SMF

Hermite et les mystères de l'exponentielle

Vidéo de la conférence donnée dans le cadre du cycle "Un texte, un mathématicien" le 9 février 2022

François Charles

On sait depuis l'Antiquité qu'il existe des nombres qui ne sont pas rationnels : ils ne peuvent s'exprimer comme une fraction dont le numérateur et le dénominateur sont entiers. Plus de 2000 ans plus tard, Liouville, puis Cantor, démontrent l'existence de nombres transcendants, qui ne peuvent s'exprimer à partir de nombres entiers et d'opérations algébriques, même plus générales. Hermite est le premier à prouver, dans son mémoire de 1873, qu'un nombre fondamental des mathématiques, le nombre e, est transcendant. On parlera de la géométrie cachée derrière ces nombres transcendants, de ce que signifie leur existence, et de ce que font les mathématicien.ne.s quand ils ne savent pas démontrer ce qu'ils veulent !

Le cycle "Un texte, un mathématicien"

 

Publiée le 10.03.2022