Oscillations presque-périodiques forcées d'équations d'Euler-Lagrange
Français
Pour montrer l'existence de solutions p.p. (presque-périodiques) d'une équation d'Euler-Lagrange à lagrangien convexe, en présence d'une excitation extérieure p.p., on introduit un espace hilbertien, du type Sobolev, de fonctions Besicovitch-p.p., et une notion du solution p.p. faible. On utilise le calcul des variations en moyenne temporelle et les opérateurs Minty-monotones.