Hopf structure on the Van Est spectral sequence in $K$-theory
Hopf structure on the Van Est spectral sequence in $K$-theory
Astérisque | 1994
Anglais
This paper explores the duality relationship between the multiplicative $K$-theory of a Banach algebra $A$ and the indecomposables in the smooth cohomology of the associated general linear group. The main technical result is that a spectral sequence of coprimitive Hopf algebras induces a long exact sequence of indecomposables. This is applied to the Van Est spectral sequence yielding the above formal duality relationship. In the last section we also reinterpret the Van Est spectral sequence as a Serre spectral sequence in continuous cohomology.
L'abonnement correspond aux 8 volumes annuels : 7 volumes d'Astérisque et le volume des exposés Bourbaki de l'année universitaire écoulée.
This subscription corresponds to 8 volumes: 7 volumes of Astérisque plus one volume with the texts of the Bourbaki talks given in the past year.