Nombre fini de degrés de liberté du profil raffiné de l'équation semilinéaire de la chaleur
Finite degrees of freedom for the refined blow-up profile of the semilinear heat equation
Anglais
Nous raffinons le comportement asymptotique des solutions de l'équation semilinéaire de la chaleur avec une non-linéarité sous-critique au sens de Sobolev, qui explosent en temps fini à un point d'explosion avec le profil communément admis comme générique. Pour obtenir ce raffinement, nous devons abandonner le profil explicite comme premier ordre de l'approximation, et prenons à la place une fonction non explicite comme première description du comportement au voisinage de la singularité. Cette fonction non explicite est en fait une solution spécifique que nous construisons, obéissant à un certain comportement prescrit. La construction repose sur la réduction du problème à un problème en dimension finie et l'utilisation d'un argument topologique basé sur la théorie du degré pour conclure. De façon étonnante, on constate que le nouveau profil non explicite produit une famille avec un nombre fini de degrés de liberté, soit $\frac {(N + 1)N}{2}$ si $N$ est la dimension de l'espace.