € P, r be its image under the pre-contracting
functor C’T’R. Then the image of the conjugate dual (P, ) under QZ'T’R is the conjugate
Faltings dual ((P")?,(1')2), cf. Proposition 38.4.9.

With the notation of Proposition 4.4.5, assume that P{> and Py are in 0 ~r- Then
the canonical map

BilOK—anti—linear (Pl X P27 Pm,R) — BﬂOK-anti—linear(P{ X Pé7 LR)
is bijective. Here these sets of bilinear forms Bil are meant as in Proposition 4.4.5.

Proof. — We apply Prop. 4.4.5 to the canonical bilinear form Bcap : P X P — P r
and obtain

Bean : P’ % (PY) — Lk
By Proposition 3.4.10, we obtain a morphism of displays
(4.4.11) s (PN — (P)A.
By definition, Bean is given by a perfect Or ® W (R)-bilinear form
P x P* — Or @ W(R).
(Recall that P* = Homyy gy (P, W(R)).) We obtain an isomorphism
P* = Homo,.gw (r)(P,Or @ W(R)).

But this says exactly that the map which s induces on the ”P-components” of the
displays (4.4.11) is an isomorphism. It is elementary to see that a morphism of dis-
plays s : Py — Py which induces a W(R)-module isomorphism P; — P, is an
isomorphism of displays.

Finally we prove the bijectivity of the last map in the corollary. The left hand side
is, by (3.2.5),

Homb%,R (Plv (PZ)A)
This group is, by (iii) of Theorem 4.3.2, equal to

Homam;,R('P{, (PQ/\),) = Hombm;,R(P{, ('Pé)A) = BﬂOK-anti-linear(P{ X ’Pé, ﬁR) O

We now combine the last corollary with Theorem 3.4.11.
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THEOREM 4.4.8. — Let r be special. Let R € NilpoE, be such that the ideal of nilpo-
tent elements of R is nilpotent. Let (P1,t1) and (Pa,t2) be objects of P, g,
with images (P1,¢1) and (Py,ip) under the pre-contracting functor € g, cf.
Proposition 4.3.2. Since the actions i restricted to Op are strict with respect to
¢0: O — Op' — R, the Ahsendorf functor oz, r may be applied to them.
Fori=1,2, let Pi . = Aoz, r(P;), i = 1,2, with its Op-algebra homomorphism

(2N OK — EndWoF (R) Pi,c‘
If P{ and Py are in 0 > then the natural homomorphism
BIIOK anti- lmear(pl X PQypm R) — BIIOK anti- 11near(Pl e X P ) P Wo . ( R)( Ef/p ))
is a bijection.

The twist Py, (r) (T ef /pf) of the multiplicative display is defined in Exam-

ple 3.1.6. More precisely, this is the twist by the image of (7°/ /p?) under the canonical
map O — Wo,(R).

Proof. — This follows from Corollary 4.4.7 and Theorem 3.4.11. O

REMARK 4.4.9. — Let £ C @p be the completion of the maximal unramified extension
of the reflex field E of . We extend ¢ : O — Op, to an embedding ¢g : Op — Op.
We denote by 7 € Gal(ﬁ’ /F) the Frobenius automorphism. We apply the definition
of ng after Definition 3.4.12,

(4.4.12) T(mo)ng - =7°/p, o € OF.

Let R e Nilpo Via 4,50 we consider R as an O z-algebra. Therefore ng g is defined,

and multiplication by 7] r defines an isomorphism

(4.4.13) Ponwor (0) (T /7)== Prawo . (R):

cf. (3.4.21). Therefore, if R € Nilpy_, we can ignore the twist by (7¢/p) in Theo-
rem 4.4.8.

We recall the definition of polarized CM-pairs ‘Bf"g, cf. Definition 4.1.2. We also
introduce the analogous category of polarized objects of 0Rg, as follows.

DEFINITION 4.4.10. — Let R € Nilp,,. We denote by DER%OI the category of triples
(Pe, te, Be) where (Pe,tc) € 9RR (cf Definition 4.4.1) and where

Be: Pe X Pe — Pm,WoF (R)

is a polarization which is anti-linear for the Ok -action ic.
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Let r be a special local CM-type with reflex field E. We regard an algebra R €
NilpOE as an O p-algebra via ¢o. We now define the contracting functor for polarized
CM-pairs,

(4.4.14) €P% L OPP, — IR
Let (P,¢,8) € D‘Bff}}c. We apply the contracting functor €,z to (P,:) and ob-

tain (Pe,te) € 0Rpg, cf. Definition 4.4.2. By Theorem 4.4.8, the polarization
B:P x P — Pp, g induces an alternating bilinear form

(4.4.15) Be : Pe X Pe — Prwo,. (r) (7 /D).
If we combine this with the chosen isomorphism (4.4.13), we obtain a polarization of
the Wo, (R)-display P.,
Be : Pe X Pe — Pm,wo . (R)-
Then (P, tc, Bc) is defined to be the image of (P,t,3) by the functor (‘fo}l{.

THEOREM 4.4.11. — Let R € Nilpoé be such that the ideal of nilpotent elements is

nilpotent. The contracting functor (’Zf’% induces an equivalence of categories

e o — o
Let (P, te, Bc) the image of (P,t,8) under the functor 653;. Then

1
heighty . 8. = ? height 3,

cf. Definition 3.2.5.
Here the index “ss” indicates the full subcategory of supersingular displays and the
index “nilp” the full subcategory of nilpotent displays.

Proof. — We use the notation of Proposition 4.4.5. We have a commutative diagram

P ———— Homo,s, w(r)(P,Or ®z, W(R))

lt*
(e}

Here the map & is induced by 5’ and the map « is induced by 3. The vertical map
is defined by t.(¢) = t o £ and is an isomorphism. The map « induces the isogeny
P — PV associated to § and the map & induces the isogeny P’ — (P’)2. There-
fore these isogenies have the same height. If we apply the Ahsendorf functor to the
last isogeny we obtain the map P, — PY(7¢f /p/) which is associated to .. By
Proposition 3.3.17 we obtain

~ 1
height, . 8. = heighty, 8. = ? height 5. O
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REMARK 4.4.12. — Let us explain how the bijection between bilinear forms of The-
orem 4.4.8 simplifies when R = k is a perfect field in Nilp _,. We take Py = Ps.

We consider the Dieudonné module (P, F, V') of P. We consider 3 : Px P — W (k)
as a bilinear form of Dieudonné modules. Here we mean by W (k) the Dieudonné
module (W (k), F, V), cf. (3.2.2). We define

(4.4.16) B:PxP— Op @z, W(k)

as in Proposition 4.4.5. We know that 3 induces a bilinear form of displays
P xP — L. In terms of Dieudonné modules, this means that the following
equation holds,

(4417) ﬁ(V’xl,V’mg) = Vﬁ,@(ml,$2).

In terms of the decomposition (4.3.6), the operator V' is given by (4.3.15).

By (3.4.10), the Ahsendorf functor applied to £ gives the Wo,. (k)-Dieudonné
module

p!

—f
L P,

(4.4.18) Or®q_, 5. Wk), —

Ftv"z)o
The bilinear form (3 gives by restriction to P, = P ®0 ,.+.30 W(k) C P the
Or ®o_, 4 W (k)-bilinear form

(4.4.19) Be:P.x P.— Op®, 5 W(k).

Ft Yo

Because this is obtained by applying the Ahsendorf functor to (4.4.17), B. is a bi-
linear form of Wq,. (k)-Dieudonné modules if we equip the right hand side with the
Wo - (k)-Dieudonné module structure (4.4.18). Therefore we obtain

p’ F=f3
ref—1

(4.4.20) Be(Vews, Vews) =

(71,22), 1,22 € Pe.
In the case where K/F is ramified, we have P, = Py, and
Ve=1"¢*v7F . Py, — Py,

cf. (4.4.5). Note that (4.4.20) can be checked easily from these expressions.

In the case where K/F is unramified, we have P. = Py, ® Py, and V¢ is the
endomorphism of P. = Py, ® Py, given by the matrix

0 a9V f
T 9%V 0 ’

cf. (4.4.3). Before (4.4.8) we already remarked that 3(Py,, Py,) = 0 = B(PJ)O’PJJO)'
Again (4.4.20) can be checked directly on these descriptions of V.

Now we assume moreover that k is a O z-algebra. We have the map (4.4.12),

Oﬁ. — Op ®Optﬂ/30 W(k) = Wop(k)

SOCIETE MATHEMATIQUE DE FRANCE 2024



88 CHAPTER 4. THE CONTRACTING FUNCTOR

We consider the image 1ox € OF ®0,., 4y, W (k) of no. We set
(4.4.21) Be =18 4Be: P x Po — Op ®¢ | 5 W (k).

Then we find

FtsPo

~ f i~
Be(Vewr, Vexs) = 77£7kﬁc(Vc$1,chU2) = Ug,k% F Be(x1,2)

f
p -f, _ —f
= p gy (lohPe(ar,z2)) =" fe(er, 22),

since 77(]; kF _f(n(; f ) = 7¢f /pf. Indeed, the left hand side of the last identity is the

image of (o7~ (ny 1)) = ¢ /p7.

This shows that (. is a bilinear form of Wo . (k)-Dieudonné modules, if we consider
on Op ®0 1 o W (k) the Wo,. (k)-Dieudonné module structure which corresponds
to P wo . (r), Damely

(OF ®o,, 4 W(k), Ff nF~1).

REMARK 4.4.13. — Let us discuss the height identity in Theorem 4.4.11 in a more
direct way. We may assume that R is a perfect field. We may write the equation in
the form

(4.4.22) ord, detW(k)ﬂ = ford, detWoF (k) Oe.

On the left hand side the determinant is taken with respect to an arbitrary basis of
the W(k)-module P. After we take ord,, the result is independent of the choice of the
basis. The right hand side of this equation does not change if we replace 8. by the
form (. of (4.4.19). We begin with the ramified case. The decomposition P = @ P,
is orthogonal with respect to 3. Let 3y be the restriction to Py. Let 9 be banal. The
map II7¢V : Py, — Py is a F~!-linear isomorphism. From the equation

/Bw(Hievxa HieVy) = ﬂ’ll)(v(ﬂ-iex)? Vy) = ﬂ¢a(ﬂ7€va y)

we conclude that ord, dety (x) By = ord, dety (x) Byo. Therefore this value is inde-
pendent of 1. In particular we obtain

ord, detyy ()3 = f ord, detyy (x) By, = ford, detWOF(k) BC.

The last equation follows because

B @ Pyy X Pyy — Wo,. (k) =Op ®0 .+ 0 W (k)
is obtained from f(,, by the equation
Trwo, (k)/w (k) (9 Be(x, ) = Byo(az,y), 2,y € Pyy, a € Or &, i W(K),
and since the pairing
TTWOF(k)/W(k)(ﬂ_lmfm) : (OF ®0 4 0 W(k)) x (Op R0 .4 o W(k)) — W(k)

is perfect.
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In the unramified case we write 1o/ = 1. The modules P,, and Py, are orthogonal
for 11 # 1. We denote by By the restriction of 8 to Py x Py. We define ord, det By
by taking an arbitrary basis of P, and an arbitrary basis of Pj;. Assume that 1 is
banal; then 1) is also banal. We obtain two F'~!-linear isomorphisms

TF_a'PV:P,l[,U — Py, W_adZV:PlEU —)Pﬂ;
We have

By(n™ Vi, 1~ Vy) = By(r~Vz,Vy) =T By, (pr~°z, y).

We conclude that ord, dety By = ord, detw By.,. Because § is alternating, By, and
By, have the same order of determinant. We conclude that h := ord, detw By is
independent of ¢ € . We find ord, dety 8 = 2fh. The form B is obtained from the
restriction By, by the equation

TrOF®OFt,%W(k)/W(k)(aﬁ_IBc(xa Y)) = By, (az,y), x € Py,, y € Py, a € OF.
Therefore we obtain

2h = 2ord, detyw By, = ord, det0F®oFt,¢‘0W(k) Bc-

4.5. The contracting functor in the case of a banal CM-type

In the banal case we will associate to an object of the category 9, p (cf. Defi-
nition 4.3.1) an étale sheaf on Spec R. The construction does not use the Ahsendorf
functor ™o, /z,, which is not useful here.

DEFINITION 4.5.1. — Let R be a ring. An étale Frobenius moduleis a pair (M, ),
where M is a finitely generated W (R)-module which is locally on Spec R free and
where © : M — M is a Frobenius linear isomorphism, i.e., © : c*(M) — M is an
isomorphism.

The following proposition is a variant of a result of Drinfeld, comp. [11, Prop. 2.1].
It can also be proved using the theory of displays. When R is an algebraically closed
field, the proposition is a theorem of Dieudonné.

ProprosSITION 4.5.2. — Let R be a ring such that p is nilpotent in R. There is a
functor A from the category of étale Frobenius modules over R to the category of
locally constant p-adic étale sheaves which are finitely generated and flat over Z,. The
functor A is an equivalence of categories which commutes with arbitrary base change.
It is compatible with the tensor product of étale Frobenius modules, resp., of p-adic
étale sheaves.
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Proof. — We give a sketch of the proof which shows how this equivalence is con-
structed. By [34, Lem. 42] it follows that the category of étale Frobenius modules
over R and R/pR are equivalent. Indeed, a Frobenius module lifts locally and by
loc. cit. two liftings are canonically isomorphic. Therefore we may assume pR = 0.
Let (M, ©) be an étale Frobenius module. We set M,, = W, (R) ®w ) M. Because
pR = 0, the Frobenius F on W(R) induces a Frobenius F : W,(R) — W, (R). By
base change we obtain a F-linear map ©,, : M,, — M,,. We define a functor 2,, on
the category of R-algebras,

an(s) = {iIZ € Wn(s) ®Wn(R) Mn | en,S(x) = :E}

One can show that 2, is representable by a finite étale scheme over Spec R. Clearly
Z/p"Z = W, (Fp) acts on 2,,. We define the associated p-adic sheaf

A @) = Hm Ay,

Let W be the étale sheaf of Witt vectors. We have W ®z, %7,y = M in the sense of
étale sheaves, where the action of © corresponds on the left hand side to the action
of F ®id.

Finally, we show the compatibility with tensor products. If (M’,©’) is a second
étale Frobenius module, we set (N, Z) = (M ®w ) M',0 ® ©'). We obtain a natural
homomorphism
(451) Q‘(M’@) ®z, Ql(M/’@/) — Q[(N,E)-

To prove that this is an isomorphism, we may reduce by base change to the case
where R is an algebraically closed field. Then the assertion is clear by the theorem of
Dieudonné. O

DEFINITION 4.5.3. — Let r be banal. Let R € Nilpy ,. Let Et(Ok)r be the cate-
gory of locally constant p-adic étale sheaves G over Spec R which are Z,-flat with
rankz, G = 4d and which are equipped with an action

L OK i Endzp G.
The contracting functor is the functor
¢rr: 0Brr — Et(Ok)r,

which is the composite of the pre-contracting functor Q:;,R of Theorem 4.3.2 and the

functor A of Proposition 4.5.2, applied to the étale Frobenius module (P’,F’). The
functor commutes with arbitrary base change R — R'.

THEOREM 4.5.4. — Let r be banal. Let R € Nilpy _, be such that the ideal of nilpotent
elements of R is nilpotent. Then the contracting functor is an equivalence of categories,

Crr: 0P r — Et(Ox)r.

Proof. — Since the objects in D‘B'T’ g are étale, this is simply a combination of Propo-
sition 4.3.2 and Proposition 4.5.2 U
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REMARK 4.5.5. — In the banal case there is a functor
(4.5.2) Br.r — PR

from p-divisible groups to displays which is an equivalence of categories. Indeed, in
the case when K/F is a field extension, the displays of objects in 93, g are by
Corollary 4.3.3 isoclinic of constant slope 1/2 and therefore nilpotent. Therefore
they are displays of formal p-divisble groups, cf. Theorem 3.1.11. In the split case
Ok = Of x O we have a corresponding decomposition of a display P € o, g:
P = P1 ® Ps. In the case where P is nilpotent we can argue as before. If not, one of
the summands is étale and the other is isoclinic of slope 1, cf. Corollary 4.3.3. But we
have an equivalence between étale p-divisible groups over R and étale displays over R,
which is easily defined by the 2A-functor. Therefore we conclude also in this case that
the equivalence (4.5.2) exists.

For more information about the resulting functor 0, g — Et(Og)g cf. Sec-
tion 7.4.

We now add polarizations to the picture.

LEMMA 4.5.6. — Letr be banal. Let R € Nilpy_, . Let (P1,¢1) and (Pa, t2) be in 0%, g.
Let

B:P/I(R)P, x P,/JI(R)P, — R
be an R-bilinear form such that

5(”(0‘)931?'7;2) =5(IL‘1,LQ(@):I}2), a € Og.
Then the restriction of B to Q1/I(R)Py x Q2/I(R)P; is zero.

Proof. — We first consider the case where K/F is ramified. We consider P; ,,/I(R)P;
as an Ok ®o,,  R-module for i = 1,2. Because of the isomorphism (4.2.6), it suffices
to show that

5(EAwl‘1,EA,,,l’2) =0, =z € (P/I(R)P1)y, 22 € (P2/I(R)P2)y.

We consider E4,, MI®1l) € Ok ®0 e 3 Ogpg/. The image of this element by the con-
jugation of K/F is (—1)°Ep, (Il ® 1), cf. the proof of Lemma 4.4.6. Therefore we
find

B(Ea,z1,Ea,z2) = (=1)°B(21,Ep,Ea,2) = (—1)°B(z1, Eyz2) = 0.

Now we assume that K/F is unramified. Then the condition on J3 implies
that Py, /I(R)P1y, and Ps.,/I(R)P,,, are orthogonal with respect to [ if
11 # 9. Again by the isomorphism (4.2.6), it suffices to show that

BEA,z1,Ex 22) =0, a1 € (PL/I(R)P1)y, 32 € (P2/I(R)P2) ;.

In this case the conjugation of K/F maps E4, to Ega. Therefore the last equation
follows from

Ep,(n®1)E4; (r®1) =Eg(r®1) =0.
Exactly the same argument applies to the split case. O
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LEMMA 4.5.7. — In the situation of the last lemma, assume that R is a reduced ring.
Let B: Py x P, — W(R) be a W(R)-bilinear form such that 8 is anti-linear for the
Ox -actions vy, resp. L2, and such that
B(Fiz1, Faxy) = p" B(z1,32), 21 € Py a2 € Py
Then B induces a bilinear form of displays
ﬂ : Pl X PQ e ,Pm,R'
Proof. — We must verify that 8(Q1,Q2) C I(R) and that

B(EFyy1, Foys) = "8(y1,52),  v1 € Q1, y2 € Qa.

The inclusion is a consequence of Lemma 4.5.6. To verify the last equation, we may
multiply it by p? because p is not a zero divisor in W (R). But then it follows from
the assumptions on S. O

DEFINITION 4.5.8. — Let p € Of ®z, W(R) be a unit. We define Op(p) as the
p-adic étale sheaf associated by Proposition 4.5.2 to the étale Frobenius module
(OrF ®z, W(R),0,), where

(4.5.3) O,(a®&) =p-(a® ™€), acOp, £cW(R).

When p = 1 we obtain the constant p-adic étale sheaf O = Op(1).
Let p = 7¢/p. Let R € Nilpy,_, and let (P;,¢;) € P, g for i = 1,2. We will associate
to a bilinear form of displays

(4.5.4) B:P1 X Py — Pur

which is anti-linear for the Og-actions ¢y, resp. i, a bilinear form of p-adic
étale sheaves which is anti-linear for the Og-actions on Cp, = €&, g(P1), resp.
C’p2 = Q:T,R(P2)7

(455) d) : CPI X Cp2 e OF(p)

For the construction we may assume that R is a kps-algebra because étale sheaves
are insensitive to nilpotent elements.

Let first K/F be ramified. Then we find for 1 € P; and x5 € P, that
,B(F{xl, lel‘g) = ﬁ(F‘ll'[e:cl, FQHEZL'Q) = Fﬁ(Hel’l,HeiL‘Q)

e

(4.5.6)
- Fﬂ(wexl,xg) = Fﬂ(%xl,xg).

We used the equation
(457) F{.’El = Flﬂe.'l/'l,

which follows from (4.3.4) and (4.3.9). Recall the function t(a) = Tro,,z, 9" 'a,
for a € Op, where 9 € Op is the different of F//Q,, cf. p. 80.
We define 3: P, x Py, — Op ®z, W(R) by the equation

(4.5.8) t(EB(x1,22)) = B(Ex1,x2), € € Op ®z, W(R).
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Then 3 is a bilinear form of Op ®z, W(R)-modules. We conclude from (4.5.6) that

€

(459) ,B(Fll‘l, F’$2) = % . FB(CIH,(EQ).

Hence §3 is a bilinear form of Frobenius modules. Since the functor 2 of Proposi-
tion 4.5.2 commutes with tensor products, it induces a bilinear form (4.5.5).

Now we consider the case where K/F is an unramified field extension. For
each Op-algebra R we have the decomposition

(4.5.10) Ok @z, W(R) = [[ Ok ®,_, ; W(R),
HeY
which is induced by (4.3.2). The conjugation of K/F' acts on Ox ®z, W(R) via the
first factor. We denote this by n — 7. We denote by 7 the action of the Frobenius
via the second factor. On the right hand side of (4.5.10) these actions become
OK ®0Kf7"/~’ W(OE/) e OK ®O of W(OE/)
a®l{r—a®d,
Ok ®0Kt7,¢; W(R) — Ok ®o - W(R)

Kt , oY

a®§l—>a®F§.

Kt 7"1[)

(4.5.11)

Here o denotes the Frobenius automorphism of Gal(K*/Q,). Looking at the right
hand side of (4.5.10), we define

(4.5.12) Ty = (71'“” ® 1)¢91; € Ok ®z, W(OE/).
It follows that
T, =7 Q1.

Let (P,t) € B, r. We note that, since R is a kpgr-algebra, the definition of
(P',¢') = € z(P,¢) in (4.3.9) takes the form
(4.5.13) F'(z) = F(mz), F'(z)=F(mz).
Now let us start with a bilinear form

ﬂ :P1 X Py — P,

which is anti-linear for the Og-actions ¢, resp. t5. We find

B(F{z1, Fyze) = B(Fimea1, Fampas) = FB(mxy, mpas)
(4.5.14) . e
= "B(r°ry,22) = 5(;3017952)

As before, 8 defines the O ®z, W (R)-bilinear form
B:P xP,— Op ®z, W(R),
which by (4.5.14) satisfies

€

(4.5.15) B(F{ml,lemg) = % . Fﬂ(l‘l,l‘g).
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Applying, as before, the A-functor to P’, we obtain the desired bilinear form (4.5.5).

Finally we consider the split case. In this case we consider in the decomposition
(4.3.22) the element

(4.5.16) Tp = Tp1 X Tpg = ((71'“91 ® l)gee) X ((71'“92 ® 1)969)

of (4.3.22). The conjugation acts on Ox ®z, W(Og) via the first factor. On the right
hand side of (4.3.22), the conjugation just interchanges the two factors in parentheses.
This shows that 7.7, = 7° ® 1. Now starting with a bilinear form (¥ (4.5.4), the
formulas (4.5.14), (4.5.15) from the unramified case continue to hold, and this finishes
the construction in the split case.

PROPOSITION 4.5.9. — Let r be banal. Let R € Nilpy , be such that the ideal of
nilpotent elements of R is nilpotent. Let (P1,t1) and (P2, t2) be objects of 0B, r. The
construction above, which associates to a bilinear form of displays (4.5.4) a bilinear
form of p-adic étale sheaves (4.5.5) is a bijection,

BilOK—anti—linear(Pl X P2a Pm,R) B BﬂOK—anti—linear(C'Pl X CP2 ) OF (ﬂ.e/p))-

Proof. — We reduce the question to the case where R is reduced. Indeed, let S — R
be a pd-thickening in the category Nilp, ,. Assume that (Pi, i) € 0P, g for i =1,2.
It follows from Proposition 3.2.4 and Lemma 4.5.6 that any bilinear form

B:Pir X Por — Pmr
with the properties of (4.5.4) lifts uniquely to a bilinear form
ﬂ : Pl X 732 — Pm,S-
Since bilinear forms of étale sheaves have the same property, we can assume that R is
reduced.
We begin with the ramified case. For ¢ = 1,2, let (P;, ;) € 9, r, which correspond
to (P/, F}}) under the pre-contracting functor €. p, cf. Theorem 4.3.2, and to Cp, under

the contraction functor €, r. We start with a bilinear form of p-adic sheaves

€

(5 . CP1 X sz — OF(%)

with the properties of (4.5.5). We have to construct a bilinear form of displays (4.5.4)
which induces ¢. By Proposition 4.5.2, ¢ comes from a bilinear form of étale Frobenius
modules

B : Pll X PQI — Op Rz, W(R)7

which satisfies

~ . . 7'('8 ~
(4-5-17) /5(F1/9017F2/952) = ;Fﬂ(wl,m)-

4. One should not confuse the notation P; and P2 with the decomposition (4.3.25) which continues
to exist, e.g., P1 = P1,1 ® P1,2.
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After applying t we obtain a bilinear form 8 which satisfies
(4.5.18) B(F{zy, Fyzy) = /6(71:1’ T2).

By (4.5.7) we may write
F,=pky = F' 2

3 He’
because multiplication by p is injective on P;. We deduce from (4.5.18)
B(Fiz1, Faxs) = ’B(FIH 1,F21_T902) /3(** T1, l_ixz) = p" B(z1,22).

By Lemma 4.5.7, it follows that ( is a bilinear form of displays B : P; X Py — Pp,.
This proves the ramified case.

Now let K/F be an unramified field extension. We begin with a bilinear form
of p-adic étale sheaves (4.5.5) as before. This induces a bilinear form of étale Frobenius
modules 3 : P| x P} — Op ®z, W(R) which satisfies (4.5.17). Using (4.5.13), we
rewrite this as

B(Fimyar, Fymyws) = %Fﬂ(xlny)-
We multiply this equation with p? and find for the left hand side
B(F1Wr$1,F27Tr9U2) = B(Fﬂ'rlela FWTF2$2)
= B(F (7w, ) Frzy, Faoxy) = w8 B(Fix1, Foxs).
If we compare this to the right hand side multiplied with p2, we obtain
B(Fra1, Faxs) = p"B(z1, z2).

Setting now § = t o 3, the assumptions of Lemma 4.5.7 are satisfied. Therefore
[ induces a bilinear form of displays G : P; X Py — Pp,.

In the split case the argument is the same using the 7. which appeared in this
context. O

On Spec kg we can choose a trivialization of the twisted constant étale sheaf,
(4.5.19) Op(n®/p) = Op,

as follows. Choose 1 € Or ®z, W (REg) such that Fym=! = w¢/p (this is equivalent to
the choice of g in (4.4.12)). Then the multiplication by 7

n:(OF ®z, W(kg), (7¢/p) @ F) — (OF ®z, W(kg),1® F)

is an isomorphism of étale Frobenius modules, which induces (4.5.19) under the
A-functor into Et(Ok )z, cf. Proposition 4.5.2.

1

RE>»
DEFINITION 4.5.10. — Let R € Nilpoé, Let Et(OK)%Ol be the category of p-adic étale
sheaves (G, 1) € Et(Ok)r, equipped with a Op-linear alternating form

(4.5.20) ¢:GxG— Op,

which is anti-linear for the Ok -action.
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Using the trivialization (4.5.19), and applying Proposition 4.5.9, we now obtain the

contracting functor with polarizations which is a functor from D‘Bffg to Et(O K)%Ol.

THEOREM 4.5.11. — Letr be banal. Let R € Nilp Oy, be such that the ideal of nilpotent

elements in R is nilpotent. Then the contracting functor QE‘}; is an equivalence of
categories,

P PP — Et(Ox) .

REMARK 4.5.12. — In the split case, let Cp = Cff};('P). Let P = P1 x P, be the decom-
position induced by O = O x Op. This induces a decomposition Cp = Cp 1 X Cp 2,
where C'p ; is the étale sheaf associated to the Frobenius module (P;, Fmﬂ-), i=1,2.
Here the elements 7, ; are defined in (4.5.16). The subsheaves Cp ; of Cp are isotropic
with respect to ¢ as in (4.5.20), and hence ¢ corresponds to an Opg-bilinear form

¢:Cp1 xCpoy— Op.

REMARK 4.5.13. — Let k € Nilpo _, be an algebraically closed field. Let (P, ) € O‘Bff;ﬂl.
We will give a description of (’Z?‘};('P,,@) = (Cp,p). We write P = (P,F,V) as
a Dieudonné module. The image of P under the contracting functor, a sheaf Cp
on Speck, is simply an Ox-module.

Assume that K/F is ramified. From the definition of the pre-contracting functor
(cf. Theorem 4.3.2) and the 2A-functor we have

Cp={reP|V % = z}.
To describe this further, with its bilinear form of displays, we extend the bilinear
form S to
B:PxP— Op@W(k),

cf. (4.5.8). The decomposition P = P, Py is orthogonal with respect to ( and, by
restriction, we obtain for every v

By : Py x Py — Op ®p , 5 W(k) C Op @ W(k).
Let xy, :r;, € Py. Since (3 is a polarization, we obtain
~ _ e _ e 7Te ~
(4.5.21) Byo (VT 2y, V- I2y) = ;Fﬂw(%,wip)-
The action of F' on the right hand side is defined by (4.5.11). Fix ¢, € ¥. The
projection = +— x,, is an isomorphism
(4.5.22) Cp = {zy, € Py, | V_fHef:L‘d,a =Ty, }

In particular, we see that Cp is indeed a free Ox-module of rank 2. For z,2’ € Cp
we obtain from (4.5.21)

e

~ ™
By (Tyos Tyy) = ;Fﬂw(ww,xip)

MEMOIRES DE LA SMF 183



4.5. THE CONTRACTING FUNCTOR IN THE CASE OF A BANAL CM-TYPE 97

Since 1), = 1,0, we obtain
f
Bar(ons ) = () Bus(oun )
In the same way we may interpret the sheaf Op(7®/p): the projection
OF @z, W(k) — Or ®g,,, j, W(k)
defines an isomorphism
€ ,/Te

T frf
(4.5.23) Or (=) = {ay, € Or @, 5, W(K) | ay, = ()" au. }

For the last equation we may write na,, = ¥ f(nad,a) (cf. (4.5.19) for n) or, equivalently,
Nay, € Op. Therefore, using the expression (4.5.22) for C'p, the restriction of 5 to Cp

multiplied by 7 gives the desired bilinear form
(;5: Cp X Cp — OF
(@ @y,) 7 1By, (Tp,,T0,)-
Now let K/F be unramified. In this case, in the decomposition P = @we‘p Py, the

summands Py, and Py, are orthogonal, unless i, = 1pa. The Og-module Cp is, in
this case, given by

(4.5.25) Cp={z=(xy) € P |V imzy =240},

(4.5.24)

where we recall the element 7, from (4.5.12). After fixing 1., we can write

(4.5.26) Cp ={(zy,,r5,) € Py, ® Py, | VIirz, = nga,V_fﬂgzc% =Ty, }s
where g = ay, + ay,0 + -+ ay, .51 and g=ay +aj ,+ - +ay, ,r-1. Using the
expression (4.5.26) for Cp, we may write

QZS : C'p X Cp — OF
(4.5.27) : _
(Typy +Tg 5 Yo T Yp,) NPy, Ty, Yp.) + 105, (T, Yp,)-

We have for arbitrary elements z, € Py and y,; € Py that

~ _ _ — ’ﬂ'ef f~
ﬂd‘,(V fﬂgmw,v fﬂ'gyu-)): p—fF ﬂd)(xi/”yﬂ[))‘

If z ==y, + x5, and y = yy, +y;, in Cp the last formula becomes

~ ﬂ'ef f~
ﬂd?(%vyw) = pffF ﬁd,(m,y@).

By the formula (4.5.27) for ¢ we obtain
s
$(z,y) = o(z,y).

This shows again that ¢(z,y) € O, cf. (4.5.23).
Finally let K = F' x F. We use the notation of the last remark. We obtain

Cp,={z € P |Ve=m z},
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where we recall the element =, ; from (4.5.16) We have the decomposition
Cp =Cp, ® Cp,.
If we fix 0 € © = Home_Alg(Ft,@p), the natural projection P; — P, g, defines an
isomorphism
(4.5.28) Cp, = {z € Py, |[VIz =n%z}, fori=1,2,
where a; = ), ag,, cf. (4.3.28). The bilinear form 3 induces by restriction

ﬂgo : P1790 X P2790 — Opf ®0Ft7§0 W(k‘)
In the notation of (4.5.28) we obtain
¢:Cp, x Cp, — OF,

(1, 22) — 1, (1, T2).

This determines ¢ on Cp since the subspaces Cp, for i = 1,2 are isotropic, cf. Re-
mark 4.5.12.

PROPOSITION 4.5.14. — Let r be banal. Let k € Nilpy _, be an algebraically closed
field. Let (P,t,3) and (P*,.T,87%) be two objects in D‘Bff,okl.

1. If K/F is split, then there exists a quasi-isogeny
(4.5.29) (P,1,B) — (P, 87).

2. Let K/F be a field extension. Then there exists a quasi-isogeny (4.5.29) iff
inv(P, ¢, B) = inv(P*,t, 87), cf. (2.4.7).

3. Let K/F be an unramified field extension. If B is a polarization of height 2fh
with h € {0,1} then inv" (P,1,8) = (—=1)". For a given h, there exists (P,,[3)
with these properties.

Proof. — To prove the first assertion, we may apply the polarized contraction
functor @;391 of Theorem 4.5.11. We choose an arbitrary isomorphism «; of the
F-vector spaces Cp, ® Q and CP1+ ® Q. Since ¢, resp. ¢+, define dualities of
these spaces with Cp, ® Q, resp. C’P; ® Q, we can extend «; to an isomorphism
a:(Cp,9) ®Q— (Cp+,¢T) @ Q.

