Les théorèmes projectifs de Sturm et leur circulation
Sturm’s projective theorems and their circulation
Français
Le mathématicien franco-suisse Charles-François Sturm est l’auteur d’un théorème peu connu en géométrie projective constituant le sujet principal d’un mémoire consacré aux sections coniques et publié en deux parties en 1826 dans les Annales de mathématiques pures et appliquées de Gergonne. Sturm a découvert ce théorème lors de son premier séjour à Paris en tant que précepteur de la famille de Broglie en 1824. Au début du XIXe siècle, une communauté de géomètres français développa le projet d’organiser tout le corpus des propositions géométriques (y compris des théorèmes célèbres comme celui de Pascal) à partir de principes généraux. Les travaux de Sturm firent partie intégrante de ce projet et furent publiés à une époque où des débats sur des questions de rigueur et de bonne pratique de la géométrie animaient la communauté des mathématiciens : comment interpréter le concept de dualité ? Comment le représenter ? Quelle crédibilité donner au controversé principe de continuité énoncé par Poncelet ? De plus, le nouveau théorème découvert par Sturm s’inscrit dans un contexte de compétition et de querelles de priorité avec d’autres jeunes mathématiciens publiant également dans la revue de Gergonne, comme Plücker ou Bobillier. L’étude de la circulation de ce théorème de Sturm peu étudié dans la littérature scientifique nous permet de voir comment se sont construits les savoirs et les pratiques dans le domaine particulier de la géométrie projective.