D'un système de particules de type Kac à l'équation de Landau pour des potentiels durs et des molécules maxwelliennes
From a Kac-like particle system to the Landau equation for hard potentials and Maxwell molecules
Anglais
Nous prouvons des résultats quantitatifs de convergence d'un système de particules conservatif vers la solution de l'équation de Landau homogène pour des potentiels durs. Il y a deux principales difficultés : (i) le caractère conservatif du système est un obstacle pour obtenir de l'indépendance (même approchée), comme c'est le cas pour de vrais systèmes de particules physiques ; (ii) les résultats connus de stabilité pour ces équations de Landau concernent des solutions régulières et paraissent difficiles à étendre pour étudier la vitesse de convergence de mesures empiriques. Pour le point (i), nous procédons à un double couplage. Nous couplons d'abord notre système avec des processus non linéaires non indépendants dont la loi résout en un certain sens l'équation de Landau. Nous construisons ensuite un second couplage afin de montrer que ces processus non linéaires ne sont pas loin d'être indépendants. Pour résoudre (ii), nous établissons de nouveaux résultats de stabilité pour l'équation de Landau pour des potentiels durs et des solutions de type mesure très générales. Finalement, en utilisant des idées de Rousset [?], nous montrons que dans le cas des molécules maxwelliennes, la convergence du système de particules est uniforme en temps.