Uniform estimates for the Cauchy-Riemann equation on $q$-concave wedges
Uniform estimates for the Cauchy-Riemann equation on $q$-concave wedges
Astérisque | 1993
Anglais
We study the $\overline {\partial }$-equation with Hölder estimates in $q$-concave wedges of $\mathbb {C}^n$ by means of integral formulas. If $(E, D)$ is a $q$-concave wedge in $\mathbb {C}^n$ we denote by $\xi $ a point in $E$. Then for each $(n,r)$-closed form $f$ in $D$, $1\leq r\leq q-N$, such that $d^\beta f$ is bounded for some $\beta $, $0 \leq \beta < 1$, we get a solution $g$ of the equation $\overline {\partial }g = f$ on a smaller domain $D \cap B(\xi , R)$, such that, for all $\varepsilon >0$, $d^{\beta -1/2+\varepsilon }g$ is bounded if $\beta \geq 1/2$ and $g$ is Hölder continuous with exponent $1/2-\beta -\varepsilon $ if $\beta <1/2$. Moreover, if $q-N \geq 0$, every holomorphic function on $D$ extends holomorphically to a neighborhood of $\xi $.
L'abonnement correspond aux 8 volumes annuels : 7 volumes d'Astérisque et le volume des exposés Bourbaki de l'année universitaire écoulée.
This subscription corresponds to 8 volumes: 7 volumes of Astérisque plus one volume with the texts of the Bourbaki talks given in the past year.