SMF

Uniform estimates for the Cauchy-Riemann equation on $q$-concave wedges

Uniform estimates for the Cauchy-Riemann equation on $q$-concave wedges

C. LAURENT-THIEBAUT, J. LEITERER
Uniform estimates for the Cauchy-Riemann equation on $q$-concave wedges
     
                
  • Année : 1993
  • Tome : 217
  • Format : Électronique
  • Langue de l'ouvrage :
    Anglais
  • Pages : 151-182
  • DOI : 10.24033/ast.230

We study the $\overline {\partial }$-equation with Hölder estimates in $q$-concave wedges of $\mathbb {C}^n$ by means of integral formulas. If $(E, D)$ is a $q$-concave wedge in $\mathbb {C}^n$ we denote by $\xi $ a point in $E$. Then for each $(n,r)$-closed form $f$ in $D$, $1\leq r\leq q-N$, such that $d^\beta f$ is bounded for some $\beta $, $0 \leq \beta < 1$, we get a solution $g$ of the equation $\overline {\partial }g = f$ on a smaller domain $D \cap B(\xi , R)$, such that, for all $\varepsilon >0$, $d^{\beta -1/2+\varepsilon }g$ is bounded if $\beta \geq 1/2$ and $g$ is Hölder continuous with exponent $1/2-\beta -\varepsilon $ if $\beta <1/2$. Moreover, if $q-N \geq 0$, every holomorphic function on $D$ extends holomorphically to a neighborhood of $\xi $.



Des problèmes avec le téléchargement?Des problèmes avec le téléchargement?
Informez-nous de tout problème que vous avez...