Critère d'exactitude pour les formes de degré $1$ sur les quadriques complexes

Français
Soit $(X,g)$ une variété riemannienne compacte. Une forme différentielle de degré $1$ sur $X$ est à énergie nulle si son intégrale le long de toute géodésique fermée de $X$ est nulle. Dans le cas où $(X,g)$ est une grassmannienne complexe ou réelle, simplement connexe et non isométrique à $\mathbb {P}^1(\mathbb {C})$ ou $\mathbb {P}^1(\mathbb {C})\times \mathbb {P}^1(\mathbb {C})$, nous montrons que les seules formes de degré $1$, à énergie nulle, sont exactes.