If K/F is a field extension, we conclude by Proposition 8.3.6 that the equality
inv(P,t,8) = inv(PT,.T,8T) is equivalent to the equality inv((Cp,:,¢) ® Q) =
inv((Cp+,tT, ") ® Q). Therefore, by Definition 8.1.1, these anti-Hermitian K-vector
spaces are isomorphic, which proves our assertion.

Finally we prove the last assertion.

We consider the bilinear form By : Py x Py — W (k). If we choose a W (k)-ba-
sis of Py and Py, we can speak of ord,dety () By. This number is independent
of 9 and equals h. Let (3(¢)) be the restriction of § to P, ©@ Pj. We obtain

ord,, dety () (1)) = 2h. Recall J, cf. (4.5.8). Let 3(¢) the restriction of £,

B() : (Pd, S de) X (P¢ ] PJ)) — Op ®0Ft’1zj W (k).
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Then we have
(4.5.30) ord,, detyy (1) B(1) = ord, deto,q, , ;W) B().

Indeed, the function t(a) = Tro, 0,, ¥ 'a, for a € Op, where ¥ € Op is the dif-
ferent of F'/Q,, defines for an arbitrary Op 0,04 W (k)-module U an isomorphism
of Or ®¢_, ; W (k)-modules,
(4.5.31)

HomoF®oF”LW(k)(U, Or®o,,.4 W (k)) = Homy 1) (U, W (k)), &+ aot.

We apply this to U = Py, & Py. If we regard 5 as a homomorphism of U to the left
hand side of (4.5.31) and (8 as a homomorphism from U to the right hand side, they
correspond to each other. Therefore the cokernels of these two homomorphisms are
isomorphic and have the same length. This shows (4.5.30). By Remark 4.5.13, we
have for each ¢ an isomorphism Cp Q¢ (Of R0+ .4 W (k)) = P. Since ¢ coincides
with the restriction of 3(¢) up to a unit, we conclude that ord, deto, ¢ = 2h. By
Lemma 8.1.2, we have inv(Cp, ¢, ¢) = (—1)". By Proposition 8.3.6 we are done. [
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CHAPTER 5

THE ALTERNATIVE MODULI PROBLEM REVISITED

In this section we give another proof of the main result of [18] which gives an
alternative interpretation of the Drinfeld moduli space of special formal Op-modules
in the case of a quaternion division algebra D over a p-adic local field F'. We also prove
a refinement concerning descent data. The original proof was already simplified by
Kirch [15], but the argument here is different and is based on the theory of displays.

5.1. Special formal Op-modules

We fix the finite extension F' of Q,, with uniformizer 7 and residue field kr. Let
R be an Op-algebra. Let (X,:) be a p-divisible group over R with a strict action
t : Op — End X. A relative polarization of X is a relative polarization of the
display of X. Here, by a relative polarization we mean one with respect to O, cf.
Definition 3.4.12.

If R = k is a perfect field, we may work with the associated Wo,. (k)-Dieudonné
module (M, F, V) of X. It is obtained from the display of X by the Ahsendorf functor
20, /z,,R, cf. Remark 3.3.16. In this language, a relative polarization is a Wo,. (k)-al-
ternating pairing

Y:Mx M — Wo,.(k),

such that

cf. (3.2.2). If the bilinear form 1 is perfect, we will say that the polarization is principal.

We denote by D the quaternion division algebra with center F. Let F' C D be a
quadratic unramified extension of F'. Let Op C D be the ring of integers. Recall that a
special formal Op-module X over R is a p-divisible group X over R of height [D : Q]
with an action ¢ : Op — End X such that the restriction of ¢+ to OF is strict and
such that Lie X is locally on Spec R a free Ops ®,, R-algebra, cf. [10]. One can check
that this condition is independent of the choice of F”.
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PRrROPOSITION 5.1.1. — Let k be an algebraically closed field of characteristic p with
an Op-algebra structure Op — k. Let F' be an unramified quadratic extension F’
of F. We denote by F' and V' the Frobenius and the Verschiebung acting on Wo . (k).
Let (M, F,V) be a Wo,(k)-Dieudonné module (see Definition 3.1.8) of height 4
and dimension 2 which is endowed with an Op-algebra homomorphism
L: OF/ —_— End(M,F, V)

Assume that v makes M /V M into a free module of rank 1 over kg ®y,. k. Then there
exists a principal relative polarization v on (M, F,V) such that

(512) w(b(u)$ay) = ¢(.’E,L(’U,)y), foru € OF’) T,y € M.
Any other relative polarization ¢ of (X,t) with the property (5.1.2) (with v replaced
by ¢) is of the form

¢(z,y) = ¥(u(c)z,y)

for some element ¢ € Op.

Proof. — We choose an embedding O — Wo,. (k). We set, for i € Z/2Z,
M;={z e M| ilu)z =F"uz, foru e Op}.

We have the decomposition

(5.1.3) M = My ® M,.

The operators F and V are of degree 1. The k-vector spaces My/V My and M, /V My
are by assumption both of rank 1.

If ¢ is a bilinear form with the properties (5.1.2), then the decomposition (5.1.3) is
orthogonal. We choose alternating perfect forms ¢0 resp. wl on the free Wo,, (k)-mod-
ules My resp. M; of rank 2. These forms are unique up to a unit in Wo, (k). By this
uniqueness we find an equation of the form

(5.1.4) FﬁzzLO(FQxO,FQ:L‘{]) = tnio(zo, xh), € € Wo,(k), for all zg,z) € M.

By assumption we have ord, det(F?|My) = 2. Comparing the determinants on both
sides of (5.1.4), we conclude that £ is a unit. Since k is algebraically closed we may
write

e=""m".
Replacing ¢y by 1o := by we may assume that we have £ = 1 in equation (5.1.4).
With the same argument as before we find an equation

F_lwo(F.Tl,FilTll) = 517T1/;1(.T1,13,1), 51 S WOF(IC), for all Il,.’l?,l (S Ml.

Comparing the determinants we see that £ € Wo,. (k) is a unit. We set 1)1 = {1@1
and 9 = 1o @11 (orthogonal sum). Then v satisfies (5.1.1). To prove (5.1.2) it suffices
to show that

¥i(L(w)zs, ) = Yi(z4,L(u)z]) fori=0,1.
This is trivial from the definition of (M;, ;).
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If we have a second ¢ satisfying (5.1.2), we find ¢ € Wp,. (k) such that

$o = cibo.
Since both sides of this equation satisfy (5.1.4) with £ = 1 we obtain F’c = ¢. Therefore
we have ¢ € Op: C Wo,. (k). We obtain that ¢(z,y) = ¥ (c(c)z, y). O

COROLLARY 5.1.2. — Let (N,¢) be a second Wo,. (k)-Dieudonné module of height 4
and dimension 2 with an action of Op: such that N/VN is a free Kp ®, k-module
of rank 1. Let p: N ® Q — M ® Q be a quasi-isogeny of height 0. Then

(5.1.5) P(p(2), p(w)), z,weN
is a perfect bilinear form on N.
Proof. — Let ¥ be a perfect alternating form on IV given by Proposition 5.1.1, and

let tn, be its restriction to Ny. This form differs from the form (5.1.5) restricted
to Ng by a factor in ¢ € F’. Since p has height 0 we conclude that ¢ is a unit. O

Let K/F be a ramified quadratic extension of F' generated by a prime element
II € K such that II> = —7. Let 7 € Gal(F’/F') be the Frobenius automorphism. Let
Op = Op/[11],

such that the following relations hold:
Ou=7(ud, T?=-7, u€Op.

Then Op is the maximal order in the quaternion division algebra over F.

We have Og = Op[lI] C Op. We consider on Op the involution:
(5.1.6) d=u+vllr—d =u—Tv, u,v€ Op.
It is trivial on Op/ and induces the conjugation of Ok over Op.
PROPOSITION 5.1.3. — Let k be an algebraically closed field of characteristic p which
is endowed with an algebra structure Op — k. Let X be a special formal Op-module

over k. Let (M, F,V) be the Wo,.(k)-Dieudonné module of X. Then there ezists a
principal relative polarization

¥ M x M — Wo, (k),
on X such that
(5.1.7) W(u(d)zy, x2) = P(z1,1(d)22).
Any other polarization with the property (5.1.7) is of the form ui, with u € Op.
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Proof. — We take 9 as in Proposition 5.1.1. Then we consider the alternating bilinear
form

1/’1(53’1/) = TZJ(L(H).’L',L(H)y), T,y € M.
Then 17 is by the uniqueness part of Proposition 5.1.1 of the form

¢1(377y) :w(l’(c)xay)a cc OF’-
2

If we apply the last equations to w21 (z,y) = ¥(¢(Il)z, (I1)y), we obtain cr(c) = 2.
Therefore c is divisible by 7. We write ¢ = an for some unit a € Ops with at(a) = 1.
We write a = ur(u)~! by Hilbert 90 and consider the form

Pa(z,y) = P(u(u)z,y).
Then we have
Y2 (e(I)z, o(I)y) = P(u(w)e(ID)z, L(ID)y) = ¢ (()e(7(u))z, c(IT)y)
= (o) (u)z,y) = Y((ru)z,y) = T2(z,y).

Therefore 1) satisfies the requirements (5.1.7). The uniqueness assertion is proved as
before. 0

Let (X,t¢) be a special formal Op-module over a ring R € Nilp,, . We denote
by P the corresponding Wo . (R)-display. Let PV be the dual Wo,, (R)-display. Then
¢ induces a homomorphism ¢¥ : O5® — EndPY. Let ' : Op — EndP" be the
composite of ¢V with the involution Op — OR®, cf. (5.1.6). By Theorem 3.1.11,
(PV, ') corresponds to a special formal Op-module (X’,./).

Let ¢ be a relative polarization of X, i.e., a Wp,, (R)-polarization ¢ : PxXP — Pp,.
We assume that 1 induces on Op the involution (5.1.6). In other words, (5.1.7) is
satisfied in this context, i.e., for 1,22 € P and d € Op. To give such a polarization 1
is by (3.2.5) the same thing as to give an isogeny of special formal Op-modules
Ay 1 (X,) — (X',) which is anti-symmetric with respect to the duality X — X'.

DEFINITION 5.1.4. — Let (X,1) be a special formal Op-module over R € Nilpy,.. A
Drinfeld polarization is a principal relative polarization on X which induces on Op the
involution (5.1.6). Alternatively, a Drinfeld polarization is given by an anti-symmetric
isomorphism of special formal Op-modules X\ : (X,t) — (X', /).

PROPOSITION 5.1.5. — Let X be a special formal Op-module over Rg. Let S be a
connected scheme over Spf Op. In other words, p is locally nilpotent on S. We set
S=35 Xspf 0, Speckr. Let (X, 1) be a special formal Op-module over S such that
there exists a quasi-isogeny of special formal Op-modules

(518) XXspngFS'—>XXS S
Then there is a Drinfeld polarization v on X. Any other relative polarization on X
which induces the involution d — d’' is of the form fi for some f € OF.

In particular, v is, up to a factor in F'*, compatible with a Drinfeld polarization
on X by the quasi-isogeny (5.1.8)
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Proof. — We begin with a kKp-scheme S which is not necessarily connected. We fix
a Drinfeld polarization Ax on X. We will show that for each point of S there is
an open neighborhood U and an integer ¢ such that the quasi-polarization induced
by 7¢Ax via (5.1.8) on X is a Drinfeld polarization over U. For this we can assume
that S = Spec R. Because X is the quotient of X Xgpecz, XS by a finite locally
free subgroup scheme, the quasi-isogeny (5.1.8) is defined over a subalgebra Ry C R
which is finitely generated over Kp. Therefore we may assume that R = Ry and, in
particular, that R is noetherian.

Once we know the existence of ¢, it follows immediately that the quasi-polarization
induced by 7°Ax via (5.1.8) is a polarization on an open and closed subset U C S
which contains the point we started with. This will prove the proposition in the case
where S is an Kp-scheme.

To prove the existence of ¢, we recall some generalities from [10] which are formu-
lated there for Cartier modules. Let R € Nilpoﬁ. We fix an embedding O/ — Ojp.

From this we obtain homomorphisms Opr — R and X\ : Opr — Wy, (Op/) —
Wo, (R). Let X be the composite of A\ with the conjugation of F'/F.

Let P be the Wo .. (R)-display of X. The action of Op on P is also denoted by .
We have the decompositions

(5.1.9) P=PoP, Q=Q®G

such that for a € Op/ C Op the action of ¢(a) on Py is multiplication by A(a) and
the action on P, is multiplication by A(a), and @; = Q N P;. We regard (5.1.9) as a
7./2Z-grading. Then F,II, F' are all homogeneous of degree 1,

FIPz'—>Pi+1, HiPz‘—>Pi+1, F1Q¢—> i+1.

Let ¢ : P x P — P, be a polarization which induces on Op the involution (5.1.6).
Because this involution is trivial on Ops we obtain that Py is orthogonal to P; with
respect to 1. Therefore v is given by two alternating Wo,, (R)-bilinear forms

Yo : Py x Pp — Wo.(R), 1:P1xPr— Wo.(R).

In our case Qo/lo.(R)Po C Py/Io.(R)P is a direct summmand of rank 1 and
therefore an arbitrary alternating R-bilinear form on Py/Ip,(R)P, is zero on this
direct summand. This implies that for an arbitrary alternating form ¢ the inclusion
¥0(Qo, Qo) C Io(R) holds. The same remark applies to ;. If 9 is a polarization the
equation

(5.1.10) Vi (Fy, By') = Fo(y,9/)

holds for y,y’ € Qq. Since F' : Qo — P; is a Frobenius-linear epimorphism, we
see that v, is uniquely determined by . In fact, we can construct v; from 1y as
follows. We take a normal decomposition Py = Lo @ Ty, Qo = Lo ® Io. (R)T,. The
linearizations of F and F' define an isomorphism

F'e F': Wo,(R) ®FWo, () Lo ® Wo.(R) ®rw,, (&) To — Pi.

SOCIETE MATHEMATIQUE DE FRANCE 2024



106 CHAPTER 5. THE ALTERNATIVE MODULI PROBLEM REVISITED

Therefore we can define a bilinear form ; on P; by the equations

Y1 (EFlo, nFly) = Enfo(lo, ), €€ Wor(R), lo,ly € Lo,
P1(EFly,nFto) = Enfipo(lo, to),  to € T,

P1(nFto, EFl) = néFpo(to, lo),
Y1 (EFto, nFty) = Enmiio(to, tg), th € To.

One checks that with this definition of 1; the identity (5.1.10) holds. Therefore it
makes sense to ask whether an alternating form 1y on Py is a polarization.

To show the existence of a principal i, we begin with the case where S = Spec R
and where P has a critical index i € Z/27Z. Assume that ¢ = 0 is critical, i.e., the
homomorphism

(5111) HIP()/QO —>P1/Q1
is zero. This implies that @ = —II? is zero in R. We consider the composite

d:F LN Q1 £, FPy. We claim that ® is a Frobenius-linear isomorphism. It is
enough to show that det® € Wy, (R) is a unit. By base change, we may assume
that R = k is a perfect field. Since ¢ = 0 is critical, we find IIPy C @ = V P. Since
P, /VPy and P;/IIP, are k-vector spaces of dimension 1 we obtain IIPy, = VP,.
Therefore V11 = ® is bijective and therefore a Frobenius-linear isomorphism.

For each n € N we consider on the category of affine schemes Spec A — S = Spec R
the functor

(5.1.12) Uy (n) : Spec A — (Po @w,,, (r) Worn(4)?,

where the RHS denotes invariants of the Frobenius-linearly extended operator ®.
This functor is representable by a scheme which is finite and étale over S of
degree #(Or/m"OF)?, cf. Proposition 4.5.2. Moreover, the existence of the quasi-
isogeny (5.1.8) implies that this scheme is a constant finite scheme. This means that
Uy(n) =S x Up(n) where Up(n) is the set of sections of Uy(n) — S. We note that
the category of finite constant sheaves on S is equivalent to the category of finite
sets because S is connected. We conclude that Uy(n) is an Op-module isomorphic
to (Op/n"OF)%. We set Uy = projlim Up(n). It is a free Op-module of rank 2. We
obtain a canonical isomorphism Wp,, (R)-modules

Py = Wo,(R) ®0, Up.

Let ¢ be a relative polarization on X which induces the involution d — d’' on Op.
Then we obtain for z,2’ € P,

¢o(Fllz, FIz') = £y (M, Tz') = Foo(, ~11%a") = 7 P (2, 2") = Fpo(, 2).

Therefore the restriction of ¢y induces an alternating Op-bilinear form
<Z>0 :Ug x Uy — Op. The form ¢_>0 determines ¢9 and then ¢;, as we have seen
above. Therefore ¢y determines ¢ uniquely. We conclude that any relative polar-
ization ¢ of P that induces the given involution on Op is of the form ¢ = fi for
some f € F'*.
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Conversely, we start with a perfect alternating pairing o : Uy x Uy — Op and
extend it by base change to a perfect bilinear pairing

wO:PO XP() —>W0F(R)
As explained above, 1y extends to an alternating bilinear form
Y :PxP— Wo,.(R),

such that Py and P; are orthogonal with respect to % and (5.1.10) holds.

To prove that v is a polarization we begin with the case where, moreover, R is a
reduced ring. In this case P C P ® Q. We may assume without loss of generality that
both indices ¢ = 0 and ¢ = 1 are critical for X. We choose a Drinfeld polarization x
on X. Let ax be the alternating Op-bilinear form on Uj x. The quasi-isogeny (5.1.8)
induces an isomorphism

Upx ®Q — Uy ® Q.
Since both sides are two-dimensional F-vector spaces, the bilinear forms a and ax
differ by a factor in F'* under the isomorphism. Let ¢ be the relative quasi-polarization
induced by ¥x on X via (5.1.8). We have seen that ¢ and 9y differ by a factor in F'*.
Because for the bilinear forms ¢ : P Q x PR Q — Wo,.(R) ® Q and 1 the identity
(5.1.10) holds, these bilinear forms also differ by the same factor in F'*. In particular
1) inherits from ¢ the identities

Y(Fz, Fz) = Fyp(e,y), o(lz,2) = (2, 1z), z,2€ PRQ.

This proves that ¢ : P x P — Wy, (R) is a polarization. To show that % is perfect it
is enough to show that dety € Wy, (R) is a unit. This may be reduced to the case
where R is a perfect field. In this case we know it by Proposition 5.1.3. This proves
that ¢ a Drinfeld polarization on X. Since the restrictions of ¥ and ¢ to Uy ® Q differ
by a factor in F'*, we conclude that there is ¢ € Z such that the quasi-polarization
m°x induces via (5.1.8) a Drinfeld polarization on X.

We make a general remark on liftings before we continue. Let R — R be a surjection
in Nilpoﬁ with nilpotent kernel. Let X be a special formal Op-module over R and
let X be its base change to R. Then any relative polarization 1 of X which induces
on Op the given involution (5.1.6) lifts uniquely to a relative polarization on X
which also induces the given involution. Indeed, to see this we may assume that the
map R — R is an Op-pd-thickening, because any surjection with nilpotent kernel
breaks up into such thickenings. In this situation we apply Proposition 3.2.4. Let P
resp. P be the displays of X resp. X. Then ¢ : P x P — P,, lifts to P iff

wCTYS(Q/IOF (R)Pa Q/IOF (R)P) =0,
and this lifting is unique. As we remarked above, this condition follows because
Qo/Io,(R)Py and Q,/Io, (R)P; are locally free of rank 1.
Now we return to the case of a reduced ring R such that S = Spec R is connected,
but we do not assume that X has a critical index. We consider the closed subscheme
So = Spec R/ag where ¢ = 0 is critical, i.e., where the homomorphism (5.1.11) is zero.
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Let S; = Spec R/a; be the closed subscheme where i = 1 is critical. We obtain a fiber
product diagram of rings

R/(agNa;) —— R/ag

| |

R/a; ——— R/(ag + a1).

Let G, H be p-divisible groups over R/(ap N a1). Let G;, H; be the restrictions of
these p-divisible groups to R/a; for ¢« = 1,2. It is easy to see that two homomor-
phisms v; : G; — H; which agree on R/(ag + a;1) come from a unique homomorphism
G — H. This implies that two Drinfeld polarizations of X over R/a; and R/as which
agree on R/(ag + a1) are the restriction of a single Drinfeld polarization of X over
R/(ap N ay). Finally we can lift a Drinfeld polarization from R/(apNay) to R because
the ideal ag N a; is nilpotent. Note that aga; = 0 because II? = —7 = 0.

Let {U,},er be the connected components of Sy and let {V;}:ct be the connected
components of S;. These are closed subschemes of Spec R. We find integers ¢, and d;
such that 7° 1)y induces a Drinfeld polarization of X over U, and 7%y induces a
Drinfeld polarization of X over V;. If U,.NV; # () we obtain ¢, = d;. Since S = Spec R is
connected we conclude that ¢, = d; = c is independent of r and ¢. This shows
that 7yx defines a Drinfeld polarization of X over S. If ¢ and ¥ are two relative
polarizations of X which induce the given involution (5.1.6), we have already seen
that their restrictions to U, resp. V; differ by a factor in F'*. The same argument as
before shows that ¢ = f1 holds over S for some f € F*.

Next we consider the case that Spec R is noetherian and connected. Since the kernel
R — R,eq has nilpotent kernel, the relative polarizations of X over R,eq inducing
(5.1.6) on Op lift uniquely to R. This shows that two polarizations over R of this
type differ by a factor in F'* and that there exist Drinfeld polarizations over R.

As we said at the beginning of the proof, this implies that for each connected

Rr-scheme S the proposition holds. The general case follows because the kernel
of Og — Oy is nilpotent. O

COROLLARY 5.1.6. — With the assumptions of Proposition 5.1.5, let 1x be a Drinfeld
polarization on X. Moreover, let

p:Xxspec,@Fg—>Xsz

be a quasi-isogeny of height 0. Then the relative quasi-polarization 1 on X x g8 induced
by ¥x is a Drinfeld polarization of X xS that lifts to a Drinfeld polarization 1 on X.
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Proof. — In the notation introduced before Definition 5.1.4, 1x induces an isomor-
phism )y : X — X'. By the definition of ¥ we obtain a commutative diagram

X Xspec g S X xg8

N

_ o, _
X' Xgpecrp S +—— X' xg S.

Since p and its dual p’ have height zero, we conclude that Ag is a quasi-isogeny of
height zero. On the other hand, there exists by Proposition 5.1.5 a Drinfeld polariza-
tion ¢ on X. Moreover, there is f € F'* such that

)\J) = )\d; o L(f)
Hence «(f) : X xg S — X xg S is a quasi-isogeny of height zero. Since
4ord, f = heighty, 1(f), we conclude that f is a unit in Op. Therefore \; is an
isomorphism, and % is a Drinfeld polarization which lifts to the Drinfeld polarization
Agou(f) on X. O

Let us recall the Drinfeld moduli functor Mp, on the category of schemes S
over Spf O . We will use the notation S =S ®spt 0, Speckr. We fix a special formal
Op-module (Y, vy) over the O p-algebra Kp. We call Y a framing object. By [10] there
is a quasi-isogeny of height 0 between any two choices. For a scheme S — Spf O, a
point of Mp,(S) consists of the following data up to isomorphism:

(1) A special formal Op-module (Y,¢) over S.
(2) A quasi-isogeny of Op-modules of height 0
(5.1.13) p:Y x5S — Y Xgpecip S-

The functor is representable by the p-adic formal O ;-scheme Qr Xspfor SPfOp.

We define the functor Mp,(i) by replacing in (2) height 0 by the condition
heighty, . p = 2i. We set

Mo, =[] Mp:(i).
€7

Let (Y,:) be a special formal Op-module. Let v € D*. Then we define a new

special formal Op-module (Y*, %) by setting
Y*=Y, “(d)=u(u"tdu), forde Op.

The multiplication ¢(u) : (Y*,t*) — (Y,:) is a quasi-isogeny of special formal
Op-modules. We obtain for each i € Z an isomorphism of functors

(5.1.14) u: Mp(i) = Mp,(i +ordpu), (Y,p)— (Y, ty(u)p®),

This defines an action of D* on Mp,. If u € Oj;, the multiplication by ¢(u) defines
an isomorphism ¢(u) : (Y*, y(u)p*) — (Y, p). Therefore the action of D* factors
through ordp : D* — Z. We will call this action the translation.
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We endow Mp, with a Weil descent datum relative to O/Op. Let 7 € Gal(F/F)
be the Frobenius automorphism. Let € : Oz — R be an algebra in Nilpoﬁ. We
denote by R|;] the ring R with the new O j;-algebra structure € o 7. The Frobenius 7
induces T : Kp — K. We have the Frobenius morphism

(5.1.15) Fy,:Y—7Y.

For a Kp-algebra ¢ : Rp — R, we set ¢(r) = P’ for r € R. This defines a F p-algebra
homomorphism R — R[T]. If we apply the functor Y we obtain (5.1.15). We will
define a morphism

(5.1.16) WMp, - MDY(Z)(R) — MDr(i + 1)(R[.,.])
Let (Y, p) € Mp.(2)(R). We define p’ as the composite

P exFy,r
YR®OF,—€F — &Y —3 .Y,

The image of (Y, p) under (5.1.16) is by definition (Y, p’). Since height,  Fy . = 2,
we obtain that height,  p’ = 2i 4 2. From (5.1.16) we obtain a Weil descent datum

(5.1.17) WMp, : Mpr(R) — ./\;lDr(R[T])

on the functor Mp, (compare [27]). We introduce the notation
(5.1.18) MT) = Mo, xgpr 0,8pfr SPL O .

Then we have ./\;igr) (R) = ./\;tDr(R[T]). We write (5.1.17) in the form
(5.1.19) W, : Mpr — M),

The translation II : Mp, (i) — Mp,(i+1) is an isomorphism. We use it to identify
these functors. By Drinfeld’s theorem we obtain an isomorphism

(5.1.20) Mbp: = (Qp Xsprop SpfO) x Z.
We denote by w, the action of 7 via the second factor on (AZF Xsptor SPf O .

PROPOSITION 5.1.7. — The Weil descent datum way,,. induces on the right hand side
of (5.1.20) the Weil descent datum

(5.1.21) o (E1) > (r(€),+1).
The translation functor is on the right hand side (§,1) — (§,1+ 1).

Proof. — Let (Y, p) € Mp;(R). Composing waq,, with the translation we obtain a
Weil-descent datum on Mp,,

a: Mp(R) — Mp:(R5).

It associates to (Y, p) the point (Ynfl,pl), where p; is the composite

1 (I h)

-1 e.Fy - -
il e YO — " ExTx Y.

(5.1.22) Ygé_;;ﬁkp e Y
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Our assertion says that Drinfeld’s morphism Mp, — ﬁp fits into a commutative
diagram

Mp,(R) = Mbp:(R)

~

Qr(R).

This is stated as an exercise in the proof of [27, Prop. 3.77], but we give the verification.
We have to go back to Drinfeld’s proof and therefore we use his notation. A point
of Qp(R) is given by data (1, T,u,r) ([10], §2, Thm.). Drinfeld constructs the data
(n,T,u) entirely from a graded Cartier module M = @&M;. The Cartier modules M
and M, rT[_l are the same and the gradings are also the same because M — M 077 ghifts
the grading by 1 and M — M|, shifts the grading by 1 in the opposite direction.
Finally, we have to see that the rigidification r is not changed by the application of .
This can be checked on the geometric points of Spec R. But over an algebraically closed
field L, the rigidification is obtained as follows. We take the morphism of rational
Dieudonné modules

N —- N

induced by (5.1.13) for S = S = Spec L. Then r is obtained by taking the invariants
by VI on both sides. We see from the definition (5.1.22) that ax does not change .
O

Let Aut%(Y) be the group of quasi-isogenies of Y which commute with the action
of vy. With the notation of (5.1.9), let N = Ng@N; = P®Q be the rational Dieudonné
module of Y. The natural map

Aut% (Y) = GLp(NY ') = GLy(F)

is an isomorphism. This group acts on the functor Mp, as follows. For g € Aut%,(Y)
we define

g : Mpy(i) = Mpi(i +orddet g), (Y, p) — (Y, gp).
The action commutes with the translation. Let Jp, be the cokernel
7 — At (Y) X Z — Jp, — 0.
i —s (7, —2i).
The second group acts on Mo, such that the factor Z acts by translation. We obtain
an action of Jp, on Mp,. We introduce the groups J** and J*"* as cokernels
F* — Auth (V) x KX - J7 >0
fr— (1
F* — Aut),(Y) x (F)* = J"" =0
f—= (£, 7).

(5.1.23)
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The homomorphisms ordg : K* — Z, resp. 2ordp : (F')* — Z, induce homomor-
phisms J** — Jp,, resp. J**' — Jp,. Therefore these groups act on Mp,.

5.2. The alternative theorem in the ramified case

Let K be a ramified quadratic extension of F. We also assume that p # 2. We
choose prime elements IT € Ox and © € O such that II?> = —7 as in Section 2. With
the notation before Proposition 5.1.3, we regard Ok as a subring of Op.

For each i € Z we define the functor N (i) = Nk/p(i) on the category of
schemes S — SpfO;. We fix a special formal Op-module Y over Kr and we fix
a Drinfeld polarization 1by. We denote by Ay : Y — Y* the isomorphism associated
to ¥y, cf. Definition 5.1.4. We will consider p-divisible groups X on S with an action
t: Og — End X such that the restriction of this action to O is strict. By duality
we obtain an action of Og on the Faltings dual XV. If we compose this action with
the conjugation of K/F we obtain 12 : Ox — End XV. We write X2 = (XV,/?)
and call this the Faltings conjugate dual of (X, ).

DEFINITION 5.2.1. — A point of N'(1)(S) consists of the following data:
1. A formal p-divisible group X over S with an action
t:0g — End X,
such that the restriction of v to O is a strict action.

2. An isomorphism of O -modules A : X — X* which induces a relative polar-
ization on X, cf. Corollary 3.4.18.

3. A quasi-isogeny of O -modules
p: X xgS —Y X Spec & g S.
We require that the following conditions are satisfied.

a) p respects the Ok -actions. There is an element u € Oy such that the following
diagram of quasi-isogenies is commutative

(5.2.1) X x5 8 —L5Y Xgpecrp S

u’/ri)\l lA\Y

XA XS g ﬁYA xspecfip S’
P
b) We have
(5.2.2) Tr(.(II) | Lie X) = 0.

Two such data (X1,t1,A1,p1) and (Xa, 12, A2, p2) define the same point of N'(i)(S) iff
there is an isomorphism « : (X1,t1) — (Xa,t2) which respects the polarizations up
to a factor in O;i and such that a commutes with p1 and ps.
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We note that changing A by a factor in Oj does not alter the points of N(S).
The existence of p implies that dim X = 2 and that the Op-height of X is 4. The
condition b) implies the following Kottwitz condition for the characteristic polynomial,
(5.2.3) char(i(a) | LieX) = (T —a)(T —a), ac€ Ok.

Clearly the functor A/ (i) does not depend on the choice of the Drinfeld polarization Ay.

It follows from [27] that A/ (%) is representable by a formal scheme which is locally
formally of finite type over Spf O .

Let S = SpecR, R € NilpOF. Let Px be the Wo,.(R)-display associated to the
p-divisible group X. The conjugate dual Wo,. (R)-display P% is nilpotent. It corre-
sponds to X2. We denote by ¢ : Px x Px — Pm,WoF (r) the bilinear form of displays
which corresponds to A. We may reformulate the commutativity of the diagram (5.2.1)
as follows: the quasi-polarization p*ty coincides with "¢ /g of (Px)g/xr up to a
factor in Oj.

We obtain from (5.2.1) that

41 = 2 heighty , p.

As for the functors Mp, (i) we have functor isomorphisms

(5.2.4) O:N@G) — N@GE+1), (X,p)— (X,(IT)p),

which we call the translations. Let 7 € Gal(F/F) be the Frobenius automorphism.
Using the Frobenius Fy , : Y — 7Y we define

exactly as way,, in (5.1.16). This defines a Weil descent datum wy, relative to O/Op

on the functor

N =[ING).

1€EZ
LEMMA 5.2.2. — The action of the group J** from (5.1.28) on the Og-module Y gives
an isomorphism
JT T
where
J ={a € Autx(Y) | Yy(a(z), a(y)) = pla)vy(z,y),
for some u(a) € F*, z,y € Py ® Q}.

The group J** acts on the functor A by
(Y,1,p) — (Y,1,9p), forge J*.
We have a natural morphism of functors on Nilpoi
(5.2.6) Mp, (i) — N(3).

This is defined as follows. Let (Y, ¢, p) € Mp,(i)(S) be a point. Let ¢ be a Drinfeld
polarization on Y which is compatible with the quasi-isogeny p, cf. Proposition 5.1.5.
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It is uniquely determined up to a factor in Oj. Locally on S we have p* iy = fi
for f € F. Since height,  p = 2i we obtain ord, f = i.

Therefore (Y, L|OK,1[),,0) € N(i)(9).

The main result of [18] may now be formulated as follows. Note that in loc. cit.
WEeil descent data were not considered.

THEOREM 5.2.3 ([18]). — Assume that p # 2. The functor morphisms (5.2.6) define
a functor isomorphism

Mp, — N
which commutes with the Weil descent data and the action of the group J = J** on
both sides. In particular it commutes with the translations.

It is clear that the morphism of functors Mp, — N, is compatible with the Weil
descent data waq,, and wy relative to O /Op and with the translations (5.1.14) and
(5.2.4). From this we see that it commutes also with the actions of J**. We need to
prove that it is an isomorphism. For the proof we need some preparations.

Let k be an algebraically closed field which is an Op-algebra. We consider a
Wo,. (k)-Dieudonné module M of height 4 and dimension 2. We assume that an
Ok-action ¢ : O — End M on M is given such that the restriction to Op is
via Op — Wo,. (k).

Let

(5.2.7) Y MxM— Wo,(k)
be a relative polarization, i.e., an alternating Wo,.(k)-bilinear form such that
$(Fa1, Fxg) = m "(z1, 25).

