SMF

The automorphism groups of generalized Reed-Muller codes.

The automorphism groups of generalized Reed-Muller codes.

Rienhard KNÖRR, Wolfgang WILLEMS
The automorphism groups of generalized Reed-Muller codes.
     
                
  • Année : 1990
  • Tome : 181-182
  • Format : Électronique
  • Langue de l'ouvrage :
    Anglais
  • Pages : 195-207
  • DOI : 10.24033/ast.10

It is clear that the automorphism group of a generalized Reed-Muller code $\mathrm {GRM}(r,m)$ of degree $p^m$ over a prime field $\mathrm {F}_p$ contains the scalars $\mathrm {F}_p^*$ and the affine linear group $\mathrm {AGL}(m,p)$. It is shown that in general it is not bigger, i.e. $\mathrm {Aut}(\mathrm {GRM}(r,m))= \mathrm {F}_p^*\times \mathrm {AGL}(m,p)$ with the obvious exceptions for $r=0$, $m(p-1)$ and $m(p-1)-1$. This generalizes results known for $p=2$ to arbitrary primes. The proof depends on the ification of doubly transitive groups ; a few small cases are done by ad hoc methods.



Des problèmes avec le téléchargement?Des problèmes avec le téléchargement?
Informez-nous de tout problème que vous avez...