SMF

On the spectrum of gauge-periodic elliptic operators

On the spectrum of gauge-periodic elliptic operators

Jochen BRUNING, Toshikazu SUNADA
     
                
  • Année : 1992
  • Tome : 210
  • Format : Électronique
  • Langue de l'ouvrage :
    Anglais
  • Class. Math. : 35P99
  • Pages : 65-74
  • DOI : 10.24033/ast.181

We consider a symmetric elliptic operator, D, on a complete Riemannian manifold which admits a properly discontinuous action of a group $\Gamma $, with compact quotient. We assume that D is “gauge periodic” i.e. commutes with the group action twisted by a gauge ; a typical example is the Schrödinger operator with constant magnetic field. We associate a $C^*$-algebra with this situation and prove that the spectrum of (the closure) D has band sructure if this $C^*$-algebra has the “Kadison property”. For the magnetic Schrödinger operator, we can derive an optimal upperbound on the number of gaps for rational flux.



Des problèmes avec le téléchargement?Des problèmes avec le téléchargement?
Informez-nous de tout problème que vous avez...