We require that
w(L(a)xay) = 1/1(56’ L(&)y), a € Ogk.

PROPOSITION 5.2.4. — Let M be the Wo,. (k)-Dieudonné module of a special formal
Op-module with a Drinfeld polarization ¥y, cf. Definition 5.1.4. Let (M, %) be
as above and such that ¢ is perfect. We assume that there exists an isomorphism
of rational Wo,.(k)-Dieudonné modules p : M ® Q — M ® Q, such that p is a
homomorphism of Ok -modules and such that p respects the polarizations Yy and ¥
up to a factor in F*.

Then there exists a unique Op-module structure on M such that M becomes the
Dieudonné module of a special formal Op-module and such that p is a quasi-isogeny
of Op-modules.

Proof. — We will write ax := t(a)z, for a € O and x € M. For a € Op this coincides
by definition with the action via Op — Wo,. (k).

We define W = Ok ®o, Wo, (k). We extend the conjugation of K over F by
linearity to W over Wo,.(k). We denote the traces of K/F and of W /Wo, (k) both
by Tr. The Frobenius endomorphism of Wy, (k) extends Og-linearly to W and is
denoted by F'. It will be impossible to confuse this with the field F'.
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We define a Hermitian form
h:MxM-—W,
by requiring that
Tréll th(z,y) = ¢(z,&y) E€ W, z,y € M.

Then h is W-linear in the second variable and Hermitian,

h(z,y) = h(y, ).
The pairing h is perfect and satisfies the equation
h(Fz, Fy) = n¥h(z,y).

Since N := M ® Q is the rational Dieudonné module of a special formal Op-module
with its Drinfeld polarization, we have a decomposition

(5.2.8) N = Ny & Ny,

which is orthogonal with respect to ¢ (see (5.1.3)). One should note that Ny and Ny
are not W-modules.
We note that for ng,ny € N, n1,n] € N1 we have

1 1
§Hw(n0,n6), h(nl)n&) = gnw(nlvnll)7

h(nOa nl) = %w(’nO) Hnl)

Indeed, the equation

h(n07 n{)) =
(5.2.9)

Tr %h(no,n{)) = 1p(ng,lny) =0
implies that II=1h(ng,n)) € Wo, (k) ® Q. We obtain the first equation of (5.2.9):
21 h(ng, ng) = Tr T h(ng, nh) = ¥ (no, ny)-
The proof of the next equation is the same. We have
Tr I~ h(ng,n1) = ¥ (ng,n1) = 0.
This implies h(ng,n1) € Wo, (k) ® Q. We obtain the last equation of (5.2.9):
2h(ng,n1) = Tr h(ng, n1) = ¥(ng, lny).

In particular we see from (5.2.9) that an element ny € Ny is isotropic for h.

We call an element z € M primitive if it is not in IIM. We find an element
x € M N Ny such that © ¢ 7M. Assume that £ = Ily for some y € M. Then
y € M N Nj. Then it is clear that y is a primitive element in M. Interchanging the
role of the indices 0 and 1, we may assume that x € M N Ny is primitive.

Since the pairing h is perfect and z is isotropic for h, we find an element y' € M,
such that h(z,y’) = 1. We can even choose 3’ to be isotropic for h. Indeed, we
set y = y' 4+ Az for some A € W. Then h(z,y) = 1. We compute:

h(y,y) = h(y',y') + h(y', Az) + h(dz, ') = h(y',y") + A + .
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We choose A = —(1/2)h(y’,y’) (which is legitimate, as p # 2) and obtain h(y,y) = 0.
According to (5.2.8) we write

Yy=% +y1, Yo €No, y1 €Ny.
We write

1= h(z,y) = h(z,y0) + h(z,y1).
We have h(z,yo) € IWo,. (k) ®Q and h(x,y1) € Wo,. (k) ® Q by the formulas (5.2.9).
This implies h(z,yo) = 0 and h(x,y1) = 1. On the other hand, we find by (5.2.8)

0="h(y,y) = h(yo + y1,%0 +y1) = h(yo,y1) + h(y1, y0)-

Since h(yo,y1) € Wo, (k) ® Q, this implies h(yo,y1) = 0 and then h(y,yo) = 0. The
elements x and y generate N as a W ® Q-vector space. Because we already proved
that h(z,yo) = 0, we conclude yo = 0. Therefore y = y; € M N Ni. We obtain

M =Wz + Wy,
because h is unimodular on the right hand side. Then the elements x, Iz, y, Iy are a
basis of the Wy, (k)-module M. We have z,Ily € M N Ny and y,Ilz € M N Ny and
therefore
M = (M N Ny)®(MnNNy).
This shows that the Op-module structure on N induces an Op-module structure
on M. O

Proof of Theorem 5.2.3. — We consider the morphism (5.2.6) for ¢ = 0 and denote it
by

(5.2.10) Mp, — N.

Clearly it is enough to show that this is an isomorphism. Proposition 5.2.4 shows
that for any algebraically closed field k which is an Op-algebra, the induced
map Mp,(k) — N (k) is bijective.

We note that the morphism (5.2.10) is formally unramified. Indeed, let S — R be
a surjective morphism in Nilpoﬁ with nilpotent kernel. Let X be a p-divisible group
over S with base change X over R. Then an Op-module structure on Xpg lifts by
rigidity in at most one way to X. We consider the underlying topological spaces in
(5.2.6) with their induced structure of reduced schemes. Then we obtain a formally
unramified morphism of g g-schemes

(5211) MDr,red — Med

These schemes are locally of finite type over Kr and have irreducible components
which are proper over Rp, cf. [27, Prop. 2.32]. Moreover, the morphism is bijective
on geometric points. Then the irreducible components of both schemes correspond
bijectively to each other. We consider a point € Mp,(Rr). Let X be the union of
all irreducible components which pass through  with the reduced scheme structure.
Let y € N(kr) be the image of x and define Y C N in the same way as X. Then
X — Y is a finite morphism. If we remove all points in X resp. Y which belong
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to components not passing through z, resp. y, we obtain a finite morphism of open
neighborhoods U — V of € Mp; reqa and y € N,eq. Therefore (5.2.11) is a finite
morphism of schemes locally of finite type over the algebraically closed field k. Since
this morphism is unramified and bijective on geometric points, it is an isomorphism.

LEMMA 5.2.5. — Let S — Rp be a surjective morphism in Nilpoﬁ such that the
kernel is nilpotent and endowed with divided powers. Then the map
Mp(S) — N(S)
is bijective.
Let us assume that the lemma is proved. Then we consider points x and y as
above. We consider an open affine neighborhood U of z. By the isomorphism (5.2.11)

we regard U also as a neighborhood of y. Let n € N. For a suitable ideal sheaf of
definition J of A/, we have a homomorphism

(On/TNU) — Opty, (U) /7" Ot (U).-

This map is surjective modulo 7 by (5.2.11) and is therefore surjective. We note that
by EGAOQ;, Prop. 7.2.4 the ring (Ox/J)(U) is m-adic. It follows that

On(U) — Oy, (U)

is surjective. Taking the inductive limit over U we obtain an epimorphism of local
rings

(5.2.12) 0y — O,.

By [27, Thm. 2.16] this is a homomorphism of noetherian adic rings (comp. EGA I,
Prop. 10.1.6). The ring O, is, as a local ring of the scheme Mp,, regular of dimen-
sion 2. Let m, and m, be the maximal ideals of the local rings. We remark that the
squares of the ideals are open because the topologies are adic.

We apply Lemma 5.2.5 to S = O, /mi Then we obtain an oblique arrow which
makes the following diagram commutative,

0, —— 0,

|~

Oy /m2.

It follows that there is a surjective homomorphism m,/m2 — m, /m2. The epimor-
phism of local rings also gives a surjection in the other direction. We conclude

. 2
dimg,, m, /m; = 2.

Therefore O, is a regular local ring of dimension 2, and the map (5.2.12) is an iso-
morphism. It follows that the map of sheaves

ON — OMDr
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is an isomorphism. Finally let J be the maximal ideal sheaf of definition of Oxs. By
the isomorphism (5.2.12) we obtain an isomorphism

0,/J0, — 0,/70,.

Therefore JO, = 7O,. Therefore J = 7O, is an ideal sheaf of definition. We obtain
that (5.2.10) is an isomorphism of formal schemes.

It remains to prove Lemma 5.2.5. We denote by m the kernel of S — Kp. Let
£ : Spec S — N be a morphism. We show that it lifts uniquely to Spec S — Mp;.
We denote by y € N (kr) the point induced by &. Let z € Mp,(Kr) be the unique
point over y.

We denote by P the Op-display of the special formal Op-module over p which
corresponds to z. We denote by P the unique Wo, (S/%p)-display which lifts P,
cf. Theorem 3.1.12. We write P = (P,Q, F, F'). The Op-action on P extends to P.
Therefore we have the decompositions

P=PaP, Q=QQ1
We consider only the most interesting case where II acts trivially on LieP, i.e.,

Speckp — Mp, is a singular point of the special fiber, cf. [10]. In this case we
obtain Frobenius-linear isomorphisms

FOH:PO—>Q1—>150, FoH:Pl —>Q0—>Z31.
We set U; = {z € P; | Foll(z) = z}.
Then the canonical morphism Wo,, (S) ®o, U, — P; is an isomorphism.
We can make the same construction with the displaiy P. Then we obtain U; C P;

such that the canonical Op-module homomorphism U; — U; is an isomorphism.
Using our knowledge about P we find elements €é; € U;, for ¢ = 0,1 such that

o, 116, € Py, &1,1I& € Py,

are a basis of the Wo . (S)-module P. The natural polarization 1 on P extends to a
polarization 1 on P which is given by the conditions

P (6o, 1161) = 1 = 3)(é1, I1&p),
and such that the decomposition P = Py @ P is orthogonal with respect to .

We classify now the liftings of Spec K — A to a point Spec S — A. We consider
the Hodge filtration L = Q/Io. (k)P C P/Io, (k)P. Since we compute now all the
time modulo the augmentation ideal Ip, (k) C Wo,(k), resp., Io,(S) C Wo.(S5),
we continue to simply write & when we mean the residue class in P/I(S)P. The
k-vector space L has the basis Ileg, Ile;. Therefore a lifting of L to a direct summand
L c P/I(S)P has a unique basis of the form

fo=1é1 +~éo + 6é1, f1=1Il& + aég + Béy,

because it is complementary to the module generated by €o, ;. Since we want a lifting
of L we have a, 8,7, € m. The lifting L determines a lifting of the display to S. The
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form 4 lifts to a polarization of this display if and only if L is isotropic under .
Therefore we must have

0= ’(,/)(Hé() + aég + pBé1, I1lér + véog + 551)
One obtains easily that the right hand side is
P (ég, 621) + ¥(aéy, I1é;) = —0 + a.

Since the lifting L should define a point of A, the condition 2) in the definition of
points of A/ implies
0=Te(Il| P/L) = a+4.

Because p # 2 we obtain o = § = 0. This implies that L = (L N Py) @ (L N P;). This
shows that the display over S defined by L is the display of a special formal Op-mod-
ule. Therefore the liftings of Spec Kz — N to N (S) correspond via (5.2.6) bijectively
to the liftings of Spec kp — Mp, to a point of M(S). This proves Lemma 5.2.5 and
Theorem 5.2.3. U

The properties of Drinfeld’s moduli scheme Mp, imply the following corollary, cf.,
e.g., [4].

COROLLARY 5.2.6. — The formal scheme N is m-adic and has semi-stable reduction.
The special fiber N ®o0y FF of N is a reduced scheme.

Finally we prove the uniqueness of the framing object, cf. (i) of Subsection 2.5. We
begin with this question in the category 09%%01, cf. Definition 4.4.10.

PROPOSITION 5.2.7. — Let r be special and let K/F be ramified. Let k € Nilpy,. be
an algebraically closed field. Let (Pe1,te,1,8c,1) and (Pes2,tcz2, Be2) be two objects
m DSRZOI. Assume that inv(Pei,tei, Bei)) = —1 for i = 1,2. Then there ezists a
quasi-isogeny o : Py — Pco which respects ic; and fe ;.

If the forms fB.; are perfect, then the actions t.; extend to actions
Iei : Op — Endo, Pe; such that P.; becomes a special formal Op-module with
Drinfeld polarization §; and such that o becomes a homomorphism of Op-modules.

For the proof we need some preparations.

LEMMA 5.2.8. — Let K/F,r, k as in the last proposition and let (Pe,tc,B:) € 0%201.
Assume that inv(Pe, te, Bc) = —1, ¢f. Definition 8.3.1. Then the Wo .. (k)-display P, is
isoclinic of slope 1/2.

Proof. — The K ®o, Wo, (k)-vector space N = P, ® Q has dimension 2. The isoclinic
decomposition of the Wo . (k)-isocrystal N is invariant under the action of Ox and has
therefore at most two summands. We have to show that there is only one summand.
If not, we have N = Ny ® N1, where Ny is étale and N; is dual to Ng. The dimension
of each N; as a K ®op, Wo, (k)-vector space is one. Therefore we find a generator
ep € Ny such the Vi.eg = ey3. We use the notation of before Definition 8.3.1. Let
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e1 € N be the generator such that s« (eg,e1) = 1. Let 7 be the Frobenius acting via
the second factor on K ®0, Wo, (k). From the equation
-1
se(Veeo, Veer) = mac(eo,e1)” =,
we conclude that V.e; = me;. Therefore Vi (eg A e1) = meg A er. This implies that the
invariant of (P, tc, ) is 1, which contradicts the assumption (P, ., 3.) = —1. O

Let (Pe,te) € dRy be isoclinic of slope 1/2. Then there is an W, (k)-lattice
A C P, ® Q, which is invariant by 7= 1V.2. Then there is also a lattice invariant by the
“square root” II'V,. One deduces that the invariants C of II"'V, acting on P, ® Q
form a K-vector space of dimension 2 and

The anti-Hermitian form sz, associated to §. by (8.3.1) induces the anti-Hermitian
form on the K-vector space C

(5.2.14) #,:CxC— K.
Indeed, for z,y € C we find
wae(x,y) = sz, Iy) = 2. (Vex, Voy) = ﬁFﬁlzc(x,y).

This shows that s (z,y) € K ®o0, Wo, (k) is invariant by the Frobenius F act-
ing on Wy, (k), and therefore this element is in K. The same argument shows
that B.(x,y) € F. The form s, restricted to C is obtained from the restriction of g
to C' by the formula

ﬂK/F(a%C(way)):ﬁC(awvy)v x7yecv a€ K.

LEMMA 5.2.9. — Let (Pe1,tc1,8e1) and (Pes2,te2,Bc2) be objects of DER}ZOI such
that Pc.1 and P, o are isoclinic of slope 1/2. Then the canonical map

Hom ((Pc,l) Le,1, ﬁc,l)v (Pc,Qa Le,2, ﬁc,2)) &® Q — Homg ((01, ﬂc,l)a (027 50,2))

is an isomorphism.

Proof. — This is an immediate consequence of the isomorphism (5.2.13) because the
K-action, (., and V., on P, ® Q can be recovered from the right hand side of the
isomorphism. The map V, is induced from II ® F~! on the right hand side. O

LEMMA 5.2.10. — There is the following relation between the invariants defined in
Definition 8.53.1 and in Definition 8.1.1,

(5.2.15) inv(Pe, ¢, Be) = —inv(C, B.).

We remark here that (C, 8.) determines (Pe, ¢, 8.) up to isogeny.

MEMOIRES DE LA SMF 183



5.2. THE ALTERNATIVE THEOREM IN THE RAMIFIED CASE 121

Proof. — Let x1,x2 be a basis of the K-vector space C. Then the right hand side of
(5.2.15) is given by the 2 x 2-determinant

det(sec (24, x5)).

By definition of C' we have V.x; = Ilz;. We conclude that Vi(z; A z3) =
—7(z1 Axs) in /\2 C. From Lemma 8.3.3 we obtain that the determinant above gives
—inv(Pe, ¢, Bc)- O

LEMMA 5.2.11. — Let (Psp, tsp) the Wo . (k)-display of a special formal Op-module.
We denote by ¥ a Drinfeld polarisation. Let L;p be the restriction of 1sp to Oxg C Op.

Then (Pesp, tip, ¥) € BEREOI, and
v (Pep, tip, ¥) = —1.
Proof. — We write M = P,, and consider it as a Wo, (k)-Dieudonné module. Let

N = M ® Q. Then 9 is a relative polarization that satisfies (5.1.2). By the decompo-
sition (5.1.3) (or (5.1.9)) we obtain a decomposition

N = Ny ® Ny,

which is orthogonal with respect to . As in the proof of Lemma 5.2.9, we consider
the invariants Cs, = N V7' Because VI is homogenous of degree zero, the de-
composition of N induces Cs, = Cy @ C;. Each C; is a F-vector space of dimension 2.
The restriction of ¢ is a nondegenerate alternating pairing

Y :Csp X Cp — F

Let s« : Csp x Cp — K be the anti-Hermitian form associated to i as before
Lemma 5.2.9. We choose a basis eq, fo of the F-vector space Cy such that ¢ (eg, fo) = 2.
We claim that

(5.2.16) »(eo, €0) = #(fo, fo) =0, 3(eq, fo) =1.
Indeed, we write »(eq,e0) = a + IIb, a,b € F. By definition of s we find
Try/p(7(eo0,e0)) = Y(eo,e0) =0, Trg,p(Ilsx(eg,e0)) = 1 (Ileg, o) = 0.

The last equation follows because Cy and C; are orthogonal. This implies a = b = 0.
Clearly it is enough to verify the last equation of (5.2.16). Again we write »(eq, fo) =
a+IIb, a,b € F. Then we find

Trg r((eo, fo)) = ¥(eo, fo) =2, Trg r(lls(eo, fo)) = ¥ (Ileo, fo) =0,

and therefore a = 1 and b = 0. Since ey, fo is a basis of the K-vector space Csp, the

determinant
det %(60760) %(eoyfo) -1
»#(fo,e0)  #(fo, fo)
gives the invariant 1 = inv(Csp, ) = —inv(Psp, tl,,¢) by the last lemma. O
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Proof. — (of Proposition 5.2.7) By Lemma 5.2.8 we know that P.; is isoclinic of
slope 1/2 for i = 1,2. Therefore Lemma 5.2.9 is applicable. By Lemma 5.2.10, the
associated K-vector spaces (Cj, 3, ,) have the same invariant 1 and are therefore
isomorphic. Therefore we find the quasi-isogeny a by Lemma 5.2.9.

We use the notations of Lemma 5.2.11. By what we just proved we find a quasi-
isogeny (Psp, tip,¥) — (Pe,1ste1,Be,1)- If Be1 is perfect, this quasi-isogeny extends
by Proposition 5.2.4 to a quasi-isogeny of special formal Op-modules and so does a.

O
We can now prove the uniqueness of the framing object.

PROPOSITION 5.2.12. — Let r be special and K/F ramified. Let k be an algebraically
closed field in Nilpy . Let (P,.,[3) € “]35‘;1 be an object such that B is perfect, cf.
Definition 4.1.2. Assume that inv" (P, ., 3) = —1. Then P is isoclinic of slope 1/2.

If moreover (P1,t1,31) is a second triple with the same properties, then there is a
quasi-isogeny of height zero

p: (,P,lqﬂ) i (P17L17ﬂ1)a

such that there is an f € OF with

Bi(p(x), p(y)) = B(fz,y), =,y€ P.

Proof. — We apply the functor Cf‘;l to (P,t,0) and obtain (P, te,Bc), cf. (4.4.14).
By the definition of this functor, ,BC is perfect. We conclude from Proposition 8.3.2
that inv(Pg, te, Bc) = —1. By Lemma 5.2.8, P, is isoclinic of slope (1/2). By Corol-
lary 4.3.3 and Proposition 3.3.17, P is isoclinic of slope 1/2.

By Proposition 5.2.7, we find a quasi-isogeny « : (Pg,tc, Sc) — (Pe1ste,1:Be,1)
which we can make into a quasi-isogeny of special formal Op-modules. The height
of a is then a multiple of 2. Composing o with an endomorphism of the special
formal Op-module (P, t.), we can obtain a quasi-isogeny of height 0 of Op-modules
pe : (Peyte) — (Pe,te,1)- Then pe respects the Drinfeld polarizations 8. and fc 1
up to a constant in O. By Theorem 4.4.11, we obtain a quasi-isogeny of height zero
as claimed in the proposition. O

REMARK 5.2.13. — We chose here the framing object for A as coming from the Drin-
feld moduli problem. It can also be characterized in terms of the moduli problem N/,
cf. [15]: it is a triple (X,¢, A) consisting of a p-divisible strict formal Op-module X
over Kp, with an action ¢ of Ok satisfying the Kottwitz condition (5.2.3), and a per-
fect relative polarization A such that the special automorphism group is isomorphic
to SLy(F), comp. [15, Prop. 3.2].
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5.3. The alternative theorem in the unramified case

In this subsection K denotes an unramified quadratic extension of F. Let k be
an algebraically closed field of characteristic p which is endowed with an Op-algebra
structure. We will sometimes write F’ = K if we refer to Subsection 5.1. Let 7 be the
Frobenius of F'/F. We write 7(a) = a for a € Op.

Let M be the Wo,, (k)-Dieudonné module of a special formal Op-module over k,
as in Proposition 5.1.3. In addition to the Drinfeld polarization, we use another type
of polarization of M,

0:MxM— Wo,(k).

This is an alternating bilinear form of M which satisfies

0(F$1,F:L’2):7TF9(231,$2), T1,T2 eM

(5.3.1) 0(c(a)z1,x2) = 0(z1, L(a)z2), a € Op
o 0(c(IM)z1,x2) = O(z1, L(I)z2),
ord, det § = 2.

The polarization 6 is unique up to a constant in Oj. It is constructed as follows: We
choose an element § € OF,, such that § + 7(§) = 0. We set II; = §II. Then II; is
invariant under the involution (5.1.6) and therefore we have

Y((Il)z,y) = P(z, o(y)y).

We define

(5.3.2) 0(z,y) = Y (u(I)z,y).

We see that 0 is alternating. It induces on D the involution given by
(5.3.3) O =1, uf=r(u), forueF'.

Conversely, assume that 6 is a polarization with the properties (5.3.1). Let 91 (z,y) =
6(Il z,y). Using II;IT = —IIII; we see that v, satisfies the properties (5.1.7). By
Proposition 5.1.3 this shows the uniqueness of § with the properties above.

Let (Y,ty) be a special formal Op-module over the Op-algebra K and such
that ¢(IT) acts as zero on Lie Y. We endow Y with the polarization fy defined above,
of. (5.3.2).

DEFINITION 5.3.1. — We define for each i € Z the functor N'(i) = N p(i) on the
category (Sch/Spf Oz). A point of N'(i)(S) consists of the following data:

1. A formal p-divisible group X over S with an action
t:0g — End X,
such that the restriction of v to O is a strict action.

2. A relative polarization @ on X such that the determinant of 0 is w2 up to a unit
and such that 0 induces on Ok the conjugation over Op.
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3. A quasi-isogeny of Ok -modules
p:X xgS —Y X Spec & g S.

Here, if S = Spec R, the condition in (2) means that the polarization of the corre-

sponding Op-display P of Y has determinant n2, up to a unit in Wo,. (R). We require

that the following conditions are satisfied.

a) p respects O -actions. The relative quasi-polarization p*0y differs from 70 by a
factor in OF.

b) Lie X is locally on S a free Ox ®0, Og-module of rank 1.

We note that, as in the ramified case, the Op-height of X is 4 and the dimension 2.
The condition b) implies the following Kottwitz condition for the characteristic poly-
nomaal:

char(c(a) | LieX) = (T —a)(T —a), a€ Ok.

Two data (X1,t1,01,p1) and (Xa, 12,02, p2) define the same point of N'(i)(S) iff
there is an isomorphism « : (X1,11) — (X2, t2) which respects the polarizations up
to a factor in OF and such that o commutes with py and ps.

It follows from [27] that A/(i) is representable by a formal scheme which is locally
formally of finite type over Spec O . The functor N(0) will be also denoted by N.
We have a natural functor morphism

(5.3.4) Moy (i) — N().

Indeed, let (Y, p) € Mp,(i)(R). Then we have the Drinfeld polarization ¢ of Y and
we define fy by the formula (5.3.2). This gives a point of N'(R)(%).
The diagram similiar to (5.2.1) shows that

height . p = 2i.

We will define a translation functor isomorphism
(5.3.5) O:N(i) = N+ 1).
Let (Y,¢) be a special formal Op-module over R € Nilp,,. We fix a Drinfeld polar-
ization 1. This is also a Drinfeld polarization for (Y /™). For the polarizations # and
' derived by (5.3.2), we obtain §! = —f. We consider the morphism /! : YII — V.
One easily checks that

0(u(I)z, ()y) = 76" (2, y).
This is an identity of bilinear forms on the Wo,, (R)-display of Y.

If (X, 1) is a p-divisible Ox-module, we define the conjugate p-divisible O x-module
(X°,:°) by setting X¢ = X and (°(a) = v(a) for a € Ok. For the special formal
Op-module Y we have

c cy __ I | II
(Y 7(L|OK) ) - (Y ) L |0K)'
Let R € Nilpy _ and let (X,¢,0,p) € N(i)(R). We define

¢(I)

o Xs X YS =YE = Yp.
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We set 6¢ = —6. Then (X¢,.%, 0% p°) € N(i+1)(R). This defines the translation func-
tor morphism (5.3.5). It is clearly an isomorphism. With this definition, the functor
morphism (5.3.4) commutes with the translations on source and target.

Let 7 € Gal(F/F) be the Frobenius automorphism. Using the Frobenius
Fy,:Y — 7.Y, we obtain a morphism

wy NG — NG+ 1)
with the same definition as (5.1.16). This induces a Weil descent datum wy on
N =[[NG).
i€Z
LEMMA 5.3.2. — The action of the group J** (cf. (5.1.23) for F', which is now
denoted by K ) on the Ox-module Y gives an isomorphism
J*ur ;) JA,

where
J = {a € Autk(Y) | Ov(a(z),a(y)) = p(a)by(z,y), for some u(a) € F*, z,y € Py ® Q}.
The group J' acts via the rigidification p on the functor A.

THEOREM 5.3.3 ([18]). — The morphisms of functors (5.3.4) for varying i extend to
a functor isomorphism

MDr ;) N?
which commutes with the Weil descent data, the actions of J*"* = J°, and the trans-
lations on both sides.

Proof. — We already checked that (5.3.4) extends to a functor morphism which re-
spects translations and Weil descent data on both sides. Therefore it suffices to see
that (5.3.4) is an isomorphism for ¢ = 0,

(5.3.6) Mpy =5 N.

We begin with the case where R = k is an algebraically closed field. Let Y € N (k). Let
M be the Op-Dieudonné module of Y and let M be the Op-Dieudonné module of Y.
The quasi-isogeny p induces an isomorphism M ® Q =2 M ® Q. The polarization ¥y
induces a polarization 1; on M ® Q. Since p is of height zero and ord, det ¢y = 0
we conclude that ord, det¢); = 0. On the other hand, we have by Proposition 5.1.1
a perfect pairing 1) on M which differs from ; by an element f € F’. This shows
that 1) is perfect on M. Then we define the action ¢(II;) by the equation

(5.3.7) 0(z,y) =v( (), y), =z,y€ M.

Therefore the morphism (5.3.6) evaluated at k is bijective.

Since both functors of (5.3.6) are representable by formal schemes locally of finite
type, it suffices now to check the following statement. Let S — R be a surjective
O j-algebra homomorphism such that S and R are artinian local rings with alge-
braically closed residue class field. Assume that (5.3.6) is bijective when evaluated
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at R. Then it is bijective when evaluated at S. We may assume that the kernel
of S — R is endowed with divided powers.

We consider a point Y € NV(S) and we denote by ¥ € NV/(R) its reduction. By our
assumption, Y carries the structure of an Op-module compatible with p. Therefore
1y induces a perfect polarization on the Op-display P of Y. The Op-display PofY is
a lifting of P. By the crystalline property of displays [1], cf. end of Subsection 3.1, we
obtain a perfect pairing

Y:PxP— Wy, (S).
The involution induced by 1; on Op is trivial. It follows that the decomposition
P=Pheaohb
accgrding to the two Op-algebra embeddings Op/ — O} is orthogonal with respect
to 1. The Hodge filtration
Qi/IopPi C Pi/Io, P;, i=0,1

is isotropic with respect to 1/) because these direct summands are of rank 1. Therefore
w is a polarization of the Op-display P. Using the given polarization 6 on P we can
define the endomorphism ¢(IT;) = ¢(6TI) of P by

5(1" y) = J(L(Hl)ma y)

This gives the desired Op-module structure on P and therefore on Y. O

The analogue of Corollary 5.2.6 follows as before from the properties of the Drinfeld
moduli space.

COROLLARY 5.3.4. — The formal scheme N is m-adic and has semi-stable reduction.
The special fiber N ®o0y FF of N is a reduced scheme.

We next prove the uniqueness of the framing object, cf. (i) of Subsection 2.5. We
start with the following statement.

PROPOSITION 5.3.5. — Let k be an algebraically closed field which contains k. Let
M be a Wo, (k)-Dieudonné module of height 4 and dimension 2. Let v be a homo-
morphisms of Op-algebras
L OF/ — End M.
Assume that M/V M is a free k' Qup k-module of rank 1. Let 0 be a relative polar-
ization on M which satisfies
0(c(a)x1,x2) = 0(z1,L(a)z2), a € Op,
ord, det 6 = 2.

Then the action ¢ extends to an action v : Op — End M such that 6 satisfies
(5.8.1). In particular M is isoclinic of slope 1/2. Furthermore, inv(M,t,0) = —1 (see
Definition 8.3.1 for this invariant).
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If (M',/,0") is a second triple with the same properties, then there exists a quasi-
isogeny (M,1) — (M’,!') of height O which respects the polarizations 6 and 6’ up to
a factor in OF.

Proof. — Let 1 be the principal relative polarization on M which exists by Proposi-
tion 5.1.1. We define an endomorphism p : M — M by the equation

0(z,y) = P(z,p(y)), =,y € M.

One checks that p is an endomorphism of the Dieudonné module M such that
(5.3.8) p(t(a)z) = v(@a)p(x), a € Op.

As in the proof of Proposition 5.1.1, we choose an embedding A : Opr — Wo,. (k)
and obtain a decomposition M = My ® M;. We note that

M, ={z € M| a)r = \(a@)z}.

It follows from (5.3.8) that p(My) C My and p(M;) C My. We obtain a commutative
diagram

MO$M1

Vl lv

M, $ M.
By our assumption on M/V M, the cokernels of both vertical maps have Wo . (k)-length 1.
Therefore the cokernels of the horizontal maps have also the same length. This length
must be 1 because ord, det(p|M) = ord, det § = 2.

We have
0(p(z),y) = 0(z, p(y)),

because both sides are equal to ¥ (p(z), p(y)). We consider the form

Y1(x,y) = P(p(x), p(y))-

This relative polarization satisfies the assumptions of the last part of Proposition 5.1.1.
Therefore there exists ¢ € Op such that ¥ (z,y) = ¥(c(c)z,y). We find

Y(Ue)z,y) = 0(p(2),y) = =0y, p(z)) = =¥y, p*(2)) = P(p*(2),1)-
This shows that
p° = u(c).
Since p commutes with the left hand side it commutes with ¢(c). Comparing this with
(5.3.8), we obtain ¢ € Op. Since p? has height 4 we obtain ord, c = 1.

For @ € O, we consider the endomorphism p,(z) = ¢(a)p(z) of M. We obtain
p2 = 1(ad)p?®. Since each unit of F' is a norm in the unramified extension F'/F we
can arrange that p2 = —m. We set Il = p,. Then we obtain an action of Op = Op/[Il]
on the Dieudonné module M. Since My/IIM; and M;/IIM, have length 1, we have
obtained a special formal Op-module. The equations (5.3.1) are satisfied for 6. There-
fore 6 is up to a factor in OF uniquely determined by the Op-action. This implies the
first and the last assertion of the proposition.
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Because the invariant depends only on the isogeny class, it is enough to compute
it for a special formal Op-module with two critical indices and the canonical form 6

from (5.3.1).
We use the isomorphism
(539) OF’ ®0F WOF (k) I WOF (k) X WOF (k)a

which maps a ® £ to (A(a)§, A(a)§). Let 0 = F be the Frobenius automorphism
of Wo,. (k). It acts on the left hand side of (5.3.9) via the second factor. This induces
on the right hand side the action o : (£1,&2) — (0(&2),0(£1))-

We set N; = M; ® Q. This is a W, (k)g-vector space of dimension 2. In the
decomposition N = M ® Q = Ny ® N1, the summands are isotropic with respect to 6.
We consider the invariants

U; =Ny,
(In the notation of the proof of Proposition 5.1.5, this is U; ® Q.) The U; are F-vector
spaces of dimension 2. Let
A%0 : A2Ny x A2Ny — Wo, (k)g

be the bilinear form defined by

0(no Ang,n1 Any) = det (

0(no,n1)  6(ng,m7) )

0(ng,n1)  0(ng,ni)

for ng,ngy € Ny, n1,n} € Ni.

In the same way we can define A%0 : A2N; x A2Ny — Wo, (k)q-

Then we obtain A20(zg,z1) = A%0(z1,x0) for zg € A2Np,z1 € A?’N;. From 0 we
pass to s, cf. (8.1.2) (there our F” is called K),

#:NxN— F ®p Wo.(k)o = Wo,(k)g x Wo(k)g.
Explicitly we have
#(no +n1,ng +ny) = (0(no,n1),0(n1,np)) € Wor (k)g x Woy (k)g-

We take A% on the F’ ®  Wo,. (k)g-module
2

N\ N=ANy® AN
F'®@rWor (k)
From the expression for » we obtain
(5.3.10) A?se(wo + z1, 2 + 1) = (A*0(z0, 7)), A20(x1, 7)) € Wo,. (K)o X Wo, (k)o-
The restriction of 8 to Uy x U; induces a nondegenerate F-bilinear form
(5.3.11) 6:Uyx U — 6F C F' C Wo,(k)o,

where § was defined after (5.3.1). Indeed, for ug € Uy and u; € U; we have by
definition

0(Vug, Vu) = 0(e(ID)ug, t(ID)uy) = O(¢(T)*ug, uy) = —70(ug, u1).
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Because 6 is a polarization, we have on the other hand
Q(VUO, Vul) = 7T0'_1 (G(UO, ul)) .
Therefore 0(ug, 1) is anti-invariant by ¢ and (5.3.11) is proved.

