De Lambert à Cauchy : la résolution des équations littérales par le moyen des séries
From Lambert to Cauchy : solving equations by means of series
Français
En 1770, Lagrange démontre la formule qui porte son nom et qui donne, sous forme de série, l'expression de la racine d'une équation algébrique ou transcendante. La formule elle-même et la méthode de démonstration sont significatives du style et de la pensée de l'auteur de la Théorie des fonctions analytiques. De nombreuses études sont consacrées ensuite à ce théorème de Lagrange par d'autres mathématiciens. Elles portent la trace de préoccupations ou d'exigences particulières à leurs auteurs. Elles accompagnent parfois des tentatives théoriques plus ambitieuses. Laplace étudie la convergence des séries que le théorème de Lagrange permet d'obtenir pour la résolution du problème de Kepler. Mais ces travaux restent d'abord tributaires des mêmes conceptions, selon lesquelles les fonctions sont identifiées à des développements en séries formelles. Cauchy remet en cause ce point de vue, et c'est un bouleversement profond qui intervient en 1831 lorsqu'il reprend le problème avec les moyens dont il dispose dans le cadre des fonctions de variable imaginaire.