SMF

Bloch's higher Chow groups revisited

Bloch's higher Chow groups revisited

Marc LEVINE
     
                
  • Année : 1994
  • Tome : 226
  • Format : Électronique
  • Langue de l'ouvrage :
    Anglais
  • Pages : 235-320
  • DOI : 10.24033/ast.280

Bloch has defined higher Chow groups $CH^q(X, p)$ of a scheme $X$ over a field $k$ by constructing a complex out of the codimension $q$ algebraic cycles on $X \times A^n_k n = 0,1,2 \ldots $ We show that the $\mathbb Q$-vector space $CH^q(X, p)_{\mathbb Q}$ k is naturally isomorphic to the weight $q$ portion of the $p$th $K$-group of $X, K_p(X)^{(q)}$ for $X$ a smooth quasi-projective variety over $k$, generalizing the ical isomorphism $CH^q(X)_{\mathbb Q} \rightarrow K_0 (X)^{(q)}$. We also show that the functors $CH^q(-, \star )_{\mathbb Q}$ satisfy most of the properties of a Bloch-Ogus twisted duality theory. Finally, we show that the alternating cycle groups defined by Bloch agree with the rational higher Chow groups.



Des problèmes avec le téléchargement?Des problèmes avec le téléchargement?
Informez-nous de tout problème que vous avez...