We choose a nonzero element ug € Uy. Then we find u; € U; such that
0(uo,u1) = 6. We remark that 0(c(II)n,n) = 0, for an arbitrary n € N. This is clear
from the third equation of (5.3.1) because 6 is alternating. Since 8(uo, ¢(IT)ug) = 0,
the vectors uq, ¢(II)ug € U; are linearly independent. We set

2
z=x0+ x1 :=up A t(Il)ug + ug A t(I)ug € /\ N.
F'erWor (k)g

It satisfies A2V = 7z. Indeed,

A2V (ug A t(ID)ug) = (Vug A t(IT)Vuy) = (e(Tug A ¢(T1)%uy)

= (t(IMug A (—m)u1) = m(uy A t(TDug).
The similiar equation holds for the second summand in the definition of z. By Defi-
nition 8.3.1 we obtain ,
inv(M,1,0) = (—1)°"d= @),

By (5.3.10) we have ord, A?s(z,z) = ord, A%0(x¢,z1). We compute

A?0(z0, 1) =det< 6(uo, wa) 6(uo, (Do) > = det< 6.0 > = 2.
O0(c(Mug,uy)  O(e(ID)ug, e(IM)ug) 0 or

This shows ord, A%6(zg,z1) = 1 and therefore inv(M,¢,0) = —1. O
We can now prove the uniqueness of the framing object.

PROPOSITION 5.3.6. — Let r be special and K/F unramified. Let k be an algebraically
closed field in Nilpy, . Let (P,t,() € SBE‘LI be such that ordy,dety () B = 2f, cf.
Definition 4.1.2. Then P is isoclinic of slope 1/2 and inv" (P,,8) = —1.
If (P1,11,51) is a second triple with the same properties, then there erists a quasi-
isogeny of height zero,
P (Pa Lv/B) - (Pla Ll,ﬂl)a
such that there is an f € O with

Bi(p(x), p(y)) = B(fzr,y), =,y€P.

Proof. — We apply the functor €*9 to (P,¢,3) and obtain (Pe, tc, fc), cf. (4.4.14).
By Theorem 4.4.11 we find ord,r detWoF(k) B. = 2. Therefore we can apply
Proposition 5.3.5 to (Pe,tc,5c). We obtain that P, is isoclinic of slope 1/2 and
inv(Pe, tc, Bc) = —1. By Corollary 4.3.3 and Proposition 3.3.17, we find that P is
isoclinic of slope 1/2, and by Proposition 8.3.2 we obtain inv" (P, ¢, 8) = —1.

By Proposition 5.3.5, there is a quasi-isogeny of height 0 between (P, ¢, 8.) and
(P1,est1,e, P1,c)- It induces by Theorem 4.4.11 a quasi-isogeny of height zero as claimed
in the proposition. U
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We end this section by justifying the footnote in Definition 2.6.1. Let S € Nilpoﬁ
and let (Y,¢, 6, p) € N(S). Since there is an Op-module structure on Y such that 6 is
of the form (5.3.7), the kernel of § : Y — Y, considered as morphism to the dual
relative to Op, is annihilated by w. More generally we prove:

PROPOSITION 5.3.7. — Let K/F be an unramified quadratic field extension. Let
R be an Ok-algebra. Let P and P’ be Wo,.(R)-displays of height 4 with an action
t:0g — EndP, resp. /' : Ox — EndP’. Assume that LieP, resp. LieP’, is
locally on Spec R a free Ok ®o, R-module of rank 2. Let o : P — P’ be an isogeny
of Op-height 2. Then there exists locally on Spec R an isogeny 8 : P’ — P such that

foa=mxidp, aof=mridp.

Let P and P’ be the displays of formal p-divisible groups X and X' with an O -ac-
tion. Then the kernel of any isogeny o : X — X' of height 2 is annihilated by .

Proof. — The proof is a variant of the proof of Proposition 1.6.4 in [35]. We will
use notation from that proof. The Og-algebra structure on R induces a natural ho-
momorphism Oxg — Wy, (R) which is equivariant with respect to the Frobenius
T € Gal(K/F) and the Frobenius on Wo,.(R). The composition with 7 gives a second
homomorphism Ox — Wo,.(R). We denote by ¥ the set of these two homomor-
phism. We write ¢ = ¢ o7 for ¢ € .
The Og-action gives the usual decompositions,
Pp=@Pr, P=pr,
YET YET
We have the same kind of decompositions for @ C P and Q' C P’. We choose normal
decompositions
Py=Ty &Ly, Py,=T,®L,.
The T and L on the right hand sides are by assumption locally free of rank 1. Using
these decompositions, we write oy, : Py — P{p in matrix form

(5.3.12) My = ( )é: VZ ) .
The maps
Fw oy, (R)T¢ @® Ly — Tyr ® Ly,
resp. I, : Io, (R)T), & L), — T}, & L},

are given by invertible matrices

ol m) (88
Cy Dy Cy Dy
The matrices (5.3.12) define a morphism « of displays iff

(5.3.13) My &y = &, My, foryeU.
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We will argue as in [35]. The meaning of the upper left index ° is the same as there.
Taking determinants we obtain

(5.3.14) det My, det @, = det ®;, det *M,.
In particular det M, and P2 et M, differ by a unit in Wo, (R). As in [35] we obtain
that

det Mw = 7Th€1/,,
for some units €, € Wo,. (R). By (5.3.14), h is independent of ¢. Since a is an isogeny
of height 2 we conclude that h = 1. Now we pass to the adjucate matrices

ad(I)w adeT _ ad(sM¢) adq)ib'
Since the matrices ® are invertible, we conclude
(5.3.15) (det @) My, @), = (det ®7,) Dy, My).

We consider first the case where R is reduced. Then 7 is not a zero divisor in Wo . (R).
In this case, we conclude from (5.3.14)

det @y €y = det &7, Tey.
Thus we may rewrite equation (5.3.15) as
eqziadeT ip — (I)w Fellad(sMw).
This shows that the matrices e;h‘dM,p define the desired morphism 3 : P’ — P. In

the case where R is not reduced we may argue as in the proof of Proposition 1.6.4
in [35]. O
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CHAPTER 6

MODULI SPACES OF FORMAL LOCAL CM-TRIPLES

In this section we prove Theorems 2.6.2 and 2.6.3. Recall that d = [F' : Q,], and
that we write d = ef.

6.1. The case r special and K/ F ramified

Let (Y,wy, Ay) be a special formal Op-module over kK with a Drinfeld polariza-
tion Ay, cf. Definition 5.1.4 and Section 5.2. We denote by F resp. E‘, the completions
of the maximal unramified extension of F', resp. of the reflex field E. Their residue
class fields are identified with K resp. Kg. We note that in the ramified case £ = E’.
We extend the embedding ¢g : O — Og to an embedding @y : Oy — Op. The
base change (Y, ty, Ay)z is the base change via @g. The relative display of this base
change is an object of D%Eibl,p’pc’l if we restrict the action vy to Oy, cf. Definition 4.4.10
and Theorem 4.4.3. By Theorem 4.4.11, this relative display is the image of an object
in P70 ! by the contracting functor. To the latter object corresponds a polarized
p-divisible formal group (X, ix, Ax) with an action tx : Ox — End X. The polariza-
tion Ax is again principal. Using the equivalence between formal p-divisible groups and
nilpotent displays one can say that (X tx, A\x) € ‘Bf%lE is the object which is mapped
pol

by the contracting functor € to the special formal Op-module (Y, ty, Ay). We note

TRE
that we use for the definition of (X, ix, Ax) € f?—iE only classical Dieudonné theory
over a perfect field.

We consider the functor M, = Mg/, of Definition 2.6.1 in the ramified case
(where h = 0). By Proposition 4.2.9, this definition may be reformulated as follows.

PROPOSITION 6.1.1. — Let S be a scheme over Spf Oy. A point of M,.(S) consists of

(1) a local CM-pair (X,1) of CM-type r over S which satisfies the Fisenstein con-
ditions (EC,.) relative to a fized uniformizer I of K and such that

(6.1.1) Tr(u(I) | Ea,, Liey, X) = 0.
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(2) an isomorphism of p-divisible Ok -modules
A X S XN
which is a polarization of X.
(3) a quasi-isogeny of height zero of p-divisible Ok -modules
p:X xs8— X Xspecin S,
such that the pullback quasi-isogeny p*(Ax) differs from /\|XXS§ by a scalar
in O, locally on S. Here S = S XSpec 0, SPECKRE.

Two data (X1,t1,A1,p1) and (Xa,t2, A2, p2) define the same point iff there is an iso-
morphism of Ok -modules a : X1 — Xo such that ps o ag = p1. (This implies that «
respects the polarizations up to a factor in O;,i ).

In Definition 2.6.1 we required that the scalar is in F'* but because the polariza-
tions A and Ax are principal and p has height 0 the scalar is automatically in Oj.
We remark that the condition (6.1.1) depends only on the restriction of the structure
morphism S — Spf Og.

We define for ¢ € Z the functor M, (i) on the category of schemes S — SpfOp
by replacing (3) in Proposition 6.1.1 by

(3") a quasi-isogeny of p-divisible Ok -modules
p:X XSS—)XXSPGCRE 57
such that the pullback quasi-isogeny p*(Ax) differs from pi)\|XX 3 by a scalar
_ S

in OF, locally on S.
It follows from the last condition that
(6.1.2) 2 height p = height(p® | X) = 4di.
We have an isomorphism of functors

M, — M,.(3),

which associates to a point (X, ¢, \, p) € M,.(S) the point (X, \,I1¢p) € M..(3)(S).
We set

M, =[] M. ().

i€z
We define a Weil descent datum on /\;i,« relative to O /Og. Let 75 be the Frobenius
of E/E. It is enough to consider the functor M, for affine schemes S = Spec R. We
write € : O — R for the given algebra structure. We write R|, . for the ring R with
the new algebra structure € o 75. By base change to kg, we obtain
€. REg —>R::R®0E RE-

We consider a point (X, ¢, A, p) € M,.(i)(R), where p is a quasi-isogeny

p: Xgp — &X.
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Since the notion of a CM-triple depends only on the induced Og-algebra structure
on R, we may regard (X,:,\) as a CM-triple on R|,,). We set
P Xp 2 X ZE £, (1) X.
The assignment (X, ¢, A, p) — (X, ¢, A, p) defines a morphism
(6.0.3) wat, s My(0)(B) — My (i + [5) (Riry)
where fg = [kg : Fp]. Here we note that the inverse image of the polarization (7). Ax

on (7g)«X by Fx ., : X — (78)«X is p/Z A\x. From (6.1.3) we obtain the Weil descent
datum

(6.1.4) wpm, : My — ME),

where the upper index (7z) denotes the base change via Spec7g : Spf Oz — Spf O .

Let N (i) be the functor of Definition 5.2.1. Note that we took Y for the framing ob-
ject appearing in the definition of A/ (¢). We consider a point (X, ¢, A, p) € M,.(4)(R),
where R € NilpOE. Applying the contracting functor QZE’(}; of Theorem 4.4.11 to its dis-
play, we obtain a quadruple (X¢, tc, Ax,, pc). It follows from the isomorphism (4.3.11)
(which also holds in the ramified case, cf. a few lines below (4.3.11)) that the condition
(6.1.1) implies

Tr(e.(II) | Lie X.) = 0.

By functoriality, the polarizations p}(Ay) and pi)\( x.) differ by a unit in Op. Hence
(Xc, tes Ax,, pe) defines a point of N'(7). Therefore we obtain from Theorem 4.4.11 an
isomorphism of functors,

(6.1.5) M..(7) = N(ez) XSpf O Spf OE"
The base change on the right hand side is via ¢ : Op — Op
We set
(6.1.6) Nle] = [T NV (ed).
i€L

We endow N[e] with a Weil descent datum relative to O/Op. Let R € Nilpy . We
consider the map

DI/ 81 N (ei) (R) — N(e(i+ f2) (Rire))-
Here on the left hand side _appears the iterate of the Weil descent datum
wp N (i) — N(i+ 1) of N relative to Op/Op from (5.2.5) and the trans-
lation functor IT: N'(3) — N (i + 1), cf. (5.2.4). This defines a Weil descent datum
relative to O /Og,
(6.1.7) H(d_l)fE/fw/{/E/f: Nle] — Nle]),

We define
J ={a € Aut% X | o*(\x) = ulx, for u € p”OF}

(6.1.8) ! . L
= {a € Autk Y | o (Ay) = uly, foru € p“Op}.
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The last equation holds because of the contraction functor. This group acts via the
rigidifications p on the functors M,. and Ne]. By the last equation of (6.1.8), we may
regard J’' as a subgroup of J** of Lemma 5.2.2.

PROPOSITION 6.1.2. — There is an isomorphism of formal schemes over Spf O

M, — Ne] Xspf 0, SPf O,

where the right hand side denotes the base change via ¢ : Op — Op. This isomor-
phism is compatible with the action of J' on both sides.

Under the isomorphism the Weil descent datum (6.1.4) on the left hand side cor-
responds to the Weil descent datum

H(d_l)fE/fw/f\/?/f : Ne] — Ne]™=)
on the right hand side. More explicitly, for any i € Z, there is a commutative diagram

M, (i) ——=—— N(ei)o,

(6.1.9) wMTl ln(dl)fE/fw/f\};/f

M, (i+ f5)7) —"= N(eli + f2))57 -

Proof. — The isomorphism of formal schemes over Spf O comes from (6.1.5). It re-
mains to show that the diagram is commutative. Let R € Nilpoé with structure

morphism ¢ : Oy — R. Let £ : kg — R=R ®o, ke be the induced morphism.
We start with a point (X, ¢, A, p) € M,.(i)(R). If we apply way,, we change p to

Fy.
p:Xg— &X Lre Ex(TE)X.

The lower horizontal arrow in (6.1.9) applies to p the contracting functor €, g,
cf. Definition 4.4.2. We have X. = Y. Let Px be the W(k)-Dieudonné module of X.
Then the Wo,, (k5 )-Dieudonné module of Y is by definition the degree-zero component
of P} defined by (4.3.21), comp. Remark 4.4.4. From this definition we obtain

(V) = 4v.
In terms of Dieudonné modules, Fk ., is given by
Px — W(KE) QW (r5),W (r5) Px, z—1Q® viEg.

In terms of the relative Dieudonné module, Fy ,, is given by (V')f. Therefore the
contracting functor applied to Fx ,, gives

@@V Ey Y — (15).Y,

since (V')f2 = MA-4fe/fVf5_ On the other hand wys just multiplies p. by Fy ..
Therefore we obtain the commutativity of the diagram. O
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COROLLARY 6.1.3. — Let w,, denote the action of Tg on the formal scheme
scheme Qp Xgpror Spf Oy via the second factor. There exists an isomorphism of
formal schemes over Spf Op

M'r - (QF XSpf Op SpfOE) X Za

such that the Weil descent datum waq, induces on the right hand side the Weil descent
datum

(E,'L) L — (wTE(g)’i + fE)
In particular the formal scheme My, over Spf O is a p-adic formal scheme which
has semi-stable reduction; hence it is also flat, with reduced special fiber.

Proof. — We consider the isomorphism Mp, — N of formal schemes over Spf O #
from Theorem 5.2.3. It is compatible with translations and the Weil descent data
on both sides. Combining this with the Drinfeld isomorphism (5.1.20), we obtain an
isomorphism

(6.1.10) (QF Xspt 0 SPE O ) x Ze — Ne].

We consider on the right hand side the Weil descent datum II(¢—1fs/f wj{f/ 7 which is
a composite of an iterate of the translation functor and an iterate of the Weil descent
datum wyr. By (5.1.21) we see that H(d_l)fE/fw/]:}E/f induces on the left hand side of
(6.1.10) the Weil descent datum

(5,62') L (UJTE,B(i + fE))

The assertion about descent data follows by forgetting e. The last assertion follows
from Corollary 5.2.6. U

6.2. The case r special and K/F unramified

Let ¢g, po € ® be the special embeddings. Their restrictions to F' are the same.
We extend the resulting embedding O — Opg to an embedding Oy — Op.
The two embeddings g, gy then factor over the two Op-algebra homomorphisms
(,50,(,50 : OK i Oﬁ,

Let (Y, ty) be a special formal Op-module over Rp.

We endow the Wo,.(Fr)-Dieudonné module Py of Y with the polarization 6, cf.
(5.3.1). (One should note that we call now K what was F’ in that section.) Then
0 defines an isogeny to the Faltings dual,

Ay Y — YV,

If we compose the action ty of (Op)°PP on YV with the anti-involution f of (5.3.3),
the isogeny Ay becomes an isogeny of special formal Op-modules. We indicate this
by rewriting the isogeny as

(6.2.1) Ay 1 Y — YA,
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In Section 5.3 we used (Py,0) to define the functor N (i). Together with the re-

striction to Ok of the action of Op on Py, we obtain an object of Diﬁgf, cf. Defini-

tion 4.4.10. By Theorem 4.4.11, this object is the image of an object in D‘Bff,’%p;l. The
latter is the display of an object (X, ix,Ax) € ‘Bf";lE, cf. Definition 4.1.2. The height

of the polarization Ax is 2f, and the associated Rosati involution induces on Ok the
conjugation over Op.

We consider the functor M, = Mg/, of Definition 2.6.1 with the framing object
(X, tx, Ax) as defined above. We can give an alternative description of that functor.

PROPOSITION 6.2.1. — Let S be a scheme over Spf Op. A point of M,.(S) consists of
(1) a local CM-pair (X,t) of CM-type v over S which satisfies the Eisenstein condi-
tions (EC,.) relative to the fized uniformizer = of F.
(2) an isogeny of height 2f of p-divisible Ok -modules
A X — XN,
which is a polarization of X.
(3) a quasi-isogeny of p-divisible O -modules
P+ X Xspecr Spec R — X Xgpec sy Spec R,
such that the pullback quasi-isogeny p*(A\x) differs from AlXXSSpecS' by a scalar
in Oy, locally on S, where S = S ®gpt 0, SPeckg.
Two data (X1,t1,A1,p1) and (Xa, 2, A2, p2) define the same point iff there is an iso-

morphism of Og-modules o : X1 — Xo such that ps o ag = p1. (This implies that o
respects the polarizations up to a factor in O;. )

Proof. — We may assume that S = Spec R. Let (Xo, X1, A, px) € M,(R) be a point
as in Definition 2.6.1. We obtain a point (X, ), px) as in the proposition if we set
X := Xy, keep px and redefine A to be the composite

Xo — X1 25 X

We note that p is automatically of height zero because by the last condition p*(\x)
and Ax have the same height 2f.

Conversely, assume (X, ), px) is as in the proposition. Then we set Xy = X
and X; = X”. By Corollary 4.2.8, X satisfies the condition (EC,.) and, by Propo-
sition 4.2.6, Xy and X; satisfy (KC,) . The polarization X\ defines an isogeny
a: X9 — X; of p-divisible Og-modules which has height 2f. To the morphism
induced by a on the displays we apply the contracting functor of Definition 4.4.2.
We obtain an isogeny of Wo. (R)-displays o : Py — P; of height 2. To this
isogeny we may apply Proposition 5.3.7. We find an isogeny 8 : P1 — Py such
that f o a = 7widp,.

The existence of p guarantees that Xo, X; and a are defined over an O ;-subalgebra
R’ C R which is of finite type over O. Therefore we may apply Theorem 4.4.3. It
gives us a morphism b : X; — Xj such that boa = widx,. We see that Xo, X1,p
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together with the defining isomorphism X; — X, defines a point of the functor M,
of Definition 2.6.1. O

DEFINITION 6.2.2. — We define the functor M, (i) in the same way as in Defini-
tion 6.2.1, but we replace the data (3) by the following
(3') A quasi-isogeny of p-divisible O g -modules
p: X XSS — X XSpec R p Sa
such that the pullback quasi-isogeny p*(Ax) differs from pi/\|X>< 5 by a scalar
— S
in OF, locally on S.
As in the ramified case (6.1.2) we conclude that height p = 2di. We set
M, =[] M. ().
i€z

Let R € Nilpoé. Exactly as in the ramified case we obtain a morphism
(6.2.2) wam, : Mr(0)(R) — My (i + fB)(Rjrg),

where, as in the ramified case, fg = [kg : Fp]. With the notation used in the ramified
case, it changes the datum p in point (4") of Definition 6.2.2 to

5 (Xo)p -2 6.X 78 &, (5).X.
From (6.2.2) we obtain the Weil descent datum,
(6.2.3) wpm, : My — M),
We define an isomorphism of functors on NilpOE,
(6.2.4) M, (i) = N (ei).

Let (X,t,\,p) € M,(3)(R). Applying the contracting functor Cf%, we obtain a
quadruple (X¢, te, Ax,, pc), where p. : X.®r, R — Y ®z, R. This gives a point
of N (3)(R). The functor 63313 is an equivalence of categories if the ideal of nilpotent
elements of R is nilpotent, cf. Theorem 4.4.11.Therefore we may reverse the con-
struction of (6.2.4). Therefore M,.(i)(R) — N (ei)(R) is bijective for those R. For
a general R we obtain the bijectivity as in the proof of Proposition 6.2.1. With the
notation (6.1.6) we have a bijection M,.(R) = N'e](R).
We define
J ={a € Aut} X | o*(A\x) = ulx, for u € p”O}}

(6.2.5) ) . .
= {a € Autx Y | o (Ay) = uly, foru € p“Op}.

The last equation holds because 9f the contraction functor. This group acts via the
rigidifications p on the functors M, and Ne]. By the last equation of (6.2.5) we may
regard J' as a subgroup of J*"** of Lemma 5.3.2.
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PROPOSITION 6.2.3. — There exists an isomorphism of formal schemes Spf O
M, =5 Ne] Xspf 0, SPf O,

where the right hand side denotes the base change via ¢y : Op — Op. This isomor-
phism is compatible with the action of J' on both sides, and the Weil descent datum
(6.1.4) on the left hand side corresponds to the Weil descent datum

ﬂgwﬁ/E/f : N'le] — Ne](®).

on the right hand side. Here g = fr(d—1)/2f. More explicitly, there is a commutative
diagram

M (§) ————— No, (eid)

(626) “"MTJ J/ﬂgw'i/-E/f
M, (i+ fE)(TE) = NOF; (e(i + fE))(TE).
The multiplication by  is the morphism N (j) — N (j+2) which is obtained by multi-

plying p in Definition 5.3.1 by w. Equivalently one can apply two times the translation
functor (5.3.5).

Proof. — We have already proved the isomorphism of formal schemes over Spf O ;. The
compatibility with the Weil descent datum follows from the following lemma. O

LEMMA 6.2.4. — Let X be the framing object over kg, with corresponding Frobenius
morphism Fx ., : X — (7g)«X. Let Y be its image under the contracting func-
tor CE%IE. Then the image of Fx ., under QE%IE is given as

TIFY gy Y — (7). Y.

Proof. — Let M = Px be the W(F g)-Dieudonné module of X.

Then the Wo . (k5)-Dieudonné module M’ of Y is by definition the ¢o-component
of P} defined by (4.3.18). In terms of Dieudonné modules, Fx ,, is given by

M — W(kg) @rpwwy) M, z+—1® viEg.
This induces
(6.2.7) VIe M — W(RE) @ wirs M-
We consider the decomposition
M= M,.

We denote by o the Frobenius on the Witt ring W(%g) and also the Frobenius
of K'/Q,. We note that

W(EE) ®rp,w(rp) My = W(RE) ®rpw(rg) M)roy = (W(EE) ®@rp w(wg) M)ypois-
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In terms of the relative Dieudonné module, Fy ., is given by (V/)72. Our problem is
to express (6.2.7) in terms of V'. By definition we have

Vi=g= ™V Mye — My,

We consider

vie . M, L)M’l,bo'_l v, L)Mwa’fE'

Therefore we obtain for this map
VI = et . g% ie (V')
By definition of the reflex field £, we have ay, = a,,,-s5 . This implies that the number
g=0apo-1+ -+ ays-1g
is independent of ¥. We add to the last equation
g=0po-1+ -+ aj,—15-

Since ay + ag is e or e — 1 we obtain

This proves the lemma. O

COROLLARY 6.2.5. — Let w,, denote the action of Tg on the formal scheme
scheme Qp Xspro, Spf Oy wvia the second factor, i.e., in the notation of (5.1.21),

Wrp = w.,]-cE/f. There exists an isomorphism of formal schemes over Spf O
MT ; (QF XspfoF SpfOE“,) X Z,

such that the Weil descent datum way, induces on the right hand side the Weil descent
datum

(f,l) L — (wTE(§)7i + fE)
In particular the formal scheme M, over Spf Oy is a p-adic formal scheme which
has semi-stable reduction; hence it is also flat, with reduced special fiber.

Proof. — We consider the isomorphisms of functors
(6.2.8) ./\;lr = NOE [6] — (./\;lDr[e])oE = (ﬁp XSpfOp SpfOEV,) X Ze.

The last arrow is the isomorphism (5.1.20) and the left arrow in the middle is the
isomorphism of Theorem 5.3.3. We must see what the Weil descent data wgw/{f /s

on NOE“ [e] does on the last functor. By Theorem 5.3.3, it induces on (./\;tDr[e])oE the

Weil descent datum wf\flé f multiplied 2g-times with the translation (cf. last sentence

of Proposition 6.2.3). By (5.1.21), the induced Weil descent datum on the last functor
of (6.2.8) is

(§7i6) — (WTEﬂie + (fE/f) + 29)‘
But we have

ie+ (fe/f) +2g9=ie+ (fe/f)+ (d—1)(fe/f) = ie+ fre.
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This proves the corollary. O

6.3. The case r banal and K/ F ramified

Let ¢ € {£1}. There is up to isomorphism a unique anti-Hermitian K-vector
space (V1) of dimension 2 such that inv(V,4) = ¢, cf. Definition 8.1.1. Let A C V be
an Og-lattice such that ¢ induces a perfect pairing on A, cf. Lemma 8.1.3. By The-
orem 4.5.11, (A, ) corresponds to a display (P,¢, ) € D‘,BPOI over the residue class

™RE
field of O which is unique up to isomorphism. Let (X, :x, 3x) be the corresponding
polarized p-divisible O g-module of type r. It is uniquely determined by the conditions
that (3 is principal and that inv" (X, tx, Bx) = €. Then (Cx ® Q, ¢) ~ (V, ).

DEFINITION 6.3.1. — We define a functor M, (i) on the category Nilpo, . For
R € Nilpo _, a point of M, .(i)(R) is given by the following data:

(1) a local CM-pair (X,t) of CM-type r over R which satisfies the Fisenstein con-
ditions (EC,.) relative to a fized uniformizer Il € K ;

(2) an isomorphism of p-divisible Ok -modules
A X — XN,
which is a polarization of X;
(3) a quasi-isogeny of p-divisible Ok -modules
p: Xi — X Xgpecip Spec R,
such that the pullback quasi-isogeny p*(Ax) differs from pi}‘|X><s§ by a scalar
in O, locally on Spec R. Here R=R ®o,, RE-

Two data (X,t, A, p) and (X1,t1, 1, p1) define the same point iff there is an isomor-
phism of Ok -modules o : X — X such that p1oag = p. (This implies that o respects
the polarizations up to a factor in OF).

By Proposition 4.2.2, M, .(0) is the functor Mg/, . used in Theorem 2.6.3. We
will also consider the functor

Mr,e = H Mr,s(i)~

i€Z
Let i € Z. We consider the following functor G, (¢) on the category Nilpoé. A point
of G.(#)(R) is given by the following data:

(1) a locally constant p-adic étale sheaf C' on Spec R which is Z,-flat with
rankz, C = 4d and with an action

t: 0 — Endz, (OF
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(2) a perfect alternating Op-bilinear pairing
¢:CxC — Op,
such that ¢(c(a)cr, c2) = ¢(cr,e(a)ce) for ¢1,c0 € C and a € Ok;
(3) a quasi-isogeny of Ox-module sheaves on Spec R
(6.3.1) P (Cr1) — (Cy0)
such that locally on Spec R there is an f € O with
P foler, ) = ¢xlplcr), plca))-

Another set of data (C’, ¢/, N, p’) defines the same point iff there is an isomorphism
a: C = C' such that p' o a = p. Then « respects ¢ and ¢’ up to a factor in Oj.

We remark that in (6.3.1) we regard Cx as the constant sheaf on Spec R. The
existence of the quasi-isogeny implies that C' is locally constant for the Zariski topol-
ogy. Therefore locally on Spec R the sheaf C is the constant sheaf associated to an
Ogk-submodule C' C Cx ®z, Q, and p is given by the last inclusion.

The polarized contraction functor €P°! defines a morphism of functors
(6.3.2) Mg (8) — Ge(i).

To describe the functor G (%), we may restrict to the case where the sheaf C is given
by an Og-submodule of Cx ®z, Q,. Then C defines a point of G (i)(R) iff (1/p%)¢x is
a perfect alternating pairing on C'. We define an algebraic group over Z,, and its
Zyp-rational points,

J'(Zp) = {g € GLo, (Cx) | ¢x(gc1,9¢2) = f - ¢px(c1,c2) for some f € Or}.

By Lemma 8.1.3, there is an isomorphism ¢ : (Cx, ¢x) — (C, %qu). This means
that ¢Cx = C and

(6.3.3) bx(ger, gcz) = plox(ci,cz), c1,c0 € Cx ®z, Qp.
We define
J'(i) = {g € GLk(Cx ®z, Qp) | ¢x(ge1, ge2) = p' fox(c1,c2), for some f € OF}.
This construction gives us a functor isomorphism
Ge(i) — J'()/ T (Zy),

where the right hand side is considered as the restriction of the constant sheaf
to Nilpg . Let J* € GL(Cx) be the union of the J'(¢). Using the contraction functor
we may write

(6.3.4) J = {a € Aut% X | o*(A\x) = p(a)x for some u(a) € p“O%}.

Therefore J' acts via p on the functor ./\;Im.
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PROPOSITION 6.3.2. — The morphism of functors on NilpOE obtained from (6.3.2) is
a J'-equivariant isomorphism,

(6.3.5) M, =5 J )T (Zy).

The left hand side is endowed with the Weil descent datum way, relative to Oy/OR
which is defined exactly in the same way as (6.1.4). This Weil descent datum cor-
responds on the right hand side to the Weil descent datum given by multiplication
with TI¢72 . Here we regard T2 as an automorphism of the K -vector space Cx ®z, Qp-

Proof. — We show that (6.3.2) is an isomorphism of functors. Let R© — R be an
epimorphism of Op-algebras with nilpotent kernel. We claim that the induced
map M, .(i)(R") — M, .(i)(R) is bijective. We may assume that the kernel is en-
dowed with divided powers. Let (X, ¢, A, p) be as in Definition 6.3.1. To see that (X, ¢)
lifts uniquely to R’ we apply Corollary 3.1.14. Let P be the display of (X,¢) over R
and let D be the associated crystal (3.1.10). By Proposition 4.2.2, the Hodge filtration
of P is E4,Dy(R) C Dy(R). The only possibility to lift this filtration to R’ such
that the condition (EC,) continues to hold is to take E Dy (R') C Dy(R’). Hence
we obtain a unique lifting (X’,+") over R’. That X lifts to a principal polarization )\
of X' follows from Proposition 3.2.4 and Lemma 4.5.6. Since the quasi-isogeny p lifts
automatically, we obtain the claimed bijectivity. The functor on the right hand side
of (6.3.2) also induces a bijection when applied to R’ — R because it is defined in
terms of étale sheaves.

Using these bijections we see that it is enough to prove the proposition for the re-
strictions of the functors to the category of kg-algebras. Both functors commute with
inductive limits of rings, i.e., they are locally of finite presentation. To see this, we
consider the special fiber M, . z.(0). Let m € N. We consider the subfunctor U,
which consists of points such that p™p~! is an isogeny. Then X is the quotient
of XX gpec zz Spec R by a finite locally free subgroup scheme of X(4dm) X gpec 7, Spec R.
(We have denoted by X(4dm) the kernel of the multiplication by p*@™.) This shows
that U, is a scheme of finite presentation over Spec Kg. Therefore U, is locally of
finite representation as a functor, ¢f. EGA IV, Thm. (8.8.2). One easily deduces from
this that M, . &, (0) is locally of finite presentation as a functor. In the same way we
see that G.(7) is locally of finite presentation. To show that (6.3.2) is an isomorphism
of functors we can therefore restrict to kK g-algebras R which are of finite type over K g.
For such R, (6.3.2) induces a bijection by Theorem 4.5.11.

It remains to compare the Weil descent data on both sides of (6.3.5). It is enough
to make the comparison for the restriction of (6.3.5) to the category of %p-algebras.
Let € : kg — R be a kg-algebra. The restriction of the functor M, . to kKg-algebras
has a Weil descent datum way, . r, : My c(R) — M, c(R}s)) over [y, given by

(636) er,a,Fp((X7La)‘»p)) = (X7[”)‘ap[o]),
where py) is the composite

4 F5
X 2 e X2 e 0.X.

MEMOIRES DE LA SMF 183



6.3. THE CASE r BANAL AND K/F RAMIFIED 145

Here o denotes the Frobenius automorphism of Kg over [F,,. To see that this makes
sense, we have to check that all p-divisible Og-modules above satisfy the rank
condition (RC,) and the Eisenstein conditions (EC,). The condition (EC,) says
that I1° Lie X = 0. This remains true if we regard X as a p-divisible Og-module
over R[,]. For the condition (RC,), the claim is obvious.

