"De la petite vérole au XVIIème siècle au cancer aujourd'hui : ce que peuvent apporter les mathématiques"
En 1760, le mathématicien Daniel Bernoulli présentait à l’Académie des sciences de Paris un mémoire intitulé «Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir» (la petite vérole était le nom donné à cette époque à la variole). Il formulait ainsi pour la première fois une question relevant de la santé publique en termes mathématiques. La question, controversée, était de savoir s’il y fallait ou non encourager l’inoculation d’une petite quantité de variole peu virulente (vaccination) afin de déclencher une réponse du système immunitaire capable d’offrir une protection contre le virus, compte tenu du fait que ce procédé pouvait s’avérer être mortel dans certains cas.
Peu avant sa mort en 1759, Maupertuis, autre scientifique important de cette époque, avait encouragé Daniel Bernoulli à attaquer cette question de l’inoculation d’un point de vue mathématique. Ainsi, bénéficiant des travaux de Newton et Leibniz sur le calcul infinitésimal développé au XVII siècle, puis par son oncle Jacques Bernoulli et son père Jean Bernoulli, Daniel Bernoulli put construire une modélisation mathématique à base d’équations différentielles dont l’étude lui permit de fournir une réponse à bases rationnelles en faveur de l’inoculation. Notons que Voltaire, qui avait survécu à la variole tout en conservant des cicatrices sur son visage, était un fervent partisan de l’inoculation, mais son engagement ne reposait, a priori, que sur un raisonnement subjectif.
Outre le fait que ce travail novateur donnait naissance à une nouvelle discipline, l’épidémiologie, il mettait en relief que la modélisation mathématique était potentiellement capable d’apporter des informations essentielles dans les sciences de la vie, et complémentaires à celles fournies par la biologie.
Lors de la conférence, nous montrerons à travers plusieurs exemples l’impact actuel du paradigme initié dans le mémoire de Daniel Bernoulli : l’utilisation des modèles mathématiques en renfort de la médecine. Plus particulièrement, nous donnerons quelques applications à l’optimisation des thérapies anticancéreuses, en montrant tout l’intérêt de la modélisation mathématique afin d’aider les cliniciens à construire une médecine personnalisée, notamment en gérant au mieux la balance efficacité-toxicité, et ce pour chaque personne.