Divisibility in the Chow group of zero-cycles on a singular surface
Divisibility in the Chow group of zero-cycles on a singular surface
Astérisque | 1994
Anglais
In this paper we study the divisibility of the group $CH^2(X)$ of zero-cycles on a singular surface $X$ over a field $k$. Our results generalize known facts about the Chow group of a nonsingular surface. When $k$ is algebraically closed, we show that the subgroup of cycles of “degree”zero is divisible. When $k$ is the real numbers $R$, the non-divisible torsion of $CH^2(X)$ is detected by the topology of the stratified manifold $X({\mathbb R})$.
L'abonnement correspond aux 8 volumes annuels : 7 volumes d'Astérisque et le volume des exposés Bourbaki de l'année universitaire écoulée.
This subscription corresponds to 8 volumes: 7 volumes of Astérisque plus one volume with the texts of the Bourbaki talks given in the past year.