Therefore it suffices to show that w,, r, induces on the right hand side of (6.3.5)
the Weil descent datum g +— II¢g. This follows from the following lemma. O

LEMMA 6.3.3. — There is an identification Cx = C, x. The functor QIE,(,’EIE applied to
the Frobenius morphism Fx : X — 0, X yields I1°¢ : Cx — Ck.

Proof. — The first assertion follows because the functor CE%E commutes with base

change. Consider the Dieudonné module Px of X. We have
Cx = {c e Px | Ve =1},
cf. Remark 4.5.13. The map
Py — W(RE) ®o,w(rp) Px, cr—1®c

defines the identification Cx = C,, x. The Frobenius Fx induces on the Dieudonné
modules

#
Px L W(RE) QoW (RE) Py, z—1QVzx.
For ¢ € Cx we obtain Vic=1® Ve =1 II¢c. O

We can reformulate a part of Proposition 6.3.2 as follows. We consider the algebraic
group over Z, such that

J(Zp) = {9 € GLoy (Cx) | #x(gc1, gca) = u - ¢x(c1, ca) for some u € Z;' }.
We define
J(i) = {g € GLk(Cx ® Q) | ¢x(gc1, gca) = up’ - ¢px(c1, c2) for some u € Zy'}.
The union of the J(¢) is the group J(Q,) of unitary similitudes with similitude factor
in Q.

COROLLARY 6.3.4. — Let J(Qy) be the group of unitary similitudes of Cx ®z, Q, with
similitude factor in Q) , and let J(Z,) be its subgroup stabilizing the lattice Cx. There
are isomorphisms of functors on NilpOE,

Mpe = J(Qp)/I(Zy),  Mijpre = J(Q)°/ I (Zyp).

Here J(Q,)° denotes the group of unitary similitudes with similitude factor in Ly .

Proof. — Tt is enough to show that G.(¢)(Rg) is in bijection with J(¢)/J'(Z,). For this
is enough to show that for each C' € G.(i)(Rg) there exists g € J(i) such that gCx = C.
This we have already shown before (6.3.3). O

In this reformulation it is less obvious what the Weil descent datum is.
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6.4. The case r banal and K/F unramified

Let € € {£1}. We consider a CM-triple (X, ¢, Ax) over Kg such that Ax is principal
if € = 1 and is almost principal if ¢ = —1. By Proposition 4.5.14 such a CM-triple
exists and inv" (X, ¢, Ax) = €. In fact, by Lemma 8.1.2 and Theorem 4.5.11, (X, ¢, Ax) is
unique up to isomorphism.

We recall the functor Mg/, . from Section 2.6.

DEFINITION 6.4.1. — Let (X,t,Ax) be a framing object with an almost principal po-
larization. We define a functor M,.- (i) on the category NilpOE. For R € NilpOE, a
point of M,.—(i)(R) is given by the following data:

(1) a local CM-triple (X, 1, \) of type v over R which satisfies the Fisenstein condi-
tions (EC,.) relative to the fized uniformizer m € K.

(2) the polarization X\ is almost principal.
(3) a quasi-isogeny of p-divisible Ok -modules
p: X — X Xgpecip Spec R,
such that the pullback quasi-isogeny p*(Ax) differs from pi)\|XR by a scalar
in O}, locally on Spec R. Here R= R ®o, RE-

Now let (X, ¢, Ax) be a framing object with a principal polarization. Then we have
h(Ax) = 0 and inv" (X, ¢, Ax) = 1. We define the functor M,.+ (i) by exactly the same
data but we replace the condition (2) above by the condition

(2') the polarization X is principal.

In the almost principal case there exists an isogeny X" —— X such that the
composite

XA XN —X
is midx. This follows from the following analogue of Proposition 5.3.7.
PROPOSITION 6.4.2. — Let o : P; — Po be an isogeny of CM-pairs of type r over

R € Nilp,, ;; which both satisfy the Eisenstein condition (EC,.). Let ac : C1 — Cy be
the morphism in Et(Ox)r associated by the contracting functor €, r. Then

height o = 2f - length, . Coker ac.
If height « = 2f then there exists a unique morphism (3 : Po — P; such that

ool =midp,, Poa=midp,,

Proof. — To prove the first assertion we can assume that R = k is an alge-
braically closed field. Then we can use that Cokera = Cokerac ®z, W(k). If
lengthy, Coker ac = 1, then B¢ clearly exists. O
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In the case where ¢ = 0, the quasi-isogeny p is of height zero because the polariza-
tions Ax and X have the same degree. We set Xy = X and X; = X”. Since X and
X" satisfy the Eisenstein condition (EC,.) and, by Proposition 4.2.2, also the Kottwitz
condition (KC,), we obtain a point of the functor Mg /g, _; of Definition 2.6.1. We
conclude that M, (0) = Mg/p, 1. The index 7~ on the left hand side indicates that
we are in the case where the adjusted invariant of the framing object is —1. Similarly,
M,+(0) = Mg/p,1- The index r+ on the left hand side indicates that we are in the
case where the adjusted invariant of the framing object is 1.

We will describe the formal scheme which represents the functor Mg, r .. More
precisely, consider the functors on Nilpoé,

M,z =[] M= (i)
i€z
These functors are endowed with a Weil descent datum way , @ M= (i) — M= (i+
fE)™ relative to E/E using exactly the same definition as in (6.1.4).

Recall (Cx, ¢x) = (Ck, tx, ¢x). We define

J'(Zy) = {g € Auto, Cx | ¢x(gcr,9c2) = f - ¢x(c1,¢2) for some f € O},
J'(i) = {g € Aut Cx ®z, Q, | ¢x(gc1, gc2) = p' féx(c1,c2), for some f € OF}.

As in the ramified case, we see that a point of M, .+ (7)(R) is locally on Spec R
given by a lattice C C Cx ®z, Qp such that the restriction of (1 /p%)éx to C induces
a Op-bilinear form

]%¢X:CXC—>OF,

which is perfect in the case of »* and such that ord, %qﬁx =1 in the case of r~. For
the case of r~, we are using here Proposition 6.4.2.

We deduce that there is an isometry g : (Cx,¢x) — (C,(1/p")¢x), cf.
Lemma 8.1.2. Consequently we have g € J'(i). Conversely, if g € J'(7), the sublattice
C = gCx with the bilinear form (1/p%)¢x gives rise to a point of M, (i)(R).

We will denote by J' C Aut Cx the union of the J'(7). We can identify J’ with a
subgroup of Aut% X exactly as in the ramified case, cf. (6.3.4). It acts via p on the
functor M, .«.

PROPOSITION 6.4.3. — There is a J'-equivariant isomorphism of functors on NilpOE,,
(6.4.1) M,z = 01T (Zy).

Here the right hand side is the constant sheaf on Nilpoé. The Weil descent da-
tumwa, . on the left hand side corresponds on the right hand side to the Weil descent

datum given by multiplication with w¢//2. Here we view 7°/#/2 as an automorphism
of the K-vector space Cx ®z, Qp by multiplication.

SOCIETE MATHEMATIQUE DE FRANCE 2024



148 CHAPTER 6. MODULI SPACES OF FORMAL LOCAL CM-TRIPLES

Proof. — That (6.4.1) is an isomorphism of functors follows from Theorem 4.5.11 in
the same way as in the proof of Proposition 6.3.2.

Let us recall the definition of the Weil descent relative to Oy/Og on the func-
tor M,.+. We write
(642) FX,TE X — (TE)*X
for the Frobenius relative to kg. Let € : Oy — R be an object of Nilpoé. We write
E=e®Fkg:krp — R. Let (X,1,\, p) € M,+(i)(R) be a point. We view (X, ¢, \) as
a CM-triple on R[;,) and we endow it with the framing

Fy
5 Xp 2 aX TI9E £ (rp).X.

Then (X, ¢, A, p) defines a point of M, .+ (i + fg)(R[,]). Varying i € Z, we obtain the
Weil descent datum
WM, g My — M(TE).

We note that the inverse image of (7g).A by (6.4.2) is p/#\. The compatibility of
the Weil descent data follows as in the proof of Proposition 6.3.2 from the following
lemma. O

LeEMMA 6.4.4. — The contracting functor applied to the Frobenius morphism
Fx 1y : X — (75)+X yields the multiplication by nefe/2 . Cx — Ck.

Proof. — We use the Dieudonné module P of X over kg. The map F ., induces on
the Dieudonné modules the map
viet . p— W(kg) Qpip sy P TH—1® Vieg,

By definition we have
C:=Cx={ceP|Vec=m.c},
where we recall 7, from (4.5.12), cf. Remark 4.5.13.
With the identification Cx = C(;),x, the restriction of Vet to C gives

(6.4.3) Fe O — C.
The right hand side is a module over

Ok ®z, W(kr) = [] Ok @, s W(En).
pew

On the right hand side, F~! is given by the map
Ok ®0Kt,1/;0' W(kg) — Ok ®Oxt,1; W(kE), a®§'_’a®F_1§~
Therefore the components of the element on the left hand side of (6.4.3) are

Wawo(fEfl) . 7'('0’1/“7 . 7'('0’1/).
Since 0/ fixes kK we have Qyosp = ay. It follows that the numbers

9y = Quoip-1) 0+ Gyo + Gy
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are independent of ¥. We call this number g. We find:
29=gy +95=¢fE
because ay + a; = e. We conclude that (6.4.3) is the multiplication by nele/2, O

COROLLARY 6.4.5. — Let J(Qp) be the group of unitary similitudes of Cx ®z, Q, with
similitude factor in Q,, and let J(Zy) be its subgroup stabilizing the lattice Cx. There
are isomorphisms of functors on Nilpoé,

Mo == J(Qp)[T(Zp),  Mijpre — J(Q)°/ T (Zy).

Here J(Q,)° denotes the group of unitary similitudes with similitude factor in Ly .

6.5. The banal split case

We assume that K = F' x F. Let R = k be an algebraically closed field. There is up
to isomorphism a unique anti-Hermitian Ox-module (C, ¢) of rank 2 with ¢ perfect.
Hence there is a unique CM-triple

(X, %, Mx) € P,
with principal A\x. We take this as framing object.
We define functors M.,.(i) on the category Nilpoé. For R € Nilpoé, a point
of M,.(7)(R) is given by the following data:
(1) alocal CM-triple (X, ¢, A) of type r over R which satisfies the Eisenstein condi-
tions (EC,) relative to the fixed uniformizer 7 € F.
(2) the polarization \: X — X" is principal.
(3) a quasi-isogeny of p-divisible Ox-modules
p:Xp — X Xspecin Spec R,
such that the pullback quasi-isogeny p*(Ax) differs from pi)\|X_ by a scalar
— — R
in OF, locally on Spec R. Here R = R®o,, k-

Note that M,.(0) = M, 1 of before Theorem 2.6.3. Consider a point (X, ¢, A, p) as
above. Let (C,$) be the p-adic étale sheaf associated to (X,:,A)z on (Spec R)s =
(Spec R)st. Let Cx be the constant sheaf on (Spec R)st of the Ox-module Cx. The
existence of p implies that C is locally constant for the Zariski topology. Therefore,
locally on Spec R, we may regard C as a submodule of Cx ® Q. By the definition
of M,.(i), we have

fo'é(z,y) = dx(z,9), z,y€Cx®Q,
for some f € Of. We see by Theorem 4.5.11 that a point of M,.(z)(R) is the same as
a Og-sublattice C C (Cx)r ® Q such that the restriction of (1/p*)¢x to C induces a
perfect pairing
Cx(C— OF.
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This is directly clear if the ideal of nilpotent elements of R is nilpotent, and follows
from the argument in the proof of Proposition 6.3.2 in the general case.

Again we set

J'(Zy) = {g € GLo, (Cx) | ¢x(gec1,g9¢2) = f - dx(c1,c2), for some f € OF},
J'(i) = {g € GL(Cx ®z, Qp) | #x(gc1, gc2) = p' féx(c1,c2), for some f € OF}.

There is an isometry up to a constant in OF,
1
g: (Cx, ¢x) — (C, I?¢X)-

Then g € J'(i) and gCx = C. Any other isometry of this type is of the form gh,
with h € J'(Z,). Therefore we have associated to the point (X, ¢, A, p) a section of the
constant sheaf J'(i)/J'(Z,).

We set

M, = M.G), J =] JTG6).

i€Z i€z
As in the ramified case, the group J’ acts via p on the functor M,, cf. (6.3.4).
Moreover, this functor is endowed with the Weil descent datum

WM, * M’I‘(Z) I MT(Z + fE)(TE)

relative to O /Og.

Let 0 € Gal(F'/F) be the Frobenius. We use the notation introduced below
(4.3.22). We fix 6 € O, with 6;,0; € U. Set

(6.5.1) a1, = Qg oip—1 + -+ ap + g,

This number is independent of the choice of § because, by the definition of the reflex
field E,

aelng = agl.

We already defined a; = >y as,, cf. (4.3.28). If we sum the right hand side of
(6.5.1) over all # € © we obtain

fa1,g = fra1.

In the same way we define ay g by using 6. Then we obtain fas g = fras. Since
a1 + as = d we find

a1, + a5 =efE.

The endomorphism
(6.5.2) mOE = O E @28 Ox 1 @ Cx 2 — Cx1 0 Cxo

is an element of J'(fg).
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PRroOPOSITION 6.5.1. — The polarized contraction functor defines an isomorphism of
functors on Nilpoé,

(6.5.3) M, == J' )T (Zy).

The Weil descent datum w, relative to Op/Op corresponds on the right hand side
to the Weil descent datum given by multiplication with 7= € J'(fEg).

We note that J’'/J'(Z,) = J'/J'(Z,) (") because this is true for any constant sheaf.
Proposition 6.5.1 is the consequence of the definition of w4, and the following lemma.

LEMMA 6.5.2. — The Frobenius Fx r, : X — (75)+X induces on Cx the multiplica-
tion by mF.

Proof. — The statement needs an explanation. Because the functor QZE%IE commutes

with base change, we have a canonical isomorphism Cx = C(;,),x- Indeed, the inverse
image of the constant sheaf Cx by Spec7g is the constant sheaf Ck.
Let M = Px be the Dieudonné module of X. The Frobenius Fk ,, is induced by
the Verschiebung
vie . M — M.
We write in this proof C := Cx. By definition we have
C=M"V"=0C 0,

cf. Remark 4.5.13. Therefore the action of V/E on C coincides with the action of
/Bt -1

(6.5.4) et em O — C.

We look at the components of the element on the left hand side in (4.3.22). Let us
consider the components of the first set of factors of (4.3.22) which act on C;. The
component of (6.5.4) in the factor Op ®0,.,8 W (Og/) is

G ofE—1

T ...7-(-0‘910 .7ra91 ®1:7-‘-‘11,E®1_

Therefore V72 induces on C; the multiplication by 7.2, By the same argument it
induces on Cs the multiplication by 7%2.2. O

COROLLARY 6.5.3. — Let J(Qp) = GLK(CXJ ®Zp Qp) and J(Zp) = GLOK(CXJ).
There are isomorphisms of functors on NilpOE,

M, =5 J(Qp)/(Zy),  Mijpren — J(Qp)°/J(Zy).

Here J(Q,)° denotes the subgroup of elements with determinant in O .
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CHAPTER 7

APPLICATION TO p-ADIC UNIFORMIZATION

In this section, we reap the global fruits from our local work in the preceding
sections. This section is modelled on the case of p-adic uniformization of the first
kind of the previous paper [19, Section 4].

7.1. The Shimura variety and its p-integral model

In this section, K and F' will be number fields. Let K/F be a CM-field. We fix an
archimedean place wy of F'. We denote by a — @ the conjugation acting on K.
Let V be a K-vector space of dimension 2. Let

(,):VxV—Q
be a non-degenerate alternating (Q-bilinear form such that
s(avy,ve) = ¢(v1,av2), a€ K, vi,v2 € V.

We define three algebraic groups over Q. For a Q-algebra R, the R-valued points
are:
(7.1.1)
U(V,¢)(R) = {g € GLkgr(V ® R) | sr(971,972) = sr(z1,72)}
G(V,<)(R) = {g € GLker(V ® R) | sr(gv1,gv2) = p(g)sr(v1,v2), plg) € R*},

G(V,¢)(R) = {g € GLikgr(V ® R) | sr(gv1,9v2) = sr(u(g)v1,v2), n(g) € (F ® R)*}.

If (V,s) is fixed, we write U, G, G.
Equivalently, we can replace the form ¢ by the anti-Hermitian form

»:V xV—5K
on the K-vector space V which is defined by the equation
(7.1.2) Tr /g ax(vi,v2) = c(avy,ve), a€ K.

Then s is linear in the first argument and anti-linear in the second.
For each place w of F' we obtain an anti-Hermitian pairing

(713) %w5V®FFw X V@FFw—>K®FFw
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Let w: F — R be an archimedean place.
We choose an extension of w to ¢ : K — C. This defines an isomorphism
K ®p F, 2 C and s, becomes an anti-Hermitian pairing

%ap:V®K,<pC X V®K’¢,C—>C.

Note that the space V is determined up to isomorphism by the signature at the
archimedean places w of F' and the local invariants

inv,(V) :=inv(V ®p Fy, x Qp F,)
at the non-archimedean places v of F, cf. Definition 8.1.1. If v splits in K, we

set inv,(V) = 1. We will impose the following signature condition on V. Let
® = Homg-a1g(K, C) and let r be a special CM-type of rank 2 wrt. wy, i.e., a function

(7.1.4) r:® — Zyy, YTy,

such that r, + 7z = 2 for all ¢ € ® and such r, = 1 iff ¢ restricts to wg : F' — R. We
write g, @9 € ® for the two extensions of wy.

We require that s, is isomorphic to the anti-Hermitian form on C? given by the
matrix

iE, 0
(7.1.5) e :
0 —iE,

for every ¢ € ®. Here E,, is denotes the unit matrix of size r,, and i the imaginary
unit. We note that the last requirement is independent of the choice of ¢ above w.
We endow
VagR= [ VerwR,
w:F—R

with the complex structure J such that s, (vi, Jvs) is Hermitian and positive-definite
for all w. This defines a Shimura datum (G, h), resp., (G, h), cf. [8, 4.9, 4.13] and an
associated Shimura variety Sh(G, k) with canonical model over the reflex field E of r.

Let p be a prime number. We also impose a condition on (V,¢) at a p-adic place
of F. The condition is with respect to a chosen embedding E — Q,. Let v be the
place of F defined by this embedding. We denote by v the p-adic place of F' defined
by

FXE—Q,.
We require that
inv, (V) = -1.

In particular, this implies that the place v does not split in K. We will denote by p,
the prime ideal of O which corresponds to v, and by p, the prime ideal of Or which
corresponds to v.

We have an isomorphism

(7.1.6) VoQ, 2PV erF,.
plp
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Here p runs over all prime ideals of F' which divide p. We will write
Vo =VQrF, K,=KQrkF,.

The decomposition (7.1.6) is orthogonal with respect to ¢ and, for each prime ideal p
of F' over p, we obtain a bilinear form

Sp: Vo xVy — Q.

It is related to s, by
TrxerF, /0, 0% (T1,22) = (az1,22), a € K ®F Fy, 71,22 € V.
One defines algebraic groups over Q, as in (7.1.1) above:
Up=UVp,%), Gp=G(Vy, ), Gy = G(Wv<p)~
Let p|p be such that p is unramified (and hence non-split) in K/F and such
that inv(V}, 2,) = —1, cf. Definition 8.1.1. Then there is a Ok, -lattice
Ay CV

such that ¢, induces a bilinear form
(7.1.7) Sp Ay XAy — Z,,

such that A, is almost self-dual, i.e., h(Ap,,) = 1 (compare (8.1.4)). Any other lattice
with these properties has the form gA, where g € U(V},<,)(Qp). This follows from
Lemma 8.1.2.

In all other cases, we apply the following lemma.

LEMMA 7.1.1. — Let p be a p-adic place of F. Assume that inv(Vy,34,) = 1 if p is
unramified in K/F. There is an Og,-lattice Ay C V ®p F, such that ¢, induces a
perfect pairing

Sp i Ap X Ay — Zp,.
Any other such lattice is of the form gA, where g € Uy(Qp).

Proof. — Indeed, because of Lemmas 8.1.2 and 8.1.3, we need only a justification in
the case where p is split. In this case we have K, = F,, x F}, and, accordingly, a
decomposition V ®@r F, = U; @ Us. The vector spaces U; and U, are isotropic with
respect to ¢, and therefore ¢, induces an isomorphism U, = Homg, (U1, Qp). The
form ¢, becomes

sE+zty+y")=2"(y) —y* (=), =z,yely, z",y" €la.
The existence and uniqueness of A, follows easily. O

To pass to a p-integral model over Og, (,,) of Sh(G,h), we restrict the choice of
the level structure. To do this, we choose for each p|p a Okg,F,-lattice A, C V, as
above. We define

Ky, ={g€Gp|ghy = Ay}

7.1.8
(7.18) K, = {g € G(Qy) | gAy = A, for all plp}.
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We choose an open compact subgroup K? € G(A%) and set K = K, - K? C G(Ay).
We extend the embedding v: E — @, to an embedding Q — Q,. We obtain a
decomposition

(7.1.9) @ = Homg.ae(K, Q) = [ [ Homg,-a15(K,, Q) = chp
p
The restriction of the function r to ®, will be denoted by r,. The group Gal(Q,/E,)
acts on ® via the restriction
Gal(Q,/E,) — Gal(Q/E).

Therefore 7., = r, for ¢ € ® and 7 € Gal(Q,/E,). This implies that the local reflex
fields E(K,/Fy,,) are all contained in E,.

Let R be an Og, -algebra. Let £ be an R-module with an Og-action. We have
decompositions

Ok ®R=][] Ok, ®z, R, L=EPL,.
P
We will say that £ satisfies the Eisenstein condition (EC,) if each £, satisfies the
Eisenstein condition (EC,, ), cf. (2.2.12). We use a similar terminology for the Kottwitz
condition (KC,).

DEFINITION 7.1.2. — We define the groupoid Ak on the category of O, (,,)-algebras.
A point of Ak (R) consists of the following data:

(1) An abelian scheme A over R, up to isogeny of degree prime to p, with an algebra
homomorphism
L OK — EndA®Z(p),

such that Lie A ®o,, ., OF, satisfies the conditions (KC,) and (EC,).

(2) A Q-homogeneous polarization X of A such that the Rosati involution induces
the conjugation of K/F.

(3) A class of Ok -linear isomorphisms
7’ V®AI} — VP(A) mod K?,
which respect the forms on both sides up to a constant in A’JZ(I)X

We impose the following two conditions.

(i) There exists a polarization X € X such that the induced map to the dual vari-
ety A : A — A" has the following property. Let (ker X), be the p-primary part
of the kernel of A. It has the decomposition (ker A), =[], (ker A),. We require
that (ker \), is trivial, unless p is unramified in K and inv(Vy,s,) = —1. In the
latter case the height of (ker ), is 2f,.

(ii) For each geometric point w : R — k There is an identity of invariants,
invy (Ay,t, A) = invy(Vy,5p),  for all plp,
cf. the explanation after this definition.
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An isomorphism of such data (A, 1, \,7?) — (A’,J/, N, 0'") is given by a Og-linear
quasi-isogeny ¢: A — A’ of degree prime to p compatible with the Q-homogeneous
polarizations and the level structures.

We briefly explain the requirement (ii), with references to the appendix. Assume
that the characteristic of w is p. Then the invariant on the left hand side is defined in
terms of the Dieudonné module M of A,. The definitions of Section 2.4 apply to the
Dieudonné module M, := M ®pgq, F with the action of O, . The adjusted invariant
(2.4.8) of the latter Dieudonné module is by definition invy(Ay,¢,A). In the case
where the characteristic of w is zero, inv, (A, ¢, A) is the invariant of the Kj-vector
space (V,(Ay), &) with the Riemann form induced by A, cf. Definition 8.1.1. It is
easily seen that the left hand side of (ii) depends only on the image s € Spec R of w.
By Proposition 8.2.1 we regard invy (A, ¢, A) as a locally constant function on Spec R

and write the condition (ii) in the form
invy (4, ¢,A) = invy (Vp, 6p).
We will denote a point of Ak (R) simply by (4, ¢, X, 7).

REMARK 7.1.3. — It is equivalent to consider in (2) a Z,)-homogeneous polarization A
of A such that the elements A € X satisfy the condition (i) on the p-primary part of
the kernel of .

REMARK 7.1.4. — Let (4,1, A\, 7?) € Ag(R). Let A € X be as in condition (i) of
Definition 7.1.2. For each geometric point w of characteristic 0 of Spec R the pairing
induced by A on the p-adic Tate module,

(7.1.10) &t To(Ay) x Ty(Ay) — Z,(1)

has the following properties. If p is ramified in K/F, the pairing is perfect
and inv(V,(Ay),&) = inv(V,,s,). If p is unramified, then (7.1.10) is perfect if
inv(Vy,sp) = 1 and is almost perfect if inv(V},sp) = —1. If p is split in K/F, then
(7.1.10) is perfect.

For each geometric point w of R of characteristic p, the polarization A induces a
pairing on the Dieudonné module M of A, and therefore for each prime p|p of F a
pairing
(7.1.11) &t My(Ay) x My(Ay) — W(k(w)),

with the following properties. If p is ramified in K/F, the pairing is perfect
and inv"(M,(Ay), &) = inv(Vy,sp). If p is unramified, then (7.1.11) is perfect if
inv(Vy,<p) = 1 and is almost perfect if inv(V},¢,) = —1. If p is split in K/F, then
(7.1.11) is perfect.

PROPOSITION 7.1.5. — Assume that KP is small enough. Then the functor Ak is
representable by a projective scheme over Spec Og (p,) whose generic fiber is the
Shimura variety Shk associated to the Shimura datum (G, h). For general K?, Ak is

SOCIETE MATHEMATIQUE DE FRANCE 2024



158 CHAPTER 7. APPLICATION TO p-ADIC UNIFORMIZATION

a DM-stack proper over Spec O (p,) whose generic fiber is the Shimura variety Shx
considered as the classifying stack of a group action.

Proof. — Let (A,1,\,7?) € Ak (R), and fix n? € #P. Let A C V be a Og-lattice on
which ¢ is integral. We find an abelian variety A; in the class A up to isogeny prime
to p such that for each £ # p

ﬂp(Tg(Al)) = A ® Z[.

In this way we obtain also a polarization on A; whose degree is bounded in terms of ¢
and A. If KP is small enough we obtain a level structure on the m-division points for
some m > 3.

The fact that the moduli problem of abelian varieties with a polarization of given
degree and a m-level structure for m > 3 is a quasi-projective scheme implies that
the functor of (A, ¢, A, 7?) as in (1)—(3) of Definition 7.1.2, is representable by a quasi-
projective scheme. Now the conditions (i) and (ii) define open and closed subschemes
(this is easy for condition (i), and follows from Proposition 8.2.1 for condition (ii)).
The representability by a Deligne-Mumford stack for general K? follows.

To compare the generic fiber of Ak with Shk, recall from [16, §8] that Shk repre-
sents the following functor Ak g on the category of E-algebras, comp. Section 1.2. A
point of Ak g(R) consists of the following data.

(1) An abelian scheme A over R, up to isogeny, with an algebra homomorphism
t:0x — EndA®Q
such that the Kottwitz condition (KC,) is satisfied.

(2) A Q-homogeneous polarization A of A such that the Rosati involution induces
the conjugation of K/F.

(3) A class of K-linear isomorphisms
7:V®A; — V(A) mod K
which respect the forms on both sides up to a constant in Ay(1)*.
Here we are implicitly using the fact that G satisfies the Hasse principle, cf. [16, §7].
We define a map Ak g(R) — Ak (R). We fix a Ok-lattice A in V whose localizations
at p|p are the given lattices A, above. Let (4,:, A, 7) € Ak g(R), and fix n € 7. We
find an abelian variety A; in the isogeny class A such that for each £
’I](Tg(Al)) =A ® Ze.

Then we obtain ¢;: Og — End(4;) ® Z,). The Eisenstein condition (EC,) is au-
tomatically satisfied, cf. Proposition 2.2.1. We also find a polarization A\; € A which
satisfies the condition (i) in Definition 7.1.2. The existence of  implies Condition (ii).
By forgetting the p-component of 77, we have associated to (4,¢, \,7) a well-defined
object (A1, t1,1,7P) of Ak (R). By the uniqueness property of the lattices A, men-
tioned above, this map is bijective.
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The properness of Ax — Spec O (;, ) is a consequence of Proposition 7.1.7 below.
O

REMARK 7.1.6. — If p, is the only prime ideal of F' over p, then it follows from
the product formula that condition (ii) of Definition 7.1.2 is automatically satisfied.
Indeed, condition (ii) defines an open and closed subscheme which in this case has
the same generic fiber.

PROPOSITION 7.1.7. — The morphism Ax — Spec O (p,) is proper.
For the proof of Proposition 7.1.7, we need two lemmas.

LEMMA 7.1.8. — Let K/F be a CM-field and let v be a generalized CM-type of rank 2.
Let E C Q be the reflex field. Let R be a complete discrete valuation ring with an
Og-algebra structure. Let L be the field of fractions of R. We assume that the residue
characteristic of R is p > 0. Let w be a finite place of F of residue characteristic £,
such that K., /Fy is a field extension. We assume that L is of characteristic zero or

that ¢ # p.

Let (A, 1, \) be a CM-triple of type r over L. The polarization induces on the rational
Tate module V,,(A) an alternating pairing

(7.1.12) Yo Vi (A) X Vi (A) — Qy(1).
If inv(V,, (A),vw) = —1, then the abelian variety A has potentially good reduction.

Proof. — We consider only the case £ = p. We may assume that A has semistable
reduction. We choose an isomorphism Q, = Q,(1) over L. We obtain from 1,, the
anti-Hermitian form

sty Vi (A) X Vi (A) — Ky,

cf. (8.1.2). Let T be the toric part of the special fiber of the Néron model of A. Then
Og acts on the character group X, (7). If T' is non-trivial, we obtain that

dimT = [K : Q] = dim A.

This implies that the toric part V.(A) C V4, (A) is a K,-vector subspace of dimen-
sion 1. By the orthogonality theorem [SGAT7, Exp IX, Thm. 5.2], the anti-Hermitian
form sz, is zero on this subspace. Let ui,us be a basis of V,,(A) such that u; is a
basis of V! (A). Then we obtain, in the notation of (8.1.1),

D11(/1!?(Vw(14), sw) = — 2w (U, U) 3 (Uz, U1) = 200 (U1, U2) 20 (U1, u2) = 1

modulo Nmg /g, K. This contradicts the assumption inv(V,,(A), »,) = —1. O

With the notation of the last lemma, we consider the case where £ = p and where
the characteristic of L is also p. The Og-algebra structure on R factors

Ogp — kK, — R,
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where «,, is the residue field of F,. We fix a commutative diagram

Eu%(@p

|

E——Q.
Let w be a p-adic place of F. By the last diagram we can restrict r to a local
CM-type 1, of K, /F,. Then E, is the composite of the subfields E(K,,/Fy,Tw),
for w running over all places of F' over p.

Let (A, ¢, A) be a CM-triple of type r over L. The action of Or ® Z, = [],, OF,,
where w runs over all p-adic places of F', induces a decomposition of the p-divisible

group of A:
X =[] Xo-
Then (X, tw, Aw) is a local CM-triple with respect to K,,/Fy,, ., over the field L.

LEMMA 7.1.9. — Let R be a discrete valuation ring of equal characteristic p > 0, and
let L be the field of fractions. Let R be an Og-algebra. Let v be the p-adic place of E
induced by this algebra structure.

Let (A, 1, A) be a CM-triple of type r over L. We assume that there is a p-adic place
w of F' such that one of the following conditions is satisfied.

1. Ky/F, is a ramified field extension. The local CM-triple (X, tw, Aw) Satisfies
the Eisenstein condition (EC,,), and inv" (X, tw, Ay) = —1.

2. K, /F,, is an unramified field extension. The local CM-triple (X, tw, Aw) sat-
isfies the Eisenstein condition (EC,. ), and \,, is almost principal.

Then the abelian variety A has potentially good reduction over R.

Proof. — We may assume that A has semistable reduction over R. Let A be the Néron
model over R, and let B be the identity component of the special fibre of A. Let us
assume that the torus part T C B is nontrivial. Since Ok acts on T, we obtain
that X, (T)q is a K-vector space of dimension one. Let Y be the p-divisible group
of T'. We obtain a decomposition
Y =][]v.
u

where u runs over all places of K over p and Y, is an Ok, -module which is of
height [K,, : Qp] and of multiplicative type. We pass from R to the completion R.
Let X = Xy be the p-divisible group of Ap. By [SGA7, Exp IX, §5], the multi-
plicative group Y., lifts to a multiplicative group Y, C X,{, of the finite part of X,,
over R. If we pass to the general fibre of the last inclusion we obtain a nontrivial
multiplicative subgroup (Y,,) i C X,. But our assumption implies, by Lemma 5.2.8
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in the ramified case, and by Proposition 5.3.5 in the unramified case, that X, is iso-
clinic of slope 1/2. This contradicts the existence of a nontrivial multiplicative part
and therefore the assumption that the torus part of B is nontrivial. O

Proof. — (of Proposition 7.1.7) We check the valuative criterion. Let R a dis-
crete valuation ring with a O, -algebra structure. Let L be the field of fractions
of R. Let @ : SpecL — Ak be a Opg, -morphism. We have to show that «
extends to Spec R — Ak. It is enough to show that for a discrete valuation
ring R’ which dominates R, the morphism SpecL’ — Agk induced by a ex-
tends Spec R© — Ag. The map o gives a point (A,:,\,7?) € Ax(L). Since
we may replace L by L’ we may assume that A has semistable reduction. Let
w be a geometric point concentrated in the generic point of Spec R. We are
assuming that inv" (T, (Au), &, ) = inv(Vy,,s,) = —1 when charL = 0, resp.
inv" (M, (Au),Ep,) = inv(Vy,,6p,) = —1, when char L = p. Hence we conclude by
the last two lemmas that A has good reduction. Let ;1/ R denote the abelian scheme
which extends A. Then ¢ extends to an action I of O on A. The Kottwitz condition
and the Eisenstein condition are closed conditions and hold therefore for A. The
polarization A extends to A : A — A". The condition (i) from Definition 7.1.2
extends from A to A. For a geometric point wy concentrated in the closed point
of Spec R we find

i]flV;; (Awov Zwoa Awo) = inVT(MP (Awo)a 813) = inv(‘/;h gpv)

because the left hand is by Proposition 8.2.1 equal to invy (Ap,tr, Az). Hence con-

dition (ii) from Definition 7.1.2 also extends from A to A. From this we obtain an
extension of (4,t, \,7P) to a point of Ak (R). O

REMARK 7.1.10. — The scheme Ak turns out to be flat over Spec O (y,), cf. Theo-
rem 7.3.3, (i). Hence its generic fiber is dense. It follows that it is enough to check the
valuative criterion on discrete valuation rings R with fraction field L of characteristic
zero. Hence Lemma 7.1.9 is not needed.

