AccueilÉvénementsUniversal Logic 2018 Algebraic Geometry with "Fancy" Coefficients Forum des jeunes mathématiciens-nes 2017 Universal Logic 2018 Mystères mathématiques de l'apprentissage par réseaux de neurones par ..."Electronique quantique dans les nanoconducteurs" par Gwendal FèveQuand la forme devient substance : puissance des gestes, intuition dia... Partager Universal Logic 2018 6th World Congress and School on Universal Logic In the same way that universal algebra is a general theory of algebraic structures, universal logic is a general theory of logical structures. During the 20th century, numerous logics have been created: intuitionistic logic, deontic logic, many-valued logic, relevant logic, linear logic, non monotonic logic, etc. Universal logic is not a new logic, it is a way of unifying this multiplicity of logics by developing general tools and concepts that can be applied to all logics. One aim of universal logic is to determine the domain of validity of such and such metatheorem (e.g. the completeness theorem) and to give general formulations of metatheorems. This is very useful for applications and helps to make the distinction between what is really essential to a particular logic and what is not, and thus gives a better understanding of this particular logic. Universal logic can also be seen as a toolkit for producing a specific logic required for a given situation, e.g. a paraconsistent deontic temporal logic. Du 16 au 26.06.2018 Vichy, France
Universal Logic 2018 6th World Congress and School on Universal Logic In the same way that universal algebra is a general theory of algebraic structures, universal logic is a general theory of logical structures. During the 20th century, numerous logics have been created: intuitionistic logic, deontic logic, many-valued logic, relevant logic, linear logic, non monotonic logic, etc. Universal logic is not a new logic, it is a way of unifying this multiplicity of logics by developing general tools and concepts that can be applied to all logics. One aim of universal logic is to determine the domain of validity of such and such metatheorem (e.g. the completeness theorem) and to give general formulations of metatheorems. This is very useful for applications and helps to make the distinction between what is really essential to a particular logic and what is not, and thus gives a better understanding of this particular logic. Universal logic can also be seen as a toolkit for producing a specific logic required for a given situation, e.g. a paraconsistent deontic temporal logic.