SMF

Exposé Bourbaki 849 : Recent work on differential Galois theory

Exposé Bourbaki 849 : Recent work on differential Galois theory

Marius VAN DER PUT
Exposé Bourbaki 849 : Recent work on differential Galois theory
     
                
  • Année : 1998
  • Tome : 252
  • Format : Électronique
  • Langue de l'ouvrage :
    Anglais
  • Class. Math. : 39A10-11FXX-11GXX-13NXX-12H05.
  • Pages : 341-367
  • DOI : 10.24033/ast.430

Let $K$ be a differential field with an algebraically closed field of constants $C$ of characteristic $0$. To a linear differential equation of order $n$ over $K$ one associates a differential Galois group which is an algebraic subgroup of ${\rm GL}(n,C)$. The inverse problem reads : “which linear algebraic groups occur as differential Galois group ?” The inverse problem is solved by J.-P. Ramis for local and global analytic situations. A constructive solution of the inverse problem for the differential field $C(x)$ (for connected groups) has been given by C. Mitschi and M.F. Singer.

Ordinary differential equations, differential algebra, differential Galois theory, Picard-Vessiot theory.

Électronique
Electronic
Prix public Public price 10.00 €
Prix membre Member price 7.00 €
Quantité
Quantity
- +


Des problèmes avec le téléchargement?Des problèmes avec le téléchargement?
Informez-nous de tout problème que vous avez...