SMF

Exposé Bourbaki 723 : Algebraic Fermi curves [after Gieseker, Trubowitz and Knörrer]

Exposé Bourbaki 723 : Algebraic Fermi curves [after Gieseker, Trubowitz and Knörrer]

Chris PETERS
Exposé Bourbaki 723 : Algebraic Fermi curves [after Gieseker, Trubowitz and Knörrer]
     
                
  • Année : 1990
  • Tome : 189-190
  • Format : Électronique
  • Langue de l'ouvrage :
    Anglais
  • Class. Math. : 35J10-82A68-14C30-32J25-58G25
  • Pages : 239-258
  • DOI : 10.24033/ast.38

In solid state physics one considers a lattice of ions in ${\bf R}^d$ $(d \leq 3)$ with electrons moving in a field generated by a common potential $q(x)$ (independent electron model). The usual mathematical approach consists of determining the period spectrum of the Schrödinger operator $-\Delta + q(x)$. This then leads to a certain analytic $d$–dimensional subvariety of $({\bf C}^*)^d \times {\bf C}$ fibered over the complex numbers via the second projection. Its fibres for $d = 2$, resp. $d = 3$ are the complex Fermi curves, resp. Fermi surfaces (in solid state physics one considers only the “real” points, e.g. the intersection with $(S^1)^d \times {\bf R}^1$, where $S^1 \subset {\bf C}^*$). To isolate the geometrical aspects of the problem one discretizes the Schrödinger operator, leading to algebraic Fermi curves and surfaces. It turns out that for $d = 2$ generically the potential is completely determined by a physically measurable function of the energy, the so-called density of states function. To prove this not only a very detailed study of various degenerations is necessary, but also a substantial amount of algebraic geometry is needed, such as the Torelli theorem for curves and Deligne's theorem on the fixed part.


Électronique
Electronic
Prix public Public price 10.00 €
Prix membre Member price 7.00 €
Quantité
Quantity
- +


Des problèmes avec le téléchargement?Des problèmes avec le téléchargement?
Informez-nous de tout problème que vous avez...