SMF

Algebraic Fermi curves [after Gieseker, Trubowitz and Knörrer]

Algebraic Fermi curves [after Gieseker, Trubowitz and Knörrer]

Chris PETERS
Algebraic Fermi curves [after Gieseker, Trubowitz and Knörrer]
  • Année : 1990
  • Tome : 189-190
  • Format : Électronique
  • Langue de l'ouvrage :
    Anglais
  • Class. Math. : 35J10-82A68-14C30-32J25-58G25
  • Pages : 239-258
  • DOI : 10.24033/ast.38

In solid state physics one considers a lattice of ions in ${\bf R}^d$ $(d \leq 3)$ with electrons moving in a field generated by a common potential $q(x)$ (independent electron model). The usual mathematical approach consists of determining the period spectrum of the Schrödinger operator $-\Delta + q(x)$. This then leads to a certain analytic $d$–dimensional subvariety of $({\bf C}^*)^d \times {\bf C}$ fibered over the complex numbers via the second projection. Its fibres for $d = 2$, resp. $d = 3$ are the complex Fermi curves, resp. Fermi surfaces (in solid state physics one considers only the “real” points, e.g. the intersection with $(S^1)^d \times {\bf R}^1$, where $S^1 \subset {\bf C}^*$). To isolate the geometrical aspects of the problem one discretizes the Schrödinger operator, leading to algebraic Fermi curves and surfaces. It turns out that for $d = 2$ generically the potential is completely determined by a physically measurable function of the energy, the so-called density of states function. To prove this not only a very detailed study of various degenerations is necessary, but also a substantial amount of algebraic geometry is needed, such as the Torelli theorem for curves and Deligne's theorem on the fixed part.

Des problèmes avec le téléchargement?Des problèmes avec le téléchargement?
Informez-nous de tout problème que vous avez...