Projections, multiplicateurs et applications décomposables sur des espaces $\mathrm{L}^p$ noncommutatifs
Projections, multipliers and decomposable maps on noncommutative $\mathrm{L}^p$-spaces
Anglais
On introduit un analogue non commutatif de la valeur absolue d'un opérateur régulier agissant sur un espace $\mathrm{L}^p$ non commutatif. Nous prouvons également que deux normes classiques d'opérateurs, la norme régulière et la norme décomposable sont identiques. On décrit aussi précisément la norme régulière de plusieurs classes de multiplicateurs réguliers. Cela inclut les multiplicateurs de Schur et les multiplicateurs de Fourier sur certains groupes localement compacts unimodulaires qui peuvent être approximés par des groupes discrets dans des sens variés. Le principal ingrédient est l'existence d'une projection bornée de l'espace des opérateurs complètement bornés sur l'espace des multiplicateurs de Schur ou de Fourier, préservant la positivité complète. Par ailleurs, on montre l'existence de multiplicateurs de Fourier bornés qui ne peuvent être approximés par des opérateurs réguliers, sur de larges classes de groupes localement compacts, incluant tous les groupes localement compacts abéliens infinis. On termine en introduisant une procédure générale pour prouver des résultats positifs sur les multiplicateurs de Fourier contractivement décomposables autoadjoints, au-delà du cas moyennable.