L'origine des méthodes multipas pour l'intégration numérique des équations différentielles ordinaires
The rise and development of multistep methods for the numerical integration of ordinary differential equations
Français
L'histoire des méthodes multipas pour l'intégration numérique des équations différentielles ordinaires a été peu étudiée. Ces méthodes peuvent être rattachées à la formule de quadrature de Gregory-Newton, qui a été appliquée pour la première fois à un système différentiel par Clairaut, en 1759, à l'occasion du retour de la comète de Halley. Les méthodes multipas proprement dites sont ensuite inventées à plusieurs reprises et de façon indépendante par J.C. Adams (1855), G.H. Darwin (1897), W.F. Sheppard (1899) et C. Størmer (1907). Elles donnèrent lieu à de gigantesques calculs de tables numériques pour répondre à des problèmes complexes de mathématiques appliquées. Fruit du savoir-faire des astronomes britanniques, ces méthodes marquent l'apogée d'une époque de l'histoire de l'analyse numérique.