SMF

Homologie, groupes $Ext^{n}$, représentations de longueur finie des groupes de Lie

Homologie, groupes $Ext^{n}$, représentations de longueur finie des groupes de Lie

P. BLANC, F. DU CLOUX, P. DELORME, A. GUICHARDET, J. PICHAUD, éds
Homologie, groupes $Ext^{n}$, représentations de longueur finie des groupes de Lie
     
                
  • Année : 1985
  • Tome : 124-125
  • Format : Électronique, Papier
  • Langue de l'ouvrage :
    Français
  • Nb. de pages : 278
  • ISBN : ISBN-13 978-2-85629-419-2

This issue of Astérisque presents some recent work in the fields of (co)homology and finite length representations of Lie groups. In homology theory proofs are given of Shapiro's lemma, of the regularization theorem (i.e. the isomorphism between $H_{*}(G,E)$ and $H_{*}(G,E_{\infty})$ when $E$ is a continuous $G$-module), and of the surjectivity of the map $H_{*}(G_{d},E) \to H_{*}(G,E)$, where $G_{d}$ denotes the abstract group underlying $G$. The problems of computing $Ext^{n}$ between irreducibles and of studying finite length representations are considered for various classes of Lie groups $G$ : real semisimple, nilpotent, and semidirect products $G = B\times A$ with $B$ a vector group, and for suitable irreducible represen-tations of $G$. In the semisimple (resp. nilpotent) case one obtains algebraic descriptions in terms of the Langlands classification (resp. the orbit method). In the case of semidirect products the aim is to obtain a reduction theorem in the spirit of Mackey's theory; under certain hypotheses, this can be carried out completely.

 

This issue of Astérisque presents some recent work in the fields of (co)homology and finite length representations of Lie groups. In homology theory proofs are given of Shapiro's lemma, of the regularization theorem (i.e. the isomorphism between $H_{*}(G,E)$ and $H_{*}(G,E_{\infty})$ when $E$ is a continuous $G$-module), and of the surjectivity of the map $H_{*}(G_{d},E) \to H_{*}(G,E)$, where $G_{d}$ denotes the abstract group underlying $G$. The problems of computing $Ext^{n}$ between irreducibles and of studying finite length representations are considered for various classes of Lie groups $G$ : real semisimple, nilpotent, and semidirect products $G = B\times A$ with $B$ a vector group, and for suitable irreducible represen-tations of $G$. In the semisimple (resp. nilpotent) case one obtains algebraic descriptions in terms of the Langlands classification (resp. the orbit method). In the case of semidirect products the aim is to obtain a reduction theorem in the spirit of Mackey's theory; under certain hypotheses, this can be carried out completely.

 


Prix Papier
Price (paper only)
Prix public Public price 28.00 €
Prix membre Member price 20.00 €
Quantité
Quantity
- +



Des problèmes avec le téléchargement?Des problèmes avec le téléchargement?
Informez-nous de tout problème que vous avez...