The following proposition shows that there is only one isogeny class in the special
fiber of Ak. This is the underlying reason why there is p-adic uniformization.

PROPOSITION 7.1.11. — Let k, be the residue class field of E,. Let (Ay,t1,A1,7})
and (Az, 12, A2, 75) be two points of Ak (K,). Then there exists a quasi-isogeny

(Ala L1, 5‘1) — (AQa L2, 5‘2)7

i.e., a quasi-isogeny which respects the actions v; and the Q-homogeneous polariza-
tions A;. In fact, there exists such a quasi-isogeny of degree prime to p.

Proof. — Let X; be the p-divisible group of A;, with its decomposition X; = Hp‘p Xip.
It follows from Proposition 5.2.7 (jointly with Lemma 5.2.8) and Proposition 5.3.6
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that X, ,, is isoclinic. In the banal cases p # p,, the same follows from Lemma 4.3.3
for X, ,. By [27, Cor. 6.29] we find a quasi-isogeny

a: (A1, 1) — (Az,t2).
We choose \; € \;. We set A = a*(\z). We find an endomorphism u € End®(A4;) such
that
A= A\u.
Since A; and A induce the conjugation on K, we conclude that v € Endj; A;. Moreover

u is fixed by the Rosati involution * induced by A; on D := End} A;. It is enough to
find an element d € D* such that

(7.1.13) u= fd*d

for some element f € Q*. The solutions of these equations form a torsor under the
algebraic group J over Q such that

(7.1.14) J(Q)={ee D* |e'ec Q*}.
By [16, §7], this group satisfies the Hasse principle. Therefore it is enough to find a

solution of the equation (7.1.13) in D ® Q¢ for all places w of Q. If w is a finite place
w # p we have, by [27, Cor. 6.29], that

D ® Q. = Endkgo, Viw(41)

such that the Riemann form £)! induces the involution . A solution of (7.1.13) exists
iff the symplectic K ® Q,,-modules

(Vw(Al)agz)l\zl)» (Vw(A2)’g’L)l\}2)

are similar up to a factor in Q. But this follows from the existence of 77} and 75.

In the case w = p we can use Dieudonné modules. In this case we know, by
condition (ii) in Definition 7.1.2, that the rational Dieudonné modules of A; and A,
together with their polarizations are isomorphic.

If w is the infinite place, one can deduce the assertion from the fact that w in
(7.1.13) is totally positive.

Now let us prove the second assertion. We consider the Dieudonné modules My,
resp. My, of Ay, resp. A;. We choose the polarizations A; € Aj, resp. Ay € A, as in
condition (i) of Definition 7.1.2. Using the contracting functor, it is clear that there
is a quasi-isogeny of height zero a : (M1, A1) — (M2, A2).

Let p: (My,\1) — (Ms, \2) be an arbitrary quasi-isogeny. Consider the morphism

0[0,071 : (MQ,S\Q) i (MQ,;\Q).

We consider the group J for (Asg, 2, \2) (compare (7.1.14)). Then a0 p~! is an ele-

ment of J(Q,) by Tate’s theorem ([27, Cor. 6.29]). We approximate it by an element
a1 € J(Q). Then
poay: (A1, i, M) — (A2,02,A2)

is the desired quasi-isogeny of order prime to p. O
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7.2. The RZ-space M,

We fix a point (Ao, to, Ao, 7h) of Ak (F,). We also fix a polarization A\g € A\g which
satisfies the condition (i) of Definition 7.1.2. We denote by X the p-divisible group
of Ag. The action ¢y induces an action tx on X and A induces a polarization Ax on X.
We denote by ¢, the number of elements in k, = kg, .

Let R € Nilpy,, and let (X,t) be a p-divisible group over Spec R with an action
t:0g ® Z, — End X.

The notion of a semi-local CM-triple (X, ¢, A) relative to K ® Q,/F ®Q, and r should
be obvious but we explain it more precisely: the decomposition

Or ®Z, =[] Or,
p

induces the decomposition

X =[] %,

Let A be a polarization of X which induces the conjugation on K/F. Then the de-
composition extends to

(721) (X7[’7)‘) = H(XFHLIN)‘P)'
We call (X, ¢, A) a semi-local CM-triple of type r if each (X, ¢y, Ap) is a local CM-triple
of type r, with respect to K, /F,. This makes sense because E(K,/F,,r,) C E,.

DEFINITION 7.2.1. — A semi-local CM-triple (X,t,A) of type (K @ Qp/F @ Qp,7)
over an algebraically closed field with a kg, -algebra structure is said to be compatible
with (V,¢) if, for each p|p,

inv"(Xp, tp, Ap) = inv(Vp, 6p),
and if Ay is principal, except in the case where K,/ F, is unramified and inv(Vy,s,) = —1.

In the latter case A, is almost principal.

We note that the CM-triple (X, tx, Ax) over &, is compatible with (V,¢) and satisfies
the conditions (KC,) and (EC,), in the sense explained before Definition 7.2.1

DEFINITION 7.2.2. — Let i € Z. Let M,(i) be the following functor on the cat-

egory NilpOE . For an object R € NilpOE , write R = R ®o, Kg,. A point
of M..(i)(R) is given by the following data:

(1) A CM-triple (X,¢,A) of type (K @ Qp/F ® Qp,7) over Spec R which satisfies
the conditions (KC,) and (EC,.) and is compatible with (V).

(2) A Og ® Zyp-linear quasi-isogeny
p: X := X Xgpecr Spec R — X Xgpecr,, SpecR

such that p respects the polarization p'\ on X and Mx up to a factor in
(Or ® Zyp)*.
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We denote these data by (X, 1, A, p). Two data (X,t, A\, p) and (X', N, p’) define
the same point of M, (i) iff there is an isomorphism o : (X,1) — (X',//), such
that p' o ag = p. In particular, o respects the polarizations A\ and N up to a factor
in (OF ® Zp)*.

REMARK 7.2.3. — In (2) we could replace the last condition on p by
(2') The quasi-isogeny p respects the polarizations as follows,
P'A = p"(Ax).

Then we obtain a functor which is naturally isomorphic to M,.(4). This follows because
for a € (O ® Z,)* the points (X, ¢,al, p) and (X, ¢, A, p) of M,.(R) are isomorphic.
We could also require up\ = p*(\x) for some u € Z, without changing the functor.
We use different descriptions of the functor M, (7) in order to describe better different
group actions.

Let 75, € Gal(E,, /E,) be the Frobenius automorphism and let fg, be the inertia
index of E,/Qy, i.e., q, = pfBv . As earlier, the Frobenius Fx rp,, defines a Weil descent
datum on these functors,

(7.2.2) wp, : Mr(i)(R) — My (i + fB,)(Rprg, ),

cf. (6.1.3), (6.2.2). Since the degrees of the polarizations A and Ax are the same, it
follows that

2 height p = height(p’ | X) = 4[F : Q]i.
More precisely, p = Hp pp where p runs over the prime ideals of F' over p. For each p
we have

2 height p, = height(p’ | X,) = 4[F, : Q,Ji.
We define
(7.2.3) M, = [ M. ().
=

We describe the functor ./\;lr with its Weil descent datum. Let
(7.2.4) J(Qp) = {a € Endjgq, X | a(Ax) = cAx, for some c € Q' }.

This group acts naturally on M, via the rigidification p. We consider the decompo-
sition (7.2.1) for X. We set
(7.2.5) Jp = {a € Endy, X; | a"(Ay) = c)y, for some c € Q'}

For all p the groups J, are subgroups of J’ as introduced in Section 6 in the local
cases and they agree with J introduced in the banal cases.

We will give an explicit description of these groups. For this, it is convenient to
replace the bilinear form ¢, by the Fy-bilinear form

Sp i Vo X Vy — Fy,
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which is defined by
t(ay (r1,22)) = sp(ax1,22), a € Fy,

for t(a) = Trp, ), ¥~ 'a, where as usual ¥ € Op is the different of F//Q,. The restric-
tion to the lattices A, gives

§p:Ap><Ap—>OFp.

Let us consider the prime p = p,,. We denote by D, the quaternion division algebra
over F,,. We choose a two-dimensional K,-vector space with an anti-Hermitian form

Spo 2 Vo, X Vp, = Fp,

of invariant +1. The contraction functor associates to (X, , tx,, , Ax,, ) a special formal
Op,-module Y with the relative polarization A, = t,, resp. A, = 0,, as in Section 5.2
resp. 5.3. Since the endomorphism ring is not changed by the contraction functor, it
follows from Lemmas 5.2.2 and 5.3.2 that there is an isomorphism

(7'2'6) qu = G(‘Z’v7€pv)'

Indeed, to see that the two groups agree we can assume that va =K, gv and that the
anti-Hermitian form s¢ associated to &, , cf. Section 8.1, is given by the matrix

(1)

Then an elementary computation yields that the right hand side of (7.2.6) coincides
with the groups defined by the exact sequences (5.1.23).

For a banal prime p|p of F, we consider the image (Cx,,#x,) by the polarized

contraction functor GP‘L of Theorem 4.5.11. By Proposition 8.3.6, it follows from
Condition (ii) in Definition 7.1.2 that there is an isomorphism

(7.2.7) (Cx,, #x,) = (Ap, Sp)-

More precisely, Condition (ii) implies that the corresponding vector spaces are iso-
morphic; the integral isomorphism follows from Lemmas 8.1.2 and 8.1.3. Therefore
we obtain

(728) JP = G(vaa §~P) = Gpv for p 7é Po-
Since we want a uniform notation, we set (V},,5,) = (Vp,$p) for p # p,. We set
Gy = G(Vp, %)
We now have fixed an isomorphism J, 2 G, for all p|p. For p banal, we have G, = G,.
Let
Vo =DV
plp
This is an K ® Qp-module. Let

6p:VpXVP_’F(X)QP
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be the orthogonal sum of the forms &,. We define
(Z.2.9) B B
G(Qp) == G(Vp, %) :=1{g € Autkeq, (V) | (97, 9y) = c5p(,y), for some ¢ € Q;}.

We have shown that G(Q,) = J(Q,). In the description of the descent data, the
following slightly larger group will be needed. We define the group G), > G(Q,) via
G;; ={g¢ AUtK®Qp (Vp) | Sp(92, 9y) = pp(9)S(z,y), for py(g) € pZ(OF ® ZP)XL

and
Gy = {g € Autk, (V) | (92, 9y) = 1p(9)Sp (2, y), for pp(9) € p"OF }.

The groups C_?;, are isomorphic to the groups J’g = J' introduced in Section 6 in the
local cases. We fix these isomorphisms which are associated to the framing objects.
Therefore the groups G; act on the local moduli spaces M of Section 6 and the

subgroup G, C IL,, G, acts on M., cf. (7.2.3).
We define the group G’(Q,) as the union of the following sets for i € Z,
(7.2.10) G'(i)) = {(c:90) €p°OF, x [I Gyl pelgs) €p'OF,, for all p}.
p banal
Let G'(Z,) C G'(Q,) be the subgroup of elements (c, g,) such that ¢ € O;ﬁp and
gp(Ap) = Ay. The multiplicator puy, : C_?;v — pZO;ip induces homomorphisms

(7.2.11) G, - G'(Q,) and G(Q,) — G(Q).

For the second map we used the identification G‘p = G, for p banal.

DEFINITION 7.2.4. — We consider the following element w. = (c,w,) € G'(Q,).
(1) c=pfer.
(2) If Ky/Fy, is ramified and hence Xx, is principal, wy is the multiplication
H;FfEV : ‘7P S VP?
see Proposition 6.3.2.

(3) If Ky/Fy is unramified, then both principal and almost principal Xx, are allowed.
In both cases we define wy, as the multiplication

W;prV/z : ‘7;3 - ‘7137
see Proposition 6.4.3.

(4) In the case where K, = F, x Fy is split and hence Ax, 18 principal, we have the

decompositions Xy = Xp1 X Xp2 and Vp = V1 ® Vp 2. We set apip, = ap;i f}i“

fori=1,2, where 2a, ; = dimX,,, cf. (4.8.28) and the dicussion before Propo-
sition 6.5.1. We define wy, to be the multiplication by W;"’l’E” on V,,yl and the

multiplication by m,">"" on V.
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PROPOSITION 7.2.5. — There exists an isomorphism
M, = (2, xsptor, SPEOg,) x G'(Qp)/G'(Z,),

which is equivariant with respect to the action of G;) on both sides. This extends the
action of J(Qp) = G(Q,) C G,

The Weil descent datum wm, relative to Op /OF, on the left hand side (7.2.2)
corresponds on the right hand side to

(£,9) — (Wrg, (&), wr9), g€ G(Q).

Proof. — We use the decomposition
M.(i) = [[ M, (),
plp

which follows immediately from (7.2.1). Then we conclude by the results of Section 6,
in particular Propositions 6.3.2, 6.4.3, 6.5.1. O

REMARK 7.2.6. — We may multiply each wy, by a unit in K, in the Definition 7.2.4
of w... This does not change the assertion of the last proposition.

We introduce the group

(7.2.12) G(Q,) = {(c,9p) € Q, x H Gy | tp(gp) = ¢, for all p banal}.
p banal

There are natural homomorphisms

(7.2.13) G(Q,) —» G(Q,) and G(Q,) — G(Qy).

For the second map, we used that in the definition of G(Qp) we can replace Gy
by Gp. In particular the groups G(Q,) and J(Q,) act on G(Q,). We denote by
G(Z,) € G(Q,) the subgroup of all (c,g,) such that ¢ € Z, and gpAp, = A,. By
Corollaries 6.3.4, 6.4.5, 6.5.3, we obtain a bijection

(7.2.14) G(Q)/G(Zy) = G'(Qy) /G (Zy)-

COROLLARY 7.2.7. — There exists an isomorphism
M, =5 (@, xspror, SPEOg,) x G(Qy)/G(Zy),

which is equivariant with respect to the action of J(Q,) on both sides.

Note that in this version of Proposition 7.2.5 we loose control of the descent data.
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7.3. The p-adic uniformization

We will now define a uniformization morphism in the sense of [27]. We fix a
point (Ao, to, Ao, ) of Ak (%,). The uniformization morphism will depend on the
choice of nfy € 775. This choice defines a point of the proscheme projlimy, Ak for all
congruence subgroups K = K,KP? as above. We also fix a polarization Ay € Ag which
satisfies the condition (i) of Definition 7.1.2. Let (X, tx, Ax) be the p-divisible group
corresponding to (Ag, Ao).

We denote by Ak the restriction of Ak to the category Nilp, B, The uniformiza-
tion morphism

(7.3.1) ©: M, x G(A)/KP — Ak Xsprog, SpfOj

is defined as follows. Let (X,¢,A,p) € M, (i)(R) and let g € G(A%). Recall the
notation R = R ®oy, Fu- There exists an abelian scheme A over Spec R endowed
with an isomorphism of the p-divisible group of A with X and with a quasi-isogeny
of abelian schemes of order a power of p

(7.3.2) p:A— Ag Xspeck, Spec R.

which induces on the p-divisible groups the given map p: X — X X Spec &, SPEC R. The
pair (A, p) is unique up to canonical isomorphism. Because Ok acts on X = X Qg R,

we obtain a map Ox — End(A) ® Z,). Moreover the polarization A : Ay — Af
induces on A a quasi-polarization )\;i : A — AN and 7y induces

My =VP(p oy : VoA = VP(A) mod KP.
On the p-divisible groups, \'; differs from p'A by a factor from (Op ®Z,)* and there-

fore A 5 := p~'N; satisfies the condition (i) in the Definition 7.1.2 of the functor Axk.
We associate to the pair (X, g) from the left hand side of (7.3.1) the point

(7.3.3) (A, 04,21, 779) € Ax(R).

The CM-triple (X, ¢, A) over R defines by the Serre-Tate theorem a lifting of (7.3.3)
to a point of Ak (R). This finishes the definition of the uniformization morphism ©
in (7.3.1).

LEMMA 7.3.1. — The uniformization morphism is compatible with the Weil descent
data waq, acting on the first factor on the left hand side and the natural Weil descent
data on Ak Xspfoy, Spf Oy .

Proof. — This is essentially [27, Thm. 6.21] but we repeat the simple argument in
our context. By definition of the Weil descent data repeated below, it is enough
to consider both sides of (7.3.3) on the category of %,-algebras R. We will denote
by € : &, — R the algebra structure. Consider a point (X,,\, p) € M,(R). The
Weil descent datum wp, is obtained by changing p to p':

/ 4 eFrrp,
P X —eX —"7 e, )X
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This gives a point (X,¢, A, p') € /\;l,«(R[TEu]). The point (X, ¢, A, p) defines a quasi-
isogeny of abelian varieties
p:A— e, Ay,

as explained in the definition of ©. The point (X, ¢, A, p’) defines in the same way the
quasi-isogeny of abelian varieties over R, i,

E*FAOvTE,,
A—e Ay — " (e71r,)+Ao.

Here A with its additional structure is regarded as a point of Ag» (Rir,1)- This makes

sense because to be a point of Axr (R) depends only on the k,-algebra structure on R.
In other words

(7.3.4) Axr (R) = Axr (Rirg,1)-
But this equation is the Weil descent datum on the right hand side of (7.3.1). O

We define the group
(7.3.5) J(Q) = {v € End% Ao | 7" (Xo) = uXg, for some u € Q*},

cf. (7.1.14). Regarded as an algebraic group over Q, the group J is an inner form of G.
In the proof of Proposition 7.1.11 we saw that the Qp,-valued points of J coincide
with the group J(Q,) of (7.2.4). We proved in Section 7.2 that G(Q,) = J(Q,).
Let v € J(Q). With the chosen ng, we define w(y) € G(A%}) by the equation
(7.3.6) VP(y) omg = ngw(7)-
This defines a homomorphism

w:J(Q) — G(AI}),
and an isomorphism J(A%}) = G(A%}). Therefore J and G are isomorphic over the
finite places w # p of Q. At the infinite place J is anisotropic because the Rosati
involution is positive.

The group J(Q,) acts on M.,

(X, 0, M, p) — (X, 0, M, 9p), v € J(Qp).

Let (X,¢, A, p),9), with g € G(A?) be a point from the left hand side of (7.3.1) and
let (A,ca,Ma,n%g) be its image by O, cf. (7.3.3). If v € J(Q), the quasi-isogeny vp
extends to the quasi-isogeny of abelian schemes

A (Ao)r = (Ao)g-
In follows from (7.3.6) that the image of ((X,¢, A,vp), g) by the morphism © is
(A, 4,24, 3w (™ )g)-
We define an action of J(Q) on the left hand side of (7.3.1) by
(X152, 0),9) — (X, 4,2, 7p), w(7)9)-
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PROPOSITION 7.3.2. — The uniformization morphism (7.3.1) factors through an iso-
morphism

0 : J(Q)\(M, x G(AR)/KP) = Ak Xsptoy, SpfOp, -

This isomorphism is compatible with the Weil descent data relative to Oy /Op, . Here
the Weil descent datum on the left is induced from wag,, cf. Proposition 7.2.2.

Proof. — We have just proved that the morphism is well-defined. The bijectivity fol-
lows from the Proposition 7.1.11 and [27, Thm. 6.30]. O

By inserting Proposition 7.2.5 in this result, we obtain our main theorem about
uniformization.

THEOREM 7.3.3. — Assume that KP is sufficiently small. In particular, Ak is repre-
sentable, cf. Proposition 7.1.5.

(i) The Og, -scheme Ak 1is a projective and flat relative curve, which is stable in
the sense of Deligne-Mumford [9].

(ii) Let Ak be the completion of Ak along its special fiber, which is a formal scheme
over Spf Og,,. There exists an isomorphism of formal schemes over Spf OEV’
(7.3.7)
J(Q\[(Qr, Xsptor, SPf Oy ) x G'(Qp)/G'(Zy) x G(AZ;)/KP] — AK Xspf o, Spt Oy, .

For varying KP, this isomorphism is compatible with the action ofG(A?) through
Hecke correspondences on both sides.

Let w). the element in the center of G’(Qp) of Definition 7.2.4. We endow the left
hand with the Weil descent datum

(& hy9) — (wrg, (), wihog), b€ G(Qy), g € G(AT).
Then the isomorphism (7.8.7) is compatible with the Weil descent data on both sides.

Proof. — The only assertion that remains to be proved is that the geometric special
fiber of Ak is a stable curve. This geometric special fiber is a finite disjoint sum of
schemes of the form

(7.3.8) f‘\(ﬁpv XSpf O, Speck,),

where I' C PGLy(F,) is a discrete group, comp. [4, Rmks. 5.4] or [6, Cor. 6.8]. Consider
the action of T' on the Bruhat-Tits tree % of PGLy(F,). By making KP sufficiently
small, we can make sure that no non-trivial element of I' takes a vertex of 2 into itself
or to an adjacent vertex. Therefore no non-trivial element of I' takes an irreducible
component of Q F, XSpfOp, Spec R, into itself or into a second component meeting
the first one. From the structure of ﬁpﬂ XSpt Oy, SPeCk,, it follows that (7.3.8) is
reduced and that each irreducible component of (7.3.8) is a projective line meeting
q + 1 other irreducible components. Here ¢ is the number of elements in the residue
field of O, . Hence each irreducible component meets at least three other components,
which proves the stability of (7.3.8). O

MEMOIRES DE LA SMF 183



7.3. THE p-ADIC UNIFORMIZATION 171

Under additional assumptions there is a much simpler statement of Theorem 7.3.3
which uses G instead of G'. We can replace G’ by G in (7.3.7) using (7.2.14), where we
recall G(Q,) from (7.2.12). We define G(Af) = G(Q,) x G(A%) and K = G(Z,) xK?,
of. (7.2.12).

COROLLARY 7.3.4. — There is a natural isomorphism of formal schemes
(7.3.9)  JQ\[(Qr, xsptor, SPfOp ) x G(Af)/K] > Ak Xspt oy, SPf Oy -

Assume that the inertia indez fg, is even. Assume moreover for prime ideals p|p of F
which split in K that ap1 = ap2 = [Fy : Qp]/2 in the notation of Definition 7.2.4.
The multiplication by p on V ® Q, defines an element of G(Q,). Let p be the image
mn é((@p). We also denote by p the element

(1) € G(Qy) x G(A}) = G(Ay).
If we endow the left hand side of (7.3.9) with the Weil descent datum

(€,9) — (wrs, (€), 077 /%9), g € G(Ay),
then the morphism (7.8.9) is compatible with the Weil descent data.

Proof. — We use the notations of the theorem. By Remark (7.2.6), we may change
the components wy, for banal p in w,. = (p/?+,w,) by units in K,. It follows easily
from our assumptions that w, and p/Ev/2 differ by an element in O;ﬁp. The corollary
follows. U

Note that
G(Qy)/G(Zy) = G(Qy)/G(Zy),
as follows from
K;, = ker(ﬂpﬁ Gm(@p) — Q; /Z;)~

Let us indicate briefly the last identity. We use the exact sequence
1— SU(Vp,) — Gy, (@) — Q) x By, — 1.

(This exact sequence is induced by an exact sequence of algebraic groups over ,.) The

right map is given by g — (up, (9), 3::((957))). Since V,, is anisotropic, SU(V,,) is com-

pact. Furthermore, Z; x Fplv is the unique maximal compact subgroup of the target
group. Hence Ky, :=ker(up,: Gp,(Qp) — Q) /Z)) is the unique maximal compact
subgroup of Gy, (Q,). On the other hand, Kj, stabilizes Ay,. Hence K|, =K, by
the maximality of K .

Hence
(7.3.10) G(Af)/K ~ G(Ay)/K.

Using these facts, Theorem 7.3.3 and Corollary 7.3.4 imply Theorem 1.2.3 in the
Introduction.
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7.4. The uniformization for deeper level structures at p

We now pass to deeper level structures. For each prime ideal p of Op with p|p we
have the group

Gp ={g € GLo,, (V) | sp(921, 922) = pu(g)sp (a1, 22), for some 5(g) € Q' },

and the open compact subgroup K, C G, cf. (7.1.8). We will assume that there
exist prime ideals p which are banal since our deeper level structures exist only in
this case. For each banal p, we choose an open subgroup of K C K. For a natural
number M we consider the subgroup K, (p™) C K, which consists of the elements
that act trivially on A,/p™ A,. We will assume that for some M

(7.4.1) K,(p") CcK;.
For the special prime p, we set Kj =K, . We set

K, ={9=1(95) € G(Qp) | 9p € K{}.
This says that u,(gp) is independent of p. We also introduce
(7.4.2) K> = {(g,) € H K, | up(gp) = c € Z,;, independent of p}.
p, banal

This is a subgroup of

G**(Q,) = {(gp) € H Gy | up(gp) = c € Q), independent of p}.
p, banal

Also, let Ob2 = I1,, banat Ok, - Since the multiplier py, : Gp, — Z) is surjective, the
groups K;’ba and K7 determine each other.

We need some generalities on p-divisible groups suited for our special case. Let X
and Y be p-divisible groups on a scheme S. We consider the category of étale mor-
phisms U — S with the étale topology.

DEFINITION 7.4.1. — Let n € N. We define a sub-presheaf

Gb € Hom® (X(n), Y (n)),

where the right hand side denotes the Hom in the category of étale sheaves. A ho-
momorphism a : X(n)y — Y(n)y belongs to GE(U) if there is a profinite étale
covering U — U and a homomorphism of p-divisible groups & : X5 — Yz such that
the restriction of & to X(n)y is ag.

We denote the sheafification of GY. by G,,. We define the prosheaf
Hom®'(X,Y) = “lim” G,.

The limit is taken with respect to the natural restriction maps G, — G,, forn > m.
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We note that a homomorphism of p-divisible groups & : X; — Y defines a
homomorphism a : X(n)y — Y(n)y iff
(743) pr’{& — pr§& ep" HOHI(X(}XUI}, YUXUﬁ)'

We consider now a banal local CM-type (K,/Fy,7,). Let E, = E(r,) be the cor-
responding reflex field. Let (X,tx) and (Y,ty) be local CM-pairs over S/SpfOg,,
which satisfy the Eisenstein condition. As above, we define Homf)th (X,Y) by replac-
ing throughout homomorphisms by homomorphisms of O,-modules. The presheaf

GP is now meant in this sense. The contracting functor (cf. Definition 4.5.3) associates
p-adic étale sheaves Cx and Cy with an Of,-module structure. By Theorem 4.5.4,

Homo, (X,Y) = Homo, (Cx,Cy).
We set C,, x = Cx/p"Cx. One checks easily by the remark after Definition 7.4.1 that
(744) G?L(U) = I‘IOIHOK)J (Cx, Cmy) = HOHIOK” (me, Cn,y).
In particular G% = G,. We conclude that, for a scheme S/SpfOp,, the pro-sheaf
Homf)th (X,Y) is a p-adic étale sheaf. Let + : w — S be a geometric point. Then we
find for the fiber

mchp (X7 Y)w = HOHIOKF (wa Yw)a
where the right hand side is the Hom in the cateory of p-divisible O ,-modules.

Let us assume that S is a scheme over Spf O B, The contracting functor of Theo-

rem 4.5.11 associates to a CM-triple (X, tx, Ax) which satisfies the Eisenstein condi-
tion a p-adic étale sheaf Cx € Et(Ok)s with an alternating form

(7.4.5) (Z)X : CX X CX — OFp-

We set {x = Trp, /q, 9~ '¢x. In particular there is a CM-triple (X, tx, , Ax, ) over R,
such that

(7.4.6) (Cx,pr s, ) = (A, ),

cf. (7.2.7).

The group K, acts on the right hand side by similitudes. Therefore we obtain a
homomorphism K, — Auto Kp X, such that the automorphisms in the image respect
the polarization Ax, up to a factor in Z.

DEFINITION 7.4.2. — Let p be banal and let (X,1x,Ax) be a CM-triple on S which
satisfies the Eisenstein condition as above. A CL-level structure on (X,tx,Ax) as a
class of isomorphisms of p-adic étale sheaves

(747) (Apv gp) ;) (CX7£)\X) HIOd K;a
which respect the bilinear forms on both sides up to a factor in Z, . We will write
(7.4.8) X, — X mod K}

for a CL-structure.
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More precisely this means the following. Let M > 1 such that (7.4.1) holds. Then
a CL-level structure is a right Kj/(K,(p"))-torsor

T C Isomp, (Ap ® 7/pM7,Cx @ Z/pM7)

such that the inclusion is equivariant with respect to the right actions of K} / (K, (p™))
on both sides and such that the local sections of T" respect the bilinear forms on A,
and Cx up to a factor in (Z/pMZ)*. If S is connected and w — S is a geometric
point a CL-structure is given by a Kj-orbit of an isomorphism A, — (Cx)., which
respects the bilinear forms on both sides by a factor in Z,' and such that the orbit is
preserved by the action of 71 (S,w). This explains the notation (7.4.8).

Let (X,¢,\) be a semi-local CM-triple relative to (K ® Q,/F ® Qp,r) over a
scheme S € (Sch/Spf O, ), cf. the beginning of Section 7.2. We set Xba = I, banar Xp-
We choose (X, ix, Ax) as in Section 7.2. Then (7.4.6) holds. From this we obtain an
action of K;’ba on XP® which respects the polarization [] Ax, up to a factor

p, banal p
in Z).
We define a CL-level structure on X* modulo K;‘,’ba as a CL-level stuctures 7, :

Xp = X, mod K3, for each banal p which respect the bilinear forms up to a factor
in Z, that is independent of p.

DEFINITION 7.4.3. — With the notations of Definition 7.2.2, leti € Z. Let Mx: (i) be
the following functor on the category of schemes S over Spf OEV' We will write

S =5 Xspto, Speckg,. A point of Mx; (1)(S) is given by the following data:
(1) A CM-triple (X,¢,\) of type (K @ Qp/F @ Qp,7) over S which satisfies the
conditions (KC,) and (EC,) and is compatible with (V,s).
(2) A O ® Zy-linear quasi-isogeny
p:X::XXSS’—>X><SpeC,€EU S
such that p respects the polarization p'\ on X and Ax up to a factor in Z;.

(3) Let XP* = I, bana Xp- A CL-level structure

~

7: X" = XP* mod K32,

We set
My = [ [ M (3).
i€
Two data (X1,t1,A1,p1,71) and (Xa,t2, A2, p2,72) define the same point iff there is
an isomorphism of Ox-modules o : X1 — Xa such that ps o ag = p1 and such that

the level structures are respected (in particular, o respects the polarizations up to a
factor in Z ).
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We note that in the case without level structure we used a different version of
the functor M, (i), cf. Remark 7.2.3. We prefer here to consider Z;-homogeneous
polarizations. We prove directly a version of Corollary 7.2.7 in this setting. Since we
assume that banal places exist, we do not need the group G.

PROPOSITION 7.4.4. — There exists an isomorphism

My — (QF, Xsptor, SPEOy ) x G**(Q,) /K52,
which is equivariant with respect to the action of J(Q,) on both sides.
Proof. — At the banal places we may use lisse p-adic étale sheaves to describe a
point of Mk (S). A point consists of a CM-triple (X, , tp,, Ap,) and a quasi-isogeny
Pp, : Xp, 5 — X, such that pf (Ax, ) = up‘Ax,, for some u € ZY, i € Z and an
isomorphism of lisse p-adic étale sheaves on S,
(749) (beaa fxba) - (Ca 5) - (CXbaa fxba) ® Qa
where 7 respects the alternating forms up to a factor in Z; and such that the restric-

tion of &xva with respect to the last inclusion is equal to up’é with the same u and 4
as above. By (7.2.7) we have

(7.4.10) (Cipa, Exva) = (AP2, ¢P2),

where the right harid side is the orthogonal direct sum over all (Ay,¢,) for p banal.
We denote by M}’é}) the moduli functor described by the data (7.4.9). We claim

that there is a natural isomorphism

(7.4.11) MR, =GP (Qy) /K™

Indeed, the group GP2(Q,) acts naturally on this functor: Let g € G*(Q,) such
that

¢x (921, g2) = u'p €x (21, T2).
Then g maps (7.4.9) to
(Cxoa, Exvn) < (90, (1/u'p!)E) C Cyon ® Q.

If we have an arbitrary point (7.4.9), then the composite of the arrow with the inclu-
sion is an element g € G**(Q,) and therefore (7.4.9) is isomorphic to

Ciyva =5 (gC, (1/u'p? )expa) C Cxna @ Q.
We see that the action is transitive and that the stabilizer of the base point
(Cxpa, Exoa) 24, (Cxpa, Expa) C Cxpa @ Q

is K»**. This shows (7.4.11).
Now we fix 7 € Z. We denote by M, ~the functor of Section 6 associated to the
special local CM-type (K,,/Fp,,7p,). There is the natural injection of functors

My (i) = My, (6) x M3, ().

We claim that this map is surjective.

Tpy
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Indeed, assume we are given a point (X, tp,, Ap,, Pp, ), Where pi (Xx, ) = u1p*Xp,,
with u; € Z,, from the first factor on the right hand side, and a point (C,§) C Cxpa
(endowed with 1), where ugp’é = Exna With up € ZX, from the second factor. These
two points form a point of Mk (i) iff u1 = ua because only then the condition (2) of
Definition 7.4.3 is fulfilled for the resulting polarization on X = X, x X ba But in
the point from the first factor we can replace Ay, by (u1/u2)A,, without changing
the isomorphism class of this point.

