Les premières démonstrations de la formule intégrale de Fourier
The initial proofs for the Fourier integral theorem
Français
Fourier, Cauchy et Poisson ont à la même époque et, semble-t-il, indépendamment, introduit la transformée intégrale qui est devenue depuis l'un des outils les plus féconds de l'analyse et de ses applications. Plusieurs démonstrations de convergence de la formule intégrale correspondante ont été proposées par Cauchy et Poisson, alors que Fourier, auquel est attribuée la paternité de la formule, n'en a donné qu'une seule. Une autre preuve est due à un mathématicien peu connu, Camille Deflers. Une comparaison des diverses démonstrations présentées dans les années 1810 et 1820 conduit à en proposer une ification d'après la méthode utilisée. On repère ainsi les preuves utilisant la technique du facteur auxiliaire (Cauchy, Poisson), celles fondées sur une « évaluation du poids de l'intégrale » (Deflers, Fourier, Poisson), et enfin celle de Cauchy de 1827 utilisant le calcul des résidus.