Anglais
Nous étudions le comportement asymptotique des mouvements browniens sur les groupes orthogonaux, unitaires et symplectiques lorsque le rang de ces groupes tend vers l'infini. Nous étendons aux cas orthogonal et symplectique le résultat de convergence en distribution non-commutative initialement obtenu par Biane pour le mouvement brownien unitaire et nous établissons une estimation explicite et simple de la vitesse de convergence en distribution non-commutative pour un mot arbitraire en des accroissements indépendants de mouvements browniens. Ces résultats nous permettent de construire et d'étudier la limite de la mesure de Yang-Mills sur le plan euclidien avec des groupes de structure orthogonaux, unitaires et symplectiques, lorsque le rang de ces groupes tend vers l'infini. Ce faisant, nous réalisons une partie d'un programme décrit par Singer. Nous prouvons que chaque boucle de Wilson converge en probabilité vers une limite déterministe et que son espérance converge vers la même limite à une vitesse qui est explicitement contrôlée par la longueur du lacet. Au cours de cette étude, nous redémontrons et généralisons marginalement un résultat de Hambly et Lyons concernant l'ensemble des chemins rectifiables arborescents (ceux que les auteurs appellent tree-like). Enfin, nous démontrons rigoureusement, en rang fini et à la limite où le rang tend vers l'infini, les équations de Schwinger-Dyson pour les espérances des boucles de Wilson, qui dans ce contexte s'appellent les équations de Makeenko-Migdal. Nous examinons la manière dont ces équations permettent de calculer récursivement les espérances des boucles de Wilson, chacune étant une composante de la solution d'un système différentiel par rapport aux aires des faces délimitées par le lacet.