On the automorphism group of certain hyperbolic domains in $\mathbb {C}^2$
On the automorphism group of certain hyperbolic domains in $\mathbb {C}^2$
Astérisque | 1993
Anglais
We investigate domains $\Omega = \{\mathrm {Re}\, w + Q(z,\overline {z}) < 0\}$ in $\mathbb {C}^2$ where $Q$ is a subharmonic and non-harmonic polynomial. The holomorphic equivalence of domains is characterized in terms of the defining polynomials. In the case that $\mathrm {dim}_R\,\mathrm {Aut}(\Omega ) \geq 2$, we give canonical defining polynomial and we list all possible Aut($\Omega $).
L'abonnement correspond aux 8 volumes annuels : 7 volumes d'Astérisque et le volume des exposés Bourbaki de l'année universitaire écoulée.
This subscription corresponds to 8 volumes: 7 volumes of Astérisque plus one volume with the texts of the Bourbaki talks given in the past year.