Therefore the surjectivity holds and the proposition follows as Proposition 7.2.5.
O

Let us fix an open and compact subgroup K? C G(A?). We set K* = K;K? and
K = K, K? as after (7.1.8). We choose (X, tx, Ax) as above.

DEFINITION 7.4.5. — We define a functor A%, on the category of schemes S
over Spf Oy, . A point of A «(S) consists of the following data:

(2) a CL-level structure
p : XP* — A[p™]"* mod K.

We denote here by A[p>]"* the banal part of the p-divisible group of A with
its structure of a semi-local CM-triple. The morphism Ai‘(* — AK is a finite étale
covering of formal schemes. Since we assume that KP? is small enough, Ak is a proper
scheme over Spec O . By the algebraization theorem, there is a unique finite étale
morphism of schemes over Spec O I

(7.4.12) Aj» — Ak Xspec Or (v, SPEC O
such that the p-adic completion of A, is Ak..

REMARK 7.4.6. — We note that the scheme Aj. is defined over the ring O ,» which
is not of finite type over Z,. As mentioned after Theorem 1.2.4, this scheme is
closely related to an integral model of a Shimura variety which is a central twist

of Shx- (G, {h}).

Recall the projective scheme Ak« g over E from Section 1.2 (the canonical model
of Shk+(G,{h})), comp. the proof of Proposition 7.1.5. We will now relate Ak+ g
with the general fiber Af. Xgpec O, Spec E,. We start with a reformulation of the
level structure 7, in Definition 7.4.5.

We assume that S is a scheme over Spf OE“,,’ i.e., we pass to the completion of
the maximal unramified extension of E,. We consider now a polarized local CM-pair
(X,tx,Ax) over S of CM-type (K, /Fy, ), cf. Definition 4.1.2. We will always assume
that the Eisenstein conditions are satisfied. By Theorem 4.5.11, Ax is described by a
OF,-bilinear form ¢, , or also

‘f)\x ZCX XCX—>ZP,
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as defined after (7.4.5). Equivalently, we can consider the O, -anti-Hermitian form
(7.4.13) sy 1 Cx x Cx — Ky,
which is defined by

Trk,/F, a0y (c1,c2) = dax (ac1,c2), a €Ok, c1,c2 € Cx.

Then sy, is Ok, -linear in the first variable and O, -anti-linear in the second variable.
If we define (X, ix,Ax) by (Cx,€x:) = (Ap,sp) (cf. (7.4.6)), we can reformulate
(7.4.7): A CL-structure is a class of isomorphisms

(X, Ax) — (X, x) mod K,
which respect the polarizations up to a factor in Z,; . This agrees with Definition 7.4.5.

Let kg, be the residue class field of E,. We will consider CM-pairs (Z,1z) of
CM-type 7,/2 over a scheme S/ Spf O B, Then Z is a p-divisible group of height 2d,
and dimension d,, where d, = [K, : F,]. We will always assume that the Eisen-
stein condition is fulfilled. Proposition 4.2.2 continues to hold with the same poly-
nomials E,4,. The functor Cz (cf. Definition 4.5.3) exists for local CM-pairs of
type (Kp/Fy,7p/2).

We will reformulate CL-level structures as suggested by [25]. There is up to iso-
morphism a unique CM-pair (Xo,zo) of CM-type 7, /2 over & E, - 1t lifts uniquely to a
CM-pair (X, o) over OEp’ and

(7.4.14) Cx, = Ok,
is the constant p-adic sheaf. We consider biextensions
ﬁ : XO X X(] — @m

or, equivalently, bilinear forms of displays as in Proposition 4.5.9. They are in bijection
with bilinear forms

(7.4.15) d):CXD XCXO _’OFp-

Equivalently we use § = £ or s = 3, as before (7.4.13).
We define s : Co x Co — Ok, using (7.4.14), by

(7.4.16) w(z,y) =2y. z,y € Ok,

We denote by 59 : Xg — X{ the homomorphism associated to ¢g. This homomor-
phism is symmetric.

We note that there is a principal polarization A on Xj. It is a generator of the free
Ok,-module of rank one Homo,, (Xo, X¢'). In the case where K, /F} is ramified, the
corresponding form under the bijection (7.4.15) is

or(z,y) = Trg, /p, T 2.
Then so = Al In the case where K, /F}, is unramified, we choose a unit ¢ € Ok,
such that € + € = 0. Then the corresponding form under the bijection (7.4.15) is

or(z,y) = Trg, /p, € 'z,
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Then s¢ = Ae.

Let S be a p-adic formal scheme over Spf OE“p' Let (X,tx,Ax) be a polarized
CM-pair of type (K,/F,,rp) which satisfies the Eisenstein condition as always re-
quired. We endow m%}(p (Xo,X) with an Og,-anti-Hermitian form with values
in K. Let uj,us € Gn(U). They are given by homomorphisms i, : Xo — X
which are defined over a profinite étale covering U — U. We consider the homomor-
phism

ﬂé\)\xﬂl Xo—->X—-X"— XOA.
This element of Homo, ((Xo)g,(X4')g) may be written as
(7.4.17) iHAx iy = 6(@y, ia)S0,
with some constant (i, @iz) € K. In the ramified case,

8(u1,up) := 6(ii, iiz) mod p"I 00y,

is well defined. In the unramified case, the element 5(&1,1]2) is well-defined mod-
ulo p"Ok,. Varying n, we therefore obtain a bilinear form

5 HoméOth (X0, X) x Homf)th (X0, X) — K,.
This is a O, -anti-Hermitian form. We set

-1
€= Ter/Qp Ter/Fp 19F,,/Qp5'

Then ¢ is an alternating form

¢: HoméOth (X0, X) x Homéoth (X0, X) — Zyp,
which satisfies e(au1,u2) = e(u1,auz), a € Ok, .
PROPOSITION 7.4.7. — A CL-level structure on a polarized CM-pair (X,tx,Ax) of

type (K, /Fy,ry) over the p-adic formal scheme S can equivalently be given as a class
of isomorphisms of p-adic étale sheaves

(7.4.18) n:(Ap,sp) — (Homéotkp (Xo,X),¢) mod K,
which respect the bilinear forms on both sides up to a constant in Z, .

Proof. — Indeed, we apply the contracting functor to the right hand side of the iso-
morphism (7.4.18). We view 41, 4o from (7.4.17) as homomorphisms

ﬂi : OK,, = CXO — Cx.
Let 500, : Cx x Cx — K, be the anti-Hermitian form induced by Ax. The defini-

tion (7.4.17) of the sesqui-linear form § which gives rise to e, reads in terms of the
contracting functor as defined by (7.4.17)

(7.4.19) sy (U1 (2), Ta(y)) = 8(iy, tin) 7.

If we identify
Homg, (Xo,X)=Homg, (Ok,,Cx)=Cx
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by sending @ to (1), the form 5 is mapped to the form s, . This is immediate by
setting © = y = 1 in (7.4.19). Therefore we have identified the right hand side of
(7.4.18) with (Cx,&x, ). This proves the assertion. O

PROPOSITION 7.4.8. — Let S be a flat proper scheme over Spec OEF' Let (X,1x) and
(Y,ty) be CM-pairs of type (K, /Fy,1y) or (Ky/Fy,1rp/2) over S. Let U — S be a
finite étale covering, and U— Spf OEp its formal completion along the special fibre.

Set Uy = U Xgpec O, Spec Ep. Then there is a natural bijective homomorphism

(7.4.20) Gn(U) = Homo,, (X (n)u,, Y (n)u,)-

In particular, the p-adic étale sheaf Hom,, (Tp(Xs,), Tp(Ys,)) is unramified along
the special fibre of S.

Proof. — We consider the natural map G,(U) — Homo, (X(n)g,Y (n)y). By
Grothendieck’s existence theorem (EGA III, Thm. 5.1.4), the target of this arrow
coincides with Homo,, (X (n)u, Y (n)u). If we restrict the last set of homomorphisms
to the generic fibre we obtain the map (7.4.20).

The injectivity of (7.4.20) follows from the definition of G™. To prove surjectivity,
we can assume that U is connected. By Grothendieck’s existence theorem we find a
finite connected étale covering U; — U such that the sheaves Cy, x, and Cmyé become

trivial over Uj.

We write the proof only in the case where X and Y are of CM-type r,. The cases
where r, /2 appears will be obvious. By the choice of Uy, we deduce the isomorphism

Gn(U1) = Homo, ((Ok,/p"Ok,)* (Ok,/p"Ok,)?).
We choose a geometric point w of (U1),. Then we obtain injective homomorphisms

Gn(Uh) — Homo,. (X(n)u, .Y (n)u, ,)
= HoimOKp (Tp(Xn) ® Z/(Pn)7Tp(Yn) ® Z/(p”))(Ul,,,)
— Homo,, (Tp(Xw), Tp(Ys)) © Z/ (p")
= Homo,, ((OK,,)Qa (OK,,)2) ® Z/(p").
Since we have the same number of elements on both sides, the arrows are bijective. In
particular this shows that the étale sheaf Hom,, . (Tp(Xy), Tp(Yy)) ®Z/(p™) becomes

trivial over the finite étale covering U, — S,. Therefore it is unramified along the
special fibre of S.

Finally, we obtain the bijectivity of (7.4.20) by exploiting the sheaf property with
respect to the covering

U1><UU1:U1—>U. O
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COROLLARY 7.4.9. — With the assumptions of the last proposition, there is a
p-adic étale sheaf Homokp (X,Y) on S whose restriction to the special fibre
S XSpec Oy, Speckg, is HoméotKp (XREp,Y,g p) and whose restriction to the gen-
eral fibre S Xgpec O, Spec Ey, is HomoKp (TP(XE,,)7TP(YEF))'

Proof. — The sheaves G,, over S are representable by finite étale morphisms of formal
schemes. They come therefore from finite étale morphisms G2 — S. We have to
compare the general fibre of G2 with Hom,, (Tp(Xy), Tp(Yy)) ® Z/ (p™).

We have shown that both sheaves are trivialized by a finite étale covering S; — S.
The homomorphism (7.4.20) gives a canonical isomorphism between these sheaves
with constant étale sheaves on S Xgpec Op, Spec k B, Finally, we consider descent for
the general fiber of the covering

D1
—

Slxs31_>51—>5

D2

We see that the descent data for the two sheaves agree since they are induced from
the descent datum on the étale sheaf Hom(X (n),Y (n)). O

We now go back to the Definition 7.4.5. Let Ab® = 11, bana1 Ap- We choose for
each banal p a CM-pair (Xy,0,p,0) of local CM-type (Ky,/Fy,7y/2) over Spf Oy, . We
may assume that Cx, , = Ok,. We endow Cx, , with the Hermitian form (7.4.16)
which corresponds to the symmetric homomorphism s, : Xy 0 — X;';. We define
Xpo = I1,, bana1 Xp,0 and we endow it with s0* = [ sp,0- Then by Proposition 7.4.7
we may replace (2) in Definition 7.4.5 by

(2") A class 7, of isomorphisms of p-adic étale sheaves,
np : AP* — Hompva (X2 A[p®]P*) mod K;’ba,
which respect the forms on both sides up to a constant in Z;.

The lisse p-adic sheaf on Ak given by the right hand side of (2') is the algebraization of
a lisse p-adic sheaf on Ak which exists because this scheme is proper over Spec O B,
We denote this sheaf by the same symbol. Then the scheme Aj. is given by the
following functor on the category of schemes S over SpecOy : A point of Ag. (S5)
consists of a point (A,t, \,7P) of Ak(S) and a class 7, as in (2'). We deduce the
following description of Aj. .

PROPOSITION 7.4.10. — The scheme Aj. Xspeco, SpecEV represents the follow-

ing functor on the category of E,-schemes. A T-valued point is a point (A, i, \,7P)
of Ak (T) and a class 7, of isomorphisms of p-adic étale sheaves

(7.4.21) M+ AP = Homoua (T, ((Xg™) ,), Tp(A)"*) mod KP,

which respect the forms on both sides up to a constant in Z .
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The scheme Aj. is the normalization of Ak XSpecOp (. SpecOEV m

A Xspeco,, Spec E, and is finite and étale over Ak Xspecog,,,, SPeCOp .
y : 5

THEOREM 7.4.11. — Let Evjfb be the mazimal abelian extension of E,. Then there is
an isomorphism

(7422) AK*,E XSpec E Spec Eu's‘b &~ .A)f(* X Spec O, Spec Egb,

which is natural in K*.

Proof. — We make explicit what a level structure (7.4.21) means after base change
to Evfjb. Over E,i‘b we may choose an isomorphism Z,(1) = Z, and therefore we do
not need to worry about Tate twists. The Tate module T,(X, o) of X, o over an
algebraic closure of E,isan O k,-module which is free of rank 1. Therefore the Galois
group of E,, acts on the Tate-module via its maximal abelian quotient. We choose an
isomorphism

(7.4.23) Tp(Xp0) = Ok,,

such that the action of the Galois group of Eﬂb on both sides is trivial. The symmetric
map 5p : Xp0 — X} induces a Hermitian form s, o on the Tate-module (7.4.23).
We find

%p,o(%y) = Cp,Oxga x,Y € OK

for some constant c, o € O;ip. Note that in the ramified case two isomorphism classes
are possible for sz, .

We consider a T-valued point (A,t, A, 7P,7,) from the right hand side of
(7.4.22). Let X = [[X, be the p-divisible group of A. A polarization from X
induces an anti-Hermitian pairing s on T,(X,). The anti-Hermitian form ¢,
on Hom(T,(X;,0), Tp(Xy)) is given by
(7424) Iy (ul (CL'),UQ(y)) = 5!3 (u17u2)cp,037§, T,y € OKp’
where u1,us € Hom(T, (X, 0), Tp(X,)) are sections.

For an Ok, -lattice (I, sr) with an anti-Hermitian form s« : T'xT' — K}, we write
Tle] = (T, eser). The equation (7.4.24) gives an isomorphism

(Hom(T},(Xp,0), Tp(Xp), cp,06p) = (Tp(Xp), %)
We see that a level structure (7.4.21) at the banal prime p is given by an isomorphism
Aplepo] = (Tp(Xy), 2) mod K.

Choosing a fixed isomorphism Ay [cy 0] = Ay, we see that such a level structure at p is
the same as a class of isomorphisms

My« Ap = (Tp(Xy), 55) mod K.
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Since we want a level structure for T),(A)"®, we require that the n, must respect the
bilinear forms on both sides by the same factor u € Z;. For the special prime p, we
take an arbitrary isomorphism

Mo+ Ay, = Tp(Xy,),

which respects the bilinear forms on both sides up to the same factor u € Z,; . This
is possible because by (ii) of Definition 7.1.2, the Ok, -lattices of both sides are
isomorphic and since, by Lemmas 8.1.2 and 8.1.3, there exist isomorphisms with an
arbitrary multiplicator u € Z; . We set

flp = N, Mp : A ® Zp — Tp(A).
Finally we set
n="am" VoA — V(A)

Let 77 be the class of this isomorphism modulo K*. Then (A, ¢, \,7) is a T-valued point
of Ak~ g. Since the last construction can be reversed, we obtain the isomorphism of
the theorem. 0

We will formulate a more precise version of the last theorem. Let E¢ be the algebraic
closure of E,. The action of the Galois group Gal(Eg/E,) on T,(X, ) is given by a
character

(7.4.25) Xp,0 : Gal(ES/E,) — O ,

such that o (t) = xp,0(0)t for t € Tp(X,0) and o € Gal(ES/E,). Since the polarization

v

of Xy ¢ is defined over E,, we obtain that Nmg, /r, Xp0(c) = 1. We define
64 @) = T xpolo) € G**(@Qy).
p,banal
Finally we define xo : Gal(ES/E,) — G(Q,) by setting
x0(0) =1 x x§*(0) € Gy, x G**(Q,).

We note that this element is in the center of the group G(Q,). By definition of the
functor Ak~ g before Remark 7.1.6, xo(o) acts on Ay, B, = Ak« E XSpec E SPeC E,
via the datum (3), i.e., it acts by Hecke operators. We obtain the homomorphism

(7.4.26) X6 : Gal(ES/E,) — Aut™ Ay, » .
(We write here the opposite group because the Hecke operators act by definition from

the right.)

COROLLARY 7.4.12. — Let 0 € Gal(ES/E,). Then the action of ida;, X Speco
on the right hand side of (7.4.22) induces on the left hand side the automorphism
X&(o) x Speco.
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REMARK 7.4.13. — In general, let X a quasi-projective scheme over E,. Let
x : Gal(ES/E,) — Aut®®? X be a continuous homomorphism. Then descent says that
there is a unique quasi-projective scheme X () over E, and an isomorphism

X XSpeC B, Spec Elc’ - X(X) ><Spec B, Spec Eﬁa

such that, for all ¢ € Gal(ES/E,), the action of idx(y) X Speco on the right hand
side induces on the left hand side the action x(o) x Speco. We will call X(x) the
Galois twist of X by x.

Proof. — (of Corollary 7.4.12) We take (7.4.22) over the algebraic closure ES. For o €

Gal(Eﬁ/E’V), we write & := Spec . We consider the non-commutative diagram

o o c * . c
AK*,EV X Spec B, Spec B —— AK*,E,, X Spec i1, Spec E

(7.4.27) id.AX&J/ lidﬁxa
Age 5, Xspoc i, SPECEL —— Ar . 1 Xgoo 5, Spec Eg.
To understand how this does not commute we consider more generally a scheme S of

finite type over E,, and write Sge = S x Spec B, Spec ES. The morphism 6g :=idg x & :
Sge — Spe induces maps

gA: ‘AK*,E,,(SE,C,) - AK*7E“U (SEe);, oax: AR*’EU(SEg) - A%*,EU(SELC,)-

Our task is to compare the effect of these maps on an element & € .AK*’ B, (See) =
A;{*’EV (Sgg). The moduli interpretation describes { as a point of Ay, ; by a
point (A4, A\, 7P) € Ay 5 (See) and a rigidification 7, : AP* — T,(A)P® mod K*P2.
To make this more précise, we choose a geometric point w : Spec ES — S which
extends naturally to a point w : Spec ES — Sg.. We define w’ by the commutative
diagram

Sge — > Sy
b
Spec E¢ AN Spec E¢.
The rigidification is given by a homomorphism
np : AP* — T,(A,)P2.
There is an isomorphism
Ty ((654))w = 6" (Tp(Aw))-

By the moduli interpretation, the point . 4(§) is given by (654, 6%, 65\, 6577) and
the rigidification is given by

(7.4.28) Ab® = 65 (Ab) T sr (1 (AL)).
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Now we consider o 4+ (£). We can give the sheaf Tp((Xga)Eu) in (7.4.21) equivalently

by the Gal(ES/E,)-module A?(x8?), where we indicate that the Galois group acts
via the character x5®. Then 7, of (7.4.21) can be considered as a class of maps

(7.4.29) AP*(x§*) ge — Tp(Ay)"* mod K*P2.

Since we are over E¢, the action via x5 is trivial and therefore (A, ¢, \, 77, 7p) describes
also a point of A;{* P (Sgc). But if we want to identify the inverse image of this point

by 65 we must take into account the twist y5®. This inverse image is again given
by (654,65, 65N, 657P) as before, but the new rigidification at the banal places is

a a ~ AX a a &*( p) ~ %k
(7.4.30) AP (X6 g = 6" (A) (6™ ms —% 67 (Tp(Aw)).

The first isomorphism comes from the fact that both sides are the inverse image
of AP2(x5?) considered as a sheaf on Spec E,. Therefore this isomorphism is the
descent datum on the constant sheaf, which is the multiplication by x5 (o). We obtain

ba/. ba Xga(g) ~% (A ba ba G () . x
A (xg") == 6T (M) (xg") — 67 (Tp(Aw))-
This proves that o4« = x3(c)o 4. If we apply this to the diagram (7.4.27), we obtain
idge x 6 = xB(0)(idg x &). O

We now drop the assumption on K7 that it be contained in K, and come from a
product of K. More precisely, let K7 C G(Q,) be of the form

(7.4.31) K} = G(Qp) NK, K",

where K;’ba is an arbitrary open compact subgroup of Gba((@p). Since K, is a nor-
mal subgroup of G, and G(Q,), this class of subgroups is stable under conjugation
by elements of G(Q,). Therefore, using the naturality of the construction in Propo-
sition 7.4.10, we can extend the definition of Aj. to all such K* = K;KP? by first
passing to a small enough normal subgroup of finite index and then dividing out by
the factor group.

We make this extension process more explicit by defining the functor Af(* without
using the choice of A,. Thereby the action of the Hecke operators becomes more
obvious.

Let  : X — Y be an isogeny of p-divisible Or ® Z,-modules. Let p, be a prime
of OF over p. We say that 0 is an isogeny of order prime to p, if 8, is an isomorphism.
We use a similar terminology for abelian varieties with action by Op.

We consider a scheme S over Spf O . We consider abelian schemes A over S up
to isogeny of order prime to p, which are endowed with an action ¢ : Ox — End A
and with a Q-homogeneous polarization A such that the Rosati involution induces the
conjugation on Ok. Moreover, we assume that there is a triple (A, ¢, \) as in Defini-
tion 7.1.2 which represents (A, ¢, A) such that (4, ) satisfies the conditions (KC,.) and
(EC,) and such that (A,:, A) satisfies the conditions (i) and (ii) of Definition 7.1.2.
Then call (A,¢,\) an admissible prime-to-p,-isogeny class. Let X = Hp X, be the
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p-divisible group of A. Then (Cxva, £)) makes sense and (Cxva ® Q, £)) depends only
on (A,1,)). Let (X, tx, A\x) as in Definition 7.4.5.

DEFINITION 7.4.14. — We define a functor A%. on the category of schemes S
over Spf Oy, . A point of A% (S) consists of the following data:

(1) an admissible prime-to-p,,-isogeny class (A, 1, \) over S;
(2) a class of isomorphisms
p : Cxon ® Q = Czppoeypa ® Q mod K52,

which respects the bilinear forms on both sides up to a factor in Q.

We explain in more detail what is meant by (2). We assume that S is connected
and we choose a geometric point w of S. Then the meaning of (2) is that we have a
class of isomorphisms

Mp + (Cxoa)ww ® Q = (Clappoeppa)w ® Q mod K2,

which respects the bilinear forms on both sides up to a factor in Q, and such that
the class is preserved by the action of 71 (S,w).

Let K7 as in Definition 7.4.5. Then the functors of the Definitions 7.4.5 and 7.4.14
coincide. Indeed, let us start with a point of Definition 7.4.14. Also, fix a triple (A4, ¢, \)
which represents (A4, ¢, \), as before Definition 7.4.14. The sublattice Aga C Cxpa),, 18
fixed by K;’ba. Therefore the image C of Aga by 1, depends only on the class 7, and is
invariant by 71 (S,w). Therefore C' defines a p-adic étale sheaf on S. We endow it with
the polarization induced by ¢"?, cf. (7.4.6). Therefore, using the contracting functor C
defines a p-divisible O gva-module YP? with a polarization. Then Y := Xy, X yba is
isogenous to the p-divisible group X of A. The polarization on Y differs from the
polarization induced from A on A by a factor in Z;, as we see by comparing the
degrees of the polarizations. Therefore we obtain a point (A1, 1, A1) of A%, (S) which
is isogenous to (A,t,\). This proves that the point we started with comes from a
point of the functor in Definition 7.4.5. It is clear that we have a bijection.

We have an action of G**(Q,) on the tower Aj. for varying K. This action
extends to the algebraization Aj. and coincides via Theorem 7.4.11 with the Hecke
operators on the tower AK*,E.

COROLLARY 7.4.15. — For every K* = K;KP? with (7.4.31) , there exists a normal
scheme Aj.. over Spec OE“V such that for the p-adic completion of this scheme there
is an isomorphism

A = J(Q\I(2r, Xspror, SPEOj, ) x G**(Qy) /K™ x G(AT)/K?].

For varying K*, these schemes form a tower with an action of the group G(Q,) X G(A’}),

where the action of G(Q,) factors through G(Q,) — G**(Q,). The isomorphism of
formal schemes is compatible with these actions.
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The general fiber of Ak . is a Galois twist of A+ E XSpec E SP€C E, by the charac-
ter x8, cf. (7.4.26) and Remark 7.4.13. The Galois twist respects the Hecke operators
(cf. Section 7.6 for an explicit description of X% ).

Proof. — This is a consequence of Proposition 7.4.4 and the general pattern of p-adic
uniformization, cf. (7.3.1).

The last assertion follows because xo : Gal(E2?/E,) — G(Q,) factors through the
center. O

7.5. The rigid-analytic uniformization

Let .A;ég denote the rigid-analytic space over Sp E, associated to Ak, g. Then The-
orem 7.3.3 implies the following corollary concerning generic fibers.

COROLLARY 7.5.1. — Let K = K,KP? as in (7.1.8). There exists an isomorphism of
rigid-analytic spaces over Sp E,,,
AR Xsp, SpE, = J(Q\[(Qr, xspr, Sp £y) x G'(Q,) /G (Zp) x G(A})/KP].

For varying KP, this isomorphism is compatible with the action of G(A?) through
Hecke correspondences on both sides.

Here Qp, = P, \P'(F,) is Drinfeld’s p-adic halfspace corresponding to the p-adic
field F,.

Similarly, Corollary 7.4.15 implies the following corollary concerning generic fibers
for deeper level structures.

COROLLARY 7.5.2. — Assume that there are banal primes. Let K* = K7KP with
(7.4.31). Let A;iﬁ denote the rigid-analytic space over Sp E, associated to Ak~ E.
There exists an isomorphism of rigid-analytic spaces over Sp Eu'ﬁb,

U8 xspm, Sp B = JQ\[(Qr, xspr, Sp ) x G (Q,) /K™ x G(A?)/K?].

For wvariable K*, this isomorphism is compatible with the Hecke correspondences
by G(Qp) x G(A]).

7.6. Determination of the character x5

In this section we give an explicit description of the character x§ (7.4.26) which is
used in Corollary 7.4.15. In the case where p,, is ramified in K/F, we only obtain the
restriction of x5 to the Galois group of a quadratic extension of E,. Tt is enough to
describe xp,0 (7.4.25) for each banal prime p. This is done by Proposition 7.6.5 below.

Let K/F be a CM-field. Let 2 C Homg a15(K,C) be a CM-type. We denote the
reflex field by H. We define an algebraic torus over QQ, with Q-valued points

T(Q)={ae€ K*|aaecQ*}.

We use the notation V = K for K regarded as a K-vector space.
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We recall the reciprocity law. We define the homomorphism

p:C* = (KeeC)*= J[ c*
p:K—C

The element p(z), for z € C, has component z for ¢ € = and has component 1
for ¢ ¢ = on the right hand side. We find ppi = 1® z € (K ®g C)*. We obtain a
homomorphism of algebraic tori

w:Gpc— TIc.
This homomorphism is defined over H,

w:Grog— Ty
From this we deduce the reciprocity map

(7.6.1) t: Resy/o(Gon.sr) — Resyo(Th) —4°T.

We consider over the algebraic closure H = Q the set of tuples (4, ), ), where
(A,.) is an abelian variety over H of CM-type Z, endowed with a Q-homogeneous
polarization A\ which induces on K the conjugation over F' and an isomorphism
k:V(A) =V ®As of K® Ajs-modules. We call a second tuple (A’,:/, X, x) equiva-
lent to (A, ¢, \, k) if there is a quasi-isogeny

(7.6.2) a: (AL — (A0, N)
such that the following diagram
V(4) . V(4
Ve Af

commutes. We also say that (4,1, \, k) is quasi-isogenous to (A’,¢/, N, K’).

Let C= be the set of tuples (4, ¢, \, k) up to equivalence. Let o € Gal(H/H). Taking
the inverse image of (A,t,\, k) by & := Speco : Spec H — Spec H gives a left action
of Gal(H/H) on Cz. We denote the inverse image by o(4,, A, k).

We formulate the main theorem of complex multiplication of Shimura and
Taniyama.

THEOREM 7.6.1 ([8, Thm. 4.19]). — The Galois group Gal(H/H) acts on Cz via its
mazimal abelian quotient Gal(H** /H). Lete € (H®A)* and letrec(e) € Gal(H*"/H)
be the automorphism given by the reciprocity law of class field theory. The following
tuples are equivalent:

rec(e) (Aa 2 5\7 ”") (Aa 2 5‘7 t(ef)/i),

where ey is the finite part of the idéle e.
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REMARK 7.6.2. — Let (H*)" C (H ® Af)* be the closure of H*. We deduce a
homomorphism

(7.6.3) Gal(H/H) — (H ® Ag)*/(H*)" — T(Af)/T(Q),

where the first arrow is deduced from class field reciprocity and the second arrow
exists because T'(Q) = T(Q)". To see this last fact, we note that the group of units
in T(Q) is finite. Indeed, the units are elements of K * with all absolute values equal
to 1 at all places including the infinite ones. Therefore T(Q) = T(Q)" by Chevalley’s
theorem.

Theorem 7.6.1 says that the action of Gal(H/H) on Cz is via (7.6.3). One can
consider the Shimura variety Shy. We may choose as usual a bijection

Shy(H) = Shr(C) = T(Af)/T(Q).

Then the theorem may be regarded as a consequence of Langlands’ description of the
reduction of this Shimura variety at good places [16].

We fix an embedding Q — @p. The p-adic place which is induced on a subfield
of Q will be denoted by v.

PROPOSITION 7.6.3. — Let L C Q be a number field such that H C L. Let
(Ao, to, Ao) be an abelian variety over L with an action 1y : Ox — End Ay which is
of CM-type Z. We assume that Ay has good reduction at v. The group Gal(L,/L,)
acts on the Tate module T,(Ao) via its mazimal abelian quotient Gal(L2®/L,). Let
I, C Gal(L2/L,) be the inertia group. The action of I, on the Tate module can be
described as follows.

The inverse of the map (7.6.1) induces a homomorphism

Nmp, /H,

1
P:L;( B HjC(H@’Qp)Xt_’(K@Qp)X-

Composing p with the reciprocity law of local class field theory yields

rec

I, = Of % (Ok ®Z,)*.
The action of an element o € I,, on the Tate-module is the multiplication by the image

in the right hand side.

Proof. — We set A = Ay ® g H with the Og-action and the induced polarization. We
set A = O C V and A = Og ® Z. We choose a rigidification x : T(A) = A. We
consider the tuple (4,1, \, k). Let

oel,cGal(H,/H,) C Gal(H/H)

be an element of the inertia group at v. The image in Gal(H?®P/H) corresponds to an
idéle in (H®A)* which has components 1 outside v and a component e, € O at the
place v. We denote the idéle also by e,. By Theorem 7.6.1, we have a quasi-isogeny

6" (Aa Ly 5‘3 "{) = (Aa Ly 5‘7 t(el/)’{’)'
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Let us moreover assume that o fixes the elements of L. Since (A,t,)\) is defined
over L, it is not changed by 6*. Now we consider the product of the Tate modules for
all primes,

T(4) = 6*(T(4)) — A.

The first identification is due to the fact that 7'(A) is a projective limit of étale sheaves
on Spec L.

LEMMA 7.6.4. — Denote by T'(o) the action of ¢ on T(A). Then

6*(k)T(c) = k.

We postpone the proof of the lemma. Because we have good reduction, the ele-
ment T'(0) acts trivially on the Tate modules T;(A) for £ # p. On T,(A) it acts by
multiplication with an element u(o) € (Ox ®Z,)*. Therefore we have a quasi-isogeny

(7.6.4) (A, 1, N t(e))k) =2 (A, 1, N u(o) k).

The quasi-isogeny giving this equivalence must be trivial on the Tate modules V;(A)
for ¢ # p. It is therefore the identity. The proposition follows therefore from
Lemma 7.6.4. U

Proof. — (of Lemma 7.6.4) We consider an étale sheaf G over Spec L where L is
any field. Let L° be the separable closure of L. For ¢ € Gal(L*/L) we denote by
G(o) : G(L*) — G(L®) the natural action. Let I be a constant sheaf on Spec L asso-
ciated to a set I'. Let

k:G—T
be an isomorphism of sheaves on (Spec L®)s. There are canonical isomorphisms

6*(G) =2 G and 6*(I') =2 T" because both sheaves are defined over L. We must show
that the map

K G =57 (@) (L) T 6*(D) (L) =T
coincides with kG(a~1).

Let A be a finite étale algebra over L°. By definition of the inverse image, we have
6"(G)(A) = G(A[p]). Therefore the L*-algebra isomorphism o : L* — L , induces a
natural map G[o]: G(L®*) — 6*(G)(L*). Our assertion follows from the commutative
diagram, in which the composition of the two upper horizontal arrows is G(o),

Glo] ~

G(L*) —— 6*(G)(L*) —— G(L®)
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Let K/F,r,E — Qp,l/ be as in Section 7.1. Let p be a banal prime of K. Let
(Xp,0tp,0) be the unique CM-pair of CM-type r,/2 over Spec O . We set

Ep={pe®|r, =2},
where ®, = Homg,-a14(Ky, Q,), as in (7.1.9). We consider the homomorphism

o @ — (K Q)" 5 [ Q)
@y

such that the component of uy(a), a € Qp, is equal to a for ¢ € Ep and is 1 for ¢ ¢ =,,.
This morphism is defined over E,. We define the local reciprocity law t, as

Nm q
(7.6.5) v B (K, @0 B 47 KX

Let I, C Gal(E2/E,) be the inertia group. As before (7.4.25), let ES be the algebraic
closure of E, in the completion of Q,. By the reciprocity law of local class field theory,
we define

-1
pp ¢ Gal(ES/B,) — Gal(B:"/E,) & 0%, ™ 0} .

