Phénomène de Moser-Newman pour les nombres sans facteur carré
Moser-Newman phenomenon for numbers without square factor
Français
Let $\mu $ denote the Möbius function and $\mathbf {t}=(t(n))_{n\in \mathbb {N} }$ be the Thue-Morse sequence, defined by $t(n) = +1$ if the number of $1$ in the dyadic representation of $n$ is even and $t(n) = -1$ otherwise. The aim of this work is to give an asymptotic formula for $S(N) = \sum _{\substack {n
Suite de Thue-Morse, nombres sans facteur carré, sommes trigonométriques.