Analyse de régularité de systèmes d'équations de réaction-diffusion
Regularity analysis for systems of reaction-diffusion equations
Anglais
Ce travail est consacré à l'étude de la régularité des solutions de certains systèmes d'équations de réaction-diffusion. En particulier, nous montrons que les solutions peuvent être bornées et régulières en dimensions un et deux alors qu'en dimensions supérieures nous discutons la dimension de Hausdorff de l'ensemble des points singuliers. L'approche proposée ici s'inspire de la méthode de De Giorgi pour étudier la régularité de problèmes elliptiques avec des coefficients discontinus. La preuve exploite la stucture spécifique des systèmes considérés et n'est pas une simple adaptation de techniques scalaires. L'entropie associée naturellement au système joue un rôle crucial dans cette analyse.
Systèmes de réaction-diffusion, régularité des solutions