PROPOSITION 7.6.5. — Let p be a banal prime of K. Let xp0 : Gal(ES/E,) — Oﬁp be
the character given by the action on Tp(X, o), compare (7.4.25). Then the restriction
of this character to the subgroup

Gal(E;/E,po(K,,)) C Gal(E;/E,)
coincides with the restriction of p, to this subgroup.

We remark that E‘V¢0 (Ky,) equals E, if py is unramified in K/F and is a quadratic
extension of E, if P, is ramified in K/F.

Proof. — It follows from the functoriality of rec that the proposition implies the same
statement for a finite extension E, of E,,.

We define a CM-type = C ® = Homg.a1(K,C) by choosing ¢ : K — C with

Ty, = 1 and setting

E={pe®[ry,=2}U{po}

We denote by H the reflex field of 2. We find that Hpo(K) = E@o(K). We claim that
there exists an extension of number fields L/H which is unramified at v and a tuple
(A, 1, )\, k) which is defined over L and such that A has good reduction A over Or,. Let
Y be the p-divisible group of A, which we write as Y = Hp Y}, where p runs through
the prime ideals of Ok over p. Let p be banal. Then (Y},t) ®o, Oy, is a CM-pair
of type r,/2 which satisfies the Kottwitz condition and the Eisenstein condition.
Therefore it is isomorphic to (X 0,tx, ,) Which is defined over Oy . Therefore the
proposition follows from Proposition (7.6.3).

It remains to show the existence of L. We fix an open compact subgroup C' C T'(Ay)
which is maximal in p and is small enough. The Shimura variety Shz ¢ which is asso-
ciated to (T, 1) and C is representable by a moduli problem Az ¢,y which is finite and
étale over H. Moreover it has a model Az ¢ over Oy, . It is defined exactly in the same
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way as Axk. Since for the moduli problem Az ¢ each prime p of O is banal, it is rep-
resentable by a finite étale scheme over Op, . We conclude the Az ¢ g = ]_[:11 Spec L;
for some finite field extensions L;/H which are unramified over v. Restricting the uni-
versal abelian scheme over Az ¢ g to some L = L;, we obtain a tuple as required. [
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CHAPTER 8

APPENDIX: ADJUSTED INVARIANTS

In this appendix we first collect some facts about anti-Hermitian forms. Then
we give a correction to [19, Prop. 3.2], by introducing the r-adjusted invariant of a
CM-triple. Finally, we relate the r-adjusted invariant to the contracting functor of
Section 4.

8.1. Recollections on binary anti-Hermitian forms over p-adic local fields

We first recall the invariant of an anti-Hermitian form in the case relevant to us.
A good reference for this material is [14].

Let K/F be a quadratic extension of fields of characteristic 0. We denote by a — @
the non-trivial automorphism of K over F. Let V be an 2-dimensional vector space
over K. Let

x:VxV—K,

be a sesquilinear form which is linear in the first argument and anti-linear in the
second. We assume that s is anti-Hermitian:

s(x,y) = —(y, o).
We choose a basis {v1,v2} of V. Then det(s(vs,v)))i jef1,2y € F*. We denote by
(8.1.1) ok p(V, %) € B/ N/ K™,
the residue class of this element. It is independent of the choice of the basis and is

called the discriminant of (V, s).

DEFINITION 8.1.1. — Let F' be a p-adic local field and K/F a quadratic field extension.
Let (V, ) be a K-vector space of dimension 2 with an anti-Hermitian form s which
is nondegenerate. We denote by inv(V, ) € {£1} the image of 0 p(V, ) under the
canonical isomorphism F* [ Nmg,p K* ~ {£1}. The invariant determines (V, ») up
to isomorphism, cf. [14].
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We note that an anti-Hermitian form 3¢ can equivalently be given by an alternating
non-degenerate (Q,-bilinear form

(8.1.2) YV XV —Q,
such that
Y(az,y) = ¢(z,ay), z,y€V, a€kK.

The anti-Hermitian form s¢ is defined by the equation

Tri/q, asx(x,y) = P(az,y).
In this case we set
inv(V, ) = inv(V, ).

The invariant inv(V, ) determines (V) up to isomorphism.

Let A C V be an Og-lattice such that ¢ induces a pairing
(8.1.3) Y AXAN—Zp,
i.e., 9 is integral on A. We consider the map

A — Homg (A, Z

(8.1.4) Yy 4y, Z\:/ilere Z(m) = Y(z,y)

This is an anti-linear map of Og-modules. Therefore the image of this map is an
Og-submodule. We denote the length of the cokernel as an Og-module by h(A, ).

LEMMA 8.1.2 ([14], Thm. 7.1). — Let F be a local p-adic field and K/F an unramified
field extension. Let V' be a 2-dimensional K -vector space. Let

Y:VxV—Q

as in (8.1.2). Then inv(V, ) = 1 iff there exists an Ok -lattice A CV such that ¢ is
integral on A and such that h(A, ) = 0, i.e., such that Y|axa is a perfect pairing.
Moreover, A is uniquely determined up to Aut(V, ).

Similarly, inv(V 1) = —1 iff there exists an Ok -lattice A C V, such that ¢ is
integral on A and such that h(A,v¢) = 1. Moreover, A is uniquely determined up
to Aut(V,v). In this case, Y|pxa is called almost perfect.

fjmof. — This reduces to the analogous statement for the anti-Hermitian form
¥V xV — K defined by

t(EP (1, 20)) = Y(Ex1,20), x1,29€V,E€K.

where t : K — @, is defined by t(a) = trx/q, (9~ ta), where ¥ denotes the different
of K/Q,. Then it follows from loc. cit. O
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LEMMA 8.1.3 ([14], Prop. 8.1 a)). — Let p # 2, and let F be a local p-adic field and
K/F a ramified quadratic field extension. Let V be a 2-dimensional K -vector space.
Let

P:VxV—Qp,
as in (8.1.2). Then there exists an O -lattice A C V such that v induces a perfect
form

Vi AXAN— Zp.
Moreover A is unique up to Aut(V, ).

8.2. The r-adjusted invariant

Let K be a CM-field, with totally real subfield F. We set ® = Homg a1¢(K, Q).
Let r be a generalized CM-type of rank n, i.e., r, +75 = n for all ¢ € ®. Throughout
this subsection, we assume that n is even. Let E = E,. be the reflex field, cf. [19, §2].
A CM-triple over an Og-algebra R is a triple (A, ¢, A\) where A is an abelian scheme
over R with an action ¢ : Ox — End A with satisfies the Kottwitz condition (KC,)
and a polarization A whose Rosati involution induces the conjugation of K/F'. In the
case n = 2 this is a CM-triple with satisfies the Kottwitz condition, cf. Section 2.3.
Let v be a place of F. We define an r-adjusted invariant inv] (A, ¢, A) attached to a
triple (A, ¢, A) of CM-type r, defined over a field k that is at the same time an Og-al-
gebra. When v is non-archimedean split in K, then inv} (A4,¢, A) = inv,(4,¢,A) = 1.
If v is archimedean, or non-archimedean non-split in K, with residue characteristic
of v different from the characteristic of k, then invy(A,¢, A) = inv,(4,¢,N), i.e., the
adjusted invariant coincides with the invariant of [19, §3]. Comp. Section 2.4 for the
definition of the latter invariant for n = 2. The case of general even n is substantially
the same.

Now let v be non-split with residue characteristic equal to the characteristic p of k.
We may assume that k is algebraically closed. Let us first assume that the Og-algebra
structure of k is induced by a O@—algebra structure. Let  be the induced p-adic place

of Q. Let

(8.2.1) ®, ={p: K — Q| 7oy induces v}.
Then

®, = Homg, (K,,Q;).
Also let

Ty =Ty -

Now define
(8.2.2) invy (A,t, A) = inv, (A4, ¢, A) sgn(ry),
with
(8.2.3) sgn(ry) = (1) Epear ) — (L1)7 Zpear e Te),
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Here ® is a half-system of embeddings in ®,,, which has cardinality d, = [F, : Q,].
Since r, + 15 = n for all ¢ € ®,,, and n is supposed to be even, (8.2.3) is independent
of ®}. Note that sgn(r,) only depends on the place v of E induced by 7.

The correct version of [19, Prop. 3.2] is now as follows.

PROPOSITION 8.2.1. — Let S be an Og-scheme. Let (A, 1, \) be a CM-triple over S
which satisfies (KC,.). Let ¢ € {£1}. Then for every place v of F, the set of points
s € S such that

inv, (As, s, As) = ¢

is open and closed in S.

Proof. — Clearly we may assume that S is an Og-scheme of finite type. Further we
can assume that S is irreducible. Obviously the invariant is constant on the generic
fiber of S. Also, we may assume that v is non-archimedean non-split in K.

First we consider the case when S is an irreducible scheme of finite type over kg, .
Since each local ring of S is dominated by a discrete valuation ring R, it is enough
to consider the case S = Spec R. We may replace R by a discrete valuation ring that
dominates R. Therefore we can assume that R is complete with algebraically closed
residue class field, i.e., R & k[[t]] for an algebraically closed field k. According to the
action of F' ® Qp, the p-divisible group X of A is isogenous to a product lep Xo-
We consider the factor X,. Let P be the display of X, over R, cf. (3.1.9). We note
that P is the value of the crystal of X, at the pd-thickening W (R)/R. By Lemma 8.2.2
below, there is an element x € /\g wr) P such that Fz = p"™/?x. We define the
anti-Hermitian form S

7 P@ X PQ — K, ®Zp W(R)
as in (2.4.3).

We consider the Hermitian form h = A§, - ®3, W (R) % O Nox., ®s, w(r) Po- From

the equation

h(Fyi, Fy) = p""h(yr,02), vi2€ N\ Po,
OKU ®ZPW(R)

we obtain that h(z, ) lies in the invariants (K, ®z, W(R))¥ = K,. Because h is Her-
mitian, we obtain h(x,z) € F,. The element x can be used to determine the invariant
of the Dieudonné module P ®y gy W (L) obtained for arbitrary base change R — L
to a perfect field. Therefore inv,(As, ts, As) = invy,(Ay, tn, Ay) and invy (A, ts, As) =
invy (A, ty, Ay), where s and n denote the special and the generic point of Spec R.
For the comparison with the definition of the invariant of a Dieudonné module we
should remark that the equations Fa = p™/2x and Vz = p™/2x are equivalent because
FV =p" on /\TOLKU®ZPW(R) P.

Now we consider the case when the function field of S has characteristic 0. This
case can be reduced to the case when S = SpecOyp, where L is the completion of
a subfield of @p which contains E and such that its ring of integers O = Op, is a
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discrete valuation ring with residue field Fp. We denote by Ay the generic fiber of A,
and by Ay its special fiber.

We decompose the rational p-adic Tate module of Ay, resp. the rational Dieudonné
module of Ay, with respect to the actions of F' ® Qp,

VoAr) = D Vu(4r), M(A)o = P M (Ao
wl|p wlp
Here V,,(AL) is a free K ®p F,-module of rank n, and M(Ax)gw is a free
K ®f F,, ®q, W(k)g-module of rank n. Set (@p =W(k)g-

Let S, = N, Vo(AL) and Ng,, = A%, M(Ax)g,. Both are equipped with Her-
mitian forms (for the first module, cf. [19, Section 3, case b)|; for the second module,
cf. Subsection 2.4). Also, we have Ng, = 1,(5), where 1, is a multiple of the unit
object in the category of Dieudonné modules, comp. (2.4.5), or Lemma 8.2.2. Let
U, be the image under the Fontaine functor of Ng,,(—%). We need to compare the
two Hermitian vector spaces S,(—%) and U,,.

Let T be the torus over Q, which is the kernel of the map defined by the norm
of Ku/Fva

1—T7T — ResKv/Qp Gm,x, — Rest/Qp Gm,r, — 1.

Then H'(Q,,T) = F)/Nm(K,). We may regard the isomorphisms of Hermitian
vector spaces Isom(U,, S,(—%)) as an etale sheaf on Spec F,,. This is a T-torsor. Its
class cl(Uy, Sy(—7%)) is calculated by [27, Prop. 1. 20].

To evaluate this formula, note that the first summand, x(b), in loc. cit. is trivial.
To evaluate the second summand, ut, we use the following description of the filtration

on No v ®g_ @p. For the filtration of M (Ax)g.v ®g, (@p =P M(Ak)g,v,, We have
that the jumps are in degree 0 and 1, with

(8.2.4) (0) C Fily, C™* M(Ar)g,v.p-

pED,

The upper index means that the cokernel has dimension r,. For the filtration of
the one-dimensional vector space Ng ,,,, this means that the unique jump is in de-
gree n — r,. We use the identification

X.(T) = Ker (Indg? (Indg? (Z)) — Indg (Z)).

Then the corresponding filtration on N(A)q,u,(—%) is given by the cocharacter
1 € X,(T) with

(8.2.5) ty =

We have to determine the image u* of y in X, (T)r. Under the identification X, (T)r =
H'(Q,,T) = Z/2, we obtain

(8.2.6) AU, Su(=3)) = = 37 pp = 5du— D 7y,

pedY I

n
5—7"59, <p€(13v
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where we used the notation introduced for (8.2.3). We deduce invy(Ag,tk, Ap) =
inv, (AL, tr,AL), as desired. O

In the proof of Proposition 8.2.1, we used the following lemma.

LEMMA 8.2.2. — Let F/Q, be a finite field extension of degree d and K/F be a
quadratic field extension. Let n be an even natural number. Let k be an algebraically
closed field of characteristic p. Let (X,i) be a p-divisible group over k[[t]] of dimen-
sion nd and height 2nd with an action O — End X. Let (P,t) be the display of X,
cf. (3.1.9). Then there exists a non-zero element x € Agx@sz(k)[[t]] P such that

/\ F(z) = p"/?x.

Proof. — We consider the Z,-frame By, = (W (k)[[t]], pW (k)[[t]], k[[t]], 0, ¢), where o is
the extension of the Frobenius on W (k) to the power series ring given by o(t) = t?
and where & = (1/p)o. The evaluation P; of the crystal of X at the pd-thickening
W (k)[[t]]/k[[t]] has the structure of a By-display. The display P is obtained by base
change with respect to a morphism of frames B — W(k|[[t]]), cf. [33] and [20]. There-
fore, it is enough to prove our assertion for the By-display of X which we will now
denote by P.

We consider first the case when K/F' is ramified. When writing detyy ) F', we
mean this with respect to an arbitrary W (k)[[t]]-basis of P. This determinant is well
determined up to multiplication with a unit in W (k)[[t]].

We know that detyy (k)] F = p"®u1 for some uy € (W (k)[[t])*.

We consider the decomposition P = @ F,, according to

Ox @ W(k)[[t]] = [[ O ®¢,, 5 WE)[H]-
P
The Frobenius is graded, F' : P, — Py,. We conclude that detW(k)[m](Ff|P¢) =
p"uy for some unit uy € (W (k)[[t]])*. We fix 9. Up to a unit we have

(8.2.7) Nm g/ pe detoK®th@W(k>[[t]}(Ff|P¢) = detyy (g (FF | Py)-

We fix a normal extension L of W (k)q which contains K ®, , 7 W(k).
The left hand side of (8.2.7) is the product of conjugates ci,...,c2. € Opl[[t]]
of detoy g, 1LW(,G)[M](Ff|P¢). These elements have the same order with respect to
Ft>

the prime element wy, of L which is a prime element in the regular local ring O [[t]].
We rewrite (8.2.7)
c1-cpeeeze =" ug,
for some unit u3. Since Oy [[t]] is factorial, we find ¢; = p/™/2u; for some units ;. We
conclude that
det0K®OFt ’,[,W(k)[[t]] (Ff |P¢) = pfn/2’LL4

for some unit uy € (Ok ®¢_, 5 W(K)[[t]])*.
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Since Py is a free Ok B0 1 b W (k)[[t]]-module of rank n, we find that, for each
element y, € /\ZK®O W] P, there is an equation A" Ffy, = /™ u(yy)yy
Fto

for some unit u(yy) € Ok B0 0 b W (K)[[t]]. On the last ring, o/ acts via the second
factor. There is a unit ¢ € Ok ®¢ _, ; W (k)[[t]] such that

oI (¢ = ulyy).
Indeed, consider the image @ of u(yy) in Ox ®0,..3 W (k) by setting ¢ = 0. It is

well-known that in this ring o/(¢){~! = @ is solvable. One can lift { successively
modulo t" to a solution ¢. Then z, = (y,, satisfies

n
/\fow =pf" %,

We define Typoi € P@ by /\n Fi.fb'w = pin/2$wai fori=1,.. .,f. Then x = (1‘1/)) € PRQ
satisfies /\h F(z) = p™/?z. Multiplying by a power of p we can arrange that = € P.
The proof in the unramified case is almost the same. We indicate the differences.

In this case Homg,-a1g(F*, W (k)g) has 2f elements. Therefore we have the Equa-
tion (8.2.7) with f replaced by 2f,

detoK@OFt SWE[E] (F2f|P¢) = pfnu4.

We define z,: € Py by \" Fizy = p™/ 2z, fori=1,...,2f.
Then z = (zy) € P ® Q satisfies N'F(z) = p"/2x. O

REMARKS 8.2.3. — (i) The remarks and results on a product formula at the end of §3
of [19] become correct when the invariants inv, (A4, ¢, A) are replaced by the adjusted
invariants invy (A, ¢, ).

(ii) In the definition of M,y v in [19, (4.3)], the invariants inv, (A4, ¢, A) have to be
replaced by the adjusted invariants invy (A,¢, A).

(iii) One defines in the obvious way the r-adjusted invariant inv" (X, ¢, A) of a local
CM-triple of type r, (X, ¢, A), over a field of characteristic p.

8.3. r-adjusted invariant and the contracting functor

In this subsection, we return to the situation in Section 2.1. We assume that K/F is
a field extension. Let k be an algebraically closed field of characteristic p with an
Op-algebra structure, i.e., k € Nilpg,..

We consider the case where r is special. Consider an object (Pe, tc, Bc) € DSRZOI cf.
Definition 4.4.10. We write P, = (P, Ft, V¢) for the corresponding Wo . (k)-Dieudonné
module. To avoid too many double notations we denote the Frobenius automorphism
on Wo, (k) by 7. The Verschiebung on Wo,. (k) is then 77~!. For our purposes it is
more convenient to allow quasi-polarizations, i.e., 8. is a Wo . (k)-bilinear form

P.®Q x PC®Q_)WOF(k)Q7
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such that (P, tc,pB:) € amg‘“ for large enough t € Z. Then f. is alternating and the
following equations hold:

Bo(Feur, Fouz) = m7(Be(ur, u2)), u1,u2 € P ®Q,

Be(te(a)ur, uz) = Be(ur, te(@uz), a€ K.
The polarization (. defines an anti-Hermitian form
(8.3.1) #: Pe®Qx P.®Q — K ®o0, Wo,(k),
by the formula

Trg/paxc(ur,uz) = Be(aur, uz), a € K ®o, Wo,(k), ui,us € P. ® Q.
We note that, by Lemma 3.1.15, P, ® Q is a free K ® o, Wo .. (k)-module of rank two.
Since Lie P, has dimension 2, we have ord, det Wo,, (k)(V;|P.) = 2. We recall that,
for an arbitrary K ®0, Wo, (k)-linear map V#: P, ® Q — P. ® Q,
Nmg,p det kgo, wo, (k) (VE|Pe ® Q) = detw,, k) (VI P © Q).

We conclude that

ordndetxg,, wo, (k) (VelPe) =2, K/F ramified,
8.3.2
( ) ordr detxg, wo . (k) (VelPe) =2, K/F unramified.

With our convention 7 = II in the unramified case, this is the same formula.
Let

H, = A P.®Q.

K®OF WOF (k)
This is a free K ®o, Wo, (k)-module of rank 1. There is an element z. € H. such
that

(8.3.3) AV, o = T,

The existence of z,. follows from (8.3.2) and the fact that the 7-conjugacy class of an
element £ € K ®o, Wo, (k) is determined by its order, compare (2.4.2).
The anti-Hermitian form s, induces on H. an Hermitian form

he = A%s. : He x H. — K ®0, Wo, (k).
We find
(8.3.4) hc(/\zvC z1, N2V, Z9) = 7T27'_1(hc($1,£1}2)),
where 7 acts on K ®o,. Wo,. (k) via the second factor. Using (8.3.3) this implies
he(ze,ze) € F* C K o, Won (k).
The following definition is analogous to (2.4.7).

DEFINITION 8.3.1. — The invariant inv(Pe,tc, Bc) € {£1} is defined as the image
of he(zc, ) by the canonical map

F1>< —>.F‘X/IL\IHI](/FI{>< L{:l:].},

MEMOIRES DE LA SMF 183



8.3. r-ADJUSTED INVARIANT AND THE CONTRACTING FUNCTOR 201

The following proposition relates this invariant with the invariant (2.4.7) under the
contracting functor.

PROPOSITION 8.3.2. — Let K/F be a field extension and let r be special. Recall
the reflex field E associated to r. Let k € Nilpo, be an algebraically closed field.

Let (P,,) € D‘Dfil and let (Pe,te, Be) € DERZOI be its image by the contracting func-
tor €%, cf. (4.4.14). Then

inv" (P, t, 8) = inv(Pe, te, Bc)-
Here the r-adjusted invariant is given by

invr(’P, Ly 6) = (_l)d_linV(P7 2 ﬂ)

Proof. — The second assertion follows from the definition of sgn(r), cf. (8.2.3). Let us
prove the first assertion.

We begin with the ramified case. We have the decomposition P = @w Py, cf.
(4.3.6). By the definition of the contracting functor for Dieudonné modules, we have

P. =Py, V.=1"¢"*ly,

cf. Remark 4.4.12. The bilinear form /3’0 on P, is the restriction of B of Proposi-
tion 4.4.5. Since we may change 8 by a factor in F'* without changing the invariant,
we may replace B by 9~ 13 ie., we may assume that Trp/q, B = (3. We define the
anti-Hermitian form

#2:PRQ x PRQ— K®z, W(k)
by TrK/F%:B. On

(8.3.5) H= A PgQ

KQW (k)
we obtain the Hermitian form A = AZsr. We have the decomposition

2

H=B N\ Po0=-DH.
¥ K@o , ;W) Y
The Hermitian form A is the orthogonal sum of the induced forms
hw : H¢ X H,/) — K®0Fh7$ W(k})
To determine inv(Pg, tc, Bc), we consider s defined by Trg/p % = Bc and the

Hermitian form ke = A2%3¢ on H, = Hy,. The form hy, coincides with the Hermitian

form deduced from the form 3, above. By definition 3, = 77{;_ kﬁNC, cf. (4.4.21). Hence
we have

2
he = 15 hugy -
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We choose an element x € H such that

2
/\ V(z) = pz.
Let zy, be the ¢o-component of z. Then inv(P,t, §) is given by the element
P (Zopy > Tpy) € .
We set zy, = n(;,]:a:wo. Then we find

he(Zp0s 20) = Mo helwa (T A 2p0s Mo A B00) = P (T o, T )-
From V, = II=%'V/ and \*V/zy, = p’xy,, we obtain
NVe(yy) = (1) (p/m€) 2y,
NVe(2g) = 77 g D) (1) m(p/7%) 0] 2, = (1) 2y,
By Lemma 8.3.3 below, he(2y,, 2y,) € F* defines (—1)?~tinv (P, tc, Bc).
We consider now the unramified case. As before, we have H with its Hermitian

form h, cf. (8.3.5). We consider the decomposition
2

(8.3.6) H= ( A Pe Q) - PH,,
" "

K®o , ;W)

which has now 2f summands. Now Hy, and Hy, are orthogonal for ¢, # 1». We
denote by
hw : H"P X H'Z’ — K®O§<ﬂ[’ W(k)
the sesquilinear form induced by h. Let z = (zy) € H such that A’V (z) = pz
or, equivalently, A’V (zy) = pzy,-1 for all ¢. The invariant of (P, ¢, 3) is the class
in F*/Nmg,p K* of hy(zy,z5) € F C K ®0,..,4 W (k). This is independent of ¢.
Equivalently, we can consider ordy hy (zy,z;) € Z/27. Note that ord, makes sense
for each element of K ®;, , ; W (k).
The invariant of (P, tc, Bc) is defined by H. = Hy, ® Hy, and he, via

(8.3.7) ordy he(Te o To iy )

where z. = (Zc, g9, Te ,) € Hy, © Hy, is the element of (8.3.3). We note that we can
change hc and the elements z. y,, resp. z, j , by a unit in K ®0 4% W (k) without
changing (8.3.7). In particular, (8.3.7) is equal to ord hy, (Tc ygs Te, g, )-

For an element y = (yy,,Yy,) € He we obtain from (4.4.3)

A2 Ve(yyy) = 72950 A2 V(Yuo)s /\2Vc(y%) = 7 29v0 A2 V (Y, )-
We set
Zypo =T Tomyy, 25 =m oz .
We find
/\QVC(Z%) _ W*gwoﬂ-*?gaopf%o — 7 9% *%Opfzd_)o’

/\2Vc(21;0) = ngfﬁofg‘”opfz%.
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We have ord, (7 9% ~9%0pf) = 1. Therefore we obtain an element . as in (8.3.3)
if we change zy, and z,;, by a unit, cf. Lemma 8.3.5 below. Therefore the invariant

of (P, tc, Be) is
ordy hy, (Zwov Z,LO) = (_gwo _91/70) +ordy hy, (xd)o ) xzﬁo) = (1—d)+ord, P (xwov mizo)'
This proves the unramified case. O

In the previous proof, we used two lemmas which we state as Lemmas 8.3.3 and
8.3.5.

LEMMA 8.3.3. — Let K/F be ramified and let r be special. Let y. € H. be an element
such that

/\ZVC(yC) = —TYc.
Then he(ye,yc) € F* and the image of this element in {£1} is —inv(Pe, tc, Be)-

Proof. — We choose an element ( € Wo,. (k)* such that

T = -1
Then 72(¢) = ¢ and therefore ( € Opr C Wo, (k) where F'/F is the unramified
extension of degree 2. More explicitly, we take an element ¢ € kg such that 7(c) = —c

and define ¢ = [¢] to be the Teichmiiller representative.
We set . = (y.. Then the equation (8.3.3) is satisfied. We find

(838) hc(l'c,il‘c) = C2hc(yc, yc)‘

Since (2 mod m = ¢? € kr is not a square in this field, we conclude that (2 is not
in the image of Nmg,p : Oy — Oj since the norm is the square on the residue
fields. Therefore the image of the right hand side of (8.3.8) in {£1} is different from
the image of h¢(Ye, Ye)- O

The last lemma has the following variant which we need in the banal case.

LEMMA 8.3.4. — Let K/F be ramified and let v be arbitrary. Let (P,t,[) be a CM-
triple of type r over an algebraically closed field k. Let y € /\;@)W(k) Py be an element
such that

2
AV =-py.
Set h = N\® 5. Then h(y,y) € F C F @ W (k) and
h(y,y) = (-1)/inv(P,+,8) mod Nmg, g K*.

Proof. — We consider the decomposition

Or@W(k) =[] Or®,,, s W(k).
P
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We denote by o the Frobenius acting on W (k). It induces via any of the embed-
dings 9 the Frobenius o € Gal(F*/Q,). The decomposition induces a decomposition
P= @¢ P, and

2 2
N =B N Po
KQW (k) v K®o , ;W)

which is orthogonal with respect to h. By restriction of h, we obtain
2 2

hy: N Puax N Pue— Ko, Wk
K&, , sW(k) K&, , ;W (k)

We find ¢ € Op @ W (k) such that 0=1(¢)(~! = —1 or equivalently o(¢) = —(. We
set £ = (y. Then we find

2 2
AV@) = AV = - (py
=~ 1(¢)¢ pr = pa.
Therefore inv(P, ¢, ) is the class of
(8.3.9) h(¢y,¢y) = ¢*h(y,y) mod Nmg/p K*.

This shows in particular that h(y,y) € F* because (> € F*. We can replace in
(8.3.9) the left hand side by (yhy(y,y) which gives for all ¢ the same element of F'.
The equation o(¢) = —( may be written as o({y) = —(yo. If we choose for a given v
an element (y € OF ®0,, W (k) such that ¢/({y) = (=1)7(y, we obtain from this
element a unique (.

In the case where f is even, we can choose (y, = 1, which proves the lemma in
this case. If f is odd, we obtain that ¢ € F’ \ F. This implies as in the last lemma
that (2 ¢ Nmpg,p K*. This proves the case where f is odd. O

The following fact is well-known.

LEMMA 8.3.5. — Let K/F be unramified. Let u € O ®0,+ 0 W (k) be a unit. Then
there eists a unit ¢ € Ok ®¢_, 5, W (k) such that
o) ¢ =

PROPOSITION 8.3.6. — Let r be banal, and let K/F be a field extension. Let R = k be
an algebraically closed field. Let (Cp,t,¢) be the image of (P,t,p) € D%fﬁ; by the

polarized contraction functor Qf‘;cl, cf. Theorem 4.5.11. Then
il’lV(C'p, 2 ¢) = inv" (Pv Ly ﬁ)
Here the r-adjusted invariant is given by

inv"(P,,8) = (—1)dinv(73, L, B).
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Proof. — We begin with the ramified case. We choose kg C k. Let 'nn=! = 7¢/p = p,
neOp®W(Rg) as in (4.5.19). We define §: P x P — Op @ W (k) by (4.5.8) and
the anti-Hermitian form s : Py x Py — K ® W (k) by Tr »c = (. This s differs from
the s of (2.4.3) by a constant in F. We can use it to compute inv" (P, ¢, 3). We set

B'=np, # =nx
We set V! =II7¢V. Then we have Cp = {y € P | V'y = y}, cf. Remark 4.5.13. From
this, one deduces
p-FByr,y2) = B(yr,y2), y1,y2 € Cp,
cf. (4.5.9). This implies
Fﬂ/(ylv Z/2) = 5'(1,/17 y?)
The restriction of B’ to Cp is the form ¢, cf. Remark 4.5.13.

We choose an element z € APy := /\§{®W(k) Pg such that A%V (z) = (—1)°pz. By
Lemma 8.3.4 the class of A?x(z,z) € F*/Nmg/p K* = {1} is (=1)¢inv(P, ¢, 8) =
inv" (P, ¢, B).

We note that A2V/ = (—=1)¢m~¢ A2 V. We set

z=n"tz € A’Py.
Then we find
NV'(2) =" (1) APV () =

T (D (1) pe
= Ffl(n_l)mr_epz = z.
Therefore z € /\i( Cp®Q. The invariant inv(Cp, ¢, ¢) is given by A%s¢(2, z). Therefore
the equality of invariants follows from
N2 (2,2) =02 A2 (e, ta) = A%sx(z, 2).

Now we consider the case where K/F is unramified. We use the notation H, h, Hy, hy
from (8.3.6). We have by (4.5.13) that

2

NCp={z€H| NV(z) =nlz}.

Ok
Using the decomposition (8.3.6), the condition for z = (2,) becomes

A2V (2yo) = T2 2.

We choose z # 0. Then

iny(Cp, 1, 6) = (~1)°r helevsse),
for any 1. We set gy = ay + aypo + -+ + ay,s-1. Then we obtain

Gpo — G = Ay f —aqua@—aw:e—Qaw.
We set uy = m9%2y. Then u = (uy) satisfies
AV (u) = 7u.
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Indeed,
A2V (uye) = TI%7 N2V (240) = TI0o w20 2 = 9o p200 ™I qy, = mouy,.

Let again n € O ® W(Rg) be the element defined after (4.5.19).

It satisfies n~ ¥ 1 = (p/n¢). We set & = nu. Then A2V (z) = pz. Therefore

inv(P,t,B) = (—1)0“1’r hw(W’%)’
for any 1. Therefore the unramified case follows from
ordy oy (Ty, T5) = ordy hy (9% 2y, N7 25) = (gy + g5) + ordy hy (24, 2)
=ef +ordy hy(2y, 2)-
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We prove p-adic uniformization for Shimura curves attached to the group of unitary
similitudes of certain binary skew Hermitian spaces V with respect to an arbitrary
CM field K with maximal totally real subfield F'. For a place v|p of F' that is not split
in K and for which V,, is anisotropic, let v be an extension of v to the reflex field E.
We define an integral model of the corresponding Shimura curve over SpecOg, ()
by means of a moduli problem for abelian schemes with suitable polarization and
level structure prime to p. The formulation of the moduli problem involves a Kottwitz
condition, an Fisenstein condition, and an adjusted invariant. The uniformization of
the formal completion of this model along its special fiber is given in terms of the
formal Drinfeld upper half plane 0 r, for F,. The proof relies on the construction of
the contracting functor which relates a relative Rapoport-Zink space for strict formal
Or,-modules with a Rapoport-Zink space of p-divisible groups which arise from the
moduli problem, where the O, -action is usually not strict when F,, # Q,. Our main
tool is the theory of displays, in particular the Ahsendorf functor.

On démontre luniformisation p-adique pour les courbes de Shimura attaché a un
groupe de similitudes unitaires pour certains espaces anti-hermitiens V relatifs a un
corps CM K, avec sous-corps totalement réel mazimal F'. Pour une place v|p de F' qui
n’est pas déploye dans K et pour laquelle la localisation V,, est anisotrope, soit v une
extension de v au corps reflex E. On définit un modele sur Spec Og (,y de la courbe
de Shimura correspondante en posant un probléme de modules de variétés abéliennes
avec polarisation et structure de miveau premier o p. La formulation du probléme
de modules fait intervenir une condition de Kottwitz, une condition d’Eisenstein, et
la notion d’un invariant rectifié. L’ uniformisation du complété formel de ce modéle
le long sa fibre spéciale est donné en termes du démi-plan de Drinfeld formel ﬁpﬂ
pour F,. La démonstration est basée sur la construction d’un foncteur contractant qui
rélie un espace de Rapoport-Zink relatif de O, -modules formels stricts avec un espace
de Rapoport-Zink de groupes p-divisibles des variétés abéliennes qui apparaissent dans
le probléme de modules, pour lesquelles laction de Op, n’est pas stricte en géneral si
F, # Qp. Notre outil principal est la théorie des displays, en particulier le foncteur
de Ahsendorf.
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