Exposé Bourbaki 1111 : Problèmes de modules formels
Exposé Bourbaki 1111 : Formal moduli problems
Français
Le thème principal de cet exposé est la théorie des déformations (formelles), dont l'objet est l'étude des familles algébriques de structures variées et paramétrées par des anneaux artiniens. Nous expliquerons comment des idées dues à V. Drinfeld (et développées par V. Hinich, K. Behrend, M. Mannetti, M. Kontsevich, J. Lurie et bien d'autres) ont amené à remplacer les anneaux artiniens par des dg-anneaux artiniens, et à introduire la notion de problème de modules formel, qui fournit un cadre pertinent pour la théorie des déformations. En particulier, nous présenterons un des points culminants de cette approche, à savoir la construction par J. Lurie d'une équivalence entre les problèmes de modules formels et les dg-algèbres de Lie, ainsi que certaines de ses variantes et ses liens avec la dualité de Koszul. Nous mentionnerons par ailleurs quelques contreparties globales comme par exemple le lien avec les es d'Atiyah ou encore la notion de support singulier de faisceaux cohérents de Arinkin-Gaitsgory.