Problèmes de petits diviseurs dans les équations aux dérivées partielles
Small Divisor Problems in Partial Differential Equations
Français
Beaucoup de problèmes d'équations aux dérivées partielles (EDP) non linéaires qui sont intéressants pour la physique peuvent être posés comme des systèmes d'évolution hamiltoniens. Les équations des ondes non linéaires, de Schrödinger, de Korteweg de Vries, d'Euler en mécanique des fluides en sont les principaux exemples. En complément de la théorie des données initiales, il est naturel de se poser la question de la stabilité des solutions pour tout temps, et de décrire les structures principales qui sont invariantes au cours du temps dans l'espace de phase où ces systèmes sont bien posés. On se propose dans ce volume de Panoramas et synthèses de développer des prolongements de la théorie Kolmogorov-Arnold-Moser (KAM) des tores invariants pour les EDP, dans le cas où les espaces de phases sont de dimension infinie. Le Panorama commence avec la définition des systèmes hamiltoniens de dimension infinie et présente les exemples principaux. Il passe en revue la théorie ique des solutions périodiques pour les systèmes dynamiques de dimension finie, en insistant sur le rôle joué par les résonances. Il développe ensuite une approche directe de la théorie KAM en dimension infinie, qui est appliquée à certaines EDP. Enfin il présente les méthodes introduites par Fröhlich et Spencer pour le développement de la résolvante, qui jouent un rôle central dans l'approche directe de la théorie KAM. On conclut dans le dernier chapitre par une présentation des développements les plus récents de la théorie.
Grâce au soutien du CNRS, à votre générosité et à notre volonté de partager l'accès aux sciences, ce document est en libre accès. N'hésitez pas et continuez à nous soutenir !