SMF

Seshadri constants on smooth surfaces

Seshadri constants on smooth surfaces

L. EIN, R. LAZARSFELD
     
                
  • Année : 1993
  • Tome : 218
  • Format : Électronique
  • Langue de l'ouvrage :
    Anglais
  • Class. Math. : 14J99
  • Pages : 177-186
  • DOI : 10.24033/ast.244

Let L be an ample line bundle on a smooth projective variety X of dimension n. Demailly has introduced the Seshadri constant ϵ(L,x) of L at x, which roughly speaking measures how positive L is at x. For example, if L is very ample, then ϵ(L,x)1 for all xX. We study these invariants in the first non-trivial case, when X is a smooth surface. We prove (somewhat surprisingly) that in this case ϵ(L,x)1 for all except perhaps countably many xX, and moreover if LL>1 then the exceptional set is finite. On the other hand, simple examples due to Miranda show that ϵ(L,x) can take on arbitrary small positive values at isolated points. The paper also contains some related examples and open problems.



Des problèmes avec le téléchargement?Des problèmes avec le téléchargement?
Informez-nous de tout problème que vous avez...