Exposé Bourbaki 1104 : Groupes de Galois motiviques et périodes
Exposé Bourbaki 1104 : Motivic Galois groups and periods
Français
Dans les années 60, A. Grothendieck a proposé une vaste généralisation de la théorie de Galois aux systèmes de polynômes en plusieurs variables (la théorie de Galois motivique), et introduit à cette occasion les catégories tannakiennes. En caractéristique nulle, diverses approches ont permis de s'affanchir des conjectures standard et de construire une théorie inconditionnelle. Celle de J. Ayoub, qui s'appuie sur la théorie des motifs mixtes de V. Voevodsky et une nouvelle théorie tannakienne, est la plus précise. Elle offre une nouvelle perspective sur les périodes des variétés algébriques, et montre notamment que les relations polynomiales qui lient les périodes d'un pinceau de variétés algébriques complexes s'expliquent toujours par la formule de Stokes.